

Figure 2 : Organisation générale de la chromatine et de la queue amino-terminale de l'histone H3. a, les nucléosomes composant la chromatine sont formés des histones H2A, H2B, H3 et H4. **b**, diverses modifications post-traductionelles ont lieu au niveau des résidus de la queue N-terminale de l'histone H3 : acétylation (jaune), phosphorylation (vert), méthylation (rouge). Les encadrés mauves représentent les commutations binaires possibles entre phosphorylation et méthylation décrites au paragraphe 2.3 (adapté d'après Strahl *et al.*, 2000 et Fischle *et al.*, 2003).

Modifications des histones							
Modification	Résidus relevant	Rôle transcriptionnel					
Lysine acétylée	H3 (9,14,18,23, 56) H4 (5,8,12,16) H2A, H2B	Activation					
Lysine sumoylée	H2A (126) , H2B (6/7)	Répression					
Lysine méthylée	H3 (4, 36, 79) H3 (9, 27), H4 (20)	Activation Répression					
Lysine ubiquitinée	H2A (119) H2B (120)	Répression Activation					
Sérine/Thréonine phosphorylée	H3 (3, 10, 11, 22, 28) H2A, H2B	Activation					
Arginine méthylée	H3 (17, 26), H4 (3)	Activation					

 Tableau 1 : Relevé des diverses modifications post-traductionnelles des histones et de leur implication au niveau transcriptionnel (adapté d'après Berger, 2007).

Figure 3 : Modifications de résidus de l'histone H3. Exemple de commutation binaire entre les régions du génome transcrites (On) et non transcrites (Off). (adapté d'après Berger, 2001)

Figure 4 : Représentation des principaux membres des HATs regoupés par famille. La boîte bleue correspond au domaine acétyltransférase, la boîte orange au bromodomaine et la boîte rouge au motif à doigt de zinc. Les échelles de la taille approximative des protéines ne sont pas équivalentes entre les familles (adapté d'après Sterner and Berger, 2000).

Figure 5 : Acétylation par diverses HATs des lysines 9, 14 et 18 de la queue N-terminale de l'histone H3 (adapté d'après Sterner and Berger, 2000).

Figure 6 : Remodelage de la chromatine par les enzymes HATs et HDACs. Les queues N-terminales acétylées sont représentées par des croissants rouges et celles désacétylées sont schématisées par des points rouges (adapté d'après De Ruijter *et al.*, 2003).

Figure 7 : Multitude de substrats pour l'acétylation/désacétylation par les HATs et les HDACs. (adapté d'après Yang X-J and Seto E., 2007).

Figure 8 : Activation différentielle de p53 selon le type de dommage à l'ADN, conduisant soit à la survie, soit à l'apoptose (adapté d'après Knights *et al.*, 2006).

Classe	Homologie en levure	Enzyme	Longueur (aa)	Domaine catalytique	Mécanisme	Localisation
Ι	Rpd3	HDAC1	482	1	Zn^{2+}	Noyau
	Rpd3	HDAC2	488	1	Zn^{2+}	Noyau
	Rpd3	HDAC3	428	1	Zn ²⁺	Noyau/Cyto
	Rpd3	HDAC8	377	1	Zn^{2+}	Noyau
IIa	HDA1	HDAC4	1084	1	Zn ²⁺	Noyau/Cyto
	HDA1	HDAC5	1122	1	Zn^{2+}	Noyau/Cyto
	HDA1	HDAC7	855	1	Zn^{2+}	Noyau/Cyto
	HDA1	HDAC9	1011	1	Zn^{2+}	Noyau
IIb	HDA1	HDAC6	1215	2	Zn ²⁺	Noyau/Cyto
	HDA1	HDAC10	669	2	Zn^{2+}	Noyau/Cyto
III	Sir2	SIRT1-7	310-747	1	NAD ⁺	Noyau/Cyto
IV	Rpd3/HDA1	HDAC11	347	1	Zn^{2+}	Noyau

Tableau 2 : Description des différentes classes de HDACs (adapté d'après Kelly *et al.*, 2002 et Hildmann *et al.*, 2007).

Figure 9 : Localisation cellulaire des HDACs de classe I et II (adapté d'après De Ruijter et al., 2003).

Figure 10 : Représentation des HDACs de classe I, IIa, IIb et IV. Les inhibiteurs de chaque HDAC (décrits au paragraphe 6) sont indiqués à côté des accolades (adapté d'après Bolden *et al.*, 2006).

Classe	Composé	HDACs ciblés	Concentration	Phase clinique
Acide aliphatique	Butyrate	Classe I, IIa	mM	II
	Valproate	Classe I, IIa	mM	II
Acide hydroxamique	TSA	Classe I, II	nM	/
	SAHA (Vorinostat)	Classe I, II	μΜ	Approuvé par FDA pour CTCL
Peptide cyclique	Depsipeptide (FK-228)	HDAC1, HDAC2	nM	II
Benzamide	MS-275	HDAC1, HDAC2, HDAC3	μΜ	Ш

Tableau 3 : Description des différentes classes d'HDACi. (adapté d'après Thiagalingam *et al.*, 2003 et Xu *et al.*, 2007).

Figure 11 : Influence des HDACs sur l'expression de gènes impliqués dans l'initiation et la progression du cancer (adapté d'après Glozak *et al.*, 2007).

Figure 12 : Diverses voies anti-tumorales induites par les HDACi (adapté d'après Xu et al., 2007).

Figure 13 : Explication potentielle de la spécificité tumorale. A, cas des cellules normales ; B, cas des cellules tumorales (adapté d'après Ungerstedt *et al.*, 2005 et Dokmanovic and Marks, 2005).

Figure 14 : Représentation des membres de la famille NF-κB/Rel. Ces protéines comportent un domaine d'homologie Rel (RHD). p65, RelB et c-Rel possèdent un domaine de transactivation (TAD). p105 et p100 contiennent des répétitions ankyrine (adapté d'après Hayden and Ghosh, 2004).

Figure 15 : Structure de l'hétérodimère p50/p65 lié à l'ADN. (adapté d'après Chen et al., 1998).

Figure 16 : Représentation des membres de la famille IĸB. Ces protéines sont caractérisées par des répétitions ankyrine (adapté d'après Hayden and Ghosh, 2004).

Figure 17 : Représentation des trois sous-unités du complexe IKK : IKK α , **IKK** β et **NEMO.** LZ : « leucin-zipper », HLH : hélice-boucle-hélice, a : hélice a, CC1-2 : coiled-coil, Z: doigt de zinc (adapté d'après Hayden and Ghosh, 2004).

Figure 18 : Dé-répression du gène *ciap-2* **médiée par IKK** α . (A) Répression du gène *ciap-2* par l'homodimère p50 et le complexe co-répresseur SMRT/HDAC3. (B) Stimulation de la phosphorylation par IKK α de SMRT conduisant à l'export et à la dégradation du complexe co-répresseur. (C) Fixation de p50/p65 sur le promoteur - Retour de SMRT sur le promoteur – Maintien de la dé-répression par IKK α qui phosphoryle SMRT et p65 empêchant la liaison de HDAC3. (D) Acétylation de p65 par p300 - Transcription du gène *ciap-2* (adapté d'après Gloire *et al.*, 2006a).

Figure 19 : Description de trois types de voies d'activation du NF-kB. La voie classique induite par le TNF α , l'IL-1 β ou le PMA (cfr paragraphe 7.7.1-2-3) ; la voie alternative induite par la LT β (cfr paragraphe 7.7.2) ; les voies atypiques induites par le H₂O₂ (cfr paragraphe 7.7.3.1) ou le PV (cfr paragraphe 7.7.3.2).

Figure 20 : Voie d'activation du NF-κB induite par le TNFα. Cfr paragraphe 7.7.1.1 (adapté d'après Chen and Goeddel, 2002).

Figure 21 : Voie d'activation du NF-κB induite par un récepteur Toll/Interleukin-1. (a) IL-1R et TLR ont un domaine TIR cytoplasmique conservé et un domaine extracellulaire différent. (b) Activation du NF-κB par un TLR (cfr paragraphe 6.7.1.2) (adapté d'après Akira and Takeda, 2004).

Figure 22 : Mécanismes d'activation du NF-\kappaB induits par le H₂O₂, le PV et l'hypoxie/réoxygénation (H/R). Dans les cellules T, le H₂O₂ induit la phosphorylation d'I κ B α soit sur la tyrosine 42 médiée par Syk, soit sur les sérines 32 et 36 médiée par les IKKs, et ce, en fonction de la présence de SHIP-1. Dans les cellules épithéliales (HeLa), le H₂O₂ active le complexe IKK via l'activation de la PKD. Le pervanadate induit la phosphorylation d'I κ B α sur la tyrosine 42 dans tous les types cellulaires présentés, de manière dépendante à c-Src. (adapté d'après Gloire *et al.*, 2006b).

Figure 23 : Représentation de p65/RelA et des sites de phosphorylation ciblés par de nombreuses kinases. Ces sites sont situés dans le domaine d'homologie Rel et dans le domaine transactivateur (TAD) (adapté d'après Chen and Greene, 2004).

Figure 24 : Représentation des sites d'acétylation de p65/RelA. Ces sites, situés dans le domaine d'homologie Rel, module son activité transcriptionnelle, sa liaison à l'ADN et à I κ B α (adapté d'après Chen and Greene, 2004).

Figure 25 : Schéma récapitulatif des modifications post-traductionnelles de p65 et des histones dans l'activation du NF-kB. (adapté d'après Chen and Greene, 2004).