
Université de Liège
Faculté des Sciences Appliquées

Département d’Électricité, Électronique et Informatique

Contributions to Bayesian Network Learning

Thèse présentée par
Vincent Auvray

en vue de l’obtention du titre de
Docteur en Sciences de l’Ingénieur

Année académique 2006-2007

Contributions to Bayesian Network Learning

Vincent Auvray

Acknowledgements

This dissertation is the fruit of several years of research that would not have been
carried out without support. First and foremost, I would like to express my deep
gratitude to my advisor Prof. Louis Wehenkel for the time and effort he invested in
me. His trust in my abilities and his patience during the dissertation long gestation
were really appreciated. I would also like to thank my colleagues and friends
from the Montefiore Institute and the Bioinformatics unit of the GIGA-Research
for creating a propitious work environment. In particular, I would like to mention
Axel Legay, Pierre Geurts, and Sarah Hansoul whose help and feedback allowed
me to clarify my ideas and greatly improve this work. I am also indebted to Prof.
Ian Dobson who kindly welcomed me to the University of Wisconsin-Madison.
Working under his supervision allowed me to grow as a researcher and eased my
qualms about pursuing such a career. My parents and family also deserve my
gratitude. I would like to acknowledge the sacrifices made by my wife Samantha
Giessinger and thank her for her unwavering support. This dissertation is dedicated
to her. Finally, I would like to thank the Belgian Fonds National de la Recherche
Scientifique and the University of Liège for their crucial financial support.

Contents

Introduction 1

1 Bayesian Networks 5
1.1 Introduction . 5
1.2 Elements of Probability Theory 5

1.2.1 Measures . 6
1.2.2 Random Variables . 7

1.3 Bayesian Networks . 11
1.4 Parametric Bayesian Network Models 15

1.4.1 Statistical Models . 15
1.4.2 Bayesian Network Models 16
1.4.3 Dimension . 17

1.5 Implicit Bayesian Network Models 19
1.5.1 Independence Models 19
1.5.2 Independence Models Associated to DAGs 20
1.5.3 Implicit Definition . 24

1.6 Equivalence and Inclusion of DAGs 25
1.6.1 Graphical Characterization of ≤I and =I 26
1.6.2 Essential Graphs . 27

1.7 Bayesian Network Models with Hidden Variables 30
1.7.1 Hidden and Observable Variables 31
1.7.2 Bayesian Network Models with Hidden Variables 31
1.7.3 Dimension . 33

1.8 Optimality of a Bayesian Network Model 34

2 Learning Bayesian networks 39
2.1 Introduction . 39
2.2 A Bayesian Approach to Learning Statistical Models 40
2.3 Hypothesis Space . 42

2.3.1 Technical Difficulties . 42
2.3.2 Choice of S . 43

2.4 Parameter Learning . 44
2.4.1 Parameter Estimation . 45

vi CONTENTS

2.4.2 Likelihood . 46
2.4.3 Prior Parameter Density 47
2.4.4 Marginal Likelihood and Posterior Density 49

2.5 Structure Learning . 50
2.5.1 Posterior Structure Probability 50
2.5.2 Properties of Scoring Criteria 52
2.5.3 Search for an Optimal Structure 54

3 Computation of the Inclusion Boundary 59
3.1 Introduction . 59
3.2 From DAGs to Essential Graphs and Vice-Versa 60

3.2.1 Graphical Characterization of Essential Graphs 60
3.2.2 Markov Equivalence Class Associated to an Essential Graph 63
3.2.3 Computation of the Essential Graph Associated to the Mar-

kov Equivalence Class of a DAG 66
3.3 Computation of the Inclusion Boundary IB(E) 69

3.3.1 Graphical Characterization of the Partition by Skeleton . . 70
3.3.2 Computation of IB{a,b} when a · · · b ∈ E 72
3.3.3 Computation of IB{a,b} when a · · · b < E 80

3.4 Conclusion . 88

4 Learning Parameters in Discrete Naive Bayes Models by Computing
Fibers of the Parametrization Map 91
4.1 Introduction . 91
4.2 The Discrete Naive Bayes Model with hidden class 93

4.2.1 Parametric Definition . 93
4.2.2 Elementary Properties 96

4.3 Preliminaries . 97
4.3.1 Alternative Parametrization of NBm,X 98
4.3.2 Notations . 103
4.3.3 Core Results . 104

4.4 Computation of Fibers of hm . 109
4.4.1 A First Algorithm . 109
4.4.2 A More Efficient Algorithm 114
4.4.3 Discussion of the Assumptions 116
4.4.4 Computation of the Fibers with Two Hidden Classes . . . 118
4.4.5 Extensions . 121

4.5 Projections for Parameter Learning 123
4.5.1 Projections Based on Algorithm 8 123
4.5.2 Projections Based on Algorithm 9 130

4.6 Conclusion . 132
4.7 Proofs of the Core Results . 133

4.7.1 Theorem 4.8 . 134
4.7.2 Theorem 4.9 and Corollary 4.10 135

CONTENTS vii

4.7.3 Theorem 4.11 . 137
4.7.4 Theorem 4.12 . 138
4.7.5 Theorem 4.13 . 145

Conclusion 149

Appendix 151
A Common Densities and Families 151
B Semi-Algebraic Sets . 152
C Kullback-Leibler Distance . 153

Bibliography 155

Index 161

List of Theorems 165

List of Definitions 169

List of Figures 175

Introduction

The probabilistic approach to modeling describes a domain with random variables
and represents knowledge about this domain by a joint probability distribution on
the variables. A probabilistic model allows to reason in uncertain conditions: after
observing the values of certain variables, one can infer the conditional distribution
of other variables and consequently make rational decisions. Many problems can
be formulated within this framework as such inference problems. For example, in a
medical domain, symptoms, genotype, and diseases can all be modeled as random
variables. Then, a probabilistic model can help pose a diagnosis by computing the
probability of a disease given the observation of some symptoms or the genotype.

A probabilistic model can be specified by a domain expert or learned from data.
In the latter case, one assumes that some data generated by a process underlying
the domain is accessible, and the goal of learning is to construct from the data a
probabilistic model of this process. For example, in a medical domain, one may
have medical records of patients.

Because of dimensionality problems, multivariate distributions — and thus
probabilistic models — are difficult to represent, manipulate, and learn without
first imposing some constraints. In particular, without assumption about its shape,
a distribution on discrete random variables requires a number of parameters expo-
nential in the number of variables in order to be represented.

Graphical probabilistic models explicitely encode with a graph certain struc-
tural properties of the joint distributions they represent. They possess two compo-
nents: a graph and a parameter. The graph, or structure, encodes in a compact and
intuitive way a set of marginal and conditional independence relations between the
random variables of the domain. Such independence relations typically assert that
each variable is directly influenced by only a few other variables, and they seem to
hold in a wide variety of domains. For example, a disease may only be linked to a
small set of genes, instead of the whole genome. The parameter specifies a distribu-
tion satisfying the independence assumptions of the structure via a parametrization
map defined on a parameter space. With graphical models, two learning problems
are typically considered: structure learning, where a structure whose independence
assumptions hold in the data generating distribution is searched, and parameter
learning, where a structure is given and a parameter mapped to the data generating
distribution is searched. Learning the structure may be very informative about the
domain as it may discover structural properties.

2 Introduction

A Bayesian network is a special type of graphical probabilistic model whose
graph is directed and acyclic and whose parameter specifies a conditional distribu-
tion for each variable given its parents in the graph. Bayesian networks allow to
represent distributions compactly and to construct efficient inference and learning
algorithms. Distinct directed acyclic graphs may sometimes encode the same set
of independence relations and may thus be considered equivalent. To avoid con-
sidering equivalent structures, structure learning is sometimes formulated in terms
of learning equivalence classes of structures, which are represented by so-called
essential graphs in this dissertation.

Learning a Bayesian network structure (or an essential graph) is often cast
as an optimisation problem. Given a set of candidate structures and some data,
a scoring metric that ranks the structures is defined, and an optimal structure is
searched, typically in a greedy way. Assuming that each candidate structure is
assigned a set of neighboring structures, a greedy search algorithm explores the
structure space iteratively by moving from a current structure to the highest scoring
neighbor until a local optimum of the scoring metric is reached. Depending on
the space of candidate structures, scoring metric, and initial structure, the greedy
search may get stuck in a local, rather than global, optimum. A first contribution
of this dissertation is an efficient algorithm that computes the neighborhood of
essential graphs known as the inclusion boundary. The inclusion relation between
sets of independence relations induces a partial order on sets of essential graphs
(and sets of Bayesian network structures). Given a set of essential graphs, the
union of the set of least upper bounds and the set of greatest lower bounds of an
essential graph is its inclusion boundary. Under several technical assumptions, a
greedy search algorithm using the inclusion boundary neighborhood possesses nice
properties, and may even return a global optimum. Besides the actual computation
of the inclusion boundary, this dissertation also demonstrates how to efficiently
evaluate the score difference between an essential graph and one of its neighbors.

Like structure learning, parameter learning is often formulated as an optimiza-
tion problem. In this case, an element of the parameter space maximizing an ap-
propriate objective function such as the posterior parameter density or the data
likelihood is searched. Sometimes, parameter learning is also interpreted as a pro-
jection problem that can be intuitively described and solved as follows. First, a
distribution maximizing some unconstrained version of the original optimization
problem is found. Then, this distribution is somehow projected onto the image of
the parametrization map. Finally, a learned parameter is chosen among the parame-
ters mapped to the projected distribution. To apply this procedure and design a suit-
able projection function, one may impose the constraint that a distribution already
in the image of the parametrization map should be projected onto itself. Also, one
should be able to compute the fibers of the parametrization map, i.e. the preimages
of elements in the image of the parametrization map. This dissertation implements
these well-known ideas to learn the parameters of the special class of Bayesian net-
works known as discrete Naives Bayes models with hidden class variable, and its
contribution can be summarized as follows. First, assumptions implying that the

3

preimage of a Naive Bayes distribution is finite are identified. Then, algorithms that
compute the preimage of a distribution satisfying those assumptions by enumerat-
ing a finite superset of the preimage are proposed. Unfortunately, the superset may
be very large, resulting in algorithms with high computational complexity. Finally,
the algorithms computing fibers are converted into projection algorithms suitable
for parameter learning by extending their applicability to distributions sufficiently
close to the set of Naive Bayes distributions considered and ensuring their conti-
nuity. These projection algorithms should be considered preliminary: they share
the high computational complexity of the fibers algorithms, have many parameters
that need to be chosen, only work when the distribution to project is sufficiently
close to the set of Naive Bayes distributions, and have not been extensively tested
in practice. On the bright side, they also have nice asymptotic properties: under
appropriate hypotheses and in the limit of a large dataset, they return an optimal
parameter. Although the above description and the layout of the dissertation may
not reflect it, we consider that our main contribution to the study of discrete Naive
Bayes models with hidden class variable consists of the technical results and theo-
rems behind our fibers and projection algorithms.

The dissertation is organized as follows. Background material is presented in
the first two chapters. Chapter 1 introduces discrete and Gaussian Bayesian net-
works. Basic material such as parametric and implicit definition, independence
relations encoded by a Bayesian network structure, dimension, and Bayesian net-
works with hidden variables is covered. More specialized notions such as inclusion
and parameter optimality of a structure, equivalence of structures, and the inclu-
sion relation between structures are also presented. Chapter 2 presents a Bayesian
approach to structure and parameter learning. These two chapters do not constitute
a review of the existing litterature on Bayesian networks. Instead, they form a co-
herent introduction to the topic, but do not provide much more than is necessary
to develop the contributions of the dissertation. These contributions are gathered
in the last two chapters. Chapter 3 develops efficient algorithms that construct the
inclusion boundary of an essential graph and compute the difference in score be-
tween an essential graph and one element of its inclusion boundary. Chapter 4
discusses parameter learning in discrete Naive Bayes models with hidden class
variable by computing fibers of the parametrization map. A few technical defini-
tions and results are collected in the Appendix. An index, a list of theorems, a list
of definitions, and a list of figures are also included at the end of the dissertation to
help the reader sort through all the results, definitions, and notations.

Chapter 1

Bayesian Networks

1.1 Introduction

This chapter introduces Bayesian networks and Bayesian network models, laying
the groundwork for subsequent chapters. A Bayesian network represents a proba-
bility density or distribution over a set of random variables with a graph and a set of
conditional densities. A Bayesian network model is a set of densities represented
by Bayesian networks sharing the same graph. The graph of a Bayesian network
encodes a set of independence relations holding in the density represented.

Section 1.2 recalls some elements of probability theory and introduces nota-
tions used throughout the dissertation. Section 1.3 defines and illustrates Bayesian
networks over discrete or continuous random variables. In subsequent chapters,
our developments are restricted to discrete variables. Section 1.4 defines para-
metrically two particular classes of Bayesian network models: discrete and Gaus-
sian. Section 1.5 defines and discusses the independence relations associated to
a Bayesian network graph, leading to an alternative implicit definition of discrete
and Gaussian Bayesian network models. Section 1.6 explores the link between
the independence relations represented by graphs and their topological properties.
Section 1.7 focuses on sets of densities obtained from Bayesian network models
by marginalization. Section 1.8 provides notions useful to decide which Bayesian
network model is a good candidate to represent a given density.

1.2 Elements of Probability Theory

This section introduces some elements of probability theory and the notations used
in this dissertation. First, σ-fields and measures are defined. Then, random vari-
ables and vectors are presented. Most definitions are specialized to discrete vari-
ables or continuous variables with density w.r.t. Lebesgue measure. For additional
details and comments, see [Bil79].

6 Chapter 1

1.2.1 Measures

Definition 1. A class F of subsets of a set Ω is a σ-field (or σ-algebra) if

1. Ω ∈ F

2. A ∈ F implies Ω \ A ∈ F

3. A1, A2, · · · ∈ F implies A1 ∪ A2 ∪ · · · ∈ F .

E 1. The largest σ-field in Ω is the power set 2Ω, i.e. the set of all subsets
of Ω. The smallest σ-field in Ω is {∅,Ω}.

R 1. An intersection of σ-fields in Ω is a σ-field in Ω.

Definition 2. The σ-field generated by a classA of subsets ofΩ is the intersection
of all the σ-fields in Ω containingA.

E 2. If ai ≤ bi ∈ R for i ∈ {1, . . . , k}, the set{
(x1, . . . , xk) ∈ Rk

∣∣∣∣ai < xi ≤ bi for i ∈ {1, . . . , k}
}

(1.1)

is a bounded rectangle inRk. The classRk of k-dimensional Borel sets is theσ-field
in Rk generated by the class of bounded rectangles in Rk.

Definition 3. If F is a σ-field in Ω, the pair (Ω,F) is a measurable space.

Definition 4. A measure µ on a measurable space (Ω,F) is a function on F that
satisfies

1. µ(A) ∈ [0,∞] for A ∈ F

2. µ(∅) = 0

3. if A1, A2, . . . is a disjoint sequence of sets in F , then

µ(
∞⋃

k=1

Ak) =
∞∑

k=1

µ(Ak). (1.2)

E 3. The k-dimensional Lesbegue measure λk is the unique measure on Rk

such that

λk
({

(x1, . . . , xk) ∈ Rk
∣∣∣ai < xi ≤ bi for i ∈ {1, . . . , k}

})
=

k∏
i=1

(bi − ai) (1.3)

for all bounded rectangles in Rk.

1.2 Elements of Probability Theory 7

Definition 5. If µ is a measure on (Ω,F), a set A ∈ F is negligible w.r.t µ if
µ(A) = 0.

Definition 6. A measure P on (Ω,F) is a probability measure if P(Ω) = 1.

Definition 7. If P is a probability measure on (Ω,F), the triple (Ω,F , P) is a prob-
ability space.

Definition 8. A support of a probability measure P on (Ω,F) is a set A ∈ F such
that P(A) = 1.

Definition 9. If (Ω,F) and (Ω′,F ′) are measurable spaces, a function f : Ω→ Ω′

is measurable F /F ′ if {ω ∈ Ω| f (ω) ∈ A′} ∈ F for every A′ ∈ F ′.

Definition 10. If (Ω,F , P) is a probability space, (Ω′,F ′) is a measurable space,
f : Ω → Ω′ is measurable F /F ′, and A ∈ F ′, the proposition f ∈ A holds with
probability one if the set {ω ∈ Ω| f (ω) < A} is negligible w.r.t. P.

E 4. If (Ω,F , P) is a probability space and f : Ω → R and g : Ω → R are
measurable F /R1, then {ω ∈ Ω| f (ω) , g(ω)} ∈ F and we say that f and g are
equal with probability one if {ω ∈ Ω| f (ω) , g(ω)} is negligible w.r.t. P.

1.2.2 Random Variables

Random variables may be defined as follows.

Definition 11. If (Ω,F) and (Ω′,F ′) are measurable spaces, a random variable X
is a function X : Ω→ Ω′ measurable F /F ′.

Sometimes, the definition of random variables assumes that a probability measure
P on (Ω,F) is given. As Proposition 1.1 will show, such a measure P induces
a distribution for X. In this dissertation, random variables are defined without
reference to a probability measure because sets of distributions for a fixed random
variable are manipulated.

Definition 12. If X : Ω → Ω′ is a random variable, the set X = Ω′ is the set of
possible values (or states) of X.

R 2. A random variable is denoted by an upper-case token (e.g. X, Xi). A
possible value is denoted by a lower-case token (e.g. x, xi).

This dissertation only deals with real random variables, discrete random vari-
ables, real random vectors, and discrete random vectors.

Definition 13. If (Ω,F) is a measurable space, a real random variable is a func-
tion X : Ω→ R measurable F /R1.

8 Chapter 1

Definition 14. A k-dimensional real random vector (X1, . . . , Xk) is a k-tuple of real
random variables defined on the same set Ω.

R 3. If (X1, . . . , Xk) is a real random vector on Ω, then X : Ω → Rk : ω 7→
(X1(ω), . . . , Xk(ω)) is a random variable measurable F /Rk.

Definition 15. If X is a countable set and (Ω,F) is a measurable space, a discrete
random variable is a function X : Ω→ X measurable F /2X.

Definition 16. A k-dimensional discrete random vector (X1, . . . , Xk) is a k-tuple of
discrete random variables defined on the same set Ω.

R 4. If (X1, . . . , Xk) is a discrete random vector on Ω, then X : Ω → X1 ×

· · · × Xk : ω 7→ (X1(ω), . . . , Xk(ω)) is a discrete random variable.

R 5. The properties of random vectors that are defined in this dissertation
do not depend on the precise order of their components. A finite set of random
variables is thus often considered a random vector and vice-versa.

Distributions

Definition 17. If (Ω,F) and (Ω′,F ′) are measurable spaces, a distribution of a
random variable X : Ω→ Ω′ is a probability measure on F ′.

A probability measure on (Ω,F) induces a distribution of X.

Proposition 1.1. If (Ω,F) and (Ω′,F ′) are measurable spaces, X : Ω → Ω′ is a
random variable, and P is a probability measure on (Ω,F), then

µ(A) = P
({
ω ∈ Ω

∣∣∣X(ω) ∈ A
})
, A ∈ F ′ (1.4)

is a distribution of X.

By Remarks 3, 4, and 5, vectors and sets of discrete or real random variables
may be considered random variables. Hence, the notion of distribution is also
defined for them.

Definition 18. Let f : Rk → R be a nonnegative and measurable Rk/R1 function.
A real random vector (X1, . . . , Xk) with distribution µ has density f (w.r.t. Lebesgue
measure) if

µ(A) =
∫

A
f (x1, . . . , xk)dx1 . . . dxk, A ∈ Rk. (1.5)

Definition 19. A real random vector X with distribution µ is continuous if µ has a
density w.r.t. Lebesgue measure.

R 6. A distribution µ of a discrete random vector X = (X1, . . . , Xk) is com-
pletely determined by the values µ({x}), x ∈ X:

µ(A) =
∑
x∈A

µ({x}), A ∈ 2X. (1.6)

In the sequel, µ({x}) is denoted µ(x) to simplify notations.

1.2 Elements of Probability Theory 9

Marginal Distributions

Definition 20. If X = {X1, . . . , Xk} is a set of random variables with distribution
µX and X′ ⊆ X, the marginal distribution µX′ is the distribution of X′ defined by

µX′(A) = µX
(
A ×Xi∈(X\X′) Xi

)
. (1.7)

R 7. To simplify notations, the distributions µX and µX′ are usually denoted
by the same symbol, e.g. µ.

R 8. If X = {X1, . . . , X j, X j+1, . . . , Xk} is a set of discrete random variables
with distribution µ, the marginal distribution of X′ = {X1, . . . , X j} is completely
specified by

µ(x1, . . . , x j) =
∑

(x j+1,...,xk)∈X j+1×···×Xk

µ(x1, . . . , xk), (x1, . . . , x j) ∈ X′. (1.8)

Definition 21. If X = {X1, . . . , X j, X j+1, . . . , Xk} is a set of continuous real random
variables with density fX , the marginal density fX′ of X′ is defined by

fX′(x1, . . . , x j) =
∫
Rk− j

fX(x1, . . . , xk)dx j+1 . . . dxk, (x1, . . . , x j) ∈ R j. (1.9)

R 9. A density and its marginal densities are usually denoted by the same
symbol.

R 10. The marginal density of X′ is a density for the marginal distribution
of X′.

Conditional Distributions

Definition 22. If X and Y are disjoint subsets of a set of discrete random variables,
µ is a distribution of Z and y ∈ Y satisfies µ(y) , 0, the conditional distribution of
X given y is the probability measure µ(·|y) on 2X specified by

µ(x|y) =
µ(x, y)
µ(y)

, x ∈ X. (1.10)

Definition 23. If X and Y are disjoint subsets of a set of continuous real random
variables with density f and y ∈ R|Y | satisfies f (y) , 0, the conditional density of
X given y is the function f (·|y) defined on R|X| by

f (x|y) =
f (x, y)
f (y)

, x ∈ R|X|. (1.11)

10 Chapter 1

Independence

Definition 24. If X1, . . . , Xk are disjoint subsets of a set of discrete random vari-
ables with distribution µ, the sets X1, . . . , Xk are (marginally) independent if

µ(x1, . . . , xk) = µ(x1) . . . µ(xk) (1.12)

for all (x1, . . . , xk) ∈ X1 × · · · × Xk.

Definition 25. If X1, . . . , Xk are disjoint subsets of a set of continuous random vari-
ables with density f , the sets X1, . . . , Xk are (marginally) independent if

f (x1, . . . , xk) = f (x1) . . . f (xk) (1.13)

for all (x1, . . . , xk) ∈ R|X1 | × · · · × R|Xk |.

Definition 26. If X1, . . . , Xk,Y are disjoint subsets of a set of discrete random vari-
ables with distribution µ, the sets X1, . . . , Xk are (conditionally) independent given
Y if

µ(x1, . . . , xk|y) = µ(x1|y) . . . µ(xk|y) (1.14)

for all (x1, . . . , xk) ∈ X1 × · · · × Xk and all y ∈ Y satisfying µ(y) , 0.

Definition 27. If X1, . . . , Xk,Y are disjoint subsets of a set of continuous random
variables with density f , the sets X1, . . . , Xk are (conditionally) independent given
Y if

f (x1, . . . , xk|y) = f (x1|y) . . . f (xk|y) (1.15)

for all (x1, . . . , xk) ∈ R|X1 | × · · · × R|Xk | and all y ∈ R|Y | satisfying f (y) , 0.

R 11. The conditional independence of X and Y given Z is denoted X ⊥ Y |Z.
The marginal independence of X and Y is denoted X ⊥ Y (or sometimes X ⊥ Y |∅).
With this notation, arbitrary independence relations between sets of discrete or
continuous variables can be expressed:

• X1, . . . , Xk are marginally independent if, and only if,

Xi ⊥
(
Xi+1 ∪ · · · ∪ Xk

)
(1.16)

for i ∈ {1, . . . , k − 1};

• X1, . . . , Xk are conditionally independent given Y if, and only if,

Xi ⊥
(
Xi+1 ∪ · · · ∪ Xk

)
|Y (1.17)

for i ∈ {1, . . . , k − 1}.

1.3 Bayesian Networks 11

Expected Value and the Strong Law of Large Numbers

Definition 28. The expected (or mean) value 〈X〉 of a real and discrete random
variable X with distribution µ is

〈X〉 =
∑
x∈X

xµ(x). (1.18)

Definition 29. The expected (or mean) value 〈X〉 of a continuous real random vari-
able X with density f is

〈X〉 =
∫ ∞

−∞

x f (x)dx. (1.19)

R 12. If the sum in (1.18) does not converge or the integral in (1.19) does
not exist, the expected value is not defined.

Khinchine’s version of the strong law of large numbers states the following
(from [Bil79]).

Theorem 1.2. Suppose that X1, X2, . . . is a sequence of independent and identi-
cally distributed real random variables whose common expected value exists and
is equal to m. We have

lim
N→∞

1
N

N∑
i=1

Xi = m (1.20)

with probability one.

1.3 Bayesian Networks

This section defines and illustrates Bayesian networks. First, we introduce elemen-
tary graphical notions and notations.

Definition 30. A graph is a pair (V, E) where V is a non-empty and finite set of
vertices and E is a subset of (V × V) \ {(a, a)|a ∈ V}.

Definition 31. A graph G = (V, E) has

• an edge between a and b, denoted a · · · b ∈ G, if (a, b) ∈ E or (b, a) ∈ E;

• an undirected edge (or line) between a and b, denoted a−b ∈ G, if (a, b) ∈ E
and (b, a) ∈ E;

• a directed edge (or arrow) from a to b, denoted a→ b ∈ G, if (a, b) ∈ E and
(b, a) < E.

Definition 32. If G = (V, E) is a graph, the set paG(v) of parents of v ∈ V is

paG(v) =
{
u ∈ V

∣∣∣u→ v ∈ G
}
. (1.21)

12 Chapter 1

R 13. If G is determined by the context, paG(v) is simply denoted pa(v).

Definition 33. If G = (V, E) is a graph, a path is a sequence v0, . . . , vn of distinct
vertices such that vi − vi+1 ∈ G or vi → vi+1 ∈ G for all i ∈ {0, . . . , n − 1}.

Definition 34. If G = (V, E) is a graph, a path v0, . . . , vn is directed if vi → vi+1 ∈

G for a least one i ∈ {0, . . . , n − 1}. Otherwise, it is undirected.

Definition 35. If G = (V, E) is a graph, a cycle of length n is a path v0, . . . , vn with
the modification that v0 = vn.

Definition 36. If G = (V, E) is a graph, a cycle v0, . . . , vn is directed if vi → vi+1 ∈

G for a least one i ∈ {0, . . . , n − 1}.

Bayesian networks are defined using a special class of graphs: directed acyclic
graphs. Other classes, such as undirected graphs and chain graphs, will be encoun-
tered further in this dissertation.

Definition 37. A directed acyclic graph (DAG) is a graph without line or cycle.

Definition 38. If X = {Xv}v∈V is a set of random variables indexed by a set V ,
x = (xv)v∈V ∈ X, and U ⊆ V , let XU = {Xv}v∈U and let xU = (xv)v∈U ∈ XU .

In the above definition, a singleton U = {u} ⊆ V is often denoted by u. Therefore,
if x = (xv)v∈V ∈ X and u ∈ V , then xu denotes the value xv ∈ Xv such that v = u.

The recursive factorization property connects probability theory and graph the-
ory. For sets of discrete variables or sets of continuous variables, it is defined as
follows (see [CDLS99] for a more general formulation).

Definition 39 (Recursive factorization for discrete variables). Let X be a finite
and non-empty set of discrete random variables, and let D be a DAG whose vertex
set V is in bijection with X. A probability distribution P of X factorizes recursively
according to D if there exist non-negative functions kv(·, ·), v ∈ V defined on Xv ×

Xpa(v) such that ∑
xv∈Xv

kv(xv, xpa(v)) = 1 (1.22)

for all xpa(v) ∈ Xpa(v) and

P(x) =
∏
v∈V

kv(xv, xpa(v)), x ∈ X. (1.23)

R 14. If a distribution P for discrete variables factorizes recursively, then
kv(xv, xpa(v)) = P(xv|xpa(v)) for xv ∈ Xv and xpa(v) ∈ Xpa(v) such that P(xpa(v)) , 0.

1.3 Bayesian Networks 13

Definition 40 (Recursive factorization for continuous variables). Let X be a fi-
nite and non-empty set of continuous random variables, and let D be a DAG whose
vertex set V is in bijection with X. A probability distribution P of X factorizes re-
cursively according to D if there exist non-negative functions kv(·, ·), v ∈ V defined
on R × R|pa(v)| such that ∫ ∞

−∞

kv(xv, xpa(v))dxv = 1 (1.24)

for all xpa(v) ∈ R
|pa(v)| and P has density p given by

p(x) =
∏
v∈V

kv(xv, xpa(v)), x ∈ R|X|. (1.25)

R 15. If a distribution P with density p for continuous variables factorizes
recursively, then, with probability one, kv(xv, xpa(v)) = p(xv|xpa(v)) for xv ∈ R and
xpa(v) ∈ R

|pa(v)| such that p(xpa(v)) , 0.

R 16. In this dissertation, a (conditional) distribution of discrete random
variables is often referred to as a (conditional) density. This simplifies notations
and allows to simultaneously define notions and properties for discrete or continu-
ous variables.

A Bayesian network is a graphical representation of a density that factorizes
recursively. It is defined as follows.

Definition 41 (Bayesian network). Let X be a non-empty and finite set of random
variables, let D be a DAG whose vertex set V is in bijection with X, and let θ be
a set of conditional densities

{
p(xv|xpa(v))

}
v∈V . A Bayesian network (BN) B is a

pair (D, θ), where D is the structure and θ are the parameters, that represents the
density

pB(x) =
∏
v∈V

p(xv|xpa(v)), x ∈ X. (1.26)

R 17. Sometimes, the structure of a Bayesian network has a causal interpre-
tation where an arrow u→ v ∈ D means that Xu is a direct cause of Xv (see [Nea03]
for an introduction). In this dissertation, structures are not interpreted causally.

R 18. Often, the sets X and V are not distinguished because of the bijection
between them. For example, a Bayesian network structure is said to be over a set
X of random variables.

Let us present two examples of Bayesian networks. The first is taken from
[Nea03]. The second is adapted from [Pea88].

E 5. Let X = {H, B, L, F,C} be a set of binary random variables indicating
whether a patient has a smoking history (H), bronchitis (B), lung cancer (L), ex-
periences fatigue (F), and whether an X-ray of the patient’s chest tests positive for

14 Chapter 1

H

��~~
~~

~~
~

��?
??

??
??

B

��?
??

??
??

L

����
��

��
�

��?
??

??
??

F C

Figure 1.1: A Bayesian network structure whose vertex set is identified with
{H, B, L, F,C}

H : p(H = t) = 0.2 F : p(F = t|B = t, L = t) = 0.75
p(F = t|B = t, L = f) = 0.1

B : p(B = t|H = t) = 0.25 p(F = t|B = f , L = t) = 0.5
p(B = t|H = f) = 0.05 p(F = t|B = f , L = f) = 0.05

L : p(L = t|H = t) = 0.003 C : p(C = t|L = t) = 0.6
p(L = t|H = f) = 0.00005 p(C = t|L = f) = 0.02

Table 1.1: Parameters associated to the structure given in Figure 1.1

lung cancer (C). The structure given in Figure 1.1 and the conditional distributions
given in Table 1.1 specify together a Bayesian network B and thus a probability
distribution pB given by (1.26). For example, we have pB(H = f , B = f , L =
t, F = t,C = t) = p(H = f)p(B = f |H = f)p(L = t|H = f)p(F = t|B = f , L =
t)p(C = t|L = t) = 0.8 × 0.95 × 0.00005 × 0.5 × 0.6 = 1.14 × 10−5.

E 6. Let X = {P,M,W,D1,D2} be a set of real variables where P measures
the production cost of a given car, M the marketing cost, W the wholesale price,
D1 the asking price of a first car dealer, and D2 the asking price of a second dealer.
Figure 1.2 shows a structure over X. To obtain a Bayesian network, we may sup-

P

!!B
BB

BB
BB

B M

}}||
||

||
||

W

~~}}
}}

}}
}}

 B
BB

BB
BB

B

D1 D2

Figure 1.2: A Bayesian network structure over X = {P,M,W,D1,D2}

pose that each conditional density p(xv|xpa(v)), v ∈ V is Gaussian (see (A.1) in
Appendix A) with a mean that is a linear combination of the values of the parent

1.4 Parametric Bayesian Network Models 15

variables and a constant variance, that is

p(xv|xpa(v)) = N(xv|αv +
∑

u∈pa(v)

βv,uxu, σ
2
v). (1.27)

For example, we can specify p(D1|W = w) = N(D1|1000 + w, 3002) and p(W |P =
p,M = m) = N(W |800 + 1.2p + m, 5002).

1.4 Parametric Bayesian Network Models

This section defines a special class of statistical models: Bayesian network models.
In particular, it defines parametrically discrete and Gaussian Bayesian network
models and their dimension.

1.4.1 Statistical Models

Definition 42. A statistical model (or family)M for a set X of random variables is
a set of densities for X.

The notion of probabilistic model used in the introduction and the above notion of
statistical model are different. In the sequel, the word model refers to a statistical
model.

A statistical modelM can be specified parametrically as the imageM = f (Θ)
of a parameter space Θ through a parametrization map f defined on Θ. For exam-
ple, the set of strictly positive distributions of a discrete random variables can be
described parametrically with the following notions.

Definition 43. If X is a discrete random variable with finite X, let

S +X =
{
(px)x∈X ∈ R

|X|
∣∣∣∣∑

x∈X

px = 1, (∀x ∈ X : px > 0)
}

(1.28)

and let fX be the function defined on S +X by fX
(
(px)x∈X

)
= p with

p(x) = px, x ∈ X. (1.29)

R 19. The function fX is injective. Also, a vector (px)x∈X ∈ S +X has only
|X| − 1 independent components since

∑
x∈X px = 1. In fact, the set S +X is a smooth

manifold in R|X| of dimension |X| − 1.

E 7. Exponential families are defined parametrically in Appendix A.

16 Chapter 1

1.4.2 Bayesian Network Models

Informally, a Bayesian network model with structure D is a set of densities repre-
sented by Bayesian networks sharing the structure D.

Definition 44 (Bayesian network model). If X is a non-empty and finite set of ran-
dom variables and D is a DAG whose vertex set V is in bijection with X, a Bayesian
network model with structure D is a set of densities for X factorizing recursively
according to D.

Following the examples of Section 1.3, let us introduce two important classes
of Bayesian network models.

Discrete Bayesian Network Models

This section defines parametrically the class of discrete Bayesian network models.
All the discrete random variables considered are supposed to have a finite set of
possible values. The parameter space is defined as follows.

Definition 45. If X is a non-empty and finite set of discrete random variables and
D is a DAG whose vertex set V is in bijection with X, let

Θd,D = ×v∈V
(
S +Xv

)|Xpa(v) |. (1.30)

R 20. The setΘd,D is a smooth manifold of dimension
∑

v∈V (|Xv|−1)|Xpa(v)|.

The parametrization map is defined as follows.

Definition 46. If X is a non-empty and finite set of discrete random variables and
D is a DAG whose vertex set V is in bijection with X, let fd,D be the function
defined on Θd,D by

fd,D
(((

(θXv,xpa(v)
xv)xv∈Xv

)
xpa(v)∈Xpa(v)

)
v∈V

)
= p (1.31)

with
p(x) =

∏
v∈V

θ
Xv,xpa(v)
xv , x ∈ X. (1.32)

Definition 47 (Discrete Bayesian network model). If X is a non-empty and finite
set of discrete random variables and D is a DAG whose vertex set V is in bijec-
tion with X, the discrete Bayesian network model Md(D) with structure D is the
statistical model fd,D(Θd,D).

R 21. The positivity requirement on the local conditional distributions ex-
cludes functional relations among the variables. However, the probabilities can be
as close to 0 as desired. On the other hand, this requirement also ensures that the
parametrization map is injective. Indeed, if q = f (θ), we have

θ
Xv,xpa(v)
xv =

q(xv, xpa(v))
q(xpa(v))

. (1.33)

1.4 Parametric Bayesian Network Models 17

Gaussian Bayesian Network Models

This section defines parametrically the class of Gaussian Bayesian network models.
Let R>0 denote the set of strictly positive real numbers. The parameter space is
defined as follows.

Definition 48. If X is a non-empty and finite set of real random variables and D is
a DAG whose vertex set V is in bijection with X, let

Θg,D = ×v∈V
(
R>0 × R

|pa(v)|+1
)
. (1.34)

R 22. The set Θg,D is a smooth manifold of dimension
∑

v∈V (|pa(v)| + 2).

The parametrization map is defined as follows.

Definition 49. If X is a non-empty and finite set of real random variables and D is
a DAG whose vertex set V is in bijection with X, let fg,D be the function defined
on Θg,D by

fg,D
((
σ2

v , αv, βv,1, . . . , βv,|pa(v)|
)
v∈V

)
= p (1.35)

with
p(x) =

∏
v∈V

N(xv|αv +
∑

u∈pa(v)

βv,uxu, σ
2
v), x ∈ R|X|. (1.36)

Definition 50 (Gaussian Bayesian network model). If X is a non-empty and finite
set of real random variables and D is a DAG whose vertex set V is in bijection with
X, the Gaussian Bayesian network modelMg(D) with structure D is the statistical
model fg,D(Θg,D).

R 23. A Gaussian Bayesian network model represents a multivariate Gaus-
sian density (see (A.2) in Appendix A and [SK89]). Moreover, the parametrization
map is injective.

There are many other interesting classes of BN models. With discrete vari-
ables, it is possible to constrain the conditional distributions. For example, pa-
rameters can be shared (see [NMR06]). Let us also mention sigmoid BN models
(see [Nea92]) or noisy-OR BN models (see [Pea88]). With continuous variables,
variants of Gaussian BN models can be defined by choosing a mean that does not
depend linearly on the parents, for example by using a sigmoid map. Finally, some
BN models, such as conditional Gaussian BN models (see [CDLS99]), mix dis-
crete and continuous variables.

1.4.3 Dimension

This section defines the dimension of discrete and Gaussian Bayesian network
models. The dimension is a geometric property that is used for learning (see Sec-
tion 2.5.1) and that intuitively measures the size or complexity of the model.

18 Chapter 1

Discrete Bayesian Network Models

The dimension of a discrete Bayesian network model is defined as follows.

Definition 51. The dimension d(Md(D)) of a discrete BN modelMd(D) is

d(Md(D)) =
∑
v∈V

(|Xv| − 1)|Xpa(v)|. (1.37)

The dimension has multiple interpretations. First, it is the dimension of the pa-
rameter space Θd,D. Second, the following proposition holds (see [GHKM01] and
Appendix A).

Proposition 1.3. A discrete Bayesian network modelMd(D) is a curved exponen-
tial model of dimension d(Md(D)).

If X is fixed, the dimension varies with the structure as follows. The minimal
dimension is

∑
v∈V (|Xv| − 1) for the structure without any arrow. From there, the

dimension increases exponentially with the number of parents of each variable until
it reaches the maximal dimension |X| − 1 for a structure where all the vertices are
connected by an arrow.

R 24. By (1.29), the vector representation of a (strictly positive) distribution
p of X uses |X| − 1 real parameters, which equals the maximal dimension. Hence,
a distribution p = fd,D(θ) ∈ Md(D) can often be represented compactly by the
parameter θ.

Gaussian Bayesian Network Models

The dimension of a Gaussian Bayesian network model is defined as follows.

Definition 52. The dimension d(Mg(D)) of a Gaussian Bayesian network model
Mg(D) is

d(Mg(D)) =
∑
v∈V

(|pa(v)| + 2). (1.38)

The dimension d(Mg(D)) is the dimension of the parameter space Θg,D. Also, the
following proposition holds (see [GHKM01]).

Proposition 1.4. A Gaussian BN modelMg(D) is a curved exponential model of
dimension d(Mg(D)).

If X is fixed, the dimension varies with the structure as follows. The minimal
dimension is 2|X| for the structure without any arrow. From there, the dimension
increases linearly with the number of parents of each variable until it reaches the
maximal dimension |X| + 1

2 |X|(|X| + 1) for a structure where all the vertices are
connected by an arrow.

R 25. The mean vector and covariance matrix of a Gaussian density p of
X are represented by |X| + 1

2 |X|(|X| + 1) real parameters, which equals the maxi-
mal dimension. Hence, a density p = fg,D(θ) ∈ Mg(D) can often be represented
compactly by the parameter θ.

1.5 Implicit Bayesian Network Models 19

1.5 Implicit Bayesian Network Models

A statistical modelM can be specified implicitely as the submodel of a modelM0
where some property holds.

E 8. By definition, the set M of all strictly positive distributions of a dis-
crete random variable X can be described implicitely as

M =
{
p ∈ M0

∣∣∣∣p(x) > 0 for all x ∈ X
}
. (1.39)

whereM0 is the set of all probability distributions of X.

This section shows how discrete and Gaussian BN models can be defined im-
plicitely with independence models. Section 1.5.1 introduces independence models
and the statistical models they specify implicitely. Section 1.5.2 defines indepen-
dence models associated to DAGs, demonstrating how they can be used to encode
large sets of independence relations in a compact and intuitive way. Section 1.5.3
provides the connection between the independence relations associated to a DAG
and the recursive factorization property, leading to the implicit definitions of dis-
crete and Gaussian BN models. Note that other types of graphs can also be used to
represent independence relations. For example, sets represented by undirected and
chain graphs are presented in [CDLS99] and [Lau96].

1.5.1 Independence Models

Definition 53. A (conditional) independence model I for a set X of random vari-
ables is a set of marginal and conditional independence relations between subsets
of X.

This dissertation focuses on independence models defined by DAGs. However,
they may be defined in other ways, e.g. algebraically (see [VS07]) or as follows.

Definition 54. The independence model I(P) (resp. I(p)) associated to a distribu-
tion P (resp. density p) for X is the set of independence relations that hold between
the subsets of X.

A set of independence relations may imply other independence relations by the
axioms of probability theory.

E 9. Consider a distribution P for X. For A, B,C,D ⊆ X, we have(
A ⊥ B|C ∈ I(P)

)
⇒

(
B ⊥ A|C ∈ I(P)

)
(1.40)(

(A ∪ D) ⊥ B|C ∈ I(P)
)
⇒

(
A ⊥ B|C ∈ I(P)

)
. (1.41)

Intuitively, an independence model is probabilistic if it can not be augmented by
such implied independence relations.

20 Chapter 1

Definition 55. An independence model I is probabilistic if there exists a distribu-
tion P such that the independence relations holding in P are exactly those in I, that
is I(P) = I.

Independence models can be used to define statistical models implicitely.

Definition 56. If I is an independence model I on a set X of random variables and
M0 is a statistical model for X, letM(I,M0) be the submodel ofM0 such that all
the independence relations in I hold, that is

M(I,M0) =
{
p ∈ M0

∣∣∣∣I ⊆ I(p)
}
. (1.42)

R 26. If I ⊆ I′, thenM(I′,M0) ⊆ M(I,M0).

1.5.2 Independence Models Associated to DAGs

In order to define the independence model associated to a DAG, necessary notions
and notations are first introduced.

Definition 57. If G = (V, E) is a graph, the descendants of a vertex v ∈ V is the set
of vertices that can be reached by a path starting at v.

Definition 58. If G = (V, E) is a graph, a trail is a sequence v0, . . . , vn of distinct
vertices such that vi · · · vi+1 ∈ G for all i = 0, . . . , n − 1.

Definition 59. If G = (V, E) is a graph, a vertex wi of a trail τ = w0, . . . ,wn is a
collider of τ if 0 < i < n, wi−1 → wi ∈ G, and wi+1 → wi ∈ G.

Definition 60. A trail τ between two vertices u and v is blocked by a set C of
vertices if τ contains

• a non-collider w ∈ C or

• a collider w such that neither w nor any of its descendants belongs to C.

Definition 61 (d-separation criterion). If A, B, and C are disjoint subsets of ver-
tices of a DAG D, then C d-separates A and B if all the trails between vertices of
A and B are blocked by C.

E 10. In the DAG of Figure 1.3, {X1, X2} and {X5} are d-separated by {X3},
while {X1} and {X2, X4} are not d-separated by {X5}.

The independence model I(D) associated to a DAG D is defined as follows.

Definition 62. If D is a DAG over a set X of random variables, the independence
model I(D) is the set of all the independence relations XA ⊥ XB|XC such that XA

and XB are d-separated by XC in D, that is

I(D) =
{
(XA ⊥ XB|XC)

∣∣∣∣XA and XB are d-separated by XC
}
. (1.43)

1.5 Implicit Bayesian Network Models 21

X1

 A
AA

AA
AA

A X2

~~}}
}}

}}
}}

 A
AA

AA
AA

A

X3

��

X4

X5

Figure 1.3: d-separation criterion

Definition 63. A DAG D over X is faithfull to a density p for X if I(D) = I(p).

Definition 64. An independence model I for X is DAG isomorph if there exists a
DAG D over X such that I = I(D).

R 27. DAG isomorph independence models are probabilistic (see [Mee95]
and [SGS01]).

R 28. A DAG isomorph independence model I satisfies the composition
property (see [Pea88]):(

A ⊥ B|C ∈ I
)
∧

(
A ⊥ D|C ∈ I

)
⇒

(
A ⊥ (B ∪ D)|C ∈ I

)
(1.44)

for subsets A, B,C,D ⊆ X. This property holds because d-separation of sets is
defined in terms of d-separation between pairs of vertices in each set.

Not all independence models are DAG isomorph. The following example
builds a probabilistic independence model where the composition property does
not hold and is thus not DAG isomorph.

E 11. Consider an experiment where two fair coins are tossed and define
three binary random variables C1, C2 and S such that C1 = h (resp. C2 = h) if
the first (resp. second) coin falls heads up and S = t if both coins have the same
side up. The fairness assumption implies that P(C1 = h) = P(C2 = h) = 0.5.
The independence relations {C1} ⊥ {C2} and {C1} ⊥ {S } hold in P, but obviously
{C1} 6⊥ {C2, S }.

Empty and Complete DAGs

Empty and complete DAGs are especially noteworthy.

Definition 65. A graph is complete if there exists an edge between each pair of
distinct vertices.

Definition 66. A graph is empty if it has no edge.

22 Chapter 1

R 29. There are |V |! distinct complete DAGs with a given vertex set V , but
only one empty graph.

E 12. Figure 1.4 shows the empty DAG and a complete DAG over the ver-
tices {X1, . . . , X5}.

X1 X2

X3 X4

X5

(a) empty DAG

X1 //

 A
AA

AA
AA

A

**UUUUUUUUUUUUUUUUUUUUUUU

��0
00

00
00

00
00

00
00

X2

~~}}
}}

}}
}}

 A
AA

AA
AA

A

����
��
��
��
��
��
��
�

X3 //

��

X4

wwnnnnnnnnnnnnnnn

X5

(b) complete DAG

Figure 1.4: Special types of DAGs

No d-separation holds in a complete DAG Dc, i.e. I(Dc) = φ, while all the possible
d-separations hold in an empty DAG De. Hence, we have

I(Dc) ⊆ I(D) ⊆ I(De), (1.45)

provided all the DAGs are defined on the same vertex set. Section 1.6 discusses
further the inclusion relations between DAG independence models.

Extensions

Larger classes of independence models can be obtained by modifying slightly Def-
inition 62.

Definition 67. If D is a DAG over X ∪ H, the independence model IH(D) is the
subset of I(D) that contains the independence relations between the subsets of X
only, i.e.

IH(D) =
{
(A ⊥ B|C) ∈ I(D)

∣∣∣∣A, B,C ⊆ X
}
. (1.46)

Definition 68. If D is a DAG over X ∪ S , the independence model IS (D) is the
subset of I(D) that contains the independence relations conditioned on S , i.e.

IS (D) =
{
(A ⊥ B|C)

∣∣∣∣(A ⊥ B|C ∪ S) ∈ I(D)
}
. (1.47)

The above independence models satisfy the composition property. To show that
non-DAG isomorph independence models can be obtained, let us introduce the
following lemma.

1.5 Implicit Bayesian Network Models 23

Lemma 1.5. Let D be a DAG whose vertex set indexes a set X of random vari-
ables. The edge u · · · v ∈ D if, and only if, I(D) does not contain any independence
relation between Xu and Xv.

P.

1. Suppose that u · · · v ∈ D. The trail u, v can not be blocked, and thus I(D)
does not contain any independence relation between Xu and Xv.

2. Suppose that u · · · v < D. Let us show that each trail in the set T of all the
trails between u and v is blocked by C1 ∪C2 where

C1 = {t ∈ V |∃(u, t, . . . , v) ∈ T1}, (1.48)

C2 = {t ∈ V |∃(u, . . . , t, v) ∈ T2}, (1.49)

and

T1 = {(u, t, . . . , v) ∈ T |t → u ∈ D}, (1.50)

T2 = {q(u, . . . , t, v) ∈ T |t → v ∈ D}. (1.51)

This will imply that {Xu} ⊥ {Xv}|XC1∪C2 ∈ I(D). Consider a trail τ =
(u, t1, . . . , tn, v) ∈ T .

(a) If τ ∈ T1, then t1 ∈ C1 is a non-collider and τ is blocked by C1 ∪C2.
(b) If τ ∈ T2, then tn ∈ C2 is a non-collider and τ is blocked by C1 ∪C2.
(c) Suppose that τ ∈ T \ (T1 ∪ T2). Let tα be the first collider in τ and let

tβ be the last collider in τ. Let us show by contradiction that there are
no vertices dα, dβ ∈ C1 ∪C2 such that dα is a descendant of tα and dβ is
a descendant of tβ. Suppose that tα, p1, . . . , pα, dα and tβ, q1, . . . , qβ, dβ
are paths in D. If dα ∈ C1, then u, t1, . . . , tα, p1, . . . , pα, dα, u is a cycle.
If dβ ∈ C2, then v, tn, . . . , tβ, q1, . . . , qβ, dβ, v is a cycle. If dα ∈ C2 and
dβ ∈ C1, then

u, t1, . . . , tα, p1, . . . , pα, dα, v, tn, . . . , tβ, q1, . . . , qβ, dβ, u (1.52)

is a cycle. By acyclicity of D, there are no such vertices dα and dβ.
Hence, τ is blocked by C1 ∪C2. �

E 13. Consider the independence model IH(D) encoded by the DAG of Fig-
ure 1.5, and suppose there exists a DAG G over X such that I(G) = IH(D). By
Lemma 1.5, we have X1 · · · X2 ∈ G, X2 · · · X3 ∈ G, X3 · · · X4 ∈ G, X1 · · · X3 < G
and X2 · · · X4 < G. Such a DAG encodes {X1} ⊥ {X3}|{X2} or {X2} ⊥ {X4}|{X3}, but
neither relation is in IH(D).

E 14. Consider the independence model IS (D) encoded by the DAG of Fig-
ure 1.6, and suppose that there exists a DAG G over X such that I(G) = IS (D). By
Lemma 1.5, G has the edges X1 · · · X2, X2 · · · X3, X3 · · · X4 and X1 · · · X4. To avoid
having a cycle, G must have at least two arrows pointing towards the same variable,
say X1 (the other cases are similar). In that case, {X2} ⊥ {X4}|{X1, X3} is in IS (D)
but not in I(G).

24 Chapter 1

X1

 A
AA

AA
AA

A H

��~~
~~

~~
~~

��@
@@

@@
@@

@ X4

~~}}
}}

}}
}}

X2 X3

Figure 1.5: A DAG D over {H} ∪ {X1, X2, X3, X4} encoding a non-DAG isomorph
independence model IH(D) for {X1, X2, X3, X4}

X2 // X3

��
X1

OO

 @
@@

@@
@@

X4

~~~~
~~

~~
~

S

Figure 1.6: A DAG D over {S } ∪ {X1, X2, X3, X4} encoding a non-DAG isomorph
independence model IS (D) for {X1, X2, X3, X4}

1.5.3 Implicit Definition

The following theorem (see e.g. [CDLS99]) provides the link between the recursive
factorization property along a DAG D and the independence model I(D). It states
that a density p belongs to some Bayesian network model with structure D if, and
only if, I(D) ⊆ I(p).

Theorem 1.6. Let X be a set of discrete variables or a set of continuous variables,
and let D be a DAG over X. A distribution P for X admits a recursive factorization
according to D if, and only if, the independence relations encoded by D hold in P,
that is I(D) ⊆ I(P).

As a consequence, discrete and Gaussian Bayesian network models admit im-
plicit definitions (see [CDLS99] and [SK89]).

Corollary 1.7. If X is a set of discrete variables,M0 is the set of all strictly posi-
tive distributions for X and D is a DAG over X, then

Md(D) =M(I(D),M0). (1.53)

R 30. The discrete BN model associated to a complete structure over X is
the set of all strictly positive distributions for X. Hence, any strictly positive distri-
bution belongs to some discrete BN model.



1.6 Equivalence and Inclusion of DAGs 25

Corollary 1.8. If X is a set of continuous real variables,M0 is the set of Gaussian
densities for X and D is a DAG over X, then

Mg(D) =M(I(D),M0). (1.54)

R 31. The Gaussian BN model associated to a complete structure over X is
the set of Gaussian densities for X. Hence, any Gaussian density belongs to some
Gaussian BN model.

1.6 Equivalence and Inclusion of DAGs

This section studies the partial order on DAGs induced by the inclusion relations
between the associated independence models. The results presented constitute the
basis of a structure learning algorithm (see Section 2.5.3 and Chapter 3).

Definition 69. If X is a set of vertices or random variables, the set of DAGs over
X is denoted B(X).

Inclusion and equivalence between DAGs is defined as follows.

Definition 70. If G,H ∈ B(X), we say that

• G is independence included in H, denoted G ≤I H, if I(H) ⊆ I(G)

• G is strictly independence included in H, denoted G <I H, if I(H) ( I(G)

• G and H are independence (or Markov) equivalent, denoted G =I H, if
I(H) = I(G).

If S is a set of DAGs over X, for example S = B(X), independence inclusion and
independence equivalence induce a partial order on S and define a partition of S
into equivalence classes.

As the following proposition shows, the order relation induced by ≤I carries
over to sets of discrete or Gaussian Bayesian network models.

Proposition 1.9. Given G,H ∈ B(X), the following propositions are equivalent:

(a) G ≤I H

(b) Md(G) ⊆ Md(H)

(c) Mg(G) ⊆ Mg(H).

P.

1. Let us show that (a) and (b) are equivalent. By (1.53), (a) implies (b). Sup-
pose that (b) holds. There exists p ∈ Md(G) such that p is faithfull to G (see
[Mee95]). By (1.53), p ∈ Md(H) implies I(H) ⊆ I(p) = I(G) and (a) thus
holds.



26 Chapter 1

2. Let us show that (a) and (c) are equivalent. By (1.54), (a) implies (c). Sup-
pose that (c) holds. There exists p ∈ Mg(G) such that p is faithfull to G (see
[SGS01]). By (1.54), p ∈ Md(H) implies I(H) ⊆ I(p) = I(G) and (a) thus
holds. �

Section 1.6.1, describes independence equivalence and inclusion graphically.
Section 1.6.2 introduces a graphical representation of equivalence classes.

1.6.1 Graphical Characterization of ≤I and =I

First, let us define additional graphical notions.

Definition 71. If G = (V, E) is a graph, a v-structure is a pair (h, {t1, t2}) such that
h, t1, t2 ∈ V are distinct vertices, t1 → h ∈ G, t2 → h ∈ G, and t1 · · · t2 < G.

Definition 72. If G is a graph, let v(G) be the set of v-structures of G.

Definition 73. An undirected graph is a graph without arrow.

Definition 74. The skeleton S (G) of a graph G is the undirected graph obtained
from G by converting every arrow into a line.

Definition 75. If G is a graph, an arrow u→ v ∈ G is covered if paG(v) = paG(u)∪
{u}. Otherwise, it is protected.

Definition 76. The addition of an arrow to a DAG is legal if the resulting graph is
still a DAG, that is no cycle is created.

One can easily check whether two DAGs over X are independence equivalent
with the following theorem (see [Pea88]).

Theorem 1.10. Two DAGs are independence equivalent if, and only if, they have
the same skeleton and v-structures.

E 15. The DAGs of Figure 1.7 are independence equivalent because they
have the same skeleton X1 − X3 − X2 and no v-structure.

X1

  A
AA

AA
AA

A X2

X3

>>}}}}}}}}

(a)

X1 X2

~~}}
}}

}}
}}

X3

``AAAAAAAA

(b)

X1 X2

X3

``AAAAAAAA

>>}}}}}}}}

(c)

Figure 1.7: Independence equivalent DAGs



1.6 Equivalence and Inclusion of DAGs 27

Theorems 1.11 and 1.12 (from [Chi95]) show that there exists a transformational
characterization of independence equivalence.

Theorem 1.11. Let D be a DAG and D′ be the graph obtained by reversing the
arrow u→ v ∈ D. The graph D′ is a DAG that is independence equivalent to D if,
and only if, u→ v is covered in D.

Hence, a sequence of covered arrow reversals in D produces an independence
equivalent DAG H. The converse assertion also holds.

Theorem 1.12. Let D and H be a pair of DAGs such that D =I H and for which
there are r arrows in D that have opposite orientation in H. There exists a sequence
of r distinct covered arrow reversals in D such that, after all the reversals, D = H.

There exists a similar transformational characterization of independence inclu-
sion which generalizes Theorem 1.12. First, observe that if D′ is the result of a
legal arrow addition to D, then D <I D′. Hence, a sequence of covered arrow re-
versals and legal arrow additions in a DAG D results in a DAG H such that D ≤I H.
The converse assertion also holds (see [Chi02b] for a constructive proof).

Theorem 1.13. Let D and H be a pair of DAGs such that D ≤I H, let r be the
number of arrows in H that have opposite orientation in D, and let m be the number
of arrows in H that do not exist in either orientation in D. There exists a sequence
of at most r+2m covered arrow reversals and legal arrow additions in D such that,
after all the reversals and additions, D = H.

E 16. Let X = {X1, X2, X3}. There are 25 distincts DAGs in B(X), but only
11 equivalence classes. The partial order on B(X) induced by ≤I is illustrated in
Figure 1.8 (from [CK03]).

Theorems 1.11 and 1.13 have an immediate corollary used in Section 1.8.

Corollary 1.14. Let G and H be DAGs over a set X of discrete (resp. continuous)
variables. If H <I G, then d(Md(H)) < d(Md(G)) (resp. d(Mg(H)) < d(Mg(G)).

1.6.2 Essential Graphs

Besides their representation as sets of DAGs, equivalence classes in B(X) induced
by =I may also be represented graphically. By Theorem 1.10, the elements of a
Markov equivalence class of structures C ⊆ B(X) have the same skeleton and only
differ in the orientation of their arrows.

Definition 77. An arrow u → v is compelled in a Markov equivalence class of
structures C if it exists in every DAG of C. An arrow that is not compelled is
reversible.

R 32. By Theorem 1.10, arrows participating in a v-structure are compelled.



28 Chapter 1

X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1X2

X3

X1 X2

X3

X1

X2

X3

X1

X2

X3

X1

X2

X3

X1X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1X2

X3

X1

X2

X3

X1 X2

X3

X1

X2

X3

X1

X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1

X2

X3

X1

X2

X3

X1 X2

X3

X1

X2

X3

X1

Figure 1.8: Inclusion order on B(X). For any D,H ∈ B(X), D =I H if, and only
if, D and H are contained in the same box, while D <I H if, and only if, there is a
downward path from the box containing H to the box containing D.



1.6 Equivalence and Inclusion of DAGs 29

E 17. Consider the equivalence class associated to the DAG of Figure 1.9.
The arrows X1 → X3 and X2 → X3 are compelled because they are part of the v-
structure (X3, {X1, X2}). The arrow X3 → X4 is also compelled because its reversal
would create the v-structures (X3, {X1, X4}) and (X3, {X2, X4}).

X1

  A
AA

AA
AA

A X2

~~}}
}}

}}
}}

X3

��
X4

Figure 1.9: A DAG where all the arrows are compelled

The following graph can be associated to a Markov equivalence class.

Definition 78. The essential graph E(C) (or completed partially directed acyclic
graph or DAG pattern) of a Markov equivalence class C ⊆ B(V) is the graph over
V with an arrow for every compelled arrow in C and a line for every reversible
arrow in C, i.e.

E(C) =
(
V,

⋃
(V,E)∈C

E
)
. (1.55)

R 33. If C ⊆ B(V) is a Markov equivalence class of structures and D ∈ C,
then v(E(C)) = v(D) and S (E(C)) = S (D) by Theorem 1.10.

As the following proposition shows, essential graphs can be used to represent
Markov equivalence classes of structures.

Proposition 1.15. If E(C1) = E(C2), then C1 = C2.

P. Let us show that C1 , C2 implies E(C1) , E(C2). Let D1 ∈ C1 and
D2 ∈ C2. By Theorem 1.10, C1 , C2 implies that S (D1) = S (E(C1)) , S (D2) =
S (E(D2)) or v(D1) = v(E(C1)) , v(D2) = v(E(C2)). Hence, E(C1) , E(C2). �

Definition 79. The set of essential graphs over X is denoted E(X).

Definition 80. If E ∈ E(X), let [E] ⊆ B(X) be the Markov equivalence class of
structures such that E([E]) = E.

R 34. If D ∈ B(X) and E ∈ E(X), then D ∈ [E] if, and only if, D and E have
the same skeleton and v-structures.



30 Chapter 1

R 35. Chapter 3 (see also [AMP97] and [Chi02b]) presents efficient algo-
rithms to build the essential graph of an equivalence class and to find a member of
an equivalence class represented by an essential graph.

Many notions defined for DAGs only depend on the independence model asso-
ciated to them. They can thus be extended to essential graphs. If E is an essential
graph and G ∈ [E], the independence model I(E) = I(G) and the statistical mod-
elsMd(E) = Md(G) andMg(E) = Mg(G) are defined. Similarly, independence
inclusion and independence equivalence between essential graphs are also defined.

E 18. The partial order on E({X1, X2, X3}) induced by ≤I is illustrated in
Figure 1.10.

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1 X2

X3

X1

X3

X2

Figure 1.10: Inclusion order on E({X1, X2, X3})

1.7 Bayesian Network Models with Hidden Variables

Bayesian network models with hidden variables are statistical models derived from
Bayesian network models. Their study is relevant to structure and parameter learn-
ing with hidden variables (see Chapter 2 and Chapter 4).



1.7 Bayesian Network Models with Hidden Variables 31

1.7.1 Hidden and Observable Variables

Let us introduce the notion of hidden and observable variables by an example.

E 19. Consider a Bayesian network B for {X1, X2, X3, X4, X5, X6,H1} with
structure given in Figure 1.11 and representing a density pB. Suppose that B is

X1

  A
AA

AA
AA

A X2

��

X3

~~}}
}}

}}
}}

H1

~~}}
}}

}}
}}

��   A
AA

AA
AA

A

X4 X5 X6

Figure 1.11: A structure with one hidden variable

used for medical diagnosis, and

• X1, X2 and X3 represent the medical history of a patient

• H1 is a variable of interest about the patient, e.g. it indicates a disease

• X4, X5 and X6 are symptoms or tests results.

In practice, the variable H1 may never be observed directly because it is too dif-
ficult, dangerous or costly to do so (e.g. H1 measures the weight of a fetus, or it
indicates the presence or absence of a brain tumor) or because it is intrinsically
non-observable (e.g. H1 does not correspond to a physical event, but rather a men-
tal construction like a syndrome). In that case, B may be treated as a representation
of the marginal density for {X1, X2, X3, X4, X5, X6} of pB.

A variable whose value is never observed is hidden (or latent), while a variable
that is sometimes or always observed is observable (or manifest). These notions
depend on the context: a variable that is hidden in one situation may be observable
in another and vice-versa. In Section 2.3.2, the notion of context is defined by a
dataset.

1.7.2 Bayesian Network Models with Hidden Variables

As Example 19 showed, hidden variables can be marginalized. This leads to the
following statistical models.

Definition 81. Let X and H be non-empty sets partitioning a finite set Y of random
variables, and let M be a Bayesian network model for Y . The Bayesian network
model MH with hidden variables H associated to M is the statistical model ob-
tained by marginalization of the hidden variables.



32 Chapter 1

R 36. For discrete variables, we have

MH =
{
p(x) =

∑
h∈H

p(x, h)
∣∣∣∣ p(x, h) ∈ M

}
. (1.56)

For continuous variables, we have

MH =
{
p(x) =

∫
H

p(x, h)dh
∣∣∣∣ p(x, h) ∈ M

}
. (1.57)

R 37. A parametrization map fH for MH can be obtained by composing a
parametrization map f for M and the marginalization operation. In general, the
injectivity of f does not imply the injectivity of fH .

Let us give two examples of Bayesian network models with hidden variables
associated to discrete Bayesian network models. They are generalized in Sec-
tion 2.3.2.

E 20. Let D be the DAG over the set of discrete variables {X1, X2, X3}∪ {H}
given in Figure 1.12. The Bayesian network model MH with hidden variable H

H

~~||
||

||
||

��   B
BB

BB
BB

B

X1 X2 X3

Figure 1.12: A naive Bayes structure D

associated toMd(D) admits the parameter space

ΘH = Θd,D =
(
S +X1

)|H|
×

(
S +X2

)|H|
×

(
S +X3

)|H|
× S +H (1.58)

and the parametrization map fH given by

fH
(((

(θXi,h
xi )xi∈Xi

)
h∈H

)3

i=1
, (θH

h )h∈H

)
= p (1.59)

with

p(x1, x2, x3) =
∑
h∈H

θH
h

3∏
i=1

θXi,h
xi , (x1, x2, x3) ∈ X1 × X2 × X3. (1.60)

E 21. Let D be the DAG over the set of discrete variables {X1, . . . , X7} ∪

{H1,H2,H3} given in Figure 1.13. The Bayesian network modelMH with hidden
variables {H1,H2,H3} associated toMd(D) admits the parameter space

ΘH = Θd,D =
((

S +Xi

)|H2 |
)3

i=1
×

(
S +X4

)|H1 | ×
((

S +Xi

)|H3 |
)7

i=5
× S +H1

×
(
S +H2

)|H1 | ×
(
S +H3

)|H1 |

(1.61)



1.7 Bayesian Network Models with Hidden Variables 33

H1

vvnnnnnnnnnnnnnnn

�� ((PPPPPPPPPPPPPPP

H2

~~}}
}}

}}
}}

��   A
AA

AA
AA

A X4 H3

~~}}
}}

}}
}}

��   A
AA

AA
AA

A

X1 X2 X3 X5 X6 X7

Figure 1.13: A HLC structure D

and the parametrization map fH such that fH(θ) = p with

p(x1, . . . , x7) =
∑

h1∈H1

∑
h2∈H2

∑
h3∈H3

θH1
h1
θH2,h1

h2
θH3,h1

h3

( 3∏
i=1

θXi,h2
xi

)
θX4,h1

x4

( 7∏
i=5

θXi,h3
xi

)
.

(1.62)

In general, the densities of Bayesian network model with hidden variablesMH

no longer satisfy a recursive factorization property, and it is not easy to find an
implicit description of MH . However, p ∈ MH implies IH(D) ⊆ I(p), and thus
MH ⊆ M0 implies MH ⊆ M(IH(D),M0). As a matter of fact, the marginaliza-
tion sometimes introduces constraints that can not be expressed as independence
constraints (see [GM98], [Gar04] and Corollary 4.10 in Chapter 4).

E 22. Let X1, . . . , X6, and H1 be binary variables, let D1 be the DAG of
Figure 1.11, and let D2 be the DAG of Figure 1.14. One can see that IH(D1) =

X1

��   A
AA

AA
AA

A

((PPPPPPPPPPPPPPP X2

~~}}
}}

}}
}}

��   A
AA

AA
AA

A X3

wwnnnnnnnnnnnnnnn

~~}}
}}

}}
}}

��
X4 // 66X5 // X6

Figure 1.14: A structure D2 without hidden variable such that I(D2) = IH(D1)

I(D2) but d(Md(D1)) = 17 < 59 = d(Md(D2)). Hence, the marginalization of H1
introduces constraints not accounted for in IH(D1).

1.7.3 Dimension

Defining a notion of dimension for discrete or Gaussian Bayesian network models
with hidden variables is not as straightforward as in the case without hidden vari-
ables. In fact, there exist different notions of dimension. Let us first present the
standard dimension.



34 Chapter 1

Definition 82 (Standard dimension). LetM be a discrete or Gaussian BN model
for the variables X ∪ H and letMH be the corresponding BN model with hidden
variables. The standard dimension ds(MH) ofMH is the dimension ofM, i.e. the
dimension of the parameter space (see (1.37) and (1.38)).

The standard dimension is not always equal to the number of independent param-
eters necessary to represent a density (see [GHM96] and [GHKM01]).

E 23. Consider the structure of Figure 1.5. Suppose that H is hidden and
that the other variables are observable and binary. As noted before, any distribution
on these four observable variables can be parametrized by a vector of 24 − 1 = 15
components (see (1.29)). If H is binary, then ds(MH) = 11 ≤ 15. However, if H is
ternary, then ds(MH) = 28 > 15.

In [GHKM01], the authors show that discrete and Gaussian Bayesian network
models with hidden variables are stratified exponential models (see Appendix A).
They can thus inherit their definition of dimension.

Definition 83 (Effective dimension). LetM be a discrete or Gaussian BN model
for the variables X ∪ H and letMH be the corresponding BN model with hidden
variables. The (effective) dimension d(MH) ofMH is its dimension as a stratified
exponential model.

R 38. Computing d(MH) is a non-trivial problem (see [RG03], [KZ02],
[KZ03] and Appendix B).

E 24. Consider the structure over binary variables described in Example 23.
One can show that the effective dimension is smaller than the standard dimension,
with d(MH) = 9 < 11 = ds(MH).

1.8 Optimality of a Bayesian Network Model

This section introduces two notions of optimality that are important to decide
whether a Bayesian network model is a good candidate to represent a density.
These notions are used in Section 2.5 to evaluate the quality of models learned
from data.

Definition 84 (Inclusion optimality). Let p be a density for a set X of variables
and let M be a set of statistical models for X. A modelM ∈ M is inclusion optimal
w.r.t. M and p if p ∈ M and there is noM′ ∈ M such that p ∈ M′ andM′ (M.

Recall that the dimension of a discrete or Gaussian BN model measures its com-
plexity. This leads to the following definition, illustrated in Figure 1.15.

Definition 85 (Parameter optimality). Let p be a density for a set X of variables
and let M be a set of discrete Bayesian network models or a set of Gaussian
Bayesian network models for X. A model M ∈ M is parameter optimal w.r.t.
M and p if p ∈ M and there is noM′ ∈ M such that p ∈ M′ and d(M′) < d(M).



1.8 Optimality of a Bayesian Network Model 35

·p

M1

M2

(a)M1 is neither inclusion nor parameter op-
timal, while M2 is parameter and inclusion
optimal

·p

M1

M2

(b)M1 is inclusion but not parameter optimal,
whileM2 is parameter and inclusion optimal

Figure 1.15: M is composed of two modelsM1 andM2. The dimension of a model
is proportional to its area in the figure.

R 39. For discrete and Gaussian BN models without hidden variable, pa-
rameter optimality implies inclusion optimality. Indeed, M1 ( M2 implies that
d(M1) < d(M2) by Proposition 1.9 and Corollary 1.14.

Let us present two examples illustrating these notions of optimality.

E 25 ( [CM02]). Let D1 be the DAG given in Figure 1.5 with |X1| =

|X3| = |X4| = 2 and |X2| = 3, let p be a distribution such that I(p) = IH(D1), and
let M be the set of all discrete BN models over {X1, X2, X3, X4}. The discrete BN
model with structure given in Figure 1.16(a) is parameter and inclusion optimal,
while the discrete BN model with structure given in Figure 1.16(b) is inclusion
optimal but not parameter optimal.

X1

��   A
AA

AA
AA

A X4

��
X2 // X3

(a) parameter op-
timal (d = 18)

X1

��

X4

~~}}
}}

}}
}}

��
X2 X3oo

(b) inclusion opti-
mal (d = 20)

Figure 1.16: Structure of optimal models when I(p) = IH(D1)

E 26 ( [CM02]). Let D2 be the DAG given in Figure 1.6 with |X2| =

|X3| = |X4| = 2 and |X1| = 4, let p be a distribution such that I(p) = IS (D2), and
let M be the set of all discrete BN models over {X1, X2, X3, X4}. The discrete BN
model with structure given in Figure 1.17(a) is parameter and inclusion optimal,
while the discrete BN model with structure given in Figure 1.17(b) is inclusion
optimal but not parameter optimal.



36 Chapter 1

X2 // X3

��
X1

OO

//

>>}}}}}}}}
X4

(a) parameter op-
timal (d = 19)

X2 //

  A
AA

AA
AA

A X3

X1

OO

// X4

OO

(b) inclusion opti-
mal (d = 23)

Figure 1.17: Structure of optimal models when I(p) = IS (D2)

There exists a connection between the notions of faithfulness, parameter opti-
mality, and inclusion optimality.

Proposition 1.16. Let X be a set of discrete (resp. continuous) variables, let M be
the set of discrete (resp. Gaussian) BN models with structure in a set S ⊆ B(X),
and let p be a distribution for X such that there exists a DAG D ∈ S faithfull to p
and satisfying p ∈ Md(D) (resp. p ∈ Mg(D)). If G ∈ S, the following propositions
are equivalent

(a) G is faithfull to p

(b) Md(G) (resp.Mg(G) ) is parameter optimal w.r.t. M and p

(c) Md(G) (resp.Mg(G) ) is inclusion optimal w.r.t. M and p.

P. Let M(G) denote the discrete (resp. Gaussian) BN model associated to a
DAG G over the set X of discrete (resp. continuous) variables.

1. Let us show that (a) implies (b). By Corollary 1.14, M(G) has minimal
dimension over the set of DAGs H such that I(H) ⊆ I(p) = I(G). Hence,
M(G) is parameter optimal.

2. By Remark 39, (b) implies (c).

3. Let us show that (c) implies (a). Since p ∈ M(G), we have I(G) ⊆ I(p) by
the implicit definition ofM(G). Since p ∈ M(D) and G is optimal,M(D) is
not a proper subset ofM(G). By Proposition 1.9, I(G) is thus not a proper
subset of I(D). By faithfulness of D, I(G) is not a proper subset of I(p).
Hence, I(G) = I(p). �

Finding a parameter optimal model may be difficult. First, M may contain too
many elements to be enumerated in reasonable time. For example, the number of
DAGs over n vertices grows very quickly with n (see [Rob77]).



1.8 Optimality of a Bayesian Network Model 37

Proposition 1.17. The number f (n) of DAGs over n vertices is given by the fol-
lowing recurrence:

f (n) =
n∑

i=1

(−1)i+1
(
n
i

)
2i(n−i) f (n − i) for n > 0, (1.63)

f (0) = 1. (1.64)

E 27. We have f (2) = 3, f (3) = 25, f (5) = 29000 and f (10) ≈ 4.2 × 1018.

For large |X| = n, one can show that |B(X)| = f (n) = 2O(n2 log n) (see [FK03]). The
following subsets of B(X) can also be considered.

Definition 86. If k ≥ 0, let Bk(X) be the set of DAGs over X such that each vertex
has at most k parents.

Even in the case M = Bk(X), enumeration may still not be possible: for large
n = |X|, one can show that |Bk(X)| = 2O(kn log n) (see [FK03]). Finally, the following
complexity result holds (see [CMH03]).

Theorem 1.18. Given a finite set X of discrete variables, a distribution p for X,
and integers k ≥ 3 and d, the problem of deciding if there exists a discrete Bayesian
network model with structure in Bk(X) that contains p and has a dimension less
than or equal to d is NP-hard.

Hence, identifying a parameter optimal discrete Bayesian network model with
structure in Bk(X) is NP-hard for k ≥ 3.





Chapter 2

Learning Bayesian Networks

2.1 Introduction

There are many different ways to precisely define and approach the problem of
learning Bayesian networks from data (see e.g. [Nea03] or [NWL+04]). This chap-
ter presents a Bayesian approach to learning Bayesian networks over discrete vari-
ables and discrete Bayesian network models. It does not attempt to cover all the
existing approaches and variants but rather introduces material relevant for subse-
quent chapters of the dissertation.

Learning Bayesian networks can be seen as an instance of learning statistical
models. The problem of learning statistical models can be described informally as
follows. First, let us define the notions of observation and dataset.

Definition 87. An observation o is a value o ∈ O of a set of random variables O.

Definition 88. A dataset (or sample) d of size n is a n-tuple (o[1], . . . , o[n]) of
observations.

A distribution g for a set X of random variables can generate an observation o of a
subset of variables O ⊆ X. Given a dataset d of independent observations generated
by an unknown distribution g, the following problems arise:

• if M is a set of statistical models, find a low-dimensional model M ∈ M
containing a good approximation of g (in some sense);

• ifM is a statistical model, find a good approximation q ∈ M of g (in some
sense).

R 40. Because g is unknown, the quality of the approximation p has to be
estimated from d only.

In the context of Bayesian networks, these learning problems can be formulated
as follows. Given a dataset d generated by g and a set S of DAGs (or essential
graphs), the structure learning problem is to find a structure D ∈ S such that



40 Chapter 2

Md(D) has small dimension and contains a good approximation of g. Given a
dataset d generated by g and a structure D, the parameter learning problem is to
find a parameter θ ∈ Θd,G such that fd,G(θ) is a good approximation of g.

The rest of the chapter is organised as follows. Section 2.2 outlines a Bayesian
approach to solve the above learning problems. Section 2.3 discusses the adapta-
tion of the Bayesian framework to discrete Bayesian network models. Section 2.4
presents parameter learning. Section 2.5 presents structure learning.

2.2 A Bayesian Approach to Learning Statistical Models

A Bayesian approach to learning statistical models can be outlined as follows. For
the interested reader, Bayesian methods are discussed in [Jay03]. In a few words, a
Bayesian approach combines a prior distribution on (subsets of) a hypothesis space
with some data to obtain a posterior distribution.

Suppose that a dataset d generated by an unknown distribution g is given.
Also, suppose that M is a finite or countable set of statistical models such that
g ∈ ∪M∈MM and each M ∈ M is defined parametrically by a parameter space
ΘM and an injective parametrization map fM, i.e. M = fM(ΘM). A hypothesis
space is a set of hypotheses and, loosely speaking, a hypothesis is a proposition
that explains the data d. A hypothesis “g ∈ M” is associated to eachM ∈ M, and
a hypothesis “g = fM(θ)” is associated to each θ ∈ ΘM.

R 41. The injectivity of fM ensures that distinct parameters define distinct
hypotheses.

R 42. To simplify notations, a modelM and the associated hypothesis “g ∈
M” are both simply denotedM. Similarly, a parameter θ ∈ ΘM and the associated
hypothesis are both denoted θ.

A hypothesis “explains the data” in the following sense: if g = fM(θ), the proba-
bility p(d|θ,M) of observing d is given by

p(d|θ,M) =
n∏

i=1

fM(θ)
(
o[i]

)
. (2.1)

The probability distribution p(d|θ,M) is called the sampling distribution.
In a Bayesian approach, the prior distribution represents our knowledge about

the hypotheses before observing the data. A prior distribution may be defined on
some σ-field in the hypothesis space as follows. For each M ∈ M, let pM be
a probability measure such that pM(M′) = 0 if M′ , M and such that there
exists a function p(·|M) defined on ΘM, called the prior parameter density ofM,
satisfying

pM(A) =
∫

f −1
M

(A)
p(θ|M)dθ. (2.2)



2.2 A Bayesian Approach to Learning Statistical Models 41

Additionally, for each M ∈ M, let αM be a non-negative real, called the prior
model probability ofM, such that

∑
M∈M αM = 1. Then, one can see that the prior

distribution

p =
∑
M∈M

αMpM (2.3)

is a probability measure such that

p(·|M) = pM(·), (2.4)

p(M) = αM. (2.5)

After observing the data, our knowledge about the hypotheses is represented
by the posterior parameter densities

p(θ|d,M) =
p(θ|M)p(d|θ,M)

p(d|M)
, (2.6)

and the posterior model probabilities

p(M|d) =
p(M)p(d|M)

p(d)
. (2.7)

The probability p(d|M) of observing the data given that g ∈ M is called the
marginal likelihood ofM, and it is given by

p(d|M) =
∫
ΘM

p(d|θ,M)p(θ|M)dθ. (2.8)

In the Bayesian approach, a solution to the problem of selecting a good model
in M given the dataset d is simply a modelM ∈ M with maximal posterior proba-
bility:

M ∈ arg max
M∈M

p(M|d). (2.9)

Estimating a distribution q ∈ M = fM(ΘM) that approximates g amounts to es-
timating a suitable parameter θ ∈ ΘM. In the Bayesian approach, the posterior
parameter density p(θ|d,M) represents our knowledge about the parameters after
observing d and supposing that g ∈ M. A solution θ to our learning problem is thus
somehow extracted from p(θ|M, d). For example, a natural estimate is a parameter
maximizing the posterior parameter density:

θ ∈ arg max
θ∈ΘM

p(θ|d,M). (2.10)

Other parameter estimates can be obtained from p(θ|d,M) (see Section 2.4.1).



42 Chapter 2

2.3 Hypothesis Space

This section adapts the Bayesian framework of Section 2.2 to discrete Bayesian
network models. Alternatively, an excellent tutorial is given in [Hec98]. For Gaus-
sian Bayesian networks, see [GH94] or [Nea03].

A discrete Bayesian network modelM for a set X of discrete random variables
may be defined by

• a DAG D ∈ B(X) such thatM =Md(D) or

• an essential graph E ∈ E(X) such thatM =Md(E).

Hence, a set S of DAGs or essential graphs defines a set M of discrete Bayesian
network models.

R 43. If D is a DAG, thenMd(D) is parametrized asMd(D) = fd,D(Θd,D).
If E is an essential graph, then Md(E) can be parametrized by any G ∈ [E] as
Md(E) = fd,G(Θd,G). To simplify notations, we suppose that a fixed DAG D ∈ [G]
is associated to each essential graph G ∈ S and we let Θd,G = Θd,D and fd,G = fd,D.
Then, an essential graph or DAG G ∈ S defines a discrete Bayesian network model
parametrized as Md(G) = fd,G(Θd,G). Furthermore, essential graphs are referred
to as structures.

Following the example of Section 2.2, one can associate to each G ∈ S the
hypothesis g ∈ Md(G) and one can associate to each θ ∈ Θd,G the hypothesis g =
fd,G(θ). Then, the prior distribution on the hypothesis space is specified by prior
structure probabilities p(G) and prior parameter densities p(θ|G). However, this
straithforward choice of hypothesis space leads to technical difficulties discussed
in Section 2.3.1. Possible choices for S are presented in Section 2.3.2.

2.3.1 Technical Difficulties

Unlike essential graphs, distinct DAGs may define the same Bayesian network
model and thus the same hypothesis. To specify the prior distribution coherently,
the prior structure probabilities should satisfy

p(G) = p(H) (2.11)

and the prior parameter densities should satisfy∫
f −1
d,G(A)

p(θ|G)dθ =
∫

f −1
d,H(A)

p(θ|H)dθ (2.12)

for all DAGs G,H ∈ S such that Md(G) = Md(H), i.e. G =I H (see Proposi-
tion 1.9).



2.3 Hypothesis Space 43

R 44. Constraint (2.12) is satisfied if

p(θ|G) = p
(
f −1
d,H( fd,G(θ)

)∣∣∣H)|det J(θ)| (2.13)

where J(θ) denotes the Jacobian matrix at θ of the transformation f −1
d,H ◦ fd,G.

R 45. Despite these constraints, sets of DAGs are still used to specify sets
of statistical models because DAGs are more intuitive and easier to manipulate
than essential graphs. Although this is not done in this dissertation, the hypothesis
associated to a DAG may be redefined to include a causal interpretation of the
arrows (see Remark 17). In that case, distinct but Markov equivalent DAGs define
hypotheses asserting distinct causal relationships.

The second difficulty, common to sets of DAGs and sets of essential graphs,
relates to the constraint pM(M′) = 0 ifM′ ,M. IfMd(H) *Md(G), then

pH(G) =
∫

f −1
d,H(Md(G))

p(θ|H)dθ = 0 (2.14)

for any prior parameter density p(θ|H) (see [HGC95]). However,Md(H) ⊆ Md(G)
implies pH(G) ≥ pH(H) = 1. To avoid this inclusion problem, we associate to each
G ∈ S the model

M′d(G) =Md(G) \
⋃

H∈S s.t. H<IG

Md(H), (2.15)

and the hypothesis g ∈ M′d(G).

R 46. Technically, the modelM′d(G) is parametrized by the parameter space
Θ′d,G = f −1

d,G(M′d(G)) and the parametrization map fd,G restricted to Θ′d,G. In prac-
tice, these modifications have little consequence because∫

Θd,G

p(θ|G)dθ =
∫
Θ′d,G

p(θ|G)dθ. (2.16)

Hence, we can specify a prior parameter density p(θ|G) over Θd,G instead of Θ′d,G,
and we can use Θd,G instead of Θ′d,G in the computation of the marginal likelihood
p(d|G).

2.3.2 Choice of S

In general, the choice of set S depends on the dataset and prior knowledge. Struc-
tures can be classified according to the type of variables they are defined on.

Definition 89. A random variable X is observable in a dataset (o[1], . . . , o[n]) if
there exists i ∈ {1, . . . , n} such that X ∈ O[i].

Definition 90. A random variable X is hidden in a dataset (o[1], . . . , o[n]) if there
is no i ∈ {1, . . . , n} such that X ∈ O[i].



44 Chapter 2

Elements of S should be defined over the set X of observable variables in d or a
superset of X. Indeed, a distribution in a model over a set of variables that does not
include X can not generate d.

A natural choice for S is the set B(X) of DAGs or the set E(X) of essen-
tial graphs over the observable variables. The latter choice is considered in Sec-
tion 2.5.3 and Chapter 3. Depending on the application, prior knowledge, or com-
putational constraints, smaller sets, such as Bk(X), may also be considered.

Learning is often harder when the graphs in S are defined over both observable
and hidden variables. In that case, S is often restricted to special classes of DAGs.
Let us present two such classes: hierarchical latent class structures and Naive
Bayes structures.

Definition 91. A directed tree is a DAG such that every vertex has exactly one
parent, except a single vertex, called the root, that has no parent.

Definition 92. A leaf in a directed tree is a vertex without child.

Definition 93. A hierarchical latent class (HLC) structure is a directed tree where
all the vertices are hidden variables, except the leaves.

E 28. Figure 1.13 is an HLC structure with hidden variables H1,H2,H3 and
observable variables X1, . . . , X7.

Learning with HLC structures is discussed in [Zha04] (when the variables are dis-
crete) and [SSGS06] (when the variables are continuous). The following special
class of HLC structures is considered in Chapter 4.

Definition 94. A Naive Bayes (or latent class) structure is a directed tree where the
root is the only hidden variable and is the only parent to each observable variable.

E 29. The structure in Figure 1.12 is a Naive Bayes structure with observ-
able variables X1, X2, X3 and hidden variable H.

2.4 Parameter Learning

This section discusses how to choose a parameter based on its posterior density and
how to compute the said density. The posterior parameter density is computed by
combining the prior parameter density, sampling distribution, and marginal likeli-
hood as follows:

p(θ|d,G) =
p(θ|G)p(d|θ,G)

p(d|G)
. (2.17)

First, several possible parameter estimates are proposed. Then, each term on the
right-hand side of (2.17) is considered in turn and assumptions allowing to compute
the proposed estimates exactly and efficiently are introduced gradually.



2.4 Parameter Learning 45

2.4.1 Parameter Estimation

The posterior parameter density provides a wealth of information. Let us present
several ways to extract a single parameter that will be the result of our parameter
learning procedure. In practice, the choice of estimate depends on the problem at
hand.

As mentioned before, an obvious choice of estimate is the most probable pa-
rameter given the data.

Definition 95. A maximum a posteriori (MP) estimate θMP is a parameter value
that maximizes the posterior parameter density, i.e.

θMP ∈ arg max
θ∈Θd,G

p(θ|d,G). (2.18)

In general, the existence and unicity of an MP estimate are not guaranteed. The
marginal likelihood may be interpreted as a normalization constant irrelevant to the
optimization:

arg max
θ∈Θd,G

p(θ|d,G) = arg max
θ∈Θd,G

p(θ|G)p(d|θ,G). (2.19)

Typically, the posterior parameter density becomes less dependent on the prior
parameter density as the size of the dataset increases. In that case, MP estimates can
be approximated by maximum likelihood (ML) estimates. For a fixed dataset d, the
likelihood of a parameter θ is the probability p(d|θ,G). (The sampling distribution
is a function defined on set of datasets for a fixed parameter.)

Definition 96. A maximum likelihood (ML) estimate θML is a parameter value that
maximizes the likelihood, i.e.

θML ∈ arg max
θ∈Θd,G

p(d|θ,G). (2.20)

The existence and unicity of an ML estimate are not guaranteed. Unlike MP esti-
mation, ML estimation does not use the prior parameter density and no prior needs
to be elicited.

Another natural estimate is the expectation of the parameter θ w.r.t. its posterior
density:

〈θ〉 =

∫
Θd,G

θ p(θ|d,G)dθ. (2.21)

If it exists, this estimate is unique.
Finally, if the learned parameter θ is to be used to predict future observations,

the Bayesian network (G, θ) should approximate in some sense the predictive den-
sity

p(x|d,G) =
∫
Θd,G

p(x|θ,G)p(θ|d,G)dθ. (2.22)



46 Chapter 2

2.4.2 Likelihood

Since the observations are independent, the likelihood is given by

p(d|θ,G) =
N∏

i=1

pB(o[i]), (2.23)

where pB = fd,G(θ) (see (2.1)). Depending on the dataset d and G, the complexity
of the likelihood varies greatly. It has a simple expression under the complete
dataset assumption.

Definition 97. An observation o ∈ O is complete for a set of random variables Y
if O = Y .

Definition 98. A dataset d = (o[1], . . . , o[n]) is complete for Y if O[i] = Y for all
i ∈ {1, . . . , n}.

Assumption 1 (Complete dataset). The dataset d is complete for X and G is de-
fined over X, i.e. there is no hidden variable.

Under Assumption 1, the probability of each observation factorizes recursively
according to G. Therefore, we have

p(d|θ,G) =
n∏

i=1

∏
v∈V

pB(o[i]v|o[i]pa(v)), (2.24)

=
∏
v∈V

∏
xpa(v)∈Xpa(v)

∏
xv∈Xv

(
θ

Xv,xpa(v)
xv

)n
Xv ,xpa(v)
xv , (2.25)

where nXv,xpa(v)
xv denotes the number of observations o in the dataset such that ov = xv

and opa(v) = xpa(v). In that case, one can show that the components of a ML estimate
satisfy

(θML)Xv,xpa(v)
xv =

nXv,xpa(v)
xv

nXv,xpa(v)
(2.26)

when nXv,xpa(v)
xv > 0 for xv ∈ Xv.

If the dataset is incomplete, for example because there are hidden variables,
then p(o[i]|θ,G) may no longer factorize because of the marginalization.

E 30. Consider a Naive Bayes structure G over {H} ∪ {X1, X2, X3} and a
dataset d = (x[1], . . . , x[n]) such that H is hidden and each observation is complete
for {X1, X2, X3}. By Example 20, the probability of an observation x = (x1, x2, x3)
is

pB(x1, x2, x3) =
∑
h∈H

θH
h

3∏
j=1

θ
X j,h
x j . (2.27)

Hence, we have

p(d|θ,G) =
n∏

i=1

∑
h∈H

θH
h

3∏
j=1

θ
X j,h
x[i] j

. (2.28)



2.4 Parameter Learning 47

In the general case, the computation of ML estimates may be a difficult optimiza-
tion problem and computationaly expensive methods may be necessary. Gradient-
based methods are discussed in [Nea92] and [BKRK97]. Let us also mention the
expectation-maximization algorithm (see [Lau95] and [NH98]). Although these
algorithms only yield local maxima, they are widely used in practice.

2.4.3 Prior Parameter Density

In Bayesian inference, prior knowledge (or the lack thereof) about the parameter θ
is represented by a prior parameter density p(θ|G). The exact choice of p(θ|G) is
not discussed in this dissertation: we only introduce assumptions leading to closed-
form parameter estimates and guaranteeing that the constraint (2.13) holds for all
independence equivalent structures. These assumptions are thoroughly explained
and justified in [HGC95].

The expression of the posterior parameter density is often simple if p(θ|G)
belongs to a conjugate family for the sampling distribution.

Definition 99. Let F = f (Θ) denote a family of distributions for a set X of random
variables. A family P of prior densities on Θ is said to be a conjugate family for F
if the posterior density p(θ|x) ∈ P for all x ∈ X and p(θ) ∈ P.

If P is parametrized as P = g(Λ), an element λ ∈ Λ is called a hyperparameter.
Then, computing the posterior parameter density given a dataset complete for X
amounts to updating a hyperparameter.

E 31. Given a, b ∈ R and λ2 ∈ R>0, let F = f (Θ) be the statistical model
for a real random variable X defined by

Θ = R, (2.29)

f (θ) = N(x|aθ + b, λ2). (2.30)

Let us show that the set of Gaussian densities is a conjugate family of prior param-
eter densities. We have

p(θ|x) ∝ p(θ)p(x|θ) (2.31)

with

p(θ) = N(x|µ, σ2), (2.32)

p(x|θ) = f (θ) = N(x|aθ + b, λ2). (2.33)

It is easy to see that

p(θ|x) ∝ e−
(
θ−

aσ2(x−b)+µλ2

σ2a2+λ2

)2
/
(
2 σ2λ2

σ2a2+λ2

)
. (2.34)



48 Chapter 2

Hence, the posterior p(θ|x) is the Gaussian density N(θ|µ′, (σ′)2) with updated
hyperparameters

µ′ =
aσ2(x − b) + µλ2

σ2a2 + λ2 , (2.35)

(σ′)2 =
σ2λ2

σ2a2 + λ2 . (2.36)

Using Dirichlet densities (see (A.3) in Appendix A), it is straighforward to
design a family of prior parameter densities conjugate for the sampling distribution.

Assumption 2 (Parameter independence). The prior parameter density satisfies

p(θ|G) =
∏
v∈V

p(θXv |G), (2.37)

p(θXv |G) =
∏

xpa(v)∈Xpa(v)

p(θXv,xpa(v) |G), for all v ∈ V . (2.38)

In the above assumption, the components of the parameter θ ∈ Θd,G as labelled as

θ =
((

(θXv,xpa(v)
xv )xv∈Xv

)
xpa(v)∈Xpa(v)

)
v∈V

, (2.39)

and we let

θXv,xpa(v) = (θXv,xpa(v)
xv )xv∈Xv , (2.40)

θXv = (θXv,xpa(v))xpa(v)∈Xpa(v) . (2.41)

Assumption 3 (Dirichlet). For v ∈ V and xpa(v) ∈ Xpa(v), the density p(θXv,xpa(v) |G)
is Dirichlet with hyperparameters (mXv,xpa(v)

xv )xv∈Xv ∈ S +Xv
and αXv,xpa(v) > 0.

Under Assumption 1, the family of prior parameter densities satisfying Assump-
tion 2 and Assumption 3 is conjugate for the sampling distribution. The updated
hyperparameters of p(θXv,xpa(v) |d,G) are given by

(αXv,xpa(v))′ = αXv,xpa(v) + nXv,xpa(v) , (2.42)

(mXv,xpa(v)
xv )′ =

αXv,xpa(v)mXv,xpa(v)
xv + nXv,xpa(v)

xv∑
xv∈Xv α

Xv,xpa(v)mXv,xpa(v)
xv + nXv,xpa(v)

xv

(2.43)

=
αXv,xpa(v)mXv,xpa(v)

xv + nXv,xpa(v)
xv

αXv,xpa(v) + nXv,xpa(v)
, (2.44)

where nXv,xpa(v) =
∑

xv∈Xv nXv,xpa(v)
xv is the number of observations o in the dataset such

that opa(v) = xpa(v).



2.4 Parameter Learning 49

Under Assumptions 1 to 3, the proposed parameter estimates can be computed
exactly (see [HGC95]). The components of a MP estimate satisfy

(θMP)Xv,xpa(v)
xv =

nXv,xpa(v)
xv + αXv,xpa(v)mXv,xpa(v)

xv − 1

nXv,xpa(v) + αXv,xpa(v) − |Xv|
(2.45)

if nXv,xpa(v)
xv + αXv,xpa(v)mXv,xpa(v)

xv > 1 for all xv ∈ Xv. The components of the expected
parameter 〈θ〉 are given by

〈θ〉
Xv,xpa(v)
xv = (mXv,xpa(v)

xv )′ (2.46)

with (mXv,xpa(v)
xv )′ given by (2.43). Finally, we have

p(x|d,G) = f (〈θ〉) ∈ Md(G). (2.47)

Hence, (G, 〈θ〉) perfectly represents the predictive density p(x|d,G).
Together with Assumption 2 and Assumption 3, the following assumption en-

sures that the constraint (2.13) holds for all independence equivalent structures (see
[HGC95]).

Assumption 4 (Prior equivalence). There exist a strictly positive distribution q(x)
and α > 0 such that the hyperparameters of p(θXv,xpa(v) |G) satisfy

αXv,xpa(v) = α, (2.48)

mXv,xpa(v)
xv = q(xv, xpa(v)), (2.49)

for all G ∈ S, v ∈ V , xpa(v) ∈ Xpa(v) and xv ∈ Xv.

2.4.4 Marginal Likelihood and Posterior Density

The marginal likelihood may be interpreted as a normalization constant guarantee-
ing that the posterior density integrates to one:

p(d|G) =
∫
Θd,G

p(θ|G)p(d|θ,G)dθ. (2.50)

If the posterior density does not belong to some well-known family, it may be
necessary to compute the marginal likelihood explicitely.

When the exact computation of the marginal likelihood and posterior parame-
ter density are infeasible, it may be simpler to use MP or ML parameter estimates
since they do not require this computation, but we may also resort to approxima-
tions methods. For example, Monte Carlo methods may be used to estimate the
marginal likelihood (see e.g. [Mac03] for an introduction). Also, the posterior den-
sity can be approximated by a simpler density (see e.g. [Cow98]), in particular
for large sample sizes. The Laplace approximation is a large-sample approxima-
tion where p(θ|d,G) is approximated by a multivariate Gaussian density. It can be



50 Chapter 2

intuitively described as follows (see [CH97] for more details). Suppose the pos-
terior parameter density is sufficiently smooth and attains its maximum over the
parameters for a unique value θMP ∈ Θd,G. This parameter also maximizes

g(θ) = ln
(
p(d|θ,G)p(θ|G)

)
. (2.51)

Let us approximate g around θMP by its second degree Taylor polynomial

g(θ) ≈ g(θMP) +
1
2

(θ − θMP)T H(θ − θMP), (2.52)

where H is the Hessian matrix of g evaluated at θMP. Hence, we have

p(d|θ,G)p(θ|G) ≈ p(d|θMP,G)p(θMP|G)e−
1
2 (θ−θMP)T (−H)(θ−θMP), (2.53)

and p(θ|d,G) ∝ p(d|θ,G)p(θ|G) can be approximated by a Gaussian density.

R 47. Typically, the quality of this approximations increases with the num-
ber of observations. Unfortunately, it also depends on the parametrization chosen
for the model (see [Mac98]).

Large-sample approximations for the marginal likelihood are further discussed in
Section 2.5.1.

2.5 Structure Learning

The posterior structure distribution p(G|d) with G ∈ S represents our uncertainty
about the structures after observing the dataset. A structure G ∈ S with maximum
posterior probability is selected as a solution of our structure learning problem:

G ∈ arg max
G∈S

p(G|d) (2.54)

This learning approach is an example of a score-based (or metric) approach where
a scoring criterion that ranks the structures is defined and a high scoring structure
is searched.

Section 2.5.1 discusses the computation of the posterior structure probabilities.
In a more general perspective, Section 2.5.2 introduces several properties of scor-
ing criteria that are relevant to learning. Section 2.5.3 discusses the search for a
structure that maximizes the chosen score.

2.5.1 Posterior Structure Probability

The posterior probability of a structure is computed by combining its prior proba-
bility, the marginal likelihood, and the probability of observing the dataset:

p(G|d) =
p(G)p(d|G)

p(d)
. (2.55)



2.5 Structure Learning 51

The term p(d) does not depend on the structure G. It is thus irrelevant to the
optimisation in (2.54) and we have

arg max
G∈S

p(G|d) = arg max
G∈S

p(G)p(d|G). (2.56)

The elicitation of prior structure probabilities is not discussed in this disserta-
tion. Let us simply recall that structures defining the same hypothesis should have
the same prior probability (see (2.11)). As the dataset size increases, it is worth
noting that the posterior p(G|d) typically becomes less dependent on the prior and
approximately proportional to the marginal likelihood p(d|G).

Under Assumptions 1 to 3, the marginal likelihood can be computed exactly
and in closed-form (see [HGC95]):

p(d|G) =
∏
v∈V

∏
xpa(v)∈Xpa(v)

Γ(αXv,xpa(v))
Γ(αXv,xpa(v) + nXv,xpa(v))

∏
xv∈Xv

Γ(αXv,xpa(v)mXv,xpa(v)
xv + nXv,xpa(v)

xv )

Γ(αXv,xpa(v)mXv,xpa(v)
xv )

. (2.57)

The following scoring criterion is based on the above expression.

Definition 100. The Bayesian Dirichlet (BD) score is defined by

BD(G, d) = p(G)p(d|G), (2.58)

with p(d|G) given by (2.57).

R 48. If Assumption 4 holds, the Bayesian Dirichlet score is called the
Bayesian Dirichlet likelihood-equivalent (BDe) score.

As discussed in Section 2.4.4, the exact computation of the marginal likelihood
is often intractable in the general case. Let us present some large-sample approx-
imations. Under the complete dataset assumption and some additional regularity
assumptions on the priors, we have

ln p(d|G) = ln p(d|θML,G) −
1
2

d(Md(G)) ln n + O(1), (2.59)

for n→ ∞ (see [GHKM01] and [Hau88]). Similarly, if d is complete for X, H is a
set of hidden variables, G is a structure over X∪H, and some regularity assumptions
hold, we have

ln p(d|G) = ln p(d|θML,G) − λ ln n + (m − 1) ln ln n + O(1), (2.60)

for n → ∞ (see [RG05]). In this expression, λ is a rational number less than or
equal to half the standard dimension of Md(G) and m is an integer greater than
or equal to 1. In general, both λ and m depend on d and their computation is
non-trivial.



52 Chapter 2

Based on these results, several other scoring criteria have been proposed.

Definition 101. The Bayesian information criterion (BIC) score is defined by

BIC(G, d) = ln p(d|θML,G) −
1
2

d(Md(G)) ln n. (2.61)

The BIC score is often used when G has no hidden variables and the prior parameter
density is not conjugate. If G ∈ B(X) and d is complete for X, its validity stems
from (2.59).

Let d be a dataset such that X is the set of observable variables and H is a set of
hidden variables and let G ∈ B(X ∪H). In [GHM96], the authors propose to adjust
the BIC score to

ln p(d|θML,G) −
1
2

d(MH) ln n, (2.62)

where MH is the Bayesian network model with hidden variables H associated to
M =Md(G) (see Section 1.7.2 ). Based on (2.60), the authors of [RG03] suggest
to approximate ln p(d|G) by

ln p(d|θML,G) − λ ln n + (m − 1) ln ln n, (2.63)

and propose an algorithm computing λ and m. This algorithm is not described fully
here, but let us mention a special case: if the preimage f −1

G ( fG(θML)) has dimension
0, it returns λ = 1

2 d(Md(G)) and m = 1. In that case, (2.63) coincides with the BIC
score.

2.5.2 Properties of Scoring Criteria

This section introduces properties of scoring criteria that influence the character-
istics of the search algorithms presented in Section 2.5.3. As we will see, the
marginal likelihood satisfies all these properties under appropriate assumptions.

The equivalence property ensures that a scoring criterion defined on structures
extends to Bayesian network models and essential graphs.

Definition 102 (equivalence). A scoring criterion score(G, d) is equivalent if it as-
signs the same value to independence equivalent structures, i.e.

G =I H ⇒ score(G, d) = score(H, d). (2.64)

Hypotheses associated to Markov equivalent structures are equivalent. Hence, the
posterior structure probability and the marginal likelihood define score equivalent
criteria.

The decomposability property affects the computational efficiency of the search
algorithms (see Example 34 in Section 2.5.3).

Definition 103 (decomposability). A scoring criterion score(G, d) is decompos-
able if it can be decomposed as a sum of functions such that each function depends
only on one variable and its parents.



2.5 Structure Learning 53

R 49. A decomposable scoring criterion is written as

score(G, d) =
∑
v∈V

f (v, paG(v)), (2.65)

where the dependence on the dataset d is not shown explicitely.

Under Assumptions 1 to 3, the logarithm of the marginal likelihood is decompos-
able. If ln p(G) is decomposable, then ln BD is also decomposable.

The consistency property describes scoring criteria defined on statistical mod-
els. A learning procedure that selects a model maximizing a consistent criterion
score(M, d) over a set M of statistical models asymptotically returns a parameter
optimal model if the generative distribution belongs to at least one model in M.

Definition 104 (consistency). Let d be a sequence of n observations from a gen-
erative distribution g and let M be a class of statistical models whose dimension is
defined. A scoring criterion score(M, d) forM ∈ M is said to be (asymptotically)
consistent if

• g ∈ M1 and g <M2, or

• g ∈ M1 ∩M2 and d(M1) < d(M2)

imply that score(M1, d) > score(M2, d) with probability one for n→ ∞.

Under Assumption 1 and other mild hypotheses about the prior parameter densities,
the marginal likelihood is an asymptotically consistent scoring criterion for a set
M of discrete Bayesian network models (see [Hau88] and [GHKM01] for details).

The last property is a local version of the asymptotic consistency property.
It is required to guarantee an important property of the UGES structure search
algorithm presented in Section 2.5.3.

Definition 105 (local consistency). Let d be a sequence of n observations from a
strictly positive generative distribution g. Let G and H be DAGs such that H is
obtained from G by adding the arrow Xi → X j. A scoring criterion score(G, d) for
G ∈ B(X) is said to be locally consistent if

Xi ⊥ X j|XpaG( j) ∈ I(g)⇒ score(G, d) > score(H, d) (2.66)

Xi ⊥ X j|XpaG( j) < I(g)⇒ score(H, d) > score(G, d) (2.67)

with probability one for n→ ∞.

Decomposability and consistency imply local consistency.

Proposition 2.1. If a scoring criterion score(G, d) is decomposable and consis-
tent, then it is locally consistent.



54 Chapter 2

P. This proof is adapted from [Chi02b]. Let d be a sequence of n observations
from a strictly positive generative distribution g. Let G and H be DAGs such that
H is obtained from G by adding the arrow Xi → X j.

To begin let us introduce a few preliminary notions. If X j1 , . . . , X jk are the
parents of X j in G, let o be a total ordering of X starting with X j1 , . . . , X jk , Xi, X j.
Let H′ be the complete DAG over X such that Xu → Xv ∈ H′ if Xu precedes Xv in
o. Let G′ be the DAG obtained from H′ by removing Xi → X j. It is easy to see
that the following observations hold:

• g ∈ Md(H′) (by completeness of H′, see Section 1.5.3);

• paG′(X j) = paG(X j);

• score(G, d)−score(H, d) = score(G′, d)−score(H′, d) (by decomposability);

• I(G′) =
{(

Xi ⊥ X j|paG′(X j)
)
,
(
X j ⊥ Xi|paG′(X j)

)}
.

The proof can be decomposed as follows.

1. Suppose that Xi ⊥ X j|XpaG( j) ∈ I(g). This implies I(G′) ⊆ I(g), and thus
g ∈ Md(G′). By consistency of the score and the observation d(Md(G′) <
d(Md(H′), score(G′, d) − score(H′, d) = score(G, d) − score(H, d) > 0 with
probability one for n→ ∞.

2. Suppose that Xi ⊥ X j|XpaG( j) < I(g). This implies g < Md(G′). By con-
sistency of the score, we have score(G′, d) − score(H′, d) = score(G, d) −
score(H, d) < 0 with probability one for n→ ∞. �

2.5.3 Search for an Optimal Structure

This section discusses the search for a structure maximizing the scoring criterion
score(G, d) over a set S of structures. For simplicity, only structures without hid-
den variable are considered. For the case of structures with hidden variables, see
e.g. [Zha04], [Fri98], [ELFK00] and [EF01]. First, several results highlighting the
complexity of the task are presented. Then, greedy search algorithms are intro-
duced.

Some Complexity Results

Even without hidden variable, finding an optimal structure may be a hard problem.
Consider the cases where S = B(X) or S = Bk(X). As shown in Section 1.8, the
size of S increases superexponentially with |X|. Consequently, searching for an
optimal structure by enumeration is likely to be impractical. For S = Bk(X) with
k ≥ 2 and the BDe scoring criterion, the following complexity results hold (see
[Chi95]).



2.5 Structure Learning 55

Theorem 2.2. Let d be a dataset complete for a set X of discrete variables. Given
k ≥ 2 and q ∈ R, the problem of deciding if there exists a structure G ∈ Bk(X) such
that BDe(G, d) ≥ q is NP-complete.

If d is a dataset complete for a set X of discrete variables and k ≥ 2, identifying a
structure that maximizes the BDe score over Bk(X) is thus NP-hard.

For S = Bk(X) with k ≥ 3 and a consistent scoring criterion, Theorem 1.18 has
the following immediate corollary.

Corollary 2.3. Let d be a dataset of size n complete for a set X of discrete vari-
ables, let score(G, d) be a consistent scoring criterion, and let k be an integer ≥ 3.
With probability one as n → ∞, the problem of identifying a structure that maxi-
mizes score(G, d) over Bk(X) is NP-hard.

Greedy Search

Heuristic algorithms are often used to search for optimal structures. Because of
their simplicity and because they often serve as a basis for more complicated meth-
ods, let us present greedy search algorithms.

Given a structure space S, a neighborhood N assign to each structure G ∈ S a
finite subset of S.

E 32. For G ∈ S = B(X), N(G) may be defined as the set of DAGs over X
that can be obtained from G by adding, removing or inverting a single arrow.

Starting from an initial structure G0 ∈ S, a greedy search algorithm explores
the structure space iteratively by moving from a current structure G to the highest
scoring neighbor G′ ∈ N(G) until a local optimum of the scoring metric is reached.

Algorithm 1 (Greedy search)
1. Set G := G0 and stop := f alse.

2. While stop = f alse:

(a) Find G′ ∈ arg maxH∈N(G) score(H, d).
(b) If score(G′, d) > score(G, d), set G := G′. Otherwise, set stop := true.

3. Return G. �

Note that Step 2(a) can be performed by enumeration. Also, Algorithm 1 termi-
nates because score(G, d) strictly increases at each iteration and S is finite.

The output of Algorithm 1 is a local maximum of the scoring criterion in the
sense defined by the neighborhood. Algorithm 1 may thus return a suboptimal
element of S. In fact, the combination of scoring criterion, structure space, neigh-
borhood, and initial structure determine the properties of the greedy algorithm.
The neighborhood N influences whether the scoring criterion has local maxima or
plateaux that may trap the greedy algorithm, but also the computational complexity
of the algorithm.



56 Chapter 2

E 33. If S = B(X), let N(G) = B(X) \ {G}. With this neighborhood, local
maxima are also global. Hence, a greedy search will return an optimal solution.
However, Step 2(a) of Algorithm 1 is equivalent to our original problem.

E 34. Suppose that N is the same as in Example 32. Step 2(a) of Algo-
rithm 1 can be performed by enumeration. If the scoring criterion is decompos-
able, the computation of the score of a neighbor can be performed incrementally,
i.e. the difference score(H, d) − score(G, d) for H ∈ N(G) can be evaluated easily.
For example, if H ∈ N(G) is obtained by adding Xu → Xv to G, then we have

score(H, d) − score(G, d) = f (v, paH(v)) − f (v, paG(v)), (2.68)

where paH(v) = paG(v) ∪ {u}.

Neighborhoods may also be defined over sets of essential graphs. Similarly to
the neighborhood on structures defined in Example 32, the set of neighbors N(E)
of an essential graph E ∈ E(X) can be defined by local edges modifications, but
these modifications are not as straightforward (see [Chi02a]). Indeed, the addition
or removal of an edge or the inversion of an arrow in E does not always produce
another essential graph. Alternatively, a neighborhood may be defined in terms of
the independence models represented by essential graphs as follows (see [KC01]).

Definition 106. An essential graph G belongs to the inclusion boundary IB(E) of
an essential graph E ∈ E(X) if, and only if, G ∈ E(X) and one of the following
conditions holds:

(a) G <I E and there is no H ∈ E(X) such that G <I H <I E

(b) E <I G and there is no H ∈ E(X) such that E <I H <I G.

E 35. The inclusion boundary of an essential graph over X = {X1, X2, X3}

can be read off Figure 1.10. For example, the inclusion boundary of X1 − X3 X2
is composed of X1 X2 X3, X3 → X1 ← X2, X3 − X1 − X2 and X1 → X3 ← X2.

The efficient computation of the inclusion boundary IB(E) and the score of its
elements is the topic of Chapter 3.

The unrestricted greedy equivalence search (UGES) algorithm is the greedy
search algorithm over E(X) defined by N(E) = IB(E). It has the following property
(from [CM02]).

Theorem 2.4. Let d be a sequence of n observations from a generative distribution
g that satisfies the composition property (1.44) and let M be the set of all discrete
BN models for X. With probability one as n → ∞, UGES starting from any E ∈
E(X) and using a score equivalent and locally consistent scoring criterion returns
an essential graph E such thatMd(E) is inclusion optimal w.r.t. M and g.



2.5 Structure Learning 57

Suppose that a distribution p is faithfull to D ∈ B(X). Then, p satisfies the
composition property (see Section 1.5.2) and faithfulness, parameter optimality,
and inclusion optimality are equivalent by Proposition 1.16. Hence, Theorem 2.4
has the following corollary.

Corollary 2.5. Let d be a sequence of n observations from a generative distribu-
tion g faithfull to E ∈ E(X). With probability one for n → ∞, UGES starting from
any essential graph in E(X) and using a score equivalent and locally consistent
scoring criterion returns E.

Variants of UGES and further details can be found in [CM02], [Chi02b], [CK03],
and [NKP03].





Chapter 3

Computation of the Inclusion
Boundary

3.1 Introduction

The inclusion boundary is the neighborhood used in the unrestricted greedy equiv-
alence search algorithm (see Section 2.5.3). By Definition 106, recall that an es-
sential graph G belongs to the inclusion boundary IB(E) of E ∈ E(V) if, and only
if, G ∈ E(V) and one of the following conditions holds:

(a) G <I E and there is no H ∈ E(V) such that G <I H <I E

(b) E <I G and there is no H ∈ E(V) such that E <I H <I G.

Unfortunately, it is not easy to enumerate IB(E) with the above description. Using
the results presented in Section 1.6, this chapter introduces algorithms that effi-
ciently compute the inclusion boundary. The boundary is computed with a divide
and conquer approach: it is partitioned until each element of the partition is suf-
ficiently simple to be enumerated. The boundary is first partitioned according to
the skeleton of its elements and then according to their v-structures. This contri-
bution was published in an earlier form in [AW02]. Independently of our original
work, the computation of the inclusion boundary is also carried out in [Chi02b].
Additionally, the inclusion boundary is characterized in [Stu05].

With a greedy algorithm, it is important to efficiently compute the difference
in score between essential graphs adjacent in the search space. This chapter also
demonstrates that the decomposability property of the scoring criterion can be ex-
ploited to that end.

Section 3.2 introduces notions necessary to manipulate essential graphs. Sec-
tion 3.3 tackles the computation of the boundary.



60 Chapter 3

3.2 From DAGs to Essential Graphs and Vice-Versa

Although elegant, the definition of essential graphs given in Section 1.6.2 is not
very practical: a naive computation of the essential graph associated to a Markov
equivalence class of structures C requires the knowledge of all the elements of
C. This is problematic because the cardinality of C may be very large. Also, C
may only be specified by one of its elements and the computation of the complete
class C may not be easy. Finally, the definition of essential graphs does not make
their graphical properties apparent. Consequently, it may be difficult to determine
whether a given graph is essential.

These problems are addressed in the following sections. Section 3.2.1 pro-
vides a graphical characterization of essential graphs. Section 3.2.2 describes the
elements of a Markov equivalence class represented by its essential graph. Sec-
tion 3.2.3 presents an algorithm to compute the essential graph associated to a
Markov equivalence class represented by one of its elements.

3.2.1 Graphical Characterization of Essential Graphs

This section introduces graphical properties that characterize essential graphs. This
characterization and the notions introduced here are used throughout this chapter.
Hence, it is important for the reader to become familiar with them.

Preliminary Notions

Definition 107. The subgraph of G = (V, E) induced by a non-empty set A ⊆ V is
the graph GA = (A, E ∩ (A × A)).

E 36. If G is the graph given in Figure 3.1, then G{a,b,c,d} and G{ f ,i, j} are
given in Figure 3.2.

a

��
��

��
�

??
??

??
??

b

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g h // i // j

Figure 3.1: A graph G



3.2 From DAGs to Essential Graphs and Vice-Versa 61

a

��
��

��
�

>>
>>

>>
>

b c d
(a) G{a,b,c,d}

f

�� ��<
<<

<<
<<

<

i // j

(b) G{ f ,i, j}

Figure 3.2: Subgraphs of G

Definition 108. An arrow a→ b ∈ G is strongly protected if

• there exist vertices c, d such that G{a,b,c,d} is given in Figure 3.3(d) or

• there exists a vertex c such that G{a,b,c} is given in Figure 3.3(a), 3.3(b), or
3.3(c).

a // b

c

__>>>>>>>>

(a)

a // b

c

??�������

(b)

a //

��>
>>

>>
>>

> b

c

??�������

(c)

d

��=
==

==
==

��
��

��
��

a // b

c

????????

??�������

(d)

Figure 3.3: Subgraphs that strongly protect a→ b ∈ G

E 37. If G is the graph given in Figure 3.1, then

• h→ i is strongly protected by G{e,h,i} and G{ f ,h,i}

• b→ e and d → e are strongly protected by G{b,d,e}

• f → j is strongly protected by G{ f ,i, j}

• c→ e is strongly protected by G{b,c,d,e}.

The following class of graphs encompasses DAGs and undirected graphs.

Definition 109. A graph G is a chain graph if it has no directed cycle.

E 38. The graph G given in Figure 3.1 is a chain graph that is neither undi-
rected nor a DAG. The graph H given in Figure 3.4 is not a chain graph because of
the directed cycle a, b, c, a.



62 Chapter 3

a

����
��

��
�

b

��

c

��

__>>>>>>>>

d e

Figure 3.4: A graph H that is not a chain graph

Definition 110. If G is a graph, let
 be the relation between vertices defined by
a
 b if, and only if, a = b or G has a path from a to b and a path from b to a.

R 50. The relation
 is an equivalence relation.

E 39. The equivalence classes induced by
 on the vertex set of the graph
of Figure 3.1 are {a, b, c, d, f }, {e}, {g, h}, {i}, and { j}. The equivalence classes
induced by
 on the vertex set of the graph of Figure 3.4 are {a, b, c} and {d, e}.

Definition 111. The chain components of a chain graph G are the equivalence
classes of vertices induced by
.

R 51. A graph G is a chain graph if, and only if, the subgraphs of G induced
by the equivalence classes induced by
 are undirected.

E 40. The graph G given in Figure 3.1 is a chain graph because G{a,b,c,d, f },
G{e}, G{g,h}, G{i} and G{ j} are undirected. The graph H given by Figure 3.4 is not a
chain graph because H{a,b,c} is not undirected.

Definition 112. An undirected graph is chordal if every cycle of length n ≥ 4 has
a chord, i.e. a line between two non-consecutive vertices in the cycle.

E 41. Let G be given in Figure 3.1. The only cycle of G{a,b,c,d, f } of length
≥ 4 is a, b, c, d, a, and it has the chord c − d. Hence, G{a,b,c,d, f } is chordal. The
subgraph G{g,h} is also chordal since it has no cycle of length ≥ 4. The graph given
in Figure 3.5 is not chordal since the cycle a, b, d, c, a has no chord.

Characterization

The following theorem characterizes graphically essential graphs (see [AMP97]).

Theorem 3.1. A graph G = (V, E) is an essential graph if, and only if, the follow-
ing propositions hold:

(a) G is a chain graph



3.2 From DAGs to Essential Graphs and Vice-Versa 63

a b

c d

Figure 3.5: A non-chordal graph

(b) for every chain component τ of G, Gτ is chordal

(c) there is no {a, b, c} ⊆ V such that G{a,b,c} is the subgraph a→ b − c

(d) every arrow in G is strongly protected.

E 42. The graph given in Figure 3.1 is essential.

3.2.2 Markov Equivalence Class Associated to an Essential Graph

A Markov equivalence class of structures may be represented by its essential graph.
This section describes the elements of such an equivalence class using the notions
of consistent extension and perfect ordering. Also, it introduces the maximum car-
dinality search algorithm. This algorithm is used in Section 3.3.2 and Section 3.3.3
to compute structures in the equivalence class. In particular, it is used as a sub-
routine of Algorithms 4 to 7.

Description of [E]

Definition 113. A DAG D is a consistent extension of a graph G if they have the
same skeleton and v-structures and every arrow in G is also in D.

E 43. The graphs given in Figure 3.6 are consistent extensions of the graph
G{a,b,c,d} given in Figure 3.2(a). The graphs given in Figure 3.4 and Figure 3.5 have

a

����
��

��
�

�� ��>
>>

>>
>>

b // c // d
(a)

a

����
��

��
�

b c //oo

OO

d

__>>>>>>>

(b)

Figure 3.6: Consistent extensions of G{a,b,c,d}

no consistent extension.

An algorithm that checks whether a graph has a consistent extension, and provides
one if it does, is given in [DT92].



64 Chapter 3

If D ∈ B(V) and E ∈ E(V), then D ∈ [E] if, and only if, D is a consistent ex-
tension of E. Hence, [E] can be described with the notion of consistent extension.

E 44. The graphs given in Figure 3.7 are consistent extensions of the essen-
tial graph G given in Figure 3.1. Hence, they belong to [G].

a

����
��

��
�

b

��<
<<

<<
<<

< c

��

oo

OO

doo

__????????

����
��

��
��

e

����
��

��
��

��

f

OO

�� ��<
<<

<<
<<

<

g // h // i // j

(a)

a

�� ��?
??

??
??

?

b //

??�������

��<
<<

<<
<<

< c

��

// d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(b)

Figure 3.7: Consistent extensions of G

The consistent extensions of an undirected graph can be described with the
notion of perfect ordering.

Definition 114. Let G = (V, E) be an undirected graph, let o be a total ordering
of V , and let D be the DAG with vertex set V and edges such that a → b ∈ D if
a − b ∈ G and a precedes b in o. The ordering o is a perfect ordering of G if D is a
consistent extension of G.

E 45. If G{a,b,c,d} is given in Figure 3.2(a), the perfect ordering a, b, c, d
leads to the consistent extension of G{a,b,c,d} given in Figure 3.6(a) and the per-
fect ordering c, d, a, b leads to the consistent extension of G{a,b,c,d} given in Fig-
ure 3.6(b).

Definition 115. If D = (V, E) is a DAG, a total ordering o of V is an ancestral
ordering of D if the existence of a path in D from u to v implies that u precedes v.

E 46. The ordering a, b, c, d is an ancestral ordering of the DAG given in
Figure 3.6(a). The ordering f , d, c, a, b, e, g, h, i, j is an ancestral ordering of the
DAG given in Figure 3.7(a).

It is worth noting that a DAG admits at least one ancestral ordering. Also, an
ancestral ordering of a consistent extension of a graph G is a perfect ordering of G.

The notions of perfect ordering and chordality are connected by the following
theorem (see [CDLS99]).



3.2 From DAGs to Essential Graphs and Vice-Versa 65

Theorem 3.2. An undirected graph is chordal if, and only if, it admits at least one
perfect ordering.

E 47. The graph given in Figure 3.5 has no consistent extension because
it is not chordal. The graph given in Figure 3.2(a) admits a perfect ordering (see
Example 45) and is thus chordal.

The elements of an equivalence class of structures specified by an essential
graph are described by the following theorem (see [AMP97]).

Theorem 3.3. If D ∈ B(V) and E ∈ E(V), then D ∈ [E] if, and only if, D is
obtained from E by orienting the lines of every subgraph induced by a chain com-
ponent of E according to a perfect ordering.

R 52. Theorem 3.3 is rather easy to prove with the following observations.
Let D be obtained from E by orienting the lines of every subgraph induced by a
chain component of E according to a perfect ordering. First, the orientation of the
lines does not create any v-structure in D that was not in E because the orderings
used are perfect and E does not induce a subgraph of the type a → b − c. Second,
no cycle is created inside a chain component because the orderings are perfect or
across chain components because E is a chain graph.

Computation of Some Elements of [E]

In practice, a perfect ordering of a chordal undirect graph G can be obtained with
the maximum cardinality search (MCS) algorithm (see [CDLS99]). To present the
MCS algorithm, let us introduce the following definitions.

Definition 116. If G = (V, E) is a graph, the set neG(a) of neighbors of a ∈ V is

neG(a) =
{
b ∈ V

∣∣∣a − b ∈ G
}
. (3.1)

Definition 117. A set of vertices c , ∅ is complete in a graph G if Gc is complete.

R 53. A set of vertices with one element is complete.

The MCS algorithm takes for input an undirected graph G and determines
whether G is chordal by searching for a perfect ordering.

Algorithm 2 (Maximum cardinality search)
1. Set output := ’G is chordal’, counter i := 0, L := φ, and c(v) := 0 for all

v ∈ V .

2. While L , V and output = ’G is chordal’:

(a) Set U := V \ L and i := i + 1.

(b) Select a vertex vi maximizing c(v) over v ∈ U.



66 Chapter 3

(c) If ne(vi) ∩ L is not complete in G, set output := ’G is not chordal’.
Otherwise, set c(v) := c(v) + 1 for each v ∈ ne(vi) ∩ U.

(d) Set L := L ∪ {vi}.

3. Return output and v1, . . . , vi. �

The following theorem holds (see [CDLS99]).

Theorem 3.4. If G is chordal, then MCS terminates with output = ’G is chordal’
and v1, . . . , v|V | is a perfect ordering of G. If G is not chordal, then MCS terminates
with output = ’G is not chordal’.

The MCS algorithm is non-deterministic as any vertex maximizing c(v) over
v ∈ U can be chosen at Step 2(b). This non-determinism has a useful consequence.

Lemma 3.5. If G = (V, E) is a chordal undirected graph and c ⊆ V is complete in
G, there exists a perfect ordering of G starting with any permutation of c.

P. Let c1, . . . , ck be a permutation of c. By Theorem 3.4, it is sufficient to
show there exists an execution of Algorithm 2 such that vi = ci for i = 1, . . . , k.

Since c(v) = 0 for all v ∈ V , we can choose v1 arbitrarily, and we select v1 = c1.
At the current step of the Algorithm, suppose that we have to select v j with j ≤ k
and that vi = ci for all 1 ≤ i < j. Because Gc is complete, it is easy to see that
c(c j) = j − 1 = maxv∈U c(v). Hence, we can choose v j = c j. �

3.2.3 Computation of the Essential Graph Associated to the Markov
Equivalence Class of a DAG

This section presents an algorithm that computes the essential graph associated to
a Markov equivalence class of structures given by one of its elements. Then, the
applicability of the algorithm is extended to allow for the incorporation of partial
knowledge about the essential graph. The algorithm is used in Section 3.3.2 and
Section 3.3.3.

Definition 118. If D ∈ B(V), let E(D) ∈ E(V) be such that D ∈ [E(D)].

The following algorithm can be used to compute E(D) (see [AMP97]). It takes
for input a graph G and returns a graph Gi.

Algorithm 3
1. Set G0 := G, i := 0, and stop := f alse.

2. While stop = f alse:

(a) Set Gi+1 to the graph obtained from Gi by converting every arrow that
is not strongly protected into a line.



3.2 From DAGs to Essential Graphs and Vice-Versa 67

(b) If Gi = Gi+1, set stop := true. Otherwise, set i := i + 1. �

The following theorem holds (see [AMP97]).

Theorem 3.6. Algorithm 3 applied to G ∈ B(V) returns E(G).

R 54. An alternative algorithm to compute E(D) is given in [Chi02b].

The following proposition extends the applicability of Algorithm 3.

Proposition 3.7. If D = (V, ED) is a DAG and G = (V, EG) is a graph such that

(a) G does not induce a→ b − c and

(b) ED ⊆ EG ⊆ EE where (V, EE) = E(D),

then Algorithm 3 applied to G returns E(D).

The following lemma is used to prove Proposition 3.7.

Lemma 3.8. Let L = (V, EV ) be a graph whose arrows are strongly protected and
let S = (V, ES ) be a graph such that L and S have the same skeleton and, for each
a→ b ∈ L,

(a) a→ b ∈ S and

(b) if there is no vertex c ∈ V such that L{a,b,c} is given in Figure 3.3(a),
3.3(b), or 3.3(c), then there exist vertices c, d ∈ V such that L{a,b,c,d} is given
in Figure 3.3(d) and S {a,b,c,d} is one of the graphs given in Figure 3.8.

If S ′ is the graph obtained from S by converting every non-strongly protected arrow
into a line, then L and S ′ have the same skeleton and, for each a → b ∈ L, the
above propositions (a) and (b) also hold when S ′ replaces S .

P. Converting arrows into line preserves the skeleton. Hence, S , S ′ and L
have the same skeleton. Given a→ b ∈ L, let us show that the propositions (a) and
(b) hold when S ′ replaces S . By hypothesis, one of the two following possibilities
holds.

1. There exists c such that L{a,b,c} is given in Figure 3.3(a), 3.3(b), or 3.3(c).
Trivially, (b) holds. Because L and S have the same skeleton and every
arrow in L is also in S , we have S {a,b,c} = L{a,b,c}. Hence, a → b is strongly
protected in S , and thus a→ b ∈ S ′.

2. Suppose that there is no vertex c such that L{a,b,c} is given in Figure 3.3(a),
3.3(b), or 3.3(c). By hypothesis, there exist vertices c, d such that L{a,b,c,d} is
given in Figure 3.3(d) and S {a,b,c,d} is one of the graphs given in Figure 3.8.
Let us now discuss the possible subgraphs S {a,b,c,d} and show that each case
leads to the conclusion that a → b ∈ S ′ and S ′

{a,b,c,d} is one of the graphs
given in Figure 3.8. First, note that d → b ∈ S and c → b ∈ S are strongly
protected by S {b,c,d} in all the case. Hence, we have d → b ∈ S ′ and c→ b ∈
S ′.



68 Chapter 3

d

��=
==

==
==

��
��

��
��

a // b

c

????????

??�������

(a)

d

��=
==

==
==

a

@@��������
// b

c

????????

??�������

(b)

d

��=
==

==
==

��
��

��
��

a //

��?
??

??
??

? b

c

??�������

(c)

d

��=
==

==
==

a //

@@��������

��?
??

??
??

? b

c

??�������

(d)

d

��=
==

==
==

a //

@@��������
b

c

__????????

??�������

(e)

d

��=
==

==
==

����
��

��
��

a //

��?
??

??
??

? b

c

??�������

(f)

Figure 3.8: Possible subgraphs S {a,b,c,d}.

(a) Suppose S {a,b,c,d} is given in Figure 3.8(a). Then, a→ b ∈ S is strongly
protected by S {a,b,c,d}. Hence, a → b ∈ S ′ and S ′

{a,b,c,d} is given in
Figure 3.8(a).

(b) Suppose that S {a,b,c,d} is given in Figure 3.8(b). Then, a → b ∈ S is
strongly protected by S {a,b,d}. Hence, a → b ∈ S ′ and S ′

{a,b,c,d} is given
in Figure 3.8(a) or 3.8(b).

(c) The case where S {a,b,c,d} is given in Figure 3.8(c) is similar to the pre-
vious case.

(d) Suppose that S {a,b,c,d} is given in Figure 3.8(d). Then, a → b ∈ S is
strongly protected by S {a,b,d}. Hence, a → b ∈ S ′ and S ′

{a,b,c,d} is given
in Figure 3.8(a), 3.8(b), or 3.8(c).

(e) Suppose that S {a,b,c,d} is given in Figure 3.8(e). Then, a → b ∈ S is
strongly protected by S {a,b,d} and a → d ∈ S is strongly protected by
S {a,c,d}. Hence, a → b ∈ S ′ and S ′

{a,b,c,d} is given in Figure 3.8(b) or
3.8(e).

(f) The case where S {a,b,c,d} is given in Figure 3.8(f) is similar to the pre-
vious case. �

P (P 3.7.). Let G0, . . . ,Gk with G0 = G be the sequence of graphs
produced by Algorithm 3. Let us show that Gk and E(D) have the same skeleton
and arrows.



3.3 Computation of the Inclusion Boundary IB(E) 69

1. Let us show that Gk and E(D) have the same skeleton. First, the graphs
G0, . . . ,Gk have the same skeleton because each step of Algorithm 3 pre-
serves the skeleton. Second, G0 = G and E(D) have the same skeleton
because D and E(D) have the same skeleton and ED ⊆ EG ⊆ EE .

2. Let us show that every arrow in E(D) is also in Gk. If the hypotheses of
Lemma 3.8 with L = E(D) and S = G = G0 are satisfied, then they are also
satisfied with L = E(D) and S = Gi, i = 0, . . . , k. In particular, every arrow
in L = E(D) is in S = Gk.

As shown before, E(D) and G have the same skeleton. Moreover, every
arrow in E(D) is also in G because EG ⊆ EE . By Theorem 3.1, every arrow
in E(D) is strongly protected. Consider a → b ∈ E(D) and suppose that
there is no c such that E(D){a,b,c} is given in Figure 3.3(a), 3.3(b), or 3.3(c).
It is easy to see that G induces a subgraph given in Figure 3.8 because G and
E(D) have the same skeleton, every arrow in E(D) is also in G, and G does
not induce d → a − c or c→ a − d.

3. Let us show that every arrow in Gk is also in E(D). Let D0, . . . ,Dl with
D0 = D and Dl = E(D) be the sequence of graphs produced by Algorithm 3.
If the hypotheses of Lemma 3.8 with L = Gk and S = D are satisfied, then
they are also satisfied with L = Gk and S = Di, i = 0, . . . , l. In particular,
every arrow in L = Gk is in S = Dl = E(D).

As shown before, Gk and D have the same skeleton. We have ED ⊆ EG ⊆

EGK , and thus every arrow in Gk is in D. By definition of Algorithm 3, all
the arrows in Gk are strongly protected. Consider a → b ∈ Gk and suppose
that there is no c such that Gk{a,b,c} is given in Figure 3.3(a), 3.3(b), or 3.3(c).
It is easy to see that D induces a subgraph of Figure 3.8(d), 3.8(e), or 3.8(f)
because Gk and D have the same skeleton, every arrow in Gk is also in D,
and D is directed. �

3.3 Computation of the Inclusion Boundary IB(E)

Given an essential graph E ∈ E(V), this section discusses the computation of the
inclusion boundary IB(E). The case |V | = 1 being trivial, we suppose that |V | ≥ 2.

The inclusion boundary may be partitioned by the skeleton of its elements, i.e.{
S −1(t) ∩ IB(E)

∣∣∣∣t ∈ S (IB(E))
}

(3.2)

is a partition of IB(E). Subsequently, each element S −1(t) ∩ IB(E) of the partition
by skeleton may be partitioned by the v-structures of its elements, i.e.{

v−1(s) ∩ S −1(t) ∩ IB(E)
∣∣∣∣s ∈ v

(
S −1(t) ∩ IB(E)

)}
(3.3)



70 Chapter 3

is a partition of S −1(t) ∩ IB(E). By Theorem 1.10, note that each set v−1(s) ∩
S −1(t) ∩ IB(E) is a singleton. Then, the computation of IB(E) proceed as follows:

• The partition by skeleton given by (3.2) is enumerated.

• For each set S −1(t) ∩ IB(E), the set v
(
S −1(t) ∩ IB(E)

)
is enumerated.

• For each s ∈ v
(
S −1(t) ∩ IB(E)

)
, the set v−1(s) ∩ S −1(t) ∩ IB(E) is computed.

Section 3.3.1 describes the partition by skeleton graphically to simplify its ma-
nipulation and enumeration. Section 3.3.2 and Section 3.3.3 discuss the enumera-
tion of v

(
S −1(t) ∩ IB(E)

)
and the computation of v−1(s) ∩ S −1(t) ∩ IB(E) for each

s ∈ v
(
S −1(t) ∩ IB(E)

)
.

3.3.1 Graphical Characterization of the Partition by Skeleton

The following theorem characterizes the inclusion boundary graphically.

Theorem 3.9. If E ∈ E(V), then G ∈ IB(E) if, and only if, G ∈ E(V) and there
exist K ∈ [E] and L ∈ [G] such that L is obtained from K by adding or removing
an arrow.

P. By Theorem 1.11 and Theorem 1.13, the assertions G,H ∈ B(V) and G <I

H imply that there exists a sequence of x ≥ 0 covered arrow reversals and y ≥ 1
legal arrow additions turning G into H.

1. Suppose G ∈ E(V) and there exist K ∈ [E] and L ∈ [G] such that L is
obtained from K by adding or removing one arrow. Let us show that G ∈
IB(E).

(a) Suppose L is obtained from K by adding one arrow. This implies that
K <I L, and thus E <I G. Let us show by contradiction there is no
H ∈ E(V) such that E <I H <I G. Suppose that such an H exists.
If M ∈ [H], we have K <I M <I L. As noted before, there thus
exists a sequence of x covered arrow reversals and y ≥ 1 legal arrow
additions turning K into M, and there exists a sequence of x′ covered
arrow reversals and y′ ≥ 1 legal arrow additions turning M into L. This
contradicts the assertion that L is obtained from K by adding one single
arrow. Hence, G ∈ IB(E).

(b) Suppose L is obtained from K by removing one arrow. This implies
that L <I K and G <I E. Let us show by contradiction there is no
H ∈ E(V) such that G <I H <I E. Suppose that such an H exists.
If M ∈ [H], we have L <I M <I K. There thus exists a sequence
of x covered arrow reversals and y ≥ 1 legal arrow additions turning
L into M, and there exists a sequence of x′ covered arrow reversals
and y′ ≥ 1 legal arrow additions turning M into K. This contradicts
the assertion that L is obtained from K by removing one single arrow.
Hence, G ∈ IB(E).



3.3 Computation of the Inclusion Boundary IB(E) 71

2. Suppose that G ∈ IB(E). Let us discuss the case where E <I G and the case
where G <I E separately.

(a) Suppose that E <I G and there is no H ∈ E(V) such that E <I H <I G.
Consider K ∈ [E] and L ∈ [G]. We have K <I L and there thus exists
a sequence s of x covered arrow reversals and y ≥ 1 legal arrow addi-
tions turning K into L. Suppose that y = 1 and consider the sequence
of DAGs obtained by applying the sequence s to K. Because y = 1,
this sequence of DAGs can be written K = K0, . . . ,Ka, L0, . . . , Lb = L
where

• L0 is obtained from Ka by adding one arrow;
• for i ∈ {0, . . . , a − 1}, Ki+1 is obtained from Ki by reversing a

covered arrow
• for i ∈ {0, . . . , b − 1}, Li+1 is obtained from Li by reversing a cov-

ered arrow.

By Theorem 1.11, K =I Ka and L0 =I L. Hence, we have Ka ∈ [E],
L0 ∈ [G] such that L0 is obtained from Ka by adding one arrow. Let
us now prove that y ≤ 1 by contradiction. Together with y ≥ 1, this
will prove that y = 1. Suppose that y ≥ 2 and consider the sequence of
DAGs obtained by applying s to K. Let M be the DAG of this sequence
obtained after adding the first arrow. We have K <I M <I L. Hence,
there exists H = E(M) ∈ E(V) such that E <I H <I G. This contradicts
the assertion that G ∈ IB(E), and we have y ≤ 1.

(b) The proof of the case where G <I E and there is no H ∈ E(V) such that
G <I H <I E is similar. �

R 55. The difference in score between neighboring essential graphs can be
computed incrementally if the scoring criterion score is decomposable. By Theo-
rem 3.9, G ∈ IB(E) implies that there exist K ∈ [E] and L ∈ [G] such that L is
obtained from K by adding or removing an arrow. Hence, we have

score(G) − score(E) = score(L) − score(K) (3.4)

= f (u, paL(u)) − f (u, paK(u)) (3.5)

where u is the destination of the arrow added or removed.

The partition of IB(E) by skeleton can be described graphically.

Definition 119. If E ∈ E(V) and {a, b} ⊆ V , let IB{a,b} be defined by G ∈ IB{a,b} if,
and only if, G ∈ E(V) and there exist K ∈ [E] and L ∈ [G] such that L is obtained
from K by adding or removing an arrow between a and b.

R 56. Like IB{a,b}, the objects defined in this chapter depend on E. However,
the essential graph E is fixed. To simplify notations, the dependence on E will not
appear explicitely.



72 Chapter 3

Proposition 3.10. If E ∈ E(V), then
{
IB{a,b}

∣∣∣{a, b} ⊆ V
}

and
{
S −1(s) ∩ IB(E)

∣∣∣s ∈
S (IB(E))

}
are equivalent partitions of IB(E).

P. If G ∈ IB{a,b} and a · · · b ∈ E, then S (G) is the undirected graph obtained
from S (E) by removing a − b. If G ∈ IB{a,b} and a · · · b < E, then S (G) is the
undirected graph obtained from S (E) by adding a − b. For each {a, b} ⊆ V , S
is thus constant over IB{a,b}. Moreover, if {a, b} ⊆ V and {c, d} ⊆ V are distinct,
G1 ∈ IB{a,b} and G2 ∈ IB{c,d}, then S (G1) , S (G2). To conclude the proof, let us
show that

{
IB{a,b}

∣∣∣{a, b} ⊆ V
}

is a partition of IB(E).

1. By Theorem 3.9, IB(E) is the union of the sets in
{
IB{a,b} |{a, b} ⊆ V

}
.

2. If {a, b} ⊆ V and {c, d} ⊆ V are distinct, then IB{a,b} and IB{c,d} do not inter-
sect because elements of IB{a,b} and elements of IB{c,d} have distinct skeleton.

3. Let us show that each IB{a,b} is non-empty. There exists a DAG K ∈ [E].

(a) Suppose that a · · · b ∈ E. We have a · · · b ∈ K, and the graph L obtained
from K by removing the arrow between a and b is a DAG. Hence,
E(L) ∈ IB{a,b}.

(b) Suppose a · · · b < E. We have a · · · b < K, and we let L1 (resp. L2) be
the graph obtained from K by adding a→ b (resp. b→ a). By acyclity,
K does not have simultaneously a path from a to b and a path from b
to a. If K does not have a path from a to b, then L2 is a acyclic and
E(L2) ∈ IB{a,b}. If K does not have a path from b to a, then L1 is a
acyclic and E(L1) ∈ IB{a,b}. �

3.3.2 Computation of IB{a,b} when a · · · b ∈ E

This section describes the image v(IB{a,b}) when a · · · b ∈ E so that it can be enu-
merated, and introduces an algorithm to compute v−1(s) ∩ IB{a,b} for s ∈ v(IB{a,b}).
If the scoring criterion score is decomposable, the score of each element in IB{a,b}
is also computed incrementally.

Preliminary Notions

Let us introduce notions necessary to describe v(IB{a,b}).

Definition 120. If G = (V, E) is a graph, the set chG(a) of children of a ∈ V is

chG(a) =
{
b ∈ V

∣∣∣a→ b ∈ G
}
. (3.6)

Definition 121. If E ∈ E(V) and a · · · b ∈ E, let H−
{a,b} be defined by

H−
{a,b} =

(
neE(a) ∩ neE(b)

)
∪

(
chE(a) ∩ neE(b)

)
∪

(
chE(b) ∩ neE(a)

)
. (3.7)



3.3 Computation of the Inclusion Boundary IB(E) 73

R 57. Since E is a chain graph and thus has no directed cycle, at most one
of the sets neE(a) ∩ neE(b), chE(a) ∩ neE(b) and chE(b) ∩ neE(a) is non-empty:

• if a − b ∈ E, then H−
{a,b} = neE(a) ∩ neE(b) (see Figure 3.9(a))

• if a→ b ∈ E, then H−
{a,b} = chE(a) ∩ neE(b) (see Figure 3.9(b))

• if b→ a ∈ E, then H−
{a,b} = chE(b) ∩ neE(a) (see Figure 3.9(c)).

h

a

��������

??
??

??
?? b

????????

��
��

��
��

h′

(a) a − b ∈ E

h

a //

??��������

��?
??

??
??

? b

????????

��
��

��
��

h′

(b) a→ b ∈ E

h

a

??
??

??
??

��������
boo

����
��

��
��

__????????

h′

(c) b→ a ∈ E

Figure 3.9: E{a,b,h,h′} for h, h′ ∈ H−
{a,b}

E 48. If E is given in Figure 3.1, then

H−
{a,c} = {b, c, d} ∩ {a, b, d} = {b, d}, (3.8)

H−
{e,g} = {g, h} ∩ {h} = {h}, (3.9)

H−
{i, j} = { j} ∩ ∅ = ∅. (3.10)

R 58. The chain component of E that includes

• {a, b} if a − b ∈ E,

• {b} if a→ b ∈ E, or

• {a} if b→ a ∈ E

also includes H−
{a,b}. This observation will be used in Algorithm 4.

Definition 122. If E ∈ E(V) and a · · · b ∈ E, the set S −
{a,b} is defined by

S −
{a,b} =

{
c ⊆ H−

{a,b}

∣∣∣∣c is empty or complete in E
}
. (3.11)

E 49. If E is given in Figure 3.1, then

S −
{a,c} =

{
∅, {b}, {d}

}
, (3.12)

S −
{e,g} =

{
∅, {h}

}
, (3.13)

S −
{i, j} =

{
∅
}
. (3.14)



74 Chapter 3

R 59. If c ∈ S −
{a,b}, the set

• c ∪ {a, b} if a − b ∈ E,

• c ∪ {b} if a→ b ∈ E, or

• c ∪ {a} if b→ a ∈ E

is complete in E. This observation will be used in Algorithm 4.

Definition 123. If E ∈ E(V) and a · · · b ∈ E, the function f −
{a,b} is defined on S −

{a,b}
by

f −
{a,b}(c) =

{(
h, {a, b}

)∣∣∣∣h ∈ (
H−
{a,b} \ c

)
∪

(
chE(a) ∩ chE(b)

)}⋃(
v(E) \

(
{(b, {a, v})|v ∈ V} ∪ {(a, {b, v})|v ∈ V}

))
. (3.15)

R 60. The function f −
{a,b} is injective. Hence,

∣∣∣S −
{a,b}

∣∣∣ = ∣∣∣ f −
{a,b}(S

−
{a,b})

∣∣∣.
The Image v(IB{a,b})

Let us prove that f −
{a,b}(S

−
{a,b}) = v(IB{a,b}). First, Proposition 3.11 states that

v(IB{a,b}) ⊆ f −
{a,b}(S

−
{a,b}). Then, Corollary 3.13 states that f −

{a,b}(S
−
{a,b}) ⊆ v(IB{a,b}).

Proposition 3.11. If E ∈ E(V) and a · · · b ∈ E, then v(IB{a,b}) ⊆ f −
{a,b}(S

−
{a,b}).

P. Given s ∈ v(IB{a,b}), we show there exists c ∈ S −
{a,b} such that s = f −

{a,b}(c).

1. Let us define a candidate c. First, s ∈ v(IB{a,b}) implies there exists G ∈
IB{a,b} such that s = v(G). By Definition 119, there exist K ∈ [E] and
L ∈ [G] such that L is obtained from K by removing the arrow between a
and b. If x = (chK(a) \ chE(a)) and y = (chK(b) \ chE(b)), let

c = H−
{a,b} \

((
x ∩ y

)
∪

(
chE(a) ∩ y

)
∪

(
chE(b) ∩ x

))
. (3.16)

2. Let us show that c ∈ S −
{a,b}. We have c ⊆ H−

{a,b}. Without loss of generality,
we suppose that a → b ∈ K (the case b → a ∈ K is similar). First, we show
that c ⊆ pak(b). It is easy to see that c is the union of

(
neE(a)∩neE(b)

)
\
(
x∩y

)
,(

chE(a) ∩ neE(b)
)
\
(
chE(a) ∩ y

)
and

(
chE(b) ∩ neE(a)

)
\
(
chE(b) ∩ x

)
.

(a) Suppose that a− b ∈ E. By Remark 57, c =
(
neE(a)∩ neE(b)

)
\
(
x∩ y

)
.

One can see that c = neE(a)∩ neE(b)∩
((

chK(a)∩ paK(b)
)
∪

(
chK(b)∩

paK(a)
))

. By acyclicity of K, a→ b ∈ K implies chK(b)∩ paK(a) = ∅.
Hence, c = neE(a) ∩ neE(b) ∩ chK(a) ∩ paK(b) ⊆ paK(b).

(b) Suppose that a → b ∈ E. By Remark 57, c =
(
chE(a) ∩ neE(b)

)
\(

chE(a) ∩ y
)
. One can see that c = chE(a) ∩ neE(b) ∩ chK(a) ∩ paK(b).

Hence, c ⊆ paK(b).



3.3 Computation of the Inclusion Boundary IB(E) 75

Let us show by contradiction that c ⊆ pak(b) implies that Ec is complete.
There exists a chain component of E such that c ⊆ H−

{a,b} ⊆ δ. By Theo-
rem 3.3, K ∈ [E] implies that Kδ and thus also Kc have no v-structure. If
hi, h j ∈ c are distinct and hi · · · h j < Kc, then (b, {hi, h j}) ∈ v(Kc). Hence, for
distinct hi, h j ∈ c, we have hi · · · h j ∈ Kc and thus hi − h j ∈ Ec.

3. Let us show that s = v(G) = f −
{a,b}(c). We have

v(G) =
(
v(G) \ v(E)

)
∪

(
v(G)∩ v(E)

)
=

(
v(L) \ v(K)

)
∪

(
v(L)∩ v(K)

)
. (3.17)

(a) Let us compute v(L) \ v(K). It is easy to see that

v(L) \ v(K) =
{(

h, {a, b}
)∣∣∣∣h ∈ chK(a) ∩ chK(b)

}
. (3.18)

Moreover, chK(a) = chE(a) ∪ x and chK(b) = chE(b) ∪ y. Hence,
chK(a) ∩ chK(b) is equal to(

chE(a) ∩ chE(b)
)
∪

(
x ∩ y

)
∪

(
chE(a) ∩ y

)
∪

(
chE(b) ∩ x

)
. (3.19)

It is easy to see that c ⊆ H−
{a,b}. Hence, H−

{a,b} \ c =
(
x ∩ y

)
∪

(
chE(a) ∩

y
)
∪

(
chE(b) ∩ x

)
and v(L) \ v(K) is equal to{(

h, {a, b}
)∣∣∣∣h ∈ (

H−
{a,b} \ c

)
∪

(
chE(a) ∩ chE(b)

)}
. (3.20)

(b) It is easy to see that v(K) ∩ v(L) is equal to

v(K) \
({

(b, {a, v})
∣∣∣v ∈ V

}
∪

{
(a, {b, v})

∣∣∣v ∈ V
})
, (3.21)

and thus to

v(E) \
({

(b, {a, v})
∣∣∣v ∈ V

}
∪

{
(a, {b, v})

∣∣∣v ∈ V
})
. (3.22)

�

Let us prove constructively that f −
{a,b}(S

−
{a,b}) ⊆ v(IB{a,b}) with Algorithm 4 and

Proposition 3.12. Algorithm 4 takes for input c ∈ S −
{a,b}, and returns a graph D.

Algorithm 4
1. Set p to a permutation of c.

2. Set δ to the chain component of E including

• {a, b} if a − b ∈ E,

• {b} if a→ b ∈ E, or

• {a} if b→ a ∈ E.

3. Set o to a perfect ordering of Eδ such that o starts with

• apb if a − b ∈ E,



76 Chapter 3

• pb if a→ b ∈ E, or

• pa if b→ a ∈ E.

4. Set D to the graph obtained from E by

(a) Orienting the lines in Eδ according to o and

(b) Orienting the lines in the subgraphs induced by the other chain compo-
nents of E according to perfect orderings.

5. Remove the arrow between a and b from D.

6. Return D. �

R 61. By Remark 58, Remark 59 and Lemma 3.5, the perfect ordering o
defined at Step 3 exists.

R 62. Algorithm 4 is non-deterministic because of the freedom in the choice
of perfect orderings and permutation of c.

E 50. Let E be the essential graph given in Figure 3.1. For each element
c′ ∈ S −

{a,b} =
{
∅, {b}, {d}

}
, let us describe possible executions of Algorithm 4. The

chain component δ including {a, b} is {a, b, c, d, f }, and we pick the perfect ordering

• o = acbd f when c′ = ∅,

• o = abcd f when c′ = {b}, and

• o = adcb f when c′ = {d}.

The only chain component τ , δ of E such that Eτ contains lines is {g, h}, and we
pick the perfect ordering hg. With these choices of perfect orderings, Algorithm 4
returns the graphs of Figure 3.10.

Proposition 3.12. If D is the result of Algorithm 4 applied to c ∈ S −
{a,b}, then

E(D) ∈ IB{a,b} and v(E(D)) = f −
{a,b}(c).

P.

1. Let us show that E(D) ∈ IB{a,b}. By Theorem 3.3, the graph K obtained
after Step 4 satisfies K ∈ [E]. Hence, D is a DAG, and E(D) ∈ IB{a,b} by
Definition 119.

2. Let us show that v(E(D)) = f −
{a,b}(c). We have

v(E(D)) =
(
v(E(D))\v(E)

)
∪
(
v(E(D))∩v(E)

)
=

(
v(D)\v(K)

)
∪
(
v(D)∩v(K)

)
.

(3.23)



3.3 Computation of the Inclusion Boundary IB(E) 77

a

����
��

��
�

��?
??

??
??

?

b

��<
<<

<<
<<

< coo //

��

d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(a) c′ = ∅

a

����
��

��
�

��?
??

??
??

?

b

��<
<<

<<
<<

<
// c

��

// d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(b) c′ = {b}

a

����
��

��
�

��?
??

??
??

?

b

��<
<<

<<
<<

< coo

��

doo

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(c) c′ = {d}

Figure 3.10: Graphs returned by Algorithm 4

(a) Let us compute v(D) \ v(K). We have

v(D) \ v(K) =
{(

h, {a, b}
)∣∣∣∣h ∈ chK(a) ∩ chK(b)

}
. (3.24)

It is easy to see that chK(a) ∩ chK(b) = c ∪
(
chE(a) ∩ chE(b)

)
. Hence,

v(D) \ v(K) is equal to{(
h, {a, b}

)∣∣∣∣h ∈ c ∪
(
chE(a) ∩ chE(b)

)}
. (3.25)

(b) It is easy to see that v(K) ∩ v(L) is equal to

v(K) \
({

(b, {a, v})
∣∣∣v ∈ V

}
∪

{
(a, {b, v})

∣∣∣v ∈ V
})
, (3.26)

and thus to

v(E) \
({

(b, {a, v})
∣∣∣v ∈ V

}
∪

{
(a, {b, v})

∣∣∣v ∈ V
})
. (3.27)

�

Corollary 3.13. If E ∈ E(V) and a · · · b ∈ E, then f −
{a,b}(S

−
{a,b}) ⊆ v(IB{a,b}).

By Proposition 3.12, to enumerate IB{a,b}, it is sufficient to enumerate S −
{a,b} and

apply successively Algorithm 4 and Algorithm 3 to each c ∈ S −
{a,b}. In particular, it

is not necessary to compute and enumerate v(IB{a,b}).

E 51. Let E be the essential graph given in Figure 3.1. By Example 50, the
graphs given in Figure 3.10 are obtained by applying Algorithm 4 to the elements
of S −

{a,c}. Applying Algorithm 3 to these graphs, we obtain IB{a,c} (see Figure 3.11).

As the following example illustrates, IB{a,b} may contain a large number of
elements.



78 Chapter 3

a

����
��

��
�

��?
??

??
??

?

b

��<
<<

<<
<<

< coo //

��

d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g h // i // j

(a) c = ∅

a

��
��

��
�

��?
??

??
??

?

b

��<
<<

<<
<<

< c

��

// d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g h // i // j

(b) c = {b}

a

����
��

��
�

??
??

??
??

b

��<
<<

<<
<<

< coo

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g h // i // j

(c) c = {d}

Figure 3.11: IB{a,c}

E 52. Suppose that the essential graph E ∈ E(V) is complete and undi-
rected. For each {a, b} ⊆ V , the set H−

{a,b} = V \ {a, b} is complete. Hence, every
non-empty subset of H−

{a,b} is also complete, and∣∣∣IB{a,b}∣∣∣ = ∣∣∣v(IB{a,b})
∣∣∣ = ∣∣∣ f −

{a,b}(S
−
{a,b})

∣∣∣ = ∣∣∣S −
{a,b}

∣∣∣ = 2|V |−2. (3.28)

Incremental Computation of the Neighbors

For each c ∈ S −
{a,b}, the neighbor G = v−1( f −

{a,b}(c)) may be obtained with Algo-
rithm 4 and Algorithm 3 as described above. However, Proposition 3.7 allows us
to exploit the non-determinism of Algorithm 4 to speed up the computation of G.

The following algorithm takes for input c ∈ S −
{a,b}, and returns a graph G.

Algorithm 5
1. Set p to a permutation of c.

2. Set δ to the chain component of E including

• {a, b} if a − b ∈ E,

• {b} if a→ b ∈ E, or

• {a} if b→ a ∈ E.

3. Set o to a perfect ordering of Eδ such that o starts with

• apb if a − b ∈ E,

• pb if a→ b ∈ E, or

• pa if b→ a ∈ E.

4. Set G := E.

5. Orient according to o each u − v ∈ G such that {u, v} ⊆ δ and {u, v} * c.



3.3 Computation of the Inclusion Boundary IB(E) 79

6. Remove the edge between a and b from G.

7. Apply Algorithm 3 to G and return the result. �

Proposition 3.14. If G is the result of Algorithm 5 applied to c ∈ S −
{a,b}, then G ∈

IB{a,b} and v(G) = f −
{a,b}(c).

P. Let G = (V, EG) be the graph obtained before Step 7, let D = (V, EV ) be the
graph obtained by applying Algorithm 4 to c and using the same perfect ordering
o of Eδ, and let (V, EE) = E(D). We apply Proposition 3.7 to prove that E(D) is the
result of Algorithm 3 applied to G. Let us show that the hypotheses are satisfied.

1. Let us show that ED ⊆ EG ⊆ EE .

(a) It is easy to see that D, G, and E(D) share the same skeleton.
(b) Because Algorithm 5 and Algorithm 4 use the same perfect ordering o,

we have ED ⊆ EG.
(c) Let us show that EG ⊆ EE . Let D′ be the result of Algorithm 4 applied

to c. By Lemma 3.5, we can choose the perfect orderings used to obtain
D′ so that u→ v ∈ D′ for each {u, v} in a chain component of E distinct
from δ, and for each {u, v} ⊆ c. Hence, u − v ∈ E(D) for each such
vertices {u, v}. This implies that EG ⊆ EE .

2. Let us show by contradiction that G does not induce x→ y− z. Suppose that
G induces x→ y − z for some vertices x, y, and z. In that case, y − z ∈ E and
either x→ y ∈ E or x − y ∈ E.

(a) Suppose x → y ∈ E. Then, E induces x → y − z, which contradicts
Theorem 3.1.

(b) Suppose that x− y ∈ E. Then, x, y, z ∈ δ with x < c and y, z ∈ c. Hence,
y precedes x in o, and thus x→ y < G. �

Incremental Computation of the Score

Proposition 3.15. Suppose the scoring criterion score is decomposable and sup-
pose a→ b ∈ E or a − b ∈ E. If G = v−1( f −

{a,b}(c)) ∈ IB{a,b}, then

score(G) − score(E) = f (b, (paE(b) \ {a}) ∪ c) − f (b, paE(b) ∪ {a} ∪ c). (3.29)

P. Let L be the result of Algorithm 4 applied to c, and let K be the DAG
obtained from L by adding a → b. We have score(G) − score(E) = score(L) −
score(K) = f (b, paL(b)) − f (b, paK(b)). It is easy to see that paL(b) = (paE(b) \
{a}) ∪ c and paK(b) = paE(b) ∪ {a} ∪ c. �

To compute the increment in score, the knowledge of c is sufficient. In particular,
it is not necessary to compute G. This is advantageous for a greedy search using
this neighborhood since we only need to compute the neighbor that most increases
the score.



80 Chapter 3

3.3.3 Computation of IB{a,b} when a · · · b < E

This section describes the image v(IB{a,b}) when a · · · b < E so that it can be enu-
merated, and introduces an algorithm to compute v−1(s) ∩ IB{a,b} for s ∈ v(IB{a,b}).
If the scoring criterion score is decomposable, the score of each element in IB{a,b}
is also computed incrementally.

Preliminary Notions

Let us introduce notions necessary to describe v(IB{a,b}).

Definition 124. If G = (V, E) is a graph, the set adG(a) of vertices adjacent to
a ∈ V is

adG(a) =
{
b ∈ V

∣∣∣a · · · b ∈ G
}
. (3.30)

Definition 125. If E ∈ E(V) and a · · · b < E, let

H+a→b = neE(b) \ adE(a). (3.31)

Definition 126. If E ∈ E(V) and a · · · b < E, let

H+b→a = neE(a) \ adE(b). (3.32)

R 63. It is easy to see that h ∈ H+a→b if, and only if, E{a,b,h} is given in Fig-
ure 3.12(a). Similarly, h ∈ H+b→a if, and only if, E{a,b,h} is given in Figure 3.12(b).

a b

��
��

��
�

h
(a) h ∈ H+a→b

a

==
==

==
== b

h
(b) h ∈ H+b→a

Figure 3.12: E{a,b,h}

E 53. If E is given in Figure 3.1, then

H+g→b = {a, c} \ {e, h} = {a, c}, (3.33)

H+b→g = {h} \ {a, c, e} = {h}, (3.34)

H+f→c = {a, b, d} \ {d, i, j} = {a, b} (3.35)

H+f→e = ∅ \ {d, i, j} = ∅. (3.36)

R 64. The chain component of E that includes {b} (resp. {a}) also includes
H+a→b (resp. H+b→a).



3.3 Computation of the Inclusion Boundary IB(E) 81

Definition 127. If c ⊆ H+a→b, let ga→b(c) be the graph obtained from E by

(a) orienting h − b as h→ b for each h ∈ c and

(b) adding a→ b.

Definition 128. If c ⊆ H+b→a, let gb→a(c) be the graph obtained from E by

(a) orienting h − a as h→ a for each h ∈ c and

(b) adding b→ a.

E 54. If E is given in Figure 3.1, then gb→g(∅), gb→g({h}) and gg→b({a}) are
given in Figure 3.13.

a

��
��

��
�

??
??

??
??

b

��

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g h // i // j

(a) gb→g(∅)

a

��
��

��
�

??
??

??
??

b

��

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(b) gb→g({h})

a

����
��

��
�

??
??

??
??

b

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g

OO

h // i // j

(c) gg→b({a})

Figure 3.13: gb→g(∅), gb→g({h}), and gg→b({a})

Definition 129. If E ∈ E(V) and a · · · b < E, the set S +a→b is defined by

S +a→b =
{
c ⊆ H+a→b

∣∣∣c is empty or complete in E,

and ga→b(c) has a consistent extension
}
. (3.37)

Definition 130. If E ∈ E(V) and a · · · b < E, the set S +b→a is defined by

S +b→a =
{
c ⊆ H+b→a

∣∣∣c is empty or complete in E,

and gb→a(c) has a consistent extension
}
. (3.38)

As noted in Section 3.2.2, there exists an algorithm that checks if a graph has a
consistent extension. It is thus possible to enumerate S +a→b and S +b→a.

E 55. Suppose that E is given in Figure 3.1. Let us compute S +g→b and
S +b→g. For c ⊆ H+g→b, the graph gg→b(c) has the cycle b, e, g, b (e.g. see the graph
given in Figure 3.13(c)) and thus no consistent extension. Hence, we have

S +g→b = ∅. (3.39)



82 Chapter 3

a

����
��

��
�

�� ��?
??

??
??

?

b

��

//

��<
<<

<<
<<

< c

��

// d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g // h // i // j

(a)

a

����
��

��
�

�� ��?
??

??
??

?

b

��

//

��<
<<

<<
<<

< c

��

// d

������
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(b)

Figure 3.14: Consistent extensions of gb→g(∅) and gb→g({h})

By Example 53, we have H+b→g = {h}. The graph given in Figure 3.14(a) (resp.
Figure 3.14(b)) is a consistent extension of gb→g(∅) (resp. gb→g({h})). Moreover,
E{h} is complete. Hence, we have

S +b→g =
{
∅, {h}

}
. (3.40)

Definition 131. If E ∈ E(V) and a · · · b < E, the function f +a→b is defined on S +a→b
by

f +a→b(c) =
{(

b, {a, h}
)∣∣∣∣h ∈ c∪

(
paE(b)\adE(a)

)}⋃(
v(E)\

{
(v, {a, b})

∣∣∣v ∈ V
})
. (3.41)

Definition 132. If E ∈ E(V) and a · · · b < E, let f +b→a be the function defined on
S +b→a by

f +b→a(c) =
{(

a, {b, h}
)∣∣∣∣h ∈ c∪

(
paE(a)\adE(b)

)}⋃(
v(E)\

{
(v, {a, b})

∣∣∣v ∈ V
})
. (3.42)

R 65. The functions f +a→b and f +b→a are injective.

The Image v(IB{a,b})

Let us prove that v(IB{a,b}) = f +a→b(S +a→b) ∪ f +b→a(S +b→a). First, Proposition 3.16
states that v(IB{a,b}) ⊆ f +a→b(S +a→b) ∪ f +b→a(S +b→a). Then, Corollary 3.19 states that
f +a→b(S +a→b) ∪ f +b→a(S +b→a) ⊆ v(IB{a,b}).

Proposition 3.16. If E ∈ E(V) and a · · · b < E, then

v(IB{a,b}) ⊆ f +a→b(S +a→b) ∪ f +b→a(S +b→a). (3.43)

P. Given s ∈ v(IB{a,b}), we show there exists c ∈ S +a→b such that s = f +a→b(c)
or c ∈ S +b→a such that s = f +b→a(c).



3.3 Computation of the Inclusion Boundary IB(E) 83

1. Let us define a candidate c. First, s ∈ v(IB{a,b}) implies there exists G ∈
IB{a,b} such that s = v(G). By Definition 119, there exist K ∈ [E] and
L ∈ [G] such that L is obtained from K by adding an arrow between a and b.
Without loss of generality, suppose that a→ b ∈ L and let

c =
(
paK(b) \ paE(b)

)
\ adE(a). (3.44)

2. Let us show that c ∈ S +a→b.

(a) We have c ⊆ H+a→b because paK(b) \ paE(b) ⊆ neE(b).

(b) Let us show by contradiction that Ec is complete. We have c ⊆ paK(b).
There exists a chain component of E such that c ⊆ H+a→b ⊆ δ. By The-
orem 3.3, K ∈ [E] implies that Kδ and thus also Kc has no v-structure.
If hi, h j ∈ c are distinct and hi · · · h j < Kc, then (b, {hi, h j}) ∈ v(Kc).
Hence, for distinct hi, h j ∈ c, we have hi · · · h j ∈ Kc, and thus hi-
− h j ∈ E.

(c) It is easy to see that L is a consistent extension of ga→b(c) because
c ⊆ paL(b) and K is a consistent extension of E.

3. Let us show that s = v(G) = f +a→b(c). We have

v(G) =
(
v(G) \ v(E)

)
∪

(
v(G)∩ v(E)

)
=

(
v(L) \ v(K)

)
∪

(
v(L)∩ v(K)

)
. (3.45)

(a) Let us compute v(L) \ v(K). It is easy to see that

v(L) \ v(K) =
{(

b, {a, h}
)∣∣∣∣h ∈ paK(b) \ adK(a)

}
. (3.46)

We have adK(a) = adE(a) and paK(b) = paE(b) ∪
(
paK(b) \ paE(b)

)
.

Hence, we have paK(b)\adK(a) = paE(b)\adE(a)∪
(
paK(b)\ paE(b)

)
\

adE(a). Hence,

v(L) \ v(K) =
{(

b, {a, h}
)∣∣∣∣h ∈ c ∪

(
paE(a) \ adE(b)

)}
. (3.47)

(b) It is easy to see that

v(L) ∩ v(K) = v(K) \
{
(v, {a, b})

∣∣∣v ∈ V
}
= v(E) \

{
(v, {a, b})

∣∣∣v ∈ V
}
.

(3.48)
�

Let us prove constructively that f +a→b(S +a→b) ∪ f +b→a(S +b→a) ⊆ v(IB{a,b}) with
Proposition 3.17 and Proposition 3.18.

Proposition 3.17. If c ∈ S +a→b and D is a consistent extension of ga→b(c), then
E(D) ∈ IB{a,b} and v(E(D)) = f +a→b(c).

P.



84 Chapter 3

1. Let us show that E(D) ∈ IB{a,b}. It is easy to see that the graph K obtained
from D by removing a → b is a consistent extension of E, i.e. K ∈ [E]. By
Definition 119, we thus have E(D) ∈ IB{a,b}.

2. Let us show that v(E(D)) = f +a→b(c). We have

v(E(D)) =
(
v(E(D)) \ v(E)

)
∪

(
v(E(D)) ∩ v(E)

)
(3.49)

=
(
v(D) \ v(K)

)
∪

(
v(D) ∩ v(K)

)
. (3.50)

(a) We have

v(D) \ v(K) =
{(

b, {a, h}
)∣∣∣∣h ∈ c ∪

(
paE(b) \ adE(a)

)}
. (3.51)

(b) We have

v(D) ∩ v(K) = v(K) \
{
(v, {a, b})

∣∣∣v ∈ V
}

(3.52)

= v(E) \
{
(v, {a, b})

∣∣∣v ∈ V
}
. (3.53)

�

Proposition 3.18. If c ∈ S +b→a and D is a consistent extension of ga→b(c), then
E(D) ∈ IB{a,b} and v(E(D)) = f +b→a(c).

P. The proof is similar to the proof of Proposition 3.17. �

Corollary 3.19. If E ∈ E(V) and a · · · b < E, then

f +a→b(S +a→b) ∪ f +b→a(S +b→a) ⊆ v(IB{a,b}). (3.54)

To obtain IB{a,b}, Algorithm 3 is applied to the consistent extensions of the
graphs in the set {

ga→b(c)
∣∣∣c ∈ S +a→b

}
∪
{
gb→a(c)

∣∣∣c ∈ S +b→a
}
. (3.55)

E 56. Suppose that E is given in Figure 3.1. By Example 55, S +g→b = ∅

and S +b→g =
{
∅, {h}

}
. Moreover, consistent extensions of gb→g(∅) and gb→g({h}) are

given in Figure 3.14. Applying Algorithm 3 to these graphs, we obtain IB{b,g} (see
Figure 3.15).

The intersection of f +a→b(S +a→b) and f +b→a(S +b→a) may not be empty. However,
the overlap is limited to a most one element since the only possible element in both
sets is v(E) \

{
(v, {a, b})

∣∣∣v ∈ V
}
.

E 57. Let E, G, D and D′ be given in Figure 3.16. The graphs ga→b(∅) =
D and gb→a(∅) = D′ are DAGs, and thus consistent extensions of themselves.
Moreover, ∅ = f +a→b(∅) = f +b→a(∅). Note that E(D) = E(D′) = G.



3.3 Computation of the Inclusion Boundary IB(E) 85

a

��
��

��
�

??
??

??
??

b

��

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g // h // i // j

(a)

a

��
��

��
�

??
??

??
??

b

��

��<
<<

<<
<<

< c

��

d

����
��

��
��

e

����
��

��
��

��

f

�� ��<
<<

<<
<<

<

g hoo // i // j

(b)

Figure 3.15: IB{b,g}

a b
(a) E

a b
(b) G

a // b
(c) D

a boo

(d) D′

Figure 3.16: Non-empty intersection of f +a→b(S +a→b) and f +b→a(S +b→a)

An Alternative Description of S +a→b and S +a→b

The following theorem from [Chi02b] allows us to describe S +a→b and S +b→a with-
out explicitely checking for the existence of a consistent extension.

Theorem 3.20. Given c ⊆ H+a→b, the graph ga→b(c) has a consistent extension if,
and only if,

(a) c ∪ (neE(b) ∩ adE(a)) is empty or complete in E and

(b) every path in E from b to a has a vertex in c ∪ (neE(b) ∩ adE(a)).

Corollary 3.21. We have c ∈ S +a→b if, and only if, c ⊆ H+a→b, c∪
(
neE(b)∩ adE(a)

)
is empty or complete in E and every path in E from b to a has a vertex in c ∪(
neE(b) ∩ adE(a)

)
.

Corollary 3.22. We have c ∈ S +b→a if, and only if, c ⊆ H+b→a, c∪
(
neE(a)∩ adE(b)

)
is empty or complete in E and every path in E from a to b has a vertex in c ∪(
neE(a) ∩ adE(b)

)
.

Incremental Computation of the Neighbors

Using Corollaries 3.21 and 3.22, it is possible to avoid the computation of consis-
tent extensions and use the MCS algorithm instead.

The following algorithm takes for input c ∈ S +a→b, and returns a graph D.



86 Chapter 3

Algorithm 6
1. Set δ to the chain component of E containing b.

2. Set p to a permutation of c ∪ (neE(b) ∩ adE(a)).

3. Set o to a perfect ordering of Eδ starting with pb.

4. Set D to the graph obtained from E by

(a) Orienting the lines in Eδ according to o and

(b) Orienting the lines in the subgraphs induced by the other chain compo-
nents of E according to perfect orderings.

5. Add a→ b to D.

6. Return D. �

R 66. Algorithm 6 is non-deterministic because of the freedom in the choice
of perfect orderings and permutation p.

Proposition 3.23. If D is the result of Algorithm 6 applied to c ∈ S +a→b, then
E(D) ∈ IB{a,b} and v(E(D)) = f +a→b(c).

P. Let us show that D is a consistent extension of ga→b(c) and conclude by
Proposition 3.17.

Let K be the graph obtained from D by removing a → b. We have K ∈ [E],
i.e. K is a consistent extension of E. To show that L is a consistent extension of
ga→b(

{
(b, {a, h})

∣∣∣h ∈ c
}
), it is sufficient to show that L is acyclic, h → b ∈ L for

h ∈ c, and b→ h ∈ L for h ∈ H+a→b \ c.

1. If h ∈ c, then h precedes b in o, and thus h→ b ∈ L.

2. If h ∈ H+a→b \ c, then b precedes h in o, and thus b→ h ∈ L.

3. Let us show that L is acyclic. Because K is acyclic, L will have a cyle
only if it has a path π = b, . . . , a. Let h be the first vertex in π such that
h ∈ c ∪ (neE(b) ∩ adE(a)), and let d be the vertex immediately preceding
it. If d → h ∈ E, then E contains the directed cycle b, . . . , d, h, b. Hence,
d − h ∈ E and d ∈ δ \ (c ∪ (neE(b) ∩ adE(a))). But d follows h in o, and thus
h → d ∈ K and h → d ∈ L. This contradicts the assumption that π is a path,
and thus L is acyclic. �

Given c ∈ S +a→b, Proposition 3.7 allows us to exploit the non-determinism of
Algorithm 6 to speed up the computation of v−1( f +a→b(c)).

The following algorithm takes for input c ∈ S +a→b, and returns a graph G.

Algorithm 7
1. Set δ to the chain component of E containing b.



3.3 Computation of the Inclusion Boundary IB(E) 87

2. Set p to a permutation of c ∪ (neE(b) ∩ adE(a)).

3. Set o to a perfect ordering of Eδ starting with pb.

4. Set G := E.

5. Orient according to o each u − v ∈ G such that {u, v} ⊆ δ and {u, v} *
c ∪ (neE(b) ∩ adE(a)).

6. Add a→ b to G.

7. Apply Algorithm 3 to G and return the result. �

Proposition 3.24. If G is the result of Algorithm 7 applied to c ∈ S +a→b then G ∈
IB{a,b} and v(G) = f +a→b(c).

P. Let G = (V, EG) be the graph obtained before Step 7, let D = (V, ED) be the
DAG obtained by applying Algorithm 6 to c and using the same perfect ordering o
of Eδ, and let E(D) = (V, EE). We apply Proposition 3.7 to prove that E(D) is the
result of Algorithm 3 applied to G. Let us show that the hypotheses are satisfied.

1. Let us show that ED ⊆ EG ⊆ EE .

(a) It is easy to see that D, G, and E(D) share the same skeleton.

(b) Because Algorithm 6 and Algorithm 7 use the same perfect ordering o,
we have ED ⊆ EG.

(c) Let us show that EG ⊆ EE . Let D′ be the result of Algorithm 6 applied
to c. By Lemma 3.5, we can choose the perfect orderings used to obtain
D′ so that u → v ∈ D′ for each {u, v} such that {u, v} ⊆ c ∪ (neE(b) ∩
adE(a)) or such that {u, v} is included in a chain component of E distinct
from δ. Hence, u − v ∈ E(D) for each such {u, v}. This implies that
EG ⊆ EE .

2. Let us show by contradiction that G does not induce x→ y− z. Suppose that
G induces x → y − z for some vertices x, y, z. We have y − z ∈ E and either
x→ y ∈ E or x − y ∈ E.

(a) Suppose x → y ∈ E. Then, E induces x → y − z which contradicts
Theorem 3.1.

(b) Suppose that x−y ∈ E. Then, we have x, y, z ∈ δ with x < c∪ (neE(b)∩
adE(a)) and y, z ∈ c ∪ (neE(b) ∩ adE(a)). Hence, y precedes x in o and
thus x→ y < G. �

E 58. Suppose that E is given in Figure 3.1. If Algorithm 7 is applied to
∅ ∈ S +b→g and {h} ∈ S +b→g, the graphs of Figure 3.16 are obtained. In this particular
case, it is not even necessary to apply Algorithm 3.



88 Chapter 3

Incremental Computation of the Score

Proposition 3.25. Suppose the scoring criterion score is decomposable and that
a · · · b < E. If G = v−1( f +a→b(c), then

score(G) − score(E) = f
(
b, paE(b) ∪ c ∪ (neE(b) ∩ adE(a))

)
−

f
(
b, paE(b) ∪ c ∪ (neE(b) ∩ adE(a)) ∪ {a}

)
. (3.56)

P. Let L be the result of Algorithm 6 applied to c, and let K be the graph
obtained from L by removing a → b. We have score(G) − score(E) = score(L) −
score(K) = f (b, paL(b)) − f (b, paK(b)). It is easy to see that paL(b) = paE(b) ∪
c ∪ (neE(b) ∩ adE(a)) and paK(b) = paE(b) ∪ c ∪ (neE(b) ∩ adE(a)) ∪ {a}. �

Again, to compute the increment in score, the knowledge of c is sufficient and it is
not necessary to compute G.

3.4 Conclusion

This chapter presented algorithms that efficiently compute the inclusion boundary
neighborhood of an arbitrary essential graph as follows. First, elements of the
boundary are identified by their skeleton and their set of v-structures. Admissible
skeletons and sets of v-structures, i.e corresponding to neighbors, are obtained by
performing graphical tests. Using Chickering’s results, these tests take an espe-
cially simple form (see Corollary 3.21 and Corollary 3.22). Once a neighbor has
been identified, its score can be computed incrementally if the scoring criterion
is decomposable. The neighbor itself can also be computed incrementally with
Algorithm 5 or Algorithm 7.

As discussed in Section 2.5.3, the inclusion boundary can be used as a neigh-
borhood for greedy structure learning algorithms such as UGES. Note that the
UGES algorithm is implemented in the WinMine toolkit from Microsoft1 and the
Structure Learning Package of the BayesNet Matlab toolbox2. Depending on the
topology of the essential graph, the cardinality of the inclusion boundary can be-
come very large. An interesting question is whether a greedy search will actually
encounter a very large inclusion boundary if the initial graph is sparse (say empty)
and the data generating distribution admits a sparse inclusion-optimal graph. More
generally, the link between the maximal size of the inclusion boundary computed
in a greedy search, the independence relations holding in the data generating distri-
bution, and the initial graph should be investigated. Note that another approach to
the issue of the size of the boundary in a greedy search can be found in [NKP03].

The identification of a neighbor only requires elementary and very intuitive
graphical tests. However, its actual computation is more involved because Algo-
rithm 3 is applied. Consequently, it is difficult to interpret in simple graphical terms

1see http://research.microsoft.com/˜dmax/winmine/tooldoc.htm
2see http://bnt.insa-rouen.fr/

http://research.microsoft.com/~dmax/winmine/tooldoc.htm
http://bnt.insa-rouen.fr/


3.4 Conclusion 89

the relation between an essential graph and its inclusion boundary. It is not clear
if the complexity of the computation of neighbors is unavoidable. Searching for a
more explicit description of neighbors may be an interesting research direction.





Chapter 4

Learning Parameters in Discrete
Naive Bayes Models by
Computing Fibers of the
Parametrization Map

4.1 Introduction

Consider a set M = f (Θ) of probability distributions over a set X of discrete
random variables, for instance a discrete Bayesian network model or a discrete
Naive Bayes model with hidden class variable. Given a sequence of n independent
observations, a maximum likelihood estimate is a parameter θ ∈ Θ satisfying

θ ∈ arg max
θ∈Θ

n∏
i=1

(
f (θ)

)(
o[i]

)
. (4.1)

Finding a maximum likelihood estimate is an optimisation problem that has a sim-
ple solution when there is no constraint and the observations are complete for X.
Given a sequence of n observations complete for X, let p̂ be the distribution of
relative frequencies, i.e. the distribution over X such that

p̂(x) =
nx

n
, x ∈ X, (4.2)

where nx is the number of observations o in d such that o = x. As shown in
Appendix C, we have

arg max
p

n∏
i=1

p
(
o[i]

)
= {p̂}. (4.3)

If the observations are complete, it is well-known that θ ∈ Θ maximizes the likeli-
hood if, and only if,

θ ∈ arg min
θ∈Θ

D(p̂ ‖ f (θ)), (4.4)



92 Chapter 4

where D measures the Kullback-Leibler distance (see Appendix C). In other words,
the distribution f (θ) associated to a maximum likelihood estimate θ can be inter-
preted as a projection of p̂ ontoM that minimizes the Kullback-Leibler distance.

In this light, a function π : Λ → Θ defined on a set Λ of distributions over X
specifies a parameter learning algorithm taking for input a dataset such that p̂ ∈ Λ
and returning the learned parameter π(p̂) (see Figure 4.1). As discussed above, such

π(p̂)

Θ p̂

f

π

f (π( p̂))

Λ

M

Figure 4.1: Parameter learning in terms of projections. The distance on paper
between p ∈ Λ and q ∈ M is assumed to be proportional to D(p ‖ q).

a function is optimal for parameter learning if ( f ◦ π)(p) minimizes the Kullback-
Leibler distance from p to M. To design a function π : Λ → Θ in practice, the
following constraints may be imposed:

• ( f ◦ π)(p) = p for p ∈ Λ ∩M,

• Λ ∩M is included in the interior of Λ, and

• f ◦ π is continuous at all p ∈ Λ ∩M.

In Section 4.2, the set of all probability distributions on X is represented by a set
S X ⊆ R

|X|. This representation allows us to transpose the euclidian distance to
distributions and use the topology induced from the euclidian topology of R|X|.
The first constraint guarantees that π is optimal when p̂ ∈ Λ ∩ M. The second
guarantees that π is defined on distributions sufficiently close to Λ ∩M. Together,
these three constraints lead to the following property:

(∀p ∈ Λ ∩M)(∀ε > 0)
(
∃δ > 0 s.t.(

p̂ ∈ S X and |p − p̂| < δ
)
⇒

(
p̂ ∈ Λ and |p − ( f ◦ π)(p̂)| < ε

))
, (4.5)

which translates into a consistency property by the strong law of large numbers.

E 59. IfM is a discrete Bayesian network modelMd(G) = fd,G(Θd,G), the
constraint ( fd,G ◦ π)(p) = p for p ∈ Λ ∩ Md(G) is an excellent starting point to
obtain a suitable π. As discussed in Section 1.4.2, the parametrization map fd,G is
injective and we have

f −1
d,G(p) =

((
(θXv,xpa(v)

xv )xv∈Xv

)
xpa(v)∈Xpa(v)

)
Xv∈X

(4.6)



4.2 The Discrete Naive Bayes Model with hidden class 93

for p ∈ Md(G), with

θ
Xv,xpa(v)
xv =

p(xv, xpa(v))
p(xpa(v))

. (4.7)

Equation (4.7) defines a parameter whenever p is strictly positive. Hence, an obvi-
ous choice is to define π on the set of strictly positive distributions for X by

π(p) =
((

(θXv,xpa(v)
xv )xv∈Xv

)
xpa(v)∈Xpa(v)

)
Xv∈X

(4.8)

with θXv,xpa(v)
xv given by (4.7). In fact, it turns out that this choice for π is optimal:

{π(p̂)} = arg min
θ∈Θd,G

D(p̂ ‖ fd,G(θ)) (4.9)

if p̂ is strictly positive by (2.26).

This chapter presents a family of functions π satisfying the above requirements
for the class of discrete Naive Bayes models with hidden class variable. The above
ideas have already been applied in [Pea88] for the special case of discrete Naive
Bayes models with two classes and binary variables (see also [GHKM01] for the
computation of fibers), and we do not claim that they are novel. The interest of this
work lies in their actual implementation for the larger class of models considered
and in the theorems developped to that end. The resulting parameter learning al-
gorithms are preliminary and should be seen as a proof of concept. They suggest
that the constraints on π may lead to interesting parameter learning algorithms for
discrete Naive Bayes models with hidden class variable. However, we do not claim
that our algorithms will be successful in practice. In particular, their computational
complexity is very large and they were not tested extensively (no experimental
result is given). Parts of this chapter were published in [AGW06].

Section 4.2 introduces discrete Naive Bayes models with hidden class variable.
Section 4.3 presents definitions and technical results constituting the main contri-
bution of this chapter. With those preliminary results, Section 4.4 introduces two
algorithms to compute fibers of the parametrization map. Section 4.5 derives pro-
jection functions that satisfy our requirements. Section 4.6 concludes. To lighten
the presentation, some proofs are gathered in Section 4.7.

4.2 The Discrete Naive Bayes Model with hidden class

This section defines discrete Naive Bayes models with hidden class variable and
presents some elementary properties.

4.2.1 Parametric Definition

If X = {X1, . . . , Xn} is a set of discrete random variables, a distribution p(x) is
represented by the vector (px)x∈X ∈ R

|X| such that px = p(x) for x ∈ X. Also, if
S ⊆ X and s ∈ S, then ps denotes the marginal probability p(s). The set of all
probability distributions over X is represented as follows.



94 Chapter 4

Definition 133. If X = {X1, . . . , Xn} is a set of discrete random variables, let

S X =
{
(px)x∈X ∈ R

|X|
∣∣∣∣∑

x∈X

px = 1, (∀x ∈ X : px ≥ 0)
}
. (4.10)

R 67. The set S X is a semi-algebraic subset of R|X| of dimension

d(S X) = |X| − 1. (4.11)

Without loss of generality, the random variables in X are assumed to have pair-
wise disjoint sets of possible values. Then, a random variable is uniquely iden-
tified by one of its values and the set of all values ∪Xi∈XXi is in bijection with
∪Xi∈X ∪xi∈Xi (xi, Xi). The parameter space of a discrete Naive Bayes model with m
hidden classes over X is defined as follows.

Definition 134. If X = {X1, . . . , Xn} is a set of discrete random variables and m is
an integer ≥ 1, the set Θm,X is defined by(

ωt, (θt,xi)xi∈∪
n
i=1Xi

)m
t=1 ∈ Θm,X (4.12)

if, and only if,

ωt > 0, θt,xi > 0, (4.13)
m∑

t=1

ωt = 1,
∑
xi∈Xi

θt,xi = 1 (4.14)

for t ∈ {1, . . . ,m}, Xi ∈ X, and xi ∈ Xi.

R 68. The setΘm,X is a semi-algebraic subset of Rm+m
∑

Xi∈X |Xi | (and a smooth
manifold) of dimension d(Θm,X) given by

d(Θm,X) = (m − 1) + m
∑
Xi∈X

(|Xi| − 1). (4.15)

R 69. The components of a parameter in Θm,X are strictly positive. The
results presented in this chapter do not fundamentally depend on this restriction,
but it does simplify some proofs and statements.

The parametrization map is defined as follows.

Definition 135. If X = {X1, . . . , Xn} is a set of discrete random variables and m is
an integer ≥ 1, the function fm,X : Θm,X → S X is defined by

fm,X
((
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1

)
=

(
p(x1,...,xn)

)
(x1,...,xn)∈X, (4.16)

where

p(x1,...,xn) =

m∑
t=1

ωt

n∏
i=1

θt,xi . (4.17)



4.2 The Discrete Naive Bayes Model with hidden class 95

The discrete Naive Bayes model (with hidden class variable) over X is defined
parametrically as follows.

Definition 136 (Discrete Naive Bayes model). If X = {X1, . . . , Xn} is a set of dis-
crete random variables and m is an integer ≥ 1, the discrete Naive Bayes model
NBm,X with m classes is defined by

NBm,X = fm,X
(
Θm,X

)
. (4.18)

R 70. A discrete Naive Bayes model with hidden class variable is a Bayesian
network model with hidden variables: if X = {X1, . . . , Xn} is a set of discrete ran-
dom variables, H is a discrete random variable with m = |H| values, and G is the
structure over X ∪ {H} given in Figure 4.2, then NBm,X is the Bayesian network
model with hidden variable H obtained fromMd(G).

H

~~||
||

||
||

�� ((PPPPPPPPPPPPPPP

X1 X2 · · · Xn

Figure 4.2: Naive Bayes structure G

R 71. Distributions in NBm,X can be interpreted as mixtures. Indeed, con-
sider a distribution

p =
(
p(x1,...,xn)

)
(x1,...,xn)∈X = fm,X

((
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1

)
. (4.19)

For t ∈ {1, . . . ,m}, let pt =
(
pt

(x1,...,xn)
)
(x1,...,xn)∈X ∈ S X with

pt
(x1,...,xn) =

n∏
i=1

θt,xi . (4.20)

Each pt satisfies pt ∈ Md(De), where De is the empty DAG over X, and we have

p =
m∑

t=1

ωt pt. (4.21)

Hence, p is a mixture of m distributions p1, . . . , pm ∈ Md(De) with mixing coeffi-
cients ω1, . . . , ωm.

Figure 4.3 summarizes the relationships between the objects defined in this
section and a potential projection function π. It is a special case of Figure 4.1.



96 Chapter 4

π(p̂)

Θm,X p̂

fm,X

π Λ

R|X|

S X

NBm,X

fm,X(π(p̂))

Rm+m
∑

Xi∈X |Xi |

Figure 4.3: Parameter learning for NBm,X in terms of projections.

4.2.2 Elementary Properties

Discrete Naive Bayes models are nested.

Proposition 4.1. NBm,X ⊆ NBm+1,X .

P. Consider p = fm,X(θ) with

θ =
(
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1 ∈ Θm,X . (4.22)

There exists an element

θ′ =
(
ω′t , (θ

′
t,xi

)xi∈∪
n
i=1Xi

)m+1
t=1 ∈ Θm+1,X (4.23)

such that

ω′t = ωt for t ∈ {1, . . . ,m − 1}, (4.24)

ω′m + ω
′
m+1 = ωm, (4.25)

θ′t,xi
= θt,xi for t ∈ {1, . . . ,m} and xi ∈ ∪

n
i=1Xi, (4.26)

θ′m+1,xi
= θm,xi for xi ∈ ∪

n
i=1Xi. (4.27)

For such an element θ′, we have fm+1,X(θ′) = p ∈ NBm+1,X . Hence, NBm,X ⊆

NBm+1,X . �

Despite their simplicity, discrete Naive Bayes models are versatile: any distribu-
tion on X can be approximated arbitrarily closely by a distribution in NBm,X for
sufficiently large m. The closure of a set A is denoted A.

Proposition 4.2. If m ≥ |X|/(maxXi∈X |Xi|), then NBm,X = S X .

P. The proof is adapted from [KZ02].



4.3 Preliminaries 97

1. By definition of fm,X , we have NBm,X ⊆ S X . Also, we have S X = S X .
Hence, NBm,X ⊆ S X .

2. Without loss of generality, suppose that Xn has maximum cardinality and let
m = |X|/|Xn| =

∏n−1
i=1 |Xi|. Since NBk,X ⊆ NBk+1,X , it is sufficient to prove

that S X ⊆ NBm,X . Consider p =
(
px1,...,xn

)
(x1,...,xn)∈X ∈ S X . For ε > 0, let

θε =
(
ωt, (θt,xi)xi∈∪

n
i=1Xi

)
t∈X1×...Xn−1

(4.28)

be such that

ω(x1,...,xn−1) = px1,...,xn−1 , (4.29)

θ(x1,...,xn−1),x′i =

ε if x′i , xi,

1 − ε(|Xi| − 1) if x′i = xi,
(4.30)

θ(x1,...,xn−1),xn = px1,...,xn/px1,...,xn−1 . (4.31)

for i ∈ {1, . . . , n − 1}, xn ∈ Xn and (x1, . . . , xn−1) ∈ X1 × . . .Xn−1. If ε
is sufficiently small, it is easy to see that θε ∈ Θm,X . Moreover, we have
limε→0+ fm,X(θε) = p and thus p ∈ NBm,X . Therefore S X ⊆ NBm,X . �

From the outset, one can identify two reasons why the parametrization map
fm,X is non-injective: aliasing and the inclusion relation NBm,X ⊆ NBm+1,X . The
aliasing phenomenon is a consequence of the commutativity of the sum in (4.17).
It can be described as follows: if σ is a permutation of the set {1, . . . ,m} and

θ =
(
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1 ∈ Θm,X , (4.32)

it is easy to see that

θ′ =
(
ωσ(t), (θσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1 ∈ Θm,X , (4.33)

and fm,X(θ) = fm,X(θ′). In other words, the mixture components can be freely
permuted. As shown in the proof of Proposition 4.1, there exists infinitely many
ways to parametrize in NBm+1,X a distribution that belongs to NBm,X . If p ∈
NBm,X , the preimage f −1

m+1,X(p) is thus not finite.

4.3 Preliminaries

This chapter contains material necessary to develop our algorithms. First, an
alternative parametrization of NBm,X is introduced. Then, theorems that lie at
the core of this chapter and its algorithms are presented. Despite the alternative
parametrization, these results are not easily formulated as they require the defini-
tion of several families of functions. To simplify the presentation, the proofs of our
core results are deferred until Section 4.7.



98 Chapter 4

4.3.1 Alternative Parametrization of NBm,X

First, a new parameter space Πm,X in bijection with Θm,X is provided. Then, prob-
ability distributions are described by elements of a set RX in bijection with S X .
Finally, the new parametrization map hm,X is described.

Alternative Parameter Space

The idea behind the new parameter space Πm,X is very simple. A new parame-
ter in Πm,X corresponding to θ =

(
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1 ∈ Θm,X keeps the compo-

nents ωt, but, instead of θt,xi , it has the components δt,xi = θt,xi −
∑m

t=1 ωtθt,xi and
λxi =

∑m
t=1 ωtθt,xi . An important consequence of this change of variables is that∑m

t=1 ωtδt,xi = 0. Formally, the new parameter space is defined as follows.

Definition 137. If X = {X1, . . . , Xn} is a set of discrete random variables and m is
an integer ≥ 1, the set Πm,X is defined by((

ωt, (δt,xi)xi∈∪
n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X (4.34)

if, and only if,

ωt > 0, δt,xi + λxi > 0,
∑
xi∈Xi

λxi = 1, (4.35)

m∑
t=1

ωt = 1,
∑
xi∈Xi

δt,xi = 0,
m∑

t=1

ωtδt,xi = 0 (4.36)

for t ∈ {1, . . . ,m}, Xi ∈ X and xi ∈ Xi.

The correspondence between Πm,X and Θm,X is defined by the following function.

Definition 138. If X = {X1, . . . , Xn} is a set of discrete random variables and m is
an integer ≥ 1, the function φ : Πm,X → Θm,X is defined by

φ
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
=

(
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1 (4.37)

where
θt,xi = δt,xi + λxi . (4.38)

Finally, we make sure that Πm,X and Θm,X can be exchanged.

Proposition 4.3. The function φ is a bijection with inverse given by

φ−1
((
ωt, (θt,xi)xi∈∪

n
i=1Xi

)m
t=1

)
=

((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
(4.39)

where

λxi =

m∑
t=1

ωtθt,xi , (4.40)

δt,xi = θt,xi −

m∑
t=1

ωtθt,xi . (4.41)



4.3 Preliminaries 99

P. It is straighforward to prove that φ is injective, and that the function φ−1 is
its inverse. �

R 72. The bijection φ and its inverse are polynomial. As a consequence,
Πm,X is a semi-algebraic set with the same dimension as Θm,X .

Alternative Parametrization of Distributions

To complement the new parameter space, an alternative description of distributions
over X is introduced. It can be seen as an extension to non-binary variables of a
similar description in [GHKM01]. As shown in the next section, the new descrip-
tion results in a new parametrization map very similar to fm,X .

Definition 139. If X = {X1, . . . , Xn} is a set of random variables, S ⊆ X, and
x = (x1, . . . , xn) ∈ X, let xS denote the value (xi)Xi∈S ∈ S.

Definition 140. If X = {X1, . . . , Xn} is a set of discrete random variables, the set
RX is defined by (

(λxi)xi∈∪
n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
∈ RX (4.42)

if, and only if,

q() = 1 (4.43)

qxi = 0 for xi ∈ Xi and Xi ∈ X (4.44)∑
xi∈Xi

λxi = 1 for Xi ∈ X (4.45)∑
si∈Si

q(s1,...,si,...,s|S |) = 0 for S ⊆ X, S i ∈ S , and, with Y = S \ {S i},

(s1, . . . , si−1, si+1, . . . , s|S |) ∈ Y

(4.46)

∑
S⊆X

qxS

∏
i∈X\S

λx{i} ≥ 0 for x ∈ X (4.47)∑
x∈X

∑
S⊆X

qxS

∏
i∈X\S

λx{i} = 1. (4.48)

Elements of S X and RX are connected by the following function.

Definition 141. If X = {X1, . . . , Xn} is a set of discrete random variables, the func-
tion ψ : S X → RX is defined recursively by

ψ
(
(px)x∈X

)
=

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
(4.49)

where

λxi = pxi (4.50)

qs = ps −
∑
P(S

qsP

∏
i∈S \P

ps{i} . (4.51)



100 Chapter 4

R 73. In the above definition, we adopt the convention that p() = 1. It is
straighforward to check that ψ(S X) ⊆ RX .

E 60. If Xi, X j and Xk are distinct variables in X and

ψ
(
(px)x∈X

)
=

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
, (4.52)

then

q(xi,x j) = p(xi,x j) − pxi px j , (4.53)

q(xi,x j,xk) = p(xi,x j,xk) − pxi p(x j,xk) − px j p(xi,xk)

− pxk p(xi,x j) + 2pxi px j pxk .

(4.54)

Proposition 4.4. The function ψ is a bijection with inverse given by

ψ−1
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
= (px)x∈X (4.55)

where
px =

∑
S⊆X

qxS

∏
i∈X\S

λx{i} . (4.56)

P. It is straighforward to prove that ψ is injective, and that the function ψ−1 is
its inverse. �

R 74. The bijection ψ and its inverse are polynomial. As a consequence, RX

is a semi-algebraic set with the same dimension as S X .

Marginal independence in a distribution represented by q ∈ RX has a natural
expression. Note that the λxi components are not necessary to express marginal
independence.

Proposition 4.5. Let X be a set of discrete random variables, let A and B be non-
empty and disjoint subsets of X, and let p be a distribution for X with

ψ(p) =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
. (4.57)

The sets of random variables A and B are independent in p if, and only if, for all
C ⊆ A, c ∈ C, D ⊆ B and d ∈ D, we have

q(c,d) = qcqd. (4.58)

P. Let us prove the proposition by induction.

1. Suppose that |A ∪ B| = 2. We have A ⊥ B if, and only if, p(a,b) − pa pb = 0
for all a ∈ A and b ∈ B. By definition of ψ, we have

q(a,b) = p(a,b) − pa pb, qa = qb = 0. (4.59)

Hence, p(a,b) − pa pb = 0 if, and only if, q(a,b) = qaqb.



4.3 Preliminaries 101

2. Suppose that |A ∪ B| > 2. We have A ⊥ B if, and only if, p(a,b) − pa pb = 0
for all a ∈ A and b ∈ B. On the other hand, A ⊥ B implies that C ⊥ D for
all C ⊆ A and D ⊆ B. By inductive hypothesis, A ⊥ B if and only if,

• p(a,b) − pa pb = 0 for all a ∈ A and b ∈ B,

• q(c,d) = qcqd for all c ∈ C and d ∈ D such that C ⊆ A, D ⊆ B and
|C ∪ D| < |A ∪ B|.

Hence, it is sufficient to prove that p(a,b) − pa pb = q(a,b) − qaqb under the
assumption that q(c,d) = qcqd for all c ∈ C and d ∈ D such that C ⊆ A, D ⊆ B
and |C ∪ D| < |A ∪ B|. By Proposition 4.4, we have

p(a,b) =
∑

P⊆A∪B

q(a,b)P

∏
i∈(A∪B)\P

λ(a,b){i} (4.60)

pa pb =
(∑

P⊆A

qaP

∏
i∈A\P

λa{i}

)(∑
P⊆B

qbP

∏
i∈B\P

λb{i}

)
. (4.61)

Hence, we have

p(a,b) = q(a,b) +
∑

P(A∪B

q(a,b)P

∏
i∈(A∪B)\P

λ(a,b){i} (4.62)

= q(a,b) +
∑

P(A∪B

qaP∩AqbP∩B

∏
i∈(A∪B)\P

λ(a,b){i} , (4.63)

where the latter equality holds by inductive hypothesis. Also, we have

pa pb =
∑

P⊆A∪B

qaP∩AqbP∩B

∏
i∈(A∪B)\P

λ(a,b){i} (4.64)

= qaqb +
∑

P(A∪B

qaP∩AqbP∩B

∏
i∈(A∪B)\P

λ(a,b){i} . (4.65)

It is now easy to see that p(a,b) − pa pb = q(a,b) − qaqb. �

E 61. If p ∈ NB1,X and

ψ(p) =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
, (4.66)

then, for S ⊆ X, S , ∅ and s ∈ S, we have

qs =
∏
i∈S

qs{i} = 0, (4.67)

since all the variables are independent.



102 Chapter 4

Alternative Parametrization Map

The new parametrization map hm,X is defined as follows. Note how (4.69) is similar
to (4.17).

Definition 142. If X = {X1, . . . , Xn} is a set of discrete random variables and m is
an integer ≥ 1, the function hm,X : Πm,X → RX is defined by

hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
=

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
, (4.68)

where

qs =

m∑
t=1

ωt

∏
i∈S

δt,s{i} . (4.69)

Proposition 4.6. We have hm,X = ψ ◦ fm,X ◦ φ.

P. Given π =
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
, let

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
= hm,X(π), (4.70)(

(λ′xi
)xi∈∪

n
i=1Xi ,

(
(q′s)s∈S

)
S⊆X

)
= (ψ ◦ fm,X ◦ φ)(π). (4.71)

Let us show that hm,X(π) = (ψ ◦ fm,X ◦ φ)(π). We have

φ(π) =
(
ωt, (δt,xi + λxi)xi∈∪

n
i=1Xi

)m
t=1. (4.72)

Letting
(
(px)x∈X

)
= ( fm,X ◦ φ)(π), we thus have

px =

m∑
t=1

ωt

∏
i∈X

(
δt,x{i} + λx{i}

)
. (4.73)

Hence, we have

λ′xi
= pxi =

m∑
t=1

ωt
(
δt,xi + λxi

)
= λxi , (4.74)

and
q′s = ps −

∑
P(S

q′sP

∏
i∈S \P

ps{i} . (4.75)

To conclude the proof, let us show inductively that q′s = qs.

1. For S = ∅, we have

q′() = 1 =
m∑

t=1

ωt = q(). (4.76)



4.3 Preliminaries 103

2. For |S | ≥ 1, by inductive hypothesis and because ps{i} = λs{i} , we have

q′s = ps −
∑
P(S

qsP

∏
i∈S \P

λs{i} (4.77)

= ps −
∑
P(S

( m∑
t=1

ωt

∏
i∈P

δt,s{i}

)( ∏
i∈S \P

λs{i}

)
. (4.78)

On the other hand, by (4.73), we have

ps =

m∑
t=1

ωt

∏
i∈S

(δt,s{i} + λs{i}) (4.79)

=

m∑
t=1

ωt

∑
P⊆S

(∏
i∈P

δt,s{i}
)( ∏

i∈S \P

λs{i}
)
, (4.80)

=
∑
P⊆S

( m∑
t=1

ωt

∏
i∈P

δt,s{i}

)( ∏
i∈S \P

λs{i}

)
. (4.81)

Hence, we have q′s = qs. �

Corollary 4.7. We have f −1
m,X = φ ◦ h−1

m,X ◦ ψ.

Figure 4.4 summarizes the link between the old and new parametrization. Note
that hm,X(Πm,X) = ψ(NBm,X).

Πm,X

RX

ψ
φ

fm,X

hm,X

S X

hm,X(Πm,X)

NBm,X

Θm,X

Figure 4.4: New parametrization of NBm,X

4.3.2 Notations

This section introduces notations to manipulate vectors and matrices. In matrix
operations, vectors of Rm are considered row vectors, i.e. elements of R1×m.



104 Chapter 4

Definition 143. If A is a m× k matrix and p ( {1, . . . ,m}, let Ap̂ be the (m− |p|)× k
matrix obtained from A by removing the rows with indices in p.

Definition 144. If A is a m× k matrix and p ( {1, . . . , k}, let Ap̂ be the m× (k− |p|)
matrix obtained from A by removing the columns with indices in p.

Definition 145. Let A be a m × k matrix given by

A =


a11 · · · a1k
...

...

am1 · · · amk

 . (4.82)

If p = (p1, . . . , pl) ∈ {1, . . . ,m}l, let Ap denote the l × k matrix given by

Ap =


ap11 · · · ap1k
...

...

apl1 · · · aplk

 . (4.83)

If p = (p1, . . . , pl) ∈ {1, . . . , k}l, let Ap denote the m × l matrix given by

Ap =


a1p1 · · · a1pl
...

...

amp1 · · · ampl

 . (4.84)

R 75. To simplify the notation of the above operations, a vector p with a
single component is denoted by its component and a set p with a single element is
denoted by its element. Hence, the element of a matrix A at the intersection of the
ith row and jth column is denoted Ai

j. The ith element of a row vector ω is denoted
ωi.

4.3.3 Core Results

The constraints
∑m

t=1 ωtδt,xi = 0 on the components of an element of Πm,X have the
following consequence.

Theorem 4.8. Let w ∈
(
∪Xi∈XXi

)m−1. If((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X , (4.85)

and t ∈ {1, . . . ,m}, then

(−1)t det At̂ = ωt

m∑
j=1

(−1) j det A ĵ, (4.86)

where A ∈ Rm×(m−1) is such that Ai
j = δi,w j .



4.3 Preliminaries 105

P. Theorem 4.8 is a special case of Theorem 4.32 (see Section 4.7). �

Theorem 4.8 will be used to express the ωt’s in terms of the δt,xi’s:

ωt =
(−1)t det At̂∑m
j=1(−1) j det A ĵ

, (4.87)

if
∑m

j=1(−1) j det A ĵ , 0.
To formulate subsequent results and assumptions, let us define a family αm

{u,v}
of real-valued functions defined on RX .

Definition 146. If u, v ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j for all i, j ∈ {1, . . . ,m − 1},
the function αm

{u,v} : RX → R is defined by

αm
{u,v}

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
= det B (4.88)

where B ∈ R(m−1)×(m−1) is such that Bi
j = q(ui,v j).

R 76. In the above definition, each assumption Ui , V j ensures that q(ui,v j) =

p(ui,v j) − pui pvi is well-defined.

R 77. Different choices of parameters u and v for the family αm
{u,v} may lead

to the same function. For example, as implied by our notation, we have αm
{u,v} =

αm
{v,u}.

E 62. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 2, then

α2
{u,v}(q) = det

(
q(u1,v1)

)
= q(u1,v1). (4.89)

E 63. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 3, then

α3
{u,v}(q) = det

(
q(u1,v1) q(u1,v2)
q(u2,v1) q(u2,v2)

)
. (4.90)

Applying a function αm
{u,v} to an element of hm,X(Πm,X) returns a noteworthy

value.

Theorem 4.9. Let u, v ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j for all i, j ∈ {1, . . . ,m − 1}.
If

q = hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
, (4.91)

then

αm
{u,v}(q) =

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
u

)( m∑
j=1

(−1) j det A ĵ
v

)
, (4.92)

where Au, Av ∈ R
m×(m−1) are such that (Au)i

j = δi,u j and (Av)i
j = δi,v j .



106 Chapter 4

P. Theorem 4.9 is a special case of Theorem 4.33 (see Section 4.7). �

Theorem 4.9 has the following corollary.

Corollary 4.10. Let u, v ∈
(
∪Xi∈XXi

)m satisfy Ui , V j for all i, j ∈ {1, . . . ,m}. If
q ∈ hm,X(Πm,X), then

α(m+1)
{u,v} (q) = 0. (4.93)

P. Corollary 4.10 is a special case of Corollary 4.34 (see Section 4.7). �

R 78. Let q ∈ hm,X(Πm,X). The function α(m+1)
{u,v} is applied to q in the above

corollary, while αm
{u,v} is applied in Theorem 4.9.

R 79. The expression αm
{u,v}(ψ(p)) is a polynomial in the components of p.

Hence, Corollary 4.10 may be useful to derive a semi-algebraic description of
NBm,X .

Theorem 4.11. Let u ∈
(
∪Xi∈XXi

)m and v ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j for all
i ∈ {1, . . . ,m} and all j ∈ {1, . . . ,m − 1}. If

q = hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
(4.94)

then, for all t ∈ {1, . . . ,m},
m∑

j=1

(−1) jδt,u jα
m
{u ĵ,v}

(q) = 0. (4.95)

P. Theorem 4.11 is a special case of Theorem 4.35 (see Section 4.7). �

If αm
{um̂,v}

, 0, Theorem 4.11 can be used to express δt,um as a function of q and
δt,u1 , . . . , δt,um−1 :

δt,um = −
(−1)m

αm
{um̂,v}

m−1∑
j=1

(−1) jδt,u jα
m
{u ĵ,v}

(q). (4.96)

Let us define two families βm
w,{u,v},p and γm

w,{u,v},p of functions on RX .

Definition 147. If w ∈ ∪Xi∈XXi and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy W , Ui, W , V j,
and Ui , V j for all i, j ∈ {1, . . . ,m − 1} and if p is an integer such that 1 ≤ p ≤ m,
the function βm

w,{u,v},p : RX → R is defined by

βm
w,{u,v},p

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
=


∑

(P1,P2)∈Pm,p det BP1,P2 if 1 ≤ p ≤ m − 1,
0 if p = m,

(4.97)

where Pm,p is the set of pairs (P1, P2) such that {P1, P2} is a partition of {1, . . . ,m−
1}, |P1| = m − 1 − p and |P2| = p, and BP1,P2 ∈ R

(m−1)×(m−1) is such that

(
BP1,P2

)i
j =

q(ui,v j) if i ∈ P1,
q(w,ui,v j) if i ∈ P2.

(4.98)



4.3 Preliminaries 107

E 64. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 2, then

β2
w,{u,v},1(q) = det

(
qw,u1,v1

)
(4.99)

β2
w,{u,v},2(q) = 0. (4.100)

E 65. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 3, then

β3
w,{u,v},1(q) = det

(
q(u1,v1) q(u1,v2)

q(w,u2,v1) q(w,u2,v2)

)
+ det

(
q(w,u1,v1) q(w,u1,v2)
q(u2,v1) q(u2,v2)

)
(4.101)

β3
w,{u,v},2(q) = det

(
q(w,u1,v1) q(w,u1,v2)
q(w,u2,v1) q(w,u2,v2)

)
(4.102)

β3
w,{u,v},3(q) = 0. (4.103)

Definition 148. If w ∈ ∪Xi∈XXi and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy W , Ui, W , V j,
and Ui , V j for all i, j ∈ {1, . . . ,m − 1} and if p is an integer such that 1 ≤ p ≤ m,
the function γm

w,{u,v},p : RX → R is defined by

γm
w,{u,v},p

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
=

0 if p = 1,∑
(P1,P2,P3)∈P′m,p det BP1,P2,P3 if 2 ≤ p ≤ m,

(4.104)

where P′m,p is the set of triples (P1, P2, P3) such that {P1, P2, P3} is a partition of
{1, . . . ,m − 1}, |P1| = m − p, |P2| = p − 2 and |P3| = 1, and BP1,P2,P3 ∈ R

(m−1)×(m−1)

is such that

(
BP1,P2,P3

)i
j =


q(ui,v j) if i ∈ P1,

q(w,ui,v j) if i ∈ P2,

q(w,ui)q(w,v j) if i ∈ P3.

(4.105)

E 66. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 2, then

γ2
w,{u,v},1(q) = 0 (4.106)

γ2
w,{u,v},2(q) = det

(
q(w,u1)q(w,v1)

)
. (4.107)

E 67. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 3, then

γ3
w,{u,v},1(q) = 0 (4.108)

γ3
w,{u,v},2(q) = det

(
q(u1,v1) q(u1,v2)

q(w,u2)q(w,v1) q(w,u2)q(w,v2)

)
+ det

(
q(w,u1)q(w,v1) q(w,u1)q(w,v2)

q(u2,v1) q(u2,v2)

)
(4.109)

γ3
w,{u,v},3(q) = det

(
q(w,u1,v1) q(w,u1,v2)

q(w,u2)q(w,v1) q(w,u2)q(w,v2)

)
+ det

(
q(w,u1)q(w,v1) q(w,u1)q(w,v2)

q(w,u2,v1) q(w,u2,v2)

)
,

(4.110)



108 Chapter 4

Using the families βm
w,{u,v},p and γm

w,{u,v},p, let us define a family νm
w,{u,v} of func-

tions on RX returning a polynomial with real coefficients.

Definition 149. If w ∈ ∪Xi∈XXi and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy W , Ui, W , V j,
and Ui , V j for all i, j ∈ {1, . . . ,m − 1}, let νm

w,{u,v} be the function defined on RX

that returns the polynomial in s given by

νm
w,{u,v}(q) = smαm

{u,v}(q) +
m∑

p=1

sm−p(βm
w,{u,v},p(q) − γm

w,{u,v},p(q)
)
. (4.111)

E 68. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 2, then

ν2
w,{u,v}(q) = s2qu1,v1 + sqw,u1,v1 − qw,u1qw,v1 . (4.112)

E 69. If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
and m = 3, then

ν3
w,{u,v}(q) = s3(q(u1,v1)q(u2,v2)−q(u2,v1)q(u1,v2)

)
+ s2(q(u1,v1)q(w,u2,v2)−q(w,u2,v1)q(u1,v2)

+ q(w,u1,v1)q(u2,v2) − q(u2,v1)q(w,u1,v2)
)
+ s

(
q(w,u1,v1)q(w,u2,v2) − q(w,u2,v1)q(w,u1,v2)

− q(u1,v1)q(w,u2)q(w,v2) + q(w,u2)q(w,v1)q(u1,v2) − q(w,u1)q(w,v1)q(u2,v2)

+ q(u2,v1)q(w,u1)q(w,v2)
)
+

(
−q(w,u1,v1)q(w,u2)q(w,v2) + q(w,u2)q(w,v1)q(w,u1,v2)

− q(w,u1)q(w,v1)q(w,u2,v2) + q(w,u2,v1)q(w,u1)q(w,v2)
)
. (4.113)

The roots of the polynomial νm
w,{u,v}(q) are of interest.

Theorem 4.12. Let w ∈ ∪Xi∈XXi and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy W , Ui, W , V j,
and Ui , V j for all i, j ∈ {1, . . . ,m − 1}. If

q = hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
, (4.114)

then

νm
w,{u,v}(q) = αm

{u,v}(q)
m∏

j=1

(
s + δ j,w

)
. (4.115)

P. Theorem 4.12 is a special case of Theorem 4.36 (see Section 4.7). �

By Theorem 4.12, if q ∈ hm,X(Πm,X) and αm
{u,v}(q) , 0, the set of roots of the

polynomial νm
w,{u,v}(q) is the set {−δ1,w, . . . ,−δm,w}.

Let us define a last family ζm
t,{u,v} of functions on RX .

Definition 150. If T ⊆ X, t ∈ T and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy Ui < T , V j < T ,
and Ui , V j for all i, j ∈ {1, . . . ,m− 1}, the function ζm

t,{u,v} : RX → R is defined by

ζm
t,{u,v}

(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
=

m−1∑
p=1

det B(p), (4.116)



4.4 Computation of Fibers of hm 109

where B(p) ∈ R(m−1)×(m−1) is such that

B(p)i
j =

q(t,ui,v j) for i = p,
q(ui,v j) for i , p.

(4.117)

The following theorem holds.

Theorem 4.13. Let S ⊆ X, s ∈ S and u, v ∈
(
∪Xi∈XXi

)m−1 satisfy Ui < S , V j < S
and Ui , V j for all i, j ∈ {1, . . . ,m − 1}. If

q = hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
, (4.118)

then

αm
{u,v}(q)

( m∑
i=1

∏
j∈S

δi,s{ j}
)
= αm

{u,v}(q)qs + ζ
m
s,{u,v}(q). (4.119)

P. Theorem 4.13 is a special case of Theorem 4.39 (see Section 4.7). �

4.4 Computation of Fibers of hm

This section discusses the application of the results of Section 4.3.3 to compute the
preimage of a distribution q ∈ hm,X(Πm,X), and it proposes two algorithms.

4.4.1 A First Algorithm

Using Theorem 4.8 and Theorem 4.11, let us show that a parameter((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X (4.120)

can be obtained from a subset of its components and q = hm,X(π) under appropriate
assumptions.

Suppose that there exist u, v,w ∈
(
∪Xi∈XXi

)m−1 such that Ui , V j, Ui , W j,
and Vi , W j for all i, j ∈ {1, . . . ,m− 1}. This assumption ensures that the functions
αm
{w,v}, α

m
{w,u}, α

m
{(w ĵ,xi),v}

and αm
{(w ĵ,xi),u}

used below are defined. Also, suppose we are
given q = hm,X(π) and the components of π that are elements of the matrix

A =


δ1,w1 · · · δ1,wm−1
...

...

δm,w1 · · · δm,wm−1

 . (4.121)

By Theorem 4.8, if
∑m

j=1(−1) j det A ĵ , 0, then

ωt =
(−1)t det At̂∑m
j=1(−1) j det A ĵ

. (4.122)



110 Chapter 4

If αm
{w,v}(q) , 0, Xi ∈ X \ ∪m−1

i=1 {Vi}, and xi ∈ Xi \ {w1, . . . ,wm−1}, then

δt,xi =
(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) jMt
jα

m
{(w ĵ,xi),v}(q) (4.123)

by Theorem 4.11. Similarly, if αm
{w,u}(q) , 0, Xi ∈ ∪

m−1
i=1 {Vi}, and xi ∈ Xi \

{w1, . . . ,wm−1}, then

δt,xi =
(−1)m+1

αm
{w,u}(q)

m−1∑
j=1

(−1) jMt
jα

m
{(w ĵ,xi),u}(q). (4.124)

To describe these equations and assumptions concisely, a family fu,v,w of functions
is defined as follows.

Definition 151. If u, v,w ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j, Ui , W j, and Vi , W j

for all i, j ∈ {1, . . . ,m − 1}, the set Au,v,w is defined by

(M, q) ∈ Au,v,w, (4.125)

if, and only if, M ∈ Rm×(m−1), q ∈ RX , and

αm
{u,w}(q) , 0 (4.126)

αm
{v,w}(q) , 0 (4.127)∑

j=1

(−1) j det M ĵ , 0. (4.128)

Definition 152. If u, v,w ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j, Ui , W j, and Vi , W j

for all i, j ∈ {1, . . . ,m − 1}, the function fu,v,w is defined on Au,v,w by

fu,v,w
(
M, q

)
=

((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
(4.129)

where, if q =
(
(λ′xi

)xi∈∪
n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
,

λxi = λ
′
xi

(4.130)

ωt =
(−1)t det M t̂∑m
j=1(−1) j det M ĵ

(4.131)

δt,xi =



Mt
i if xi ∈ {w1, . . . ,wm−1}

(−1)m+1

αm
{w,v}(q)

∑m−1
j=1 (−1) jMt

jα
m
{(w ĵ,xi),v}

(q) if xi ∈ Xi \ {w1, . . . ,wm−1}

and Xi ∈ X \ ∪m−1
i=1 {Vi}

(−1)m+1

αm
{w,u}(q)

∑m−1
j=1 (−1) jMt

jα
m
{(w ĵ,xi),u}

(q) if xi ∈ Xi \ {w1, . . . ,wm−1}

and Xi ∈ ∪
m−1
i=1 {Vi}.

(4.132)



4.4 Computation of Fibers of hm 111

As discussed above, the following lemma holds.

Lemma 4.14. Let u, v,w ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j, Ui , W j, and Vi , W j

for i, j ∈ {1, . . . ,m − 1}. If

π =
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X (4.133)

and the m× (m− 1) matrix A such that Ai
j = δi,w j satisfy

(
A, hm,X(π)

)
∈ Au,v,w, then

π = fu,v,w
(
A, hm,X(π)

)
. (4.134)

By Theorem 4.12, the components of a parameter π ∈ h−1
m,X(q) that are part of

the matrix A given by (4.121) are constrained as follows.

Definition 153. If k is a strictly positive integer, let Pk denote the set of permuta-
tions of {1, . . . , k}, i.e. the set of bijections from {1, . . . , k} to {1, . . . , k}.

Lemma 4.15. Let u, v,w ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j, Ui , W j, and Vi , W j

for all i, j ∈ {1, . . . ,m − 1}. If

q = hm,X
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
(4.135)

satisfy αm
{u,v}(q) , 0, then there exist permutations σ1, . . . , σm−1 ∈ Pm such that, for

all t ∈ {1, . . . ,m} and j ∈ {1, . . . ,m − 1}, we have

δt,w j = −rσ j(t), j, (4.136)

where {r1, j, . . . , rm, j} are the m roots of νm
w j,{u,v}

(q) for j ∈ {1, . . . ,m − 1}.

P. By Theorem 4.12, we have{
δ1,w j , . . . , δm,w j

}
=

{
(−r1, j), . . . , (−rm, j)

}
(4.137)

for j ∈ {1, . . . ,m − 1}. Hence, there exist m − 1 permutations σ1, . . . , σm−1 ∈ Pm

such that
δt,w j = −rσ j(t), j, (4.138)

for t ∈ {1, . . . ,m} and j ∈ {1, . . . ,m − 1}. �

Lemma 4.14 and Lemma 4.15 readily suggest the following algorithm. Its
assumptions are described using the sets Qm,X and Λ′

{u,v,w}.

Definition 154. If X is a finite and non-empty set of discrete random variables and
m is an integer ≥ 2, the set Qm,X is defined by

{u, v,w} ∈ Qm,X (4.139)

if, and only if,



112 Chapter 4

• u, v,w ∈
(
∪Xi∈XXi

)m−1,

• Ui , V j, Ui , W j, and Vi , W j for all i, j ∈ {1, . . . ,m − 1},

• ui , u j, vi , v j, and wi , w j for i , j,

• there is no Xk ∈ X such that Xk ⊆ {u1, . . . , um−1}, Xk ⊆ {v1, . . . , vm−1}, or
Xk ⊆ {w1, . . . ,wm−1}.

Definition 155. If {u, v,w} ∈ Qm,X , the set Λ′
{u,v,w} is defined by

Λ′
{u,v,w} =

{
q ∈ RX

∣∣∣∣αm
{u,v}(q) , 0, αm

{u,w}(q) , 0, αm
{v,w}(q) , 0

}
. (4.140)

R 80. In the definition of Qm,X , the first two constraints on u, v, and w simply
ensure that the functions αm

{u,v} and νm
wi,{u,v}

with i ∈ {1, . . . ,m − 1} are defined. The
last two constraints are necessary to have hm,X(Πm,X) ∩ Λ′

{u,v,w} , ∅. Indeed, given
q = hm,X(π), let A be the m×(m−1) matrix such that Ai

j = δi,u j . If ui = u j with i , j,
the ith and jth columns of A are identical. If Xk ⊆ {u1, . . . , um−1}, the columns of A
corresponding to the values of Xk sum to zero. In both cases, by Theorem 4.9, we
thus have

αm
{u,v}(q) = αm

{u,w}(q) = 0. (4.141)

R 81. By Theorem 4.9, one of the assertions αm
{u,v}(q) , 0, αm

{u,w}(q) , 0 and
αm
{v,w}(q) , 0 is redundant if q ∈ hm,X

(
Πm,X

)
.

The following algorithm takes for input

• u, v,w such that {u, v,w} ∈ Qm,X ,

• q ∈ hm,X
(
Πm,X

)
∩ Λ′

{u,v,w},

and returns a set S ⊆ h−1
m,X(q).

Algorithm 8
1. For j ∈ {1, . . . ,m − 1}, compute the m roots r1, j, . . . , rm, j of νm

w j,{u,v}
(q).

2. Set S := ∅.

3. Set σm−1 ∈ Pm such that σm−1(t) := t for t ∈ {1, . . . ,m}.

4. For each (σ1, . . . , σm−2) ∈ (Pm)m−2,

(a) Set A ∈ Rm×(m−1) such that Ai
j := −rσ j(i), j.

(b) If (A, q) ∈ Au,v,w,

i. Compute π := fu,v,w(A, q).
ii. If π ∈ Πm,X and q = hm,X(π), set S := S ∪ {π}.

5. Return S . �



4.4 Computation of Fibers of hm 113

R 82. The roots of the polynomial νm
w j,{u,v}

(q) are counted with their multi-
plicity. Since its leading coefficient is αm

{u,v}(q) , 0, νm
w j,{u,v}

(q) does have m roots.

The fiber h−1
m,X(q) can be obtained easily from the output of Algorithm 8.

Theorem 4.16. If S is the result of Algorithm 8 with inputs u, v,w, and q, then((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ h−1

m,X(q) (4.142)

if, and only if, there exists σ ∈ Pm such that((
ωσ(t), (δσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ S . (4.143)

P. Let T be the set such that((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ T (4.144)

if, and only if, there exists σ ∈ Pm, such that((
ωσ(t), (δσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ S . (4.145)

1. Let us show that T ⊆ h−1
m,X(q). By Step 4(b)ii of Algorithm 8, we have

S ⊆ h−1
m,X(q). If σ ∈ Pm and

π =
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X , (4.146)

then

π′ =
((
ωσ(t), (δσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Πm,X (4.147)

and hm,X(π) = hm,X(π′). Hence, S ⊆ h−1
m,X(q) implies T ⊆ h−1

m,X(q).

2. Let us show that h−1
m,X(q) ⊆ T . Consider

π =
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ h−1

m,X(q). (4.148)

For j ∈ {1, . . . ,m − 1}, let {r1, j, . . . , rm, j} be the roots of νm
w j,{u,v}

(q) com-
puted at Step 1 of Algorithm 8. By Lemma 4.15, there exist permutations
σ1, . . . , σm−1 ∈ Pm such that

δt,w j = −rσ j(t), j (4.149)

for t ∈ {1, . . . ,m} and j ∈ {1, . . . ,m − 1}. Let σ = (σm−1)−1 ∈ Pm and

π′ =
((
ωσ(t), (δσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
. (4.150)

As discussed above, π′ ∈ h−1
m,X(q). Let us show that π′ ∈ S . For j ∈

{1, . . . ,m − 1}, let
σ′j = σ j ◦ σ ∈ Pm, (4.151)



114 Chapter 4

and let A be the m × (m − 1) matrix such that Ai
j = −rσ′j(i), j. By (4.149), we

have
Ai

j = δσ(i),w j . (4.152)

By Theorem 4.9, the hypotheses αm
{w,u}(q) , 0 and π′ ∈ h−1

m,X(q) imply (A, q) ∈
Au,v,w. By Lemma 4.14, we have

π′ = fu,v,w(A, q). (4.153)

Hence, π′ ∈ S . To conclude, note that π′ ∈ S implies π ∈ T . Therefore,
h−1

m,X(q) ⊆ T . �

R 83. Algorithm 8 computes S instead of h−1
m,X(q) because S is smaller and

contains all the information necessary to generate h−1
m,X(q).

R 84. The sets S and h−1
m,X(q) are finite, with |S | ≤ |(Pm)m−2| = (m!)m−2 and

h−1
m,X(q) ≤ (m!)m−1.

The computational complexity of Algorithm 8 increases very quickly with the
number m of hidden classes since the set

(
Pm

)m−2, which has (m!)m−2 elements, is
enumerated. Moreover, the computation of the polynomials and the computation
of their roots may be costly. Finally, checking whether q = hm,(π) may also be
costly. On the other hand, the complexity increases more slowly with the number
of observable variables and their cardinalities. In particular, the complexity of the
computation of fu,v,w(A, q) in Step 4(b)i grows linearly with

∑
Xi∈X |Xi|.

4.4.2 A More Efficient Algorithm

Using Theorem 4.13, a computationaly more efficient algorithm can be defined. Its
assumptions are slightly different.

Definition 156. If X is a finite and non-empty set of discrete random variables and
m is an integer ≥ 2, the set Q′m,X is defined by

({u, v},w) ∈ Q′m,X (4.154)

if, and only if, {u, v,w} ∈ Qm,X and Wm−1 < {W1, . . . ,Wm−2}.

R 85. The requirement Wm−1 < {W1, . . . ,Wm−2} simply ensures that the
function ζm

(wm−1,wi),{u,v}
is defined for i ∈ {1, . . . ,m − 2}.

Suppose that ({u, v},w) ∈ Q′m,X and

q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
= hm,X

((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
.

(4.155)



4.4 Computation of Fibers of hm 115

For t ∈ {1, . . . ,m} and j ∈ {1, . . . ,m − 1}, the components δt,w j satisfy

m∑
j=1

δ j,wiδ j,wm−1 = q{wi,wm−1} +
ζm
{wi,wm−1},{u,v}

(q)

αm
{u,v}(q)

(4.156)

by Theorem 4.13. This observation suggest the following algorithm. It takes for
input

• u, v,w such that ({u, v},w) ∈ Q′m,X , and

• q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
∈ hm,X

(
Πm,X

)
∩ Λ′

{u,v,w},

and returns a set S ⊆ h−1
m,X(q).

Algorithm 9
1. For j ∈ {1, . . . ,m − 1}, compute the m roots r1, j, . . . , rm, j of νm

w j,{u,v}
(q).

2. For i ∈ {1, . . . ,m − 2}, compute the set Ti of permutations σi ∈ Pm such that

m∑
j=1

rσi( j),wir j,wm−1 = q{wi,wm−1} +
ζm
{wi,wm−1},{u,v}

(q)

αm
{u,v}(q)

. (4.157)

3. Set S := ∅.

4. Set σm−1 ∈ Pm such that σm−1(t) := t for t ∈ {1, . . . ,m}.

5. For each (σ1, . . . , σm−2) ∈ T1 × · · · × Tm−2,

(a) Set A ∈ Rm×(m−1) such that Ai
j := −rσ j(i), j.

(b) If (A, q) ∈ Au,v,w,

i. Compute π := fu,v,w(A, q).
ii. If π ∈ Πm,X and q = hm,X(π), set S := S ∪ {π}.

6. Return S . �

The hope behind this algorithm is that each set Ti will be much smaller than Pm in
practice, so that Step 5 will only be performed a few times.

By (4.156), Algorithm 9 and Algorithm 8 applied to q ∈ hm,X
(
Πm,X

)
∩ Λ′

{u,v,w}
and u, v,w such that ({u, v},w) ∈ Q′m,X return the same set S . Hence, the following
theorem holds.

Theorem 4.17. If S is the result of Algorithm 9 with inputs u, v,w, and q, then((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ h−1

m,X(q) (4.158)

if, and only if, there exists σ ∈ Pm such that((
ωσ(t), (δσ(t),xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ S . (4.159)



116 Chapter 4

4.4.3 Discussion of the Assumptions

To compute the preimage h−1
m,X(q) of q ∈ hm,X(Πm,X) with Algorithm 8 (resp. Al-

gorithm 9), it is necessary to identify u, v,w such that {u, v,w} ∈ Qm,X (resp.
({u, v},w) ∈ Q′m,X), and q ∈ Λ′

{u,v,w}. Let us divide the assumptions to apply our
algorithms:

• it is necessary to have Qm,X , ∅ (or Q′m,X , ∅) and

• given {u, v,w} ∈ Qm,X (or ({u, v},w) ∈ Q′m,X), it is necessary to have q ∈
Λ′
{u,v,w}.

It is not straightforward to interpret the assumptions Qm,X , ∅ and Q′m,X , ∅.
However, one can see that Qm,X = ∅ if |X| < 3, and Q′m,X = ∅ if |X| < 4. The
following result may be helpful to understand the assumption Qm,X , ∅.

Proposition 4.18. There exists a partition {P1, P2, P3} of X such that∑
Xi∈P j

(
|Xi| − 1

)
≥ m − 1 (4.160)

for j ∈ {1, 2, 3} if, and only if, Qm,X , ∅.

P.

1. Consider {u, v,w} ∈ Qm,X . If

P1 =
{
Xi ∈ X

∣∣∣Xi ∩ {u1, . . . , um−1} , ∅
}
, (4.161)

P2 =
{
Xi ∈ X

∣∣∣Xi ∩ {v1, . . . , vm−1} , ∅
}
, (4.162)

P3 =
{
Xi ∈ X

∣∣∣Xi ∩ {w1, . . . ,wm−1} , ∅
}
∪

(
X \ (P1 ∪ P2)

)
, (4.163)

then {P1, P2, P3} is a partition of X such that
∑

Xi∈P j

(
|Xi| − 1

)
≥ m − 1 for

j ∈ {1, 2, 3}.

2. Consider a partition {P1, P2, P3} of X such that
∑

Xi∈P j

(
|Xi| − 1

)
≥ m − 1 for

j ∈ {1, 2, 3}. For j ∈ {1, 2, 3}, let

A j =
⋃

Xi∈P j

Xi \ {x0
i }, (4.164)

where x0
i is some arbitrary value of Xi. If u (resp. v and w) is a m − 1-

dimensional vector whose components are distinct elements of A1 (resp. A2
and A3), then {u, v,w} ∈ Qm,X . �

If Algorithm 8 can be applied to {u, v,w} ∈ Qm,X and ψ(p) ∈ hm,X(Πm,X) ∩
Λ′
{u,v,w}, the preimage f −1

m,X(p) is finite. Intuitively, if the dimension of parameter
space Θm,X is larger than the dimension of the space of distributions S X , then the
preimage should not be finite and it should be impossible to apply the algorithm.
The following result confirms this intuition.



4.4 Computation of Fibers of hm 117

Proposition 4.19. If d(Θm,X) > d(S X), then Qm,X = ∅.

P. By Proposition 4.18, it is sufficient to prove that d(S X) − d(Θm,X) ≥ 0 if
there exists a partition {P1, P2, P3} of X such that

∑
Xi∈P j

(
|Xi| − 1

)
≥ m − 1 for

j ∈ {1, 2, 3}.

1. First, let us show inductively that
∏n

i=1 ai ≥ 1 +
∑n

i=1(ai − 1) if ai ≥ 1 for
i ∈ {1, . . . , n}. For n = 1, we have

a1 ≥ 1 + (a1 − 1) = a1. (4.165)

For n > 1, we have
n∏

i=1

ai =
(n−1∏

i=1

ai
)
an ≥

(
1 +

n−1∑
i=1

(ai − 1)
)
an (4.166)

by inductive hypothesis. Also, we have

(
1 +

n−1∑
i=1

(ai − 1)
)
an = 1 +

n∑
i=1

(ai − 1) + (an − 1)
n−1∑
i=1

(ai − 1) ≥ 1 +
n∑

i=1

(ai − 1).

(4.167)
Hence, we have

n∏
i=1

ai ≥ 1 +
n∑

i=1

(ai − 1). (4.168)

2. We have

d(S X) − d(Θm,X) =
(∏
Xi∈X

|Xi|
)
− m

(
1 +

∑
Xi∈X

(|Xi| − 1)
)
. (4.169)

As shown above, we have(∏
Xi∈X

|Xi|
)
=

3∏
j=1

∏
Xi∈P j

|Xi| ≥

3∏
j=1

(
1 +

∑
Xi∈P j

(|Xi| − 1)
)
. (4.170)

For j ∈ {1, 2, 3}, let x j = 1 +
∑

Xi∈P j(|Xi| − 1). We thus have

d(S X) − d(Θm,X) ≥ x1x2x3 − m(x1 + x2 + x3 − 2). (4.171)

By hypothesis, x j ≥ m for j ∈ {1, 2, 3}. If we let a j = x j − m, we obtain

x1x2x3 − m(x1 + x2 + x3 − 2) = a1a2a3 + m(
a1a2 + a1a3 + a2a3 + (m − 1)

(
a1 + a2 + a3 + (m − 2)

))
. (4.172)

The terms of the above expression are non-negative, and we conclude that
d(S X) − d(Θm,X) ≥ 0. �

If {u, v,w} ∈ Qm,X (or ({u, v},w) ∈ Q′m,X) and q ∈ hm,X(Πm,X), the assumption
q ∈ Λ′

{u,v,w} is similar to a faithfulness assumption in the context of Bayesian net-
work models. If a parameter π is randomly picked in Πm,X , then hm,X(π) ∈ Λ′

{u,v,w}
with probability one. In practice, this does not necessarily mean that the hypothesis
q ∈ Λ′

{u,v,w} is not important. In particular, it does not hold when q ∈ hm−1,X(Πm−1,X)
by Corollary 4.10.



118 Chapter 4

4.4.4 Computation of the Fibers with Two Hidden Classes

In this section, we suppose that m = 2 and present additional results. The assump-
tions made to apply Algorithm 8 are easy to interpret. Let U and V be distinct
random variables, p ∈ S X and q = ψ(p). Since α2

{(u),(v)}(q) = q(u,v) = p(u,v)−p(u) p(v),

• α2
{(u),(v)}(q) , 0 for some u ∈ U and v ∈ V implies that U and V are not

independent in p,

• α2
{(u),(v)}(q) = 0 for all u ∈ U and v ∈ V implies that U and V are independent

in p.

Moreover, if
q = h2,X

((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)2
t=1, (λxi)xi∈∪

n
i=1Xi

)
, (4.173)

then, by Theorem 4.8 and Theorem 4.9,

α2
{(u),(v)}(q) = −δ1,uδ2,v = −δ1,vδ2,u. (4.174)

Hence, three distinct random variables that are not pairwise independent are needed
to apply Algorithm 8. Let us compute the fibers of h2,X when three such variables
do not exist. The cases where all the variables are pairwise independent and the
cases where only two variables are independent are considered separately.

All the Variables Are Pairwise Independent

This case has the following simple interpretation.

Proposition 4.20. All the variables are pairwise independent in p ∈ NB2,X if, and
only if, p ∈ NB1,X .

P.

1. If p ∈ NB1,X , then p ∈ NB2,X by Proposition 4.1, and all the variables are
pairwise independent by Corollary 4.10.

2. Suppose p ∈ NB2,X and all the variables are pairwise independent. Let

ψ(p) =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
, (4.175)

and let
π =

((
1, (0)xi∈∪

n
i=1Xi

)
, (λxi)xi∈∪

n
i=1Xi

)
∈ Π1,X . (4.176)

To show that p ∈ NB1,X , let us show that ψ(p) = h1,X(π). By Example 61, it
is sufficient to show that qs = 0 for s ∈ S, S ⊆ X, and S , ∅. Consider((

ωt, (δt,xi)xi∈∪
n
i=1Xi

)2
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ h−1

2,X
(
ψ(p)

)
. (4.177)

Since ω1 > 0, ω2 > 0, and ω1δ1,xi + ω2δ2,xi = 0 for xi ∈ ∪Xi∈XXi, we have
δ1,xi = 0 if, and only if, δ2,xi = 0. Moreover, by (4.174), δ1,uδ2,v = δ1,vδ2,u =



4.4 Computation of Fibers of hm 119

0 for u, v ∈ ∪Xi∈XXi such that U , V . Hence, there is at most one variable
U ∈ X such that δ1,u , 0 and δ2,u , 0 for some u ∈ U. For V ∈ X \ {U},
we have δ1,vδ2,v = 0. By definition of h2,X , we thus have qs = 0 for s ∈ S,
S ⊆ X and S , ∅. �

The preimage in Θ2,X of a distribution in NB1,X is described as follows.

Proposition 4.21. If

q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
∈ h1,X(Π1,X), (4.178)

then
π =

((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)2
t=1, (λ

′
xi

)xi∈∪
n
i=1Xi

)
∈ h−1

2,X(q) (4.179)

if, and only if,

π ∈ Π2,X (4.180)

λ′xi
= λxi for xi ∈ ∪Xi∈XXi (4.181)

δ1,xiδ2,x j = 0 for xi, x j ∈ ∪Xi∈XXi such that Xi , X j. (4.182)

P.

1. Suppose that π ∈ h−1
2,X(q). Then, π ∈ Π2,X and λ′xi

= λxi . By Proposition 4.20,
q ∈ h1,X(Π1,X) implies α2

{(u),(v)}(q) = 0 for u, v ∈ ∪Xi∈XXi such that U , V .
By (4.174), we thus have α2

{(u),(v)}(q) = −δ1,uδ2,v = 0.

2. Suppose that π ∈ Π2,X , λ′xi
= λxi for xi ∈ ∪Xi∈XXi, and δ1,xiδ2,x j = 0 for

xi, x j ∈ ∪Xi∈XXi such that Xi , X j. If

h2,X(π) =
(
(λ′xi

)xi∈∪
n
i=1Xi ,

(
(q′s)s∈S

)
S⊆X

)
, (4.183)

let us show that h2,X(π) = q. By hypothesis, λ′xi
= λxi . As shown in Exam-

ple 61, q ∈ h1,X(Π1,X) implies qs = 0 for s ∈ S, S ⊆ X and S , ∅. On
the other hand, as shown in the proof of Proposition 4.20, δ1,xiδ2,x j = 0 for
xi, x j ∈ ∪Xi∈XXi such that Xi , X j implies that q′s = 0 for s ∈ S, S ⊆ X, and
S , ∅. �

Only Two Variables Are Not Independent

The preimage of a distribution inNB2,X where only two variables are not indepen-
dent is described as follows.

Proposition 4.22. Let

q =
(
(λ′xi

)xi∈∪
n
i=1Xi ,

(
(q′s)s∈S

)
S⊆X

)
∈ h2,X(Π2,X), (4.184)

π =
((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)2
t=1, (λxi)xi∈∪

n
i=1Xi

)
. (4.185)

If there exist distinct variables U,V ∈ X such that



120 Chapter 4

• U 6⊥ V,

• Xi ⊥ X j for {Xi, X j} , {U,V}

in the distribution ψ−1(q), then π ∈ h−1
2,X(q) if, and only if,

0 > δ1,v0δ2,v0 (4.186)

λxi = λ
′
xi

for xi ∈ ∪Xi∈XXi (4.187)

ω1 =
−δ2,v0

−δ2,v0 + δ1,v0

(4.188)

ω2 =
δ1,v0

−δ2,v0 + δ1,v0

(4.189)

δt,xi = 0 for t ∈ {1, 2} and xi ∈ ∪Xi∈X\{U,V}Xi (4.190)

δt,v = δt,v0

α2
{(u0),(v)}(q)

α2
{(u0),(v0)}(q)

> −λ′v for t ∈ {1, 2} and v ∈ V (4.191)

δ1,u = −
α2
{(u),(v0)}(q)

δ2,v0

> −λ′u for u ∈ U (4.192)

δ2,u = −
α2
{(u),(v0)}(q)

δ1,v0

> −λ′u for u ∈ U, (4.193)

where u0 ∈ U and v0 ∈ V are such that α2
{(u0),(v0)}(q) , 0.

P.

1. Suppose that π ∈ h−1
2,X(q). Let us show that (4.186) to (4.193) hold. First,

π ∈ Π2,X implies δt,xi > −λxi = −λ
′
xi

for xi ∈ ∪Xi∈XXi and t ∈ {1, 2}.

(a) By (4.174), α2
{(u0),(v0)}(q) , 0 implies that δ1,v0 , 0 and δ2,v0 , 0.

Since ω1δ1,v0 + ω2δ2,v0 = 0, ω1 > 0 and ω2 > 0, we have δ1,v0δ2,v0 =

−
ω2
ω1

(δ2,v0)2. Hence, (4.186) holds.

(b) By definition of h2,X , (4.187) holds.

(c) Since ω1δ1,v0 +ω2δ2,v0 = 0, δ1,v0 = δ2,v0 would imply that ω1 +ω2 = 0.
This contradicts ω1 + ω2 = 1, and thus δ1,v0 , δ2,v0 . By Theorem 4.8,
(4.188) and (4.189) thus hold.

(d) By (4.174), (4.190) to (4.193) hold.

2. Suppose that (4.186) to (4.193) hold. It is straighforward to see that π ∈ Π2,X .
Let us show that h2,X(π) = q. Let

h2,X(π) =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
. (4.194)

By (4.187), λxi = λ
′
xi

. By (4.190), qs = 0 for S , ∅, {U,V} and s ∈ S. As
shown in the first part of the proof, (4.190) holds for a parameter in h−1

2,X(q),



4.4 Computation of Fibers of hm 121

and thus q′s = 0 for S , ∅, {U,V} and s ∈ S. For S = {U,V}, we have

q′(u,v) =
α2
{(u0),(v)}(q)α2

{(u),(v0)}(q)

α2
{(u0),(v0)}(q)

. (4.195)

By (4.174), we thus have q′(u,v) = α
2
{(u),(v)}(q) = q(u,v). �

4.4.5 Extensions

Using Algorithm 8 or Algorithm 9, it may be possible to compute fibers of the
parametrization maps of other classes of discrete Bayesian network models with
hidden variables. This section presents two examples, leaving their generalization
and in-depth analysis for future work.

A First Example

Consider a set {H, X1, . . . , X6} of discrete random variables, and consider the BN
modelMH = fH(Θ) with hidden variable H and observable variables {X1, . . . , X6}

obtained from the discrete Bayesian network model with structure given in Fig-
ure 4.5. If p = fH(θ) ∈ MH , then

X1

��

//

  B
BB

BB
BB

B X2

��

// X3

~~||
||

||
||

H

~~||
||

||
||

��   B
BB

BB
BB

B

X4 X5 X6

Figure 4.5: A Bayesian network structure over {H, X1, . . . , X6}

p(x1, x2, x3, x4, x5, x6) =
∑
h∈H

θX1
x1
θX2,x1

x2
θX3,x2

x3 θH,(x1,x2,x3)
h θX4,(x1,h)

x4 θX5,h
x5 θX6,h

x6 . (4.196)

It is straightforward to see that

p(x1, x2, x3) = θX1
x1
θX2,x1

x2
θX3,x2

x3 , (4.197)

p(x4, x5, x6|x1, x2, x3) =
∑
h∈H

θH,(x1,x2,x3)
h θX4,(x1,h)

x4 θX5,h
x5 θX6,h

x6 . (4.198)

The marginal distribution p(x1, x2, x3) is an element of the discrete Bayesian net-
work model for {X1, X2, X3} with structure X1 → X2 → X3. Hence, the values of
the parameters θX1

x1 , θX2,x1
x2 and θX3,x2

x3 can be obtained by (1.33). The conditional
distribution p(x4, x5, x6|x1, x2, x3) is an element of NB|H|,{X4,X5,X6}, and it may be
possible to apply the theory developped in this chapter.



122 Chapter 4

A Discrete HLC Model

Consider the HLC modelMH = fH(Θ) presented in Example 21. If p = fH(θ) ∈
MH , then we have by marginalization

p(x1, x2, x3) =
∑

h2∈H2

( ∑
h1∈H1

θH2,h1
h2

)
θX1,h2

x1
θX2,h2

x2
θX3,h2

x3 , (4.199)

p(xi, x4, x j) =
∑

h1∈H1

θH1
h1
θX4,h1

x4

( ∑
h2∈H2

θH2,h1
h2

θXi,h2
xi

)( ∑
h3∈H3

θH3,h1
h3

θ
X j,h3
x j

)
, (4.200)

p(x5, x6, x7) =
∑

h3∈H3

( ∑
h1∈H1

θH3,h1
h3

)
θX5,h3

x5 θX6,h3
x6 θX7,h3

x7 (4.201)

for i ∈ {1, 2, 3} and j ∈ {5, 6, 7}. Hence, we have

p(x1, x2, x3) ∈ NB|H2 |,{X1,X2,X3}, (4.202)

p(xi, x4, x j) ∈ NB|H1 |,{Xi,X4,X j}, (4.203)

p(x5, x6, x7) ∈ NB|H3 |,{X5,X6,X7}. (4.204)

If we have

{u, v,w} ∈ Q|H2 |,{X1,X2,X3}, p(x1, x2, x3) ∈ Λ′
{u,v,w}, (4.205)

{a, b, c} ∈ Q|H1 |,{Xi,X4,X j}, p(xi, x4, x j) ∈ Λ′{a,b,c}, (4.206)

{d, e, f } ∈ Q|H3 |,{X5,X6,X7}, p(x5, x6, x7) ∈ Λ′
{d,e, f }, (4.207)

then it is possible to compute with Algorithm 8 the components θX1,h2
x1 , θX2,h2

x2 , θX3,h2
x3 ,

θX4,h1
x4 , θH1

h1
, θX5,h3

x5 , θX6,h3
x6 , and θX7,h3

x7 of the parameter θ and

θXi,h1
xi =

∑
h2∈H2

θH2,h1
h2

θXi,h2
xi , (4.208)

θ
X j,h1
x j =

∑
h3∈H3

θH3,h1
h3

θ
X j,h3
x j . (4.209)

Let us show that no additional assumption is needed to compute the remaining
components θH2,h1

h2
and θH3,h1

h3
. For k ∈ {1, . . . , |H2| − 1}, let δWk ,h2

wk = θWk ,h2
wk − p(wk).

Then, (4.208) implies that∑
h2∈H2

θH2,h1
h2

δWk ,h2
wk = θWk ,h1

wk − p(wk). (4.210)

To express this relation in matrix form, label the values of H1 as h1,1, . . . , h1,|H1 |

and the values of H2 as h2,1, . . . , h2,|H2 |, and let A, B and C be the matrices such
that

A ∈ R|H1 |×(|H2 |−1), Ai
j = θ

H2,h1,i
h2, j

(4.211)

B ∈ R(|H2 |−1)×(|H2 |−1), B j
k = δ

Wk ,h2, j
wk (4.212)

C ∈ R|H1 |×(|H2 |−1), Ci
k = θ

Wk ,h1,i
wk − p(wk). (4.213)



4.5 Projections for Parameter Learning 123

Then, (4.210) is equivalent to AB = C. By Theorem 4.8 and Theorem 4.9, the
assumption p(x1, x2, x3) ∈ Λ′

{u,v,w} implies det B , 0. Hence, we have A = CB−1.
Moreover, we have

θH2,h1
h2,|H2 |

= 1 −
|H2 |−1∑

j=1

θH2,h1
h2, j

. (4.214)

Similarly, it is straighforward to obtain θH3,h1
h3

.

4.5 Projections for Parameter Learning

In this section, Algorithm 8 and Algorithm 9 are modified so that each returns a
single parameter and leads to a continuous projection when the input distribution is
sufficiently close to hm,X(Πm,X). As will be shown, it is sufficient to adapt the parts
of the algorithms where we test for equality and to keep the real part of the roots.

4.5.1 Projections Based on Algorithm 8

The following algorithm is adapted from Algorithm 8. It takes for input

• u, v,w such that {u, v,w} ∈ Qm,X ,

• q ∈ Λ′
{u,v,w},

and returns a parameter π ∈ Πm,X or ∅.

Algorithm 10
1. For j ∈ {1, . . . ,m − 1}, compute the real parts r1, j, . . . , rm, j of the m roots of

νm
w j,{u,v}

(q).

2. Set S := ∅.

3. Set σm−1 ∈ Pm such that σm−1(t) := t for t ∈ {1, . . . ,m}.

4. For each (σ1, . . . , σm−2) ∈ (Pm)m−2,

(a) Set A ∈ Rm×(m−1) such that Ai
j := −rσ j(i), j.

(b) If (A, q) ∈ Au,v,w,

i. Compute π := fu,v,w(A, q).
ii. If π ∈ Πm,X , set S := S ∪ {π}.

5. If S = ∅, return ∅. Otherwise, return an element of the set

arg min
π∈S

D
(
ψ−1(q) ‖ ψ−1(hm,X(π))

)
. (4.215)

�



124 Chapter 4

R 86. In Algorithm 8, the preimage h−1
m,X(q) is contained in S , and equality

between q and hm,X(π), π ∈ S is tested explicitely. In Algorithm 10, elements of S
should be interpreted as candidate projections of q. Instead of testing for equality,
the parameter in S that minimizes the KL distance to q is selected.

R 87. Algorithm 10 is non-deterministic because an order for the roots of
the polynomials νm

w j,{u,v}
(q) and an element in arg minπ∈S D

(
ψ−1(q) ‖ ψ−1(hm,X(π))

)
are chosen implicitely.

Using Algorithm 10, a family of projections can be derived. To formally de-
fine functions based on the output of the algorithm, its non-determinism must be
eliminated. However, the properties of the functions defined do not depend on the
particular choice and it can be done implicitely.

Definition 157. If u, v,w satisfy {u, v,w} ∈ Qm,X , the set Λu,v,w is the set of ele-
ments q ∈ Λ′

{u,v,w} such that Algorithm 10 applied to u, v,w and q returns a param-
eter π ∈ Π (and not ∅).

R 88. In other words, Λu,v,w is the set of elements q ∈ Λ′
{u,v,w} such that there

exist permutations σ1, . . . , σm−1 ∈ Pm such that

• σm−1 is the identity,

• (A, q) ∈ Au,v,w, and

• fu,v,w(A, q) ∈ Πm,X

where A is the m × (m − 1) matrix such that Ai
j = −rσ j(i),w j and r1,w j , . . . , rm,w j are

the real parts of the m roots of νm
w j,{u,v}

(q) for j ∈ {1, . . . ,m − 1}.

R 89. It is easy to see that Λu,v,w ∩ hm,X(Πm,X) = Λ′
{u,v,w} ∩ hm,X(Πm,X).

Definition 158. If u, v,w satisfy {u, v,w} ∈ Qm,X , the function πu,v,w : Λu,v,w →

Πm,X associates to q ∈ Λu,v,w the parameter obtained by applying Algorithm 10 to
u, v,w and q.

Let us check that the constraints on πu,v,w introduced in Section 4.1 hold.

Proposition 4.23. The set Λu,v,w is open.

The proof of Proposition 4.23 uses the following intermediate result.

Definition 159. The set Υm,X is defined by((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
∈ Υm,X (4.216)



4.5 Projections for Parameter Learning 125

if, and only if,
m∑

t=1

ωt = 1,
m∑

t=1

ωtδt,xi = 0, (4.217)∑
xi∈Xi

λxi = 1,
∑
xi∈Xi

δt,xi = 0 (4.218)

for t ∈ {1, . . . ,m}, Xi ∈ X and xi ∈ Xi.

Lemma 4.24. Let u, v,w ∈
(
∪Xi∈XXi

)m−1 satisfy Ui , V j, Ui , W j, and Vi , W j

for all i, j ∈ {1, . . . ,m − 1}. If (M, q) ∈ Au,v,w, then fu,v,w(M, q) ∈ Υm,X .

P. Let us check that((
ωt, (δt,xi)xi∈∪

n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
= fu,v,w(M, q) ∈ Υm,X . (4.219)

1. Trivially, we have
∑m

t=1 ωt = 1.

2. Trivially, we have
∑

xi∈Xi λxi = 1.

3. Let us show that
∑m

t=1 ωtδt,xi = 0 holds.

(a) If xi ∈ {w1, . . . ,wm−1}, we have
m∑

t=1

ωtδt,xi =

m∑
t=1

(−1)t det M t̂∑m
j=1(−1) j det M ĵ

Mt
i =

det M′∑m
j=1(−1) j det M ĵ

(4.220)

where M′ is the m × m matrix such that M′(2,...,m) = M and M′1 = Mi.
We have det M′ = 0 since the first and ith column of M′ are identical.

(b) If Xi ∈ X \ ∪m−1
i=1 {Vi} and xi ∈ Xi \ {w1, . . . ,wm−1}, we have

m∑
t=1

ωtδt,xi =

m∑
t=1

ωt
(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) jδt,w jα
m
{(w ĵ,xi),v}(q) (4.221)

=
(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) j
( m∑

t=1

ωtδt,w j

)
αm
{(w ĵ,xi),v}(q) (4.222)

= 0. (4.223)

(c) The case Xi ∈ ∪
m−1
i=1 {Vi} and xi ∈ Xi \ {w1, . . . ,wm−1} is similar to the

previous case, and one can see that
∑m

t=1 ωtδt,xi = 0.

4. Let us show that
∑

xi∈Xi δt,xi = 0 holds. For i, j ∈ {1, . . . ,m − 1}, we have

αm
{(w ĵ,wi),u}(q) =

0 if i , j,
(−1)(m−1)−iαm

{w,u}(q) if i = j,
(4.224)

αm
{(w ĵ,wi),v}(q) =

0 if i , j,
(−1)(m−1)−iαm

{w,v}(q) if i = j.
(4.225)



126 Chapter 4

Hence, we have

δwi =
(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) jδw jα
m
{(w ĵ,wi),v}(q), (4.226)

=
(−1)m+1

αm
{w,u}(q)

m−1∑
j=1

(−1) jδw jα
m
{(w ĵ,wi),u}(q). (4.227)

(a) For Xi ∈ X \ ∪m−1
i=1 {Vi}, we thus have

∑
xi∈Xi

δt,xi =
∑
xi∈Xi

(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) jδt,w jα
m
{(w ĵ,xi),v}(q) (4.228)

=
(−1)m+1

αm
{w,v}(q)

m−1∑
j=1

(−1) jδt,w j

∑
xi∈Xi

αm
{(w ĵ,xi),v}(q). (4.229)

If q =
(
(λxi)xi∈∪

n
i=1Xi ,

(
(qs)s∈S

)
S⊆X

)
, then

αm
{(w ĵ,xi),v}(q) = det



q(w1,v1) . . . q(w1,vm−1
...

...

q(w j−1,v1) . . . q(w j−1,vm−1)
q(w j+1,v1) . . . q(w j+1,vm−1)

...
...

q(wm−1,v1) . . . q(wm−1,vm−1)
q(xi,v1) . . . q(xi,vm−1)


, (4.230)

and thus

∑
xi∈Xi

αm
{(w ĵ,xi),v}(q) = det



q(w1,v1) . . . q(w1,vm−1
...

...

q(w j−1,v1) . . . q(w j−1,vm−1)
q(w j+1,v1) . . . q(w j+1,vm−1)

...
...

q(wm−1,v1) . . . q(wm−1,vm−1)∑
xi∈Xi q(xi,v1) . . .

∑
xi∈Xi q(xi,vm−1)


(4.231)

The last line of the above matrix contains only zeros. Its determinant
is thus zero, and we conclude that

∑
xi∈Xi δt,xi = 0.

(b) The case Xi ∈ ∪
m−1
i=1 {Vi} is similar to the previous case, and one can see

that
∑

xi∈Xi δt,xi = 0. �



4.5 Projections for Parameter Learning 127

P (P 4.23). Recall that Λu,v,w is open if, and only if,

(∀q ∈ Λu,v,w)
(
∃δ > 0 s.t. (r ∈ RX and |q − r| < δ)⇒ r ∈ Λu,v,w

)
. (4.232)

Also, recall that a distribution x ∈ Λu,v,w if, and only if, x ∈ Λ′
{u,v,w} and Algo-

rithm 10 applied to u, v,w and x return S , ∅. Consider q ∈ Λu,v,w.

1. Since q ∈ Λ′
{u,v,w} and Λ′

{u,v,w} is open, we have

∃δ > 0 s.t. (r ∈ RX and |q − r| < δ)⇒ r ∈ Λ′
{u,v,w}. (4.233)

2. Let us show that

∃δ > 0 s.t. (r ∈ Λ′
{u,v,w} and |q − r| < δ)⇒ r ∈ Λu,v,w. (4.234)

For x ∈ Λ′
{u,v,w} and j ∈ {1, . . . ,m − 1}, let ux

1,w j
, . . . , ux

m,w j
be the real parts

of the m roots of νm
w j,{u,v}

(x) (in some fixed order). For x ∈ Λ′
{u,v,w} and

σ = (σ1, . . . , σm−1) ∈ (Pm)m−1, let M(x, σ) be the m × (m − 1) matrix such
that M(x, σ)i

j = ux
σ j(i),w j

. If S q , ∅ is the result of Algorithm 10 applied to

u, v,w and q, there exists σq = (σq
1, . . . , σ

q
m−1) ∈ (Pm)m−1 such that σq

m−1 is
the identity,

(
M(q, σq), q

)
∈ Au,v,w and((

ωt, (δt,xi)xi∈∪
n
i=1Xi

)m
t=1, (λxi)xi∈∪

n
i=1Xi

)
= fu,v,w

(
M(q, σq), q

)
∈ S q, (4.235)

with δi,w j = −uq
σ

q
j (i),w j

for j ∈ {1, . . . ,m − 1}.

(a) By continuity of the coefficients of νm
w,{u,v}, continuity of the roots of

a polynomial and continuity of the function taking the real part of a
complex number, we have

(∀ε > 0)
(
∃δ > 0 s.t. (r ∈ Λ′

{u,v,w} and |q − r| < δ)⇒(
∃(σ1, . . . , σm−1) ∈ (Pm)m−1 s.t. |ur

σ j(i),w j
− uq

i,w j
| < ε

))
. (4.236)

Letting σr
j = σ

−1
m−1 ◦ σ

q
j ◦ σ j for j ∈ {1, . . . ,m − 1}, we obtain

(∀ε > 0)
(
∃δ > 0 s.t. (r ∈ Λ′

{u,v,w} and |q − r| < δ)⇒(
∃(σr

1, . . . , σ
r
m−1) ∈ (Pm)m−1 s.t. |ur

σr
j(i),w j

− uq
(σ−1

m−1◦σ
q
j )(i),w j

| < ε

and σr
m−1 is the identity

))
. (4.237)

(b) Since
(
M(q, σq), q

)
∈ Au,v,w, we have

(
M(q, (σ◦σq

1, . . . , σ◦σ
q
m−1)), q

)
∈

Au,v,w for any permutation σ ∈ Pm, in particular σ−1
m−1. By (4.237) and

because Au,v,w is open, we thus have

∃δ > 0 s.t. (r ∈ Λ′
{u,v,w} and |q − r| < δ)⇒(

∃(σr
1, . . . , σ

r
m−1) ∈ (Pm)m−1 s.t.

(
M(r, σr), r

)
∈ Au,v,w

and σr
m−1 is the identity

)
. (4.238)



128 Chapter 4

(c) By continuity of fu,v,w, (4.237) and (4.238), we have

(∀ε > 0)
(
∃δ > 0 s.t. (r ∈ Λ′

{u,v,w} and |q − r| < δ)⇒(
∃(σr

1, . . . , σ
r
m−1) ∈ (Pm)m−1 s.t.

(
M(r, σr), r

)
∈ Au,v,w,∣∣∣π − fu,v,w

(
M(r, σr), r

)∣∣∣ < ε, and σr
m−1 is the identity

))
, (4.239)

where

π = fu,v,w
(
M(q, (σ ◦ σq

1, . . . , σ ◦ σ
q
m−1)), q

)
∈ Πm,X . (4.240)

(Note that π ∈ h−1
m,X(q) if q ∈ hm,X(Πm,X)∩Λu,v,w.) By Lemma 4.24 and

because Πm,X is open in the topology induced by Υm,X , we thus have

∃δ > 0 s.t. (r ∈ Λ′
{u,v,w} and |q − r| < δ)⇒(

∃(σr
1, . . . , σ

r
m−1) ∈ (Pm)m−1 s.t.

(
M(r, σr), r

)
∈ Au,v,w,

fu,v,w
(
M(r, σr), r

)
∈ Πm,X , and σr

m−1 is the identity
)
, (4.241)

By (4.233) and (4.241), we have

∃δ > 0 s.t. (r ∈ RX and |q − r| < δ)⇒ r ∈ Λu,v,w. (4.242)
�

Corollary 4.25. The set hm,X(Πm,X) ∩ Λu,v,w is included in the interior of Λu,v,w.

Proposition 4.26. If q ∈ hm,X(Πm,X) ∩ Λu,v,w, then πu,v,w(q) ∈ h−1
m,X(q).

P. The proof of Proposition 4.26 is very similar to the proof of Theorem 4.16.
It is easy to see that the set S obtained after Step 4 of Algorithm 10 satisfies S ∩
h−1

m,X(q) , ∅. Hence, minπ∈S D
(
ψ−1(q) ‖ ψ−1(hm,X(π))

)
= 0 and

arg min
π∈S

D
(
ψ−1(q) ‖ ψ−1(hm,X(π))

)
= S ∩ h−1

m,X(q). (4.243)
�

Proposition 4.27. The function hm,X ◦ πu,v,w is continuous on Λu,v,w ∩ hm,X(Πm,X).

P. Recall that hm,X ◦ πu,v,w is continuous on Λu,v,w ∩ hm,X(Πm,X) if, and only if,

(
∀q ∈ Λu,v,w ∩ hm,X(Πm,X)

)
(∀ε > 0)

(
∃δ > 0 s.t.

(
r ∈ Λu,v,w and |r − q| < δ

)
⇒

(
|hm,X ◦ πu,v,w(r) − hm,X ◦ πu,v,w(q)| < ε

))
. (4.244)

Consider q ∈ Λu,v,w ∩ hm,X(Πm,X).



4.5 Projections for Parameter Learning 129

1. By Proposition 4.26, it is sufficient to show that

(∀ε > 0)
(
∃δ > 0 s.t.

(
r ∈ Λu,v,w and |r − q| < δ

)
⇒ |hm,X ◦ πu,v,w(r) − q| < ε

)
.

(4.245)

2. By Pinsker’s inequality (see (C.3) in Appendix C), we have

(∀p, p′ ∈ S X)
(
D(p ‖ p′) < δ⇒ (∀x ∈ X)

(
|px − p′x| <

√
2 ln 2δ

))
. (4.246)

By continuity of the L2-norm and continuity of ψ, we thus have

(∀q, q′ ∈ RX)(∀ε > 0)
(
∃δ > 0 s.t. D

(
ψ−1(q) ‖ ψ−1(q′)

)
< δ⇒ |q − q′| < ε

)
.

(4.247)
To prove the proposition, it is thus sufficient to show that

(∀ε > 0)
(
∃δ > 0 s.t.

(
r ∈ Λu,v,w and |r − q| < δ

)
⇒

D
(
ψ−1(q) ‖ ψ−1(hm,X(πu,v,w(r)))

)
< ε

)
. (4.248)

3. By definition of Algorithm 10, it is sufficient to show that

(∀ε > 0)
(
∃δ > 0 s.t.

(
r ∈ Λu,v,w and |r − q| < δ

)
⇒

(
∃σ = (σ1, . . . , σm−1)

∈ (Pm)m−1 s.t. (M(r, σ), r) ∈ Au,v,w, fu,v,w(M(r, σ), r) ∈ Πm,X , σm−1

is the identity, and D
(
ψ−1(q) ‖ ψ−1(hm,X( fu,v,w(A(r, σ), r))

))
< ε

))
(4.249)

where the matrix M(r, σ) is defined in the proof of Proposition 4.23.

4. By continuity of hm,X , ψ−1, and D, it is sufficient to show that

(∀ε > 0)
(
∃δ > 0 s.t.

(
r ∈ Λu,v,w and |r − q| < δ

)
⇒

(
∃π ∈ h−1

m,X(q) and

∃σ = (σ1, . . . , σm−1) ∈ (Pm)m−1 s.t. (M(r, σ), r) ∈ Au,v,w, fu,v,w(M(r, σ), r)

∈ Πm,X , σm−1 is the identity, and |π − fu,v,w(M(r, σ), r)| < ε
))
. (4.250)

This assertion is a consequence of (4.239) and (4.240). �

R 90. The domain of definition Λu,v,w of our projection function may be
enlarged by slightly modifying Algorithm 10 as follows. Consider π = fu,v,w(A, q)
obtained at Step 4(b)i. At the next step, instead of rejecting π if it does not belong to
Πm,X , one could project it onto Πm,X while minimizing the euclidian distance. It is
straighforward to see that Proposition 4.23, Proposition 4.26 and Proposition 4.27
still hold with this modification. Hence, the asymptotic properties of the algorithm
are preserved. Although such an euclidian projection may not make sense in terms
of the distributions represented, this variant should be explored and tested in future
research.



130 Chapter 4

4.5.2 Projections Based on Algorithm 9

The following algorithm is adapted from Algorithm 9. It takes for input

• α > 0,

• u, v,w such that ({u, v},w) ∈ Q′m,X , and

• q ∈ Λ′
{u,v,w},

and returns a parameter π ∈ Πm,X or ∅.

Algorithm 11
1. For j ∈ {1, . . . ,m − 1}, compute the real parts r1, j, . . . , rm, j of the m roots of

νm
w j,{u,v}

(q).

2. For i ∈ {1, . . . ,m − 2}, compute the set Ti of permutations σi ∈ Pm such that∣∣∣∣ m∑
j=1

rσi( j),wir j,wm−1 − q{wi,wm−1} −
ζm
{wi,wm−1},{u,v}

(q)

αm
{u,v}(q)

∣∣∣∣ < α. (4.251)

3. Set S := ∅.

4. Set σm−1 ∈ Pm such that σm−1(t) := t for t ∈ {1, . . . ,m}.

5. For each (σ1, . . . , σm−2) ∈ T1 × · · · × Tm−2,

(a) Set A ∈ Rm×(m−1) such that Ai
j := −rσ j(i), j.

(b) If (A, q) ∈ Au,v,w,

i. Compute π := fu,v,w(A, q).
ii. If π ∈ Πm,X , set S := S ∪ {π}.

6. If S = ∅, return ∅. Otherwise, return an element of the set

arg min
π∈S

D
(
ψ−1(q) ‖ ψ−1(hm,X(π))

)
. (4.252)

�

R 91. The parameter α of Algorithm 11 influences the size of each set Ti. It
is easy to see that Ti ⊆ T ′i for α ≤ α′ and Ti = Pm for α sufficiently large.

Using Algorithm 11, a family of projections is defined. As before, the non-
determinism of the algorithm is implicitely eliminated.

Definition 160. If u, v,w satisfy ({u, v},w) ∈ Q′m,X and α > 0, the set Λu,v,w,α is
the set of elements q ∈ Λ′

{u,v,w} such that Algorithm 11 applied to α, u, v,w and q
returns a parameter π ∈ Π (and not ∅).

R 92. We have Λu,v,w,α ∩ hm,X(Πm,X) = Λ′
{u,v,w} ∩ hm,X(Πm,X).



4.5 Projections for Parameter Learning 131

Definition 161. If u, v,w satisfy ({u, v},w) ∈ Q′m,X and α > 0, the function πu,v,w,α :
Λu,v,w,α → Πm,X associates to q ∈ Λu,v,w,α the parameter obtained by applying
Algorithm 11 to α, u, v,w and q.

Let us check that the constraints on πu,v,w,α introduced in Section 4.1 hold.

Proposition 4.28. The set Λu,v,w,α is open.

P. Consider q ∈ Λu,v,w,α. It is sufficient to show that there exists δ > 0 such
that r ∈ RX and |r − q| < δ imply r ∈ Λ′

{u,v,w} and there exists σ = (σ1, . . . , σm−1) ∈(
Pm

)m−1 such that

1. σm−1 is the identity,

2.
∣∣∣∣ ∑m

j=1 uσi( j),wiu j,wm−1 − q{wi,wm−1} −
ζm
{wi ,wm−1},{u,v}

(r)

αm
{u,v}(r)

∣∣∣∣ < α,

3. (A(r, σ), r) ∈ Au,v,w,

4. fu,v,w(A(r, σ), r) ∈ Πm,X

where u1,w j , . . . , um,w j are the real parts of roots of νm
w j,{u,v}

(r) for j ∈ {1, . . . ,m − 1}

and A(r, σ) is the m×(m−1) matrix such that Ai
j = −uσ j(i),w j . The proof is similar to

the proof of Proposition 4.23, the only difference is related to the second constraint.
If we observe that the expression

m∑
j=1

uσi( j),wiu j,wm−1 − r{wi,wm−1} −
ζm
{wi,wm−1},{u,v}

(r)

αm
{u,v}(r)

(4.253)

is continuous with respect to uσi( j),wi , u j,wm−1 and r, it is straightforward to transpose
the proof of Proposition 4.23 to this case. �

Corollary 4.29. The set hm,X(Πm,X)∩Λu,v,w,α is included in the interior of Λu,v,w,α.

Proposition 4.30. If q ∈ hm,X(Πm,X) ∩ Λu,v,w,α, then πu,v,w,α(q) ∈ h−1
m,X(q).

P. It is straightforward to transpose the proof of Proposition 4.26 to this case.�

Proposition 4.31. The function hm,X◦πu,v,w,α is continuous onΛu,v,w,α∩hm,X(Πm,X).

P. It is straightforward to transpose the proof of Proposition 4.27 to this case.�

The parameter α influences the applicability of πu,v,w,α and the computational
complexity of its evaluation with Algorithm 11. By Remark 91,

• Λu,v,w,α ⊆ Λu,v,w,α′ for α′ ≥ α, and Λu,v,w,α = Λu,v,w for sufficiently large α;

• the computational complexity increases with α until T1 = · · · = Tm−2 = Pm.

For small values, it is likely that α controls a trade-off between the sample com-
plexity and the computational complexity of the parameter learning procedure us-
ing πu,v,w,α.



132 Chapter 4

4.6 Conclusion

The contributions of this chapter can be summarized as follows. First, an alter-
native parametrization of discrete Naive Bayes models with hidden class variable
is provided. Using this new parametrization, two families of functions αm

{u,v} and
νm

w,{u,v} describing probability distributions are introduced and series of results at
the heart of our algorithms is derived. Second, these developments are applied to
design two algorithms that compute the set of parameters mapped to a given Naive
Bayes distribution under certain technical assumptions formulated using the fam-
ily αm

{u,v}. This generalization of the case of two hidden classes and binary observ-
able variables presented in [Pea88] and [GHKM01] is not trivial. Then, promising
research directions extending our work to other classes of discrete Bayesian net-
work models with hidden variables are proposed. Finally, our two algorithms are
converted into two projection algorithms suitable for parameter learning. The re-
sulting parameter learning procedures are asymptotically correct in the following
sense: if the distribution generating the observations belongs to the discrete Naive
Bayes model under consideration and satisfies other technical assumptions, then,
with probability one in the limit of a large sample size, the learned parameter is
mapped to a distribution converging towards the generating distribution.

The content of this chapter is purely theoretical, and much research remains
to be done. Our parameter learning algorithms should be extensively tested and
compared to other methods such as the E.M. algorithm. We anticipate that the
following points will need to be addressed. First, guidance for the choice of pa-
rameters u, v, w (and α) should be provided. Naturally, different parameter settings
can be compared by the likelihood of the solutions obtained. However, the set of
admissible parameters may be difficult to enumerate, prohibitively large, and con-
tain many elements that result in the same solution. For guidance a priori, a better
interpretation of the hypothesis q ∈ Λ′

{u,v,w} may be helpful, in particular to de-
termine what it entails and understand the algorithms behavior should it not hold.
Also, a method to test the validity of the hypothesis using the observations only is
clearly of interest. To that end, we suspect that the projection algorithms return an
empty answer for a sufficiently large number of observations generated by a distri-
bution violating the hypothesis. Under the appropriate hypotheses, our parameter
learning algorithms are asymptotically correct. While this property is remarkable,
the behavior for a finite sample size and the convergence speed should be studied.
Note that the convergence speed probably depends on u, v, w (and α), and is thus
relevant to their choice. Also, note that a value αm

{u,v}(q) or νm
w,{u,v}(q) only depend

on marginal distributions of p = ψ−1(q) of at most three random variables. Sec-
ond, the computational complexity increases rapidly with the number m of hidden
classes. The cause of this problem is that the preimage of a distribution is not ob-
tained completely analytically, but some enumeration is involved. An interesting
and closely related question is whether the non-injectivity of the parametrization
map is only due to aliasing at distributions p such that ψ(p) ∈ Λ′

{u,v,w}.
Besides parameter learning, our results may have other potential applications



4.7 Proofs of the Core Results 133

that were not pursued here. First, they may be useful to derive implicit descrip-
tions of discrete Naive Bayes models, in particular Corollary 4.10 (see Remark 79)
and Theorem 4.12. For the latter result, recall that there exists constraints on the
coefficients of a polynomial ensuring that its roots are real. Moreover, if we have
an explicit description of the roots as functions of the coefficients, then some sign
constraints of the parameter space can be transposed. Second, our results may be
useful to study the geometric properties ofNBm,X , in particular its dimension. Re-
call that f −1

m,X(p) is finite if there exists {u, v,w} ∈ Qm,X such that ψ(p) ∈ Λ′
{u,v,w}.

Also, Qm,X , ∅ implies d(Θm,X) ≤ d(S X). If Qm,X , ∅, the questions of whether
the dimension of NBm,X is maximal, i.e. d(NBm,X) = d(Θm,X), and whether the
intersection of NBm,X with some set Λ′

{u,v,w} is a d(Θm,X)-dimensional manifold
embedded in R|X| seem interesting to us. Third, our results may be useful to esti-
mate the number m of hidden classes of a Naive Bayes distribution. Suppose that
p ∈ NBm,X , Qm′,X , ∅ for some m′ > m, and we attempt to project p̂ onto NBn,X .
For a sufficiently large sample size, we suspect that Algorithm 10 will return an
empty answer for m < n ≤ m′ and possibly for some values n ∈ {1, . . . ,m − 1}. If
Algorithm 10 does return a parameter for n in some subset of {1, . . . ,m}, we suspect
that the parameter maximizing the data likelihood corresponds to the case n = m.
Finally, our results are also relevant to the computation of the marginal likelihood
of discrete Naive Bayes models. In particular, if the preimage of the distribu-
tion in NBm,X maximizing the likelihood is finite, Rusakov and Geiger propose
to simply approximate the marginal likelihood by the BIC score (see [RG03] and
Section 2.5.1). Our results allows us to identify situations where the preimage is
finite.

4.7 Proofs of the Core Results

To generalize the results of Section 4.3.3 and dispose of unnecessary notations and
hypotheses, let us define a function gm,k.

Definition 162. The set Σm,k is defined by (ω, A) ∈ Σm,k if, and only if,

ω ∈ R1×m,

m∑
t=1

ωt = 1, (4.254)

A ∈ Rm×k, ωA = 0. (4.255)

Definition 163. The function gm,k : Σm,k → R
2k

is defined by

gm,k(ω, A) = (qi)i∈2{1,...,k} (4.256)

where

qi =

m∑
t=1

ωt

∏
j∈i

At
j. (4.257)

The set Σm,k and the function gm,k are similar to respectively Πm,X and hm,X .



134 Chapter 4

4.7.1 Theorem 4.8

Theorem 4.8 is a special case of the following result.

Theorem 4.32. If (ω, A) ∈ Σm,m−1 and t ∈ {1, . . . ,m}, we have

(−1)t det At̂ = ωt

m∑
j=1

(−1) j det A ĵ. (4.258)

P. To prove the theorem, let us show that

ωt̂A
t̂A

(
At̂)T 1 = det At̂(1 − ωt) = (−1)tωt

m∑
j=1
j,t

(−1) j det A ĵ (4.259)

where A
(
At̂) is the matrix of the algebraic minors of At̂ and 1 is the (m − 1)-

dimensional column vector of ones.

1. By associativity, we have

ωt̂A
t̂A

(
At̂)T 1 = ωt̂

(
At̂A

(
At̂)T )

1 = det At̂ωt̂1 = det At̂(1 − ωt). (4.260)

2. By associativity and because ωA = 0, we have

ωt̂A
t̂A

(
At̂)T 1 =

((
ωt̂A

t̂)A(
At̂)T

)
1 (4.261)

=

m−1∑
j=1

m−1∑
l=1

(
A

(
At̂)T

)l

j

m∑
p=1
p,t

ωpAp
l , (4.262)

= −ωt

m−1∑
j=1

m−1∑
l=1

At
l

(
A

(
At̂)) j

l
. (4.263)

For j < t, we have

m−1∑
l=1

At
l

(
A

(
At̂)) j

l
=

m−1∑
l=1

At
l(−1) j+l det A

ˆ{ j,t}
l̂
= (−1)t+ j−1 det A ĵ. (4.264)

For j ≥ t, we have

m−1∑
l=1

At
l

(
A

(
At̂)) j

l
=

m−1∑
l=1

At
l(−1) j+l det A

ˆ{ j+1,t}
l̂

= (−1)t+ j det A ˆj+1. (4.265)

Hence, we have

ωt̂A
t̂A

(
At̂)T 1 = (−1)tωt

m∑
j=1
j,t

(−1) j det A ĵ. (4.266)
�



4.7 Proofs of the Core Results 135

R 93. Theorem 4.32 can be formulated using the notion of vector product:
if (ω, A) ∈ Σm,m−1, then

A1 ∧ · · · ∧ Am−1 = ω

m∑
t=1

(
A1 ∧ · · · ∧ Am−1

)
t. (4.267)

4.7.2 Theorem 4.9 and Corollary 4.10

The following family of functions generalizes αm
{u,v}.

Definition 164. If u, v ∈ {1, . . . , k}m−1 satisfy ui , v j for all i, j ∈ {1, . . . ,m − 1},
the function α′m

{u,v} : R2k
→ R is defined by

α′m
{u,v}

(
(qr)r∈2{1,...,k}

)
= det B (4.268)

where B is the (m − 1) × (m − 1) matrix such that Bi
j = q{ui,v j}.

Theorem 4.9 is a special case of the following result.

Theorem 4.33. Let u, v ∈ {1, . . . , k}m−1 satisfy ui , v j for all i, j ∈ {1, . . . ,m − 1}.
If x = gm,k(ω, A), then

α′m
{u,v}(x) =

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
u

)( m∑
j=1

(−1) j det A ĵ
v

)
. (4.269)

To prove Theorem 4.33, we use the following notation.

Definition 165. If σ ∈ Pk, let P (σ) denote the matrix obtained by permuting the
rows of the k × k identity matrix I according to σ, i.e.

P (σ)i
j = Iσ(i)

j . (4.270)

P (T 4.33). Suppose that x = (qr)r∈2{1,...,k} . By definition of α′m
{u,v} and

gm,k, we have

α′m
{u,v}(x) =

∑
σ∈Pm−1

det P (σ)
m−1∏
j=1

q{u j,vσ( j)} =
∑

σ∈Pm−1

det P (σ)
m−1∏
j=1

m∑
t j=1

ωt j A
t j
u j A

t j
vσ( j) .

(4.271)
Reorganizing the terms, we have

α′m
{u,v}(x) =

∑
1≤t1,...,tm−1≤m

( ∑
σ∈Pm−1

det P (σ)
m−1∏
j=1

At j
vσ( j)

)(m−1∏
j=1

ωt j A
t j
u j

)
=

∑
1≤t1,...,tm−1≤m

det A(t1,...,tm−1)
v

m−1∏
j=1

ωt j A
t j
u j . (4.272)



136 Chapter 4

Because det A(t1,...,tm−1)
v = 0 if ti = t j for some i , j, the range of the sum in (4.272)

can be restricted to distinct ti, i = 1, . . . ,m − 1. Hence, we suppose that the ti are
distinct. Let tm be the only element in {1, . . . ,m} \ {t1, . . . , tm−1}, and let σ ∈ Pm be
such that σ(i) = ti. We have

A(σ(1),...,σ(m−1))
v = P (σ)m̂

ˆσ(m)
A

ˆσ(m)
v . (4.273)

Hence, we have

det A(σ(1),...,σ(m−1))
v = (−1)m+σ(m) det P (σ) det A

ˆσ(m)
v . (4.274)

and, by Theorem 4.32,

det A(σ(1),...,σ(m−1))
v = (−1)mωσ(m) det P (σ)

m∑
j=1

(−1) j det A ĵ
v. (4.275)

Inserting this result in (4.272), we see that α′m
{u,v}(x) is equal to

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
v

)( ∑
σ∈Pm

(−1)m det P (σ)
m−1∏
j=1

Aσ( j)
u j

)
. (4.276)

Consider the last factor of this product. The sum over Pm can be decomposed
so that the factor is equal to

m∑
i=1

∑
σ′∈Pm−1

(−1)m det P (σ)
m−1∏
j=1

Aσ( j)
u j , (4.277)

where σ ∈ Pm is defined by

σ( j) =


σ′( j) for j < m and σ′( j) < i
σ′( j) + 1 for j < m and σ′( j) ≥ i
i for j = m.

(4.278)

For j ∈ {1, . . . ,m − 1}, we thus have

Aσ( j)
u j =

(
Aî)σ′( j)

u j
=

(
Aî

u
)σ′( j)

j . (4.279)

We have
P

(
σ′

)
= P (σ)m̂

î
, (4.280)

and thus we have
det P (σ) = (−1)m+i det P

(
σ′

)
. (4.281)

Therefore, we have∑
σ∈Pm

(−1)m det P (σ)
m−1∏
j=1

Aσ( j)
u j =

m∑
i=1

(−1)i
∑

σ′∈Pm−1

det P
(
σ′

) m−1∏
j=1

(
Aî

u
)σ′( j)

j

=

m∑
i=1

(−1)i det Aî
u, (4.282)

and we can conclude the proof. �



4.7 Proofs of the Core Results 137

Corollary 4.10 is a special case of the following result.

Corollary 4.34. Let u, v ∈ {1, . . . , k}m satisfy ui , v j for all i, j ∈ {1, . . . ,m}. If
x = gm,k(ω, A), then

α′(m+1)
{u,v} (x) = 0. (4.283)

P. There exists (ω′, A′) ∈ Σ(m+1),k such that(
ω′

)
ˆ{m,m+1} = ωm̂ (4.284)

ω′m + ω
′
m+1 = ωm (4.285)(

A′
) ˆm+1

= A (4.286)(
A′

)m+1
= Am. (4.287)

Moreover, it is easy to see that x = gm,k(ω, A) = g(m+1),k(ω′, A′). By Theorem 4.33,
α′(m+1)
{u,v} x is equal to

(m+1∏
j=1

ω′j
)(m+1∑

j=1

(−1) j det
(
A′

) ĵ
u

)(m+1∑
j=1

(−1) j det
(
A′

) ĵ
v

)
. (4.288)

To conclude the proof, let us show that det
(
A′

) ĵ
u = 0 for all j ∈ {1, . . . ,m + 1}.

1. If j < m, the last two rows of
(
A′

) ĵ
u are identical.

2. If j ∈ {m,m+ 1}, we have ω
(
A′

) ĵ
u = ωAu = 0 with ω , 0 since

∑m
t=1 ωt = 1.�

4.7.3 Theorem 4.11

Theorem 4.11 is a special case of the following result.

Theorem 4.35. Let u ∈ {1, . . . , k}m and v ∈ {1, . . . , k}m−1 satisfy ui , v j for all i ∈
{1, . . . ,m} and all j ∈ {1, . . . ,m − 1}. If x = gm,k(ω, A), then, for all t ∈ {1, . . . ,m},

m∑
j=1

(−1) jAt
u j
α′m
{u ĵ,v}

(x) = 0. (4.289)

P. By Theorem 4.33, we have

m∑
j=1

(−1) jAt
u j
α′m
{u ĵ,v}

(x) =
( m∏

p=1

ωp
)( m∑

p=1

(−1)p det Ap̂
v

)( m∑
j=1

(−1) jAt
u j

m∑
p=1

(−1)p det Ap̂
u ĵ

)
.

(4.290)



138 Chapter 4

By Theorem 4.32, we thus have

m∑
j=1

(−1) jAt
u j
α′m
{u ĵ,v}

(x) =
( m∏

p=1
p,t

ωp
)( m∑

p=1

(−1)p det Ap̂
v

)( m∑
j=1

(−1) jAt
u j

(−1)t det At̂
u ĵ

)
(4.291)

=
( m∏

p=1
p,t

ωp
)( m∑

p=1

(−1)p det Ap̂
v

)
det Au. (4.292)

We have ωAu = 0 and ω , 0 because
∑m

t=1 ωt = 1. Hence, det Au = 0. �

4.7.4 Theorem 4.12

The following families of functions generalize βm
w,{u,v},p, γm

w,{u,v},p and νm
w,{u,v}.

Definition 166. If w ∈ {1, . . . , k} and u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j,
and ui , v j for all i, j ∈ {1, . . . ,m − 1} and if p is an integer such that 1 ≤ p ≤ m,
the function β′mw,{u,v},p : R2k

→ R is defined by

β′mw,{u,v},p
(
(qr)r∈2{1,...,k}

)
=


∑

(P1,P2)∈Pm,p det BP1,P2 if 1 ≤ p ≤ m − 1
0 if p = m

(4.293)

where Pm,p is the set of pairs (P1, P2) such that {P1, P2} is a partition of {1, . . . ,m−
1}, |P1| = m − 1 − p, and |P2| = p and BP1,P2 is the (m − 1) × (m − 1) matrix such
that (

BP1,P2

)i
j =

q{ui,v j} if i ∈ P1,
q{w,ui,v j} if i ∈ P2.

(4.294)

Definition 167. If w ∈ {1, . . . , k} and u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j,
and ui , v j for all i, j ∈ {1, . . . ,m − 1} and if p is an integer such that 1 ≤ p ≤ m,
the function γ′mw,{u,v},p : R2k

→ R is defined by

γ′mw,{u,v},p
(
(qr)r∈2{1,...,k}

)
=

0 if p = 1,∑
(P1,P2,P3)∈P′m,p det BP1,P2,P3 if 2 ≤ p ≤ m,

(4.295)

where P′m,p is the set of triples (P1, P2, P3) such that {P1, P2, P3} is a partition of
{1, . . . ,m − 1}, |P1| = m − p, |P2| = p − 2 and |P3| = 1, and BP1,P2,P3 is the
(m − 1) × (m − 1) matrix such that

(
BP1,P2,P3

)i
j =


q{ui,v j} if i ∈ P1,

q{w,ui,v j} if i ∈ P2,

q{w,ui}q{w,v j} if i ∈ P3.

(4.296)



4.7 Proofs of the Core Results 139

Definition 168. If w ∈ {1, . . . , k} and u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j,
and ui , v j for all i, j ∈ {1, . . . ,m − 1}, let ν′mw,{u,v} be the function defined on R2k

that returns the polynomial in s with real coefficients given by

ν′mw,{u,v}(q) = smα′m
{u,v}(q) +

m∑
p=1

sm−p(β′mw,{u,v},p(q) − γ′mw,{u,v},p(q)
)
. (4.297)

Theorem 4.12 is a special case of the following result.

Theorem 4.36. Let w ∈ {1, . . . , k}, and u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j

and ui , v j for all i, j ∈ {1, . . . ,m − 1}. If x = gm,k(ω, A), then

ν′mw,{u,v}(x) = α′m
{u,v}(x)

m∏
j=1

(
s + A j

w
)
. (4.298)

To prove Theorem 4.36, we use Lemma 4.37 and Lemma 4.38.

Lemma 4.37. Let p be an integer such that 1 ≤ p ≤ m − 1, and let w ∈ {1, . . . , k}
and u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j and ui , v j for all i, j ∈ {1, . . . ,m −
1}. If x = gm,k(ω, A), then

β′mw,{u,v},p(x) = α′m
{u,v}(x)

∑
1≤t1<···<tp≤m

( p∏
j=1

At j
w

)( ∑
t∈m\{t1,...,tp}

ωt
)
. (4.299)

P. Suppose that x = (qr)r∈2{1,...,k} . By definition of gm,k and β′mw,{u,v},p, we have

β′mw,{u,v},p(x) =
∑

(P1,P2)∈Pm,p

∑
σ∈Pm−1

det P (σ)
(∏

j∈P1

q{u j,vσ( j)}

)(∏
j∈P2

q{w,u j,vσ( j)}

)
(4.300)

=
∑

(P1,P2)∈Pm,p

∑
σ∈Pm−1

det P(σ)
(∏

j∈P1

m∑
t j=1

ωt j A
t j
u j A

t j
vσ( j)

)
(∏

j∈P2

m∑
t j=1

ωt j A
t j
wAt j

u j A
t j
vσ( j)

)
.

(4.301)

Reorganizing the terms, we obtain

β′mw,{u,v},p(x) =
∑

1≤t1,...,tm−1≤m

det A(t1,...,tm−1)
v

(m−1∏
j=1

ωt j A
t j
u j

)( ∑
(P1,P2)∈Pm,p

∏
j∈P2

At j
w

)
. (4.302)

Because det A(t1,...,tm−1)
v = 0 if ti = t j for some i , j, the range of the leftmost sum

can be restricted to distinct ti, i = 1, . . . ,m − 1. Hence, we suppose that the ti are
distinct. Let tm be the only element in {1, . . . ,m} \ {t1, . . . , tm−1}, and let σ ∈ Pm be
such that σ(i) = ti. We have

A(σ(1),...,σ(m−1))
v = P (σ)m̂

ˆσ(m)
A

ˆσ(m)
v . (4.303)



140 Chapter 4

Hence, we have

det A(σ(1),...,σ(m−1))
v = (−1)m+σ(m) det P (σ) det A

ˆσ(m)
v . (4.304)

and, by Theorem 4.32,

det A(σ(1),...,σ(m−1))
v = (−1)mωσ(m) det P (σ)

m∑
j=1

(−1) j det A ĵ
v. (4.305)

Hence, β′mw,{u,v},p(x) is equal to

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
v

)( ∑
σ∈Pm

(−1)m det P (σ)
(m−1∏

j=1

Aσ( j)
u j

)( ∑
S⊆m−1
|S |=p

∏
j∈S

Aσ( j)
w

))
.

(4.306)
Consider the last factor of this product. The sum over Pm can be decomposed so
that the factor is equal to

m∑
i=1

∑
σ′∈Pm−1

(−1)m det P (σ)
(m−1∏

j=1

Aσ( j)
u j

)( ∑
S⊆m−1
|S |=p

∏
j∈S

Aσ( j)
w

)
. (4.307)

where σ ∈ Pm is defined by

σ( j) =


σ′( j) for j < m and σ′( j) < i
σ′( j) + 1 for j < m and σ′( j) ≥ i
i for j = m.

(4.308)

For j ∈ {1, . . . ,m − 1}, we thus have

Aσ( j)
u j =

(
Aî)σ′( j)

u j
(4.309)

Aσ( j)
w =

(
Aî)σ′( j)

w . (4.310)

Also, we have
P

(
σ′

)
= P (σ)m̂

î
, (4.311)

and thus we have
det P (σ) = (−1)m+i det P

(
σ′

)
. (4.312)

Moreover, we have ∑
S⊆m−1
|S |=p

∏
j∈S

(
Aî)σ′( j)

w =
∑

S⊆m−1
|S |=p

∏
j∈S

(
Aî) j

w. (4.313)



4.7 Proofs of the Core Results 141

By (4.307) to (4.313) we thus have

∑
σ∈Pm

(−1)m det P (σ)
(m−1∏

j=1

Aσ( j)
u j

)( ∑
S⊆m−1
|S |=p

∏
j∈S

Aσ( j)
w

)

=

m∑
i=1

(−1)i
( ∑
S⊆m−1
|S |=p

∏
j∈S

(
Aî) j

w

)
det Aî

u. (4.314)

By Theorem 4.32 and Theorem 4.33, we thus have

β′mw,{u,v},p(x) = α′m
{u,v}(x)

m∑
i=1

ωi
( ∑
S⊆m−1
|S |=p

∏
j∈S

(
Aî) j

w

)
. (4.315)

Reorganizing the terms, we conclude the proof. �

Lemma 4.38. Let p be an integer such that 2 ≤ p ≤ m, and let w ∈ {1, . . . , k} and
u, v ∈ {1, . . . , k}m−1 satisfy w , ui, w , v j, and ui , v j for all i, j ∈ {1, . . . ,m − 1}.
If x = gm,k(ω, A), then

γ′mw,{u,v},p(x) = −α′m
{u,v}(x)

∑
1≤t1<···<tp≤m

( p∏
j=1

At j
w

)( p∑
j=1

ωt j

)
. (4.316)

P. Suppose that x = (qr)r∈2{1,...,k} . If σ ∈ Pm−1, let F(σ) be the (m− 1)× (m− 1)
matrix defined by

F(σ)i
j =


q{w,uσ(i)}q{w,v j} for i = 1,
q{w,uσ(i),v j} for i = 2, . . . , p − 1,
q{uσ(i),v j} for i = p, . . . ,m − 1.

(4.317)

If (P1, P2, P3) ∈ P′m,p, there are (m− p)!(p− 2)! permutations σ ∈ Pm−1 satisfying

σ(i) ∈


P3 if i = 1
P2 if i = 2, . . . , p − 1
P1 if i = p, . . . ,m − 1.

(4.318)

Moreover, for each such permutation σ, we have

BP1,P2,P3 = P (σ)F(σ). (4.319)

Hence, we have

γ′mw,{u,v},p(x) =
1

(m − p)!(p − 2)!

∑
σu∈Pm−1

det
(
P (σu)F(σu)

)
, (4.320)



142 Chapter 4

and, by definition of F, we have

γ′mw,{u,v},p(x) =
1

(m − p)!(p − 2)!

∑
σu∈Pm−1

∑
σv∈Pm−1

det P (σu) det P (σv)

q{w,uσu(1)}q{w,vσv(1)}

(p−1∏
j=2

q{w,uσu( j),vσv( j)}

)(m−1∏
j=p

q{uσu( j),vσv( j)}

)
. (4.321)

By definition of gm,k, γ′mw,{u,v},p(x) is thus equal to

1
(m − p)!(p − 2)!

∑
σu∈Pm−1

∑
σv∈Pm−1

det P (σu) det P (σv)
( m∑
t1=1

ωt1 At1
wAt1

uσu(1)

)
( m∑
tm=1

ωtm Atm
w Atm

vσv(1)

)(p−1∏
j=2

m∑
t j=1

ωt j A
t j
wAt j

uσu( j) A
t j
vσv( j)

)(m−1∏
j=p

m∑
t j=1

ωt j A
t j
uσu( j) A

t j
vσv( j)

)
. (4.322)

Reorganizing the terms, we obtain

1
(m − p)!(p − 2)!

∑
1≤t1,...,tm≤m

Atm
w
(p−1∏

j=1

At j
w
)( m∏

j=1

ωt j

)
det A(t1,...,tm−1)

u det A(tm,t2,...,tm−1)
v .

(4.323)
Because of the determinants, a term of the above sum will vanish if ti = t j for
distinct i, j ∈ {1, . . .m − 1} or distinct i, j ∈ {2, . . . ,m}. Hence, the sum can be
restricted to avoid these cases. Let us consider the terms where t1 = tm and the
terms where t1 , tm separately.

1. Consider the terms of the sum in (4.323) where t1 = tm. Let σ ∈ Pm be such
that σ(i) = ti for i ∈ {1, . . . ,m − 1}, and let σ(m) be the only element of
{1, . . . ,m} \ {t1, . . . , tm−1}. The terms of the sum where t1 = tm can be written
as

1
(m − p)!(p − 2)!

∑
σ∈Pm

ωσ(1)A
σ(1)
w

(p−1∏
j=1

Aσ( j)
w

)(m−1∏
j=1

ωσ( j)
)

det A(σ(1),...,σ(m−1))
u det A(σ(1),...,σ(m−1))

v . (4.324)

We have

A(σ(1),...,σ(m−1))
u = P (σ)m̂

ˆσ(m)
A

ˆσ(m)
u , (4.325)

A(σ(1),...,σ(m−1))
v = P (σ)m̂

ˆσ(m)
A

ˆσ(m)
v , (4.326)

and thus we have

A(σ(1),...,σ(m−1))
u = (−1)m+σ(m) det P (σ) det A

ˆσ(m)
u , (4.327)

A(σ(1),...,σ(m−1))
v = (−1)m+σ(m) det P (σ) det A

ˆσ(m)
v . (4.328)



4.7 Proofs of the Core Results 143

By Theorem 4.32 and Theorem 4.33, (4.324) is thus equal to

α′m
{u,v}(x)

(m − p)!(p − 2)!

∑
σ∈Pm

ωσ(1)ωσ(m)A
σ(1)
w

(k−1∏
j=1

Aσ( j)
w

)
. (4.329)

2. Consider the terms of the sum in (4.323) where t1 , tm. Let σ ∈ Pm be such
that σ(i) = ti for i ∈ {1, . . . ,m}. These terms can be written as

1
(m − p)!(p − 2)!

( m∏
j=1

ω j
) ∑
σ∈Pm

Aσ(m)
w

(p−1∏
j=1

Aσ( j)
w

)
det A(σ(1),...,σ(m−1))

u det A(σ(m),σ(2),...,σ(m−1))
v . (4.330)

Let us consider the two determinants separately.

(a) We have
A(σ(1),...,σ(m−1))

u = P (σ)m̂
ˆσ(m)

A
ˆσ(m)

u . (4.331)

Hence, we have

det A(σ(1),...,σ(m−1))
u = (−1)σ(m)+m det P (σ) det A

ˆσ(m)
u , (4.332)

and, by Theorem 4.32, we have

det A(σ(1),...,σ(m−1))
u = (−1)m det P (σ)ωσ(m)

m∑
j=1

(−1) j det A ĵ
u. (4.333)

(b) We have
A(σ(2),...,σ(m))

v = P (σ)1̂
ˆσ(1)

A
ˆσ(1)

v . (4.334)

Moreover, A(σ(m),σ(2),...,σ(m−1))
v can be obtained from A(σ(2),...,σ(m))

v by m−
2 row permutations. Hence, we have

det A(σ(m),σ(2),...,σ(m−1))
v = (−1)σ(1)+m−1 det P (σ) det A

ˆσ(1)
v , (4.335)

and, by Theorem 4.32, we have

det A(σ(m),σ(2),...,σ(m−1))
v = −(−1)m det P (σ)ωσ(1)

m∑
j=1

(−1) j det A ĵ
v.

(4.336)

By (4.333), (4.336) and Theorem 4.33, we see that (4.330) is equal to

−
α′m
{u,v}(x)

(m − p)!(p − 2)!

∑
σ∈Pm

ωσ(1)ωσ(m)A
σ(m)
w

(k−1∏
j=1

Aσ( j)
w

)
. (4.337)



144 Chapter 4

Adding (4.329) and (4.337), we see that

γ′mw,{u,v},p(x) =
α′m
{u,v}(x)

(m − p)!(p − 2)!

∑
σ∈Pm

ωσ(1)ωσ(m)(A
σ(1)
w −Aσ(m)

w )
(p−1∏

j=1

Aσ( j)
w

)
. (4.338)

Decomposing
∑
σ∈Pm into

∑
t1∈m · · ·

∑
tm∈m\{t1,...,tm−1} with ti = σ(i) for i = 1, . . . ,m

and rearranging the terms, we obtain

γ′mw,{u,v},p(x) =
α′m
{u,v}(x)

(m − p)!(p − 2)!

∑
tp∈m
· · ·

∑
tm∈m\{tp,...,tm−1}

ωtm
( ∏

j∈m\{tp,...,tm}

A j
w
)

∑
t1∈m\{tp,...,tm}

ωt1(At1
w − Atm

w )
∑

t2∈m\{t1,tp,...,tm}

· · ·
∑

tp−1∈m\{t1,...,tp−2,tp,...,tm}

1. (4.339)

Since there are (p − 2)! terms in the sums over t2, . . . , tp−1, we have∑
t2∈m\{t1,tp,...,tm}

· · ·
∑

tp−1∈m\{t1,...,tp−2,tp,...,tm}

1 = (p − 2)!. (4.340)

Also, because
∑m

t=1 ωt = 1 and ωA = 0, we have∑
t1∈m\{tp,...,tm}

ωt1(At1
w − Atm

w ) = −
( m∑

j=p

ωt j A
t j
w
)
− Atm

w
(
1 −

m∑
j=p

ωt j

)
. (4.341)

Hence, we have

γ′mw,{u,v},p(x) = −
α′m
{u,v}(x)

(m − p)!

∑
tp∈m
· · ·

∑
tm∈m\{tp,...,tm−1}

( ∏
j∈m\{tp,...,tm}

A j
w
)

(
ωtm Atm

w + ωtm

m∑
j=p

ωt j A
t j
w − ωtm Atm

w

m∑
j=p

ωt j

)
. (4.342)

For j ∈ {p, . . . ,m}, one can see by permuting the labels of t j and tm that∑
tp∈m
· · ·

∑
tm∈m\{tp,...,tm−1}

( ∏
j∈m\{tp,...,tm}

A j
w
)
ωtmωt j A

t j
w

=
∑
tp∈m
· · ·

∑
tm∈m\{tp,...,tm−1}

( ∏
j∈m\{tp,...,tm}

A j
w
)
ωt jωtm Atm

w . (4.343)

Hence, we have

γ′mw,{u,v},p(x) = −
α′m
{u,v}(x)

(m − p)!

∑
tp∈m
· · ·

∑
tm∈m\{tp,...,tm−1}

( ∏
j∈m\{tp,...,tm}

A j
w
)
ωtm Atm

w , (4.344)

and thus

γ′mw,{u,v},p(x) = −
α′m
{u,v}(x)

(m − p)!

∑
tp∈m
· · ·

∑
tm−1∈m\{tp,...,tm−2}

( ∏
j∈m\{tp,...,tm−1}

A j
w
) ∑

tm∈m\{tp,...,tm−1}

ωtm .

(4.345)
Reorganizing the terms of the above sums, we conclude the proof. �



4.7 Proofs of the Core Results 145

P (T 4.36). To prove the theorem, let us show that we have

β′mw,{u,v},p(x) − γ′mw,{u,v},p(x) = α′m
{u,v}(x)

∑
1≤t1<···<tp≤m

( p∏
j=1

At j
w
)

(4.346)

for 1 ≤ p ≤ m.

1. Suppose that p = 1. Then, γ′mw,{u,v},1x = 0, and we have

β′mw,{u,v},1x = α′m
{u,v}(x)

m∑
t1=1

At1
w

∑
t∈m\{t1}

ωt by Lemma 4.37 (4.347)

= α′m
{u,v}(x)

m∑
t1=1

At1
w(1 − ωt1) because

m∑
t=1

ωt = 1 (4.348)

= α′m
{u,v}(x)

m∑
t1=1

At1
w because ωA = 0. (4.349)

2. Suppose that 2 ≤ p ≤ m − 1. By Lemma 4.37 and Lemma 4.38, we have

β′mw,{u,v},p(x) − γ′mw,{u,v},p(x) = α′m
{u,v}(x)

∑
1≤t1<···<tp≤m

( p∏
j=1

At j
w
)( m∑

t=1

ωt
)
, (4.350)

and, because
∑m

t=1 ωt = 1, we have

β′mw,{u,v},p(x) − γ′mw,{u,v},p(x) = α′m
{u,v}(x)

∑
1≤t1<···<tp≤m

( p∏
j=1

At j
w
)
. (4.351)

3. Suppose that p = m. Then, β′mw,{u,v},p(x) = 0, and we have

−γ′mw,{u,v},p(x) = α′m
{u,v}(x)

∑
1≤t1<···<tm≤m

( m∏
j=1

At j
w
)

(4.352)

by Lemma 4.38 and because
∑m

t=1 ωt = 1. �

4.7.5 Theorem 4.13

The following family of functions generalizes ζ′ms,{u,v}.

Definition 169. If s ⊆ {1, . . . , k} and u, v ∈ {1, . . . , k}m−1 satisfy ui < s, v j < s, and
ui , v j for all i, j ∈ {1, . . . ,m − 1}, the function ζ′ms,{u,v} : R2k

→ R is defined by

ζ′ms,{u,v}
(
(qr)r∈2{1,...,k}

)
=

m−1∑
p=1

det B(p) (4.353)



146 Chapter 4

where B(p) is the (m − 1) × (m − 1) matrix such that

B(p)i
j =

qs∪{ui,v j} for i = p,
q{ui,v j} for i , p.

(4.354)

Theorem 4.13 is a special case of the following result.

Theorem 4.39. Let s ⊆ {1, . . . , k} and u, v ∈ {1, . . . , k}m−1 satisfy ui < s, v j < s,
and ui , v j for all i, j ∈ {1, . . . ,m − 1}. If x = (qr)r∈2{1,...,k} = gm,k(ω, A), then

α′m
{u,v}(x)

( m∑
i=1

∏
j∈s

Ai
j
)
= α′m

{u,v}(x)qs + ζ
′m
s,{u,v}(x). (4.355)

P. Let us consider separately α′m
{u,v}(x)

(∑m
i=1

∏
j∈s Ai

j
)
, α′m
{u,v}(x)qs, and ζ′ms,{u,v}(x).

1. By (4.272), we have

α′m
{u,v}(x)

( m∑
i=1

∏
j∈s

Ai
j
)
=

( m∑
i=1

∏
j∈s

Ai
j
) ∑

1≤t1,...,tm−1≤m

det A(t1,...,tm−1)
v

m−1∏
j=1

ωt j A
t j
u j ,

(4.356)
and thus

α′m
{u,v}(x)

( m∑
i=1

∏
j∈s

Ai
j
)
=

∑
σ∈Pm

( m∑
i=1

∏
j∈s

Aσ(i)
j

)
det A(σ(1),...,σ(m−1))

v

m−1∏
j=1

ωσ( j)A
σ( j)
u j .

(4.357)

2. By Theorem 4.33 and by definition of gm,k, we have

α′m
{u,v}(x)qs =

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
v

)( m∑
j=1

(−1) j det A ĵ
u

)( m∑
tm=1

ωtm

∏
i∈s

Atm
i

)
.

(4.358)
By Theorem 4.32, we thus have

α′m
{u,v}(x)qs =

( m∏
j=1

ω j
)( m∑

j=1

(−1) j det A ĵ
v

)( m∑
tm=1

(−1)tm det A ˆtm
u

∏
i∈s

Atm
i

)
. (4.359)

We have

m∑
tm=1

(−1)tm det A ˆtm
u

∏
i∈s

Atm
i

=

m∑
tm=1

∑
σ′∈Pm−1

(−1)tm
(∏

i∈s

Atm
i

)
det P

(
σ′

)(m−1∏
j=1

(
A ˆtm

u
)σ′( j)

j

)
. (4.360)



4.7 Proofs of the Core Results 147

Hence, we have

m∑
tm=1

(−1)tm det A ˆtm
u

∏
i∈s

Atm
i =

∑
σ∈Pm

(−1)tm
(∏

i∈s

Atm
i

)
det P

(
σ′

)(m−1∏
j=1

(
A ˆtm

u
)σ′( j)

j

)
(4.361)

where tm = σ(m) and σ′ ∈ Pm−1 is such that

σ′(i) =

σ(i) if σ(i) < σ(m),
σ(i) − 1 if σ(i) > σ(m).

(4.362)

For j ∈ {1, . . . ,m − 1}, we have

(
A ˆtm

u
)σ′( j)

j =
(
Au

)σ( j)
j = Aσ( j)

u j . (4.363)

Also, we have
P

(
σ′

)
= P (σ)m̂

ˆσ(m)
, (4.364)

and thus we have

det P
(
σ′

)
= (−1)m+σ(m) det P (σ). (4.365)

Hence, we have

m∑
tm=1

(−1)tm det A ˆtm
u

∏
i∈s

Aσ(m)
i = (−1)m

∑
σ∈Pm

det P (σ)
(∏

i∈s

Aσ(m)
i

)(m−1∏
j=1

Aσ( j)
u j

)
.

(4.366)

By (4.359) and (4.366), we have

α′m
{u,v}(x)qs = (−1)m

∑
σ∈Pm

ωσ(m)
( m∑

j=1

(−1) j det A ĵ
v

)
det P (σ)

(∏
i∈s

Aσ(m)
i

)(m−1∏
j=1

ωσ( j)A
σ( j)
u j

)
. (4.367)

By Theorem 4.32, we have

α′m
{u,v}(x)qs =

∑
σ∈Pm

(−1)m+σ(m) det A
ˆσ(m)

v det P (σ)

(∏
i∈s

Aσ(m)
i

)(m−1∏
j=1

ωσ( j)A
σ( j)
u j

)
. (4.368)

Moreover, we have

A(σ(1),...,σ(m−1))
v = P (σ)m̂

ˆσ(m)
A

ˆσ(m)
v , (4.369)



148 Chapter 4

and thus

α′m
{u,v}(x)qs =

∑
σ∈Pm

det A(σ(1),...,σ(m−1))
v

(∏
i∈s

Aσ(m)
i

)(m−1∏
j=1

ωσ( j)A
σ( j)
u j

)
. (4.370)

3. By definition of ζ′ms,{u,v} and gm,k, we have

ζ′ms,{u,v}(x) =
m−1∑
p=1

∑
σ∈Pm−1

det P (σ)qs∪{up,vσ(p)}

(m−1∏
j=1
j,p

q{u j,vσ( j)}

)
(4.371)

=

m−1∑
p=1

∑
σ∈Pm−1

det P (σ)
(m−1∏

j=1
j,p

m∑
t j=1

ωt j A
t j
u j A

t j
vσ( j)

)
( m∑
tp=1

ωtp Atp
up Atp

vσ(p)

∏
i∈s

Atp
i

)
.

(4.372)

Reorganizing the terms, we obtain

ζ′ms,{u,v}(x) =
∑

1≤t1,...,tm−1≤m

(m−1∑
p=1

∏
i∈s

Atp
i

)
det A(t1,...,tm−1)

v

(m−1∏
j=1

ωt j A
t j
u j

)
. (4.373)

Because of the determinant, we suppose that the ti are distinct and we have

ζ′ms,{u,v}(x) =
∑
σ∈Pm

(m−1∑
p=1

∏
i∈s

Aσ(p)
i

)
det A(σ(1),...,σ(m−1))

v

(m−1∏
j=1

ωσ( j)A
σ( j)
u j

)
. (4.374)

Using (4.357), (4.370) and (4.374), it is straightforward to conclude the proof. �



Conclusion

The contributions of this dissertation can be summarized as follows. Chapter 3
proposed efficient algorithms to compute the inclusion boundary of an arbitrary
essential graph. We found that elements of the boundary can be identified simply
and efficiently. Moreover, the difference in score between an essential graph and
an element of its boundary can be evaluated efficiently when the scoring criterion
is decomposable. Finally, the number of elements in the inclusion boundary of an
essential graph may sometimes be exponential in its number of vertices. When it
is used as a neighborhood in a greedy structure learning algorithm, the potentially
large size of the boundary may be an issue worth exploring.

The main contribution of Chapter 4 consists of the results gathered in Sec-
tion 4.7. There, a function very close to the parametrization map of a discrete Naive
Bayes model with hidden class variable is defined. Then, several polynomial equa-
tions satisfied by the elements of the graph of this function are introduced. These
polynomial equations are remarkable because each involve only a small number
of input variables and with a low degree. Furthermore, they allow us to compute
explicitely some fibers of the function. Another contribution of Chapter 4 is the
application of these results to compute fibers of discrete Naive Bayes models with
hidden class variable and learn their parameter from data. First, an alternative
parametrization of the discrete Naive Bayes models is introduced. Then, two algo-
rithms that compute fibers of the parametrization map under appropriate technical
assumptions are derived. Finally, these algorithms are converted into parameter
learning algorithms for a special class of discrete Naive Bayes models. Under ap-
propriate assumptions, the resulting algorithms have nice asymptotic properties,
but also many rough edges that future research should address. Among other prob-
lems, their applicability is limited, they have high computational complexity, and
many parameters to choose. We believe that one key to improve our algorithms
is a description of fibers that does not involve any enumeration. A second poten-
tial research direction is to extend our algorithms and results to other classes of
Bayesian network models with hidden variables, such as HLC models. Finally,
we suspect that our results may be useful to study the geometry of discrete Naive
Bayes models and estimate the number of hidden classes.





Appendix

A Common Densities and Families

Definition 170. Let X be a continuous random variable, let µ be a real, and let σ2

be a strictly positive real. The (univariate) Gaussian density N(x|µ, σ2) is

(2πσ2)−1/2e−
(x−µ)2

2σ2 , x ∈ R. (A.1)

The mean and variance of N(x|µ, σ2) are µ and σ2.

Definition 171. Let X be a k-dimensional vector of continuous random variables,
let µ be a vector in Rk, and let Σ be a symmetric positive definite matrix in Rk×k.
The multivariate Gaussian density N(x|µ,Σ) is

(2π)−k/2(detΣ)−1/2e
1
2 (x−µ)TΣ−1(x−µ), x ∈ Rk. (A.2)

The mean vector and covariance matrix of N(x|µ,Σ) are µ and Σ.
A Dirichlet density defines a probability distribution over the set of strictly

positive distributions of a discrete random variable.

Definition 172. Let X be a discrete random variable, let p = (px)x∈X ∈ R
|X|, let

α ∈ R>0, and let m ∈ S +X . The Dirichlet densityD(p|α,m) is

Γ(α)∏
x∈X Γ(αmx)

∏
x∈X

pαmx−1
x δ

(∑
x∈X

px − 1
)
, p ∈ R|X| (A.3)

where δ is the Dirac delta function.

The mean vector ofD(p|α,m) is m and the variance of px is mx(1−mx)/(α+ 1) for
x ∈ X. Let us now define a very general class of families.

Definition 173. Let Θ ⊆ Rk be a parameter space and let µ be a σ-finite measure
on a sample space X. Let h and t be functions from X to respectively R≥0 and Rk.
The family of densities w.r.t. µ given by p = f (θ) with

p(x) = h(x)eθ
T t(x)−ψ(θ) (A.4)

is called an exponential family.



152 Appendix

The natural parameter space is

N =
{
θ ∈ Rk

∣∣∣ ∫
X

h(x)eθ
T t(x)dµ(x) < ∞

}
. (A.5)

The family is said to be full if Θ = N, regular if N is open, and minimal if it can not
be reparametrized by a vector with less than k components. In the minimal case,
the dimension of the family is k. Many common densities can be parametrized as
(A.4). For example, one can show that Gaussian, Dirichlet, and discrete densities
are exponential. Moreover, learning (see chapter 2) with exponential families is
often tractable because they admit conjugate families (see e.g. [Rob94] for details).

Some submodels of an exponential family are noteworthy (see [GHKM01]).

Definition 174. Consider a full exponential model of dimension k and natural pa-
rameter space N. The submodel induced by Θ ⊆ N is a

• curved exponential model of dimension d if Θ is a smooth d-dimensional
manifold in Rk;

• stratified exponential model of dimension d if Θ is a d-dimensional stratified
set in Rk.

B Semi-Algebraic Sets

This section defines semi-algebraic sets and presents some elementary properties.
For more details, see e.g. [BCR87].

Definition 175. A subset V of Rn is semi-algebraic if it admits a representation of
the form

V = ∪s
i=1 ∩

ri
j=1 Vi j, (B.1)

where, for each i = 1, . . . , s and j = 1, . . . ri, Vi j is {x ∈ Rn|Pi j(x) > 0} or {x ∈
Rn|Pi j(x) = 0} for a real polynomial Pi j.

Definition 176. A stratification of a subset E of Rn is a finite partition {Ai}i∈I of E
such that

1. each Ai is a di-dimensional smooth manifold in Rn called a stratum

2. if A j ∩ Ai , φ, then A j ⊆ Ai and d j < di.

The dimension of a stratified set is the largest dimension of a stratum. A stratifica-
tion is semi-algebraic if each stratum is a semi-algebraic set.

The following theorem holds.

Theorem 5.40. Every semi-algebraic set admits a semi-algebraic stratification.

The dimension of a semi-algebraic set is its dimension as a stratified set. It can
sometimes be computed with the following theorem (from [GHKM01]).



C Kullback-Leibler Distance 153

Theorem 5.41. Let g : A ⊆ Rm → Rn be a polynomial mapping where A is a
semi-algebraic open set. Let J(x) = δg

δx be the Jacobian matrix at x. The maximal
rank of J(x) over A is equal to the dimension of g(A).

C Kullback-Leibler Distance

Definition 177 (Kullback-Leibler distance). The Kullback-Leibler distance D(p ‖
q) (or relative entropy, see [CT91]) between two probability distributions p and q
defined on the same finite sample space X is

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)
q(x)

. (C.1)

The following conventions are adopted by continuity: 0 log 0
q(x) = 0 for q(x) ≥ 0

and p log p(x)
0 = ∞ for p(x) > 0.

The KL distance has the following properties:

• it is non-negative
D(p ‖ q) ≥ 0, (C.2)

with equality only if p = q,

• it satisfies Pinsker’s inequality

D(p ‖ q) ≥
1

2 ln 2

(∑
x∈X

|p(x) − q(x)|
)2
, (C.3)

• it is not symmetric in general

D(p ‖ q) , D(q ‖ p). (C.4)

Although the KL distance is not symmetric, it is often used as a distance between
p and q.

The notions of KL distance and data likelihood can be related as follows.

Lemma 5.42. If X is a discrete random variable, p is a distribution on X, andM
is a set of distributions on X, then

arg max
q∈M

∏
x∈X

q(x)p(x) = arg min
q∈M

D(p ‖ q). (C.5)

P. We have

D(p ‖ q) =
∑
x∈X

p(x) log
p(x)
q(x)

(C.6)

=
∑
x∈X

p(x) log p(x) − log
∏
x∈X

q(x)p(x). (C.7)



154 Appendix

Hence, we have

arg max
q∈M

log
∏
x∈X

q(x)p(x) = arg min
q∈M

D(p ‖ q). (C.8)

Since log is a strictly increasing function, we have

arg max
q∈M

log
∏
x∈X

q(x)p(x) = arg max
q∈M

∏
x∈X

q(x)p(x). (C.9)
�

Corollary 5.43. If X is a discrete random variable,M is a set of distributions on
X, and p ∈ M, then

arg max
q∈M

∏
x∈X

q(x)p(x) = {p}. (C.10)

P. Because p ∈ M, D(p ‖ q) ≥ 0 and D(p ‖ p) = 0, we have

min
q∈M

D(p ‖ q) = D(p ‖ p) = 0. (C.11)

Because D(p ‖ q) = 0 only if p = q, we have

arg min
q∈M

D(p ‖ q) = {p}. (C.12)

We conclude the proof by Lemma 5.42. �

Corollary 5.44. If X is a discrete random variable,M is a set of distributions on
X and o[1], . . . , o[n] is a sequence of values of X, then

arg max
q∈M

n∏
i=1

q
(
o[i]

)
= arg min

q∈M
D
(
p̂ ‖ q

)
(C.13)

where the distribution of relative frequencies p̂ is defined by (4.2).

P. We have
n∏

i=1

q
(
o[i]

)
=

∏
x∈X

q(x)nx =
(∏

x∈X

q(x)nx/n
)n
=

(∏
x∈X

q(x) p̂(x)
)n
. (C.14)

Because n ≥ 1, we have

arg max
q∈M

(∏
x∈X

q(x)p̂(x)
)n
= arg max

q∈M

∏
x∈X

q(x)p̂(x). (C.15)

By Lemma 5.42, we have

arg max
q∈M

∏
x∈X

q(x)p̂(x) = arg min
q∈M

D
(
p̂ ‖ q

)
, (C.16)

and we conclude the proof. �



Bibliography

[AGW06] Vincent Auvray, Pierre Geurts, and Louis Wehenkel. A semi-
algebraic description of discrete Naive Bayes models with two hidden
classes. In Ninth International Symposium on Artificial Intelligence
and Mathematics, January 2006.

[AMP97] Steen A. Andersson, David Madigan, and Michael D. Perlman. A
characterization of Markov equivalence classes for acyclic digraphs.
The Annals of Statistics, 25(2):505–541, 1997.

[AW02] Vincent Auvray and Louis Wehenkel. On the construction of the
inclusion boundary neighbourhood for Markov equivalent classes of
Bayesian network structures. In A. Darwiche and N. Friedman, edi-
tors, Proceedings of Eighteenth Conference on Uncertainty in Artifi-
cial Intelligence, pages 26–35. Morgan Kaufmann, August 2002.

[BCR87] Jacek Bochnak, Michel Coste, and Marie-Françoise Roy. Géométrie
algébrique réelle. Springer-Verlag, Berlin, 1987.

[Bil79] Patrick Billingsley. Probability and Measure. Wiley, New York, 1979.

[BKRK97] John Binder, Daphne Koller, Stuart Russell, and Keiji Kanazawa.
Adaptive probabilistic networks with hidden variables. Machine
Learning, 29(2-3):213–244, 1997.

[CDLS99] Robert Cowell, A. Philip Dawid, Steffen L. Lauritzen, and David J.
Spiegelhalter. Probabilistic Networks and Expert Systems. Springer,
New York, 1999.

[CH97] David Maxwell Chickering and David Heckerman. Efficient approxi-
mations for the marginal likelihood of Bayesian networks with hidden
variables. Machine Learning, 29(2-3):181–212, November 1997.

[Chi95] David Maxwell Chickering. A transformational characterization of
equivalent Bayesian network structures. In Proceedings of the 11th
Annual Conference on Uncertainty in Artificial Intelligence (UAI-95),
pages 87–98, San Francisco, CA, 1995. Morgan Kaufmann.



156 Bibliography

[Chi02a] David Maxwell Chickering. Learning equivalence classes of
Bayesian-network structures. Journal of Machine Learning Research,
2:445–498, February 2002.

[Chi02b] David Maxwell Chickering. Optimal structure identification with
greedy search. Journal of Machine Learning Research, 3:507–554,
November 2002.

[CK03] Robert Castelo and Tomáš Kočka. On inclusion-driven learning of
Bayesian networks. Journal of Machine Learning Research, 4:527–
574, September 2003.

[CM02] David Chickering and Christopher Meek. Finding optimal bayesian
networks. In Proceedings of the 18th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-02), pages 94–102, San Fran-
cisco, CA, 2002. Morgan Kaufmann.

[CMH03] David Chickering, Christopher Meek, and David Heckerman. Large-
sample learning of bayesian networks is NP-hard. In Proceedings of
the 19th Annual Conference on Uncertainty in Artificial Intelligence
(UAI-03), pages 124–13, San Francisco, CA, 2003. Morgan Kauf-
mann.

[Cow98] Robert G. Cowell. Mixture reduction via predictive scores. Statistics
and Computing, 8:97–103, 1998.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information The-
ory. Wiley, New York, 1991.

[DT92] Dorit Dor and Michael Tarsi. A simple algorithm to construct a con-
sistent extension of a partially oriented graph. Technical Report R-
185, UCLA Cognitive Systems Laboratory, 1992.

[EF01] Gal Elidan and Nir Friedman. Learning the dimensionality of hidden
variables. In Proceedings of the 17th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-01), pages 144–15, San Fran-
cisco, CA, 2001. Morgan Kaufmann.

[ELFK00] Gal Elidan, Noam Lotner, Nir Friedman, and Daphne Koller. Discov-
ering hidden variables: A structure based-approach. In Proceedings of
the Neural Information Processing Systems conference (NIPS), 2000.

[FK03] Nir Friedman and Daphne Koller. Being Bayesian about network
structure. a Bayesian approach to structure discovery in Bayesian net-
works. Machine Learning, 50:95–125, 2003.



Bibliography 157

[Fri98] Nir Friedman. The bayesian structural EM algorithm. In Proceed-
ings of the 14th Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-98), pages 129–13, San Francisco, CA, 1998. Morgan
Kaufmann.

[Gar04] Luis David Garcia. Algebraic statistics in model selection. In Pro-
ceedings of the 20th Annual Conference on Uncertainty in Artifi-
cial Intelligence (UAI-04), pages 177–184, Arlington, Virginia, 2004.
AUAI Press.

[GH94] Dan Geiger and David Heckerman. Learning gaussian networks.
Technical report, Microsoft Research, 1994. MSR-TR-94-10.

[GHKM01] Dan Geiger, David Heckerman, Henry King, and Christopher Meek.
Stratified exponential families: Graphical models and model selec-
tion. The Annals of Statistics, 29(2):505–529, 2001.

[GHM96] Dan Geiger, David Heckerman, and Christopher Meek. Asymptotic
model selection for directed networks with hidden variables. In Pro-
ceedings of the 12th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-96), pages 283–29, San Francisco, CA, 1996. Mor-
gan Kaufmann.

[GM98] Dan Geiger and Christopher Meek. Graphical models and exponential
families. In Proceedings of the 14th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-98), pages 156–165, San Fran-
cisco, CA, 1998. Morgan Kaufmann Publishers.

[Hau88] Dominique M. A. Haughton. On the choice of a model to fit data from
an exponential family. The Annals of Statistics, 16(1):342–355, 1988.

[Hec98] David Heckerman. A tutorial on learning with Bayesian networks. In
M. I. Jordan, editor, Learning in Graphical models, pages 301–354.
Kluwer Academic Publishers, 1998.

[HGC95] David Heckerman, Dan Geiger, and David M. Chickering. Learn-
ing Bayesian networks: The combination of knowledge and statistical
data. Machine Learning, 20(3):197–243, 1995.

[Jay03] E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge
University Press, Cambridge, United Kingdom, 2003.

[KC01] Tomáš Kočka and Robert Castelo. Improved learning of Bayesian
networks. In Proceedings of Seventeenth Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann, 2001.

[KZ02] Tomáš Kočka and Nevin Zhang. Dimension correction for hierarchi-
cal latent class models. In Proceedings of the 18th Annual Conference



158 Bibliography

on Uncertainty in Artificial Intelligence (UAI-02), pages 267–27, San
Francisco, CA, 2002. Morgan Kaufmann.

[KZ03] Tomáš Kočka and Nevin Zhang. Effective dimension of partially ob-
served polytrees. In Proceedings of the Seventh European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncer-
tainty (ECSQARU-03), 2003.

[Lau95] Steffen L. Lauritzen. The em algorithm for graphical association
models with missing data. Computational Statistics & Data Analy-
sis, 19:191–201, 1995.

[Lau96] Steffen L. Lauritzen. Graphical Models. Clarendon Press, Oxford,
United Kingdom, 1996.

[Mac98] David J. C. MacKay. Choice of basis for the Laplace approximation.
Machine Learning, 33(1):77–86, 1998.

[Mac03] David J. C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, Cambridge, United Kingdom,
2003.

[Mee95] Christopher Meek. Strong completeness and faithfulness in bayesian
networks. In Proceedings of the 11th Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI-95), pages 411–41, San Fran-
cisco, CA, 1995. Morgan Kaufmann.

[Nea92] Radford M. Neal. Connectionist learning of belief networks. Artificial
Intelligence, 56:71–113, 1992.

[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall,
Upper Saddle River, NJ, 2003.

[NH98] Radford M. Neal and Geoffrey E. Hinton. A view of the em algorithm
that justifies incremental, sparse, and other variants. In M. I. Jordan,
editor, Learning in Graphical models, pages 355–368. Kluwer Aca-
demic Publishers, 1998.

[NKP03] Jens Nielsen, Tomas Kocka, and Jose Peña. On local optima in learn-
ing Bayesian networks. In Proceedings of the 19th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-03), pages 435–44, San
Francisco, CA, 2003. Morgan Kaufmann.

[NMR06] Radu Stefan Niculescu, Tom M. Mitchell, and R. Bharat Rao.
Bayesian network learning with parameter constraints. Journal of
Machine Learning Research, 7:1357–1383, July 2006.



Bibliography 159

[NWL+04] Patrick Naïm, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pour-
ret, and Anna Becker. Réseaux bayésiens. Eyrolles, Paris, second
edition, 2004.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan
Kaufmann, San Mateo, 1988.

[RG03] Dmitry Rusakov and Dan Geiger. Automated analytic asymptotic
evaluation of the marginal likelihood for latent model. In Proceed-
ings of the 19th Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-03), pages 501–50, San Francisco, CA, 2003. Morgan
Kaufmann.

[RG05] Dmitry Rusakov and Dan Geiger. Asymptotic model selection for
Naive Bayesian networks. Journal of Machine Learning Research,
6:1–35, January 2005.

[Rob77] R. W. Robinson. Counting unlabeled acyclic digraphs. In Lecture
Notes in Mathematics, 622: Combinatorial Mathematics V, New
York, 1977. Springer Verlag.

[Rob94] Christian P. Robert. The Bayesian Choice: a decision-theoretic moti-
vation. Springer, New York, 1994.

[SGS01] Peter Spirtes, Clark Glymour, and Richard Scheines. Causation, Pre-
diction and Search. MIT Press, second edition, 2001.

[SK89] Ross D. Shachter and C. Robert Kenley. Gaussian influence diagrams.
Management Science, 35(5):527–550, 1989.

[SSGS06] Ricardo Silva, Richard Scheines, Clark Glymour, and Peter Sprites.
Learning the structure of linear latent variable models. Journal of
Machine Learning Research, 7:191–246, February 2006.

[Stu05] Milan Studený. Characterization of inclusion neighbourhood in terms
of the essential graph. International Journal of Approximate Reason-
ing, 38:283–309, 2005.

[VS07] Jiří Vomlel and Milan Studený. Graphical and algebraic represen-
tatives of conditional independence models. In Peter Lucas, José
Gamez, and Antonio Salmeron, editors, Advances in Probabilistic
Graphical Models, volume 213. Springer, 2007. Preliminary version.

[Zha04] Nevin L. Zhang. Hierarchical latent class models for cluster analysis.
Journal of Machine Learning Research, 5:697–723, June 2004.





Index

<I , see independence inclusion
=I , see independence equivalence
≤I , see independence inclusion
⊥, see independence
Ap̂, 104
Ap̂, 104
Ap, 104
Ap, 104
a − b, see graph
a · · · b, see graph
a→ b, see graph

, 62
adG, see adjacent vertices
αm
{u,v}, 105
αXv,xpa(v) , 48
Au,v,w, 110
βm

w,{u,v},p, 106
Bk(X), 36
B(X), 25
chG, see children
D(p ‖ q), see Kullback-Leibler distance
E(D), 66
[E], 29, 65
E(X), 29
fd,D, see Bayesian network model,

discrete, param. definition
fg,D, see Bayesian network model,

Gaussian, param. definition
f −
{a,b}, see inclusion boundary

fm,X , see Naive Bayes model, fm,X
f +a→b, see inclusion boundary
fu,v,w, 110
GA, see subgraph
ga→b, see inclusion boundary
γm

w,{u,v},p, 107

H−
{a,b}, see inclusion boundary

hm,X , see Naive Bayes model, alternative
parametrization

H+a→b, see inclusion boundary
IB(E), see inclusion boundary
IB{a,b}, see inclusion boundary
I(D), see independence model
IH(D), see independence model
I(p), see independence model
IS (D), see independence model
Λ′
{u,v,w}, 112
Λu,v,w, 124
Λu,v,w,α, 130
M, see statistical model
Md(D), see Bayesian network model,

discrete
Mg(D), see Bayesian network model,

Gaussian
MH , see Bayesian network model, with

hidden variables
mXv,xpa(v)

xv , 48
neG, see neighbors of a vertex
νm

w,{u,v}, 108

N(x|µ, σ2), see Gaussian density
nXv,xpa(v) , 48
nXv,xpa(v)

xv , 46
paG, see parents of a vertex
φ, see Naive Bayes model, alternative

parametrization
Πm,X , see Naive Bayes model, alterna-

tive parametrization
πu,v,w, 124
πu,v,w,α, 131
Pk, 111



162 Index

ψ, see Naive Bayes model, alternative
parametrization

px, ps, 93
Qm,X , 111, 116
Q′m,X , 114
RX , see Naive Bayes model, alternative

parametrization
S (G), see skeleton
S −
{a,b}, see inclusion boundary

S +a→b, see inclusion boundary
S +X , 15
S X , 94
Θd,D, see Bayesian network model,

discrete, param. definition
Θg,D, see Bayesian network model,

Gaussian, param. definition
Θm,X , see Naive Bayes model, Θm,X

v(G), see v-structure
X, Xi, see random variable
X,Xi, see possible values
x, xi, 7
xS , 99
ζm

s,{u,v}, 108

adjacent vertices, 80
aliasing, 97
ancestral ordering, 64

Bayesian network, 13
Bayesian network model, 16

discrete
dimension, 18
implicit definition, 24
parametric definition, 16

Gaussian
dimension, 18
implicit definition, 25
parametric definition, 17

with hidden variables, 31
effective dimension, 33
standard dimension, 33

BD, see scoring criterion, Bayesian Di-
richlet

BIC, see scoring criterion, Bayesian in-
formation

BN, see Bayesian network
Borel set, 6
bounded rectangle, 6

chain graph, 61
chain component, 62

children, 72
collider vertex, 20
compelled arrow, 27
complete set of vertices, 65
composition property, 21
conjugate family, 47
consistent extension, 63
covered arrow, 26
cycle, 12

directed, 12

d-separation, 20
DAG, see graph, directed, acyclic
dataset, 39

complete, 46
descendants of a vertex, 20
Dirichlet density, 48, 151

equal with probability one, 7
exponential model, 151

curved, 152
stratified, 152

faithfull, 21, 35
family, see statistical model

Gaussian density, 151
graph, 11

complete, 21
directed

acyclic, 12
empty, 21
essential, 29, 60–69
undirected, 26

greedy search, 55–57

hidden variable, 31, 43



Index 163

HLC model, 32, 44, 122
hyperparameter, 47, 48
hypothesis, 40, 42–44

inclusion boundary, 56, 59–89
f −
{a,b}, 74

f +a→b, 82
ga→b, 81
H−
{a,b}, 72

H+a→b, 80
IB{a,b}, 71
S −
{a,b}, 73

S +a→b, 81, 85
inclusion optimality, 34
independence equivalence, 25, 26, 27
independence inclusion, 25, 27
independence model, 19

I(D), 20
IH(D), 22
I(p), 19
IS (D), 22
DAG isomorph, causal, 21
probabilistic, 20

Kullback-Leibler distance, 91, 153

legal arrow addition, 26
likelihood, 40, 45, 46

marginal likelihood, 41, 50–52
Markov equivalence, see independence

equivalence
maximum a posteriori, 45
maximum cardinality search, 65
maximum likelihood, 45, 91
MCS, see maximum cardinality search
measurable space, 6
measure, 6

Lesbegue measure, 6
measurable function, 7
probability measure, 7

ML, see maximum likelihood
MP, see maximum a posteriori

Naive Bayes model, 31, 44, 95

fm,X , 94
Θm,X , 94
alternative parametrization, 98–103

hm,X , 102
Πm,X , 98
ψ, 99
RX , 99
φ, 98

negligible, 7
neighbors of a vertex, 65

observable variable, 31, 43
observation, 39

complete, 46

parameter independence, 48
parameter learning, 40, 44–50
parameter optimality, 34
parents of a vertex, 11
path, 12

directed, 12
undirected, 12

perfect ordering, 64, 65
Pinsker’s inequality, 153
possible values, 7
posterior distribution

posterior model probability, 41
posterior parameter density, 41

prior distribution, 40, 41
prior model probability, 41
prior parameter density, 40, 47–49

prior equivalence, 49
probability space, 7
protected arrow, 26

random variable, 7
continuous, 8
density, 8

conditional, 9
marginal, 9

discrete, 8
distribution, 8

conditional, 9
marginal, 9

expected value, 11, 45



164 Index

independence
conditional, 10
marginal, 10

real, 7
recursive factorization, 12, 13, 24
reversible arrow, 27

sample, see dataset
sampling distribution, see likelihood
score, see scoring criterion
scoring criterion, 50

Bayesian Dirichlet, 51, 55
Bayesian information, 52
consistency, 53, 55
decomposability, 52, 56, 79
equivalence, 52
local consistency, 53

semi-algebraic set, 152
σ-field, 6
skeleton, 26
statistical model

implicit, 19
parametric, 15

strong law of large numbers, 11
strongly protected arrow, 61
structure learning, 39, 50–57
subgraph, 60
support, 7

trail, 20
blocked, 20

UGES, 56
undirected graph

chordality, 62, 65

v-structure, 26



List of Theorems

Proposition 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Proposition 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Proposition 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Lemma 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Theorem 1.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Corollary 1.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Corollary 1.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Proposition 1.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Theorem 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Theorem 1.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Theorem 1.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Theorem 1.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Corollary 1.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Proposition 1.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Proposition 1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Proposition 1.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Theorem 1.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Corollary 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Theorem 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Corollary 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Theorem 3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Lemma 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Theorem 3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Proposition 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Lemma 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Proposition 3.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Proposition 3.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



166 List of Theorems

Proposition 3.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Corollary 3.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Proposition 3.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Proposition 3.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Proposition 3.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Proposition 3.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Proposition 3.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Corollary 3.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Theorem 3.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Corollary 3.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Corollary 3.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Proposition 3.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Proposition 3.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Proposition 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Proposition 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Proposition 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Proposition 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Proposition 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Proposition 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Proposition 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Corollary 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Theorem 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Corollary 4.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Theorem 4.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Theorem 4.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Theorem 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Lemma 4.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Lemma 4.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Theorem 4.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Theorem 4.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Proposition 4.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Proposition 4.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Proposition 4.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Proposition 4.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Proposition 4.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Proposition 4.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Lemma 4.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Corollary 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Proposition 4.26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Proposition 4.27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Proposition 4.28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Corollary 4.29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Proposition 4.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



List of Theorems 167

Proposition 4.31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Theorem 4.32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Theorem 4.33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Corollary 4.34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Theorem 4.35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Theorem 4.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Lemma 4.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Lemma 4.38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Theorem 4.39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Theorem 5.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Theorem 5.41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Lemma 5.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Corollary 5.43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Corollary 5.44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154





List of Definitions

Definition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Definition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Definition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Definition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Definition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Definition 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Definition 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Definition 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Definition 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Definition 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Definition 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Definition 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Definition 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Definition 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Definition 28 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Definition 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



170 List of Definitions

Definition 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Definition 39 Recursive factorization for discrete variables . . . . . . . . 12
Definition 40 Recursive factorization for continuous variables . . . . . . 13
Definition 41 Bayesian network . . . . . . . . . . . . . . . . . . . . . . 13
Definition 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Definition 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Definition 44 Bayesian network model . . . . . . . . . . . . . . . . . . . 16
Definition 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Definition 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Definition 47 Discrete Bayesian network model . . . . . . . . . . . . . . 16
Definition 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Definition 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Definition 50 Gaussian Bayesian network model . . . . . . . . . . . . . 17
Definition 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Definition 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Definition 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Definition 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Definition 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 61 d-separation criterion . . . . . . . . . . . . . . . . . . . . 20
Definition 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Definition 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Definition 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Definition 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Definition 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Definition 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Definition 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Definition 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Definition 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Definition 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 76 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Definition 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Definition 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



List of Definitions 171

Definition 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Definition 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Definition 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Definition 82 Standard dimension . . . . . . . . . . . . . . . . . . . . . 34
Definition 83 Effective dimension . . . . . . . . . . . . . . . . . . . . . 34
Definition 84 Inclusion optimality . . . . . . . . . . . . . . . . . . . . . 34
Definition 85 Parameter optimality . . . . . . . . . . . . . . . . . . . . 34
Definition 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Definition 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Definition 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Definition 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Definition 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Definition 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Definition 92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Definition 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Definition 94 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Definition 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Definition 96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Definition 97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Definition 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Definition 99 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Definition 100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Definition 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Definition 102 equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 52
Definition 103 decomposability . . . . . . . . . . . . . . . . . . . . . . . 52
Definition 104 consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Definition 105 local consistency . . . . . . . . . . . . . . . . . . . . . . . 53
Definition 106 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Definition 107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Definition 108 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Definition 109 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Definition 110 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Definition 111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Definition 112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Definition 113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Definition 114 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Definition 115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Definition 116 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Definition 117 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Definition 118 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Definition 119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Definition 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Definition 121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Definition 122 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



172 List of Definitions

Definition 123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Definition 124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Definition 125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Definition 126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Definition 127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Definition 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Definition 129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Definition 130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Definition 131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Definition 132 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Definition 133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Definition 134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Definition 135 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Definition 136 Discrete Naive Bayes model . . . . . . . . . . . . . . . . . 95
Definition 137 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Definition 138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Definition 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Definition 140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Definition 141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Definition 142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Definition 143 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Definition 144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Definition 145 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Definition 146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Definition 147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Definition 148 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Definition 149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Definition 150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Definition 151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Definition 152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Definition 153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Definition 154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Definition 155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Definition 156 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Definition 157 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Definition 158 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Definition 159 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Definition 160 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Definition 161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Definition 162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition 163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Definition 164 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition 165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Definition 166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Definitions 173

Definition 167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Definition 168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Definition 169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Definition 170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Definition 171 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Definition 172 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Definition 173 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Definition 174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Definition 175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Definition 176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Definition 177 Kullback-Leibler distance . . . . . . . . . . . . . . . . . . 153





List of Figures

1.1 A Bayesian network structure whose vertex set is identified with
{H, B, L, F,C} . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 A Bayesian network structure over X = {P,M,W,D1,D2} . . . . . 14
1.3 d-separation criterion . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4 Special types of DAGs . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 A DAG D over {H} ∪ {X1, X2, X3, X4} encoding a non-DAG iso-

morph independence model IH(D) for {X1, X2, X3, X4} . . . . . . . 24
1.6 A DAG D over {S } ∪ {X1, X2, X3, X4} encoding a non-DAG iso-

morph independence model IS (D) for {X1, X2, X3, X4} . . . . . . . 24
1.7 Independence equivalent DAGs . . . . . . . . . . . . . . . . . . . 26
1.8 Inclusion order on B(X). For any D,H ∈ B(X), D =I H if, and

only if, D and H are contained in the same box, while D <I H if,
and only if, there is a downward path from the box containing H to
the box containing D. . . . . . . . . . . . . . . . . . . . . . . . . 28

1.9 A DAG where all the arrows are compelled . . . . . . . . . . . . 29
1.10 Inclusion order on E({X1, X2, X3}) . . . . . . . . . . . . . . . . . 30
1.11 A structure with one hidden variable . . . . . . . . . . . . . . . . 31
1.12 A naive Bayes structure D . . . . . . . . . . . . . . . . . . . . . 32
1.13 A HLC structure D . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.14 A structure D2 without hidden variable such that I(D2) = IH(D1) . 33
1.15 M is composed of two models M1 and M2. The dimension of a

model is proportional to its area in the figure. . . . . . . . . . . . 35
1.16 Structure of optimal models when I(p) = IH(D1) . . . . . . . . . 35
1.17 Structure of optimal models when I(p) = IS (D2) . . . . . . . . . . 36

3.1 A graph G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Subgraphs of G . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3 Subgraphs that strongly protect a→ b ∈ G . . . . . . . . . . . . . 61
3.4 A graph H that is not a chain graph . . . . . . . . . . . . . . . . . 62
3.5 A non-chordal graph . . . . . . . . . . . . . . . . . . . . . . . . 63
3.6 Consistent extensions of G{a,b,c,d} . . . . . . . . . . . . . . . . . . 63
3.7 Consistent extensions of G . . . . . . . . . . . . . . . . . . . . . 64
3.8 Possible subgraphs S {a,b,c,d}. . . . . . . . . . . . . . . . . . . . . 68



176 List of Figures

3.9 E{a,b,h,h′} for h, h′ ∈ H−
{a,b} . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Graphs returned by Algorithm 4 . . . . . . . . . . . . . . . . . . 77
3.11 IB{a,c} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.12 E{a,b,h} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.13 gb→g(∅), gb→g({h}), and gg→b({a}) . . . . . . . . . . . . . . . . . . 81
3.14 Consistent extensions of gb→g(∅) and gb→g({h}) . . . . . . . . . . 82
3.15 IB{b,g} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.16 Non-empty intersection of f +a→b(S +a→b) and f +b→a(S +b→a) . . . . . . 85

4.1 Parameter learning in terms of projections. The distance on paper
between p ∈ Λ and q ∈ M is assumed to be proportional to D(p ‖ q). 92

4.2 Naive Bayes structure G . . . . . . . . . . . . . . . . . . . . . . 95
4.3 Parameter learning for NBm,X in terms of projections. . . . . . . . 96
4.4 New parametrization of NBm,X . . . . . . . . . . . . . . . . . . . 103
4.5 A Bayesian network structure over {H, X1, . . . , X6} . . . . . . . . . 121


	Introduction
	Bayesian Networks
	Introduction
	Elements of Probability Theory
	Measures
	Random Variables

	Bayesian Networks
	Parametric Bayesian Network Models
	Statistical Models
	Bayesian Network Models
	Dimension

	Implicit Bayesian Network Models
	Independence Models
	Independence Models Associated to DAGs
	Implicit Definition

	Equivalence and Inclusion of DAGs
	Graphical Characterization of Independence Inclusion and Equivalence
	Essential Graphs

	Bayesian Network Models with Hidden Variables
	Hidden and Observable Variables
	Bayesian Network Models with Hidden Variables
	Dimension

	Optimality of a Bayesian Network Model

	Learning Bayesian networks
	Introduction
	A Bayesian Approach to Learning Statistical Models
	Hypothesis Space
	Technical Difficulties
	Choice of S

	Parameter Learning
	Parameter Estimation
	Likelihood
	Prior Parameter Density
	Marginal Likelihood and Posterior Density

	Structure Learning
	Posterior Structure Probability
	Properties of Scoring Criteria
	Search for an Optimal Structure


	Computation of the Inclusion Boundary
	Introduction
	From DAGs to Essential Graphs and Vice-Versa
	Graphical Characterization of Essential Graphs
	Markov Equivalence Class Associated to an Essential Graph
	Computation of the Essential Graph Associated to the Markov Equivalence Class of a DAG

	Computation of the Inclusion Boundary IB(E)
	Graphical Characterization of the Partition by Skeleton
	Computation of IBa,b when a ... b is in E
	Computation of IBa,b when a ... b is not in E

	Conclusion

	Learning Parameters in Discrete Naive Bayes Models by Computing Fibers of the Parametrization Map
	Introduction
	The Discrete Naive Bayes Model with hidden class
	Parametric Definition
	Elementary Properties

	Preliminaries
	Alternative Parametrization of NBm,X
	Notations
	Core Results

	Computation of Fibers of hm
	A First Algorithm
	A More Efficient Algorithm
	Discussion of the Assumptions
	Computation of the Fibers with Two Hidden Classes
	Extensions

	Projections for Parameter Learning
	Projections Based on Algorithm 8
	Projections Based on Algorithm 9

	Conclusion
	Proofs of the Core Results
	Theorem 4.8
	Theorem 4.9 and Corollary 4.10
	Theorem 4.11
	Theorem 4.12
	Theorem 4.13


	Conclusion
	Appendix
	Common Densities and Families
	Semi-Algebraic Sets
	Kullback-Leibler Distance

	Bibliography
	Index
	List of Theorems
	List of Definitions
	List of Figures

