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Capital letter
A, B, C Components of the local normal
Ai Area of patch Pi [m2]
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C� Solar constant 1 371W/m2

Ci Contour of patch Pi
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D Surface parametric domain of de�nition
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Fi−j Exchange factor [−]
Fi−j View factor [−]
F s
i−j Specular, extended view factor [−]
Gi Global view factor [−]
GL Conductive coupling [W/K]
GR Radiative coupling [m2]
H Incoming radiation [W/m2]

Height of cylinder [m]
H Objective function [−]
H0 External radiation [W/m2]
Ii Surface di�use importance [m2]
J Thermal radiosity [W/m2]
K Accuracy parameter [−]

Thermal conductivity matrix element [W/K]
L Radiance [W/m2/std]
L Likelihood function [−]
Ld Di�use component of radiance [W/m2/std]
M Resolution of the hemisphere [−]
N Number of rays, of nodes, of elements [−]
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IX

N(r) Shape function [−]
P Probability [−]
Pi Patch i [−]
−→
PR Origin of the ray
Q Volumic heat source term [W/m3]
QA Albedo absorbed power [W ]
QE Planetary infrared absorbed power [W ]
QI Internal dissipated power [W ]
QS Solar absorbed power [W ]
Qi−j Net radiative heat power [W ]
R Radius (of cylinder, sphere or disc) [m]
R♁ Radius of the Earth 6 378km
R� Solar radius 696 000km
R Re�ection operator, transport operator
−→
R Point on a ray
Rd Operator of di�use re�ection
Ri Importance receptor term [m2]
Rs Operator of specular re�ection
Rs∗ Operator of multiple specular re�ections
S Boundary of control volume
Si Radiosity source term [W/m2]
Sq Boundary subject to heat �ux conditions
ST Boundary subject to constant temperature
T Absolute temperature [K]
T♁ Temperature of the Earth
T� Solar temperature 5 780K
T0 Reference temperature [K]
V Control volume
V� Local solar visibility [−]
Vi−j Visibility function [−]
Wk Weight of integration point k [−]

Lower case letter
a Planetary albedo re�ection coe�cient [−]
c0 Velocity of light in vacuum 2.998 108m/s
c Velocity of light [m/s]

Speci�c heat [J/kg/K]
Geometrical linear parameter

d Error linear parameter
Distance Sun-Earth 149 600 000km

dAi Elementary area, point [m2]
dωi−j Solid angle of dAj from dAi [std]
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X

gi Sum line constraint [m2]
h Height of intersection point (cylinder, sphere) [m]

Height of a satellite [km]
k Thermal conductivity [W/m/K]
n Refractive index [−]
−→n Surface normal [−]
−→nΠ Normal vector of plane Π [−]
nlat Hemisphere's resolution in latitude [−]
nlon Hemisphere's resolution in longitude [−]
pi Shadow ratio [−]

Probability distribution function [−]
q Radiative heat �ux [W/m2]
r Distance [m]

Radius of intersection point (disc) [m]
−→rd Direction of a ray
−→r Position [−]
−→ri Incident direction [−]
−→rr Re�ected direction [−]
t Distance to the intersection point [m]
u, v Coordinates of impact point [−]
v(J) Radiative energy [W ]
x, y, z 3D axes

Greek capital letter
∆R Error of the transport operator [−]
∆V F Delta view factor [−]
∆φ Angular aperture in longitude [rad]
∆θ Angular constant in latitude [rad]
Ωj Solid angle subtended by Aj [std]

Greek lower case letter
α Absorptance [−]

Con�dence interval [−]
β Angle Sun-Planet-Spacecraft [rad]
γ Latitude of the sphere [rad]
γ� Solar angular aperture [rad]
γP Planetary angular aperture [rad]
ε Emittance [−]

Maximum relative error [−]
ηi−j Estimator of exchange factor ΩiFi−j, from ray tracing [m2]
η̃i−j Exact value of ΩiFi−j [m2]
η̇i−j Estimator of ΩiFi−j, after reciprocity enforcement [m2]
η̈i−j Estimator of ΩiFi−j, after closure enforcement [m2]
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XI

θ Latitude of the hemisphere [rad]
κ Reciprocity weight [−]
λ Wavelength [m]
λi Lagrange multiplier
λmax Dominant wavelength [m]
ν Frequency [Hz]
ξ1, ξ2 Uniform random numbers [−]
ρ Re�ectance [−]

Density [kg/m3]
ρd Di�use re�ectance [−]
ρs Specular re�ectance [−]
σ Stefan-Boltzmann constant 5.67 10−8W/m2/K4

Variance [−]
τ Transmittance [−]
φ Longitude of the hemisphere [rad]
χ Longitude of the sphere [−]
ψ Parametrization of a surface
ω Solid angle [std]
ωi−j Least square smoothing's weight[−]
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Acronyms

AHF Absorbed Heat Flux [W/m2]
ASHF Absorbed Solar Heat Flux [W/m2]
AU Astronomical Unit (149.598 106km)
BC Boundary Conditions
BRDF Bidirectional Re�ectance Distribution Function
CAD Computer Aided Design
CLRT Cosine Law Ray Tracing
CNES Centre National d'Études Spatiales
CPU Central Processing Unit
CSG Constructive Solid Geometry
DHF Direct Heat Flux [W/m2]
DSC Detector SpaceCraft
DSHF Direct Solar Heat Flux [W/m2]
ESA European Space Agency
ESTEC European Space Research and Technology Centre
EVF Extended View Factor [−]
FCI Fractional Con�dence Interval
FEM Finite Element Method
FV Fractional Variance
GL Linear conductor (Esatan formulation) [W/K]
GM Gebhart (matrix) Method
GR Radiosity, radiative conductor (Esatan formulation) [m2]
HF Heat Flux [W/m2]
IXO International X-ray Observatory
LSS Least-Square Smoothing
MCRT Monte Carlo Ray Tracing
MLE Maximum Likelihood Estimation
MSC Mirror SpaceCraft
PDF Probability Distribution Function
PV Personal Variation (by PV)
REF Radiative Exchange Factor [−]
RMS Root Mean Square
SAC Statistical Accuracy Control

XII



XIII

TCS Thermal Control (Sub)System
TLP Thermal Lumped Parameter method
TMM Thermal Mathematical Model
TOP Thermo-Optical Properties [−]
USD Uniform Spatial (Sub-)Division
VF View Factors [−]
XEUS X-ray Evolving Universe Spectroscopy
XRO X-Ray Observatory

Acronyms XIII P. Vueghs



Chapter 1

Objectives, requirements and structure

of the algorithm

Contents

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Spacecraft thermal analysis . . . . . . . . . . . . . . . . . . . . 4

1.5 Structure of the algorithm . . . . . . . . . . . . . . . . . . . . . 6

1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 8

The aim of this Chapter is to present the background of the thesis and to detail the
objectives that the proposed algorithms must ful�l. These objectives are then expressed
as a list of requirements.

An overview of the di�erent aspects that have to be addressed by the thesis is given.
Di�erent components of standard spacecraft thermal analysis are detailed, highlighting the
elements which received a personal contribution in this thesis; these components have been
developed as basic building blocks of the full thermal analysis.

Then the structure of the proposed algorithm is presented; the di�erent parts are brie�y
described and the innovative aspects developed in the context of this thesis are referenced.

1.1 Background

In order to design the thermal control system of a space mission, the thermal engineer often
uses dedicated software, like Esarad and Esatan from Alstom or Thermica and Thermisol

from EADS Astrium. As the radiative component can be predominant, software is very
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1.2. OBJECTIVES 2

often based on Monte Carlo ray tracing to compute the energetic exchanges between the
surfaces which compose the geometrical model, as well as the external heat �uxes on the
spacecraft, and thermal radiation to the cold deep space.

Currently, with the increasing performance of computers, the geometrical models de-
veloped with computer aided design tools contain more details and are constituted of many
thousands radiative faces. With the emergence and development of �nite element methods
in most engineering disciplines, the geometrical models can be de�ned as a set of tens
of thousands of elements (generally �rst- or second-order triangles and/or quadrangles).
Ray tracing algorithms must run faster than today's codes to handle these numbers of faces.

Today, the radiative heat transfer is computed in two spectral bands: one for the solar,
visible light and one for the infrared radiation. However, the development of cryogenics
applications, such as the scienti�c observatories Planck and Herschel, requires the decom-
position of the spectral domain in more wavelength bands.

The Monte Carlo processes used in thermal software introduce random noise in the
obtained results. The convergence is a function of the number of samples (in our case, the
number of traced rays). Another problem is the fact that the accuracy level is not well
controlled by the thermal engineer.

Currently, we observe a strong trend towards increased use of the �nite element formula-
tion in addition to the classical use of the lumped parameter (�nite di�erence) formulation
for space thermal analysis. This could allow us to better represent complex geometries with
fewer elements, as well as to use �nite element shape functions for the temperature �eld
(versus isothermal patches, used in the thermal lumped parameter formulation). Another
interest is the automatic generation of the conductive couplings, which is not yet accessible
and reliable. To deal with �nite elements, most of the radiative software for space analysis
requires special attention.

On the basis of these observations, we have de�ned the objectives that the thesis should
ful�ll.

1.2 Objectives

To handle the increasing size of the geometrical models based on �nite element meshes, our
�rst objective is to develop an algorithm that achieves an order of magnitude improvement
in performance (speed) over existing Monte Carlo ray tracing techniques used for space
thermal analysis. The algorithm shall present a good scalability, from small to large models.

To optimize multi-wavelength bands computations, signi�cant changes of the used ther-
mal formulation must be implemented, as well as an optimized algorithm to save CPU time

Objectives, Requirements and

Structure of the Algorithm
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1.3. REQUIREMENTS 3

and storage. While the thermal equations are well known, an adapted, smart strategy in
the ray tracing process can save a large amount of resources.

In order to deal with the stochastic nature of the ray tracing process, one contribution
of this work is to propose a new way to generate the rays, characterized by a convergence
superior to existing Monte Carlo ray tracing algorithms. This method is �tted with a sta-
tistical accuracy control. The thermal engineer can require a desired accuracy (de�ned by
a maximum relative error ε and a convergence interval α) and the algorithm automatically
adapts the number of rays to the considered geometrical con�guration.

The development of �nite element methods and their introduction in almost all engi-
neering disciplines lead us to �nd a way to extend the thermal software to a �nite element
formulation. Moreover, the ray tracing process must also be modi�ed to �t the �nite ele-
ment formulation.

This thesis contains the theoretical developments necessary to achieve these objectives.
We present also the development of the prototype algorithm and the testing process.

1.3 Requirements

On the basis of the objectives presented in the previous section, requirements that an
optimal algorithm should ful�l have been de�ned. The �nal algorithm:

1. shall be a ray tracing algorithm, where each ray is associated with a given energy
and can be considered as a bundle of photons.

2. shall compute the geometrical view factors and the radiative exchange factors. In
case of specular re�ection and/or transmission, the algorithm shall also compute the
extended view factors. The algorithm shall also compute the in-orbit external heat
�uxes.

3. shall be mathematically well-behaved, i.e. the �nal results shall converge with in-
creasing number of casted rays.

4. shall include di�use re�ection, specular re�ection, glossy re�ection.

5. shall be capable to support two spectral bands (one for the visible radiation and one
for the infrared component).

6. shall support either a �nite element formulation or a lumped parameter formulation,
also called �nite di�erence formulation (in order to compute the overall thermal
behaviour) and shall be adapted both for �nite element models (containing volumes
and surfaces) imported from CAD and geometrical primitives (included primitives are
triangles, rectangles, quadrangles, discs, cylinders, cones, spheres and paraboloids).

Objectives, Requirements and

Structure of the Algorithm
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1.4. SPACECRAFT THERMAL ANALYSIS 4

7. shall provide a statistical accuracy report accompanying the results in order to give
a con�dence interval to the user and shall provide a statistical accuracy control to
the user. As a function of a user-speci�ed accuracy, the algorithm shall be capable
of modifying locally the number of casted rays where the accuracy is not achieved.

8. shall be able to correct the computed exchange factors in function of their associated
variance.

9. should achieve at least an order of magnitude improvement in performance over
existing Monte Carlo ray tracing techniques used for space thermal analysis. The
comparative software shall be Esarad. Comparisons shall also be performed with the
�nite element software Samcef.

1.4 Spacecraft thermal analysis

Figure 1.1 presents the di�erent steps of a satellite thermal analysis. The innovative aspects
of the thesis are highlighted in red and/or in orange (in bold and/or italic); red (italic)
corresponds to theoretical developments and new mathematical formulations, while orange
(bold) represents the algorithmic developments, implying prototyping, and illustrated by
computer results.

The �rst module corresponds to the de�nition of the satellite. A geometrical model
is de�ned using a CAD tool. The geometry can also be represented by a �nite element
triangulation. Thermo-optical properties (TOP) and boundary conditions (BC) shall also
be de�ned.

Once a geometrical model is available, a ray tracing process, corresponding to the sec-
ond module of Figure 1.1, is necessary to compute the exchange factors (view factors, noted
VF, or radiative exchange factors, noted REF) and the external heat �uxes (direct incident,
noted DHF, or absorbed ones, noted AHF). A ray tracing algorithm consists in generating
a large number of rays, usually from random origins which are uniformly distributed across
the surfaces of the model. A ray tracing is also based on the computation of ray-surfaces
intersections.

The ray tracing process can be very time consuming if no precaution is taken. This is
the objective of the ray tracing acceleration (orange block, in italic, on the right) which is
one of the most important parts of the ray tracing algorithm. A classi�cation of di�erent
ray tracing acceleration techniques is given at the beginning of Section 4.3.

Once the ray tracing process is �nished, we have to correct the exchange factors (third
green module). The exchange factors obtained by ray tracing do not respect the reciprocity
relation. A reciprocity enforcement has to be coded. Then the exchange factors do not
respect the unity relation anymore. This problem has to be addressed before solving the
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Figure 1.1: Satellite thermal analysis.

thermal problem.

In order to solve the thermal problem, the conductive links have to be computed. This
operation can be performed by an external module, represented by the magenta block. In
current thermal software, this is usually carried out by the thermal engineer himself; how-
ever, procedures for automatic computation of conductive links appear in existing software.

Once the exchange factors and the heat loads have been computed, the thermal pro-
blem can be solved. In general, it can be performed thanks to two di�erent formulations.
A �rst one is based on view factors and direct heat �uxes. The second one is the most
commonly used in thermal software and is based on radiative exchange factors and ab-
sorbed heat �uxes. If the exchange factors produced by the ray tracing process are the
view factors, Gebhart's matrix method can be used under some hypotheses to obtain the
radiative exchange factors.

Once all these steps have been ful�lled, the satellite thermal analysis is completed and
the engineer has access to the distributions of temperature and heat �ux throughout the
geometrical model, represented in yellow in Figure 1.1.
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1.5 Structure of the algorithm

Figure 1.2: Structure of the algorithm.

Figure 1.2 shows the structure of our algorithm. Some modi�cations can occur from one
version to the other. To ful�ll the requirements, a set of modules has been developed. These
modules can be combined in di�erent ways, depending on the objective. The green blocks
correspond to the main entries of the algorithm (geometrical primitives, associated �nite
element meshes, thermo-optical properties...); additional entries should be de�ned, such as
the solar direction and angular aperture, the position and attitude of the spacecraft, but
they have not been displayed in Figure 1.2 for the clarity. The yellow blocks correspond
to external software used to generate the entries of our algorithm; the geometry can be
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obtained from CAD software Catia while the �nite element meshes can be given by the
mesh-modules of Samcef or Catia. The blue blocks represent the di�erent steps of the
algorithm and are associated to the corresponding personal developments, corresponding
to Chapters or Sections of this thesis and schematized by the orange boxes.

1.5.1 Pre-ray tracing operations

Our algorithm is based on the association of the geometrical model with a corresponding
�nite element mesh. This association between two de�nitions of the model has been used to
implement a new ray tracing acceleration method, which is called the geometrical method
and is detailed in Section 4.3.

This is combined with another acceleration method, called uniform spatial subdivision
(USD), based on the decomposition of the bounding box of the model into sub-volumes,
called voxels. This two-level acceleration method is used for both exchange factors (left
part of the diagram) and heat �uxes (right part of the diagram).

1.5.2 Ray tracing process

Our ray tracing for exchange factors (left column of the diagram) is based on a particu-
lar ray generation, called the hemisphere method, presented in Section 3.1; this method is
characterized by optimal statistical properties and a convergence rate superior compared
to existing methods.

The ray tracing acceleration is the combination of two methods (the geometrical method
and the USD method); the intersections are based on optimized routines (see Chapter 4).

The second part of the ray tracing, i.e. the computation of heat �uxes, is based on the
generation of shadow rays (see Chapter 5). The ray tracing acceleration is the same as the
one used for exchange factors, described in Chapter 4.

1.5.3 Post-ray tracing operations

Once the ray tracing process is �nished, the reciprocity of the exchange factors has to be
enforced. In Section 3.3, di�erent techniques are compared in order to identify the one
which will be used in the proposed algorithm.

Before the resolution of the thermal problem, the other heat transfer modes, especially
conduction, have to be taken into account. A very easy way to do it is based on the geo-
metrical method, by using the underlying �nite element mesh to automatically compute
the conductivity matrix (see Section 4.3). The mathematical formulation is given in Sec-
tion 6.1 and a large-scale application can be found in Chapter 7.

Objectives, Requirements and
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1.6. STRUCTURE OF THE THESIS 8

If the ray tracing has been used to compute view factors and if the Gebhart's formu-
lation is chosen to solve the thermal problem, Gebhart's matrix method can be used to
derive the radiative exchange factors from the view factors. In Section 3.4, the hypotheses
of the classical method are extended to consider non-di�use re�ection and non-isothermal
surfaces.

As a post-processing step, our algorithm can deliver an accuracy report, characterizing
all individual links between the surfaces. This energy accuracy measure is an innovative
part of the complete algorithm. It is based on a geometrical accuracy measure, presented
in Section 3.1.6 and is detailed in Section 6.2, as a mathematical development.

1.6 Structure of the thesis

The thesis comprises eight chapters.

The second chapter provides the necessary background related to the topic addressed
in the thesis so that the reader can pursue the reading with all basic notions in mind.

Chapter 3 describes the computation of the �rst radiative quantity: the exchange fac-
tors. An optimized emission process, named hemisphere, is studied in detail in Section 3.1,
in the case of di�use surfaces. The case of more complex thermo-optical properties is con-
sidered in 3.2. The exchange factors must be enforced for reciprocity and closure. It is
carried out in Section 3.3. On the basis of the view factors computed by ray tracing, the
Gebhart's matrix method is used to derive the radiative exchange factors. In Section 3.4,
this method is extended to take into account complex thermo-optical properties and non-
isothermal elements.

Chapter 4 is dedicated to geometrical developments used to accelerate the ray tracing
process, needed to compute the exchange factors and the radiative heat �uxes. Ray-surface
intersections are optimized in Section 4.2. A new ray tracing acceleration method, adapted
to the constraints of thermal analysis for space applications, is presented in Section 4.3.

Chapter 5 is dedicated to the computation of the external solar heat �ux. This com-
putation is adapted to the acceleration method presented in Chapter 4.

Chapter 6 contains all the innovative mathematical developments performed in the
framework of the thesis.

Chapter 7 presents the results of the validation process.

Finally, Chapter 8 presents the conclusions and perspectives, as well as recommenda-
tions for further research.
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Chapter 2

Heat transfer for space applications

Contents

2.1 Introduction - Objective of the thermal control subsystem . . 9
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2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

This Chapter describes in general terms the space thermal analysis discipline, why
it is needed for the development of space systems and how it interacts with the other
disciplines needed for the successful design of space systems. It contains notions of heat
transfer required for the thesis, as well as a description of the kind of discrete numerical
models that are used including the relevant physical quantities, and the typical sequence of
analysis steps. The di�culties that must be overcome to perform a complete space thermal
analysis task are also explained. The Chapter ends with the establishment of the two main
mathematical formulations that can be applied to solve the thermal problem, based on the
theoretical notions introduced in this Chapter.

2.1 Introduction - Objective of the thermal control sub-

system

The purpose of the thermal control subsystem is to maintain suitable temperatures for all
components of a space system (satellite, space probe, manned vehicle) under operating con-
ditions in all of the thermal environments encountered during the mission [CNE05, Gil02,
Ale02, Roc03]. To maintain appropriate temperatures is necessary to insure the optimal
status of the whole system and is performed by the so-called thermal control subsystem.
The thermal control engineer should create a design that manages and distributes the heat

9



2.2. NOTIONS OF HEAT TRANSFER AND RADIATION 10

in such a way that the system can perform according to its intended purposes. This in-
volves taking both passive and active measures. Examples of passive design measures are
the selection of materials and coatings with appropriate properties (thermal conductance,
heat capacity, expansion coe�cient, emittance, absorptance, re�ectivity...) and behaviour
over time, as well as adequate shapes and 3D con�guration, including radiator surfaces
to reject heat to cold deep space. Examples of active design measures are electric heaters
with a temperature sensor and a controller, Peltier elements, �uid loops, etc. Sometimes
also the trajectory or orientation of a spacecraft are adapted in order to obtain favorable
thermal conditions.

The tasks of the engineer are to design and verify a thermal control subsystem, which
insures that each component remains in a given (operating or survival) temperature range,
in function of the mission scenario. These tasks are usually performed through dedicated
thermal analysis software. The use of thermal software is necessary during the early phases
of the development in order to design an adapted, e�cient thermal control subsystem. As
the development progresses and a design is selected, the software is used to simulate tests
that will be carried out with the actual hardware (e.g. in vacuum chamber) and produce
test predictions. The software is also used to compute the thermal behaviour of the space
system during its mission (to produce so-called �ight predictions).

The physical tests are expensive, and it is complex to create all the conditions experi-
enced by the system during its life. In this context, the interest of a reliable prediction of
the thermal behaviour of the system, based on computer simulations, is clear. The experi-
mental tests are performed to verify the functionality and performance of the built system
as well as to verify the computer simulations and to correct the virtual thermal model, if
necessary. Once the virtual model is reliable, it can be used to simulate conditions that
are not tested or cannot be created in a test facility.

This Chapter provides a detailed discussion of how a thermal analysis for space appli-
cations is performed and what software is used. In order to establish a reliable model of a
thermal system, we need to introduce some basic notions of heat transfer. The radiative
heat transfer will be carefully addressed, and the de�nition of the thermo-optical proper-
ties will be given. Based on these preliminary notions, we will review the complete design
process of the mathematical model, from the geometrical de�nition and material selection
to the resolution of heat transfer, using the thermal lumped parameter method, which is
the discretisation/modelling method most commonly used in space thermal engineering.

2.2 Notions of heat transfer and radiation

Heat can be exchanged in three di�erent heat transfer modes, depending on the partici-
pating medium:

1. conduction, through a solid medium;

Heat Transfer

for Space Applications
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2. convection, where the transfer is performed by a �uid in motion;

3. radiation, which does not require any medium to insure the heat transfer.

In this work, we consider unmanned vehicles, like satellites and exploration probes.
In the vacuum of space, no convection appears. The heat transfer is then governed by
conduction and radiation. Generally, the main heat sources are the Sun and other celestial
bodies like planets and moons, as well as internal dissipation. The main heat sink is the
cold deep space, at approximately 5K. It implies that radiative heat transfer plays a major
role for space applications. This is why the present thesis is dedicated to radiation. No
conduction will be addressed in this theoretical Chapter.

Radiation relates to the exchange of energy due to the emission and absorption of
electromagnetic radiation. Thermal radiation can either be considered as electromagnetic
waves or bundles of photons [CT97]. The second de�nition is used by ray tracing, where we
model radiation as rays of light. The propagation of the rays is only based on the laws of
geometrical optics. Thermal radiation is characterized by a velocity c, equal to the velocity
of light. This velocity varies as a function of the encountered medium. The velocity of
light in vacuum is equal to:

c0 = 2.998 108m/s (2.1)

The velocity of light in a medium characterized by a refractive index n is given by the
relation:

c =
c0

n
(2.2)

The frequency ν of an electromagnetic wave is invariant with the refractive index while
c and wavelength λ vary with n. The frequency is linked to the wavelength λ through the
formula:

c = λν (2.3)

Thermal radiation is a part of the electromagnetic wave spectrum, as it can be seen
in Figure 2.1. The thermal spectrum (in red in Figure 2.1) is de�ned from 0.1µm, in the
ultraviolet domain, to 100µm in the infrared domain, including the visible spectrum (from
0.4 to 0.7µm).

2.2.1 Black body emissive power

A body emits electromagnetic radiation as a function of the local temperature and the
material properties. In order to have a reference thermal source, scientists de�ned an ideal
body, called black body, which completely absorbs any incident radiation.

The emissive power E [W/m2] of a black body at temperature T , expressed in Kelvin,
is given by Stefan-Boltzmann's formula [Mod03]:

E = σT 4 (2.4)
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Figure 2.1: Electromagnetic wave spectrum.

where σ is the Stefan-Boltzmann constant, equal to:

σ = 5.67 10−8W/m2/K4 (2.5)

The emissive power is characterized by a continuous spectral distribution. The domi-
nant wavelength of the emissive power is a function of the temperature, known as Wien's
displacement law :

λmax =
2 898

T
(2.6)

where λmax is expressed in µm and T in K.

Figure 2.2 represents the evolution of the black body emissive power as a function of
the wavelength λ, for �ve di�erent temperatures, together with the evolution of Wien's
displacement law (black dashed line). An increase in temperature yields an increase in the
black body emissive power as well as a decrease in the main wavelength λmax.

2.2.2 Emittance

The emissive power of a surface, at a given temperature, is compared to the black body at
the same temperature. The emittance ε is de�ned as the ratio of the real emissive power
and the emissive power of the black body. So the emissive power of the real surface is given
by:

E = εσT 4 (2.7)
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Figure 2.2: Black body emissive power spectrum.

As the maximum possible emissive power is emitted by a black surface, at a given
temperature, the emittance is de�ned between 0 and 1. For a black surface, we consider
that the emittance is equal to 1. The emittance of a surface is a function of the wavelength,
the temperature, and the surface roughness.

2.2.3 Absorptance - re�ectance - transmittance

Real surfaces cannot be considered as black ones. A real surface cannot absorb all the
incident radiations (see Figure 2.3). A fraction ρ of the incident radiation is re�ected. If
we consider a non-opaque medium of �nite thickness, the rest of the incident radiation is
transmitted through the slab. The following thermo-optical properties are de�ned [Mod03]:

• the absorptance α is de�ned as the fraction of the incoming radiation which is ab-
sorbed;

• the re�ectance ρ is the fraction of the irradiation which is re�ected in the incoming
hemisphere;

• the transmittance τ is the fraction of the radiation which is transmitted through the
slab.
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Figure 2.3: Absorption, re�ection and transmission.

The conservation of energy yields the following relation, where φ is the energy of the
incoming radiation:

αφ+ ρφ+ τφ = φ (2.8)

α + ρ+ τ = 1 (2.9)

If the medium is opaque, the corresponding transmittance τ is equal to zero, and the
previous relation becomes:

α + ρ = 1 (2.10)

The re�ection of radiation on a surface is governed by its bidirectional re�ection function
ρ. It is a complex function of the incoming and outgoing directions, and of the wavelength
of the incoming radiation. Usually, two di�erent re�ections are considered in heat trans-
fer [Mod03] as well as in rendering [WC87]: di�use re�ection and specular re�ection. A
specular surface is a surface which re�ects an incoming radiation following the optic laws
(see Figure 2.4�a). The specular re�ectance ρs is de�ned as the fraction of the incident
radiation which is specularly re�ected. A di�use surface re�ects an incoming radiation in
all directions (see Figure 2.4�b for the case of a purely di�use surface following the Lam-
bert's law or cosine law). The di�use re�ectance ρd is the fraction of the incident radiation
which is di�usely re�ected.

Equation (2.9) can be rewritten as follows:

α + ρd + ρs + τ = 1 (2.11)

These four radiative properties are non-dimensional; they are de�ned between 0 and
1. A black surface is associated with a unitary absorptance, zero re�ectance, and zero
transmittance. They constitute the thermo-optical properties of the surface.
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(a) Specular surface (b) Di�use surface

Figure 2.4: Re�ection processes.

2.2.4 Kirchho�'s law

Kirchho�'s law is based on thermodynamic equilibrium. Following Kirchho�'s law, for a
given wavelength λ, a given polarization, noted ±, and a given direction, identi�ed by the
angles θ and φ, the absorptance and emittance are equal [Mod03]:

αλ±,θ,φ = ελ±,θ,φ (2.12)

This relation can be integrated into a given wavelength band and solid angle.

2.2.5 Gray surface

While a black surface is an ideal, unreal surface de�ned for reference purposes, a more com-
mon hypothesis for real surfaces is the gray approximation: we consider that the spectral
emittance ελ is constant on the whole spectral range. No real surface is truly gray. However,
it often happens that ελ is relatively constant over that part of the spectrum where Eb,λ is
substantial, making the simplifying assumption of gray surface acceptable [Mod03].

2.2.6 Exchange factors

The thermal problem for space applications is often solved with the thermal lumped pa-
rameter method. This implies a discretization of the geometrical model. The surfaces of
the components are also meshed. In order to model the radiative heat transfer, additional
links between the surfaces must be added. These links are built on the basis of di�use view
factors, extended view factors and radiative exchange factors. These three quantities are
called exchange factors, in a generalized way.

2.2.6.1 View factors

When we consider radiative heat transfers between di�use surfaces, the transfers of en-
ergy are conducted by the geometrical con�guration of these surfaces. This geometrical
dependency is expressed by a function called view factor [SP94]. Other names found in
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the literature are angle factor1, con�guration factor and shape factor2. The view factor
between two surfaces depends only on their sizes, their orientations and the distance be-
tween them.

By de�nition, the view factor Fi−j from a surface i to a surface j is the fraction of the
di�use energy leaving Ai which is directly intercepted by Aj.

Let us consider two patches Pi and Pj, with areas Ai and Aj. Let us note dAi and
dAj two elementary surfaces on these two patches. We will �rst consider the radiative
exchanges between elementary surfaces before extending them to �nite surfaces. Let us
note dωij the solid angle with which dAj is seen from from dAi. This angle is de�ned by
the following equation:

dωij =
cos(θj)

r2
i−j

dAj (2.14)

where ri−j = ||−−→ri−j|| is the distance between dAi and dAj; θj is the angle between the local
normal −→nj and the vector −−→ri−j. The geometrical parameters appearing in these equations
are de�ned in Figure 2.5.

� �

� �� � � �

� �

� �

� � �

� �

� �� � � � �

� � �

Figure 2.5: View factor - de�nition of the geometrical parameters.

The total radiative �ux emitted by dAi is given by the following relationship, in the
case of a di�use surface:

dQi = πLidAi (2.15)

1The term of angle factor is linked to the formula of Lambert [Stü95, NN93, NN86b, NN85], where the
view factor is completely de�ned in terms of the angles of the di�erent surfaces.

Fdi−j =
1

2π

∑
k

βk cos(δk) (2.13)

where βk corresponds to the angular aperture of the edge k, projected onto the local hemisphere, δk is the
dihedral angle between the local horizontal plane and the plane de�ned by edge k and the origin dAi.

2The term shape factor has not been retained in this document because it could induce confusion with
the shape functions that will be de�ned in the framework of the �nite element formulation.
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Li is the power emitted by dAi, in a speci�ed direction, per unit area perpendicular to
the direction of travel, per unit solid angle. If the emitter is supposed to be di�use, Li is
equal in each direction. The �ux emitted by dAi which reaches dAj is equal to:

dQi−j = LidAi cos(θi)dωijVi−j (2.16)

= LidAi cos(θi)
cos(θj)

r2
i−j

Vi−jdAj (2.17)

Vi−j is the visibility function, equal to 1 if the two points are mutually visible, equal to 0
otherwise. This function allows us to take obstacles into account.

The geometrical view factor from dAi to dAj is de�ned as the ratio of the radiative �ux
received by dAj and the total radiative �ux from dAi:

Fdi−dj =
dQi−j

dQi

(2.18)

=
cos(θi) cos(θj)

πr2
i−j

Vi−jdAj (2.19)

The geometrical view factor from Ai to Aj is obtained by computing the double integral
onto the two areas. A �rst integration gives the view factor from dAi to Aj and the second
one, the global view factor.

Fdi−j =

∫
Aj

cos(θi) cos(θj)

πr2
i−j

Vi−jdAj (2.20)

Fi−j =
1

Ai

∫
Ai

∫
Aj

cos(θi) cos(θj)

πr2
i−j

Vi−jdAjdAi (2.21)

Equations (2.19)�(2.21) point out that the view factor between two surfaces is purely
geometrical. The thermo-optical properties (emittance, re�ectance, absorptance) do not
appear in these formulas.

The point wise view factor (equation (2.20)) can be seen as the limit of the view factor
when the area of the emitter Ai tends to zero. Numerous methods have been designed
to compute the point wise view factor, making it very attractive3. Nevertheless, available
software directly computes the view factors from surfaces to surfaces, usually based on ray
tracing approaches. A large number of rays are sent from the emitter's surface (from �xed
points on Ai or from points randomly distributed across Ai). Among the N rays, Nj rays
will directly intersect receptor Aj. No re�ection is taken into account in this process. We

3Among these methods, we can mention the Unit Sphere Method [RV04, Jar03], the Lambert's for-
mula (2.13), the hemi cube [CG85]... These methods and many others are detailed in the internal re-
port [Vue05].
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only consider the �rst intersection of each ray. If the rays are distributed following the
cosine distribution, the desired view factor is given by the relation:

Fi−j =
Nj

N
(2.22)

2.2.6.2 Extended view factors

When specular re�ectors are present in the model, the previous de�nition of the view factor
must be extended to take into account all the specular paths that the light can follow from
the emitter to the receptor [Mod03, SP89].

The specular view factor F s
i−j is de�ned as the fraction of the di�use energy leaving i

which is intercepted by a receptor j, either by direct travel or after any number of specular
re�ections.

A specular re�ector can be seen as a mirror, a window opening on a virtual world.
The surfaces of the virtual world can be seen from the real world through the re�ector,
attenuated by the specular re�ectivity ρs of the mirror. This is the basis of the image
method [RT90].

In the image method, a specular view factor is obtained by considering the surfaces
of the real world as well as the surfaces of the virtual world(s) that are visible from the
emitter. The images must be attenuated in function of the di�erent specular re�ections
that the light has experienced. The corresponding specular view factor is obtained by
summing the di�use view factors of all the surfaces, the real ones and the virtual ones.
This is illustrated in Figure 2.6. We can observe that a surface j which is not directly
visible from i (the corresponding di�use view factor is equal to zero) can be seen through
the surface k, giving a non-zero specular view factor.

The specular view factors can be computed by ray tracing. When a ray is generated,
it is followed through the model. When it encounters a �rst surface, this �rst intersection
represents the di�use contribution to the view factor. If the intersected surface is (at least
partially) specular, a secondary ray is shot in the direction given by the following equation:

−→rr = −→ri − 2 (−→n · −→ri )−→n (2.23)

where −→ri represents the direction of the incident ray, −→rr is the direction of the re�ected ray
and −→n is the local normal at the intersection point. The energy associated with the ray
is attenuated by the specular re�ectivity of the intersected surface. The secondary ray is
followed throughout the model, to its next intersection; the corresponding contribution is
added to the view factor. If the newly intersected surface is specular, another secondary
ray is generated. This process is performed until the energy of the ray goes below a given
threshold.
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Figure 2.6: Specular view factor - image method.

2.2.6.3 Radiative exchange factors

The radiative exchange factors, also called Gebhart's factors, were introduced in 1957
in [Geb57] cited in [Geb61b]. In Gebhart's formulation, the interactions between the sur-
faces link directly the self emitted power of these surfaces. This formulation is simpler than
the formulation based on view factors. In fact, the di�culty is transferred to the radiative
exchange factors, which are far more complex than the geometrical view factors.

By de�nition, Gebhart's factor Bi−j from a surface i to a surface j is the fraction of
the energy leaving Ai which is �nally absorbed by Aj, after any number of di�use and/or
specular re�ections and/or transmission.

The emission process is not speci�ed in the previous de�nition. In this work however,
only di�use emission will be considered.

In the initial article, Gebhart derives the radiative exchange factors from the view
factors by the so-called matrix method in the case of isothermal, di�use surfaces. In a
dedicated Chapter, it will be extended to more complex situations.

The radiative exchange factors can be computed by ray tracing. A large number of
rays are generated from the emitter's surface. When an intersection is detected, a random
process determines if the ray is absorbed, di�usely or specularly re�ected. In case of re-
�ection, a secondary ray is traced throughout the model.

A drawback of the radiative exchange factors is that they are function of the thermo-
optical properties, which can be temperature-dependent. A solution can be to consider gray
surfaces (see Appendix A.2), with thermo-optical properties independent of temperature.
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If this hypothesis is not valid, a band approximation can be used (see Appendix A.3).

2.3 Thermal model

In this Section, the de�nition of the spacecraft model is presented, as it is performed with
reference program Esarad. It includes the creation of the model on the basis of geometrical
primitives, the attributions of the thermo-optical properties and the decomposition of the
model. The resulting thermal equations are also given.

2.3.1 Geometrical model

The thermal model is �rst de�ned by the geometrical representation of the spacecraft. The
boundaries of the model have to be �xed. This model is constituted of macroscopic objects,
called components.

The geometrical model has to be adapted to the scale of the studied spacecraft. It is
common to simplify the model by removing details as �let, small hole and element.

The geometry is based on geometrical primitives, such as rectangles, planar quadran-
gles, triangles, discs, spheres, cones, cylinders and paraboloids.

If the boolean operators union, intersection and di�erence are de�ned, the geometrical
primitives can be combined in order to generate more complex surfaces. This method is
known as Constructive Solid Geometry [Ath83, Han89]. The three operators are de�ned
as follows:

• the union operator computes the merger of two objects into one;

• the intersection operator yields the portion common to the two objects;

• the di�erence operator results in the substraction of one object from the other.

An example is shown in Figure 2.7, from [Wik]. It is composed of three cylinders, a
sphere and a cube. The union operator is used to combine the three cylinders. The intersec-
tion between the cube and the sphere is computed. Finally, the two obtained components
are combined with the di�erence operator. The objects obtained with Constructive Solid
Geometry can be represented by binary trees, where leaves represent primitives and nodes
correspond to boolean operations.

In Esarad, the geometrical primitives are �rst decomposed into patches following iso-
parametric curves. The thermo-optical properties are attributed to the geometrical primi-
tives. Then, the meshed primitives are combined following the constructive solid geometry.
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Figure 2.7: Constructive Solid Geometry.

This implies that the intersection of two objects is exactly computed, although this inter-
section can be complex4. The ray tracing is performed on this de�nition of the model.

2.3.2 Mathematical representation of the thermal control system

As mentioned previously, the common method used in heat transfer for space applications
is the thermal lumped parameter method. Esarad-Esatan [Cen03] and Thermica-Thermisol

are based on this approach. This method is a means of deriving a �rst-order �nite-di�erence
approximation to the di�erential heat transfer equation (2.24):

div
[
k
−−−−−→
grad(T )

]
+Q = ρc

∂T

∂t
(2.24)

where ρ is the density of the medium, c is the speci�c heat and k is the thermal conducti-
vity. Equation (2.24) results from the principle of conservation of heat energy over volume
V . The �rst term represents the rate of heat which is conducted into volume V across its
boundary S; it contains the radiative heat �uxes. The source term Q corresponds to the
rate of heat generation within the volume. The second member is the rate of increase of

4In the method developed in this thesis, it will be shown that, despite the ray tracing is performed on
the geometrical primitives, the intersection of two objects is approximated by triangular elements, as it is
done in Samcef.
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heat in V [LMTS96].

The thermal lumped parameter method implies a decomposition of the model in isother-
mal elements called thermal nodes. For this reason, the emissive power is constant across
each node. The thermal properties of each node are concentrated in one point which can
be the geometrical centre of the node. The nodal decomposition also implies that the
thermo-optical properties are constant across each thermal node.

The resulting thermal equations express the energetic balance of the model. The power
emitted by a node i is equal to the absorbed power plus the internal production. The
corresponding equation is given by the following formula, for a stationary problem [Cen03]:

QIi +QSi +QAi +QEi +
N∑
j=1

GLi−j (Tj − Ti) + σ

N∑
j=1

GRi−j
(
T 4
j − T 4

i

)
= 0 (2.25)

where QI is the internal dissipation, QS corresponds to the absorbed solar heat �ux, QA
represents the absorbed albedo heat �ux, QE is the absorbed planetary infrared heat �ux.
The thermal model is then made of N thermal nodes characterized by:

• a temperature Ti, in Kelvins;

• a capacitance Ci = ρici, in Joules per Kelvin;

• an internal dissipated power QIi, in Watts.

The model contains the thermal couplings between the nodes, stored in three N × N
matrices:

• the conductive, linear couplings GL, in Watts per Kelvin;

• the radiative couplings, also called radiosities5 GR, in square meters;

• the convective couplings6.

5The radiosity GRi−j is de�ned as the radiative exchange factor Bi−j from node i to j, multiplied by
the product of the emittance εi by the area Ai:

GRi−j = εiAiBi−j (2.26)

This radiosity is expressed in m2. This radiosity should not be confused with the thermal radiosity Ji,
de�ned as the total power di�usely emitted by a surface:

Ji = εiEb,i + ρiHi (2.27)

This latter radiosity is expressed in W/m2.
6These couplings are mentioned to have a complete description of the thermal model. However, they

will not be further considered in this document.
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An equation similar to (2.25) can be written for each of the N nodes. We obtain a
set of N non-linear equations with N unknowns (the nodal temperatures). The resolution
of this set of equations can be performed with thermal solvers, such as Esatan and Thermisol.

If transient e�ects are considered, an additional term must be added in order to take
into account the thermal inertia of each node:

QIi +QSi +QAi +QEi +
N∑
j=1

GLi−j (Tj − Ti) + σ

N∑
j=1

GRi−j
(
T 4
j − T 4

i

)
= Ci

∂Ti
∂t

(2.28)

This yields a set of N di�erential non-linear equations. Esatan can be used in order to
compute the unknown temperatures.

Remark: The isothermal hypothesis must carefully be veri�ed. If a thermal gradient
appears in a region of the model, it must be meshed in order to locally satisfy the isother-
mal condition. On the other hand, a homogeneous region can be meshed with few elements.

The coupling matrices can contain a lot of zero-elements and a compression process is
necessary. It allows to reduce the storage and the CPU time needed to solve the thermal
equations.

The external heat loads are computed by ray tracing thanks to a dedicated software,
such as Esarad and Thermica. These programs contain an orbitographic module, computing
the orbital position and attitude of the spacecraft. A large panel of orbits and attitudes
are available in these codes.

The resolution of equations (2.25) and (2.28) is performed by a thermal solver, such as
Esatan and Thermisol. This solver should contain a lot of routines allowing steady-state
thermal resolutions, the computation of transient, eventually cycling, thermal distributions.
Temperature- and time-dependent properties can be de�ned in the solver.

2.4 Radiosity formulation

In the previous section, the equations used in the thermal lumped parameter method have
been presented. This method is based on Gebhart's formulation, presented in [Geb61b,
Geb59]. It is also presented in the monographs [SH01, Geb61a]. In our algorithm, we used
either this formulation or the radiosity formulation, based on view factors. In this Sec-
tion, the radiosity equation is brie�y presented, �rst in the case of di�use surfaces and then
in the case of specular re�ectors. A more detailed description is available in [Mod03, SH01].

The radiosity formulation can be modeled with electrical resistances, using the electrical
analogy [Opp56, ZS66]. The Kennelly's delta-star transformation [Ken99] can be used to
switch from one formulation to the other one.
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2.4.1 Di�use re�ectors and radiosity equation

In this Section, all the surfaces of the model are assumed to be ideal di�use emitters and
re�ectors [Mod03]. The di�use re�ectivity is assumed to be constant for all the wavelengths
that govern the problem.

A fraction ε of an incoming radiation is then absorbed while the complementary frac-
tion 1 − ε is di�usely re�ected. The radiosity J(r) is de�ned as the total di�use energy
leaving a position r. The radiosity is the sum of two components: the self-emitted power
and the re�ection of the incoming radiation:

J(r) = ε(r)Eb(r) + ρ(r)H(r) (2.29)

The net radiative heat �ux is equal to the di�erence of the total emitted heat �ux (i.e.
the radiosity) and the total incoming heat �ux (the irradiance H(r)). It is also equal to
the di�erence of the self-emitted power and the absorbed component of irradiation (see
Figure 2.8).

q(r) = J(r)−H(r) (2.30)

= ε(r) (Eb(r)−H(r)) (2.31)

� � � �

� � � � �

Figure 2.8: Heat �uxes on point r.

By combining equations (2.30) and (2.31), the following equation is obtained, which
links the heat �ux, the black body emission and the radiosity:

J(r) = Eb(r)−
(

1

ε(r)
− 1

)
q(r) (2.32)

The incoming energy in r, given by H(r)dA, is equal to the external contribution,
H0(r)dA, plus the contribution of all the surfaces of the 3D-model. This last term is
obtained by summing the radiosity of all the surfaces, weighted by their view factor with dA.

H(r)dA = H0(r)dA+

∫
A′
J(r′)dFdA′−dAdA

′ (2.33)
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We use the reciprocity of the view factors and introduce the irradiance in equation (2.31).

q(r) = ε(r)

[
Eb(r)−

∫
A′
J(r′)dFdA−dA′ −H0(r)

]
(2.34)

Remark: if the model is made of black surfaces, the emissivity is equal to unity and the
radiosity reduces to the black body emission. The following relation is then applicable:

q(r) = Eb(r)−
∫
A′
Eb(r

′)dFdA−dA′ −H0(r) (2.35)

If the expression (2.32) of the radiosity J(r) is introduced in the equation of the radiative
heat �ux (2.34), the following relation is obtained, function of q(r) and Eb(r):

q(r) = ε(r)

{
Eb(r)−

∫
A′

[
Eb(r

′)−
(

1

ε(r′)
− 1

)
q(r′)

]
dFdA−dA′ −H0(r)

}
(2.36)

If the model is decomposed into N patches assumed to be isothermal and associated
with a uniform emissivity, the following relation is obtained:

qi(ri)

εi
= Eb,i −

N∑
j=1

[
Eb,j −

(
1

εj
− 1

)
qj(rj)

]
FdAi−Aj

−H0,i(ri) (2.37)

The radiative heat �ux is not necessarily constant because the irradiation is not uniform
and FdAi−Aj

can vary on Ai. The previous relation has to be averaged on Ai.

qi
εi

= Eb,i −
N∑
j=1

[
Eb,j −

(
1

εj
− 1

)
qj

]
Fi−j −H0,i (2.38)

This relation can be recast into:

N∑
j=1

[
δij
εj
−
(

1

εj
− 1

)
Fi−j

]
qj =

N∑
j=1

(δij − Fi−j)Eb,j −H0,i (2.39)

This expression implies that the distribution of the �uxes qj across surface j is governed
by two sources:

• the self-emitted energy from the surfaces which compose the geometrical model;

• the distribution of the external irradiation H0,i.

The heat �uxes qj can be seen as the sum of two distinct components:

• the component qEj is necessary to balance the thermal system when only the self-
emitted power is taken into account;
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• the component qIj is used to balance the system when only external irradiation is
considered.

N∑
j=1

[
δij
εj
−
(

1

εj
− 1

)
Fi−j

]
qEj =

N∑
j=1

(δij − Fi−j)Eb,j (2.40)

N∑
j=1

[
δij
εj
−
(

1

εj
− 1

)
Fi−j

]
qIj = −H0,i (2.41)

Equation (2.40) is equivalent to the equation (A.7) of Gebhart while (2.41) is equivalent
to (A.8). The equivalence between these two formulations is detailed in Appendix B.1.

2.4.2 Specular re�ection

In the previous Section, only di�use surfaces have been considered. However, common
surfaces exhibit more complex BRDF7 [Mod03]. Here, the BRDF is assumed to be de-
composed into two components: an ideal di�use one, noted ρd, and an ideal specular one,
noted ρs, such as8:

ρ = ρd + ρs (2.42)

The re�ection operator, which is used to compute the distribution of light after one
re�ection, is given by:

R = Rd +Rs (2.43)

Each operator, when applied to a radiance distribution, yields a term of the �nal
radiance distribution. Ld is de�ned as the di�use component of the �nal radiance. If
the emission is supposed to be di�use, Ld is given by:

Ld = Rd + Le (2.44)

The di�use radiance Ld is obtained by removing the specular component from the total
distribution.

L = Ld +RsL (2.45)

In this equation, only a specular radiative balance is considered, with a source term Ld

which takes into account the distribution of di�use luminance. It yields:

L = (I −Rs)−1 Ld (2.46)

L =
+∞∑
n=0

(Rs)n Ld (2.47)

7Bidirectional Re�ectance Distribution Function.
8For the sake of readability, the notation of the di�use re�ectivity in the previous section has been

simpli�ed. Only the di�use component, noted here ρd, was taken into account in the previous Section.
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The last equation has been obtained thanks to a decomposition following the Neumann
series [Kaj86]. The global specular re�ection operator is de�ned as:

Rs∗ =
+∞∑
n=0

(Rs)n (2.48)

L = Rs∗Ld (2.49)

This operator takes into account the e�ects of any number of specular re�ections.
The e�ects of the three operators are described in Figure 2.9. Figure 2.9�a represents
the application of the Rd operator, where an incoming radiation is di�usely re�ected.
Figure 2.9�b is the e�ect of one specular re�ection, modeled by the operator Rs. Finally,
Figure 2.9�c shows the e�ect of the global specular re�ection operator on the incoming
radiance.

�
�

(a) Rd

�
�

(b) Rs
� �

�

(c) Rs∗

Figure 2.9: Re�ection operators.

Specular re�ection is a re�ection where the light ray keeps its history in memory. Once
the ray experiences a di�use re�ection, its memory is lost and the ray is re�ected in a
arbitrary direction, independently of the incoming direction.

In radiative heat transfer, only the di�usely absorbed luminance is interesting. In
rendering, an additional operation is necessary, related to the specular component and
the position of the observer. In radiative heat transfer, the computation is ended when a
di�use re�ection is encountered, after any number of specular re�ections. It yields:

Ld = Le +RdL (2.50)

Ld = Le +RdRs∗Ld (2.51)
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The operator RdRs∗ represents any succession of specular re�ections which ends with
a di�use one:

Ld =
(
I −RdRs∗)−1

Le (2.52)

This equation is equivalent to the previous, di�use system but the matrix is based on the
specular, extended view factors. The heat �ux is now given by the general equation (2.31):

q(r) = ε(r) [Eb(r)−H(r)] (2.53)

= ε(r)Eb(r) + ρd(r)H(r) + ρs(r)H(r)−H(r) (2.54)

The radiosity is de�ned as the di�usely emitted energy, sum of the self-emitted radiation
and the di�use re�ection of irradiation:

J(r) = ε(r)Eb(r) + ρd(r)H(r) (2.55)

Remark: If a surface is purely specular (ρd = 0), the radiosity is equal to ε(r)Eb(r) and
H(r) is unde�ned. In fact, the corresponding irradiance H is specularly re�ected to di�use
surfaces and then attributed to these surfaces.

The irradiance H(r) is extracted from the equation (2.55):

H(r) =
J(r)− ε(r)Eb(r)

ρd(r)
(2.56)

If the expression of the irradiance (2.56) is introduced into (2.53), it yields:

q(r) = ε(r)

[
Eb(r)−

J(r)

ρd(r)
+

ε(r)

ρd(r)
Eb(r)

]
(2.57)

=
ε(r)

ρd(r)
[(1− ρs(r))Eb(r)− J(r)] (2.58)

From the previous equation, the expression of the radiosity related to the specular
re�ectors can be obtained:

J(r) = −ρ
d(r)

ε(r)
q(r) + (1− ρs(r))Eb(r) (2.59)

The irradiance is obtained by summing the contributions of all the surfaces of the
model. Using the specular view factors F s

i−j, the following relation is obtained:

H(r) =

∫
A′
J(r′)dF s

dA−dA′ +Hs
0(r) (2.60)

The external irradiation Hs
0(r) represents the distribution of external heat �uxes re-

ceived either directly or after any number of specular re�ections. By convention, a specular
surface cannot receive any external irradiation; the re�ected heat �ux is assigned to the
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next encountered di�use surface.

The irradiance from (2.56) and the radiosity from (2.59) are used:

Eb(r)−
∫
A′

(1− ρs(r))Eb(r′)dFdA−dA′ =
q(r)

ε(r)
−
∫
A′

ρd

ε
q(r′)dFdA−dA′ +Hs

0(r) (2.61)

If all the surfaces are ideally di�use, the specular re�ectivity is equal to zero; the di�use
re�ectivity is equal to 1−ε. The extended view factors are identical to the di�use ones. The
external irradiation does not experience any specular re�ection: Hs

0 ≡ H0. Equation (2.36)
is obtained for di�use surfaces.

The model is decomposed into N isothermal patches with uniform thermo-optical pro-
perties. The system is averaged on the surface Ai:

Eb,i −
N∑
j=1

(
1− ρsj

)
F s
i−jEb,j =

qi
εi
−

N∑
j=1

ρdjF
s
i−j
qj
εj

+Hs
0,i (2.62)

If Kronecker's symbol is used, the following relation is obtained:

N∑
j=1

(
δij − (1− ρsj)F s

i−j
)
Eb,j =

N∑
j=1

(
δij − ρdjF s

i−j
) qj
εj

+Hs
0,i (2.63)

2.5 Conclusions

In this Chapter, the de�nition of the mathematical model which is used by the thermal
engineer to design the thermal control subsystem of a spacecraft has been described. The
di�erent elements of the mathematical model have been detailed, as well as the commonly
used methods.

The radiosity formulation which has been used in the developed algorithm to solve
the thermal problem for purely radiative cases has also been presented. Cases including
conduction have been solved with a �nite element formulation, as it will be presented in
Section 6.1.
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Chapter 3

Computation of the exchange factors
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3.4 Gebhart's method . . . . . . . . . . . . . . . . . . . . . . . . . . 93

This Chapter describes a new method designed to compute di�use view factors by ray
tracing. The extension to more complex thermo-optical properties is addressed in the
second Section. This Chapter also considers the enforcement of reciprocity and closure of
the exchange factors. It presents also recent developments concerning Gebhart's method,
which can be used in order to derive the radiative exchange factors directly from the view
factors by a matrix operation.

3.1 Computation of the view factors

3.1.1 Introduction

In the �eld of image synthesis or thermal radiation, the challenge is to calculate the radia-
tive exchanges between the surfaces of a 3D model. To quantify the interactions between
the surfaces, an adimensional number, called view factor and noted Fi−j, is de�ned. The
view factor represents the fraction of the di�use energy leaving a surface Ai which di-
rectly reaches a surface Aj. The calculation of the view factors is a very di�cult problem.
Di�erent techniques have been designed in image synthesis. In this thesis, an innovative
method, named strati�ed hemisphere, is presented. It is based on the Nusselt's Analogy.
This new method is simpler and more natural than most of the other ones.
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Section 3.1.2 presents a short state-of-the-art and details some techniques designed in
the �eld of image synthesis, like the hemi cube and the single plane, because they present
some similarities with the strati�ed hemisphere method. Section 3.1.3 is dedicated to the
Nusselt's Analogy, which is the basis of strati�ed hemisphere. Section 3.1.4 describes the
establishment and description of the hemisphere's mesh. In Section 3.1.5, two versions
of the strati�ed hemisphere's method are presented; the �rst one is deterministic while
the second one is stochastic. The stochastic version is described in detail in this Section.
Section 3.1.6 is dedicated to a statistical accuracy measure adapted to the strati�ed hemi-
sphere and the implementation of a statistical accuracy control. Section 3.1.7 presents the
extension of the point wise strati�ed hemisphere in order to compute patch-to-patch view
factors. An adaptation to �nite element view factors is also given. Section 3.1.8 presents an
alternative version of the strati�ed hemisphere, more e�cient in terms of implementation:
the sphere. Section 3.1.9 compares the classical Monte Carlo ray-tracing used in thermal
software to strati�ed hemisphere.

3.1.2 State of the art

In the �eld of image synthesis, several methods have been designed in order to compute
the view factors in a geometrical model. Figure 3.1 represents a classi�cation of these
di�erent methods [CW93]. Among the analytical methods, some particular geometrical
con�gurations are associated with analytical formulas [How82, Won76, ESA89]. However,
these con�gurations are limited and the obtained expressions are quite complex. In case
of polygonal surfaces, the Nusselt's Analogy can be used to compute point wise view fac-
tors [RV04, Bou00]. A complex formula can be established for the view factor between two
polygons [SH93a, SH93b]. An additional di�culty resides in the computation of visibility,
if obstacles are present in the model.

Among the numerical methods, a �rst distinction can be made between point wise view
factor and view factor between surfaces of �nite areas. In the �rst class, two sub-classes are
de�ned. The �rst one is based on a sampling of the hemisphere subtended by the local nor-
mal; the second one is based on a sampling of the target area. The second class of methods
contains methods such as Monte Carlo sampling and hierarchical subdivision [HSA91]. A
more detailed description of di�erent methods used to compute the view factors can be
found in the internal report [Vue05].

In this Section, some methods of the �rst sub-class, called hemisphere sampling (in
yellow in Figure 3.1) will be presented because they are linked to the strati�ed hemisphere
method. Some of these methods, like the hemi cube and the single plane, have directly
inspired the deterministic version of the strati�ed hemisphere. On the other hand, the
techniques based on ray tracing and Monte Carlo sampling, like the Malley's method, can
be seen as simpli�ed versions of the stochastic strati�ed hemisphere. The method developed
in this thesis is based on an improved stochastic sampling of the hemisphere (in orange in
Figure 3.1).
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Figure 3.1: State of the art - Classi�cation.

3.1.2.1 Hemi cube

The hemi cube has been designed and presented in [CG85]. It has �rst been used in image
synthesis and after to solve thermal analysis [JCG93, CJMD95, JCG92].

This method is used to compute the di�use point wise view factor. It consists in draw-
ing a cube centered around the origin. The z-axis coincides with the normal vector −→ni .
The construction is represented in Figure 3.2�a according to references [Jar03, CG85].

The cube is decomposed into cells (see Figure 3.2�a). Each cell is associated with
an element of view factor, called delta view factor and noted ∆V F . These ∆V F are
elementary contributions to the point wise view factor. The distribution of the ∆V F is
represented in Figure 3.2�b. The cells near the z-axis are associated with the highest values
and the cells located near the edges are characterized by lower values. This over sampling
can be reduced if we apply a non-uniform mesh to the hemi cube, as it is performed with
the single plane (see Figure 3.3�a from reference [SP89]). In Figure 3.2�a, a surface is
projected onto the hemi cube; the projection covers two di�erent faces of the cube. The
corresponding contributions are summed to obtain the point wise view factor. This method
presents drawbacks :
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Figure 3.2: Hemi cube � a) geometrical con�guration � b) distribution of ∆V F .

• The hemi cube is based on an irregular sampling of the space, implying over sampling
to guarantee a minimal accuracy.

• Five projections (one for each face of the hemi cube) are needed in order to compute
the view factors with the complete environment.

• The hemi cube, like the other methods based on a deterministic scheme to integrate
the view factors, is subject to aliasing. It is not obvious to introduce a random
process which respects the distribution of the view factor (i.e. the cosine law) in the
formulation of the hemi cube.

Nevertheless, the main advantage of this technique is that occlusions can easily be taken
into account by performing a test based on the distance of the surfaces projected onto the
hemi cube. If many surfaces are projected onto the same cell of the hemi cube, only the
nearest one is kept; the others will not be visible from the origin dAi.

An alternative to the hemi cube, based on a tetrahedron, has been designed to reduce
the number of projections [BKP91, BKP92].

The strati�ed hemisphere method presented in this thesis initially derives from the
hemi cube method, developed to correct the drawbacks of the hemi cube.

3.1.2.2 Single plane

The method of the single plane has been presented in [SP89]. This method can be derived
from the hemi cube. The lateral faces of the hemi cube are removed; only the top face is
kept. It is extended following the x− and y−axis in order to take into account the surfaces
previously projected onto the lateral faces of the hemi cube. The plane is meshed following
the x- and y-directions to obtain cells with approximately equal elementary view factors.
There is no exact solution to this problem. The mesh presented in Figure 3.3�a has been
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proposed in [SP89].

This method requires only one projection onto the plane. Moreover, one array is suf-
�cient to store all the elementary view factors. If the mesh of Figure 3.3�a is chosen, one
real number is su�cient to store the elementary view factor. The drawback of this method
is that the view factors between the origin and the surfaces near the horizontal plane are
neglected.

An alternative method has been proposed in [RV04, VVL+01, VLV99, VLV04]. The
single plane is expressed in polar coordinates, more adapted to the axial symmetry of the
view factor's formula. The single plane is broken down to cells characterized by an equal
elementary view factor. In Figure 3.3�b, the evolution of the radius is plotted in function of
the cumulated view factor. With a radius of 3, 90% of the whole view factor is represented
while a radius of 10 corresponds to 99%.
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Figure 3.3: Single plane � a) mesh [SP89] � b) cumulated view factor.

The strati�ed hemisphere method that will be presented in the next sections allows us
to combine the advantages of the previous mentioned methods, without their drawbacks.
It is similar to the single plane because the deterministic mesh is composed of cells of equal
elementary view factors.

3.1.2.3 Malley's method

The two previous methods are based on a projection of the environment onto a surface (a
cube or a plane). The method presented in this section is based on a ray tracing algorithm.
In this case, a large number of rays are generated. The intersections with each surface of
the model are counted in order to compute the view factor. The distribution of the rays
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direction must be chosen in such a way it obeys the cosine law.

Following the Nusselt's Analogy, if the unit disc is uniformly sampled, the obtained dis-
tribution satis�es the cosine law. This method has been designed in [Mal88] cited in [SP94].
The Malley's method consists in generating a set of points uniformly distributed across the
unit disc (see Figure 3.4). The direction of each ray is obtained by projecting each point
vertically from the unit disc to the hemisphere. Then, the ray is traced perpendicularly to
the hemisphere's surface.

For each surface in the environment, the number of intercepted rays Ni−j is counted.
The view factor is obtained by dividing the number Ni−j by the total number of casted rays.

Figure 3.4: Malley's method - illustration of the method [CW93].

The Malley's method can be seen as a simpli�ed version of the innovative method pre-
sented in this thesis. The two methods are designed to compute point wise view factors,
they are based on ray tracing with a distribution of the rays which follows the cosine law.

The drawback of a stochastic process is the appearance of a random noise that a�ects
the results. Some techniques can be used to decrease the variance of the stochastic process.
One of them is importance sampling. By using a probability distribution function that
corresponds to the cosine law, the Malley's method takes advantage of this technique.

3.1.2.4 Monte Carlo ray tracing

While Malley's method is used in order to compute the point wise view factor, the Monte
Carlo ray tracing is designed to evaluate the view factors between patches of �nite size.
This is done by a two-step process:

• a sampling of the emitter's surface;
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• a ray direction sampling.

If the sampling of the emitter's surface is uniform, this step does not introduce any
weight (associated with the current ray). If the ray direction is de�ned by two uniformly
angles θ (latitude) and φ (longitude), the weight of the ray must be multiplied by cos(θ), in
order to follow the cosine law (3.2). As the rays are characterized by unequal weights, the
variance associated with MCRT is quite large. This variance can be reduced by choosing
an adapted ray direction sampling.

3.1.2.5 Cosine law ray tracing

While the θ-sampling in the MCRT is uniform, the cosine law ray tracing is based on a
non-uniform sampling of the latitude. This new distribution follows the cosine law and is
characterized by a lower variance, since each ray is associated with an equal weight. This
is the method implemented in common software, like Esarad [Doc04], Thermica[Doc03] and
Samcef [Doc07].

3.1.3 Nusselt's Analogy

Following [SP94], the point wise view factor from a point dAi on a patch Pi of area Ai to
a patch Pj of area Aj is denoted Fdi−j and is given by the relationship (3.1):

Fdi−j =

∫
Aj

cos(θi) cos(θj)

πr2
i−j

Vi−jdAj (3.1)

where the parameters are de�ned as follows (see Figure 3.5):

� �

� �� � � �

� �

� �

� � �

� �

� �� � � � �

� � �

Figure 3.5: View factor - de�nition of the geometrical parameters.

• The point dAi on the patch Pi is located by the vector −→ri ;

• −−→ri−j = −→rj −−→ri is the vector joining the point dAi and a point dAj on the patch Pj;

• θi is the angle between the vector −−→ri−j and the local normal −→ni of the surface Ai at
the point dAi; θj is the angle between the vector −−→ri−j and the local normal −→nj of the
surface Aj at the point dAj;
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• Vi−j is the visibility function. It is equal to 1 when the two points −→ri and −→rj can see
each other, it is equal to 0 otherwise. This factor is responsible for discontinuities of
the kernel when it is integrated on the surface Aj. This increases the di�culty of the
computation.

Following the Nusselt's Analogy (cfr [Nus28] cited in [SP94]), the point wise view factor
Fdi−j can be considered as the result of two successive projections:

• a �rst projection onto the unit sphere centered on −→ri . This step corresponds to the
factor cos(θj)

r2i−j
in the relation (3.1). The solid angle subtended by the surface dAj is

given by dωj =
cos(θj)dAj

r2i−j
.

• a second orthogonal projection down onto the plane of the surface Ai, which corres-
ponds to the factor cos(θi).

Therefore, the relation (3.1) can be expressed in terms of solid angles. This yields the
following expression:

Fdi−j =

∫
Ωj

cos(θi)

π
dωj (3.2)

where Ωj is the solid angle subtended by Aj. The factor π which appears at the denomi-
nator is a normalization constant. If Ωj corresponds to the whole hemisphere de�ned by
the local normal −→ni , the view factor Fdi−j is equal to unity. This equation will be referred
as the cosine law.

To conclude this Section, the Nusselt's Analogy and the double projection are illus-
trated. Figure 3.6�a shows a 3D geometrical con�guration. In this case, the view factor is
computed from the centre of the green square to the quadrangular blue patch.

The �rst step consists in projecting the blue patch onto the unit hemisphere sustained
by the normal vector at the origin (at the centre of the green square). This is done at
Figure 3.6�b. In this Figure, a spherical mesh has been superimposed on the spherical
projection.

Figure 3.6�c represents the result of the orthogonal projection. The hemisphere is
projected down to the horizontal plane. The �nal surface of projection surface is called
the unit disc, limited by the blue circle. In this disc, the view factor is proportional to the
area of the projection. The normalization constant is the area of the unit disc, equal to π.

3.1.4 Strati�ed hemisphere

The new method presented in this thesis and called strati�ed hemisphere, is based on a
mesh of the unit disc. Two classes of meshes can be considered. The �rst one is based on
a uniform decomposition of the unit disc and includes the strati�ed hemisphere. Each cell
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Figure 3.6: Nusselt's Analogy � a) 3D con�guration � b) spherical projection � c) orthogonal
projection.

is associated with an equal area, that is with an equal elementary view factor (following
the Nusselt's Analogy). The polar decomposition presented in this document is exact: the
contour of the disc is correctly represented. On the other hand, an orthogonal division of
the unit disc yields a uniform mesh but the contour is approximated. This induces errors
in the computation of the view factors since the summation rule is no longer veri�ed (the
surface of the approximated disc is not exactly equal to π). The same problem is encoun-
tered with a Delaunay discretization1.

The second class of meshes is based on a weighted decomposition. Typically, it is the
case of the hemi cube method. The single plane also belongs to this class. The main
drawback of this class of meshes is that it can induce an over sampling of the domain.
Some regions are over sampled while others are not su�ciently meshed. These meshes are
not uniform.

1The unit disc is decomposed into triangles of the same area. The computation is performed on a �rst
set of points; then the triangulation is iteratively modi�ed in order to obtain triangles of the same size.
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3.1.4.1 Decomposition of the unit disc

In this Section, with the help of the Nusselt's Analogy, the hemisphere is decomposed into
solid angles. Each solid angle is characterized by the same elementary view factor.

The elementary point wise view factor is given by equation (3.2):

Fdi−j =

∫
Ωj

cos(θi)

π
dωj

This equation, expressed in spherical coordinates on the superior hemisphere, gives us
the following expression, where the variables θ and φ have been separated:

Fdi−j =

∫
θi∈Ωj

∫
φi∈Ωj

cos(θi) sin(θi)

π
dθidφi (3.3)

=

∫
θi∈Ωj

cos(θi) sin(θi)dθi

∫
φi∈Ωj

dφi
π

(3.4)

So the decomposition will be performed following the parallels and the meridians, i.e.
in terms of latitude and longitude. This technique allows us to prevent an useless dis-
cretization of the regions near the horizon. The total number of cells N will be obtained
by multiplying the numbers of subdivisions following the longitude and latitude directions,
nlon and nlat.

First, the hemisphere will be decomposed in terms of latitude, obtaining a succession of
rings at the surface of the unit sphere. This preserves the axial symmetry of the de�nition of
the view factor. Afterwards the rings are decomposed in sectors of equal angular aperture,
in longitude.

In terms of latitude On the basis of the Nusselt's Analogy, a succession of nlat con-
centric rings in the unit disc is considered. Figure 3.7 represents a succession of 10 such
rings. If the rings have the same area, they will correspond to spherical rings characterized
by an equal elementary view factor. The ring k is characterized by inner and outer radii
equal to the following values, where nlat is the resolution of the hemisphere in latitude:

ρin =

√
k − 1

nlat

ρout =

√
k

nlat

(3.5)

To obtain the corresponding solid angles, the radii have to be converted in terms of
latitudes. Each radius can be projected onto the hemisphere, so the corresponding set of
latitudes is obtained:

θk = arcsin

(√
k

nlat

)
(3.6)
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Figure 3.7: 10 concentric rings of equal elementary view factor in the unit disc.

For each cell, a view factor equal to 1/nlat is attributed. In the framework of the
deterministic hemisphere, this must be associated to the centre of the cell, in terms of
latitude, following the θ-pro�le2.

In terms of longitude After that, the discretization of the hemisphere in longitude can
be chosen simply by dividing the rings in a determined number nlon of sectors. All the
sectors must have the same angular aperture ∆φ = 2π/nlon.

3.1.4.2 Resulting mesh

So the hemisphere has been subdivided along the two spherical coordinates θ (latitude)
and φ (longitude). The view factor associated to each cell is equal to 1/nlatnlon. Figure 3.8
presents the hemisphere subdivided in longitude and latitude. The cells are quadrangular,
except the cells which have a vertex vertically above the centre of the hemisphere and
which are triangular.

3.1.4.3 Analysis of the mesh

We will now brie�y detail some characteristics of the strati�ed hemisphere's mesh.

2The centres of the cells are de�ned by the sequence:

Fdi−j =

{
k ∈ [1, n

lat
] : θk = arcsin

(√
2k − 1
2n

lat

)}
(3.7)
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Figure 3.8: Wire frame view of the hemisphere.

Orthogonal projection Figure 3.9�a presents the result of the orthogonal projection of
the mesh onto the horizontal plane. The area of each cell is a constant, equal to 1/nlonnlat.
This is in agreement with the Nusselt's Analogy: equal view factors are associated with
equal areas in the unit disc.

Equivalent projection The cells of the mesh are not equal in terms of solid angle, ex-
cept for the cells between two successive parallels. All cells are characterized by the same
angular aperture in longitude. In Figure 3.9�b, the result of the equivalent projection of
the strati�ed hemisphere's mesh is presented. This projection preserves area: spherical
caps are represented by discs of the same area. For a sphere of unit radius, this projection
preserves solid angles. A more detailed description of the equivalent projection can be
found in [Bec03]. When compared to the orthogonal projection (Figure 3.9�a), the central
cells of Figure 3.9�b have a smaller area, because of the reduced solid angle. The area of
the cells increases when going from the centre to the external circle.

Remark : in order to obtain a strict equality between the spherical area and the pro-
jected area, a scale factor has to be introduced during the projection. Indeed, the area of
the whole hemisphere is equal to 2πρ2

s (where ρs is the radius of the sphere); the radius of
the equivalent disc is given by ρd = ρs

√
2. There is a scale factor equal to

√
2 between the

orthogonal and the equivalent projections.

3.1.5 Computation of the view factor

The �rst version of the strati�ed hemisphere is a deterministic one. It is subject to aliasing,
leading to unacceptable error. A stochastic version is presented in order to obtain a more
robust method.
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Figure 3.9: Analysis of the mesh � a) orthogonal projection � b) equivalent projection.

3.1.5.1 Deterministic strati�ed hemisphere

One ray is traced through the centre of each cell (in terms of view factors). For each ray,
the possible intersection of the ray with each surface of the 3D model is computed. If no
intersection is detected, the geometrical model presents an aperture and the ray is lost.
This is the case of a satellite in orbit around the Earth and which radiates its energy to
the deep space. The elementary view factor is associated with an additional node which
represents the deep space. If one intersection is identi�ed, the elementary view factor is
attributed to the corresponding surface. In case of multiple intersections, the distance of
each intersection is stored. At the end, only the nearest intersected surface is kept. This
simple technique allows us to naturally take into account the visibility factor Vi−j appea-
ring in the de�nition of the view factor (3.1).

This deterministic method has been used to compute the di�use view factors between
surfaces, for several simple geometrical con�gurations (for which an analytical formula can
be derived). For some "optimal con�gurations", an accuracy which evolves proportionally
to 1/N = 1/nlatnlon has been observed. For optimal con�gurations, each ray is used
optimally. The convergence is then proportional to 1/N , where N is the total number of
casted rays.

Nevertheless, in some con�gurations, an error linked to the deterministic aspect of the
method can be observed. This is called aliasing and it results in unacceptable levels of
the computed error. In Figure 3.10�b, the relative error in the case of two perpendicular
rectangles sharing a common edge is presented (see Figure 3.10�a). The error is function
of the resolution in longitude (x-axis) and latitude (y-axis). The color scale is logarithmic;
a value of -4 corresponds to a relative error equal to 10−4. This result has been obtained
with 5 × 5 Gauss points. The Gauss's quadrature will be presented with more details in
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the next Sections.

�

�

�
� �

� �

Figure 3.10: Perpendicular rectangles � a) 3D con�guration � b) Relative error.

Vertical periodical bands can be observed. This implies that the error presents oscil-
lations in longitude, independent of the latitude resolution. These oscillations are due to
the particular geometrical con�guration. For each of the 25 strati�ed hemispheres placed
across the horizontal surface, the vertical edges of the second rectangle are projected along
a meridian. The strati�ed hemisphere, which is based on a deterministic scheme, will
detect or neglect a whole column of rays casted at a �xed longitude, along a same merid-
ian. From a resolution to the other, nlat rays will be either counted or lost. The number
of rays responsible for the error is proportional to nlat; the error is about nlat/N = 1/nlon.

If the resolution in latitude is assumed to be equal to the resolution in longitude, the
error is about 1/

√
N . This error can be compared to the error which characterizes stochas-

tic processes. This illustrates the idea developed in the reference [LCN95]: for a totally a
priori unknown result, a uniform deterministic sampling of the basic probability function
is always superior, or at least as good as, uniformly distributed random sampling for any
abinitio �xed number of trials. In this case, a deterministic scheme yields results whose
quality is equivalent to a purely stochastic process. This reference will be reminded during
the study of the stochastic version of the hemisphere.

Remark : A solution to the oscillations could be to rotate the strati�ed hemisphere
along the local normal in such a way that the initial longitude is shifted with respect to
a vertical edge of the second surface. It must be noted that this solution is only e�cient
for this simple con�guration. If the 3D model is more complex, this method is no longer
valid. The result is displayed in Figure 3.11. The vertical bands have disappeared but a
second oscillation in latitude appears when the resolution increases.
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Figure 3.11: Perpendicular rectangles with rotated hemispheres - relative error.

In this simple example, it appears that a deterministic scheme is not suitable. This
error is linked to a phenomenon which a�ects every deterministic process: the aliasing.
Aliasing is illustrated in Figure 3.12, in the case of a rectangular grid and �ve projections
of a triangle. A cell is assumed to be covered by a projection if the centre is covered. In
function of the position of a triangle, the projection covers zero, one, two or three cells
(colored in green). So the same surface can be associated to di�erent numbers of cells,
depending on its position on the grid. Even worse, it can be missed if its projection falls
between the centres of the cells.

One way to prevent aliasing is jittering, that is adding some random noise on the
position of the centres [Coo86]. This leads us to the stochastic version of the hemisphere.

3.1.5.2 Stochastic strati�ed hemisphere

The idea developed in this section is to use the mesh of the strati�ed hemisphere to sto-
chastically cast rays through each cell of the mesh.

This method corresponds to strati�ed sampling [DBB03, SWZ96]. In general, the me-
thods for which a large number of samples are generated can su�er from an accumulation
of samples in a region of the domain of de�nition, the other regions remaining depleted.
To be sure that the samples are uniformly distributed, a large number of them have to
be generated. Strati�ed sampling consists in a decomposition of the domain of de�nition
in disjoint sub-domains called strata. A given number of samples are then generated in
each stratum to guarantee that each region is equally sampled. Strati�ed sampling is a
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Figure 3.12: Illustration of aliasing on a rectangular grid.

method to reduce variance. Strati�ed sampling is a sampling of the domain guided by a
strati�cation of the domain.

Distribution in latitude The cells of the unit disc are comprised between radii equal
to
√

k−1
n
lat

and
√

k
n
lat

. A random radius can be generated into each ring. Then, the random

radius is projected onto the hemisphere's mesh, yielding the corresponding set of latitudes.

θk = arcsin

(√
k − ξ1

nlat

)
(3.8)

where ξ1 is a �rst random number uniformly distributed between 0 and 1.

Distribution in longitude The distribution in longitude is easy to �nd. The angular
aperture in longitude is constant for each cell of the mesh and equal to ∆φ = 2π/nlon. If
the inferior limit of a cell φinf is given, random longitudes can be generated in this cell by
using the formula, where ξ2 is a second random number uniformly distributed between 0
and 1:

φ = φinf + ξ2∆φ (3.9)

Illustration In Figure 3.13, the evolution of the relative error can be observed in the
case of two perpendicular rectangles sharing a common edge (see the Figure on the right).
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The resolutions in longitude and latitude vary between 20 and 400. This result must be
compared with Figure 3.10�b, obtained with the deterministic version of the strati�ed
hemisphere. The periodical vertical bands have disappeared. The stochastic version of the
strati�ed hemisphere is more robust than the deterministic one.

Figure 3.13: Perpendicular rectangles - relative error.

3.1.6 Statistical accuracy control

The objective of this Section is to develop a method capable to compute the view fac-
tors with a Monte Carlo ray tracing algorithm within a given accuracy. The user de�nes
a maximum relative error ε and a con�dence interval α; the statistical accuracy control
determines the necessary number of rays N in function of the geometrical con�guration.
Here, a statistical accuracy measure applied to the stochastic strati�ed hemisphere is pre-
sented. This is a generalization of the formulation developed for classical Monte Carlo ray
tracing [Pla93]. This statistical accuracy measure is then applied in order to establish a
statistical accuracy control.

3.1.6.1 Study of the strati�ed hemisphere's error

In the strati�ed hemisphere method, if we consider an equal resolution in latitude and in
longitude, we can note M the resolution in each direction, nlon = nlat = M . The total
number of traced rays is equal to N = M2. Let us assume that the number of rays in-
tercepted by a surface Aj, without any obstacle, is equal to n2, giving the computed view
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factor F ∗di−j = n2/N . n is linked to the total number of rays by the relation n =
√
F ∗di−jN .

Approximately cn rays (or cn cells of the hemisphere) correspond to the contour Cj of the
surface. c is a constant related to the shape of the contour. The cn cells are subject to
error and must be studied carefully if we want to know the global error of the method.

Each cell has a di�erent behaviour, each shot ray can be supposed independent and
must be considered individually. For each cell k of the hemisphere, the shadow ratio pk
is de�ned as the fraction of the cell k which is covered by the spherical projection of the
surface Aj. This shadow ratio is proportional to the elementary view factor ∆Aj associated
with the considered cell. The shadow ratio is noted pk and is comprised between 0 and 1. It
is equal to 0 when the surface Aj does not cover the cell; it is equal to 1 when the coverage
is total. The shadow ratio is not known a priori but we have the following relation:

1

N

N∑
k=1

pk = Fdi−j (3.10)

where Fdi−j is the expected view factor.

Remark : the shadow ratio de�ned here is not the elementary view factor ∆F = 1/N
which is constant for each cell in the hemisphere method, equal to the inverse of the num-
ber of casted rays, and which is independent of the surface Aj. Here, the shadow ratio is
proportional to the true elementary view factor through the cell.

In each cell k, the stochastic problem follows a binomial distribution. The ray randomly
traced through the cell is tested for intersection with the surface Aj. A random variable Tk
is introduced. It can only take two values: 1 if the intersection test is true and 0 if the ray
misses the surface. In the case of a binomial distribution, the probability of intersecting
the surface must be known. This probability is di�erent for each cell k and is equal to the
shadow ratio pk of cell k. The expected value and the variance are then equal to:{

E(Tk) = pk
σ2(Tk) = pk(1− pk)

(3.11)

The view factor is computed by the relation F ∗di−j =
1

N

N∑
k=1

tk, where tk is the score of

the binomial variable Tk. The expected value and variance of the distribution are:
E(F ∗di−j) = Fdi−j

σ2(F ∗di−j) =
1

N2

N∑
k=1

pk(1− pk)
(3.12)

If the hypotheses of the central limit theorem [Gra78] are veri�ed, it is established that
if the number of samples N is su�ciently large, F ∗di−j is normally distributed. The three
hypotheses of the central limit theorem are veri�ed:
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1. the random variables tk are independent;

2. their expectation and variance exist (see equations (3.11));

3. the ratio of the variance of a given variable to the sum of the variances
σ2(Tk)∑N
k=1 σ

2(Tk)
=

pk(1− pk)∑N
k=1 pk(1− pk)

≈ 1

N
tends to zero when the number of samples increases inde�-

nitely.

The relative error is de�ned as e =
F ∗di−j − Fdi−j

Fdi−j
. The expectation and variance of this

process are: 
E(E) = 0

σ2(E) =
σ2(F ∗di−j)

F 2
di−j

=
1

N2F 2
di−j

N∑
k=1

pk(1− pk)
(3.13)

Since F ∗di−j is normally distributed, so will be E. The probability α of having a relative
error smaller than ε, also called the con�dence interval, is given by the following relation:

α = P(|e| < ε) = erf

(
ε

σ(E)
√

2

)
(3.14)

By introducing the expression of the variance (equation (3.13)) in the last equation,
the following relations are obtained:(

ε

erf−1(α)

)2

=
2

F 2
di−jN

2

N∑
k=1

pk(1− pk) (3.15)

N2 =
2

F 2
di−j

(
erf−1(α)

ε

)2 N∑
k=1

pk(1− pk) (3.16)

Among the N terms of the sum, only the terms relative to the contour Cj contribute
to the global error. The other terms correspond to shadow ratios equal to 0 or 1, which
cancel the corresponding contributions. We obtain an upper bound to the number of rays
by setting the shadow ratios of the cells of Cj to 50%. The sum in equation (3.16) is
over-estimated by c

√
F ∗di−jN/4. To obtain the �nal expression, we approximate the exact

view factor Fdi−j by the computed value F ∗di−j.

N2 =
c
√
F ∗di−jN

2F 2
di−j

(
erf−1(α)

ε

)2

(3.17)

N =
3
√
c2

3
√

4Fdi−j

(
erf−1(α)

ε

) 4
3

(3.18)
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Remark : Formula (3.16) can lead to the formula obtained in [Pla93], in the case of
a cosine law ray tracing. This is equivalent to N strati�ed hemispheres with only one
cell in longitude and latitude (nlon = nlat = 1). The N hemispheres are supposed to be
independent. In this case, all the probabilities pk are equal to the expected view factor
Fdi−j, all the rays are subject to error. The sum becomes:

N∑
k=1

pk(1− pk) = NFdi−j(1− Fdi−j) (3.19)

This result is introduced in the equation (3.16):

N = 2

(
erf−1(α)

ε

)2
1− Fdi−j
Fdi−j

(3.20)

This is the formula presented in [Pla93] for di�use view factors. In the next Figure, the
curve corresponding to the intersection of the results of [Pla93] and ours has been plotted
(discontinuous red curves).

Figure 3.14 represents the number of rays needed to obtain a relative error comprised
between [−ε, ε] with a con�dence interval α of 99% in function of the view factor. The max-
imum relative error is de�ned between 100 and 1%. To obtain these curves, the erroneous
cells have been assumed to be characterized by a shadow ratio of 50%. This hypothe-
sis guarantees that the computed number N is an upper bound, because a ratio of 50%
maximizes the corresponding error term pk(1 − pk). In Figure 3.14, the curves obtained
with formula (3.18) are compared with the S-shape curves obtained in the case of a cosine
law ray tracing [Pla93], i.e. without any directional optimization. In Figure 3.14, the
red dashed line represents the intersection of the two families of curves, in function of the
relative error. For most values of view factors, the strati�ed hemisphere is more e�cient
than cosine law ray tracing.

The hypothesis of a shadow ratio equal to 50% for all the erroneous cells is not realistic,
especially when the view factor tends to 1. When the view factor tends to 1, the shadow
ratio of most of the contour cells also tends to 1. This produces a decrease of the real error
which is not reproduced in the curves of the strati�ed hemisphere.

Let us de�ne the parameter K by the following expression:

K = 2
5
3

(
erf−1(α)

ε

) 2
3

(3.21)

The number of rays of the strati�ed hemisphere (relation (3.18)) becomes:

N =
c

2
3K2

16Fdi−j
(3.22)
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Figure 3.14: Application of formula (3.18). Comparison with the curves of [Pla93], for a
cosine law ray tracing.

The equation (3.20) of [Pla93], in the case of a cosine law ray tracing, can be rewritten
as:

NCLRT =
K3 (1− Fdi−j)

16Fdi−j
(3.23)

In a dedicated section, these two last equations will be used to simplify the comparison
between the strati�ed hemisphere method and the cosine law ray tracing.

3.1.6.2 Convergence of the hemisphere method

Previously, the convergence of a deterministic scheme (between 1
N
and 1√

N
) has been com-

pared with the convergence of a random one ( 1√
N
). It appears that, for a given number of

rays, the deterministic scheme is superior, or at least as good as random sampling. The
convergence of the strati�ed hemisphere can be found from equation (3.18). For a given
con�dence interval α, the relative error ε is function of the number of traced rays N :

ε =

√
c

√
2F

3
4
di−j

erf−1(α)

N
3
4

(3.24)

For a given con�guration, the view factor and the constant c are �xed. The relative
error is proportional to N

4
3 . This convergence is superior to the classical convergence of

random processes, such as the cosine law ray tracing. This is the reason for the superiority
of the strati�ed hemisphere. A deterministic process can achieve a better convergence
but it depends on the geometrical con�guration. In some case, the convergence can be

Computation of the

Exchange Factors

50 P. Vueghs



3.1. COMPUTATION OF THE VIEW FACTORS 51

identical to the convergence of random processes. The proposed method ensures a constant
convergence, with an error proportional to N

4
3 .

3.1.6.3 Estimation of the error

In the formula (3.16), the sum concerns in fact the m cells subject to error:

N2 =
2

F 2
di−j

(
erf−1(α)

ε

)2 m∑
k=1

pk(1− pk) (3.25)

Indeed, the cells inside the projection of Aj onto the hemisphere are characterized by
a shadow ratio equal to 0, which cancels the corresponding term pk(1 − pk). In the same
way, the cells located outside the projection's contour are associated with an unity shadow
ratio, which cancels the term of error. It appears that only the cells located on the contour
present a partial shadow ratio and contribute to the error.

A Matlab routine has been used to compute the projection of a target surface Aj onto
the hemisphere and derive the distribution of the shadow ratios. Varying resolutions M
have been considered to study the evolution of di�erent quantities (number of cells inside
the contour, number of cells along the contour, error term...) in function of M . Two
interesting results are the linear behaviours of the number of cells inside the contour and
the error term in function of the resolution, yielding the de�nition of a new constant d such
as:

m ≈ cM (3.26)
m∑
k=1

pk(1− pk) ≈ dM (3.27)

The description of the Matlab test and results, as well as the establishment of equa-
tion (3.27), are given in Appendix C.

3.1.6.4 Test

To conclude this Section, the formula (3.16) has been used in the reference con�guration
used in Section 3.1.6.3, detailed in Appendix C. For a �xed number of rays, for a given
view factor, the evolution of the con�dence interval α in function of the maximum observed
relative error can be plotted (see Figure 3.15). The green curve corresponds to the solution
of equation (3.16). The incremental blue curve represents the experimental result. The
studied con�guration is characterized by a view factor equal to 0.55413, the resolution of
the hemisphere is 100, the total number of shot rays is 10 000.

The steps observed in Figure 3.15 are due to the limited resolution of the hemisphere,
given by ∆ε = 10−4/Fdi−j ≈ 1.8 10−4 in this particular case.
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Figure 3.15: Evolution of the con�dence interval in function of the relative error.

Theoretical green curve systematically underestimates the con�dence interval. The the-
oretical formula underestimates the reliability of the results computed with the strati�ed
hemisphere method. This is due to the restrictive hypothesis used in the demonstration of
this equation. Namely the shadow ratio of all contour's cells has been considered equal to
50%. This increases the contribution of each cell to the global error.

We have now an expression which overestimates the necessary e�ort to obtain a �xed
relative error, with a �xed con�dence interval and for a given con�guration, that is for a
given view factor.

3.1.6.5 Statistical accuracy control

In this Section, the statistical measure is used in order to obtain a statistical accuracy
control. This control requires two passes. During the �rst pass, a �rst ray tracing is used
to determine the geometrical con�guration (estimated view factor, number of cells along
the contour). Then the optimal number of rays is computed by the statistical accuracy
measure and a second ray tracing is performed.

First pass The aim of the �rst pass is to yield a �rst estimation of the view factor. It is
also used to estimate the constant c which links the number of rays across the contour with
the resolution M . This is done with a low-resolution hemisphere (typically from 25×25 to
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50×50). The rays are traced through the corners of each cell, they are not randomly shot
through each cell. Because this ray tracing is deterministic, aliasing can be observed.

The �rst pass allows us to estimate the shadow ratio of the di�erent cells of the hemi-
sphere. When the rays emitted through the four corners of a cell impact a same patch Pj,
the coverage of this cell by Pj is assumed to be complete. This is not always true but
it is acceptable in this �rst pass, which only yields approximated results. When no ray
impacts Pj, the shadow ratio is set to zero. For the intermediate cases, the shadow ratio
is discontinuous and varies by steps of 25%.

With the shadow ratios, the global view factor is estimated with the formula (3.10):

Fdi−j =
1

N

N∑
k=1

pk

Moreover, the geometrical constant c and the error constant d can be derived by count-
ing the number of cells across the contour, characterized by a partial shadow ratio. Rela-
tion (3.26) is used to derive c from the resolution chosen for the �rst pass; equation (3.27)
yields d in function of M .

Computation of the number of rays Giving a maximum relative error ε and a con-
�dence interval α, the statistical accuracy control computes the number of rays that must
be shot to achieve the desired accuracy. The resolution of the strati�ed hemisphere is given
by the relation (3.16). Relation (3.26) yields an estimation of the number m of non-zero
terms. For these terms, the corresponding shadow ratios are arbitrarily �xed at 50%.

N2 =
2

F 2
di−j

(
erf−1(α)

ε

)2 m∑
k=1

pk(1− pk)

M = 3

√
c

2F 2
di−j

(
erf−1(α)

ε

)2

(3.28)

Fully re�ned hemisphere The resolution of the hemisphere used in the second pass is
de�ned by the relation (3.28). A complete re�nement of the �rst hemisphere is performed,
without any consideration for the local shadow ratios computed during the �rst pass. Each
hemisphere implies generation of M2 rays. In this approach, the results of the �rst pass
are not completely reused but it is the only way to insure the accuracy of the ray tracing.

Another method has been designed on the basis of the �rst pass. It can induce a bias
in the results and can be seen as unreliable. But it can be used if the level of accuracy
obtained with the �rst pass is similar to the required level (i.e. if we want to improve the
accuracy of one digit).
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Partly re�ned hemisphere From the �rst pass, the distribution of the shadow ratios
across the cells of the hemisphere is obtained (see Figure C.2 in Appendix C). If the four
corners of a cell are covered by the projection of the patch Pj, the cell is supposed totally
covered by the projection. On the other hand, if the four corners are not covered by the
projection, the corresponding shadow ratio is zero. So the error is supposed to be located
on the cells characterized by a partial coverage.

At the end of the �rst pass, a new resolution of the hemisphere is computed. The partly
re�ned hemisphere method consists in decomposing the contour's cells to locally achieve
the resolution imposed by the equation (3.28) and keeping the other cells unchanged. Let
M1 be the resolution of the hemisphere used in the �rst pass. Let nB be the number of
totally covered cells. Let N2

cell be the number of new cells obtained by the decomposition
of each old erroneous cell. Finally, let us suppose that N2 rays have been intercepted by Pj
during the second pass. The �nal view factor is given by the following relation:

Fdi−j =

nB +
N2

N2

cell
M2

1

(3.29)

The advantage of this method is to limit the number of rays during the second pass.
It is su�cient to reduce the relative error with a small additional cost but it introduces
a bias that can not be removed. This implies that the convergence of this approach is
limited. In practice, this method can be used if the initial guess is closed to the desired
accuracy. The reached accuracy can be checked by considering the number of rays traced
during the �rst pass, the estimation of the view factor obtained from the shadow ratios
and the estimation of the error term. If the reached accuracy is too far from the desired
one, a complete second pass is necessary.

3.1.6.6 Comparison of the strategies

Here we consider the case of the point wise view factor to a square,
centered vertically above the origin, in a parallel plane, at a dis-
tance equal to the length of the square. The analytical value is
0.23946. The �rst pass is performed with 2 500 rays. 1 000 simula-
tions are considered in order to establish statistics. The maximum
accepted relative error is equal to 0.1% with a con�dence interval α
equal to 99.9%. This level of accuracy is superior to the levels com-
monly used in ray tracing (ε from 1 to 5% with α between 90 to
95% [Coo94]).

The obtained results are given in Table 3.1. The value obtained by computing the
average of the shadow ratios is a good approximation of the reference value. If the �rst
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pass is used to re�ne the cells of partial shadow ratios, the relative error is reduced by a
factor 2. The re�nement improves the result of one digit. But this result presents a bias,
as mentioned before. With a complete second pass, a result of higher quality (more than
two order magnitude improvement) can be obtained.

Method Value Relative error
Reference value 0.23946
Shadow ratio 0.23880 2.7395 10−3

Partially re�ned hemisphere 0.23920 1.0897 10−3

Fully re�ned hemisphere 0.23946 1.6041 10−5

Table 3.1: Average of the computed view factors.

3.1.6.7 Application

The case of two perpendicular rectangles sharing a common edge is considered. Each sur-
face is meshed into square elements. The statistical accuracy control is used in order to
predict the number of rays necessary to reach the desired accuracy. Two cases are consi-
dered. In the �rst one, the statistical accuracy control is based on the view factor from
an element to the whole surface in front of it. In the second case, this is the view factor
between each couple of elements which is used. The number of rays is displayed on the
next two �gures, for a same level of accuracy. Figure 3.16�a represents the result of the
�rst case while Figure 3.16�b corresponds to the second case. The number of rays needed
by the �rst case is reduced by two orders of magnitude. We can also remark that the
distributions are quite di�erent.
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Figure 3.16: Number of rays � a) Global view factors � b) Individual view factors.
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From a thermal point of view, we can assess that the conduction will introduce heat
�uxes between neighboring elements. This will attenuate the thermal gradients between
elements induced by the radiative transfer. The quantity that must be accurately com-
puted is the surface view factor, from an element to the whole surface facing it.

In terms of e�ciency, the �rst case requires less computation performance. The second
case requires a large number of rays, which is uselessly time consuming.

3.1.7 Application to a �nite element mesh

The strati�ed hemisphere method, presented in the previous sections, has been designed
to compute point wise view factors, that is view factors from points to their environments.
The hemisphere method optimizes the discretization of the directions. In �nite element
software like Samcef as in space thermal software like Esarad and Thermica, view factors
between �nite areas are required to solve the thermal problem. The point wise view
factors Fdi−j need to be integrated on the surface of the emitter Ai. In this Section,three
di�erent ways to perform this integration are presented. The �rst one is the way used in
a pure Monte Carlo ray tracing and cannot be combined with the strati�ed hemisphere
method. The two other ways are based on uniform and Gauss quadrature rules. At the
end of this Section, we present also how the strati�ed hemisphere can be used to compute
�nite element view factors in such a manner that no surface integration is necessary.

3.1.7.1 Monte Carlo ray tracing

In a classical Monte Carlo ray tracing, there is no optimization of the rays directions.
Moreover, the origins of the rays are randomly generated across the emitter's surface. If N
rays are generated, the hemisphere method can be used to compute N directions. The N
origins of the rays must be uniformly distributed across the emitter in order to correctly
integrate the view factor. The drawback of this approach is that the structure of the
strati�ed hemisphere is lost, the previous demonstration based on the shadow ratios is no
longer valid. The performance of this method is comparable to a cosine law ray tracing,
the optimization of the hemisphere is lost.

3.1.7.2 Uniform integration

Another way to integrate the view factors is to use sample points distributed across the
emitter's surface. Each sample point is used as the origin of a complete hemisphere. The
integration is led by the following equation:

Fi−j =
n∑
k=1

WkF
k
di−j (3.30)

where
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• n is the number of integration points on the surface i;

• F k
di−j denotes the view factors computed from the integration point k;

• Wk is the weight of the point k.

The weight Wk is equal to the fraction of the area Ai associated with point k. In
the case of uniformly distributed points, all the weights are equal to 1

n
. This method is

expected to yield more accurate results than the previous one.

3.1.7.3 Gauss integration

The last method consists in using Gauss quadrature to compute the integration. This
method is similar to the previous one, where uniformly distributed points were used. Now,
the position of the points is optimized. The positions and weights of the Gauss points are
given in Table 3.2 in function of the degree of integration.

n xi Wi

2 ±1
3

√
3 1

3 0 8
9

±
√

15
5

5
9

4 ±
√

525−70
√

30

35
18+
√

30
36

±
√

525+70
√

30

35
18−
√

30
36

5 0 128
225

±
√

245−14
√

70

21
322+13

√
70

900

±
√

245+14
√

70

21
322−13

√
70

900

Table 3.2: Positions and weights of the Gauss points.

These points are symmetrically distributed on the interval [−1, 1]. For a given degree,
the sum of the weights is equal to 2. In 2D, the points are distributed on the isoparametric
square, represented in Figure 3.17. The weight of a point is obtained by multiplying the
weights corresponding to the position of the point along the two directions. Symmetrical
points are characterized by a same weight. For a given degree, the sum of all the weights
is equal to 4, the area of the isoparametric square.

The position of the Gauss points is chosen in order to reduce the integration error. It
has been proven that this method is the most accurate. It is also shown in the next results.

Finally, in the case of surfaces sharing common edges, to place integration points along
the edges can lead to signi�cant errors, because of the intersection tests. It is then necessary
to choose integration points inside the emitters surfaces. Gauss points verify this condition.
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Figure 3.17: Quadrangle - isoparametric representation.

3.1.7.4 Results

In this section, we compute the view factors between two
squares, in parallel planes, separated by a distance c2. The
emitter is characterized by a length a while the receptor has
a side equal to b2. An obstacle is placed between the emitter
and the receptor. This obstacle is de�ned by the parameters
b1 and c1. The centres of the emitter, the receptor and
the obstacle are aligned along an axis perpendicular to the
surfaces.

This con�guration is displayed on the right, where the emitter
is colored in orange, while the receptor and the obstacle are
in green.

In this document, for the sake of brevity, we only show the results obtained with the
Gauss quadrature. In the case of the Gauss quadrature, the evolution of the error is pre-
sented in Figure 3.18. The blue curve represents the theoretical evolution of the strati�ed
hemisphere's error while the magenta curve is the error introduced by the numerical in-
tegration, linked to the number of integration points. If the number of integration points
is increased, the magenta curve goes to lower values. By choosing the correct number of
points, the integration error is made negligible when compared to the hemisphere's er-
ror, which becomes the dominant error. The formula obtained in the framework of the
point wise hemisphere can be extended to patch-to-patch view factors if the number of
integration points is su�cient. For applications, 2 × 2 or 3 × 3 integration points are
su�cient. The green curve correspond to the evolution of the computed error when the
resolution M increases. The error decreases when the number of rays increases, which is
an illustration of the convergence of the method. We can also note that the green curve
(hemisphere's error) is inferior to the blue curve (theoretical value).
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Finally, we can notice that the cases with and without obstacles yield similar results.
The Gauss integration can be used in the case of occlusions without any loss of accuracy.

Remark : let us note that this remark can be thought to be in contradiction with the
Samcef method (.R3D command), which switches to uniform integration when obstacles
are announced by the user. The fact is that the Samcef method and the hemisphere do not
compute the same quantity. The strati�ed hemisphere method computes a vector of view
factors from the origin to the complete environment by tracing a large number of rays. The
Samcef method computes a view factor between a couple of surfaces by shooting a limited
set of rays linking the integration points. In the second case, the presence of obstacles is
more detrimental.
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Figure 3.18: Gauss error with obstacle.

3.1.7.5 Illustration

To illustrate the use of the hemisphere method combined with Gauss integration, we have
considered the case of two rectangles, perpendicular to each other and sharing a common
edge. Figure 3.19�a represents the di�erence between the analytical solution and the re-
sult obtained with only one Gauss point for each patch. This result corresponds to the
point wise view factor from the centre of each patch to the other surface. The distribution
of the error is located along the common edge. In this case, the error induced by the degree
of integration is larger than the error of the hemisphere method. It is necessary to increase
the number of integration points.

If we increase the number of integration points (2×2 in Figure 3.19�b), we reduce the
integration error and we can observe a random error across the two surfaces. This error
is smaller than the previous one, of one order of magnitude. In this case, the error due to
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the hemisphere is predominant. The distribution of this error is random and its average is
zero.

Absolute error
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Figure 3.19: Di�erence of the view factors � a) 1 Gauss point � b) 4 Gauss points.

3.1.7.6 Finite element view factor

The �nite element view factor is presented in a dedicated section and is given by equation
(6.23):

F i−k
dAl

=

∫
Ak

Nl(rk)dF
s
dAi−dAk

where the top indices i and k refer to the surfaces while the down ones correspond to the
point of origin dA and node l.

The computation of �nite element view factors gives access to a linear (or quadratic)
�eld of view factors. It is really interesting for situations governed by radiation, in order
to obtain a more accurate representation with few additional amount of computation. In
Section 6.1.5.1, we explain how to extend the ray tracing to distribute the incoming energy
among the nodes of an impacted element. Here, we show how the hemisphere method
can be used for the generation of the rays by simply placing one hemisphere above each
vertex of the �nite element mesh. Then a linear interpolation can be used to display the
behaviour of the view factors' �eld. If we consider elements of higher degree, we place one
hemisphere above each node and use the shape functions of the new element to represent
the �eld of the view factors.

3.1.8 An alternative implementation: the sphere

In this Section, an alternative implementation to the strati�ed hemisphere is introduced.
This new method has the same statistical properties as strati�ed hemisphere. Its advantage
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Figure 3.20: Finite element view factor - emission of the rays.

is that its application is simpler than the hemisphere's one. With strati�ed hemisphere,
the rays are generated in function of the local normal. A change of coordinates is necessary
to transpose these rays in the 3D model. The new method allows us to prevent the change
of coordinates and to accelerate the generation of the rays.

3.1.8.1 Presentation of the method

This method is inspired from [Kow99]. For each origin, a sphere is built, the centre of
which is placed along the local normal. Random points are uniformly generated across the
surface of the sphere, yielding the directions of the rays. The points must be uniformly
distributed on the surface of the sphere. This uniform distribution is linked with the me-
thod of the inner sphere, as it is presented in the book of Modest [Mod03].

The geometrical con�guration of the sphere is presented in Figure 3.21, where the origin
is located on the blue patch. The local normal is represented by the red vertical line, of
unit length. The centre of the unit sphere is placed at the end of the local normal. In this
Figure, the sphere is meshed in cells of equal area.

The direction of the news rays is given by the following relation:

−→rd =
−→
PR +−→n +

 sin(γ) cos(χ)
sin(γ) sin(χ)

cos(γ)

 (3.31)

where
−→
PR designates the origin of the ray, −→n corresponds to the local normal. γ and χ

respectively represent the latitude and the longitude. The advantage of this method is to
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Figure 3.21: Construction of the sphere.

not require any change of coordinates.

3.1.8.2 Application to the strati�ed hemisphere method

In the framework of the strati�ed hemisphere, the link with the hemisphere method can
be established. The sphere is decomposed into cells of equal area. Let γ note the latitudes
and χ the longitudes of the sphere. The latitude γ is given by the following relation:

γ = arccos(2ξ1 − 1) (3.32)

A sequence of uniform random variables ξ = [0, 1
M
, ...M−1

M
, 1] is de�ned, where M is

the resolution. The following sequence of latitudes must be compared to the sequence of
latitudes of the hemisphere. {

γi = arccos
(

2i
M
− 1
)

θi = arcsin
(√

M−i
M

) (3.33)

The following relation between the two families of latitudes can be easily established:

γ = 2θ (3.34)

In order to illustrate the equivalence between the two methods, the distribution of
the two latitudes are plotted in Figure 3.22�a. The red crosses correspond to the points
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uniformly distributed on the sphere, following the distribution (3.33). The blue lines cor-
respond to the directions generated with the strati�ed hemisphere. The length of these
lines has been computed in such a way the extremity is located on the unit sphere.
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Figure 3.22: Sphere � a) comparison of the directions � b) projection of the samples.

The two distributions coincide exactly. However, this coincidence is only rigorous when
the local normal corresponds to the z-axis. To obtain a random method with the same
statistic properties as the hemisphere method, one random point must be generated into
each cell. The distribution must be uniform in terms of area. Two uniform random
numbers ξ1 and ξ2 are generated and introduced into the following relations:{

γi = arccos
(

1− 2(i−ξ1)
M

)
χj = 2π

M
(j − ξ2)

(3.35)

The optimization obtained with the strati�ed sampling in the case of the hemisphere is
still working for the sphere because the two formulations are based on the same hypothesis.
The obtained results are identical but we observed a reduction of the CPU time of 30% in
the case of di�use view factors. The advantage is less important if we model the specular
of re�ection, because the optimization only concerns the emission of the rays.

To illustrate the equivalence of the two distributions, the points of the sphere are
projected onto the hemisphere and then onto the unit disc. The result is presented in
Figure 3.22�b. The distribution is correct; each cell in the unit disc contains one and only
one sample.
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3.1.9 Comparison between CLRT and strati�ed hemisphere me-

thod

In this section, we will justify the superiority of the hemisphere method on cosine law ray
tracing.

3.1.9.1 Discussion

The introduction of two random variables in the initial hemisphere method, i.e. in a reg-
ular grid, will lead us to an optimized random method.

In the case of a "blind" Monte Carlo method, the rays are casted in arbitrary directions.
The samples can be badly distributed over the domain. To avoid samples being clumped
together, strati�ed sampling has been used. This is a way usually used to decrease the
variance of random methods. The domain is decomposed into sub-domains called strata.
One sample is generated into each stratum. This method prevents the clumping of the
samples. The statistical strati�ed hemisphere naturally takes advantage of this method by
decomposing the hemisphere into cells.

Another way to reduce the variance of statistical processes is called importance sam-
pling. This has already been presented for Malley's method and cosine law ray tracing.
Instead of using an uniform probability distribution function (PDF) to generate samples,
importance sampling is based on a non uniform distribution function. If we want to gen-
erate samples according to a given PDF, a good sampling function matches the shape of
the PDF as closely as possible [DBB03]. This is done by the hemisphere method when
decomposing the hemisphere into cells of equal view factors. In this case, the PDF is given
by:

p =
cos(θ)

π
(3.36)

and the decomposition is performed according to this function.

The stochastic hemisphere is the natural combination of these two ways designed to
reduce the variance of statistic processes. This allows us to assume that the stochastic
hemisphere is a very e�cient random method to compute di�use view factors.

3.1.9.2 Gain of the hemisphere

We have established the ratio between the numbers of rays required by both methods to
achieve the desired accuracy. These numbers are given by the equations (3.18) and (3.20).
The parameterK (equation (3.21)) is de�ned to simplify the computed ratio. The following
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Figure 3.23: Variation of K in function of α and ε.

relationship is obtained:

NCLRT
N

=
2

5
3

3
√
c2

(
erf−1(α)

ε

) 2
3

(1− Fdi−j) (3.37)

=
K
3
√
c2

(1− Fdi−j) (3.38)

So the gain is directly proportional to the parameter K. The evolution of this param-
eter K in function of α and ε is given in Figure 3.23. α is de�ned between 90 and 99.9%
while ε varies from 1 to 10%. K increases with the accuracy, that is when the relative
error decreases and the con�dence interval increases. The parameter K can achieve values
larger than 100 for relative errors of 1% and con�dence intervals larger than 99%.

The evolution of the gain is plotted in Figure 3.24�a, in function of the view factor and
the maximum relative error, for α equal to 99%. For a realistic value of ε, between 1% and
10%, the superiority of the hemisphere is clear. For a �xed accuracy, the gain is directly
proportional to the view factor.

The evolution of the maximum relative error achieved with a �xed number of rays is
given in Figure 3.24�b, for N equal to 1 000, 10 000 and 100 000 rays. The S-shape discon-
tinuous curves correspond to a cosine law ray tracing. The continuous curves correspond
to the strati�ed hemisphere. The red curve represents the intersections of the two families
of curves. For a realistic number of rays, the strati�ed hemisphere yields smaller levels of
relative error than the cosine law method, for nearly all con�gurations.
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Figure 3.24: Gain of the hemisphere � a) Gain of the hemisphere with respect to CLRT �
α = 99% � b) Variation of the maximum relative error in function of the number of rays.

To complete this analysis, let us consider the example of Section 3.1.6.4, detailed in
Appendix C, tested with a cosine law ray tracing. By combining the equations (3.22)
and (3.23), the parameter K is removed. It yields the following relation which is used
to predict the number of rays that must be shot by the cosine law ray tracing to achieve
the same accuracy as the strati�ed hemisphere with N rays, for the same geometrical
con�guration.

NCLRT =
4
(
1− F ∗di−j

)√
F ∗di−j

√
N3

c
(3.39)

In this case, the geometrical constant c has been found to be equal to 2.4. A cosine law
ray tracing will need more than 550 000 rays to achieve the same level of accuracy. This
is shown in Figure 3.25. 100 000 simulations have been performed in order to establish
statistics. The blue curve corresponds to the evolution {α, ε} obtained with the cosine law
ray tracing and 553 536 rays while the green curve represents the evolution obtained with
only 10 000 rays and the strati�ed hemisphere. The strati�ed hemisphere method provides
better results than the cosine law ray tracing, despite a smaller number of rays.

3.1.9.3 Homogeneity of strati�ed hemisphere

In this Section, we want to establish that the distribution of directions obtained with
strati�ed hemisphere is more homogeneous than with a classical cosine law ray tracing. In
order to obtain a measure of the uniformity of the two distributions, the same number of
points are generated in the unit disc. A Delaunay mesh is then used to build an unique
triangular mesh. On the basis of the numerous triangles of the two meshes, statistics can
be established. The mean area of the triangles is computed for each distribution, as well
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Figure 3.25: Evolution of the con�dence interval in function of the relative error.

as the associated variance. The more uniform distribution, the smaller variance.

The generated random points are projected onto the unit disc. Figure 3.26�a corres-
ponds to strati�ed hemisphere. The same number of points are generated with a cosine law
formulation3. These points are represented in Figure 3.26�b. The points generated with
the strati�ed hemisphere method are more uniformly distributed than the points generated
with the CLRT formulation. Less clumps of samples, less regions empty of samples are
observed with the strati�ed hemisphere method.

To quantify the uniformity of a distribution in the unit disc, the corresponding Delau-
nay mesh is built. The triangulation is unique for a given distribution of points. The area
of each triangle is computed, as well as the average area and the standard deviation of
these triangles. A uniform distribution is characterized by triangles of the same area, the
associated variance is small. Figure 3.27�a corresponds to the mesh built with the strati�ed
hemisphere's points while Figure 3.27�b has been obtained from the CLRT distribution.
At the �rst glance, the hemisphere's triangles seem more uniform than the CLRT's ones.

The evolution of the standard deviation of the triangles' areas generated by the hemi-
sphere method and the cosine law formulation are plotted in Figure 3.28�a, in function of
the resolution (square root of the number of samples). The strati�ed hemisphere method

3In fact, two cosine law formulations have been implemented. The �rst one is based on the angular
parameters, as the method used in classical ray-tracing algorithm. The second one is based on a sampling
of the domain [−1, 1]2 with rejection of the points outside the unit disc, for the same number of samples
(see rejection sampling [Gra78]).
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Projection des points dans le plan horizontal Projection des points de Monte Carlo dans le plan horizontal

Figure 3.26: Distribution of the points in the unit disc � a) strati�ed hemisphere � b)
CLRT.

(magenta curve) is characterized by a standard deviation smaller than the two cosine law
formulations (blue and green curves). This allows us to state that the hemisphere method
can yield a more uniform distribution than the classical CLRT. Figure 3.28�b represents
the relative error on the total area. The area of the unit disc is equal to π. No triangular
mesh can exactly represent a curved surface. However, the error associated to the hemi-
sphere method is smaller because this method allows to better sample the contour of the
disc.

3.1.10 Conclusion

In this Section, a new method for the generation of rays has been presented. The strati�ed
hemisphere must be considered as an optimized method which must be included in a more
complex ray tracing algorithm. The establishment of the strati�ed hemisphere mesh has
been detailed. A random ray generator based on this deterministic grid has been devel-
oped. A statistical accuracy control has been established and the superiority of the new
method with respect to cosine law ray tracing has been demonstrated. The extension of
the method to the computation of view factors between surfaces of �nite size has been
studied. Another faster implementation of the method has also been given.

The strati�ed hemisphere method is adapted to di�use emitters. This is due to the use
of the cosine law when generating the rays. If the emission is not di�use but directionally
dependent, the strati�ed hemisphere can still be used. The θ-distribution must be changed
in order to uniformly sample the new emission function. The strati�ed sampling has to be
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Maillage de Delaunay des points de l’hémisphère dans le plan horizontalMaillage de Delaunay des points de MC dans le plan horizontal − 2

Figure 3.27: Delaunay mesh in the unit disc � a) strati�ed hemisphere � b) CLRT.

applied to the new emission function. This development has not been performed in this
thesis, because di�use emission was an hypothesis of this work. Nevertheless, it could be
an interesting extension to the hemisphere method.

In the next Section, we present a possible extension to more complex thermo-optical
properties, including specular and glossy re�ections.

3.2 Extension to specular and glossy re�ections, specu-

lar transmission

3.2.1 Introduction

The previous Section was dedicated to the computation of di�use view factors, between dif-
fuse re�ectors. In terms of ray tracing, it implies that only the �rst intersection of the rays
emitted with the strati�ed hemisphere method needs to be computed. No secondary ray
is re-emitted. The di�use view factors only depend on the geometrical con�guration; they
do not vary with the thermo-optical properties. A unique set of view factors needs to be
stored, even if multi-wavelength problems are considered. In this Section, an extension to
more complex thermo-optical properties, including specular re�ections and transmissions,
has been studied.
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Figure 3.28: Deviation and error � a) Standard deviation � b) Sampling error.

3.2.2 Specular re�ection

In case of surfaces which are partly or purely specular re�ectors, the view factors must be
extended in order to add additional, specular paths between the surfaces. These new view
factors are called extended or specular view factors. During the ray tracing process, when
a specular surface is impacted by a ray, a secondary ray is emitted in the mirror-direction.

Re�ected direction and energy Given an incoming ray −→ri and the local normal vec-
tor −→n at the intersection point, the outgoing direction −→rr is given by relation (2.23):

−→rr = −→ri − 2 (−→ri · −→n )−→n

The energy Er of the outgoing ray is attenuated by the specular re�ectivity ρs of the
intersected surface:

Er = ρsEi (3.40)

Termination criterions During a ray tracing, each ray can experience a large number of
specular re�ections. A termination criterion is needed in order to insure that the algorithm
will stop. In this work, four kinds of termination criterion can be considered.

1. The ray impacts a non-specular surface and no secondary ray is re-emitted.

2. The ray leaves the geometrical model through an aperture and is supposed to reach
the deep space.

3. The number of intersections experienced by the ray goes above a �xed threshold.

4. The energy associated with the ray goes below a �xed threshold; this energy is then
neglected.
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Each of these criteria implies the extinction of the current ray. The third criterion will
introduce a bias in the computation of view factors because a fraction of the light transport
is neglected. This can be made negligible if the corresponding threshold is not too strict.

The fourth criterion is purely deterministic. Its drawback is that it introduces a bias
in the computed values by truncating the paths of each ray. This criterion can be replaced
by a stochastic process named Russian roulette, designed in neutron transport simula-
tion [LM84, Cla71, SG69] cited in [AK90] and [OY66]. This technique is based on the
weight, that is the energy associated with the ray. Once the ray's energy ω is beyond a
given threshold Ω, the ray is stochastically stopped with probability P . A uniform random
number ξ is generated; it is tested with respect to P . If ξ is higher than P , the ray survives
and the associated weight ω is multiplied by 1

1−P . The energy of the outgoing ray is no
longer given by the equation (3.40). The expected value of the weight of the secondary ray
is given by the following relation:

E(W ) = P(termination)0 + P(survival)
ω

1− P
(3.41)

As the probability of survival is equal to 1− P , the expected value is given by:

E(W ) = (1− P )
ω

1− P
(3.42)

= ω (3.43)

The energy of the outgoing ray is equal to the energy of the incident ray, on average.
This method increases the variance of the whole process but it removes the bias associated
with the fourth criterion. Moreover, this variance can be reduced if the weights of the rays
are su�ciently low (de�ned by the chosen threshold Ω).

Multi wavelength problems If the thermo-optical properties of a model are assumed
to be constant for all wavelengths that govern the problem, the surfaces are said to be
gray ; only one set of view factors needs to be computed and stored.

Generally, for space applications, at least two spectral bands are necessary. The �rst
one corresponds to the solar and albedo heat �uxes while the second one is linked to the
infrared �uxes from the planet and from the surfaces of the model. In each spectral band,
the thermo-optical properties are supposed to be constant.

In some applications, more spectral bands are needed [Pan05, Rue08]. It is the case for
low temperature applications, such as cryogenics satellites, like Planck [ESAb] and Her-
schel [ESAa]. In this case, the semigray approximation is necessary. The spectral domain
is broken into separate wavelength bands. In each band, the Kirchho�'s law4 is supposed
to be satis�ed; each node radiates a fraction of energy related to that speci�c band, instead

4Following the Kirchho�'s law [SH01], the spectral emissivity of a surface k, in a given direction, is
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of σT 4. This procedure is described in the references [Mod03, SH01]. For each spectral
band, a complete set of view factors needs to be computed and stored.

If the spectral distribution of the thermo-optical properties is not a function of temper-
ature, no temperature iteration is needed. But if the spectral distribution of some thermo-
optical properties is temperature-dependent, the problem must be iteratively solved and
new view factor matrices need to be re-computed for the new temperatures.

In order to reduce the CPU time needed for the computation of the view factors, the
following innovative strategy is proposed. Only one ray tracing process can be used for
all the n wavelength bands. Each ray is associated with a vector of n weights. For each
intersection, each weight is attenuated with the corresponding specular re�ectivity, in its
wavelength band. As long as at least one weight is superior to a given threshold, the ray
tracing is continued, and the view factor matrices are simultaneously computed for all
the spectral bands. Once all the weights are below the threshold, the Russian roulette is
applied.

In order to save storage, the view factor matrices must be compressed, by only keeping
the non-zero elements. This compression has been developed in the framework of this thesis,
as well as adapted routines for the enforcement of reciprocity, Gebhart's matrix method
and thermal resolution, based on the compressed form of the view factor matrix. Although
it was not a requirement of the thesis, this step was necessary to obtain a competitive
algorithm.

3.2.3 Glossy re�ection

Figure 3.29: First re�ection and multi-re�ection.

equal to the absorptivity of this surface, in the same direction:

ελ(λ, θ, φ, Tk) = αλ(λ, θ, φ, Tk) (3.44)
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The main advantage of the ray tracing is its ability to model a large panel of physical
phenomenons. In the previous Sections, re�ectors were assumed to be ideally di�use and
specular. However, more complex re�ections can easily be modeled. In [HTSG91, HHP+92,
NN95], the re�ectivity is decomposed into three components: the uniform di�use one, the
directional di�use and specular ones. The latter two components are strongly directional,
due to the light which is directly re�ected by the surface. The �rst one experiences multi-
re�ection on the surface and subsurface scattering. In Figure 3.29, an example of �rst
re�ection by the surface (on the left) is shown while the ray on the right experiences multi-
re�ection.

�
�

�
� �

�
�

Figure 3.30: Complete BRDF.

The resulting BRDF is shown in Figure 3.30, including the three components of the
re�ectivity function. The two cones correspond to the incoming direction and the outgoing
specular component. The dashed circle is the uniform di�use component while the bulb
corresponds to the directional di�use term.

If the di�use component is removed, it results in a function of the outgoing direction.
This function can be randomly sampled. Several models have been designed in image
synthesis, like the Phong model [Pho75], the Blinn model [Bli77], the model of Cook and
Torrance [CT82] or the one of He and Sillion [HTSG91]. These models have been designed
for rendering. Some are not physical. For example, the Phong model does not satisfy the
conservation of energy [DBB03]. It is then not really adapted for thermal radiation.

The best solution should be to introduce data from experiments. A re�ection pro�le
could be established from these data. An adapted Monte Carlo sampling could then be
used to generate the direction of the re�ection [LRR04]. In the framework of the thesis,
the available data are too weak to implement such methods but it should be considered
for future developments.

3.2.4 Transmission

The transmission can also be modeled during the ray tracing process. The transmission
occurs when a ray encounters a semi-transparent surface. Part of the incoming ray is
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refracted in the direction given by the Snell-Descartes's law:

n2 sin(θr) = n1 sin(θi) (3.45)

where n1 and n2 are the indices of refraction of the �rst and second media; θi is the angle
of incidence and θr is the angle of refraction.

The computation of the extended view factors is performed as follows. In the case of
a ray impinging surface k which is a partly specular and transparent, a uniform random
number ξ is generated. The reference value is given by the following formula:

X =
ρsk

ρsk + τk
(3.46)

If the random number ξ is inferior to X, the ray is specularly re�ected. If ξ is superior
to X, the ray is transmitted.

This process introduces an additional random noise in the computation of extended
view factors. This noise cannot be easily taken into account in the statistical accuracy
measure of the strati�ed hemisphere so that the hemisphere's performances are no longer
insured. The statistical accuracy measure of [Pla93] is then the only applicable one.

In the case of multiple wavelength bands, the developments presented in the previous
Section can be extended. Only one ray tracing process is performed to compute the ex-
tended view factors. Once all the weights are below a given threshold, the Russian roulette
is used to statistically interrupt the ray tracing without introducing any bias.

3.2.5 Radiative exchange factors

The radiative exchange factors are even more complex to compute by ray tracing5. Once
a ray is emitted, it can experience specular re�ection and transmission, as well as di�use
re�ection. At each intersection point, a uniform random number ξ1 is generated. It is
compared to two thresholds X1 and X2, given by the following relations:

X1 =
ρd

ρd + ρs + τ

X2 =
ρd + ρs

ρd + ρs + τ

(3.47)

If ξ1 is inferior to X1, the ray is di�usely re�ected. Two additional uniform random
numbers ξ2 and ξ3 are generated in order to compute a new direction from the cosine law.
These two angles are obtained with respect to the local normal:{

θ = arcsin
(√

ξ2

)
φ = 2πξ3

(3.48)

5Another method, based on matrix operations, is detailed in Section 3.4. This method is called Geb-
hart's matrix method.
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If ξ1 is comprised between X1 and X2, the ray is specularly re�ected. If ξ1 is higher
than X2, the ray is specularly transmitted.

In this case, the statistical accuracy control developed for the strati�ed hemisphere
method is no longer valid. The formulation of [HTSG91] needs to be used. Another
solution consists in computing the view factors thanks to the strati�ed hemisphere and
using the Gebhart's method to obtain the radiative exchange factors. In this case, the
statistical accuracy control of the strati�ed hemisphere is still valid.

3.2.6 Non-di�use emission

The hemisphere method is based onto the combination of importance- and strati�ed-
sampling. In the case of di�use emission, the Nusselt's analogy can be used to yield
an easy-to-sample domain of de�nition: the unit disc. If the emission is di�use, the impor-
tance of each elementary surface on the unit disc is constant.

If the emission is no longer di�use, strati�ed sampling can still be used but importance
sampling is no longer valid. If the new emissivity pro�le is known, an alternative projection
to the Nusselt's analogy can be determined. The grid in the unit disc can be modi�ed in
function of this new projection so that the developments performed in the framework of
the strati�ed hemisphere method remain valid.

Figure 3.31 illustrates this extension of the importance sampling for non-di�use emis-
sivity. Figure 3.31�a represents the di�use emissivity, which is constant on the whole
hemisphere, for θ ∈ [0, π

2
]. Following the Nusselt's Analogy, the corresponding importance

in the unit disc is also constant (see Figure 3.31�b). If a non-di�use emissivity pro�le is
considered (see Figure 3.32�a, based on a prediction of the directional emissivity of noncon-
ductors [Mod03]), the corresponding importance in the unit disc is given in Figure 3.32�b.
This function can be used in order to modify the strati�ed hemisphere's grid, following the
non-uniform importance of the new emissivity pro�le.

Concerning Gebhart's method, which is based on the supposition that the emissivity
is di�use, it is our belief that the non-di�use emissivity pro�le could be associated with a
non-di�use re�ectivity characterized by an identical pro�le (eventually scaled). This could
lead to new developments.

Let us recall that di�use emissivity is an hypothesis at the basis of this work and then
non-di�use emissivity has not been carefully studied.

3.2.7 Conclusions

In this Section, possible extensions have been presented to model complex thermo-optical
properties and to extend view factors, taking specular and glossy re�ections into account.
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Figure 3.31: Extension of the importance sampling for non-di�use emissivity.

In the next Section, the enforcement of reciprocity and closure applied to exchange factors
is addressed. It allows us to reduce the error associated with the ray tracing process.

3.3 Enforcement of reciprocity and closure

3.3.1 Introduction

In heat transfer, the exchange of energy are based on adimensional numbers, which can be
the geometrical view factors, the extended view factors or the radiative exchange factors.
In this work, these numbers are called exchange factors and are noted Fi−j in order to
generalize the theory presented in this Section. The exchange factors must obey the con-
straints of reciprocity and closure. In this thesis, the exchange factors are computed by
ray tracing. By de�nition, the exchange factors obtained by ray tracing obey the closure
relation. Because of the statistical nature of the ray tracing, the reciprocity relation is not
veri�ed, unless the number of rays approaches in�nity. This results in a violation of the
second law of thermodynamics and induces errors in the thermal results.

Once the reciprocity has been enforced, the obtained exchange factors do not respect
the closure relation anymore. A second step of enforcement is necessary. The resulting
exchange factors are more accurate than the one computed by the ray tracing process.

Moreover, the enforcement of reciprocity yields a triangular matrix. The number of
exchange factors that must be stored reduces to N(N−1)

2
, where N is the number of lines

in the initial exchange factor matrix, that is the number of elementary surface patches in
the model.
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Figure 3.32: Extension of the importance sampling for non-di�use emissivity.

In heat transfer, it has been shown that enforcing closure and reciprocity can greatly
reduce the error in the thermal analysis [CS94]. Di�erent methods have been designed to
enforce closure and reciprocity [Tsu92, TL95, vL89]. In this Section, di�erent ways are
presented to enforce the closure and the reciprocity relations.

3.3.2 Generalities

First some generalities concerning the closure rule and the reciprocity rule are described.

3.3.2.1 Closure rule

The exchange factors obtained by ray tracing naturally obey the closure rule because the
total energy emitted by each surface is �nally associated with other surfaces of the model
(or with an additional node modeling the background). This rule is equivalent to the �rst
principle of thermodynamics, which is the conservation of the energy. If view factors are
considered, all the traced rays impact a surface of the model. In the case of radiative
exchange factors, each ray is �nally absorbed by a surface.

This relation is valid if the N surfaces form a closed cavity. If the geometrical model
presents an aperture, an additional surface is used to close the model and the closure re-
lation concerns the N + 1 surfaces.

When the reciprocity is enforced, the exchange factors are modi�ed and the closure is
no longer valid. A closure enforcement is necessary.
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3.3.2.2 Reciprocity rule

If the closure rule corresponds to the �rst principle of thermodynamics, the reciprocity can
be associated with the second principle. The second principle governs the exchanges of
energy between the di�erent surfaces which compose the geometrical model. Following the
second principle of thermodynamics, the net heat �ux between two surfaces at the same
temperature must be zero. This is used to demonstrate the reciprocity relation for each
type of exchange factors.

If the closure is naturally satis�ed by the ray tracing, the reciprocity is generally not
veri�ed and a reciprocity enforcement is mandatory.

3.3.3 Exchange factors

In this Section, the de�nitions of the di�erent exchange factors that are used to compute
the inter-re�ection in a geometrical model are brie�y recalled. The expression of each rule
is also recalled.

3.3.3.1 View factor

The view factor Fi−j between two patches Pi and Pj is the fraction of the uniform di�use
radiation leaving Pi that directly reaches Pj. The reciprocity relation which governs the
view factors is given by the following equation:

AiFi−j = AjFj−i (3.49)

This relation is valid when the view factors are supposed to be constant across the
elementary surfaces. The closure relation is expressed by the next equation:

N∑
j=1

Fi−j = 1 (3.50)

In this Section, ηi−j = AiFi−j = ΩiFi−j denotes the estimator corresponding to the
view factors. This estimator will be enforced for reciprocity and closure.

3.3.3.2 Extended view factor

The extended view factor F s
i−j between two patches Pi and Pj is the fraction of the uniform

di�use radiation leaving Pi that reaches Pj, directly or after an arbitrary number of specular
re�ections. The reciprocity relation applied to the extended view factors is similar to
equation (3.49):

AiF
s
i−j = AjF

s
j−i (3.51)
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The closure relation applied to the extended view factors is given by the following
equation:

N∑
j=1

(1− ρsj)F s
i−j = 1 (3.52)

In this Section, ηi−j = AiF
s
i−j = ΩiFi−j denotes the estimator corresponding to the

extended view factors.

3.3.3.3 Radiative exchange factors

The radiative exchange factor Bi−j from a patch Pi to a patch Pj is the fraction of the
radiation leaving Pi which is �nally absorbed by Pj, whatever the followed path may be.
In this de�nition, the emission process is not speci�ed. In this work however, only di�use
emission is considered. The reciprocity relation applied to the radiative exchange factors
is given by the next equation:

εiAiBi−j = εjAjBj−i (3.53)

GRi−j = GRj−i (3.54)

where GRi−j is the radiosity. This de�nition of the radiosity is di�erent from the radio-
sity J which is associated with purely di�use surfaces. Indeed, the radiosity GR represents
the energy exchanged by two surfaces, while the radiosity J represents the energy emitted
by a purely di�use surface, i.e. the self emitted power plus the re�ected component of the
irradiance. The unit of J is W/m2 while GR is an area (m2).

The closure relation in terms of radiative exchange factors is given by the following
equation:

N∑
j=1

Bi−j = 1 (3.55)

In this Section, ηi−j = εiAiBi−j = ΩiFi−j denotes the estimator corresponding to the
radiative exchange factors.

3.3.4 Impact of the reciprocity on the variances

This Section is inspired from the thesis of C. N. Zeeb [Zee02]. The �nal result is of great
interest for the enforcement of reciprocity. The exchange factors are assumed to be exactly
known and noted F̃i−j and F̃j−i. The reciprocity relation is veri�ed and the following
equations are obtained:

η̃i−j = ΩiF̃i−j (3.56)

= ΩjF̃j−i (3.57)

= η̃j−i (3.58)
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where Ωi is a general coe�cient, equal to Ai for the view factors and to εiAi for the radia-
tive exchange factors.

In a classical ray tracing algorithm, the exchange factor is computed by the for-
mula Fi−j =

Ni−j

Ni
, where Ni is the number of rays emitted from Pi and Ni−j is the number

of these rays received by Pj. The reciprocal exchange factor is given by the similar expres-
sion Fj−i =

Nj−i

Nj
. The uncertainty is di�erent for the two exchange factors Fi−j and Fj−i; it

is measured by the standard deviation. For a classical ray tracing algorithm, the exchange
factors follow a binomial law (each ray can be associated with a random variable which
can take only two possible values: 1 if the ray impacts the receptor and 0 otherwise). The
probability of the binomial distribution is equal to the corresponding exchange factor. The
standard deviation of η̃i−j and η̃j−i are given by the following relationships:

ση̃i−j
= Ωi

√√√√F̃i−j (1− F̃i−j
)

Ni

= η̃i−j

√
1− F̃i−j
NiF̃i−j

(3.59)

ση̃j−i
= Ωj

√√√√F̃j−i (1− F̃j−i
)

Nj

= η̃j−i

√
1− F̃j−i
NjF̃j−i

(3.60)

On the basis of equations (3.59) and (3.60), the ratio of the two standard deviations
can be computed:

ση̃i−j

ση̃j−i

=

√√√√√Ni

Nj

(
1− Ωi

Ωj
F̃i−j

)
(

Ωi

Ωj

)(
1− F̃i−j

) (3.61)

This last expression is a function of F̃i−j which increases monotonically with F̃i−j. Its
lowest value is given by the following expression:

lim
F̃i−j→0

ση̃j−i

ση̃i−j

=

√
Ni

Nj

Ωj

Ωi

(3.62)

The ratio of the standard deviation is roughly proportional to the ratio of the Ω's and
inversely proportional to the ratio of the numbers of traced rays. In a pair of exchange
factors, the smallest error is observed for the surface characterized by the smallest ratio Ω

N
,

that is for the surface with small Ω and large N .

3.3.5 Enforcement of the reciprocity - State of the art

In this Section, di�erent techniques used to enforce the reciprocity of the exchange factors
computed by ray tracing are described.
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The ray tracing process requires the computation of all the exchange factors throughout
the geometrical model, yielding a complete set of estimators ηi−j. This implies redundant
computation. Nevertheless, this redundant data can be used in order to reduce the error
which a�ects the factors of a pair of patches, by enforcing the reciprocity. This results in
a set of corrected estimators η̇i−j. Then, a method of least-squares smoothing will be used
to enforce the closure (see Section 3.3.8.1), providing a �nal set of estimators η̈i−j.

3.3.5.1 Van Leersum enforcement

A naive enforcement of reciprocity consists in retaining the view factors above the main
diagonal and discarding the others [TL95]. The other view factors excluding the diagonal
are obtained by using the reciprocity relation. The diagonal terms are computed using
the closure relation. The drawback of this simple method is that it does not insure non-
negative exchange factors. An iterative scheme has been designed to insure non-negative
exchange factors [vL89].

3.3.5.2 Esarad triangulation

The method implemented in Esarad is called matrix triangulation [Doc04] and is based
on an empirical formula demonstrated in reference [DP93]. This method is also used
in Thermica [Doc03]. On the basis of the two values ηi−j and ηj−i, an estimator η̇i−j is
built by linear averaging:

η̇i−j = κηi−j + (1− κ)ηj−i (3.63)

The weight κ must be positive and lower or equal to unity. The weight is computed by
the following relationship. The demonstration of this expression can be found in [DP93].

κ =
1

2
(1 + sign(Y ) |Y |Y n) (3.64)

where

Y =

Ωj

Nj
− Ωi

Ni

Ωj

Nj
+ Ωi

Ni

(3.65)

n = 0.4 (3.66)

The value 0.4 of the exponent n has empirically been found to be the best one.

3.3.5.3 Fractional con�dence interval

This method is based on the standard deviations which characterize the two exchange fac-
tors to be enforced. As the error of an exchange factor is linked to its standard deviation σ,
a new weight κ based on σ can be de�ned. The following equation is used:

κ =
σηj−i

σηi−j
+ σηj−i

(3.67)
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If the exchange factor ηj−i is characterized by a large uncertainty, the associated
standard deviation σηj−i

is important. The weight κ is close to unity and the estima-
tor η̇i−j = η̇j−i is close to the factor ηi−j, which is the most reliable value. The weight κ
takes into account the relative values of the Ω's, the exchange factors F and the numbers
of rays N . If the weight and the Ω's are constant, the variance of the new estimator is
given by the following relation:

σ2
η̇i−j

= κ2Ω2
i

Fi−j(1−Fi−j)
Ni

+ (1− κ)2Ω2
j

Fj−i(1−Fj−i)
Nj

(3.68)

3.3.5.4 Fractional variance

The method of the fractional variance, introduced in [LDB95], is similar to the fractional
con�dence interval. The weight κ is built on the basis of the variances of the two exchange
factors:

κ =
σ2
ηj−i

σ2
ηi−j

+ σ2
ηj−i

(3.69)

The variance associated with the new estimator is given by the relation (3.68), if the
weight κ and the Ω's are constant.

3.3.5.5 Maximum likelihood estimation

In the maximum likelihood estimation method presented in [DMH05], several probability
distributions parameterized by an unknown parameter θ are considered; the probability
distributions are associated with a known probability mass function, noted p(x|θ). The
probability of all independent observations occurring together is given by the likelihood
function L(θ):

L(θ) =
n∏
k=1

p(xk|θ) (3.70)

The maximum likelihood estimation consists in �nding the value of θ that maxi-
mizes L(θ). This value will be the most probable value of θ. This value of θ ful�lls
the following statements: 

∂L(θ)

∂θ
= 0

∂2L(θ)

∂θ2
< 0

(3.71)

Since the likelihood function is strictly positive, the logarithm of equation (3.70) can
be computed to turn the product into a sum. Finding the value of θ that maximizes L(θ)
is equivalent to �nding the value which maximizes ln (L(θ)):

1

L
∂L(θ)

∂θ
=
∂ ln (L(θ))

∂θ
(3.72)
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In ray tracing, each ray can be treated as a Bernoulli variable with a binary outcome;
the ray is received by the patch Pj, or it is not. The exact exchange factor can be considered
as the probability that a ray emitted from the patch Pi will be received by Pj. A set of

random binary variables Xk
i−j are considered. Once the kth experiment is performed, a

numerical value xki−j is assigned to Xk
i−j, where x

k
i−j = 1 if the kth ray is received by Pj,

xki−j = 0 otherwise. The probability of getting exactly Ni−j rays received by Pj is given by
the probability density function:

p(Ni−j, Ni,Fi−j) = C
Ni−j

Ni
FNi−j

i−j (1−Fi−j)Ni−Ni−j (3.73)

If two exchange factors Fi−j and Fj−i are considered, the common parameter θ can be
chosen as the estimator η̇i−j in order to obtain a binomial maximum likelihood estimation.
If the reciprocity relation is used, the exchange factors can be replaced by the following
expressions: 

Fi−j =
η̇i−j
Ωi

Fj−i =
η̇i−j
Ωj

(3.74)

The expression of the corresponding likelihood function is obtained using equation (3.73):

L(θ) = p(Ni−j, Ni,Fi−j)p(Nj−i, Nj,Fj−i)

=
Ni!Nj!

Ni−j!(Ni −Ni−j)!Nj−i!(Nj −Nj−i)!

(
η̇i−j
Ωi

)(
1− η̇i−j

Ωi

)(
η̇i−j
Ωj

)(
1− η̇i−j

Ωj

)
(3.75)

This expression can then be derived with respect to η̇i−j to compute the most probable
value of η̇i−j.

This method can only be applied to binomial distributions. The exchange factors
must be the ratio of two natural numbers. This method cannot be directly used with the
strati�ed hemisphere method, where the Gauss quadrature is applied in order to integrate
the exchange factors onto the emitter's surface. Nevertheless, the maximum likelihood
can be used in order to demonstrate the adequate way to enforce the reciprocity of the
exchange factors obtained with the strati�ed hemisphere.

3.3.6 Enforcement of the reciprocity - Application to the hemi-

sphere method

In the literature, the exchange factors are computed by generating a large number of rays
from each surface. These rays are propagated throughout the geometrical model until
being received by a surface. In order to stop the ray, a common method is based on the
Russian roulette. When it encounters a surface, a ray is completely absorbed or completely
re�ected. The computed exchange factors are then based on binomial distributions, which
simplify the enforcement of the reciprocity. The obtained exchange factors are the ratios
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of two integer numbers.

In the Section dedicated to the strati�ed hemisphere method, we pointed out the fact
that it can only be used to compute point wise view factors. The integration onto the
emitter's surface must be performed with the help of the Gauss quadrature. The resulting
view factors are reals. This increases the di�culty of the statistical theory that must be
developed to enforce the reciprocity. The exchange factor is given by the following relation:

Fi−j =
NG∑
k=1

WkF (k)
i−j (3.76)

where the sum is performed on the NG Gauss points of the patch Pi. Wk is the weight of
the Gauss point k. F (k)

i−j is the exchange factor computed at the point k.

The main di�erence with the classical Monte Carlo ray tracing is that the exchange
factor is no longer described by a binomial distribution. It is now a combination of binomial
distributions. The variance associated with Fi−j is equal to:

σ2
Fi−j

= σ2

(
NG∑
k=1

WkF
(k)
i−j

)
(3.77)

=
NG∑
k=1

W 2
kσ

2

F(k)
i−j

(3.78)

Because the statistics involved with the strati�ed hemisphere method are more complex,
the maximum likelihood estimation method cannot be directly applied to the strati�ed
hemisphere. Nevertheless, it can be used to demonstrate the validity of the fractional
variance applied to the strati�ed hemisphere.

3.3.7 New formulations

In Section 3.3.5, the state of the art in the domain of reciprocity enforcement has been pre-
sented. The presented formulations are based on a linear combination of the two exchange
factors involved in each pair. These formulations di�er in the de�nition of the factor κ. In
this Section, new formulations based on di�erent de�nitions of κ are introduced.

3.3.7.1 Maximum likelihood estimation

The exchange factors obtained with the strati�ed hemisphere method do not follow a
binomial distribution. If the number of traced rays is large enough, the Central-Limit
theorem [Gra78] can be used to establish that the exchange factors follow a normal dis-
tribution. This is illustrated in Appendix D.1. The mean and variance of the normal
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distribution followed by a exchange factor Fi−j are given by the following relations:
E (Fi−j) = F̃i−j

σ2 (Fi−j) =
NG∑
k=1

W 2
kσ

2

F(k)
i−j

(3.79)

Now two distributions of reciprocal exchange factors, noted Fi−j and Fj−i, are consi-
dered. For each distribution, the mean and variance can be de�ned by means of equa-
tions (3.79). The probability density function of ηi−j is given by the following relation:

f
(
x|ηi−j, σηi−j

)
=

1√
2πσηi−j

exp

[
−1

2

(
x− ηi−j
σηi−j

)2
]

(3.80)

The mean and variance of this distribution can be obtained from the mean and variance
of Fi−j: {

E(ηi−j) = ΩiFi−j
σ2
ηi−j

= Ω2
iσ

2
Fi−j

(3.81)

In the same way, the probability density of the reciprocal exchange factor ηj−i can be
established:

f
(
x|ηj−i, σηj−i

)
=

1√
2πσηj−i

exp

[
−1

2

(
x− ηj−i
σηj−i

)2
]

(3.82)

Then, the probability function L(x) is built as the product of the two previous proba-
bility density functions:

L(x) = f
(
x|ηi−j, σηi−j

)
f
(
x|ηj−i, σηj−i

)
(3.83)

=
1

2πσηi−j
σηj−i

exp

[
−1

2

(
x− ηi−j
σηi−j

)2

− 1

2

(
x− ηj−i
σηj−i

)2
]

(3.84)

The �rst derivative of the logarithm of this function with respect to x, equated to zero,
yields the estimator x of ηi−j which satis�es the reciprocity.

∂ ln(L)

∂x
=

∂

∂x

[
ln

(
1

2πσηi−j
σηj−i

)
− (x− ηi−j)2

2σ2
ηi−j

− (x− ηj−i)2

2σ2
ηj−i

]
(3.85)

=
ηi−j − x
σ2
ηi−j

+
ηj−i − x
σ2
ηj−i

= 0 (3.86)

⇔ x =
ηi−jσ

2
ηj−i

+ ηj−iσ
2
ηi−j

σ2
ηi−j

+ σ2
ηj−i

(3.87)

= ηi−j
σ2
ηj−i

σ2
ηi−j

+ σ2
ηj−i

+ ηj−i
σ2
ηi−j

σ2
ηi−j

+ σ2
ηj−i

(3.88)

This expression is similar to the fractional variance, except that the variances in equa-
tion (3.88) correspond to the variances of the strati�ed hemisphere method.
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3.3.7.2 Fractional con�dence interval - fractional variance

In the previous Section, we presented the fractional con�dence interval and fractional
variance methods, in the case of a binomial distribution. In Section 3.3.6, we established
that the variance and standard deviation obtained with the strati�ed hemisphere method
are more complex than the expressions derived in the case of a binomial distribution.
However, we decide to approximate the hemisphere distribution by a binomial law, in
order to use the binomial expression of the variance.

σ2
Fi−j

=
Fi−j (1−Fi−j)

Ni

This introduces an error in the variance. Indeed, �ring Ni rays from each gaussian
point of a surface i can be seen as distributing each of the Ni rays among the gaussian
points. Then a fractionWk of the energy of each ray is attributed to the kth gaussian node.

The ray-tracing process is no longer ruled by a binomial distribution. However, this
approximation yields a simple expression to evaluate the variance. This approximation can
be acceptable in practice. This variance is then used in the expression of the fractional
con�dence interval and fractional variance methods.

3.3.7.3 Personal variation (PV)

During the tests, a variation of the fractional variance method has been tried, where the κ
factor is based on the square of the variance. Although this formulation is not supported
by any theoretical background, contrary to the maximum likelihood estimation, it yields
the best results in terms of reduction of the RMS error.

3.3.8 Enforcement of the closure

In this Section, we consider a set of exchange factors η̇i−j which obey to the reciprocity rule
but not to the closure rule. The most e�cient method is based on least-squares smoothing.
The resulting set of exchange factors is noted η̈i−j.

3.3.8.1 Least-squares smoothing

Once the reciprocity has been enforced, the closure is generally no longer valid. The closure
has to be enforced in order to insure the conservation of energy. Here, a formulation based
on the least-squares smoothing method [LH86, LCL01] is presented. This method has been
designed to correct a system which veri�es the reciprocity but not the closure. The authors
supposed that the reciprocity has been previously enforced to reduce the storage of the
exchange factors.

The least-squares smoothing method requires the de�nition of an objective function H,
which will be minimized. This function must contain the variations of the η̇-values. The
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aim is to obtain exchange factors which verify the closure, while limiting the variations of
the initial exchange factors.

H =
N∑
i=1

N∑
j=1

(η̇i−j − η̈i−j)2

2ωi−j
(3.89)

where η̇ corresponds to the value obtained after enforcement of the reciprocity, η̈ represents
the value obtained by applying the closure law. Due to the symmetry of the η̇, the weight
matrix ω must also be symmetrical. The weights allow us to assign penalties to certain
factors.

The reciprocity constraints must be included in the lagrangien L, which must not be
confused with the likelihood function. The lagrangien is de�ned by the following expression:

L = H +
N∑
i=1

λi (gi + g∗i ) (3.90)

where λi are the Lagrange multipliers and gi and g∗i are, respectively, the row- and column-
sum constraints: {

gi = Ωi −
∑N

j=1 η̈i−j
g∗i = Ωi −

∑N
j=1 η̈j−i

(3.91)

The previous relations consist in 2N constraints. In fact, only N constraints are in-
dependent. The column-sum constraints can be obtained from the line-sum constraints
by using the reciprocity relations. The introduction of these two sets of constraints is
necessary to insure the conservation of the reciprocity during the enforcement of closure.
Di�erentiating L with respect to η̈ gives:

∂L
∂η̈i−j

= − η̇i−j − η̈i−j
ωi−j

− λi − λj (3.92)

The new estimator is given by equating the previous relation to zero:

η̈i−j = η̇i−j + ωi−j (λi + λj) (3.93)

Expression (3.93) is introduced in the closure constraint (3.91) to obtain the values of
the Lagrange multipliers:

Ωi −
N∑
j=1

η̇i−j = λi

N∑
j=1

ωi−j +
N∑
j=1

λjωi−j (3.94)
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This is a linear system Ax = b which must be solved to determine the Lagrange multi-
pliers. The components can be written as:

Ai−j = ωi−j if i 6= j (3.95)

Ai−i = ωi−i +
N∑
j=1

wi−j (3.96)

bj = Ωj −
N∑
i=1

η̇j−i (3.97)

Once the Lagrange multipliers are computed, they are introduced in the equation (3.93)
and we �nally obtain the estimators which obey the closure rule minimize the function H.

This method is really e�cient when the geometrical model is totally closed. If the model
presents an aperture, this method must be adapted. It is performed in Section 3.3.10.

Moreover, the weights ωi−j have not be de�ned. The only constraint is that they must
be symmetrical to conserve the reciprocity of the exchange factors. In Section 3.3.9, the
results obtained for di�erent choices of weights are presented. We consider three weights
based on the variance (σi−j, σ2

i−j and σ4
i−j) and three weights based on the exchange

factor itself (
√
ηi−j, ηi−j and η2

i−j). These di�erent closure enforcements are combined with
di�erent reciprocity enforcements in the case of a closed model.

3.3.9 Test results

To identify the best method, di�erent reciprocity enforcement have been implemented.
These methods have been combined with di�erent formulations of the least-squares smooth-
ing. Only closed models have been considered here. The extension to open models will be
performed in a following Section.

3.3.9.1 Applied methods

For the reciprocity enforcement, fractional con�dence interval (FCI), fractional variance
(FV), maximum likelihood estimation (MLE), a personal variation (PV) and the Esarad

method have been implemented.

For the closure enforcement, several formulations of the least-squares smoothing are
tested, with di�erent de�nitions of the weights ωi−j. Weights based on di�erent powers of
the variance or of the estimator itself are considered.

3.3.9.2 Test cases

We considered a set of simple geometrical con�gurations for which an analytical solution
can be found in the literature. References [How82, Won76] have been used to compare the
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computed values with an analytical result. The present work considers only view factors.
Figure 3.33 represents the geometrical con�guration of the test case 4.

Figure 3.33: Test case 4 - Geometrical con�guration.

3.3.9.3 De�nition of the error

In order to compare the quality of the di�erent tested methods, the RMS error associated
with each matrix of view factors has been chosen. The RMS error is de�ned by the following
relation:

ε =

√√√√ 1

N2

N∑
i=1

N∑
j=1

(
Fi−j,exact − Fi−j,computed

)2

(3.98)

For each test case, 1 000 successive ray tracings have been considered in order to esta-
blish statistics. The computed view factor which appears in the formula (3.98) is in fact
the average view factor computed from the set of 1 000 results.

3.3.9.4 Results

Table 3.3 lists the RMS error obtained when the di�erent methods of reciprocity enforce-
ment are combined with the di�erent de�nitions of the weight ωi−j used in the least-
squares smoothing. The initial RMS error (concerning the exchange factors obtained by
ray-tracing, without any post-treatment) is equal to 2.0350 10−3.

The �rst line lists the RMS error observed when only reciprocity is enforced. This is
a good indicator of the e�ciency of the di�erent methods. For the FCI, the RMS error
increases, when compared to the initial error. For this reason, this method will not be used
in the proposed algorithms.
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FCI FV MLE PV Esarad

none 2.3479 10−3 1.6756 10−3 1.7265 10−3 1.5254 10−3 1.9493 10−3

√
η 2.0907 10−3 1.5121 10−3 1.5599 10−3 1.3771 10−3 1.8388 10−3

η 1.7947 10−3 1.4554 10−3 1.4769 10−3 1.3802 10−3 1.6569 10−3

η2 1.7012 10−3 1.6234 10−3 1.6352 10−3 1.4773 10−3 1.3652 10−3

σ 2.0784 10−3 1.5189 10−3 1.5692 10−3 1.4076 10−3 1.8314 10−3

σ2 1.8984 10−3 1.5236 10−3 1.5636 10−3 1.4287 10−3 1.7019 10−3

σ4 1.8432 10−3 1.6560 10−3 1.6900 10−3 1.4954 10−3 1.4864 10−3

Table 3.3: Comparison of the error norms for di�erent methods.

Another interesting result is that no large di�erence is observed when the exact vari-
ance of the strati�ed hemisphere method (MLE) is replaced by the variance of the binomial
distribution (FV).

The best method seems to be the PV method, which leads to the lowest levels of the
RMS error.

The method implemented in Esarad and Thermica yields improvements of the RMS
error. However, these improvements are lower than the other methods, except the FCI.
Figure 3.34 plots the evolution of the RMS error obtained with the Esarad triangulation, in
function of the exponent n. The associated standard deviation is represented by the height
of the corresponding lines. The green curve corresponds to the initial RMS error, when no
enforcement is applied. It is constant, equal to 2.0350 10−3. If the Esarad triangulation is
used to enforce reciprocity, the obtained error is given by the blue curve. The minimum
occurs for n=0.05. If the σ4 are chosen as the weights of the least-squares smoothing, the
red curve is obtained. It yields a minimum of the RMS error for a non-physical value of the
exponent n (which can only be de�ned between 0 and 1). If the value 0.4 is chosen for he
exponent, it appears that the Esarad triangulation reduces the RMS error; the enforcement
of closure induces a slight reduction of the remaining error.

3.3.10 Open models

In the previous Sections, only closed models have been studied, that is models which do
not present any aperture. In space applications, this situation can be encountered when
the interior of a spacecraft is considered as an independent cavity, where the classical least-
squares smoothing can be applied without any restriction. If the exterior of the spacecraft
is considered, the situation is quite more complex because of the presence of an additional
surface, which is necessary to model the exchanges with the deep space.

When an open model is studied, the main di�culty lies in the fact that the ray tracing
only computes the exchange factors from the N surfaces of the model to the whole model
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Figure 3.34: Esarad method - Evolution of the RMS error in function of the exponent n.

and to an additional node representing the deep space. So the obtained matrix contains N
lines and N + 1 columns. When the reciprocity is enforced, the N exchange factors to the
deep space cannot be corrected if the exchange factors from the deep space to the model
have not been computed. If the exchange factors matrix is not square, all the terms cannot
be corrected, while conserving the reciprocity.

3.3.10.1 Exact exchange factors to the deep space

A �rst solution consists in considering that the exchange factors from the model to the deep
space are exact and do not require any modi�cation. The line- and column-constraints gi
and g∗i are completed by adding to each term the corresponding exchange factor to the
deep space. The corresponding extension of the least-squares method is presented in Ap-
pendix D.2.

Because the exchange factors to the deep space can really be a�ected by a large error, the
enforcement of closure based on such an hypothesis can lead to an increase of the associated
RMS error. This has been observed during the tests, as it is mentioned in [Vue08]. For this
reason, this method is not recommended when the geometrical model presents an aperture.

3.3.10.2 Correction of the exchange factors to the deep space

Another method consists in relaxing the column-constraints g∗i . The �nal exchange factors
will no longer obey the reciprocity relation. The advantage of this method is to allow
corrections of the "model-to-deep-space" exchange factors. The corresponding extension

Computation of the

Exchange Factors

91 P. Vueghs



3.3. ENFORCEMENT OF RECIPROCITY AND CLOSURE 92

of the least-squares smoothing is presented in Appendix D.3.

Because the column-constraints are not imposed anymore, the reciprocity of the ex-
change factors is lost. Compared to the �rst method, this one does not reduce the accuracy
of the �nal exchange factors. But the e�ciency of this method is limited as the reciprocity
relation applied to the exchange factors to the deep space cannot be insured.

During the tests, the performances of this method have been observed to be limited.
From the reciprocity enforcement to the closure enforcement, the RMS error stays more or
less constant. Moreover, the reciprocity is lost. A second enforcement of reciprocity can
be necessary but this does not reduce the RMS error. For these reasons, the interest of
enforcing closure when an aperture is detected in the geometrical model is not obvious.

3.3.10.3 Deep-space-to-model exchange factors

The third coded method is more complex than the previous ones because it requires huge
modi�cations of the ray tracing algorithm. To obtain a square matrix of exchange factors,
an additional surface must be added to model the deep space.

A sphere centered on the centroid of the model is built; it is the smallest sphere con-
taining the whole model. The sphere is decomposed into cells of equal area following the
longitude and latitude directions. This is done in order to obtain the statistical opti-
mization due to strati�ed sampling [DBB03]. For each couple of cells, a random point is
uniformly generated into each cell. A ray is traced between the two random points. If the
ray is intercepted by a surface, the exchange factor from the deep space to that surface
receives a contribution equal to 1/n2

lon
n2
lat

, where nlon and nlat designate respectively the
longitude- and latitude-resolutions.

Each cell is associated twice with another cell; �rst as the emitter, then as the receiver.

This yields a square exchange factors matrix. The least-squares smoothing can be di-
rectly used. The drawback of this method is that it requires a lot of additional rays to
be traced in order to obtain a su�cient accuracy for the "deep-space-to-model" exchange
factors, to observe a reasonable improvement of the accuracy of the exchange factors.

As a conclusion of this Section, in the case of an open model, it is our strong belief that
an enforcement of the closure will not improve the quality of the exchange factors without
an unacceptable increase of the computation resource. For this reason, no enforcement of
closure has been implemented in case of an open model. The enforcement of reciprocity
only allows us to reduce signi�cantly the RMS error associated with the exchange factors.

Computation of the

Exchange Factors

92 P. Vueghs



3.4. GEBHART'S METHOD 93

3.3.11 Conclusions

On the basis of the results, we have established the enforcement strategy that will be im-
plemented in our algorithms.

Concerning the enforcement of reciprocity, it is used for each geometrical con�guration,
i.e. for closed and open models. The selected method is the fractional variance (FV). The
personal variation (PV) remains a good competitor but the lack of theoretical material is a
serious drawback. The Esarad method, the fractional con�dence interval and the maximum
likelihood method are not retained for further implementation.

Concerning the enforcement of the closure, the estimator itself is selected as the weight
ωi−j used in the least-squares smoothing when the model is closed. When the model
presents an aperture, closure is not enforced.

In order to conclude the Chapter dedicated to exchange factors, we present in the next
Section the extension of Gebhart's matrix method, used to derive the radiative exchange
factors from the view factors.

3.4 Gebhart's method

3.4.1 Introduction

To apply Gebhart's formulation of radiative heat transfer, we need to use the radiative ex-
change factors (REF) between all the surfaces which compose the 3D geometrical model,
as well as the absorbed heat �uxes (AHF), i.e. the heat �uxes absorbed by each surface of
the model, either directly or via multi re�ections.

REF and AHF can either be obtained by Monte Carlo ray tracing (MCRT) or by Geb-
hart's method, also called the matrix method [Doc06, Doc03].

The so-called matrix method has been designed by Benjamin Gebhart in the sixties
in order to derive the radiative exchange factors from the geometrical, di�use view fac-
tors [Geb61b, Geb59]. A second formulation of this matrix method can be used in order
to derive the absorbed heat �uxes from the direct heat �uxes (DHF) [Doc04].

The main advantage of Gebhart's method is that it requires only one computation run
in order to extract the geometrical information from the 3D model, in the form of a set of
view factors. These view factors are then used to compute the REF and the AHF.

The computation of the view factors and direct heat �uxes can be performed by a
Monte Carlo ray tracing. Radiative exchange factors and absorbed heat �uxes can either
be obtained by MCRT or by Gebhart's method. It will be shown that using MCRT to
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compute the view factors converges faster than using it to compute the REF.

Several hypotheses limit the use of Gebhart's method. Each hypothesis will be presented
and discussed. Some of these limitations will be canceled but the last one remains necessary.
The distinction between the two formulations of Gebhart's method and the last hypothesis
will have a determinant impact on the way we propose to use Gebhart's method.

3.4.2 Gebhart's formulation of heat transfer

The formulation developed by Gebhart [Geb61a] can be used to solve a complete thermal
problem. The energy balance is based on the self emitted power of the surfaces which
compose the model. The temperatures can be obtained by solving the following set of
equations:

Qi = εiAiEb,i −
N∑
j=1

εjAjBj−iEb,j (3.99)

Compared to the classical formulation which is based on view factors, Gebhart's for-
mulation presents the advantage that the size of the system to solve is reduced. Let us
suppose that the n1 �rst surfaces are characterized by a �xed heat �ux and that the tem-
perature of the remaining n2 surfaces is known (with n1 +n2 = N). Only the n1 surfaces of
unknown temperatures have to be considered. Once the temperatures have been computed
by solving equation (3.99) for i between 1 and n1, the unknown heat �uxes are computed
using equation (3.99) for i between n1 + 1 and N .

The drawback of Gebhart's formulation is that the matrix of the radiative links is full.
Each surface of a given enclosure interacts with all the other surfaces of this enclosure. A
full matrix is not suitable for the resolution of the thermal system.

3.4.3 Equations

In this Section, the equations relative to the two formulations of Gebhart's method are
presented. The �rst formulation is relative to the radiative exchange factors while the
second one concerns the radiative heat �uxes.

3.4.3.1 Radiative exchange factors

In [Geb61a], the author presented a way to compute the REF, that he called absorption
factors, by inverting a matrix based on the view factors. In the original version, the author
only considered di�use re�ections. No specular e�ect was taken into account.

The radiative exchange factor Bi−j can be considered as the sum of two terms. The �rst
one corresponds to the fraction of energy which is emitted by i and is directly absorbed
by j. The second term is a sum on all the possible intermediary surfaces. Each term k of
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this sum is the fraction of energy emitted by i which is di�usely re�ected by k and which
is �nally absorbed by j. It yields the following expression:

Bi−j = εjFi−j +
N∑
k=1

Fi−kρkBk−j (3.100)

Radiative exchange factors are a function of the di�use view factors, the emissivity εj
of the receptor and the di�use re�ectivity ρk of all the intermediary surfaces k.

Remark: The author solved this expression by the determinant method. In the al-
gorithms presented in this thesis, an iterative scheme has been preferred. The emission
term εjFi−j is chosen as the initial value of each factor Bi−j. Then the operator R = ρF
is applied. Each iteration can then be considered as the result of one re�ection step.

3.4.3.2 Absorbed heat �uxes

In Gebhart's formulation, the irradiation term corresponds to the external heat �uxes which
are absorbed by each surface of the model. This implies that the multi-re�ection process
must be taken into account to compute this term. Just as the REF are the combination
of two distinct contributions, so will be the absorbed heat �uxes. First, the incident heat
�uxes must be computed. If H0,i denotes the incident heat �ux received by a patch Pi,
the absorbed power is equal to AiεiH0,i. The second term is the power which is di�usely
re�ected by each surface j and �nally absorbed by i. The following relation [Doc04] is
obtained:

Qi = AiεiH0,i +
N∑
j=1

Bj−iAjρjH0,j (3.101)

3.4.4 Sequence of the computations

In order to obtain the quantities required by Gebhart's formulation, several combinations
of computations are possible.

3.4.4.1 Radiative exchange factors

The di�erent possibilities to obtain the radiative exchange factors are shown in Figure 3.35.
The radiative exchange factors can be directly computed by a Monte Carlo ray tracing
including the di�use component of re�ection. They can also be computed with Gebhart's
method, from the view factors (which are computed by a ray tracing process) and from
the thermo-optical properties of the radiative model.

3.4.4.2 Absorbed heat �uxes

The situation is more complex for the absorbed heat �uxes, because their computation can
involve a two-step process, if Gebhart's method is applied. In Figure 3.36, the di�erent
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Figure 3.35: Gebhart's Method - Radiative exchange factors.

possibilities are given for the absorbed solar heat �uxes (ASHF) case. The �rst step
concerns the solar radiative exchange factors. They can either be computed by a complete
Monte Carlo ray tracing process or by Gebhart's method. The direct solar heat �uxes
(DSHF) are computed by ray tracing. They can be used with the radiative exchange
factors in the framework of the second formulation of Gebhart's method to obtain the
absorbed solar heat �uxes. The absorbed solar heat �uxes can also be directly computed
by a complete Monte Carlo ray tracing.

Figure 3.36: Gebhart's Method - Absorbed solar heat �uxes.

3.4.5 Advantages of Gebhart's method

In this Section, two ways of computing the radiative exchange factors are compared: the
classical Monte Carlo ray tracing and Gebhart's method. Gebhart's method for heat �uxes
is not considered in this Section.

3.4.5.1 Convergence of the ray tracing processes

If the REF are directly computed by ray tracing, a ray intercepted by a surface k has a
probability equal to εk of being absorbed. A secondary ray will be re-emitted with a prob-
ability equal to 1− εk = ρk. If the model is characterized by a low average emissivity, there
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will be a large number of secondary rays to be traced through the model. This implies a
slow convergence of the ray tracing.

If the view factors are computed by ray tracing and if Gebhart's method is used in
order to derive the radiative exchange factors, no secondary ray will be re-emitted during
the ray tracing (if we consider only di�use re�ectors). This is why Gebhart's method is
known to be a faster way to obtain the radiative exchange factors.

Remark: applying equation (3.100) can be very fast, if it is properly implemented. So
the CPU time relative to this step can be considered negligible in comparison with the ray
tracing process. The convergence of this process is presented in Section 3.4.5.3.

3.4.5.2 Reuse of the intermediary results

As mentioned before, the view factors depend only on the geometry of the model. They
do not depend on the thermo-optical properties of the surfaces.

If di�erent sets of thermo-optical properties are associated with a same geometry, the
interest of Gebhart's method appears clearly because the geometrical con�guration has not
to be processed several times, once for each set. The view factors and the direct heat �uxes
do not need to be recalculated.

3.4.5.3 Convergence of the iterative process

Once the view factors have been computed, Gebhart's method is used to compute the
radiative exchange factors. In the proposed algorithms, an iterative scheme has been im-
plemented. Each iteration represents the result of one re�ection step. An error criterion
is evaluated, from one step to the next. If the criterion is below a user-de�ned threshold,
convergence is achieved and the iterative process is stopped.

The convergence of this method depends on the average di�use re�ectivity of the model.
This average re�ectivity can be obtained by weighting each patch's di�use re�ectivity
according to its surface area [SP94]:

ρd =

∑N
i=1 Aiρ

d
i∑N

i=1Ai
(3.102)

This has been illustrated in the case of two concentric spheres (this case is described in
Section 3.4.7.1). Four sets of thermo optical properties (corresponding to an average di�use
re�ectivity ρd varying from 20% to 80%) are considered and the error criterion is plotted
in function of the index of the iteration. An increase in the average di�use re�ectivity will
slow down the rate of convergence of the iterative process.
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Figure 3.37: Convergence of the iterative scheme in function of the di�use re�ectivity.

3.4.6 Limitative hypotheses

In [Pla97], three restrictions which apply to Gebhart's method have been established:

1. (a) the thermal emission must be di�use;

(b) the re�ection can only be di�use;

2. (a) the surfaces which compose the geometrical model must be isothermal;

(b) the emissivity of these surfaces must be uniform;

3. the surfaces which compose the geometrical model must be uniformly irradiated.

Several comments must be made concerning these hypotheses.

3.4.6.1 Comments on the �rst hypothesis

The �rst hypothesis is linked to the main advantage of Gebhart's method. This method
allows us to combine an emission process and a re�ection process, both of which are char-
acterized by the same angular distribution, i.e. the di�use one. It is possible to imagine
combining an emission process and a re�ection process which are non-di�use but have the
same angular distribution in an improved, extended Gebhart's method.

The view factors allow us to compute the energetic balance in the 3D model, where the
balance is based on the radiosity of the surfaces (i.e. the sum of the di�use self emitted
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power and the di�use re�ection). Since the self emission and the di�use re�ection are
combined, the di�use re�ection is assumed to be computed with the same level of accuracy
as the emission process. For example, if 10 000 rays are traced from an emitter, Gebhart's
method allows us to consider the �rst intersection of these rays both for the emission pro-
cess and the re�ection.

In a classical MCRT used to compute the REF, this combination is not used. A ray
impacting a di�use surface will be re�ected in an unique direction with the whole energy.
To accurately model the di�use re�ection, the whole hemisphere should be decomposed in
a large number of samples, each one carrying a fraction of the whole energy. This sampling
is not possible because it would imply an exponential generation of secondary rays. The
modeling of the di�use re�ection with a unique ray is not correct. However, regarding the
large number of rays traced during a complete MCRT, this error decreases rapidly.

3.4.6.2 Comments on the second hypothesis

Concerning the second hypothesis, a uniform temperature �eld can be necessary to insure
a uniform emissivity, if temperature-dependent emissivity is considered.

Another comment is the fact that the necessary data to model an emissivity varying
across the surfaces were not available for this thesis.

3.4.6.3 Comments on the third hypothesis

The last hypothesis is the most restrictive one. "Uniformly irradiated" concerns:

1. the irradiation H received from the other surfaces;

2. the external irradiation H0, received from the Sun and other bodies, like planets and
moons.

The �rst component is necessary to compute the balance of the thermal system when
no external irradiation is considered, when only the self emitted power of the surfaces
is considered. This component only concerns the geometry of the model. This distinc-
tion appears naturally during the development of the thermal equations. It is crucial for
the demonstration of the equivalence of the radiosity equations and Gebhart's formulation.

The third hypothesis points out the weakness of Gebhart's method. This method is
the result of two steps: the computation of the view factors by ray tracing and the matrix
derivation of the Gebhart's factors. Between the two steps, the considered surfaces are not
the same. During the ray tracing process, the discontinuities are taken into account. If a
surface has a partial visibility to another, the shadow can be correctly computed so that
the view factor of this surface is accurate. During the second step, it is the whole surface
which is characterized by the previously computed view factor. The computation of the
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shadow is lost and the whole surface is characterized by a constant, uniform view factor.
This can induce errors in the two formulations of Gebhart's method.

3.4.7 Extension of Gebhart's method

In the previous Sections, the advantages and restrictions of Gebhart's method have been
presented. Now, we will explain how we can extend the �eld of applications of this method.

3.4.7.1 First hypothesis

The �rst extension concerns the di�use thermal emission. As previously mentioned, di�use
emissivity is a hypothesis of this work. Then the �rst extension consists in including
specular re�ection into Gebhart's method. The formulation of the extended Gebhart's
method is given by the following formula, which is proved in Appendix E.1.

Bi−j = εjF
s
i−j +

N∑
k=1

F s
i−kρkBk−j (3.103)

where F s
i−j is the extended, specular view factor from patch Pi to Pj. The energy di�usely

emitted by a surface Pi can be re�ected either di�usely or specularly. The specular re-
�ection is taken into account by the specular view factor (during the ray tracing process)
while the di�use re�ection is computed with Gebhart's method, when equation (3.103) is
solved.

If there are specular re�ectors in the 3D model, secondary rays are observed during
the ray tracing. In case of collision based ray tracing [DBB03], the probability that an
incoming ray on Pk is re-emitted is equal to ρsk. This probability must be compared
with the probability of re-emission in the case of a complete ray tracing, which is equal
to 1 − εk = ρsk + ρdk. Clearly, the interest of Gebhart's method decreases when highly
specular re�ectors are present in the model.

Remark: we suspect that the �rst hypothesis could have been motivated by the fact
that the European software for space analysis (Esarad [Doc04] and Thermica [Doc03]) may
have an error when computing the extended view factors. If the extended view factors are
wrong, it is obvious that the results of Gebhart's method will be incorrect. But this error
is not due to Gebhart's method and should not be an argument against the method.
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In order to illustrate the extension of Gebhart's me-
thod to specular re�ectors, the model presented in the
right Figure has been implemented. It is composed of
two concentric spheres (in the Figure on the right, the
outer sphere has been opened to show the inner one).
Each sphere only has one active face, the one which is
orientated to the other sphere. The two spheres are char-
acterized by a specular re�ectance equal to 80%. Equa-
tion (3.103) is solved for this particular two-node model.
Extended Gebhart's method yields the value 0.555556.
This value is considered as the reference. Then Esarad

is used to compute the corresponding link GR between
the two spheres. It yields a radiative exchange factor
equal to 0.556024, from the inner sphere to the outer
one. This value is close to the reference.

This tends to validate the �rst extension of Gebhart's method. This result has also
be compared with the geometrical method, presented in Section 4.3. The returned value
is close to the reference. This tends to validate the geometrical method, combined with
Gebhart's method, in order to obtain the radiative exchange factors, in the presence of
specular re�ectors.

3.4.7.2 Second hypothesis

The second hypothesis, concerning isothermal patches, has also been removed. Gebhart's
method has been extended to the case of �nite elements.

With a �nite element formulation, the temperatures are computed at particular posi-
tions, on the nodes of the �nite elements. The temperature �eld is then obtained by a
polynomial interpolation on the element.

This allows us to consider non-isothermal elements. In this case, nodal, �nite element
view factors can be computed. Gebhart's formula (3.100) can be extended in order to be
expressed on the nodes.

The example shown below is constituted of square elements of the �rst degree. The
view factors are interpolated linearly across each element (see Figure 3.38�a). These nodal
view factors can be used in Gebhart's formula in order to obtain the nodal radiative ex-
change factors, as represented in Figure 3.38�b.

These Figures must be compared with the results obtained with isothermal elements
and uniform surface-to-surface view factors. Figure 3.39�a represents the distribution of
the uniform surface-to-surface view factors while Figure 3.39�b corresponds to Gebhart's
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Figure 3.38: Second hypothesis � a) nodal view factors � b) nodal Gebhart's factors.

factors. The color scales of the nodal exchange factors are extended. The nodal exchange
factors can reach higher values than the uniform surface-to-surface ones, especially along
the common edge. This allows us to obtain a more accurate representation of the exchange
factors. For example, the view factor near the common edge is expected to be close to 50%,
because almost half of the local hemisphere is covered by the second surface. While the
distribution of the uniform view factor can barely exceed 45%, the nodal view factor is
closer to the expected value. The use of nodal exchange factors yields results of a higher
accuracy.

Figure 3.39: Second hypothesis � a) uniform view factors � b) uniform Gebhart's factors.

3.4.7.3 Third hypothesis

The third hypothesis must be studied in two steps. When requiring a uniform irradiation
on a given surface, the third hypothesis concerns the irradiation H from the other surfaces

Computation of the

Exchange Factors

102 P. Vueghs



3.4. GEBHART'S METHOD 103

and the external irradiation H0.

Irradiation from the geometrical model In [Pla97], the author identi�ed three con-
�gurations which violated Gebhart's method. The �rst two only concern the geometrical
model. The third one is linked to the external irradiation.

This Section shows how the �rst two issues can be solved by an adapted mesh of the
geometry.

The �rst case (see Figure 3.40�a) corresponds to two surfaces, numbered 1 and 3,
separated by a surface 2. Surfaces 1 and 3 cannot see each other. The corresponding view
factors are equal to zero. The true Gebhart's factors are also equal to zero. However, if the
two sides of the second surface are characterized by the same identi�er, Gebhart's method
will introduce an arti�cial link from surface 1 to surface 2, then from surface 2 to surface
3, so that Gebhart's factor B1−3 is larger than zero. The solution consists in decoupling
the two faces of element 2, as it is done in Figure 3.40�b. Element 2 is decomposed into
a surface 2' (in red) and a surface 2� (in blue). No arti�cial link is possible. This artifact
can be solved with a proper mesh.

�

�

�
�

� �

�

� � �

Figure 3.40: First situation � a) con�guration � b) correction.

The second case is represented in Figure 3.41�a. It represents two rectangles of di�erent
sizes, sharing a common edge. During the computation of the view factors by ray tracing,
the rays emitted by surface 1 which impact surface 2 are not uniformly distributed across 2.
When computing Gebhart's factor from 1 to outer space, the energy from 1 to 2 is arti�cially
uniformly distributed across 2. As the view factor from 2 to outer space is large, the energy
emitted by 1, re�ected by 2 has a large visibility to outer space. Gebhart's method will
over-estimate the link from 1 to outer space. The solution is represented in Figure 3.41�b.
The large surface must be decomposed into elements of equivalent areas.

In order to illustrate this case, the test case of Figure 3.42�a is considered. The geo-
metrical method is used with an underlying �nite element mesh made of 36 triangles. The
computed view factors are accurate. For example, the computed view factor from the small
surface to the large one is equal to 0.4509, which is close to the analytical value of 0.4508.
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�
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�

Figure 3.41: Second situation � a) con�guration � b) correction.

On the other hand, the radiative exchange factors are not correct. The coupling between
the small surface and itself is under-estimated (0.0105 for the computed value, 0.0203 for
the analytical value; the relative error is larger than 48%). This is because Gebhart's factor
from the small surface to outer space is over estimated. This error can be decreased with
the geometrical method by choosing a �ner underlying �nite element mesh.

Figure 3.42: Test case � a) con�guration � b) radiative exchange factors.

To obtain more accurate results, an adaptive mesh has been used, based on a charac-
teristic length increasing with the distance to the common edge. The results are plotted
in Figure 3.42�b.

One way to perform the re�nement of the mesh has been implemented in the hierarchical
method [VB07, Vue06b]. The circular approximation [WEH89, Vue05] can be used in
order to quickly over-estimate the view factors between two surfaces. This approximation
is based on the point wise view factor from a point dAi to a disc Aj, of radius r, centered
above dAi, at a distance h (see Figure 3.43�a). This view factor is given by the following
relation [How82, Won76]:

Fdi−j =
r2

r2 + h2
(3.104)
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In the circular approximation, a patch Pj of area Aj (see the dashed contour in Fi-
gure 3.43�b) is replaced by a circle of the same area. The relative orientations of the
surfaces are taken into account to yield the following approximation:

Fdi−j =
Aj

Aj + πh2
cos(θi) cos(θj) (3.105)

�

�

� �

� � �

� �

� � �

� �

� �

�

Figure 3.43: Circular approximation � a) con�guration � b) approximation.

When the approximation is greater than a given threshold, the mesh must be locally
re�ned. This method can be used in order to identify situations similar to the second case
and to yield an adapted, corrected mesh. This adaptive mesh can cancel the geometrical
component of the third hypothesis of Gebhart's method, i.e. the component relative to
the computation of the radiative exchange factors (equation (3.100)).

External irradiation The third test case is represented in Figure 3.44�a. A �rst surface
is partially exposed to the Sun, pointing to the Sun; a second surface partially covers the
�rst one, pointing in the opposite direction. If Gebhart's method for heat �uxes (equa-
tion (3.101)) is used, an arti�cial link appears from the Sun to surface 2. Indeed, surface 1
is characterized by non-zero view factors to the Sun and to surface 2. At the end of the
view factors computation, the solar energy is considered as uniformly distributed on sur-
face 1. Then Gebhart's method creates a link from the Sun to surface 2, although surface 2
is totally masked.

A solution would be to subdivide surface 1 following the projection of the contour of 2,
following the direction of the Sun (see Figure 3.44�b). The drawback of this solution is that
it would require the computation of the di�erent projections for the di�erent positions of the
satellite around its orbit. The di�erent projections should be included in one mesh. This
solution is not easily applicable. For this reason, the third hypothesis concerning Gebhart's
method for heat �uxes cannot be removed. More over, sharp shadows are commonly
observed in space applications. For this reason, we do not recommend Gebhart's method
for heat �uxes (equation (3.101)).
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(a) Third case
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(b) Third case corrected

Figure 3.44: Third situation � a) con�guration � b) correction.

3.4.8 Proposed application of Gebhart's method and conclusions

We have shown that Gebhart's method is not unique. The name "Gebhart's method" cor-
responds to two distinct formulations. The �rst one, relative to radiative exchange factors,
can be used while the second one, relative to absorbed heat �uxes, is de�nitely not adapted
for radiative heat transfer with solar irradiation.

During the extension of the method, we have concluded that the third limitation could
not easily be removed. In fact, this hypothesis can be ful�lled for the geometrical compo-
nent, that is for the computation of the radiative exchange factors. On the other hand, the
component relative to the external irradiation, that is for the computation of the absorbed
heat �uxes, could not be easily adapted for Gebhart's method.

For this reason, we recommend using Gebhart's method only for the computation of the
radiative exchange factors. The use of an adaptive mesh, based on a geometrical criterion
such as the circular approximation, is also recommended. A complete ray tracing process
should be necessary to compute the absorbed heat �uxes.

In this Section, the restrictions imposed on Gebhart's method for computing radiative
exchange factors have been removed. Some of the extensions are purely theoretical. Others
require a special algorithm in order to obtain an adapted mesh.

The limitations concerning the absorbed heat �uxes cannot easily be removed, espe-
cially for the solar irradiation, where sharp shadows must be considered.

This concludes the Chapter dedicated to the exchange factors. As these exchange fac-
tors are obtained by ray tracing, the next Chapter is dedicated to a new acceleration tech-
nique, combining optimized intersection routines and ray tracing acceleration methods.
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Chapter 4

Acceleration of the ray tracing
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This Chapter brings together the developments performed in order to accelerate the
ray tracing, either for the computation of exchange factors and external heat �uxes. After
a state of the art, a description of optimized ray-surface intersection procedures is given.
The detection of the nearest candidates for intersection is also addressed. The geometrical
method, which consists in the combination of the geometry with a �nite element mesh,
is detailed; this method results in an acceleration of the ray tracing, as well as a way to
smoothly integrate conduction with radiation, while keeping the geometrical de�nition of
the model. The geometrical method is combined with uniform spatial subdivision (USD),
yielding a two-level acceleration method.

4.1 State of the art

Before detailing the acceleration methods developed in this thesis, as well as the reasons
which motivated this choice, a state of the art of some acceleration techniques developed
in image synthesis will be presented; some of these methods have already been applied to
radiative heat transfer.

The e�ciency of a ray tracing algorithm is based on the ray-surface (or the ray-element)
intersection procedure. The complexity of this operation depends on the primitive objects
considered for intersection. The required resources are also function of the number of times
that the operation is performed.
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4.1.1 Estimation of the number of intersection computations

Let Nray be the number of traced rays, for each element; Nelem the number of elements;
n denotes the number of secondary rays, i.e. the number of re�ections, for each ray. If no
acceleration technique is implemented, each of the Nelem surfaces needs to be tested for
intersection, for each traced ray. The number of intersection tests Nint is then proportional
to the square of the number of elements:

Nint =
(
Nray ×Nelem

)
Nelem × (n+ 1) (4.1)

= (n+ 1)NrayN
2

elem (4.2)

For example, if 10 000 rays are traced from 5 000 elements and if an average number
of secondary rays of 9 (corresponding to an exponential attenuation ∆E of 99%, with an
average attenuation factor α of 50%) is considered, 2.5 1012 intersection operations have to
be computed, which is prohibitive.

A ray tracing acceleration technique is obviously necessary. The choice of the technique
is based on several factors, such as the scope (nature of the primitive objects, consideration
of the temporal dimension), the performances (speed, behaviour in complex environment),
the required resources (trade-o� between CPU-time and storage), the simplicity of the
algorithm and its implementation [Ver08].

4.1.2 Classi�cation of acceleration techniques

In Figure 4.1, from [AK02], a broad classi�cation of the acceleration techniques is given.
Three di�erent strategies can be considered:

1. the average cost of intersecting a ray can be reduced;

2. the number of traced rays can be reduced;

3. rays can be replaced with more general entities, considered as bundles of rays.

The �rst category includes the acceleration of the ray-surface intersections and the
reduction of the number of ray-object intersections. In the �rst subcategory, the use of
e�cient ray-primitive intersections can be found, as it will be presented in Section 4.2,
and the de�nition of object bounding volumes1 [RW80]. The second subcategory includes
bounding volume hierarchies [KK86, EWM08], space subdivision techniques as uniform
spatial subdivision (USD) [FTI86], where the volume is subdivided in a regular 3D grid,
the octree [Gla84, RUL00, Lev90], which is able to take into account the spatial density
of the surfaces, or the kd-tree [FS88], more adapted to the real density of the model. The

1This method is based on the use of bounding volumes [SHH99], such as spheres [Whi80], which are the
simplest surfaces for intersection, and convex hulls made of several planes [KK86]. In reference [WHG84],
the author studied the trade-o� between the tightness of the bounding volume and the cost of the inter-
section process.
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Figure 4.1: A broad classi�cation of acceleration techniques.

main interest of these methods is that they consider objects along a given ray roughly in
the order that they occur along the ray [KK86].

The second category, named "fewer rays", includes statistical optimization, such as the
strati�ed hemisphere method, and other combinations of sampling techniques [VG95].

The last category includes the methods which consist in replacing the concept of ray
with a more general entity, such as cones [Ama84], pencils and beams [DKW85]. The pro-
blem of these generalized rays is that their cross section becomes more and more complex
after partial intersections. Moreover, it only considers planar surfaces for intersection (the
re�ection of a beam by a curved surface is no longer a beam). These generalized rays
cannot be used for space applications, where the geometry is made of spheres, cylinders
and cones. For this reason, they have not been studied in this thesis.

The geometrical method developed in this thesis and presented in Section 4.3 can be
classi�ed in the second subcategory because it reduces the number of ray-object intersec-
tions by using the spatial coherence of the model. In Section 4.3, the motivations which
lead us to this choice are presented.
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4.2 Computing intersections between rays and surfaces

4.2.1 Introduction

The purpose of this Section is to present the equations of the ray-surface intersections, for
the primitives used in thermal software for space applications2. Optimized techniques are
presented. The ray-surface intersection is an operation which is performed several times and
needs to be as quick as possible. The equations needed to determine the {u, v} coordinates
of the intersection points on the surfaces are also given. Computing the intersection of a
ray with a surface is a mathematically well-de�ned problem: this can be expressed in the
form of a system of three equations with three unknowns.

4.2.2 Equation of the ray

The notations are similar to the ones used in [Hai89]. A point is referenced by a capital
letter while a vector is represented by a lowercase letter. A ray is de�ned by an origin,
noted

−→
PR and a direction identi�ed by the vector −→rd . The equation of the ray is given by

the following relation:

−→
R =

−→
PR + t−→rd with t > 0 (4.3)

The vector −→rd is normalized. This condition is not mandatory but it simpli�es the next
computation step. If the vector is normalized, the parameter t represents the distance
between the origin and the intersection point. If the vector is not normalized, the distance
is expressed in terms of the length of −→rd .

The parameter t must be positive in order to identify an intersection. A negative value
corresponds to a point behind the origin, which is not part of the ray. The value t = 0 will
not be associated with an intersection, due to numerical problems.

4.2.3 Ray-plane intersection

Before considering the case of triangles and quadrangles, the intersection of the ray with a
plane will be optimized. This is a common operation which must be carefully implemented
in order to have a competitive algorithm.

2The reference software is Esarad; the implemented primitives are triangles, quadrangles, cones, cylin-
ders, discs, etc. Additional primitives can be considered for ray tracing, such as fractal surfaces, prisms
and surfaces of revolution [Kaj83]. In [vW84], ray tracing with objects de�ned by sweeping planar cubic
splines is addressed. Generalized cylinders, i.e. surfaces de�ned by sweeping a two-dimensional contour
along a three-dimensional trajectory, are considered in [BK85]. These surfaces will not be presented in
this document.
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4.2.3.1 Equations of the plane

Given a point P0 belonging to a plane Π and the normal unit vector −→nΠ, the plane Π can
be de�ned as the set of points

−→
P which satisfy the following equation [Eti86]:

−→
P0 · −→nΠ = 0 (4.4)

This relation expresses that Π is the set of the points
−→
P which form, with

−→
P0, a vector

lying in the plane Π and then orthogonal to the normal vector. From equation (4.4), the
algebraic formula of the plane can be obtained:

−→
P0 · −→nΠ = 0

⇔
−→
OP · −→nΠ =

−−→
OP0 · −→nΠ (4.5)

= −D (4.6)

⇔ Ax+By + Cz +D = 0 (4.7)

where D is a constant, equal to the dot product of the vector
−−→
OP0 and the normal vec-

tor; A, B and C are the three components of the normal vector (the three components
cannot be simultaneously equal to zero); x, y and z are the three components of point

−→
P .

Equation (4.7) is the Cartesian equation of the plane. |D| represents the distance from the
origin {0, 0, 0} to the plane if the normal vector is normalized.

In the internal report [Vue07], we demonstrate also the vectorial equation of the plane,
based on three non-aligned points

−→
PA,
−→
PB and

−→
PC belonging to Π:

−−→
PAP = u

−−−→
PAPB + v

−−−→
PAPC (4.8)

⇔
−→
P = α

−→
PA + β

−→
PB + γ

−→
PC (4.9)

The parameters u and v which appear in the equation (4.8) are real, such as α, β and γ.
Two parameters are su�cient to describe a 2-D surface. The following relation exists
between the three parameters of the last equation: α + β + γ = 1. The last equation
expresses that any point in plane Π can be obtained by a convex linear combination of
three points (if they are not aligned).

4.2.3.2 Intersection with the plane

The expressions of the plane and the rays are equalized, in order to establish the equation
of the intersection. The following relation is obtained:

−→
PR + t−→rd =

−→
PA + u

−−−→
PAPB + v

−−−→
PAPC (4.10)

This is a set of three equations (one for each spatial direction) with three unknowns, t
being the distance between the origin and the intersection, u and v localizing the intersec-
tion point in Π. Following [Eti86], a straight line d, de�ned by an point

−→
PR and a vector −→rd ,
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and a plane Π, de�ned by a point
−→
PA and a normal vector −→nΠ, can intersect if and only if

−→rd · −→nΠ 6= 0 (4.11)

The demonstration of this relation can be found in reference [Eti86]. If the de�nition
of the ray (4.3) is introduced in the expression of the plane (4.7), the following relation of
the unknown t is obtained:

A(xR + txd) +B(yR + tyd) + C(zR + tzd) +D = 0 (4.12)

The resolution of this equation yields the following expression of t:

t = −AxR +ByR + CzR +D

Axd +Byd + Czd
(4.13)

= −
−→nΠ ·
−→
PR +D
−→nΠ · −→rd

(4.14)

= −num
den

(4.15)

First of all, the denominator den = −→nΠ ·−→rd has to be computed. If it is equal to zero, the
intersection is not determined and the ray is parallel to the plane. If the origin of the ray−→
PR belongs to the plane, the numerator is also equal to zero and the whole ray is included
in the plane. If the origin does not belong to the plane, no intersection can be observed.

The numerator and denominator can be interpreted geometrically. The numerator is
linked to the visibility of the plane, i.e. to the position of the ray's origin with respect to
the plane. If it is positive, it implies that the origin is placed beyond the plane, the origin
can be seen from the plane (see Figures 4.2�a and �b). The denominator is linked to the
relative orientation of the normal −→nΠ and the direction of the ray −→rd . If it is positive, this
implies that the vector normal to the plane is not oriented towards the incoming ray (see
Figures 4.2�b and �d). No intersection is possible.

The computation process is decomposed into �ve successive steps:

1. Computation of the denominator;

2. if den ≥ 0, the situation corresponds to the con�gurations 4.2�b or �d, no intersection
can be possible and the process is stopped;

3. if den < 0, the numerator is computed;

4. if num ≤ 0, the case in �gure 4.2�c applies, the procedure is interrupted;

5. the distance t is computed using the formula (4.15).
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Figure 4.2: Geometrical interpretation of the denominator and numerator of equation
(4.15).

Steps 1 and 2 allow us to reject about half of the surfaces in the model. This step is
called backface culling [ZH97, HG03]; it requires three multiplications and two additions
corresponding to the dot product, and a comparative test. This is more e�cient than the
test performed in steps 3 and 4. Moreover, the number of rejected surfaces with steps 3
and 4 is low (much lower than 50%) if a ray tracing algorithm such as the uniform spatial
subdivision or the octrees is implemented.

In order to accelerate the intersection computation, the parameterD and the normal −→nΠ

are computed and stored during a pre-processing step, before the ray tracing process.

Remark: other formulations of the computation of t have been studied in the internal
report [Vue07]. Here, only the most e�cient one is considered.
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4.2.4 Ray-triangle intersection

Once the parameter t has been computed and found to be positive, the position of the
intersection point can be computed, thanks to the equation (4.3). If it is introduced into
the relation (4.10), a set of three equations with only two unknowns is obtained. The
size of this set (and the relative complexity of its resolution) can be reduced by only
considering two of these three equations. The choice of the retained equations is based on
the normal −→nΠ. The dimension corresponding to the main component of −→nΠ (in absolute
value) is removed. The intersection point and the triangle are projected in one of the
main planes3. The direction's selection based on the normal guarantees the accuracy
of the intersection computation and prevents the degeneration of the triangle during the
projection. Let us note r and s the two remaining components (selected among x, y and z).
The equation (4.10) can be rewritten as follows:(

rR
sR

)
+ t

(
rd
sd

)
=

(
rA
sA

)
+ u

(
rAB
sAB

)
+ v

(
rAC
sAC

)
(4.16)

The two values u and v are given by the following relations:
u =

sAC(rR + trd − rA)− rAC(sR + tsd − sA)

sACrAB − rACsAB
v =

rAB(sR + tsd − sA)− sAB(rR + trd − rA)

sACrAB − rACsAB

(4.17)

The denominator corresponds to the highest component of the normal vector, due to
the particular choice of the components r and s. This insures the good numerical resolution
of this set of equations.

In order to accelerate the ray-triangle intersection process, the values of rAB, rAC , sAB,
sAC , rR and sR can be computed and stored during a pre-processing step, as well as the
index of the main component of the normal −→nΠ.

The ray-triangle intersection routine identi�es an intersection with the triangle de�ned
by the three corners

−→
PA,
−→
PB and

−→
PC if the values u and v satisfy the following relations:

u ≥ 0
v ≥ 0

u+ v ≤ 1
(4.18)

4.2.5 Triangle of the second degree

In the geometrical method, the geometrical primitives will be associated with a triangular
mesh. This implies an approximation of the curved contours. In the case of a disc meshed
with triangles, the use of triangles of the �rst degree will introduce a geometrical error

3"Main planes" refer to the three planes de�ned by the relations x = 0, y = 0 and z = 0.
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in the view factors between the discs (the view factors are displayed in Figure 4.3�a). A
way to reduce this error is to use triangles of the second degree (see Figure 4.3�b). These
triangles are de�ned by six nodes: three nodes on the extremities and three nodes on the
middle of each edge. An edge can then be limited by a parabolic contour.

(a) Test case (b) Ray-triangle in-
tersection

Figure 4.3: Triangle of the second degree.

If numbers 1 to 3 refer to the nodes on the extremities and numbers 4 to 6 correspond to
the nodes on the middle of the edges, the following shape functions are de�ned in function
of the {u, v} parameters:

N1(u, v) = [2(1− u− v)− 1] [1− u− v]
N2(u, v) = (2u− 1)u
N3(u, v) = (2v − 1) v
N4(u, v) = 4u (1− u− v)
N5(u, v) = 4uv
N6(u, v) = 4v (1− u− v)

(4.19)

The components of the intersection are linear combinations of these shape functions.
These equations can be written as quadratic functions of u and v. The following relations
are obtained: 

α1 + α2u+ α3v + α4uv + α5u
2 + α6v

2 + α7t = 0
β1 + β2u+ β3v + β4uv + β5u

2 + β6v
2 + β7t = 0

γ1 + γ2u+ γ3v + γ4uv + γ5u
2 + γ6v

2 + γ7t = 0
(4.20)

where the coe�cients αi are function of the x-component of the six nodes, the origin and
the direction of the ray; the coe�cients βi are related to the y-component of these entities
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and γi correspond to the z-components. These equations cannot be solved analytically. A
Newton scheme has been implemented, given by the following formula [Lit99]:

xn+1 = xn −
f(xn)

f ′(xn)
(4.21)

where xn is the vector of unknown at the iteration number n. If the system of equa-
tion (4.20) is written in the form of a matrix F of the three unknowns t, u and v, the
equation (4.21) is rewritten as follows: t

u
v


n+1

=

 t
u
v


n

− inv (F ′)F (4.22)

The convergence of this algorithm depends on the initialization. If the initial point (in
the space of unknowns) is close to the solution, a few iterations are necessary to achieve
the �nal result. The second-order triangle has been approximated with the �rst-order one
to obtain an initialization which is close to the solution. Then the convergence is very
fast. The intersection is illustrated in Figure 4.3�b. The ray is represented in blue while
the triangle is de�ned by the six green nodes. The intersection is identi�ed by the red cross.

Remark: a second-order triangle can be non-planar if the six nodes are not included
in the same plane. Our intersection routine is adapted to this possibility. Nevertheless,
the use of second-order triangles must be limited to the case of curved contours because it
implies additional operations, when compared to the �rst-order triangle.

4.2.6 Ray-rectangle intersection

The ray-rectangle intersection is similar to the ray-triangle intersection, except that the u
and v parameters must satisfy di�erent relations.{

0 ≤ u ≤ 1
0 ≤ v ≤ 1

(4.23)

4.2.7 Ray-quadrangle intersection

If an irregular quadrangle is considered, the equations of u and v are more complex. The
four corners of the quadrangle are assumed to be coplanar. The quadrangle is de�ned by
the following equation:

−→
PM =

−→
PA + u

(−→
PB −

−→
PA

)
+ v

(−→
PD −

−→
PA

)
+ uv

(−→
PA −

−→
PB +

−→
PC −

−→
PD

)
(4.24)

This equation is no longer linear because of the term uv. This is a bilinear interpolation
following u and v. r and s denote the smallest components of the normal vector. The
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intersection set of equations becomes:{
rM = urN + vrP + uvrQ
sM = usN + vsP + uvsQ

(4.25)

where

• the index M represents the vector
−→
PM −

−→
PA;

• the index N corresponds to the vector
−→
PB −

−→
PA;

• the index P identi�es the vector
−→
PD −

−→
PA;

• the index Q designates the vector
−→
PA −

−→
PB +

−→
PC +

−→
PD.

The resolution of the equation (4.25) yields the following system:{
v = sM−usB

sD+usF

u2(sBtF − tBsF ) + u(tMsF − sM tF + sBtD − tBsD) + (tMsD − sM tD) = 0
(4.26)

The second equation yields two values for u. These two values correspond to the same
point but only one can be in the interval [0, 1]. If one of these two u-values is in the
interval [0, 1], this value is used to compute the corresponding value of v. The intersection
routine identi�es an intersection if the relation (4.23) is veri�ed. This formulation is exact
and faster than the iterative scheme implemented in Esarad [Doc04].

4.2.8 Ray-disc intersection

The disc is a planar surface. The parameter t can be computed by the equation (4.14) and
the intersection point is given by the following relation:

−→
PM =

−→
PR + t−→rd (4.27)

4.2.8.1 Equation of the disc

The disc is de�ned by a centre, noted
−→
P1, a normal vector −→nΠ and a radius R. A local

coordinate system is de�ned with −→z ≡ −→nΠ;
−→x and −→y are contained in the disc's plane.

The disc is then de�ned as the set of points
−→
P which satisfy the following relation:

−→
P =

−→
P1 + r cos(α)−→x + r sin(α)−→y (4.28)

where r ∈ [0, R] and α ∈ [0, 2π[.
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4.2.8.2 Intersection with the disc

To compute the intersection in polar coordinates (this is necessary to apply the geometrical
method, presented in the next Section), the coordinates of the intersection point (4.27)
have to be introduced into the equation of the disc (4.28). The following expressions are
obtained:  r =

∣∣∣∣∣∣−−−→P1PM

∣∣∣∣∣∣
α = arctan

(−−−−→
P1PM ·−→y−−−−→
P1PM ·−→x

) (4.29)

Remark: The computation of α must be performed carefully. The function arctan

returns a value on the interval
[
−π

2
, π

2

]
while the angle α is de�ned on [0, 2π]. The Fortran

function atan2 solves the problem, returning a value in [−π, π]. Then, a simple translation
of 2π allows us to obtain the expected value.

4.2.9 Ray-cylinder intersection

The case of a right circular cylinder is considered. This surface is not a planar one. An
optimized ray-cylinder intersection technique developed in the references [CK94, CW94] is
presented.

4.2.9.1 Equation of the cylinder

A cylinder is de�ned by a point
−→
P1, centre of the circular basis, an axis −→n ≡ −→z , a height H

which is the length of the cylinder following the −→z direction and a radius R. An additional
point

−→
P3 is de�ned in the basis of the cylinder, which will be used as a reference for the

angles α.

A point
−→
P of the cylinder is de�ned by two parameters: h is the height of the point

along the axis and α is the angle between
−→
P3 and the projection of

−→
P in the basis of the

cylinder. It yields the following relation:

−→
P =

−→
P1 +R cos(α)−→x +R sin(α)−→y + h

−→
Z (4.30)

where −→x is the unit vector corresponding to
−−→
P1P3, in the basis of the cylinder, and −→y

completes the local coordinates system.

4.2.9.2 Intersection with the cylinder

The solution presented in this section is based on analytical geometry [Eti86] and has been
detailed in reference [CW94]. An alternative method can be found in [CK94].

−→
d corresponds to the common perpendicular to the axis −→z of the cylinder and to the

direction −→rd of the ray. This vector is given by the relation (4.31). Let
−→
PC be the point
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of the ray where the ray is the closest to the axis of the cylinder. The shortest distance δ
between −→z and −→rd is identi�ed thanks to the relations (4.32) and (4.33):

−→
d =

−→rd ∧ −→z
||−→rd ∧ −→z ||

(4.31)

−→
PR + tC

−→rd + δ
−→
d =

−→
P1 + h−→z (4.32)

δ =
∣∣∣−−−→PRP1 ·

−→
d
∣∣∣ (4.33)

If the distance δ is lower than the radius R, the ray presents two intersections with the
cylinder. These two points are noted

−→
PA and

−→
PB; they are symmetrical on both sides of

the point
−→
PC . Distance tC can be deduced from equation (4.32). The following relation is

obtained:

tC =

−−−→
PRP1 ·

(−→
d ∧ −→z

)
−→rd ·

(−→
d ∧ −→z

) (4.34)

Let us consider Figure 4.4. The ray direction is represented by the red line. A straight
line
−→
z′ is built, parallel to the axis−→z and containing the point

−→
PC . The distance between

−→
PC

and the axis is equal to δ. The two intersection points are symmetrical about
−→
PC . A

vector −→o is built, perpendicular to the axis of the cylinder and to
−→
d (the blue construction

on �gure 4.4). Two rectangular triangles are built, characterized by the relation k2 + δ2 =
R2.

s represents the distance between the point
−→
PC and an intersection point (

−→
PA or

−→
PB, in

red on �gure 4.4). This distance is given by the following relations:

−→o =

−→
d ∧ −→z∣∣∣∣∣∣−→d ∧ −→z ∣∣∣∣∣∣ (4.35)

s−→rd · −→o = ±k (4.36)

s =

∣∣∣∣√R2 − δ2

−→rd · −→o

∣∣∣∣ (4.37)

Then, the two intersection points are identi�ed by the two values tA and tB, given by
the following formula: {

tA = tC − s
tB = tC + s

(4.38)

Once the intersection point is identi�ed, the corresponding h- and α-values are obtained
thanks to the following relations:{

h =
−−→
P1P · −→z

α = arctan
(−−→
P1P ·−→y−−→
P1P ·−→x

) (4.39)
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Figure 4.4: Ray-cylinder intersection.

The advantage of this method is that δ can be quickly computed and the con�guration
(zero-, one- or two-intersection point(s)) can easily be identi�ed. If δ is higher than the
radius R, the intersection test is early stopped. The complete intersection computation
requires ten dot products and two cross products.

4.2.9.3 Surface normal vector

Once the intersection point has been computed, the local normal de�ned by the angle α
can be obtained thanks to the following relation:

−→n = cos(α)−→x + sin(α)−→y (4.40)

This normal vector will be necessary for the re-emission of the incoming ray. It will also
be used for the relations between the �nite element mesh and the geometrical primitive, if
the geometrical method is used (see the next Section).

4.2.10 Ray-sphere intersection

Now, the case of the sphere is considered. Although this problem can be addressed in
Cartesian coordinates, by introducing the expression of the ray (4.3) into the equation
of the sphere, a more e�cient solution is presented here [Hai89]. In [Hai89], the author
compares its solution to the Cartesian formulation and demonstrates that the number of
mathematical operations is reduced, allowing to save computational e�ort.
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4.2.10.1 Equation of the sphere

The sphere is de�ned by its center, noted
−→
P1, and the radius R. A vector −→z can also be

de�ned in the direction joining the poles. A point
−→
P on the sphere can be identi�ed by

a longitude α ∈ [0, 2π[ and a height h ∈ [−R,R]. An additional point
−→
P3 is de�ned as

a reference for the longitude angles. The unit vector −→x corresponds to the vector
−−→
P1P3

and −→y completes the local coordinates system. The point
−→
P is de�ned by the following

relation: −→
P =

−→
P1 +

√
R2 − h2 cos(α)−→x +

√
R2 − h2 sin(α)−→y + h−→z (4.41)

Another expression can be obtained by de�ning the point
−→
P through its longitude and

latitude θ:

−→
P =

−→
P1 +R cos(α) cos(θ)−→x +R sin(α) cos(θ)−→y +R sin(θ)−→z (4.42)

4.2.10.2 Intersection with the sphere

The �rst step consists in computing the distance between the center of the sphere and
the origin of the ray, in order to determine if the origin is inside or outside of the sphere.
Let
−−−→
P1PR be the vector from the center to the origin and d2

1R the square of the distance
between them.

The second step consists in computing the point
−→
PC of the ray where the ray is the

closest to the center. The notations are given in Figure 4.5. The corresponding distance t
is given by the relation (4.43):

tC = −
−−−→
P1PR · −→rd (4.43)

If the origin of the ray is outside of the sphere and if tC is negative, the ray does not
point towards the sphere and no intersection will be computed. The computation can be
stopped.

The third step consists in computing the distance between
−→
PC and the center of the

sphere. The following relations are used. The parameters are de�ned in Figure 4.6.

t2HC = R2 −D2 (4.44)

D2 = d2
1R − t2C (4.45)

t2HC = R2 − d2
1R + t2C (4.46)

If t2HC is negative, no intersection occurs. If it is equal to zero, the ray is tangent to the
sphere and only one intersection is possible. If t2HC is positive, two intersections points are
obtained, given by the following relations:{

tA = tC − tHC
tB = tC + tHC

(4.47)
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Figure 4.5: Ray-sphere intersection.

This method can be compared with the classical technique, where the components of
the ray are introduced into the equation of the sphere [Hai89]. The method presented in
this Section requires less computation. Moreover, we can earlier determine when a ray
misses the sphere and save computation time by stopping the intersection process.

Once the intersection point has been computed, the corresponding angle α and height h
can be determined, thanks to the following relations:{

α = arctan
(−−→
P1P ·−→y−−→
P1P ·−→x

)
h =

−−→
P1P · −→z

(4.48)

If the second expression of the sphere (4.42) is used, the height h is replaced by the
angle θ, given by the following relation:

θ = arcsin

(−−→
P1P · −→z

R

)
(4.49)

4.2.10.3 Surface normal vector

In the case of a sphere, the local normal is the vector linking the center of the sphere to
the intersection point. A division by the radius yields a normalized vector.

−→n =

−−→
P1P

R
(4.50)

4.2.11 Ray-cone intersection

The last implemented primitive will now be presented: the right circular cone.
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Figure 4.6: Ray-sphere intersection.

4.2.11.1 Equation of the cone

A cone is de�ned by a point
−→
P1 at the center of its circular basis, the radius R of its

basis and its height H. The axis of revolution is identi�ed by the vector −→z ; the origin
of the angles α is given by an additional vector −→x and the vector −→y completes the local
coordinate system. Here only non-truncated cones are considered. A point

−→
P on the cone

is given by the following relation:

−→
P =

−→
P1 + (1− u)R (cos(α)−→x + sin(α)−→y ) + hu−→z (4.51)

where the parameter u is de�ned between 0 and 1, the angle α between −π and π.

4.2.11.2 Intersection with the cone

This method has been presented in reference [Doc04]. An optimized version can be found
in [CK95]. It consists in solving the intersection as a set of three equations with three
unknowns. The parameters u and α of the cone are eliminated in order to obtain the
distance from the origin of the ray to the cone. It yields:

−→
P −

−→
P1 =

−→
PR + t−→rd −

−→
P1 (4.52)

=
−−−→
P1PR + t−→rd (4.53)
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The elimination of u and α yields the following relations:

(−−→
P1P · −→x

)2

+
(−−→
P1P · −→y

)2

= R2

(
1−
−−→
P1P · −→z

h

)2

(4.54)−−−→P1PR · −→x︸ ︷︷ ︸
a

+t−→rd · −→x︸ ︷︷ ︸
m

2

+

−−−→P1PR · −→y︸ ︷︷ ︸
b

+t−→rd · −→y︸ ︷︷ ︸
n

2

= R2

1−
−−−→
P1PR · −→z

h︸ ︷︷ ︸
c

−t−→rd · −→z︸ ︷︷ ︸
o


2

(4.55)

The resolution of this last equation yields two solutions for the distance t. Only the
nearest intersection point is kept. Then the height h of the point is computed thanks to the
dot product

−−→
P1P ·−→z . It is necessary to test this value and to check it is comprised between

0 and H. The angle α is obtained from the x- and y-components of the vector
−−→
P1P .

4.2.11.3 Surface normal vector

Once the intersection point has been computed, the local normal vector can be computed
by the following expression, which needs to be normalized:

−→n ≡ cos(α)−→x + sin(α)−→y +
R

h
−→z (4.56)

4.2.12 Conclusions

In this Section, we have presented the ray-surfaces intersection equations for the geometri-
cal primitives used in thermal software for space applications. We are now able to compute
the intersection points, as well as the {u, v} coordinates of these points onto the geometri-
cal primitive. These coordinates will be used in the geometrical method, presented in the
following Section.

4.3 Combining geometry and �nite elements

4.3.1 Introduction

In this Section, an innovative method designed in order to accelerate the ray tracing process
is presented. For reasons detailed in Section 4.3.2, a �nite element mesh is combined with
the geometrical de�nition of the model. The so-called geometrical method is combined
with uniform spatial subdivision (USD), resulting in a two-level acceleration technique.
The �rst acceleration level, presented in Section 4.3.4, is based on the association of �nite
elements with the geometrical primitives. In Section 4.3.5, the implemented primitives are
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listed and some di�culties are detailed. In Section 4.3.6, the acceleration achieved by the
geometrical method is characterized. The second acceleration level is the object of the next
Section.

4.3.2 Motivation

In this Section, some aspects of thermal computation for space applications are rapidly
recalled, as they strongly impact the choice and development of our acceleration method.

4.3.2.1 Use of �nite elements

In the �eld of heat transfer for space applications, a strong will to use a �nite element for-
mulation, based on a �nite element mesh, is observed. The reasons are multiple [CHSP95].

1. This could allow us to consider non-isothermal patches. Isothermal patches is a
common hypothesis in thermal software used for space applications. With a �nite
element formulation, the temperature �eld can be described by polynomial functions
of arbitrary degree, called shape functions. This yields more accurate results for a
few amount of additional degrees of freedom.

2. The generation of conductive links can be e�ciently performed with a �nite element
mesh. This is usually not the case with the nodal formulation used in space thermal
software.

3. The conductive component of heat transfer can smoothly be integrated with the
radiative one, allowing the resolution of the complete thermal problem [CPF89].

4. With the �nite element method, more complex geometries can be considered with
a reduced amount of additional degrees of freedom than with the thermal lumped
parameter method.

Di�erent techniques have been designed in order to obtain a triangulation from di�erent
surfaces. In [EPO91], a method is presented for the triangulation of objects limited by
numerous planes. In this thesis, we assume that a �nite element can be associated with
any geometrical primitive.

4.3.2.2 Stochastic ray tracing

To model the radiative component of heat transfer, including di�use, specular and glossy
re�ections, the ray tracing method seems to be a good candidate to compute the interac-
tions between the surfaces of the tri-dimensional model. It is a simple, reliable method; it
can be easily implemented and can handle a large number of physical phenomena.

The drawbacks of the stochastic ray tracing are its slow convergence and the di�culty
to identify the good candidates for intersection. The convergence can be improved by using
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adapted ray tracing methods, such as the hemisphere method. The second di�culty has
been discussed in Section 4.1 and can be solved if an acceleration technique is coded.

4.3.2.3 Use of the geometry

If �nite elements are adapted for the computation of the conductive component of heat
transfer, the geometrical model is more interesting for ray tracing processes. Indeed, a �nite
element mesh is based on a polynomial parametric approximation of the real geometry. It
can induce errors in the ray tracing process, if curved surfaces are present in the model; this
error is more signi�cant in case of specular re�ectors. For example, in the case of a cylinder,
if the real curvature of the surface is considered (see Figure 4.7�a), the local normal can
be exactly obtained, by means of analytical formulas, and varies continuously through the
surface. If the surface is facetted (for example with linear elements as in Figure 4.7�b), the
local normal is approximated and supposed to be constant piecewise. The corresponding
error is a function of the geometrical error; it decreases when the resolution of the mesh
increases.

Figure 4.7: Use of the geometry � a) curved surface � b) linear approximation.

4.3.2.4 Discussion

Given these reasons, the interest to combine the CAD model with a �nite element mesh
appears clearly. On one hand, a method adapted to ray tracing and which can automat-
ically generate the conductive links is obtained. On the other hand, a new ray tracing
acceleration technique is designed, yielding a reduction of the number of elements candi-
date for intersection. This combination yields the two-level geometrical de�nition used in
our technique.

4.3.3 Model of the spacecraft

In our acceleration method, the geometrical model of the spacecraft (satellite, space probe...)
is the combination of geometrical primitives, such as spheres, cones, cylinders... In Fi-
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gure 4.8, the considered satellite is CoRot4. The primitives are combined to obtain the
model. This is the �rst level of the geometrical de�nition. Then, each geometrical primitive
is meshed using �nite elements, taking into account possible cutting operations (see next
remark). For each geometrical level, a dedicated acceleration technique has been designed.

Figure 4.8: Two-level geometrical de�nition of a model.

Remark: in our implementation, no cutting operation is directly computed; the inter-
section of two primitives is not analytically computed. Instead, the �nite element mesh is
used to limit the portion of the geometrical primitive which is eventually cut by another
shell. This results in an approximation of complex intersections with straight lines, if ele-
ments of the �rst degree are used. To reduce this error, triangles of the second degree
have been introduced in our implementation (see Section 4.2.5). Figure 4.9�a represents
a square cut by a cylinder. In our implementation, the geometrical primitive is not cut

4CoRot is a scienti�c mission leaded by CNES. Its mission is to study the rotation of stars and to
identify exoplanets, thanks to photometry. I chose this example because CoRot has been the �rst space
mission on which I worked when I was undergraduate. More information on the mission can be found on
website http://smsc.cnes.fr/COROT/Fr/
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(the square is still visible in the hole, in Figure 4.9�b); the cut surface is approximated by
triangles. This results in an approximation of the intersection contour.

Figure 4.9: Approximation of the intersection � a) cut surface � b) linear approximation.

4.3.4 First acceleration level - geometrical method

The geometrical method is the combination of four successive steps presented in the next
subsections. The �nal objective is to simplify the intersection of the rays with the �nite ele-
ments. This method can be used to compute view factors, extended view factors, radiative
exchange factors, direct and absorbed heat �uxes.

4.3.4.1 Structured mesh

The surfaces that are commonly implemented in thermal software for space applications
are planar surfaces, like triangles, quadrangles and discs, and quadrics, like spheres, cones
and cylinders. These surfaces can be de�ned by two parameters, noted u and v, varying
on the domain of de�nition D ≡ [0, 1]2. A point

−→
P on a surface S can then be obtained

by using a parametrization ψ of S:
−→
P ≡ ψ(u, v) {u, v} ∈ [0, 1]2 (4.57)

A structured mesh of the surface S can be obtained by �xing one parameter and
varying the other. Two families of iso-parametric curves can be generated, given by the
relation (4.58). The curves Cu are obtained by �xing the parameter u = ξ while the
curves Cv correspond to the parameter v = η:{

Cu = ψ(ξ, v)
Cv = ψ(u, η)

(4.58)

The resulting mesh is composed of cells. For example, in the case of a sphere, the longi-
tude φ and the latitude θ can be chosen in order to generate the surface. The parametriza-
tion is given by the relation (4.59), where R is the radius of the sphere. The main axis in
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Figure 4.10: Structured mesh of the sphere.

this parametrization is the z-axis (see Figure 4.10):

−→
P = R

 cos
(
π 2u−1

2

)
cos (2πv)

cos
(
π 2u−1

2

)
sin (2πv)

sin
(
π 2u−1

2

)
 (4.59)

Figure 4.10 represents the structured mesh of a sphere where all the cells are charac-
terized by the same area. The curves Cθ and Cφ are de�ned by the following values of θ
and φ: {

θ = arccos(2u− 1) where u = 0, 1
n
, · · · n−1

n
, 1

φ = π(2v − 1) where v = 0, 1
n
, · · · n−1

n
, 1

(4.60)

4.3.4.2 Finite element mesh

In the second step, the surface is meshed into planar triangles and/or quadrangles, resulting
in a surface �nite element mesh. In this work, the mesh modules of Samcef and Catia have
been used.

4.3.4.3 Combination of the two meshes

In the third step, the surface �nite elements are associated with the geometrical cells
obtained during the �rst step. For a given cell, all the �nite elements that cover it, partially
or completely, have to be identi�ed. This step is performed by considering the projection
of the �nite elements onto the geometrical primitive. This projection is bounded by four
lines Cu,v. This contour is called the envelope of the projection. The geometrical cells
covered by this envelope are identi�ed. Finally, these relations are inverted. We are now
able to identify the �nite elements covered by each geometrical cell. This relatively complex
operation is only performed once, during the preprocessing phase. This is illustrated here
in the case of a sphere.
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Projection onto the geometrical primitive In the case of a sphere, the straight lines
of the polygonal elements (if linear) are projected following great circle arcs. Figure 4.11
represents the projection of a triangle in the parametric space {θ, φ}. Generally, the pro-
jection of �nite elements yields complex curves in the parametric space {u, v}.

−2.8 −2.6 −2.4 −2.2 −2

0.4

0.5

0.6

0.7

0.8

0.9

Longitude φ

La
tit

ud
e 

θ

Projection of a triangle onto the sphere

Figure 4.11: Projection of a triangle in the parametric space of the sphere {θ, φ}.

Computation of the envelope The next step consists in computing the smallest enve-
lope bounding the projection of the �nite element. In the parametric space, the envelope
is a rectangle limited by the values {umin, umax} × {vmin, vmax} of the current �nite
element. In Figure 4.11, the envelope is represented by four dashed lines. A spherical arc
is not necessarily bounded by the latitudes of its extremities. In the presented case, the
extremum value of the latitude, noted θm, must be identi�ed. It can be shown that this
latitude is given by the relation:

θm = arccos(nΠ(3)) (4.61)

where nΠ(3) is the z-component of the unit normal to the plane Π de�ned by the current
edge and the center of the sphere.

Coverage of the geometrical cells The envelope of the current �nite element has
been computed. The geometrical cells that can cover it can now be determined by a simple
test based on the limits {u, v} of each geometrical cell. In our implementation, a cell is
assumed to be covered by a �nite element if it is covered by the envelope of this element,
for the sake of simplicity. In Figure 4.11, the covering cells are represented in gray. Due to
the last remark, the upper-left and upper-right cells, which do not cover the element, are
nevertheless associated with it. This operation is performed once for each �nite element.
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Figure 4.12: Identi�cation of a geometrical cell through the covering �nite elements � a)
geometrical cells � b) �nite element mesh.

The previous relations are then inverted in order to associate each geometrical cell
with the �nite elements that cover it. In Figure 4.12, a decomposition of a sphere into
geometrical cells and a �ne �nite element mesh of the sphere can be observed. A geometrical
cell has been selected(see Figure 4.12�a); the corresponding elements have been displayed
in gray (see Figure 4.12�b). The shape of the geometrical cell can easily be distinguished
from the rest of the �nite element mesh.

4.3.4.4 Ray tracing process

The last step is an acceleration of the ray tracing. Each ray is tested for intersection
with the geometrical surface. If the intersection test is positive, the parametric coordi-
nates {u, v} of the impact are computed and the corresponding geometrical cell is iden-
ti�ed. Then the impact point is projected onto the �nite element mesh. Only the �nite
elements that cover the identi�ed cell have to be tested. The number of tested elements is
then considerably reduced.

4.3.5 Mathematical primitives

In the geometrical method, the primitives used in Esarad [Doc04] and Thermica [Doc03]
have been implemented, except for the paraboloid5. In this Section, the di�erent primitives
will be presented, the di�culties will be listed, and the adopted process will be explained.

5The implementation of the paraboloid does not implies any serious di�culty. The paraboloid has not
be implemented because no test case involving a paraboloid was available.
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4.3.5.1 Sphere

The sphere has been presented in Section 4.3.4.3. The main di�culty consists in computing
the intermediary latitudes θm and detecting the con�gurations where this computation is
necessary. This is the purpose of this Section.
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Figure 4.13: Representation of the intermediary latitude θm.

A spherical arc is de�ned by its two extremities and the center of the sphere. If they
are not aligned, these three points de�ne a plan Π. Let −→nΠ be the unit vector normal to the
plane. The angle θm is the angle between z-axis and −→n Π. Figure 4.13 represents the sphere
cut by the plane Θ, containing z and −→nΠ

6. The extremum latitude will be encountered in
the plane Θ [Bec03], at point M .

The next problem is to identify if this con�guration is encountered. First the unit
normal −→nΠ is computed. If the z-component is equal to 0, the arc is in fact a meridian; the
latitude interval is de�ned by the extremities, no additional computation is required. If the
z-component is non-zero, the arc is projected in the equatorial x-y plane. The projection
is an elliptical arc, following internal report [Vue05], where a similar development has been
performed for the unit sphere method7. The elliptical arc is characterized by a semi-major
axis a = R = 1 and a semi-minor axis b = RnΠ(3) = cos(θm) (see �gure 4.13). The
direction of the semi-minor axis is given by the projection of the unit normal −→nΠ in the

6Because it contains the unit vector −→nΠ, the plane Θ is perpendicular to Π. The trace of Π in Θ (the
intersection between Π and Θ) is given by the straight line containing point M in Figure 4.13.

7The unit sphere method refers to an analytical method implemented in Samcef (command .R3D) to
compute di�use view factors when no obstacle is present. This method is based on the Nusselt's Analogy
(see Section 3.1.3).
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equatorial plane8:

−→nΠ
′ =

 nΠ(1)
nΠ(2)

0

 (4.62)

An intermediate latitude θm is encountered if and only if the elliptical arc passes through
the semi-minor axis, identi�ed by the longitude φΠ and given by the relation:

φΠ = arctan

(
nΠ(2)

nΠ(1)

)
(4.63)

φΠ is de�ned between
[
−π

2
, π

2

]
. An intersection test must also be computed for the

angle φ′Π = φΠ + π (which is the extension of the semi-minor axis).

As it can be seen in Figure 4.13, the cosinus of the latitude θm is equal to the dot
product of the z-axis with the normal vector −→nΠ:

cos(θm) = −→z · −→nΠ (4.64)

θm = arccos (nΠ(3)) (4.65)

4.3.5.2 Rectangle - quadrangle

In the case of a rectangle (or a quadrangle), the relations from the geometrical cells to the
covered �nite elements are straightforward. Here, the case of a rectangle is used to illus-
trate the acceleration of the ray-surface intersection process with the geometrical method.

Let us consider the case of the rectangle shown in Figure 4.14�a. The primitive is
decomposed into geometrical cells, following the iso-parametric curves. A geometrical
mesh with parameters nu = 10 and nv = 4 has been chosen. The surface is considered
for intersection with a ray. The intersection point is identi�ed by the red dot. The same
primitive is triangulated (see Figure 4.14�b). The mesh contains 74 elements. If the basic
ray tracing process is considered, each triangle must be tested for intersection with the
ray. With the geometrical method, the number of elements that need to be tested can
be reduced. Consider Figure 4.14�c. If the parameters {u, v} of the intersection point
are known (identi�ed by the red point in Figure 4.14), the intersected geometrical cell
can easily be identi�ed (in green in Figure 4.14�c). Finally, only eight triangles can be
candidate for intersection (in green in Figure 4.14�d).

8The direction of the semi-major axis can be found by projecting the unit vector tangent to the sphere

at point M :
−→
t ′ =

 nΠ(2)
−nΠ(1)

0

. The dot product of these two vectors is equal to zero; the two axes of

an ellipse are orthogonal.
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Figure 4.14: Acceleration of the ray-rectangle intersection � a) geometrical cells � b) �nite
element mesh � c) identi�cation of the impacted geometrical cell � d) identi�cation of the
elements candidate for intersection.

Remark: to identify the impacted geometrical cell, the boundaries of the geometrical
cell have to be tested with respect to the {u, v} coordinates of the intersection point. Each
cell can be tested, from the �rst one to the intersected one. The number of tests is pro-
portional to (n1+1)(n2+1)

4
. Another method is based on a dichotomic approach. For one

dimension, the geometrical boundaries {imin, imax} are initiated at {1, n1 + 1}. While

the boundaries are separated by more that one, the medium value
imin + imax

2
of the

interval is computed. This value is tested to the boundaries of the interval and one of the
boundaries is replaced by the medium value, to decrease the width of the interval. Finally,
when the boundaries are separated by one, the process is stopped. The number of tests
with the dichotomic approach is proportional to

√
n1 + 1

√
n2 + 1.

Once the impacted geometrical cell has been identi�ed, only the �nite elements covered
by this cell have to be tested (see the green triangles in Figure 4.14�d). The number of
elements is equal to 8. The number of candidate elements for intersection is then conside-
rably reduced.

Remark: This acceleration technique is a two-step process: the ray-triangle intersection
tests are only performed if the ray intersects the primitive. This �rst step yields a reduction
of the rays number that must be tested for ray-�nite element intersection. The second step
is based on the examination of the impacted geometrical cell, as previously explained.
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4.3.5.3 Cylinder

The case of the cylinder presents no particular di�culty. The envelope of a �nite element
is de�ned by the {u, v} coordinates of its extremities. No extremum has to be considered.

4.3.5.4 Disc

The fourth implemented primitive is the disc. While the mesh of the rectangle is based
on Cartesian coordinates, the mesh of the disc is polar. The {u, v} parameters of the disc
are functions of the radius ρ and the polar angle θ. The di�culty of the disc is that the
envelope of a �nite element is not always de�ned by the {u, v} coordinates of its vertices.
The situation is similar to the case of the sphere. Here, the sensitive parameter is the
radius ρ. The con�gurations which require the computation of an intermediary radius ρm
can be identi�ed thanks to the spherical analogy (see Figure 4.15).

Figure 4.15: Spherical analogy - case of the disc.

A �nite element mesh T on the disc D can be considered as the orthogonal projection
of a triangulation T ′ on the hemisphere H subtended by D. The relations developed for
the sphere can be used in order to identify the critical con�gurations and to compute the
values θm. Finally, the values θm are converted into polar radii ρm, using the following
relation:

ρm = R cos(θm)

= RnΠ(3) (4.66)

Remark: the equatorial plane used to establish the relations of the sphere should not
be confused with the disc. The triangulation in the disc is made of straight lines while the
mesh in the equatorial plane results of the two-step projection of planar triangles and is
made of elliptical arcs.
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4.3.5.5 Cone

The last primitive implemented in the geometrical method is the cone. The two {u, v}
parameters of the cone are functions of the polar angle θ and the height h. The cone
presents the same di�culty as the sphere and the disc (i.e. the surfaces of revolution). The
developments presented in this Section can be used for any surface of revolution, supposing
that an adapted ray-surface intersection procedure is available for this surface [Kaj83].

Figure 4.16: Spherical analogy - case of the cone.

In the case of a straight line projected onto the cone, the covered height interval does not
necessarily correspond to the height of the two extremities. The critical con�gurations can
be detected by using the spherical analogy (see Figure 4.16). A �nite element mesh T on
a cone can be projected down onto the disc (basis of the cone), then onto the hemisphere
subtended by the basis of the cone. The relations developed in the framework of the
sphere can then be used in order to identify the critical con�gurations and to compute the
intermediary values hm.
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4.3.6 Acceleration results

As mentioned previously, the geometrical method is the combination of two processes that
can be used to accelerate a ray tracing algorithm. The �rst acceleration consists in establi-
shing the intersection of the ray with the geometrical primitive. If the test is negative, the
computation is �nished, the �nite elements do not need to be tested for intersection. This
method is similar to the acceleration by bounding boxes9, presented in [Gla02]. If the test
is positive, the identi�cation of the impacted cell is used to reduce the number of elements
that must be tested for intersection. This second acceleration step is similar to uniform
spatial subdivision (USD) method, also presented in [Gla02]. The main di�erence with
respect to USD is that the decomposed domain is the 2D-surface and not the 3D-space
occupied by the geometrical model.
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Figure 4.17: Acceleration of the view factor computation � a) view factors � b) evolution
of the CPU time.

In order to characterize the acceleration of the geometrical method, the case of a sphere
centered vertically above a square has been considered. The view factors from the sphere
to the square are displayed in Figure 4.17�a10. This result is in good agreement with the
analytical solution that can be found in the literature [How82, Won76].

For the square, three �nite element meshes of increasing quality (coarse, normal and
�ne) are considered. Then the square is geometrically meshed following the u- and v-

9Each object of a 3-D geometrical model is bounded by a parallelepiped parallel to the main axes x,
y and z. The parallelepiped is limited by

[
xmin, xmax

]
×
[
ymin, ymax

]
×
[
zmin, zmax

]
, de�ned by the

extremal values experienced by the object. The acceleration consists in testing a ray for intersection with
the bounding box. If the test is negative, the computation is stopped, saving CPU (computational e�ort).

10The displayed quantity is the cumulated view factor, i.e. for each line, the sum on the
columns

∑N
j=1 Fi−j . This quantity is the percentage of the unit disc covered by the surfaces visible

from i, in case of di�use re�ection; the complementary quantity 1 −
∑N
j=1 Fi−j is the percentage of the

unit disc which can see the deep space.

Acceleration of the Ray Tracing 137 P. Vueghs



4.4. UNIFORM SPATIAL SUBDIVISION 138

directions. n1 denotes the resolution in the �rst direction and the resolution in the other
direction is assumed to be identical. When the resolution is equal to 1, the primitive is
made of one cell which contains all the elements. For this resolution, the second acceleration
process is disabled. The corresponding CPU time is chosen as the reference value. Then,
for each of the three �nite element meshes, the measured CPU time is divided by the
reference time in order to obtain comparable curves for the three meshes. Figure 4.17�b
represents the evolution of the three CPU times (one curve for each mesh) in function of
the resolution n1. It can be observed that the gain in terms of CPU time increases with
a �ne mesh. For low resolutions, the CPU time decreases rapidly when the resolution
increases. The obtained gain remains constant for resolutions between 20 and 60. The
resolution must be considerably increased to observe an increase of the CPU time. This
loss of e�ciency is due to the fact that the gain obtained by re�ning the cells can not
compensate the computation charge.

4.3.7 Discussion

The method presented in this Section consists in associating a detailed �nite element mesh
with the geometrical primitives which compose the 3D model. It results in a detailed de-
scription of the thermal situation and it can be used for the detailed analysis of a subsystem
aboard a satellite. Another approach has been developed by Thales Alenia Space, re-
sulting in a tool called THERM3D [Dud06, BDB08]. This approach can be considered dual of
the geometrical method developed in this thesis. The method starts from a detailed �nite
element mesh to compute the conductive links; a model reduction is used to transfer the
resulting links to the system level where a ray tracing process can be used to compute the
radiative links. This approach is more adapted for the thermal computation, at system-
level.

A combination of these two approaches in a dedicated software can be considered for
future developments.

4.4 Uniform spatial subdivision

If the geometrical method is used without any other acceleration technique, the method is
not optimal. Remember that a ray tracing is the combination of three processes: emission
of the ray, evolution throughout the model (selection of the candidate surfaces for intersec-
tion) and intersection of the ray. The geometrical method is dedicated to the third process,
while it partially optimizes the second one by reducing the number of candidate elements
on a particular surface.

If few primitives are considered, this implementation is su�cient. If the geometrical
model is more complex, the selection of the primitives candidate for intersection needs
to be accelerated. This can be done by bounding the primitives with rectangular boxes
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and performing uniform spatial subdivision, as it is already implemented in space thermal
software [Koe88]. This is the purpose of the current Section.

4.4.1 Bounding boxes

Figure 4.18: Bounding boxes � a) rectangle � b) cylinder.

The �rst step consists in computing the bounding boxes associated with the primitives.
The bounding boxes are aligned along the 3D axes. This step is straightforward for the
sphere and the rectangle (see Figure 4.18�a). Care must be taken in the case of the cylinder
(Figure 4.18�b), the disc (Figure 4.19�a) and the cone (Figure 4.19�b). For the three last
primitives, the three main projections (following y, x and z) are reported, as well as a
perspective.

4.4.2 Bounding box of the model and voxels

The next step consists in computing the bounding box of the complete model itself11.
This bounding box is partitioned into smaller volumes, called voxels. A voxel is a cubic,
axis-aligned rectangular prism [Gla02]. The term voxel is an extension of the 2D pixel or
picture element to the 3D volume element. During the preprocessing step, the primitives
are associated with the voxels through their bounding boxes. Each voxel is associated with
a list of all the surfaces that it contains.

11This step is common to Esarad, Thermica and Samcef.
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Figure 4.19: Bounding boxes � a) disc � b) cone.

4.4.3 Voxel traversal algorithm

The USD method has been implemented in our ray tracing, in several ways. The �rst one
is directly applied on the �nite elements, as it is done in Samcef; it is very e�cient, with
regard to the CPU time, and could be preferred to the geometrical method for parts of
the model where the geometry is not critical and a �nite element approximation is accep-
table. The second one is applied on the primitives and is the second acceleration level of
our geometrical method. The implementation of reference [AW87] has been used because
it is more e�cient than the procedure described in [Doc04]. In our implementation, no
main direction and no axis inversion are needed; the number of mathematical operations
is reduced. The traversal of the voxels is as fast as possible.

The strategy is based on two steps: initialization and incremental traversal [AW87].
The initialization phase begins by identifying the voxel in which the ray origin is found.
Next, the value of t at which the ray crosses the �rst voxel boundary following x is de-
termined; it is stored in a variable tmaxX. The same computation is performed for the y−
and z-directions. The next voxel will be characterized by the lowest value tmax. Then
tDeltaX, tDeltaY and tDeltaZ are computed, where tDeltaX corresponds to the distance
along the ray to achieve the next voxel in the x−, y− and z− directions. Now all the
elements to propagate the ray in the voxels' network are available. The detailed algorithm
can be found in [AW87]. To go to the next voxel, the algorithm requires two �oating
point comparisons, one �oating point addition, two integer comparisons and one integer
addition. This is below the requirements of the algorithm described in [Doc04].

In Figure 4.20, the emission of a ray in a voxels' network is considered. The initial voxel
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Figure 4.20: Illustration of the USD method.

is identi�ed and drawn in orange. The ray is identi�ed by the red line. The succession
of traversed voxels is shown on the four pictures in the form of blue cells. The �rst three
�gures correspond to the projection of the 3D �gure on the three main planes x = 0, y = 0
and z = 0. The last one is the 3D view. The traversed voxels are correctly identi�ed. In
this routine, the solution of Amanatides and Woo [AW87] has been implemented.

4.4.4 Acceleration of the ray tracing

Once a ray is emitted, the coordinates of the emission point are tested to identify the
original voxel. Then all the primitives associated with this original voxel are tested. If
no element of the current voxel is intersected, the ray is propagated through the model to
the next voxel; then all the elements in this new voxel are considered for intersection with

Acceleration of the Ray Tracing 141 P. Vueghs



4.4. UNIFORM SPATIAL SUBDIVISION 142

the ray. This method uses the notion of proximity to accelerate the ray tracing: the �rst
tested primitives are the nearest ones.
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Figure 4.21: CPU time in function of the spatial resolution.

Figure 4.21 plots the reduction of the CPU time in function of the resolution nx. The
resolution in the other directions ny and nz are assumed to be identical to nx. The case of a
satellite has been considered (the gain of the second level of the acceleration method cannot
be pointed out on a too basic model). A behaviour similar to the one of the geometrical
method, �rst level of our acceleration method, can be observed (see Figure 4.17-b). After
a strong decrease of the CPU time, the curve presents a constant plateau.

4.4.5 Finite element object

In the geometrical method, each surface is de�ned by a geometrical primitive. In order to
generalize the method, an additional object has be de�ned in the form of �nite element
object, that is as a set of �nite elements (quadrangles and/or triangles) which are not
supported by a geometrical primitive. The ray tracing corresponding to this new object
cannot bene�t from the �rst level of acceleration. However, the second level is still active.

This extended geometrical method allows the simultaneous de�nition of geometrical
objects and facettized ones. In Section 7.3.6, the proposed algorithm has been compared
with Samcef for �nite element objects (set of triangles). The geometrical de�nition of the
model has also be considered. It appears that the ray tracing for �nite element objects is
faster than the ray tracing for geometrical objects. This is due to the fact that the ray-
triangle intersection is an operation which is simpler than other ray-surface intersections.
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This can be used in order to accelerate the ray tracing process. Surfaces which require
the de�nition of the geometry (specular surfaces, optical subsystems) can be mixed with
surfaces approximated with facets. The computation e�ort can then be a�ected to the
most sensitive parts of the model.

The acceleration method presented in this Section can then be seen as a combination
of the acceleration techniques used in software like Esarad for geometrical surfaces and the
techniques used in �nite element software for triangulations. In function of the encountered
surface, the acceleration method can adapt itself to obtain an optimal acceleration.

4.5 Conclusions

This concludes the Chapter dedicated to geometrical developments used to accelerate the
ray tracing process, necessary to the computation of exchange factors. Another radiative
quantity requires a ray tracing process: the external heat �uxes. In the next Chapter, the
computation of the solar heat �ux is addressed.
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Computation of on-orbit heat loads
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In this Chapter, the computation of the on-orbit heat �uxes is presented. A description
of the three radiative heat sources (solar and albedo radiation in the visible part of the
spectrum and the infra-red radiation coming from the planet) is �rst given.

The solar heat �ux is the most complex one because it requires the computation of
sharp shadows. In this Chapter, we focus on the solar heat �ux and present a computation
combined with the geometrical method in order to accelerate the ray tracing for heat �uxes.

5.1 External heat loads and deep space

In order to complete the thermal model, the boundary conditions have to be carefully de-
�ned; these boundary conditions are the external heat loads from the Sun and the planet,
as well as the cold deep space, at a temperature of approximately 5K.

Once the orbit and attitude of the satellite are de�ned, Esarad and Thermica can com-
pute the radiative heat �uxes received by each external surface thanks to a ray tracing
process.
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5.1.1 Solar heat �ux

The main heat source in our solar system is our star, the Sun. It is a G2-star in the spectral
classi�cation. Its diameter is equal to 1 391 000km. The surface temperature is equal to
5 780K. The mean distance between the Sun and the Earth is equal to 149 600 000km.
The Sun is a stable heat source. On Earth, the main variation is due to the eccentricity
of the planetary orbit, as it can be seen in Figure 5.1. The distance between the Sun and
the Earth is not constant. On the summer solstice, the Earth is farther from the Sun and
the received heat �ux is equal to 1 322W/m2. On the winter solstice, the Earth is closer
and the heat �ux is equal to 1 415W/m2. For this reason, the summers are warmer and
the winters colder in the southern hemisphere than in the northern one.
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Figure 5.1: Orbit of the Earth around the Sun.

The two previous values can be obtained by computing the energetic balance between
the power emitted by the Sun, considered as a black sphere at a temperature T�=5780K
with a radius R� of 696 000km, and the power received by a �ctitious sphere, centred
on the Sun, with a radius equal to the distance Sun-Earth d. The following relations are
obtained:

4πR2
�σT

4
� = 4πd2C� (5.1)

C� =
R2
�σT

4
�

d2
(5.2)

where C� is the solar constant. It is equal to the heat �ux received by a unitary surface
pointing to the Sun, at the distance d.
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5.1.2 Albedo heat �ux

The albedo heat �ux is the �ux emitted by the Sun which is re�ected by a planet and its
atmosphere to the surrounding space. The intensity of this �ux strongly depends on the
ground over�ew by the spacecraft. For example, snow and clouds can re�ect up to 80%
of the incoming solar �ux. On the other hand, forest and oceans only re�ect 5 to 10% of
the solar power. In order to simplify the thermal computations, the albedo coe�cient a
is de�ned as the fraction of the solar �ux which is re�ected by the whole planet. This
albedo coe�cient depends on the nature of the planetary surface, on the possible presence
of an atmosphere. A common hypothesis consists in choosing a di�use albedo re�ection.
In these conditions, the albedo heat �ux received by a surface orbiting a planet depends
on:

• the nature of the over�ew ground, taken into account by the coe�cient a;

• the angle β between the direction Earth-Sun and the direction Earth-spacecraft;

• the height h of the spacecraft (shortest distance from the planetary surface).

The albedo heat �ux is then given by the following relation:

q = C�aFa (5.3)

where Fa is the albedo view factor. This factor allows to model the visibility from the
spacecraft to the illuminated face of the planet, taking into account the varying sunshine
level across the planet. Figure 5.2 represents the evolution of the albedo view factor in
function of the β-angle and the height h. Here we consider a spherical planet and an
elementary surface pointing to the centre of the planet. The iso-view-factor curves never
intersect. The red curve corresponds to the point-wise view factor to a sphere (of radius
equal to R♁ = 6 378km). This curve covers the curve corresponding to β = 0◦. This is due
to the fact that the albedo view factor is attenuated by the sunshine of the visible points.

The curves corresponding to β < 90◦, for low heights, an increase in height has a small
impact on the view factor. When β is superior to 90◦, a local maximum can be observed.
For low altitudes, the satellite is in the shadow of the planet; the albedo �ux is close to
zero. As the height increases, the �eld of view is larger and can contain regions illuminated
by the Sun; the albedo �ux increases. In general, the albedo view factor decreases with
the altitude, as the spacecraft goes away from the planet. This tendency can be observed
with the red curve, which presents this decay linked to the distance.

5.1.3 Infrared planetary heat �ux

The Earth (or any other planet in the case of an interplanetary mission) can be considered
as a spacecraft orbiting the Sun. Its mean temperature is the result of the thermal balance
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Figure 5.2: Albedo view factor in function of the β-angle and height h.

between the absorbed solar heat �ux and the infrared �ux emitted by the planet to the
deep space.

C� (1− a) πR2

♁ = 4πR2

♁σT
2

♁ (5.4)

T♁ =
4

√
C� (1− a)

4σ
(5.5)

The parameter a corresponds to the albedo coe�cient. If a mean solar constant equal to
1 371W/m2 and a mean albedo coe�cient of 30% are considered, a terrestrial temperature
equal to 255.05K is obtained. In fact, the local temperature is a complex function of the
local time, the local latitude, the geographical situation, the atmospheric conditions.

5.1.4 Cold deep space

In addition to the thermal sources, the space environment contains a thermal sink which
is the fossil radiation or Cosmic Background Radiation at 2.7K. It is really homogeneous,
with variations around 200µK. The cold deep space is modeled by a black body at ap-
proximately 5K, taking into account fossil radiation and stars.

This fossil radiation is the residual trace of the high temperatures experienced during
the �rst moments of the Universe. Discovered in 1965 by the astrophysicians Arno Penzias
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and Robert Wilson (Nobel Prize in Physics), this residual radiation has been the �rst proof
con�rming the Big Bang theory.

Now the external heat sources have been detailed, we explain the method based on ray
tracing that we have developed in the framework of this thesis.

5.2 Shadow and illumination rays

The computation of solar heat �uxes requires the determination of the solar visibility. A
surface can be partially illuminated by the Sun; occlusions can cause sharp shadows across
the model.

5.2.1 Point wise Sun

If the Sun is considered as a point wise source, that is the solar radius is equal to zero and
the distance to the Sun is in�nite, the rays coming from the Sun are parallel to each other.
Let us consider the con�guration presented in Figure 5.3. Two surfaces are receiving a
solar �ux. Surface 1 is partially occluded by surface 2. As the source is point wise, the
transition between light and shadow is discontinuous on surface 1. In order to determine
the local illumination on surface 1, uniform random points must be generated across the
surface (see Section 5.3). From each random point, a ray is sent towards the Sun. This ray
is called a shadow ray. A shadow ray is like any other ray, except that we are interested
in reaching the solar source, i.e. leaving the geometrical model without hitting any object
along the way. If the shadow ray cannot reach the Sun, it is useless to compute exactly the
intersection point; once an occlusion is identi�ed, the process is interrupted. If the shadow
ray reaches the source without hitting an obstacle, another ray, called an illumination ray,
is sent from the Sun to the model. This ray carries solar light and impacts the model on the
initial random point. This illumination ray is then propagated throughout the geometrical
model in function of the thermo-optical properties.

�

�

�

�

Figure 5.3: Computation of the visibility - shadow rays.

Computation of

On-Orbit Heat Loads

148 P. Vueghs



5.3. GENERATION OF SURFACE UNIFORM RANDOM POINTS 149

5.2.2 Sun of �nite angular aperture

If the Sun is considered as a spherical source, characterized by a �nite radius R� and a
�nite distance d, the solar rays are no longer parallel. The extended light source causes a
penumbra region on surface 1 [NN86a] (see Figure 5.4).

� � � � �
� � � � � � � �

� � � � � � � �

Figure 5.4: Computation of the visibility - solar angular aperture.

In this case, the direction of the shadow rays must be randomly generated, in the cone
subtended by the solar disc (see Section 5.6). If the shadow ray reaches the Sun without
hitting any object, an illumination ray is sent backward, to the initial random point.

5.3 Generation of surface uniform random points

In order to de�ne the shadow rays, uniform random points must be generated across the
surfaces of the model. Strati�ed sampling can be used to decrease the variance of the
process. As it has been done for the strati�ed hemisphere method, a two-pass ray tracing
can reduce the necessary number of rays.

In this section, we describe the mathematical reasoning which yields the uniform sam-
pling of the surface. It can also be used for strati�ed sampling.

The presented method has been designed by J. Arvo [Arv01, Arv95]. This method is
based on the computation of an area-preserving parametrization, noted ψ, deriver from
a �rst arbitrary parametrization φ of the surface. Samples can be generated on the unit
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square and then map them onto the surface with a warping function w, which can be ob-
tained with the following procedure. Let S be the surface that we want to uniformly sample.

The �rst step implies the de�nition of a parametrization φ from the unit square [0, 1]2

to the surface S.

Step 2 consists in de�ning a function σ that links the parametrization φ to the sur-
face area of S. This function is the determinant of the Jacobian matrix linked to the
parametrization φ. The partial derivatives of φ and their cross product must be computed.

σ(s, t) =

∣∣∣∣∣∣∣∣∂φ∂s (s, t) ∧ ∂φ
∂t

(s, t)

∣∣∣∣∣∣∣∣ (5.6)

Step 3 requires the de�nition of two cumulative functions F (s) and Gs(t) such as:

F (s) =

∫ 1

0

∫ s
0
σ(u, v)dudv∫ 1

0

∫ 1

0
σ(u, v)dudv

=
area(Ss)
area(S)

(5.7)

Gs(t) =

∫ t
0
σ(s, v)dv∫ 1

0
σ(s, v)dv

(5.8)

Following the de�nition of F (s), it is equivalent to the fraction of the area which is
de�ned for u between 0 and s, in grey in Figure 5.5.
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Figure 5.5: De�nition of the parametrizations φ and ψ and the warping function w.

Step 4 implies the inversion of the two previous cumulative functions:

f(ξ) = F−1(ξ) (5.9)

g(ξ1, ξ2) = G−1
f(ξ1)(ξ2) (5.10)

The mapping (ξ1, ξ2) 7→ (s, t) = (f(ξ1), g(ξ1, ξ2)) de�nes the warping function that
converts the original parametrization φ into the area-preserving parametrization ψ.

ψ(ξ1, ξ2) = φ(f(ξ1), g(ξ1, xi2)) (5.11)
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This parametrization has been used to generate uniform samples on a triangle (see
Figure 5.6-a). If a uniform decomposition of the unit square is de�ned, strati�ed samples
can be generated (see Figure 5.6-b). At the �rst sight, we can guess that the strati�ed
samples are more uniformly distributed across the triangle. The interest of combining
strati�ed sampling with the computation of solar visibility (and solar cross section) is
established in Appendix F.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Uniform sampling

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stratified sampling

Figure 5.6: Random distribution - a) Uniform sampling - b) Strati�ed sampling.

This method can be used to generate uniform random points on di�erent surfaces for
which a parametrization is available.

5.4 Geometrical method

The geometrical method has been designed in order to accelerate the ray tracing process
for elements (triangles and/or quadrangles) on the basis of the geometrical, mathematical
de�nition of the model. The computed radiative quantities have to be associated with the
elements. The random origins are generated across the elements and are projected onto
the corresponding geometrical primitives. For each location, the local normal to the real
primitive is analytically computed.

The direction of the Sun, from the current origin, is de�ned by two angles: the elevation
and the azimuth. A �rst test allows us to determine if the local normal is oriented towards
the Sun. If the test is positive, the shadow ray is propagated through the geometrical
model, to the Sun.
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5.5 Thermal formulations

5.5.1 Radiosity formulation

If the radiosity formulation is used to solve the thermal problem, i.e. the formulation based
on (di�use of extended) view factors, it can be shown that the external irradiation term H0

is computed on the basis of the solar visibility and the shadow rays. It corresponds to the
direct heat �uxes computed by Esarad [Doc06].

The solar visibility of a surface is de�ned as the fraction of this surface which receives
direct illumination from the Sun.

The local visibility V� can be linked with the local direct heat �ux if the cosine of the
angle α between the solar direction and the local unit normal is introduced.

q� = C� cos(α)V� (5.12)

where C� is the solar constant.

The previous assessment is exact only if the re�ectors are purely di�use. If the model
contains specular surfaces, the irradiation term must be extended in order to take specular
re�ections into account. When a shadow ray goes to the Sun, an illumination ray has
to be traced throughout the model. The re�ection processes must only be specular. No
di�use re�ection must be added here. The propagation of the illumination rays can then
be considered as a purely deterministic process. Only the origins' generation is random.

5.5.2 Gebhart's formulation

Gebhart's formulation is based on the notion of Gebhart's absorption factors, which di-
rectly link the surface emissive power, taking into account all types of re�ections.

As the di�use component must also be modeled during the ray tracing phase, the com-
putation of radiative exchange factors requires more CPU time than view factors. More-
over, the radiative exchange factor matrix is no longer sparse, the compression procedure
is less e�cient, if not useless.

In order to use Gebhart's formulation, absorbed heat �uxes must be calculated. These
absorbed heat �uxes take into account multi-re�ection (di�use and specular).

While the radiative exchange factors can be derived from the view factors, thanks to
Gebhart's matrix method, the absorbed heat �uxes cannot be derived from the direct heat
�uxes, as it has been discussed in Section 3.4.8. A full ray tracing must be performed
to yield the absorbed heat �uxes. Let us point out that this ray tracing is not the most
time-consuming; the computation of radiative exchange factors is the most demanding one.
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5.6 Solar angular aperture

For now, the Sun has been considered as a point wise source, at an in�nite distance. If the
distance d from the Sun is known (see Table 5.1), the solar angular aperture γ� is given
by the following formula, where R� is the solar radius:

tan(γ�) =
R�
d

(5.13)

Planet Distance [AU ] Distance [106km] Angular aperture [rd]
Mercury 0.39 57.9 0.0120
Venus 0.723 108.2 0.0064
Earth 1 149.6 0.0047
Mars 1.524 227.9 0.0031
Jupiter 5.203 778.3 8.9426 10−4

Saturn 9.539 1 427 4.8774 10−4

Uranus 19.18 2 869.6 2.4254 10−4

Neptune 30.06 4 496.6 1.5478 10−4

Pluto 39.53 5 900 1.1797 10−4

Table 5.1: Data of the planets.

The direction of the shadow ray must be uniformly distributed across the solar disc. The
direction of the Sun is de�ned by two angles {θ�, φ�}. If the Sun is characterized by a non-
zero angular aperture, the shadow rays must be sent in the cone of direction−→r� ≡ {θ�, φ�}
characterized by the angle γ�. The trihedral [−→x1,

−→x2,
−→r�] is de�ned and the plane [−→x1,

−→x2]
including the centre of the Sun1 is considered. In this plane, the Sun appears as a disc
of radius R�. The directions of the shadow rays must be randomly uniformly distributed
across the solar disc. This is achieved with two uniform random numbers ξ1 and ξ2 thanks
to the following relations, where r is the polar radius and η the polar angle.

r =
√
ξ1R� (5.16)

η = 2πξ2 (5.17)

Figure 5.7 represents the point distribution obtained with 1 000 samples. The red circle
corresponds to the limit of the solar disc. As only one shadow ray is traced from each
origin, strati�ed sampling has not been coded here.

1The two unit vectors −→x1 and −→x2 can be computed through the following relations:

−→x2 =
−→r� ∧−→ni
|−→r� ∧−→ni |

(5.14)

−→x1 = −→x2 ∧ −→r� (5.15)

where −→ni is the local vector normal to the current element i.
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Figure 5.7: Uniform distribution across the solar disc.

The direction of the rays is expressed with two angles, noted χ and η. The conical
angle χ, de�ned on the interval [0, γ�], is the angle de�ned by the shadow ray and the
direction to the centre of the Sun. χ is linked to the polar radius.

χ = arctan

(√
ξ1R�
d

)
(5.18)

On the basis of the de�nition of the vectors −→x1 and −→x2, the generated direction is given
by the following expression (see Figure 5.8).

−→
r′� = cos(χ)−→r� + sin(χ) [cos(η)−→x1 + sin(η)−→x2] (5.19)

The obtained vector is unitary and contained in the cone subtended by the Sun. The
random distribution is uniform on the solar disc.

Once the direction of the shadow ray has been computed, the cosine of the local normal
and the direction of the shadow ray is computed. If the obtained value is not negative,
the ray is propagated through the model. If an intersection is detected, it means that the
Sun is not directly visible from the origin, in the direction

−→
r′�, the shadow ray is lost. If

the ray leaves the model, the solar visibility is ensured, a ray is traced from the origin and
propagated throughout the model. The result of the shadow ray tracing is the computation
of the solar visibility across the model.
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Figure 5.8: Generation of the shadow rays.

5.7 Planetary heat �uxes

In this Section, we explain how the hemisphere method could be extended to compute the
planetary heat �uxes (albedo and infrared), as a perspective of the thesis. For the compu-
tation of view factors, the deterministic grid is de�ned for θ between 0 and 90◦. If the ray
casting is limited within solid angle from spacecraft to planet, the grid can be reduced for
θ between 0◦ and γP , where γP is the angular aperture of the planet. A same grid could
be used to generate one single ray tracing process, instead of two in the current algorithms.

The advantage of this method is to extend the statistical accuracy control of the hemi-
sphere to the computation of planetary heat �uxes.

Another advantage is to easily combine this ray tracing with planet albedo and tem-
perature maps, expressed in terms of planet latitude and longitude. For each impact, the
values of the di�erent nodes of the impacted cell can be interpolated, as it has been done
with �nite element view factors.

5.8 Conclusions

In this Chapter, we have detailed the computation of the external heat loads. We carefully
addressed the computation of solar heat �ux, taking shadows and penumbras into account.
As a perspective of the thesis, we mentioned the extension of the hemisphere method to
the computation of planetary heat �uxes.
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Chapter 6

Mathematical formulation

Contents

6.1 Finite element formulation . . . . . . . . . . . . . . . . . . . . . 156

6.2 Adjoint equations and accuracy measure . . . . . . . . . . . . 163

6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

This Chapter is dedicated to the mathematical developments of the innovative con-
cepts presented in this thesis. A rigorous expression of the �nite element view factor is
presented. The adjoint equations are developed and a measure of the radiative error which
characterizes each link between two surfaces is established. This set of equations could be
a good starting point to extend some methods developed in image synthesis to radiative
heat transfer.

6.1 Finite element formulation

In the previous Sections, only isothermal patches were considered. Now a formulation is
presented where the temperature �eld is projected on a set of polynomial functions. The
resulting temperatures are linear combinations of these functions, the coe�cients of these
functions being the new unknowns. From the general heat transfer equation, the �nite
element formulation of the radiative component is derived.

6.1.1 Heat transfer equation

In case of a steady-state situation, the temperature distribution through the volume V ,
limited by the surface S, is determined by the tri-dimensional heat transfer equation [SH01,
LMTS96]:

div
[
k
−−−−−→
grad(T )

]
+Q = 0 on V (6.1)
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The problem must be completed with boundary conditions:
T (r) = f(r) on ST
q(r) = −k

−−−−−→
grad(T ) · −→n

= ℵ(r) on Sq
(6.2)

where f(r) and ℵ(r) are prescribed functions of the position r. The two domains ST and Sq
must be complementary and cannot overlap:{

ST ∩ Sq = ∅
ST ∪ Sq = S (6.3)

6.1.2 Variational formulation

A set of trial functions T is de�ned. These functions must satisfy the boundary conditions
on ST . The functions T are assumed to be su�ciently derivable. These functions must
satisfy the following relation:∫

V

{
div
[
k
−−−−−→
grad(T )

]
+Q

}
T dV = 0 (6.4)

Then the following result is used:

div
[
k
−−−−−→
grad(T )

]
T = div

[
T k
−−−−−→
grad(T )

]
− k
−−−−−→
grad(T ) ·

−−−−−→
grad(T ) (6.5)

The divergence theorem can be used in order to obtain the following expression:∫
V

[
k
−−−−−→
grad(T )

]
T dV =

∫
ST +Sq

k
−−−−−→
grad(T )T · −→n dS −

∫
V
k
−−−−−→
grad(T ) ·

−−−−−→
grad(T )dV (6.6)

The previous equation can be introduced into the relation (6.4) to obtain the variational
formulation:∫

ST +Sq

k
−−−−−→
grad(T )T · −→n dS −

∫
V
k
−−−−−→
grad(T ) ·

−−−−−→
grad(T )dV +

∫
V
QT dV = 0 (6.7)

If the functions T are chosen to satisfy the homogeneous form of the boundary con-
dition on ST (called therefore essential boundary condition), the previous relation can be
simpli�ed: ∫

V
k
−−−−−→
grad(T ) ·

−−−−−→
grad(T )dV =

∫
V
QT dV −

∫
Sq

ℵT dS (6.8)

This is called the weak variational formulation. The boundary conditions on Sq are
called natural boundary conditions as they are not directly enforced by the choice of the
functions T but are satis�ed by the solution T (x) of the formulation.
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6.1.3 Galerkin method

The previous variational formulation is used to develop the so-called Galerkin method for
solving the thermal problem. First, a function T0(x) is de�ned which satis�es:

T0(x) = f(x) on ST (6.9)

Then a set of functions Nj which satisfy the homogeneous form of the boundary con-
ditions on ST is built:

Nj(x) = 0 on ST (6.10)

The same functions are selected to project the temperature �eld and to build the trial
functions T :

T (x) = T0(x) +
+∞∑
j=1

ajNj(x) (6.11)

T (x) =
+∞∑
j=1

bjNj(x) (6.12)

where aj and bj are constant. In equations (6.11) and (6.12), the sums contain an in�nite
number of terms. These terms have to be truncated in order to consider a �nite number
of functions Nj.

T̃ (x) = T0(x) +
M∑
j=1

ajNj(x) (6.13)

T̃ (x) =
M∑
j=1

bjNj(x) (6.14)

The Galerkin method consists in computing the function T̃ which satis�es the following
relation: ∫

V
k
−−−−−→
grad(T̃ ) ·

−−−−−→
grad(T )dV =

∫
V
QT dV −

∫
Sq

ℵT dS (6.15)

If the approximation (6.14) is used for the trial function, the relation (6.15) is equivalent
to the set of equations:∫

V
k
−−−−−→
grad(T̃ ) ·

−−−−−→
grad(Ni)dV =

∫
V
QNidV −

∫
Sq

ℵNidS with i = 1, ...M (6.16)

If the approximate temperature �eld (6.13) is introduced into (6.16), the following set
of equations is �nally obtained:∫
V
k
−−−−−→
grad(T0) ·

−−−−−→
grad(Ni)dV +

M∑
j=1

∫
V

[
k
−−−−−−→
grad(Nj) ·

−−−−−→
grad(Ni)dV

]
aj =∫

V
QNidV −

∫
Sq

ℵNidS with i = 1, ...M

(6.17)
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The last term of equation (6.17) corresponds to the external �uxes applied on the
surface Sq. This term contains the radiative component.

6.1.4 Finite element method

On the basis of equation (6.17), the �nite element method is based on a set of polynomial
functions Nj. The domain is decomposed into a number of elements. For a given node j
of an element, the function Nj is de�ned such as:

Nj =

{
1 on node j
0 on node i 6= j

(6.18)

If this choice is adopted, the function T (x) is such that T = aj when it is evaluated
on node j. The unknowns aj can be rewritten as Tj. The functions Nj are called shape
functions and are described in the next Section.

� �

�

�

�

(a) Triangular element (b) Shape functions

Figure 6.1: First-order triangle.

In the proposed algorithms, the model is decomposed into a number N of patches,
which are �rst-order triangles and quadrangles. Linear shape functions are chosen for
the triangle. Figure 6.1�a represents the standard three-node triangle de�ned in {u, v}
coordinates. The shape functions are numbered following the nodes. Figure 6.1�b shows
the evolution of the three shape functions across the triangle. These shape functions are
equal to unity on the corresponding node and to zero on the other nodes. The sum of the
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three shape functions is equal to unity for each point of the triangle.
N1(u, v) = 1− u− v
N2(u, v) = u
N3(u, v) = v

(6.19)

� �

��
�

�

(a) Quadrangular element (b) Shape functions

Figure 6.2: First-order quadrangle.

The �rst-order quadrangle is shown in Figure 6.2�a. Figure 6.2�b corresponds to the
shape functions related to the four nodes. These functions are bilinear due to the term uv.
The shape functions are given by the following relations:

N1(u, v) = 1− u− v + uv
N2(u, v) = u− uv
N3(u, v) = uv
N4(u, v) = v − uv

(6.20)

6.1.5 Radiative heat �ux

Let us recall that the radiative heat �ux normal to a surface at some location r is given
by equation (2.61):

q(r)

ε(r)
= Eb(r)−

∫
A′

(1− ρs(r))Eb(r′)dFdA−dA′ +
∫
A′

ρd

ε
q(r′)dFdA−dA′ −Hs

0(r) (6.21)

Each term must be multiplied by the shape function N i
j , where the index i refers to

the element and j corresponds to the node. Each term must then be integrated onto the
element Ai. Before giving the �nal result, let us consider a particular term appearing in
this expression, linked to the multi-re�ection.
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6.1.5.1 Finite element view factor

During the integration of equation (6.21) on Ai, the term
∫
Ak
Nl(rk)dF

s
dAi−dAk

must be
computed. The index i is related to the emission surface while k corresponds to the target.
The index l refers to one of the nodes of k and Nl(rk) is the value of the shape function
evaluated at a point on Ak. The integral on Ak can be performed by a Monte Carlo
integration [CHSP95, CPF89]. A large number of rays are generated and surface k is
tested for intersection. If the intersection test is positive, the parameters {u, v} of the
intersection point are computed. The shape functions can be evaluated. The energy Ei of
each ray is split between the nodes according to the shape functions. The overall energy
is conserved.

El = EiNl(u, v) (6.22)

The �nite element view factor is de�ned by the following relation:

F i−k
dAi−l =

∫
Ak

Nl(rk)dF
s
dAi−dAk

(6.23)

where the top indices i and k refer to the surfaces while the down ones correspond to the
point dAi on the origin patch and node l.

In particular, the �nite element view factor F i−k
j−l represents the fraction of energy

emitted by a node j through the surface i which reaches node l on surface k.

6.1.6 Heat �ux equation

After the integration of (6.21) on Ai and some long manipulations (not reproduced in this
document for the sake of brevity), the following relation is obtained:

qj = εiEb,j − εi
N∑
k=1

(1− ρsk)
NGk∑
l=1

Eb,l

∑
i F

i−k
j−l det(Ji)∑
i det(Ji)

+ εi

N∑
k=1

ρdk
εk

NGk∑
l=1

ql

∑
i F

i−k
j−l det(Ji)∑
i det(Ji)

− εiHs
0(uj, vj) (6.24)

The term det(Ji) represents the determinant of the jacobian matrix of the transforma-
tion from the Cartesian coordinates to the {u, v} standard coordinates. In the case of a
�rst-order triangle, this determinant is twice the surface area: det(Ji) = 2Ai.

The �nite element view factors cannot simply be added on a same node. They must
be weighted by the determinant of the jacobian matrix of each element i.

6.1.7 Conductive component

Although the conductive component can also be added in the previous formulations, it is
brie�y introduced in this Section because the generation of the conductive links is simple
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and fast with �nite elements.

From equation (6.17), a N ×N matrix can be de�ned, corresponding to:

Kij =

∫
V
k
−−−−−−→
grad(Nj) ·

−−−−−→
grad(Ni)dV (6.25)

In case of an isotropic material, the coe�cients Kij are only function of the geometry
of the elements, i.e. the discretization of the geometrical model.

6.1.8 Ray tracing implementation

To conclude this Section, we present now the implementation of the ray tracing, allowing
the computation of �nite element view factors, for a model de�ned by a geometry and a
�nite element mesh. The emission process is �rst detailed. Then, the re�ection is addressed.

6.1.8.1 Emission process

In this work, two di�erent emission processes have been de�ned. The �rst one is based
on the Gaussian points and can be used for isothermal elements, associated with uniform
patch-to-patch view factors. The second one is based on the nodes of the elements and can
be used with polynomial approximations of the temperature �eld and view factors.

Isothermal patches The rays are generated with the strati�ed hemisphere method from
the Gaussian points of each triangular element. For curved primitives (cones, cylinders and
spheres), these points are not exactly placed on the surfaces. They have to be projected
onto the corresponding surface, following the local normal. The local normal will also
be needed for the emission of the rays. Given the {u, v} parameters of a Gaussian point,
analytical formulas are available for each primitive in order to compute the projected origin
and the local normal (see Section 4.2).

Polynomial elements If �nite elements are considered, the nodes can be chosen as the
origins of the rays. These points are already on the surface so no projection is necessary.
Each node belongs to a single surface; no discontinuity of the local normal occurs. Along a
common edge, for example between two squares, the nodes need to be duplicated. One set
of nodes belongs to the �rst square while the other one corresponds to the second square.
In this case, the critical nodes must be slightly shifted in the opposite direction to the
common edge, to prevent ray tracing artifacts due to unadapted geometrical tolerance. If
the rays were sent from the edge, they could be intercepted by the other surface sharing
the edge. So the associated view factor could be highly over-estimated (up to 100%).
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6.1.8.2 Intersection- and re�ection- computations

The ray-surface intersection can be analytically computed, thanks to adequate equations.
Once an intersection has been detected, the {u, v} parameters of the intersection point on
the surface are computed to retrieve the local normal. This normal vector is necessary to
calculate the direction of the re�ected ray (if any), either for di�use or specular re�ection.
The intersection point is projected onto the triangular element, following the local normal.
The incident energy1 is attributed to the corresponding element. In the case of a polynomial
element, the {u, v} coordinates of the projection onto the element are computed. The
incident (absorbed) energy is then split between the nodes of the element thanks to the
shape functions:

Ei = E0Ni(u, v) (6.26)

where E0 is the incident (absorbed) energy; Ei is the energy attributed to the node i;
Ni(u, v) is the shape function of the node i evaluated at the intersection point {u, v}.

This method satis�es the conservation of energy since the sum of the shape functions
is equal to unity, for each point {u, v} on the element.

6.2 Adjoint equations and accuracy measure

In this Section, the notion of importance is presented, as it is de�ned in image synthesis.
The adjoint equations are developed, the transport operator is de�ned, and the notion of
importance is extended to be applicable in radiative heat transfer. We explain how this can
be used in a post-treatment in order to yield an accuracy measure on the radiative heat
transfer computation. In this developments, only di�use surfaces have been considered
with constant thermo-optical properties. The extension to more complex thermo-optical
properties and non-isothermal elements can be considered for future developments.

6.2.1 Background

The accuracy of Monte Carlo ray tracing is function of the number of traced rays; the
correct number of rays is left to the discretion of the engineer. A bad estimate may lead to
an unacceptable error or an unnecessary computation load. A statistical accuracy control,
which could automatically compute the number of rays to achieve the required level of
accuracy, is a clear improvement for software dedicated to space thermal engineering. This
Section proposes a solution to bridge this gap.

1If the radiative exchange factors are computed, in the framework of Gebhart's formulation, the ab-
sorbed energy needs to be calculated.
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6.2.2 De�nition of importance in rendering

In rendering, a �rst category of algorithms are based on the propagation of light from the
sources, throughout the geometrical model, represented by radiosity algorithms; a second
class of algorithms consider only the light reaching the camera, typi�ed by ray tracing.
These two methods can be considered to be dual [SAS92]: the �rst one represents the
propagation of the light from the sources to the receptors while the last one traces rays
from the receptors. If the �rst one is based on the resolution of the transport equation
(i.e. the radiosity equation), the second one is based on the adjoint of the initial transport
equation. These two strategies can be combined, leading to a solution of higher e�ciency.

The second transport equation (the adjoint equation) is based on the notion of im-
portance. This notion has been intensively used in rendering in order to accelerate the
generation of realistic images [Chr03]. Let us consider an environment where all the lights
are turned o� [PM95]. We shine light from the important surfaces. This light is propa-
gated throughout the model and experiences multiple re�ections before being absorbed.
The contribution of each surface to the �nal image is proportional to the received light.
The interest of importance in rendering is that the computation can be focused on the
surfaces that contribute most to the image. A similar remark can be formulated in heat
transfer for space applications, when a particular instrument is modeled aboard a whole
spacecraft.

Importance is propagated throughout the model like light but in the opposite way. It
can be shown that the importance distribution is governed by the following relation [SAS92]:

Ii = Ri +
N∑
j=1

ρjFj−iIj (6.27)

where Ii = AiWi is the surface importance of patch Pi and Ri is the reception term, dual
to the source term Ei (light emitted by Pi as a lamp). Ri represents the initial emission of
importance. In heat transfer, in the case of di�use, isothermal patches, the reception term
of a patch Pi is equal to its area Ai. The demonstration of this equation can be found in
Appendix B.2.

6.2.3 Radiosity equation

Following [Mod03], the radiative balance of the thermal model can be expressed by the
following set of equations, based on the radiosities Jj and the view factors:

qi
εi

= Eb,i −
N∑
j=1

Fi−jJj −H0,i (6.28)

The radiative heat �ux qi, the self-emitted power Eb,i and the radiosity Ji of a patch
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Pi are linked by the following relation:

qi
εi

=
1

1− εi
(Eb,i − Ji) (6.29)

For each patch Pi, two expressions of the radiosity equation can be obtained, in function
of the nature of the boundary condition. Let us assume that the temperatures of the n �rst
patches are known while the corresponding heat �uxes are unknown. On the other hand,
the radiative heat �uxes of the N − n other patches are �xed and their temperatures have
been computed. For each patch, the radiosity equation is given by the following relation,
in function of the boundary condition:

Ji = εiEb,i + ρiH0,i + ρi
∑N

j=1 Fi−jJj ∀ i ∈ [1, n]

Ji = qi +H0,i +
∑N

j=1 Fi−jJj ∀ i ∈ [n+ 1, N ]
(6.30)

The set of radiosity equations can be rewritten as follows:

1− ρ1F1−1 . . . −ρ1F1−n . . . −ρ1F1−N
...

. . .
...

. . .
...

−ρnFn−1 . . . 1− ρnFn−n . . . −ρnFn−N
−Fn+1−1 . . . −Fn+1−n . . . −Fn+1−N

...
. . .

...
. . .

...
−FN−1 . . . −FN−n . . . 1− FN−N


︸ ︷︷ ︸

transport operator R



J1
...
Jn
Jn+1
...
JN


=



ε1Eb,1 + ρ1H0,1
...

εnEb,n + ρnH0,n

qn+1 +H0,n+1
...

qN +H0,N


︸ ︷︷ ︸
thermal source S

(6.31)
where the matrix R is called the transport operator. The thermal source S is based on
the boundary conditions and the external irradiation; this vector is assumed to be exact.
Relation (6.31) will be referred as the thermal radiosity equation.

6.2.4 Transport operator and de�nition of importance in heat

transfer

The operator R is de�ned as the discrete approximation of the transport operator. It is a
matrix of real numbers, which implies that R∗ = RT . This operator is described hereafter:

R =



1− ρ1F1−1 . . . −ρ1F1−n . . . −ρ1F1−N
...

. . .
...

. . .
...

−ρnFn−1 . . . 1− ρnFn−n . . . −ρnFn−N
−Fn+1−1 . . . −Fn+1−n . . . −Fn+1−N

...
. . .

...
. . .

...
−FN−1 . . . −FN−n . . . 1− FN−N


(6.32)

The de�nition of importance (6.27), introduced in rendering, must be modi�ed for ther-
mal purpose in function of the boundary condition of the patches. Importance becomes
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a mathematical quantity which is governed by the adjoint set of equations, based on the
transport operator R. To keep the de�nition of rendering, we need to de�ne an alternative
set of thermo-optical properties ρ′; if we consider a �ctive model, where the patches with
�xed heat �uxes are associated with di�use re�ectance ρ′i equal to 100%, the de�nition of
rendering remains valid.

The radiosity and importance equations can be rewritten as follows:

RJ = S (6.33)

R∗I = R (6.34)

Equations (6.33) and (6.34) are called adjoint equations.

6.2.5 Radiative energy

v(J) is de�ned as the scalar product of the radiosity vector J by the reception vector R. It
is also equal to the scalar product of the importance vector by the source vector, illustrating
the duality of radiosity and importance:

v(J) = RTJ = ITS (6.35)

In heat transfer, the reception vector is equivalent to the area vector Ai, yielding:

v(J) =
N∑
i=1

AiJi (6.36)

Each term AiJi is the di�use energy emitted by the surface i; it is the sum of the
self emission and the re�ection of all incident radiations. v(J) is called radiative energy
and corresponds to the energy which is di�usely emitted by all the surfaces of the tri-
dimensional model.

6.2.6 Measure of the error

The geometrical model has been discretized into patches i.e. into surfaces of �nite area.
In the proposed algorithms, the view factors are computed by stochastic ray tracing. As
the number of rays is limited, the view factors are approximated. As the ray tracing is
based on a random process, an error measure can be derived for each single view factor (see
Section 3.1.6 applied to strati�ed hemisphere). This error measure is only geometrical. It
is not representative of the error energy. Here, we present a way to derive such an error
measure.

Let R̃ be the approximated transport operator, obtained by ray tracing:

R̃ = R+ ∆R (6.37)
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The di�use re�ectivities can be assumed to be exact. The error is only due to the view
factors. Each term R̃i−j of the transport operator is a�ected by an error −ρ′i∆Fi−j.

The thermal radiosity, computed by inverting equation (6.33), is also approximated:

J̃ = J + ∆J (6.38)

It is an acceptable hypothesis to suppose that the source term S is exactly known.
Equation (6.30) then yields the following relation:

R̃J̃ = S (6.39)

By combining equations (6.37) and (6.39), we obtain the following expression, where
the operator is the exact transport operator and where the source term is perturbed by a
quantity ∆RJ̃ :

RJ̃ = S −∆RJ̃ (6.40)

The error energy is de�ned thanks to the radiative energy v(J):

v(J − J̃) = RT (J − J̃) = IT∆RJ̃ (6.41)

The quantity IT∆RJ̃ is the error introduced in the radiative energy v(J) by the ap-
proximations of the transport operator R and the radiosities Ji. The importance can-
not be exactly computed; it is associated with an error due to the approximation of the
transport operator. ĨTRJ̃ is used as the approximation of ITRJ̃ . Equation (6.41) is a
double sum on all the surfaces which compose the geometrical model. A particular term
Ĩi∆Ri−jJ̃j = Ĩiρ

′
i∆Fi−jJ̃j corresponds to the error energy from surface j to surface i. This

expression allows us to establish a measure of the error induced by the approximation of
the transport term Ri−j. From the expression of the transport operator (6.32), supposing
that the error is linked to the computation of the view factors, each term Ri−j of the
transport operator is a�ected by an error −ρ′i∆Fi−j.

6.2.7 Perspectives

After the resolution of the radiative thermal problem, once the radiosities Ji are com-
puted, the statistical accuracy measure developed for the ray tracing can be used to obtain
a measure of the energy error. The radiative error associated with the geometrical model
is determined by equation (6.36). Each link contributes to the global error of the radiative
energy v(J). The knowledge of ∆Fi−j is equivalent to know the radiative error associated
with this link.

Currently, we can design a statistical accuracy measure associated with the radiative
energy. The distribution of the energy error through the geometrical model can be com-
puted. A next step could be to design a statistical accuracy control in order to adapt
the ray tracing; the number of rays can be locally modi�ed in order to achieve an energy
accuracy de�ned by the user in the form of a maximum relative error ε and a con�dence
interval α. This would lead to a fully statistically controlled ray tracing.
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6.3 Conclusions

In this Chapter, the innovative mathematical developments performed in the framework of
the thesis have been presented. The expression of the �nite element view factor has been
rigorously established and the adjoint equations have been developed as a starting point
for further mathematical developments, based on an active accuracy control.
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This Chapter presents a selection of the test cases implemented to validate the mathe-
matical behaviour and the performances of the proposed algorithms. It contains one large
application, model containing a large number of elements. The results are then compared
to industrial tools (Samcef and/or Esarad-Esatan).

In this Chapter, the strati�ed hemisphere method has been used to generate the rays;
the geometrical method, combined with uniform spatial subdivision, has been implemented
to accelerate the ray tracing process.

The results displayed in this Chapter are di�use and extended view factors, absorbed
heat �uxes. Numerical comparisons are also given. Distributions of temperatures are also
provided, although it was not an initial requirement of the thesis. Finite element view
factors and the integration of conduction are illustrated. The Chapter ends with a study
of the mathematical behaviour of the algorithms (evolution of the computation time in
function of the di�erent parameters).

7.1 Analytical con�gurations

The �rst class of test cases are based on simple geometrical con�gurations for which an
analytical solution can be established. The results can then directly be compared with the
theoretical value, in order to obtain relative errors and verify the statistic properties of the
solutions.

169
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7.1.1 Samcef cylinders - View factors

�

�

�

�

�

Figure 7.1: Samcef cylinders - Geometrical con�guration.

The test case presented in this Section is inspired by the Samcef manual [Doc07]. The
geometry is composed of two cylinders of equal radius and equal �nite length, with closest
distance at centers (see Figure 7.1).

This example allows to compare the proposed algorithm with the reference software
Esarad and the �nite element software Samcef. The compared quantity is the view factor
from one cylinder to the other. An approximated formula is used to validate the results
from the three codes.

The view factors between the two cylinders are displayed in Figure 7.2. The distribu-
tions are similar for the three compared software. For the sake of brevity, only a modi�ed
display of the Esarad results is displayed.

7.1.1.1 Approximated solution

Following [AD82] cited by [How82], the view factor between the two cylinders is given by
the following relation:

F1−2 = 0.178
(
X

2.59

)−0.95 ( L
X

)−0.16
exp

(
− 1

1.86

∣∣ln ( L
X

)∣∣1.61
)

if L
X
< 1

= 0.178
(
X

2.59

)−0.95 ( L
X

)−0.16
exp

(
1

0.494

∣∣ln ( L
X

)∣∣0.889
)

if L
X
> 1

(7.1)
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Figure 7.2: Samcef cylinders.

where the parameters C, L and X are de�ned as follows:
C = c

r

L = l
r

X = 2.42C − 2.24
(7.2)

It yields a view factor equal to 2.543 10−2, with an accuracy within 6%. The view factor
is then comprised between 2.3905 10−2 and 2.6956 10−2.

7.1.1.2 Pvtan solution

The two cylinders are meshed with triangular elements. The geometrical method is used to
compute the view factors between elements. If these elementary view factors are combined,
it yields a surface view factor which is close to the analytical value. The view factor
from cylinder to cylinder is equal to 2.620 10−2, which is in good agreement with the
approximated solution of Section 7.1.1.1.

7.1.1.3 Esarad and Samcef solutions

Esarad is used to compute the di�use view factors between the elements. The results are
exported in a *.d �le, which is the standard �le from Esarad to Esatan, containing all the
radiative quantities computed by Esarad, and Matlab is used to display the view factors in
a way common to Pvtan and Samcef (see Figure 7.2). The view factor from cylinder to
cylinder is equal to 2.622 10−2, which is in good agreement with the approximated solution
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of Section 7.1.1.1.

Finally, the previous solutions are compared with a Samcef result. The view factor
from cylinder to cylinder is equal to 2.502 10−2, which is in good agreement with the ap-
proximated solution of Section 7.1.1.1.

The di�erent results are summarized in Table 7.1. The small di�erences in the results
are linked to the di�erent used methods. Samcef approximates the cylinders with planar
quadrangles and computes the view factors thanks to contour integration; it applies an
exact method to an approximate geometry. Esarad computes the view factors between the
cylinders by ray tracing; it combines a numerical method with the real geometry. Pvtan

is based on an intermediary approach, where the geometry is used for the ray tracing but
where the external contours (two circles for each cylinder) are approximated by straight
lines. However, this di�erence with Esarad is not predominant and the two results are
similar.

Software View factor
Pvtan 2.620 10−2

Esarad 2.622 10−2

Samcef 2.502 10−2

Table 7.1: Values of the view factor from cylinder to cylinder.

7.1.2 Triangular prism with specular re�ection - Extended view

factors

In order to validate the proposed algorithms in case of specular re�ectors, the extended view
factors related to the tenth unit test case of Esarad have been computed. The geometry is
composed of three rectangular surfaces assembled into a triangular prism (see Figure 7.3�
a). Surfaces 1 and 2 are purely di�use while surface 3 (in orange) is a specular re�ector.
If the image method is used (see Section 2.2.6.2), the image of the surfaces 1 and 2, noted
1' and 2', are obtained (in green, transparent, limited by dashed lines in Figure 7.3�a).

7.1.2.1 Analytical solution

For this con�guration, an analytical solution can be established:

F =

 ρs3F1−1′ F1−2 + ρs3F1−2′ F1−3

F1−2 + ρs3F2−1′ ρs3F2−2′ F2−3

F3−1 F3−2 0

 (7.3)
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(a) Geometrical con�guration
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Figure 7.3: Test case 10 � a) Geometrical con�guration � b) Relative errors.

7.1.2.2 Pvtan solution

The Pvtan method is used to compute the extended view factors. Di�erent number of
rays are considered. For each number of rays, 1 000 simulations are performed in order to
compute average values and compare them to analytical values.

To illustrate the correct mathematical behaviour of the proposed algorithm with the
number of rays, surfaces 1 and 2 have been considered. The global view factor1 of the
two surfaces are compared to the analytical values and relative errors are computed, for
di�erent numbers of rays. The evolution of these two relative errors is plotted in Figure 7.3�
b; the convergence of the method when the number of rays increases can be observed. The
logarithm of the relative errors is roughly a linear function of the logarithm of the number
of rays.

7.1.3 Concentric spheres with specular re�ection

This example illustrates the impact of the discretization error on the extended view factor.
The case of two concentric spheres is considered. The inner one is di�use while the outer

1For each line i of the view factor matrix, the global view factor Gi is the sum on the column elements:

Gi =
N∑
j=1

Fi−j (7.4)

In case of extended view factors, following de�nition in Section 2.2.6, the global view factor can exceed
unity [Mod03].
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Figure 7.4: Resolution of the geometrical cells.

one is characterized by a specular re�ectance ρs = 0.2. During the ray tracing, all the rays
emitted by the inner sphere will impact the outer sphere, they will be re�ected specularly
and then will necessarily impact the inner surface. In this con�guration, an analytical
solution is available [How82]. The following values are obtained:{

F s
1−1 = 0.2 F s

1−2 = 1
F s

2−1 = 0.25 F s
2−2 = 0.9375

(7.5)

The sum of the view factors gives the following values (corresponding to the global view
factors): {

F s
1−1 + F s

1−2 = 1.2
F s

2−1 + F s
2−2 = 1.1875

(7.6)

A mesh composed of 320 triangles has been used. In order to establish the impact of
the discretization of the curved surfaces by a �nite element mesh, four cases are considered.
In the �rst one, the surfaces are associated with their geometrical primitives. In the second
case, only the outer sphere is combined with its primitive. In the third case, only the inner
primitive is identi�ed as a sphere. In the last con�guration, the two surfaces are considered
as �nite element objects.
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In Figure 7.4, the results obtained for the di�erent cases are plotted in function of the
index of the �nite elements (from 1 to 320). The green curve corresponds to the geometri-
cal method. It is exactly equal to the analytical value. If one of the surfaces is replaced by
the �nite element mesh (see the blue and black curves), it yields an over-estimation of the
real value. When the outer sphere is meshed, the re�ection of the rays is not based on the
real curvature of the surface. It is responsible for the error observed on the black curve.
When the inner sphere is meshed, the emission of the rays does not follow the curvature
of the surface. Moreover, incident rays can miss the contour of the surface. They can
undergo multiple re�ections before being absorbed by the inner sphere. These two sources
of errors cause the larger error observed on the blue curve. Finally, if the two surfaces are
considered as �nite element objects i.e., we do not know anymore that the two surfaces
are spheres, the previous sources of errors cause the red curve.

This simple example illustrates the fact that a geometrical representation of the model
is necessary to model specular re�ections by ray tracing. This justi�es the interest of the
geometrical method concerning the radiative component of heat transfer.

7.1.4 Mirrors and collector - Heat �uxes

Figure 7.5: Mirrors and collector - Geometrical con�guration.
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The next test case has been selected to illustrate the computation of solar heat �uxes.
It is made of a succession of four purely specular mirrors (specular re�ectivity ρs equal to
1) and one ideal solar collector (solar absorptivity α equal to 1). Mirror 1 is illuminated by
the Sun and is characterized by a solar visibility of 100%; the other surfaces cannot directly
be seen from the Sun (the solar visibility is shown in Figure 7.6�a). The dimensions of
the last three mirrors and solar collector are �xed in order to exactly �t the solar beam
re�ected by mirror 1 (see the orange volume, limited by dashed lines in Figure 7.5, which
materializes the solar beam).

This simple example can be used to check the accuracy of the heat �ux computation. In
this case, the direct heat �ux and absorbed heat �ux coincide, as the collector's absorptance
is equal to 1. Figure 7.6�b represents the resulting distribution of the heat �ux. The four
mirrors receive no heat �ux, i.e. no direct and no absorbed heat �ux, as they are purely
specular, as a direct heat �ux can only be associated with a (at least partially) di�use
re�ector; specularly re�ected heat �ux is not assigned to the specular re�ector but to the
next encountered di�use surface. The collector exactly receives the power incident on
mirror 1; the incoming heat �ux is conserved.

(a) Solar visibility (b) Heat �ux

Figure 7.6: Mirrors and collector.
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7.2 Large test cases

The second class of test cases is made of "large scale" models, for which no analytical solu-
tion is available. The results of our algorithm can be compared with the results generated
by other software, as Esarad-Esatan and Samcef.

7.2.1 QuartSatellite - Adjoint equations

In order to illustrate the use of the adjoint equations, the model QuartSatellite, presented
in references [VdKPB08a] and [VdKPB08b], has been considered. The model represents a
quarter of the inside of a spacecraft. It is composed of 12 geometrical primitives (cylinders,
rectangles and spheres) modeling a tank, an electronic box, a cylinder and two panels. The
�nite element mesh contains 1 100 nodes and 1 800 triangles. This model has been solved
with the proposed algorithm Pvtan, as well as with the industrial tool Samcef [Doc07] and
Esarad-Esatan [Doc06], allowing us to guarantee that the obtained results are correct. The
height of the model is equal to 700mm while the two other dimensions are equal to 300mm.

7.2.1.1 Boundary conditions

The geometry is de�ned and meshed with Samcef. The view factors are computed sepa-
rately with the geometrical method. The temperature of the basis is �xed at 293K while
the tank is maintained at 303K. The other components are assumed to be adiabatic. An
additional node represents the cold space and is set at 0K. The basis of the satellite, the
cylinder, the reinforcements and the electronic box are characterized by a coating coating1
while the tank presents a coating coating2.

Coating Emittance Di�use re�ectance Specular re�ectance
coating1 0.95 0.05 0.
coating2 0.5 0.5 0.

Table 7.2: Thermo-optical properties.

7.2.1.2 Temperature distribution

The use of adjoint equations has been presented as a post-processing step. It is based
on a previous computation of the temperatures and heat �uxes. The geometrical method
has been used to compute the temperature distribution through the model. The result is
displayed in Figure 7.7�a. Esarad and Esatan are also used to compute the temperature
distribution; the result is presented in Figure 7.7�b. A discussion about the accuracy of
these two results has been performed in reference [VdKPB08b].
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(a) Pvtan solution (b) Esarad solution

Figure 7.7: Temperature distribution.

7.2.1.3 Thermal radiosity, radiative energy and importance

The use of adjoint equations is based on the computation of two quantities: thermal ra-
diosity and importance.

Once the thermal problem is solved, the temperatures and radiative heat �uxes of the
surfaces are accessible. Using relation (2.32), the distribution of thermal radiosity through-
out the model can be computed (see Figure 7.8�a). The basis presents the highest radiosity,
as it is the hottest surface and is characterized by a high emittance. The radiosity of the
tank is not constant, although it is isothermal, because it is characterized by a re�ectance
of 50% and re�ects an important fraction of the received radiation. The contours of the
electronic box are associated with nearly-zero radiosity, given that they do not interact
with the rest of the satellite and emit their energy to the cold space.

On the basis of the thermal radiosities, equation (6.36) can be used to compute the
radiative energy associated with the model. We obtain:

v(J) = 288.872W (7.7)

In heat transfer for di�use surfaces, the reception vector is equivalent to the area vector
Ai (see Section 6.2). The importance associated with each element is function of the initial
area of the element, and can highly vary, in function of the quality of the discretization.
If the evolution of surface importance is displayed (see Figure 7.8�b), it appears more
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continuous. Given the de�nition of the reception vector, the surface importance is always
higher or equal to unity.

Figure 7.8: Importance distribution � a) thermal radiosity � b) surface importance.

In order to compute the importance, an iterative scheme has been implemented, on the
basis on the examination of an error criterion. The convergence of this routine is illustrated
in Figure 7.9. The exponential diminution of the residual, linked to the attenuation due
to the transport operator can be observed.
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Figure 7.9: Convergence of the importance computation.
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7.2.1.4 View factors

The strati�ed hemisphere method has been used to compute the view factors between the
12 geometrical primitives. 10 000 rays have been traced from each triangle. The con�dence
interval is �xed to 99%. For each pair of view factors, equation (3.24) has been used to
compute the associated relative error.

It is our belief that this level of accuracy could be not necessary for thermal applica-
tions, where conductivity will induce heat �uxes between adjacent elements and reduce
the surface temperature gradients caused by di�erent irradiations. Then, elementary view
factors have been integrated onto the geometrical surfaces. Here, to simplify the analysis
of the results, the �ve sub-systems have been grouped: the basis, the support cylinder, the
planar supports, the tank and the electronic box. Finally, a matrix of 5× 5 radiative links
is obtained.

The view factor matrix has been compacted in order to give the view factors from one
subsystem to the others. The absolute errors of the view factors are given in Table 7.3.
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Base 0.0000 1.6979 10−4 1.3977 10−3 6.4148 10−4 8.7071 10−4

Cylinder 5.4881 10−4 0.0000 1.5002 10−3 1.7719 10−3 3.8328 10−4

Supports 2.0300 10−4 1.8044 10−4 1.8264 10−5 1.8654 10−4 3.6622 10−4

Tank 1.9220 10−3 1.2843 10−3 3.4213 10−3 0.0000 1.3541 10−3

Box 1.9441 10−4 3.9061 10−5 6.0642 10−4 3.6891 10−4 0.0000

Table 7.3: Absolute view factor error, from one subsystem to another.

A non-zero view factor exists between the supports, as they can see each other. This
link is associated with a low but non-zero value. It appears that the planar surfaces are
associated with small errors while the curved ones could require additional rays to reduce
the associated error.

7.2.1.5 Energy error

As the relative energy error is a matrix, one map can be displayed for each particular
surface i.e. for each line of the matrix. To simplify the display of the results, the relative
error on the radiative heat �ux is cumulated, from one sub-system to another. This error
is reported in Table 7.4.

Validation 180 P. Vueghs



7.2. LARGE TEST CASES 181

[−] B
as
e

C
yl
in
de
r

Su
pp

or
ts

T
an
k

B
ox

Base 0.0000 1.2955 10−6 7.6923 10−6 8.0509 10−6 3.4152 10−6

Cylinder 1.5905 10−4 0.0000 2.1802 10−4 5.8724 10−4 3.9698 10−5

Supports 1.9980 10−4 1.2347 10−4 9.0150 10−6 2.0997 10−4 1.2883 10−4

Tank 1.0587 10−3 4.9182 10−4 9.4503 10−4 0.0000 2.6656 10−4

Box 8.1720 10−5 1.1415 10−5 1.2783 10−4 1.7733 10−4 0.0000

Table 7.4: Relative energy error � cumulated error, from one subsystem to another.

The energy exchanges from the tank to the other surfaces are the most inaccurate.
This is due to the curvature of the initial surface [Pla97] and its higher radiosity (see
Figure 7.8�a). A non-zero link exists between the supports, because this combined surface
is not convex. The tank is associated with the larger errors and could require additional
rays to be traced to achieve a better accuracy.

7.2.2 XEUS model

XEUS, X-ray Evolving Universe Spectroscopy, was a mission initiated by ESA. In July
2008, the International X-ray Observatory (IXO) mission supersedes the XEUS mission
concept. IXO is a joint X-ray observatory with participation from ESA, NASA and JAXA.
XEUS was planned to be the successor to XMM-Newton mission, which is the ESA's cur-
rent X-ray observatory. The objective of XEUS was to investigate how supermassive black
holes form and grow, how feedback from these black holes in�uences galaxy growth, how
large-scale structure evolves and the role of dark matter, how the baryonic component of
this structure becomes chemically enriched, and how gravity behaves in the strong �eld
limit.

The speci�cations of the mission require a focal length of 35m; this could be obtained
by two spacecrafts formation �ying (see Figure 7.10�a). The �rst spacecraft (DSC) con-
tains the detector while the second one, noted MSC, hosting the mirror, focus the X-rays
on the detector (see Figure 7.10�b).

In this study, the MSC has been used, as it has been modeled in [Che06], with Esarad.
The purpose of this Section is to list the di�erent comparisons made between the reference
program Esarad and our algorithm, in order to establish its reliability. Comparisons with
Samcef are also provided.
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Figure 7.10: XEUS spacecraft � a) spacecraft � b) mirror.

7.2.2.1 Geometrical model

Some modi�cations have been introduced in the geometrical model in order to obtain a
model compatible with our algorithm. The external side of the spacecraft appears in red,
which means that the surface is radiatively inactive. The cutting operations have been
rede�ned because they were lost during the conversion of the model. The contact con-
ductances have been removed because they are not modeled with the proposed algorithm
(the computation of surface conductance can easily be performed with �nite element soft-
ware, like Samcef; this functionality was not considered for the de�nition of the thesis's
requirements). The holes appearing in the external cylinder represent the extremities of the
spokes; as these surfaces are not radiatively active, they have been removed from the model.

The model is composed of 1 156 geometrical primitives (discs, portions of cylinders and
rectangles). The internal cylinder (in red in Figure 7.11�a) represents the service module
while the external one corresponds to the solar shield (in orange). If the bottom view is
considered (see Figure 7.11�b), 16 portions of discs can be seen, called petals (in blue), �xed
between spokes (in yellow in Figure 7.11) (the bottom and upper views are symmetrical
for this model). The geometrical model is common to Esarad and the proposed algorithm.
During the pre-process of the model, the mesh-module of Catia has been used to generate
a corresponding �nite element mesh. This mesh is common to our algorithm and Samcef.
To set the dimensions of the model, note that the height of the solar shield is between 2.1m
and 3.7m, that the diameter of the shield is about 4.3m.

7.2.2.2 Characteristics of the model

Among the characteristics of this model, the presence of di�erent meshes can be noted. For
example, petals are �nely meshed (in order to correctly model the masking e�ects) while
the inner and outer cylinders are coarsely meshed (where a quite uniform temperature
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Figure 7.11: Geometry � a) global view � b) bottom view.

�eld is observed, due to the solar irradiation). The geometry presents also di�erent cutting
contours: straight and curved ones. As mentioned in Section 4.3.3, the curved intersection
of two surfaces is not exactly computed but it is approximated by straight lines. In this
application, we will assess whether our assumption does not introduce appreciable error.
Another interest is due to the visibility problem: while some surfaces have a clear visibility
with others (for example, from one cylinder to the next one), some surfaces are surrounded
by a lot of obstacles (see the elements of the spokes and the petals). The di�erences of
visibility of the space is also interesting, from a thermal point of view, because it has a
strong impact on the �nal temperature. The �nal interest of this model is linked to the
presence of obstacles for the computation of heat �uxes.

7.2.2.3 Space view factor

The �rst compared quantity is the space view factor, i.e. the view factor from a surface
to the deep space. This quantity is complementary to the global view factor de�ned by
relation (7.4).

The numerical values of the space view factors from Pvtan have been compared with the
numerical values exported from Esarad to Esatan. As the model contains a large number of
surfaces (1 156 primitives), only chosen surfaces have been checked (the top and bottom of
the central cylinder, the inner and outer cylinders, the �rst spoke and the �rst petal, with
the +Z and -Z parts). The di�erences between the individual view factors (maximum and
minimum values) are given in Table 7.5. The surfaces associated with large view factors are
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Figure 7.12: Space view factor � a) Pvtan solution � b) Esarad solution.

more accurate than the surfaces with small value of the space view factor. This is in good
agreement with the theory developed in the hemisphere method. The largest di�erences
between Esarad and Pvtan are observed on the cut surfaces, which are characterized by
non-zero view factors to inactive node in Esarad.

Maximum error Minimum error
Top service module 7.6 10−4 7.5 10−4

Bottom service module 1 10−4 9 10−5

Service module 1.41 10−2 7.3 10−4

Solar shield 4.91 10−3 3.33 10−3

Spoke 1 1.71 10−2 1.1 10−4

Petal 1 +Z 2.67 10−3 1 10−4

Petal 1 �Z 2.67 10−3 7 10−5

Table 7.5: Space view factor error.

If the limits of the view factor are considered, it appears that the maximum view factor
is located at the top of the service module, at the centre of the spacecraft. It is equal to
0.9138 in Esarad. The corresponding space view factor in Pvtan is equal to 0.9146.

Compared to Esarad, Pvtan gives access to detailed �eld of view factors across the large
surfaces, as the solar shield (see Figure 7.12�a). If a �xed number of rays are traced per
unit area, it does not require additional computational e�ort w.r.t. Esarad (Figure 7.12�b).
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Figure 7.13: Space view factor � a) Pvtan +Z view � b) Esarad +Z view.

From the results, it appears that the space view factor is larger at the bottom of the solar
shield, as there are fewer obstacles in this part of the model. The more we go to the petals,
the more obstacles are encountered, the less space view factor are observed. A similar
observation can be done when considering the internal cylinder (the service module). The
top of the service module presents a higher space view factor than the rest, due to a larger
visibility to deep space.

In Figures 7.13�a and 7.13�b, the non-symmetrical distributions of the space view factor
across the spokes and the petals can be observed. These distributions (where gradients are
limited, contrary to Figures 7.12) are identical for the two programs.

7.2.2.4 Global view factor

Samcef displays the global view factors (see equation 7.4). Here, the results from our al-
gorithm are compared with the view factors computed by Samcef.

The source code of Samcef has been modi�ed in order to extract the view factors.
Matlab is used to display the global view factors. Figure 7.14�a represents the distribution
of the global view factors throughout the model, computed by our algorithm. Figure 7.14�b
corresponding to the solution of Samcef. As the two distributions are similar, two di�erent
views have been chosen. The limits of the scale are the same for the two distributions.
The values obtained with Samcef are compared with the values of Pvtan. The di�erences
between the two distributions do not exceed 1%, which is in good agreement with the
desired accuracy.
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(a) Pvtan solution (b) Samcef solution

Figure 7.14: Global view factor.

Maximum error Minimum error
Top service module 8.54 10−4 7.54 10−4

Bottom service module 1.40 10−3 1.16 10−3

Service module 2.89 10−3 1.73 10−3

Solar shield 2.73 10−3 1.09 10−3

Spoke 1 8.53 10−3 7.07 10−5

Petal 1 +Z 3.65 10−3 1.75 10−4

Petal 1 �Z 4.07 10−3 2.51 10−5

Table 7.6: Global view factor error.

7.2.2.5 Radiative exchange factors

Once again, the numerical values computed by Pvtan have been compared with the values
exported from Esarad to Esatan. The correspondence is very good; the di�erence is below
1%, which is in good agreement with the desired accuracy. In the same way, the results
extracted from Samcef are close to the results from Pvtan, with di�erences inferior to 1%.
For the sake of simplicity, the results of the comparisons with Esarad and Samcef are not
displayed in this document.

7.2.2.6 Solar absorbed heat �ux

The next presented result is the solar absorbed heat �ux. In Gebhart's formulation, sec-
ondary rays in the ray tracing experience di�use re�ection; the attenuation of the secondary
rays is slower than for direct heat �ux.
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The proposed algorithm gives access to a gradient of values across the large surfaces
(inner and outer cylinders), yielding larger bounds of the color scale if the values are
displayed for each triangular �nite element (see Figures 7.15�a and �b). To compare these
results with Esarad, the values have to be integrated onto the surface primitives, i.e. the
thermal nodes of the Esarad model (see Figures 7.15�c and �d). If the numerical values
of the primitives are compared, a good agreement can be found for absorbed heat �uxes.
The maximum heat �ux is equal to 811W for Esarad; it is equal to 812W for Pvtan.

Figure 7.15: Absorbed heat �ux � a) detailed Pvtan result � b) Esarad result � c) Pvtan

result integrated onto Esarad thermal nodes � d) Esarad result.
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7.2.2.7 Temperatures

The comparison of the temperatures computed by Pvtan and Esarad is given in Figures 7.16�
a and �b (in degrees Celsius). While Figure 7.16�b represents the temperature of the
di�erent thermal nodes de�ned in Esarad, Figure 7.16�a associates a temperature with
each triangle. The color scale is more extended for the Pvtan result (from −125.4◦C to
148.7◦C) than for the Esarad result (from−119.6◦C to 137.2◦C). Based on the triangulation
of the large geometrical primitives (outer and inner cylinders), a detailed variation of the
temperature is accessible. A gradient can be observed across the large thermal nodes of
Esarad, which were assumed to be isothermal. For example, if the larger thermal nodes of
the outer cylinder are considered, a gradient of around 40◦C is observed. The observed
gradients are coherent with what was expected.

Figure 7.16: Temperatures [degrees Celsius] � a) Pvtan solution � b) Esarad solution.

7.2.3 Finite element view factors

In this work, triangles of the �rst degree have been considered but elements of higher degree
can also be used. Uniform view factors and �nite element view factors of the �rst degree are
presented here. Figures 7.17�a and �b represent the global view factor (the complementary
value of the space view factor) with uniform and �rst-order elements. At the �rst sight,
the two distributions seem to be identical but the second result (Figure 7.17�b) is more
detailed. In Figure 7.17�a, it seems that the view factor �eld roughly follows an annular
distribution. This distribution is more straightforward with the �nite element view factor
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(see Figure 7.17�b).

The uniform view factors have been obtained with the strati�ed hemisphere method
and three Gauss quadrature points (see Section 3.1.7) while the �rst order �nite element
view factors have been computed by placing one strati�ed hemisphere on each node (see
Section 3.1.7.6) and then interpolating the nodal values across the elements. This model
contains 8 620 triangles and 6 345 nodes. The computation of the uniform view factors
required 258 600 000 rays (10 000 rays from each Gauss point, with 3 Gauss points per tri-
angle) while the computation of the �rst order view factors only required 63 450 000 rays.

From a performance point of view, the computation of the �nite element view factors
does not require additional CPU in Pvtan. This point is checked in Section 7.3.6, where
the computation time of our algorithm is compared with Samcef, which computes uniform
view factors. In terms of storage, as the number of points is a bit larger than the number
of surfaces, more space is needed. But the compression process (storage of non zero-terms
only) can reduce the impact on memory.

Figure 7.17: Finite element view factors � a) uniform view factors � b) �rst order view
factors.

7.2.4 Combined radiation and conduction

Here, the interest of the geometrical method is illustrated by combining radiation with
conduction. Due to a limitation of our formulation, the only encoded boundary condition
is �xed net �ux; all the surfaces can vary in temperature. This limitation is not linked to
the geometrical method but only to our implementation of the thermal formulation. An
incoming solar heat �ux of 1 350W/m2 has been simulated. An iterative scheme has been
encoded. First, the temperatures without conduction are computed (see Figure 7.18�a).
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Then this distribution of temperature is used to initiate the iterative process which solves
the temperature distribution including conduction. With a thickness of 1cm and a homo-
geneous conductivity of 500W/m/K, the following temperature distribution is obtained
(Figure 7.18�b). The limits of the temperature's scale are reduced (from 29.6K to 491.0K
without conduction to 31.5K to 477.4K with conduction). This is due to the smoothing
e�ect of conduction. The main di�erence between the two distributions of temperatures are
mainly located at the top of the spacecraft, along the shadow caused by the inner cylinder
on the outer cylinder. Di�erences are also observed along the shadows of the spokes on
the petals. This is due to the fact that, if only radiation is considered, the shadowed nodes
are cold while the adjacent, illuminated nodes, are warm. The conduction smoothes this
distribution of temperatures; local temperature gradients are decreasing.

From these results, it appears that in this case, radiation is the predominant mode of
heat transfer. The distribution of temperatures is mainly due to the solar irradiance, which
causes sharp shadows, especially on the outer cylinder.

(a) Radiation only (b) Combination with conduction

Figure 7.18: Temperature distributions.

7.3 Mathematical behaviour

In this Section, the mathematical behaviour of the proposed algorithm is studied. Di�erent
parameters are considered, as the number of surfaces, the number of traced rays and the
resolution of the USD voxels nx; the evolution of the CPU time required to execute the ray
tracing is examined. The convergence of the algorithm when the number of rays increases
is also checked.
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7.3.1 Number of rays

In this Section, di�erent numbers of rays are considered, that is di�erent resolutions of the
strati�ed hemisphere. Figure 7.19�a represents the evolution of the CPU time when the
number of rays increases. It points out the linear behaviour which is linked to the fact
that each new ray is considered independently from the others. Figure 7.19�b shows the
convergence of the algorithm. The error criterion is built as follows:

• A reference solution is computed by tracing a large number of rays, with a strati�ed
hemisphere's resolution of 400× 400.

• For each hemisphere's resolution,

� For each element, i.e. for each line of the view factor matrix, the global view
factor G is computed;

� For each surface k, the elementary global view factors G are integrated in order
to obtain the surface view factors, noted Fk;

� The error is computed thanks to the following relation:

ε =

Nsurf∑
k=1

(
Fk|ref − Fk|hemis

)2
(7.8)

It can be seen in Figure 7.19�b that the convergence of Pvtan is roughly a linear function
of the logarithm of the number of traced rays.
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Figure 7.19: In�uence of the number of rays � a) CPU time � b) convergence.

7.3.2 Numbers of triangles and surfaces

The two next considered parameters are the numbers of triangles and surfaces de�ning
the geometrical models. Di�erent versions of the same geometrical model are considered,
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Figure 7.20: Numbers of triangles and surfaces.

with di�erent meshes. Some surfaces are combined in order to reduce the total number of
surfaces2. Figure 7.20 shows the evolution of the CPU time in function of the number of
triangles, for three geometrical models di�ering by the number of surfaces (the character-
istics of the di�erent models are given in Table 7.7. The evolution of the CPU time is a
roughly linear function of the number of triangles (if the resolution of the voxels is adapted
to each model). The CPU time is roughly insensitive to the number of surfaces (if the
resolution of the geometrical cells is adapted to each mesh).

Model's name Surfaces' number Elements' number Mean density of the cells
Model 1�a 70 1 398 19.971
Model 1�b 70 6 301 90.014
Model 1�c 70 10 970 156.714
Model 2�a 136 2 776 20.412
Model 2�b 136 5 001 36.772
Model 2�c 136 6 031 44.346
Model 2�d 136 10 970 80.662
Model 3�a 1 156 2 776 2.401
Model 3�b 1 156 5 001 4.326
Model 3�c 1 156 6 031 5.217
Model 3�d 1 156 10 970 9.490

Table 7.7: Characteristics of the three models of Figure 7.20.

2We used a Nastran conversion of the Esarad model. In this version, each thermal node (Esarad elemen-
tary patch) of a same surface is considered as a new, independent surface. Di�erent nodes can be merged
into one surface, reducing the total number of surfaces.
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7.3.3 Resolution of the USD voxels

Figure 7.21 represents the evolutions of the CPU time (upper curve) and the density
(lower curve) that is, the average number of surfaces per voxel. An increase of the voxel's
resolution nx yields a strong decrease of the CPU time, followed by a constant level when
the resolution nx is higher than 15. If the second curve is considered, a decrease of the
density is observed when the resolution increases. The decrease of the density is a roughly
linear function of the logarithm of nx, for small values of nx.
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Figure 7.21: Resolution of the USD voxels.

7.3.4 Resolution of the geometrical cells

Figure 7.22 represents the evolutions of the CPU time and the density in function of the
resolution of the geometrical cells. The considered case is characterized by a low initial
density (see the lower curve); it means that the number of elements is similar to the num-
ber of surfaces. The acceleration due to the geometrical method is of limited impact in
this case; the main acceleration is due to the spatial decomposition in voxels. A slight
decrease of the CPU time is observed, followed by a constant level. For large values of the
resolution, the CPU time can exceed the initial CPU time.

It appears that a choice of 20 for the resolution seems to yield acceptable CPU time,
for every considered con�gurations.

Validation 193 P. Vueghs



7.3. MATHEMATICAL BEHAVIOUR 194

0 20 40 60 80 100 120
4

6

8

10

12

14

C
P

U
 ti

m
e 

[m
in

]

0 20 40 60 80 100 120
0.5

1

1.5

2

2.5

Number of voxels n
1

D
en

si
ty

Figure 7.22: Resolution of the geometrical cells.

Remark: In this case, the impact of the �rst level of acceleration is limited because
of the low initial density. In the case of a model with a large initial density, the �rst
level will be more e�cient. This two-level approach yields a global acceleration which
is insensitive to the two initial densities (the �nite element one, linked to the �rst level,
and the geometrical primitives, associated with the second level). It adapts itself to the
considered geometrical con�guration and associated �nite element mesh.

7.3.5 Comparison with Esarad

Our algorithm has been compared with Esarad, for a comparable number of surfaces, based
on the geometrical de�nition of the model (see Figure 7.23�a). Di�erent number of rays
have been tried and the evolution of the computational time has been reported. It is
represented in the next Figure. It appears that our algorithm is faster than Esarad for the
considered test case.

7.3.6 Comparison with Samcef

To conclude the study of the performances of our algorithm, it has been compared with
Samcef for a geometry made of triangles (see Figure 7.23�b). Our algorithm is still a lit-
tle slower than Samcef; the proposed algorithm is 1.25 times longer than Samcef. Maybe
it is due to the intersection routine, which returns more information ({u, v} parameters
of the impact to compute the shape functions). Not computing {u, v} can simplify the
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Figure 7.23: Comparison with reference software � a) Esarad � b) Samcef.

acceleration routine. Another point is that Samcef is an industrial, optimized tool, while
the algorithms presented in this thesis are used for prototyping purposes. An optimisation
step is still necessary.

If geometrical primitives are considered, the CPU time increases (see the red curve
in Figure 7.23�b). The introduction of the geometry, which is not currently feasible in
Samcef, doubles the computation time of Pvtan. It is straightforward that the ray-surfaces
intersections are more complex for geometrical primitives like cylinders, discs and spheres
than for triangles. In order to save computation time, the geometry could be used only
where it is necessary (for optical system, specular surface and caustics) and approximates
the other surfaces with triangles and/or quadrangles, as it is done in Samcef.

These results have been obtained with the XEUS test case. Another test case could
yield di�erent ratios between the di�erent methods.

Validation 195 P. Vueghs



Chapter 8

Conclusions and perspectives

The main objective of this PhD research project was to develop a new ray tracing algo-
rithm for radiative heat transfer, roughly having the same functionality as the reference
software Esarad. The proposed algorithm computes all relevant radiative quantities, such
as exchange factors and heat �uxes.

After brie�y reviewing the requirements presented in Section 1.3, we can conclude the
following.

Requirements 1 and 2 are ful�lled: it is a ray tracing algorithm, and the new algorithm
computes the relevant exchange factors and external heat loads.

Requirement 3 is ful�lled: the algorithm is mathematically well-behaved, which has
been checked with the Esarad unit test cases and illustrated with the XEUS case (see Sec-
tion 7.3).

Requirement 4 is ful�lled: the di�erent surface phenomena - di�use, specular and glossy
re�ection - have been addressed in Section 3.2; several test cases have been implemented
for di�use and specular re�ections.

Requirement 5 is partially ful�lled: the support for two spectral bands and the exten-
sion to multiple wavelength bands (e.g. for cryogenics applications) have been considered
in the mathematical part (appendix A); applications have been implemented in internal
report [Vue06a] but not in the present document, for the sake of brevity.

Requirement 6 is ful�lled and even more functionality has been developed: both �-
nite element and lumped parameter formulations for heat transfer model are supported.
Although our initial objectives concerned radiative heat transfer only, we developed a
ray tracing acceleration technique which allows an easy integration of radiation with con-
duction, based on a �nite element representation of the initial geometrical model. This
technique allows us to bridge the gap between the common methods used in space thermal
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engineering and the �nite element formalism. The de�nition of �nite element view factors,
based on the demonstration of Section 6.1.5.1, and its use with the hemisphere method
yield a very e�cient ray tracing algorithm giving access to a detailed �eld of view factors
with a very limited amount of additional computation time.

The ray tracing performance obtained with the new algorithm has been compared with
Esarad and Samcef, and presents comparable results, without dedicated performance tun-
ing. This implies that an e�cient industrial implementation is feasible.

Requirement 7 is ful�lled: statistical accuracy control is included in the new algorithm.
We have carefully addressed the computation of exchange factors by ray tracing. The strat-
i�ed hemisphere method (presented in Section 3.1) has been designed in order to compute
di�use view factors and, in a more general way, to obtain the visibility from a di�use sur-
face. Characterized by a convergence superior to other random processes, the hemisphere
method is associated with a statistical accuracy control (SAC) feature linking the desired
accuracy level (maximum relative error ε and con�dence interval α) to the geometrical
con�guration (view factor) and the number of traced rays.

On the basis of the statistical accuracy control developed for the hemisphere, we have
established a SAC for the solar heat �ux. Concerning the planetary heat �uxes, we propose
to use a variant of the hemisphere method, where the deterministic grid is de�ned between
0◦ and γP , where γP is the angular aperture of the planet. The SAC of the hemisphere
method can then be used to govern the computation of planetary heat �uxes (albedo and
infrared) in one single ray tracing process.

Requirement 8 is ful�lled: the algorithm enables to correct the exchange factors as a
function of the computed variance. We have studied the extension of view factors to handle
more complex surface phenomena (specular re�ection, transmission, non-di�use emission).
We compared di�erent ways to enforce reciprocity and closure, yielding a correction me-
thod for the exchange factors depending on their associated variance (see Section 3.3).

Requirement 9 is partially achieved: with the new algorithm a substantial performance
improvement for the execution of a thermal-radiative analysis case can be realized com-
pared to using classical Monte Carlo ray tracing methods (as e.g. implemented in Esarad).
The performance improvement is achieved thanks to the strati�ed hemisphere method,
which requires less rays to obtain a given accuracy. Computing view factors rather than
radiative exchange factors requires less extensive ray tracing steps because no di�usely
re�ected rays need to be traced and the other re�ected rays are more rapidly attenuated.
The full radiative heat transfer characterization is still obtained thanks to Gebhart's ma-
trix method that we extended in Section 3.4 or by using the radiosity formulation, based
on view factors, presented in Section 2.4. The last key feature is to optimally combine
the di�erent ray tracing process steps needed to execute a thermal-radiative analysis case
for a complete space trajectory, which is usually one whole orbit around a planet. With
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a classical space thermal analysis tool for every orbit position at least three ray tracing
steps need to be performed: for solar, albedo and planetary infra-red heat �uxes. We can
reduce this number by combining the two planetary heat �ux computations in a single ray
tracing step. If multiple spectral bands need to be considered, a classical tool needs one
ray-tracing step per band. With the new algorithm it is possible to reduce the computation
to one single ray tracing (see Section 3.2) with only some additional ray tracing when spe-
cular re�ection is present in the model. Overall both the computer processing and memory
requirements are signi�cantly reduced with the new algorithm, however it remains to be
established whether "an order of magnitude" better performance can be achieved.

A last perspective is based on the establishment of adjoint equations for radiosity and
importance (see Appendix B.2). This set of equations, jointly used with the measure of the
geometrical error induced by the strati�ed hemisphere method, enables the derivation of a
measure for the error in the radiative heat �ow between any two surfaces. These equations
are expected to form the basis for e�ective usage or adaptation of more methods developed
in digital image synthesis to the �eld of numerical radiative heat transfer. This would be
a good subject for a follow-up research activity.
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Appendix A

Mathematical formulation

In this appendix, we group the di�erent mathematical formulations of radiative heat trans-
fer used in the framework of this thesis which have been inspired from literature and do
not require particular developments.

A.1 Gebhart's formulation

A di�erent formulation has been developed by Benjamin Gebhart in the sixties. While the
previous equations are based on the notion of radiosity and the use of view factors, the Geb-
hart's equations directly link the temperatures of the di�erent surfaces, through the self-
emitted power. This formulation has �rst been presented in the articles [Geb61b, Geb59].
It is also presented in the books [SH01, Geb61a].

The Gebhart's factor1 Bi−j is de�ned to model the di�erent paths that the light emitted
by a surface i can experience before being absorbed by j.

Then, the net radiative power of a surface i is the di�erence between the self-emitted
power (equal to AiεiEb,i) and the power received from the other surfaces. This last power is
obtained by summing the contributions2 on all the surfaces which have a non-zero Gebhart
factor with the surface i.

Qi = AiεiEb,i −
N∑
j=1

Bj−iAjεjEb,j (A.1)

If we consider the radiative heat �ux at a point r, it is given by the general for-
mula (2.31):

q(r) = ε(r)Eb(r)− ε(r)H(r) (A.2)

1The Gebhart's factor is named absorption factor by Gebhart himself [Geb61a], transfer factor in [SH01]
when multiplied by the initial emissivity Fi−j = εiBi−j .

2AjεjEb,j represents the power di�usely emitted by a surface j. The fraction Bj−i is �nally absorbed
by the surface i.
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The absorbed energy at the point r is the sum of two components, given by the following
relation:

ε(r)H(r)dA = ε(r)H0(r)dA+

∫
A′
ε(r′)Eb(r

′)BdA′−dAdA
′ (A.3)

The �rst term represents the absorbed component of the external irradiation. The
second term corresponds to the radiation emitted by the surfaces of the 3D-model, taking
multi-re�ection into account.

If we use the reciprocity relation of the Gebhart factors, we obtain the following ex-
pression of the irradiance:

H(r) = H0(r) +

∫
A′
Eb(r

′)dBdA−dA′ (A.4)

If we decompose the model into N isothermal patches of uniform emissivity, we obtain:

qi(ri) = εiEb,i − εiH0,i(ri)− εi
N∑
j=1

Eb,jBdAi−Aj
(A.5)

The radiative heat �ux qi(ri) is not constant on Ai because the irradiance can vary
on Ai, as well as the point wise Gebhart factor BdAi−Aj

. We have to average the previous
equation on Ai.

qi = εiEb,i − εiH0,i − εi
N∑
j=1

Eb,jBi−j (A.6)

which is identical to the initial equation developed by Gebhart, with an additional term
related to the external irradiation.

If we refer to a previous remark, the heat �ux is balanced by two di�erent contributions:
the external irradiation and the black body radiation emitted by the surfaces.

qEi = εiEb,i − εi
N∑
j=1

Eb,jBi−j (A.7)

qIi = −εiH0,i (A.8)

The equivalence of the Gebhart equations (A.7) and (A.8) with the di�use equa-
tions (2.40) and (2.41) is proved in appendix B.1.

A.2 Semi gray approximation

In heat transfer for space applications, the radiations cover a large spectral band, from
thermal infrared to ultraviolet. The thermo optical properties can widely vary on this
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spectral domain. A common approximation consists in separating the spectral domain
into two separated bands: the visible one which corresponds to the irradiation from the
Sun and the infrared one which is linked to the emission of the surfaces around −200◦C
and 200◦C. The visible domain is characterized by wavelengths inferior to 3µm while the
infrared domain corresponds to wavelengths larger than 3µm. This approximation is jus-
ti�ed by the fact that the spectral range of these two radiations do not overlap.

Due to the separation of the spectral domain, we have to develop two sets of equations.
If we suppose that the surfaces of the model do not emit visible light, we can decouple the
two sets of equations.

A �rst analysis of the semi gray approximation has been performed by Bobco and
coworkers [BAO67] for di�use re�ection only. In this section, we use an approach similar
to [Mod03] in order to include specular re�ection.

For the sake of readability, we will note the quantities related to the visible band with
an asterisk ∗. The infrared quantities are noted as in the previous sections.

A.2.1 Visible component

If we assume that the self-emission of the model's surfaces is equal to zero in the visible
range, the visible radiosity is only due to di�use re�ection:

J∗(r) = ρd∗(r)H∗(r) (A.9)

The visible component of the heat �ux can be obtained from the visible irradiance as
follows:

q∗(r) = J∗(r) + ρs∗(r)H∗(r)−H∗(r) (A.10)

= −α(r)H∗(r) (A.11)

For each surface, the visible heat �ux reduces to the absorption of the irradiance. This
irradiance is the sum of the external irradiance Hs∗

0 (r), received either directly or after any
number of specular re�ections, and the radiosity received from the geometrical model:

H∗(r) = Hs∗
0 (r) +

∫
A′
J∗(r′)dF s

dA−dA′ (A.12)

The radiosity is linked to the radiative heat �ux by the simple relation:

J∗(r) = −ρ
d∗(r)

α(r)
q∗(r) (A.13)

The radiative heat �ux can then be rewritten as:

q∗(r)

α(r)
= −Hs∗

0 (r) +

∫
A′

ρd∗(r′)

α(r′)
q∗(r′)dF s

dA−dA′ (A.14)
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We decompose the model into isothermal patches characterized with constant thermo-
optical properties. We average each equation i on the surface area Ai.

q∗i
αi

= −Hs∗
0,i +

N∑
j=1

ρd∗j
αj
q∗jF

s
i−j (A.15)

Remark: the hypothesis of isothermal patches is not used for the visible set of equa-
tions. However, it is necessary for the infrared set of equations.

Remark: the thermal radiosity J∗i corresponds to the radiosity Bi computed in ren-
dering [GTGB84]. Indeed, we can consider the visible sources (the Sun and the planet
re�ecting the albedo �ux) as "lamps", light sources. The power of these sources is a data,
given by the position and orientation of the satellite on its orbit.

A.2.2 Infrared component

Once the distribution of absorbed visible heat �uxes q∗i has been computed, we must in-
troduce it in the thermal equations depending on the local boundary condition.

When the temperature Ti of a surface i is known, the total heat �ux is the sum of the
infrared and visible components:

qi|total = q∗i + qi (A.16)

If the heat �ux is �xed at a given value qi|total, the infrared component is then �xed
at:

qi = qi|total − q
∗
i (A.17)

The infrared equations are identical to the radiosity equations (2.62).

A.3 Multiple spectral bands

For some applications such as cryogenics equipments, the previous semi-grey approxima-
tion is not su�cient and more spectral bands must be de�ned. In this case, we use the
band approximation [Mod03, Pan05]. We decompose the spectral domain into M bands.
We assume that the thermo-optical properties are constant on each spectral band. A
development similar to the one used previously will yield the following set of equations:

E
(m)
b,i −

N∑
j=1

(
1− ρs(m)

j

)
F
s(m)
i−j E

(m)
b,j =

qmi
εmj
−

N∑
j=1

ρ
d(m)
j

ε
(m)
j

F
(m)
i−j q

(m)
j +H

s(m)
0,i (A.18)

The total power emitted by a surface i is obtained by summing the components of the
di�erent spectral bands:

Eb,i =
M∑
m=1

E
(m)
b,i (A.19)
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In the same way, the total radiative heat �ux is the sum of the di�erent spectral bands:

qi =
M∑
m=1

q
(m)
i (A.20)

The total irradiance corresponds to the sum of the irradiances used in the M spectral
bands:

H0,i =
M∑
m=1

H
s(m)
0,i (A.21)

The width of the spectral bands must be chosen in such a way that the thermo-optical
properties can be assumed constant, on each band. On the other hand, if we consider
specular surfaces, we need to store a complete set of view factors for each spectral band.
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Appendix B

Radiosity equation, Gebhart's

formulation and importance

B.1 Equivalence between the radiosity equations and

Gebhart's formulation

In this appendix, we prove the equivalence between the radiosity equations (2.40) and (2.41)
and the Gebhart's equations (A.7) and (A.8). The �rst demonstration is related to the
self-emitted power of the surfaces and the heat �ux qEi . The second demonstration concerns
the external irradiation and the component qIi of the radiative heat �ux.

B.1.1 Self-emitted power

The demonstration is based on a three-step development:

1. we consider the equation (2.40), we isolate the radiative heat �ux and compute the
total net power;

2. we use the Gebhart's equation (A.7) and use the iterative formula of the Gebhart
factors based on the view factors;

3. we compare the two resulting equations and �nd again the equation (A.7).

The �rst step yields the following development:

N∑
j=1

[
δi,j
εj
−
(

1

εj
− 1

)
Fi−j

]
qEj =

N∑
j=1

(δi,j − Fi−j)Eb,j

⇔ Qi = Aiq
E
i = AiεiEb,i −

N∑
j=1

AiεiFi−jEb,j +
N∑
j=1

AiεiρjFi−j
qEj
εj
(B.1)
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If we consider the second step, we introduce the Gebhart's formula for the radiative
exchange factors into the equation (A.7):

Qi = Aiq
E
i = AiεiEb,i −

N∑
j=1

AjεjEb,jBj−i

= AiεiEb,i −
N∑
j=1

AiεiFi−jεjEb,j −
N∑
j=1

Aiεi

N∑
k=1

Fi−kρkBk−jEb,j (B.2)

Finally, we compare the equations (B.1) and (B.2) and obtain the following equation:

Aiεi

[
N∑
j=1

Fi−j(1− εj)Eb,j −
N∑
j=1

N∑
k=1

Fi−kρkBk−jEb,j

]
= Aiεi

N∑
j=1

ρjFi−j
qEj
εj

(B.3)

We permute the indices j and k of the second term of the �rst member and we simplify
the factor Aiεi:

N∑
j=1

Fi−j(1− εj)Eb,j −
N∑
k=1

N∑
j=1

Fi−jρjBj−kEb,k =
N∑
j=1

ρjFi−j
qEj
εj

(B.4)

⇔
N∑
j=1

ρjFi−j

(
Eb,j −

N∑
k=1

Bj−kEb,k

)
=

N∑
j=1

ρjFi−j
qEj
εj

(B.5)

⇒
qEj
εj

=

(
Eb,j −

N∑
k=1

Bj−kEb,k

)
(B.6)

⇔ Qj = Ajq
E
j = AjεjEb,j −

N∑
k=1

AjεjBj−kEb,k (B.7)

= AjεjEb,j −
N∑
k=1

AkεkBk−jEb,k (B.8)

We �nally obtain the initial equation of Gebhart. The two formulations are equivalent
if this initial equation is correct. This is one of the hypothesis of this demonstration. The
two formulas (B.1) and (B.2) are equivalent, so are equations (2.40) and (A.7).

B.1.2 External irradiation

The component qIi of the radiative heat �uxes can be computed with the equation (2.41)
from the radiosity formulation. Here we will demonstrate that this formulation is equiva-
lent to equation (A.8).
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First, we obtain the radiative heat �ux on i in function of the irradiance on i and the
heat �uxes of the other surfaces j.

N∑
j=1

[
δi−j
εj
−
(

1

εj
− 1

)
Fi−j

]
qIj = −H0,i

⇔ qIi
εi

= −H0,i +
N∑
j=1

ρjFi−j
qIj
εj

(B.9)

Following the Gebhart formulation, the net power on i is given by the following relation:

Qi = AiεiHo,i +
N∑
j=1

Bj−iAjρjH0,j (B.10)

This relation implies that the power absorbed by a surface i due to the external ir-
radiation is the sum of the incoming irradiance and the re�ected irradiance from all the
surfaces of the model. We start from the equation (B.10) and use the reciprocity relation
of the Gebhart factors.

Qi = AiεiH0,i +
N∑
j=1

Bi−jAiεi
ρj
εj
H0,j (B.11)

We introduce the Gebhart equation for the radiative exchange factors in function of
the view factors.

Qi = AiεiH0,i +
N∑
j=1

Fi−jAiεiρjH0,j +
N∑
j=1

N∑
k=1

Fi−kρkBk−jAiεi
ρj
εj
H0,j (B.12)

We divide the previous expression by Aiεi and permute the indices j and k appearing
the the double sum term:

qi
εi

= −H0,i −
N∑
j=1

Fi−jρjH0,j +
N∑
k=1

N∑
j=1

Fi−jρjBj−k
ρk
εk
H0,k (B.13)

Finally, we compare this last equation with the relation (B.9):

qj
εj

= −H0,j −
N∑
k=1

Bj−kH0,k
ρk
εk

(B.14)

Qj = AjεjH0,j +
N∑
k=1

AjεjBj−kH0,k
ρk
εk

(B.15)

= AjεjH0,j +
N∑
k=1

AkBk−jρkH0,k (B.16)
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We �nd the initial equation of Gebhart applied to the external irradiance. This con-
cludes the demonstration.

This demonstration has been performed for only one spectral band and for di�use
re�ectors but it can easily be extended to the case of multiple spectral bands and specular
re�ectors.

B.2 Importance equations

In this Appendix, we will demonstrate the formulation of the importance (6.27) equation.

B.2.1 Importance equation

Let us consider an environment without any light source, i.e. without any thermal radia-
tion [PM95]. If a source is introduced, each surface in the model can receive a �ux, either
directly or after any number of re�ections. The received �ux is function of the proximity
to the source. This can be described by the notion of importance. The closer to the source,
the higher �ux, the higher importance.

Let us introduce a detector, noted k, in the model. This detector is assumed to be ideal
i.e. it does not a�ect the distribution of radiation. The detector receives a fraction of the
radiation emitted by the source, numbered 1. Let us note Wk(x1) the power received by
k. Wk is called the importance.

In order to establish the equation of importance, we must �rst consider the direct com-
ponent of importance. We de�ne a function gk which is equal to 1 in the region of the
detector k and 0 elsewhere. We note χk the area of the detector k. gk represents the initial
importance, i.e. the direct contribution.

The contribution due to multi-re�ection corresponds to the �ux received after any
number of re�ections. Let us note y the nearest point from x in the direction Θx (see
�gure B.1).

We have to consider all incident radiations on y which are re�ected in the direction of
x. An elementary contribution on y is given by ρy cos(θy)dωyWk(y). We �nally obtain the
importance equation:

Wk(x) = gk(x) +

∫
Ωy

ρy cos(θy)Wk(y)dωy (B.17)

We decompose the model into N patches assumed to be isothermal and associated with
uniform thermo-optical properties. We integrate the previous equation on the surface Ai
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Figure B.1: Direction Θy on the hemisphere Ωy

of patch Pi. We obtain:

Ii = Ri +
N∑
j=1

ρjFj−iIj (B.18)

where
Ii = AiWi =

∫
Ai
W (x)dAi

Ri =
∫
Ai
g(x)dAi =

{
Ai if Ai ∈ χ
0 if Ai /∈ χ

(B.19)

χ is the set of the considered surfaces. In heat transfer, all surfaces must be considered.
We cannot remove some faces for visibility reasons, as it is done in rendering.
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Appendix C

Estimation of the error term

We used a Matlab routine in order to compute the projection of a target surface Aj onto
the hemisphere. The function INPOLYGON has been used to evaluate the shadow ratio
of the cells of the strati�ed hemisphere. Given a contour and a set of points, the func-
tion INPOLYGON determines if the points are inside or outside the contour. For each cell,
the shadow ratio is approximated by the number of corners situated in the contour. So
a discrete approximation of the shadow ratio is obtained; the approximation increases by
step of 25%.

Here the results obtained with the Matlab routine are presented in the case of two
squares of unit length, aligned in parallel planes, separated by a unit distance (see Fi-
gure C.1). In this case, the distance between the patches Pi and Pj is equal to the length
of an edge. The results obtained with this routine are the contour of projection, the shadow
ratios, the evolution of the error in function of the resolution M of the hemisphere, the
evolution of the number of internal and external cells in function of M ... This will help
us to establish laws of evolution in function of M and to estimate the error term in the
equation (3.16).

�

�

�

� �

� �

Figure C.1: Parallel squares - geometrical con�guration.
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C.1 Projection of the target area

Figure C.2�a represents the result of the projection of the target patch onto the hemisphere.
The resolution has been limited for sake of visibility. Figure C.2�b represents the shadow
ratio of each cell, varying from 0 to 1.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure C.2: Projection of the target area � a) projection of the contour onto the unit disc
� b) shadow ratios across the unit disc.

C.2 In terms of erroneous cells

Figure C.3�a represents the number of rays impacting the interior of the contour of the
target patch. These rays are not subject to error (the corresponding shadow ratio is equal
to 1). The evolution of this number in function of the hemisphere's resolution is quadratic.
This con�rms equation Fdi−j = n2

M2 . Figure C.3�b corresponds to the number of rays im-
pacting the contour of the target patch. These rays can be subject to error since their
shadow ratios vary between 0 and 1. We can observe that the evolution of this number
of rays is e�ectively linear, as we supposed previously. We can also recognize periodical
perturbations linked to the shape of the target contour. These perturbations are due to
aliasing. This aliasing is linked to the projection of Cj on the hemisphere mesh in function
of M . The number of cells partially covered by the projection is driven by a deterministic
process.

Figure C.3�b justi�es the de�nition of the geometrical parameter c that we introduced
in equation (3.18) and which allows us to approximate the number of cells subject to error
by the following expression. Let us point out that the value of c is a function of the
geometrical con�guration and must be evaluated for each model.

m ≈ cM
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Figure C.3: Impact numbers � a) interior of the target � b) contour of the target.

C.3 In terms of shadow ratios

We will now consider the evolution of the shadow ratios in function of the hemisphere
resolution. Figure C.4 represents the evolution of the cumulated shadow ratio in function
of the resolution. We can observe that it is a�ected by the same perturbations as in
Figure C.3�b. This is due to the deterministic projection of the contour onto the hemisphere
mesh. We can consider that the evolution of the cumulated shadow ratio is roughly linear.
We can de�ne a constant s and approximate the sum by a linear law:

m∑
k=1

pk ≈ sM (C.1)

where the sum is performed on the m cells of the contour that is, the cells which are
characterized by a partial shadow ratio. The totally covered cells are not counted here.

C.4 In terms of the cumulated error

We will now evaluate the sum which appears in the equation (3.16). In Figure C.5�a, we
trace the evolution of the cumulated error. We can observe that this error follows a linear
law in function of the hemisphere resolution. In Figure C.5�b, we divided the cumulated
error by the current resolution, for each resolution. For small resolutions, we can observe
a chaotic behaviour. Let us note that the mean error does not exceed 0.25, which is in
agreement with the previous theory (maximum error for a shadow ratio of 50% and given
bypk(1 − pk). When the resolution increases, the mean error converges to a value which
only depends on the geometrical con�guration. Thanks to the linear behaviour of the
cumulated error, we can introduce a new constant d which allows us to approximate the
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Figure C.4: Cumulated shadow ratio.

sum term by the following linear law (see equation (3.27)):

m∑
k=1

pk(1− pk) ≈ dM

Let us note here that the sum can be performed on all the cells of the hemisphere, only
the partially covered ones will yield non-zero terms.

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45
Cumulated error

Resolution M
0 20 40 60 80 100

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25
Mean cumulated error

Resolution M

Figure C.5: Cumulated error � a) cumulated error � b) mean cumulated error.

Many con�gurations have been studied, the same linear evolutions have been observed
for the previous studied quantities.
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Appendix D

Normal behaviour of the strati�ed

hemisphere method and exchange factor

to space

D.1 Illustration of the normal behaviour of the view

factors computed with the hemisphere method

In this Appendix, we will illustrate the normal behaviour of the distribution of view factors
computed with the strati�ed hemisphere method and Gauss quadrature.

We consider a particular view factor from a simple test case, composed of two per-
pendicular rectangles sharing a common edge. The values obtained for 1 000 ray-tracing
processes are stored. They are then sorted by increasing values; the result is plotted in Fi-
gure D.1. This curve corresponds to the cumulative distribution function of the considered
view factor. This function is discontinuous. The function is �tted with a Fourier function
(order 6). The �tting curve is plotted in red in Figure D.1.

The next step consists in deriving the �tting function with respect to the view factor in
order to obtain the probability density function. The result is shown in Figure D.2. This
function is �tted with a gaussian curve. The two curves are in good agreement, in spite of
the successive operations performed on the initial data, limited to 1 000 samples.

We can conclude that the view factors obtained with the strati�ed hemisphere method
follow a normal law. This property can be demonstrate by using the Central-Limit theorem.
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Figure D.1: Cumulative distribution function.

D.2 Exact exchange factors to the deep space - demon-

stration

In this Appendix, we present the mathematical developments related to the �rst method
designed to enforce closure in case of an open model. The fundamental hypothesis is that
the "model-to-deep-space" exchange factors, noted ηk,N+1, are exact and do not need any
correction. In this case, the line-constraints must be completed as follows:

gk = Ωk −
N+1∑
l=1

η̈k−l (D.1)

= Ωk − ηk,N+1 −
N∑
l=1

η̈k−l (D.2)

In the same way, the column-constraints must be rewritten. The following expressions
are obtained:

g∗k = Ωk −
N+1∑
l=1

η̈l−k (D.3)

= Ωk −
N∑
l=1

η̈l−k − ηN+1,k (D.4)

= Ωk −
N∑
l=1

η̈l−k − ηk,N+1 (D.5)
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Figure D.2: Probability density function.

The last equation has been obtained by using the exactness of the exchange factors to
the deep space. This implies that the reciprocity relation is also exact. The Lagrangien
consists also of the objective function H. As the exchange factors to the deep space are
supposed to be exact, it is not necessary to modify the initial formulation of the least-
squares smoothing. The �rst derivative of the Lagrangien is computed. We �nd again
the relation (3.93). The introduction of the closure relation yields the following set of
equations:

Ωk =
N∑
l=1

η̇k−l + λk

N∑
l=1

wk−l +
N∑
l=1

λlwk−l + ηk,N+1 (D.6)

The matrix stays unchanged. But the vector b must also be completed. The following
relation is obtained:

bj = Ωj −
N∑
i=1

η̇j−i − ηj,N+1 (D.7)

D.3 Correction of the exchange factors to the deep space

- demonstration

Here the least-square smoothing is extended to open models by removing the column-
constraints g∗i . This suppression is necessary because we have no information concerning
the line of the exchange factor matrix relative to the deep space.

The main di�erence with the �rst method is that the exchange factors to the deep
space are no longer supposed to be exact. They are characterized by an error and must be
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corrected. Without any information concerning the reciprocal exchange factor, the "model-
to-deep-space" exchange factors are not concerned by the reciprocity enforcement. They
can be modi�ed by the closure enforcement and must appear in the objective function H.
The following expression of the Lagrangien is obtained:

L =
N∑
i=1

N+1∑
j=1

(
η̇i−j − η̈i−j

2ωi−j

)2

+
N∑
i=1

λigi (D.8)

L =
N∑
i=1

N+1∑
j=1

(
η̇i−j − η̈i−j

2ωi−j

)2

+
N∑
i=1

λi

(
Ωi −

N+1∑
j=1

η̈i−j

)
(D.9)

The �rst derivative of the Lagrangien with respect to η̈i−j yields the desired value of
the estimator. It yields the following results:

∂L
∂η̈i−j

= − η̇i−j − η̈i−j
ωi−j

− λi = 0 (D.10)

⇔ η̈i−j = η̇i−j + ωi−jλi (D.11)

The introduction of this last expression in the closure law yields the following expression:

N+1∑
j=1

ωi−jλi = Ωi −
N+1∑
j=1

η̇i−j (D.12)

λi =

Ωi −
N+1∑
j=1

η̇i−j

N+1∑
j=1

ωi−j

(D.13)
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Appendix E

Extension of Gebhart's method for

specular view factors and

non-isothermal surfaces

In this Appendix, two extensions of Gebhart's method are analytically proved. The �rst
one corresponds to the introduction of non-di�use re�ectors. The second formula has been
established in the framework of the �nite element method and illustrates the extension to
non-isothermal surfaces.

E.1 Specular re�ectors

In this Section, the case of combined di�use and specular re�ections is considered. The
emission process remains purely di�use. Gebhart's method is developed in function of the
extended, specular view factors. The patches are assumed to be isothermal.

Let us suppose that the specular view factors have been previously computed. The
power di�usely emitted by the patch Pi is equal to:

Qi = AiεiEb,i (E.1)

The power emitted by Pi which reaches Pj (directly or after any number of specular
re�ections) and which is �nally absorbed by Pj, is given by the following relation:

Qi−j|direct-specular = AiεiEb,iF
s
i−jεj (E.2)

The power emitted by Pi, which reaches a patch Pk (directly or after any number of
specular re�ections) and which is di�usely re�ected by Pk, is equal to:

Qi−j|di�use = AiεiEb,iF
s
i−kρ

d
k (E.3)
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The fraction of this power which is then absorbed by Pj is equal to Bk−j. Finally, the
power emitted by Pi which is absorbed by Pj is given by:

Qi−j|total = AiεiF
s
i−jεj +

N∑
k=1

AiεiEb,iF
s
i−kρ

d
kBk−j (E.4)

The corresponding Gebhart's factor is obtained by dividing the previous result by the
total power emitted by Pi:

Bi−j = εjF
s
i−j +

N∑
k=1

F s
i−kρ

d
kBk−j (E.5)

This relation has been compared to [DR97]. The two expressions are equivalent.

E.2 Finite element formulation

In the case of �nite elements, non-isothermal patches are obtained. In this Section, we
present the corresponding formulation of Gebhart's method.

We suppose that the �nite element view factors have been previously computed. The
power emitted by node j on patch i is given by the following relation:

Qi
j =

∫
Ai

N i
j(r)ε(r)Eb(r)dAi (E.6)

= εjEb,jdet (Ji)|jWj (E.7)

where N i
j(r) is the shape function of node j, evaluated on point r on patch Pi, det (Ji)|j

is the determinant of the Jacobian evaluated on node j and Wj is the weight of node j.

The power which leaves node j through patch Pj, which directly reaches node l through
patch Pk and is �nally absorbed by it is equal to:

Qi−k
j−l = εjEb,jdet (Ji)|jWjF

i−k
j−l εl (E.8)

where F i−k
j−l is the view factor from node j on patch i to node l, through its in�uence area

on patch Pk.

The power which leaves node j through patch Pj, which directly reaches node n
through Pm and is di�usely re�ected, is given by the following relation:

Qi−m
j−n = εjEb,jdet (Ji)|jWjF

i−m
j−n ρn (E.9)
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The fraction of this power which is �nally absorbed by node l is equal to Bm−k
n−l . The

power emitted by j through Pi which is absorbed by node l on Pk is equal to:

Qi−k
j−l
∣∣
total = εjEb,jdet (Ji)|jWjF

i−k
j−l εl + εjEb,jdet (Ji)|jWj

∑
m,n

F i−m
j−n ρnB

m−k
n−l (E.10)

where the sum is performed on all the intermediary nodes, through their in�uence area.

The corresponding Gebhart's factor is the fraction of the emitted power which is �nally
absorbed by node k:

Bi−k
j−l = εlF

i−k
j−l +

∑
m,n

F i−m
j−n ρnB

m−k
n−l (E.11)
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Appendix F

Solar visibility

In this Appendix, we demonstrate the interest of strati�ed sampling applied to the compu-
tation of solar visibility, with a reasoning similar to the one developed for the hemisphere
method. The extension from visibility to visible cross section, which is the really useful
quantity for heat �ux computation, is not straightforward.

Then, the basis of a statistical accuracy control are given, in a way similar to the
hemisphere method.

F.1 Strati�ed sampling

If we decompose a surface A into N sub-surfaces Ak, we de�ne the visibility ratio vk as the
fraction of Ak which is visible from the Sun.

In sub-surface k, we generate a random point, uniformly distributed on Ak. Each sub-
surface is governed by a binomial distribution. We de�ne a binomial variable Tk which can
only take two values: 1 if the shadow ray reaches the Sun and 0 otherwise. The probability
of this binomial distribution is equal to the visibility ratio vk. The expected value and
variance of this distribution are:{

E(Tk) = vk
V (Tk) = vk(1− vk)

(F.1)

The visibility of the whole surface A is de�ned as v∗ = 1
N

∑N
k=1 tk, where tk is the score

of the binomial variable Tk. The expected value and variance of this new distribution are:{
E(V ∗) = v

V (V ∗) = 1
N2

∑N
k=1 vk(1− vk)

(F.2)

We can verify that the distribution V ∗ satis�es the hypothesis of the Central limit
theorem. The distribution V ∗ is normal. We de�ne the relative error e = v∗−v

v
, whose
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expected value and variance are:{
E(E) = 0

V (E) = 1
N2v2

∑N
k=1 vk(1− vk)

(F.3)

Since V ∗ is normally distributed, so will be E. The probability α of having a relative
error smaller than ε is given by:

α = erf

(
ε√

2V (E)

)
(F.4)

We introduce this relation in the expression (F.3) of the variance and obtain:(
ε

erf−1(α)

)2

=
2

N2v2

N∑
k=1

vk(1− vk) (F.5)

Among the N terms of the sum, only the terms relative to the shadow limits S con-
tribute to the global error. The other terms are associated with visibility ratios equal to
0 or 1 which cancel the corresponding contributions. These conclusions are similar to the
ones of the hemisphere method.

If we want to compute the visible cross section, we must multiply the local visibility v
by the cosinus of the angle de�ned by the local normal and the solar direction. The cross
section a⊥ is approximated by the following relation:

a∗⊥ =
A

N

N∑
k=1

tk cos(θk) (F.6)

The presence of cos(θk) makes the new distribution to be non-binomial. The computa-
tion of the variance becomes more complex; it depends on the curvature of the surfaces. If
we note V (cos(Θ)T ) the variance of this new distribution [Pla93], the number of random
points is found to be equal to:

N2 = 2

(
erf−1(α)

ε

)2
A2

a2
⊥
V (cos(Θ)T ) (F.7)

The di�culty of this expression lies in the establishment of the variance term, which is
function of the solar direction and the local curvature of the surface A.

F.2 Statistical accuracy control

With respect to view factor computation and the hemisphere method, a given surface is
generally crossed by only one solar shadow. The number of sub-surfaces Ak crossed by
the shadow S is generally limited. This number is evaluated during a �rst pass. Then the
optimal number of rays is given by relation (F.5) and a second ray tracing is performed.
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F.2.1 First pass

�
�

� � � � � � 	 
 � �

Figure F.1: First pass - solar angular aperture.

The objective of the �rst pass is to yield a �rst approximation of the shadow S. This
is done by casting a ray from each node of the sub-surfaces Ak, if the Sun is considered
as a point wise source, at an in�nite distance. If we consider a non-zero solar angular
aperture, it means that the shadow is not sharp but is composer of umbra and penumbra
(see �gure 5.4). It can be estimated by tracing �ve rays, one to the centre of the solar disc
and four on the contour of the disc, on two orthogonal axis (see �gure F.1). If the �ve
rays reach the Sun, the node is fully illuminated. If no ray reaches the Sun, the node is in
the umbra and its solar visibility is equal to zero. For intermediate cases, the node is in
penumbra and the nodal solar visibility varies by steps of 25%.

The visibility ratio vk of sub-surface Ak is obtained by averaging the solar visibility of
its nodes.

At the end of the �rst pass, we know the number of sub-surfaces Ak which are charac-
terized by a partial visibility ratio vk. We have also access to an estimation of the vk's.
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F.2.2 Computation of the number of rays

Giving a maximum relative error ε and a con�dence interval α, the statistical accuracy
control computes the number of rays that must be shot to achieve the desired accuracy, by
relation (F.5).

F.2.3 Partly re�ned ray tracing

From the �rst pass, we obtain the distribution of the visibility ratios across the sub-surfaces
Ak. We can decide to only re�ne the ray tracing on the sub-surfaces which are characterized
by a partial visibility ratio, in order to save computational time.
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