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Introduction 

 
Dynamic changes resulting from a variety of causes (e.g. structural damage or 

nonlinearity onset) may disturb or threaten the normal working conditions of a system. The 

capacity to estimate the mechanical health condition of a structure using remote non-

destructive techniques constitutes a substantial plan which allows to reduce maintenance costs 

and to ensure safety. Hence, questions such as the detection of those events have attracted the 

attention of countless researchers in recent times.  

A well-known classification for damage detection, presented in Rytter (1993)[109], 

defines four levels in increasing order of complexity: 

- Level 1: Damage detection: inspection of the presence of damage in the structure 

- Level 2: Damage localization: determination of geometrical location of the damage 

- Level 3: Assessment of the severity of the damage 

- Level 4: Prediction of the remaining lifetime of the structure 

Damage detection can be implemented by visual inspection or by using localized methods 

such as acoustic and ultrasonic techniques, magnet field methods, radiography, penetrant 

liquids, eddy-current methods and thermal field methods. However, such methods require the 

accessibility of the zone where damage is located. 

“Smart structure” is a popular expression in modern engineering that relates to vibration 

monitoring. It consists in a structure instrumented by sensors measuring vibration responses 

of the structures in real time, for the purpose of structural health monitoring (SHM). 

Nowadays, this kind of approach is widely used because vibration monitoring systems is well 

developed. Efficient and reliable vibration analysis tools allow to detect the occurrence of 

damage, to assess its severity and to predict the residual life of the structure. By acting before 

the apparition of a serious fault, the cost of maintenance and reparation may be considerably 

reduced and at the same time, the security may be improved. Vibration analysis is based on 

the assumption that the dynamical behavior of a structure, observed by measured responses, 

relates directly to system features as stiffness, mass and damping distribution. A fault in a 

dynamic system may be shown by changes in the dynamic properties of the structure, namely 

the eigenfrequencies, the mode shapes/deformation shapes, the modal damping ratios and/or 

the transfer functions. So, identification of those quantities is also of primary importance for 

the diagnosis problem.  

Nowadays identification methods of linear systems are rather powerful, but they are based 

on stationarity and linearity assumptions, which is not always the case in real-life 

applications. For example, nonlinearity may be induced by environmental factors such as 

temperature, humidity, wind or comes from physical factors related to geometric effects or to 

material behavior, etc. Furthermore, as reported in Farrar et al. (2007)[25], there are many 

types of damage that make an initially linear structural system respond in a nonlinear manner. 

For example, cracks subsequently open and close under operational condition. Other common 
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damages that produce nonlinear system responses come from loose connections, delamination 

in bonded, layered materials under dynamic loading or material nonlinearities. The new 

response characteristics induced by the nonlinearity can be considered as indicators of 

damage. However, accurate determination of these quantities should be assured so that they 

can be utilized for indicators of damage. And so, the detection problem necessitates methods 

that are able to study nonlinear systems.  

The objective of this thesis is to identify changes in the dynamical behaviour of a 

mechanical system through the development of identification, detection and model updating 

techniques. Damage or nonlinearity onset is considered responsible for the changes. 

According to the classification of damage identification presented above, the diagnosis 

problem in the present work is addressed for the first three levels, i.e. detection, localization 

and assessment. The identification of damages and nonlinearity onset is always based on the 

comparison between a current and the reference (normal) states.  

The layout of the dissertation is as follows: 

Chapter 1 presents a literature review on modal identification and detection methods. This 

part describes some main features of nonlinear systems and also the challenges that the 

nonlinearity presents. Localization and evaluation problems are next discussed separately. 

Chapters 2, 3 and 4 focus on the detection of fault, namely nonlinearity onset or damage 

occurrence by three methods respectively: the Wavelet Transform (WT), the Second Order 

Blind Identification (SOBI) method and the Kernel Principal Component Analysis (KPCA) 

method. Output-only measurements are used for signal processing. The first two methods 

achieve health monitoring through a process of modal identification while the last method 

works directly in the characteristic spaces determined by a chosen kernel function. The 

detection can be performed by means of the concept of subspace angle or be based on 

statistics. 

The robustness of the methods is illustrated on a clamped beam structure with a 

geometrical nonlinearity at the end; this benchmark was studied in the framework of the 

European COST Action F3. Other examples are considered such as an aircraft mock-up with 

different levels of damage and two industrial applications with the aim of performing quality 

control on a set of electro-mechanical devices and on welded joints.  

Chapter 5 aims at damage localization based on sensitivity analysis of Principal 

Component Analysis (PCA) results in the frequency domain. The localization is performed 

through comparison of the principal component sensitivities between the reference (healthy) 

and the damaged states. Only measured responses, e.g. frequency response functions (FRFs) 

are needed for this purpose.  

Following the sensitivity analysis in Chapter 5, Chapter 6 addresses the evaluation of 

parameters, namely assessment of damages. For this purpose, a model updating procedure is 

performed. This procedure requires to build an analytical model of the structure.  

The sensitivity analysis for damage detection is illustrated by both numerical and 

experimental data in mass-spring systems and in beam structures. A real-life structure i.e. the 

I-40 bridge in New Mexico that was destroyed in 1993 is also examined.  

Finally, conclusions are withdrawn based on the realized work and some perspectives are 

given for the continuation of this research.  
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Chapter 1 

 

Literature review 

 
1.1          Introduction 

The detection problem is often achieved by comparing dynamic properties of a system 

between its initial state and a current state. The dynamic properties, namely the natural 

frequencies, the mode shapes and the damping ratios, can be determined by modal 

identification methods so that modal identification can be seen as an important tool for the 

purpose of detection. This chapter gives a brief overview on common methods used for modal 

identification, detection, localization and parameter evaluation, respectively. 

As noted previously, nonlinear features give rise to many challenges when inspecting 

mechanical systems owing to the main following reasons:   

o The superposition principle that forms the basis of modal analysis in linear 

systems is no longer valid. The resolution of nonlinear equations requires more 

advanced mathematical techniques.  

o The Maxwell‟s reciprocity theorem is not verified for a nonlinear system.  

o The nonlinearity can originate from different sources: nonlinear material behavior, 

frictional contact, geometrical nonlinearity, energy loss mechanism, open-close 

crack ...  

o In nonlinear dynamics, the responses are much more complex and sometimes, may 

not be forecasted. Even with a deterministic input, the output dynamics can 

become rich or even chaotic. In a system with nonlinear stiffness, resonant 

frequencies do not keep constant but show time varying features. Other 

phenomena that are not observed in linear systems may also occur, namely: 

bifurcations, harmonics, limit cycles, modal interactions (internal resonances, inter 

modulation)… The presence of the above phenomena depends on the type of 

excitation, as well as on the initial conditions. So, the number of nonlinear normal 

modes (NNMs) may be greater than the number of degrees of freedom of the 

system. NNMs can be stable or unstable. 

Such nonlinear behaviors render inadequate identification and detection methods, as well 

as updating techniques developed for linear models. Since there is not a single method to 

model and identify all types of nonlinearities, the elaboration of a nonlinear identification and 

damage detection toolbox raises a lot of challenges.  

In the following, linear systems are first studied. Then nonlinear systems are considered 

with the aim of detecting the onset of nonlinearity in the dynamic behaviour.  
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1.2          Modal identification methods 

To evaluate modal parameters of a structure, two paths can be followed: a theoretical 

approach and an experimental approach as presented in Figure 1.1. Because a mathematical 

model of an existing structure is not always available, the experimental modal analysis 

approach is particularly interesting. It is based on the exploitation of system responses and 

requires identification techniques to extract modal parameters.  

 

 

Figure 1.1: Classification of modal analysis methods 

 

Modal identification methods may be classified into two categories depending on whether 

they are carried out in the frequency domain (e.g. using frequency response functions - FRFs) 

or in the time domain (e.g. using time signals). Several well established techniques are 

reported in the literature e.g. Maia et al. (1997)[75]. As the goal of this work is not to describe 

all the methods in details, we have limited the presentation to some typical time-domain 

methods proposed in the last decade and that are the most relevant for our work. 

 

 Stochastic Subspace Identification - SSI 

The main advantage of the SSI method is that it does not need the measurement of the 

excitation as long as it can be assumed as a combination of uncorrelated random signals. The 

discretized state-space model at sampling step k can be written as: 

rk+1 = A rk + wk            (1.1) 
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yk = B rk + vk            (1.2) 

where matrices A and B are the state space and output matrices, respectively. 

rk
m represents the state vector  and yk

m  the time series. wk and vk represent the process 

and measurement noises, respectively. Those last vectors are assumed to be zero-mean white 

Gaussian noise processes.  

Based on the definition of the block Hankel matrix, either in the covariance-driven form 

or in the data-driven form, the SSI method aims at determining the state space and output 

matrices A and B. Then the modal features may be deduced in a straightforward manner from 

those matrices.  

For linear systems, SSI has proven to be efficient for modal identification and damage 

detection (Peeters and De Roeck (2001)[98], Yan et al. (2004)[132]). The method has also 

been used by several authors for other purposes. For example, to handle a multi-patch 

measurements setup with uncontrolled and non-stationary excitation, the covariance 

normalization is proposed in Mevel et al. (2002)[81] in order to neglect the influence of 

excitation. For the identification of nonlinear vibrating structures, the perspective of 

nonlinearities is adopted as internal feedback forces in Marchesiello and Garibaldi (2008)[78].  

 

 Blind Source Separation – BSS 

The multidimensional observations can be represented in the following form: 

)()()()()( ttttt σAsσyx          (1.3) 

where x(t) is considered as an instantaneous linear mixture of source signals and noise.  

 
T

1( ) ( ),..., ( )mt s t s ts  contains the signals issued from m sources of narrow frequency 

range. 

 
T

1( ) ( ),..., ( )mt y t y ty  contains the assembly of sources at a time t. 

A is the transfer matrix or the mixing matrix between sensors. 

)(tσ  represents the noise vector.  

Blind source separation consists in retrieving the source signals s(t) from their observed 

mixtures x(t). BSS attempts to separate a set of signals, without the knowledge (or with very 

little information) about the source signals or the mixing process. In most cases, vectors found 

in the mixing matrix A can describe vibration modes of the system and the sources in s(t) 

allows determining natural frequencies and damping.  

Among the methods in the BSS family, one can cite for example Principal Component 

Analysis (PCA) or Proper Orthogonal Decomposition (POD), Smooth Orthogonal 

Decomposition (SOD), Independent Component Analysis (ICA) and Second-Order Blind 

Identification (SOBI). All of them have been exploited in many engineering applications 

owing to their versatility and their simplicity of practical use. Each method presents some 

advantages and drawbacks. For instance, natural frequencies can be estimated through the 

investigation of smooth orthogonal coordinates (in SOD) and sources (in ICA and SOBI). 

PCA involves a knowledge of the system‟s mass matrix for modal identification while SOD is 

able to overcome this drawback (Chelidze and Zhou (2006)[13]). In the PCA and SOD 

methods, the modes are orthogonal while in the ICA method, they are linearly independent. 

PCA may show some limitations when the data is not Gaussian or multi-modal Gaussian, 
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because in those cases, PCA simply gives uncorrelated variables which are not guaranteed 

statically independent. On the contrary, ICA consists in separating non-Gaussian source 

signals that are mutually statistically independent. The ICA method requires that at most one 

of the sources is Gaussian. Regarding to the SOBI method, the statistical independence is not 

required, but some degree of unrelatedness among the sources is required for source 

separation (Tang et al. (2005)[120]). SOBI considers the temporal relationship between 

components at multiple time delays by second-order statistics and makes it still possible to 

separate temporally correlated sources (Belouchrani et al. (1993)[8], (1997)[9]). Hazra and 

Narasimhan (2009)[39] remarked that SOBI-based methods show significant improvement 

over ICA methods in systems with high levels of damping because SOBI utilizes the inherent 

time structures of the sources.  

 

The two families of methods cited above are based on the assumption of stationarity of the 

signals and lead to the identification of a unique set of „modal‟ features. Time-frequency 

decompositions are helpful to capture transient dynamic features that appear during operation. 

Non-stationary signals can be more adequately inspected by time-frequency analysis using for 

instance Short-Time Fourier Transform (STFT), Wigner-Ville distribution, Wavelet 

Transform (WT), Hilbert-Huang Tranform (HHT)… For the sake of conciseness, we will 

focus on the last two methods, which allow extracting instantaneous features and have 

interested countless of researchers in recent time.  

 

 Wavelet Transform - WT 

A wavelet is a wave-like oscillation that is very useful for signal processing. Through the 

convolution operation on portions of an unknown signal, wavelets allow us to get information 

about the signal. Such process where the wavelets are scaled and translated is called the 

Wavelet transform. The WT shows advantages over the Fourier transform (FT) and the short-

term Fourier transform (STFT) for analyzing signals that have discontinuities and sharp peaks 

and/or for analyzing non-periodic and non-stationary signals. The FT is localized in frequency 

and is unable to describe time-shifting frequency components. The STFT allows localization 

in both time and frequency but induces a frequency-time resolution trade-off (Mallat 

(1999)[76]) because the signal is observed by a window of constant size. Restrictions of the 

FT and STFT can be overcome by the WT thanks to the balanced resolution at any time and 

frequency with scaled and translated windows.  

The WT in its discrete or continuous form has been used in many applications in various 

domains. The wavelet family comprises a lot of analyzing functions. Using Morlet wavelet, 

Kijewski and Kareem (2003)[56] dealt with system identification in civil engineering and 

Staszewski (1998)[118] with identification of systems with cubic stiffness nonlinearity. 

Argoul, Le and Erlicher [2, 68 and 21] used the continuous Cauchy wavelet transform as a 

tool for modal identification in linear and nonlinear systems. By combining with the 

capabilities of the bootstrap distribution in statistical estimation, the WT was used to consider 

the uncertainty effect on modal parameters of output-only system in Yan et al. (2006)[138]. In 

Lilien et al. (2006) [70], the WT was used to filter noisy data and then to identify frequency 

contents for the purpose of real time monitoring of electric line ampacity. Recently, Hazra and 

Narasimhan (2009)[39] proposed to use the WT for pre-processing in a SOBI-based 

technique. The technique was illustrated with civil structures under wind and earthquake 

excitations.  
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The use of the WT to detect nonlinearity onset in a dynamical system is described in 

details in Chapter 2. 

 

 Hilbert-Huang Transform - HHT 

The Hilbert-Huang Transform is basically an Empirical Mode Decomposition (EMD) 

technique. Huang et al. (1998)[44] proposed the EMD for decomposing a measured response 

x(t) in m intrinsic mode functions (IMFs).  

1

( ) ( ) ( )
m

i m

i

x t c t r t


           (1.4) 

in which ( )ic t  (i = 1, 2, …, m) are IMFs of x(t) and ( )mr t  is a residue that can be the mean 

trend of the signal or a constant.  

An IMF is a mono-component which admits well-behaved Hilbert transforms. The EMD 

is applicable to nonstationary signals. The method achieves a sifting procedure consisting in 

subtracting the signal from the average of the upper and lower envelopes of the signal until 

the resulting signal becomes mono-component (IMF). The original signal is then subtracted 

from the IMF and the sifting procedure is repeated to the remaining signal to acquire another 

IMF. The IMFs c1, c2, …, cm are frequency components arranged in decreasing order.  

In the EMD, the envelopes are constructed by spline-fitting technique and the method is 

intuitive. Problems of smoothing can appear at the extremities of the signal, which requires 

several techniques to smooth the edges.  

Let us consider a general signal noted x(t). The Hilbert transform of x(t) allows to 

determine a single set of value for amplitude, phase and frequency at any time t. For a 

meaningful composition of a signal in the frequency-time domain, Huang et al. (1998)[44] 

proposed to process the Hilbert transform to each IMF in order to obtain different frequency 

components at any time t. So we can acquire m spectral components from m IMFs resulting 

from the EMD procedure. The determination of damping ratios was described in [44]. Mode 

shapes can be deducted from the HHT achievement in the ensemble of DOFs of the system. 

However, it is important to mention the following particularities of the method: 

- each IMF contains intrinsic characteristics of the signal x(t); 

- neighbouring components may contain oscillations of the same frequency, but they 

never occur at the same time in two different IMF components. An IMF has not the 

same frequency as the previous IMF at the same moment t; 

- the HHT is applicable for non-stationary signals and for nonlinear dynamic 

behaviours; 

- if one considers a linear combination of two sinusoidal oscillations of close 

frequencies, the EMD method can extract the two components and their instantaneous 

frequencies overlap. The key problem of the HHT is the use of splines as it seems to 

be the main factor of limitation of the method;  

- problems of smoothing at signal extremities produce unexpected large oscillations. 

This boundary effect is due to the spline smoothing and to the Hilbert transform. 

The HHT has been used successfully in the last decade for the analysis of non-stationary 

and/or nonlinear signals. The method has been recently improved by countless researchers so 

that its application becomes more friendly and accurate. For example, Flandrin et al. 
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(2005)[28] used added noise to overcome one of the difficulties of the original EMD method. 

Wu and Huang (2009)[131] proposed a new Ensemble Empirical Mode Decomposition that 

sifts an ensemble of white noise-added signal and treats the mean as the final true result. 

Huang et al. (2009)[45] proposed two new methods to overcome the difficulties of computing 

instantaneous frequency: the direct quadrature and the normalized Hilbert transform.  

Nowadays, as mentioned previously, identification of nonlinear systems presents many 

challenges with respect to linear systems. There is a big interest in the identification of 

nonlinear structures both in the frequency and time domains. The NARMAX (Nonlinear Auto 

Regressive Moving Average with eXogenous outputs) model is an example; it was fitted 

using modal coordinates in Thouverez and Jezequel (1996)[122] to identify nonlinear 

systems. Adams and Allemang (2000)[1] proposed a method in the frequency domain called 

Nonlinear Identification through Feedback of the Output. Artificial neural networks have 

received lot of attention in identifying nonlinear systems (Le Riche et al. (2001)[66], Pei et al. 

(2004)[100]). In the period of 1997-2001, in the framework of the European Cooperation in 

the field of Scientific and Technical Research - COST Action F3 Structural Dynamics, the 

identification of nonlinear systems was addressed by a specific working group (Golinval et al. 

(2003)[34]). Two main benchmarks were studied using different methods: for example, the 

condition reserve path method in the frequency domain, the restoring force surface method in 

the time domain, some modal methods based on the definition of nonlinear normal modes 

(NNMs), the proper orthogonal decomposition (POD), the wavelet transform (WT) and model 

updating techniques. More recently, Arquier et al. (2006)[3] presented the time integration 

periodic orbit method and the modal representation method for undamped nonlinear 

mechanical systems. Marchesiello and Garibaldi (2008)[78] identified nonlinear vibrating 

structures by subspace methods. Peeters et al. (2009)[99] developed a technique for 

determining the NNMs of nonlinear mechanical systems based on a shooting procedure and a 

method for the continuation of NNM motions. They also proposed a phase resonance 

appropriation technique to identify NNMs experimentally. Da Silva et al. (2010)[15] 

proposed a method to identify localized nonlinear parameters based on the identification of 

Wiener kernels through model updating. Rainieri and Fabbrocino (2010)[105] discussed the 

identification from non-stationary signals by comparing the results of the automated output-

only modal identification algorithm LEONIDA and some other methods. Their applications 

are achieved through data recorded in operational conditions and during ground motions 

induced by the recent L‟Aquila earthquake. 

All these methods of identification provide us better comprehension of mechanical 

systems. Furthermore, they can provide useful tools for detection problem, as presented in the 

next section.  

 

1.3          Methods of detection  

Detection of changes in the dynamic state of structures is an important issue in the field of 

Structural Health Monitoring (SHM). It may be caused by the occurrence of damage but also 

by the onset of a nonlinear behaviour.  

Detection methods that use mathematical models include parametric and non-parametric 

techniques. Parametric methods require the construction of a structural model and are based 

on model updating techniques (Friswell et al. (2001)[31], Titurus et al. (2003)[124, 125]). A 

precise model is of primary importance in this case; it offers the advantage to allow damage 

location and possibly remaining lifetime calculation but it generally needs a lot of modelling 

and computation time. Non-parametric methods do not require a structural model. Based on 
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vibration measurements only, those methods attempt to extract features, which are sensitive to 

changes in the current dynamic state of the monitored structure. They may be based on the 

direct use of modal parameters (eigenfrequencies and mode shapes), or stiffness and 

flexibility matrices. There exists a large amount of damage detection methods using 

eigenfrequency changes (Messina et al. (1998)[82], Yang et al. (2004)[140]). The techniques 

using only eigenfrequencies are simple; however it is necessary to distinguish damage from 

the influence of environmental and operational conditions (Yan et al. (2005)[134, 135], 

Deraemaeker et al. (2008)[19]). The main drawbacks of those techniques are that sometimes 

unrealistic damage patterns are found, and the number of measured eigenfrequencies is 

generally lower than the number of unknown model parameters, resulting in a non-unique 

solution (Maeck (2003)[74]). Alternatively, the monitoring of mode-shape changes is a useful 

approach for detection. A common measure used to evaluate the correlation between two 

families of modes  {A}
 and  {B} 

is the Modal Assurance Criterion - MAC: 

    
    
   

T 2

MAC ,

A B

i j
A B

i j A B

i j

 

  
 

        (1.5) 

where  A

i ,
 B

j  denote modes i and j of two different states A and B respectively (e.g. normal 

and faulty states). The MAC value between two modes can vary from 0 to 1; the value of 0 

means no correlation and 1 means perfect correlation. The deviation from unity can reflect a 

faulty state.  

Damage detection can also be based on the dynamically measured flexibility matrix, 

which is just the inverse of the stiffness matrix. The measured flexibility matrix F is estimated 

from the mass-normalized mode shapes and frequencies as: 

1

2
1

1m

i i

i i

 



   F ΦΩ Φ


        (1.6) 

where the mode-shape vectors have been mass-normalized such that T Φ MΦ I , 

 2diag iΩ   (i = 1,…, m) is the spectral matrix containing the m eigen-frequencies. In Yan 

and Golinval (2005)[133], the flexibility matrix was assembled from mode shapes identified 

by the stochastic subspace method (SSI), which permits to deduce the corresponding stiffness 

matrix by a pseudo-inversion. Koo et al. (2009)[61] proposed a damage detection method 

based on the damage-induced chord-wise deflections which were estimated using the modal 

flexibility matrices.  

Furthermore, several other methods exist. They perform the detection based on the 

ensemble of extracted modal features, e.g. a subspace built by mode shapes. Other indexes are 

used to indicate detection. For example, some damage detection techniques are based on 

principal component analysis (PCA) of vibration measurements (De Boe and Golinval 

(2003)[16], Yan et al. (2005)[134]) where damage indexes are based on the concept of 

subspace angle and/or on statistics using the Novelty Index analysis. In Zang et al. 

(2004)[141], independent component analysis (ICA) was combined with neural networks for 

structural damage detection. Without modal identification, null subspace analysis (NSA) 

based on the definition of Hankel matrices (Yan and Golinval (2006)[137]) allows detecting 

damages efficiently. Several other BSS methods are attractive for fault detection, namely: the 

mean field independent component analysis (Pontoppidan et al. (2005)[102]); the fourth-order 

cumulant-based decorrelation method (Jianping and Guang (2009)[49]). 
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PCA is known as an efficient method to compress a set of random variables and to extract 

the most important features of a dynamical system. However, this method is based on the 

assumption of linearity. To some extent, many systems show a certain degree of nonlinearity 

and/or non-stationarity, and PCA may then overlook useful information on the nonlinear 

behavior of the system. Therefore, detection problem may necessitate methods which are able 

to study nonlinear systems. 

Efforts have been made to develop nonlinear damage detection methods based on PCA. 

For example, the nonlinear PCA method proposed in Kramer (1999)[62], Sohn et al. 

(2001)[117] used artificial neural network training procedures which are able to generate 

nonlinear features. In Reference Yan et al. (2005)[135], local PCA is used to perform 

piecewise linearization in the cluster of nonlinear data in order to split it into several regions, 

and then to carry out PCA in each sub-region.  

Alternatively, Kernel Principal Component Analysis (KPCA) is a nonlinear extension of 

PCA built to authorize features such that the relation between variables is nonlinear. Lee et al. 

(2004)[69] used KPCA to detect fault in the biological wastewater treatment process by 

means of statistics charts. Sun et al. (2007)[119] achieved fault diagnosis in a large-scale 

rotating machine through classification techniques. Widodo and Yang (2007)[130] extracted 

nonlinear feature in support vector machines (SVM) to classify the faults of induction motor. 

He et al. (2007)[40] monitored gearbox conditions by extracting the nonlinear features with 

low computational complexity based on subspace methods. Cui et al. (2008)[14] reduced the 

computational complexity of KPCA in the fault detection by a feature vector selection 

scheme. At the same time, they improved the KPCA detection by adopting a KPCA plus 

Fisher discriminant analysis. Chang and Sohn (2009)[12] detected damage in the presence of 

environment and operational variations by basing on unsupervised support vector machines. 

Ge et al. (2009)[32] improved the KPCA monitoring in nonlinear processes when the 

Gaussian assumption is violated by proposing a new joint local approach-KPCA.  

On the other hand, time-frequency decompositions prove to be effective for studying 

systems in which responses are non-stationary or/and nonlinear. The Hilbert-Huang transform 

(HHT) has been exploited to evaluate damage in Yang et al. (2002)[139] and to determine the 

time of occurrence of damage in Yang et al. (2004)[140]. The detection and identification of 

nonlinearities were performed on the basis of HHT and perturbation analysis by Pai and 

Palazotto (2008)[95]. One of the main drawbacks of the HHT method relies in its empirical 

formulation. Conversely, the theoretical basis of the Wavelet Transform (WT) makes it more 

appropriate for non-stationary data analysis. Gurley and Kareem (1999)[37] used both the 

continuous and discrete WT for identification and characterization of transient random 

processes involving earthquakes, wind and ocean engineering. Messina (2004)[83] discussed 

and compared the continuous WT with differentiator filters for detecting damage in 

transversally vibrating beam. Yan and Gao (2005)[136] proposed an approach based on the 

Discrete Harmonic Wavelet packet transform to machine health diagnosis. The WT was also 

combined with auto-associative neural network in Sanz et al. (2007)[114] for monitoring the 

condition of rotating machinery; with outlier analysis in Rizzo et al. (2007)[108] for structural 

damage detection. In Argoul and Le (2003)[2], four WT instantaneous indicators are proposed 

to facilitate the characterization of the nonlinear behaviour of a structure.  

To detect the onset of nonlinearity, other nonlinear indicator functions can be used as 

reported in Farrar et al. (2007)[25]. Basic signal statistics are commonly adopted; they are 

cited in Table 1.1. In He et al. (2007)[40], statistics in time and frequency domains were 

exploited for detecting nonlinear damage; these statistics allow to avoid the use of raw time 

series data. Nonlinearity can also be observed by checking linearity and reciprocity. 
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Nonlinearity onset was detected by comparing the FRF and coherence functions or PCA 

subspaces (Thouverez (2002)[123], Kerschen (2003)[52], Hot et al. (2010)[41]). Harmonic or 

waveform distortion is also one of the clearest indicators of the nonlinearity onset (Qiao and 

Cao (2008)[104], Nguyen et al., (2010)[87], Da Silva et al. (2010)[15]). Furthermore, 

NARMAX model represents an efficient tool in analysing nonlinear responses [72, 129]. Liu 

et al. (2001) [72] proposed a tool for interpreting and analysing nonlinear system with 

significant nonlinear effects, then it was applied for fault detection in the civil engineering 

domain. Wei et al. (2005)[129] assessed internal delamination in multi-layer composite plates 

by basing on the NARMAX model. 

 

Table 1.1: Basic signal statistics 
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x x
N 



 



 

 
3

1

3

1 N

i

i
k

x x
N

S 








 

 

1.4          Methods for localization and evaluation  

The methods cited above provide effective tools to detect the presence of faults. 

Furthermore, the problem of damage localization and assessment has been approached from 

many directions in the last decade. Often based on the monitoring of modal features, these 

processes can be achieved by using an analytical model and/or promptly by measurements. 

The methods may be used for one or both purposes: localization/ assessment. 

Damage can cause change in structural parameters, involving the mass, damping and 

stiffness matrices of the structure. Thus many methods deal directly with these system 

matrices. The Finite Element Method is an efficient tool in this process (Huynh et al. 

(2005)[46], Michels et al. (2008)[85]). The problem of detection and localization may be 

resolved by this method through model updating or sensitivity analysis (Pascual (1999)[97]). 

For damage localization and evaluation, model updating is utilized to reconstruct the stiffness 

perturbation matrix (Koh and Ray (2003)[59]); to handle changes in the system matrices of 

nonlinear systems (D‟Souza and Epureanu (2008)[20]). This may be combined with a genetic 

algorithm (Gomes and Silva (2008)[36]) or based on modal parameter sensitivity (Bakir et al. 

(2007)[4]). In model updating, an optimization procedure is established in order to minimize 

the differences between experimental and numerical modal data by adjusting uncertain model 

parameters (Maia et al. (1997)[75]).  

Among sensitivity analyses, natural frequency sensitivity has been used considerably in 

localization problem. Messina et al. (1998)[82] estimated the size of defects in a structure 
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based on the sensitivity of frequencies with respect to damage locations where all the 

structural elements were considered as potentially damaged sites. Ray and Tian (1999)[106] 

discussed sensitivity of natural frequencies with respect to the location of local damage. In 

that study, damage localization involved the considering of mode shape change. Teughels and 

De Roeck (2004)[121] identified damage in a highway bridge by updating both Young‟s 

modulus and shear modulus using an iterative sensitivity based finite element model updating 

method. Other authors (Koh and Ray (2004)[60], Jiang (2007)[47]) have located damage by 

measuring natural frequency changes before and after the occurrence of damage. However, 

such methods require a well fitted numerical model to compare with the actual system. Jiang 

and Wang (2009)[48] removed that requirement by utilizing a mathematical model identified 

from experimental measurement data, where a closed-loop control is designed to enhance the 

frequency sensitivity for the sake of structural damage localization and assessment. 

Methods based on measurements are also widely used because of their availability in 

practice. Yang et al. (2002)[139] estimated damage severity by computing the current 

stiffness of each element. They used Hilbert-Huang spectral analysis based only on 

acceleration measurements using a known mass matrix assumption. Yan and Golinval 

(2005)[133] achieved damage localization by analyzing flexibility and stiffness without 

system matrices, using time data measurements. Koo et al. (2009)[61] detected and localized 

low-level damage in beam-like structures using deflections obtained by modal flexibility 

matrices. Following localization, Kim and Stubbs (2002)[57] estimated damage severity based 

on the mode shape of a beam structure. Rucka and Wilde (2006)[111] decomposed measured 

frequency response functions (FRFs) by continuous wavelet transform (CWT) in order to 

achieve damage localization. Based also on CWT, Bayissa et al. (2008)[6] analyzed measured 

time responses to extract the principal structural response features. Then the combination with 

the zeroth-order moment allows detecting and localizing damage in a plate model and a full-

scale bridge structure. For crack identification in beam-type structures, Hadjileontiadis et al. 

(2005)[38] used fractal dimension analysis; Qiao and Cao (2008)[104] explored waveform 

fractal dimension and applied it to mode shape without a requirement of a numerical or 

measured baseline mode shape. The damage in a 50-year old bridge (Reynders et al. 

(2007)[107]) was identified using model updating based on eigen-frequencies, mode-shape 

vectors and modal curvature vectors. In References Bakir et al. (2008)[5] and Fang et al. 

(2008)[22], damage localization and quantification were achieved in reinforced concrete 

frames by comparing eigen-frequencies and mode-shapes with different optimization 

techniques. Using static load tests and non-linear vibration characteristic, Waltering et al. 

(2008)[128] assessed damage in a gradually damaged prestressed concrete bridge. 

Deraemaeker and Preumont (2006)[18] suggested a way to distinguish global from local 

damage through modal filters and frequency deviation. Cao and Qiao (2009)[10] recently 

used a novel Laplacian scheme for damage localization. Other authors have located damage 

by comparing identified mode shapes (Ray and Tian (1999)[106]) or their second-order 

derivatives (Pandey et al. (1991)[96]) in varying levels of damage. Sampaio et al. (1999)[113] 

extended the method proposed in [96] through the use of measured FRFs. Considering only 

the FRFs in the low-frequency range, Liu et al. (2009)[73] use the imaginary parts of FRF 

shapes and normalizing FRF shapes for damage localization. Their method was illustrated by 

a numerical example of cantilever beam.  

Beside the performance of damage assessment, methods for parameter estimation are also 

very helpful for characterizing nonlinear systems. For example, the condition reserve path 

method (Marchesiello et al. (2001)[77], Kerschen (2003)[52]) consists in separating the linear 

and nonlinear part of the system response and in constructing uncorrelated response 

components in the frequency domain. The restoring force surface method (Kerschen et al. 
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(2001)[51]) allows a direct identification for single-degree-of-freedom nonlinear systems and 

can be extended to multi-degree-of-freedom systems. The second order differential equations 

expressed in terms of linear modal co-ordinates was employed in Bellizi and Defilippi 

(2001)[7] to determine the linear stiffness and modal damping parameter as well as nonlinear 

parameters. The second order differential equations expressed in terms of physical co-

ordinates allowed identifying physical parameters of an initial nonlinear model (Meyer et al. 

(2001)[84]). Besides, the NIFO method (Nonlinear Identification through Feedback of the 

Outputs) (Adams and Allemang (2000)[1]) provides a simple method to estimate the linear 

and nonlinear coefficients. In Lenaerts (2002)[64], the Proper Orthogonal Decomposition was 

combined with the Wavelet transform to estimate nonlinear parameters. More recently, the 

subspace methods in the time domain (Marchesiello and Garibaldi (2008)[78]) were proposed 

to estimate the coefficients of nonlinearities. Assessment of localized nonlinear parameters 

was achieved by identifying the first and second-order Wiener kernels through modal 

updating in Da Silva et al. (2010)[15].  

 

1.5          Concluding remarks 

In this chapter, a brief overview of the state of the art on modal identification and 

detection methods in linear and nonlinear mechanical systems was presented.  

Based on this overview, some methods which appear to us to be very promising are 

considered in the development of our research and are studied in details in the next chapters.  

Among time-frequency decompositions, the Wavelet transform is a mathematically 

rigorous method which, combined with other tools, turns out to be a very promising tool for 

the purpose of treating nonlinear and non-stationary signals.  

Output-only-based methods are very attractive for identification and detection since no 

structural analytical model is needed. Several methods as PCA, ICA… are well known and 

have been widely used in detection problems. The SOBI method has been introduced recently 

for modal identification purposes in the literature but its use for damage detection in 

mechanical systems has not been yet well studied. As a nonlinear feature extractor, KPCA 

appears also as an interesting alternative to PCA in the processing of nonlinear signals.  

Localization and evaluation questions are more problematic than detection. For this 

purpose, sensitivity analysis is an appropriate approach and has been considered by many 

authors. In this dissertation, the sensitivity of mode shapes is used to locate and evaluate 

damage in structures. It consists in a PCA-based sensitivity analysis developed in the 

frequency domain.  
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Chapter 2 

 

Nonlinearity Detection Method Based on 

the Wavelet Transform  

 
2.1  Introduction 

As mentioned in the previous chapter, the Wavelet transform is well-appreciated for both 

identification and detection purposes. The aim of this chapter is to propose a method to detect 

nonlinearity using the Wavelet Transform and the concept of subspace angle. Morlet wavelet 

is considered here as the mother wavelet to extract instantaneous frequencies and amplitudes 

from time measurements at different locations on the structure. Deformation modes associated 

to instantaneous frequencies may then be extracted from the whole data set and assembled to 

build instantaneous observation matrices. Singular value decomposition of these matrices 

allows to determine the dimensionality of the system. Next, the retained deformation shapes 

are compared with reference mode-shapes using the concept of subspace angle. The objective 

pursued here is to provide an index able to detect the onset of the nonlinear behaviour of the 

structure. The proposed technique is illustrated on the example of a clamped beam which 

exhibits a geometric nonlinearity at one end. It shows a good sensitivity to small changes in 

the dynamic behaviour of the structure and thus may also be used for damage detection. 

 

2.2   Preliminary bases      

 Fourier Transform 

The Fourier Transform (FT) analyses the "frequency content" of a signal. The FT ˆ ( )f   

of ( )f t  is defined by: 

ˆ( ) ( ) j tf f t e dt






   with 1j         (2.1) 

The signal ( )f t  may be reconstructed by considering the inverse Fourier Transform: 

1 ˆ( ) ( )
2

j tf t f e d 






           (2.2) 

Equation (2.1) shows that the FT ˆ ( )f   is a global representation of the signal in the sense 

that it necessitates the knowledge of the signal in the whole time domain and the information 
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is mixed due to infinite support of the basic function j te  . That means the use of the FT is 

appropriate when the considered signal is stationary.  

The main limitation of the FT is due to the fact that it ignores the time evolution of the 

signal frequency content. So the FT does not allow to analyze local frequency behavior of the 

signal, nor its local regularity. In this case, it is necessary to use local transforms, i.e. which 

permit to decompose the signal on a basis generated by functions localized in time and 

frequency.  

 Analytic signal  

In order to analyze the time evolution of frequency content of a signal, it is necessary to 

use the notion of analytic signal that allows to separate the phase and amplitude information 

of signals.  

A signal ( )af t  is called an analytic signal if it has no negative-frequency components. The 

analytic part ( )af t  of a signal ( )f t  is necessarily complex and is given by its FT (Mallat 

(1999)[76]). 

ˆ2 ( ) if 0ˆ ( )
0 if 0

a

f
f

 




 
 


        (2.3) 

 Instantaneous frequency 

A real signal ( )f t  may be decomposed in an amplitude a(t) modulated by a time-varying 

phase ( )t  : 

       ( ) ( )cos ( )f t a t t   ( ) 0a t                   (2.4) 

The instantaneous frequency ( )t  is the non-negative derivative of the phase: 

       ( ) '( )t t     '( ) 0t        (2.5) 

However it exists many possible choices for a(t) and ( )t . A particular decomposition 

may be performed by means of the analytic part fa(t) of ( )f t  of which the FT is defined in 

(2.3), this complex signal consists of the module and the complex phase: 

        
( ) ( )

j t

af t a t e


           (2.6) 

Since  Real af f , one has:  ( ) ( )cos ( )f t a t t . 

a(t) is called the analytic amplitude of ( )f t  and '( )t  is its instantaneous frequency, these 

quantities are uniquely defined.  

Analytic amplitude and instantaneous frequency are of great importance in the synthesis 

of signals which have non-stationary frequency contents.  

 Time - frequency localization and Uncertainty Principle 

The FT may be seen as a representation of sine curve basis. These sine curves are very 

well localized in frequency, but not in time, as their support is infinite. It is a consequence of 

their periodicity.  

If one wants to represent the frequency properties of a signal locally in time, they should 

be analyzed by signals localized in time and frequency. For example, we can use (if possible) 
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a basis consisting of functions with compact support in time and frequency, called time-

frequency atoms. One associates them with a unitary norm function ( )t  in which   may be 

multi-index parameter characterizing an atom.  

It is proven that inner products are conserved by the FT up to a factor of 2 , i.e. 

1 ˆ ˆ( ) ( ) ( ) ( )
2

f t g t dt f g d  


 

 

         (2.7) 

Eq. (2.7) is called the Parseval formula, which allows to perform the signal transform 

 T   in this set of time-frequency atoms: 

       
1 ˆ ˆ( ) ( ) ( ) ( )

2
T f t t dt f d      



 

 

         (2.8) 

where ˆ ( )   is the FT of the atom ( )t . 

The “time-frequency localization” of a basic atom is represented as a “Heisenberg box” 

(Figure 2.1), placed in the time - frequency plan, that is a rectangle of dimensions 
t  and  , 

centered in the coordinates (u,  ). 

 

Figure 2.1: Heisenberg box of a time-frequency atom (Mallat (1999)[76]) 

The uncertainty principle proves that the area of this rectangle satisfies: 

1

2
t               (2.9) 

This area is minimum when ( )t  is a Gaussian, i.e. if it exists   2 2, , ,u a b     C  

such as 
 

2

( )
j t b t u

t ae



 

 . In this case, the maximum resolution in time and frequency is 

achieved. For a Gaussian of type 

 

2

22
1/ 4

2

1
( )

t

t e


 


 
 which is presented in terms of 

parameter  , the spreads in time and frequency are / 2  and  1/ 2 , respectively. 

 Short-term Fourier Transform  

The short-term Fourier Transform (STFT), or alternatively short-time Fourier Transform 

of a signal ( )f t  introduces a notion of time locality by multiplying the signal by a suitably 
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chosen window ( )g t  (having good properties of localization) and by calculating the resulted 

product FT (Figure 2.2): 

  ,, , ( ) ( ) j t

uSf u f g f t g t u e dt








                 (2.10) 

 

Figure 2.2: Time localization by the STFT 

Considering a real, symmetric window with a unitary norm ( ) ( )g t g t   of finite energy, 

it is translated by u and modulated by the frequency  : 

, ( ) ( )j t

ug t e g t u

                    (2.11) 

Its FT 
,

ˆ ( )ug    is given by: 

( )

,
ˆ ˆ( ) ( ) ju

ug g e  

                        (2.12) 

The Parseval formula (2.7) permits to write: 

 
1 ˆ ˆ, ( ) ( )

2

j uSf u f g e d    






                 (2.13) 

Expressions (2.10) and (2.13) show that the window 
, ( )ug t  allows the observation of the 

signal ( )f t  around the time t = u and the frequency window 
,

ˆ ( )ug    allows the observation 

of the signal frequency spectrum ˆ ( )f   around the frequency   . The STFT provides thus 

information on the content of ( )f t  in the neighborhood of point t = u and   . 

It is easy to prove that the spreads in time 
,, ut g 

  and in frequency 
,, ug   are independent 

of the translation u and of the modulation  . Those resolutions are then equal to the spreads 

,t g  and 
,g  of the mother window ( )g t . It means that if the standard deviation in time is 

constant; the one in frequency is also constant. The family is thus obtained by translation in 

time and frequency of a single window with constant size (Figure 2.3a).  

However, paving dimensions in the time-frequency plan depend on the chosen mother 

window. The choice of an adequate window is then of primary importance.  

 

2.3   Wavelet transform 

The Wavelet transform attempts to soften the main drawback of the STFT: a window of 

constant size does not allow to obtain an optimal time or frequency resolution. In fact, a small 

temporal window is adequate to localize a high frequency phenomenon whereas a larger 

window is necessary for a lower frequency phenomenon. The advantage of using wavelets is 
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to adapt the resolution to different components of the signal by its own nature. It results that 

the resolutions in time and frequency are variable in the time-frequency plan. 

 Definition 

In the same manner as the Fourier Transform may be defined as a projection on the 

complex exponential basis, the Wavelet Transform is introduced as the projection on the basis 

of wavelet functions (Mallat (1999)[76]): 

1
( , ) ( )

t u
Wf u s f t dt

ss






 
  

 
     with    u,s             (2.14)  

A wavelet is a zero mean function 2( ) ( )t  L  , with unitary norm (and so with finite 

energy) and centered in the neighborhood of t = 0. The functions 
, ( )u s t  are obtained by 

dilating the mother wavelet by a scale factor s and translating it by u: 

,

1
( )u s

t u
t

ss
 

 
  

 
                (2.15) 

The last function is centered in the neighborhood of u, as the STFT atom. If the center 

frequency of ( )t  is  , then the center frequency of a dilated function is / s . The wavelet 

coefficients ( , )Wf u s  designate the similitude between the dilated (compressed)/ translated 

mother wavelet and the signal at the time t and at the scale (frequency) s.  

 Admissibility condition 

The function 2( )t  L  must satisfy the condition: 

2

0

ˆ ( )
C d

 






                   (2.16) 

This condition allows to analyze the signal and then to reconstruct it without loss of 

information according to the formula: 

  , 2

0

2
( ) Real , u s

ds
f t Wf u s du

C s

 



 
  

 
 



  

Moreover, the admissibility condition implicates that the FT of the wavelet must be zero 

at the frequency 0  : 

0
ˆ( ) 0                     (2.17) 

It implies two important consequences: 1) the wavelets must have a band-pass spectrum; 

2) the equivalence of the last equation under the form: 

( ) 0t dt




                  (2.18) 

shows ( )t must be zero mean. ( )t  is thus a function of finite larger in time (time window) 

possessing an oscillation characteristic. One has then a small wave: a wavelet. 

The time spread is proportional to s while the frequency spread is proportional to the 

inverse of s.  
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tt s   ;   
s

                    (2.19) 

These quantities reflect the analysis quality; otherwise they represent the resolutions in 

time and frequency. Figure 2.3 compares Heisenberg box examples through STFT and 

wavelet atoms.   

 
             a) Short-term Fourier transform [76]   b) Wavelet transform [76] 

Figure 2.3: Comparison between STFT and WT windows  

Note that the scale factor s is s



 , for a Gaussian window, the variances in (2.19) are 

represented in the form: 

2
t

 


   ;      

1

2




 
   .               (2.20) 

So, the wavelet shows a good precision in frequency for a low frequency and a good 

precision in time for a high frequency. This property is useful in signal analysis as at high 

frequencies, the precision in time is more important than the precision in frequency and vice-

versa (Le (2003)[67]).  

The contraction/dilatation property of wavelets is illustrated in Figure 2.4: 

                    

                         

Figure 2.4: Wavelet localization in the time-frequency plan 
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In frequency analysis, the WT may be considered as a filter with the quality factor Q 

defined by the ratio between the center frequency / s  and the frequency band / s  [67]: 

/

2 / 2

s
Q

s 

 

 
                   (2.21) 

This factor is independent of s and it depends only on characteristic parameters of the 

mother wavelet ( )t . 

Using the Parseval formula (Eq. 2.7), the WT can be computed by the FT: 

ˆ ˆ( , ) ( ) ( )
2

j us
Wf u s f s e d   







                (2.22) 

For each scale s, one computes the inverse transform of the product of signal ( )f t  and the 

dilated versions ˆ ( )s   of the mother wavelet ( )t . In numerical applications, the WT 

computation is completed practically through the fast Fourier transform (FFT) algorithm.  

 Scalogram 

A bi-dimensional energy density is defined, the scalogram  ,WP f u   which measures the 

energy of ( )f t  in the Heisenberg box of each wavelet 
,u s  centered at  , /u s   : 

 

2

2

,, ( , ) ( ) ( )W u sP f u Wf u s f t t dt 




                     (2.23) 

Or the normalized scalogram  ,
W

normP f u   : 

     
21 1

, , ,norm

W WP f u P f u Wf u s
s s

          

So, thanks to its ability to consider time and frequency resolutions at the same time, the 

WT is particularly well adapted to detect discontinuity or sharp signal transitions.  

To separate amplitude and phase information of signals, one uses analytic complex 

wavelets, which have the property of progressiveness, i.e. ˆ( ) 0    for 0  . The 

progressiveness ensures the WT does not produce any interference between the past and 

future in the time domain. The energy of ˆ ( )   is then localized around a center frequency 

0  . 

 Choice of wavelet 

Many analytic wavelets are studied in the literature. The choice of mother wavelet 

depends on several analysis properties. The Morlet wavelet is very popular in the literature 

because its analogues to the FT are useful for harmonic analysis. It is the reason why it is 

chosen in this work. The Morlet wavelet is defined by the complete formula: 

22 2
0

2
0 22( )

t

j t
t c e e e

 
  

 
 

 
  ,        

2 2
0

2 2
0

1

3 2

4

24

1
1 2c e e

 
 








 
   

 
 

          (2.24) 

where 0  and c are respectively the center frequency of ̂  and the adequate normalization 

factor. 
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The term 
2 2

0e
   is known as the correction term, as it verifies the admissibility condition 

and the zero-mean condition of the Morlet wavelet. In practice, for enough large value of 

product 
0  , it is negligible. In this case, the Morlet wavelet becomes: 

0( ) ( )
j t

M t g t e
          with            

2

22

24

1
( )

t

g t e 





              (2.25) 

This simplified Morlet wavelet is well-known in the literature and called the Morlet 

wavelet or the standard Morlet wavelet. The FT of the window ( )g t  is 

 
2 21/ 4

2 / 2ˆ( ) 4g e     . If 2 2

0 1   , so ˆ( ) 0g    for 
0  , the wavelet is considered 

as approximately analytical and admissible. 

The analogues to FT of the Morlet wavelet are clear in the basic Morlet function: 

0 0( ) ( )[cos( ) sin( )]M t g t t i t    . Essentially, this wavelet is a FT of Gaussian window, with 

oscillating sine and cosine at the center frequency 
0 . Dilatations of this temporally localized 

mother wavelet permit to discover harmonic components within the signal.  

In the frequency domain, it is written: 

 
 

2
2

0

1
2 24ˆ ( ) /M e


 

   




                 (2.26) 

The relation between scale and frequency may be given prominence by considering the 

frequency formulation of the dilated Morlet wavelet: 

 
 
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1
2 24ˆ ( ) /

s

M s e


 

   




                (2.27) 

The function reaches the maximum at 
0s  . As 

0  is a fixed parameter that defines 

the wavelet, at a given scale s, the function is maximal at: 

0

s


                     (2.28) 

The last equation explains the relation between the instantaneous frequency and scale. It 

represents also the single relation between the dilatation parameter s and the frequency  . 

The standard Morlet wavelet does not verify exactly the zero mean in the admissibility 

condition. However, the simplified wavelet average is very small for high values of the 

product 
0   ( 0 5    in practice) and the admissibility condition is nearly verified. For 

example, for 0 5  , 1  , one has 
6

0
ˆ ( ) 10M



    ; for 0 10   , 
22

0
ˆ ( ) 10M   

  . 

The center frequencies of the complete and standard Morlet wavelets are deduced from 

their frequency spectrum expressions. The relation between those values is described with the 

correction term: 

 
2 2

0

, 1c c M e
   

  . 

Then, the term 
2 2

0e
 

 is the relative difference, if 0 5  , 1  , so 
2 2

0 1110e
  

 (as 

described in Figure 2.5a), the standard Morlet wavelet may be considered like the complete 

one.  
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a) with 

0 5, 1    

           
b) with 

0 2, 1    

Figure 2.5: Morlet wavelet in the time and frequency domains 

For too small values of the product 
0  , the admissibility condition is not verified as 

0
ˆ( ) 0     as illustrated in Figure 2.5b. One uses often a Gaussian envelop of unitary 

variance and the condition of enough high values for 
0   (which represents properly the 

factor Q in equation 2.21) comes down to enough high values for 0 . 

However, a wavelet employed in the WT must be a wave that is not lengthened, i.e. a 

really small wave. It implicates a wave of which the support is compact (the effective larger 

of the support is the smallest) or the decay is enough fast, to obtain the localization in time.  

Practically, by choosing enough high values for 0  , one can use the standard Morlet 

wavelet even if the admissibility condition is not strictly verified. It is very adequate for the 

research of instantaneous frequencies and amplitudes of a signal. Moreover, the Gaussian 

window used in the Morlet wavelet is optimal, i.e. it shows the same resolution in both the 

time and frequency domains. It shows itself as a wavelet for which the time-frequency 

localization is very good. 

 

2.3.1 Wavelet ridges 

Different methods exist to define and to extract ridges (Staszewski (1998)[118], Carmona 

et al. (1999)[11] and Mallat (1999)[76]). The scalogram  ,WP f u   (expression 2.23) 

measures the energy of ( )f t  in the time-frequency neighborhood of  ,u  . The ridge 

algorithm computes instantaneous frequencies of the signal from local maxima of the 

scalogram (Figure 2.6). 
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Figure 2.6: Instantaneous frequency identification in aid of wavelet ridge, WT of a signal of 

pure frequency ( ) j tf t e   

The ridge algorithm relies on the analytic wavelet transform. An analytic wavelet may be 

constructed by the product of a real and symmetric window g(t) and an exponential complex: 

0( ) ( )
j t

t g t e
                    (2.29) 

The wavelet under the form of (2.29), called Gabor wavelet, may be determined from a 

normalized Gaussian window g(t) as in Eq. (2.25). For enough high values of the product 

0   so that 2 2

0 1  , one has ˆ( ) 0g    for 
0  . Since the center frequency is 

0 , the 

value  ˆ 0  is nearly zero, and such wavelet may be considered approximately analytic.  

If a(u) and ( )u are respectively instantaneous amplitude and phase, the WT is given in 

[76]: 

      ˆ( , ) ( ) '( ) ,
2

j us
Wf u s a u e g s u u


                    (2.30) 

where  ,u   is a corrective term. If this term is negligible, it is clear that (2.30) enables the 

measurement of a(u) and '( )u  from ( , )Wf u s . The corrective term is negligible if a(u) and 

'( )u  have small variations over the support of 
,u s  and '( ) /u s   , that   is 

bandwidth of ĝ .  

The scalogram reaches its maximum at 0( ) '( )
( )

u u
s u


    and the points 

 , ( )u u constitute the ridge. If  ,W u   is the complex phase of ( , )Wf u s , at ridge points, 

the instantaneous frequency '( )u  and the analytic amplitude a(u) are given respectively by: 

 ,
'( )

W u
u

u


 


 


                (2.31) 

 

2
2 ( , ) /

( )
ˆ 0

Wf u s s
a u

g
                 (2.32)  
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When '( )u  , the corrective term  ,u   is dominated by the second order, they are 

negligible if [76]: 

2

0

2

''( )
1

( )'( )

a u

a uu




     and      

2

0 2

''( )
1

'( )

u

u





              (2.33) 

The presence of '  in the denominator shows that 'a  and '  may vary slowly if '  is 

small but may vary much faster for larger instantaneous frequencies. 

2.3.2 End effect 

The spreads in time and frequency in the WT are non-zero; they depend on the mother 

wavelet characteristics and on the analysis scale. Despite the wavelet localization in time and 

frequency, the time window of localization spreads toward the past and future at a given time 

(Figure 2.7). As the signal has finite length and is sampled with a non-zero sample period, it 

exists an anomaly at the ends. 

A simple solution for this problem is to extend the signal at the start and at the end and to 

leave the perturbed values due to the end effect outside the interest zone. The use of a zero-

padding is simple but it introduces discontinuity at ends. A more adequate method is obtained 

by expanding the signal by reflection at its ends (Figure 2.8); in this way, the signal always 

keeps locally its frequency characteristics (Kijewski and Kareem (2002)[55]).  

 

Figure 2.7: Wavelet spreads outside the finite signal 

    

Figure 2.8: The generated signal by the reflection  

 NNNinitial xxxxxx 12321  x               (2.34) 

 2 1 1 2 2 1 1 2generated N N N N Nx x x x x x x x x       x          (2.35) 

T 

T 
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The time length of the dilated window it  for a frequency (scale) i  is given by (2.20): 

0

2
i

i

t



  . 

The effectiveness of the end effect reduction is illustrated in Figure 2.9. 

     

     

        a) from the original signal                                  b) from the generated signal 

Figure 2.9: WT for ( ) sin(2 )f t ft  (measured in the time interval of [t0; tf]) 

An extension of the signal constructed by reflection is quite simple and adapts naturally to 

a signal with stable amplitude (e.g. responses to harmonic or random excitation). However, 

when the frequency varies depending on the amplitude size, such extension still induces 

discontinuity at the ends. It is illustrated in Figure 2.10a in the case of a nonlinear stiffness 

system when the free response has to be extended to the left. Another approach is proposed 

here to better adapt to the WT continuity. 

 Fitting padding 

The principal idea is: added part must have a form according to the global appearance of 

the original signal. A simple technique for signal generating is proposed below. It is described 

with the left extension as presented in Figure 2.10b.  

a- Find the maximal absolute value of the signal xmax, for free response; it stays 

usually at the start of the signal. 

b- Determine a superior or inferior envelope at end. For simplicity, this envelope may 

be approximately shaped by finding a quadratic parabola passing three points early 

determined.  For the inferior (superior) envelope, those three points are all minima 

(maxima) of which values are lowest (highest). Consider that the parabola passing 

those three points can describe tendency of the signal at the left end. Suppose that 

the signal will be extended until moment –t0, then one can compute ordinate x0 

corresponding to abscissa –t0 of the envelop. 

c- The generated part is just a period staying in the interval [0, t0] of the signal, 

amplified following the formula: 

0

0
0,

max

padding t

x
X X

x
                (2.36) 

  is a fitting coefficient which ensures an entire harmonic appearance of the        

generated signal.  
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                            a)                 b) 

Figure 2.10: A signal and its extension                

The treatment for the right end may be carried out with similar way.  

Figure 2.11 shows end effects when the WT is performed respectively with the initial 

signal, the signal prolonged by reflection and by fitting padding, respectively. 

          

a) WT of the original signal 

         

b) WT of the signal generated by reflection 

          

c) WT of the signal generated by fitting padding 

Figure 2.11: WT of a signal and its prolongation versions 

initial signal  

reflection paddingX  
00, tX  

t0 

inferior enveloppe  

x0 

xmax 

-t0 -t0 
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The results in Figure 2.11 show that the fitting padding improves the curves at boundaries. 

Instantaneous frequencies at ends accord better with the central part. Regarding instantaneous 

amplitudes, the end effect is effectively reduced.  

2.3.3 Multiple frequencies 

An important key in the multi-component signal analysis is the choice of the mother 

wavelet parameters in order to discriminate each component.  

Let 
1 '( )u and 

2 '( )u  be instantaneous frequencies of two different components, the ridges 

do not interfere if the dilated window gets sufficient frequency resolution at the ridge scales: 

 1 2
ˆ '( ) '( ) 1g s u u                  (2.37) 

Define   as bandwidth of ˆ ( )g   by: 

 ˆ 1g   for                    (2.38) 

Expression (2.37) means that the wavelet needs an enough small value for 
0






 in order to 

isolate those spectral components: 

1 2

1 0

'( ) '( )

'( )

u u

u

  

 

 
    and     1 2

2 0

'( ) '( )

'( )

u u

u

  

 

 
            (2.39) 

Parameter 
0  of the mother wavelet must be chosen in an adequate manner to satisfy 

simultaneously the conditions (2.33) and (2.39). If two spectral lines are too close, they 

interfere so that the ridge pattern is destroyed.  

The spectral line number is generally unknown. Ridges corresponding to a low amplitude 

are often carried off because they may be due to noise, or correspond to “shadows” of other 

instantaneous frequencies created by the side-lobes of ˆ ( )g  . 

Figures 2.12 and 2.13 illustrate the interference phenomenon between the components of a 

signal ( )f t  including two spectral lines: 

   ( ) sin 2 .5 sin 2 .12f t t t           

A Morlet wavelet with 0 5, 1    yields evidently ridge interference, as shown in 

Figure 2.12. 

It can be observed that the instantaneous amplitude associated with the frequency of 12Hz 

oscillates around a mean which is equal to the amplitude of the other component. If the 

product 0 is chosen to be larger, this unwanted phenomenon is reduced. 

Figure 2.13 shows that a larger product of 0 improves significantly the interference 

between ridges but the end effect perturbs seriously the time-amplitude plan. Thus, if   is too 

large, the wavelet is thus too extended, which affects the precision in time because if 0  is 

too large, the condition (2.33) is not ensured. 
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Figure 2.12: WT with 
0 5, 1    

 

 

Figure 2.13: WT with 0 5, 1.7    

 

2.3.4 The WT as a band-pass filter 

In the WT of a multi-component signal, one can isolate a single frequency component of 

interest by choosing appropriately the scale interval as well as the characteristic factor 0 of 

the mother wavelet. In this case, the WT plays the role of a band-pass filter.  
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2.4   Detection based on the concept of subspace angle 

For a given excitation, the WT allows to identify the instantaneous frequencies (or ridges) 

for a set of different measurement coordinates on the structure. Accordingly, it provides the 

amplitude ratios between coordinates associated to an identified ridge line. Using these ratios, 

one can assess time-varying deformation („mode‟) shapes of the system. The modes with the 

strongest energies may be regarded as active modes and used to construct active subspaces 

(which reflect states of the system) at different time instants. A change in the dynamic 

behaviour modifies consequently the state of the system, i.e. the instantaneous frequencies 

and deformation shapes. This change may be estimated using the concept of subspace angle 

introduced by Golub and Van Loan (1996)[35]. This concept was used in De Boe and 

Golinval (2003)[16] as a tool to quantify existing spatial coherence between two data sets 

resulting from observation of a vibration system.  

Given two subspaces (each with linear independent columns) S
m p  and 

D
m q (p>q), the procedure is as follows. Carry out the QR factorizations: 

S = QSRS   QS
m p  

D = QDRD  QD
m q                (2.40) 

The columns of QS  and QD define the orthonormal bases for S and D respectively. The 

angles i  between the subspaces S and D are computed from singular values associated with 

the product Q T

S
Q D  :   

Q T

S
Q D  = U SDSDΣ V T

SD
 

  cos , 1,...,SD idiag i q Σ                (2.41) 

The largest singular value is thus related with the largest angle characterizing the 

geometric difference between two subspaces.   

 

Figure 2.14: Angle   formed by active subspaces (hyperplanes) according to the 

reference and current states, due to a dynamic change 

 

The change in a structure (e.g. the onset of nonlinearity or damage) may be detected by 

monitoring the angular coherence between subspaces estimated from the reference 

observation set and from the observation set of a current state respectively. A state is 

considered as a reference state if the system operates in normal conditions (i.e. nonlinearity is 

not activated or damage does not exist). Figure 2.14 shows a 2D example in which an active 

subspace (or hyperplane) is built from two principal deformation shapes.  
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2.5   WT application to detect nonlinearity 

The example consists in identifying the modal features and in detecting the level of 

nonlinearity in a cubic stiffness system by means of the WT. The analysis is conducted both 

numerically and experimentally. The studied structure is a beam clamped at one end and 

exhibiting a cubic stiffness at the other end (Figure 2.15). The cubic stiffness is realised by 

means of a very thin beam. For weak excitation, the system behaviour may be considered as 

linear. When the excitation level increases, the thin beam exhibits large displacements and a 

nonlinear geometric effect is activated resulting in a stiffening effect at the end of the main 

beam. The structure was used as a benchmark for nonlinear system identification during the 

European action COST F3 (Argoul and Le (2003)[2], Lenaerts et al. (2003)[65]).  

 
a) 

        
b) 

Figure 2.15: The beam with a nonlinear stiffness (a) and its finite element model (b) 

2.5.1 Numerical analysis  

The main beam is modelled with seven beam finite elements (Figure 2.15b). The thin 

beam is represented by two equivalent grounded springs: one in translation (kl + knl) and one 

in rotation (kr). The nonlinear stiffening effect of the thin beam is modelled by a nonlinear 

function in displacement of the form: ( ) sign( )nlf x A x x


 , where A is a nonlinear 

coefficient, 9 36.1 10 /A N m   and   is a nonlinear exponent, 3  . These parameters were 

determined experimentally in Reference [65]. 

 Nonlinear normal modes 

The nonlinear normal modes (NNMs) of this structure were calculated in some companion 

studies (Peeters et al. (2009)[99], Nguyen et al. (2010)[87]). These modal features depend on 

the total energy in the system as illustrated in Figure 2.16 by the frequency-energy plot of the 

first and the second NNMs.  

                  

    a) First NNM                                                b) Second NNM 

Figure 2.16: Frequency-energy plot of the first (a) and second (b) NNMs 
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The first and second NNM motions are plotted in Figure 2.17 at low and high energy level 

respectively. The low energy level (actually the linear normal modes) corresponds to 

1 32.60 Hzf   and 2 144.79 Hzf   while the high energy level (the nonlinear case) 

corresponds to 1 38.46 Hzf   and 2 147.67 Hzf  .  

               

Figure 2.17: Analytical deformation shapes of the 1
st
, 2

nd
 modes respectively 

For the purpose of this study, the beam is supposed to be submitted to an impact force at 

its right end. The free response of the structure is measured in the vertical direction at the 

seven coordinates indicated in Figure 2.15b and the WT is applied to the measured data. 

Starting at a „low‟ excitation level (impact of 70 N), the behaviour of the beam appears as 

linear (the largest displacement is lower than 0.15 mm). The WT of the displacement at 

coordinate n° 7 is given in Figure 2.18 in terms of instantaneous frequencies and amplitudes. 

Two frequency lines (called „ridges‟) are observed respectively at 32.6 Hz and 144.7 Hz, 

which is in agreement with the frequencies occurring at low energy in the frequency-energy 

plot (Figure 2.16).  

       

Figure 2.18: Instantaneous frequencies and amplitudes at low energy (linear case)  

Let us consider next a high level of excitation (impact of 1500 N) corresponding to a 

maximum displacement at the right end of about 2.4 mm. Figure 2.19 presents the 

corresponding WT results. It clearly shows a drop-off of the frequencies down to the linear 

system values as the nonlinear effect vanishes progressively and the amplitude goes down. 

Figure 2.19 also reveals the presence of a third order super harmonic of the first frequency 

(curve n° 3). 

                           

Figure 2.19: Instantaneous frequencies and amplitudes at high energy (nonlinear case)  
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 Identification of deformation shapes and detection of nonlinear behaviour 

Figure 2.20 presents the first two modes of the beam identified with the „low‟ impact 

excitation when the dynamic behaviour of the structure may be considered as linear.  

     

Figure 2.20: WT modes 1 and 2 in the linear case 

Figure 2.21 gives the deformation shapes at higher excitation levels. When the 

displacement at the right end starts to be significant, both the first two deformation shapes 

associated to ridges n° 1 and n° 2 become influenced by the magnitude of the nonlinearity of 

the structure (the reference shape corresponds to the linear normal modes shown in Figure 

2.20). It is interesting to note that one can find an intermediate deformation shape from ridge 

line n° 3; the last plot of Figure 2.21 gives the corresponding deformation shapes for different 

amplitudes of the displacement at the right end of the beam. 

      

 

     Figure 2.21: Deformation shapes associated to the 1
st
, 2

nd
 and super harmonic modes  
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The instantaneous deformation shapes M1, M2 and M3 corresponding to the three ridges 

allow defining an instantaneous deformation matrix A = [M1  M2  M3]. Performing the 

singular-value decomposition of matrix A, it can be shown that the third deformation shape 

(M3) (super harmonic) is actually a linear combination of the two other „modes‟. Figure 2.22 

shows the instantaneous singular values of the decomposition in terms of energy percentage. 

It reveals that the third singular value is negligible compared to the two others. 

 

Figure 2.22: Instantaneous singular values of the deformation „mode‟ matrix  

The comparisons may be equally carried out by means of the MAC (Modal Assurance 

Criterion). In Figure 2.23, deformation shapes obtained through the WT are compared with 

the linear normal modes identified by the SSI (Stochastic Subspace Identification) method for 

different values of the displacement at the end of the beam. When the displacement is low 

(Figure 2.23a), the MAC indicates a perfect correlation. At this level of excitation, the 

deformation shapes are identical to the linear normal modes. On the other hand, when the 

displacement amplitude is high (Figure 2.23c), the nonlinearity is well excited which results 

in a frequency increase and a slight loss of correlation with the linear normal modes 

(identified by SSI). Figure 2.23 shows however that the MAC is not a deciding criterion for 

the detection of nonlinearity. 

                         

 a) Displacement amplitude d ≈ 0.6 mm            b) d ≈ 1.25 mm                                   c) d ≈ 2.3 mm        

Figure 2.23: MAC between WT „modes‟ and SSI modes   

 Detection based on the concept of subspace angle 

For the purpose of detection of nonlinearity, the structure is now supposed to be excited at 

increasing levels of impact force (amplitudes ranging from 100 N to 1500 N). The 

corresponding instantaneous frequencies obtained through the WT of the response signals at 

coordinate n° 7 are shown in Figure 2.24.  

As explained in Section 2.4, the instantaneous deformation shapes associated to these two 

frequencies may be considered as instantaneous active modes to define a subspace which 
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characterises the dynamic state of the structure. The comparison of subspace angles between 

the reference state (defined by the linear normal modes) and current states at different 

excitation levels reveals the range of activation of the nonlinearity as illustrated in Figure 

2.25. Larger is the excitation level, more significant is the angle. As responses are damped, 

the angles reach their largest values at the beginning and then decrease gradually to converge 

to zero as the dynamic behaviour of the beam becomes linear. 

 

 

a) from the 1
st
 ridges 

 

b) from the 2
nd

 ridges 

Figure 2.24: Instantaneous frequencies corresponding to different excitation levels  

As the activation of the nonlinearity depends on the amplitude level of the displacement, 

the display of subspace angles according to the evolution of the instantaneous displacement 

amplitude measured at the end of the beam is informative. Figure 2.26 shows the evolution of 

subspace angles in function of the displacement amplitude measured at the end of the beam at 

time t = 0.1 s. It can be observed that the subspace angle criterion for the 2
nd

 mode is more 

sensitive to the nonlinearity in comparison to the 1
st
 mode (which is confirmed by the MAC in 

Figure 2.23). In terms of frequency changes however, the 1
st
 mode appears as more affected 

than the 2
nd

 mode (Figure 2.24). 
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a) based on the 1
st
 deformation mode 

 

b)  based on the 2
nd

 deformation mode    

       

c) based on the both 2 deformation modes 

Figure 2.25: Time evolution of subspace angles for different excitation levels  
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Figure 2.26: Relation angle - displacement amplitude at the end of the beam at t = 0.1 s 

In summary, the onset of nonlinearity may be detected by observing the evolution of 

instantaneous frequencies as illustrated in Figure 2.24 but a high frequency resolution is 

needed to distinguish between close levels of excitation (e.g. impacts of 100 N to 500 N). In 

this respect, subspace angle curves look more promising as they look less affected by the 

frequency resolution. Another advantage is that the concept of subspace angle allows to 

handle several modes simultaneously in a unique detection index. Furthermore, even without 

processing, the end effect has less influence on the detection by subspace angle because the 

use of amplitude ratios in the method may weaken or even eliminate this unwanted effect. 

2.5.2 Experimental results 

 Impact excitation 

Experimental results were collected using 7 accelerometers (Figure 2.27) evenly 

distributed along the main beam as presented in Figure 2.15. The data are recorded during 6.4 

seconds with a time-step of 0.00078125 s.  

 

Figure 2.27: Experimental set up 

An impact of very low amplitude was first applied at the end of the beam to obtain the 

reference state. The first two natural frequencies are observed at 31.3 Hz and 143.5 Hz 

respectively as shown in Figure 2.28 which gives the WT of the response measured at the end 

of the beam (coordinate n° 7). These values are slightly lower than the frequencies predicted 

by the numerical model, which is mainly due to the influence of the mass of the sensors.  

An impact of higher amplitude was then applied to activate the nonlinearity. The results 

are shown in Figure 2.29. It is observed that three instantaneous frequencies (ridges) are 

detected and that they are decreasing over time. 
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Figure 2.28: Instantaneous frequencies and amplitudes according to a low impact  

     

Figure 2.29: Instantaneous frequencies and amplitudes when the nonlinearity is activated 

The deformation modes corresponding to those three frequencies are presented in Figure 

2.30 at different instants (corresponding to different levels of displacement at the end of the 

beam). 

       

  a) from the first frequency ridge                          b) from the second frequency ridge        

   
c) from the third frequency ridge 

Figure 2.30: Deformation shapes corresponding to different displacement amplitudes 
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The singular-value decomposition (SVD) of matrix A = [M1 M2 M3] confirms that the 

third deformation shape (M3) is in fact a linear combination of the first two „modes‟ (Figure 

2.31). 

 
Figure 2.31: Instantaneous singular values of the deformation „mode‟ matrix  

The MAC between the experiment SSI and WT „modes‟ is also displayed in Figure 2.32. 

                  

a) Displacement amplitude d ≈ 0.25 mm           b) d ≈ 0.95 mm                                c) d ≈ 1.33 mm        

Figure 2.32: MAC between WT „modes‟ and SSI modes   

In the following, the experiments were performed for 6 levels of excitation (L0-L5) as 

reported in Table 2.1.  

Table 2.1: Levels of excitation and corresponding maximum displacement 

Level L5 L4 L3 L2 L1 L0 

Max. displacement (mm) 1.37 1.20 0.93 0.72 0.48 0.037 

The results of the WT in terms of instantaneous frequencies are given in Figure 2.33. Note 

that the distortions which appear in the evolution of the 2
nd

 frequency were due to set-up 

problems and do not influence the detection procedure. 
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a) from the 1
st
 ridge 

 

b) from the 2
nd

 ridge  

                   

c) from the 3
rd

 ridge 

Figure 2.33: Instantaneous frequencies  

Figure 2.34 gives the time evolution of subspace angles for the 6 levels of excitation. The 

angles are calculated respectively on the basis of one single deformation „mode‟ (M1 or M2) 

in Figure 2.34a-b and on the basis of the two independent „modes‟ obtained through the SVD 

of the deformation matrix in Figure 2.34c. 
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a) on the basis of ‘mode’ 1 

          
b) on the basis of ‘mode’ 2  

 
c) on the basis of SVD ‘modes’ 

Figure 2.34: Time evolution of subspace angles for different excitation levels 

Detection results are also given in Figure 2.35 in terms of displacement amplitude 

measured at the end of the beam at time t=0.125 s. In this figure, the first three points of the 
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curves correspond to weak excitations (level L0). It can be seen how the magnitude of the 

nonlinearity depends on the displacement level. „Mode‟ 2 looks more sensible to the 

nonlinearity than „mode 1‟. 

 

Figure 2.35: Relation angles - displacement amplitudes at the end of beam, t = 0.125 s 

 Random excitation 

Random forces of different levels were applied to the beam in order to capture random 

responses of the structure. 

With a low excitation level resulting in a maximal displacement of 0.06 mm, the WT 

gives the first two frequencies represented in Figure 2.36. 

       

 

Figure 2.36: Displacement at the extremity of the main beam and WT instantaneous 

frequencies with a low excitation 

One observes that the 1
st
 frequency oscillates less than the 2

nd
 one. The 2

nd
 frequency 

displays large variations, for example at about 1.3 s, 2.6 s, 3.3 s, 4 s when the displacement 
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also shows large variation. At these instants, the corrective term  ,u   in expression (2.30) 

may be not negligible and thus instantaneous frequencies do not completely coincide with 

dominant frequency components in the signal. For this reason, intervals in which the signal 

amplitude is stationary have to be considered as reference states.  

The average frequencies in this case are 30.9 Hz and 133.3 Hz which are a little bit lower 

than in the free response case because of the shaker attachment to the system. 

Let‟s now examine a higher level of excitation for which the displacement at the end of 

the main beam and its corresponding power spectral density (PSD) are shown in Figure 2.37. 

The WT responses at point 7 are shown in Figure 2.38 in terms of frequency and in Figure 

2.39 in terms of amplitude. The frequencies are presented along with the reference 

frequencies corresponding to the low level of excitation (dashed line) to exhibit the difference 

between the two states.  

   

             a) time response         b) PSD of the response 

Figure 2.37: Displacement measured at the end of the main beam and the corresponding PSD  

 

 

 

Figure 2.38: Identified instantaneous frequencies (__) compared with the reference state (…) 

 

 

Figure 2.39: Instantaneous amplitudes of the two ridges identified from the signal                  

in Figure 2.37 (high level of excitation) 

The following remarks may be formulated from these results. 

- The difference between the frequencies obtained in the two states appears clearly, 

especially for the first frequency.  
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- In intervals where the amplitude levels vary very sharply, the WT produces ridges 

with peaks and discontinuities; it can be clearly seen for the higher frequency ridge at 

about 1.8 s and 4.8 s. These intervals should not be considered in the analysis.  

 Identification of deformation shapes  

Figure 2.40 shows the identified deformation shapes corresponding to different levels of 

displacement amplitude.  

  

Figure 2.40: The 1
st
 and 2

nd
 deformation „modes‟ according to displacement amplitude 

 Detection based on the concept of subspace angle 

The difference between the state shown in Figure 2.37 and the reference state is given in 

Figure 2.41 by means of the concept of subspace angle, respectively based on „mode‟ 1, 

„mode‟ 2 and both two „modes‟.  

At time intervals where the instantaneous amplitude is small, the corresponding angle is 

also small. Elsewhere, the subspace angle index is proportional to the amplitude level, which 

generally allows a good distinction between the states. As both „modes‟ are sensitive to the 

level of nonlinearity, the subspace formed by both „modes‟ gives a better detection.  

 

     

                   a) on the basis of ‘mode’ 1                 b) on the basis of ‘mode’ 2 

 

                            c) on the basis of both two ‘modes’ 

Figure 2.41: Time evolution of subspace angles for two different excitation levels 
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It is corroborated by Figure 2.42 in which the relation between the angle and the 

instantaneous displacement amplitude is drawn for several levels of excitation. 

              

Figure 2.42: Relation between angles and displacement amplitudes at the end of beam 

 

2.6          Discussion on the detection by WT  

Detection methods based on the measurement of instantaneous frequencies are reported by 

many authors in the literature. It was also achieved in this work, as shown in Figures 2.24, 

2.33 and 2.38. Alternatively, deformation shapes provide important information about the 

change in the dynamics of a structure, which is very useful for detection purposes. The 

concept of subspace angle is an efficient tool that allows to quantitatively monitor the onset of 

damage or nonlinear behaviour through deformation modes. This was illustrated in Figures 

2.25, 2.34, 2.35, 2.41 and 2.42. 

Through the above numerical and experimental examples, some remarks may be 

formulated on the detection methods based on instantaneous features. We know that the time 

and frequency resolutions of the WT may be chosen in order to obtain a nice frequency 

resolution, e.g. at a low frequency (ridge 1 in the examples), but the resolution is much 

rougher at a high frequency (namely, ridges 2, 3). For example, the presence of super-

harmonic of the first frequency has the effect of shortening the distances between this 

frequency component and ridge 1, ridge 2. In order to avoid the interferences between those 

ridges, it becomes necessary to increase the value of the center frequency 0  as required by 

the inequalities in (2.33). On the other hand, high frequencies (ridges 2, 3) can be identified 

with a satisfactory resolution by choosing a fine scale vector. However, a fine scale vector and 

a big value of 0  make the computation very costly. Although Figures 2.24, 2.33 and 2.38 

have been achieved paying attention to the resolution, the results are not so smooth owing to 

the frequency resolution. Conversely, the detection indexes represented in Figures 2.25, 2.34 

and 2.41 which are determined using the concept of subspace angle demonstrate quite smooth 
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curves. It indicates the advantage of using instantaneous amplitudes: providing that an 
0  

high enough to well separate the ridges, the resolution is not a delicate problem for the 

instantaneous amplitude. It is illustrated in Appendix A by comparing the resolution in 

frequency and amplitude through a raw scale vector and a much finer one. In conclusion, the 

WT instantaneous amplitudes provide a good means of detection without the need to consider 

a sophisticated scale vector and the detection is advantageously performed through the use of 

the concept of subspace angle.  

 

2.7           Concluding remarks 

The Wavelet Transform is known for its ability to analyze non-stationary signals and to 

detect nonlinear behaviour in a structure. As reported in Argoul and Le (2003)[2], it can be 

used to identify several instantaneous indicators, namely instantaneous frequency, positive 

„modal‟ shape. 

In this study, detection of nonlinearity in a dynamic system was performed further using 

the concept of subspace angle between instantaneous deformation „modes‟. These 

deformation „modes‟ are associated to instantaneous frequencies obtained from the WT of 

vibration signals measured at different coordinates of the system. Instantaneous bases of 

independent modes may be generated using the singular value decomposition of deformation 

„mode‟ matrices, which determines the dimensionality of the system. The procedure was 

illustrated numerically and experimentally on the example of a nonlinear cantilever beam 

submitted to impact and random excitations.  

The concept of subspace angle allows to define a global detection index. When used in 

combination with instantaneous „modes‟ extracted from the WT, this index was found to be 

sensitive to small dynamic changes and robust with regards to frequency resolution of the 

transform.  
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Chapter 3 

 

Second-Order Blind Identification 

Method Applied to Damage Detection 

 
3.1    Introduction 

Blind source separation (BSS) techniques are applied in many domains, since they allow 

separating a set of signals from their observed mixture, without the knowledge (or with very 

little knowledge) of the sources signals or the mixing process. In structural dynamics, BSS 

techniques showed useful for modal identification from numerical and experimental data 

(Kerschen et al. (2007)[54], Poncelet et al. (2007)[101], Zhou and Chelidze (2007)[142], 

Farooq and Feeny (2008)[23]), for separating sources from traffic-induced building vibrations 

(Popescu and Manolescu (2007)[103]) and for damage detection and condition monitoring 

(Zang et al. (2004)[141], Pontoppidan et al. (2005)[102], Jianping and Guang (2009)[49]). A 

particular BSS technique called second-order blind identification is considered in this chapter 

for the purpose of condition monitoring as well as damage detection. The beam with 

geometric nonlinearity presented in Chapter 2 and an airplane mock-up are used as illustrative 

examples.  

 

3.2     Second-order blind identification 

Second-order blind identification (SOBI) was introduced by Belouchrani et al. (1999)[9]. 

Like other BSS approaches, SOBI considers observed signals as a noisy instantaneous linear 

mixture of source signals. In many situations, multidimensional observations are represented 

as: 

( ) ( ) ( ) ( ) ( )t t t t t   x y σ As σ         (3.1) 

where,  
T

1( ) ( ),..., ( )mt x t x tx  is a linear instantaneous mixture of source signals and of noise. 

            
T

1( ) ( ),..., ( )pt s t s t   s  contains the signals issued from p narrow band sources, p < m. 

 
T

1( ) ( ),..., ( )mt y t y ty  contains the sources assembly at a time t. 

The transfer matrix A between the sources and the sensors is called the mixing matrix. 

( )tσ  is the noise vector, modelled as a stationary white noise of zero mean and is assumed to 

be independent of the sources.  
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The method attempts to extract the sources s(t) and the mixing matrix A from the 

observed data x(t). The term “blind” implies that the mixing matrix A is not known a priori, 

so that only the output signals are exploited. Additionally, some assumptions on the source 

signals are introduced (Belouchrani et al. (1997)[9]). SOBI relies on the second order 

statistics and is based on the diagonalization of time-lagged covariance matrices.  

The sources are assumed stationary, uncorrelated and of unitary variance; their covariance 

matrix is written: 

     0 [ ]s E t t R s s I         (3.2) 

where superscript * denotes the conjugate transpose of a vector and I is the identity matrix.  

The added noise is modeled as a stationary white, zero-mean random process independent 

of the source signals. For simplicity, )(tσ  is assumed spatially white, i.e. 

     2[ ]E t t    σ σ I         (3.3) 

The method may be extended to the case of an unknown noise variance matrix. 

The matrix A is assumed to have full column rank but is otherwise unknown. The 

covariance matrix of the array output can be written under the form: 

        H 20 0[ ]x sE t t  R x x AR A I       (3.4) 

        H[ ]x sE t t  R x x AR A     0     (3.5) 

where superscript H denotes the complex conjugate transpose of a matrix.  

As the sources are independent, one has: 

  IR 0s , and so       H0 [ ]y E t t R y y AA      (3.6) 

The SOBI procedure comprises two steps: whitening and determination of the unitary 

matrix. 

3.2.1 Whitening 

The first step relates to the whitening of the signal y(t) such that the whitened data are 

uncorrelated and of unit variance. It consists in applying to y(t) a whitening matrix W, i.e., a 

p×m matrix that verifies: 

     H H H H0[ ] yE t t   Wy y W WR W WAA W I     (3.7) 

Expression (3.7) shows that if W is a whitening matrix, then WA is a p×p unitary matrix. 

Thus, for any whitening matrix W, there exists a p×p unitary matrix U such that WA U . 

Consequently, matrix A can be deduced by the relation: 

UWA
           (3.8) 

where superscript   denotes the Moore-Penrose pseudo-inverse. This whitening procedure 

reduces the determination of the m×p mixing matrix A to that of a unitary p×p unitary matrix 

U. The whitened process  z(t) = Wx(t) still follows a linear model where the signal of the 

whitened process is now a “unitary mixture” of the source signals: 

            tttttt WσUsσAsWWxz        (3.9) 
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The effect of the whitening procedure is to “exhaust” all information contained in the 

covariance matrix in the sense that changing U in (3.8) by any other unitary matrix keeps the 

covariance of z(t) unchanged. Moreover, the signal of observations z(t) reduces the array 

output to a p-dimensional vector.  

As   IR 0s  (ex. (3.6)), from (3.4), one has: 

 H 20x AA R I                  (3.10) 

Expressions (3.7) and (3.10) show that a whitening matrix W can be determined through 

the covariance matrix Rx(0) [9]. This determination is still possible even if the noise variance 

matrix is unknown.  

3.2.2 Determination of the unitary matrix 

Starting with the spatially whitened covariance matrices   w
R  : 

           H H[ ] [ ]w
x E t t E t t     R WR W W x x W z z        0         (3.11) 

Those matrices correspond to the covariance matrices of the process z(t). From (3.5) and 

(3.8), the following important relation is presented: 

     H H Hw

s s    R WAR A W UR U        0         (3.12) 

where      [ ]s E t t   R s s  is the covariance matrix of the sources for some time lag  . 

Since U is unitary and  sR  is diagonal, (3.12) shows that the whitened covariance matrix 

 w
R  is diagonal. So, matrix U can be determined by an eigenvalue decomposition of the 

time-lagged whitened covariance matrix. This procedure can be achieved through the 

technique of joint diagonalization described in Belouchrani et al. (1997)[9]; it consists in a 

generalization of the Jacobi technique. Some materials for joint diagonalization presented by 

Cardoso can be found in [43]. 

The computation of the mixing matrix A and sources is straightforward, according to 

formulas (3.8) and (3.13), once U is determined.  

     Ht t t s U Wx Vx               (3.13) 

where HV U W which is called the de-mixing matrix is the generalized inverse of the 

mixing matrix A.  

The method necessitates that the diagonal elements of  sR  must be different, so that the 

eigenvalues of  w
R  are distinct. This condition is not always checked a priori for any time 

lag  . However, the choice of   is significantly facilitated when several time lags are 

considered, as explained in [9]. Alternatively, the use of a few time lags makes less the 

probability of an unfortunate choice for  , and matrix U is deduced in a more accurate way 

from a larger set of statistics.  

 

3.3      Modal identification using SOBI 

Consider the equations of motion of a mechanical system without damping: 

     ttt fKxxM                     (3.14) 
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The system responses can be expressed by modal superposition: 

     
1

p

i i

i

t t t


   x Φη                   (3.15) 

where the matrix Φ  is the modal matrix comprising the normal modes and η  is the vector of 

normal coordinates which describes the amplitude modulations of Φ . As noted in Kerschen 

et al. (2007)[54], equation (3.15) shows that “when expanding the system response in terms of 

the vibration modes, the normal coordinates may, under certain assumptions, act as virtual 

sources regardless of the number and type of the physical excitation forces”. On the other 

hand, time responses can be represented by a static mixture of those virtual sources.  

If the natural frequencies are distinct, the normal coordinates are harmonic functions 

(Géradin and Rixen (1994)[33]) and can be considered as sources with different spectral 

contents, under certain assumptions [54]. Relating to SOBI, it is noticeable that the mixing 

matrix matches the matrix of vibration modes, and the identified sources correspond to the 

normal coordinates, i.e. 

ΦA    and     t ts η                    (3.16) 

In presence of damping, mode-shapes are generally complex and appear in conjugate 

pairs. If CM
-1

K is symmetric, where C is the damping matrix, 2p complex modes turn out 

into p real modes. For damped systems, Poncelet et al. (2007)[101] pointed out that BSS 

methods are able to identify normal coordinates as identified sources if damping ratios are 

low enough.  

Equation (3.16) shows that the mode shapes can be found in the mixing matrix A. The 

identification of natural frequencies and damping ratios is straightforward from the identified 

sources, e.g. using 1 DOF fitting techniques (Maia (1997)[75]).  

SOBI characterizes the dynamical features of a structure by way of the mixing matrix A 

and the sources. Thus, when the structure is perturbed or damaged, the fault may be reflected 

through the identified sources and the matrix A. In the following, damage detection is 

achieved by monitoring the variation of modal features (e.g. resonant frequencies, mode 

shapes) and the angular coherence between subspaces built from the columns of the mixing 

matrices.   

 

3.4      SOBI and the Hankel matrices - ESOBI 

The so-called Block Hankel matrices play an important role in subspace identification of 

linear systems (Overschee and De Moor (1997)[94]). It is also commonly used for damage 

detection (Yan et al. (2004)[132], Yan and Golinval (2006)[137]), damage localization (Yan 

and Golinval (2005)[133]) or even identification of nonlinear structures (Marchesiello and 

Garibaldi (2008)[78]). The data-driven block Hankel matrix is defined as: 
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               (3.17) 

where 2i is a user-defined number of row blocks, each block contains m rows (number of 

measurement sensors), j is the number of columns (practically j = N-2i+1, N is the number of 

sampling points). The Hankel matrix 1,2iH  is split into two equal parts of i block rows: past 

and future data. Thus, the algorithm considers vibration signals at different instants and not 

only instantaneous representations of responses. This allows to take into account temporal 

correlations between measurements when current data depends on past data. The principal 

idea in modal analysis is to retain all past information to predict the future. Although the past 

and future inputs have many elements in common, they are always distinct because the 

corresponding columns of Xp and Xf  have no elements in common (Overschee and De Moor 

(1997)[94]). Therefore, the objective pursued here in using the block Hankel matrix rather 

than the observation matrix is to improve the sensitivity of the detection method. The 

combined method will be called enhanced SOBI - ESOBI in the following.  

We know that in the SOBI method, the size of a column vector in the mixing matrix A 

depends on the number of sensors m; moreover, the number p of sources successfully 

identified cannot exceed m. It results that, if the number of sensors is very small, a perfect 

identification of all the resonance frequencies is impossible by means of SOBI. However, in 

the same situation, ESOBI, as it exploits more of the signals through the Hankel matrix, is 

able to provide better information about the dynamics of the system. Moreover, the detection 

based on the concept of subspace angle can still be achieved, even with a single sensor as 

illustrated later. 

  

3.5          An extension of SOBI called Blind Modal Identification  

A BSS method like SOBI for which the mixing matrix is real-valued is not always 

suitable for identifying generally damped systems. Recently a novel approach called Blind 

Modal Identification (BMID) has been proposed by McNeil and Zimmerman (2008)[79]. It 

uses BSS techniques to yield modal responses and complex mode shape estimates (McNeil 

and Zimmerman (2010)[80]). The principle of the BMID method is to apply SOBI on an 

augmented and pre-treated dataset.  

From the measured data, denoted as 
0 ( )tx , the Hilbert transform pairs, 

90( )tx are 

introduced. Note that the Hilbert transform of a sinusoid results in a 90° phase shift of the 

sinusoid. This results in the double sized mixing problem: 
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(2 1) (2 2 ) (2 1)m m p p  x A s ,  (2 1) (2 2 ) (2 1)p p m m  s V x , 

( 1) ( 1)

0 0
(2 2 )

( 1) ( 1)

90 90

m p

m p

m p

 



 

   
   
   
   

x s
A

x s
, 

( 1) ( 1)

0 0
(2 2 )

( 1) ( 1)

90 90

p m

p m

p m

 



 

   
   
   
   

s x
V

s x
         (3.18) 

where 
90 ( )ts  are the Hilbert transform pairs of the source components 

0( )ts .  

Because 
0 ( )tx  and 

90( )tx are respectively the real and imaginary parts of the analytic 

signal 
0 90( ) ( ) ( )a t t j t x x x , (with 1j   ) the partition of the augmented dataset in 

equation (3.18) shows similarity with the familiar concept of the analytic signal.  

The matrix A in (3.18) can be partitioned into two block columns corresponding to 
0( )ts  

and 
90 ( )ts : 

 0 90A A A                (3.19) 

The ith column of 
0A  gives the contribution of 

0 ( )is t  to each measurement and the 

corresponding phase shifted measurement. Likewise, the ith column of 
90A  and 

90 ( )is t  

presents a similar relation. Complex modes, 
cΦ , can be formed by taking the first or last 

block of m rows in: 

0 90'c j Φ A A                (3.20) 

It is important to note that the Hilbert transform presents end effects, i.e. errors are 

introduced at the end of 
90( )tx . End effects can be lessened by e.g. zero padding or reflection 

padding as mentioned in Chapter 2.  

McNeil and Zimmerman proposed also a Modal Contribution Indicator (MCI) to measure 

modal strength in a simple manner. If the sources are scaled to unit variance, the mode shapes 

are scaled by the modal amplitude. An indicator may be put forward for a relative measure of 

the modal contribution of mode k to the overall response: 

1

MCT
m

k ik

i

                   (3.21) 

where m is the number of measured DOFs. This measure can be normalized by the Modal 

Contribution Indicator (MCI): 

1

MCT
MCI

MCT

k
k p

k

k




              (3.22) 

where p is the number of modes. MCIk may roughly represent the fractional contribution of 

the kth mode to the overall response. In our work, MCI is employed in order to select physical 

modes that have an essential impact on the system responses.   
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3.6      Examples of application 

3.6.1    Experiments in an aircraft model in different conditions 

Let us consider an aircraft model made of steel and suspended freely by means of three 

springs, as illustrated in Figure 3.1.  

 

     

                           a) Aircraft model      b) removing of 1-3 connecting bolts 

Figure 3.1: An aircraft model (a) and the simulated damages (b) 

A straight beam of rectangular section with a length of 1.2 m represents the fuselage. 

Plate-type beams connected to the fuselage form the wing (1.5 m) and tails (0.2 m). Their 

dimensions are detailed in Figure 3.2. The structure is randomly excited on the top of the left 

wing with an electro-dynamic shaker in the frequency range of 0-130 Hz. Eleven 

accelerometers are installed for capturing the dynamic responses of the structure in 

accordance with the set-up description given in Figure 3.2. Three levels of damage are 

simulated by removing, respectively, one, two and three connecting bolts on one side of the 

wing (Figure 3.1b). The data of this experiment was formerly used for illustrating damage 

detection methods based on Principal Component Analysis, on Kalman model and on Null 

subspace analysis (Yan et al. (2004)[132], Yan and Golinval (2006)[137]); it was also used 

for damage localization (Yan and Golinval (2005)[133]). Some results of modal identification 

were also described in [132]. 

    

Figure 3.2: Dimensions (in millimeters) and location of the 11 sensors 

 Modal identification using SOBI 

For the sake of illustrating the sensitivity of SOBI to damage occurrence, we start first to 

identify modal features, namely the resonance frequencies and mode shapes. Figure 3.3a 
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represents the first eight resonance frequencies obtained through the FFT of the identified 

sources in the healthy (undamaged) state.  Some resonance frequencies are found to be 

relatively close, e.g. f3 (83.29 Hz) and f4 (85.44 Hz); f6 (102.13 Hz) and f7 (103.35 Hz). Those 

results are in perfect agreement with the identification performed in Reference [132] using the 

Kalman model based on SSI.   

       

                             a) Healthy state                b) Damaged state 

Figure 3.3: SOBI identification of resonance frequencies by FFT of the sources  

The SOBI mode-shapes, contained in the columns of the mixing matrix A, are represented 

in Figure 3.4, where sensors n° 1-8 represent the motion in the wing and sensors n° 9-11 show 

the responses in the tails. 
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Figure 3.4: Mode shapes identified by SOBI in the healthy and damaged (dashed line) states 

 

Let us now examine a damaged case when all the three connecting bolts are removed 

(Figure 3.1b). The FFT of the identified sources are juxtaposed to the ones corresponding to 

the healthy (reference) state in Figure 3.3b. The largest frequency variation is observed on the 

first frequency with 8.4% of decrease. Another very noticeable change is the disappearance of 

sources n° 4 and 7 when the structure is damaged. We note also that the MCI of modes n° 4 

and 7 in Figure 3.3a is quite small in comparison to the previous components - modes n° 3 

and 6. Instead of 8 sources/ modes, we can identify only 6 sources/modes in the damaged 

case. The obtained mode-shapes are superposed in Figure 3.4.   

 Modal identification using BMID 

In the same way, FFT of sources and mode shapes identified by BMID are presented in 

Figures 3.5 and 3.6, respectively. It is observed in Figure 3.5 that compared to SOBI sources, 

BMID spectral components are slightly less noisy (e.g. sources n° 1-3). Thereto, the disparity 

between the healthy and damaged states is better shown by BMID mode shapes n° 2, 5 and 8.  
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    a) Healthy state                  b) Damaged state 

Figure 3.5: BMID identification of resonance frequencies by FFT of the sources  
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Figure 3.6: Mode shapes identified by BMID in the healthy and damaged (dashed line) states 

 

 Modal identification using Enhanced SOBI - ESOBI 

To enrich the information in the data matrix, several block rows are assembled to build the 

data-driven Hankel matrix as in expression (3.17). In this application, the number of block 

rows has been fixed to 10. First, the enhancement provided by ESOBI can be noticed through 

the quality of the sources identified in Figure 3.7. The sources are now much clearer, i.e. 

noisy spectral components in each source are minimized with respect to Figure 3.3. It follows 

that the separation of the sources is considerably improved by the use of the data-driven 

Hankel matrix. Note also that in identification methods using the Hankel matrices (e.g. SSI 

(Peeters and De Roeck (2001)[98]), NSA (Yan and Golinval (2006)[137]), one mode may be 

represented by two components. In this case, the sum of the MCI of these two components is 

approximately equal to the MCI of the corresponding source in the SOBI analysis.   

ESOBI mode-shapes are also presented in Figure 3.8.  
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                            a) Healthy state              b) Damaged state 

Figure 3.7: ESOBI identification of resonance frequencies by FFT of the sources in the 

healthy (a) and damaged (b) states 
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Figure 3.8: Mode shapes identified by ESOBI in two states: healthy and damaged states 

 

 Damage detection based on subspace angles 

Several tests were achieved with the aircraft model in different conditions; they are 

summarized in Table 3.1. Tests n° 1-3 compare various healthy states consisting of different 

amplitude levels of excitation. The next tests correspond to three levels of damage with 

increasing degrees, according to the removing of one, two and three connecting bolts 

respectively.  

Table 3.1: Condition of tests 

Test n° 1 2 3 4 5 6 

Condition Exc. 1.5:0.5 Exc. 1:0.5 Exc. 1:1.5 Dam. 1 Dam. 2 Dam. 3 

 

Since sources n° 4 and 7 are not identified in the damaged states, only six mode-shapes 

according to sources n° 1-3, 5, 6, 8 are considered in the subspace.  
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              a) SOBI, BMID and PCA methods             b) ESOBI, EBMID and NSA methods 

Figure 3.9: Damage detection based on the subspace angles  

 

Damage detection results based on the concept of subspace angle are presented in Figure 

3.9. The results of the proposed methods (SOBI, BMID and ESOBI) are compared to those of 

Principal Component Analysis (PCA) and Null Subspace Analysis (NSA) obtained in 

Reference [137]. Like ESOBI and NSA, BMID may also be performed by assembling the 

Hankel matrix, which is denoted here by EBMID. In Figure 3.9a, SOBI, BMID and PCA 

detections are displayed together. Their indexes are quite similar; however, in the PCA-based 

method, the first level of damage (Dam. 1) is not detected and the index corresponding to the 

highest level (Dam. 3) is not the biggest. Conversely, in the SOBI and BMID-based methods, 

the smallest damage can be detected and the levels of damage are logically revealed. It 

appears in Figure 3.9a that the BMID-based method is the most sensitive to the presence of 

damage.  

Detection results obtained by the use the Hankel matrix (named ESOBI, EBMID and 

NSA) are presented in Figure 3.9b.  

To facilitate the comparison between the different methods, a common reference threshold 

is used in Figure 3.10, i.e. the indexes are normalized such that the maximal indexes 

according to the reference states (tests n° 1-3) are set to unity. According to Figure 3.10, the 

normalized indexes show that damage detection by SOBI and BMID is better than by PCA; 

ESOBI is more sensitive than NSA for damage levels 1 and 3 but EBMID is by far the most 

sensitive method.  
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Figure 3.10: Normalized detection indexes by SOBI, PCA, BMID, ESOBI, NSA and EBMID 

 

It is worth noting that when the Hankel matrix is combined with BMID, the number of 

block rows might be less than in ESOBI and NSA. Actually, as the measured data is first 

expanded using the Hilbert transform, BMID leads to double the size of the dataset. For an 

equivalent size of the generated data matrix, the Hankel matrix applied to BMID requires only 

half of the number of block rows which is used for ESOBI or NSA. Consequently the number 

of block rows of the Hankel matrix in EBMID should be kept moderate to accommodate the 

data generation. In Figures 3.9 and 3.10, the results were generated with a Hankel matrix 

containing 10 block rows in the case of ESOBI and NSA and 5 block rows in the case of 

EBMID.  

In conclusion, damage detection based on the concept of subspace angle using SOBI or its 

alternatives like ESOBI, BMID and EBMID looks very useful as illustrated in the above 

example. The methods are sensitive to damage even if it is small. In the modal identification 

step, we can detect damage occurrence, not only by looking at resonance frequency shifts but 

also looking at disappearance of some sources. This helps to determine the dimensionality of 

the problem and to construct an adequate subspace containing only compatible modes in 

different states of the structure. 

  Damage detection using one single sensor 

The construction of the Hankel matrix to apply SOBI allows to improve the identification 

and furthermore to detect damage even if the number of sensors is small. While SOBI cannot 

separate sources of narrow spectral band from only one sensor, ESOBI is able to handle this 

task. It is illustrated in Figure 3.11a when only one sensor located at point 7 and 20 block 

rows are used for the Hankel matrix. Similarly, the identification using EBMID is presented 

in Figure 3.11b.  
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                               a)  by ESOBI                  b) by EBMID 

Figure 3.11: Identification of resonance frequencies, using only one sensor 

Damage detection results based on the subspace angles are shown in Figure 3.12. In the 

case of ESOBI, 20 block rows are used for the Hankel matrix and the best result is obtained 

by considering the first two column vectors of the mixing matrix A in the feature subspaces. 

In this case, damage of level 1 can be distinguished from the false-positive tests (Figure 

3.12a). However, this damage is ignored if more vectors are taken into account, as shown in 

Figure 3.12b. In the case of EBMID, the best detection is displayed in Figure 3.12c when 8 

block rows are used and all the first three column vectors in matrix A are taken into account. 

If fewer vectors are considered in the subspace, damage detection is similar to ESOBI result 

in Figure 3.12a. Thus, EBMID still looks as more appealing when the number of sensor is 

small. 

            

   a) ESOBI, by the first 2 vectors in A    b) ESOBI, by more vectors                 c) EBMID 

Figure 3.12: Damage detection by ESOBI and EBMID, only one sensor is used 
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3.6.2   Experiments on a nonlinear structure (impact excitation) 

Let us consider the beam with a cubic stiffness at the end presented in Section 2.5. Since 

the response of this structure submitted to impact excitation is non-stationary, the behavior of 

SOBI depends on the excitation amplitude.  

As shown in Poncelet et al., (2007)[101], SOBI identification is accurate for linear 

systems with weak damping and distinct frequencies. So, at low impact level, the beam 

behaves as a linear structure and the identification using SOBI gives good results. Figure 3.13 

presents all the sources identified and their FFT respectively. Thanks to the MCI indicator, it 

is easy to select three actual sources s1, s4 and s7. Each of these sources shows a monochrome 

appearance with a pure dominant frequency.  

            

      a)               b) 

Figure 3.13: Sources (a) and their FFT (b) identified by SOBI for the linear state 

 

Let us now examine an impact level at which nonlinearity is excited – (level L5 in §2.5.2). 

As illustrated in Figure 3.14, the modal contribution indicator (MCI) allows the selection of 

three sources s1, s3 and s6 for which the dominant frequencies correspond to the three actual 

sources in the linear case. However, the perfect separation of the sources fails. Only the 

source corresponding to the highest frequency (s6) appears to be not affected by the 

nonlinearity. Sources s1 and s3, according to modes 1 and 2, show peaks respectively at 39.84 

and 149.37 Hz which are clearly higher than in the linear case, but multiple frequency 

components are also observed. A new frequency at 122.1 Hz appearing in those sources 

corresponds to the third harmonic of the first frequency. As noted in the WT analysis, the 
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„mode‟ associated to this harmonic is a combination of the first two „modes‟. This is the 

reason why it prevents separating the first and the second „modes‟: the assumption of SOBI 

that the sources are uncorrelated is no longer guaranteed in the nonlinear case.  

                

        a)           b) 

Figure 3.14: Sources (a) and their FFT (b) identified by SOBI for a nonlinear state 

 

 ESOBI 

Figure 3.15 shows that ESOBI is successful in providing „monochrome‟ sources in the 

interested frequency range. In this example, 35 block rows were used to construct the Hankel 

matrix. The sources are sorted in ascending order of frequencies so that the harmonic of f1 

corresponds to source s2; the remaining components correspond to f1, f2 and f3 respectively.   

The corresponding columns in the mixing matrix A give deformation shapes of the 

structure. Modes 1 and 2 are shown in Figure 3.16 for the linear state (maximum 

displacement of 0.1 mm) and for the nonlinear state (maximum displacement of 1.4 mm) 

respectively. The distinction between those two states is less clear in Figure 2.30 based on the 

Wavelet Transform. The third mode at about 400 Hz is not influenced by the nonlinearity and 

thus is not presented. The deformation shape corresponding to the 3
rd

 harmonic of the 1
st
 

frequency is plotted in Figure 3.17. It is worth noting that this shape looks like the 2
nd

 mode, 

which explains why this harmonic merges considerably with the second frequency in the 

SOBI source s3 (Figure 3.14). 
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Figure 3.15: Sources and their characteristics identified by ESOBI for the nonlinear state 

      

Figure 3.16: Deformation shapes corresponding to the first two frequencies, according to 2 

levels of nonlinearity 

 

Figure 3.17: Deformation shape corresponding to the 3
rd

 harmonic of the first frequency   

am
p

li
tu

d
e 

am
p

li
tu

d
e 

am
p

li
tu

d
e 

am
p

li
tu

d
e 



 65 

 Nonlinearity detection based on the concept of subspace angle 

As the identification by SOBI fails when the behavior of the structure becomes nonlinear, 

only ESOBI is considered in this section. As determined previously, the reference subspace 

for the linear state contains three basic modes corresponding to the frequencies 31.8; 143.1 

and 394.8 Hz. In Figure 3.18, the angles are represented in terms of the maximal displacement 

measured at the end of the beam. The first tests correspond to the linear state of the structure 

for which the maximal displacements is less than 0.1 mm. The last five tests correspond to 

levels L1-L5 reported in § 2.5.2.  

In Figure 3.18a, all the sensors are considered to determine the subspace angle index. In 

Figure 3.18b, only one sensor (sensor n° 7) is used. These results show that ESOBI is able to 

detect the onset of nonlinearity.  

 

                       a) with full range of sensors      b) with only one sensor 

Figure 3.18: Detection by ESOBI  

 

 ESOBI with time-lag calibration 

When SOBI and ESOBI are applied on the whole history of the data, they provide a single 

set of modal characteristics. It is then necessary to resort to the Wavelet transform to 

determine the instantaneous frequencies of the identified sources. However, it is also possible 

to observe the non-stationary behavior of the structure thanks to the following technique 

proposed for the ESOBI process. It consists in adjusting the time-lag between successive 

block rows to construct the data-driven Hankel matrix. In equation (3.17), block rows are 

shifted by one time sample. The time-shift can be extended to several intervals, i.e. the data 

matrix is assembled in the following way: 
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                (3.23) 

where 1   and (2 1)j N i    . 

By choosing an adequate number of time-lags to represent the time distinction between 

the block rows (so that the modulation of the dynamic responses is better exhibited), the data 

matrix in (3.23) facilitates the analysis of signals involving time-varied dynamic states. In this 

way, ESOBI becomes able to treat non-stationary data.  

               

Figure 3.19: Sources of nonlinear behavior and their FFT according to the 1
st
 linear mode, by 

ESOBI with 40   
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Figure 3.19 presents identified sources and their FFTs corresponding to the first mode. In 

this case, the blocks rows are shifted by 40 time samples, i.e. 0.0313 second. It can be 

observed that each source appears at different instants: sources of higher frequency are active 

at earlier times and vice-versa. The deformation shapes corresponding to some identified 

sources are presented in Figure 3.20, which can also indicate varied levels of nonlinearity 

during the measured period. Similar results are presented for the second mode in Figures 3.21 

and 3.22.  

      

Figure 3.20: Deformation shapes according to some sources in Figure 3.19  

                  

Figure 3.21: Sources according to the 2
nd

 linear mode and their FFT, by ESOBI with 40   
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Figure 3.22: Deformation shapes according to some sources in Figure 3.21 

 

3.6.3   Experiments on a nonlinear structure (random excitation) 

We first consider the nonlinear beam submitted to a low excitation level (as reported in 

Figure 2.36). The application of SOBI gives the results shown in Figure 3.23. Even if the 

sources are quite separated, some other components of very weak energy are present. The 

application of ESOBI allows to improve the results as shown in Figure 3.24.  

 

                 

Figure 3.23: Sources and their FFTs identified by SOBI for low excitation 
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Figure 3.24: Sources and their FFTs identified by ESOBI for low excitation 

 

Results obtained with a higher level of excitation (as reported in Figure 2.37) are shown in 

Figures 3.25 and 3.26 for SOBI and ESOBI respectively. It can be observed that the problem 

of mixing is more serious for SOBI. Fortunately, ESOBI appears to be still robust in this case 

because it cleans up noisy components around the main frequency. As the vibration amplitude 

of the beam varies in a quite large band, the first and second sources obtained do not show a 

single spectral component. For example, f1 presents some peaks in the frequency range from 

32.5 to 38 Hz; f2 from 133.5 to 136 Hz and f3 appears as unchanged. For the sake of 

completeness, the WT of sources s1 and s2 is given in Figure 3.27.  

 

                   

Figure 3.25: Sources and their FFTs identified by SOBI for high excitation 
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Figure 3.26: Sources and their FFTs identified by ESOBI for high excitation 

 

 

Figure 3.27: WT of sources s1 and s2 respectively 

 

Figure 3.28 gives ESOBI deformation shapes according to the first two frequencies for 

two levels of excitation.  

 

    

               a) the 1
st
 deformation shape                         b) the 2

nd
 deformation shape 

Figure 3.28: ESOBI deformation shapes corresponding to the first two sources, according 

to 2 levels of nonlinearity 
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 Nonlinearity detection based on the concept of subspace angle 

Using ESOBI, we examine some different levels of random excitation which active 

various degrees of nonlinearity in the beam. Figure 3.29a gives the subspace angles in 

function of the root-mean-square (RMS) displacement measured at the end of the beam. This 

figure shows that the degree of the nonlinearity is well revealed by ESOBI in the case of 

random responses.  

If only one sensor is used as illustrated in Figure 3.29b, the method is also able to achieve 

the detection.  

          

                  a) with full range of sensors                      b) with only one sensor 

Figure 3.29: Detection by ESOBI with all measurements (a) and with one sensor (b) 

 

3.7           Concluding remarks 

SOBI is well known as a modal identification method in the literature. It is appreciated 

because of its accuracy combined with its low computational cost and also because the 

selection of the model order is quite automatic. The accuracy of the method can be visually 

assessed by inspecting the modal responses (sources) in both the time and the frequency 

domains. However, many works have shown that the main drawback of SOBI is the need of a 

number of sensors greater or equal to the number of active modes (Poncelet et al. 

(2007)[101], McNeil and Zimmerman (2008)[79], Rainieri and Fabbrocino (2010)[105]).  

In this chapter, SOBI was applied to study the change in the dynamic behavior of 

structures under different conditions. Two types of problems were considered: the detection of 

damage and the onset of nonlinear behavior. The examined examples show that the 

identification and detection problem by SOBI may be improved efficiently with the help of 

the Hankel matrices. Using ESOBI, the detection remains still possible even if the number of 

available sensors is small. The BMID technique which is an extension of SOBI has been 

proven to be very robust and suitable for structures with general damping.  
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When time signals are non-stationary, the Wavelet Transform provides a better 

mathematical framework for the analysis. However, ESOBI can also give helpful information 

at a low computational cost as the time transformation of the dynamic responses can be 

observed by enlarging the time-lag between block rows of the data matrix or by the 

application of WT on the sources.  
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Chapter 4 

 

Fault Detection Based on  

Kernel Principal Component Analysis  

 
4.1  Introduction 

Principal Component Analysis (PCA) is a linear multivariable statistical method that can 

be used for damage detection of structures or fault diagnosis in mechanical systems. In 

Section 1.3, the advantages and limitations of PCA have been discussed along with its 

derivations for nonlinear contexts. This chapter focuses on a nonlinear extension of PCA 

named Kernel Principal Component Analysis (KPCA) which authorizes features such that the 

relation between variables is nonlinear.  

The KPCA method is “flexible” in the sense that different kernel functions may be used to 

better fit the testing data. KPCA shows a remarkable advantage with respect to other 

nonlinear PCA approaches because the method does not require nonlinear optimization. In the 

beginning, KPCA has interested many scientists in the domain of image processing 

(Schölkopf et al. (1998)[115], (1999)[116] and Kim et al. (2005)[58]). These researchers 

showed that KPCA may reveal more advantageous than other techniques such as PCA or 

Wavelet transform etc. in encoding image structure. In the last five years, KPCA has been 

introduced in other fields of research as reported in Chapter 1 (chemical domain, industrial 

machine or mechanical system) and has shown its ability in the monitoring of nonlinear 

process.  

We deal here with the detection problem in mechanical structures where nonlinearity 

appears implicitly in the responses. The content of the chapter is as follows. First the PCA 

method is described briefly as it constitutes the background of the proposed method. Next, the 

kernel PCA method is introduced to deal with nonlinear systems and the definition of the 

covariance-driven block Hankel matrix is recalled. The method is illustrated on experimental 

examples and applications.  The first example is the detection of the nonlinearity onset in the 

beam with geometric nonlinearity. The next examples consist in detecting damage in a 

rotating device and in controlling quality of welded joints. Two types of index are used for the 

detection: (1)-the subspace angle and (2)-the Hotelling‟s T
2
 statistics and the Q-statistics.  

 

4.2   Principal Component Analysis 

Let us suppose that a dynamical system characterized by a set of vibration features 

identified at time tk is represented by the m-dimensional vector 
kx  ( 1,..., )k N , where N is 
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the number of samplings. All the samples are collected in the observation matrix X m N . In 

general, PCA involves a data normalization procedure, which leads to a set of variables with 

zero-mean and unitary standard deviation (Yan et al. (2005)[134]), i.e. 

 norm k

k

x




x x
x


          (4.1) 

where x  and 
x  are the mean and standard deviation of each dataset, respectively:    

1

1 N

k

kN 

 x x ;   
2

1

1 N

x k

kN 

  x x  

PCA, known as Karhunen-Loève transform or Proper Orthogonal Decomposition (POD) 

(Krzanowski (2000)[63]), provides a linear mapping of data from the original dimension m to 

a lower dimension p using the transformation: 

Y = TX           (4.2) 

where p NY   is called the score matrix and p mT  the loading matrix. The dimension p 

represents the physical order of the system or the number of principal components which 

affect the vibration features. The loading matrix may be found from the main p eigenvectors 

of the covariance matrix of X. In practice, PCA is often computed by Singular Value 

Decomposition of the covariance matrix, i.e. 

T TXX UΣU            (4.3) 

where U is an orthonormal matrix whose columns define the principal components (PCs) and 

form a subspace spanning the data. The energy of those PCs is represented by the 

corresponding singular values on the diagonal of matrix Σ . The singular values are written in 

decreasing order: 

 1 2 1diag( ) , , ..., , , ...,p p mΣ       with 
1 2 1... ... 0p p m           (4.4) 

The order p of the system is determined by selecting the first p singular values in Σ  

which have a significant magnitude („energy‟) as described in De Boe (2003)[17]. However, 

the remaining singular values do not entirely equal zero due to noise or to nonlinear effects.  

It is worth noting that, under some assumptions, PCs in matrix U may represent the 

vibration modes of the system (Feeny and Kappagantu (1998)[26], Feeny and Liang 

(2002)[27]). 

 Selection of active principal components 

The quality of the representation of the observation space through PCs can by quantified 

by inspection of the values 
j . The percentage of energy associated to a PC is defined by De 

Boe (2003)[17]: 

1

Energy
j

j m

i

i









          (4.5) 

One can fix a threshold in terms of cumulated energies:  
1

Energy
j

i

i

 (j = 1,…, m) which 

allows to select the effective number of PCs that is required for a good representation of the 
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observation matrix X. In practice, a cumulated energy of 75% to 95% is generally adequate 

for the selection of the active PCs.  

 

4.3   Kernel Principal Component Analysis  

The definitions and formulation presented here follow closely the ones described in 

Schölkopf et al. (1999)[116] and He et al. (2007)[40].  

The key idea of KPCA is first to define a nonlinear map  k kx x  with 

, ( 1,..., )m

k k N x   which represents a high dimensional feature space F, and then to apply 

PCA to the data in space F.  

Suppose that the mapped data are centered, i.e. 
1

( ) 0
N

i

i

  x , then the covariance matrix 

in the space F is: 

T

1

1
( ) ( )

N

i i

iN 

  C x x          (4.6) 

Principal components may be next extracted by solving the eigenvalue equation: 

 V CV            (4.7) 

All the eigensolutions V with 0   must lie in the subspace spanned by 

1( ),..., ( )N x x , which means that coefficients 
i , ( 1,..., )i N exist such that: 

1

( )
N

i i

i

 V x                        (4.8) 

Pre-multiplication of equation (4.7) by T( )k x  gives: 

T T( ) ( )k k x V x CV     ( 1,...,k N )               (4.9) 

Let us define the kernel matrix K of dimension N N  such that: 

T( , ) ( ) ( )i j ij i jK K  x x x x                   (4.10) 

Mercer‟s theorem of functional analysis implies that the kernel function is a continuous 

kernel of a positive integral operator. For instance, the following kernel functions proposed by 

Vapnik (1995)[127], may be used: 

 polynomial kernel, 

T( , ) ( 1)d
i j i jK  x x x x , where d is a positive integer              (4.11) 

 radial basis function (RBF), 

2

2
( , ) exp

2

i j

i jK


 
  
 
 

x x
x x                      (4.12) 

where 22 w   is the width of the Gaussian kernel 

 sigmoid kernel, 
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   T( , ) tanh ( )i j i jK b x x x x                  (4.13) 

It is worth noting that in general, the above kernel functions give similar results if 

appropriate parameters are chosen. The sigmoid kernel does not always satisfy Mercer‟s 

theorem. The RBF can present advantages owing to its flexibility in choosing the associated 

parameter.  For example, the width of the Gaussian kernel can be very small (<1) or quite 

large. Contrarily the polynomial kernel requires a positive integer for the exponent. In the 

present work, we use the polynomial and RBF kernels. 

The combination of equations (4.6) to (4.10) yields: 

N α Kα                    (4.14) 

where α  is the column vector collecting the coefficients 
1,..., N  . Similarly to PCA, KPCA 

requires the data points ( )i x , ( 1,..., )i N  to be centered in the feature space F, so that the 

centered kernel matrix is defined: 

 1 1 1 1ij N N N N ij
K K K K K                    (4.15) 

where 1N is a matrix of dimension N N of which  1 1/N ij
N . Further details may be found 

in Reference Schölkopf et al. (1998)[115]. 

Replacing K in equation (4.14) by K , the eigenvalue equation may be rewritten by: 

N α Kα                    (4.16) 

The eigenvalues associated to the eigenvectors of K : 
1 2, ,..., Nα α α , are ordered in 

descending order 
1 2 1... ... 0p p N           where 

1,...,p N   are negligible with 

respect to the first p eigenvalues (suppose that 0  ). Normalization of 
1,..., pα α  results 

from the normalization of the corresponding vectors in F, i.e.  

 T 1k k V V       (k =1,…, p)                      (4.17) 

According to equations (4.8), (4.10) and (4.16), it follows that: 

 T 1k k k α α                    (4.18) 

The eigenvectors identified in the feature space F can be considered as kernel principal 

components (KPCs), which characterize the dynamical system in each working state.  

Note that, since the number of eigenvectors (i.e. nonlinear PCs) is the same as the number 

of samples, it is higher than the number of (linear) PCs given by PCA. The KPCA method is 

termed “nonlinear” since the feature mapping in the space F is achieved by a nonlinear 

function (Eqs. 4.11-4.13). Thanks to that property, extracted KPCs should be able to reflect 

nonlinear or high order features which allow the representation and classification of varied 

states. For example, Figure 4.1 represents the PCA and KPCA features and the corresponding 

principal eigenvector V in the bi-dimensional input space. According to Schölkopf et al. 

(1999)[116], KPCA has the capability to use more nonlinear PCs than PCA, which allows to 

collect more structural features rather than noise. 
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                     a) Linear PCA 
T( , ) ( )K x y x y        b) Kernel PCA, e.g.  2

( , ) exp /K w  x y x y  

Figure 4.1: a) PCA in the input space, b) KPCA as a linear PCA in the high dimensional 

feature space F, that joins nonlinearly with the input space by  .  

 

It is also of interest to note that the method enables to characterize a dynamic behavior 

even if the number of measurements is small (for example, if only one sensor is available, as 

illustrated later). 

The kernel principal component  representation ku  may be obtained by projecting all the 

observations onto the direction of the k th eigenvector:  

 T

,

1

( ) ,
N

k k i k v v i

v

K


  u V x x x   ( 1,..., )i N              (4.19) 

where 
kV  is the k th eigenvector of equation (4.7), xi indicates a sample feature vector in the 

data matrix and N is number of all samples.  

Let us consider now a set of current test data t1,…, tL, the kernel matrix L×N and its 

centering are defined by T( , ) ( ) ( )test

i j i jK  t x t x  and: 

1' 1 1' 1test test test

N N N N   K K K K K ,  

where 1'N  is a L×N matrix of which all entries are 1/N. With a set of data tr, one can extract a 

nonlinear component by: 

 T

,

1

( ) ,
N

test

k k r k v v r

v

K


  u V t x t   ( 1,..., )r L              (4.20) 

Difficulties are encountered with KPCA when solving the eigenvalue problem if the 

dimension of matrix K is high. Two problems arise: the difficulty to find out good 

eigensolutions and the computation time. A quite efficient algorithm, called Kernel Hebbian 

Algorithm has been proposed in Kim et al. (2005)[58] to get an approximate solution. To 

avoid high-dimensional eigenvalue problem, He et al. (2007)[40] extracted nonlinear features 

from raw time series data and then performed KPCA on those nonlinear features. Cui et al. 

(2008)[14] carried out a feature vector selection scheme. In this study, the covariance-driven 

Hankel matrix is proposed to assemble the data matrix for the purpose of resolving the above 

drawback.  

 

4.4  KPCA and the covariance-driven block Hankel matrix 

The covariance-driven block Hankel matrix is defined as: 
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            ( c r )                       (4.21) 

where r, c are user-defined parameters (r = c in this study) and 
iΔ  represents the output 

covariance matrix defined by: 

T

1

1 N i

i k i k

kN i









Δ x x      ( 0 1i N   )                     (4.22) 

where 
kx  is the measurement vector at time step k and N is the number of sampling points.  

The covariance-driven Hankel matrix characterizes the dynamics of the analyzed signals 

and has been used for modal identification and damage detection. If the covariance-driven 

Hankel matrix is considered as the input data matrix for the KPCA procedure and the number 

of block rows r is equal to the number of block columns c, so X is a square matrix. Its size is 

determined by the product of the number of blocks and the dimension m of vector xk.  

 

4.5   KPCA monitoring using the concept of subspace angle and 

statistics 

In the previous chapters, the detection problem has been achieved using the concept of 

subspace angle between subspaces constructed by mode-shape vectors (in WT, SOBI) or by 

principal component vectors (in PCA). In KPCA, the same procedure may be applied by 

constructing the subspace with the kernel principal components (KPCs) which characterize 

the feature space F. This section presents other detection indexes based on statistics. 

A popular method for dynamical monitoring is the chart of Hotelling‟s T
2
 statistics and the 

Q-statistics, also known as the squared prediction error (SPE) which are depicted in Figure 

4.2. T
2
 measures the distance in the principal subspace (spanned by the first p PCs), whereas 

SPE characterizes the distance in the residual subspace (spanned by the remaining PCs, which 

is orthogonal to the principal subspace). In general, the use of T
2
 and SPE distances in 

detection methods based on linear PCs (PCA method) is expressed in terms of Mahalanobis 

and Euclidian distances, respectively. The only difference here is that those indexes are built 

in the feature subspace in order to exploit the results of KPCA. The following formulation 

proposed by Lee et al. (2004)[69] shows interesting because of its simplicity.  

 

Figure 4.2: Graphical description of the two monitoring statistics T
2
 and SPE 

T
2
 measures the variation within the model subspace, which is the sum of the normalized 

squared scores defined as: 
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T
2 1

1 1,..., ,...,p pT        u u Λ u u                  (4.23) 

where 
ku  is obtained by (4.19) or (4.20) and 1

Λ  is the diagonal matrix of the inverse of the 

eigenvalues associated with p retained PCs. Assuming that the scores have a multivariate 

normal distribution, the confidence limit for T
2
 is calculated using the Snedecor's F 

distribution (F-distribution) as: 

2

, , , ,

( 1)
p N p N p

p N
T F

N p





                             (4.24) 

where N is the number of samples in the model or the size of the covariance-driven block 

Hankel matrix if this matrix is used. 
, ,p N pF    is a F-distribution with degrees of freedom p and 

N-p with level of significance   [69].  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Conceptual diagram of KPCA 

In the KPCA method, the observations are not analyzed in the input space, but in the 

feature space F. The measure of goodness of fit of a sample to the PCA model was suggested 

through a simple calculation of SPE in the feature space F. The conceptual framework of the 

KPCA method is shown schematically in Figure 4.3 (Romdhani et al. (1999)[110]). First, an  

input vector x is projected using a nonlinear mapping Φ in a high-dimensional feature space 

F. Then linear PCA is performed in this feature space and gives score values uk in a lower p-

dimensional KPCA space (eq. (4.19) or (4.20)). A feature vector ( ) x  may be reconstructed 

from uk by projecting uk into the feature space via kV  and it results in a reconstruction with p 

PCs in the feature space: 
1

ˆ ( )
p

p k kk
 x u V . The SPE statistics in the feature space is 

defined by: 
2

ˆSPE ( ) ( )p  x x . ( ) x  is just identical to 
1

ˆ ( )
h

h k kk
 x u V  where h is 

the number of nonzero eigenvalues generated from (4.14) among all the N eigenvalues. The 

SPE can be deduced from the expression: 
2 2

T T Tˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆSPE ( ) ( ) ( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )p h p h h h p p p            x x x x x x x x x x

   
T T T

1 1 1 1 1 1
2

h h h p p p

k k i i k k i i k k i ik i k i k i     
       u V u V u V u V u V u V  

        
2 2 2 2 2

1 1 1 1 1
2

h p p h p

k k k k kk k k k k    
        u u u u u             (4.25) 

 

 

 

 T

,

1

( ) ,
N

k k i k v v i

v

K


  u V x x x  
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as T 1k i V V  when k=i, otherwise T 0k i V V . 

Assuming that the prediction errors are normally distributed, the confidence limit for the 

SPE is calculated by fitting a weighted 2 -distribution and is given by: 

2

2

2 / ,
SPE

2 e v

v

e
 

                  (4.26) 

where e and v are the estimated mean and variance of the SPE, respectively (Nomikos and 

MacGregor (1995)[93]). This approximating distribution works well even in cases for which 

the errors do not follow a Gaussian distribution.  

Given the T
2
 and SPE statistics as well as their control limits, we can compute outlier 

statistics to count how many prediction errors (represented in percentage) overpass the control 

limits for each state. In normal condition, i.e. without damage, the outlier statistics of the 

current data should be similar to the statistics of the reference state. Conversely, the feature 

subspace associated with a damage state should present significant changes from the reference 

state. Thus, the outlier statistics in this case should increase clearly. In order to compare the 

statistics related to two different sets of data, the ratio Sd /Sr is also computed, where d and r 

denote the damage and the reference states respectively, S describes the average SPE or T
2
 in 

according statistic measurements. While Sd /Sr → 1 indicates a normal state, a higher value of 

this ratio can indicates the occurrence of a possible damage.  

In the following, the KPCA-based detection method is illustrated on some examples in 

which the different indexes (based on the concept of subspace angle and on the T
2
 and SPE 

statistics) are considered.  

 

4.6   Detection of nonlinearity onset 

Let us consider again the beam with the geometric nonlinearity presented in Chapters 2 

and 3. Now KPCA is used on the experimental data corresponding to the two types of 

excitation (impact and random).  

In this example, KPCA is used with the aim of detecting the onset of nonlinear behavior 

when the load level is increasing. The detection is first based on the concept of subspace angle 

and KPCA is compared to the classical PCA. A zero-mean normalization of the measured 

responses is first performed in order to obtain centered data sets. A mean-variance 

normalization procedure can be also realized to take into account different working conditions 

of the system and the variety of sensors. Results based on the T
2
 and SPE statistics are 

presented later.  

 

4.6.1 Impact excitation 

Twelve impact tests were performed as reported in Table 4.1. Tests n° 1-7 correspond to 

the linear behavior of the structure and play the role of false-positive. In tests n° 8-12, the 

nonlinear behavior of the structure is activated with increasing levels. 

For this type of excitation, the nonlinear behavior is the strongest at early stages and 

vanishes progressively due to the presence of damping. For this reason, we consider responses 

in the first time interval of [0; 0.5 s]. Accelerations measured at the seven locations in Figure 

2.27 are used for constructing the observation matrix X. 
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 PCA-based detection method 

For the sake of comparison, nonlinearity detection is first conducted using PCA and the 

results are shown in Figure 4.4. As the observation matrix includes seven response vectors, 

seven principal components (PCs) may be calculated as shown in Figure 4.4a. It is observed 

that PC n°1 concentrates about 70% of the system „energy‟ and that, with the first threes PCs, 

we attaint nearly 100%. 

Detection of nonlinearity based on the concept of subspace angle using 1, 2 and 3 PCs 

respectively is reported in Figure 4.4b. The vertical dashed line separates the linear states of 

the structure (tests 1-7) from the nonlinear states (tests 8-12). Based on the first PC, the 

detection index gives large angle values for all the tests 8-12 but tests n° 5 and 6 also present 

high angle values that are just false alarms. By considering 2 PCs in the subspace (which 

collect nearly 90% of the „energy‟), the detection is considerably improved. In this case, tests 

in the linear and nonlinear states can be well distinguished. However, if more PCs are 

included in the subspace, detection fails as noise enters into the PCs extraction process, which 

deteriorates the quality of the reference subspaces. This is illustrated in Figure 4.4b by the 

result obtained using 3 PCs. 

      

                   a) Singular-value diagram                    b) PCA detection based on the subspace angle 

Figure 4.4: Analysis by PCA 

Table 4.1: List of tests according to level of nonlinearity 

Test n° 1-7 8 9 10 11 12 

Largest displacement (mm) < 0.04 0.48 0.72 0.93 1.20 1.37 

According to this example, we may conclude that the PCA-based method is very delicate 

to use for detecting the onset of nonlinearity in the system. 
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 KPCA-based detection method 

KPCA differs from PCA, notably in the number of kernel principal components (KPCs) 

which is equal to the number N (e.g. of time samples) whereas the number of PCs in the PCA 

method is equal to the number m of measurement responses. In the KPCA method, the energy 

distribution of KPCs depends on the parameter chosen in the kernel function. The results 

shown in Figure 4.5 were achieved with KPCA using the polynomial kernel function with the 

exponent d = 2. The eigenvalue diagram shows that the first seven KPCs capture most of the 

system energy. 

  

                       a) Eigenvalue diagram                        b) KPCA detection based on the subspace angle 

Figure 4.5: Analysis by KPCA 

Note that KPCs do not have any specific physical meanings, as reported in He et al. 

(2007)[40], contrary to PCs in PCA which may represent modal features (e.g. mode-shapes) 

under certain circumstances [26]. However, KPCs are useful for classifying different dynamic 

behaviors of the system. To assemble enough effective information, the KPCA method needs 

to add up a sufficiently large number of KPCs in the subspace. Regarding PCA, as discussed 

earlier, the quality of the detection may be deteriorated by the use of more and more PCs in 

the analysis as noise energy is then taken into account and perturbs the procedure. On the 

other hand, KPCA offers a possibility to redistribute the energy of KPCs, i.e. to regulate the 

main energy on the first but also on secondary KPCs (as discussed in the next paragraph). In 

other words, KPCA helps to extract several first representative KPCs and to decline noise 

which is related mainly to last components. As shown in Figure 4.5b, the use of 5 KPCs 

allows a good detection as the index given by false-positives tests remains low. It is 

interesting to note that by taking into account more KPCs, the detection is actually performed 

in a stable manner. In this example, it is optimal with 6 or 7 KPCs. In conclusion, the KPCA-

based method looks more effective than the PCA-based method for the detection of the onset 

of the nonlinear behavior of a system. 
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 Discussion on the choice of the kernel parameter 

Kernel parameters (e.g the exponent in the polynomial kernel or the width of the Gaussian 

kernel) are user-defined quantities and different values of these parameters may produce 

unequal effects. For illustration, let us consider further two examples by varying the kernel 

parameters, as shown in Figures 4.6 and 4.7. The comparison between pictures (a) of these 

figures and Figure 4.5a reveals clear differences.  

     

                       a) Eigenvalue diagram                       b) KPCA detection based on the subspace angle 

Figure 4.6: KPCA detection with the width of the Gaussian kernel w = 4 

    

                       a) Eigenvalue diagram                       b) KPCA detection based on the subspace angle 

Figure 4.7: KPCA detection with the width of the Gaussian kernel w = 35 
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It is observed that the variance percentage of the first eigenvalue in Figure 4.5a is 

relatively higher than in Figure 4.6a, but on the contrary, it is smaller than in Figure 4.7a. 

When the variance percentage of the first eigenvalue is small as in Figure 4.6, tests n° 9-12 

remain well detected but the index of test n° 8 is of the same order of magnitude as is tests n° 

5 and 6. On the other hand, when the first eigenvalue concentrates much of the variance 

percentage (up to more than 90%) as in the case presented in Figure 4.7, detection is still 

effective even if it is a little less sensitive than in Figure 4.5. For this reason, it is 

recommended to choose the kernel parameter based on the eigenvalue diagram so that the 

variance percentage of the first eigenvalues is high enough.  

 Enhanced PCA and KPCA-based detection methods using the Hankel matrix 

The key idea developed here is to build data matrices using the definition of the block 

Hankel matrices. Thus, PCA and KPCA are applied to this enhanced observation matrix and 

the concept of subspace angle is again used to detect a change in the dynamic behavior. In the 

following, letter E is used when PCA and KPCA are performed on the block Hankel matrices 

to refer to the “enhanced” methods, i.e. EPCA and EKPCA respectively.  

Results are shown in Figures 4.8 and 4.9 for a number of block rows in the Hankel matrix 

equal to 10.  

Figure 4.8 presents the best result given by the EPCA-based detection method. This result 

was obtained using 5 PCs extracted from the block Hankel matrix which accumulate about 

90% the system energy. It is observed that the onset of nonlinearity is well detected even if 

angle indexes for tests n° 5 and 6 (false-positive tests) are not so small. 

  

   

                   a) Singular-value diagram               b) EPCA detection based on the subspace angle 

Figure 4.8: Analysis by EPCA 

EKPCA was performed using the radial basis function as kernel with a width 1100w  . 

As shown in Figure 4.9, detection has improved significantly. The best results are obtained 
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with 7 or 8 KPCs (up to 95% of the system energy). According to this example, EKPCA 

enables a clear classification between linear and nonlinear behaviors. 

   

          a) Eigenvalue diagram                       b) EKPCA detection based on the subspace angle 

Figure 4.9: Analysis by EKPCA 

 

Figure 4.10: KPCA and EKPCA detections by only one sensor 

As mentioned earlier, the number of KPCs in KPCA is directly related to the number N of 

time samples and thus, is not conditioned by the number of measured responses. For this 
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reason, it is always possible to construct a subspace even if only one response signal is 

available. (Note that it is also the case with PCA if the block Hankel matrix is exploited). For 

example, the detection results using KPCA and EKPCA based on the single response of 

sensor 7 are given in Figure 4.10.  It can be seen that, using one sensor only, KPCA suffers 

the same problem as PCA: tests n° 5 and 6 (which differs from the other linear states by the 

testing conditions) are falsely detected positive. On the other hand, EKPCA shows its 

capability to make a clear distinction between the linear and the nonlinear states of the 

structure. 

Let us now examine the problem through the T
2
 and SPE statistics. Since the detection 

indexes are statistics measured according to various excitation levels, the data is normalized 

to have zero mean and a unitary standard deviation. For example, two tests representing two 

different states (test n° 1 and 8) are examined and the results are shown in Figures 4.11 and 

4.12 respectively when all sensors are used. The monitoring diagram is split into two parts: 

the left part trains the reference data and the right part analyzes the current data. The 

difference between the two tests can be revealed by the SPE statistics, especially by the ratios 

Sd /Sr. For test n° 1, Sd /Sr is equal to about 6 but it rises up to more than 2000 for test n° 8. 

Nevertheless, the T
2
 charts do not reveal any change. The SPE result is summarily reported in 

Figure 4.13 for all tests. The SPE monitoring, presenting outlier statistics, is 100% for all 

nonlinear states but also for tests n° 5 and 6. Fortunately, linear and nonlinear behaviours can 

be perfectly distinguished through the ratio Sd /Sr. All tests n° 8-12 show predominant SPE 

ratios with respect to the previous tests. Those results reveal also that the nonlinearity onset is 

clearly detected by the SPE ratios even if the level of nonlinearity is not well identified. For 

instance, tests n° 11 and 12 which correspond to the highest levels of nonlinearity present 

smaller indexes than tests n° 8-10. Consequently, in this problem, the detection of nonlinear 

behaviour based on the concept of subspace angle seems more attractive because the angles 

reflect well the level of nonlinearity. 

 

Figure 4.11: SPE and T
2
 statistics - test n° 1 (linear behavior) 
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Figure 4.12: SPE and T
2
 statistics - test n° 8 (nonlinear behavior) 

 

Figure 4.13: EKPCA detection based on the SPE statistics 

 

4.6.2  Random excitation 

Time samples of 0.5s were analyzed and classified according to the root-mean-square 

(RMS) value of the measured displacement amplitude at the end of the beam. 

Twenty tests were studied as shown in Figure 4.14: seven training samples corresponding 

to tests n° 1-7 play the role of false-positive and thirteen testing samples corresponding to 

tests n° 8-20 present nonlinear behaviors.  
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Figure 4.14: Classification of tests according to the RMS value of the displacement 

measured at the end of the main beam 

Detection results based on the concept of subspace angle using KPCA are presented in 

Figure 4.15. It can be observed that the onset of nonlinearity is clearly revealed. Even if the 

subspace angles corresponding to low random excitation levels are not small, a strong alarm is 

produced from the first level of the nonlinear states (test n° 8). The use of the Hankel matrix 

(EKPCA) in this case does not improve the results but it remains of great interest when the 

number of sensors is limited. For example, Figure 4.16 shows the EKPCA detection results 

when only one sensor (sensor 7) is used. 

  

Figure 4.15: Detection index by KPCA and EKPCA 
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Figure 4.16: Detection using only one sensor 

 

4.7   Fault detection in industrial applications 

4.7.1  Damage detection in electro-mechanical devices 

This industrial application concerns the case of electro-mechanical devices for which the 

overall quality at the end of the assembly line has to be assessed.  

A set of five good (healthy) devices and four damaged devices was considered. Dynamic 

responses were collected by one mono-axial accelerometer on the top and one tri-axial 

accelerometer on the flank of the device as illustrated in Figure 4.17. Only data measured in 

one direction on the flank (X, Y, Z in Figure 4.17) or on the top of the device is used for the 

detection. 

 

Figure 4.17: Location of the accelerometers on the electro-mechanical device: one mono-

axial accelerometer on the top and one tri-axial accelerometer on the flank of the device 

 

It is worth recalling that with only one sensor response, detection cannot be performed by 

a subspace method like PCA. For this reason, fault detection was realized by Rutten et al. 

(2009)[112] through Null subspace analysis (NSA), using the Novelty Index (NI) based on the 

Mahalanobis norm. In this work, the authors based their detection on outlier statistics 

X 
Z 

Y 

Top monoaxial 

accelerometer 

Flank triaxial 

accelerometer 
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(Novelty Index) by computing a confidence limit: 
lim 6NI NI   , where NI  and   are the 

mean value and standard deviation of NI for the reference test. As it was found in [112] that 

detection is better when using the data in the Y direction, the data in this direction is exploited 

here to test the KPCA-based detection method. In order to increase the sensitivity to damage, 

the covariance-driven Hankel matrix is constructed by using 35 blocks. The radial basis 

function (RBF) is used with the width of Gaussian kernel w = 3. The eigenvalue diagram for 

the kernel matrix K in Figure 4.18 helps to choose an appropriate number of PCs which 

defines the optimal dimension of the KPCA space. This dimension was finally chosen equal 

to 3 as the first three eigenvalues present about 90% of variance percentage and the next value 

shows a clear decrease. 

Figure 4.19 reports the results based on the subspace angle of the set of eight rotating 

devices which are compared to the healthy device considered as reference. Among the eight 

devices, four of them may be considered as good (Ok 1-Ok 4) and four of them as damaged 

(NOk 1-NOk 4). The dashed horizontal line corresponds to the largest angle given by the 

healthy devices. It can be seen that the good and damaged devices can be well classified.  

 

Figure 4.18: Eigenvalues of the kernel matrix vs. the number of PCs 
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Figure 4.19: EKPCA detection based on the subspace angle 
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On the other hand, the devices are also controlled by means of the statistics. First, a 

healthy device is examined and the results are shown in Figure 4.20. As expected, Figure 4.20 

does not reveal any fault because the outlier statistics of the current data is not relevant and 

the ratios Sd /Sr remain close to unity for both SPE and T
2
. The confidence limit for T

2
 is much 

bigger than all T
2
 values and is not shown in the figure. 

  
Figure 4.20: SPE and T

2
 statistics - no damage 

In Figure 4.21, one damaged device is considered. In this case, the SPE outlier statistics 

goes to 100%; the ratios Sd /Sr reach 13.75 for the SPE and 2.49 for the T
2
 index.  

 
Figure 4.21: SPE and T

2
 statistics - with damage 
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Figure 4.22 presents the monitoring of the whole set of rotating devices. NSA results 

(Rutten et al. (2009)[112]) are also served as reference for the comparison. Figures 4.22a and 

b show that both NSA and EKPCA are able to detect accurately the four damaged devices 

(NOk). Among the four NOk-cases, three of them are diagnosed with 100% of SPE 

monitoring. The SPE ratios Sd /Sr in Figure 4.22c gives also a clear distinction between 

healthy and damaged devices. However, the T
2
 norm does not provide useful information in 

this problem (Figure 4.22d). 

    
a) NSA based - detection [112]                       b) EKPCA based - detection  

        
                       c) SPE ratio by EKPCA                       d) T

2
 ratio by EKPCA 

Figure 4.22: Damage detection by NSA and EKPCA methods based on statistics 

                (dashed horizontal lines correspond to the maximal values for good devices) 

 

4.7.2 Quality control of welded joints 

The third example involves an industrial welding machine from a steel processing plan. 

The machine was instrumented with a mono-axial accelerometer on the forging wheel, as 

illustrated in Figure 4.23. The purpose of this wheel is to flatten the welded joint.  
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Figure 4.23: Location of the accelerometer on the forging wheel of the welding machine 

 

The quality of the weld depends on several parameters. In Rutten et al. (2009)[112], six 

welded joints with nominal welding parameters (OK 1-OK 6) and 27 joints with out-of-range 

parameters were studied. Some welding parameters were altered, namely covering, 

compensation, current and forging pressure, as reported in Table 4.2. From a microscope 

quality control, welded joints C and G were diagnosed good, welded joints A, D, E, H were 

diagnosed acceptable and welded joints named B, F, I were diagnosed bad.  

Table 4.2: Welds realized with altered parameters (with respect to the nominal parameters) 

Name Modified parameter Weld quality 

Welding A -33% covering Acceptable 

Welding B -66% covering Bad 

Welding C -33% compensation Good 

Welding D -66% compensation Acceptable 

Welding E -10% current Acceptable 

Welding F -20% current Bad 

Welding G -10% forging pressure Good 

Welding H +5%  forging pressure Acceptable 

Welding I -66% covering and compensation Bad 

 

The parameter modifications were clearly identified using the NSA-based detection 

method as presented in Figure 4.24. It is observed that all OK welded joints do not present 

non-zero outlier statistic, and so do welded joints C and G.   
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Figure 4.24: NSA-based detection (from [112], 
lim 6NI NI  ) 

The welded joints are now examined by means of the EKPCA method. From only one 

response vector, the covariance-driven Hankel matrix is built using 30 blocks. The width of 

Gaussian kernel w = 150 was chosen for the RBF kernel. The eigenvalue diagram is presented 

in Figure 4.25. It reveals that the first three PCs concentrate 70% of the accumulated variance 

percentage. It is interesting to note that, as long as the number of principal components is 

higher than 3, detection results lead to the same conclusion. The best results are obtained 

within the range of 5-7 PCs which accumulate 80-90% of the variance percentage. They are 

presented in Figures 4.26 and 4.27 on the basis of the concept of subspace angle and on 

statistics, respectively. 

 

Figure 4.25: Eigenvalues of the kernel matrix vs. the number of PCs 
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Figure 4.26: EKPCA detection based on the subspace angle (the dash-dot line 

corresponds to the maximal value for healthy welded joints) 

 

 

Figure 4.27: EKPCA detection based on statistics
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In general, the subspace angles given in Figure 4.26 and the SPE-based indexes in Figure 

4.27 allow to identify the alterations reported in Table 4.2. The SPE statistics appears fairly 

better in this example. For instance, the indexes of welded joints C1-C3, G1, G3 are in the 

same range as for healthy welded joints OK1-OK6 (i.e. with nominal parameters). This is in 

good agreement with microscopic quality control inspections. Weld G2 gives an index close 

to the one of welds A, D, E, H which are diagnosed as acceptable. Finally, welds B, F and I 

are characterized by significant overshoots and high ratios Sd /Sr. Their diagnosis as bad joints 

is corroborated by the quality control inspection. It should be noted also that index T
2
 does not 

lead to significant detection results in this problem. Furthermore, the detection indicators used 

in the EKPCA method as well as in the NSA method are not proportional to the severity of 

the defects. 

 

4.8   Concluding remarks 

KPCA is useful for the processing of nonlinear systems. The robustness of the method for 

the detection of dynamic changes (due to nonlinear behavior or damage) has been illustrated 

on several experimental examples and applications in comparison with other methods. Two 

types of indicators (subspace angle and statistics) were used for detection and were compared 

regarding to their performance.   

Combined with the Hankel matrix, the EKPCA method provides a very appropriate tool 

for monitoring a structure. Especially, the covariance-data Hankel matrix allows to lessen 

considerably the computation load by reducing the size of the eigenvalue problem to solve. 

The method works well even if only one sensor is available.  
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Chapter 5 

 

Damage Localization using Sensitivities of 

Principal Component Analysis Results 

 
5.1   Introduction 

Let us now deal with another aspect of the detection problem which is the localization. As 

presented in Section 1.4, damage localization can be performed using output-only 

measurements or be based on a mathematical model. To solve the problem of localization in 

beam-like structure, this chapter focuses on the use of sensitivity analysis of measurements.  

Natural frequency sensitivity has been also used extensively for the purpose of damage 

localization. However, most of the methods based on frequency sensitivity with respect to 

damage variables require an accurate analytical model. Jiang and Wang (2009)[48] extended 

the frequency sensitivity approach by eliminating that requirement. However, an optimization 

scheme is still needed to estimate the unknown system matrices through an identified model 

using input-output measurement data.  

Natural frequencies are known to be successful in characterizing dynamical systems. 

Mode shapes are used in model updating because they give information regarding the spatial 

distribution of damage whereas it is difficult to locate the damage by using the frequencies 

only in the objective function constructed for minimization. Hence, we use not only 

sensitivity of frequencies, but also of mode shapes in this work. Modal identification and 

construction of an analytical model are not necessary for the localization procedure. Damage 

localization may be carried out by monitoring the distortion of a sensitivity vector. 

Illustrations are performed through several examples as mass-spring systems, a cantilever 

beam and a real bridge structure.  

 

5.2   Methodology: Some approaches for Sensitivity Analysis  

The behavior of a dynamical system depends on many parameters related to material, 

geometry and dimensions. The sensitivity of a quantity to a parameter is described by the first 

and higher orders of its partial derivatives with respect to the parameter. Sensitivity analysis 

of modal parameters may be a useful tool for uncovering and locating damaged or changed 

components of a structure. On one hand, we know that the dynamic behavior of a system is 

fully characterized by its modal parameters which result from the resolution of an eigenvalue 

problem based on the system matrices (when a model is available). On the other hand, 

Principal Component Analysis (PCA) of the response matrix of the system is also a way to 

extract modal features (i.e. principal directions) which span the same subspace as the 
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eigenmodes of the system (Todd (2009)[126]). In the following, these two approaches are 

used to examine modal parameter sensitivities.  

 

5.2.1 Approach 1: Sensitivity analysis based on Eigenvalue Analysis  

Let us examine a structure that may be modeled by real, symmetric stiffness and mass 

matrices K and M. If i
 and i

 are respectively the i th eigenvalue (natural frequency 

squared) and eigenvector (mode-shape), they are solutions of: 

  0  K Mi i
          (5.1) 

Suppose that the eigenvalues of interest are distinct and the eigenvectors are mass 

normalized so that: 

T

i i  M I           (5.2) 

If the stiffness and mass matrices are functions of some system parameters, differentiating 

equation (5.1) with respect to a system parameter pk gives: 

  0


 
   

       
    

K M
K M Mi i

i i i i

k k k kp p p p
     (5.3) 

The first-order eigenvalue derivative is given by Friswell (1994)[29]: 

Ti
i i i

k k kp p p

   
    

   

K M
         (5.4) 

Setting   D K Mi i
, 




   
     
   

K M
Mi

ik i i i

k k k

b
p p p

, equation (5.3) becomes: 





D i

i ik

k

b
p

          (5.5) 

Di
 is rank deficient and singular. To overcome this drawback in eigenvector sensitivity 

computation, Nelson (1976)[86] wrote it under the form: 

i
ik ik i

k

v c
p


  


          (5.6) 

for some vectors 
ikv  and scalar 

ikc . Thus (5.5) can be rewritten in terms of 
ikv : 

Di ik ikv b            (5.7) 

Starting to find the element of highest magnitude in the eigenvector i , then its 

corresponding element in ikv  and ikb  is set to zero. The next step is to zero out the 

corresponding row and the corresponding column of Di , except the corresponding diagonal 

element which is set to unity. Once ikv  is calculated from (5.7), the scalar ikc  is determined as 

follows: 

T T1

2
ik i ik i i

k

c v
p


    



M
M         (5.8) 
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Furthermore, Eigen Analysis may be realized by Singular Value Decomposition from 

output-only as proposed in Reference Todd (2009)[126].  

 

5.2.2 Approach 2: Sensitivity analysis for Principal Component Analysis in the 

time domain  

Principal Component Analysis (PCA) may be computed by a general method - Singular 

Value Decomposition (SVD). Let us consider the observation matrix ( )  m Ntx X  which 

contains the dynamic responses (snapshots) of the system such that: 

1 1 1 2 1

2 1 2 2 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )
( )

... ... ... ...

( ) ( ) ... ( )

N

N

m m m N

x t x t x t

x t x t x t
t

x t x t x t

 
 
  
 
 
 

x X        (5.9) 

where m is the number of measured co-ordinates and N is the number of time instants. We 

will assume that it depends on a vector of parameters p. This vector of parameters may consist 

of system parameters or state variables. The observation matrix X can be decomposed using 

Singular Value Decomposition: 

T( )X = X p = UΣV                  (5.10) 

where U and V are two orthogonal matrices, whose columns represent respectively left and 

right singular vectors; Σ  contains singular values of descending importance: 

1 2 ... m     . 

A sensitivity analysis is performed here by taking the derivative of the observation matrix 

with respect to p: 

T
T T   

  
   

X U Σ V
ΣV U V UΣ

p p p p
               (5.11) 

Through this equation, the sensitivity of the system dynamic response shows its 

dependence on the sensitivity of each SVD term. So, the determination of 




U

p
, 




Σ

p
 and 





V

p
 

is necessary. Junkins and Kim (1993)[50] developed a method to compute the partial 

derivatives of SVD factors. The singular value sensitivity and the left and right singular vector 

sensitivities are simply given by the following equations: 

T 


 

i
i i

k kp p

X
U V                  (5.12) 

1

m
ki
ji j

jkp










U
U                    (5.13) 

1

m
ki
ji j

jkp










V
V                  (5.14) 

The partial derivatives of the singular vectors are computed through multiplying them by 

projection coefficients. These coefficients are given by equation (5.15) for the off-diagonal 

cases and by equation (5.16) for the diagonal elements. 
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    , j i            (5.16) 

Junkins and Kim (1993)[50] showed also that the diagonal coefficients keep only their 

imaginary part (their real parts are empty).   

 

5.2.3 PCA-based methodology developed in the frequency domain 

Sensitivity analysis for PCA may be developed in the frequency domain, e.g. by 

considering frequency response functions (FRFs) (Todd (2009)[126]).  

As the dynamical system matrices depend on a vector of parameters p, the FRF matrix 

takes the form: 

 
1

2, ( ) ( ) ( )  


     iH p M p C p K p               (5.17) 

where   represents the circular frequency. With regard to sensitivity analysis, the partial 

derivative of equation (5.17) with respect to one parameter pk may be written [126]: 

 
 

 

   
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, ,
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p p

i
p p p

   
 

 

   
   

   

M C KH
H p H p

M C K
H p H p

 
 

   

            (5.18) 

Equation (5.18) provides a way of determining the derivative of the FRF matrix needed 

for the sensitivity analysis by means of the partial derivative of the system matrices.  

Let us consider the FRFs for a single input at location s, and build a subset of the FRF 

matrix (5.17): 

     

     

     

1 1 1 2 1

2 1 2 2 2

1 2

...

...
( )

... ... ... ...

...

N
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m m m N

h h h

h h h

h h h

 
 
 

  
 
 
 

H

  

  


  

             (5.19) 

where m is the number of measured co-ordinates and N is the number of frequency lines. 

This matrix is the frequency domain analog of the observation matrix (5.9). The rows in 

(5.19) represent the response at the measured degrees of freedom (DOFs), while the columns 
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are “snapshots” of the FRFs at different frequencies. We consider that this matrix depends on 

a given set of parameters. We can assess its principal components through SVD by (5.10): 

T( , )s

f f fH p U Σ V                  (5.20) 

where the left singular vectors 
fU  give spatial information, the diagonal matrix of singular 

values 
fΣ  shows scaling parameters and the right singular vectors 

fV  represents modulation 

functions depending on frequency. In other words, this SVD separates information depending 

on space and on frequency.  

The sensitivity of the ith principal component in (5.20) can be computed by (5.12-5.16). 

First, we compute the SVD of the FRF matrix in (5.19) for the set of responses and the chosen 

input location. Then, the partial derivatives of (5.19) are determined using equation (5.18). 

For a particular input, only a subset of the derivatives in (5.18) is needed.  

 

5.3   Damage localization based on sensitivity analysis of FRF matrix 

In the following, sensitivity analysis is used to resolve the problem of damage 

localization. According to Eigen Analysis, sensitivity of eigensolution is straightforward if the 

system matrices are available. Regarding FRF analysis, we present now some simplifications 

that may be carried out in experimental practice.  

Giving the FRF matrix s
H  for a single input at location s of the system and its SVD, the 

sensitivity computation of the principal components (PCs) requires the partial derivatives 

/ s

kpH  which are a subset of /  kpH . This quantity may be assessed by (5.18) requiring 

the partial derivative of the system matrices with respect to system parameters. If the 

parameter concerned is a coefficient ke of the stiffness matrix K, the partial derivatives of the 

system matrices are selected such that / kp M  and / kp C  equal zero and 

/ /k ep k    K K .  

Although only a subset of /  kpH  is needed for a particular input s, i.e. / s

kpH  which 

corresponds to the s th column of /  kpH , the calculation of (5.18) demands the whole 

matrix H , which turns out to be costly. However, we can compute / s

kpH  by measuring 

only some columns of H , as explained below. 

We recall that our parameter of interest is some coefficient ke of the stiffness matrix K. 

Equation (5.17) shows that FRF matrices are symmetric if system matrices are symmetric. In 

experiment, the number of degrees of freedom (DOF) equals the number of response sensors. 

So, the FRF matrix has the same size as the number of sensors. Let us consider for instance a 

structure instrumented with four sensors. The FRF matrix takes the symmetrical form: 

 

 
 
 
 
 
 

a b c d

b e f g

c f h i

d g i k

H                   (5.21) 

Assuming that ke accords to the element between DOFs 2 and 3, we have: / 0kp  M ; 

/ 0kp  C  and: 
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 
 
 

K K                (5.22) 

Equation (5.18) allows us to deduce the partial derivative of the FRF matrix: 

   
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 
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k k

b c e f f h g i b c

b c e f f h g i e f

p p b c e f f h g i f h

b c e f f h g i g i

H K
H p H p           (5.23) 

To compute the sensitivity of s
H , only the s th column of /  kpH  is needed, which is 

written in (5.25) in setting: 

 
T

( ) ( ) ( ) ( )
ek b c e f f h g i    H                (5.24) 

This relies entirely upon the columns corresponding to ke in the FRF matrix in equation 

(5.21). 

,.

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 e e

s

k k s

kp

H
H H                           (5.25) 

where ,ek sH  is the s th element of the vector 
ekH . Thus, the sensitivity of s

H  with respect to 

ke does not involve the entire matrix H ; only the columns relating to ke is needed.  

It is worth noting that the choice of system parameter in the derivative process is not 

unique. The parameter can consist in a DOF only, i.e. it relates to a coefficient ke of the 

stiffness matrix. For example, assuming that ke accords to the second DOF only, we have: 

0 0 0 0

0 1 0 0
/ /

0 0 0 0

0 0 0 0

k ep k

 
 
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 
 
 
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 

 

 

 

 
 

  
   

 
 
 

k

b e f g b

b e f g e

p b e f g f

b e f g g

H
                      (5.26) 

Setting  
T

ek b e f gH                 (5.27) 

this is just the column corresponding to ke in the FRF matrix in equation (5.21). Finally, the 

same equation in (5.25) may be found for / s

kpH . This time again, only the column related 

to  ke is needed for the sensitivity of s
H  with respect to ke.  

 

5.4   Localization indicators 

Once / s

kpH  has been computed, the sensitivity of principal components can be 

determined using equations (5.12-5.16). The sensitivities of the left singular vectors or 

eigenvectors are good candidates for resolving localization problems of linear-form structures, 

e.g. chain-like or beam-like structures. In each working condition of the system, we can 
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compute the sensitivity /i kp U . The reference state is denoted by 
R

i

kp





U
, and the deviation 

of  the current condition may be assessed as follows: 

 
R

i i i

k k kp p p

  
    

  

U U U
                (5.28) 

For structure that has several spans, a normalized deviation norm can be used to count on 

the influence of different magnitudes of the sensitivity vector in the spans. It is computed in 

accordance with the span: 

 
norm

norm /

t
t

t
R

i kp


 

 U

                (5.29) 

where t  contains the elements according to span t of vector  ,  /
t

R
i kp U  describes the 

sensitivity elements in span t in the reference state and norm( )  is an operator giving the 

maximal singular value of a vector. 

Other indicators may be utilized to better locate dynamic change, such as: 

  I

1

1
j j jd

r
                     (5.30) 

 II

1 12

1
2j j j jd

r
                               (5.31) 

where r is average distance between measurement points and 
j  denotes the j

th
 element of  . 

 

Figure 5.1: Geometrical illustration for position of elements in the indicators 

Id  in eq. (5.30) represents the relative difference between adjacent elements of   and has 

one element less than  . For a Id  vector containing all the m elements (as the number of 

DOFs), one more element in   may be generated, e.g. element m+1, as illustrated in Figure 

5.1. Of course, this generated element must not affect the remaining elements; a technique 

that may be applied is the cubic spline extrapolation. We can proceed similarly for the IId  

vector. The indicators Id  and IId  are effectively comparable with the first and second 

derivatives of vector i

kp





U
 and allow the maximization of useful information for damage 

localization. 
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The indicator IId  is widely used in the literature of damage localization, e.g. in Pandey et 

al. (1991)[96], Sampaio et al. (1999)[113]. However, the methods proposed in the literature 

compare mode shape vectors or FRF data. In this study, the sensitivity of singular vectors is 

the subject under examination.  

It should be noted that a zero-mean normalization is generally applied to the data in the 

classical PCA technique. However, such normalization can be avoided in the present case 

because the localization indicators are characterized by the principal components vectors and 

their derivatives. This is illustrated in Figure 5.2 in a two-dimensional case where two 

features y1 and y2 are considered. The features in data set S1 are distributed around their 

geometric centre - point O1 and if a zero-mean normalization is achieved, they are represented 

by data set S0. The application of PCA to S1 gives two principal components PC 1 and PC 2, 

which are just the principal components of set S0. In our application, a health state of the 

dynamic structure is shown by the vectors of principal components and their sensitivities; and 

the localization is achieved by comparing the last vectors of two different health states. To 

this purpose, a zero-mean normalization is not necessary for the data preprocessing. However, 

in order to facilitate the comparison between two states, the unit-norm normalization is 

implemented to the sensitivity vectors, i.e.  

       
/

/
norm( / )

i k
i k

i k

p
p

p

 
  

 

U
U

U
                                              (5.32) 

This normalization step provides more meaningful and accurate comparison between 

different conditions.  

 

Figure 5.2: Geometric interpretation of PCA 

 

5.5    Applications to damage localization 

5.5.1   Numerical example of a spring-mass-damper system 

Let us examine the system studied in Todd (2009)[126] which consists in a linear system 

of 20 degrees of freedom as presented in Figure 5.3.  

The damping matrix is set to C = 0.01M. Input is introduced at point 18. The frequency 

range is selected from 0 to 2 rad/sec at intervals of 0.005 rad/sec. Some results of principal 

component sensitivities with respect to a spring constant are presented in [126]. 
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Figure 5.3: Spring-mass-damper system  

  In this study, sensitivity analysis is applied with the aim of damage localization. For this 

purpose, damage is simulated in the system by a stiffness reduction of spring n° 8. Both 

approaches based on Eigen analysis and PCA are considered. Figure 5.4 compares the 

sensitivities of the first eigenvector and of the first left singular vector with respect to the 

stiffness of the second spring (k2). As can be observed, both techniques lead to similar results; 

in the following, we present the development of damage localization based on PCA analysis. 

 

Figure 5.4: Analytical sensitivities of the first eigenvector and of the first left singular vector 

 

Let us consider now the structure in three states: the reference state (no damage), level 1 

and level 2 induced by a stiffness reduction of 20% and 50% of the 8
th

 spring. Figure 5.5 

shows the sensitivity of the first left singular vector with respect to several system parameters 

for all the states. 
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Figure 5.5: 
1 / kp U , with 

2 4 8 12 16 20, , , , ,kp k k k k k k  respectively 

 

The difference between the two levels of damage at element k8 and the reference state is 

shown in terms of 1

kp





U
 in Figure 5.6.  This quantity presents large variations at two 

locations according to the chosen parameter kp  and the damaged element k8. The use of 

indicator Id  gives a better detection as shown in Figure 5.7. 

In each subplot of Figure 5.7, a dominant peak appears clearly at the damaged element 

(location n° 8) but a secondary peak at the element corresponding to the parameter kp  can be 

observed. Thus, by taking the partial derivative with respect to several parameters, a common 

preeminent peak between all subplots allows to assert the location of damage. 
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Figure 5.6: 1

kp





U
 for levels 1 and 2 with 

2 4 8 12 16 20, , , , ,kp k k k k k k respectively 

 

Figure 5.7: Id  for levels 1 and 2 with 2 4 8 12 16 20, , , , ,kp k k k k k k respectively  
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The damage is also exactly located even if it occurs far from the clamping. In Figure 5.8, 

the damaged element (stiffness reduction of the 20
th

 spring) is well detected. 

 

Figure 5.8: Id  with damage in k20 

5.5.2   Numerical example of a cantilever beam 

Let us examine a steel cantilever beam with a length of 700 mm and a square section of 

dimension 214 14(mm ) . The beam is modeled by twenty finite elements as illustrated in 

Figure 5.9. The input location is chosen at node 7 and the snapshot matrix is assembled from 

FRFs corresponding to the vertical displacements at nodes 1 to 20.   

 

Figure 5.9: Discretization of cantilever beam 

We model the damage by a stiffness reduction of a beam element. Four states are 

examined: the reference (healthy) state, and three levels of damage (L1, L2, L3) induced by a 

reduction of stiffness of respectively 10%, 20% and 40%. The damage is assumed to occur in 

element 12. Note that the maximum deviations on the first three frequencies from the 

reference state are 0.70%, 1.41% and 2.81% for the three levels respectively.  

For illustration, sensitivity analysis results are shown in Figures 5.10 and 5.11 according 

to the parameter pk=k15.  Note that similar results were obtained for other stiffness parameter 

in various positions. The FRFs were considered in the frequency range from 0 Hz to 165 Hz 

at intervals of 1 Hz.  
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Figure 5.10 shows the sensitivity difference 1

15k


  



U
 of the first left singular vector 

with respect to the coefficient associated to the 15
th

 DOF in the stiffness matrix and its 

derivatives Id , II d are presented in Figure 5.11. It is observed that the   curves are 

discontinuous at DOFs 11 and 12, index Id  shows a discontinuity with large variations 

around element 12 and finally, index II d allows us to discover explicitly the position of the 

damaged element.   

  

               Figure 5.10: 1

15





U

k
 for 3 levels with pk=k15 

           

Figure 5.11: Id  and II d  indexes for 3 levels with pk=k15 

Even though damage occurs at a delicate location, it can be indicated. For example, Figure 

5.12 detects damage taking place at the first or at the last element respectively.  

           

Figure 5.12: 
II d  for 3 levels with damage at element 1 and 20 respectively 

The method reveals itself robust when damage develops simultaneously in several 

elements. Localization results are shown in Figure 5.13 for two different cases of damage. We 

note that index 
II d does not indicate the same level of damage in the damaged elements. 

However, the damage locations are accurately indicated. The difference in magnitude is due 
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to unequal sensitivities for various damage locations, as discussed in Ray and Tian (1999) 

[106]. 

         
     a) damage at elements 12, 13, 14    b) damage at elements 7 and 16 

Figure 5.13: II d  for three levels of damages 

Furthermore, the following remarks may be formulated regarding to the sensitivity of the 

damage localization method to different factors. 

 Influence of noise 

In order to examine the robustness of the proposed method to noise, the time responses 

(vertical displacements) are perturbed by adding 5% of noise. Indicators Id and IId , which are 

the most sensitive to damage in this cantilever beam, are considered. Figure 5.14 corresponds 

to a damage localized in element 12 and Figure 5.15 to a damage localized in element 15. It 

appears from these examples that levels L2 and L3 are well detected, however, due to noise, 

the lowest damage-level L1 is not identified. 

         
Figure 5.14: Three damage levels in element 12: reduction of stiffness of 10%, 20% and 

40%; 5% of noise 

   
Figure 5.15: Three damage levels in element 15: reduction of stiffness of 10%, 20% and 

40%; 5% of noise 
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 Influence of the number of sensors 

Let us assume that the full range of sensors is not available and that the measurements are 

implemented at fewer locations, which is very common in practical applications. As an 

example, we consider again the case in which damage is located at element 12 (element 

between DOFs 11 and 12 of the initial model in Figure 5.9); however, we suppose that only 

seven sensors are available and distributed as shown in Figure 5.16a. In this new situation, the 

damaged element lays between sensors n° 4 and 5, which is perfectly indicated in Figure 

5.16b, c.  

 

a) Damaged element and sensor instrumentation    

             

b) d 
I
 index                    c) d 

II
 index 

Figure 5.16: Localization of damage in element 12 using 7 sensors only 

 

For a more detailed localization, a deductive technique may be proposed as follows. Based 

on the real measurements, indexes at other positions between the available sensors can be 

deducted. For example, the vector of sensitivity computed from the real measurements can be 

generated by interpolation; the results of this interpolation are illustrated in Figure 5.17a in 

which 19 points (including the 7 points instrumented by sensors) are examined. According to 

those 19 points, the damaged element is correctly located at points 10 and 11 as illustrated in 

Figure 5.17b and c.  
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a) Position of points measured (n° 1, 4, 7, 10, 13, 16, 19 - few sensors) and points deducted 

        

    b) d 
I
 index                         c) d 

II
 index 

Figure 5.17: Localization of damage in element 12, represented according to 19 points in 

the generated sensitivity vector 

Other results are also presented in Figures 5.18 and 5.19, when damage occurs in element 

14. Figure 5.18 shows localization results based on 7 sensors only and Figure 5.19 gives 

localization results with a better resolution based on interpolation.  

 
a) Damaged element and sensor instrumentation 

       
        b) d 

I
 index                           c) d 

II
 index 

Figure 5.18: Localization of damage in element 14 using 7 sensors only 



 113 

 

a) Position of points measured (n° 1, 4, 7, 10, 13, 16, 19 - few sensors) and points deducted 

             
   b) d 

I
 index                            c) d 

II
  index 

Figure 5.19: Localization of damage in element 14, represented according to 19 points in 

the generated sensitivity vector 

The results above show that, when only a few sensors are available, damage localization is 

satisfactory by both Id and IId , if there is a sensor located close to the damaged element. In 

the next example (Figure 5.20a), the case when sensors are not close to the damaged element 

is examined. 

 
a) Damaged element and sensor instrumentation 

          
                 b) d 

I
 index                     c) d 

II
 index 

Figure 5.20: Localization of damage in element 10 using 7 sensors  
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In Figure 5.20b, c, the highest index values are found at locations 3 and 4 for index Id  

and at locations 2 and 4 for index IId . This is a reasonable result because these locations are 

close to the damage which is located actually between sensors 3 and 4. Regarding the 

deductive technique, the results are given in Figure 5.21. As shown in Figure 5.21a, the 

damaged element corresponds to points 8 and 9 in the generated vector. Indicators Id and IId  

are able to find these locations but they also point out other locations, e.g. points 2-4. 

 

 

a) Position of points measured (n° 1, 4, 7, 10, 13, 16, 19 - few sensors) and points deducted 

               

               b) d 
I
 index                              c) d 

II
 index 

Figure 5.21: Localization of damage in element 10, represented according to 19 points in 

the generated sensitivity vector 

 

The examples above show that damage can still be localized when the number of sensors 

is limited. The deductive technique allows to refine localization if sensors are instrumented 

close to the damage.  

 

5.5.3   Experiments involving a mass-spring system  

The next example involves the system of eight DOFs (Figure 5.22) constructed by Los 

Alamos National Laboratory - LANL and for which data are available in [42]. The system 

comprises eight translating masses connected by springs. In the undamaged configuration, all 

the springs have the same constant: 56.7 kN/m. Each mass weighs 419.5 grams; the weight is 

559.3 grams for the mass located at the end which is attached to the shaker. 

The acceleration response and also the FRFs of all the masses are measured with the 

excitation force applied to mass 1 - the first mass at the right-hand end (Figure 5.22). The 

FRFs are assembled so as to localize the damage by the proposed method. Frequency lines are 

selected from 0 to 55 Hz at intervals of 0.1562 Hz. 
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Figure 5.22: Eight degrees of freedom system 

First, several experiments were implemented with the system in the healthy state (denoted 

“H”). Then, the damage (denoted “D”) was simulated by a 14% stiffness reduction in spring 5 

(between masses 5 and 6). As the excitation was applied only on mass 1, the partial derivative 

was taken with respect to the first DOF.  

The vectors  1 1/ k  U  and 
Id  are shown in Figure 5.23, where the healthy states are 

denoted “H” and the damaged states “D”. Both vectors mark a clear distinction between the 

two groups - healthy and damaged and can be candidate for damage localization (the Id  

indicator looks better). 

    

Figure 5.23: 1

1



k

U
 and Id  by impact excitation 
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Damage is also localized for the random case in Figure 5.24 using Id . Healthy states 

show regular indexes in all positions, so they do not display any abnormality. By contrast, all 

the “damaged” curves reveal a high peak in point 6 or 5 where the slope is the most 

noticeable. 

 

Figure 5.24: Id  by random excitation  

 

5.5.4   Experiments in a real bridge case 

In this subsection, the case of a real bridge is studied. It has been examined by many 

authors in the literature (Farrar and Jauregui (1996)[24]; Sampaio et al. (1999)[113] and 

Bayissa et al. (2008)[6]) and consists in the I-40 Bridge in New Mexico, which was razed in 

1993. Vibration response data of the bridge were recorded for healthy and damaged states. 

The data used in this example are provided by LANL [42]. 

 

Figure 5.25: Elevation view of the I-40 Bridge [113] 

The I-40 Bridge was composed of three continuous spans being supported by concrete 

piers and abutment (Figure 5.25). The damages were introduced into the middle span of the 

North plate girder with intention to simulate fatigue cracking that has been observed in plate-

girder bridges. Two rows of 13 accelerometers were used for the vibration measurements in 
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the North and South girders and equally spaced within a span (Figure 5.26). Four levels of 

damage, denoted from E1 to E4 with increasing degrees were performed (Table 5.1). As 

noticed in Farrar and Jauregui (1996)[24], based on natural frequencies and mode shapes, the 

dynamic properties have no change until the final level of damage is introduced. Based on 

FRF curvature method, Sampaio et al. (1999)[113] localized the damage according to all of 

levels with unequal effects. Bayissa et al. (2008)[6] used the Continuous Wavelet Transform 

and the Zeroth-order moment in localizing the damage of levels E3 and E4.  

 

Figure 5.26: Disposition of the accelerometers and damage location 

Table 5.1: The first two resonant frequencies from undamaged and damaged forced vibration 

tests (Farrar and Jauregui (1996)[24]) 

 Undamaged E1 E2 E3 E4 

f1 (Hz) 2.48 2.52 2.52 2.46 2.30 

 1f (%)  1.6 1.6 -0.8 -7.3 

f2 (Hz) 2.96 3.00 2.99 2.95 2.84 

 2f (%)  1.4 1.0 -0.3 -4.1 

Since the FRF matrix is available for the input according to S3 in Figure 5.26, the 

parameter chosen for the purpose of damage localization in our sensitivity analysis is the 

coefficient k3 corresponding to the input. The FRFs measured on the South girder are used. 

The frequency range [1.8-3 Hz] is selected to eliminate the low-frequency noise and the 

higher frequency modes. 

Figure 5.27a presents the sensitivity vectors 1 3/ k U  in two conditions: no damage and 

damage at the final level - E4. In this picture, the end points delimiting the spans correspond 

to locations 1, 5, 9 and 13 where the sensitivity is close to zero. It can be observed that the 

highest sensitivity appears exactly at the position associated to the parameter - k3, which 

correspond also to the middle point of the first span. The difference   between the two states 

(undamaged and damaged) is also represented in Figure 5.27b. It shows that the largest 

deviation occurs in the middle span at locations 6, 7 and 8. The normalized deviation norm  

defined by equation (5.29) is also given in Figure 5.28 in terms of normalized absolute values 

so that they can be compared to results reported previously (e.g. Sampaio et al. (1999)[113]). 

It shows that localization appears more clearly than in Figure 5.28. 
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       a) sensitivity vectors 1 3/ k U     b) difference   

Figure 5.27: 1 3/ k U  in the healthy and damage (E4) states and their difference   

 

 

Figure 5.28: Normalized norm , damage E4 

Next, the lower levels of damage E3, E2 and E1 are examined successively and the results 

are presented in Figure 5.29a, b and c respectively. The better localization result is attained 

for damage state E2. Regarding to damage state E3, the index is higher at locations 8 and 7 as 
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expected but it also points out a lesser degree at locations 11, 12. This problem can be also 

noticed in previous works based on the FRF curvature method [113]. According to the results 

of Reference Farrar and Jauregui (1996)[24] given in Table 5.1, it can be seen that the first 

two resonant frequencies of state E3 are the closest to the frequencies identified in the 

undamaged state. Finally, the lowest level of damage E1 is treated in Figure 5.29c which also 

shows a principal peak at location 7 but again another peak at location 12. 

       

           a) Damage localization for damage E3                        b) Damage localization for damage E2   

 

       c) Damage localization for damage E1 

Figure 5.29: Damage localization for three levels E3, E2, E1 
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So, through this example, the proposed method shows also robust in localization of 

damage, particularly the damages are not well remarked by resonant frequency monitoring. 

The damage location is determined in all conditions; however the effectiveness of the 

detection is affected by the damage degree. 

  

5.6   Concluding remarks 

The sensitivity computation of principal components by analytical methods has been 

presented in Todd (2009)[126] in both the time domain and the frequency domain. The 

contribution of the present study is the application of sensitivity analysis in the frequency 

domain to the problem of damage localization. Damage localization is achieved here as a 

result of the difference in principal component /eigenvector sensitivity between the reference 

and the damaged states.  

The method relies on the measurement of frequency response functions. However, as 

demonstrated, it is not necessary to measure the complete FRF matrix in (5.17). If the system 

matrices are symmetrical, only responses according to parameter pk are necessary to compute 

sensitivity with respect to this parameter.  

As sensitivity computation from FRFs is easy and does not need an analytical model, the 

technique should be suitable for online monitoring.  
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Chapter 6 

 

Parameter Assessment using Sensitivities 

of Principal Component Analysis 

 
6.1     Introduction 

For the sake of efficiency and safety, it is important to well understand the dynamics of 

structures in operation. To this purpose, it is necessary to have a good knowledge on the 

structural parameters (namely the geometric and material properties), the applied loads, the 

nonlinear characteristics, etc. If damage occurs in operation, its knowledge in terms of 

localization and magnitude is of primary importance for the evaluation of the remaining 

lifetime of the system. The objective of this chapter is to focus on parameter evaluation with 

the aim of qualifying the severity of damage. 

During the last years, the assessment of parameters has increasingly attracted the interest 

of researchers (see Ray and Tian (1999)[106], Kim and Stubbs (2002)[57], Koh and Ray 

(2003)[59], Jiang (2007)[47], Gomes and Silva (2008)[36], Jiang and Wang (2009)[48] for 

the purpose of damage estimation). Parameter identification has also been used to characterize 

the nonlinearity of structures (Adams and Allemang (2000)[1], Kerschen et al. (2006)[53], 

Marchesiello and Garibaldi (2008)[78] and Da Silva et al. (2010)[15], etc.).  

A popular way for evaluating parameters is to resort to model updating, which reduces the 

discrepancy between the actual responses of the real-life structure and the corresponding 

analytical responses (often predicted using a finite element model). In this chapter, model 

updating based on analytical sensitivities of Principal Component Analysis results is utilized 

for the assessment of parameters, e.g. the severity of damage.  

 

6.2      Model parameter estimation technique 

We first assemble the modal features of a system coming from the singular value 

decomposition (SVD) of the FRF matrix (5.19) into a vector v called the model vector. 

Principal components (PCs) in U or their energies in Σ  (5.20) may be considered to construct 

the model vector. In the literature, PC vectors have been often considered as more convenient 

for damage detection so they will be used here.   

The model vector v of a system is usually a nonlinear function of the parameters 
T

1[ ... ]
pnp pp  where np is the number of parameters. The Taylor series expansion (limited to 

the first two terms) of this vector in terms of the parameter is given by: 

1

( )
pn

a k a

k k

p
p


    




v
v p v v S p        (6.1) 
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where 
aa  p pv v represents the model vector evaluated at the linearization point 

ap p . S is 

the sensitivity matrix of which the columns are the sensitivity vectors. The changes in 

parameters are represented by 
a  p p p . 

The residual vector measures the difference between analytical and measured structural 

behaviors (Link (1999)[71]): 

 ( )w m  v vr W r W v v p         (6.2) 

where 
mv  represents measured quantities. The weighting matrix 

vW  (according to a weighted 

least squares approach) takes care of the relative importance of each term in the residual 

vector r. Substituting (6.1) into (6.2) and setting 
a m a r v v  leads to the linearized residual 

vector: 

( ) ( )w m a a       v v vr W r W v v S p W r S p      (6.3) 

Let us define the penalty (objective) function to be minimized as the weighted squared 

sum of the residual vector: 

   T Tmin minw w J r r r Wr ,   T v vW W W                  (6.4) 

Equation (6.3) may be solved from the objective function derivative / 0  J p , which 

produces the linear equation: 

a v vW S p W r           (6.5) 

for which the solution is: 

T 1 T( ) a

 p S WS S Wr          (6.6) 

In our approach, we will assume that the number of measurements is larger than the 

number of updating parameters, which yields an overdetermined system of equations. Note 

that the conditioning of the sensitivity matrix S plays an important role in the accuracy and 

the uniqueness of the solution. The solution may be implemented using QR decomposition or 

SVD, which allows to check the conditioning of S [71]. 

The updating process is shown in Figure 6.1 where the i th PC is considered as the model 

vector. The two separated branches correspond to: 1) the analytical model which will be 

updated; 2) experimental responses of the damaged structure, input position and correction 

parameters. The choice of correction parameters may be based on the damage localization 

results. A minimum number of correction parameters facilitates an accurate and efficient 

estimation. 
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Figure 6.1: Updating diagram 

 

 Choice of weighting matrix 

The positive definite weighting matrix is usually a diagonal matrix whose elements are 

given by the reciprocals of the variance of the corresponding measurements (Friswell and 

Mottershead (1995)[30]): 

1 2diag( , ,..., ,..., )i mw w w wW         (6.7) 
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Ĥ  

input s, parameters p 

           
1

2 i 


   H M C K      

2

k k k k

i
p p p p

 
    

   
    

H M C K
H H

    

 

s
s ,

kp





H
H  

s[ , , ] svd( )U Σ V H  

i
i

kp






U
S  

       W 

sˆ ˆ ˆ ˆ[ , , ] svd( )U Σ V H  

T 1 T

ˆ

( )

a i i

a



 

 

r U U

p S WS S Wr

  

 

                 

1n n p p p  

1n np p   

 (min J) 

  

 

p  

+ 

1n n K K p  



 124 

where m is the number of measurements. This matrix may be based on estimated standard 

deviations to take into account the relative uncertainty in the parameters and measurements: 

1W Var  with 2 2 2 2

1 2diag( , ,..., ,..., )i m   Var      (6.8) 

and 
i is the standard deviation of the i th measurement. The relationship between W and the 

variance matrix Var is assumed to be reciprocal because a correct data has a small variance 

but presents a significant weight in the estimate. Similarly, in the problem of damage 

evaluation, the weight may be intensified according to damaged locations in order to improve 

the efficiency of the technique, i.e. to accelerate the convergence and raise the accuracy.  

In the following, the parameter estimation technique described above is used for the 

quantitative assessment of damage. 

 

6.3      Applications to the quantitative assessment of damage 

6.3.1          Spring-mass-damper system 

Let us consider again the spring-mass-damper system of 20 DOFs presented in §5.5.1. 

Damage is simulated by a stiffness reduction of some elements and the input is introduced at 

DOF n° 8. The corresponding frequency response functions (FRFs) are measured in the 

frequency range from 0 to 2 rad/sec with a sampling frequency of 0.005 rad/sec. The first 

principal component and its sensitivity are used for damage evaluation. 

If all spring constants are taken into account in the parameter vector p, we can find out the 

damaged element looking at the evolution of p through the iteration process. Figure 6.2 shows 

the results when damage corresponding to a stiffness reduction of 10% occurs in a single 

element (element n° 5 or 9 respectively). No weighting matrix was introduced in the 

procedure. 

 

      

               a) damage in element 5       b) damage in element 9 

Figure 6.2: Evaluation of the stiffness change in all elements 
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The number of iterations to converge to the solution is very high in this case. However, if 

only the damaged element is considered in the parameter vector (based on the damage 

localization results previously performed in Chapter 5), the convergence rate and the accuracy 

are largely improved. 

For illustration, only spring n° 9 (corresponding to the damaged element) is considered 

now in the parameter vector. Different levels of damage (stiffness reduction of 5%, 10%, 

20%, 25% and 30%) are considered and the results are shown in Figure 6.3a.  

 

 

                      a) with updated 
a /i kp U    b) without updated 

a /i kp U  

Figure 6.3: Damage evaluation 

Let us discuss the use of the sensitivity vector at each iteration step. The question is if we 

can use the initial sensitivity during the whole iteration process, i.e. is it necessary to update 

/i kp U  at each iteration step? This short cut which is illustrated in Figure 6.1 by the arrow 

in dashed line, is proposed to save the computation of sensitivities at each iteration step, 

which may be sometimes costly.  

The results of damage evaluation without updating of the sensitivity vector /i kp U are 

presented in Figure 6.3b. Compared to Figure 6.3a, it can be observed that results are quite 

similar in the case of small damages for both ways of calculation. However, for higher 

damages, the difference between /i kp U  before and after an iteration step may be high and 

more iterations are necessary to converge.  

If several elements are damaged, the procedure also works. Two examples are presented 

in Figure 6.4 for which the parameter vector contains many damaged elements (as well as 

undamaged elements).   
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Figure 6.4: Evaluation for damages in several elements 

 

6.3.2         Cantilever beam 

The cantilever beam examined in §5.5.2 is now considered with the model of 10 elements. 

We consider firstly the damage occurring in a single element. For example, the stiffness of 

element 5 is subjected to reduction. FRF matrices are considered for an excitation in node 9. 

Frequency lines are selected from 0 to 200 rad/sec. Because the damage localization is readily 

identified, the first PC and its derivative with respect to the damaged element are considered. 

For the sake of efficiency and accuracy, only the coefficients of the stiffness matrix 

corresponding to the damaged element are taken into account in the parameter vector p.  

The diagonal weighting matrix defined by (6.8), as discussed above, is intensified in 

entries according to damaged elements in order to increase the calculation efficiency. For this 

purpose, the standard deviation of the principal component (PC) vector elements is 

preliminarily assumed to be 10% of the corresponding element in the considered PC. And in 

particular, to take advantage of sensitivity vector, the entries matched to the damaged 

elements are assigned a lower variance so as to give a larger weighting in the algorithm. A 

fitting variance for measurement in damaged elements can improve significantly the 

convergence speed. In the tests below, the standard deviation values according to the damaged 

elements were multiplied by a factor between 1% and 3%. The evaluation of some of the 

damages is shown in Figure 6.5. Several levels are considered so that the stiffness of element 

5 is reduced by 5%, 10%, 20%, 30% and 50%. The data has also been perturbed with 5% of 

noise, but it still shows satisfactory results.  
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                     a) with updated /i kp U                             b) without updated /i kp U  

Figure 6.5: Evaluation damage, noise free ( ____ ) and noise 5% ( __ __ __) 

 

In this particular problem, we note that the convergence rate to the correct answer is not 

accelerated when the sensitivity is updated. Moreover, without sensitivity updating, the 

parameter evolution looks more stable and smoother. It can be explains as follows. Since we 

have only one term in the parameter vector (pk is the coefficient corresponding to DOF n° 5 in 

the stiffness matrix), the matrix S contains one column and equation (6.6) can be expressed 

as: 

T

T

a 
S Wr

p
S WS

          (6.9) 

If the sensitivity is updated at each step, the variation of the denominator in (6.9) affects 

clearly the evolution rate of the parameter. On the contrary, when the initial sensitivity is used 

at each iteration step, only the numerator of (6.9) is updated, which assures a smooth 

convergence to the good solution, as illustrated in Figure 6.5b.  

So in this example, the use of the initial sensitivity appears advantageous since it ensures a 

more stable evolution of the computation when estimating the damage. Moreover, the CPU 

time is efficiently reduced for two reasons: the convergence to the good solution is faster and 

the calculation of sensitivities is avoided at each step.  

Let us now examine the problem of many elements being simultaneously damaged; these 

elements may be close or distant from each other. The results of various occurrences of 

damage are given in Figures 6.6 and 6.7 for the same or for different levels, respectively. In 

this example, about 5% of noise was taken into account.  
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Figure 6.6: Damage of the same level in several elements  

 

         

 

        

Figure 6.7: Damage of different levels in several elements  
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It is worth noting that the accuracy of the result depends on several factors when many 

elements are damaged, namely, the relative position of the damaged elements and the 

difference between their levels of damage. Input position also plays an important role on the 

number of iterations of the updating process. Generally, the estimate is more effective if the 

degrees of damage of different elements are not too different. Data recorded from an 

excitation close to the damaged location often accelerates the convergence speed.  

 

6.3.3         Experiments on the Eight Degree of Freedom system 

We examine again the 8 DOF system considered in §5.5.3. In order to evaluate the 

amplitude of damage, it is necessary to build an analytical model of the system (Figure 6.8). 

The assembly of the stiffness and mass matrices is straightforward since the masses and the 

spring constants are known. Damping in the system is caused primarily by Coulomb friction 

and was minimized in the experiments. Proportional damping is assumed here with the 

damping matrix equal to 1% of the mass matrix. According to §5.5.3, we also recall that 

damage was simulated by a reduction of 14% of the stiffness in spring n° 5.  

 

Figure 6.8: Mass-spring model 

 For the sake of consistent data, a frequency line is selected from 6 to 29 Hz, which covers 

only the first physical mode and removes noisy low frequencies. The variations in stiffness of 

spring n° 5 are shown in Figure 6.9 for impact and random excitations respectively. The 

healthy states are denoted “H” and the damaged states “D”.  

 

         

           a) case of impact excitation   b) case of random excitation 

Figure 6.9: Evaluation of damage 
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For both two types of excitation, the results are very satisfactory. All false-positives 

indicate small stiffness variations in the element concerned, and they show any detection of 

damage. Conversely, all damaged states give an evaluation very close to the exact damage – a 

stiffness reduction of 14%. 

 

6.4        Concluding remarks 

The results obtained in this chapter on numerical and experimental examples show that the 

method presented here is efficient for assessing the severity of damages even if data is 

perturbed by noise. The use of the weighting matrix in the computation of residuals may not 

only enhance the convergence speed, but also enable and facilitate the evaluation of damage 

when it occurs at several locations. Furthermore, an appropriate input position is important for 

the convergence to the solution.  

Damage evaluation is based on the correlation of a principal component between 

experimental (current) and analytical data. So it is necessary to verify that the considered PC 

describes the same “mode” in both the experimental and the analytical model. Otherwise, the 

problem may lead to divergence. 
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Conclusions 

 
Several monitoring methods of dynamical systems were studied in this work. The 

objective of these methods (WT, SOBI and KPCA) is to diagnose the presence of structural 

damage or the onset of a nonlinear behaviour from output-only measurements. Along with 

these detection methods, sensitivity analysis of PCA was developed to localize and quantify 

the detected damage. The robustness of the methods was studied using numerical and 

experimental examples (e.g. beam with nonlinearity, aeroplane model, mass-spring and beam 

systems) and illustrated on data obtained from industrial and civil engineering applications 

(electro-mechanical devices, quality control of welded joints and I-40 bridge).  

The WT is very convenient when analysing non-stationary signals and is well adapted to 

observe nonlinear behaviours of dynamical systems. For example, the WT is able to put in 

evidence phenomena such as the occurrence of sub- or super-harmonics, the combination of 

fundamental „modes‟, etc. By combining the results of the WT on an ensemble of signals (at 

different DOFs) in terms of amplitude, it is possible to inspect the time evolution of 

deformation modes associated to the ridges of the transform. Calculation of the angles 

between the subspaces spanned by those deformation modes provides a detection index that 

allows indicating the onset of nonlinearity in the system. This index is able to associate 

several modes simultaneously and appears fine with regard to the frequency resolution of the 

transform. However, the WT shows some drawbacks when the natural frequencies of the 

system are close or when noise contaminating the signals causes intermittences in the WT 

responses.  

SOBI, as other BSS techniques based on the assumption of system linearity is attractive 

because of its rapidity and easiness of implementation. Some of the WT drawbacks cited 

above are relieved with SOBI which reveals quite adequate for identification and damage 

detection. However, the use of SOBI is more restrictive when processing nonlinear/non-

stationary signals and systems with high damping. In this case, the combination of SOBI with 

the Hankel matrix (ESOBI) enhances considerably the identification and detection processes. 

ESOBI can also provide more useful information for non-stationary signals by adjusting the 

time-lag in the Hankel matrix. Moreover, ESOBI may be applied even using one sensor only.  

The BMID technique which is an extension of SOBI looks really promising because it is 

able to examine structures of general damping. BMID was found to be more efficient than 

SOBI for modal identification as well as for damage detection.  

The KPCA method reveals quite appealing in processing nonlinear data. Contrary to the 

WT and SOBI, KPCA achieves the detection problem without modal identification. In KPCA, 

the vibration data is first projected into a high dimensional feature space using a nonlinear 

mapping, and PCA is then performed in this space for the purpose of detection. As in SOBI, 

the use of the Hankel matrix improves the robustness of KPCA in all aspects.  

According to our personal judgment, the main performances/characteristics of the 

detection methods considered in the present work are listed in Table 7.1. 
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Table 7.1: Performances/characteristics of the methods 

Features 
Performances/characteristics of the methods 

WT SOBI KPCA 

Discrimination of 

close frequencies 

medium high  

Ability to describe 

the nonlinearity 

high low  

Nonlinearity 

sensitivity 

high medium high 

Ease of 

implementation 

medium high high 

Computation load medium low medium 

Detection by limited 

number of sensors 

medium                                

(only frequencies)                                             

high high 

User-defined 

parameters 

- wavelet properties 

0 ,   

- physical modes for 

the detection 

 

 

- physical modes for 

the detection 

parameter of the 

kernel function 

 

Once the detection problem has been solved using one of the three methods described 

above, the problem of damage localization and quantification may be studied using sensitivity 

analysis of Principal Component Analysis. In this technique, localization is based on output-

only measurements and it does not require recording the complete FRF matrix as a subset of 

this matrix due to a single input may be adequate. For the sake of quantification, an analytical 

model is required. A weighting matrix can be used for model parameter estimation in order to 

accelerate convergence and increase accuracy, particularly when several elements are 

concerned in the updating process.  

 

To the author‟s opinion, the main original contributions of the thesis are the following. 

 From subspaces spanned by deformation modes (WT, SOBI) or kernel principal 

components (KPCA), detection was achieved through the concept of subspace angle. 

The performance of the WT in analyzing nonlinear systems has been reported in 

Nguyen et al. (2010)[87]. Regarding to the SOBI method, it is commonly applied in 

the literature for the purpose of modal identification using stationary data while in this 

work, SOBI is proposed to process non-stationary responses and to detect damage 

(Section 3.6). An extension of SOBI called BMID is also exploited and looks very 

promising for damage detection. Regarding KPCA, it is used in the literature 

essentially for image processing and in the chemical domain. In Chapter 4, we have 

taken advantage of KPCA to perform detection in mechanical systems.  

 It has been shown on numerous examples that detection may be considerably 

enhanced by performing SOBI /BMID and KPCA on block Hankel matrices (the so- 

called E-methods) rather than on observation matrices. Hankel matrices facilitate the 
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detection of slight changes in dynamical systems thanks to the increase of sensitivity 

obtained by exploiting temporal correlations of measurements. Furthermore, the 

proposed E-methods give the possibility to solve detection problems using one sensor 

only (Nguyen and Golinval (2010)[91]). Additionally, in the KPCA method, the 

difficulty related to the large size of the eigenvalue problem when using directly the 

raw time responses can be avoided by processing the covariance-driven Hankel matrix 

(Nguyen et al. (2010)[92]). 

 Sensitivity computation of principal components in the frequency domain has been 

proposed to solve damage localization and evaluation [Nguyen and Golinval 

(2010)[88-90]. If experimental FRFs are used, input may be introduced at some or 

even at only one position; excitation applied to every DOF is not necessary. 

Localization can be based on several proposed detection indexes. The analytical model 

is not required for the purpose of localization but it is the basis of the parameter 

evaluation procedure through model updating. One feature which appears as very 

important in the model updating procedure is the choice of the weighting matrix.  

 

Among the possible perspectives of the work, let us suggest the following ideas.    

 As illustrated in the corresponding chapters, Blind Modal Identification and Kernel 

Principal Component Analysis show a very good potential to detect damage 

effectively and more particularly if they are combined with Hankel matrices. The 

methods could be further applied to more complex systems and the influence of 

environmental and/or operational factors should be investigated.  

 Damage localization has been achieved on the basis of FRF measurements in the 

present work. The development of a localization method using directly time domain 

data could be also an interesting alternative.  

 In the model updating procedure presented in Chapter 6, the weighting matrix plays an 

important role in the optimal evaluation of the updating parameters, particularly if the 

number of parameters is high. A deeper study on the choice of the weighting matrix 

could be an interesting subject to develop. 

 It would be useful to build a wavelet toolbox which makes the choice of ridges more 

automatically. A step for de-noising signals would be to consider.  
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Appendix A 

 

Examples on the resolution of WT 

instantaneous frequency and amplitudes  

 
Figure A1 shows identification results of ridge 2 using the WT of the signal measured at 

DOF 4 of the beam. In order to improve the resolution of the instantaneous frequency shown 

in Figure A1a, the scale vector was divided by five times to obtain the results presented in 

Figure A1b. It is observed that, although the instantaneous frequency is now better modulated, 

the instantaneous amplitude remains the same.  

 

    

    

             a) by a raw scale vector                  b) by a fine scale vector 

Figure A1: Instantaneous frequency and amplitude using a raw scale vector (a) and a much 

finer scale vector (b) 
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