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1.1 Context  

In seismic zones, the steel moment resisting frame building contains heavy welded beam-to-
column connections. The ductility of steel makes it possible to avoid the appearance of cracks in 
the connections by energy dissipation due to plastic strain. However, earthquakes in the 1990s in 
the USA and Japan resulted in widespread and unpredicted damage in welded beam-to-column 
connections in rigid steel frame buildings. These failures explain why the engineering community 
has decided to investigate the reasons for this unexpected behavior and explore alternative 
connection types. Research in many countries has resulted in a number of changes to building 
design codes and specifications. However, performance is affected by many factors such as 
dimensions of beam-to-column components, connection design, manufacturing quality and the 
mechanical properties of the different regions of the joint. A procedure for analyzing these factors 
was recently published under the auspice of the International Institute of Welding (IIW), called 
the Risk Assessment Procedure (RAP). It determines the risk of fracture in seismically affected 
moment connections, covering design, material, fabrication and loading issues.  
 
European steelmakers produce heavy sections used in multi-storey buildings in seismic zones. In 
order to maintain the competitiveness of the European Union in this market, it is important that 
methods verified for specifying steel sections, defining connections and assessing safety in 
service should be available for steel users.  

1.2 VERAPS Project 

The VERAPS project (Validation and Enhancement of Risk Assessment Procedure for Seismic 
connections)  [BAN07] aims to validate and enhance the RAP for connections in seismic areas. 
To achieve this, it further develops modeling methods for predicting connection behavior. The 
objectives are therefore to assess the cyclic plastic rotation capacity of heavy welded beam-to-
column connections as a function of mechanical properties of the beams, columns and weld 
materials and type of joint preparation. Fabrication, testing, modeling methods and reliability 
analyses were combined to achieve this aim. In this project, several numerical tools were 
developed and material data were gathered to contribute to the assessment of connection 
behavior. 
 
The partners of the project were: 

− Corus Ltd UK of the Swinden Technology Center (England), 
− Versuchsanstalt für Stahl, Holz und Steine, University of Karlsruhe (Germany),   
− Instituto de Soldadura e Qualidade (ISQ) in Lisbon (Portugal), 
− ArGEnCo Department, University of Liège (ULg) (Belgium). 

 
Figure 1-1 describes the distribution of the partner’s tasks in the VERAPS project. Firstly, Corus 
provided the steel. Then, eight large scale tests on welded beam-to-column connections were 
carried out at the University of Karlsruhe according to the design performed by the University of 
Liege and Karlsruhe.  
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Next, ISQ measured the residual stresses generated by the welding process in the connection 
zone. The measurements of the material properties were performed by ISQ and Corus, where the 
samples from the connections were machined.  
 
These measurements and finite element simulation results enabled Corus to analyze the 
connection performance according to the RAP procedure.  
 
The work of the University of Liege was to develop a finite element model of Karlsruhe’s tests 
which had to simulate the experiments accurately and enable project members to achieve a series 
of tests completing the test campaign by modeling other connection designs.  
 

 

Figure 1-1: Flowchart of the VERAPS project 

1.3 Objectives 

The current PhD research included in the VERAPS project aims to model the crack’s 
propagationin heavy welded beam-to-column connections by finite elements submitted to cyclic 
quasi-static loading. This modeling approach is validated by tests performed by the University of 
Karlsruhe and the validated model has made it possible to predict the behavior of non-tested 
connections and to explore a larger field of possibilities. The model should require only a few 
material parameters and should be available to industrial engineers. 
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1.4 Scope of the study 

1.4.1 Connection description 

The structure under investigation, described in Figure 1-2, was a welded connection between a 
beam and a column. The beam was a horizontal I-beam. The column is a vertical I-beam. The 
steel of the beams, columns and plates was S 355 grade. The dimensions of these beam flanges 
are considerable. 
 
The welding was applied between the beam and column flanges. At the end of the beam web, 
holes were made to enable access to the weld. Moreover, as it was a weld made on site, a backup 
tab was placed to maintain the beam during the welding process and to prevent weld from 
flowing down when it is in a liquid state. This backup tab was removed after the end of the 
welding. 
 
The shear tab was bolted or welded to the beam web and welded to the column flange. The beam 
web is not directly connected to the column flange.  
 
In this type of setup, the geometry of each piece influences the rotation capacity. 

 

Figure 1-2: Welded beam-to-column connection 

1.4.2 Welding 

The welding linked the beam flange to the column flange. The shape of this welding is described 
in Figure 1-3. The angle of bevel, α, was about 35 to 45 °. It is performed by arc welding. Due to 
dilation and contraction during the manufacturing, the welding process generates non-negligible 
residual stresses. During the thermal cycle, steel undergoes not only liquid-solid phase 
transformation but also solid phase transformation, which affects the material properties. Here the 
welding was performed using a multipass method because the thickness of the beam flange is 
high and multipass processes make it possible to reduce the residual stresses. The residual 
stresses have an impact on the crack strength.  
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Figure 1-3: Welding by multipass with dimensions in millimeters 

1.4.3 Materials 

After the welding process, the structure is composed of three materials (see Figure 1-4): 
− the Base Metal (BM): steel from the beam and the column before welding,  
− the Welded Metal (WM), 
− the Heat Affected Zone (HAZ): base metal around the welding where the 

microstructure is modified by the heat; therefore, its material properties are different, 
particularly for the toughness [ROD04]. 

 

 

Figure 1-4: Presentation of the three materials in a welded connection 

It should be noted that the HAZ was not taken into account in this research. The first reason for 
this choice is that no metallurgical aspect was studied as this would have required an excessive 
number of material parameters and heavy thermo-mechanical metallurgical finite element codes 
[HAB89; ALI00; CAS06]. The second reason is due to the size of the HAZ. Experimental tests, 
which would make it possible to identify the mechanical behavior of the HAZ, would be highly 
complicated because of the relatively limited size of the zone.  

1.4.4 Large scale test 

Eight beam-to-column connections were manufactured. The RAP parameters, such as the 
moment ratio between the beam and the column, the welding process and initial defects were 
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varied. The connections were submitted to cyclic loading with variable amplitude until 
macroscopic cracks appeared as according to FEMA 350 [FEM00] (see Figure 1-5). The aim was 
to evaluate the rotation capacity and the crack propagation strength of the connection to quantify 
resistance to an earthquake. The cyclic loading was defined to generate a cyclic moment in the 
connection. 

 

Figure 1-5: Loading definition 

1.4.5 Damage and Crack process 

Matos described this process well in [MAT01]. The crack process is defined by two stages: the 
initiation stage and the propagation stage. In most cases, initiation happens at the root of the 
welding along the column. Indeed this is the region where the residual stresses are the highest 
and the initial defects, where cracks are initiated, are often found like as well as a lack of fusion. 
The crack size increased up to until about 8 to 10 mm. 

 

Figure 1-6: Crack initiation 

For propagation, the structure studied was observed to exhibit five possible paths (see Figure 
1-7): 
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Figure 1-7: Possible crack paths 

− Vertically along the beam and the column, 
− Through the welding, 
− Through the beam,  
− Divot, 
− Through the column. 

 
The fracture could be brittle with cleavage fracture especially when the residual stresses are 
significant. It was observed for some connection in Northridge after the earthquake. However in 
the case of the VERAPS connection the fracture were ductile with inelastic behavior. The 
damage is generated by two mechanisms: fatigue due to the cyclic loading and the high level of 
loading during the last cycle. The fracture is influenced by the residual stresses demonstrated by 
the fact that the crack path follows the normal to the direction of the maximum principal stress. 

1.5 Methods 

The aim of this study was to develop a three-dimensional finite element model of the large scale 
test performed at the University of Karlsruhe. The finite element code used was the Lagrangian 
non-linear finite element code Lagamine, developed at the ULg since the 1980s. One feature of 
this code is that it can model high levels of displacement and strain states. Moreover, it is open 
source, so one can add and modify subroutines. It contains an important library of elements and 
constitutive laws.  
 
The study has been divided into several steps. The division of the study performed by the author 
are shown in Figure 1-8 and grouped by color. No experimental tests have been performed by the 
author. The experimental data come from the experiments carried out by the partners of the 
VERAPS project.  
 
Corus and ISQ have performed tensile tests on the base metal and the welding metal. The 
experimental results were then processed in order to identify the elastoplastic constitutive law of 
each material by the inverse method. 
 
The crack process was modeled by the Cohesive Zone Model (CZM), which was used to simulate 
initiation and propagation. Thus a new element and a new constitutive law were created firstly in 
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two dimensions and then in three dimensions. Then, the identification of the cohesive parameters 
was performed by the inverse method. Corus performed three point bend testing and Charpy tests 
on samples extracted from the connection. The experimental tests were modeled by finite 
elements with a cohesive zone model and the model’s parameters were identified.   
 
A crack’s propagation is affected by fatigue damage due to cyclic loading. The fatigue damage 
for this study was computed by the Continuum Damage Model developed by Lemaitre and 
Chaboche. This damage evolution law was implemented in the Lagamine code during this 
research. Thus, the fatigue damage and monotonic damage could be coupled. ISQ performed 
cyclic tensile tests on samples extracted from the connection. Their data were processed to 
identify the CDM parameters. In addition, the fatigue damage can give an estimation of the crack 
path, which cannot be identified by the cohesive zone model. The goal of this development was 
to compute the level of fatigue damage to couple it with the cohesive zone model. One could link 
to a remeshing procedure adding new cohesive zone elements according to the damage’s 
characterization and modeling the whole process in one simulation. However, in three 
dimensions, this approach is quite complex and it was decided to work in two steps: 
characterizing the damage with a first computation without cohesive elements, then performing a 
second simulation with cohesive elements defined according the first simulation’s results. 
 
As the residual stresses have an impact on the crack’s propagation, it was important to evaluate 
their values. With this aim in view, a welding simulation was performed by a thermo- mechanical 
finite element model. The welding process parameters were communicated by the University of 
Karlsruhe. Then some thermo-mechanical properties were provided by Corus. Finally, the results 
of these simulations were compared to the residual stress measurement performed by ISQ. The 
aim was to obtain a balanced residual stress field to be entered into the connection modeling at 
the beginning of the simulation and to observe its impact on the strength of the cracked 
components. 
 
As the connections tested by the University of Karlsruhe had different dimensions and different 
designs, a module for 3D mesh generation of the welded beam-to-column connection was 
programmed with the Fortran 90 in order to generate the mesh only by providing the design of 
the structure. In the first step some computations without damage or residual stresses were 
performed to validate the mesh by comparing the moment rotation curve with the experimental 
one. Then, to identify the crack path, modeling without the cohesive zone model was performed 
by incorporating the fatigue damage model. The crack path may be the zone where fatigue at its 
highest. Finally, a computation with the cohesive zone model coupled with the fatigue continuum 
damage model was performed to predict the crack’s propagation. 
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Figure 1-8: Flow chart of the study 

1.6 Outline of this thesis 

This thesis is organized according to the flow chart reported in Figure 1-8. Firstly, in Chapter 2, 
the numerical tools used in this study are described. The Lagamine code is presented along with 
the solid element and the elastoplastic law used. In this part, no development is performed during 
the study except for the treatment of the tensile test data, which used to calibrate the elastoplastic 
model. 
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In Chapter 3, the fatigue damage modeling is presented. The continuum damage model and some 
other classic models are described and compared. This chapter explains the identification method 
for the parameters after treatment of the experimental data. The computation of the damage 
variable from the integration of the damage evolution law is described in the finite element code. 
 
Chapter 4 outlines on the modeling of crack propagation. After the illustration of the classic 
fracture mechanic model, the theory of the cohesive zone model is explained according to a 
literature review. Then, the implementation of the cohesive element in 2D and 3D is shown.  
Finally, the results and method of the inverse approach are described to calibrate the model for 
the base and weld metals. 
 
The welding simulations performed to evaluate the residual stress fields are presented in Chapter 
5. Firstly, the strategies used in the model to tackle the difficulties of the simulation are set out. 
After this step, the results are shown and are compared with the measurements performed by ISQ. 
 
Next, Chapter 6 focused on the large scale test performed at the University of Karlsruhe. First, 
the welded beam-to-column connections and the test characteristics are described. Then, the 
strategy to generate the 3D mesh of the structure is set out. Lastly, the results of the simulation of 
this test are presented.  
  
Finally the thesis ends with the conclusions and the perspectives of this research, followed by 
appendices. The first appendix contains a description of iterative methods used to solve linear 
equation systems. These methods help to speed up the three-dimensional simulations. The second 
appendix describes an adaptive remeshing method which has been developed. This method has 
been adapted to incremental forming simulations with 4-node shell elements. This development 
helps to better understand the Lagamine code and to explore a remeshing method. 
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2.1 Introduction 

Since the overall aim of this thesis is to develop a numerical model, in such a context it is 
important to describe the finite element code in which some developments have been 
implemented. After several reminders of mechanical definitions, this chapter presents the finite 
element code Lagamine, used in this study, and its features. Then the solid element, BWD3D, 
which is used in connection modeling, is discussed. Finally the last section defines the elasto-
plastic model used and explains the identification of its parameters needed to model the material 
behavior of the materials (base metal and weld metal) from tensile experiments. The 
developments of a traditional isotropic elasto-plastic law are well-known, such as the radial 
return integration scheme. However, it was decided to recall this theory for the interest of the 
Lagamine group, who uses the ARB law coupled with kinematic hardening extensively. This law, 
initially implemented by R. Charlier [CHA87] with isotropic hardening, has not yet been 
described in a thesis in the case when coupled with kinematic hardening. The current description  
thus helps to understand the work of L. Kaiping [CES97]. 

2.2 Mechanical definitions 

2.2.1 Strain 

The engineering strain is expressed as the ratio of total deformation values compared to the initial 
dimensions of the material body in which the forces are applied. The engineering normal strain or 
engineering tensile strain, εing, of a material line element or an axially loaded fiber is expressed as 
the change in length, ∆l, per unit of the original length, l0, of the line element or the fiber. Thus, 
we have 

 0
ing

0 0

l ll

l l

−∆ε = =  (2.1) 

where l is the current length of the fiber. 

The displacement vector, u, is the difference between the current position vector, x, and the initial 
position vector, x0: 

 0u x x .= −  (2.2) 

The velocity vector is obtained from the derivative of the displacement as a function of time: 

 
u

v .
t

∂=
∂

 (2.3) 

From infinitesimal theory, Cauchy’s strain tensor can be defined by 

 ( )T1
u u .

2
ε = ∇ + ∇  (2.4) 

The strain tensor can be further divided into two parts: 

 e pε=ε ε+  (2.5) 

where εe is the elastic component of the strain and εp is the plastic component. 
The equivalent plastic strain rate is defined by the following: 
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 p pp
eq

2
: .

3
ε = ε εɺ ɺ ɺ  (2.6) 

2.2.2 Cauchy’s stress 

For a load applied in one direction, the engineering stress, σing, is the ratio between the applied 
force, F and the initial surface, S0. 

 ing
0

F

S
σ =  (2.7) 

Considering a structure, cut by a plane π, and where an infinitesimal internal force, dF, is applied 
to an infinitesimal surface, dS, along the outward normal to π, called n, the following relation can 
be defined by: 

 
dF

.n
dS

= σ  (2.8) 

where σ is a second-order tensor called Cauchy’s stress. Note that, here, S is the current cross 
section of the structure and not the initial one. 

 

Figure 2-1: Internal force descriptions 

 
One defines the equivalent von Mises’ stress by: 

 eq

3
ˆ ˆ:

2
σ = σ σ  (2.9) 

where σ̂ corresponds to the deviatoric component of the stress. 

 H H

1
ˆ I  where  Tr( )

3
σ = σ − σ σ = σ  (2.10) 

In the equation above, σH is called the hydrostatic stress. 
 
One defines the stress triaxiality by: 

dS

n
dF

ππππ
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 H
F

eq

T
σ=
σ

 (2.11) 

2.2.3 Jaumann’s derivative 

The constitutive law is not dependent on any reference frame modification; therefore, the 
variables used must be objective. An objective second-order tensor, T, defined in an initial 
reference frame, is a tensor which follows 

 TT ' RTR=  (2.12) 

where T’ is the representation of the tensor T in a new reference frame and R is the rotational 
matrix to pass from the initial reference frame to the new one. 
 
Cauchy’s stress, strain and strain rate are objective variables. However, the stress rate is not 
objective. That’s why Jaumann’s derivative, noted ∇, is used, which makes it possible to correct 
parasite rotations in the stress rate: 

 

( )T

 

1
where  =   and  v v .

t 2

∇
σ = σ − Ωσ + σΩ

∂σ
σ Ω = ∇ − ∇

∂

ɺ

ɺ

 (2.13) 

2.3 The finite element code LAGAMINE 

2.3.1 Description 

During this research, the finite element code LAGAMINE developed in-house was used. It is a 
non-linear Lagrangian code that has been under development at the Department ArGEnCo of the 
University of Liege since 1982 and was started by Prof. Cescotto in order to simulate the rolling 
process [CES85]. 
 
The code can carry out thermal, mechanical and metallurgical analyses. Therefore, the code has 
been applied to numerous forming process such as forging [HAB90], continuous casting 
[CAS04], deep drawing [DUC05b], powder compaction [MOS99] and incremental forming 
[HEN07]. To perform this, the code contains an extensive library of elements and constitutive 
laws for large strains and large displacements. 

2.3.2 Concepts of the finite element code 

2.3.2.1 The equilibrium condition 
The displacement field which minimizes the total energy of the system is the one that respects 
equilibrium. This minimization is performed by checking the virtual work principle, 

 T T T

V V S

dV b . u dV t u dSσ δε = ρ δ + ρ δ∫ ∫ ∫  (2.14) 
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where (σ)6x1 is the stress vector which contains the components of the stress tensor that respect 
internal equilibrium, (δε)6x1 is the virtual strain vector which contains the components of the 
strain tensor and verifies kinematic compatibility, (δu) 3x1 is the virtual displacement, ρ is the 
density, (b) 3x1 is a volumetric load, (t) 3x1 is a surface load, V is the current volume of the system 
and S is the current surface. 
This variation principle is the simplest one, where only one unknown (the displacement field) 
needs to be identified. In this principle, direct links between displacement history and strains are 
defined as well as between strains and stresses. More advanced principles exist: for instance, in 
section 2.4, the solid element BWD3D relies on the three-field Hu-Washizu variation principle. 
  
The spatial discretization of the virtual displacement field, δu, in finite elements is defined by 

 u H Uδ = δ  (2.15) 

where (δU) 3Nx1 contains the admissible virtual displacement of N nodes, and (H) 3x3N is the 
interpolation matrix. 

 

Figure 2-2: 2D Finite element description, isoparametric and global coordinate definition 

 
The virtual strain field is computed by 

 B Uδε = δ  (2.16) 

where (B)6x3N contains the gradient of the interpolation function. The matrixes, B and H, depend 
on the element used.   
 
Thus equation (2.14) becomes 

 T T T

V V S

B U dV b .H U dV t H U dS.σ δ = ρ δ + ρ δ∫ ∫ ∫  (2.17) 

As δU is a virtual nodal displacement, it can be removed from the integral. So, one defines the 
following vectors: 

− the nodal internal force vector, Fint, equivalent in term of energy to the stress: 

 T
int

V

F B dV;= σ∫  (2.18) 

− the nodal external force vector, Fext, equivalent in terms of energy to the applied 
loading: 
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 T T
ext

V S

F H bdV H tdS.= ρ + ρ∫ ∫  (2.19) 

Therefore, the virtual work principle becomes  

 int ext(F F ) U 0.− δ =  (2.20) 

As the previous relation is true regardless of which the arbitrary field δU is chosen, the 
equilibrium condition of a finite element problem can be expresses as: 

 int extF F=  (2.21) 

2.3.2.2 Temporal integration 
Lagamine’s code users often choose an implicit integration scheme though it is possible to apply 
explicit integration. This is because the advantages of the implicit integration scheme are that it is 
more stable and larger increment can be used.  
 
The implicit methods is an incremental one, that is, in radial loading cases the loading, P, or 
displacement, U, are imposed step by step. At the first time step, λp1P and λu1U are applied to the 
initial balanced configuration. By a Newton-Raphson method, a new balanced configuration is 
determined. Then a second time step begins where λp2P and λu2U are applied to the previous 
balanced configuration. This procedure is continued until one reaches 

 pk uk
k k

1  and  1λ = λ =∑ ∑  (2.22) 

The Newton-Raphson method (see Figure 2-3) is an iterative procedure which is used to find the 
zero of the out-of-balance force vector, FOBF, in order to pass from a balanced configuration A to 
a balanced configuration B at the Ninc

th increment. 

 OBF int extF F F= −  (2.23) 

 

Figure 2-3: Newton-Raphson method description 

Firstly an approximation is made of the new nodal positions. It can be derived from the nodal 
position of the previous balance configuration, xA, plus the constrained displacement.  
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Another solution can be obtained from the nodal velocity of the previous configuration, vA. 

 
incN

0 A A k
k

x x v t U
 

= + ∆ + λ 
 
∑  (2.25) 

where ∆t is the time step. 
 
By a first-order Taylor development of Equation (2.23), one obtains 

 
i

OBF
OBF i OBF i

x

F
F (x x) F (x ) x

x

∂ + ∆ = + ∆ ∂ 
 (2.26) 

where xi is the nodal position of the previous iteration and ∆x is a nodal position correction. 
 
One defines the tangent stiffness matrix, K, by the following: 

 
i

OBF

x

F
K

x

∂ =  ∂ 
 (2.27) 

As the aim is to nullify the out-of-balance force, where FOBF (xi +∆x) = 0, Equation (2.26) 
becomes 

 1
OBF ix K F (x ).−∆ = −  (2.28) 

The computation of the inverse tangent stiffness matrix can take some time depending on the 
number of degrees of freedom. Before the current thesis began, only direct methods have been 
implemented by LU factorization. For large simulations, an iterative method was therefore 
implemented during this research to reduce the computation time (see Appendix 1). 
  
Consequently, the nodal position, xi, of the next configuration is: 

 i 1 ix x x+ = + ∆  (2.29) 

Then one iterates with the algorithm described until reaching a convergence tolerance. An 
increment is determined converged if 

 OBF
F

F

R
< ε  (2.30) 

where R is the reaction which contains all force components of fixed or constrained nodes and εf 

is a level of a tolerance (about 1x10-5). The symbol ||x|| defines the norm of the vector x. There 
are three different definitions for this norm used in the Lagamine code: 
  

 

x

x

N
2
i1

ix

N

i2
ix

i3 i

1
x x ,

N

1
x x ,

N

x max( x )

=

=

=

∑

∑  (2.31) 
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where Nx is the length of x. 
 
To avoid jump displacements, another convergence tolerance is used in the Lagamine code: 

 u
i A

x

x x

∆
< ε

−
 (2.32) 

where εu is a level of tolerance (about 1x10-3). 
 
Figure 2-4 summarizes the Lagamine flowchart for implicit schemes.  
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Figure 2-4: General flowchart of the LAGAMINE code 

2.3.2.3 Computation of the nodal force and the stiffness matrix 
The nodal internal force vector, Fint, is computed for each element by numerical integration 
according to a Gauss’ scheme: 

 T
int

ip

F B W det(J)= σ∑  (2.33) 

where ip is an integration point, W is the weight of the integration point and (J3x3) is the Jacobian 
matrix defining the mapping from the global coordinate axes (x, y, z) to the isoparametric 
coordinate axes (ξ, η, γ) (see Figure 2-2): 
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END
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x x x

y y y
J .

z z z

 ∂ ∂ ∂
 ∂ξ ∂η ∂γ 
 ∂ ∂ ∂=  ∂ξ ∂η ∂γ 
 ∂ ∂ ∂
 ∂ξ ∂η ∂γ 

 (2.34) 

To obtain the stiffness matrix, K, it is sufficient to differentiate the nodal internal force vector:  

 intdF Kdx=  (2.35) 

The derivative of (2.33) gives 

 ( )T T
int

ip ip

dF B det(J)d W d B det(J) W.= σ + σ∑ ∑  (2.36) 

The first term defines the classic stiffness of the small strain cases, which is computed from the 
derivative of the stress. The second term defines the large displacement effect: the influence of 
the element volume modification on the nodal forces.  

2.4 The solid element BWD3D 

In this research, the solid element chosen was the element BWD3D. It is an 8-node 3D brick 
element with a mixed formulation especially adapted to large strains and large displacements. 
This element can be coupled with any 3D mechanical constitutive law, and its strain and stress 
tensors are expressed in global axes. 
 
This element uses a reduced integration scheme (that is, only one integration point in its center) 
and an hourglass control technique. It is based on the three-field Hu-Washizu variation principle 
with the “assumed strain method” [SIM86; BEL91]. 
 
One feature of the BWD3D element is a new shear locking treatment based on the Wang-
Wagoner’s method [WAN04]. This method identifies the hourglass modes responsible for shear 
locking and removes them. The two bending hourglass modes and the non-physical hourglass 
modes are eliminated. The volumetric locking treatment is also based on the elimination of 
inconvenient hourglass modes.  
 
A second feature of this element is its use of a corotational reference system. In order to identify 
the hourglass modes, which is crucial to the method, the formulation of the element’s kinematics 
must be expressed in a corotational reference system, closely linked to element’s coordinates. 
This reference system must have its origin at the center of the element and its reference axes are 
needed to be aligned (as much as possible, depending on the element’s shape) with element 
edges. A fortunate consequence of this corotational reference system is a simple and accurate 
treatment of the hourglass stress objectivity, by using initial and final time step rotation matrices. 
 
The shear locking and the volumetric locking methods proposed by Wang and Wagoner, coupled 
with the corotational reference system, have been successfully implemented in the BWD3D 
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element. The Wang-Wagoner’s method, contrary to some other shear locking methods (see for 
example, Li and Cescotto [LI97]) has deep physical roots, which makes it very efficient for 
various FE analyses. Further details about the hourglass and the locking treatment in the BWD3D 
can be found in [DUC05a; DUC05b]. A more complete description can also be found in 
[DUC08]. 

2.5 The constitutive law 

2.5.1 The elastic law 

Elastic strain is a variation in the atomic positions and is a reversible process. For the metallic 
material, elastic behavior is generally linear and according to its forming process, it can be 
isotropic. Therefore, it can be described by the Hooke’s law: 

 

e e

e

     Tr( )I 2

1
or Tr( )I

E E

 σ = λ ε + µε

 + ν νε = σ − σ


 (2.37) 

where λ and µ are Lame’s coefficients, E is Young’s modulus and ν is Poisson’s ratio.  The 
relationships between the elastic parameters are 

 
( )( )

( )

E E
; =G=

1 1 2 2(1 )

3 2
E        ; =

2

νλ = µ
+ ν − ν + ν
λ + µ λ= µ ν
λ + µ λ + µ

 (2.38) 

where G is knows as Coulomb’s modulus. 

2.5.2 The plastic law 

In metal, plastic strain is often due to the motion of the dislocations, which is an irreversible 
process. Other phenomena, such as twinning and grain boundary slip, can also occur. These 
phenomena appear only when the stress level reaches and passes a limit σy, called yield stress.  

2.5.2.1 The yield locus 

In a multiaxial case, the yield limit is described by a surface in the principal stress spaces (σ1, σ2, 
σ3) called the yield locus f(σ) which depends on the stress state:   

− If f( σ)<0, the state is elastic, 
− If f( σ)=0, the state is elastoplastic and loading and unloading can occur, 
− The case f(σ)>0 is impossible because the stress cannot cross the surface. 

 
There are different functions, f, describing the yield locus in the literature [BUN00]. This chapter 
will describe only three possible yield loci because these are often those used in the industrial 
world, as a result, in this study.    
 

Von Mises’ yield criterion 
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As plastic strains are due to intracrystalline shear and slip driven by shear stress, the von Mises’ 
yield criterion considers the yield stress to be linked to the elastic shear energy. So, the yield 
locus depends on the second invariant of the stress tensor. Therefore, it is defined by  

 y2
0 0

1
ˆ ˆf : k 0 where k .

2 3

σ
= σ σ − = =  (2.39) 

The criterion is described in Figure 2-5. 

 

Figure 2-5: Yield locus with Von Mises’ criterion 

Tresca’s yield criterion 
In this case, the criterion is not linked to shear energy but rather depends on the maximum shear 
stress:  

 ( )i j y
i j

f sup 0
≠

= σ − σ − σ =  (2.40) 

where σi and σj are the eigenvalues of the stress tensor. 

 

Figure 2-6: Yield locus with Tresca criterion 

The criterion is described in Figure 2-6. 

Hill’s yield criterion 
The previous criteria consider the yielding to be isotropic. In the case of anisotropic orthotropic 
material, Hill’s 1948 [HIL48] yield criterion is the most used in commercial codes: 
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 ( ) ( ) ( )2 2 2 2 2 2 2
11 22 33 22 33 11 12 23 13 yF G H 2L 2M 2N 2 0σ − σ + σ − σ + σ − σ + σ + σ + σ − σ =  (2.41) 

where F, G, H, L, M, N, are Hill’s coefficients. 

2.5.2.2 The flow rules 

General rules 

Loading and unloading can occur according to the product of the yield normal and the stress rate, 
as expressed in the condition below. 

 

f
: d 0 : loading

f
f : d 0 : neutral loading

f
: d 0 : unloading

∂ σ >∂σ

 ∂= σ =∂σ
 ∂ σ <

∂σ

 (2.42) 

It is assumed that the plastic strain rate is normal to the yield locus (i.e. associated plasticity): 

 p

f f
 if  : d 0

f
0        if  : d 0

∂ ∂λ σ > ∂σ ∂σε =  ∂ σ ≤
 ∂σ

ɺ

ɺ  (2.43) 

where λ is the multiplier of the normal to the yield locus. 
 
In addition to these conditions, as the loading point has to remain on the yield locus, the 
consistency condition described by 

 
df

f 0
dt

= =ɺ  (2.44) 

has to be respected.  
 
Hardening, which may exist in two forms, describes the evolution of the yield locus. Firstly, the 
yield locus can grow in an isotropic manner, where the yield stress under tension increases as 
much as yield stress under compression (see Figure 2-7 and Figure 2-8). This is known as the 
isotropic hardening.  
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Figure 2-7: Isotropic hardening effect on the yield locus 

 

Figure 2-8: Isotropic hardening effect on the uniaxial stress-strain curve 

In a second approach the yield stress under tension can be greater than in compression during a 
cyclic loading (Bauschinger effect). Thus the yield locus moves by translation in the stress space 
(see Figure 2-9 and Figure 2-10). This is known as the kinematic hardening.  

σσσσ

εεεε

k

-k
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Figure 2-9: Kinematic hardening effect on the yield locus 

 

Figure 2-10: Kinematic hardening effect on the uniaxial stress-strain curve 

Numerous different functions exist for each type of hardening. In general, the material presents 
both types of hardening, which is a mixed hardening model is also used. 

The isotropic hardening model 
This approach was introduced in the Charlier’s thesis [CHA87]. After the evolution of the 
hardening, von Mises’ in a criterion in isotropic hardening case can be written by: 

 21
ˆ ˆf : k 0

2
= σ σ − =  (2.45) 

where k is the hardening variable, which depends on the equivalent plastic strain. 
The consistency equation (2.44) has to be respected, which gives: 

 
f f

ˆ ˆ ˆf : : k : 2kk 0
ˆ k

∇ ∇∂ ∂= σ+ = σ σ+ =
∂σ ∂

ɺ ɺ ɺ  (2.46) 

X

k

-k

σσσσ

εεεε
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Equation (2.45) dictates that  

 eq1
ˆ ˆk :  .

2 3

σ
= σ σ =  (2.47) 

If one differentiates this equation, the hardening updating rule can be obtained, 

 eq eq p
eqp

eq

1
k

3 3

σ ∂σ
= = ε

∂ε
ɺ

ɺ ɺ  (2.48) 

where p
eqεɺ has been defined in section 2.2.1.  

The plastic modulus, Ep, is defined by 

 eqp
p
eq

E .
∂σ

=
∂ε

 (2.49) 

The corresponding plasticity condition (Equation (2.43)) linked to the definitions of the yield 
locus (2.45) and the equivalent plastic strain rate are used to compute the derivative of the plastic 
strain: 

 p 2
eq eq

2 f f 2 2
ˆ ˆ: .

3 3 3

∂ ∂ε = λ = λ σ σ = λ σ
∂σ ∂σ

ɺ ɺ ɺɺ  (2.50) 

 
Using these relations (2.47) to (2.50), Equation (2.46) becomes 

 2 p
eq

4
ˆ ˆ: E 0.

9

∇
σ σ− σ λ =ɺ  (2.51) 

Taking the deviatoric component of the strain and stress tensors with the additive split of strain 
tensors, Equation (2.5), the Hooke’s law, Equation (2.37), becomes 

 e pˆ ˆ ˆˆ 2G 2G( ).σ = ε = ε − ε  (2.52) 

If one differentiates this equation using the normal condition (Equation (2.43)), one obtains: 

 ( )f
ˆ ˆˆ ˆ2G 2G .

ˆ

∇ ∂ σ = ε − λ = ε − λσ ∂σ 

ɺ ɺɺ ɺ  (2.53) 

Equations (2.51) and (2.53) give the derivative of the multiplier of the normal,λɺ : 

 
2 p
eq

3G
ˆ : .

1
2 G E

3

λ = σ ε
 σ + 
 

ɺ ɺ  (2.54)  

The kinematic hardening model 
von Mises’ criterion coupled with a kinematic hardening model can be written as 

 ( ) ( ) 2
0

1 ˆ ˆˆ ˆf X : X k 0
2

= σ − σ − − =  (2.55) 

where X is the back stress tensor, which indicates the current position of the yield locus center. 



Chapter 2. Numerical tools description The constitutive law 
 

27 

The consistency condition and the previous equation give 
 

 ( ) ( )f f ˆ ˆ ˆ ˆˆ ˆ ˆ ˆdf : : X X : X : X 0.
ˆˆ X

∇ ∇∂ ∂= σ+ = σ − σ− σ − =
∂σ ∂

ɺ ɺ
 (2.56) 

According to Prager, the evolution of the back stress tensor is linear with the plastic strain tensor. 
This means that the yield locus moves in the normal direction to the yield locus at the current 
stress point: 

 pX C= εɺ ɺ  (2.57) 

where C is the kinematic modulus. 
 
For the evolution of the deviatoric stress, one differentiates Equation (2.52) and uses the normal 
condition (2.43): 

 ( )( )f ˆˆ ˆˆ ˆ2G 2G X
ˆ

∇ ∂ σ = ε − λ = ε − λ σ − ∂σ 

ɺ ɺɺ ɺ  (2.58) 

Using the relationship (2.56) and (2.58) makes it possible to obtain the derivative of λ as 

 
( )

( )
( ) ( )

ˆ ˆˆ X :2G
.

ˆ ˆ2G C ˆ ˆX : X

σ − ε
λ =

+ σ − σ −

ɺ

ɺ  (2.59) 

The mixed hardening model 
 
In general, metals present both isotropic and kinematic hardening. As a result, the yield locus can 
grow and move; therefore, the yield locus is defined by: 

 ( ) ( ) 21 ˆ ˆˆ ˆf X : X k 0.
2

= σ − σ − − =  (2.60) 

This hardening phenomenon can be modeled by a mixed law with the isotropic and kinematic 
hardening models. If we choose the following hardening functions, 

 

p

p p
y eq

X mC

k (1 m)E d

= ε

= σ + − ε∫

ɺ ɺ

 (2.61) 

where m is the mixing parameter. It is equal to: 
 

 

] [

0      isotropic hardening

m 1      kinematic hardening.

0;1 mixed hardening


= 



 (2.62) 

The consistency condition (2.44) becomes 
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f f fˆˆdf : : X k 0.

ˆˆ kX

∇∂ ∂ ∂= σ+ + =
∂σ ∂∂

ɺ ɺ  (2.63) 

As previously, the derivative of the multiplier, λɺ , is 

 
( )

( ) ( )p

ˆ ˆˆ X :2G
.

ˆ ˆ2 ˆ ˆX : X2G mC (1 m)E
3

σ − ε
λ =

  σ − σ −+ + − 
 

ɺ

ɺ  (2.64) 

The integration of the constitutive law: The radial return method 
There are different methods to perform the integration of the constitutive elastoplastic law. Let 
the current balanced state A pass to a state B during one time step, ∆t. The total strain, εB, is 
known. Jaumann’s derivative follows Hooke’s law: 

 ( )e e p

B B B B
C C

∇
σ = ε = ε − εɺ ɺ ɺ  (2.65) 

where (Ce
ijkl ) correspond to the fourth-order tensor to the Hooke’s law (see (2.37)). 

 
The stress rate is computed by the Jaumann’s correction: 

 p

B B A A B A A B
 = C C

∇
   σ = σ + Ωσ − σ Ω ε + Ωσ − σ Ω − ε
   
ɺ ɺɺ  (2.66) 

The strain can be: 
− permanently elastic,  
− elastic and then elastoplastic, 
− permanently elastoplastic. 

The first term in Equation (2.66) corresponds to an elastic case and the second corresponds to 
“plastic corrective stress”. To begin the integration, one computes only the first term by assuming 
the plastic strain rate is null; therefore, a trial stress called σB0 is computed. At the initial state, 
when no hardening has occurred, the trial stress is computed by  

 

e p
B0B0B0 B B0

e e

B0 B0

B0 B0 A A

B0 A B0

ε =ε  ; ε =0 ; X =0 ; k =0

C
.

t

∇

∇



σ = ε

σ = σ + Ωσ − σ Ω
σ = σ + σ ∆

ɺɺɺ ɺ ɺ

ɺ

ɺ

ɺ

 (2.67) 

Afterwards, the consistency condition (Equation (2.44)) is checked: 
− if f( σB0, XB0, kB0) ≤ 0, the strain is purely elastic, therefore the trial stress is the 

updated stress and the problem is solved. 
− if f( σB0, XB0, kB0) > 0 the strain is elastoplastic, so a correction must be applied. 

 
Now it is necessary to examine, if one part of the strain is elastic or not. A point C is identified by 
solving the following equation: 
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( )C A A

AC B0

f ,X ,k 0

t

σ =
σ = σ +βσ ∆ ɺ

 (2.68) 

If β=0, this corresponds to the case where A is on point C and no strain component is purely 
elastic. Otherwise, 0<β≤1.  
 
Regarding the second term of Equation (2.66), the total strain is assumed to be null and the 
plastic strain rate is computed by 

 
p

B

f
n

∂ε = λ = λ
∂σ
ɺ ɺɺ  (2.69) 

where n is the normal to the yield locus. The most famous methods (see Figure 2-11) compute the 
normal by: 

 ( )
C B

f f
n 1 .

∂ ∂   = − θ + θ   ∂σ ∂σ   
 (2.70) 

 
If θ = 0, the method is explicit, also called the forward Euler algorithm, which is numerically and 
conditionally stable. In this case, the time step must be small and, if not, other techniques must be 
used to reduce introduced error.  
 
If 0.5 ≤θ ≤ 1, the method becomes unconditionally stable. The case θ = 0.5 is the mid-point rule, 
which is often used for different constitutive laws in Lagamine.  
 
If θ = 1, the method is implicit and also called the backward Euler algorithm, or radial return 
method. In this case, point C is useless. This method is stable, accurate and has a good 
convergence rate of the global equilibrium iteration, which is why this method is used in this 
study. 
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Figure 2-11: Geometric interpretation of the generalized algorithm for stress updating 

For Equations (2.69) and (2.70) in the case of the radial return method, the algorithm used is the 
tangent cutting plane. In this algorithm, the trial stress is returned to the yield surface in 
successive iterations (see Figure 2-12). At each iteration, the yield locus is linearized around the 
current value of the stresses and state variables. 
 

 i 1 i iii
i

i i

f f fˆˆf f : : X k 0
ˆˆ kX

+
∂ ∂ ∂     = + ∆σ + ∆ + ∆ =    ∂σ ∂ ∂   

 (2.71) 

Therefore, the value of ∆λi can be computed without considering any modification of the total 
strain at each iteration.   

 

( ) ( )
i

i
p

Bi BiBi Bi

f
2 ˆ ˆˆ ˆ2G mC (1 m)E X : X
3

∆λ =
 + + − σ − σ − 
 

 (2.72) 

Thus, one can compute other variables for this iteration: 

 

( )p
i BiBi Bi

p

i Bi

p

i Bi

pp
i Bi

ˆˆ X

2G
.

X Cm

k E (1 m)

ε = ∆λ σ −

∆σ = − ε


= ε


= − ε

ɺ

ɺ

ɺ ɺ

ɺ ɺ

 (2.73) 

 Finally, the update for the stress tensor and the state variables at this iteration are 

nB
nC

fC=0

fB=0

fB0>0
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Bi 1 Bi i

Bi 1 Bi i

Bi 1 Bi i

X X X t .

k k k t

+

+

+

σ = σ + ∆σ
 = + ∆


= + ∆

ɺ

ɺ

 (2.74) 

The iterative process goes on until plastic consistency is restored within a prescribed level of 
tolerance: 

 
Bi 1 Bi 1Bi 1

f ( ,X ,k ) tolerance.
+ ++

σ <  (2.75) 

 

Figure 2-12: Radial return method 

2.5.3 ARB law and its parameters 

2.5.3.1 Description 
The ARB law is a constitutive law for elastoplastic material with mixed hardening, isotropic von 
Mises’ criterion and the radial return method for the integration scheme implemented early on. It 
can be used for plane-strain, plane-stress, axisymmetric and 3D states, and has not been modified. 
The next paragraph is limited to its description. It has been applied in this thesis as no 
experimental values were available for taking viscosity into account, even if, at high temperature 
(e.g. welding simulation) it would have been worthwhile. 

2.5.3.2 Computation of the plastic modulus, Ep 
The plastic modulus is computed from Young’s modulus, E, and the tangent modulus, ET. The 
tangent modulus is defined by the tangent of the uniaxial stress-strain curve in the non-linear 
range (see Figure 2-13). 

 TE
∂σ=
∂ε

 (2.76) 

The additive decomposition of the strain (Equation (2.5)) and the continuity of the stress give 

 
T

P
T P T

1 1 1 EE
E

E E E E E
= + ⇔ =

−
 (2.77) 
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The input of the ARB law is made up the points of the stress-strain curve in the plastic 
components. The first point must correspond to the yield stress and gives Young’s modulus by 
the ratio of the yield stress to the yield strain. The Lagamine preprocessor computes the tangent 
modulus, ET, for all other points.    

 

Figure 2-13: Input points in the ARB law 

2.5.3.3 Link between the kinematic modulus and the plastic modulus 
To compute the modulus C defined by (2.57), the ARB law [CES97] assumes that the projection 
of dσ on the normal of the yield locus is equal to the projection of dX which means 

 
f f

: d :dX
∂ ∂σ =
∂σ ∂σ

 (2.78) 

With the normal condition (2.43) and Prager’s law (2.57) this equation can be modified to 
become: 

 p p p p
eq

3
d : d Cd : d Cd .

2
ε σ = ε ε = ε  (2.79) 

The product dεp:dσ corresponds to the plastic energy, which is equivalent to 

 p p
eq eqd : d d d .ε σ = ε σ  (2.80) 

Finally, the two last equations are used to determine the kinematic modulus, which is linearly 
dependent on the plastic modulus, Ep: 

 eq p
p
eq

d2 2
C E .

3 d 3

σ
= =

ε
 (2.81) 

2.5.3.4 Computation of the tangent matrix 
The tangent matrix is simply computed by a perturbation in each direction.  

E

ET

σσσσy

: Input Point
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2.5.4 Identification of the parameters 

2.5.4.1 The tensile test presentations 
Samples were taken from the beams, the columns and the welding (see Figure 2-14). The round 
bar tensile specimens were extracted from Section F located at the 1/6 of the flange’s width and 
from the core positions of the column and beam. All weld round bar tensile specimens were 
machined from the cap and root positions of the beam-to-columns welds. Corus performed the 
tensile tests on the specimens from the BM, while ISQ performed them from the WM. They 
plotted the engineering stress as a function of the engineering strain. 

 

Figure 2-14: Position of the samples in the beam-to-column connection 

The plots in Figure 2-15 and Figure 2-16 show that the behavior between the BM in the beam or 
in the column is equivalent. However the yield stress is different in the flange or in the core 
position. Therefore, three sets of ARB parameters have been identified for: 

− the core position, 
− the flange position, 
− the weld position. 
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Figure 2-15: Experimental tensile test plot for BM for core positions 

 

Figure 2-16: Experimental tensile test plot for BM at flange positions 
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Figure 2-17: Experimental tensile test plot for WM  

2.5.4.2 Treatment of the experimental results 
Firstly, for each position, the different experimental curves were averaged to obtain a single plot. 
Then the true stress and strain, σ and ε, were obtained from the engineering stress and strain, σeng 
and εeng, by the following equations: 

 
( )

( )
i eng

eng eng

ln 1
.

1

ε = + ε

σ = σ + ε

 (2.82) 

Young’s modulus of the experiment, Ei, was identified by the slope of the stress-strain plot in the 
linear component. However, the linearization shows that the stresses are not null when the strains 
are null. 

 i i 0Eσ = ε + σ  (2.83) 

where εi is the initial strain and σ0 the value of the stress when εi is null. 
The problem likely came from the elastic strain of the tool. Thus, the strains are corrected to 
avoid this error. 

 0
mes i

iE

σε = ε +  (2.84) 

Conventionally, the yield stress is the stress when the plastic strain is equal to 0.2%. The method 
used to identify the yield stress is illustrated in Figure 2-18.  
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Figure 2-18: Identification of the yield stress 

Finally, Young’s modulus, Ei, measured experimentally was exceptionally low (about 118 GPa) 
due to the well known difficulty to accurately measure the low elastic strain. Thus the curves 
were modified by computing the elastic strain at each point and considering the Young’s 
modulus, E, equal to 205 GPa as the usual value for this steel grade. 

 

p
mes

e p i

e

E
 where 

E

σε = ε −ε = ε + ε 
σε =



 (2.85) 

  
As no experimental curve have successfully quantified a Bauschinger effect, the material was 
assumed to have isotropic hardening and the value of m was fixed to 0.  
For all materials, Hooke’s law parameters are listed in Table 2-1. 

Table 2-1: Elastic parameters 

E  
(GPa) ν 

205 0.3 

  
The results of the analysis of the tensile test data are given in Table 2-2 to Table 2-4 and in 
Figure 2-19 to Figure 2-21. 

σσσσy

E E

0.2
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Figure 2-19: Tensile plot for BM in the core position 

 

Figure 2-20: Tensile plot for BM in the flange position 
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Figure 2-21: Tensile plot for WM 

Table 2-2: Values for tensile properties for BM in the core position 

ε 
(%) 

σ  
(MPa) 

0.17 337 
0.38 348 
0.58 349 
0.79 356 
1.00 362 
1.92 403 
2.84 434 
3.75 460 
4.67 481 
5.59 497 
6.51 511 
7.42 524 
8.34 536 
9.26 544 
10.18 551 
11.09 560 
12.01 565 
12.93 571 
13.85 576 
14.76 581 
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Table 2-3: Values for tensile properties for BM in flange position 

ε  
(%) 

σ  
(MPa) 

0.18 379 
0.39 379 
0.59 379 
0.80 379 
1.00 379 
2.01 410 
3.03 445 
4.04 473 
5.05 496 
6.07 513 
7.08 528 
8.10 541 
9.11 551 
10.12 561 
11.14 570 
12.15 576 
13.16 583 
14.18 589 
15.19 594 
16.21 597 
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Table 2-4: Values for tensile properties for WM in the flange position 

ε 
(%) 

σ 
(MPa) 

0.18 340 
0.39 378 
0.59 402 
0.80 420 
1.00 435 
1.37 457 
1.75 475 
2.12 489 
2.49 501 
2.87 511 
3.24 519 
3.62 526 
3.99 532 
4.36 537 
4.74 542 
5.11 546 
5.48 548 
5.86 551 
6.23 553 
6.61 554 

2.6 Conclusion 

This chapter recalled general mechanical methods used in finite element codes. No original 
developments were made here, but as these tools will be used in the thesis, they were worth being 
discussed. The only contribution from the author here is the identification of material parameters 
based on experiments performed by Corus and ISQ, as well as a clear description of the available 
ARB law coupled with kinematic hardening. The extension to the thermo-mechanical 3D ARB 
law was implemented by the author and will be used in Chapter 5. 
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3.1 Introduction 

The beam-to-column connection studied was submitted to cyclic loading, which generates fatigue 
damage. This damage has an impact on the fracture strength of the structure. Therefore, it is 
important to compute it. The fatigue phenomenon has been studied for many years, and well-
known works such as the experiments and the first analytical models of Kachanov [KAC86], 
Wöhler [WOH55], Palmgren-Miner [PAL24; MIN45], are still the basis of current research and 
fatigue design rules. In this chapter, the concept of damage is first defined. Then the two classic 
methods of fatigue crack prediction are outlined. The model chosen is the fatigue continuum 
damage mechanics of Lemaitre and Chaboche [LEM96] with the Sines’ multiaxial criterion. This 
chapter presents the method used to identify the parameters of this model and its implementation 
in the finite element code Lagamine.  

3.2 Introduction to the concept of fatigue damage 

If one observes a representative volume element in a damaged structure, it will contain some 
micro-cracks or voids; therefore, the effective area, S, is inferior to the global area, S. The 
damaged area, SD, which represents the sum of the micro-cracks or void area, is equal to the 
difference between S and S. A damage variable, D, represents the density of material 
discontinuity due to the damage. It is defined as the ratio of the damaged area, SD, over the global 
area, S.  

 DS S-S
D= =

S S

ɶ

 (3.1) 

When D=0, the material is sound and when D=1, the material is fully cracked. 
 
This damage variable is considered isotropic which means that it affects all components of any 
stress or strain tensor in all directions in the same manner. However, the micro-cracks tend to 
follow privileged direction (in metal, the direction orthogonal to the maximum principal stress’s 
direction); therefore, the damage’s actual effect is anisotropic. As anisotropic modeling can 
become overly complex, this thesis focused on isotropic modeling to provide the engineer 
solution with a according to the project’s objectives. 
 
Due to the damage’s behavior, the stress state is modified. Indeed, in one dimension if the force, 
F, is applied to a area, S, of a representative volume element, the classic stress is 

 
F

.
S

σ =  (3.2) 

Due to the damage, the effective surface becomes 

 S S(1 D).= −ɶ  (3.3) 

Therefore, the effective stress is defined by: 

 ɶ

( )
F

.
1 DS

σσ = =
−ɶ

 (3.4) 

If one assumes that the strain is not affected by the damage, then the elastic strain is: 
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ɶ

( )e .
E 1 D E

σ σε = =
−

 (3.5) 

Thus, the stiffness of the structure drops. In this study, it was preferred to keep the damage 
uncoupled with the stress because the drop in stiffness can cause numerical problems in finite 
element analyses due to singularities in the stiffness matrix. In this chapter, the stress is thus 
defined by (3.2). 
 
The fatigue damage, Df, represents the generation of micro-cracks in a structure which is under 
the influence of loading cycles, up to the initiation of a macroscopic crack. There are two 
domains in fatigue analysis: 

− High-Cycle Fatigue (HCF): a high number of cycles occurs before fracture (>50 000 
cycles), and the strains stay in elastic domain. 

− Low-Cycle Fatigue (LCF): a low number of cycles occurs before fracture (<50 000 
cycles) under plastic strains. 

 
Each of these cycles is defined by the following mechanical quantities (see Figure 3-1): 

− amplitude of stress or strain, ∆σ or ∆ε, 
− mean stress or strain, σm or εm, 
− ratio between the minimum stress or strain, σmin or εmin, and the maximum stress or 

strain, σmax or εmax, usually called R. 
 

 

Figure 3-1: Description of the stress or strain cycle as a function of time 

Microscopic models do exist, but they require many parameters, and in coupled approaches, they 
generate a softening law. The damage predicted often depends on the mesh size [HAB01]. This 
thesis introduces two models: Manson Coffin’s model and the Continuum Damage Model. 

σσσσmax or εεεεmax
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3.3 Manson-Coffin’s Model 

3.3.1 Model origins and evolution 

This model has experimental origins. In the LCF domain, the yielding strain amplitude 
has a predominant effect on fatigue rupture, whereas in the HCF domain, the stress amplitude is 
predominant. To model this, Manson [MAN53] and Coffin [COF53] proposed the following law: 

 ( )cbf
f f f

σ∆ε
= (2N ) +ε 2N

2 E
 (3.6) 

where ∆ε is the difference between the maximum and the minimum strain (see Figure 3-1) of the 
deformation, Nf is the number of cycles before crack, σf, εf, b and c are characteristic constants of 
the material and E is Young’s modulus. 
 
Morrow [MOR687] suggested that the effect of the mean stress, σm, could be considered by 
reducing the elastic term in the strain life equation by the mean stress:  

 ( )cbf m
f f f

σ∆ε
= (2N ) +ε 2N .

2 E

− σ
 (3.7) 

Manson and Halford [MAN81] modified both elastic and plastic terms of the strain life’s 
equation to keep the elasto-plastic strain ratio independent from mean stress:  

 ( )cbf m f m
f f f

f

σ σ -σ∆ε
= (2N ) +ε 2N .

2 E σ

 − σ
 
 

 (3.8) 

In another work, Smith, Watson and Topper [SMI70] proposed an energetic form to represent the 
mean stress effect: 

 ( )
2

cbf
max f f f f max m

σ∆ε 1
σ = (2N ) +σ ε 2N  where σ = ∆σ+σ .

2 E 2
 (3.9) 

3.3.2 Palmgren-Miner’s Rules 

 
The previous model enables one to determine the life of the structure under constant loading 
amplitude. In the case of amplitude variation, it is necessary to use Palmgren-Miner’s rule 
[CHE98], which is a linear additive rule used to compute damage evolution. 
 
At different levels of the strain amplitude rate, ∆εi, the damage accumulation is defined as: 

 i i
f

i fi i

N (∆ε )
D =

N (∆ε )∑  (3.10) 

where Ni is the number of cycles in the rate ∆εi and Nfi is number of cycles before rupture in the 
rate, ∆εi. The crack appears when Df is greater than 1. This rule has been validated for elastic and 
HCF states but it has been observed experimentally that the rupture can initiate before Df reaches 
1 in the LCF case. Moreover, the variation in the amplitude must not be too significant [LEM96]. 
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The Zhang’s paper [ZAH09] presents the uses and the limitations of the Palmgren-Miner’s rule in 
evaluating the damage in welded joints under variable amplitude. 

3.3.3 Procedure to assess lifetime with a finite element code 

The assessment procedure proposed by Teng et al. [TEN04] is shown in Figure 3-2. In the first 
step, finite element analyses determine the stress and strain in the structure. Then, in the second 
step, where the principal stress and strain are maximum, the stress and strain amplitudes are 
analyzed as a function of time. Equation (3.9) gives Nfi for each rate of different local amplitudes. 
Finally, with Palmgren-Miner rule, the lifetime of the structure can be determined. 
 

 

Figure 3-2: Flow chart of steps to assess the lifetime of a structure undergoing a cyclic loading [TEN04] 

3.4 Multiaxial fatigue criteria 

The previous laws neglect the fact that loading does not generate axial stress or strain but 
tensorial values. Still, the criterion of fatigue limit depends on the amplitude and the mean values 
per cycle. As experimentally observed, the mean shear does not affect the fatigue limit, as 
opposed to the mean tension. One defines:  

− the second invariant of the amplitude of the deviator, σ̂ , of the stress tensor: 

 ( )( )II ijmax ijmin ijmax ijmin ij ij kk
k

1 3 1
ˆ ˆ ˆ ˆ ˆA = - -  where =σ - σ

2 2 3
σ σ σ σ σ ∑  (3.11) 

− the mean hydrostatic stress, σHm: 

 ( )( )Hm

T

1 1
σ = Tr σ t dt

3 T

 
 
 
∫  (3.12) 

− the hydrostatic stress maximum, σHmax: 

Material Properties Mesh Loading + Boundary Condition
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Research of the critical zone

Transformation in ∆σ(t) and ∆ε(t)

Assessment of Nfi by Smith, Watson and Topper's law

Use of Palmgren‐Miner’s rule

Assessment of the lifetime of the structure
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 ( )( )Hmax
t

1
max Tr σ t

3
σ =   (3.13) 

where ijmaxσ̂ and ijminσ̂ are the maximum and minimum components of the deviatoric stress 

respectively and T is the time period of the cycle. 
 
The multiaxial fatigue criterion is defined by a damage yield locus, noted fD, as in plasticity: 

 *
D II IIf =A -A   (3.14) 

where AII
* represents the fatigue limit. Therefore if the loading, AII, is smaller than the threshold 

value, the structure does not undergo any damage. Different criteria exist: 
− Sines’ [SIN59] criterion: 

 *
II l0 HmA =σ (1-3bσ )  (3.15) 

− Crossland‘s [CRO56] criterion: 

 * Hmax
II l0

l0

1 3b
A

1 b

− σ= σ
− σ

 (3.16) 

where σl0 is the maximum stress limit before the appearance of fatigue damage with null mean 
stress. An infinite number of cycles characterized by σl0 can be applied without any fracture 
event. The difference in accuracy in between the two models depends on the material (see 
[PAP97]). 
 
Dang Van [DAN93; LEH08] proposes another type of criterion which is based on the critical 
plane approach in the stress domain and uses a combination of the mesoscopic shear stress and 
mesoscopic hydrostatic stress applied to this critical plane. To use this criterion, the mesoscopic 
stress tensor must be computed:  

 ( ) ( )meso t t dev( )σ = σ + ρ  (3.17) 

where t is the time and ρ represents the residual stress tensor. The latter is equal to the radius of 
the circle, C, which contains the loading path during the cycle of the stress components. Its center 
defines the mean stress component. Therefore, the residual stress tensor is equal to the difference 
between the two extreme loading solutions see Figure 3-3: 

 ( ) ( )( )
n m

ij ij n ij m
t ,t

1
max t t .

2
ρ = σ − σ  (3.18) 
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Figure 3-3: Description of the computation of the residual stress tensor 

The shear stress amplitude, τa, to be used in Dang Van’s criterion is found by computing the 
mesoscopic principal stresses, σI

meso,  σII
meso, σIII

meso (where σI
meso>σII

meso> σIII
meso): 

 
meso meso
I III

a

(t) (t)
(t) .

2

σ − στ =  (3.19) 

Finally, Dang Van’s criterion is: 

 ( )meso
D a H H af

t
f max (t) a (t)= τ − σ − τ  (3.20) 

where meso
H (t)σ is the mesoscopic hydrostatic stress, and aH and τaf are material parameters. 

3.5 Fatigue Continuum damage model (CDM) 

3.5.1 One-dimensional fatigue CDM description 

For uniaxial loading, Lemaître and Chaboche [LEM96] stated that the evolution law for the 
fatigue damage variable during one cycle is the following: 

 

( ) ( )

( )
( )

β
αβ+1 max mf

f
f

max l

u max

l l0 l0 m

0 m

σ -σD
= 1- 1-D .

N M 1-D

σ -σ
α=1-a

σ -σ

σ =σ + 1-bσ σ

M=M 1-bσ

  ∂     ∂   









 (3.21) 

This evolution law depends on the maximum stress σmax and the mean stress σm as defined in 
Figure 3-1. σu is the ultimate tensile stress of the material. M0, b, α and β are other material 

ρρρρij

0

σσσσij(tn)

σσσσij(tm)

σσσσijm

Loading path

CCCC
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parameters. The symbol, ‹x›, corresponds to the following definition: if x is negative then its 
value is null and if x is positive, then its value is x. The fatigue continuum damage model makes 
it possible to compute the non-linear evolution of the damage with different levels of loading 
amplitude [CHE98; BOG08; SHA09]. 

3.5.2 Description of multiaxial fatigue CDM  

Lemaître and Chaboche [LEM96] proposed the following extension of their previous damage 
evolution law in three dimensions: 

 
( )

( )

D

βf
αβ+1 DII

f

*
II II II

II 0 Hm
f u eqmax

0 if f <0
D

= if f 0A
N 1- 1-D

M

A A -A
 A  ;  M=M 1-3bσ  ;  α =1-a

1 D σ -σ


∂ ≥  ∂     

=
−

ɶ

ɶ

 (3.22) 

where σeqmax is the maximum von Mises’ stress per cycle. AII has already been defined in (3.11). 

3.6 Comparison between Manson-Coffin’s law and CDM  

Manson-Coffin’s model is interesting because its material parameters are easy to determine and 
its approach is simple. However, this model does not represent the case where maximum 
principal stress components change direction because the model is uniaxial. 
 
Palmgren-Miner’s rule is only accurate for material, that has a linear damage evolution. 
Moreover, the variation in amplitude should not be too significant. 
 
CDM does not have these drawbacks. It assesses a damage variable, which can be used in crack 
propagation analysis taking into account all components of the stress tensor. With regards to the 
multiaxial criterion, different models exist. Sines’ criterion has been chosen due to its simplicity 
and the fact that the experiments performed are insufficient to identify a more sophisticated 
model such as Dang Van’s. 

 
Here, it will be defined how the Lemaître and Chaboche’s model was identified from the data 
provided. 

3.7 Identification of the fatigue damage parameters 

3.7.1 Method used to identify the parameters 

The parameters of CDM can be identified from the well-known Wöhler’s curves. The Wöhler’s 
curves define the evolution of the number of cycles before fracture, Nf, as a function of the value 
of the stress amplitude for a chosen fixed mean stress. They are obtained from one-dimensional 
fatigue tests. In the one-dimensional case, equation (3.21) gives the number of cycles before 
fracture as a function of the maximum and the mean stress by integrating from Df=0 to Df=1. 
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( )( )

max m
f

1
N

1 1 M

−βσ − σ =  β + − α  
 (3.23) 

The CDM parameters can be identified by a least-square method in comparing the experimental 
Wöhler’s curves and CDM curves. 

3.7.2 Experimental data and Wöhler’s curves 

The experimental test was performed by ISQ. Some samples were taken of different locations of 
the connection to have BM and WM samples (see Figure 3-4). All BM samples were extracted 
from the column flange. Six samples were taken at 25 mm from the mid axis of the flange along 
the transverse position, called position K. Six other BM samples were taken at 1/6 of the flange’s 
length, W, from the outer flange, called position L, along the longitudinal direction. The WM 
samples were taken near the mid axis of the column’s flange. Three samples came from the weld 
cap and three from the weld root.  

 

Figure 3-4: Position of the sample for the LCF test from a) the BM and b) the WM 

Each sample was submitted to cyclic tensile tests at different levels of strain amplitude in the 
LCF range with a null strain average at imposed displacement. For the first hundred cycles, the 
strain and stress were recorded as a function of time. The evolution of the number of cycles 
before fracture, Nf, is a function of the value of the strain amplitude. 
 
A first pre-treatment was performed to obtain the Wöhler’s curves. During cyclic tensile loading, 
hardening proprieties varied. Indeed the level of the stress amplitude increased though the strain 
amplitude remained constant until stabilizing. This phenomenon is called cyclic hardening. After 
a number of cycles, the stress amplitude began to decrease. This phenomenon is due to the 
damage event which occurs and decreases the strength of the material, so the stress drops. Thus 
the value of the amplitude of stress was found from the value in the stabilized zone (see Figure 
3-5). 
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Figure 3-5: Evolution of the maximum stress per cycle due to imposed cyclic strain 

3.7.3 Identification 

The first step in identifying the CDM parameters was to smooth the experimental curves. Indeed 
the scattering of the experimental points require this step to help the least-square method to 
converge. An approximate model of a power law is used to smooth the experimental values. 
 
In this identification method the author applied following approach: σu is obtained from the 
tensile test (see Chapter 2.5.4), b was chosen equal to the inverse of σu, and initial values for 
steel, found in Lemaître and Chaboche’s book are used [LEM96]. Then, the parameters were 
modified manually to try to fit the provided curve and finally they were identified by Matlab 
optimizer, which uses the least-square method. The results are shown in Figure 3-6 to Figure 3-8 
and Table 3-1 for the different materials. 
 
With regards to the BM, the parameters found for K and L samples were closed; therefore, the 
isotropic model could be validated.  
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Figure 3-6: Wöhler’s curve for the BM position K 

 

Figure 3-7: Wöhler’s curve for the BM position L 
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Figure 3-8: Wöhler’s curve for the WM position  

Table 3-1: Parameters of CDM for the different materials 

 σl0  
(MPa) 

σu  

(MPa) β a 
b 

 (MPa) 
M0  

(MPa) 

BM Position 
K 

275.5 530.7 7.054 0.9 0.001884 1568 

BM Position 
L 

252.8 528.1 7.803 0.9 0.001893 1542 

WM 228.8 643.2 5.598 0.9 0.001555 2134 

 

3.8 Implementation in the Lagamine code 

The fatigue CDM model was implemented in the Lagamine code. A subroutine, called 
FATDAM, computes the following at the end of each cycle for each integration point: 

− the maximum von Mises’ stress, 
− the mean of the hydrostatic stress, 
− the maximum and minimum deviatoric stress components. 

The time period of the cycle is an input parameter of this function. Therefore, the fatigue damage 
rate can be computed by equation (3.22) with Sines’ criterion and the fatigue damage. Sines’ 
criterion was chosen because primarily it is easy to program and the experiments performed were 
insufficient to compare its validity with other criteria. 
 
The integration of equation (3.22) was performed numerically by the common fourth-order 
Runge–Kutta method. The damage variable was computed from the derivative by knowing the 
value from the previous iteration: 
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( )
0 0

n 1 n 1 2 3 4

D
f (N,D)

N
D D(N )

N
D D k 2k 2k k

6+

∂ =∂


=
 ∆
 = + + + +


 (3.24) 

where 

 

1 n n

2 n n 1

3 n n 2

4 n n 3

k f (N N,D )

N N
k f (N ,D k )

2 2
N N

k f (N ,D k )
2 2

k f (N N,D Nk )

= + ∆
 ∆ ∆ = + +

 ∆ ∆ = + +

 = + ∆ + ∆

 (3.25) 

and where ∆N is a cyclic increment. 
 
However as the slope of the damage evolution is infinite at the beginning for LCF, the method 
diverges for the computation of the first cycle. The solution for this divergence was to compute 
the first cycles analytically when the damage becomes significant with the following equation: 

 
( )( )

II
f

1
1 1

1

f1
f

A1
N

1 1 M

1
D 1 1

N

−β

−β
−α

  =  + β − α  


     = − −      

 (3.26) 

where α, M AII are computed according to equations (3.11) and (3.22). 

3.9 Conclusion 

The fatigue CDM was chosen because the model takes LCF and HCF levels into account and can 
compute the damage for non-linear cyclic amplitude. It was implemented in the Lagamine code 
for multiaxial analysis with Sines’ criterion.  
 
The parameters were identified by LCF tests driven by strain with a null average. Some tests 
should have been performed with different levels of averaged but were not done. The number of 
points was insufficient to validate the values of these parameters particularly at the HCF level. 
However, they make it possible to reproduce the available experimental results and their levels of 
magnitude were in keeping with values in [LEM96]. 
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4.1 Introduction to failure mechanics 

Fracture mechanics describes the behavior of solids or structures which contain macroscopic 
geometric discontinuity. The fracture theory is used to predict the evolution of a macroscopic 
crack up to the complete rupture of the structure. Depending on the loading, three modes of 
fracture can be differentiated, as illustrated in Figure 4-1. 

 

Figure 4-1: Fracture mode: mode I: opening mode; mode II: sliding mode; mode III: tearing mode (from [CHA96])  

The analyses of crack propagation are usually carried out under several idealized conditions, as in 
the case of linear elastic fracture mechanics or a limited yielding state. In such a case, the details 
of the local crack tip field are uniquely characterized by a single macroscopic parameter for each 
mode: the stress intensity factor (KI,II,III ) or the corresponding material energy release rate (GI,II,III ) 
which determines the critical conditions of crack growth. The numeral I, II or III corresponds to 
the loading mode.  
 
In practice, mode I is the most severe one. Typical stress-strain zones appear at the crack tip in a 
cracked specimen. For mode I, the stress and strain fields near the crack tip are defined by the 
stress intensity factor: 

 I IK K
σ= σ(θ)            ε= ε(θ)

2πr 2πr
ɶɶ  (4.1) 

where r and θ are the polar coordinates (see Figure 4-2) with r being the distance from the crack 
tip and θ the angle relative to the crack plane; σ(θ)ɶ and ε(θ)ɶ are functions depending on the angle 

θ. Similarly, the same expressions can be obtained for mode II and mode III. KI is a function 
depending on the type of loading (σ22

∞ for mode I) and on the half-length of the crack, a. For 
instance, the stress intensity factor according to Westergaard [LEM96] for a large sheet 
containing a small crack with a length of 2a and tensile loading in a perpendicular direction is 
  

 I 22K a.∞= σ π  (4.2) 
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Figure 4-2: Mode I loaded crack 

The stress intensity factor KI depends on the geometry as well. Other relationships for different 
geometries are given in [LEM96].   
 
This stress intensity factor is related to G, the energy released per unit of length of the extension 
of the crack front per unit thickness of the body, also called the crack extension force. For mode 
I, its definition is 

 
( )2 22

II
I I

K 1-υK
G =  (plane stress)     G =  (plane strain).

E E
 (4.3) 

However the previous concepts, based on purely elastic theory, are not valid in the case of ductile 
fracture. Rice [RIC68] introduced an independent J-integral, better adapted to plastic cases, 
which characterizes the stress singularity near the crack tip:  
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Figure 4-3: Integral contour 

 
ε

i
1 ij j ij ij

1C 0

u
J= w n  -σ n ds ; w= σ dε

x

 ∂
 ∂ 
∫ ∫  (4.4) 

where ui is the displacement component, nj is the component of the normal to the contour C and 
x1 is the horizontal position (see Figure 4-3). J is independent of the contour chosen (C1 or C2). 
However, if the loading is non-linear or cyclic, this independence is lost. 
 
Wells [WEL61] argued that an initially sharp crack blunts with plastic deformation resulting in a 
finite displacement at the crack tip, as illustrated in Figure 4-4. This blunting increases in the 
same proportion as the toughness of the material. This crack tip blunting, called the Crack Tip 
Opening Displacement (CTOD), refers to the progressive increase in the displacement at the 
crack tip during blunting and crack propagation. Rice [RIC68] suggested defining the CTOD as 
the displacement at the intersection the crack flanks of a 90° vertex centered at the tip as 
illustrated in Figure 4-4. Lemaître and Chaboche [LEM96] compute the CTOD with 
  

 
2
I

CTOD
y

2K
δ =

Eσ
 (4.5) 

where E is Young’s Modulus and σy the yield stress. 
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Figure 4-4: Definition of the effective CTOD as proposed by Rice 

These different fracture parameters assume the existence of an infinite stress level near the crack 
tip. The crack begins to propagate as soon as the parameter chosen reaches a critical value (KIC, 
JIC, δCTODc or GIC). These boundary values define the crack propagation strength of the material 
and are experimentally determined. For further details, the measurement methods are summarized 
in [WIL99] and [BSI91]. The sample geometries commonly used are presented in Figure 4-5. In 
small-scale yielding situations, where the plastic zone does not influence the elastic stress field, 
the J-integral is equal to G and relation (4.3) gives the link between the J-integral and K stress 
intensity factor. However, these parameters depend not only on the material but also on the 
geometry [BRO95]. For example, the J-integral varies with the type of specimen as  

 CCP DENT SENT SENB CTJ J J J J≥ ≥ ≥ ≥  (4.6) 

 
CCP, DENT, SENT, SENB and CT sample are defined in Figure 4-5. SENB specimens were 
used in the VERAPS project to evaluate the toughness of the materials.  

90°
δCTOD

Initial crack

Plastic Zone

90°
δCTOD

Initial crack

Plastic Zone
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Figure 4-5: Fracture samples used to characterize fracture toughness estimated by J-integral (from [WIL99]) 

4.2 Introduction to the Cohesive Zone Model (CZM) 

4.2.1 Introduction 

Dugdale [DUG60] and Barenblatt [BAR62] in the early sixties introduced the concept of the 
Cohesive Zone Model (CZM). This model has since been used for monolithic and composite 
material. During crack propagation, there is a fracture process occurring behind the crack tip, 
where microcracks and microvoids nucleate, grow and then coalesce. Thus the behavior of this 
zone is different from the sound bulk material due to its progressive degradation. The cohesive 
zone model describes this behavior. The potential crack is modeled by two interface areas 
connected by cohesive stresses. The degradation process is described by the constitutive law 
linking cohesive stress, T, and separation, ∆u (see Figure 4-6). According to a literature review, 
there are different forms of this law but they have common features. Cohesive stress, during the 
increase in the separation, begins to increase until reaching a maximum stress value σmax, then 
decreases and vanishes after full rupture. The area under the cohesive stress-separation curve is 
the cohesive energy, φ, which takes into account the creation of two new surfaces and the micro-
damage phenomena. In general, cohesive energy is believed to be equivalent to the work of 
fracture GI0 or JI0 [SHE02]. Particular separations can be defined: δ0, which is the separation 
when the cohesive stress is maximum, and δc, when it vanishes.  
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Figure 4-6: Typical form of cohesive stress-separation law 

Figure 4-7 describes some of the available cohesive laws. Needleman [NEE90] was the first who 
used polynomial and exponential models to study the void nucleation at the interface of particles 
in matrix metal. Tvergaard & Hutchinson [TVE92] proposed a trapezoidal shape to study elasto-
plastic material. Geubelle et al. [GEU98] used a bilinear model to analyze the initiation and the 
propagation of transverse matrix crack. Camacho and Ortiz [CAM96] modeled the propagation of 
multiple crack and delamination in a composite by a linear law. Schreurs et al. [ERI05] 
performed modeling of fatigue on solder bumps in microelectronics.  

δδδδ0

σσσσmax

δδδδc

φφφφ
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Figure 4-7: Various cohesive zone models 

4.2.2 Process zone 

The constitutive law of the cohesive zone involves two steps (see Figure 4-6). The 
microstructural analysis of the crack propagation also defines two different zones (see Figure 
4-8). Li and Chandra [LI 03] proposed the concept for the first step (point A to point B) of the 
“forward zone” and for the second step (point B to C) of the “wake zone”.  
 
In the forward zone, where the separation is less than δ0, extrinsic energy dissipation occurs due 
to microstructural damage (e.g. microcrack initiation and growth, microvoid coalescence, phase 
transformation or yielding) which generally promotes the crack’s growth. 
 
On the contrary, in the wake zone, where the separation is greater than δ0, intrinsic energy 
dissipation occurs. This is caused by micromechanism phenomena which impede the crack’s 
propagation (e.g. crack deflection, friction or crack closure).  
 
Both zones consume energy: the first part is dissipated by the material and the rest by the 
cohesive zone. The notion of these process zones is important in the use of the cohesive zone 
model. Indeed the accuracy of the computation depends directly on the number of elements in 
each zone.  
 

Needleman, 1990 Tvergaard and 

Hutchinson, 1992

Camacho and Ortiz, 1996 Geubelle and 

Baylor, 1997
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Figure 4-8: Process zone description in the cohesive zone model 

Rice [RIC80] and Molinari [MOL07] proposed the following relationship to evaluate the size of 
the process zone, RPZ, from the crack tip: 

 c
PZ 2 2

max

G9 E
R .

32 1

π=
− υ σ

 (4.7) 

This length incorporates both the wake zone and the forward zone. As a result, the criterion 
works well on brittle material. For proper functioning, it is advised that the finite element size 
should be smaller than the process zone.  

4.2.3 Implicit thickness 

The cohesive zone model allows the stick layer of a composite to be simulated. A contradiction 
appears as the cohesive zone models a layer with zero thickness. However, it is possible to define 
an implicit thickness. Suquet [SUQ87] suggested computing the strain, ε, by  

 
u

h

∆ε =  (4.8) 

where h is the implicit thickness of the element.   
 
If a bulk material exhibits elastic behavior, then the stress as a function of the deformation is 

 E .σ = ε  (4.9) 

By analogy the separation depends on the cohesive stress by 

 T k u= ∆  (4.10) 

where k is the stiffness of the cohesive zone before the degradation process begins. 
 
The latter three equations allow identifying the implicit thickness, h, by considering the stress 
equality:  

A

B

C

Wake 

Zone
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Plastic Zone
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E

h .
k

=  (4.11) 

In this case, the choice of the initial stiffness is important because it can generate an implicit 
thickness. As the cohesive zone model aims to model cracking, the initial stiffness must be as 
high as possible to have the lowest possible implicit thickness. In the case of finite element 
simulations, h must be smaller than the smallest size of the cohesive element. 

4.2.4 Jump displacement  

The use of the cohesive zone model can induce some instability called solution jumps. This 
problem has been addresses by Gao [GAO04], Chaboche [CHA01] and Hamitouche [HAM08]. 
This phenomenon can be explained by the following simple one-dimensional problem. Let two 
simple elastic solid volumes with length, a, be linked by a cohesive zone (see Figure 4-9).  

 

Figure 4-9: Simple uniaxial problem to illustrate the jump displacement 

The cohesive zone is defined by the following bilinear law [MI 98]: 

 

( )

( )

( )

max
0

0

c
max 0 c

c 0

c

u         if u         a

u
T  if u  b

0                   if u          c

σ ∆ ∆ < δ δ
 δ − ∆= σ δ ≤ ∆ ≤ δ
 δ − δ


∆ > δ

 (4.12) 

The solids are elastic, so the total elongation, u, and the stress, σ, are related by: 

 
E

u
2a

σ =  (4.13) 

where E is Young’s modulus. 
 
The constraint displacement, U, is the sum of the solid elongation, u, and the cohesive separation, 
∆u: 

 U u u.= + ∆  (4.14) 

Equations (4.12),(a) to (4.14) and the continuity of stress can be used to write the relationship 
between the constraint displacement, U, and the cohesive separation, ∆u, before it reaches δ0: 
  

E,νννν

E,νννν

U

a

a

Cohesive zone

U

∆u

u



Chapter 4. Crack propagation modeling  Introduction to the Cohesive Zone Model (CZM) 
 
  

65 
 

 0

max

E1
U 1 u with .

2a

δ = + ∆ Λ = 
 Λ  σ

 (4.15) 

The displacement imposed induces the cohesive separation, ∆u. This separation can be computed 
from the curves in Figure 4-10. The separation, ∆u, which corresponds to the displacement 
imposed, is the abscissa of the intersection point between the curves of the cohesive law and the 
Equation (4.16) , which was compiled from equations (4.13) and (4.14). 

 ( )E
U u

2a
σ = − ∆  (4.16) 

In the first step, where the separation, ∆u1, is less than δ0 (for example U=U1), an intersection 
point can always be found. However when the cohesive separation reaches, δ0 (U=U2), two 
situations may occur: 

− If the elastic stiffness is large enough (see Figure 4-10 (a)) to maintain the intersection 
between the cohesive and the elastic law, then the response is always stable because 
an intersection point can always be found (for example, U=U3). 

− Otherwise, (see Figure 4-10(b)) when U increases, the solution jumps (∆u3=U and 
T=0) and the crack occurs without a smoothing component. This is the jump 
displacement case. 

 

 

Figure 4-10: The cohesive separation response driven by the imposed displacement U 

Consequently, the condition of stability can only be met, when the cohesive separation reaches 
δ0, the constraint displacement is inferior to δc. From Equation (4.15), this condition becomes 

 c

0

1
 and 

1

δΛ ≤ α =
α − δ

 (4.17) 

The stiffness ratio condition can also be written as a comparison of energy: 

 2
max max c max 0 max 0 d

1 1 2a 1 1 1

1 2 E 2 2 2
Λ ≤ ⇔ σ > σ δ − σ δ = φ − σ δ = φ

α −
 (4.18) 
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where φ is the cohesive energy needed to reach total debonding. This stability criterion requires 
the elastic energy to be less than the effective cohesive energy, φd. Otherwise all elastic energy 
stored in the cohesive zone is distributed through the solid elements and the separation jumps.  
 
This phenomenon explains the convergence problems found in simulations with the cohesive 
zone. Different authors ([GAO04], [CHA01] and [HAM08]) suggested adding viscosity in the 
cohesive behavior in order to smooth this phenomenon. In this case, a part of the elastic energy is 
converted into kinetic energy and the crack rate is limited. This model will be described in more 
details later. 

4.3 The constitutive laws of the cohesive zone model 

In this section, two constitutive laws are described to compare their application to the cohesive 
zone model. The first one is Xu and Needleman’s law. It is an exponential law which has often 
been used according to the literature review [XU 93; KEL99]. It was the first law implemented in 
the finite element code Lagamine for the cohesive zone model. However, this law does not allow 
the stiffness of the cohesive zone to be calibrated before the degradation process begins (see 
Section 4.2.3). Therefore, it was decided to implement Crisfield’s law and compare the two, as 
described further in the following section. 

4.3.1 Description of the cohesive components 

The cohesive zone model makes it possible to model cracks in a mixed mode. Each mode of 
fracture (I, II or III) is associated with a separation component and a cohesive stress component 
(see Table 4-1). The components constitute the separation vector, ∆u, and the cohesive stress 
vector, T. These components are oriented along the local triad (ep, es, en) in 3D or (et, en) in 2D 
where en corresponds to the normal of the mid-plane between the crack interfaces while et, ep and 
es correspond to tangential directions. 

 
( )
( )

( )
( )

p s n p s np s n p s n

t n t nt t t n

∆u e +∆u e +∆u e 3D T e +T e +T e 3D
∆u=  ; T=

∆u e +∆u e              2D T e +T e          2D

 
 
 

 (4.19) 

Table 4-1: Association between separation and cohesive stress components and the crack mode 

Mode (see Figure 4-1) 2D 3D 
Separation Cohesive stress Separation Cohesive stress 

I ∆un Tn ∆un Tn 
II ∆ut Tt ∆up Tp 
III   ∆us Ts 

4.3.2 Xu and Needleman’s law 

During this research, Xu and Needleman’s model [XU 93] was firstly chosen for the cohesive 
zone, because it has already been used for such application as the ductile fracture of metal 
[SHE02]. Xu and Needleman introduced an exponential law, which comes from a pseudo- 
potential.   
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 (4.20) 

 
∆un and ∆ut are the normal and the shear components, respectively, of the separation between the 
two interfaces. φn and φt are the normal and shear energies released by the normal and shear crack 
processes. σmax0 and τmax0 are the normal and shear maximum stresses. δn0 and δt0 are the normal 

and shear separation when the stresses are at a maximum. Finally, ∆un* is the normal separation 
after the shear separation is completed and the normal stress is null (in literature, generally r=0 
[RAH00; ROE03]).  

4.3.2.1 Cohesive stresses 
The normal and the shear components of the cohesive stress, Tn and Tt, are obtained from the 
derivation of the pseudo-potential by the components of the separation. 
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∂

 (4.21) 

Thus (4.20) + (4.21) become 
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 (4.22) 
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Figure 4-11: Relative normal and shear cohesive stress-separation curve for uncoupled modeling 

Figure 4-11 shows the tension-separation curves in the case of uncoupled modeling for the 
normal and tangential modes. 
 
In the case of three-dimensional analyses, the two-dimensional model is extended directly. The 
cohesive shear stress, Tt, is projected on the local axes to obtain the components of the shear 
stresses, Tp and Ts, by Equation (4.23). 
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 (4.23) 

4.3.2.2 Fatigue damage coupling 
In the case studied by the author, the system would be undergoing cyclic loading and unloading; 
therefore it was necessary to take into account the fatigue damage expressed by a scalar Df. The 
fatigue Continuum Damage Model (see Chapter 3) describes this damage. Thus, it is coupled 
with the cohesive zone model by the following way proposed by Roe and Sigmund [ROE03] by 
modifying the value of the maximum cohesive stresses: 

 ( )max max0 fσ =σ 1-D  (4.24) 

 ( )max max0 fτ =τ 1-D  (4.25) 

where σmax0 and τmax0 are the initial normal and shear maximum cohesive stresses, respectively, 
with no fatigue damage.  
 
Due to fatigue damage, the energy needed to crack material is reduced, and the new curves are 
defined on Figure 4-12. 
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Figure 4-12: Cohesive loading curve coupled with fatigue damage 

4.3.2.3 Loading and unloading cases 
During unloading (step 3 in Figure 4-13), Roe and Sigmund [ROE03] suggested that the cohesive 
stress is linear, as in elasticity. Its behavior remains linear during reloading (step 4 in Figure 
4-13) until the separation reaches the values when unloading began. Then the behavior follows 
the constitutive law defined by Equation (4.22) (step 5). To determine the linear cases due to 
loading or unloading and which crack mode, three new variables are computed:  

 

{ }

j

j
t0

n
n

n0

oi i
t

∆u
ω = where j=t, p or s 

δ

∆u
ω =

δ

=max ω (t)  with i=t, p, s or n








ω


 (4.26) 

where ωoi is the maximum value of ωi during the loading phase, which defines the monotonic 
damage state of the material. The linear behavior takes places when ωi is less than ωoi; therefore, 
the constitutive law becomes 

 ( ) i,max
i oi i i

i,max

T
if , then T =∆u where i= t, s, p or n

∆u
ω ≤ ω  (4.27) 

where Ti,max represents the cohesive stress component and, ∆ui,max represents the separation 
component before unloading begins. 
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Figure 4-13: Normal traction curve in case of loading and unloading 

If the two new crack surfaces begin to touch each other (i.e. nu 0∆ ≤ ), then the cohesive zone 

will be compressed and the law becomes: 
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 (4.28) 

where α is a penalty coefficient. The value of α should be around 10 [ROE03] to have an 
significant stiffness and simulate contact by a penalty model. 

4.3.2.4 Viscosity 
To avoid convergence problems in finite element simulations due to jump displacement (see 
Section 4.2.4), Gao and Bower, [GAO04] suggested adding some viscosity terms such as: 

− in 2D cases, 
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 (4.29) 
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− in 3D cases, 
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 (4.30) 

where ζn and ζt are viscosity-like parameters that govern viscous energy dissipation under normal 
and tangential loading, respectively. 
This viscosity term is added only if the normal separation is positive. 

4.3.2.5 Cohesive stiffness matrix 
The definition of the cohesive stiffness matrix takes into account viscosity, as described below: 
 2D 3D  
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(4.31) 

   

The components of this matrix are determined by the Equations in (4.31). Here, their analytical 
forms will be given:  
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− For 2D cases: 
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− For 3D cases: 
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(4.36) 

4.3.3 Crisfield’s law  

4.3.3.1 Description 
Unlike Xu and Needleman’s model, Crisfield’s model has a bilinear shape. It is used to define the 
initial stiffness Eco. 
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 (4.37) 

where σmax and τmax are the maximum normal and shear stresses, δn0 and δt0 are the normal and 
shear separations when the normal and shear stresses reach their maximum values, σmax and τmax. 
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Figure 4-14: Crisfield’s cohesive zone model 

A monotonic damage tensor, Dmono, is defined as a function of the separation, ∆u. At the 
beginning of the loading phase, the damage is equal to zero. If one separation component, ∆ui, is 
beyond the separation, δi0, where the stress is equal to the maximum stress, then the damage 
begins to grow until the separation is equal to a critical displacement, δc, and the damage is equal 
to 1. In unloading, the damage stops growing. Then, in reloading, the damage grows again when 
the separation reaches the value reached when the unloading began.  
 
For the mixed fracture mode, the damage tensor is defined by 

 

1

p sn

n0 p0 s0

0
t

0 tc
mono

0 tc t0

tc

tc t0

nc

nc n0

u uu
 -1

max( )

D F  with  0 0
1

F 0 0

0 0

α αα α


  ∆   ∆  ∆ 
 ω = + +      δ δ δ       

ω = ω
ω  δ =   + ω δ − δ  
  δ 
 =  δ − δ  
  δ
  δ − δ  

 (4.38) 

where δtc and δnc are the separations when the normal and the shear stresses are null, α is a 
material parameter and t the time. 
The condition when the monotone damage rate is positive is 

 mono
0

0

D >0
if (ω-ω >0), then 

ω ω




=

ɺ

 (4.39) 

Otherwise, 
mono

D 0=ɺ , since no decrease in damage is possible. 

Thus, the constitutive law of the cohesive zone model is (see Figure 4-14) 

σmax

δn0 δnc

∆un

Tn τmax

−τmax

δt0

−δt0−δtc

δtc

∆ut

Tt
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mono co

T I D E u.= − ∆    (4.40) 

In compression (∆un<0), the damage tensor becomes null to model penalty contact. 
 
In this case, the cohesive energies needed for mode I, φn, and mode II or III, φt, to crack the 
material are defined by 

 
t max tc

n max nc

1

2
1

.
2

φ = τ δ

φ = σ δ
 (4.41) 

As a result, the cohesive stiffness matrix is 

( )

mono co mono

1 1 t0
p s p n p

1 1
s p s n s1mono co co mono

t01 1
n p n s n

n0

I D E  if D 0

1
0 0

u u u u u
C 1 1

I D E - FE u u u u u 0 0  if D 0
1

u u u u u
1

0 0

α
α α− α−

α− α α−
α+ α

α− α− α

α

 − =  
  
  δ
   ∆ ∆ ∆ ∆ ∆=    − ∆ ∆ ∆ ∆ ∆ >      δ+ ω   ∆ ∆ ∆ ∆ ∆   
  δ 

ɺ

ɺ

 

(4.42) 

4.3.3.2 Viscosity 
To suppress jump displacement, the bilinear law can be affected by a viscosity parameter. 
[HAM08] proposes to take the viscosity in a damage tensor, Dv into account: 

 

p
t

p

s
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s

n
n

n

u
0 0

u

u
D 0 0

u

u
0 0

u

∆ 
ξ ∆ 
 ∆= ξ 

∆ 
 ∆ξ 

∆  

ɺ

ɺ

ɺ

 (4.43) 

where ζn and ζt are viscosity-like parameters that govern viscous energy dissipation under normal 
and tangential loading, respectively. 
Therefore, Equation (4.40) is modified as follow: 

 
co mono v

T I D E u where D D D .= − ∆ = +    (4.44) 

4.3.3.3 Fatigue Damage 
Fatigue damage can be taken into account in the same way as performed in [BOU06]. To do so, 
one adds the fatigue damage parameter, Df, computed by the CDM to the damage tensor, D, (see 
Chapter 3). 

 fco mono v
T I D E u where D D D D I= − ∆ = + +    (4.45) 
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However, in this way the fatigue damage reduce the separation when the material is totally 
debonding (see Figure 4-15 a)). Therefore, the stiffness of the cohesive law when the cohesive 
stress decreases, which is negative, strongly decreases which can affect the convergence of the 
computation.  Consequently, it was decided to couple the fatigue damage in the same way as in 
Chapter 4.3.2.2 (see Figure 4-15 b)).  
 

 

Figure 4-15: Coupling between cohesive zone model and fatigue damage suggested by a) [BOU06] and b) [ROE03] 

4.4 Implementation of the two-dimensional cohesive element 

(CZMEL)  

4.4.1 Element description 

The CZMEL element models one side of the interface called the solid interface while a 
foundation segment models the other side of the interface (see Figure 4-16). These elements 
contain two nodes, each of which has two translational degrees of freedom. The nodal position 
vector, for the CZMEL element (snx )4x1 and the foundation (fnx )4x1 in the global coordinates (x, y) 
can be written as 

 
( )
( )

Ts s s s s
n 1 1 2 2

Tf f f f f
n 1 1 2 2

x = x , y , x , y ,

x = x , y , x , y .
 (4.46) 

a) b)
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Figure 4-16: Element description 

Before the crack occurs the coordinates of the foundation segment and CZMEL element are 
identical. As the crack progress, separation induces different values for these coordinates. 

4.4.2 The isoparametric and the local axes 

The mid-plane node positions, (mnx )4x1, are the average of the foundation and solid interface node 
positions. 

 ( )m s f
n n n

1
x x x

2
= +  (4.47) 

In mode I, a symmetric axis can pass along the mid-plane. That’s why only half of the structure 
and one interface side are sufficient to model this case by finite element simulations. In this 
model, the interface is the foundation segment and the symmetric axis and the mid-plane are 
merged with the solid interface (see Figure 4-17). Thus: 

 m s
n nx x .=  (4.48) 

The isoparametric axis, eξ, is an unit vector tangent to the mid-plane. Along this axis, an 
isoparametric coordinate, ξ, is defined. Its value is equal to -1 at the first nodal position, 0 in the 
middle of the axis and 1 at the last nodal position.  
 
The local axes are defined along the mid-plane between the two interfaces (see Figure 4-17). The 
tangent axis et is aligned with to the local isoparametric axis eξ and en is normal to this axis.  
Let the first direction be:  

1f

2f

1s

2s

: Node

: Integration point
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 t 2 2

x

1
e e  

yx y
ξ

∂ 
 ∂ξ
 = =

∂ ∂ ∂   +      ∂ξ ∂ξ ∂ξ   

 (4.49) 

where  

 

( )

( )

m
i i mi

i

m
i i mi

i

xx
x

ξ ξ ξ
.

yy
y

ξ ξ ξ

 ∂ φ ∂φ∂ = =∂ ∂ ∂


∂ φ ∂φ∂ = =∂ ∂ ∂

 (4.50) 

In the same way, for the second direction, let 

 n 2 2

y

1
e  .

xx y

∂ − ∂ξ
 =

∂ ∂ ∂   +      ∂ξ ∂ξ ∂ξ   

 (4.51) 

The rotational matrix, (R)2x2, which is used to pass from the global axes to the local axes, has the 
following form: 

 
2 2

xt

yn

x y
ee x y1

R  where R  and J =
ee y xJ

∂ ∂ 
   ∂ξ ∂ξ ∂ ∂      = = +      ∂ξ ∂ξ∂ ∂         − ∂ξ ∂ξ 

 (4.52) 

where |J| is the determinant of the Jacobian matrix. 
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Figure 4-17: Local axes 

4.4.3 Interpolation functions 

To compute the position of any point which belongs to the element or the foundation segment, 
linear interpolation functions are used in terms of the isoparametric coordinate, ξ.   
 
One defines the linear interpolation function as: 

 
( )

( )

1

2

1
1

2
1

1 .
2

φ = + ξ

φ = − ξ
 (4.53) 

These linear functions are implemented into the interpolation matrix, (N)2x4: 

 1 2

1 2

0 0
N .

0 0

φ φ 
=  φ φ 

 (4.54) 

The relationship between the continuous position field, either of the CZMEL element (xs)2x1 or 
the foundation segment (xf)2x1, and the nodal positions is 

 

s
s s

ns

f
f f

nf

x
x Nx ,

y

x
x Nx .

y

 
= = 
 

 
= = 
 

 (4.55) 
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4.4.4 Computation of the separation 

The separation field in global axes (∆x)2x1 is computed by 

 ( )f s f s
n nx x x N x x∆ = − = −  (4.56) 

where N is computed at the same isoparametric coordinate ξ on the solid and the foundation.  
 
One switches to the local axes with the rotational matrix (see Figure 4-18): 

 ( )f st
n n

n

u
u R x RN x x

u

∆ 
∆ = = ∆ = − ∆ 

 (4.57) 

where R is computed along the mid-plane at the same ξ.  

 

Figure 4-18: Local separation 

4.4.5 Computation of the nodal forces and the tangent stiffness matrix 

The nodal forces on the solid, (Fs)4x1, and on the foundation, (Ff)4x1, generated by the cohesive 
stresses are defined by: 

 
s

f

1s T T T T
n 1

l

1f T T T T
n 1

l

F N R Tdl N R T J d

F N R Tdl N R T J d

−

−

= − = − ξ

= = ξ

∫ ∫

∫ ∫
 (4.58) 

where ls and lv are the CZMEL element and foundation segment lengths respectively.  
 
The integration is numerical following the Gauss’ scheme with 1 to 9 integration points. 
Finally, Equation (4.58) becomes: 

1f
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1s

2s

et

en

∆un

∆ut
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s T T
n

IPI

f T T
n

IPI

F N R T J W

F   N R T J W

= −

=

∑

∑
 (4.59) 

 To obtain the compliance stiffness matrix, one differentiates Equation (4.59). 

 

( )
( )

s T T T T
n

IP IP

f T T T T
n

IP IP

dF N d R J TW N R dT J W

dF N d R J TW N R dT J W   

Stress matrix Classical matrix

                            

= − −

= +

∑ ∑

∑ ∑  (4.60) 

It is appropriate to differentiate R and |J | simultaneously, because |J| appears in the denominator 
of most R terms. There are two terms in the derivative of the nodal forces on the solid and the 
foundation: 

− (dFc
i)4x1 which comes from the derivative of the rotation and Jacobian’s determinant 

and which yields the stress matrix; 
− (dFh

i)4x1 which comes from the derivative of the cohesive stress and which yields the 
classic matrix.   

 
The derivative of the cohesive stresses is directly linked to the derivative of the separation (see 
Section 4.3) by  

 ( )dT C d u .= ∆  (4.61) 

By neglecting rotation variation for one step,  

 ( ) ( )d u Rd x .∆ = ∆  (4.62) 

So, from Equation (4.57), the last equation becomes: 

 ( ) ( ) ( )f s
n n nd u Rd N x RNd x x .∆ = ∆ = −  (4.63) 

So, the classic matrix becomes 

 

( )

( )

s T T T T s T T f
h n n n

IP IP IP

f T T
nh

IP

dF  N R CRNd x J W  N R CRN J Wdx N R CRN J Wdx

                                                                  Solid/Solid                     Solid/Foundation  

dF    N R CRNd x J W -

= − ∆ = −

= ∆ =

∑ ∑ ∑

∑ T T s T T f
n n

IP IP

N R CRN J Wdx N R CRN J Wdx

                                                                Foundation/Solid           Foundation/Foundation

+∑ ∑
 (4.64) 

To obtain the stress matrix one has to differentiate d(RTJ). One can demonstrate that 
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1 2 1 2
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1 2 1 2
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0 0 0 0
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0 0 0 0

= +

∂φ ∂φ ∂φ ∂φ   − −   ∂ξ ∂ξ ∂ξ ∂ξ
   = =
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 (4.65) 

Thus 

 ( ) m mT T T
n nx yt n

d R J B dx e B dx e .= +  (4.66) 

The stress matrix is defined by the following equation: 

 
( ) ( )

( ) ( )

mm m

mm m

s T TT T
t nc nn nx y n nt n

IP IP

f T TT T
t nc nn nx y t nt n

IP IP

T B T BdF N TW N dx WB dx e B dx e
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+= =+

∑ ∑
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 (4.67) 

Finally, 
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s T s T f
t n t nc n nt n t n

IP IP

f T s T f
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IP IP

1 1
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2 2
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   Foundation/Solid             Foundation/Foundation

 (4.68) 

For symmetry axes, the previous relationship can be simplified as follows. 

 

( )

( )

s T s
t nc n1 2

IP

f T s
t nc n1 2

IP

1
T B T BdF N dx W

2

                          Solid/Solid              
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+= −

+=

∑

∑
 (4.69) 

 

4.5 Implementation of the three dimensional cohesive 

element (CZM3D)  

4.5.1 Element description 

A three-dimensional cohesive element has been developed in the Lagamine code. In this element, 
each crack interface’s side is modeled by 4 nodes (see Figure 4-19). They are called, respectively, 

− CZM3D or solid element, 
− foundation segment. 
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CZM3D and foundation are 4-node plane elements. As a result, they can contain 1, 4 or 9 
integration points.  

 

Figure 4-19: Description of CZM3D 

The nodal position vector for the element (s
nx )12x1 and the foundation (fnx )12x1 in the global 

coordinates (x, y) can be written 
 

 
( )
( )

Ts s s s s s s s s s s s s
n 1 1 1 2 2 2 3 3 3 4 4 4

Tf f f f f f f f f f f f f
n 1 1 1 2 2 2 3 3 3 4 4 4

x = x , y , z , x , y , z , x , y , z , x , y ,z

x = x , y , z , x , y ,z , x , y ,z , x , y , z .
 (4.70) 

4.5.2 The isoparametric and local axes 

So that the separation associated with the cohesive stresses keeps its value during large strains 
and displacement, the normal vector of the CZM3D and the foundation to the surface always has 
to be directed outward from of the structure. This is achieved by defining the list of the element 
nodes so that the so-called corkscrew rule, applied to their sequence, may give the outer normal 
vector.  
 
The mid-plane nodal positions, (mnx )12x1, are obtained by calculating the average of the 
foundation and solid interface nodal positions according to Equation (4.47). 
 
The directions eξ and eη of the ξ and η isoparametric lines are defined by 
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= φ
 ∂φ∂ =∂ξ ∂ξ
 ∂φ∂
 =

∂η ∂η

 (4.71) 

where xi, yi and zi are the global positions of the nodes and φi is the interpolation function. 
   
The rotational matrix is determined by connecting the global triad (ex, ey, ez) to the local one (ep, 
er, en). The local axes are defined along the mid-plane between the two interfaces or along the 
CZM3D element in symmetric cases (see Figure 4-20).  
 
The local vector, ep, is equal to the isoparametric vector eξ. 

 
x

p y

z

P

e e P

P
ξ

 
 = =  
  

 (4.72) 

The local vector en is obtained by the cross product between eξ and eη. 
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 (4.73) 

|J| is the determinant of the Jacobian matrix of the transformation from global coordinates (x, y, 
z) to local coordinates (ξ, η).  
 
Finally, the local vector, es, is obtained by the cross product between ep and en.  

 
x

s n p y

z

S

e e e S

S

 
 = Λ =  
  

 (4.74) 

The rotational matrix, R, which is used to pass from global axes, (ex, ey, ez), to local axes, (ep, es, 
en), is defined by  

 

x xp x y z

s x y z y y

n x y z
z z

e ee P P P

e S S S e R e

e N N N e e

               = =                  

 (4.75) 

where Pi, Si and Ni are defined in (4.72), (4.74) and (4.73) respectively. 
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Figure 4-20: Local axes definition 

 

4.5.3 Interpolation functions 

 

Figure 4-21: Local axis along the CZM3D 

To compute the relative continuous position field in the element and in the foundation, a linear 
interpolation is used in terms of isoparametric coordinates, ξ and η (see Figure 4-21).   
Let the linear interpolation function be defined as: 
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1 1 ,
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1 1 .
4

φ = − ξ − η

φ = + ξ − η

φ = + ξ + η

φ = − ξ + η

 (4.76) 

Then, these linear functions are introduced into the interpolation matrix (N)3x12: 

 
1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0 0 0 0 0

N 0 0 0 0 0 0 0 0 .

0 0 0 0 0 0 0 0

φ φ φ φ 
 = φ φ φ φ 
 φ φ φ φ 

 (4.77) 

Finally, the relationship between the continuous position field and the nodal position becomes 

 

s

s ss
n
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f ff
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f
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x y Nx ,

z

x

x y Nx .

z

 
 = = 
  

 
 = = 
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4.5.4 Computation of the separation 

The separation field in the global axes is computed by  

 ( )f s f s
n nx x x N x x∆ = − = −  (4.79) 

where N is computed using the same isoparametric coordinates, ξ and η, on the solid and the 
foundation segment. One switches to the local axis with the rotational matrix: 

 ( )
p

f s
n ns

n

u

u R x RN x xu

u

∆ 
 ∆ = = ∆ = −∆ 
 ∆ 

 (4.80)  

where R is computed along the mid-plane at the same isoparametric coordinates for ξ and η. 

4.5.5 Computation of the nodal force and the tangent stiffness matrix 

The nodal cohesive forces are computed by Equation (4.59) on the CZM3D element (Fs) and 
foundation (Ff). The stiffness matrix is the derivative of the nodal forces with respect to the nodal 
displacements of the CZM3D element in Equation (4.60). 
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As for 2D, two sub-matrices appear then: a classic matrix, obtained by derivation of the stresses, 
and a stress matrix, obtained by derivation of the geometry. The classic matrix is computed 
according to Equation (4.64). The stress matrix is obtained by derivation of (RT|J|), but will not 
be discussed in this thesis.  
 
Note: Stiffness can also be computed by perturbation of each degree of freedom too. 

4.6 Coupling with fatigue damage 

The fatigue damage was computed according to the fatigue Continuum Damage Model of 
Lemaître and Chaboche discussed in Chapter 3. Depending on the cohesive law used, the 
coupling in the constitutive cohesive law was described in sections 4.3.2.2 and 4.3.3.3. However, 
the fatigue damage was computed from the stress tensor components and as a result in the solid 
elements. The method to transfer the fatigue damage from the solid elements to the cohesive 
elements is illustrated in Figure 4-22. The fatigue damage transferred to integration points of the 
cohesive element was the mean of the fatigue damages computed in the integration points of the 
solid element linked to the cohesive element and to the foundation segment. In the studied cases, 
the solid elements contained only one integration point for two-dimensional and three-
dimensional simulations. 
 

 

Figure 4-22: Transfer of fatigue damage from solid elements to cohesive elements    

4.7 Identification of parameters 

4.7.1 Identification method 

The method used to identify the cohesive parameters was the inverse method. A three-point bend 
testing was performed on a specimen, which was extracted from the base metal. The welding 
metal was identified by the Charpy-V test.  
 
Next, the three point bend testing was modeled by finite elements simulations with cohesive 
elements by knowing the mechanical parameters (see Chapter 2.5.4). In the first step, the effect of 
each material cohesive parameter variation was tested by two-dimensional analyses. Then, the 
parameter identification was performed by three-dimensional analyses because the crack’s 
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growth is an average along the thickness of the sample. Finally, an initial set of cohesive 
parameters was chosen and the output data of the test were compared with the simulated ones.  
 
The aim of this study was to identify the mode I. Modes II and III will be neglected in this study 
because they were expected to be minor in the crack mechanism studied and no experimental test 
was available to identify them. Cohesive parameters were thus considered to be equivalent for 
mode I, II and III in this study (i.e. isotropic behavior). 

4.7.2 Three-point bend testing 

The three point bend testing analyzed was performed by Corus according to the [BSI91] 
standards on the base metal. This test was used to identify the critical Rice integral, JIC, 
experimentally for a metallic material under displacement due to monotonic loading at a quasi-
static rate. The method uses fatigued, pre-cracked specimens which have been loaded by three 
rollers to fracture or maximum force at room temperature. The specimens were extracted from 
the column flange, the locations of which are defined in Figure 4-23. The geometry of the 
specimen is given in Figure 4-24. The initial crack length, a0, is equal to the half of the sample 
thickness. The results of this test provided the J-integral, J, as a function of the crack’s growth, 
∆a, and the force, F, as a function of the load line displacement, vLL (see Figure 4-25). 
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Figure 4-23: Extraction locations of the three-point bend specimens  

 

Figure 4-24: Geometry of the specimen 

 

Figure 4-25: Variable Measured during the experiment 
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For different specimens, the force, F, versus the load line displacement, vLL, was measured (see 
Figure 4-25). The crack’s growth, ∆a, was measured at nine equally distant on the thickness 
points, where the outer points were located at 1% of the thickness from the specimen’s surface. 
This growth value was obtained firstly by averaging the two measurements at the outer points 
and then averaging this value with the inner points.  
 
The J-integral was computed from the force-load line displacement plot. International Standard 
ISO 12135 provides a method to compute an equivalent J-integral for experimental tests. In the 
case of a three-point bend specimen, it is computed from the force displacement plot by Equation 
(4.81): 
 

 

( )
( )

2 2
p p0

11.5
0

0.5 2
0 0 0 0 0

2

1 1.5

0 0

1-ν η UaFS
J= g +

BW W E B W-a

a a a 3.93a 2.7a
3 1.99- 1- 2.15- +

W W W W Wa
with  g =

W 2a a
2 1+ 1-

W W

     
     

       

      
      

        
 
    

  
  

 (4.81) 

where F is the force submitted by the downward roller, ν is Poisson’s ratio, E is Young’s 
modulus, a0 is the initial crack length, B, W and S are the geometrical parameters of the specimen 
(see Figure 4-24), Up is the plastic component of area under the force (F) versus the load-line 
displacement (vLL) plot (see Figure 4-26) and ηp is the ‘eta’ rotation factor, which is equal to 2 
for three-point bend specimens for an a0/W ratio ranging from 0.45 to 0.7.  

 

Figure 4-26: Definition of Up 

For the base metal, Figure 4-27 and Figure 4-28 provide the test results from a three-point bend 
testing on a sample extracted in the transversal direction. The experimental points of the J-
integral versus crack growth curve can be fitted with a power law as described in [WIL99]: 

 nJ C a= ∆  (4.82) 

The values for this relationship are given in Table 4-2 and the fitted curve is in Figure 4-28. 
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Table 4-2: Coefficient of the power law for the J-∆∆∆∆a curve for the BM 

C 
(kJ.m-2) 

n 

1203 0.51 

  

Figure 4-27: Force displacement plot from the CTOD test on the base metal 

 

Figure 4-28: Crack growth in function of the J-integral from the three-point bend testing on the base metal 
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4.7.3 Identification of the J-integral-Crack growth plot from Charpy-V 

notch test  

No three-point bend testing was performed on the weld metal. However, [WAL01] proposes a 
method to identify the J-integral versus crack growth plot using a Charpy-V notch test. This test 
measures the energy required to crack a notch specimen by impact (see Figure 4-29). A striker, 
which is mounted on the end of a pendulum and for which initial kinematic energy is known, 
impacts the notched specimen. The notch can have either V shape or U shape. The variation in 
the kinematic energy after the impact gives the energy required to yield the material and crack the 
specimen, called Charpy energy, noticed CVN.  

 

Figure 4-29: Charpy test description 

[WAL01] analyzed 112 multispecimens J-integral versus crack growth curves from a wide 
variety of materials. A simple power-law description of the curves was correlated to the Charpy-
V notch energy, CVNUS. 
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 (4.83) 

where T is the temperature of the sample.  
 
Corus performed a Charpy-V notch test on weld metal. The specimens were extracted in the 
welding zone at the root and cap positions (see Figure 4-30). They proposed the coefficients in 
Table 4-3 of the power law description of the J-integral versus crack growth curve. The plot 
obtained shows that the weld metal crack strength was weaker than the base metal. Indeed, the 
weld metal was less ductile according to the tensile test (see Chapter 2.5.4). As no other data are 
available, these experimental data were used for the parametric identification. 

Initial position

final position

Specimen position
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Figure 4-30: Extraction location for the weld metal V notch specimen 

Table 4-3: Parameters of the power law of the J-integral versus crack growth plot for the weld metal 

JImm  
(kJ.m-2) 

m 

237.84 0.379 

 

Figure 4-31: Crack growth in function of the J-integral for the base metal 

 

Beam Flange

Weld metal

C
o

lu
m

n
 F

la
n

g
e

– 6x Cap

– 6x Root

– 6x Cap

– 6x Root
Column Flange

Beam Flange

Weld metal

Cap

Root

: V Notch Specimen



Chapter 4. Crack propagation modeling  Identification of parameters 
 
  

96 
 

4.7.4 Parametric study 

4.7.4.1 Modeling 
The aim of these analyses was to understand the effect of variations in each parameter on the 
model. The analysis is two dimensional in a plane stress state which is equivalent to the center of 
the specimen. Due to the symmetry of the geometry and the loading, only half of the specimen 
was modeled. Therefore, all nodes along the symmetric axis were fixed in the horizontal 
direction. The three-point bend specimen was modeled (see Figure 4-32) by a 4-nodes mixed 
solid element: BLZ2D [ZHU95]. The constitutive law was elasto-plastic with isotropic hardening 
and von Mises’ criterion. The mechanical parameters are listed in 0 and were taken from the base 
metal parameters. The three rollers were modeled by non-deformable, circular foundations and 
the contact zones were modeled by CNTPC element with a penalty method [HAB98]. The 
parameters of this contact law can be found in Table 4-4. The fatigued pre-crack was modeled by 
letting the nodes free along the symmetric axis. The crack path was assumed to be along the 
symmetric axis because this is where the longitudinal stresses are the highest; therefore, the 
cohesive zone elements were located on this axis.  

 

Figure 4-32: Finite element modeling of the CTOD test 

Table 4-4: Penalty parameters 

Penalty coefficient on the 
contact pressure 

(MPa.mm-1) 

Penalty coefficient on the shear 
frictional stress 

(MPa.mm-1) 
Coulomb’s friction coefficient 

1x105 1x105 0.05 

 
Note: Due to this symmetric state, the stress values were identical to that of in whole simulation 
but the energy required to crack was halved. Thus, the separations parameters, δn0 and δnc, were 
also halved in the simulations. 

BLZ2D

CNTCP

CZMEL
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4.7.4.2 Computation of the growth in crack’s length  

 

Figure 4-33: Computation methods of the growth in crack’s length for 2D simulations 

The computation method used to obtain the growth in the crack’s length is shown in Figure 4-33. 
The crack propagated from the top CZMEL element to the bottom. At each time step, the 
cohesive stresses at each integration point were recorder. As soon as the cohesive stresses were 
zero, the integration point was considered to be cracked. The growth in the crack’s length, ∆a, 
represents the length of the segment which contains all the cracked integration points. 

4.7.4.3 The initial cohesive parameters 
Crisfield’s model was chosen because it can regulate the initial stiffness of the cohesive law and 
avoid introducing an implicit thickness. Crisfield’s law uses three parameters: maximum stress, 
σmax0, separation when cohesive stress is at its maximum, δn0, and the separation limit before the 
stress is null, δnc. However, it was preferable to focus on the cohesive energy, φn and the initial 
slope of the cohesive plot, kn, instead of δn0 and δnc because the former parameter’s interpretation 
is easier and more physical. 
 
Shet et al. [SHE02] suggested varying the ratio σmax0/σy from 1.5 to 3 where σy is the yield stress. 
The base metal seems very ductile; therefore one should choose as initial σmax0 3 times the yield 
stress. So, the initial σmax0 is equal to 1065 MPa. 
 
Chen [CHE03] used the initial J-integral when the crack begins to propagate, JIi, as the initial 
value of the cohesive energy. According to the experimental JI-∆a plot, JIi=133 kJ.m-2. 
 
Bouvard [BOU06] recommended using a large initial slope value, to avoid modifying the elastic 
stiffness of the material and having too great implicit thickness at the interface (see 4.2.3). So 
initial slope was chosen as kn= 1x107MPa.mm-1. 
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Table 4-5: Summary of the parameters tested 

 σmax0  
(MPa) 

φn  
(kJ.m-1) 

kn 

 (MPa.mm-1) 

Variation of σmax 
1065 

133 1x107 1242.5 
1420 

Variation of φn 1065 
133 

1x107 199 
266 

Variation of kn 1065 133 
1x105 
1x106 
1x107 

 

4.7.4.4 Varying the maximum cohesive stress 

Three computations were performed by varying the maximum cohesive stress, σmax0. Figure 4-34 
shows the evolution of the tool force in function of the load line displacement. Figure 4-35 shows 
the evolution of the J-integral as a function of the crack’s growth. As can be seen from these two 
figures, the maximum cohesive stress had an impact on the crack’s growth rate but, it had no 
influence on the beginning of the crack’s growth. 
 

 

Figure 4-34: Evolution of tool force as a function of the load line displacement by varying σσσσmax 
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Figure 4-35: Evolution of the J-integral as a function of the crack’s growth by varying σσσσmax 

4.7.4.5 Varying the cohesive energy 

Likewise, three computations were performed by varying the cohesive energy, φn, in order to 
determine its effect on the crack’s growth. Figure 4-36 shows the evolution of the tool force as a 
function of the load line displacement. Figure 4-37 shows the evolution of the J-integral as a 
function of the crack growth. Unlike the cohesive stress, the cohesive energy has a weak impact 
on the crack growth rate but it affected the onset of the crack’s growth. 
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Figure 4-36: Evolution of tool force as a function of the load line displacement by varying φφφφn 

 

Figure 4-37: Evolution of the J-integral in function of the crack growth in varying φφφφn 

4.7.4.6 Varying the initial slope 
Another three computations were performed by varying the initial slope of the cohesive stress 
separation plot, kn, between 105 and 107 MPa.mm-1. Figure 4-38 shows the evolution of the tool 
force as a function of the load line displacement. Figure 4-39 shows the evolution of the J-
integral as a function of the crack’s growth. As can be seen in the figures below, the initial slope 
barely affected the results up to a threshold before the structure lost stiffness due to the presence 
of the cohesive zone model. In conclusion, the initial slope must be high (i.e. greater than 106 
MPa.mm-1) and, consequently, the cohesive separation when the cohesive stress is maximum, δn0, 
must be low. 
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Figure 4-38: Evolution of tool force as a function of the load line displacement by varying kn 

 

 

Figure 4-39: Evolution of the J-integral as a function of the crack growth by varying kn 

4.7.4.7 Cohesive constitutive law’s effect 
Finally, a simulation was performed using the Xu and Needleman’s law instead of Crisfield’s 
one. The parameters were chosen to have the equivalent maximum cohesive stress and the 
equivalent cohesive energy (see Table 4-6).  These parameters are defined in Table 4-6. The 
computation of the crack’s growth with Xu and Needleman is complex because the cohesive 
stresses are not null when the separation tend to infinity due to the exponential shape of the 
constitutive law. Thus, the J-integral/crack’s growth plot depends on the threshold chosen by the 
user to consider a cracked integration point. The force displacement plot was compared with the 
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simulation with Crisfield’s law (see Figure 4-40). The results were similar but Xu and 
Needleman‘s law imposes a weak initial slope, unlike Crisfield’s law which allow this slope to be 
regulated it. Thus, the difference using Xu and Needleman’s law is equivalent to a case where the 
initial slope has been decreased (see 4.7.4.6). 
 

Table 4-6: Parameters of Xu and Needleman’s law  

σmax  
(MPa) 

δn0  
(mm) 

1065 2.297.10-2 

 

 

Figure 4-40: Effect of the constitutive law on the force displacement plot 

4.7.4.8 Results and discussion  
 
This study helped to understand the effect of the variation of each parameter on the model of the 
crack’s growth. It was found that the maximum cohesive stress can be used to adjust the crack’s 
growth rate. The cohesive energy has only a weakly influence on the crack’s growth rate but it 
can adjust the crack’s growth initiation. The initial slope of the cohesive law must be high 
enough to prevent the use of the cohesive element from affecting the stiffness of the whole 
structure. That’s why Crisfield’s law was chosen as the most suitable law. However, the initial set 
of cohesive parameters gave different results from the experiments and the studied values did not 
give promise to find a good comparison with the experimental test. Indeed, the two-dimensional 
simulations do not take into account the stress triaxiality which can have an impact on the crack’s 
propagation. Moreover, during the experiment the crack’s growth was measured along the 
thickness of the sample. That’s why, the calibration of the cohesive parameters was performed 
with three-dimensional analyses.  
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4.7.5 Parameter identification 

4.7.5.1 Modeling 
 
The aim of these 3D analyses was to identify the cohesive parameters of the model by the inverse 
method. The analysis was three dimensional because the crack’s growth is obtained from an 
average measurement along the thickness. Due to the symmetry of geometry and loading, only a 
quarter of the three point bend specimen was modeled in order to reduce computation time (see 
Figure 4-41). The mesh was generated with the 3D mesh generator developed during this 
research (see Chapter 6.3.1). 
 
All nodes which belonged to the plane where x=4.6W/2 were fixed in the x direction and all 
nodes which belonged to the plane where z=W/2 were fixed in the z direction. The specimen was 
modeled by 8-node mixed solid BWD3D elements (see Section 2.4).  
 
The constitutive law applied was elasto-plastic with isotropic hardening and von Mises’ criterion. 
The mechanical parameters used were listed in 2.5.4 for the base metal and the weld metal.  
 
The three rollers were modeled by non-deformable cylinder-shaped foundations and the contact 
zones were modeled by CFI3D elements with a penalty method [HAB98]. The parameters of the 
contact law can be found in Table 4-4.  
 
The fatigued pre-crack was modeled by letting the nodes free. The crack path was assumed to be 
along the symmetric plane because this is where the longitudinal stresses are the highest; 
therefore, the cohesive zone elements, CZM3D, were located at this place.  
 

 

Figure 4-41: 3D Finite element modeling of the CTOD test 

Due to the fact that the simulation was three dimensional, with a high number of nodes, and was 
repeated many times, the analysis was performed with an iterative solver method to speed up the 
computation time (see Appendix 1)  

z
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4.7.5.2 Computation of the growth in crack length  

 

Figure 4-42: Computation methods of the crack length’s growth for 3D simulation 

The method used to compute the crack length’s growth is illustrated in Figure 4-42. In this figure, 
the integration points of all CZM3D elements can be observed. The crack zone is the zone where 
the integration point has zero normal cohesive stress. The limit of this zone has been plotted. Five 
points were chosen on the plot according to the [BSI91] standards (five points instead of nine 
because only half of the specimen was modeled). The crack length’s growth used was obtained 
from the average of five points where the outermost point has half the weight of the others. 
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∆ + ∆ + ∆ + ∆ + ∆∆ =  (4.84) 

4.7.5.3 Results and Discussion 
 
According to the results of the sensitivity study in Section 4.7.4, the cohesive parameters were 
modified until the force displacement curve and the J-integral/crack growth plot resembled the 
experiment plot (see Figure 4-43 to Figure 4-45). The parameters identified from this comparison 
are given in Table 4-7 and Table 4-8.  
 
It was found that the value of the cohesive stress for the BM is considerable (σmax/σy=4.78) while 
[LI03] recommended that the ratio σmax/σy must be less than 3 to prevent that all energy 
dissipation from occurring in plastic dissipation. The material seemed to be extremely ductile. In 
addition, the size of the cohesive elements may have been large which have affected the cohesive 
parameters but the mesh’s refinement is limited by the computer’s capability. In comparison, 
Cornec et al. [COR03] identified these cohesive parameters for the 20MnMoNi55 steel: 
σmax=1460 MPa and φn= 120kJ.m-2 with σy=465 MPa. The ratio σmax/ σy is equal to 3.1 for this 
grade.  
 
Finally, it was determined that stress triaxiality (defined in Chapter 2.2.2) must have an impact on 
the parameters. Indeed, Chen [CHE05] explained that, as triaxiality differs along the thickness of 
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the sample, the cohesive parameters must be different. Tvergaard [TVE04] and Anvari [ANV06] 
propose using Gurson’s model in order to take the ductile failure into account mixed with the 
cohesive zone model. Keller [KEL99] proposes using the Generalized Cohesive Zone Model, 
which uses a damage locus with equivalent cohesive parameters independent from triaxiality. 
However, the lack of experiments limited the author’s numerical investigations and it was 
decided to use the parameters of in Table 4-7 and Table 4-8 for the rest of the research. 

Table 4-7: Cohesive parameters Identified for BM 

σmax 
(MPa) 

kn 
(MPa/mm) 

φn 
(kJ.m-2) 

1700 1.107 161 

  

Table 4-8: Cohesive parameters Identified for WM  

σmax  
(MPa) 

kn  
(MPa/mm) 

φn  
(kJ.m-2) 

1650 1.107 50 

 

 

Figure 4-43: Force displacement comparison plot between experimental test and finite element modeling for BM 
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Figure 4-44: J-integral versus crack growth plot Comparison between experimental test and finite element modeling for 
BM 

 

Figure 4-45: Comparison of J-integral versus crack growth plot between experimental test and finite element modeling for 
WM 

4.8 Conclusions 

Two new cohesive elements, CZMEL and CZM3D, and two cohesive laws, those of Xu and 
Needleman and Crisfield, were implemented in the Lagamine code. They were used to model 
crack initiation and propagation in a finite element analysis. As result of this analysis was that 
Crisfield’s law was chosen for use in the rest of the study because the initial stiffness of the law 
can be regulated to avoid a drop of the structure’s stiffness.  
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A method to identify the cohesive parameters of a material by an inverse method was established. 
The preliminary parametric study helped to understand the effect of varying each parameter on 
the crack’s strength. It was found that in varying the maximum cohesive stress increased the 
crack propagation rate while the cohesive energy increased the energy required to induce the 
crack’s propagation. Thus cohesive parameters were identified for the base metal and the weld 
metal.  However, it is troubling to see the difference in the values identified by the author by 
comparing with the values identified for other steel grade in literature [COR03]. Likewise, the 
ratio, σmax/σy, equal to 4.8 is well above that recommended in the literature. 
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Chapter 5  
Welding simulation 
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5.1 Introduction 

A crack’s strength and propagate path depend on residual stresses. These residual stresses are 
generated by the welding process as a result of the temperature gradients and metallurgical 
modifications. To reflect the impact of these values, the computation of the residual stresses was 
performed by modeling the welding process. However, this is a difficult task because it is 
necessary to consider many physical phenomena that occur during the welding process.  
 
Thus, the goal of this chapter part was to compute a 3D balanced residual stress field generated 
by the welding process to enter at the beginning of the simulation of a cycle large scale beam-to-
column test. Indeed, no analytical method exists for this geometry and for all components of the 
stress tensor. Some alternative analytical methods are summarized in [CLA04]. 
 
This chapter describes the welding process used in the VERAPS project and the physical 
phenomena resulting from it. Then the computation strategy and its simplifications are presented. 
Finally, there will be a discussion and illustration of some simulations that were performed and 
compared with experimental measurements performed on the connection after the welding.   

5.2 Welding Process 

5.2.1 Description 

A welding process consists in joining materials by heating them to the melting temperature, 
sometimes by adding a filler material. The molten material when cooled down becomes a strong 
joint. The heat can be provided by a gas flame, an electric arc, a laser, an electron beam, friction, 
or ultrasound. 
 
In our case, the type of welding process used was a metal arc weld with added of filler metal. 
This process creates and maintains an electric arc between the base metals to be joined and the 
electrode at the welding point. The electrodes can be consumable or non-consumable and the 
power supply can be direct (DC) or alternating (AC). The welding region can be protected by an 
inert gas called a shielding gas. Some different processes exist for this type of welding as it will 
be explained below. 
 
The first is Manual Arc welding Metal (MMA), also known as Shielded Metal Arc Welding 
(SMAW). The consumable steel electrode, held by the operator, generates an electric arc with the 
metal structure, and is covered by a gas flux, CO2, which protects the weld zone from oxidation 
and contamination. 
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Figure 5-1: Diagram of SMAW process (from www.esab.com) 

Gas Metal Arc Welding (GMAW) is a process characterized by the use of a long filler electrode 
and inert gas shielding of the welding pool.  GMAW speeds are relatively high due to the 
automatically fed continuous electrode but this process requires more equipment than SMAW. 
The GMAW process is related to Flux Cored Arc Welding (FCAW) where the electrode consists 
of a powdered filler material contained in a tubular supply. FCAW is quicker than GMAC and its 
metal penetration is greater, but also more expensive. These processes can be automatic or semi-
automatic.  
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Figure 5-2: Diagram of GMAW (from www.substech.com) 

Submerged Arc Welding (SAW) is the generation of an arc which is covered by a blanket of 
granular fusible flux consisting of lime, silica, manganese oxide, calcium fluoride, and other 
compounds. This method improves the arc quality because the flux shield is better between the 
contaminants than in the atmosphere. Working conditions are much improved over other arc 
welding processes since the flux hides the arc and no smoke is produced. As the arc is not visible, 
the process must be automatic.   
 

 

Figure 5-3: Diagram of SAW (from robot-welding.com) 

Finally, Gas Tungsten Arc Welding (GTAW) is a manual process which uses an inert tungsten 
electrode and a separate filler metal, shielded by an inert or semi-inert gas. The method gives a 
stabilized arc and high weld quality. It requires significant operator skill and can only be 
accomplished at relatively low speeds. 



Chapter 5. Welding simulation  Welding Process 
 
  

113 
 

 

 

Figure 5-4: Scheme of GTAW (from common/Wikimedia.org) 

5.2.2 Thermal phenomena 

During the welding process, the materials absorb only a part of the thermal energy. This thermal 
energy generates a molten pool where the heat is transferred by convective exchange. In this 
molten pool, many physical phenomena happen with the surface tension, heat exchange and the 
electromagnetic force [SAIN06]. In other parts of the material, the heat transfer is conductive.  
The exchange with the environment is convective and radiative. 

5.2.3 Metallurgical phenomena 

The welding process affects the metallurgical state; therefore, the welded joint can become brittle 
or ductile according to the thermal history. As a result it is important to optimize the heat energy, 
the heat source velocity and the number of passes.  
 
During the welding process, three materials are affected in different ways: 

− the weld metal: this corresponds to the metal which is melted. The strength of this 
solidified material depends on the welding process and especially on its cooling rate. 

 
− the heat affected zone: this around the weld metal. This zone is not melted but the 

heating and cooling cause modifications in the microstructure and the metallurgical 
state (i.e. solid phases of the steel) is deeply modified. 

 
− the base metal: this zone is not affected by the process.  
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Figure 5-5: Material description after a welding process 

5.2.4 The physical aspect 

As described above, the welding process induces many physical phenomena such as mechanical 
deformation, thermal exchange, metallurgical transformation, and fluid mechanics. Each 
phenomenon affects the others with weak or strong coupling. These couplings are illustrated in 
Figure 5-6, followed by a description of their respective impact on the materials. 
 

 

Figure 5-6:  Coupling between physical phenomenon during welding 

 
1. Thermomechanical coupling:  

− Thermal dilation: the dilation is due to the temperature variation and the flux gradient 
generated by the heat source of the welding. It generates distortions and residual 
stresses. 

− Mechanical dissipation: the plastic deformation generates heat dissipation. However, 
the plastic strain rate is low; therefore, this dissipation has a weak impact on the 
thermal exchange. 

 
2. Thermometallurgical coupling: 

− Metallurgical transformation: the heat and the cooling cause modifications in the 
steel’s microstructure. 
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− Heat transformation and thermal properties: the phase transformation generates heat 
dissipation or absorption. Moreover, the thermal proprieties are modified by the 
metallurgical transformation. 

 
3. Mechanometallurgical coupling: 

− Metallurgical distortion and mechanical properties: the phase transformation induces 
strain due to local volume modification. In addition, each phase has particular 
mechanical properties. 

− Stress-state effect on metallurgical transformation: the stress state affects the kinetics 
of the metallurgical transformation. 

 
4. Thermohydraulic coupling: 

− Modification of the flux: there is a significant temperature gradient in the weld pool 
between the center of the pool and the boundary. This gradient modifies the surface 
tension and causes modifications in the flux in the pool. 

− Convective exchange: the welding pool and the solid steel exchange heat by 
convection. 

 
5. Mechanohydraulic coupling: 

− Modification of the geometry of the molten pool: the strains induce modifications in 
the pool boundaries and in the flow in the pool. 

− Strain due to fluid pressure: the molten steel imposes pressure on the solid steel and 
affects the local stress fields. 

− These coupling phenomena are weak. 
 
6. Metallurgical hydraulic coupling: 

− Material mixing: the flow in the molten pool improves the mixing of steel 
components. 

− Macrosegregation: the flow depends on the chemical composition of the material. 

5.3 Coupling strategy 

It was chosen to neglect the hydraulic fields because the coupling phenomena are weak and their 
modeling requires two codes: a first one to model the solid steel’s behavior by a finite element 
model and a second one to simulate the molten steel’s behavior by a finite volume model. 
 
Moreover, no metallurgical modeling has been performed. Although the Lagamine code can be 
used to carry out such a model [HAB89], such simulations require many material parameters and 
require additional experimental data. The goal of this study goal is to develop a simplified 
method to assess the residual stresses.   
 
So only the thermal and the mechanical modeling remain. Their coupling can be strong or weak. 
Strong coupling takes the thermal dilation and the mechanical dissipation into account. At each 
increment, the temperature is computed, then the stress and strain fields and finally the 
mechanical dissipation. Weak coupling is only sequential and mechanical dissipation is 
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neglected. A thermal analysis is performed and the nodal thermal history is computed. Then a 
mechanical analysis is performed by imposing the thermal history.  
 
Weak coupling was chosen because the mechanical dissipation in this case is low due to a low 
strain rate and the computation is quicker than for strong coupling. The coupling strategy adopted 
is described in Figure 5-7. This method can use different meshes for the thermal mesh and the 
mechanical mesh. Indeed, thermal analysis requires a fine mesh and a long time step as opposed 
to mechanical analysis, which requires a coarser mesh and a short time step.   
 

 

Figure 5-7: Computation strategy of residual stress 

The decoupled approach is not new within the scientific community [ZHA00; CHA02; CHA04]. 
However within the Lagamine team, it had not yet been implemented. In their PhD theses, 
Habraken [HAB89] and Pascon [PAS03] each used thermo metallurgical mechanical analysis. 
However, they always used identical meshes for mechanical and thermal analyses. 

5.4  Thermal analysis 

5.4.1 The heat equations 

The temperature field, T, on a volume Ω follows the classic heat equation, which is derived from 
the Fourier’s Law: 

 p

T
C div( T) r

t

∂ρ = λ∇ +
∂

 (5.1) 

where ρ is the volumetric mass, Cp is the heat capacity, t is the time, λ is the conductivity, which 
can depend on the direction, and r is the heat source.   
 
There are different kinds of boundary conditions which are described by Figure 5-8: 

− On Γ1, the system is free and exchanges convective and radiative flux with the 
environment; 
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− On Γ2, a surface heat flux is imposed; 
− On Γ3, the temperature is imposed. 

The above boundary conditions on surfaces outer Γ1, Γ2, Γ3 are modeled by the following 
equations: 

 
c r 1

s 2

3

T.n q q =0 on Γ

T.n q =0 on Γ

T T on Γ

λ∇ + +


λ∇ +
 =

 (5.2) 

where n corresponds to the normal to Γ1 or Γ2, qc is the convective flux loss, qr is the radiative 

flux loss, qs is the imposed surface heat flux and T  is the imposed temperature. 
 
The convective flux loss can be modeled by 

 c extq h(T T )= −  (5.3) 

where h is the convective exchange constant and Text is the room temperature  
 
The radiative flux loss can be modeled by 

 ( )4 4
r extq T T= εσ −  (5.4) 

where ε is the emissivity and σ is Boltzman’s constant; T must be expressed in radiant.  
 

 

Figure 5-8: Division of the surfaces according to the flux exchange along the solid ΩΩΩΩ  

5.4.2 Heat source modeling 

Pavli et al. [PAV69] were the first to propose a disc model for heat source (see Figure 5-9). The 
thermal surface flux exhibits a Gaussian distribution in the tangent plane to the heat source 
location. 
  

 ( )2
s 0q q exp Cr= −  (5.5) 

where q0 is the maximum surface flux at the center of the heat source, C is the concentration 
coefficient and r is the distance from the heat source. 
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Figure 5-9: Friedman Models of the heat source 

 
To take into account the motion of the heat source, Friedman [FRI75] and Krutz and Segerlind 
[KRU78] expressed the heat flux in a local coordinate system (x’, z’). For example, if the heat 
source moves along the (x, z) plane along a line parallel to the axes, ez, the surface heat flux, qs, is 
expressed as 

 ( )
'

0'2 '2
s 2 2 '

0

x x x3Q 3
q exp x z  with 

c c z z z vt

 = − = − +  π = − +  
 (5.6) 

where Q is the welding heat input, c is the characteristic radius of the flux distribution, x0 and z0 
define the initial position of the heat source, x and z define the position of the flux computation, v 
is the velocity of the heat source and t is time. 
 
However, experimental observations show that a significant amount of heat flux is transferred by 
radiation and convection from the arc directly to the solid metal without passing through the 
molten pool.  Therefore, the volumetric flux, q, becomes a hemispherical volume source defined 
by 

 ( )
'

0

'2 '2 '2 '
023

'
0

x x x
6 3Q 3

q exp x y z  with y y y
cc

z z z vt

 = −
 = − + + = − π π    = − +

 (5.7) 

Furthermore, the molten pool has a different shape from a sphere, which is why Goldak et al. 
[GOL84] proposed an ellipsoidal power density distribution: 

 

'
0'2 '2 '2

'
02 2 2

'
0

x x x
6 3Q x y z

q exp 3 with y y y
a b cabc

z z z vt

 = −
   

= − + + = −  π π     = − +

 (5.8) 
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where a, b and c are the semi-axes of the ellipsoid in the direction, x, y and z, respectively, y0 is 
the initial y position of the heat source.    
 
Then Goldack et al. [GOL84] noticed that after experimental calculations, the temperature 
gradient in front of the heat source is different from behind. That’s why they proposed combining 
two different ellipsoids (see Figure 5-10): one is behind and the other in front of the heat sources. 

 

'2 '2 '2
' 'f

02 2 2
ff '

0
'2 '2 '2

''b
02 2 2

bb

6 3Qf x y z
exp 3  if z 0 x x x

a b cabc
q with y y y

6 3Qf x y z
z z z vtexp 3  if z 0

a b cabc

   
− + + ≥  = −   π π    = = − 
    = − +− + + <    π π   

 (5.9) 

   
where ff and fb are the heat fraction in front and behind the heat source, respectively,  and cf and 
cb are the semi axes of the ellipsoid in z direction in front and behind the heat source, 
respectively.  The energy distribution imposes the following relation: ff+fb=2. 
 

 

Figure 5-10: Double ellipsoid heat source with the power distribution 

In arc welding, the energy input, Q, is defined by: 

 Q VI= η  (5.10) 

where V is the electric tension, I is the electric intensity and η is the welding power efficiency.  

5.5 Mechanical analysis 

The total strain rate,εɺ , can be divided up as: 

 e vp th ptε=ε ε ε ε+ + +ɺ ɺ ɺ ɺ ɺ  (5.11) 

where eεɺ is the elastic strain rate, vpεɺ is the viscoplastic strain rate, thεɺ is the thermal dilation rate 

and ptεɺ is the plastic strain rate due to microstructural transformation. 

  

b
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At the high levels of temperature, the behavior of the solid is elastoviscoplastic. However, the 
number of parameters required is more significant than with elastoplastic behavior because these 
parameters depend on both temperature and strain rates.  
 
No experimental measurement was performed for parameter calibration. Corus provided tensile 
data as a function of temperature at a constant strain rate. Consequently, the viscoplastic strain 

rate is neglected and only the plastic strain rate, pεɺ , is taken into account. 

 
Moreover, as no metallurgical modeling was performed, one assumed that the plastic strain rate 
due to transformation is zero. 
 
In conclusion, in this research the division of the total strain rate is: 

 e p thε=ε ε ε+ +ɺ ɺ ɺ ɺ  (5.12) 

So, the thermal dilation is computed by 

 ( )th
extT (T T )Iε = α −  (5.13) 

where α is the dilation coefficient, Text is the ambient temperature and I is the unity tensor.    
The elastoplastic behavior can be modeled as in Section 2.5 by adding the thermal dilation and 
considering the mechanical parameters dependent on the temperature. 

5.6 The finite element modeling 

As it was presented in Section 5.3, two sequential computations were performed with the 
Lagamine code. Firstly, the temperature evolution in the structure was computed by imposing a 
heat flux described by Formula (5.9). Then a mechanical analysis was performed on the structure 
by imposing the temperature field computed by the first thermal analysis. Since the meshes were 
different in both analyses, the imposed temperature was computed by an interpolation method. 
Due to the geometry of the connection and in order to have a balanced stress field, the analyses 
were performed in 3D. 

5.6.1 The thermal analysis 

The structure was modeled by the thermomechanic mixed solid element BLZ3T [LI97]. The heat 
equation was integrated by the THLNS law (i.e. Fourier’s conduction with physical parameters 
varying according to the temperature). Convection and radiative exchange were modeled by the 
CORA3 law.  
 
In order to impose a double-ellipsoid Goldack’s heat source, one computes the “nodal heat force” 
to obtain the equivalent volumetric heat flux of Goldack’s model. This was computed in a 
preprocessor step, at each time increment, by the integration of the volumetric heat flux on the 
element by a Gauss’ scheme: 

 ( )NELEM NIP

i ij j jj
k 1 j 1

Q B q det J W
= =

= ∑ ∑  (5.14) 
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where Qi is the nodal heat input of node i, NELEM is the number of elements linked to node i, Bij 
is the derivative of the interpolation function, qj is the heat flux computed by equation (5.9) at the 
interpolation point j of the element, Jj is the Jacobian matrix and Wj is the interpolation weight. 
 

 

Figure 5-11: Computation of the imposed nodal heat 

During the analysis all elements which model the weld metal were present. The advantage of this 
is that the weld metal and the base metal were preheated after the pass of the heat source. The 
drawback is some conduction flux appears in weld metal part which should no longer exist.  

5.6.2 The temperature transfer 

During a remeshing procedure, a transfer method of the data defined at the integration points and 
the nodes is necessary. In this study’s case, only the nodal temperature was transferred from the 
thermal mesh to the mechanical mesh. There are different methods for data transfer in the 
literature, such as the least square method (adjustment between polynomial fit in each mesh or an 
extrapolation approach [DYD96; BAR98]). However, these classic methods would require 
significant development work and the computation time can be high.    
 
That’s why Habraken’s transfer method [HAB89] was used. The interpolated value at node j in 
the mechanical mesh is obtained from the average of the value at the surrounding node, k, in the 
thermal mesh, weighted by the distance between nodes j and k, according to the following 
relation: 

 

pk
n n

k kj pj
pj c

j
n n

k kj pj

p pj c

CTT
R R

if R R
1 CT

R R

T                    if R R


+

 >=  +



≤

∑

∑  (5.15) 

where Tj is the temperature of node j in the mechanical mesh (see Figure 5-12), Tk is the 
temperature of node k in the thermal mesh, Tp is the temperature of node p which is the closest 
node to node j in the thermal mesh, Rkj and Rpj are the distance between nodes k and j and 
between the nodes p and j, respectively, n is the interpolation exponent and C is an interpolation 
constant chosen by the user. 
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Figure 5-12: Interpolation for temperature transfer 

The constant C is used to increase the influence of the closest node of the thermal mesh. 
According to numerical experiments, its default value is 5. The interpolation exponent n helps to 
refine the interpolation. Even values of this exponent give best result than odd values. However, 
if the exponent is too high, some temperature gradients in the mechanical mesh can appear in the 
constant temperature zone for by the thermal mesh. n=2 was chosen in this thesis. 
 
In the interpolation of Equation (5.15), only nodes k which have a distance Rkj less than Rl were 
taken into account as described by Figure 5-12. Rl is defined by the following choice: 

 lR 0.3D=  (5.16) 

where D is the diagonal length of the rectangle containing the structure (see Figure 5-13). 
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Figure 5-13: Computation of the diagonal of the rectangle which contains the structure ΩΩΩΩ 

If the distance between the closest node p and the new node j is less than a radius, Rc, then the 
temperature of the node j becomes equal to the temperature of the node p. Rc is defined in this the 
following simulation by: 

 cR 0.001D.=  (5.17) 

5.6.3 The birth technique 

The birth technique simulates the weld metal supply by activating and deactivating some 
elements at defined steps. This procedure was applied only for the mechanical analysis. At the 
beginning all elements modeling the added weld metal existed but were deactivated. The 
deactivation resulted from a null stress field and nodal force. The birth technique is described in 
Figure 5-14 and Figure 5-15.  
 
Physically speaking, in the blue zone, the weld metal has not been laid yet or is in a melted state; 
therefore, the stresses are null. In the red zone, the laid weld metal begins solidifying and having 
stiffness to generate stresses. Numerically speaking, in blue zone the temperature can increase 
and in the red zone the temperature drops. The birth technique dictates that the mechanical stress 
be computed only in the zone where the temperature decreases. Indeed, a temperature increase 
causes a decrease in stiffness and affects the convergence.   
  
The nodes in the inactive elements (in blue) have artificial stiffness provided by STIFF elements 
to avoid numerical problems. The STIFF is a one-dimensional element which can model a spring 
or impose stiffness. The imposed value is 0.1 N.mm-1. As soon as all the elements are in the 
double ellipsoid and behind the heat source, the element is activated and the STIFF element is 
turned off.  
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Figure 5-14: Birth technique method (top view) 

  

Figure 5-15: Birth technique method in two passes 

5.6.4 The mechanical analysis 

The structure was modeled by the thermomechanical mixed solid element BLZ3T. The 
mechanical behavior was modeled by the elastoplastic constitutive law, ARB3C. The ARB3C 
uses the same model as the ARB law described in Section 2.5.3 with dilation and the dependence 
on temperature for the parameters. However, this law did not exist for three- dimensional 
analyses; therefore, the ARB3C law was implemented during this research. 

5.7 Modeling of beam-to-column connection welding 

5.7.1 Welding description 

In the VERAPS connection (see Chapter 6), the weld joints were between the beam flange and 
the column flange. In case of moment resisting frame connections, only applicable welding 
techniques are outside on site. Also, the relatively limited access for the welding rods and the arc 
to reach into the gap between beam and column is a factor. Only the welding of these joints was 

Heat source 

center

F, σ=0F, σ>0

Base Metal

Solid weld 

element

Active Solid 

element

Inactive STIFF 

element

Inactive Solid  

element

Active STIFF 

element

Base Metal 2nd pass not performed: F,σ=0

1st pass performed: F,σ>0

Weld metal



Chapter 5. Welding simulation  Modeling of beam-to-column connection welding 
 
  

125 
 

modeled thought there are other weld joints between the shear panel and the beam web and the 
column flange, but no cracks or damage was noticed in these zones, so these welding processes 
were not simulated. 
 
The weld connections were manufactured using a range of consumables to cover the full 
toughness range provided by three types of processes: 

− Manual arc welding, 
− Tubular cored metal arc welding with active gas shield, 
− Metal arc welding without gas shield. 

 
The beam flange and the beam webs were prepared according to the details given in [BAN07] 
and Figure 5-17. The column was positioned perpendicular to the ground, as shown in Figure 
5-16, and maintained by two metallic bars. Then the beam end is bolted to the shear tab with low 
strength bolts that were not pre-stressed. Ceramic or metallic baking tabs were used. After 
welding, the backing bars were removed and any discontinuities in the root pass were removed 
by back gouging and back welding and an additional fillet weld with a minimum leg size of 6 
mm was welded on the root side (see Figure 5-19).  
 

 

Figure 5-16: View of the fabrication of connection N°5 [BAN07] 

The number of passes varied from 10 to 31 depending on flange thickness and heat input. An 
example is given in Figure 5-8 for specimen 5. Preheating the connection reduces the risk of 
hydrogen-induced cracks; therefore, the connection was preheated by a flame between 20 to 
40°C. 
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Figure 5-17: VERAPS connection design from [BAN07] 
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Figure 5-18: Pass description of the welding for the VERAPS n°5 connection from [BAN07] 

  

  

Figure 5-19: Welding of VERAPS connection 

Although 8 connections were fabricated (see Section 6.3.1), only the welding of connection n°5 
was modeled due to the computation time. The average data of the heat source given by the 
University of Karlsruhe are provided in the table below. 

Beam flange
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Table 5-1: Welding heat source data 

ηUI 
 (kW) 

v  
(mm.s-1) 

Pass Number 

5.4 3.3 18 

5.7.2 The residual stress measurement 

The measurement of residual stresses was carried out by ISQ on the beam-to-column weld using 
the Barkhausen’s noise technique [BAN07] (see Figure 5-20). In each recorded point, the stress 
components both in longitudinal and transversal directions of the flange were measured. These 
points were aligned in the profile flange at selected locations from 10 mm to 250 mm away from 
the weld.  From 10 to 100 mm the points were separated by 10 mm and from 100 to 250 mm and 
they were separated by 25 mm. Direct measurement on the welds was impossible due to their 
surface irregularities.  
 
Barkhausen’s noise technique does not allow for a direct measurement of stress. The method 
requires a calibration for a given material in order to establish the correlation of some magnetic 
parameters with present stress field. Small bars, about 200 mm x 40 mm x 10 mm thick, were 
machined from the column and beam. The bars were submitted to known tensile and compression 
loads, and the magnetic field was measured. The correlation between the stress and the magnetic 
field was established in order to convert the magnetic field measured in the connection into 
residual stresses. The measurements are given in Figure 5-21and Figure 5-22. 
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Figure 5-20: Position of residual stress measurement 

 

Figure 5-21: Longitudinal stress measurements 
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Figure 5-22: Transversal stress measurement 

5.7.3 The material parameters 

The material parameters were provided by Corus, who measured them with using a Gleeble 
thermomechanical simulator and a dilatometer, which includes the phase transformation effect on 
S275 grade steel [WEN03]. They provided the flow stress as a function of the strain and the 
temperature. To model the flow behavior of the base metal and weld metal studied, a correction 
was carried out in order to obtain the yield stress measured at 20°C by 

 

( ) ( ) ( )
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( ) ( ) ( )
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yBM
BM 275

y275

yWM
WM 275
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T T

20 C

20 C
T T

20 C

σ °
σ = σ σ °


σ °σ = σ σ °

 (5.18) 

where σBM, σWM, and σ275 are the uniaxial stress values for base metal, weld metal and 275 
grades respectively, σyBM, σyWM, and σy275 are the initial yield stresses for base metal, weld metal 
and 275 grades respectively and T is the temperature. The values of the yield stresses at 20°C 
were defined in Section 2.5.4. The flow stress as a function of strain and temperature is listed in 
Table 5-2 to Table 5-3 and illustrated by Figure 5-23 and Figure 5-24.  
 
Young’s Modulus and the dilation as a function of the temperature come from the 275 grade as 
well. The thermal parameters, such as specific heat and conductivity, were identified on 
316LNSPH steel grade. These thermomechanical parameters are listed in Table 5-4 and 
illustrated by Figure 5-25 to Figure 5-28. 
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Table 5-2: Flow stress as a function of strain and temperature for the base Metal  

 Stress (MPa) 
Temperature(°C)  

Strain 
20 100 200 300 400 500 600 700 800 900 1000 1100 1300 1400 

0.0014 365 346 356 412 403 350 264 139 87 46 38 32 69 63 

0.04626 419 385 390 455 441 390 271 146 96 59 47 38 72 64 

0.09112 473 424 425 498 479 429 278 153 105 73 56 44 74 65 

0.13598 512 458 445 521 506 454 289 159 110 85 63 50 76 66 

0.18084 541 481 465 536 531 472 294 160 115 94 68 55 76 65 

0.2257 561 498 484 547 550 484 296 161 119 99 72 59 77 64 

0.27056 576 514 497 555 560 491 299 163 122 102 74 62 75 63 

0.31542 591 527 509 560 571 498 301 163 123 106 78 64 73 61 

0.36028 603 537 521 561 588 507 304 165 121 109 85 65 69 58 

0.40514 616 545 528 562 601 510 302 167 119 107 87 66 67 55 

0.45 613 544 535 561 606 511 305 162 119 106 87 67 64 54 

 

Figure 5-23: Stress-plastic strain curve as a function of temperature for the base metal 

 



Chapter 5. Welding simulation  Modeling of beam-to-column connection welding 
 
  

132 
 

Table 5-3: Flow stress as a function of strain and temperature for the weld metal  

 Stress (MPa) 
Temperature(°C) 

Strain 
20 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 

0.0014 569 578 514 564 542 522 470 352 232 171 138 70 73 65 53 

0.06126 674 642 589 629 614 559 494 371 250 195 155 85 85 74 57 

0.12112 761 696 655 688 679 594 514 383 266 219 169 99 97 83 61 

0.18098 796 726 690 727 717 624 528 389 277 228 175 114 105 82 63 

0.24084 817 746 714 746 741 628 530 394 278 235 175 125 108 80 62 

0.3007 831 753 730 765 744 634 532 393 272 232 172 129 104 76 58 

0.36056 834 755 731 774 747 641 545 403 265 228 167 131 102 69 56 

0.42042 829 758 742 780 747 642 542 398 264 221 162 126 103 67 54 

0.48028 828 760 744 784 747 635 530 395 256 217 157 119 100 65 51 

0.54014 821 761 744 791 748 624 535 387 248 210 157 114 96 68 49 

0.6 817 759 743 802 750 624 534 384 242 202 153 111 92 68 47 

 

Figure 5-24: Stress-plastic strain curve as a function of temperature for the weld metal 
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Table 5-4: Thermo elastic parameters as a function of temperature 

Temperature 
(°C) 

Specific Heat 
(J.kg-1.K-1) 

Conductivity 
(J.m-1.s-1.K-1) 

Young’s Modulus  
(GPa) 

Dilation  
(x105) 

20 600.73 47.52 200.00 1.13 
50 640.78 46.57 198.00 1.13 
100 674.15 45.15 179.00 1.13 
150 707.53 44.20 180.00 1.18 
200 760.93 41.35 178.00 1.27 
300 814.32 38.50 176.50 1.33 
400 894.42 35.17 175.00 1.37 
500 921.12 21.86 153.00 1.38 
600 947.82 21.86 100.00 1.39 
700 947.82 21.86 8.50 1.28 
800 947.82 21.86 9.60 1.24 
900 947.82 21.86 2.80 1.35 
1000 947.82 21.86 1.00 1.41 
1100 947.82 21.86 3.00 1.45 
1200 947.82 21.86 4.20 1.49 
1300 947.82 21.86 3.90 1.52 
1500 600.73 47.52 200.00 1.13 

 

 

Figure 5-25: Thermal dilatation as a function of temperature 
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Figure 5-26: Specific heat as a function of temperature 

 

Figure 5-27: Young Modulus as a function of temperature 



Chapter 5. Welding simulation  Modeling of beam-to-column connection welding 
 
  

135 
 

 

Figure 5-28: Conductivity as a function of temperature 

The radiative exchange was taken into account in the convection coefficient. The convection 
coefficient at room temperature are defined to be h=15W.m-2. It was assumed to be constant as no 
other data were available and Text=20°C as in [GER05]. 

5.7.4 FEM modeling description 

Due to the tremendous geometry of the connection and the computation time of the 3D welding 
simulation, only a part of the connection was modeled. One assumes that the welding on one 
beam flange does not generate residual stresses on the other beam flange. Therefore, only a part 
of the welding between beam and column flanges was modeled. It was then checked on different 
geometries. The lengths were sufficiently long to be considered infinite and provided a stationary 
solution. The thicknesses of the beam and the column flanges remained identical to those of 
VERAPS ones.  
 
Figure 5-29 shows the mesh and the dimensions of the simplified model used. The thermal mesh 
contained about 7700 nodes and 9000 elements. The mechanical mesh contained 6500 nodes and 
7300 elements. All nodes of the beam and column ends were fixed. The meshes were generated 
with the 3D mesh generator developed during this research (see Section 6.3.1). 
 
Due to the computation time, it was decided to model only two passes. The parameters of 
Goldack’s heat source model are in Table 5-5. The values of ff and fb were obtained from the 
Goldack’s paper [GOL84]. The ratio cb/cf is 2 as advised in Goldack’s paper. The power and the 
heat source velocity were taken from Table 5-1. The ideal values of a and b are the dimensions of 
the passes. These values were increased in order to model two passes. 
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Table 5-5: Heat source parameters 
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5.7.5 Results and discussion 

 

Figure 5-30: Contour plot of the residual stress analysis 

The computation was quite-time consuming. Indeed, it required 10 days for only two passes. This 
limitation explains the author’s interest in iterative methods presented in Appendix 1. Figure 5-30 
shows the contour plot of the residual stress components. The equivalent von Mises’ stress was 
close to the yielding stress near the path of the heat source. However, the residual stresses seemed 
to be too concentrated and no stress propagated in the column flange as expected. Figure 5-31 
and Figure 5-32 show the comparison of the results of the FEM computation and the 
experimental measurements on the beam flange’s surface. The position where x is null 
corresponds to the interface between the beam flange and the welding. The FEM computation 
provided an equivalent amount of stress but did not succeed in modelling some compression 
zones in the longitudinal direction. Furthermore, the number of passes modeled seems too low 
and the boundary conditions were probably not well-adapted in comparison with the reality of the 
welding process.  
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Figure 5-31: Comparison of the longitudinal residual stress between the measurement and simulation of the surface of the 
beam 

 

Figure 5-32: Comparison of the transversal residual stress between the measurement and simulation of the surface of the 
beam 

5.8 Conclusions 

The simulation of the welding process by finite elements presents a number of difficulties. In fact 
the computation time was significant because of the large dimensions of the flange and the high 
number of passes. The sequential computation, the birth technique and the use of two different 
meshes for the thermal and mechanical modeling made it possible to drop this computation time. 
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Simplified modeling of the welding of a beam flange on a column flange was carried out. First, 
two passes were modeled instead of 18 passes as in experimental testing. The simulated 
structures presented a level of residual stress equivalent to that in the experimental 
measurements. However the residual stress gradient did not correspond to the experimental one. 
 
More work would have been necessary to further develop this method but (as in all research) the 
time short out and the author chose to focus his effort on applying the damage model, rather than 
reaching a more representative three-dimensional residual stress field. 
 
The first idea was to look at a two-dimensional simulations to model all the passes, adjust the 
parameters of the heat source and see if one can modify the parameters to model fewer passes 
with equivalent energy and predict residual stresses. Then it should be possible to perform three-
dimensional modeling with sufficient passes. 
 
The analytical methods or normative approaches do not provide well-balanced three- dimensional 
residual stresses. Starting with a strongly unbalanced stress field at the initial step did not result 
in convergence, so the final damage simulations were performed without residual stresses. 
 
Finally the fatigue damage was not coupled with the stress analysis to avoid singularities in the 
stiffness matrix of the finite element analysis. However, the fatigue damage was then coupled 
with crack propagation in the cohesive zone model (see Chapter 4.3) 
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6.1 Introduction 

This chapter discusses the final step of this research study. Its aim is to model the crack’s onset 
and propagation in the large scale cyclic loading tests of a heavy steel weld beam-to-column 
connection performed at the University of Karlsruhe.  
 
This chapter begins with the definition of a moment resisting frame and the philosophy behind its 
design. Then the VERAPS connections studied are presented.  
 
Furthermore as the connections simulated had different geometries and types of components a 
module was developed to generate the 3D mesh of the VERAPS beam-to-column connections. 
This module is described in this chapter. 
 
Finally, this chapter presents the simulations of the large scale tests performed with the Lagamine 
code. Firstly, some simulations of different specimens without damage were performed to 
validate the 3D mesh and the global predicted force. Then, modeling was carried out with only 
fatigue damage to identify the path of potential cracks for one connection. Finally, a model with 
the cohesive zone model coupled with fatigue damage was performed. All the numerical analyses 
have been compared with experimental measurements and observations.       

6.2 Presentation of the VERAPS connections  

6.2.1 Introduction 

6.2.1.1 The moment resisting frame (MRF) 
An earthquake is a tremor of the ground caused by a sudden movement in the earth’s crust. Some 
earthquakes cause slight tremors and others destroy buildings by sideways forces. That’s why it 
is important to design buildings in order to withstand earthquakes in seismic zones. Such a 
building can be modeled by its frame, which is composed of beams and columns (see Figure 6-1).  
 

 

Figure 6-1: Building frame 

To avoid irreversible damage, several structural systems have been developed to withstand the 
sideway forces (see Figure 6-2) described below. 
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− Brace frame: trussing is used to withstand sideways forces in buildings. Trussing, or 
triangulation, is formed by inserting diagonal structural members into rectangular 
areas of a structural frame. It helps to stabilize the frame against sideways forces from 
earthquakes and strong winds. 

− Shear wall: a vertical wall that is used to stiffen the structural frames of buildings. 
They help frames to withstand sideways earthquake forces. 

− Moment resisting frame: the joints, or connections, between columns and beams are 
designed to be rigid (i.e. the angle between the beam and column end tends to remain 
constant); therefore the structural members are designed to be strong. They can be 
manufactured with steel or concrete.  

 

 

Figure 6-2: Solutions of structural systems to withstand to earthquakes 

6.2.1.2 The connection ductility of a steel MRF 
For a steel moment resisting frame, the dissipation of seismic energy input which plays a 
fundamental role. This dissipation is dependent on the frame’s ductility, which is the ability of 
the structure to undergo large plastic deformations without losing strength.  
 
The recent earthquakes in Northridge (1994) and Kobe (1995) have seriously compromised this 
idyllic image of steel as a perfect material for seismic areas. In these quakes, some brittle 
fractures appeared in the welded beam-to-column connection. Aiming to fill these gaps, the world 
of civil structural research [MAH98] is moving to give designers constructional rules that will 
make it possible to design high-ductility structures in seismic areas. 
 
In fact, the connection’s ductility depends on all of the component behavior. Their inelastic 
deformations correspond to plastic hinges at localized positions. The ductility of the structure is 
linked to the rotational capacity of these plastic hinges. The design philosophy must bear in mind 
that the inelastic deformations can occur in one or more of the three components of the 
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connection: the beam end, column end or panel zone. The best solution is for the plastic hinge to 
develop at the beam end. 
 

 

Figure 6-3: Components of a frame connection 

There are two kinds of beam-to-column connections:  welded connection and bolted connection. 
In the VERAPS project only welded connections are studied. For a welded connection, its 
ductility is linked to the strength of the shear deformation in the panel, panel crushing or weld 
fracture [GIO02] (see Figure 6-4). Of these, this thesis focused on modeling the weld fracture.  
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Figure 6-4: Weld connection failure 

6.2.2 The connection description  

Eight large-scale tests were performed with a 6300kN alternating load test frame at the 
University of Karlsruhe. The frame was oriented for a classic compression-tension test, which 
gives in the specimen geometry presented in Figure 6-5. Each test sample was subjected to cyclic 
loading with step-wise deformation cycles increasing up to failure according to the loading 
procedure of FEMA 350. 
 

Sound connection Panel buckling Panel crushing Weld fracture
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Figure 6-5: Test specimen (from [BAN07]) 

6.2.2.1 The bars 
Beams and columns were I sections. The dimensions of beams and columns are defined in Figure 
6-6 and Table 6-1. All beams, columns and plates were 355 J0 and J2 grades steel according to 
the EN10025-2 standard [EN102]. The exact composition can be found in [BAN07]. Varying 
these dimensions made it possible to test different ratios between plastic joint moment Mpj and 
beam plastic moment range Mpb (see last column of Table 6-1). 
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Figure 6-6: Cross section description 

Table 6-1: Cross section dimensions 

Test 
Number 

Beam Column 
Mpj/Mpb D 

(mm) 
B 

(mm) 
T 

(mm) 
t 

(mm) 
D 

(mm) 
B 

(mm) 
T 

(mm) 
t 

(mm) 
1 926.6 418.5 32 19.4 514 437 97 60.5 1 
2 840.7 292.4 21.7 14.7 514 437 97 60.5 2.25 
3 926.6 418.5 32 19.4 498 432 88.9 55.6 0.88 
4 918.4 305.5 27.9 17.3 465 421 72.3 45 1.01 
5 926.6 307.7 32 19.5 474.6 424 77 47.6 0.91 
6 918.4 305.5 27.9 17.3 474.6 424 77 47.6 1.34 
7 926.6 307.7 32 19.5 474.6 424 77 47.6 1.19 
8 926.6 307.7 32 19.5 474.6 424 77 47.6 1.21 

6.2.2.2 The stiffeners 
Two types of stiffeners of the column panel were manufactured (see Figure 6-7): 

− 30-mm-thick transverse stiffeners acting as continuity plates for the beam flanges but 
bringing no increase in the shear resistance of the panel zone.  

− 40-mm-thick extended doubler plates placed parallel to the column web. They acted 
as stiffeners and as continuity plates and they increased the shear resistance of the 
panel zone significantly. 
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Figure 6-7: Details of the connections from [BAN07] 
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6.2.2.3 Connection details 
In all specimens, the beam flanges were welded to the column flanges with butt welds. The 
flange butt welds transmitted the full plastic moment of the section area of the beam flange. For 
specimens 1, 5, 6 and 7, the beam web was bolted to a shear tab which was welded to the column 
flange. In specimens 2, 3, 4 and 8 the shear tab was welded and bolted to the beam web. The 
bolts and the welding of the shear tab are shown in Figure 6-8. The shear tab is welded to the 
column flange (see Figure 6-7) for all specimens. The bolted shear tab transmitted the plastic 
moment of the beam web and the corresponding shear. 
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Figure 6-8: Connection Detail with a) bolted shear tab and b) welded and bolted shear tab from 
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: Connection Detail with a) bolted shear tab and b) welded and bolted shear tab from 

Table 6-2: Joint design description 

Number Type of reinforcement Shear tab connection

 Transverse stiffeners Bolted 

 Doubler plate Welded +Bolted

 Transverse stiffeners Welded +Bolted

 Transverse stiffeners Welded +Bolted

 Transverse stiffeners Bolted 

 Doubler plate Bolted 

 Doubler plate Bolted 

 Doubler plate Welded +Bolted

Presentation of the VERAPS connections 

 

: Connection Detail with a) bolted shear tab and b) welded and bolted shear tab from [BAN07] 

Shear tab connection 

Welded +Bolted 

Welded +Bolted 

Welded +Bolted 

Welded +Bolted 
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6.2.2.4 The welding 
Regarding the welding, the VERAPS connections were manufactured using a range of 
consumables to cover the full toughness range, together with three different types of processes: 

− MMAW: manual metal arc welding,  
− TCMAWAGS: tubular cored metal arc welding with active gas shield, 
− MAWWOGS: metal arc welding without gas shield. 

The welding parameters of these processes are summarized in Table 6-3 below. 
 
Near the weld butt, a hole was machined on the beam web to allow access for the welding 
process (see Figure 6-7). The dimensions of the weld access holes complied with FEMA 
requirements. 
 
Some characteristic flaws, such as a lack of fusion, were artificially added during the welding 
process. During the welding process of the beam flange to the column flange, a backing bar in 
steel or ceramic was installed below the butt weld to support the welding at the beginning. It was 
removed at the end of the welding process. 
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Table 6-3: Welding parameters 

Specimen 
Number 

Consumable EN 
Designation 

Welding 
process 

Pre-heat 
(°C) 

Nr of 
passes 

Heat 
Input 

(kJ.mm-1) 

Electrode 
diameter 

(mm) 
Comment 

1 440G425MG3Si1 TCMAWAGS 20-40 17 1.6 1.2  

2 440G425MG3Si1 TCMAWAGS 20-40 10 1.5 1.2  

3 EN758T42 MAWWOGS 70-120 21 1.6 2.0 No gas shield 

4 499E380RR12 MMAW 70-120 31 1.0 2.5-4  

5 499E424B73H5 MMAW 40 18 1.9 3.2-5 Lack of fusion 

6 758T352YN2 MAWWOGS 20-40 10 1.7 1.6 
without active gas 

shield 
weld flaw 

7 499E42B73H5 MMAW 20-40 12 2.3 3.2-5 High heat input 

8 758T424NiYN1 MAWWOGS 20-40 10 2.3 20-40 

Without active gas 
shield 

Ni consumables  
weld flaw 

6.2.3 The test procedure 

Loading protocols used in the tests performed are related to the behavior of a structure which 
undergoes an earthquake. The aim was to check the ductility required in cyclic plastic conditions. 
Of course, in reality this ductile behavior depends on the earthquakes which are presumably 
represented and the protocol should in principle be related to the seismicity of the zone, since the 
duration of an earthquake is proportional to its magnitude. However, such a loading would be 
very difficult to apply. The protocols are rather arbitrarily defined as far as the number of cycles 
at a given level of deformation is concerned. 
 
FEMA 350 [FEM00] gives criteria for the seismic evaluation of a moment-resisting steel frame. 
Different prequalifications for connection types are given as well as parametric limitations on 
their applicability. For connections outside the applicability of the prequalification, a test 
procedure has been defined.  
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In FEMA 350 [FEM00] and AISC 2002 [AIS02] procedures for a moment-resisting frame, the 
loading sequence for beam-to-column connections is explicit. Rotations expressed in radians are 
imposed. The rotation, θ, is defined by Equation (6.1) and Figure 6-9. 

 
b

u

L

∆θ =  (6.1) 

where ∆u is the vertical displacement of the beam end and Lb is the beam cantilever’s length. 

 

Figure 6-9: Definition of connection rotation from FEMA 350 [FEM00] 

The protocol imposes the number and the amplitude of cyclic rotations defined in Table 6-4 until 
macrocracks are observed. If no macrocracks appear after the total number of cycles, the rotation 
amplitude is incremented by 0.01 radians, with two cycles of loading at each rotation level.    
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Table 6-4: Cyclic rotation imposed on the connection according to FEMA 350 

Step Number of cycles 
Rotation amplitude 

(rad) 
1 6 0.00375 
2 6 0.00500 
3 6 0.00750 
4 4 0.010 
5 2 0.015 
6 2 0.020 
7 2 0.30 

 
Figure 6-5 shows the test configuration for the 8 connections in the VERAPS project. In contrast 
to various tests performed in FEMA 289 [FEM97], the beam section was not only subjected to 
shear forces but also axial forces. Therefore VERAPS’ beam cantilever was shorter than FEMA’s 
and the rotation amplitude was modified in such a way that the first two steps were in the elastic 
loading range. 
 
The experimental device imposed a cyclic displacement which caused a reaction moment in the 
beam section. The beam’s elastic limit moment, Mbe, was computed before each cyclic test. In a 
static elastic load step 0, the connection was loaded up to 70% of the elastic limit load, Fe, 
determined by: 

 be
e

b

M
F

L sin
=

β
 (6.2) 

where the angle, β, is defined in Figure 6-5. Then, the connection was released. The machine 
force, F, was measured as a function of the imposed machine displacement, ∆u (see Figure 6-10).  
 
The stiffness, Ke, was identified by the tangent of the force displacement curve: 

 e

F
K

u
=

∆
 (6.3) 



Chapter 6. Beam-to-column connection simulations  Presentation of the VERAPS connections 
 
 

155 
 

 

Figure 6-10: Identification of Ke for the specimen 1 

Thus the elastic limit displacement, ∆ue, was found by: 

 e
e

e

F
u

K
∆ =  (6.4) 

Consequently, in load step 1, the specimen was loaded with the amplitude ranging between 62% 
and 74% of ∆ue. For the subsequent step, the displacement’s amplitude was defined according to 
the rotation, θ, in the FEMA 350 [FEM00] scheme. The steps were repeated until components in 
the connection failed or a load decrease of at least 10 % was observed. 
 
During the test, the displacement was imposed and the machine’s force was measured. For this 
purpose, some actuator and strain gauges were installed on the connection.  

6.2.4 Test results 

Table 6-5 describes the different type of cracks observed in the connections after testing. The 
other aspects of the results have been summarized in [BAN07]. 
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Table 6-5: Results of VERAPS experiments 

Specimen Number Failure description 

1 Tearing of beam web cut out 

2 Beam flange buckling and shear tab weld cracking 

3 Weld cracking of in bottom flange; fracture from sub-surface weld flaw 

4 Lamellar tear in column HAZ; flange weld fracture, brittle ‘divot’ type in column HAZ 

5 Weld fracture 

6 From weld toe in top flange, high deformation in beam flange; ductile tearing from access hole 

7 Ductile tearing from access hole; no fracture of HAZ or weld metal 

8 Crack from shear tab-column flange weld; no flange weld cracking found 

6.3 FEM simulations  

6.3.1 Mesh Generator 

For this project a 3D mesh generator was developed. Indeed the geometry of each component 
was rather complex (e.g. web access hole or shear tab weld). In addition, each specimen had 
different dimension and different type of reinforcement (e.g. transverse stiffeners or a doubler 
plate). Therefore, meshing all specimens involved a great deal of work. The decision was made to 
develop a module based on the dimensions and the stiffener type as data which could generate all 
meshes. Consequently, the meshing work was performed only once. 

6.3.1.1 Characteristics 
A three-dimensional structured mesh generator for Lagamine code was developed, using the 
language FORTRAN 95. The structure under investigation was divided into blocks and areas. 
The blocks were defined by 8 nodes and the areas by 4. The subdivision was defined in a local 
triad (ex, ey, ez). The mesh nodes were generated by interpolation between the nodes defining the 
block.  Different kinds of blocks could be meshed, as follow:  
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− the simple block,  
− the transition block, 
− the simple area, 
− the transition area. 

 
The simple block (see Figure 6-11) is a hexahedral block composed of Nx x Ny x Nz elements 
where Nx is the number of hexahedral elements in the ex direction, Ny is the number of elements 
in the ey direction and Nz is the number of elements in the ez direction. 

 

Figure 6-11 Simple bloc 

The transition block (see Figure 6-13) allows the mesh to be refined in one direction. It uses the 
method to pass from one to three element subdivisions (see Figure 6-12):  
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Figure 6-12: Methods to pass from one to three element subdivisions 

 

Figure 6-13: Transition block to be finer in the ey direction 

 
The simple area (see Figure 6-14) is a quadrilateral area composed of Nx x Ny blocks.  

 

Figure 6-14: Simple area  

The transition area (see Figure 6-15) is quadrilateral area that makes it possible to refine a mesh 
in one direction. Like the transition block, it uses the methods to pass from one to three element 
subdivisions (see Figure 6-12): 
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Figure 6-15: Transition block to be finer in the ey direction 

Once all blocks have been defined, the module generates the nodes and elements in each block. 
The nodes with the same positions are merged at the interface between 2 adjacent blocks. A 
group of blocks can be generated by axial symmetry from defined blocks. For example, the 
blocks can be defined for a fourth of a beam. The nodes and elements of the three fourth 
remaining fourth parts are generated by symmetry with the nodes and elements of the defined 
quarter.    
 
The definition of the mesh is set in a data file (*.msh). Then, the program generates a data file 
(*.lag) which is to be used in the compilation by the Lagamine pre-processor, PREPRO, so that 
one can see the mesh with the Lagamine postprocessor, DESFIN. It also generates a file (*.leq) 
where the positions of the nodes and the connectivity table are defined; therefore, it can be used 
to generate a complete data file for Lagamine or another FEM code with another program (e. g. 
Matlab or Fortran) to define the constitutive law or the boundary conditions, for example. 

6.3.1.2 Adaptation to the VERAPS connection 
A numerical module allows a *.msh file to be generated containing the needed data to generate a 
mesh for a T weld beam-to-column connection. The data of this module is made up of the 
dimension of the beam and the column (see Figure 6-6). 
 
Then one enters the type of reinforcement, as presented in 6.2.2.2: 

− transverse stiffeners,  
− doublers plates. 

 
Thus the meshes generated of the connections in this study were composed of approximately 
13000 nodes and 8500 elements. The elements are mechanical solid 8-nodes BWD3D [LI97] of 
mixed type available in the Lagamine code. Figure 6-16 and Figure 6-17 present the meshes of 
test 5 with transverse stiffeners and test 6 with an improved doubler.  
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Figure 6-16:  Mesh of two beam-to-column connections tested by Karlsruhe 

 

Figure 6-17: Mesh of the connection around the welding  

A plate was added to the end of the beam to stiffen it and avoid yielding due to imposed 
displacement. The beam support was equivalent to a rolling bearing whereas the column support 
was equivalent to a hinge. Displacements are imposed on three node lines close to the centre of 
the web at the end of the beam. Therefore, the rotation was free and no physical plasticity was 
allowed at this point. The boundary conditions are described in Figure 6-18. 
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Figure 6-18: Boundary condition of the connection modeling  

 
The constitutive laws for each material were calibrated (see Chapter 2.5.4). As a result, the 
constitutive laws used were different for the flanges, the web and the welding (see Figure 6-19).  
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Figure 6-19: Position of the different sets of hardening coefficient 

The mesh did not model the bolts of the shear tab. Instead, the connection between the shear tab 
and the beam web was complete because the nodes were merged at the interface between the two 
components.  The weld metal material of the shear tab-to-column flange and the beam flange-to-
column flange connections were modeled.  

6.3.2 Simulations without damage 

The aim of this modeling was to validate the model by predicting the mechanical behavior of the 
connection before damage phenomena. Moreover, Corus required the longitudinal stresses 
through the beam flange, welding metal and column flange for different rotations, θ, for three 
connections with different levels of plastic moment ratios, as these results served as input data for 
the RAP analysis.  

6.3.2.1 Static loading 
Only static displacement was imposed up to a high level of rotation. During these simulations, no 
damage neither crack propagation was modeled and the residual stresses were not taken into 
account in the initial state. 
 
Connections n°1, n°5 and n°6 were modeled under static conditions. The data regarding 
dimensions, reinforcement and connections are summarized in Table 6-1 and Table 6-2 (see 
6.2.2.1 and 6.2.2.3). 
  
Figure 6-20 to Figure 6-22 show the beam end’s moment as a function of the imposed 
displacement predicted by the FEM analysis, measured during step 0 (see 6.2.3) for the different 
specimens. As can be seen, the elastic stiffness of the connection assessed by FEM analysis or 
experimentally measured were equivalent. A similar observation can be made for connections 5 
and 6. 

: Web Base Metal

: Weld Metal

: Flange Base Metal
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Figure 6-20: Beam end moment vs. imposed displacement curve for specimen 1  

 

Figure 6-21: Beam end moment vs. imposed displacement curve for specimen 5  

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Displacement (mm)

B
ea

m
 E

nd
 M

om
en

t 
(k

N
.m

)
Experimental results

FEM results

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Displacement (mm)

B
ea

m
 E

nd
 M

om
en

t 
(k

N
.m

)

Experimental results

FEM results



Chapter 6. Beam-to-column connection simulations  FEM simulations 
 
 

164 
 

 

Figure 6-22: Beam end moment vs. imposed displacement curve for specimen 6  

Figure 6-23, Figure 6-24 and Figure 6-25 show the stress fields in the longitudinal direction of 
the beam, σxx, in the longitudinal direction, σyy, of the column, and the equivalent von Mises’, 
σeq, when the imposed displacement was equal to 100 mm for connection 1. It was verified that 
on the one hand, the beam’s upper flange was under tension and the beam’s lower flange was 
under compression; on the other hand, the left column’s flange was in compression and the right 
column’s flange was under tension. 
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Figure 6-23: Longitudinal stress in the beam for specimen 1 (100 mm displacement) 

 
Figure 6-24: Longitudinal stress in the column for specimen 1 (100 mm displacement) 
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Figure 6-25: Equivalent von Mises Stress for specimen 1 (100 mm displacement) 

6.3.2.2 Cyclic loading 
Table 6-6 summarizes the loading step of connection 3. For the cyclic loading, only specimen 3 
was modeled. However, the bolts which joined the beam and column and the loading devices slid 
during the experiments. The University of Karlsruhe provided the imposed displacement for each 
cycle by taking into account this sliding. These displacements were then imposed.    

Table 6-6: Loading definition of the connection 3 

Step Number of cycles 
Displacement amplitude 

(mm) 
1 6 17.6 
2 6 24 
3 6 35 
4 4 47.0 
5 1 70.6 

 
Figure 6-26 illustrates the comparison of the beam end’s moment rotation curve between the 
FEM analysis and the experimental measurements. The distortion on the experimental curve is 
due to the sliding of the bolts. Firstly, it can be noted that the elastic stiffness of the FEM curve 
was equivalent to the experimental one for steps 1 and 2. Then a plastic zone appears during step 
3. The maximum beam end’s moment was higher than the experimental one but the hysteresis 
areas were equivalents. For steps 4 and 5, the maximum beam end’s moment was weaker than the 
previous step, though the maximum rotation increased for the experimental curve.  This must 
have been due to internal damage. Indeed, the FEM analysis without damage does not model the 
modified behavior. At the end of the simulation, the deformed shape presented buckling at the 
beam end (see Figure 6-27). 
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Figure 6-26: Comparison of the beam end’s moment rotation between FEM analysis and experimental measurement 
(specimen 3) 
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Figure 6-27: Buckling observation at the end of step 5 (specimen 3) 

6.3.3 Cyclic loading with fatigue damage 

The aim of this modeling was to assess the amount of damage due to cyclic loading. The model 
used was the fatigue continuum damage model of Lemaître and Chaboche (see Chapter 3.5). The 
model was not coupled with the mechanical aspect that is the fatigue damage did not affect the 
mechanical behavior. Consequently, one can see the highest damaged zone on the connection to 
identify the potential crack path but no modification in the predicted stresses and forces. The 
parameters of the fatigue continuum damage model were calibrated (see Chapter 3.7) for the base 
metal in the webs and flanges and for the weld metal. 
 
The first zones where fatigue damage began are at the spot of the flange weld metal and near the 
weld access holes. Indeed, the damage increased at the end of step 1 (see Figure 6-28 and Figure 
6-29).  
 
In terms of the weld access hole, the mesh does not seem to be optimal. The solid elements were 
too elongated in one direction and the proportions of the element’s dimensions were not 
respected. The damage followed one direction but it could be due to the shape of the element. 
However, many cracks appeared in this zone for some specimens (6 and 7) but not for specimen 
3 (see Table 6-5).  
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Figure 6-28: Fatigue damage at the end of the step 1 in the weld access hole 

Regarding the beam end flange, the damage initiated and was concentrated at the interface 
between the weld metal and the column flange. In fact, this type of behavior occurred when the 
moment was as its highest as was the longitudinal stress. In addition, it was the zone where the 
macrocrack appeared. In the weld flange, the damage increased in the beam flange near the 
interface between the base metal and the weld metal. 
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Figure 6-29: Evolution of the fatigue damage near the lower weld flange 
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Figure 6-30: Location of elements where the fatigue damage where recorded 

 

Figure 6-31: Evolution of damage in weld metal elements along the transverse direction of the beam  

Figure 6-31 shows the evolution of the fatigue damage over cycle in the weld metal elements 
which are at the interface between the weld metal and the column flange (see Figure 6-30). The 
coordinate, z, is the distance from the beam center. The damage evolves quickly in this modeling. 
By instance, the damage passed from 20% to 100% for some elements in one cycle which could 
result convergence problem. Lemaître and Chaboche’s model seemed to present some difficulties 
in modelling the damage evolution in the LCF condition.   
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To conclude, the zones, where damage was the highest, were at the interfaces between the weld 
metal and the column flange and at the weld access hole. Due to the poor quality of the mesh and 
as no macrocracks were observed in this zone, it was decided to apply the cohesive zone at this 
location. Instead, it was decided to not apply cohesive zone model to the interface between the 
weld metal and the base metal in the beam flange end.  

6.3.4 Cyclic loading with the cohesive zone model and fatigue damage 

The aim of this simulation was to model the crack’s propagation at the connection and observe its 
impact on the moment rotation curve. Some CZM3D cohesive elements, developed in this thesis 
(see Chapter 4.4) were defined in the mesh at the interface between the weld metal and the base 
metal in the beam flange end (see Figure 6-32). 
 
The constitutive law of this element was a bilinear Crisfield law which was identified for the base 
and weld metals (see Chapter 4.7.5). At the interface of two materials, the parameters of the weld 
metal were chosen. Indeed the weld metal is less resistant to crack propagation and the crack 
seemed to propagate through the weld metal according to experimental observations.  
 
The computation stopped after eleven cycles (at the end of the second step according to Table 6-
6) due to convergence problems. Figure 6-33 shows the location in the connection where the 
cracks initiated. The Figure 6-34 illustrates the crack’s initiation at the end of the computation. 
The displacement was multiplied by 50 in order to the crack was visible. Figure 6-35 presents the 
longitudinal stress field for the beam. The stress began relaxing at the crack initiation. The 
improvement of the computation is currently performed to model all cycles. 
 



Chapter 6. Beam-to-column connection simulations  FEM simulations 
 
 

173 
 

 

Figure 6-32: Location of the cohesive elements 

 

Figure 6-33: Zone in the connection where crack was observed 
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Figure 6-34: Crack initiation after 10 cycles (displacement x50) 

Crack ‘s initiation
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Figure 6-35: Longitudinal stress for the beam flange plot after 10 cycles (displacement x1) 

6.4 Conclusion 

This chapter presents the modeling of the large-scale test performed by the University of 
Karlsruhe on beam-to-column connections under cyclic loading, a test designed to investigate the 
onset and propagation of cracks at the connection level. 
 
A three-dimensional structured mesh generator was developed. One drawback of this 
development is that the program is less user-friendly than a commercial one. However this 
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generator made it possible to automatically refine with the transition blocks. It has been adapted 
to the VERAPS project so that one could generate the eight beam-to-column connections of the 
project with little data.  
 
To test the performance of the meshes, 3 connection tests were modeled under static loading 
conditions and compared with the University of Karlruhe‘s results. The agreement of the elastic 
stiffness in the moment displacement curve helped us to validate the model in terms of the mesh, 
material parameters, and boundary conditions. This modeling enabled the longitudinal stress to 
be assessed through the beam flange, weld butt and column flange and provided these data to 
Corus for their RAP analysis. 
 
The first computation with the cohesive zone model was performed under cyclic loading 
conditions for one specimen. The elastic stiffness of its moment rotation was found to be 
equivalent to the experimental one. Also, the hysteresis loop had an equivalent area. The 
continuum damage model makes it possible to identify the zone where the greatest damage by 
fatigue happened: in front of the weld access hole and near the welding connection. However, the 
mesh presented some problems close to the weld access hole. So, the mesh has to be refined in 
this zone. Lemaître and Chaboche’s model seemed to present some difficulty modelling the 
damage evolution in the LCF condition, in so far the damage evolved too quickly. Then, a 
computation with cohesive zone elements was carried out. The computation ended only at the end 
of the step 2 due to convergence problem. However, the crack began initiating.  
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The aim of this PhD thesis was to model the large scale tests of heavy steel welded beam–to-
column connections submitted to cyclic loading. The propagation of a crack in these connections, 
due to the displacement cycles applied and to fatigue damage, was simulated. In addition to this 
overall aim, the model had to satisfy two criteria: the modeling should be feasible using 
commercial codes and it should not require too many parameters. As different factors were taken 
into account and tested, this study was divided into different steps. The following section 
discusses the conclusions of the different steps of this work. 
 
In Chapter 2, the constitutive law for the base metal and for the weld metal was described. The 
metal’s behavior was considered to be elastoplastic with isotropic hardening and using von 
Mises’ yield criterion. The parameters of this law were identified from tensile tests on samples 
extracted from different locations on the connections. More specifically, a set of parameters for 
the constitutive law was defined for the flanges, the webs and the weld metals. Identifying these 
sets was a relatively simple task. For all the different steels, Young’s modulus was fixed at the 
classic value for steel (205 GPa) because the available small strain measurements were not 
accurate enough. It would have been interesting to observe the influence of the use of a mixed 
(isotropic and kinematic) hardening on the model. However, the quality of the stress-strain 
measurements during cyclic tensile tests was not sufficiently accurate to be of use. Moreover, the 
heat-affected zone’s behavior was not ascertained, though heat-affected zones are locations 
where cracks can develop. Experimental identification of this zone would be too difficult a task 
because of its smallness and because the HAZ’s behavior depends on the welding process. 
Another solution would have been to model the metallurgical modification of the HAZ as in 
[HAB89]. However, these types of models require many parameters and their identification 
requires multiple tests. Nevertheless, it could be worth the effort to develop these models in 
future to better simulate cracks. 
 
Chapter 3 presents Lemaître and Chaboche’s fatigue continuum damage model with a multiaxial 
Sines’ criterion, which was implemented in the Lagamine code to take fatigue into account in the 
crack’s propagation. The parameters of this model were obtained from the Wöhler’s curve 
generated by cyclic tensile tests on base and weld metals. However, the number of points was 
insufficient and they only defined the LCF state. An increase in the number of points would have 
improved the identification of these parameters, particularly in the HCF state. In addition, the 
tests were also limited with respect to uniaxial loading. Several multiaxial criteria, such as 
Crossland’s or Dang Van’s, could be investigated for tests performed to generate a multiaxial 
state. Still, this study was the first one in the field of the fatigue damage modeling in the 
Lagamine team. Following up on this thesis, Mr. Abdeljalil Kalifa Marmi from the ArGEnCo 
Department is working on the assessment of fatigue life on a titanium alloy and aims to identify 
and validate accurate multiaxial criteria [MAR09].  
 
The crack’s propagation was modeled with the cohesive zone model, discussed in Chapter 4. This 
model was used to simulate crack propagation for a ductile fracture under cyclic loading and 
could be coupled with fatigue damage. For this model, a two-dimensional and, then, a three-
dimensional cohesive element were implemented in the finite element code Lagamine. This 
implementation has already been performed in commercial codes, such as ABAQUS [GAO04] or 
Zebulon [BOU06]. For its implementation in the Lagamine code, Xu and Needleman’s cohesive 
law was first implemented. One drawback of this law is its low number of parameters: maximum 
cohesive stress and the separation, δn, which together define the energy and the initial stiffness of 
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the cohesive law. Another degree of freedom would be necessary to affect the initial stiffness 
independently. Therefore, a bilinear Crisfield’s model was used. An inverse method for the 
identification of the cohesive parameters was developed based on the results of three-point bend 
testing carried out by Corus. In the first step, a parametric study was performed to understand the 
effect of varying each parameter on the strength of the cracked component. In the second step, 
these parameters were adjusted until the numerical results approximated the experimental results. 
However, this identification concerned only mode I. It would also have been interesting in 
analyzing mode II and mode III. In addition, after a literature review, it was found that triaxiality 
affects the cohesive parameters [CHE05]. Unfortunately, the available experimental results did 
not allow this phenomenon to be studied. Another drawback of the cohesive zone is that the 
crack’s path should be known before the mesh generation. One possible solution to this constraint 
is to develop a remeshing method, which adds cohesive elements according to a crack criterion. 
In addition, it is important to note that these cohesive elements will be used in other current 
researches, such as: 

− the DINOSAURE project, which aims to model the coating of nanometric film of 
composite structures;  

− Dr. Ben Bettaieb’s post-doctoral project dedicated to a three-dimensional formability 
criterion of metallic materials during the forming process. The damage is simulated by 
Gurson’s law [BEN08], which is used for crack detection. However, the use of a 
cohesive model would be used to model crack propagation; 

− the study of biomechanics, which could also use cohesive models. 
Clearly, this tool’s addition to the Lagamine code will find numerous applications. 
 
Chapter 5 outlines the development of a method to compute a balanced residual stress field 
resulting from the welding process. The finite element welding model generated many problems, 
namely due to the structure’s size and the high computation time. Indeed, the thickness of the 
beam was considerable, as was the number of passes. Recently, an iterative solver module has 
been implemented in the Lagamine code, which could speed up the simulations (see Appendix 1). 
In addition, some assumptions were made to reduce the computation time. A sequential 
thermomechanical analysis requires less CPU time than a coupled one. Specifically, the use of 
different meshes for the thermal analysis (fine mesh and larger time step) and for the mechanical 
analysis (coarser mesh and fine time step) optimized the computation time. Also, a birth 
technique simulated the weld metal supply and avoided convergence problems due to heating. 
This was applied only to the mechanical analysis but it would be worthwhile using it on both 
analyses to avoid error in thermal conduction phenomena. A three-dimensional coupled thermo-
elastoplastic constitutive law was implemented by the author in the Lagamine code. The heat 
source was modeled by Goldack’s model. A simulation was performed with two equivalent 
passes to model the welding process of one VERAPS connection. However, the results of the 
analyses performed were not accurate enough. This part of the thesis was unfortunately not 
fulfilled. This way of generating accurate three-dimensional residual stresses was still lengthy 
and could not be performed within the time devoted to this thesis. The focus of this work was 
damage modeling, not welding simulations, so the following ideas remain to be developed. To 
tackle the difficulty of the high number of passes, it was chosen to group several passes into one 
pass, but the parameters of the heat sources needed to be identified. Due to the time-consuming 
nature of three-dimensional computations, two-dimensional simulations should be carried out in 
order to model all the passes, and in turn, to adjust the parameters of this heat source. The goal of 



Chapter 7. Conclusions and Perspectives   
 

180 
 

these two-dimensional simulations is to check if one could determine parameters to model fewer 
passes with equivalent energy and residual stresses predicted. Then, this would make it possible 
to perform three-dimensional modeling with a lower number of passes. Also, an adaptive 
remeshing would be interesting with the method described in Appendix 2. In this case, at the 
beginning, only coarse elements would exist. Then, all elements close to the heat source would be 
remeshed as finer elements.  
 
After the tools were developed and calibrated, the final step of the thesis, described in Chapter 6, 
was the simulation of the welded beam-to-column connections submitted to cyclic loading. As 
eight connections with different dimensions and reinforcements were tested, a three-dimensional 
structural mesh generator module was developed to carry out the meshwork easily. The input 
parameters were composed of the dimensions of the beam and the column. However, the meshes 
in the weld access hole location were not fine enough. Indeed, the zone presented stress 
concentrations where cracks could initiate. Different simulations were performed. The first 
simulations in static condition enabled Corus to evaluate the rotation capacity of three 
connections by RAP analysis by providing the longitudinal stresses through the beam flange, the 
welding and the column flange. The longitudinal stresses along the beam flange, the welding and 
the column flange were provided for different levels of rotation. Three simulations (specimens 1, 
5 and 6) with different levels of the plastic moment ratio were carried out. The beam end moment 
versus rotation curves were compared with the experimental measurements from the University 
of Karlsruhe. The initial elastic slopes of the moment versus rotation curves generated by finite 
elements and experiments were equivalent, which validated the model. Afterward, specimen 3 
was simulated under cyclic loading. Its fatigue damage was computed without affecting the 
mechanical stiffness to avoid convergence problems. Determining the crack’s path is generally a 
difficult task, but the fatigue damage in this case was an interesting indicator, as validated by 
experimental observations. With this information, a mesh with cohesive elements was defined to 
model crack propagation. One simulation with crack propagation was performed but stopped 
before the end of the test proceeding due to convergence problem. Perhaps other fatigue damage 
model could be coupled with the cohesive zone model which evolves at each time step, such as 
models suggested by Bouvard [BOU06] or Roe and Sigmund [ROE03], contrary to Lemaître and 
Chaboche which evolves at each cycle. An adaptive remeshing would have made it possible to 
perform the computation in one simulation. However, no simulation with residual stresses as 
initial values was performed since no accurately balanced residual stress fields were obtained in 
the previous chapter. However, the impact of the residual stresses on the simulation of the crack’s 
propagation would certainly be interesting to investigate further. In summary, the method 
developed in this thesis will help engineers to model crack propagations in beam-to-column 
connections submitted to cyclic loading. After complete validations of each step with 
experimental results, as discussed above, the finite element analysis could be an interesting 
counterpart to an analysis of or experiments on risk assessment profiles. 
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A1.1 Introduction 

In finite element codes, large linear systems have to be solved. Indeed, the nodal position 
corrections (see Chapter 2.3), (x) Nx1, to reduce the out-of-balanced forces, (F) Nx1, are computed 
at each iteration with the following equation: 

 Kx F=  (A1.1) 

where (K) NxN is the tangent stiffness matrix of the structure and N is the dimension of the system. 
N can become very large, particularly if the analysis is three dimensional. Therefore, solving 
Equation (A1.1) represents most of the CPU time of the simulation. That’s why it is important to 
make it possible to solve it rapidly and efficiently. Currently the Lagamine code solves the 
system directly by computing the inverse K-1 with the LU factorization method. This method 
gives the real solution but takes time in simulations with a large number of degrees of freedom.  
 
The usual solution to reduce the solving time in three-dimensional finite element modeling is to 
use an iterative resolution method. The iterative methods can be classified into two types: 
stationary (e.g. Jacobi’s or Gauss-Seidel’s Method) and non-stationary (the Conjugate Gradient 
method). The method chosen is the Generalized Minimal Residual (GMRES), which is a 
derivative of the Conjugate Gradient method. To speed up the resolution, the iterative method 
was coupled with a preconditioning method.  
 
Firstly, this appendix presents the direct method present in Lagamine. Then, the stationary and 
non-stationary methods are described such as the GMRES method. The preconditioning method 
which accompanies the GMRES method is explained. Moreover, the appendix describes the 
necessary modifications on Lagamine. A validation and performance study was performed on 
different large simulations and their results are shown hereafter.     

A1.2 Direct methods in Lagamine finite element code 

Before this study, only direct methods were available in the Lagamine code, namely the LU 
factorization. This involves factoring the tangent stiffness matrix by:  

 K LU=  (A1.2) 

where U is an upper triangular matrix and L is a lower triangular matrix. 
 
The advantages of this method are: the computation of the inverse of L and U are easier than to 
find the inverse of K and it is parallizable. The computation of the inverse of K is performed like 
this: 

 1 1K L U− −=  (A1.3) 

In Lagamine, different methods use this factorization. The differences in these methods come 
from the storage method used during the solving process of the stiffness matrix.  
 
Indeed, for finite element problems, the tangent stiffness matrices are sparse, i.e. the non-zero 
elements are concentrated around the diagonal (see Figure A1-1). Consequently, it is not 
necessary to store all the components which are null.  
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Figure A1-1: Sparse matrix example 

The first storage method is the skyline method. In each column, a maximum bandwidth around 
the diagonal is estimated and only a limited band is stored. The estimation is based on the 
connection between nodes in all elements. This method is simple and the stiffness matrix is easy 
to manipulate. However, many zero components remain in the band. Therefore, an optimization 
of the numbering must be performed during the meshing or a renumbering must be performed. 
Two are available: an oil spot and directional method (see Lagamine’s user guide for details).  
 
The second storage method is the Compressed Sparse Row (CSR). In each column only the non-
zero components are stored. Consequently, some pointer arrays make it possible to recover the 
exact position in the matrix. This method optimizes the memory required to store the tangent 
stiffness matrix. However, this matrix is harder to manipulate than the skyline one. 
 
The use of the method depends on the size of the system. Some numerical tests show that for 
small systems always provide a quicker answer with the skyline method. However if the system 
holds many degrees of freedom, the CSR method seems preferable.   

A1.3 Stationary methods 

The principle of the stationary method is the definition of a function, f, such that 

 x f (x)=  (A1.4) 

where x is the solution and a stationary point of the function, f. 
 
Given a starting point, x0, the following iterative algorithm is used 

 n 1 nx f (x ).+ =  (A1.5) 

The definition of the function, f, is carried out by the division of the tangent stiffness matrix: 

 K=M-N  (A1.6) 

where M is a non-singular matrix and easy to invert. According to (A1.1), the function, f, is 
defined by 

 1 1x M Nx M F f (x).− −= + =  (A1.7) 
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Therefore, the algorithm is 

 
0

1 1
n 1 n n

x  chosen,

x f (x ) M Nx M F.− −
+


 = = +

 (A1.8) 

In order to study convergence, an error by iteration, en, is defined. This is the difference between 
xn and the exact solution, x: 

 nne x x.= −  (A1.9) 

The problem is that the solution x is unknown. Thus one defines the residual, rn, by 

 n nr F Kx .= −  (A1.10) 

The residual, rn, is a transformation of the error en in the space of F by multiplying by K:  

 n n nnKe K(x x) Kx F r .= − = − = −  (A1.11) 

Consequently, the residual is a good indicator to see if one is close to or far from the target 
solution. The algorithm continues until the residual reaches a level of tolerance, ε: 

 n 2

2

r

F
< ε  (A1.12)  

where 2... is the second-order norm. 
 
To study convergence, the error must also be analyzed. For the stationary method the error is 

 ( ) ( )n1 1 1 1 1 n
n 1 n 1n n 1 0 0e M Nx M F x M N x x M Ne M N e B e− − − − −

− − −= − − = − = = =  (A1.13) 

where 1B M N.−=  

 
The aim of this algorithm is that the error must converge to zero after several iterations: 

 ( )n
n 0

n n
lim e lim B e 0

→∞ →∞
= =  (A1.14) 

The choice of x0 affects the number of iterations required to converge to x. However, its effect 
are less important than that of the effect of Bn. The convergence to Bn depends on the spectral 
radius of B, ρ(B), which is the highest eigenvalue of the matrix. The spectral radius must be less 
than 1. 
 
The famous stationary method divides the matrix in this way: 

 K D E F= − −  (A1.15) 

where D is a matrix which contains the diagonal elements, E the upper part and F the lower part 
of the tangent stiffness matrix. 
  
The first method is the Jacobi’s method which uses M=D and N=E+F. This method can be 
parallelizable. The second famous method is the Gauss-Scheidel’s method which uses M=D-E 
and N=F. This method converges more quickly than the Jacobi’s methods. The stationary 
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methods works well but can fail for some finite positive stiffness matrices. These methods are 
described in [SAA03]. 

A1.4 Krylov subspace methods  

A1.4.1 Some definitions 

 
Two vectors, u and v, are considered conjugate or K-orthogonal if  

 Tu Kv 0=  (A1.16) 

Solving Equation (A1.1) is equivalent to finding the minimum of the function, f, which is the 
quadratic form:  

 T T1
f (x) x Kx F x

2
= −  (A1.17) 

In this case, the residual, r, is the opposite of the gradient of f at the x value. 

 r F Kx f= − = −∇  (A1.18) 

A1.4.2 The conjugate gradient method 

A1.4.2.1 Principles of the method 
 
One starts at an arbitrary point x0 and takes a set of steps x1, x2… until xi is close enough to the 
solution x. The set follows the form 

 n 1 n n n
x x .p+ = + α  (A1.19) 

where pn is a direction vector and αn is the norm of the descent to reach the solution.  
 
The optimal, αn, which minimizes f over xn, is found when the directional derivative is equal to 
zero: 
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 (A1.20) 

Consequently, for a given pn, the optimal norm, αn, is known. Now the direction vector must be 
chosen. In the beginning the best solution is to follow the steepest descent, which is the residual 
due to its definition (Equation (A1.18)) : 

 0 00
p r F Kx= = −  (A1.21) 

The following direction, pn+1, follows the descent direction and is a conjugate of pn. 
 

 

n nn 1 n

T

n 1 n

T
nn

n T

n n

p r p

p Kp 0

p Kr

p Kp

+

+

= + β


=

β = −

 (A1.22) 

A1.4.2.2 Krylov’s subspace  
 
The subspace span Dn, [p0, p1,..., pn], is a K-orthogonal basis.  Recalling that ni 1

p D
−

∈ , this fact 

implies that each new subspace Dn+1 are formed from the union of the previous subspace Dn and 
the subspace KDn. Hence, 

 
{ }
{ }

2 n 1
n 0 0 0 0

2 n 1
0 0 0 0n

D span p ,Kp ,K p ,...,K p

D span r ,Kr ,K r ,...,K r

−

−

=

=
 (A1.23) 

This subspace is called Krylov’s subspace, a subspace created by repeatedly applying a matrix to 
a vector. It has a pleasing property: because KDn is included in Dn+1, the fact that the next 
residual rn+1 is orthogonal to Dn+1 implies that rn+1 is K-orthogonal to Dn. 
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A1.4.2.3 Convergence consideration 
 
In theory, the exact solution can be found in N iterations, where N is the dimension of the linear 
system.  The error can be computed as 

 
n 1 n 1

n n 1 0n 0n 1 i in 1 i i
i 0 i 0

e x x x p x x p x e p
− −

− − −
= =

= − = + α − = + α − = + α∑ ∑  (A1.24)

  

The initial error can be expressed as a linear combination of a target direction [p0, p1, …, pN]. 

 
N 1

0 j j
j 0

e p
−

=

= δ∑  (A1.25) 

The values of δj can be computed by multiplying (A1.25) by T

n
p K  
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 + α 
 δ =

δ =
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δ = −α

∑

∑
 (A1.26) 

Line (*) is possible due to the K-orthogonality of pi vectors.  

In conclusion, a component of the initial error, e0, is removed at each iteration in the DN span; 
therefore, after N iterations the exact solution is identified.  In fact if the relations in (A1.24) and  
(A1.26) give 



Appendix 1. Iterative solvers  Krylov subspace methods 
 

188 
 

 

n 1

n 0 i i
i 0

N 1 n 1

n j j i i
j 0 i 0

N 1

n j j
j n

e e p

e p p

e p

−

=

− −

= =

−

=

= + α

= − α + α

= − α

∑

∑ ∑

∑

  (A1.27)

  

Then en=0 after N iterations. 
 
However if the dimension is very large, then the computation time becomes prohibitive.  One 
prefers to find an approximate solution and stop the iteration when the residual is sufficiently 
reduced. The stop criterion is  

 n 2

0 2

r

r
< ε  (A1.28) 

where ε is a convergence coefficient chosen by the user. 
 
One can define a K norm by T

K
v v Kv= . [SHE94] shows that 

 

n

max
n 0K K

min

1
e 2 e  with 

1

 γ − λ≤ γ =   λγ + 
 (A1.29) 

where λmax and λmin are the maximum and the minimum eigenvalues of K respectively.  
 
In practice, the conjugate gradient converges better if the distribution of the eigenvalues are 
clustered and low or if the starting point is close to the exact solution. The conjugate gradient 
method converges better than the stationary method because it tends to reduce the residual. 
However, the conjugate gradient can fail if the stiffness matrix is nonsymmetrical or non definite 
and positive. 
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A1.4.2.4 Algorithm 
In summary the algorithm of the conjugate gradient is: 
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A1.4.3  Arnoldi’s method 

Arnoldi’s [SAA03] procedure is an algorithm for building an orthonormal basis of the Krylov 
subspace. One variant of this algorithm is 
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 (A1.30) 

One may define some matrices:  

 
n 1 2 n

P p ,p ,...,p=     (A1.31) 



Appendix 1. Iterative solvers  Krylov subspace methods 
 

190 
 

where (Pn)N x n contains the vector of Krylov’s subspace. 

 ( ) ij

k ij

h  if 1 j k, 1 i j 1
H

0 otherwise

≤ ≤ ≤ ≤ +
= 


 (A1.32) 

where
 n
H

 
has a dimension (n x (n+1))

 
 

The superior Hessenberg matrix, (Hn)nxn, is the matrix 
n

H after having removed the last line.  

 

n

n
n+1,n

H
H

0 ... 0 h

 
=  
    

 Saad [SAA86] demonstrated that 

 
n n 1 n

KP P H
+

=  (A1.33) 

A1.4.4 GMRES method 

This method was developed by Saad [SAA86]. It searches at each iteration, n, for the vector zn, 
which belongs to Dn and minimizes the residual. 

 n 0 n 0 n n
x x z x P y= + = +  (A1.34) 

Therefore one defines the following function: 
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 (A1.35) 

Line (*) comes from the relation in (A1.33). 
  
Consequently, 

 ( )
n n

1 kn y D y D 2
y min J(y) min e H y .

∈ ∈
= = β −  (A1.36) 
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Minimizing yn is not time-consuming since it requires the solution of an n x (n+1) least-square 
problem where n is typically small. 
 
If n=N, the solution obtained is the correct solution because the residual is minimized on N

ℝ . 
 
The GMRES algorithm is performed as follows 

− Step 0: Choose x0 and compute r0 and p1, n=1; 
− Step 1: Perform Arnoldi’s algorithm; 
− Step 2: Identify yn by minimizing J(y) and compute xn+1. If rn respects the convergence 

criterion, stop; else n=n+1 and go on to step 1.    
 
This method converges forever because it searches for the optimal direction to optimize the 
residual. However, the bigger n is, the more expensive the algorithm is, because the dimension of 
Pk+1 increases and the multiplication matrix procedure requires more steps. To tackle these 
difficulties, one imposes a maximum number of iteration nmax.  Then, Krylov’s subspace is 
constructed with the dimension nmax associated with r0 and K. If xnmax does not respect the 
convergence criterion, the algorithm is relaunched with x0 equal to xnmax. This algorithm is called 
GMRES(n). 
 
This algorithm is described below. 
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A1.5  Preconditioning 

Preconditioning is a technique to speed up convergence for iterative methods. The convergence 
depends on the distribution and the eigenvalues of the stiffness matrix, K. Suppose that M is a 
symmetric, positive-definite matrix that approximates K, but is easier to invert. Equation (A1.1) 
can be indirectly solved by solving 

 1 1M Kx M F− −=  (A1.37) 

If the set of eigenvalues of M-1K is lower and better clustered than the set of K, then the number 
of iterations to solve (A1.37) will be lower than the iteration number of (A1.1). 
 
There are different ways of building M. The simplest way of defining a preconditioner is to 
perform an incomplete LU factorization of the original matrix K. This entails a decomposition of 
the form 

 
0 0

K L U R= −  (A1.38) 

where L0 and U0 have the same nonzero structure as the lower and upper parts of K, respectively, 
and R is the residual error of the factorization. This incomplete factorization, known as ILU(0), is 
rather easy and inexpensive to compute.  
  
This approach involves preserving the matrix structure of the original matrix K and dropping any 
fill-in elements that are generated with L and U in the position where the elements of K vanish 
(see Figure A1-2). Therefore one defines the set, Z0, of row/column couple (i,j) that respects the 
following condition: 

 ( ){ }0 ijZ i, j |1 i, j N, K 0= ≤ ≤ ≠  (A1.39) 

The algorithm is  
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Figure A1-2: Example of ILU(0) factorization 

However the ILU(0) often causes a crude approximation and requires many iterations to 
converge.  So, it is necessary to improve the fill-in with the new set:  

 ( ) ( ){ }1 ij 0 0 i, j
Z i, j |1 i, j N,K 0 and L U 0= ≤ ≤ ≠ ≠  (A1.41) 

 

Figure A1-3: Example of ILU(1) factorization 

This method is called ILU(1) (see Figure A1-3). One can generalize this with the method ILU(k) 
where the set is defined by 

 ( ) ( ){ }k ij k 1 k 1 i, j
Z i, j |1 i, j N,K 0 and L U 0

− −
= ≤ ≤ ≠ ≠  (A1.42) 

This algorithm requires fewer iteration than ILU(0) to converge. However, there are three 
drawbacks: 

− The number of non-zero components cannot be predicted. 
− The CPU time of this algorithm can be long.  
− The algorithm can drop large elements and so R is not small. 

 

K L0 U0 L0U0

L0U0 L1 U1 L1U1
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To tackle these difficulties one combines this method with the threshold strategy. This method is 
called ILUT. The components are dropped as a function of their position and with their value. If 
the value of an element out of the diagonal is less than a threshold, then it is considered null.   

A1.6 Implementation in Lagamine 

A1.6.1 GMRES module description 

The GMRES method was developed by Y. Saad. It offers a FORTRAN open source tool kit, 
called SPARKIT, which contains applications to manipulate a sparse matrix. A file called 
GMRES.F contains the following subroutines which come from SPARKIT: 

− Pgmres : GMRES solver, 
− ILU(0): simple preconditioner, 
− ILUT: improved preconditioner. 

A1.6.2 Input parameters 

GMRES requires some input parameters: 
− im : dimension of the Krylov subspace, 
− maxits: maximum of iteration, 
− eps: tolerance convergence coefficient. 

Likewise, the ILUT(k,ε) preconditioning requires some input parameters: 
− lfill: number of incomplete LU factorization steps (=k),  
− droptol: tolerance coefficient to drop elements  (=ε). 

 
The drawback of GMRES is that the calibration of the parameters to speed up the solving process 
is a difficult task.  

A1.7 Validation of the GMRES method in Lagamine 

The GMRES method was tested on two models which had significant number of degrees of 
freedom. These models were launched on two operating systems: Windows XP on a PC and 
LINUX on a machine called Nick2.   

A1.7.1  Indentation test 

This model simulates an indentation in the surface of a material sample [GER07] (see Figure A1-
4). The model was three dimensional with three degrees of freedom. The sample was modeled by 
1879 nodes and 1772 elements. The total number of degrees of freedom was 5506. 
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Figure A1-4: Indentation test modeling mesh 

The computation was launched with the three methods with Windows XP. Only 10% of the 
simulation has been performed. The parameters for the iterative method are given in the table 
below. 

Table A1-1: Iterative resolution parameters for indentation simulation 

im eps lfil droptol 
250 1E-4 25 1E-2 

 
The results are summarized on the followed table: 

Table A1-2: Comparison of CPU time for indentation simulation SPIF modeling 

METHOD CPU time 
DIRECT LU Skyline  39 min 58s 

DIRECT LU CSR 1 h 5 min 28s 
Iterative method 5 min 0 s 

A1.7.2 Incremental forming modeling 

The modeling is the forming of sheet metal by an incremental single point process [HEN09]  (see 
Figure A1-5). The sheet was circular and only a quarter was modeled thanks to symmetry. The 
model was three dimensional and the nodes had six degrees of freedom (3 translations and 3 
rotations). The mesh contained 4450 nodes and 4506 elements. The total number of degrees of 
freedom was 26392. 
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The computation was launched with the three methods with Windows XP. Only 0.1 s of 
computation was simulated. The results are summarized on the following table. 

 

Figure A1-5: SPIF process modeling mesh 

Table A1-3: Comparison of CPU time for SPIF simulation 

METHOD OS CPU time 
DIRECT LU Skyline PC 1h  3 min 20 s 

Nick2 21 min 24 s 
DIRECT LU CSR PC 1h 12m 30s 

Nick2 13 min 22 s 
Iterative method PC 13 min 51 s 

Nick2 7 min 40 s 

Table A1-4: Iterative resolution parameters for the SPIF simulation 

im eps lfil droptol 
2000 1E-4 50 1E-6 

A1.8 Conclusions 

After a literature review, GMRES method was implemented in the Lagamine code. The 
advantage of this method that is works well on a non-symmetric sparse matrix. This method is 
coupled with a preconditioned ILU method to speed up the convergence.  The language is free 
open-source in FORTRAN. The drawbacks of this method are the need to calibrate the 
parameters to reach a satisfactory gain in computation time. 
 
The method was experimented on two simulations which contained many degrees of freedom. 
The gain in computation time was significant. In addition, this method was used for the 
identification of the cohesive parameters. In the inverse method, many 3D simulations were 
performed. Finally, this method helps us to gain computation time. 
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This chapter describes a remeshing method which was developed during this PhD work period. 
This method was applied in the ALECASPIF project (An AL uminum alloy improved by the 
ECAP Processing and Shaped by the Incremental Forming SPIF).  Some incremental forming 
SPIF process is modeled by finite elements. However, due to a high level of strain concentration 
in all parts of the structure in different moments, the mesh must be very fine and the computation, 
as a result, time becomes prohibitive. The work completed the Christophe Henrard’s PhD from 
the ArGEnCo Department [HEN09].    
 
That’s why a remeshing method was developed by the author. This method is explained in this 
thesis because the method could be used in the case of remeshing with cohesive zone model or 
welding process. This appendix consists of the paper presented during the Numisheet Conference 
2008 at Interlaken.   
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Abstract 
During the earthquake in Japan and California in the 1990s, some weld beam-to-column 
connections had some cracks in heavy rigid frame steel building. Consequently it is required to 
assess the performance of the welded connection in term of rotation capacity and crack 
propagation strength. Some experimental tests have been performed. The weld connections were 
submitted to cyclic loading with increasing amplitude until macro crack event. However the 
crack phenomenon depends on many parameters: the geometry, the material, the welding process. 
For this reason, it is interesting to develop a finite element modeling of this connection to 
complete these experiments and perform a parametric study. The welded connection is modeled 
by three dimensional mixed solid elements. The constitutive law is elastoplastic with isotropic 
hardening identified for the base metal and the weld metal. The crack propagation is modeled by 
cohesive zone model. The parameters of the cohesive zone model have been identified by inverse 
method with the modeling of three points bending tests of a pre-cracked sample performed on the 
base and weld metal. The fatigue damage generated by the cyclic loading is computed by the 
fatigue continuum damage model of Lemaitre and Chaboche and it is coupled with the cohesive 
zone model. The damage and the crack propagation depend on the residual stresses generated by 
the welding process. They have been computed by a simulation of this process with a thermo 
mechanical finite element analysis. This thesis presents the used models and the results compared 
with the experimental tests. 


