
UNIVERSITÉ DE LIÈGE
Faculté des Sciences Appliquées
Institut d’Électricité Montéfiore

RUN - Research Unit in Networking

WASP
Lightweight Programmable Ephemeral State on Routers to Support

End-to-End Applications

Sylvain Martin
Licencié en Informatique
Aspirant du FNRS

Submitted for the doctoral
Degree in Computer Science

July 2007

ii

iii

Abstract

We present WASP (World-friendly Active packets for ephemeral State Processing), a
novel active networks architecture that enables ephemeralstorage of information on routers
in order to ease distributed application synchronisation and co-operation.

We aimed at a design compatible with modern routers hardwareand with network
operators’ goals. Our solution has to scale with the number of interfaces of the device and
to support throughput of several Gbps. Throughout this thesis we searched for the best
trade-off between features (platform flexibility) and guarantees (platform safety), with as
little performance sacrifice as possible.

We picked the Ephemeral State Processing (ESP) router, developed by K. Calvert’s
team at University of Kentucky, as a starting point and extended it with our own virtual
processor (VPU) to offer higher flexibility to the network programmer. The VPU is a min-
imalist bytecode interpreter that manipulates the contentof the “ephemeral state store” of
the router according to a microprogram present in packets. It ultimately allows the micro-
program to drop or forward the packet on any router, acting asremotely programmable
filters around unmodified IP routing cores.

We developed two implementations of WASP: a “reference” module for the Linux ker-
nel, and, based on that prototype experience, a WASP filter application for the IXP2400
network processor that proves feasibility of our platform at higher speed. We extensively
tested those two implementations against their ESP counterpart in order to estimate the
overhead of our approach. High speed tests on the IXP were also performed to ensure
WASP’s robustness, and were actually rich in lessons for future development on pro-
grammable network devices.

The nature of WASP makes it a platform of choice to detect properties of the net-
work along a given path. Thanks to per-flow variables (even ifephemeral) and its ability
to sustain custom processing at wire-speed, we can for instance implement lightweight
measurement of QoS parameters or enforce application-specific congestion control. We
have however opted – in the context of this thesis – for a focuson another use of the
platform: using the ephemeral state to advertise and detectmembers of distributed appli-
cations (e.g. grid computing or peer-to-peer systems) in a purely decentralised way. To
evaluate the benefits of this approach, we propose a model of apeer-to-peer community
where peers try and join former neighbours, and we show through simulations how effi-
ciency and quality of user experience evolve with the presence of more WASP routers in
the network.

iv

v

Résumé

Nous proposonsWASP(World-friendly Active packets for ephemeral State Processing),
une nouvelle architecture de réseaux actifs qui permet de stocker dans les routeurs pendant
un court laps de temps des informations provenant des paquets acheminés par le routeur,
de manière à simplifier la synchronisation et la coordination des applications distribuées.

L’enjeu principal dans la conception de la plate-forme WASPest d’obtenir un système
programmable qui soit compatible avec l’architecture des routeurs modernes et avec les
objectifs des opérateurs du réseau. La solution proposée doit entre autres rester efficace
quel que soit le nombre de cartes E/S dont dispose le routeur et supporter des débits de
plusieurs Gbps. Nous avons donc cherché le meilleur compromis entre les fonctionnalités
(pour une meilleure souplesse du modèle de programmation) et les garanties offertes (pour
la sécurité du réseau), tout en évitant de sacrifier les performances.

Nous avons pris comme point de départ le routeurEphemeral State Processing(ESP)
développé par K. Calvert et ses collaborateurs de l’Université du Kentucky, que nous
étendons avec un processeur virtuel (le VPU) pour améliorerla souplesse de sa program-
mation. Le VPU est en réalité un interpréteur de bytecode minimaliste qui peut manipuler
le contenu d’une banque d’état éphémère (ephemeral state storeou ESS) présente sur la
carte d’E/S en suivant un microprogramme attaché au paquet traité. Outre les interactions
possibles à travers l’ESS, chaque paquet WASP a ainsi la possibilité de décider s’il doit
ou non continuer son chemin dans le réseau. WASP agit donc comme une série defiltres
programmablesautour d’un cœur de routeur IP classique.

En plus de l’implémentation de référence (sous la forme d’unmodule pour le noyau
Linux), nous avons réalisé une version de WASP pour le processeur IXP2400 et nous
comparons les performances obtenues avec celles du filtre ESP qui nous a fourni le con-
cept et le code source de la banque d’état éphémère. En particulier, nous avons procédé à
une série de tests à hauts débits pour ajuster la robustesse de notre solution et vérifier sa
capacité à traiter les requêtes en soutenant le débit des liens Gigabit Ethernet.

Par sa nature-même, WASP est une plate-forme parfaitement adaptée à la détec-
tion des propriétés du réseau relatives à une connexion donnée. Grâce aux variables
(éphémères) que chaque flux peut maintenir et à sa vitesse de traitement, il est par ex-
emple possible de mesurer certains critères de qualité de service ou de mettre en œuvre
des mécanismes de contrôle de congestion propres à une application donnée. Nous avons
cependant préféré nous concentrer dans cette thèse sur un autre usage de notre plate-
forme: annoncer et détecter via l’ESS les membres d’une application distribuée (telle
qu’un système pair-à-pair ou une plate-forme GRID), et ce de façon totalement décen-
tralisée. Afin d’évaluer les bénéfices d’une telle approche,nous proposons un modèle
de communauté pair-à-pair où les membres tentent de rejoindre la communauté en re-
contactant d’anciens voisins et nous montrons, à travers des simulations, l’évolution de
l’efficacité de la communauté et de la qualité perçue par les utilisateurs en fonction du
nombre de routeurs WASP présents dans le système.

vi

Contents

1 Introduction 1
1.1 Active Networking . 1
1.2 Ephemeral State Processing .. 2
1.3 Active Packets for Ephemeral Store 3
1.4 More Building Blocks . 4
1.5 Project Goal . 4
1.6 Structure of This Work . 5
1.7 Previous Publications .6

2 Active Networks 7
2.1 What Are Active Networks . 7

2.1.1 Packets Carrying Programs . 7
2.1.2 Programmable Switches . 8
2.1.3 Deploying Active Networks . 9
2.1.4 Offloading Active Services . 10

2.2 Major Active Platforms . 10
2.2.1 ANTS . 10
2.2.2 Protean . 12
2.2.3 PLANet / SwitchWare . 13

2.3 Sample applications for Active Networks 14
2.3.1 Active Caches . 14
2.3.2 Multimedia Flow Transcoder . 15
2.3.3 MergeCast and video conferencing 16
2.3.4 Active Monitoring and Management 17

2.4 Open Problems and Future Use . 18

3 Network Processors 21
3.1 Routers design . 21

3.1.1 Traditional Routers Design . 21
3.1.2 Intelligent Line Cards and Network Processors 22
3.1.3 Maximum Headroom, Please 23
3.1.4 PowerNP and IXP2xxx . 23
3.1.5 Related Work . 24

3.2 Overview of IXP2400 Network Processor 25

vii

viii CONTENTS

3.2.1 Processing Elements . 26
3.2.2 Storage Elements . 26
3.2.3 Developing on the Radisys ENP2611 card 28

4 The WASP Platform 33
4.1 Model of a WASP Router . 34

4.1.1 WASP Packets . 35
4.1.2 The WASP Node . 36
4.1.3 World-Friendly Platform . 36

4.2 From ESP Operations to Wasp VPU . 37
4.2.1 A Virtual Processing Unit for Ephemeral State 39
4.2.2 Packet Variables . 43
4.2.3 Environment Variables . 45

4.3 The Ephemeral State Store . 46
4.3.1 Ephemeral State Store Implementation 47
4.3.2 Managing the State Store . 48
4.3.3 Finer Access Control . 50

4.4 Reference Implementation on x86 .51
4.4.1 Validating the VPU’s behaviour 52
4.4.2 Experimenting WASP with Linux 53
4.4.3 More Efficient Access to ESS in WASP 57
4.4.4 Too Cheap, Really ? . 60
4.4.5 Node and Interfaces Statistics62

5 Experimenting WASP on IXP2400 67
5.1 Development on IXP . 67

5.1.1 Overall Implementation . 68
5.1.2 Parallel Programming on the Microengines 69

5.2 The WASP microblock . 70
5.2.1 Structure Placement . 70
5.2.2 Redesigning the Fetch/Decode 72

5.3 WASP processing delay . 73
5.3.1 Profiling the WASP microblock 73
5.3.2 There (on the IXP) and Back . 74
5.3.3 Embedding Measurements on Microengines 76
5.3.4 Larger Entries andmapOpcode 79

5.4 High Availability at Higher Rates .. . 81
5.4.1 Behaviour of the ESP microblock 81
5.4.2 Behaviour of the WASP Microblock 85

5.5 Throughput Tests . 87
5.5.1 Methodology . 87
5.5.2 Results with Count/Compare Instructions89
5.5.3 Results with Collect Instruction 91

5.6 Compiling WASP programs on the IXP 92

CONTENTS ix

5.6.1 Environment for Run-time Compiled WASP Programs93
5.6.2 Just-In-Time Compiling of WASP programs94
5.6.3 Towards Self-Optimizing WASP Component 96

5.7 Uninterrupted Processing: Lessons Learned 98
5.8 Conclusions . 100

6 WASP as Discovery Middleware 103
6.1 The case for Discovery Middleware 103
6.2 Discovery: Flavours and Existing Solutions 105

6.2.1 Local Service Discovery . 105
6.2.2 Global Service Discovery . 105
6.2.3 Proxy Services in a Transit Network106
6.2.4 Joining a Peer-to-Peer Community 107

6.3 MagNet: Service discovery with WASP 108
6.3.1 Flooding Locally . 110
6.3.2 Persistent Data in Ephemeral Store 110

6.4 History File Processing .111
6.4.1 The Community Model . 111
6.4.2 Bootstrap Quality Indicators . 112
6.4.3 Behaviour on a “Regular” Network 113

6.5 Active Domains boosting P2P . 115
6.5.1 Registering Membership in the State Store 116
6.5.2 Keeping the Community Running 117
6.5.3 Getting the Community Running 118
6.5.4 Other Affecting Parameters . 119
6.5.5 Dynamic Addressing vs. Active Domains119
6.5.6 Avoid the Need for an Initial List 120

6.6 Enforcing Registration Fairness 122
6.6.1 Hash-Requesting Packets . 122
6.6.2 Accessing Election Result . 124
6.6.3 Practical Implementation of Code Hashing 124

6.7 Conclusion and Future Work . 126

7 WASP and Beyond 127
7.1 Rerouting . 127

7.1.1 Issues with Rerouting . 128
7.1.2 Network-Friendly Rerouting . 129
7.1.3 Validating Source Addresses . 131

7.2 Multicast to Small Group . 133
7.2.1 Small Group Multicast . 134
7.2.2 Application-level Multicast .. 134
7.2.3 Multicasting with ESP and Lightweight Modules 135
7.2.4 Building Small-Group Multicast with WASP135
7.2.5 Pending Problems with WASP-SGM 138

x CONTENTS

7.2.6 Interconnecting Multicast Islands 140
7.3 Deployment scenarios . 141

7.3.1 WASP-aware line card . 141
7.3.2 WASP filter . 141
7.3.3 WASP in a non-intrusive test bed system142
7.3.4 Isolating WASP traffic on the router143

7.4 Conclusion . 145

8 Conclusion 147
8.1 Towards a WASP Socket . 147
8.2 Rethinking the State Store? .148
8.3 More on the “Best Effort” We Provide148
8.4 The Role of WASP in Autonomic Networks 149
8.5 Towards User-Friendly Rerouting in WASP 149
8.6 Benefits of WASP for Research Network Operators 150

A WASP Opcode Reference 153
A.1 Control Operations . 154
A.2 STACK Operations . 154
A.3 ALU Operations . 154

A.3.1 Miscellaneous ALU Operations 154
A.4 Branch Operations . 155
A.5 Memory Operations . 155

A.5.1 Memory Movement Operations 155
A.5.2 Index Register Manipulations 156

B WASP and ESP Packets Format 157
B.1 Count Packet . 157
B.2 Compare Packet . 157
B.3 Collect Packet . 158
B.4 Rchild Packet . 158
B.5 Rcollect Packet . 159

C Patches brought to ESP 161
C.1 Erratum #69 . 161
C.2 Wrong CRC polynom . 161
C.3 ESS chains update . 161
C.4 No Queue Manager . 161
C.5 Overlapping Ring-Buffer . 162
C.6 Leaking Classifier . 162
C.7 Trashing CRC on Header Update . 162

D Code Samples 165
D.1 Microstore Reprogramming Benchmark165

CONTENTS xi

Acknowledgements

There are several people that have all brought their small stone to this work and I want to
thank them all, even if I may miss some of them here.

Of course, I’d like to thank Pr. Guy Leduc for his invaluable support, and Pr. Ken
Calvert for his interest in my work. Special thanks also fly to Jiangbo Li for his help on
understanding the ESP package, Lukas Ruf, Jean-Patrick Gelas and Lennert Buytenhek
for their expertise and advice on the ENP2611 board, Cyril Briquet and Cyril Soldani
for their discussions on Peer-to-Peer and Grid systems, andHugues Smeets, a long-time
friend whose wisdom was precious to “keep things small and simple” when designing
WASP virtual processor.

Enfin, j’adresse bien-sûr un tout grand merci à mon épouse Violaine et à ma famille
pour leur patience et leur attention tout au long de ce marathon.

xii CONTENTS

Chapter 1

Introduction

There’s no place like 127.0.0.1

Not less than 10 years ago, the idea that the whole planet would be interconnected by
a network capable of supporting instant communications, conferencing and gaming for
millions of individuals, which could offer access to distributed data storage capable of an-
swering more questions than professional encyclopedias and that encyclopedias, scientific
publications and daily news themselves would move to that new media and be maintained
collectively by communities of individuals was still science fiction.

Not less than 5 years ago, the idea that this planetary network known as (the) Internet
would be accessibleanywhereby devices you could carry along for the whole day was
science fiction as well. Nowadays, “infospheres” detailed in scifi novels only differ from
today’s Internet by the exotic “neural interfaces” scifi authors can think of...

Yet, managing and maintaining that network remains a daily burden for thousands of
operators and administrators all over the world, requiringconstant manual intervention
on equipment for upgrading, repairing and maintenance. Many scientists as well as field
technicians agree to say that IP as we know it today has shown its limits in several ways,
yet proposals for a next generation of planet-wide network layer haven’t replaced it so far
– for many reasons, few of them being technical.

1.1 Active Networking

During the last decade, theactive networkingresearch field has investigated and evaluated
ways for “bringing life to the network”, evolving from the static management nightmares
we know into a dynamically modifiable architecture where protocol stacks could be up-
dated to face end-users and operators demand – the same way as“plugin” technologies
have allowed extensibility of applications on desktop systems.

With active networking deployed, we could benefit of sufficient programmability to
make QoS, multicast and whatever else the future of the Internet brings a simple matter
of injecting code into the network. Many different ways to achieve those goals have been
proposed, and the most relevant to this work have been summarised in section 2.2. Some
proposals replace IP itself while others simply “extend” the existing network layer. Oth-
ers again are orthogonal to data forwarding and rather act asa new generation of control

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Packet format for thesumstore operation and pseudocode to be executed on the
router when such a packet is received.

protocols. In all cases, supporting active networking withlegacy hardware is usually not
possible as protocol implementations are often hardwired in equipment. However, re-
cently introducednetwork processors[HiFn04, IntelPRM, IntelHRM] have changed the
way routers are designed and it is now only a matter of hardware and human resources
investment to deploy a programmable solution in a small sub-network. As those proces-
sors evolve, higher bit-rates and higher loads are achievedwith the same programmability,
potentially making the technology available closer and closer to the core of the network.
Bringing an open programmable platform to the Internet is no longer a technical impasse,
which may give a second breath to active networking. Chapter 3will review two of those
processors and their potential applications in the field of active networks.

1.2 Ephemeral State Processing

Ephemeral State Processing(ESP) [Calvert02] is one of those approaches to make the
network more “informative and capable” developed by Dr. Kenneth Calvert and Dr. James
Griffoen at University of Kentucky. Its goal is to provide anopen interface to deposit,
retrieve and process small pieces of data in routing elements while keeping IP’s inherent
properties such as robustness, anonymity, generality and processing cheapness. ESP does
not propose areplacementfor Internet Protocol, but rather comes as an extension to the
existing network layer that should provide the bare minimumflexibility required to help
user applications build more capable solutions such as reliable multicasting [Calvert01].

ESP defines a small set of generic operations that manipulatethe state stored on the
routers. EachESP packetprocessed by an ESP router invokes one of these instructions
over a specific set of data and may lead to modification of the ESP packet’s content,
modification of the router’s stored data and a decision on whether the packet should be
forwarded or discarded. To better figure out how this works, we will reuse theSUMSTORE
packet example from N.R. Imam’s thesis [Imam03]. We assume that ESP routers imple-
ment pseudocode defined on Fig. 1.1. The header of ESP packetscontains a numerical
operation code that identifies the computation to be applied. Once the router identifies the
ESP packet as such, it retrieves the numerical opcode and branches towards the processing
routine that implements that specific operation.

The “sumstore packet” also contains the operands to be applied for that specific com-
putation, such as the immediate values involved in the computation and the specific entry
in the router’s store (identified by the “sum tag”) to be manipulated. Values are extracted

1.3. ACTIVE PACKETS FOR EPHEMERAL STORE 3

Figure 1.2: Structure of a WASP packet for thesumstore operation with detailed bytecode
implementing the operation.

from the packet, addition is computed and written into the router’s store under the “sum-
tag” key, as detailed by the pseudocode given on Fig. 1.1. Thetag is a 64-bit integer
that acts as a variable name on that router. For a short periodafter that packet has been
forwarded (and that’s why the store is said to beephemeral), any packet that reuses the
same tag can retrieve the value computed by theSUMSTOREpacket.

1.3 Active Packets for Ephemeral Store

ESP operations can be used in more complex applications suchas reliable multicast: re-
ceivers that detect a missing frame send aNACKpacket that sets state in routers towards
the source. That state can be used by otherNACKpackets to avoid feedback implosion
at the source and by the retransmitted frame to focus retransmission towards receivers
that are actually missing the frame. An implementation based on the genericCOMPARE,
COUNTandCOLLECToperations is given in [Calvert02]. However, as the authors pro-
pose more applications, it appears that new – and more complex – operations are required.
The more complex operations become, the less obvious it is for the network application
designer to pick the correct one. Moreover, such application-dedicated operations contra-
dict with the generality principle that is essential to widedeployment of any solution.

In WASP (World-friendly Active packets for ephemeral StateProcessing) we attempt
to overcome such situations by replacing the pre-defined generic operations of ESP by
“microcode” carried by packets themselves, much like earlyworks in Active Network-
ing suggested thatcapsuleswould carry their own forwarding code instead of using IP’s
generic function, with the notable difference that an ESP operation is orders of magni-
tude simpler than IP forwarding. A WASP router is thus in manyways similar to an
ESP router, with its packet classifier, its ephemeral storesand its IP routing logic, but it
replaces the set of pre-defined (and pre-compiled) operations with an interpreter for the
program expressed by the microcode.

Fig. 1.2 shows the code to be attached to a WASP packet to implement the “sumstore”
instruction. Each of these “micro-instructions” is one byte long in the packet’s program.
TheVirtual Processing Unitinterpreting these packets is detailed in section 4.2. For now,
we can assume that WASP works like a stack-based CPU. OperandsA and B are placed on
the stack (lines 1-3) and then added together (4). The “INX” modifier advances the “data
pointer”, accessing packet’s operands in a way that might remind you Turing machines,

4 CHAPTER 1. INTRODUCTION

and when “insert” is invoked, the data pointer is over “Sum Tag”. The value on top of the
stack is thus written under the key “Sum Tag” in the ephemeralstore (5), after which the
packet is forwarded.

1.4 More Building Blocks

In addition to that interpreter, WASP also extends the environment provided by ESP. It is
for instance possible to retrieve basic statistics about a given interface or generic informa-
tion about the router itself (such as its network address, QoS and multicasting abilities or a
local time counter). These additional building blocks enable interesting network monitor-
ing functions which can benefit from the ephemeral store, butthat weren’t possible with
ESP alone. With the sole addition of a local time stamp, for instance, an end-user appli-
cation can program packets to monitor thejitter1 they experience within a network. The
potential benefit of such measurements to validate inter-domain service layer agreement
(SLA) has been presented in [Boschi05].

The local timet0 observed when packetP0 crosses the router is written in the epheme-
ral store and next packetP1 can compare this with observed local timet1 and build av-
erage, maximum and minimum values over a few packets (how fewshould be decided
according to the “ephemerity” of the store) before a specialpacket collect those values in
each router.

Other statistics such as depth of output buffers, transmission errors, etc. or access to
the network packet header will of course allow more applications. Those applications
mainly focus onsmall tasksthat could be helpful for monitoring or detecting properties
of specific network areas such as path taken by a given flow or a tree towards a given
destination from multiple sources. In parallel, WASP may also be a key feature to ease the
deployment of fully distributed systems such as peer-to-peer overlays since its presence
within the network could naturally replace things that currently require centralized servers
such as discovering existing peers of a community.

1.5 Project Goal

In this work, we have defined and implemented a reference version of the WASP VPU that
has been integrated in the ESP implementation for Linux/netfilter architecture. Whether
interpretation of WASP “bytecode” programs on a router could be made “too cheap to
meter” as ESP is not obvious, and one of the challenges we explored with that reference
implementation is what techniques can make the interpretercompetitive over native code
that implements ESP operations in an ESP router before an implementation based on
IXP2400 network processor could be envisioned.

ESP had a very conservative approach about packet sources and destination addresses,
in the sense that all a packet could do to affect its forwarding is to drop itself. In WASP,
we investigate to what extent we can offer more flexibility tothe network programmer. In

1variation of inter-packet reception time

1.6. STRUCTURE OF THIS WORK 5

many cases it can be interesting to allow packets to return prematurely to their source or
to allow them to change their destination under strict control of the router.

A cornerstone of this project was the implementation of the WASP interpreter on a
IXP2xxx network processor. Along with this document, we produced a proof-of con-
cept implementation of the interpreter on a “filter” box in order to study its performance
compared to a native operation as in ESP, and whether it is realistic to hope wire speed
processing of WASP packets.

Finally, we intended to explore the potential applicationsof our new framework. From
the start, it was felt that most interesting WASP applications would be in a “middleware”
role where it can offer support and network knowledge that distributed applications typi-
cally lack. This is probably the aspect of this thesis where most of the future work should
be done, building real test cases with modified applicationsand IXP or x86 variant of the
WASP filter box.

WASP initially stood for “Weightless Active packet for ephemeral State Processing”.
While working on the project it has become clearer and clearerthat “W” could not be
“Weightless” (as low as we made it, thereis an overhead against ESP) but should rather be
“World-friendly”. An architecture like WASP would have no chance to escape research
labs nowadays if it were notInherentlySafe andResource-Aware for both theRouters,
NetworkOperators andEnd-User point of view. We hope the reader will agree with the fact
that “WASP” sounds better that “ISRARNOEUASP” and forgive theresulting buzzword.

1.6 Structure of This Work

In chapter 2, we will review active networking research and cover the major active plat-
forms that have inspired the development of the WASP project. Chapter 3 will then give
the reader an overview of what network processors look like and how they can be used to
build programmable routers. We will detail the IXP2400 processor that is being used in
this work as well as the development environment around theENP-2611Radisys card, a
commercial product embedding IXP2400 core in a Gigabit-router-on-PCI-board.

Chapter 4 presents our WASP architecture, its internal design and some applications
it can support in addition to ESP operations. It will also present the WASP prototype for
the Linux kernel and results of performance benchmarks. TheIXP2400 implementation
is then discussed and compared to ESP in chapter 5.

WASP can also have a great impact as amiddlewarefor larger distributed systems. In
chapter 6, we illustrate this role through two examples: service discovery and boosting
joining procedures in a peer-to-peer community.

In chapter 7, we explore the benefits and drawback of allowingWASP to alter the
destination of packets, a feature that could potentially boost the flexibility of the platform,
but that turned out to be unpractical when trying to implement it using WASP only.

Our conclusions are finally presented in chapter 8.
The reader can find detailed programming information about the VPU in appendix A.

For reader’s comfort, we included the packet formats and pseudocode of ESP operations
in the appendix B (original documentation in from [Calvert05w]), facing the correspond-

6 CHAPTER 1. INTRODUCTION

ing WASP microbytes emulating them with the VPU. Full sources of our reference im-
plementation can be found online [Martin06w]. The detail ofpatches we brought to the
esp-ixp2400 package is given in appendix C.

1.7 Previous Publications

We presented WASP router and the aspects relative to rerouting at IFIP International
Working Conference on Active Networks (IWAN’05) in [Martin05b]. A previous paper
presented at “Active and Programmable Grid Architecture and Components” workshop of
ICCS 2005 ([Martin05]) addressed the potential application of WASP as a service discov-
ery framework. The aspects of using WASP as a peer-to-peer discovery middleware have
been presented at the 1st IEEE Workshop on Autonomic Communications and Network
Management (ACNM’07) in [Martin07].

Besides those papers that are directly related to this work, we presented RADAR in
[Martin03] and [Martin02], a topology-discovery framework specially designed to meet
the lack of automatic setup of overlays for ANTS heterogeneous networks. Some of the
aspects of RADAR can be useful when using WASP for service discovery, and in other
aspects, WASP could be used as a substitute for RADAR, providing a way to discover
“active forwarders” in a network without requiring the complete active platform to be
deployed in all equipment.

A derived version of our “state of the art” chapter and “service discovery” section
have been integrated in the deliverables 1.1 [Jelger06] and2.1 [Fdida06] of the European
IST “ANA” Project (Autonomic Network Architecture), respectively.

Chapter 2

Active Networks

Captain’s log, stellar date 139.165.223.2
It’s now been weeks since we’re stuck in
Autonomous System 7007, looking for a
class C domain we could land on ...

Abstract

This chapter gives the reader an overview of past research inActive Networks, and more
specifically, focusses on the applications that motivated the Active Networks approach –
most of which have then turned into “use cases” for many researchers.

We also study the concepts and mechanisms in use in three “major” platforms against
which WASP will be compared later in this work.

2.1 What Are Active Networks

In the traditional model of Internet, router software contains the whole logic to forward
packets to the proper interface solely based on thedestination addresscarried by packets
and the content of therouting table. All the additional complexity (congestion control,
error recovery) is handled by end systems. Nowadays this simple “store and forward”
model is extended over and over to provide more security (firewalling and filtering rules),
better guarantees (differentiated services through queueing and scheduling) and improved
performance (explicit congestion notification, local packet caching and retransmission).

Breaking with that model, the DARPA “Active Networks” projectproposed that end-
systems (and thus end-users) could replace that plethora ofspecialised protocols with
programsinjected into the network and processed by the routers, which would turn in
someexecution environmentcombined with an abstract operating system [DARPA99]
that would coordinate the evaluation of those programs.

2.1.1 Packets Carrying Programs

Amongst the proposed models, thecapsuleis a paradigm where each packet contains
the complete program stating each step to be performed in order to forward the packet.
A typical capsule will read some packet status, lookup for information left in the active
router by other capsules and then issue a “forwarding table”lookup to the NodeOS to
know on which interface it will go. When pushed to the extreme,the capsule could even

7

8 CHAPTER 2. ACTIVE NETWORKS

choose its position in the interface’s queues or completelyhandle its own forwarding
table. Since it’s fairly difficult to put such complex programs within data packets, the
ANTS project [Wetherall98] proposed that code should actually be downloaded separately
andcachedon the router. Each ANTS capsule only carries areferenceof the code that
should be used (computed from a MD5 hash of that code) for the purpose of locating the
appropriate code in cache or to download it from the previousnode.

On the other side, in the CANEs project [Merugu99, Sanders01], programmability is
only offered at pre-definedslotsthat are present in agenericpacket processing function.
In essence, this is very close to the programming model ofnetfilter in Linux kernel.

The various active platforms proposed usually differ by thetechnique they use for
transporting code, by the control they offer on the underlying node and the mechanisms
they enforce to ensure proper operation of the node.

Running user-issued programs within the network has howeverraised a number of is-
sues. While many approaches have been envisioned to make those programs safe (through
interpretation or sandboxing, for instance), or give proofof their safety (known as proof-
carrying code), it remains unlikely that we could afford such checks for every data flow
the router should handle, and the deeper we go into the network, the more unlikely it
becomes.

2.1.2 Programmable Switches

For the network operators point of view, giving user controlon how the packet should be
handled is perceived as a threat rather than a progress, since planning and provisioning
bandwidth becomes almost impossible. However, the idea of having quickly deployable
packet-processing functions on demand has received significant interest. The notion of
active servicesencompasses those projects where extensible functionalities are available
to the user by means of operator-providedplugins. The selection of those plugins, the sub-
set of nodes where they could be installed and the downloading and installation procedure
remains under the strict (automated) control of the networkoperator.

The way users specify which active services should be applied to their own packets
may vary from platform to platform, but the general trend is to opt for a web service
where the users set upoverlay topologiesinterconnecting sites that should benefit of the
same service. The main drawback of this approach is that it’soften hard to extend it to
the interdomain, since it’s unlikely that all the operatorson an Internet path will agree on
which plugins to provide, the very same way they don’t agree on a global multicast or
QoS infrastructure.

It is therefore not surprising that research being done in “programmable” networks
aims at different goals than “active” networks proper, for instance more focusing on
techniques that allow quick deployment and autonomic reconfiguration of distributed
Spam/DDoS/Worms detection and prevention mechanisms for the operator rather than
offering more flexibility to the end-users.

2.1. WHAT ARE ACTIVE NETWORKS 9

2.1.3 Deploying Active Networks

How could we test a new network paradigm that changes even theway forwarding is
achieved ? The idea of having “native” packet format for active packets, replacing even
the IP layer, and being exchanged only between active routers has been abandoned quite
early, as well as the idea of using something else than IP for locating machines that were
part of the active network.

Yet, it was necessary, for testing purpose, to have paths with active routerswithin the
core network, so the A-Bone [Berson02] project has been set up and offered NodeOS-
compliant platforms for packets carrying the Active Network Encapsulation Protocol
(ANEP) header.

Apart from test bed environments, however, it’s unrealistic to expect every router to
be active (and to support the execution environment a given active packet requires). Core
routers typically handle millions of flow (c.f. [Sivakumar00]) and therefore need to be as
stateless as possible. Moreover, technologies like MPLS are common within the network
core, meaning that the packet might actually not evenseecore routers.

In several proposed architectures, only theedgesof a domain are active and intercon-
nected with legacy hardware. The main two proposed approaches to handle heterogeneity
of active/legacy nodes within the network areactive optionandoverlays. In the overlay
approach, active nodes in the network are identified and connected to each other by means
of tunnels, making the active packet appear as a legacy packet until thenext active node
receives it, and making the tunnel appear just as a point-to-point wire for the active nodes.

On the other side, the active option paradigm [Wethereall96] suggests that active
routers will be able to identify active packets and do what’srequired and that legacy
router will handle them exactly the way they handle legacy packets. In this framework, it
is up to the active protocol designer to ensure that her solution keeps working (or degrades
gracefully) when the density of active nodes in the system decreases.

Both approaches have benefits and drawbacks. While overlays maintain the illu-
sion of a fully-active network, they involve substantial building and maintenance over-
head. Several works explore how this can be done in specific applications (such as
YOID [Francis00] in the case of multicast transmission or Chord and Pastry [Stoica01,
Rowstron01] for distributed hash tables), but dealing with unplanned overlay require-
ments across different network operators remains unsolvedso far and solutions sketched
such as X-Bone or OPUS [Touch00, Braynard02] require a quite heavy infrastructure for
operating successfully.

Another challenge for overlays is to maintain the illusion that the tunnel has fore-
seeable characteristics while the underlying network might very well change the route
tunnelled packets take, suffer from congestions due to “perpendicular” traffic, etc. A reg-
ular point-to-point wire will not reorder packets it carries; a tunnel could very well do,
and it is not obvious to predict when it will do1.

Several parameters distinguish overlay networks from ’real’ networks, like the fact
that link costs may change at any time (due to a change in the underlying topology), or
the fact that there’s usually no broadcast facility to discover peer routers.

1This is discussed in section III (Protean Network Management) of [Sivakumar00]

10 CHAPTER 2. ACTIVE NETWORKS

With the “active option” approach, no such infrastructure is required, but we might
very well find no active router on a given path while a small deviation of the standard path
might have found one. Moreover, it’s up to the application designer to ensure its solution
degrades nicely when fewer nodes in the system are active.

[Sivakumar00] highlights 4 questions to be answered by an active network architec-
ture:

1. Where should active routers be placed in the networks?

2. If not all routers are active, how can we abstract the stateof ’non-active’ portions
of the path?

3. How do active routers discover and communicate with otheractive routers?

4. How do users discover third-party services?

2.1.4 Offloading Active Services

To some extent, many of the applications suggested by the active network community do
not need to take placeon the routers. They mainly need to be appliedwithin the network.
If an overlay topology is built, nothing actually requires that the machines that process
active packetsare the physical devices that forward the packets.

In many “high-performance active node” research [Calvert99], active packets are iden-
tified by the ingress line card and dispatched through the switch fabric to a “processing
card”, an additional hardware component that acts as a line card as far as the switch fabric
is concerned, but which actually features general-purposeprocessor capable of doing the
active processing required and then re-inject the packet inthe switch fabric once its actual
destination (or queue level) has been decided.

The Tamanoir Active Node [Gelas02] extends this concept by suggesting the use of a
processors cluster site connected to the border routers so that even heavy tasks (such as
video flow transcoding) can be achieved at high rates.

However, the authors of [Sivakumar99] claim this approach cannot effectively support
many of the services that motivated the design of active networks in first place. It would
be for instance more difficult for an “offloaded” active service to know the current state
of the routers it monitors (e.g. what is theinstantaneous loss rateof a wireless link,
and should we provide more forwarding error code to increasethe chance that the packet
transmits successfully).

2.2 Major Active Platforms

2.2.1 ANTS

ANTS [Wetherall01] is a capsule-oriented platform, where code used for packet process-
ing has access to a limited set of primitives:

• environment access functions such as retrieving node address, channel properties,
localtime.

2.2. MAJOR ACTIVE PLATFORMS 11

• store and retrieve data from the protocol-specificsoft-store
• route the capsule towards another node or deliver it to a local application.

Capsules code is organised intoprotocols(e.g. set of capsules that share code and
have access to the samesoft-storeon a router). Both capsule and execution environment is
written in JAVA, which gives the portability, mobile code support and a good substrate for
the required safety. ANTS comes with its own code download mechanism, based on MD5
hashing of the required bytecode (carried by the capsules),so that theprevious active node
can be requested to transmit the code group needed for interpretation of a given capsule
while maintaining the guarantee that the code that will operate on the capsuleis the code
expected to be used2.

An open-source distribution of ANTS running on top of the Java Active NodeOS
([Tullman01]) is available at university of Utah since 2001, which has led to a collection
of ANTS-derivative works, some improving the performance while maintaining the pro-
gramming model, others providing alternate code download mechanisms to keep services
deployment under the control of the network operator. While ANTS itself supports par-
tially active networks, nothing is provided to automate theprocess of setting up neighbour
active routers. In the specifications, ANTS node could also host variousservicesthat cap-
sules could connect to using thefindExtension primitive. Such services could have
featured a database lookup, or any other ’specialised’ function, but it has - to our best
knowledge - never been used or implemented.

Beyond the fact that its unclear a heavy environment such as JAVA can be supported
in a core router3, the design of ANTS raises other issues.

First, each protocol has the option of storing data in thesoft store(a key-based object
storage). These data can be explicitly removed by the protocol or they can be reclaimed
by the node after a pre-defined ’idle’ timeout. Every time a specific item in the soft store
is reused, the ’idle’ timeout is restarted, which means a thin flow of capsules is sufficient
to lock some memory on the node for arbitrarily long periods of time. To keep things
running, ANTS will use per-context memory allocators, making sure than one protocol
cannot consume the whole memory of the node. However, defining the appropriate limit
while maximizing the number of running protocols is not a trivial task. This however im-
plies that several ’contexts’ may have to synchronise themselves and cooperate to handle
a capsule, for instance when code for that capsule need to be downloaded or when the
capsule is delivered to an application, which results in additional context switching and
inter-context communication overhead.

In addition to ease memory management, per-protocol store is a primary requirement
to ensure it is not possible to write a ’scanning’ protocol that crawls the network, detect-
ing what other protocols are running and modifying their state for malicious purposes:
protocols only compete for resources but they do not interfere with each other state or
capsules.

2as long as we trust MD5 as a one-way hash function, and if we cantrust the router operator to run a
properly-implemented ANTS router

3[Wetherall99] reports 4,000,000 packets/sec (minimal packet size of 70 bytes at OC-48 wire speed) in
the CISCO 12000 series, cf. [Tolly99]. On the other hand, the“Click Modular Router” achieves ’only’
70,000 packets per seconds on PC hardware according to R. Morris et al. (SOSP’99)

12 CHAPTER 2. ACTIVE NETWORKS

By a sophisticated combination of JAVA sandboxing features,appropriate design pat-
terns for exposing information about the node without letting capsule code alter them, and
thanks to the inherent type-safety and bounds-checking of the language, ANTS manages
however to keep the node as a safe place for everyone – what alternate solutions based
on native code cannot usually enforce unless the code has been compiled locally with a
’secure’ compiler adding safety checks.

Yet, malicious codemaybe written in the ANTS toolkit. Because the JAVA language
provides no mechanism to guarantee code completion in bounded time constraint, even
a small capsule can consume CPU resource indefinitely. In ANTS/Janos platform, this
is achieved bywatchdog timersthat will ensure long-running forwarding routines are
terminated. Once again, it is not obvious to define those watchdog timers so that they
catchonlymisbehaving code. A more concerning issue is that, according to Hawblitzel et
al. [Hawblitzel98], it is unsafe to terminate runaway threads in the JVM4.

A steady flow of capsules where each capsule executes a small action could very well
be consuming the same amount of CPU resources as a sparse flow where each capsule
asks for long operations and yet the later one would be terminated by the watchdog and
the code would likely to be tagged as misbehaving, preventing subsequent capsules with
the same code to execute on the node.

From [Wetherall99], there’s an intriguing idea that TTL-based bounds may not be
enough (even in the ’PLAN’ approach where TTL of child packets is subtracted from
TTL of parent packet), because they do not prevent a given packet to consume all its
resourcein a specific location. In other words, an initial resource bound required to reach
a fair amount of receivers through multicast-like service may still allow an attacker to
send a capsule that quickly reaches its target and then loopsor ping-pongs between a few
systems in the target’s domain5.

2.2.2 Protean

The PROgrammable TEchnology for Active Networks project [Sivakumar00] follows the
’extensible services’ approach. A common packet classifierdecides whichuser network
context(UNC) should be applied to each packet. Those contexts contain a collection of
(event, handler)binding, customizing the processing that the packet will receive. Events
include system events such as “incoming packet”, “packet ready for transmission” or
“packet dropped”, but also triggering of periodic timers orcustom events that other event
handlers fire off. The handlers are kept in dynamically loadable kernel modules, identified
via unique service profilesand optionally retrieved from other nodes using the dedicated
SPINE infrastructure.

The protean switch is equipped with a compiler for a safe subset of C language (subC,
see [Sivakumar99b]) that will produce native code safe for kernel-level operations out of

4quoted from [Moore02b]
5the authors of [Wetherall99] suggests that (1) code that canbe proved “safe” can get executed (e.g.

forwards toward fixed destination and don’t create clones),(2) “unsafe” code is reviewed and validated by
a trusted authority using digital signature that can be checked by active node to know whether they can be
running the stuff without headaches and (3) that remaining code gets “best effort” servicing

2.2. MAJOR ACTIVE PLATFORMS 13

source text downloaded from a nearby cache or directly from the source – a technique that
is quite common in the “programmable switch” approach6. From a security perspective
however, this might be easier to fool than ANTS’s hashing scheme (e.g. nothing guar-
antees that the source retrieved from a nearby cache will actually do what the end-user
expects).

Unlike what happens inANTS, it does not only define the node architecture, but also
network services that are required to support operations ofthe nodes. Among other things,
the PROTEAN framework suggests that only a portion of the nodes – the edge of the
domain – might be programmable by the user, for scalability purposes. In addition, PRO-
TEAN comes with its own hierarchical lookup service to retrieve the storage location of a
code module based on compound names such as “edu.uiuc.crhc.timely.siva.md5cksum”.
Finally, PROTEAN offers alink abstractionto compute and provide estimated character-
istics of tunnels between programmable nodes in terms of loss rate, delay and bandwidth,
helping the services programmer build services that will work even when not all nodes
are active.

2.2.3 PLANet / SwitchWare

Compared to most other projects that distribute the active code either viaout-of-band
mechanism (e.g. active packets contain an identifier used toretrieve the plugin either from
a cache or from a code server [Bossardt02]) or viain-bandmechanism (e.g. the code is
present in the packet), PLANet uses an interesting mix of thetwo. The active packets
contain scripts expressed in a safe language – PLAN [Hicks98]: A Packet Language for
Active Networks – that will make use of out-of-band installed active extensionsthat are
under the control of the network operator. The PLAN scripts therefore acts as a “glue”
for operator-offered services composition.

Safety and security inPLAN is achieved through the language design rather than from
virtual machine properties. PLAN is a functional language whose expressibility is limited
but that guarantees termination of programs. Active extension can balance that limitation
by offering more complex services.

One of the main drawbacks of PLAN is that the program representation can be quite
long and that converting that representation into something that can be handled by the
interpreter (e.g. parsing the code, unmarshalling packet-carried data) can be inefficient.
SNAP (Safe Networking with Active Packets [Moore99]) is another packet language de-
fined in the context of theSwitchWareproject of University of Pennsylvania designed to
fix that problem. While PLAN uses a high-level functional language that has to be con-
verted between network representation and executable representation at each node, SNAP
bytecode is executablein situ in the packet buffer, combining a compact representation
with high speed interpretation.

For a programmer’s point of view, SNAP splits the packet between “stack” and “heap”,
where the heap contains for instance the data arrays for the active extensions. The authors
of SNAP have proven that each instruction either grows the stack by one item, or shrinks
the stack. Moreover, SNAP can only takeforward jumps, which means that evaluation

6the OKE Corral (IWAN’2002) uses similar approach

14 CHAPTER 2. ACTIVE NETWORKS

time is now alinear function of the code size (in PLAN, the execution time could be
bounded by a function of the code size as well, but it could beexponential). Finally, when
a new packet is sent, its initialresource countervalue is subtracted.

As a result, if we consider a set of packetsN = P1, . . . , Pn in the network, the sum
of resource counters for each packet is atermination functionfor the computation ex-
pressed by those packets, and thus bounds the overall amountof processing required on
that packets. The following properties are demonstrated onSNAP packets of length|p|
(in bytes):

1. On any node, processing a packetp only takesO(|p|).
2. On any node, processing a packetp only requiresO(|p|) memory.
3. The overall network bandwidth consumed by a packetp is at mostO(n|p|) where

n is the resource bound of the packet at its creation.

An exhaustive list of SNAP bytecode is given in Jonathan T. Moore’s dissertation
“Practical Active Packets” [Moore02]. Among the interesting derivative works, a com-
piler to translate PLAN into SNAP is presented in [Hicks01] and a just-in-time compiler
of SNAP bytecode on the PowerNP network processor is presented in [Kind02].

2.3 Sample applications for Active Networks

Several proposed applications of active networks proposedas “show cases” have become
so popular in the active networks community that they’re nowoften reused as use cases for
people designing new active platforms. This section presents some of those applications,
highlighting the possible benefit of active networks in those cases.

An interesting investigation found in [Sivakumar00] is to classify the services accord-
ing to the requirements they have:

routing the service allows the modification of the path packets take,either to provide
better quality of service, multipath routing for resilience, or mobility support.

differentiation the service provides differential packet processing by selecting schedul-
ing, dropping priority, etc. to be applied.

data manipulation services like transcoding, compression, decompression, encryption,
decryption operate directly on the application data flow, modifying even the payload
(and thus potentially the number of packets and their size) of the flow.

data forwarding services may alter the end-to-end communications by caching, snoop-
ing and retransmitting data, but they do not “produce” new data themselves.

2.3.1 Active Caches

In several client-server applications, including the Web,user-perceived performance ben-
efits of the presence ofcacheswithin the network, installed on intermediate systems (usu-
ally proxies). Since only a small fraction of available content (i.e. thepopular con-
tent) accounts for most of the traffic, keeping a copy of popular items in a cache located

2.3. SAMPLE APPLICATIONS FOR ACTIVE NETWORKS 15

Figure 2.1: A uncompressed video flow (top) and the corresponding keyframes (1,5) and
deltaframes(2-4) flow

nearby clients usually save both server bandwidth and request latency. [Arlitt95] esti-
mates that only 0.3 to 2.1 percent of server-offered contentis requested, and that it is
frequent that only 10% of the content accounts for up to 95% ofall requests. Several
studies [Lopez95, Bowman95, Gwertzman95] have exhibited the potential advantage of
hierarchical distributed caches where a local cache miss can be resolved at sibling or par-
ent caches. The Internet Caching Protocol [Wessels97] is explicitly designed for such
cases.

Beyond Web content caching [Lefèvre03], the RESAM Laboratoryof ENS-Lyon
combinesInternet Backplane Protocol([Plank01]) with their Tamanoir architecture to
provide a large caching facility with a world-available API, used for instance in the im-
plementation of multicastrepair serversor as a repository for large e-mail attachments
([Bassi02]). Using active networking, it is also possible toget rid of the management
hassle inherent to hierarchical caches. Rather than having afew proxy caches with large
storage capabilities, [Bhattach.98] suggests that all the nodes should be involved and pro-
vide room for a few objects. Those caching routers use a self-organising policy to know
what router should cache what object. The “lookaround” policy suggests to reserve a
small portion of the storage capacity to keeppointersto objects stored in neighbouring
nodes, a scheme that we find back in peer-to-peer distributedstorage research such as the
OceanStore project [Kubiatowicz00].

2.3.2 Multimedia Flow Transcoder

MPEG Encoding

A video MPEG flow consists offrames, each encoding the image to be viewed at a given
time to render the movie. Some of these frames (I-frame) are independent of any other
frame and are encoded the same way as a still JPEG picture. Such “Intra-frames”, also
called “keyframes” usually provide highly redundant information over time, and thus
mainly serve as reference to “delta” frames such as P-frames(predictive) or B-frames
(bidirectional). P-frames encode only the blocks that differ between previous I-frame and

16 CHAPTER 2. ACTIVE NETWORKS

the frame to be rendered, making compression more efficient e.g. when items are ani-
mated over a still background, while B-frames may reference to both previous and next
I-frames.

The price to pay for that improved compression is that a P- or B-frame cannot be
rendered properly without its corresponding I-frame(s).

Transcoding

A problem that arises when one tries to send a multimedia flow to a collection of receivers
is that all the receivers might not have the same capabilities[Tschudin98]: some may lack
the CPU power to decode a more complex encoding, others may nothave the required
bandwidth to support the whole flow. Others, again, might be hardcoded to support some
encoding and know nothing about the newer technologies the sender is streaming.

The idea of active video/audio transcoders [Amir98] was to detect those situations
and to install transparent repeaters in the network that would help the source by providing
streams with lower qualities (and lower bandwidth) or transcode the whole stream to a
newer encoding (such as MPEG to H.323 conversion and back). While this is a good ex-
ample of CPU-intensive feature that could happen in the core network, it is quite arguable
(and has been often criticised) whether it’s a good thing to have it within the network
rather than at the source:

1. unless the stream originates from a regular user with a low-bandwidth line, offering
both streams at the source is a quite valid option,

2. recently introduced MPEG2000 encoding (and all previouswavelets encoding pro-
totypes) allow to scale down the quality by just dropping “extra frames”, making
decoding-and-recoding obsolete.

In many scenarios, activetranscodingcould thus be efficiently replaced by active
dropping, making sure that, if not enough resource is available to carry the whole stream,
then at least the most interesting parts of the stream are indeed received. Early works with
MPEG [Bhattachrjee96] have shown that dropping entire groupof pictures or dropping
B-frames when I-frames’s fate is uncertain can lead to significant improvement on the
received signal. With layered video streaming in general, and MPEG2000 specifically, it
gets even easier to keep useful information with a reduced bitrate since the encoding is
organised in such a way that it’s sufficient to drop packets that belong to one layer to get
smooth degradation of stream quality.

Yet, in some specific applications [Sacks05], video transcoding remains an interesting
option, especially when it appears that channel propertieshave evolved and that more
forward-error-code is now required to have proper transmission.

2.3.3 MergeCast and video conferencing

Besides unicast and multicast, active networks can potentially support more paradigms
for exchanging packets.Anycast(sending a packet towards a group, guaranteeing that at
least one member of the group will get the information) is oneof them. Another approach

2.3. SAMPLE APPLICATIONS FOR ACTIVE NETWORKS 17

that has received substantial attention from the active networks research community is
theoppositefunction of multicast, where a large amount of senders want to report infor-
mation towards a single receiver. This may happen in conferencing environments (where
everyone should receive an audio stream that is obtained by combining the individual au-
dio flows of each member), but it is also required as soon as feedback is wanted for a
multicast transmission.

The advantage of multicast is that it hides the amount of receivers from the sender,
allowing to send a single packet to an arbitrarily large community without modifying
end-system code to make it scale. As soon as one wishes to knowwhether data have
been received properly by the community, it is no longer possible to hide the amount of
receivers from the emitter as he will be exposed to the individual “acknowledge” message
of every receiver, a problem know as “Ack implosion” in the literature. In essence, the
receiver do not need to knowwhich end-system didn’t received the message, not even
how manyof them didn’t receive it properly (though this informationcan be used to set
up state in the network for the retransmission, as shown in [Calvert01]): we only need to
know that a retransmission is needed.

The idea of a concast/mergecast protocol would be that all the individual informa-
tion from the senders can somehow becombinedinto a single message that the receiver
will use. Another common example would be the gathering of temperature monitoring
information from a large amount of sensors: each sensor transmits its actual temperature
and the receiver wants to retrieve things like the average, minimum and maximum val-
ues among all the sensors. Themerge functionin Concast ([Calvert01b]) is defined by 4
methods through which both the multicast acknowledge aggregation, conferencing stream
aggregation, sensor averaging can be expressed:

getTag maps each packet to class of equivalence identifier
merge that actually combines the values contained in the packet with those already ag-

gregated under the router-stored state for that class of equivalence.
done which is a predicate telling whether the whole state has beencomputed or if more

packets are still needed
buildMsg which packs combined state into a new packet when the aggregation of values

is done.

The Application of ESP in video conference support based on aconcast-like services
are detailed in [Bond02]. Similar issues, and other derivingfrom the same generic appli-
cation, are further developed in [Yamamoto03].

2.3.4 Active Monitoring and Management

Network management remains a field where active networks arehighly appealing, and
recent activities aroundautonomic networksare somehow a by-product of active network
research. Collecting information from a large pool of machines, identifying recurring
events or coordinating actions is indeed still impracticalwith standardised tools such as
SNMP. Active management entities could receive complete programs that would watch
a specific combination of events (where traditional management systems only allow to

18 CHAPTER 2. ACTIVE NETWORKS

install triggers for a single event in best cases), and exchange information with peer agents
in other monitored systems or take immediate response as chosen by the management
station.

Another advantage of active management is that it allows thesystem to react even
when the management station is offline. A important number ofrecent active applications
proposals are targeted at Distributed Denial of Service or worm propagation fight-back.
The ability of running downloaded code (from secure sources) that tune packet filters ac-
cording to a new attack signature or to exchange and collect information from thousands
of sites and correlate them to identify the attack pattern stems for programmable equip-
ments very similar to those proposed by active networks, even if here the end-user is not
invited to make use of active code.

Some other platforms such as [Schwartz98] or [Moore02b] also attempt to propose
active network solution for the “management agents” paradigm, coupling a safe language
with an interface to node’s Management Information Base (MIB). Mobile Agents plat-
forms are indeed more interesting if one can be sure that a misbehaving agent (due to a
programming error, for instance), will not be able to remainindefinitely in the network
once unleashed. Resource-bound design of active network canhelp here design agents
that can only live for a few dozen of hops and will then have to return to thenetwork
operations centrewhere the information they gathered is analysed and anotherreplace-
ment agent might be released. With that paradigm, however, we lose a bit of flexibility
for safety, since it means agents cannot “settle in” at a specific node to keep monitoring
it.

2.4 Open Problems and Future Use

While all active platforms aim at running code on routers for the purpose of improving
application performance, it is interesting to note that notall applications of active network
require the same level of participation from the network. Aggregating multimedia flows,
for instance, requires each packet to be processed but it doesn’t necessarily require that
they’re processed on each router. It doesn’t even imply thatthey’re processed on routers
at all. In many such applications, what’s interesting is not to runcodeon the router,
but rather to run codewithin the networkat some crossing point for some flows. In the
Tamanoir project [Gelas02], for instance, one can to take advantage of those cases and
perform the required processing on a cluster co-located with the router and later re-inject
packets into the network.

Technologies for running code safely on remote locations (some of them showing
close similarities with solutions proposed by the active network community) are now
gaining maturity and are widely used in e.g. grid computing ([Allan01]). However, with-
out support from the network, it is still pretty hard to knowwherethe service should be
deployed. Remote code execution frameworks still often assume that the code initiator
knows that already, or just let the scheduler decide based oncomputing resource avail-
ability.

2.4. OPEN PROBLEMS AND FUTURE USE 19

A similar issue is encountered in peer-to-peer networking where it’s usually necessary
to know the location of a peer in advance to be able to join the community.

Safety in Active Networks

It was fairly clear from the start of active network researchthat the environment offering
execution of active code would have to besafe– that is, it would prevent outages caused
by malicious or incorrect code [Moore02]. Avoiding router crash, or interference with
other traffic immediately comes to mind, as well as avoiding active packets to modify
critical resources like the general IP table.

Another desired property is that the active network framework shouldn’t make denial-
of-services easier to build than they already are. If left unconstraint, an active network
technology has the potential to create as many clones of a packet as the user want (possibly
replicating them at a large amount of remote nodes) and make them all go to the same
victim destination. With a low cost for the attacker, the victim will then be overloaded
with junk traffic, preventing it from receiving regular requests. We invite the reader to
refer to [Bossardt05] for details.

To guarantee safety, active platforms usually use sandbox interpreters or type-checking
compilers.

High-Performance Active Networks

Our overview of active networking research wouldn’t be complete without mentioning
projects aiming at high-performance processing of packetswith a dedicated forward-
ing code, like PAN (Practical Active Networking, [Nygren99]), ANN [Decasper99] or
CLARA [Ott00]. Using C rather than interpreted languages or clusters of PCs as routers,
these projects are interesting building blocks for a network operator that wishes to setup a
low-cost packet processing infrastructure and keep the control on what’s being executed.

Long Live Active Networks ?

While interest for active networkingper sehas strongly decreased over the last years, we
can find active and programmable network inspiration in various recent disciplines. This
is e.g., the case in wireless sensor networks, whereretaskingthe nodes (e.g. to adapt their
behaviour to new monitoring objectives or optimize their protocol even after deployment)
involve code dissemination with properties similar to those active networks have proposed
[Levis03].

We can also see inspiration from active networking in the emerging autonomic net-
works research area [Schmid06]. Many of the aspects promoted by autonomic networks
such as automated code distribution or self-configuration have already received significant
research in the context of active network platforms or applications.

Moreover, the promise of additional flexibility and intelligence offered by active net-
work research made it a playground of choice to develop prototypes of what could be
autonomic networks in the future. Many of the applications proposed by active network

20 CHAPTER 2. ACTIVE NETWORKS

researchers were instances of self-optimising services, or more recently, ways to achieve
self-healing of the network.

As detailed in [Xie05], programmable networks are almost mandatory to build a net-
work resilient to flash crowd and DDoS attacks, as new patterns of attack may appear at
any time. Be it for detection modules that depend on application-layer protocol, for appro-
priate push-back protocols (to throttle the offending traffic) or for network reorganisation
(to keep cross-traffic running), attempting to pre-programa resilience solution sounds like
a futile exercise. With the recent development of programmable network hardware such
as network processors or the Field-Programmable Port Extender (FPX), one can now de-
sign pattern-detection engines that enforce malware removal in the access network rather
than on the end-systems [Lockwood03], and with proper collaborations of local security
monitors, we might even have a chance to contain appearing worms before they cause
excessive damage [Hwang05].

Chapter 3

Network Processors

A robot must communicate via a series
[of] beeps and bloops, as long as such ac-
tion does not conflict with the First or Sec-
ond Law.
– Mike McCain, “The Nerd Test”.

Abstract

This chapter will introduce the technology of network processors and detail how those
components can be used in router design. We will then concentrate on the specific hard-
ware used in this thesis (the Intel IXP2400 network processor and the Radisys ENP2611
board), and describe our development environment.

3.1 Routers design

3.1.1 Traditional Routers Design

One cannot design a good active router without first understanding howpacket switches
are built and how they’ve evolved to cope with multi-gigabitinterfaces we have in network
cores nowaday.

The first generation of packet switches (see Fig. 3.1) was built with mainstream com-
puter having severalline cards(e.g. network interface I/O cards) connected to the I/O
bus. The interface cards typically handle LLC and MAC protocols, store received packets
in queues(either in main memory or located on the line card) and notifythe core proces-
sor of the availability of a new packet – usually usinginterruptsmechanism. The main
processor will retrieve the packet from the queue, decide ofthe appropriate output card
according to the routing table and add the packet to the corresponding queue.

While this is inefficient to many aspects, such routers can be build from cheap com-
ponents, operated with free software and still offer decentperformance for individuals,
small communities and corporates. The Linux router on a Intel (or clone) is the best proof
first-generation routers aren’t dead.

However, to handle higher speed with the same technology, the first-generation model
isn’t sufficient. Both the CPU, the IO bus and main memory quickly become bottleneck
points that throttle the router performance. By putting more“intelligence” into the line
cards, it is possible to let them decide themselves the ouputport of each packet, offloading
the main CPU, and providing a naturally scalable and parallelmodel. A more complex

21

22 CHAPTER 3. NETWORK PROCESSORS

Figure 3.1: (left) First Generation Router. Main CPU may be involved in fetching packet from
the linecard (1), moving the packet into the output card’s queue (2) anddelivering packet to the
output linecard (3). (right) 3rd generation packet switch.

bus is however required to allow line cards to directly exchange packets without the help
of the central CPU, which is now only responsible ofcontrolprotocols.

The bus of those second-generation routers can however become a severe bottleneck
at high speeds, since it can only handleonepacket exchange between two line cards at a
time. To allow 1Gb speed on every of 10 line card with any traffic pattern, for instance,
the bus should be able to sustain 10Gb. Third-generation packet switches thus replace
the shared bus by aswitch fabric, a N-to-N connecting element that can allow direct
interconnection of any pair of line cards simultaneously. There are, of course, restrictions
and it is usually not possible for the switch fabric to handlea set of requests where two
input cards request the same output card. In such situation,at least one of the packet will
have to be blocked for another turn.

3.1.2 Intelligent Line Cards and Network Processors

Initially, a line card has little job to do. It is mainly a hardware trie search engine that will
lookup for information associated with a given IP address, plus performing sanity checks
on the packet such as CRC checking, TTL decrementation and the like. As new function-
nality are added to the network, however, the line card also has to identify packets that
belong to the same connection (e.g. for firewalling) or to a given quality of service class.
More complex functions such as enforcing dropping preferences in the output buffers or
scheduling packets from different queues also become frequent.

It is common to design a router as having afast paththat handles all the ’regular’
packets and delegates the remaining packets to a more complex software process (i.e.
the slow path). Fast path is usually implemented using Application Specific Integrated
Circuits and therefore offers virtually no room for extensibility.

Using technologies like ASIC or FPGA, it becomes difficult toface the increasing
demand for such new functionalities. Moreover, once a givenset of functionnalities has
been implemented on a chip, it is not trivial to modify them.Network processorspresent

3.1. ROUTERS DESIGN 23

an alternative design where dedicated processing units canhandle packets even on the
datapath.

Along with those dedicated packet processing elements (e.g. microengineon the Intel
IXP family or picoprocessorsin the IBM PowerNP family), the network processor chip
combines a set of dedicated coprocessors for hashing, trie lookup, packet copies, etc. The
whole chip is operated under the control of an embedded generic-purpose processor that
implements the slowpath functions, forwarding tables maintenance, chip initialization and
guarantees synchronization with network processors on other linecards.

3.1.3 Maximum Headroom, Please ...

As detailed in [Campbel02], it is critical for a router to be able to process even minimal-
size packetsat line rate– that is, even if the router only receive minimal size packets, it
should still be able to fully utilize the output links. If a router fails to meet this require-
ment and, for instance, can only sustain 50Mbps when all packets have the minimal size
(assuming 100Mbps fast Ethernet links), then an attacker can easily deny routing to other
traffic with a traffic volume that the router should normally handle without problems.

It is important not to misinterprete this rule. If we consider Tmin as the transmission
time for a minimal packet, we could be utilizing the full output capacity even if the router
took more thanTmin to forward the packet. The reason is that the forwarding logic could
be usingpipeliningand separate the forwarding process into independentstagesthat can
happen in parallel. If all those stages can complete in less thanTmin then we can still
sustain a full flow of minimum-size packets. If, in addition,a given stagei receivesk
execution units – that is, we have replicated hardware and a dispatching technique that
delivers packets from previous stagei − 1 to unit (i, 1) . . . (i, k) then we can theorically
allow a processing timekTmin for stepi.

3.1.4 PowerNP and IXP2xxx

Among network processors two main designs have drawn more attention in active net-
working research [Sterbenz02], due to the genericity and the performance they are capable
of: the IXP processors family from intel [IntelPRM, Johnson02] and the IBM PowerNP
[Allen03], now known as the HiFn 5NP4G processor [HiFn04]. Both hardware share
similarities in their basic design:

• the presence of a “controlling processor” with slower speedbut capable of every-
thing a generic processor can do,
• multiple sub-processors (pico-processors or microengine) that can manipulate every

packet
• multiple levels of memory, with variable size and latencies, and mechanisms in

sub-processors to hide memory latencies.
• co-processors for checksums, trie lookup, encryption/decryption, either on-die with

the core controller and sub-processors or as externally available dedicated units.
• communication interface with either “media chips” (like gigabit ethernet, OC-3

through OC-48) or with a switch fabric.

24 CHAPTER 3. NETWORK PROCESSORS

The main way by which those systems differ is the intended mapping of code blocks
on processing elements. The PowerNP architecture promotesthe “run-to-completion”
model where each packet is handled by a single hardware thread, from reception from
a media card to enqueueing into switch fabric interface. Allthe pico-processors of the
PowerNP share the same code memory which is sensibly larger than the individualcode
storeof IXP’s microengines. In the IXP processor, by contrast, the relatively small micro-
engine’s code store advocates for a pipelined model where each microengine is respon-
sible of a given functionality (receiving, checking sum, looking up IP table, enqueueing)
and has specific hardware resources to allow threads among a single “stage” to cooper-
ate more efficiently. With introduction of IXP2xxx family, this even goes further as each
microengine is natively chained with two other microengines through specific “neighbour
registers”.

Taking results of the previous section into consideration,it becomes obvious why
network processors have such large amount of fairly simple processing elements. The
IXP1200, for instance had 24 execution contexts distributed among 6 microengines. The
IBM PowerNP NP4GS3 has 16 dual-threaded picoprocessors and the next generation of
IXP products (IXP2400) has 8 pipelined microengines with 8 hardware contexts each.
The goal is simple to understand: provide moreheadroomfor interesting packet process-
ing – that is, more instructions cycles available beyond thebare IPv4 forwarding, while
still meeting the “full output link utilization” constraint.

Later products like IXP2800 features up to 16 multithreadedmicroengines, achieving
10Gbps ethernet support with a single chip!

3.1.5 Related Work

In [Spalink01], the authors evaluate various forwarding functions on the IXP1200 pro-
cessor and show what performance we can expect from the router. The problem of dy-
namically creating optimized pipelines has been addressedin [Campbel02] by load-time
modification of code constants to avoid extra memory lookupsused by common dynamic
binding features. Authors of [Kind02] detail the two ’programming models’ for network
processors:run to completionor pipeline and spot that hardware design of a network
processor can make it unsuitable to some model. In the case ofrun-to-completion model,
they implement a just-in-time compiler for SNAP language.

One of the active-network related research activities around network processor focus
at building datapath dynamically [Ruf05], and managing the heterogeneity of resources
(e.g. multiple level of memory, restricted amount of code store, usually split over a poten-
tially high number of locations. An interesting alternative depicted in [Baron05] consists
of using IXP network processor as TCPoffloaderfor high-end servers. Some other appli-
cations are even more “exotic”, using the microengines to accelerate database operators
such as scans and joins [Gold05] or DNA processing [Bos04].

It would of course be over-selective to mention only IXP and PowerNP while the
wikipedia lists about 10 vendors of “network processors”. The term “network processor”
actually hides a much wider variety in hardware designs, dedicated units and programma-
bility, such as CISCO’s NPE-G1, Xelerated X11, C-Port’s C5 DCP andmore [Kohler04].

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 25

Figure 3.2: IXP2400 network processor structure diagram, annotated with timings reported by
[Lu05]

Some, such as the C-Port’s Digital Communication Processor, are even more monstru-
ously powerful than the Intel and IBM products, featuring 16 “channel processors” each
coupled to a programmable Gigabit Ethernet / Packet Over Sonet (POS) physical channel
and a 50Gbps internal bus to interconnect all internal elements. Others such as EZchip
and Lucent processors have well-definedtask-optimized processors(TOP) organized into
distinct pipeline stages. The Xelerated X11 even pushes this approach to the extreme with
24 elements of a “programmable pipeline” (PISC blocks), each allowed to execute a few
instructions per packet before the packet is handed over to the next PISC.

For active networking purposes, these devices are however less pratical to deal with
than IXP features. It’s not rare with the Xelerated processor that packets needs to be
sent over a “loopback” wire after being flagged for additional processing, for instance.
Such considerations give a newer look at works such as NetVM [Baldi05] that attemps
to abstract the particularities of each hardware (including generic programmable devices
such as FPGAs equipped withsoftcoreblocks) into a single model for the programmer.

3.2 Overview of IXP2400 Network Processor

The Intel IXP2400 network processor is a programmable chip capable of processing pack-
ets at rates approaching 4Gbps. The most popular products featuring an IXP2400 are the
Intel IXDP2400 development board and the Radisys ENP-2611 card. The processor itself
doesn’t contain logic to receive and transmit packets over the Gigabit Ethernet or OC-
xx physical medium, but it rather communicates with external IO controllers through a
genericmedia and switch fabric interface(MSF interface). Depending on the board de-
sign, the IXP can be used as a “standalone” component (in the case of Radisys card) or as
a media card for a switch-fabric based system (in the case of IXDP card).

The IXP processor also features components that facilitateits control from the PCI
bus. While in most cases it is just a convenient way to reset thecard or inspect its state, it
can theorically be used to transfer packets (at degraded rates) between several IXP-based

26 CHAPTER 3. NETWORK PROCESSORS

cards connected in a single PC. However, if one wants to build alarger router (cards
mentioned above range from 2 to 4 gigabit ports) with IXP processors, a switch fabric
system and IXP2850-based blades should be preferred.

3.2.1 Processing Elements

At the lowest level, packets received by an IXP equipment will be handled by themi-
croengines. These are 8 independent processors running at 600MHz1 with a dedicated
RISC-inspired instruction set, each having up to 8 hardware contexts (threads) and a con-
trol memory of 4K instructions. Each microengine features 256 general-purpose registers
(GPR) and a local memory of 640 words that can directly feed theALU, plus 256 “trans-
fer registers” and 128 “next neighbor” registers that can beused to communicate with
SRAM, SDRAM and chained microengines.

Each microengine features acontext arbiterthat will perform round-robin selection
among the activable threads everytime the running thread releases the processing hard-
ware (for instance, waiting for a memory operation to complete). Microengines are
chained by hardware, one to another to help build processingpipelines where writes into
the “next neighbor” register of one microengine are immediately available in the “next
neighbor” register of the next microengine for reading, avoiding the need for external
RAM to exchange context information about the packet being processed. If memory la-
tency can be avoided, eachmicrowordof the microengines is processed in one cycle.

Over those microengines stands the XScale core, an ARM5TE-compatible proces-
sor clocked at 600MHz which has access to the same SRAM and SDRAMresources as
the microengines as well as to some of the microengines resources (such as their control
store). The XScale is capable of hosting an embedded system such as QNX, VxWorks or
Linux that will provide a programming environment for the microengines, implementing
control protocols such as ICMP or OSPF, filling forwarding tables used by the micro-
engines, starting and stopping microengines and filling their code store with appropriate
programs. If needed by the network application, the XScale core can also be a good place
to handle “exception” packets such as fragmented packets, ARP requests and whatever
might be processed on a “slow path” due to code size restrictions in the microengines. Un-
like the microengines, the XScale also has code and instruction caches that hides SDRAM
latencies and a Memory Mapping Unit required for Linux operations.

3.2.2 Storage Elements

Much like processing, storage on the IXP platform is split between different units, each
having their own technological properties and being best suited to some aspects of packets
handling. The DRAM2 is the largest one, ranging from 256 to 2GB of memory that use
the same technology as main memory of modern PCs, and the same drawback concerning
access latency. DRAM is appropriate for storing the StrongArm’s operating system and

1according to table 157 of [IntelHRM]
2IXP2xxx models actually use 100MHz DDR SDRAM. We will simplylabel it “DRAM” in this work,

for readability.

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 27

Storage Type access (ns) bus (ns) IXP2400 cycles
External DRAM 226 (+12) 59 (+4) 180
External SRAM 81 (+5) 51 (+4) 84
On-chip scratch 21 (+3) 37 (+3) 38

Local Store 11 (+4) 0 (+4) 11

Table 3.1: IXP2800 memory model used in [Labrecque06]; access external DRAM takes
12+4+226+59=301 ns, 285 of which are "pipelined"

programs and typically used for storing packets that are being forwarded and other bulk
data.

Basing on informations provided in programmer’s reference manual [IntelPRM], we
may assume that DRAM access may take around 150 microengine cycles to complete.
The actual latency of DRAM may depend on the memory actually installed and of the
memory access pattern (see [Kozierok01w]), still results presented in [Labrecque06] and
in [Lu05] confirms that order of magnitude, despite the fact they only consider IXP1200
and IXP28003. The memory-related parameters of that thesis are mentioned in table 3.1,
and illustrate the potential benefit ofburst transfers where the “pipelined” portion will be
incurred only once for several accesses.

The SRAM area typically spans a few megabytes, but it can be accessed twice faster
(with a latency around 85 cycles). Another important factoris that while DRAM only
allows data stores and loads, SRAM is capable of atomic operations (addition, bit set-
ting and clearing or “test-and-set”) and allows individualwords to be locked thanks to a
Content-Addressable Memory (CAM) companion unit. The SRAM will typically contain
structures that needs to be manipulated by several threads in parallel.

When access speed really becomes a critical factor, it is alsopossible to use the on-
chip scratchpadSRAM. The scratchpad only provides a few (16) kilobytes of memory,
but can be accessed in about 16 processor cycles and has the same kind of atomic opera-
tions as the off-chip SRAM. The scratchpad is typically used to store datapath variables,
counters, etc. that need global access but cannot suffer theperformance penalty of an
external memory access.

The other storage facilities (local memory and registers) are duplicated in every mi-
croengine but cannot be accessed from outside. Thelocal memoryprovides 640 words
of storage with a 3 instructions latency, but with mechanisms such as access pipelining
and post-incrementation that can help manipulate that memory without delay cycles. The
register banks are large enough to accomodate not only procedure-local variables but also
application-global variables. While registers are usuallybound to a specific hardware
thread, the microengine assembler provides a facility to allocate and use “global” regis-
ters that will be visible by all the threads of a single microengine.

28 CHAPTER 3. NETWORK PROCESSORS

Figure 3.3: The Radisys ENP2611 card, with 3 optical ports

3.2.3 Developing on the Radisys ENP2611 card

The Radisys ENP2611 card is a PCI card hosting a complete systemwith a IXP2400,
dedicated DRAM and SRAM memory and up to three gigabit ethernetports interfaced
with the MSF through a FPGA bridging chip. Despite the ENP-2611 card has 3 gigabit
ethernet connectors, these are the last things we’ll be using for development. Instead,
the management port – a traditionnal RJ-45 connector for 100BaseT Ethernet will carry
most of the traffic between the XScale embedded operating system (in our case, a patched
version of Linux 2.6.15) and the host machine.

A "null modem" cable (shipped with the card), connects the 3-pin UART slot to the
serial port of the host PC. With a program like minicom installed – or any equivalent pro-
gram you’re happy with – we can connect to the most elementarydevelopment interface
that the card features and control the booting sequence (thecard features a pre-installed
version of RedBoot manager on flash) or run diagnostic tests. Once the system is booted,
the serial interface is also the only console we have until atelnet can be run over the
management port.

It should be noted that what the ENP2611 card really miss is a user-friendly printed
manual with an all-in-one development kit on CD. Most of this section is the result of
several weeks of crawling through kernel sources, downloading of restricted Software
Development Kits at Intel and MontaVista corporations and discussions with people on
the ixp2xxx mailing list. A large amount of our findings have been made public step by
step on the ENP FAQ, now promoted as the accompanying wiki forthe IXP2xxx support
project on SourceForge[Martin06]. Without the work performed by Lennert Buytenhek
to integrate ENP2611 support into linux 2.6.16 kernel, the story would have pretty much
ended here.

3estimations presented here assume IXP2400 is just a IXP2800clocked at 600MHz instead of 1GHz

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 29

Loading Something on the Card

Loading a linux kernel on the ENP is no different from loadinga Unix kernel on a diskless
X workstation, except that we’re now in the 21th century ...

• DHCP configuration: the host (or any other machine on the lab LAN) should be
running a DHCP daemon for giving the card its own IP address. With proper con-
figuration, RedBoot should report the management port’s IP address and the server
it has used just after memory scrubbing. We can notice that itreports MAC address
as well (which can be helpful in DHCP configuration). We can check this step was
successful by just “pinging” the card.
• TFTP configuration: this is the protocol used when loading linux kernels on the

card. Here too, it’s more convenient to have it on the host. It’s as simple as to put
any file in /tftpboot and issue theload -v -r -b 0x02000000 -m tftp
-h xxx.yyy.zzz.uuu /tftpboot/any-file command to check if it can
work properly.
• NFS configuration: only the kernel is transferred to the bootloader. Once it will be

launched, the Linux kernel will need its root filesystem with/dev , /proc and the
appropriate files in/bin and/sbin . MontaVista comes with an almost complete
base filesystem, but an appropriate debian installation will work as well.

Drivers for the ENP2611 card

Together with the core support of the board, the Linux kernelprovides a network driver
(enp2611_mod.ko , developed by Lennert) for the gigabit Ethernet ports. Onlytwo
of the available eight microengines are required for this very simple functionality. Mi-
croengine 0 will be in charge of receiving packets from GigE chips through the Media
Switch interface, and microengine 1 will be transmitting packet of the kernel to the Ether-
net chips. For both, packets are stored in DRAM (that is, whereLinux kernel stands too)
and the hardware-supported ring buffer inscratchpadmemory connects the microengines
with the linux kernel.

However, Lennert’s driver is just that: a driver. While it hasmicrocode loading facil-
ities for its own purposes, it will not help load our microcode into the microengines. To
use the full power of intel’s IXA SDK, we should instead use the device drivers provided
by Intel. These are made of two parts: a user-side library anda kernel-side driver, glued
together by the /dev/medrv0 device. By porting thehalMev2.ko kernel module to the
2.6 kernel architecture, we now have the ability to use the microcode loader for UOF files
(the native binary format used by intel tools) from user programs.

In addition to medrv0 device, application written for the IXA SDK typically use
/dev/spi3br and/dev/pm338xx devices to program the gigabit ethernet hardware
of the ENP card. Examples provided by the IXA SDK as well as demonstration provided
with the ENP SDK are oriented around the idea of a system application that takes the
control of all your board’s resources (microengine, GiGE controllers, SPI3 bridge) for a
given purpose. The code for this application will e.g. issueproper IOCTL calls to enable
reception/transmission by the gigabit ethernet chips, or prepare SRAM/SDRAM values

30 CHAPTER 3. NETWORK PROCESSORS

Figure 3.4: output of thebeautify.pl script: annotated microstore content (left) and register
allocation map (right)

according to the expectations of the code running on microengines. The “system applica-
tion” takes care of loading the UOF file, starting/stopping the microengines and it can as
well report/configure various parameters of the running application.

Like in the case of HalMev2 driver, ENP drivers are specific tolinux 2.4, but hopefully,
they were way smaller than the microengines driver and easier to port to 2.6 kernel.

Improving Our Tools

Writing code for the microengines is one thing, having the code running on the IXP is
another. We need acontrol applicationrunning on the XScale core to transfer the binary
uof file in the control store of the different microengines, using the UCLO (microcode
loader) and the HalMEv2 libraries provided in the IXA SDK.

Based on L. Buytenhek tutorial tools and the control application of the IPv4 forwarder
(part of the ENP2611 development kit) and of the ESP filter, wegrew our own “swiss
army knife” for WASP. More than a mere program loader, our control application for
WASP is capable of reporting and analysing most of the dynamic aspects of WASP and
ESP microblocks behaviours, allowing us to inspect virtually any storage item on the
microengines, either on demand or repeatedly in a pre-programmed statistic-gathering
loop.

While the XScale core can natively only access external memory resources such as
scratchpad, SRAM or DRAM, we used the HAL library to suspend themicroengine we
want to inspect, replace a portion of its microcode store by asampling program that reads
the requested data item that will be then read through a status register.

Based on our experience in operating system kernel development, we also extended
the control application with generic debugging features such as registers inspection, mi-
croengine state dump and breakpoint management. This “debugging shell” in the control
application was preferably used in conjunction of a post-processed HTML view of the
.list files produced by the microassembler, which mixes the actualgenerated machine
code and the (pre-processed) source code.

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 31

These human-readable views of the microengine code store are generated by a home-
brew perl script (beautify.pl , see Fig. 3.4) that process.list files and produces
HTML files of indented, annotated pre-processed code as the microengine see it. Its most
interesting uses were:

1. get a clear view of how code has been pre-processed, and what code (sometimes
out of many hardware-specific alternatives) has actually begenerated even before
giving it a run.

2. the ability to quickly locate all instructions of a certain type (e.g. all references to a
control/status registers, or all the manipulations of scratch rings), even when nested
deep into macros libraries, and immediately see enclosing macros and source lines
involved

3. when given a breakpoint address by the debugger, quickly retrieve the correspond-
ing code in the.list file, see the corresponding source file(s) and obtain registers
references by hovering the source. One can then ask the debugger for each register’s
content.

In order to get a global view of registers allocation and lifetime, and getting ourselves
rid of “too many GPR” assembler errors, we extended the use ofbeautify.plto produce a
mapof the register usage, allowing the developer to get an immediate overview of which
portions of its code use more registers, which register needs to be reallocated to different
physical registers, etc.

At several points, it allowed us to pinpoint registers that were kept for abnormally
long code regions compared to the locations they were supposed to be useful.

32 CHAPTER 3. NETWORK PROCESSORS

Chapter 4

The WASP Platform
WASP is faster than ANTS

Abstract

This chapter describes the components of our architecture:WASP packets, the ephemeral
store and the virtual processor, illustrating their role through simple “use cases” of active
networks.

We will motivate and detail the restrictions we imposed on the architecture to keep it
network and router-friendly. We also give the results of performance comparison against
the ESP active router for the x86 “reference” implementation.

Before going into the details of the WASP router design, it canbe useful to detail what
kind of “applications” WASP targets. First of all, WASP is not a replacement for IP, and
is not concerned withrouting proper. It is rather a pre or post-processing stage that can
be placed between the network and the router core. Second, WASP is designed to handle
small tasks. Both code and data portions of a packet have small size compared to most
active networking architectures, and chances are that all implementations will also restrict
the number of ephemeral store accesses a single packet can request.

To many respects, WASP adheres to the “philosophy” of Ephemeral State Processing
(ESP) and of IP itself by beinganonymous, available to everyone andtoo cheap to mea-
sure. Processing a WASP packet should have the same order of magnitude as processing
an IP packet1 so that a router can still operate at full rate regardless of how many per-
cent of its traffic is actually WASP packets. In addition, a WASP router doesn’t care of
the identity of end-users when it processes packets: anyoneis allowed to manipulate any
entry in the state store2 – much like an IP router doesn’t care about who has sent or will
receive a packet when it forwards it. Those two properties (anonymity and lightweight)
imply that there’s no need for the router to perform authentication of any kind before it
processes a WASP packet and that there’s no need for individual accounting.

A first use case for WASP is the identification of properties ona specific path: as
packets traverse the network, they can gather router IDs, measure how long they remain
on a given node, how long has elapsed since the last packet of the same flow has been

1This is clearly not the case for ANTS capsules, for instance
2with a small exception for “super packets”, as we shall see later in section 4.3.3

33

34 CHAPTER 4. THE WASP PLATFORM

Figure 4.1: A WASP router and WASP execution environment. Gray items mean the VPU has
read-only access to the resource

processed by the router, etc. Yet, it will be up to the end-system application to process
and react to such extra feedback. Another field of application is the coordination of end-
system that contribute to a group without requiring a globalknowledge of that group. ESP
already takes advantage of this for multicast retransmission, but WASP could extend it to
peer-to-peer systems, flash crowd controlling, etc. A smallset of such sample applications
are presented in the next chapter.

Last, but not least, WASP does not place any assumptions on the number of active
nodes in the network to operate properly, and it meets the triple objective ofworld-
friendliness:

User-Friendly: WASP should offer significant programmability while allowing the ap-
plications running on end-systems to know to what extent they can trust what they
get from the active network.

Network-Friendly: WASP should not become a nuisance to networks (and operators). It
should require no configuration from the operator and the network load it produces
should be predictable.

Router-Friendly: Active packets should not be able to harm a router nor degradeits
performance.

4.1 Model of a WASP Router

The overall model of the WASP router is derived from the Ephemeral State Processing
[Calvert02]. The core of the router is theforwarding logic, which implements the basic
IP service consisting of looking up the IP table, switching the packet to the appropriate
output queue(s) and updating the IP header.

Between this core and the network interfaces are the Ephemeral State Stores (ESS)
where WASP processing is applied, as shown on Fig. 4.1. In addition to ephemeral stores
associated with network interfaces, there is a single “center” location which can be used
by more “control-oriented” packets. An active packet processed by the router typically
crosses three logical locations:

1. theincoming ESS, bound to the network interface that received the packet,

2. thecenter ESS, which all packets will traverse, and

4.1. MODEL OF A WASP ROUTER 35

Figure 4.2: WASP packet format, both standalone (left) and piggybacked (right)

3. theoutgoing ESS, bound to the network interface that will transmit the packet.

Each packet can request execution on any combination of these three location but it can
in no way alter the state in other stores. When forwarded from the “southern” interface to
the “eastern” interface, a packet may not, for instance, drop or inspect state in “northern”
or “western” stores.

A special field of the ESP/WASP header3 instructs the router on which locations the
packet requests evaluation. This flexibility allows reduction of processing overhead to
the minimum while enabling interactions between packets coming from a host and pack-
etsreturning tothat host (by e.g. making forward packets using theESP_OUTPUTand
backward packets using theESP_INPUT) as well as enabling interactions between pack-
ets from multiple sources that go to the same destination.

Keeping most of the processing at theinterface cardlevel is a key element for design
scalability: on a router with higher throughput, the processing load can be distributed
among the available processors. As a result, thecenterlocation should be avoided every
time possible and the protocol designer should remain awarethat WASP processing at the
router center might involve the delegation of the packet to ageneric-purpose processor
and that the router implementers might enforce rate-limitation of active packets on that
location.

The specificity of WASP is that each Ephemeral State Store is coupled with aVirtual
Processing Unit(VPU) that handles interactions between state store and packet storage
according to a microcode carried by the packet itself.

4.1.1 WASP Packets

WASP usesin-bandcode transmission: each packet contains its own code and thedata
on which it can operate. The evaluation of packet code (up to 256 bytecoded micro-
instructions calledmicrobytes) terminates when apacket control microbyteis encoun-
tered, which tells the router what to do with the packet. In addition to “forward” and
“drop” semantics, WASP allows the packet to be sent back to the source at any router,

3the loc field, which has one bit forESP_INPUT, ESP_CENTERandESP_OUTPUTrespectively

36 CHAPTER 4. THE WASP PLATFORM

which can be useful when a quick feedback of a discovered state is required (e.g. filtering
more packets in the router ahead of a congestion point).

During interpretation, the data part of the WASP packet is available as a 128 byte
region of random-access memory and only the IP header is readable. Other parts (WASP
bytecode, other IP options, transport payload) are unavailable to WASP code.

As depicted on Fig. 4.2 WASP packets may exist in two flavours,both being inherited
from the ESP framework. The most simple is thestandalone wasp, where the WASP
packet is simply encapsulated in a IP header (just like an ICMPpacket is encapsulated in
IP). This will be the preferred case when WASP is used to implement a new protocol, or
when WASP packets act as autonomous monitors of the network’s state.

On the other side, WASP packets can also bepiggybackedwith other protocols, in
which case they are stored in an “option header” of IP, which may be useful when WASP
is used to regulate the flow of an existing transport protocol.

4.1.2 The WASP Node

Each WASP node has a certain number ofEphemeral State Storesthat will associate 64-bit
keys (also called atag) with small, fixed-size data. Each ESS is associated with aVirtual
Processing Unit(VPU) that processes the WASP packets. Since all exchanges between
packets occur in the ESS, there is no need to store VPU state between the evaluation
of two packets. This greatly simplifies the synchronisationproblems, even on a multi-
processor system, since it means we can bind VPU data to one real CPU rather than to an
ESS.

Before a VPU starts evaluating a packet, it retrieves the nodeand interfaceenviron-
ment variablesand exports them as banks of read-only memory to WASP code. These
variables will typically include the node IP address, netmask, local time, etc. plus statis-
tics about the current interface (recent packet transmission statistics, queues status, etc.),
which can be useful for applications sensible to network conditions.

Considering the restricted resources of network processors, we tried to keep the design
of WASP’s virtual processor as simple as possible, which makes it look more like an
embedded microcontroller than a modern microprocessor, from an architectural point of
view, but the resulting interpreter for the base instruction set is only 4KB long – smaller
than the operation handlers of the native ESP filter.

4.1.3 World-Friendly Platform

WASP is User-Friendly

The additional flexibility provided by the presence of the VPU allows a larger scope of
problems to be addressed and it offers a more natural programming language than ESP’s
high-level instructions. Yet, a WASP router does not alter packet flows of users that de-
cide not to use WASP and do not allow interaction between separate WASP flows unless
end-systems explicitly use the same tags. This goal is very close to theflexibility goal
mentioned by [Moore01] and theusabilitygoal in [Bond02]: offer a easy-to-use interface
to the active network that abstracts the inherent complexity of network programming.

4.2. FROM ESP OPERATIONS TO WASP VPU 37

To achieve that abstract objective, anonymity, automatic management or best-effort ap-
proaches are the keys to “Keep It Small and Scalable” 4.

WASP is Router-Friendly

Even if WASP is based on active packets, it is much more restricted than general-purpose
capsules, and user’s bytecode cannot waste router’s resources. For instance, WASP
bytecode language prohibits backward jumps and all instructions have predictable exe-
cution time, which makes packet processing time trivial to control (as shown in SNAP
[Moore02]), and typically linear with the packet’s size. Router’s memory is of course
taken into account as well, mainly thanks to the ephemeral state store, which automati-
cally reclaims entries a fixed period after their creation.

If such restrictions are impractical for general-purpose services, they perfectly fit the
lightweight control tasks that WASP will have to perform. While alternative solutions
exist, such as associating a counter to any backward jump in the code, we believe the
benefit we could get in WASP is not worth the additional management required.

WASP is Network-Friendly

Even if we take care of router resources, an ill-intentionedactive packet could easily
create an avalanche of clones to overload its destination. Among ‘first generation’ active
platforms, PLAN [Hicks98] was the only project that addressed this issue by making sure
all children’s resource counters receive a portion of the parent’s counter. Unfortunately,
picking a “good” initial resource bound remains a complex issue.

In the case of theWASPplatform, packets do not have the ability to create child
packets unless they are targeted at a multicast address, butthey candrop themselves or
return to their source. If we focus on applications like service discovery or server load
balancing, we have no real need for more: we can store the new destination in the active
packet,return the packet towards its source and let the source issue a new connection
attempt to the real destination.

4.2 From ESP Operations to Wasp VPU

In the original Ephemeral State Processing router, each packet carries opcode and operands
for a singleoperation. This operation, however, is usually rather complex and may in-
volve several ESS references (for reading or writing), access to packet-stored “imme-
diate” values and even perform arithmetic or logic operations. If we transpose these
packet-triggered operations on the ESS to the design of microprocessors, the ESP op-
erations looks like instructions of a Complex Instruction Set Computer (CISC) machine.
As an example, the two operationscount andcollect involved on Fig. 4.3 could be
described as follow:

4http://en.wikipedia.org/wiki/KISS_Principle

38 CHAPTER 4. THE WASP PLATFORM

Figure 4.3: (a) First round labels each node with its number of children withCOUNT packets. (b)
COLLECT packets then compute the local aggregated value and forward it upwardswhen no more
values are expected on the local node

COUNT(value_tag, threshold_imm): retrieveval from the ESS usingvalue_tag and
set val to zero if undefined. Incrementval and store it back in the ESS using
value_tag. Packet is forwarded only ifval is below or equal to thethreshold_imm
parameter carried by the packet.

COLLECT(value_tag, counter_tag, value_imm, operator_imm): retrieveval from the
ESS usingvalue_tag, then apply merging operator onval andvalue_imm and
store the result back in the ESS undervalue_tag. If value_tag was undefined,
the value carried by the packetvalue_imm is stored without applying the oper-
ator. Available operators include addition, minimum and maximum. After this,
counter_tag is used to retrievectr from ESS is decremented and stored back. If the
decremented value ofctr is zero, the packet is forwarded, otherwise, it is dropped.

These are only two “simple” operations out of the 5 defined in [Calvert05w]. Those
two operations are for instance combined in a two-rounds process, illustrated on 4.3 that
could for instance return the maximum value detected by a large set of sensors by having
each sensor sendingCOUNT(T, 1) first and thenCOLLECT(V, T, x,MAX) afterwards.
Note that, as detailed in [Calvert02], this protocol is not protected against packet losses,
but it is protected against machines that are unresponding for a whole round (these will
not send “count” so they do not prevent “collect” packets to go forward). Two other
operationsRCHILD andRCOLLECTare provided when achieving reliable collection of
data is required, requiring 8 and 13 32-bit words of argumenteach.

COUNT(T, 1) is an interesting special case as, if generated from a collection of ma-
chines to the same destination address, it will label each router with the number of “chil-
dren” it has in a distribution tree. Each packet will travel the tree towards the root (its
destination) as long as no other packet with the same tag has passed through there and
stops on the first router that is a “branching point” with packets from other machines.
Note that children in this context will be machinesor routers: in order to know the num-
ber of end-systems, what is required isCOLLECT(T, V, 1, ADD).

To achieve that flexibility, theCOLLECToperation relies on theoperator_imm
field that tells how to combine two values, and branches to oneof the pre-defined handlers
for that operator. A similar behaviour is observed in theCOMPAREinstruction which has
a field selecting amongequal?, less-than?, less-or-equal?, greater-than?andgreater-or-

4.2. FROM ESP OPERATIONS TO WASP VPU 39

equal?predicates. The programming model offered by those instructions remains tedious
to use and master. For a given problem where the designer has the feeling Ephemeral
State Store could be helpful, it is at best unclear of how to use COUNT, COMPAREand
COLLECTto achieve that goal. In many other situation, we just experience the frustration
that the operations defined are too specialised to be of any use.

While ESP itself mainly focuses on multicast, reliable multicast and implementation
of concast-like services [Calvert01b], theephemeral state storeitself could be applied in
many other situations such as setting up and maintaining peer-to-peer overlays, terminal
mobility support, or application-managed packet dropping. The restricted instruction set
is of course not the only limiting factor and thus our proposed architecture also extends
the ESP router with arerouting facility (see Sec. 7.1.2) or with basic node and interfaces
status reporting (see Sec. 4.4.5).

4.2.1 A Virtual Processing Unit for Ephemeral State

Most ESP operations are non-trivial to describe, and their (sometimes lengthy) pseudo-
code often involves temporary variables, primitive operations on the ephemeral store,
packet-stored variables and immediates as well as control structures (e.g. if-then-else
blocks). WASP started as a challenge of designing a small virtual machine that could ex-
press those operations with something looking more likemicrocodefor a virtual proces-
sor. The ephemeral state and the packet-stored variables would then appear like memory
units in that virtual machine just like we have RAM or content-addressable memory in
a real machine. Going further with that concept, decisions of packet forwarding or dis-
carding (and, as we introduced them later,return or reroute) would be control opcodes
just like a regular computer has opcodes for suspending operations, return from procedure
calls, or invoke the operating system.

The most complex of ESP operations features not less than 7 conditional branches but
it still didn’t require a loop-like flow control mechanism. Drawing inspiration fromSNAP
([Moore02]), which also offers programmability through a microcode-like instruction set,
we decided to enforce the absence of loop as a key design element of WASP’s virtual
processor. That certainly reduces the set of applications that can be implemented with
WASP, but it also means that we keep execution time linear with the size of the packet
size, which is a serious advantage to achieve “too cheap to measure” WASP packets.

The fact that the ALU and registers of the WASP VPU are 64-bit wide is of course
motivated by the fact operands of ESP packets, tags and values in the ESS are themselves
64-bit wide. We expect that the additional cost for implementing the VPU on a 32-bit
machine should be affordable compared to the cost required to decode and execute one
extra bytecode. Another nice property of a 64-bit ALU is thatit allows us to manipulate
keys for the ESS easily and maybe combine packet-carried values with ESS values to
create new keys on the fly.

40 CHAPTER 4. THE WASP PLATFORM

Instruction Size

We chose to stick to a single instruction size of one byte as much as possible. In the
context of WASP VPU, compactness of the encoding is certainly a desired property as the
code will be attached to data packets. In a few exceptions, weallow instructions to have
one extra word of immediate operands. While instruction setssuch as x86 may achieve
compact programs, it comes at the cost of a much more complex decoding logic5 that we
cannot afford if we want to meet code storage and execution speed constraints.

Much like a RISC machine, the WASP VPU only offers a limited setof opcodes and it
will often require that an operation such as “add 4 to memory location X” is broken down
into several steps such as loading registers with immediatevalue and memory content,
perform the addition (which operates on registers only) andwrite back to memory. Yet,
RISC machines have longer (usually 4 bytes) instruction words and plenty of general-
purpose registers, which –again– we cannot afford.

Implicit or Explicit Operands

Another discriminating factor in CPU architecture is how operands are “named” in the in-
structions. RISC systems typically have onlyexplicit operands, that is in e.g. an addition,
there are fields for identifying the two source registers as well as the destination registers.
In other architecture, some operands areimplicit, e.g., because one of the source operands
is automatically reused as destination.

Most modern processors can access any register at any time with any opcode. While
this offers a great flexibility for the programmer, it is impractical to interpret, even on an
architecture that has more registers than the interpreted one.

If we consider a virtual instruction such as “add R3, R7, R2”, theinterpreter would
be required to get the current value of the 3rd and 7th registers in the register bank and
store the resulting sum in the 2nd register. We couldn’t map the virtual register bank on
some hardware registers of the real CPU as it would imply the CPUhas to operate not
on a specific register (such as GPR3), but ratheron a register which identity is computed
at run time, based on the fields of the virtual instruction. No instruction set we’re aware
of supports such run-time indexing of the register bank and thus the VPU would have to
emulate its register bank through memory.

As a result, most of the interpreted architectures, including SNAP and WASP6, stick to
a stack-based design where the actual register to be involved in ALUoperation is known
when the interpreter is compiled and where intermediate values are explicitly saved and
restored from a LIFO structure.

Accumulator and Stack

Breaking with the pure stack-based model, we decided to give the VPU anaccumulator
register that will be the sole location manipulated by most of the opcodes. Much like the

5integer addition has 14 different encodings, not mentioning the optional prefixes
6This is e.g., the case of JAVA and PostScript languages as well.

4.2. FROM ESP OPERATIONS TO WASP VPU 41

Figure 4.4: VPU interpretation of COUNT WASP packet

design around an accumulator simplified multiplexing/demultiplexing logic of ancient 8-
bit microprocessors, the VPU interpreter code for almost all the opcodes will be simplified
if we know the accumulator is the only place where results go,as we can then map it
directly to one of the real processor’s registers. Single-operand instructions such asinc,
decandnotwill for instance operate directly on the accumulator. When asecond operand
is required for arithmetic and logic operations, the top of stack is used. The stack is
manipulated throughpushandpopopcodes and ALU operation may remove one item at
the top. In a purestack-basedmachine,addwould instead use the two operands from the
stack, remove them and push the result instead.

In some sense the accumulator can be seen as an extension of the stack for ALU
operations. However, other operations (such aslookup) are implicitly destructive and will
replace the old value of the accumulator with the new one. Requiring the code to explicitly
save the previous value through apushwhen needed is one of those compromise that can
keep the interpretor small enough. Unlike a stack, the accumulator is never “full” or
“empty”, and code for altering or checking the stack pointercan thus be omitted in many
cases.

A Simple Example: Emulating COUNT Instruction

Fig. 4.4 illustrates how a small bytecode program can implement the ESP “COUNT” op-
eration and how the ESS, accumulator, stack and packet data are used together to achieve
this goal.

(a) Packet emulation always begins in a known, clean state with data pointer at the start
of data packet, accumulator cleared, etc.

(b) lookup uses the packet-carried key(cnt_tag) to access the ESS and store the
value inacc. Our semantic is to leave the accumulator unmodified when thekey is
missing, and since the VPU guaranteesacc to be initially zero, we can skip the “set
to zero if undefined” step.

42 CHAPTER 4. THE WASP PLATFORM

Figure 4.5: The instruction set of WASP processor, grouped by “decoding family” that share
common sub-operations

(c) after incrementation, the counter value is written backin the ESS withinsert .
Note that the data pointer hasn’t moved so far, so we’re stillreusingcnt_tag as
key. The incremented valueV + 1 is also explicitly saved on the stack withpush
opcode.

(d) as detailed at the start of section 4.2, COUNT packet is only forwarded as long
as the updated valueV is below a packet-stored threshold. In this packet’s case,
the threshold was the immediate value5. The last four instructions perform the
comparison and eitherforward or drop the packet accordingly.

Hierarchically-Organised Decoder

While designing the instruction set for WASP, it appeared that most of the instructions
could be grouped into a “family” that would share a significant part of the interpretation
code. For instance, all instructions in “immediate decode”need to extract one extra byte
from the instructions stream and all “ALU” operations need to retrieve an operand from
the stack and update ALU flags. We decided to extend these properties and to provide
“per-family” instructions modifiers that will e.g. tell whether the result of an ALU opera-
tion should or shouldn’t be written to the accumulator7, but also whether the data pointer
in the packet should be advanced (the|INX modifier that will appear several times in
examples). This is one of the design decisions that has lead to an interpreter smaller than
the implementation of ESP operations on the x86 target.

7comparison operations can usually be achieved by subtraction or bitwise logical functions where only
the flags are updated and the numerical result is discarded

4.2. FROM ESP OPERATIONS TO WASP VPU 43

4.2.2 Packet Variables

TheCOUNTpacket is one of the rare cases where there’s no need for storing information in
the packet as result of evaluation, and the threshold was small enough to fit an immediate
constant inlined in the code. In many other situations, we need true variables to be present
in the packet:

• larger operands are impractical for “imm(xx)” opcode and will rather be loaded
from the packet’s “data” section;
• we might want to retrieve the current value ofcnt_tag on a router, store it in the

packet and inspect it on the end-system;
• we might even want to build a list of values on the packet, gathering one item on

each traversed router.

In the case of WASP, values stored in the data section of WASP “programs” are used as
banks of RAM memory by the virtual processing unit. On the other side, ANTS capsules
can reference any number of sub-objects of any type. These are de-serialised when the
packet is received by the router an re-serialised when packet is forwarded8. Previous
studies with ANTS [Wetherall99] have however highlighted that serialization steps can
be a significant share of active packet processing (up to 42% and 32% of the smallest
ANTS capsule, respectively) and motivated active network designers to find solutions
where data can be manipulatedin place.

WASP data section also has a fixed size. When the source emits a WASP packet, it
decides how many bytes will be present in the data portion andgive them their initial
value. If we want a “traceroute” packet collecting the IP address of traversed routers,
and expect up to 16 routers to be met, we need to provision 64 bytes of data storage at
the source and to write packet code that will write values oneafter the other (e.g. using
an additional packet variable as an index in that array). This contrasts with the SNAP
language where packets carry a stack of data that can grow andshrink as the packet
gathers or consumes values on routers, at the expense of a more complex reassembling
before the packet can be forwarded. The fact that an ESP (and WASP) instruction may
be attached to a regular TCP or UDP packet by the source advocates for afixed-sizedata
section rather than something like SNAP’s stacks.

Accessing Packet Variables

The VPU offersload andstore opcodes to exchange data between packet variables
and the accumulator. The actual variable to be read or written to is pointed by theindex
registerX. While RISC computers typically have a memory address encodedwith the
“load” instructions, the VPU requires that the address is first loaded in the index register
through one of theLIX xx opcode and only then used withload , store or any of the
ESS access instruction (where it indicates the key to be used).

The analysis of operations available on the ESP router has revealed frequent cases
where a variable is read, modified and written back before anyother memory reference is

8This is sometimes also known asmarshallingandunmarshallingof the data

44 CHAPTER 4. THE WASP PLATFORM

issued, meaning that we can save one of the addresses if all the memory operations use
the index register to indicate the address they’re operating on. It is also frequent – due
to the small program size and the absence of loops – that variables can be organised in
the packet so that code access them in sequence rather than inrandom order. This has
motivated the presence of theINX (for INcrement indeX register) modifier that allows
any of the memory-referencing instruction to post-increment the data pointer.

To many aspects, this makes data access from the VPU look muchlike accessing
the data tape of aTuring Machine, with the option of jumping to a specific position when
needed. When data access are carefully designed and take advantage ofINX to avoid extra
explicit addresses in the program allowed us to halve the length of bytecode implementing
COLLECTinstruction, with a substantially improved interpretation speed.

Variable Types (absence of ...)

The virtual processor only knows two types of data: integer values and keys, and in most
cases, it doesn’t even distinguish the two. As soon as a data item is loaded in the ALU,
the VPU assumes it is an integer and allows all ALU operators on it. Similarily, any data
item9 in the data section can be used as a key regardless ofhow it was put in the data
section.

In contrast, the SNAP interpreter also supports floats, strings (though there’s no oper-
ator to modify them) and opaque data types and the language itself is type-safe. Unlike
WASP, SNAP is mainly designed as a glue between core services, some of which may
require string arguments (such as a path in the Management Information Base of SNMP)
and others may return parameters for other services as strings as well. It is clear that inter-
facing service components in a way that allow componentX to trust parameters received
from componentY even if they have been exposed to a script requires stronger type
checking (and the presence of core-service definable types)than implementing WASP
programs.

The ability to manipulate keys through the VPU is a new functionality brought by
WASP; ESP packets are less flexible in that regard since the semantics of a given data in
the packet is defined by the operation’s pseudo-code and hardcoded in the router. Since
an end-user is allowed to generate ESP packets requesting any keys anyway, we don’t
believe restricting modification of those keys by the packetprogram improve the safety of
the platform. This may even be a key feature to enable more sophisticated programs that
are sensible to some context information to pick the key they’re going to use or decide of
a random key on the router itself.

The only data type really manipulated by the VPU is thus 64-bit, unsigned integers.
However, our experience with ESP has shown that applications designers rarely need 64-
bit for their items. To allow storage of thresholds, IP addressses etc. without wasting
space in the ESS or in packets, we allow theload andstore microbytes to operate on
smaller data items (bytes, 16-bit and 32-bit words). The application designed, through
one of theLIX xx microbytes, indicates the transfer size for subsequentsload s/store s
and the VPU automatically expands and truncates values as they are moved between the

9properly aligned on a 64-bit boundary

4.2. FROM ESP OPERATIONS TO WASP VPU 45

ALU and storage elements. As a side effect, INX advances byone packet data unitas
defined in the “size” part of the index register:LIX8(p) ; INX will position the data
pointer one byte afterp while LIX32(p) ; INX will place it 4 byte afterp. The result
is that, once the size and the base of an array of homogeneous items has been defined by
LIX , we can scan the array by just repeatingLOAD|INX microbyte.

4.2.3 Environment Variables

With ephemeral store and the VPU alone, our expressiveness remains quite restricted.
As explained in the introduction, most of the monitoring applications require additional
information such as comparing the timestamps of two packets, evaluate the current load
of the output link, etc. Other interesting information may be found in the IP header itself,
such as the actual source and destination, or the TTL of the packet. It is frequent to offer
a programming interface to access such information in active networking. In SNAP, for
instance, it is provided by a collection of context-pollingopcodes, but none is defined
with ESP. There was actually no need to define such an interface in ESP as the processing
was implemented by native code, but in WASP, they become primitive features just like
ephemeral store access.

Rather than dedicating opcodes à la SNAP, we chose to offer node, interface and
packet information through banks of read-only memory that WASP programs can access
just like they access packet variables. Memory that can be addressed byLOADandSTORE
microbytes is split in banks of 32 bytes, and each bank indicates whether it can be written
or not.

Planned Per-Node Information

The node information bankcontains environment variable that are global to the whole
router including thefeatures bitfield, which indicates whether the node supports MPLS,
IPv6, DiffServ, etc. This also includes for instance the node’s timestamp, with enough
precision (e.g.1µs) to allow packet-related functions to be described, but sufficiently
large (e.g. 32-bit) so that we can at least detect period changes. In addition, a second field
giving thenode uptimein seconds can be used when larger timescales are needed.

This bank also provides thenode identifierand itsdomain identifier, two 64-bit num-
bers that help figure out the topology of the network. Every VPUs of a single router will of
course provide the samenode identifierand similarily we expect all the routers of a given
autonomous system to have the same domain identifier. While the “domain” as seen by
wasp doesn’t necessarily match the autonomous system number, it requires that any node
between two nodesn1 andn2 that are member of domainD is also a member of domain
D. Moreover, some of the functionalities reported by thefeaturesfield are inherently ho-
mogeneous over the whole domain. If a noden advertises e.g. DiffServ quality-of-service
support, it implies the whole domain it belongs to is DiffServ-compatible.

Only core functionalities are described infeaturesfield, so that end-system can quickly
have a overview of what the network supports. Other bits might define whether the current
node is an ingress, egress, core or end system and whether it is in a stub, transit or core

46 CHAPTER 4. THE WASP PLATFORM

Figure 4.6: WASP code attached to MPEG I and B frames to implement smart dropping

domain. More detailed information could be provided at the discretion of the operator, for
instance by means of protected tags computed from a hash of a standard capability name.

4.3 The Ephemeral State Store

A Simple Example

Most active protocols will need information to be stored temporarily on intermediate
nodes, so that it can be later retrieved by other active packets. Following the example
of MPEG flow processing (see Sec. 2.3.2), we could drop intermediateB framesof a
video stream if theI frame they refer to has been dropped by the node or if it is likely
to be dropped, for instance due to a congested output link. This requiresI frame to leave
information on the router status for further frames. The state defined by theI frameshould
be distinct from states of other traffics (e.g. other applications, other end-systems) and is
only useful as long as some dependingB framesare present in the network. It is important
for network availability and performance that this local storage remains easy to manage
and can automatically discard information that is no longerpertinent.

Figure 4.6 illustrates an implementation of that selectiveframe filter with WASP pro-
grams. The code forI framechecks a bit in the interface environments variables to eval-
uate the load on the output interface (e.g., set by a RED queue manager). If the queue is
too heavily loaded, a new entry is created (insert) in the router’s store.

All B framesthat depend on thatI framewill carry the same key that acts as a unique
identifier of the application flow and group of pictures (e.g.0xdecafbad), and use it to
retrieve (lookup) the state and drop themselves if they are instructed to do so.

Soft-Store vs. Ephemeral Store

ANTS [Wetherall98] and many other platforms usesoft-state-based memory management
to release memory that has not been used by packets for a givenamount of time. Each
item of a soft-store has an associated expiration timer thatis reset everytime the item is
accessed. Soft-state is common practice in network protocols to ensure devices do not

4.3. THE EPHEMERAL STATE STORE 47

Figure 4.7: Comparing the soft store against the ephemeral store withτ being 10 seconds

keep obsolete information: as long as the entities refresh their entries at least everyτ
seconds, the information is kept. If an entity fails to refresh the information for more than
τ seconds, the information is lost. Unfortunately, the soft-store may become pretty hard
to manage, especially when it comes to tell whether there will be sufficient memory to
accept a new flow.

It has been shown in [Calvert02] that memory will be much easier to manage in the
ephemeral storeapproach, that is if the store only keeps data for a constant period (10
seconds),regardless of how frequent the data is referenced during that period (see Fig.
4.7). If we also ensure that all the data slots in the store have the same size, collecting free-
for-reuse slots becomes simple enough to execute without disturbing packet forwarding
tasks on the router, and checking if the router will have sufficient resources to process an
additional flow simply requires that the router checks how many different slots are used
by the flow. ESP terminology usesESS entriesor when it refers to the(key, value) pairs
and the 64-bit word used to identify the value is calledtagor key.

Note that no access control is required for tags. It is simplyassumed that each source
picks up a random 64-bit word and uses it whenever it needs a key. How members of
a distributed application agree on the same key for a given session, how this key is ex-
changed to avoid eavesdropping is left to the application itself. With randomly chosen
tags, [Calvert02] shows that the probability that e.g. a user(among 16 millions) picking
tagX for the time period[t . . . t + τ] has a probability of10−12 to experience a collision,
meaning that the probability of at least one pair of users (still among 16 million) pick
the same tag remains of10−5. Even under those circumstances, a collision will only be
experienced if the two flows share at least one WASP router on their path.

4.3.1 Ephemeral State Store Implementation

The Ephemeral State Store is implemented as a two-table structure. The largest one (typ-
ically held in DRAM) is theentry table, which stores the (tag, value) pairs. Each time a
new entry must be created, the entry immediately after the last one is allocated, until the
next_available pointer reaches thelast_cleared , which corresponds to a full
table. Every time ticks, a cleaning procedure sweeps the table and advances thelast-
_cleared pointer so that all the remaining valid entries have a creation time less thanτ
seconds in the past. Since the entries are stored in chronological order, cleaning operation
is fairly simple.

48 CHAPTER 4. THE WASP PLATFORM

Figure 4.8: Layout of the Ephemeral Store. Valid entries are betweenlast_cleared and
next_available

In addition to the entry table, the state store also featuresahash tablethat contains2k

chain pointers10 and that will be used to retrieve a specific tag in the entry table. When
a given tagT is searched, we first compute its hash overk bits x = h(T) and lookup
hash[x]. If that entry is empty, the tagT is not present in the store, otherwise,hash[x]
indicates the address of the oldest entry which tag matched the hash. As shown on Fig.
4.8, when several tags in the store matched the same hash, they are chained together
thanks to the “next” field of the entry. The ESP router will then walk the chain until the
matching tag is found.

In the native implementation of the ESP, operations are divided into three phases. In
the first phase, all the lookups in the ephemeral store are performed, and addresses of
the entries in DRAM (either existing or created) are kept in local registers11. The second
step is the operation proper, which only manipulates the local registers. If the operation
completes successfully, the third phase will write back theresults using the addresses kept
in phase one. The third phase thus requires no additional walking through the table.

4.3.2 Managing the State Store

One of the advantages of the ephemeral state is that, unlike in the case of soft-state, the
system designer can compute in advance how much memory will be enough to handle
the worst traffic scenario (e.g. full load on the interfaces with the smallest packets, all
requesting new entries in the ESS). In [Calvert03], the authors illustrate that principle
with the implementation of ESP on the IXP1200 network processor. With a flow of105

packets per second, and if at most 2 entries can be created in the state store by each packet
(corresponding to 1280 bit-second of storage),2 ·106 entries of ephemeral state will never
overflow – which asks for 46MB of ephemeral state on the device.

10In [Imam03], the hash table was218 slots large
11or other low-latency memory resources such as the scratchpad or local memory in the case of IXP2400

implementation

4.3. THE EPHEMERAL STATE STORE 49

However, according to [NPForum03], a dual IXP2400 system (such as the IXDP2400
development board) may face up to12 · 106 packets per second when all packets have
minimal size (64 bytes). With a packet size of 128, 256, and 512 bytes, the forwarding
rate drops to around6.5, 3.8 and 2 Mpps, respectively. In the worst case, it means we now
need 2746 MB of ephemeral state if we want to guarantee that overflow cannot occur. For
WASP, where ESS entries have been extended to 32 bytes, those2746 MB only allow the
referencing of one entry per packet, which will probably reduce the flexibility of WASP
programs significantly. On the other hand, well-built WASP packets will typicallyreuse
entries created by other packets, which suggests a smaller state store could statistically
handle a mix of legacy and wasp traffic with an acceptable overflow probability. In that
case, however, the router wouldn’t be protected against denial of ESS service anymore.

We take the option ofnot addressing this issue in WASP design but rather to leave it
open to the platform implementation. There are, however, various elements of ESP/WASP
design that could help build solutions:

• since a network operator uses easily identifiableprivate keys, a WASP router could
reserve a portion of its physical memory to support private keys only, offering a
guarantee that network management applications based on WASP remain available
even in the event of a denial-of-storage attack.
• the ’computation ID’ (cID) of ESP packets clearly identifieswhich packetsneedto

be processed on the same store. For both performance and fairness consideration,
the implementation is free to handle WASP packets on any of those ESS provided
that packets carrying the same cID are handled on the same ESS.
• a domain operator does not have to worry about fairness amongend-users in gen-

eral, but only about fairness betweenits own clients. In other words, all the traffic
from one ingress point could be aggregated when it comes to tell whether the re-
quest for a new slot can be serviced.

We suggest that the WASP header receives carry theingress identifier(iID) , an opaque
16-bit value that any WASP router within a domain could use toquickly identify the quota
information that should apply to that packet. When a new packet arrives at an ingress
point, the router will stick the identifier of the receiving interface in the WASP header.

Note that despite packets from the same source with different computation IDcould be
handled on different ESS (and thus not sharing fate concerning ESS availability), packets
with the same cIDmustbe handled on the same ESS, regardless of their source/destination
addresses: failing to do so would prevent some ESS-based application to work properly.
As a result, even if many stores are available, it wouldn’t becorrect to simply combine
the iID and the cID to balance requests among them and providefairness in that way.

Depending on the domain size, there might be too many or too few iIDs to identify
all the ingress interfaces. We could imagine to combine theprevious domain’s iID with
the unique interface ID of the ingress router to get a better iID (that is, more accurately
identifying the traffic source) when few interfaces are used. Note however that, unlike
what’s done in [Yang05], the new iID still fits 16 bits and we donot build a ’list of iIDs’
that could be used as a path identifier (though the WASP code would of course be free to
do so).

50 CHAPTER 4. THE WASP PLATFORM

In the opposite case where the domain has more than216 interfaces, further aggrega-
tion will be necessary (that is, the iID will not uniquely identify one interface but rather
a subset of the interfaces). This will act exactly as if therewere smaller ’aggregator’
domains submitting traffic to the ’core’ domain instead of one, large domain. Similarly,
iIDs could be hashed on the router to retrieve one of theK available quota slots – which
would only guarantee coarse fairness – or index a table of quotas defined by a service-
level agreement with the client connected to the corresponding ingress interface. The
operator is even free to re-allocate iIDs generated by the ingress routers and mix the two
techniques to offer fine-grain fairness to “premium” clients and coarse-grain fairness to
the masses.

4.3.3 Finer Access Control

As soon as WASP is used to locate services, packets need to usea well-knownkey to
access information other participants might have left in routers. Such a well-known key
can be for instance produced by hashing a service name, whichmakes them easier to guess
for an external attacker than random keys of section 4.3. Therefore WASP introduces
protected tagsthat can only be modified bysuper packets.

If the domain operator ensures that no super packets can comefrom outside, the end
user can be sure that the information bound to the tag has beenset up by the domain
operator. The node determines whether a tag is protected or not by checking its key
against a specific pattern12, and will allow writes to such tags only to packets that are
marked ‘super’ in their WASP header. Of course, this only works if the network manager
filters out super packet coming from the outside.

Hash-Requesting Packets and Private Tags

When participants and attackers can come from the same domain, protected tags are no
longer helpful. For such cases, WASP offersprivate tags, which work like protocol-
private data in ANTS. Unlike other tags, the application programmer has no direct control
on the key that will be used for private tags. Instead, the WASP node will hash the code
contained in the packet and use the result as theprivate keyfor that packet, which is kept
secret by the router. To make sure that regular packets do notattempt to use brute-force
scan, private tags have an identifiable prefix and any attemptto use keys with that prefix
explicitly will abort packet execution.

If the hash method is carefully chosen (e.g. a one-way hash like SHA-1), it means that
packets will have access to thesameprivate spaceonly if they have the same code, which
means we are sure they play the same game with same rules. Under those circumstances,
an attacker can only hope to break the protocol by sending more (or less) packets than
expected by the protocol – which a properly designed protocol should handle anyway.
Note that the implementer of a WASP node is free to use any hashmethod that best suits
its hardware as the resulting hashes are used only on the computing node. The only rule

12highest 8 bits are all 1 in current implementation

4.4. REFERENCE IMPLEMENTATION ON X86 51

is that packets with the same hashed part operate on the same private tag and that packets
with different hashed parts operate on different private tags.

World-Readable, Protocol-Writable Tags

While private tags guarantee that a collection of participants will modify the state in the
router following a common set of rules (i.e. the protocol), their cost may not be accept-
able for packets that just need to follow the decision without altering the state (e.g. a
multimedia stream). Each packet would also have to carry thewholeprotocol so that it
receives the same hash value, regardless of what part of the code is useful for itself.

As a result, theexpose opcode allows a hash-requesting packet to have its private
state accessible read-only as a protected tag. The result isa new ESS tag that contains a
link to the private tag, which is transparently resolved by the VPU when a packet tries to
read it. Writing to an exposed tag via a link is of course not allowed.

Note that the presence of a link only tells that it exposes private data, but notwhat
protocolexposes them. It will thus be up to the protocol designer to ensure that the key
used for exposing the data cannot be guessed by an attacker before the link is created. A
simple way to achieve this is to generate the key from a randomnumber on the router and
inform participants of its valueafter data has been exposed.

4.4 Reference Implementation on x86

Before starting the implementation of WASP on a network processor, it was important to
validate the concept and estimate the potential performance on a well-known architecture.
The availability of the ESP component as a Linux module (for version 2.4) led to the natu-
ral choice of x86/Linux for the reference environment. Later, this module has been ported
to kernel 2.6 for both x86 and x86-64. An experimental port for the XScale architecture
(the controlling processor of the IXP boards) is under completion at the time of writing.

The Ephemeral State Processing component for Linux is mainly a netfilter module
[Welte07] that will intercept and process both stand-aloneand piggybacked ESP packets.
ThenetfilterAPI has been added to Linux kernel 2.4 to ease the construction of modular
firewalls. Severalhooksare added to the default packet processing routine so that custom
checks can tell whether packets can go on (NF_ACCEPT), should be droppedNF_DROP,
etc. Netfilter defines 5 logical “locations” where hook code can be applied, out of which
three are especially interesting as they perfectly match the locationsdefined in ESP.

NF_IP_PRE_ROUTING: this hook is applied after IP packet has been received on a
network card and checked for validity, but prior routing decision is made. The
“indev” argument is pointing towards the receiving device;

NF_IP_FORWARD: this hook is applied right after the routing decision is made. Note
that packet destined for or originating from the local machine arenot processed
here.

52 CHAPTER 4. THE WASP PLATFORM

Figure 4.9: Hooks in the Netfilter Architecture used by WASP router

NF_IP_POST_ROUTING this hook is applied before a packet is delivered to a target
network card for emission. The “outdev” argument will pointto the device that will
have to send the packet.

In the context of this work, we modified the processing function of the ESP component
(depicted on Fig. 4.9) so that it can handle a new “operation”which happens to be the
interpretation of WASP bytecode. This policy guarantees a fully backward-compatible
packet format and processing semantic with ESP. In additionto thenetfilterhook proper,
the WASP/ESP module also sets up a periodic timer that will bein charge of collecting
the expired entries from the stores and updates theinterface statisticsavailable through
WASP. Most of the node and interfaces environment variablesremain however statically
evaluated at module initialization and reloading the module will be necessary after one
changes the IP address of a network card or connects a 100Mbpscard to a 10Mbps peer.

4.4.1 Validating the VPU’s behaviour

Once the code for the virtual processor was written, and before starting the integration
in a Linux module, we ran a collection of tests to ensure that the VPU was operating as
expected, including checks of the arithmetic operations, insertions/lookups in the state
store, branches, etc. in a user mode environment. These tests consist of a collection of
benchmark “packets” that are prepared in data structures and submitted to a VPU instance.
The resulting packets are then checked against assertions to ensure the proper results were
obtained.

This testing environment also proved very useful to design the WASP programs used
to emulate ESP operations. In a normal packet processing environment, the corev_init
and v_execute functions are called one after another and the resulting state of the
persistentVPUstructure is ignored: only the content of the packet itself and the return
code telling whether packet is forwarded, dropped, etc. aremeaningful. In the case

4.4. REFERENCE IMPLEMENTATION ON X86 53

Figure 4.10: Comparing operation processing time, when executing native code (ESP), interpret-
ing WASP code based only oninsert/lookup (WASP) or using the additionalmap opcode
(WASP+MAP).

of the functions provided invpulib such asvpu_trace , we manipulate the packet’s
bytecode to insert “breakpoints” after every instructionsand forcev_execute to operate
step by step on the packet. We can then read the state of the VPUto provide a meaningful
trace of the packet’s execution.

A second use of the “VPU library” in user mode is to profile the execution of VPU and
ESP operations. Thetime stamp counterof the Pentium processor is used to compute how
many CPU cycles have been spent during the processing ofv_execute andv_init
in order to compare their overhead against “native” implementation of ESP operations.
Since code execution can be subject to several unpredictable events such as cache misses,
mispredicted branches or even simply interruption by kernel code, the actual measurement
is repeated 1000 times13, and the average timing is reported. Special care needs to betaken
to ensure that the virtual node remains in the same state between the tests, so that the same
(longest) code sequence is evaluated at each iteration. In several cases, these profiling
output were precious to choose one approach over the other inthe implementation of the
VPU, such as deciding of the most interesting size for internal structures or organization
of virtual registers.

Fig. 4.10 shows the resulting measures obtained with this technique on a Pentium III
machine running at 1GHz. Those results are pretty encouraging as we managed to have
interpreted code taking no more than 250% of native code, butthere’s clearly room for
improvement. We will see in Sec. 4.4.3 how we can modify the access to ESS entries
(through themapopcode) to speed up WASP interpreter.

4.4.2 Experimenting WASP with Linux

First of all, we have checked that WASP packets were handled as expected. The WASP
Linux module is installed onbumblebee, an AMD 300MHz debian machine, directly
connected to our workstation (asmodan). A collection of small tools running on asmodan

13This is an empiric-defined value. Our tests have shown that values obtained with more iterations were
not more precise. The average also ignores iterations interrupted by the kernel.

54 CHAPTER 4. THE WASP PLATFORM

Figure 4.11: Running WASP “count(5)” packets experiment. We can observe 5 packets that made
it through the WASP filters (1), then 5 packets that were dropped by the receiver (2). Despite
Ethereal’s ignorance of the protocol (3), we can identify ESP header (4) and WASP bytecode (5)
in the “raw data” section

will then send WASP or ESP packets to bumblebee, using theraw socketAPI to forge the
appropriate transport-layer protocol unit. In addition tothe debugging messages logged
by the module, we can use network inspection tools such asethereal[ethereal] to validate
our scenario. Of course, in this setup, is is mandatory that packets are processed on the
input location.

Fig. 4.11 illustrates one of the most elementary test we can run: a collection of 10
COUNT packets with a threshold of 5 are sent to bumblebee, all using the same tag. The
first five of them will find a counter value below 5 in the ESS and are thus allowed to
pass the netfilter, while the remaining five ones should be dropped by the filter. After
passing through the netfilter, the WASP packets are delivered to bumblebee’s network
stack, and as the Linux kernel doesn’t know about ESP/WASP transport protocol, an
ICMP error message (destination unreachable) is sent back tothe source. These message
are especially useful for debugging as they include the offending packet in their payload14,
which allow us to check the VPU’s output.

For more sophisticated test cases, such ascollect operation where we need to
sendcount packets first, the ESP statistics provided through the/proc filesystem can
give a nice overview of what’s going on. E.g. after sending 10count(5) and 10
collect(3) packets, we can see that the netfilter hook has been invoked 20times,
and that 6 packets were accepted (presumably the 5 firstcount s and the lastcollect)
and that 14 packets were dropped (last 5count s plus the nine firstcollect s which
had to “wait” for the final result to be available). Once again, this can be confirmed by
ethereal and we can check in the final ICMP error packet that thesum value is indeed cor-
rect. Such quick checks can become handy when test cases include thousands of packets
rather than a few.

14The IP header plus 64 first bytes of payload, according to RFC 777

4.4. REFERENCE IMPLEMENTATION ON X86 55

Figure 4.12: Forwarding latencies on mylady, in microseconds, showing how different stages of
packet processing contribute to the latency

We further confirmed the experiment by repeating it over a topology including Linux
routers and Cisco equipments to ensure “regular” routers were capable of forwarding
WASP packets even if they were not equipped with WASP, using both x86, x86-64 and
XScale systems as a host.

Robustness tests included the submission ofcount WASP packets to a host during
a period of several hours. This test has revealed a flaw in the ephemeral store imple-
mentation from University of Kentucky [Calvert03w], due to amissing check in the ESS
cleaning process. Wheness_clean function reached the end of an ESS table, it wasn’t
correctly wrapped back to the start of the table, leading to akernel crash. This flaw and a
few others were fixed in [Martin06w] and reported to Calvert’steam.

WASP on a Linux Router

The timings presented on Fig. 4.10 only take into account thetime required to execute
the WASP packet’s bytecode or the ESP operation’s routine, only one of the steps among
all the operations involved in forwarding a packet on a Linuxrouter. To evaluate the
actual overhead, we compared the forwarding latency – i.e. the time spent between the
reception of the packet oneth0and the transmission of the forwarded packet oneth1– on
mylady, a 300MHz Pentium II router featuring Linux kernel 2.4.18. To avoid interference
with othernetfilter hooks, theiptablesfirewall was deactivated during the tests, and we
tried to minimize cross-traffic on the routers to minimize queueing delays. Under these
conditions,myladytook on average44.6µs to forward an ICMP “echo request” packet
and99.8µs to reply to a “ping”.

Packets were captured usingetherealtool and stored inlibpcap-compatible traces,
which were then processed by a custom Perl script to extract arrival and departure time
of each packet, computing the average latency for each protocol (ICMP, WASP, ESP,
UDP, TCP, etc). As Fig. 4.12 shows, there’s only a difference of 13% between the total
forwarding time ofESP:count (59.42µs) and WASP:count (67.65µs) packets. A
similar interpretation overhead can be observed forcollect operation (16%, as WASP
took on average71.8µs against61.77µs for ESP).

To better understand where the difference comes from, we measured the latency of
the same packet flows when the WASP/ESP module is not loaded, which gives us the

56 CHAPTER 4. THE WASP PLATFORM

IP forwarding timeof each packet. “IP forwarding” include the time required toretrieve
the packet from the interface card, lookup the routing table, enqueueing and transmitting
the packet. Since all our packets have similar size and go to the same destination, the
IP time is roughly constant for each packet. What does more depend on the packet size,
however, is the time required by our module to compute theCRC checksumover the ESP
operation (or WASP program). While its contribution is sensibly smaller, it may require
between 600 and 800 cycles on a Pentium-based machine, and itneeds to be computed
twice per packet (first to check the received packet is correct, and then to reflect the new
payload), which contributes to 7% of the forwarding time in the case ofWASP:count ,
for instance.

What remains corresponds to the time spent inlinuxesp_hook function and can
be further split betweenprocessingthe WASP code proper and other supporting code,
such as locating the ESP header, identifying the proper state store, checking the location,
etc. In addition, some of the supporting code must be called three times (on input, output
and center hooks) even if only one location needs to execute the code. To evaluate the
contribution of the ESP processing routines that we profiledin section 4.4.1, we issued
noop packets that have the same size ascount packets but the simplest forwarding code.
To implementESP:noop , we simply used theESP:compare packet, that has the same
size asESP:count , but we replaced the processing function with a function doing no
ESS access and just indicating that the packet should be forwarded. In the case of WASP,
thenoop packet starts with aFWDmicrobyte and is padded withNOPmicrobytes to have
the same size asWASP:count . The difference betweenWASP:noop andESP:noop
latencies is the overhead required to initialize the VPU, and will be present for all other
WASP packets. Since time for “other support code” measured with ESP:noop is inde-
pendent of the packet constant, we can now estimate theprocessing timecontribution of
each kind of packet.

Portability

For reader’s information, here follows the list of things that need adjustments in WASP
Linux module to allow portability across x86, x86-64 and XScale architectures.

• CRC32 code needs adaptation to work on 64-bits machine (mainly adjusting some
variables type).
• some of the kernel functions involved in packets reflecting (ip_route_output

are obsolete in kernel 2.6 and had to be replaced usingip_route_output_key).
• encoding of ESP header is no longer correct on big-endian machines. We replaced

the C bitfields with explicit operations on individual bits of the “flags” field.
• GCC back-ends for ARM and Intel x86 family do not have the same structure

padding and alignment rules. This is especially an issue with the ESP header which
is only 6 bytes long to ensure word-alignment of ESP operands. On the StrongARM
target, this structure was silently expanded to 8 bytes by the compiler, screwing up
packet format.

4.4. REFERENCE IMPLEMENTATION ON X86 57

Listing 4.1: implementation of ESP “count” operation in Linux

1 s t a t i c i n t esp_coun t (i n t ess_no , o p e r a n d _ t∗ operands)
{

v a l u e _ t c u r _ v a l ;
e s s _ i t e m _ t∗ i t em = e s s _ f i n d _ c r e a t e (ess_no , COUNT_VAL_TAG, NULL) ;
i f (! i t em) re turn −ESP_ERR_ESS_FAILURE ;

6 c u r _ v a l = e s s _ r e a d (i tem) ;
c u r _ v a l = v a l u e _ i n c r e a s e (cu r_va l , 1) ;
e s s _ w r i t e (i tem , c u r _ v a l) ;
i f (value_comp (cu r_va l , COUNT_THRESH_HOLD)<= 0) {

re turn ESP_ACCEPT ;
11 } e l s e {

re turn ESP_DROP ;
}

}

4.4.3 More Efficient Access to ESS in WASP

Among all microbytes, interactions with the ephemeral state store are the most important
to tune, as they are the most costly operations the VPU will have to handle. In the case
of ESP implementation (on both x86 and IXP network processors), for instance, a lookup
does not only return thevalueof the tag, but also a pointer to the entry itself that is later
used to write back the new result after the operation is completed (see line 11 on listing
4.1). Beside the cost of looking up the hash table (and hashingthe tag), this can save us
from walking the chain in the ephemeral state in the case of collisions in the hash table.

In the case of WASP VPU, however, only the values are viewed bythe programmer,
and a lookup-and-update cycle can only be identified by the fact that the same key is used
for thelookupand the nextupdate. Things are further complicated by the fact that the data
pointer could have been moved or the key could have been modified in the packet’s storage
area bystore microbytes issued betweenlookup and insert . In other words, we
need to store the “resolved pointers” to ESS entries in a cache transparent to the bytecode
programmer. We tested two cache policies, using the benchmarking framework described
in section 4.4.1:

no caching every lookup or insert is independent of any previous ESS operation.

small cache the cache has a single entry that keeps the last resolved pointer.

full cache the cache has one entry for every possible key location. Since there’s a max-
imum of 128 bytes for packet data and that keys must be alignedon 64-bit bound-
aries, that makes a maximum of 16 tags to keep track of. When thekth key in the
packet is used to lookup an entry, the correspondingcache[k] entry is used and the
kth bit of cache controlling variable is set.

Table 4.1 show the measured timings for each caching policy and compare them with
the “native” implementation of the equivalent ESP operation. Note that thesmall caching

58 CHAPTER 4. THE WASP PLATFORM

policy behaves better thanfull cachinghere. This can be explained by the fact that ESP
operations (as described in [Calvert05w]) don’t look up for agiven variable more than
once and that updates can be done before another lookup is issued. The “small caching”
policy is extremely efficient in those circumstances as the cost for setting up and main-
taining a more complex policy such asfull cachingis thus greater than the benefit one can
expect from the cache hit ratio.

Yet, generally speaking, it could be interesting to have a more flexible caching policy
than “small cache”. An implementation of WASP on IXP microengines, for instance,
could take advantage of the content-addressed memory facility to provide a cache of a
few keys without requiring operations such asstore to be modified to enforce “full
cache” consistency.

Mapping Larger Entries

The idea of ESP was to provide a small amount of data per storage entry – namely a
single 64-bit word. However, when we consider the applications of ESP (and WASP),
the state we process rarely remains atomic, but instead consists of tuples. TheRCHILD
and RCOLLECToperations used for the robust aggregation service, for instance, may
require 3 or 4 logical variables in the ESS to store all its state. In WASP, this is even more
concerning, since performance depends on the access pattern of keys in the ESS. We could
make the VPU more efficient and easier to program if we’d allowlarger memory entries
in the ephemeral state.

We therefore decided to size up ESS entries to 32 bytes15, which is enough to hold
all state required by the most complex ESP operation using a single key. Yet, 32 bytes
remains small enough so that protocols that required only one 64-bit value do not waste
too much memory. If we refer back to Fig. 4.8 that depicts the internal structure of
the ephemeral store, we can observe that a single entry requires 24 bytes of storage for
the tag, the 64-bit value and the control fields. In other words, merging two entries of
the “regular” ESS is enough to provide the requested 32 bytesof storage and, as soon
as a majority protocols require at least two values per node,we’re actually improving
memory efficiency. While the reference implementation simply sizes upall entries, we
could rewrite the ESS access and cleaning procedures so thattwo 24-bytes entries are
effectively merged when a “bank” is requested.

For the network programmer, these enlarged entries are available through an addi-
tional bank of memory, using a new indexing register (Y) and a new pair of opcodes for

15which happens to be the size of a “memory bank” in the VPU: the granularity at which we can define
read/write capabilities and access non-contiguous physical memory

no caching full small mapping native
count 721 637 592 586 349

collect 1245 1082 958 842 633
rchild 2058 1830 1845 1509 775

rcollect 2980 2438 2394 2020 1091

Table 4.1: Comparing caching policies. Timings in CPU cycles on 1GHz Pentium III

4.4. REFERENCE IMPLEMENTATION ON X86 59

Figure 4.13: A summary of new memory-related opcodes.insert andlookup for direct access
to a 64-bit value from the ESS,load, store, yload andystore for exchanging data between
the accumulator and memory banks,lix, map andswyx defining what is available through the
X andY banks

loading and storing values (namelyyload andystore). We can thus read individual
bytes, or aligned 16, 32 and 64-bit words out of a mapped entry, which gives additional
flexibility to the programmer over the fixed-size of the regular entries. Having two sepa-
rate banks for ESS mappings (defined through the newmapopcode) and packet memory
compensate the lack of a more efficient way to implement trulyrandom access pattern to
memory resources of the VPU.

With the swyx opcode – which can be used to swap banksX andY , we can even
benefit of that new flexibility to perform copies from one portion of the packet to another
or between “environment variables” and packet data. The behaviour of those new opcodes
is summarized on 4.13.

As already shown on Tab. 4.1 and Fig. 4.10, rewriting WASP packets with proper use
of themapopcode has allowed us to reduce execution time by about 30%. We can even
expect higher improvements on IXP architecture thanks to burst transfers with DRAM.
The “native” code we compare to, however, still uses 64-bitsper entry and would equally
benefit of larger entries even if we preferred to keep the samereference through all the
tests.

Using the Pentium-based implementation, we compared the execution time of a se-
quence oflookup against amap followed by severalyload . Tests show an improve-
ment of 18% (two variables per bank) to 35% (four variables per bank) in the processing
time as soon as several variables need to be updated, and we expect improvement to be
even more important on saturated ESS storage (e.g. when collisions occur inside of the
ESS hash table).

Besides performance improvement, larger entries also play asignificant role in the
support of operations atomicity in WASP. For protocols correctness, it is important we can
assume that state stored on routers always remains in a coherent state. Either the program
behaves as expected and a new (coherent) state is written into the store, or the store should
be left untouched. In ESP, this is simply achieved by splitting the implementation in three
phases (lookup, compute, write back) that are typical of transactions-based computing.

60 CHAPTER 4. THE WASP PLATFORM

By mappingESS entries that contain full protocol state, we can offer the same correctness
without placing additional constraints on how packet code should be written. Modified
state is only written back to the ephemeral store when validated by anothermapopcode
or one of the packet control opcodeforward , return or drop . If an error is detected
(either by the VPU or the packet’s program itself throughabort), the modified state is
discarded and nothing is written back in the store.

Another potential interest in larger entries resides in thesupport ofbloom filters
[Bloom70] operations with the VPU. In peer-to-peer literature, Bloom filters [Zhao03]
are commonly used to offer a compact representation of a set associated with information
about where a more detailed set can be found. In its current implementation, data aggre-
gation usingRCOLLECTrequires that each data source indicates whether it has leftstate
in the store or not by creating an entry whose tag is the node’sidentifier. While Calvert et
al. suggested that bloom filters could be used instead to avoid O(N) state required on the
node, implementing bloom filters over 64-bit is less convincing than with 256-bit entries.
In the future, this might lead to additional microbytes thatwould copy, set or test bits over
a whole memory bank in a single VPU instruction.

4.4.4 Too Cheap, Really ?

Our goal is to make WASP “too cheap to measure” compared to IP and ESP. To evaluate
whether we reached that goal, we ran a serie of throughput measurements comparing how
fast the x86 reference implementation is capable of handling a flow mixingwasppackets
(a variant ofcount instruction, 92 bytes on wire) andbulk packets (an IP header with
1024 bytes of payload). We crafted a packet-generator with raw sockets API running on
bumblebeeand sending packets throughasmodantowards a local source. Both machines
are connected using PCI RTL-8139 network cards that operate in full-duplex 100Mbps
mode16.

Our packet generator runs a loop sending 100,000 packets – mixing bursts ofk wasp
packets and(100 − k) bulk packets – with thesendto system call. Ifsendto fails to
enqueue the packet (e.g., because we already filled up kernelqueues faster than what the
100Mbps card can handle), we introduce a small delay and try again until the packet is
successfully enqueued. We then monitored a collection of flows with varying values ofk
(and thus, varying average packet size) using bothetherealand iptraf and measured the
generated load.

The first observation we can make is that the throughput of flows bumblebeecan
produce depends on the actual average packet size of that flow: while large packets can
easily fill 97% of the wire, that value drops as soon as we approach 50% of small packets
and only 24Mbps are used when all packets are 92 bytes large. Another observation is
that, without the intervention of a rate controller at the emitter, asmodanis barely capable
of receiving 40% of the packets in the best case (largest packets). When the average
packet size decreases, the drop rate even increases and nearly 99% of the packets are
dropped when minimal size is used. While we haven’t investigated the actual reason of

16as reported by ethtool

4.4. REFERENCE IMPLEMENTATION ON X86 61

Figure 4.14: Maximum throughput achievable by 300MHz host (bumblebee) with (left) amix of
92 bytes WASP and 1058 bytes bulk packets and (right) flows made of bulk, count and benchmark
packets with homogeneous (but varying) packet size.

these drops, chances are that the receiving card is actuallyunable to follow 100Mbps
when all packets on the wire are to be caught.

A possible way to throttle down the emitter is to runiptraf on bumblebee while emit-
ting. This has the effect of virtually halving the submittedthroughput (55Mbps whith
largest packets only), which the receiving card can now follow. We varied the average
packet size in this scenario and it appears that the loss ratecan be maintained around 1%.
While we haven’t investigated this behaviour either, it sounds reasonable to assume that,
when iptraf is running, packets we submit are also reported by the card, requiring two
transfers over the PCI bus.

Host Performance

In order to measure the speed at whichbumblebeecan submit packets, we’re running the
packet generator without throttling in three different scenarios:

forward: no WASP module is loaded, neither on bumblebee, nor on asmodan. This gives
us a comparison point about the performance of the legacy linux network stack.

esp checking: WASP module is installed on bumblebee, but packets generated request
execution oninput ESS and thus WASP hook terminates early for all packets. In
the case of “bulk” packets, this happens immediately after the classification tests
while WASP packets will also inspect the “location” bits. Note that we reorganized
linuxesp_hook so that CRCs aren’t checked until we have the confirmation that
we are on the proper location.

wasp processing:this time, WASP packets request execution onoutput ESS and are
processed before being enqueued onbumblebee. For those packets, two CRCs
are computed (over the 52 bytes of WASP payload) and the “count” instruction
is processed.

We can observe on Fig. 4.14(left) that, as long as there’s at least 50% of “large” pack-
ets, all configurations behave roughly the same. Another interesting fact is that after

62 CHAPTER 4. THE WASP PLATFORM

Figure 4.15: A simplified look at the structures, function calls and fields involved in node and
interface statistics reported by WASP

the “threshold” of 50%, the ratio between measured throughput (with WASP module in-
stalled) and reference throughput (without WASP) remains fairly constant. The reader
should also note that while “normal” count packets are dropped if the threshold is met,
the tweaked packets we generate here arealwaysforwarded.

A More Comprehensive Benchmark

In most WASP applications where bandwidth is a concern, we donot usestandalone
WASP packets, but rather programs attached on regular traffic (e.g. for enforcing prefer-
ential dropping on a video flow, measuring jitter). To simulate that behaviour, we artifi-
cially “inflated” WASP packets to make them 1058 bytes on wireas well. In that case, the
performance degradation is solely due to our netfilter hook processing, and not to some
interface-card side effect.

If we ensure that CRC manipulation only covers the WASP program(not the entire
packet), then our “count” packets are indeed undistinguishable from “bulk” packets for
payload sizes above 640 bytes. We thus ran further measurements with abenchmark
packet that performs 8 ESS accesses, periodically change the key and thecomputation ID
used by the generator (to fill the ESS) and copy a bank of memoryinto the packet. As Fig.
4.14 shows, that “benchmark” packet can still be generated at 60Mbps when all packets
in the flow require WASP processing – clearly expensive enough to be measured, but still
a honorable performance for the modest hardware running thepacket generator. A flow
made only ofWASP:count packets behave slightly worse than a flow containing 40%
of “benchmark” packets and 60% of “bulk” packets.

With packet sizes lower than 100 bytes, even the code checking whether the packet
should be executed on the VPU or not consumes too much CPU cycles to keep the inter-
face fully busy and we therefore didn’t include those figureshere.

4.4.5 Node and Interfaces Statistics

Gathering and presenting statistics over node operations through theenvironment vari-
ablesmemory banks in WASP is probably one of the trickiest part of implementing WASP

4.4. REFERENCE IMPLEMENTATION ON X86 63

on Linux. Information is scattered in multiple structures (see Fig. 4.15), which all have
their own purpose. Thenet_device structure for instance, which is our root to access
most information, is over 200 lines long and, besides locks and queue entries of all types,
mainly contain pointers towards protocol-specific data, queueing disciplines instances,
etc. Unfortunately, an important number of these structures have been revised between
versions 2.4 and 2.6 of the kernel and at the time of writing, we’re still lacking a com-
prehensive documentation source covering the Linux network stack (i.e. an equivalent of
[Wehrle03] or [Rio04] for 2.6).

When our module initializes, thevpu_prepare_node function has to walk the
net_device list, checking each interface’s name and looking for a suitable entry in the
list of in_ifaddr associated with the IP-specific sub-structurein_device , so that
we can fill address and netmask field for each interface statistic bank. We also want to
offer a “primary node address” in the node state bank (i.e. asthe node ID) but Linux
doesn’t provide such abstraction. Instead, each network device may have its own address.
We thus scan all the network interfaces to retrieve one that has a suitable address (e.g.
we might prefer a routable address over a private 192.168.xx.xx) and pick one of the
remaining addresses as the node’s default address. In addition, we prepare the “static”
part of interface-related state.

In order to support QoS-related applications, we want to give per-interface statistics
such as packet drop ratio, or current and maximum bandwidth.Some of these information
can be obtained from thenet_device_stats structure and are periodically sampled
by vpu_update_stats() function. Only the queue’s length is updated “live” for
each packet processed by the WASP filter. It should be noted that our proof-of-concept
implementation of WASP on Linux doesn’t fully support QoS parameters yet and e.g.,
always advertises the full capacity to be available.

Due to the absence of division in the VPU, WASP programs mightprefer prepared
statistics such as the ratio between current traffic load andinterface capacity rather than
the nominal traffic load itself. The interface capacity, however, is surprisingly difficult to
obtain and doesn’t appear anywhere in the device-related structures. Analysis of manage-
ment tools such as [ethtool] revealed that special IOCTL calls were made to the device
to have the device driver fill anethtool_cmd which reports interface speed (defined
during layer-2 negotiation) and full/half duplex status. For devices that do not support
ethtooloperations, theif_port may provide the information, but it is clear that some
work should still be done in this area to have proper capacityreporting of non-Ethernet
devices.

Concurrent Access

The VPU structure will contain all state required for execution of WASP bytecode. In
order to ensure proper execution of a WASP packet, we need to make sure that only one
thread at a time will attempt to use a specific VPU structure. While the usual solution
to this problem is to associate aspinlockwith the structure, we can avoid this here and
offer higher throughput to multiprocessor systems by having as many VPU structures as
hardware CPUs. Using thesmp_processor_id() macro available in Linux, we can

64 CHAPTER 4. THE WASP PLATFORM

pick the right VPU every time we have to process a packet. Since the hooks are processed
with interrupts disabled17, there’s no risk for a given CPU to start handling a new WASP
packet before the one we’re interpreting gets completed.

It should further be noted that no restriction is put onwhich locationthese VPUs are
bound to. A given VPU structure might once be associated withethX interface and then
be associated withethYa few microseconds later. Moreover, several running instances
could be associated with the sameethXlocation : the ephemeral state stores have been de-
signed to allow such concurrent accesses with minimal performance penalties. Not only
the ephemeral stores are dynamically rebound to the VPUs, but also the node configu-
ration and interface statistic banks. As the VPU cannot modify these statistics, there’s
no need for synchronization procedures here either. At worst, the thread that performs
ESS cleanup and statistics update could modify the banks while a packet takes a snapshot
of the whole bank. Like IP, WASP is a “best effort” service andit will be up to the ap-
plication designer to take care of such updates if they are relevant for the service being
developed.

Endianness Strikes Back

The support of statistics banks in WASP raises another issueabout endianness of local
data storage. Data in WASP packets are always stored innetwork byte order(big-endian)
and, for performance reasons, the VPU registers as well as entries in the ephemeral store
are inhost byte order. This is usually not a concern becauseload andstore instruc-
tions (that manipulate packet data) do network-to-host or host-to-network reordering as
they move data. However, if a program writes data byte-per-byte in a ESS entry and an-
other program reads them back using 64-bit access, the actual data pattern it will get will
depend on the host’s processor. While the problem currently remains open, there are two
approaches we could envision:

• Enforce network byte ordering everywhere but inside VPU’s registers. This requires
simply to modifyyload andystore to make them look more likeload and
store . This is transparent for the IXP network processor, but willbe expensive
for x86 processors which have to do the conversion.
• Enforce network byte ordering for “statistics banks” and “configuration bank” so

that it is possible to use 64-bit data movement to retrieve them quickly and keep ESS
in host-ordering. The resulting programming model for the VPU would however
have undefined behaviour when e.g. one writes two 32-bit quantities in an ESS
entry and read back one 64-bit word.

Conclusions

We have provided a reference implementation of WASP router as a Linuxnetfiltermodule
for x86, x86-64 and XScale architectures. We also compared the performance obtained

17Our experiments with WASP have shown that hook code has full access to packet structure and that it
may be executed in non-interruptible context.

4.4. REFERENCE IMPLEMENTATION ON X86 65

by WASP versus those achieved by the native implementation of ESP operations. While
the execution time of WASP may be twice the time for native ESPhandlers, we illustrated
that the actual impact on theforwarding latencyon a Linux router is similar for the two
(between the time required to forward a similar packet and the time required to reply to a
pingcontrol packet).

Regarding performance on end-systems, we have shown that, aslong as packets re-
main large enough (half of theMaximal Transfer Unitof 1500 bytes in our experiments),
the bandwidth achieved by a user-process forwarding WASP packets is identical to the
one achieved with regular IP packets of the same type (about 97% of the 100Mbps link).
We also have observed that, for IP packets as well as WASP packets, the end-system have
increasing difficulties to achieve full wire speed as the size of packets decreases.

Comparatively, ANTS [Wetherall99] announced a maximum of 16Mbps for packet
size approaching the MTU, and with a latency between 500 and 700 µs (against around
70µs for WASP). Such comparison should of course be moderated by the fact that those
performance depend strongly on the actual hardware used, and by the fact ANTS provides
a flexibility we cannot compete with.

The whole design of WASP virtual processor has been organised around the idea that
processing WASP programs should be possible on a network processor – namely the IXP
2400. At the end of this work, we have all reasons to believe that the implementation of
WASP should indeed be possible on Intel IXP2400 and that the performance gap between
WASP and IP (when measurable) has good chances to be even smaller on that platform. In
his thesis, N. Imam concluded that an IXP1200-based system could switch ESP packets
at line speed with around 48MB of ephemeral storage. Whether we could do the same on
IXP2400 (which has gigabit Ethernet rather than 100Base-T) with WASP or not couldn’t
be predicted accurately at this time, and chances are that we’ll have to enforce restrictions
on the packet-per-second ratio if we want to achieve full bandwidth.

66 CHAPTER 4. THE WASP PLATFORM

Chapter 5

Experimenting WASP on IXP2400

A Klingon Warrior uses only machine code,
keyed in on the front panel switches
in raw binary.
– The Klingon programmer, Steve Baker.

Abstract

This chapter details the structure and the working of a WASP implementation on the
IXP2400 network processor. We then compare the performance of WASP and ESP in
three aspects: forwarding latency under low stress conditions, forwarding latency when
saturating the state store and throughput under varying state store conditions. We finally
give guidelines for a future self-optimizing WASP frameworkthat could produce pre-
compiled operations for the most frequent programs.

5.1 Development on IXP

Over 20000 lines of assembly code written by 2 corporates and2 universities, with heavy
use of macros and branches optimised for speed that will be split on 8 multi-threaded
processors. That short description could sound scary to many programmers, yet this is
what we have to deal with in the case of WASP on IXP.

We are well aware of the existence of themicro-c language introduced by Intel with
the IXP2xxx development kits, but still we decided to keep working at the lower level of
micro-assembly. This choice is motivated first by the immediate availability of receiver,
transmitter and classifier microblocks for the ESP filter written in micro-assembly, as well
as macros for ephemeral store management that we will reuse in our work. Rewriting (and
debugging) those blocks inmicro-c would have required substantial work at a time we
weren’t very comfortable with the SDK and the IXP hardware.

The second motivation comes from the nature of the microblock we plan to de-
velop. While writing the reference implementation of WASP interpreter in C, several
parts needed to be repeatedly disassembled and studied withcare to locate performance
bottlenecks and whether dedicating a register to this or that variable, whether making this
or that function static for in-lining would benefit interpretation speed. Such “hide-and-
seek” games with the compiler for performance profiling are only possible when one has

67

68 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.1: Microengines and buffers in a (hypothetical) WASP NP-blade for a switch-fabric
equipped router, showing individual MEs for packet reception (RX), CLasSification, Look Up ip
forwarding Table, SCHeDuling and transmission (TX)

a strong knowledge of the compiler’s behaviour and the architecture instruction set, both
of which we were lacking for the IXP.

By nature, the WASP interpreter does not involve complex algorithms or data struc-
tures, and we already had gone through “youth error” with thereference implementation.
We thus opted for micro-assembly WASP with good confidence that we wouldn’t face the
nightmares of spaghetti code or assembly source refactoring.

Most of the information we could give about our experience onIXP would likely be
perceived as “implementation details” by most of our audience and we have tried hard
to keep this chapter readable for someone that has no preliminary knowledge of network
processors (other than what we explained in chapter 3). Yet,our experience taught us
that in the field of network processors, every bit of published information may save days
of measurement and debugging to other developers. The reader should therefore not be
surprised to find this chapter rich in footnotes.

5.1.1 Overall Implementation

An application on the IXP is typically split in several components (microblocks and soft-
ware components on the XScale) that will be running on the different processing elements.
Pipe-line processing is typically assisted by hardwarescratch rings1 programmed to relay
packet handles (plus optionally few metadata) between microengines.

The packet content is transmitted directly from I/O buffersinto DRAM (by the RX
microblock) and only meaningful parts will be fetched on demand (e.g. by the classifying
microblock).

Fig. 5.1 shows how WASP and ESP microblocks could be insertedin a typical line
card application using a double-IXP2xxx board connecting multiple gigabit Ethernet ports

1Alternatively to the use of scratch rings, we can exchange information using the “next-neighbour”
(NN) registers – a ME-to-ME FIFO queue facility. While NN registers offer lower latency (e.g. they do
not require access to external memory), they restrict the flexibility as the “walk path” from one ME to the
next cannot be re-wired. Using NN registers is thus interesting mainly when there is a single preferred path
between processing elements.

5.1. DEVELOPMENT ON IXP 69

Figure 5.2: Internal structure of our WASP/ESP packet filter. We actually allocated fourMEs for
WASP/ESP processing and have one “spare” ME.

on one side and a CSIX-compatible switch fabric on the other side. As it is usual for such
setup, the XScale processor is typically involved only with“exception” packets such as
ARP request/replies or control protocols (e.g. packets directly addressed to the router
itself) – i.e. what we’re used to call the “slow path” in router design.

For our proof-of-concept implementation, we placed our WASP microblock in a much
simpler (and cheaper) test bed depicted on Fig. 5.2. In our case, there is virtually no slow
path processing as we limited ourself to layer 2 forwarding.The XScale’s role is here
limited to microcode loading, monitoring and debugging. These three tasks are fulfilled
by a Linux application that controls the microenginesvia the Hardware Abstraction Li-
brary provided by Intel. In addition to basic counters reporting (already available with the
ESP package), we extended that control application with an “online” debugging mode al-
lowing inspection of virtually all ME resources (general-purpose registers, local memory,
transfer buffers, etc.) and application-specific registers monitoring, as well as real-time
ephemeral store dumping.

5.1.2 Parallel Programming on the Microengines

Multi-threading on the microengine differs from typical multi-threading on a time-shared
(preempted) system. Here, context switches only occur whenthe running context explic-
itly releases the processor with e.g. actx_arb microword. The hardware context arbiter
will then evaluate the other threads in a round-robin fashion and check their events status
registers to identify a thread that will receive the processor.

Since we have a massively parallel architecture for processing WASP packets, it is
important to ensure that computations will still be carriedout properly. We must for
instance ensure that twocount packets or onecount and the subsequentcollect
packet update the counter entry in a coherent fashion.

Still, it wouldn’t be practical to lock individual ESS entries due to the absence of
atomic operations with the DRAM controller. It could also be extremely inefficient as a
WASP interpreter thread cannot stop interpreting a packet (that e.g. should wait for an
entry to be updated) and continue interpretation with another packet.

Instead, we impose (as in [Imam03]) that packets that operate on the same entry use
the sameComputation ID(CID). The computation ID acts as a “flow identifier” for the
classifier, which will allow for parallelism by multiplyingthe number of queues towards
the processing ME and which will guarantee ordering of packets carrying the sameCID
by placing them in the same queue.

70 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.3: The microengine resources as seen by a thread in the WASP microblock

Each thread in the WASP microblock can pick packets from any queue, but the queue
will then remain “locked” to other threads until the packet is completely processed and
ESS entries are updated. This means that we can now safely processcount andcollect
packets operating on the same entry even in the absence of per-entry lock, but this implies
an upper bound on the throughput we can achieve for a single computation.

5.2 The WASP microblock

Each thread in the WASP microblock performs the following three tasks every time a
packet is received on the scratch ring:

1. fetch WASP code and data from DRAM and check their integrity,

2. interpret the bytecode until a terminating opcode is encountered,

3. write back modified parts (packet banks as well as ESS entries) to the DRAM, and
compute the new CRC checksum if needed.

5.2.1 Structure Placement

An important point in the VPU design is how we map the logical VPU structures (e.g.
stack and bytecode) onto the various storage facilities of the microengine. Considering
that accessing external memory is orders of magnitude longer than reading a local register,
it is clear that we have to restrict ourselves to the microengine-local resources for storing
VPU state and required packets parts.

Even inside the microengine, we have an impressive number ofstorage facilities that
all have their properties that make them more or less suited to different content and access
patterns. The SRAM and DRAM transfer registers, for instance,use separate banks for
reads and writes. It is therefore not possible to use them as temporary storage since we
will be unable to read back what we have written there. At best, they might be used to

5.2. THE WASP MICROBLOCK 71

size indexed inc/dec offset read back
GPR 128B no no no yes

SRAM xfer 64B shared ++/– no no
DRAM xfer 64B shared ++/– no no

NN regs. 64B per-me ++ yes yes
local mem 320B per-ctx ++/– yes yes

Table 5.1: properties of the memory element on the IXP2400, along with the size in bytes per
context

keep interface configuration or statistics. Hopefully enough, much details of the actual
microengine structure can be ignored and the programmer canwork with a simpler model
depicted on Fig. 5.3.

For most structures in the VPU, we will prefer storage with indexed access and index
auto-increment after a memory move would be a plus. This willindeed be a plus for data
banks (for implementingINX microbyte) as well as for the stack or sequential code pro-
gression. Table 5.1 summarises the properties of the different memory areas within the
microengine. We consider here that the microengine’s “nextneighbour”(NN) registers
have been set up so that the ME accesses itsown NN rather than another ME’s. It ap-
pears that local memory will be one of the most interesting locations, among other things
because it has two independent index registers that are automatically saved on context
switch.

Comparatively, we have only oneNN_INDEXregister for the whole microengine, and
oneT_INDEX register that is shared for SRAM transfer and DRAM transfer registers
for all contexts of the microengines. In other words, if we want to preserve those index
content, we will be required to identify all instructions that could cause a context switch
while they are alive and save the index value in a GPR.

Bytecode

We decided to use the NN registers to store up to 64 bytes of code. The additional latency
for reading back values written in NN registers is not reallyan issue since code is only
written once (in packet fetch phase), and the only place where we need extra attention
will be ESS access instruction (which may release the hardware during DRAM transfers).

Comparatively, it would be more complicated to place code in,e.g., SRAM transfer
registers, since reads and writes are handled by different physical registers. It is clear
that writing packet bytecode to SRAM and getting it back in thetransfer registers would
be awfully inefficient. The DRAM transfer registers could sound more appropriate, as
they do contain the code at least during packet fetch phase. Unfortunately, we don’t have
enough room in the 64 bytes per context to store a useful load of bytecodeandstill keep
enough room to retrieve ESS entries during packet execution.

72 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

VPU state

The program counter, virtual processor flags and accumulator, as well as other variables
that constitute the VPU state do not need indexed access at all. They can thus safely be
held in general-purpose registers. The notable exception is the management ofmemory
banksX and Y. We have so far the need for 4 registers of meta-data perbank (including 2
registers for caching the current ’line’ of 64 bits within the bank), and implementation of
load/store operations is simplified if we can abstract whether we operate on X or Y bank.
A proper design of local memory allows us to implement this elegantly: a simple increase
of the index will then “shift” to the alternate ’Y’ bank and decreasing the index restore
the use of the “main” bank.

The second local memory index is dedicated to the VPU stack. Still, we may tem-
porarily need it for other purposes (like advancing to the next ’line’ in a memory bank) in
some instructions and we will have to save/restore it manually in these instructions. We
believe that it is a necessary trade-off to take advantage ofthe extra space available in the
local memory to keep full (WASP) packet data on the microengine during interpretation.

5.2.2 Redesigning the Fetch/Decode

After external memory accesses, conditional branches are one of the most costly opera-
tion on the IXP microengines. While almost every instructionwill complete in one cycle,
a branch requires discarding the instructions that are already in the pipeline. As in many
RISC-inspired architectures, the IXP micro-assembler allows one to indicate the CPU
whether (and how many of) the instructions laying after a branch opcode should be exe-
cutedeven when the branch is taken. Such instructions are saiddeferredand are one of
the keys for microcode optimisation.

Deferring instructions is convenient when you have many independent things to do in
a code block and that only a few things among them depend on a simple condition (e.g. a
bit set or cleared), but according to our experience, they are almost impossible to fill when
it comes to implement adecision tree, especially when the next test to perform depends on
the result of the current test. Bad news is that the instruction decoding in our C reference
implementation is very close to a decision tree, especiallysince it first decodes instruction
families and then opcode within a family.

In several cases, it will be preferable to use ajump tablerather than a decision tree.
The microengine instruction set indeed allows one to jump ata computed location2. There
are mainly three ways we can use thatjump microinstruction:

1. A pure “trampoline” table, where each slot has only a single (non-conditional)
branch to a block of code that resides anywhere in the program. This will how-
ever lead to poor performance as we will experience a double jump latency.

2. A pure “switch” code block where each slot takesn instructions and can either
continue to the next slot or branch to some “all done” label. While this may be
preferable for performance, it requires a perfect sizing ofeach slot to work properly,
which makes it very inflexible to changes.

2in the form base+offset, where the offset is typically computed first in a register

5.3. WASP PROCESSING DELAY 73

3. A hybrid switch/trampoline where you give enough room to perform initialisation
steps in the defer slots of the impending branch to a larger chunk of code (if needed).
It can be especially interesting when many cases merge into asingle code block
after case-dependent initialisation is performed.

Reducing the amount of cycles spent in fetch/decode part is crucial to have an inter-
pretor that can compete with ESP native operations, but as usual, it led to many trade-offs,
be it on code readability or ease of debugging (the encoding of PC location, for instance,
would sound totally awkward to an external developer).

More annoyingly, it questioned some of our initial opcode encoding schemes, requir-
ing a change in instructions mapping or in modifiers semantics3. We have good hope that
these changes were needed to have an instruction set that is easy to implement onany
hardware platform, but it leaves a bitter taste anyway.

5.3 WASP processing delay

5.3.1 Profiling the WASP microblock

The IXP microengine features a high-precision timestamp counter that is incremented
every 16 clock cycles (with microengine clocked at 600MHz4), which gives us a time
granularity of 26.66ns.

With that timestamp counter, we have measured the processing time of both WASP
and ESP microblocks from the reception of the packet descriptor from the classifier to its
dispatching on the transmission scratch ring. We expect that the time we measure that
way is a good estimate of the overhead that WASP or ESP packetsexperience compared
to a regular packet of identical size.

The processing time of the last packet is stored in a GPR on themicroengine and
periodically retrieved by the code on the XScale. There is still work to do to automate
aggregation of those measurements, but as a first estimation, we have an average pro-
cessing time of 2.93µs for a WASP:count packet with a deviation of 0.204µs among
42 sampled timings. We should keep in mind here that a DRAM access implies a non-
deterministic delay estimated between 200 and 300ns, whichexplains why the relative
error is so high. Comparatively, 58ESP:count packets took on average 2.14µs with a
deviation of 0.085µs.

We can thus estimate that the time required toprocessaWASP:count packet is 137%
of ESP:count , a fairly encouraging result for the IXP implementation, since under the
same circumstances5, the x86 WASP implementation took nearly twice as much as its
ESP counterpart.

3e.g. theCLRbit in memory opcodes that tells whether the accumulator should be cleared before the
lookup is done is now active when cleared rather than when set.

4again, according to hardware manuals [IntelHRM], table 157. Empirically confirmed by the10 sec
lifetime of entries in the ESS, considering the way timestamp counter is converted to check delays.

5at the moment, we don’t use any information cached from the previous ESS lookup when we update
the entry

74 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.4: Testbed setup for “There and Back” latency measurement. The controlstation on the
left runs both (custom) traffic generation and Ethereal as a monitoring tool.

We should keep in mind that the measurements here take actually more than just in-
terpretation into account: packet fetch, CRC etc. are part of the WASP/ESP microblocks,
while they weren’t taken into account in the x86 comparison (on Fig. 4.10, section 4.4.1).

5.3.2 There (on the IXP) and Back

We set up a test bed to measure packet latency through the WASP/ESP filter, trying to
avoid the need for precise clock synchronisation between the involved machines. We
have indeed frequently observed a time offset of 10µs when synchronising our Linux
PCs with a local NTP server. We expect to measure latencies near to 50µs according to
our preliminary tests, and the NTP offset could introduce a significant bias in our results.

We thus opted for a setup where traffic is injected and collected by the same machine,
a 1GHz Pentium III (Beetle) running Ubuntu Linux 2.6.12 and featuring a 1Gbps PCI net-
work card6. This machine is connected to port 2 of the ENP-2611 board. Weset up a static
forwarding rule that delivers packets from porti towards port(i+1) moduloNports, and
wired ports 0 and 1 together.

As a result, a packet emitted by Beetle will be received on port2, forwarded on the
“loop” wire, received again on port 1 and sent back to Beetle, experiencing 3 queueing
and serializing over Ethernet wires and two IXP processing (see Fig. 5.4). Measurements
are performed through the Ethereal application, using a script deriving from our tests on
x86 Linux router. The wiring is such that the WASP box only processes packets with
EXEC_IN bit set on port 2 (from Beetle) and packets withEXEC_OUTbit set on port 1
(before sending them back to Beetle). The main expected advantage from this unusual
setup is that we do not have to rely on strong clock synchronisation. Considering we are
measuring times near 50µs and that it is is not rare to see a time offset of over 10µs
when checking synchronisation with a (local) NTP server every second, we believed it
was preferable not to introduce that additional bias to our measurements.

For WASP packets, we can further control whether we want the packet processed
once or twice by using theexecution locationflag. We could thus theoretically estimate

6Broadcom Corporation NetXtreme BCM5701

5.3. WASP PROCESSING DELAY 75

Figure 5.5: Distribution of measured delays from Beetle forWASP:count packets, with 0
(’idle’), 2.7 (’/bulk’) and 5.4 (’/+bulk’) Mbps of background traffic.The distribution shown is
relative to each experiment’s most represented delay.

the amount of time consumed on the WASP microblock through the difference between
the delays of a packet that has bothEXEC_IN andEXEC_OUT, and of a packet having
only one of those bits set.

Typically, not allCOUNTpackets will experience the same delay. The first packet after
ESS cleaning, for instance, will have to create a new entry while other packets simply
update an existing entry. In order to see to what extent thesedifferent code paths lead to
different delays, we extracted the distribution function of various scenarios, as reported
on Fig. 5.5.

Cache miss and other side-effects

Going further with our measurements, it appeared however that the actual average delay
we measured was very sensitive to the amount of traffic crossing the router. For instance,
a regular “ICMP echo” packet will take around 76µs to cross the IXP and come back
when there is no background traffic, while as soon as we start astream of “bulk” packets
(2.7 Mbps using frames of 1066 bytes on wire), the average latency of ICMP packets
drops to 64µs.

We observed a similar effect withWASP:GETpackets and Fig. 5.5 shows how it af-
fects measurements ofCOUNTpackets. The thick “idle” line, plotting latency distribution
when we send oneCOUNTpacket per second with no background traffic, has a single
strong spike matching with the observed average latency (93.48µs). This spike covers
76% of the actual packets and is centred at 88.2µs. When we add the stream of bulk
packets (“/bulk” line), the major part of the traffic is now distributed on two spikes; a
small one centred on 73.74µs that covers 16% of the traffic, and the larger one centred at
87.61µs that covers 63% of the traffic.

Now, as we double the amount of bulk traffic (e.g. comparing the “/bulk” line with the
“/+bulk” one), the distribution of packet latency between the two spikes changes. We now
have 38% of the traffic processed in 70µs and only 49% of the traffic taking on average

76 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

84µs. Nothing in our code on the IXP could explain such a behaviour, so we suspected
something strange was happening with cache performance on the PC platform itself.

We thus repeated the experiment, replacing our Beetle with a dual-core 3GHz Xeon
running SuSE Linux 2.6.11 in 64-bit mode and featuring an on-board Intel 82541GI/PI
Gigabit Ethernet controller. It definitely confirmed that weshouldn’t rely on a PC to
measure network latency at 1Gbps. Indeed, on the Xeon, no spike appear in the graph
and it looks like packets now experience a delay that is uniformly drawn between 30 and
150µs. Under those circumstances, we have no hope to accurately measure anything that
happens on the microengines, so we opted for modifying receive/transmit microblocks of
the IXP application to make them measure directly the packetlatency.

While we haven’t investigated further what caused the curious phenomenon detailed
in this section, we believe that the behaviour observed withBeetle could be explained
by the way network drivers are typically implemented in Linux: when a packet is first
received, the network card issues an interrupt that will eventually make the CPU execute
driver code. On most drivers, however, the driver will not just pick one packet, but it will
greedily consume packets on the card until buffers are empty(or a given time quota has
been reached). The kernel firewall behave similarly, running in a “tasklet” (also known as
a “bottom half”) that acts as a dedicated thread inside the kernel. Code and data locality
is thus higher when we process one packet within a burst than when a single packet is
processed by network driver, then by firewall, etc.

The Intel 82541GI network card additionally implements interrupts moderation7 to
avoid excessive CPU time consumption by frequent switches between user and kernel
mode, at the cost of more variable in-card delays. Obtainingaccurate measurements
with such hardware might require us to disable interrupt delaying in the card, and might
also have to hack the kernel to ensure timestamps for packet reception/transmission are
performed as close as possible from the actual I/O operations.

5.3.3 Embedding Measurements on Microengines

Methodology

Our implementation of the WASP filter reuses the generic “receive” (RX) and “transmit”
(TX) microblocks provided by Intel as part of the IXA SDK. Transfers with the Me-
dia Switch Frame (MSF) is typically something that requiresperfect knowledge of the
IXP hardware and extremely precise synchronisation between threads to sustain the wire
speed8 – two objectives that are rather incompatible with code readability, despite the ex-
tensive commenting of the code package. We have thus long kept modification of those
blocks as a last resort until it became obvious that PC hardware couldn’t fulfil the task.

Packets received by the MAC cards are delivered in chunks of 128 bytes called “mpack-
ets” to the microengines. Threads on the RX microblock pick those mpackets as they
arrive and attempt to rebuild the packet they come from usingstate associated with each

7see application notes [IntelAP450, IntelAP453] for details on interrupt moderation and small packet
traffic performance optimisation

8e.g. some operations such as obtaining the buffer for the next packet are performed ahead of time while
we increment counters for the current packet and thus replicated with every ’receive case’

5.3. WASP PROCESSING DELAY 77

media port in the local memory. When the packet is completed, its buffer handle is trans-
mitted to the classifier block.

We modified the RX block to capture the local time counter immediately after the
MSF wakes the thread9. In case we identify the reception of a “Start of Packet” (SOP)
mpacket, that timestamp will be stored along with reassembly state in the local memory.
In all other cases, the captured timestamp is discarded. Whenan “End-of-Packet” (EOP)
mpacket is detected, the timestamp associated with the corresponding SOP is added to the
packet descriptor in SRAM that will be available for later processing blocks.

The timestamp is then kept untouched by classifier and WASP/ESP microblocks. It
will be retrieved with other buffer metadata by the TX microblock. When the last mpacket
has been transferred back from DRAM to the buffers of the transmitting interface and we
have acknowledged the MSF10, a second local counter capture takes place. The difference
between this timestamp and the one we retrieved with metadata gives us thesoftware
processing time of the packet on the platform: we might miss aconstant and payload-
independent additional response delay from the MAC units and the MSF11.

To avoid extra interference, microengines simply keep the last measured delay in a
register that we periodically sample from the XScale. This technique gives us more pre-
cise delay measurement, but we lose the ability of isolatingtraffic classes as we did with
Ethereal in previous tests.

Still, We have a different counter for packets that are exactly onempacket(128 bytes
and less) and packets that are 2mpacketsor more. We can thus isolate some ESP/WASP
operations by artificially “inflating” some packets types (e.g., havingcount packets
sized up to 400 bytes to keep them apart of theget or collect packets that we plan to
measure).

Results

In the conditions described above, our WASP filter forwardsWASP:count packets with
an average latency of 6.342µs. Dumb packets of identical size have an average latency
of 2.451µs and WASP:count packets that are not processed (i.e. that have all their
execution location bits cleared) take on average2.908 µs. The same experience repeated
with ESP:count packets showed an average latency of5.470 µs.

In other words, WASP processing is 47% of the complete latency for acount packet,
and the interpreted version takes 116% of the native versiontime. The results forcol-
lect , on the other side, are less impressive: 136% of the native version. With8.581 µs
for WASP against6.295 µs for ESP, we clearly see here the impact of a longer WASP
program.

9threads that are willing to process incoming mpackets add their identification, together with the address
of a transfer register where the status word will be written,to the “freelist” maintained by the MSF and are
automatically activated when the mpacket is ready in the transfer buffers

10that is, at the start of phase 3, where debugging counters areincremented, etc. and before the buffer is
returned to the free pool

11by manual inspection of the microengine state, we have estimated this additional delay between 3 and
6µs, but such measurements are hard to reproduce and can only be obtained with sufficiently large packets
with the current code.

78 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.6: Distribution of packet forwarding latency at low throughput forcount andcollect
instructions

We then implemented caching of ESS pointers betweenlookup and subsequent
insert on the same key the same way we did in the x86. We can then observe an
improvement of0.37 µs for count (one SRAM and one DRAM access saved when writ-
ing back the counter), and0.78 µs for collect (two SRAM+DRAM accesses saved).
In the IXP implementation, caching the last ESS pointer comes virtually for free12), but
the effect remains modest (10 and 13% of the interpretation time respectively) compared
to the 23% improvement observed with x86 processors (see Sec. 4.1).

Comparatively, the IPv4 forwarder demonstration application[NPForum03], takes on
average 6.92µs to forward a 64-byte packet under 25% throughput (see Fig. 5.7). This
demonstration application from Intel involves looking up the destination’s IP address and
resolve the appropriate MAC address for the next hop, while our application is a simple
filter that doesn’t alter any of L2 or L3 headers.

As shown on Fig. 5.6, we observe again that the latency distribution is mostly split in
two (or sometimes three) spikes. We can notice too that 95% ofthe samples are located
no further than52 ns from the spikes centres. We can likely consider that this corresponds
to variance in latency of DRAM accesses13.

A most intriguing fact is that the spacing between the spikes’ top is on average516 ns
with very small deviation14 independently of the actual packet’s program and regardless
of whether ESP or WASP is considered. Our first hypothesis wasthat some collisions in
the ESS hash table occurred for some of the lookups, leading to extra DRAM access, but
probing the distribution of chain lengths during the test revealed that all chains were of
one single element. We also observed that the time between packet reception and packet
drop (for droppedWASP:count) does not exhibit such a “slotted” distribution, but rather
has a continuous, Gaussian-like shape (avg.4.35 µs, stdev1.41 µs).

On the other side, the delay of516 ns on average almost exactly correspond to the
time required to transmit a minimal-sized packet (64 bytes)on the 1Gbps medium. While

12basically, they can remain in transfer registers if we ensure that other operation do not trash the retrieved
ESS entry

13remind that while [Johnson03] reports a latency of 120 cycles (200ns) for a DRAM access, other
sources[Lu05] report from 200 to 300ns, which would confirm the52ns variance observed here

14Actually, we can only observe either507 or 533ns due to the26.6ns granularity of our measurements

5.3. WASP PROCESSING DELAY 79

Figure 5.7: IPv4 forwarding latency, according [NPForum03]

we haven’t investigated this any further15 at the moment of writing, it sounds reason-
able to consider that the spacing between spikes is introduced by the transmit component
depending on whether it is found idle or busy when our transmit request is submitted.

5.3.4 Larger Entries andmap Opcode

The timings forcollect in the previous session are based on bytecode that exclusively
useslookup and insert microbytes. We have already shown in the case of x86 im-
plementation that it is more interesting for performance purpose to replace these multiple
accesses by a singlemapopcode [Martin05b].

On the IXP, saving space in the ephemeral store is of increased importance if we want
to support 1Gbps, so we modified the lookup/insert code as well as store cleanup routine
to accommodateboth 24-byte (single 64-bit value) and 48-byte (mapped bank) entries.
Since each ESS entry is aligned on a 64-bit boundary, we can use the 3 lowest bits of
“chain” pointers to store extra information about the entryitself, and one of them has
been used to tell large entries apart from small entries.

Supportingmapopcode also required a couple of modifications instore implemen-
tation so that we identify correctly the following cases when packet interpretation ends:

• the packet data is dirty (e.g. we usedstore on a packet data bank): we need to
write those data back in DRAM and compute a new CRC.

• a mapped ESS entry has been updated during interpretation and is still waiting to
be written back in DRAM.

• a mapped ESS entry has been created during interpretation and should be written
back.

15further investigations would e.g. require us to guess the internal state of the transmit logic and e.g. save
measured latency todelay_ready or delay_busy accordingly. However, according to [Johnson03]
(p. 123), there isn’t anything like a “ready to transmit” bitin the IXP2xxx MSF, and therefore no way for
us to further confirm our hypothesis.

80 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We should remind that in the case of x86 implementation, using map (compared to a
small cache implementation) has virtually no impact oncount instruction, but improves
latency ofcollect by 18%. Still, interpretation time takes respectively 166%and 133%
of their native ESP counterpart.

Figure 5.6 shows that there is only a small improvement (merely 1%) in the case
of count . Comparing packet latency measurement against the cost of forwarding a
WASP:count packet that does not require execution, we can estimate the average in-
terpretation time ofcount /map as2.866 µs while count /cache takes3.062 µs,
giving a 6% improvement16. In both case, these measurements only take into account
count packets that have to create the ESS entry.

The most interesting result is however the fact thatWASP:collect /map achieved
a forwarding latency almost equal (101%) of native ESP counterpart. Indeed, anESP:-
collect packet needs to lookup and update two keys, requiring 4 DRAM access at
best17, and 3 SRAM accesses in the case where the second entry needs tobe created.
Comparatively, both the packet counter and the computation accumulator are held in a
single entry when usingmap, and collect suffers no entry creation penalty.

Finally, only 1 SRAM and 2 DRAM access are now needed, which could save between
680 and880 ns in memory accesses, and the resulting bytecode is simpler, which finally
make us save1416ns againstWASP:collect /cache . While they achieve similar
latency at low load, it should be mentioned that we expect processing of an ESP packet
to be essentiallymemory-intensivewhile WASP packets arecpu-intensive. It will thus be
important to repeat those tests at higher loads to ensure we are not saturating microengines
with computation to the point it is too busy to fully benefit ofmemory waits by other
threads.

Atomicity and Aborted Mappings

Another advantage of usingmap is that we can more easily implement atomic operations
(see section 4.4.3). In case of interpretation error (stackoverflow, etc.) or if theabort
opcode is executed, the packet interpretation is haltedwithout writing back the mapped
bank in the ESS. What remains in the state store is thus the (consistent) state found before
starting packet execution.

However, we need to take extra care when aborting a packetthat just created a new
entryvia themap opcode. When a packet creates a new entry, we give the interpreter a
zeroed bank and the “defined” bit in its status is cleared. Thenew entry is then chained
but its state will only be defined for the first time when packetexecution completes (or
when anothermapwill be issued by the same interpreter). It may be important for some
protocol to distinguish a zeroed entry that was already present from a new entry creation.

• Once an entry has been allocated, it is generally not possible to “free” it before it is
reclaimed by the store cleaner. As a result, entry allocation and chain linkingmust
be kept together if we want to avoid wasting entries.

16interpreting WASP:count /map thus takes 111% ofprocessingESP:count , while latency of
WASP:count /map takes 106% ofESP:count .

17assuming that there is no chain to walk

5.4. HIGH AVAILABILITY AT HIGHER RATES 81

• Modifying the chain separately from looking for the entry (e.g. at packet forward-
ing) will require to check the DRAM (or SRAM) again to ensure we still know the
end of the chain.

The approach we envision is to letmap create the new entry anyway, but to tag it
as “invalid” (using the extra status bits mentioned above) until it has been validated by
a write-back. This way, the chain forhash(k) is immediately valid and we can use a
single-shot write-back in DRAM, and still have WASP programsdetect appropriately the
absence of a valid state if the creator has been aborted. In that case, one “dangling” entry
for k remains allocated in the store, and another packet that invokesk can still use it (and
define it), but the entry’s lifetime will be defined by the firstpacket. This approach will be
completed by amap|die modifier which instructs themapopcode that packet execution
should be immediately aborted if the entry does not exist. This eliminates the need for
constructs such as “map, then branch to abort if not defined” in bytecode that would have
inevitably led to dangling entries.

5.4 High Availability at Higher Rates

As we have seen in section 4.3, it is possible, due to the nature of the Ephemeral State
Store, to engineer a ESP component so that we can guarantee proper execution of any
program simply by enforcing a limit onhow many keysa packet can create. We have also
seen, unfortunately, that 681 MB of DRAM is required per Gigabit Ethernet port – almost
three times the amount of memory available on our ENP-2611 card.

In this section, we will study how the ESP microblock and our WASP microblock
behave when approaching these levels of performance. Note that the nature of the traffic
we send prevents us from using an existing traffic generator such as D-ITG[Avallone04]
or thrulay[Shalunov05w], for instance.

5.4.1 Behaviour of the ESP microblock

Test Setup

For these tests, the ENP-2611 card has been configured as having a singleport pair be-
tween the two machinesWaspandBeetle. Any packet received on one port is forwarded
on the other, and vice versa, as one could expect from a regular switch.

The ESP and WASP microengines are both given 32 queues to receive packets from
the classifier, of 2048 entries each18. We have 4 ephemeral store of 8MB DRAM each,
with a hash table of 64KB.

The test traffic consists of pairingcount andcollect packets (e.g. everycollect
packet reuses a key that has been installed by a previouscount packet, with sufficient

18these multiple queues allow parallel processing of WASP programs while enforcing ordering preserva-
tion between packets that belong to a same computation

82 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.8: The setup used for the state-store stressing testbed. Note that only a few testswill
involve traffic on the Beetle-to-Wasp path.

spacing19 between correspondingcount andcollect . We used the x86 internal times-
tamp counter[IntelRdtsc, Bindels] to enforce a minimum delaybetween two subsequent
send system calls.

The traffic generation tool we use here can adjust the number of keys used by the
test traffic in order to accommodate a given size of ephemeralstore. In this scenario, we
would like to avoid exaggerated variation in chain length while avoiding the need for a
complex function generating random keys20. The technique we used was to reuse some
bits of the CRC that protects the ESP PDUi as the lowest bits of the key for PDUi + 1.
EveryN packets, we simply restart with our first key, where

N = max
i
{x = 2i : 48x < |ESS|}

Forwarding Latency with Short Chains

The maximum capacity of the generator onWasp(dual-core Xeon, 3Ghz) was 907 Mbps
with all packets having the maximum size and 170 kpps (98 Mbps) when using only
minimum-size packets. This is still quite below the theoretical maximum throughput of a
single port-pair Gigabit Ethernet Forwarder where each interface can receive 1.488 Mpps
21, but it already gave us the opportunity of stressing the state store.

We first placed ourselves in an optimistic scenario (on average 7 entries in a ESS
chain) where the generated traffic will only require from 1 to6.4 MB of state store and
using the full processing capabilities of the chip (16 threads doing ESP packets process-
ing). The latencies and chain length distribution in the resulting scenarios are depicted on
Fig. 5.9.

Note that the packets whose size are mentioned on Fig. 5.9 arethecollect packets.
All the count packets were 128 bytes large in this test.

In all cases, the percentage of packets effectively forwarded by the ENP card was at
least 98.5%. We have tuned the “threshold” ofcount packets so that none should be
dropped as a result of normal processing, but if acollect packet is processed with a

19sendespmorecc.c will send 1024count packets before the firstcollect is issued
20The ESP implementation uses hardware-acceleratedhash_64 and keeps appropriate lowest bits de-

pending on the table size
21if we take inter-packet gaps (12 bytes) and preamble (8 bytes) into account and assume minimum-sized

packets (64 bytes)

5.4. HIGH AVAILABILITY AT HIGHER RATES 83

Figure 5.9: (left) ESP:collect packet latency with varying packet sizes and (right) ESS chain
length distribution for various state store usage ranging from 16384 to 131072unique keys

value entry that is older than thecount 22, we might experience a drop anyway. We
estimate that this occurs for 79% of the packets actively dropped by the ENP card – which
still represents less than 0.8% of the received traffic. The remaining dropped packets are
due either to lack of space in the ESS (16%) or a missingcount tag when acollect
packet is processed (4%).

The most likely source of packets loss in our tested is thus the network card on the
receiving PC (1GHz Pentium III) which may not be able to process all those small packets
(or the Linux kernel lacking buffers to process them all).

Saturating the State Store

In the following tests used a packet flow mixingcollect packets sized up to 438
bytes (including Ethernet headers) andcount packets of 78 bytes, which corresponds
to 253 kpps (17% of the maximum throughput per interface).

We then selected the number of different keys generated to saturate the ephemeral
state store (in its current state, it can handle 34950 new keys per second) in order to have
most of the chains longer than 10 entries. The test has been repeated by limiting further
and further the number of differentcomputation IDsin use, thereby limiting the number of
queues used to relay ESP packets between the classifier and the processing microblocks,
but also the level of parallelism in the processing microblock.

With two threads (on the same microengine) and 256K entries (2q256K traffic pat-
tern23), we start seeing forwarding latencies approaching several milliseconds, and the
number of packets dropped by the ENP card dramatically increases.

What actually occurred is that, given the restricted size of the hash tableof our
ephemeral store (16K entries for a 8MB store), the average chain length grew up to 16
ESS entries for the same hash, a threshold at which the processing time of an individual
find_create was exceeding the inter-packet time for our test traffic (at 211 kpps, we
receive a new packet every 4µs).

22meaning thatcount tag has already been collected, butvalue hasn’t been so far
23which correspond to the setting -storesize 8000000 and a keymask of0x1ffff

84 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We automated the process described in section 5.3.1, givinga more precise gathering
of the number of cycles spentin the ESP microblock. With the2q256K pattern, we have
between a mean processing time of 6.75µs with a deviation approaching 3µs, against
2.14µs on average per packet when the system is near idle state.

With 4 threads, the average time spent on a packet in the ESP microblock is 8.40µs
(with a deviation of 4µs), as the DRAM bus is now facing twice the amount of requests.
However, the rate at which our 4 threads consume packets fromthe ring buffer is sufficient
compared to the offered traffic.

Reducing the number of entries used in the state store to 64K also solves the problem.
Due to the restricted size of the ephemeral store, however, we are not capable of reproduc-
ing the same experiment with 4 running contexts (the store then saturates and we cannot
increase the chains length further). By submitting traffic atboth ends of the ENP-2611,
we can still increase the load to a total of 393 kpps (2.54µs inter-packet arrival time) and
put the ESP microblock to a similar state where queues stay almost full for a few seconds
before getting empty again.

Experimental Results vs. Queueing Theory

With an average processing time of 6.6µs (2q256K), two “servers” (the individual worker
threads) and inter-packet arrival time of 4µs, the system should in theory be able to drain
buffers to a normal state. However, we observed that queues are heavily loaded most of
the time.

We should first note that what we measured isn’t exactly the inter-packet departure
time of the queues. the processing time doesn’t take into account the time needed by
a thread to acquire a packet descriptor on the SRAM queue. Since all the threads of a
microengine poll the 16 queues in a round-robin fashion, we might be missing a delay
of several SRAM accesses (150ns each) before one of the thread probes one of the two
queues in use.

Moreover, the traffic pattern isn’t as regular as we could hope. Because we first send
a burst of 1024count packets (which are smaller), we have a temporary burst rate ap-
proaching 274 kpps (3.64µs inter-packet time), and exactly enough buffers to accommo-
date that burst when only 2 queues are in use.

We also don’t have precise measurements of the load the ephemeral store cleaning
might add on the DRAM and SRAM controllers. Cleaning indeed happens “between”
packet servicing, and simply means the system will temporarily serve queues with 7
threads rather than 8 – which should be unnoticeable when only 2 or 4 queues are loaded.
Cleaning, however, will issue continuous requests to the DRAMcontroller to check each
entry’s expiration time and SRAM requests to update the chainpointers in the hash table,
which might temporarily increase the processing time and fill up buffers.

Finally, a cleaning burst is likely to be followed by a collection of entries creation,
which is also significantly more expensive than entry lookup, which will delay buffer
drain.

5.4. HIGH AVAILABILITY AT HIGHER RATES 85

Further significant modifications of our statistic grabbingtool would be required to
investigate those kinds of behaviours, collecting queue state, traffic patterns, servicing
time in a single experiment.

5.4.2 Behaviour of the WASP Microblock

Now that we have a clearer understanding of the dynamics of ESP and the state store, we
can compare latency of a flow of ESP count/collect packets against an equivalent WASP
flow. We picked generator parameters so that the chain lengthdistribution in the state
store and the traffic rate in terms of packet per second is the same in both scenarios.

It should be mentioned that in this type of scenario, it makeslittle sense (if any)
to study the latency ofcount andcollect packets separately. Indeed, both will be
received in the same queue and may access ESS entries that arein same chains. The
effect of e.g. a longer average processing time forcollect packets will increase the
average queueing time (and therefore the latency) ofcount packets.

To keep things comparable, an ESP flow assuming a store of sizeS will typically
compete with a WASP flow assuming2S24. The implementation ofWASP:collect
we’re considering here is indeed usingMAPand needs only one entry per “computation”,
therefore requiring us to double the number of individual computations if we want to keep
the same chain length distribution.

Store Cleaning Effects

As in the case of ESP processing, we first studied the behaviour of WASP for critical
chain length. Theoretically, at a certain length, the processing time will be such that mi-
croengines cannot sustain the offered traffic. Buffers between the classifier and the pro-
cessing microengines will then fill up permanently and excessive traffic will be dropped.

In this section, we mainly focused on a test bed with 2 worker threads (thus only two
distinct CIDs) on the same microengine and a virtual store size of 128K entries (2q128K)
for ESP and WASP(w2q128K) (giving an average chain length of 8 entries and a maxi-
mum chain length over 15 entries, see Fig. 5.9).

We indeed observed such behaviours when offering a combinedload (fromWaspand
Beetle) of 440 kpps with latencies then approaching3 ms, but as soon as the load gets over
250 kpps, we can see transient states with high buffers usagethat drain at a speed depend-
ing on the offered load. The periodicity of those buffer-filling states is close enough to
the ESS entry lifetime to suggest that we are observing the result of a state store cleaning.
Unfortunately, the mechanism we use for probing buffer usage is too intrusive to allow
more than one probe per second – a rate at which providing quantitative result, but since
we observe less than 2 seconds with empty buffers between twobursts at 434 kpps, we
can reasonably suggest that the “knee” load is somewhere between 434 and 440 kpps.

It should be noted that our traffic unfortunately starts using virtually all the keys of
the store at the same time, meaning that store cleaning happens in “bursts” during which

24e.g.2q128K is achieved through-storesize 4000000 while w2q128K requires-storesize
8000000

86 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.10: Evolution of the latency distribution as offered load approaches saturation

the processing time in the WASP microblock can be up to twice the average value. Be it
because of an increased load on the DRAM controller, the need for creating new entries
or because chains are found locked by worker threads, the result is that the now-longer
WASP processing struggles the consumption of WASP packet from the classifier’s buffers
that will fill up. The time needed to drain buffers will then depend on the difference
between the offered load and the current throughput of the WASP workers, which has
been measured on average at 400 kpps in the setup, but showingvariations from 380 to
440 kpps.

Measuring the packet latency through the system with load over 250 kpps gives virtu-
ally no clue on the behaviour of the processing microblock: as illustrated by Fig. 5.10,
the latency is then mostly dominated by the queueing delay and almost fits a exponential
distribution. Moreover, the smallest deviation in the generated load may translate into an
effect on the packet latency that is close to the observed difference between WASP and
ESP. We have e.g. measured an average latency of14.08 µs for WASP packets at 266 kpps
against15.36 µs for ESP.

We thus tried to study the average processing timeTP on WASP and ESP microblocks,
but the best we can say is that it fluctuates between3.8 and4.4 µs without showing any
clear relationship between the load andTP , nor any clear way to tell which of ESP or
WASP performs better. At 418 kpps, for instance,TP for WASP is3.85 µs and4.12 µs
for ESP, but WASPTP increases up to4.4 µs as the load is increased to 470 kpps while
we observed the minimum value ofTP = 3.88 µs at 465 kpps for ESP.

Latency at Non-Critical Loads

Since we know the buffering effect becomes sensible mainly at loads of 250 kpps and
over, we ran a set of experiments to collect packet latency between 220 and 240 kpps.

5.5. THROUGHPUT TESTS 87

Figure 5.11: Average latency

This range has been chosen to compensate the difficulty to precisely obtain the same load
with the two different generators. All the observed latencyvalues25 were below40 µs this
time, which confirms store cleaning has a much moderated effect on our measurements.
Still using the same traffic patterns2q128K andw2q128K, we can see on Fig. 5.11 a
small advantage for WASP and a smooth increase of the latencywith the offered load.

We then repeated the experiment with 4 worker threads, illustrating how ESP better
benefits of additional parallelism. This time indeed, WASP performance is slightly lower
than ESP, but more intriguing, ESP latency tends todecreaseas the load is increased.
For the comparison, we measured latency at 200 kpps with 4 workers, giving very close
latencies of8.4 and8.66 µs for ESP and WASP, respectively.

5.5 Throughput Tests

5.5.1 Methodology

As observed in section 5.4.1, none of the machines in our lab are powerful enough to
stress a single Gigabit Ethernet wire in terms of packet-per-second.

We could have used a cluster of emitters and receivers at lower rates, using switches
to aggregate traffic between clusters and the ENP-2611. Yet,our traffic-generation tools
aren’t designed to cooperate with other generators, potentially leading to duplicate entries
creation or other sorts of ESS oddities. Moreover, not all 1000baseT switches might be
able to handle the highest rate of 1488 kpps of the Gigabit Ethernet.

Since we are dealing with a programmable device, we might have opted for a purely
software approach, rewiring thescratch ringsthat feed the classifier and sink of the WASP
and ESP microblocks. An external tool on the XScale core would then pre-fill packet
descriptors with a given traffic pattern, and an additional microblock would simply bridge
sources and sink, gathering throughput measurements. Whilethis might be the preferable
approach in many cases, it is also unfortunately the most code-demanding one.

25we are collecting one sample every 20 ms, a granularity imposed by the Linux scheduling interval

88 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Figure 5.12: Packet flow in our testbed, highlighting the full-duplex use of the loop-back link.

The approach we finally keep draws inspiration from the purely software method pre-
sented above, but uses wires instead of lines of code. Once again, we will connect port 2
of the ENP-2611 board to a single test machine (Wasp) and wire the two remaining ports
together, as depicted on Fig. 5.12. However, the static forwarding rule of the classifier
has been rewritten to enforce the following policy:

1. regular packets coming on port 2 are simply returned to port 2.

2. WASP/ESP packets that are flagged as having errors, or thatcannot be processed
because of their “location” flags are delivered on port 2 regardless of their input
port.

3. WASP/ESP packets coming on port 2 are delivered either on port 0 or 1 depending
on a bit of the computation ID.

4. packets received on port 0 are delivered on port 1 and vice-versa.

The result is the creation of a two-way loop involving one WASP/ESP processing and
one transmitting delay that will keep packets until they drop themselves. We can “load”
this loop by sending incremental traffic from the test machine and watch the impact on
the system. Note that one WASP microengine actually processes packets from both “odd”
and “even” CIDs, but leaves half of each to the other ME, unlikewhat the picture might
suggest.

Rule #1 ensures that the loop remains noise-free during our measurements. We have
indeed observed that the test machine automatically exchanges a few packets every time
we reload the test software, which may quickly lead to an extra 200 kpps stress on the
loop. While we lack a mechanism to purge the loop manually (other than reloading the
software), rule #2 ensures that we do not keep corrupted packets in the measurement.

Temporarily disabling rule #1, we can measure a maximum throughput of 2972 kpps
in the loop for “regular” packets, which is 99.86% of the theoretical maximum throughput
of a full-duplex Gigabit Ethernet link. Any throughput limitation that we will measure
with ESP and WASP packets will then be attributed either to WASP/ESP microblock, or
to WASP/ESP specific part of the classifier.

5.5. THROUGHPUT TESTS 89

queues 1 2 3 4 5 6 7 8 16
WASP (1ME) 315 528 608 653 692 746 756 764 788

ESP (1ME) 390 672 950 1096 1183 1258 1380 1430 1546
WASP (2ME) 315 632 836 1026 1106 1190 1242 1293 1552

ESP (2ME) 390 779 1047 1298 1483 1603 1680 1744 1744

Table 5.2: throughput (kpps) of WASP and ESP microblocks, with single entry per hash chain and
varying number of active queues and hardware contexts

5.5.2 Results with Count/Compare Instructions

We injected an increasing amount ofWASP:count andESP:compare packets in the
loops, using the “transmitted packet” counter of the TX microblock to estimate WASP and
ESP throughput. Note that the byte code of WASP packets as well as the implementation
of the ESP operation have been modified to allow unlimited thresholds in both cases.

We also observed that packets that simply start with aFWDmicrobyte can be processed
at a maximum throughput of 2966 kpps by a single ME. The same program padded to 16
microbytes and carrying one bank of unused data (thus with a similar fetch/checksum cost
than aWASP:count) will grow to 100 bytes on wire26 and will limit the throughput to
2046 kpps – 98.22% of the theoretical maximum for packets of that size.

Performance with 1 Entry per Chain

Like in the state-store stressing test bed, we have repeatedthe experiment using fewer
microengines by reducing the number ofCIDs present in the test traffic. Table 5.2 shows
the throughput obtained by adding more processing power andmore parallelism. The best
performance of ESP and WASP on a single microengine correspond to 58 and 38% of the
maximal throughput, respectively.

Note that using 8 different queues may not be enough to reach the maximum through-
put of the WASP or ESP microblock. Even with no hardware thread starving on the
microengine, the presence of 8 permanently empty queues introduces a significant de-
lay for acquiring a new packet to process. We have thus observed throughputs ranging
from 606 to 788 kpps with 8 hardware threads doing WASP processing when varying the
number of queues from 8 to 16 (which is the total number of queues one ME checks).

With a lower impact, the worst spacing between two used queues may also affect the
performance. Using queues 0 to 7 and leaving queues 8 to 15 empty, for instance, leads to
a throughput of 755 kpps while we can achieve 764 kpps if we enforce that no more than
2 empty queues appear between 2 used queues.

We then reproduced the experiment with one to 8 threads balanced on two different
microengines to estimate how increased CPU power helps the performance. A “4 threads”
setup thus means that we will have 2 active queues served on each microengine.

Comparing rows 1 and 3 in Table 5.2 also confirms that the WASP interpreter is CPU-
bound. Indeed, while balancing the load on two different microengines leads to through-
put increased by 20% with ESP, WASP sees its throughput improved by 57 (4 queues) to

26including Ethernet header and checksum, or 120 bytes with inter-packet gap and preamble)

90 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

chain len (1ME) 2 4 6 8 10
ESP (compare) 1502 1403 1296 1207 1124
WASP (lookup) 946 931 902 868 826

WASP (map) 774 757 730 699 680

(2ME) 2 6 10
ESP 1733 1470 1314

W(lk) 1858 1686 1476
W(map) 1526 1396 1225

Table 5.3: Throughput (kpps) with 16 queues, depending on the average chainlength, with one
(left) or two (right) microengines.

70% (8 queues), and the maximum throughput when all 16 queuesare used has almost
doubled.

Increasing Chain Length

So far, the throughput we can achieve with one WASP microengine is only 50% of ESP
performance. The results are a bit more in favour of WASP whenusing two MEs (88%).
However, these figures are obtained with an extremely low load on the ESS (on average
one entry per chain), which may not be a fair test. Indeed, thelonger the chains, the less
WASP interpretation will have a negative impact on microengines’ CPU availability.

We extracted chains of colliding keys observed in the store during the previous exper-
iments (Sec. 5.4.1) and generated for each individual “computation” a series ofk packets
that will reference one of thek keys that belong to the same chain, therefore experiencing
chain traversal of length from 1 tok. In all cases, we used 16 independent computa-
tions, avoiding extra delays due to empty queues, and allowing for the maximum CPU
parallelism on microengines.

With a single ME for processing, we can note that the gap between ESP and WASP
performance is reduced as the average chain length increases (from 50 to 60%). We can
also observe that the relative throughput reduction is lessimportant in the case of WASP
(the worst observed throughput is 87% of the best one with WASP, against 74% in the
case of ESP).

We have further tried to reduce the cost of theWASP:count program, using earlier
versions. Since the microengine is fully used, shortening the WASP program by a single
byte immediately translates to lower inter-packet departure time directly corresponding
to the number of cycles we saved. Removing theYNCopcode inWASP:count , for
instance, still keeps thecount semantic, but using the first slot in the mapped bank
rather than the second one (asWASP:collect requires). In that case, we can see that
the throughput is boosted from e.g. 730 to 800 kpps in the intermediate case of chains
with an average length of 3.5 entries. Similar improvementsare observed for all chain
lengths we have tested.

Another interesting result is achieved when using the old version of WASP:count
that useslookup and insert microbytes rather thanmap. In this case, not only the
code is shorter, but it also requires less bandwidth on the DRAM bus.

An intriguing fact is that, when we fully load the two microengines, theWASP:-
count packet usinglookup outperformsthe native implementation offered by ESP,
and this regardless of the ESS state. The final explanation has been found in the code: the
ESP microblock – in its current state – will re-generate the CRCchecksum and update

5.5. THROUGHPUT TESTS 91

Figure 5.13: Measured throughput for thecollect operation with chain length varying from
2 to 10 entries, for both ESP and WASP (e.g. E6 is ESP walking a 6-entries chain), varying
the amount of threads and microengine used for processing (e.g. 2x8 is2 microengines, each
processing 8 queues).

packet header and operands in DRAM regardless of the computation performed. The
WASP VPU, comparatively, keeps track of data and state “dirtiness” and will only issue a
DRAM update when the content of the packet has been modified – which never happens
in the case ofcount .

Note that we can obtain much more precise throughput measures by deactivating store
cleaning. The resulting values we obtain that way confirmed the result presented here, but
they require less time for the average to “stabilise” and less feedback from the experi-
menter to ensure the proper value is reached.

5.5.3 Results with Collect Instruction

Another benefit of disabling store cleaning is that we can nowkeep a long chain without
necessarily keeping the packets that created that chain in the loop. For instance, a collec-
tion of “count” packets with a threshold of 0 can build a chainof lengthk before we send
another set of packets with an infinite threshold but that only lookup for thekth key in the
chain. Using this technique, it becomes possible to measurethroughput of more complex
operations with sufficient precision.

We modified the code ofcollect to ensure it will no longer drop packets and ex-
tracted chains of colliding keys from state store dumps of previous state store saturation
tests. A vertical bar in Fig. 5.13 reports the throughput of one scenario (i.e., either ESP
or WASP, and chain length) for increasing amount of processing power. We can observe
here again how ESP takes advantage of additional threads (e.g., from 1 ME x 4 threads to

92 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

1 ME x 8 threads) and how WASP rather benefits of an additional microengine, even with
the same number of threads (e.g., 1 ME x 8 threads to 2 ME x 4 threads).

We have seen in section 5.3.4 that we could come with a similarprocessing time
for the collect operation, and as expected, on a single microengine, WASP remains
way behind in terms of throughput (see e.g., the 1x8 series).With two microengines
doing WASP processing, however, we can now (slightly) outperform ESP when using the
full power of two microengines. It should be noted, too, thatin this case, both ESP and
WASP have to commit the packets’ variables into DRAM. The performance improvement
can thus be fully attributed to the reduction of memory accesses during the ESS entries
lookup.

We should note however, that in the worst case (10 memory accesses per ESS lookup),
WASP reaches a throughput (829 kpps) that is only 98% of ESP. This is a rather surprising
fact given that the performance gap was expected to increaseas the number of memory
access per lookup increased. We need to keep in mind, however, that despite WASP will
require less memory accesses, each memory access transferstwice the amount of bytes
per access, theoretically requiring more DRAM bandwidth than ESP to sustain the same
number of packets per second.

Without extensive additional tests and tools to measure theDRAM bandwidth on the
IXP, we cannot directly assert that lower performance of theW10 test is due to a memory
bottleneck. It is clear, however, that reading a full bank (48 bytes, including meta-data)
while walking the chain in the state store was an optimistic decision that lead to sub-
optimal behaviour once the chain gets long enough. We thus replaced the chain-walking
code of theMAPopcode so that it only fetches 24 bytes of memory during the chain
walk and issue an extra access to get the remaining 24 bytes once the correct entry is
found (the “max” series forW8 andW10 on Fig. 5.13). This indeed slightly improved
the throughput (from 829 to 840 kpps forW10 and from 924 to 928 kpps forW28), but
actually degrades the performance for chains of 6 entries and below.

It should be mentioned that with the first 24 bytes of the entryalone, we can already
set the VPU in a state capable of processing the following instructions. The remaining 24
bytes of data would only be required on the nextYNCinstruction, which allows us to re-
sume execution of the VPU while we have a memory access pending. This is typically the
kind of programming technique that the IXP microengines aredesigned to do efficiently,
and our first estimations suggest that we could achieve up to 877 kpps. It would require,
however, a significant revision of our code since we need to detect the case where data are
still pending, and update the partially mapped bank transparently.

5.6 Compiling WASP programs on the IXP

So far, we have only discussed the possibility ofinterpretingWASP programs. The choice
for an interpreter-based approach was motivated by the desire to support as many applica-
tions as possible. Ideally, an end-system using a new variant of a control operation could
simply issue the code and the WASP routers wouldn’t even notice that it is something
new.

5.6. COMPILING WASP PROGRAMS ON THE IXP 93

It is clear, however, that interpretationhasa cost, and that replacing the interpreta-
tion by some pre-compiled native code could potentially save resources on the network
processor. We estimated that interpreting one extraNOOPconsumes 36 cycles on the
microengine and may take 0.05µs more for each packet. When time on the CPU of the
microengine is the performance bottleneck, even such a small increment in processing
time may lead to 160,000 to 320,000 packets per second that wecannot process anymore
when approaching the maximal throughput (2046 and 2966Kpps, resp.).

Through this section, we discuss two potential approaches for translating WASP byte-
code into microcode for the IXP microengines: just-in-timecompiling (section 5.6.2) and
statistical optimiser (section 5.6.3). They both perform the same kind of code translation,
but differ by how many programs may benefit of a native versionof a program and how
often the set of native programs available is updated. Implementing such optimisations
for WASP is beyond the scope of this work, but we tried to provide landmarks and to
identify technical difficulties for future works.

5.6.1 Environment for Run-time Compiled WASP Programs

The ephemeral store library for IXP2400, as detailed in [Calvert03] and [Imam03], has
been designed to minimize the cost of access synchronization27. An important side effect,
however, is that we cannot use the same ESS from two differentmicroengines.

As a result, any run-time compiled instruction will have to co-exist with the WASP
interpreter on a single micro-engine. This isn’t much of a problem for the available size
in the istore, as the interpreter currently consumes only 1753 out of the 4096 available
uwords where the ESP microblock took up to 3182 uwords28.

Reusing Interpreter Code

Out of the existing code, the “packet fetch” and “packet sink” parts of the WASP mi-
croblock could probably be shared by the interpreter and pre-compiled programs. Most
of the WASP microbytes have a sufficiently short implementation to be written directly
in a “compiled code chunk”. ESS-related microbytes – as wellas a few memory-related
instructions such asLIX – are significantly more complicated, and we could prefer to see
them available as “independent” code chunks that would becalledby the compiled code.

Considering how those “heavy” microbytes are implemented inthe current interpreter,
and especially, the tight binding between the microbyte-specific code and the microbyte
fetch/decode, we’re very likely to need two instances of e.g. theLOOKUPmicrobyte, one
that is designed to be invoked as part of the interpreter, andanother that is designed to be
called by a pre-compiled code chunk.

27e.g. chains in the hash table are locked via ME-local content-addressable memory, input queues are
shared using global GPR, etc.

28partially thanks to our new code for fetch and sink phases

94 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

5.6.2 Just-In-Time Compiling of WASP programs

Just-in-Time compilation is a dynamic code generation technique that translates bytecode
for a virtual machine into machine code at runtime, prior to executing it natively. The ex-
perience from general-purpose bytecode languages such as Java and LISP have illustrated
the benefits that just-in-time (JIT) compiling can bring to bytecode evaluation. As soon
as code reuse is sufficient, it gets more efficient to compile the bytecode into machine
code for the host platform and then execute that machine code. The actual performance
benefit will actually depend on several factors such as how many times the code is reused,
whether it contains loops or not, how complex the JIT compiler is, etc.

In [Kind02], the authors show that it is possible to perform JIT compilation of a
SNAP-derived language on the PowerNP network processor. The authors depart from
definition of the SNAP[Moore02] bytecode specification by allowing (restricted) loops
in their packets. They then compare the processing time of the interpreter (initialization,
sand-box checks, instruction interpretation and cleanup)versus JIT-compiled execution
(compilation, execution).

They study three kinds of executions:

LCLE: Long Code, Long Execution, e.g. atracerouteimplementation as executed by a
router, that has no loops and executes most of the instructions present,

LCSE: Long Code, Short Execution, e.g. atracerouteimplementation as executed by an
end-system, which would terminate after only a few instructions,

SCLE: Short Code, Long Execution, e.g. thecongested hop counter, which iterates
on the available queues of each router and gather statisticsabout their congestion
status.

Only in the third case, we can see a significant improvement due to the JIT compiling.
For LCLE-packets, there is a slight penalty from the compilation phase, and LCSE may
suffer from a even higher penalty sinceall the code is compiled even when only a couple
of instructions will actually be processed. Note that thereis a similar problem with the
sand box checks in the interpretation version, but with a smaller impact. With the excep-
tion of SCLE programs (which have no equivalent in WASP, sinceloops are forbidden),
the main benefit of JIT compiler for packet-carried code willdepend on the ability to
cache and reuse results of compilation by subsequent packets.

Dynamic Code on the IXP

Compared to the PowerNP architecture, however, the Intel IXPnetwork processor appears
poorly suited to just-in-time compiling. First the microengines themselves have a very
small instruction store (4K word on IXP2400 against 128K words for the PowerNP),
meaning that the StrongARM control processor will be the solecomponent that could
perform the compilation. Passing a packet to the StrongARM core for code compilation
will unfortunately involve additional delays, making the potential benefit of JIT much
more hypothetical than on a PowerNP.

5.6. COMPILING WASP PROGRAMS ON THE IXP 95

Figure 5.14: reprogramming time of the IXP2400 network processor, measured byinterruption of
a busy loop on the reprogrammed microengine

Moreover, the instruction store (istore) of a microengine cannot be modified while the
microengine is active. The StrongARM therefore has to deactivate temporarily the micro-
engine whoseistore is to be reprogrammed, write the new content and then reactivate the
istore.

According to [Spalink01], it will take 800 cycles (4µs) to rewrite 10 instructions of the
istoreof an IXP1200. Projecting those results to the IXP2400, a full rewrite of theistore
could take 1.638 ms29 under the conservative assumption that the memory technology
used for theistorehasn’t evolved much between the IXP1200 and IXP2400.

Comparatively, Lee and Coulson [Lee06] report a delay of 60 ms for halting/updat-
ing/restarting a microengine. While the authors acknowledge the fact that reprogramming
a whole microengine is actually rare when reconfiguring a network application, they did
not provide a detailed report of the actual time required by each part of the process, nor
the potential cost of a small update.

With proper adaptation of our controller/debugger for the WASP microblocks, we
have gathered measurements of delay experienced by the “regular” code running on a
microengine when another part of the same microengine is reprogrammed, as reported on
Fig. 5.14. Our code issues 3 calls to the halMEv2 driver –halMe_Stop , halMe_Put-
Uwords andhalMe_Start , with varying amount of microwords submitted through the
PutUwords call. ThePutUwords call itself will take care of saving microengine state,
load the proper registers and feed the microstore with new bytes.

On the microengine side, we have a single thread running a loop that continuously
reads the timestamp register and detects any iteration beyond a given threshold (64 cy-
cles, while our loop is 8 instructions plus a hardware yield). All other threads on the
microengine are suspended to avoid interferences. The lastabnormally iteration’s length
is collected in a specific GPR where the user can read the measurement. Meaningful code
samples for this experiment are documented in Appendix D.3.

29409, 6 · 4µs

96 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We have observed an average delay of30.3 µs when reprogramming less than 10 in-
structions. At this scale, the delay is mostly dominated by the two kernel/user transitions,
which will highly depend on the operating system installed on the XScale core.

The additional delay per 10 instructions reprogrammed varybetween2.2 and3.6 µs,
with the higher values observed with chunk sizes between 1200 and 2500 instructions
(9600 to 20000 bytes). These are also the ranges where the higher deviation is observed in
the measurements, and it sounds reasonable to say that for those sizes, the cost of reading
instructions on the XScale produces an additional overhead, since we are approaching the
size of the data cache (32KB).

These results suggests a full-reprogrammation cost close to 1.6 ms for one micro-
engine. We should however keep in mind that this doesn’t takeinto account the delay
before the microengine can be halted, which depends on the frequency of voluntary CPU
release in the microengine code.

Code Caching and Memory Storage

The time required for compiling and installing JIT-generated code is not the only argu-
ment for avoiding JIT in the case of WASP. We have to keep in mind that the active router
may have to handle flows from thousands of users, all having the potential of submitting
new code in their packets. In these conditions, storage for JIT-generated code becomes
a scarce resource, and the active node becomes vulnerable toseveral denial of (active)
service such as:

• “regular” active service not finding translated code in the code store because of
excessive amount of service running at the same time,
• delivery of “regular” packets delayed because of repeated submission of (useless)

code to the JIT translator.

To avoid such misbehaviours, it would be necessary to authenticate the individuals
that submit code requests to enforce quota so that each flow has a fair chance of having
its own code compiled and available. Such requirement wouldbe incompatible with our
“anonymous” service objective.

5.6.3 Towards Self-Optimizing WASP Component

While there are chances that a ’just-in-time’ approach wouldn’t worth the price for WASP
programs, this doesn’t mean that we cannot take advantage ofpre-compiled code anyway.
An interesting alternative consists in letting the “control plane” decide which programs
are requested frequently enough to be worth optimizing by a native code chunk. In this
section, we will study how we could evolve the existing WASP interpreter towards a more
“self-evolving” group of components.

Components Organization

profiler: Before starting compiling anything, we need to gather statistics about the fre-
quency of each program processed by the WASP interpreter. Since a CRC check-

5.6. COMPILING WASP PROGRAMS ON THE IXP 97

sum of the packet code has already been generated by the interpreter when receiving
the packet, all we need to do is to increment thek-th coarse-level counter every time
a packet withn lowest bits ofcrc(P) matchingk is forwarded.

sampler: When the self-optimizer running on the XScale control processor has identified
a set of programs that represent an important share of the traffic, it can request
more accurate sampling for a few values ofk. This sampling involves delivering a
complete copy of the packet’s bytecode to the control processor over e.g. a scratch
ring.

analyzer: On the control processor, the sampled packets are further classified using a
more precise hashing mechanism. Immediate values embeddedin the packet’s
bytecode may also be replaced by wildcards, etc. The statistical analysis will then
identify programs that are frequent, but also those who are more computationally
intensive and for whom a compiled version would mean a higherperformance im-
provement.

compiler: Still hosted on the control processor, this component will produce the mi-
crocode to be added, and the associated matching rules for the classifier.

match-checker: Extending the classifier, this component will be required toidentify
packets for which we have compiled code available in the ESP and WASP mi-
croblocks.

The match-checker is probably the component that will require the most careful design
and implementation. It is unclear at the moment whether it should rather be implemented
in the classifier or in the WASP/ESP microblock. The IXP hardware suggests one of the
two following implementations:

1. The whole packet’s bytecode is hashed and the content-addressable memory (CAM)
hardware will try and map the hash to a code identifier. The total number of pre-
compiled code chunk we can support here will be limited by thesize of the hardware
CAM (16 entries per ME in IXP).

2. The packet’s bytecode is compared word-by-word to a trie structure that contains
code chunk identifiers (that maps to pre-compiled code chunks). The trie is prefer-
ably stored in local memory and has limited degree per node.

Note that the trie-based structure could offerpartial bytecode compilation: even if it
is not possible to provide pre-compiled alternative for allthe possible WASP programs,
many of them could be boosted by a code chunk that would perform the few first instruc-
tions (e.g.map, etc) that are common to many packets. By having “intermediate” code
chunk identifiers in non-leaf nodes of the tree, we can compensate the match-checking
cost by a shorter interpretation time.

Note too that beyond the obvious generation of code replacing processingof packets,
we could also generate code that optimizes the fetching/checking phase for a given class
of packets, for instance fetching less bytes from DRAM or skipping byte-alignment phase
for packets that are already aligned.

98 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Seamless Microengines Reprogrammation

As detailed in [Lee06], programming a microengine may require a substantial amount of
time. Buffering up to 58MB of packets while a component restructuration occurs due to
a policy change may be affordable, but it is certainly not desirable when we are simply
optimizingsomething that is already present.

Hopefully enough, when packets are passed from one microengine to another they do
not care about their peer microengine, but rather about theringbuffer that is used to relay
packets between the two. In other terms, we could perfectly halt a WASP microblock
running on ME#16 and start another one on ME#17 and keep this unnoticed by the clas-
sifier microblockas long as the ring on which packets are delivered is kept unchanged.
Moreover, the atomicity of ring-handling operations is guaranteed by the hardware and it
is perfectly safe to have threads in different MEs trying to get data from the same ring in
parallel.

Provided that we have aspare microengine, and with proper synchronization from the
control processor, we could then program the spare ME with the new code and then swap
the ME running the old code and the spare ME seamlessly for therest of the application.
Special care will be needed when we are “deactivating” some compiled code, especially if
the match-checker component is running on the classifier. Inthat case, we indeed need to
make sure that no packets requesting the leaving code chunk remain in the queues leading
to the reprogrammed microenginebeforethe actual ME swapping takes place.

5.7 Uninterrupted Processing: Lessons Learned

Our number one design goal for the WASP filter box is that high load or misbehaviour of
the WASP service may not lead to packet losses or other sensible performance degradation
of theforwardingof non-active packets.

Our experience with programming and debugging the WASP filter on IXP taught us
how an apparently insignificant implementation choice could corrupt the behaviour of the
whole box. This section reports some of those cases that we believe to be worth mention-
ing and for which we can suggest good-practice rules for network processor programmers.

The Classifier Gets Going...

Most of the behaviour of WASP/ESP microblocks can be safely ignored by the rest of
the network appliance since they are running on separate micro-engines and therefore do
not consume CPU resource of the other processing elements such as classifier, etc. We
should take more care, however, when modifying the classifier. Indeed, in that case CPU
cycles on the microengine will be shared by all kind of traffic, and we should thus ensure
that the most complex cases do not require more than the “budget” corresponding to the
maximum packet rate.

In a single port-pair forwarder, the system will then receive a new packet to process
every 336ns, which would mean a budget of 201 cycles for each packet if we had only one

5.7. UNINTERRUPTED PROCESSING: LESSONS LEARNED 99

thread in the classifier. In a more typical setup (e.g. 4 interfaces, 8 threads), a new packet
could appear every 168ns30 and we are allowed 806 cycles (1344ns) in the classifier.

Our measurement reports on average from 434 to 475ns per ESP packet on the clas-
sifier (using different traffic patterns, ESS loads, etc.), not counting the latency for en-
queuing the descriptor and fetching the next one (which overlaps and would take some
additional 80ns). We can thus expect headroom of 492 cycles per ESP packet with the
current classifier structure, which could easily accommodate for one more DRAM access
(from 120 to 180 cycles).

We need to ensure that threads in the classifier do not get blocked while trying to
enqueue packets to the TX microblock31. We observed such behaviours during develop-
ment of the WASP microblock, for instance as the result of a “breakpoint” instruction.
The classifier and the RX microblocks were indeed simply performing a busy loop while
checking that a given queue is capable of holding one more packet or not, leaving the
actual task of dropping excessive packets to the MAC chips.

This would of course be unacceptable on a production-grade appliance, and quickly
becomes annoying on a prototype. Indeed, most of micro-engine reprogrammation or
status query features require that the current context releases the execution on the chip.
Even a soft-reset is impossible when the micro-engine is caught in such a busy loop. The
most elementary fix we implemented consists in releasing CPU32 before looping, provided
that the code does not need some exclusive access when the enqueuing attempt occurs.

In its current state, the classifier in WASP prototype will detect if a queue remains full
for an abnormally long time and enters a debugging mode if it happens. That ’debugging
mode’ could easily be replaced with code that drops or forwards packets.

Keep The Buffers Available

Even with dedicated CPU resource and well-behaving classifier, there is unfortunately a
way our WASP/ESP microblock could deny forwarding for non-active traffic: the lack of
buffers.

The WASP/ESP filter – much like any network application – usesa list of free buffers
where the RX microblock will pick a handle every time a new packet starts and where
other components (TX, ESP, WASP, classifier) will return buffers once a packet has been
completely processed. We unfortunately experienced several cases where all the buffers
we provisioned for our application ended up in the 32 ring-buffers leading to the ESP mi-
croblocks (a grand total of 16K entries, while we have 12K buffers available), leaving the
RX block starving for buffers regardless of whether it receives active or regular packets.

It should be also mentioned that it is surprisingly easy for anetwork processor pro-
grammer to introduce a “buffer leak” in his program, by simply omitting to enqueue a
buffer in the free list, or (more subtle) by having the same buffer enqueued in more than
one queue as the result of microblock processing (which may later result in loops and
item loss in the free list). Such errors are extremely hard topinpoint and an autonomic

30assuming worst case of 4x1488Kpps
31as well as between RX and classifier microblocks
32throughctx_arb[voluntary] uword

100 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

network device that makes use of 3rd-party code blocks should likely provide a “garbage
collector” component that would identify buffers that are “in use” for too long and return
them to the free list.

Moreover, ring buffers leading to “auxiliary” component like the ESP/WASP filter
should be better calibrated than the naïve approach currently used in WASP. A good prac-
tice rule should be to ensure that

∑

i

Qi + P < T − (FP + FQ)

WhereQi is the size of an auxiliary queue,P the number of auxiliary threads (which
can hold a buffer each),T the total amount of available buffers,FP the number of pro-
cessing threads on thefast pathandFQ the number of queues on the fast path.

Keep The Chains Short

The length of chains in DRAM is probably one of the major issuesto solve if we want to
allow wire speed processing of ESP/WASP packets. In their introductory paper [Calvert02],
Calvert et al. assumed that not onlypointersof the hash table, but alsotagsandchain
pointerscould be stored in SRAM, while DRAM would take care ofvalues. Even with
the maximum of 64MB SRAM, we could only hold 5.33M entries thatway while a sin-
gle Gigabit interface will require 14.4M entries33. Chances are that this motivated the
alternate design used in IXP-based implementations.

Moreover, the initial assumption was that the ratio (h) between the number of entries
in the store (m) and the number of pointers in the hash table could be kept between 0.5
and 2. Comparatively, our prototype setup uses a ratioh = 0.04, and could reasonably
reconfigured to offerh = 0.37 (512KB of hash and 8MB of state per store). Again, this
speaks in favour of our “larger state per key” approach.

Simply enforcing that no more thanm/τ entries per second can be created on a sin-
gle store is thus not enough to guarantee good behaviour, even if we can offer fairness
to the various traffic sources. Even with a small ratio ofm/τ entries created and suffi-
cient knowledge of the hash function used by the router, an attacker could easily craft a
stream of requests that builds a chain sufficiently long so that further packets will experi-
ence arbitrarily long processing time, denying execution for other ESP/WASP traffic and
severely reducing the amount of buffers available for othertraffic.

Instead, we should measure the average service time for ESP packets for various chain
lengths, and enforce a chain length limit according to the estimated rate of ESP packets
and the available number of hardware threads.

5.8 Conclusions

We have implemented and tested WASP VPU on the IXP 2400 network processor in
a “filter box” setup. Under low load, the interpreter is competitive with pre-compiled

33assuming each packet is allowed to create an entry that remains present for 10 seconds

5.8. CONCLUSIONS 101

operations as seen in ESP. We confirmed the advantage of larger entries for the ephemeral
state store on this platform.

It should be noted, though, that the VPU processing makes more intensive use of the
microengines ALU and that throughput will not scale with thenumber of active threads
as well as it does with ESP. It does, however, scale well with the number ofmicroengines,
while ESP will experience only small throughput improvement whether the same number
of flows are processed by 1 or 2 microengines. We therefore believe that it would be
preferrable to integrate both code (ESP and WASP), maybe as well as runtime-compiled
optimizations of frequent WASP programs, on a single microengine, which would better
balance the ALU usage.

We also observed that the increase of the average chain length and the absence of a
mechanism limiting the longest chain in the state store may have an important impact
on the forwarding latency of WASP and ESP packets. For applications doing network
performance measurement or that try to enforce a given quality of service, it might even be
preferrablenot to execute the WASP program in that case and just use default forwarding.

We envision that this could be solved by modifying the internal structure of the state
store, replacing the “flat” hash table by something capable of splitting a chain into a trie-
like structure, or simply by denying the creation of a new entry when the chain length
exceeds a given threshold. We unfortunately lack time for doing a proper test of these
proposals and they will be kept for further research.

Altogether, we are still far from a ready-to-deploy software package for a multi-
linecard router. We believe however that the time invested in this implementation and
benchmarking is rich in lessons for further development on network processors and that
the IXP series is a good tool to prototype solutions that should work with multi-Gigabit in-
terfaces. The dual-IXP2xxx development board is however preferable over our ENP2611
board for someone willing to simulate a linecard on a switch-fabric based router.

102 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Chapter 6

WASP as Discovery
Middleware “Do I look like a capsule?”

Abstract

In this chapter, we present how WASP can be used as building block of distributed appli-
cations, and more specifically, how it can help scattered members of such applications to
discover each other through the ephemeral store, using examples motivated by Grid and
Peer-to-Peer computing frameworks.

Through simulations, we provide a quantitative estimation of the benefit we can expect
on the peer bootstrapping process with varying amount of WASProuters in the network
and how it depends on user’s average behaviour or ISP use of dynamic addressing.

6.1 The case for Discovery Middleware

Through the literature review of chapter 2, we have seen thatactive networks can offer
a number of interesting improvements to resource usage or quality of experience for the
end-user. Real-time auctions delivery, cooperating hierarchical web caches and video
stream adaptation were the most popular use cases, and they could be joined nowadays
by new applications inspired from Grid computing. Collecting available computations
sites, routing computations requests towards the closest (or less loaded) point of presence
or even performing distribution/aggregation of computation requests hierarchically could
be seen as so many additional examples where in-network function can help a distributed
application on end-systems. For network operators, the incentive for integration of such
services is the same as e.g. the support of HTTP proxy caches:reducing the traffic towards
the global Internet through local processing and storage.

Nowadays, structured peer-to-peer [Keon05] variants, andDistributed Hash Tables
(DHT) in particular [Stoica01, Rowstron01, Maymounkov02],seem to have unlimited
applications and are seen in proposals for document preservation [Kubiatowicz00], mul-
ticast streaming [Castro03] and even new network infrastructure [Stoica02] or routing
[Caesar06, Caesar06b]. In many cases, a peer-to-peer networkcould offer a similar

103

104 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

service to the end-systems. Some technical issues haven’t been completely solved yet,
mostly in the field of locality awareness (also called “network congruence”), which are
of higher importance for multimedia and real-time gaming, but projects such as OASIS
[Freedman06] are a first step in the good direction.

Yet, the unability totrust operations performed by members of the network limits the
application field of peer-to-peer solutions, and there may still be an interest for network
operators to support “value-added services” themselves. Technically speaking, however,
most of the services mentioned above are poorly suited to thehardware of routers and
other network devices. Offloading their processing task to a“service providing farm”
raises another problem as flows and service processing elements no longer see each other
– something that active applications are typically not ready to handle.

The presence of WASP-capable routers in the network allows an elegant solution to
that kind of problems. The state store can indeed be used to exchange location of “service
providers”1 with end-user flows, and the lightweight nature of WASP allows us to inspect
packets at wire speed on the border routers. We further discuss this approach in section
6.3.

We have observed that a similar use of the state store could beuseful for peer-to-peer
overlays. One major problem to be solved in these systems, before we can depend on
them for network architecture, is how to bootstrap them. To the question “How do you
find a contact node in the overlay to join?”[Castro02], the answer is too often “leave that
to the end-user”. We studied the solutions proposed for P2P bootstrapping in existing
implementations, aiming for a fully decentralised and self-configuring mechanism. As
reported in section 6.2.4, we mostly found a collection of hacks working around the lack
of a proper support from the Internet architecture: ultimately, either the user will have to
provide a contact node, or the software vendor will have to provision a server to process
every bootstrap request.

In other contexts, that problem of communicationbootstrappingis typically solved
by a designated router on the local network advertising e.g.the local entry point to a
distributed database (such as DNS server advertised through DHCP). But peer-to-peer
networks are not part of the architecture and there is apparently no incentive for network
operator to advertise the closest machine member of every possible P2P network – which
may not even be in their own network. Here too, the key/value pairs storage offered by
WASP may offer an interesting alternative to the existing solutions: rather than relying on
a well-known end-system to gather membership, we could havethe information collected
and availablein the network itself.

In section 6.4, we propose a model of a commonly used bootstrapping mechanism
(history lists) in which nodes try and join the community by contacting nodes that were
their neighbours in the previous session. We also propose metrics to evaluate the per-
formance of that mechanism under varying network conditions. We then show how the
presence of “active” routers featuring an ephemeral store may improve the performance
of that method in section 6.5.

1i.e. “nodes offering the packet filter/split/merge service”, not Internet Service Providers

6.2. DISCOVERY: FLAVOURS AND EXISTING SOLUTIONS 105

6.2 Discovery: Flavours and Existing Solutions

6.2.1 Local Service Discovery

The most obvious services the user can think of is usually theone closest to the physical
world: printing, e-mail servers, local file storage, etc. One of the goals of IPv6 in this
regards was to bring “plug and play” to the network, and with the increasing success of
wireless and portable devices, it has almost turned into a requirement. Considering inter-
dependency between service discovery and naming in local networks, the Zeroconf IETF
working group [IETF06] has studied the problem and proposedDNS-Service Discovery
(DNS-SD) [Cheshire05]

Even in IPv4, much of the bare IP configuration can now be delegated to DHCP
[Droms97] servers, which reply to broadcast requests on thelocal network. In the case
where no DHCP entity is present, which could be the case in an ad-hoc network, link-
local IP addresses can be used to allow interconnection of devices even in the absence
of any infrastructure. The “Bonjour” technology available in MacOS X [Apple05] is
an example of how those link-local addresses, together withmDNS-SD [Cheshire05b]
(the ’service discovery’ variant of DNS) can be used to achieve interconnection in such
’unpredictable’ environments. Devices with more specific needs typically come with a
vendor-specific feature advertisement and lookup (e.g. theCisco Discovery Protocol),
which is limited to one or a few LANs.

When the ’locality’ goes beyond a simple LAN, but remains topologically close to
the client, theexpanding ring search[Boggs82, Boggs83] is one of the most common
techniques used. The key idea is to make use of multicast support to send the service
location request towards a multicast address that all potential service providers will be
listening to. Since we want to avoid to flood the whole domain with requests, the search
is performed ring after ring, using thetime to livefield of IP packets to increase the search
distance allowed at each step.

6.2.2 Global Service Discovery

On the opposite side of the spectrum, global services discovery will locate an itemwher-
ever it stands. Such systems usually expect that the client has located a nearby node that
is member of a distributed database. Domain Name Service is of course one of the oldest
example of such distributed lookup facility, where responsibilities of each node depends
upon its level in the hierarchy. Similar hierarchical databasesare proposed in active net-
works literature, such as Spine, the network infrastructure protocol used with theprotean
active network. It is based on a tree where each node represents an autonomous domain,
labelled by a name and a collection of leaf nodes. Each spine node lists known active
routers, each “user network context” (e.g. user-installedpacket processing functions).

When the nature of information can no longer be made hierarchical (or cannot be
arbitrarily split), hierarchical systems such as DNS become less obvious to use and one
might prefer thedistributed hash table(DHT) approach [Stoica01, Rowstron01].

106 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

Figure 6.1: Comparing expanding ring search (a) with two variants of oriented multicast search
(b and c), and the domain-wide advertise/lookup mechanism (d).

6.2.3 Proxy Services in a Transit Network

There is a number of situations, however, where the service neither fits a local search, nor
a global. Application-level caching and multimedia filtering are examples of such services
that could be located in ISPs or even transit networks and forwhich ring search sounds
unappropriated. Many applications of active networking toGRID computing platforms
[Lefèvre02] also falls in this category.

Unlike the case of local or global discovery, the end-systemS (see Figure 6.1) that
looks for a proxy service is planning to use that service whencommunicating with a
destination end-systemD whose address has been learnt by an out-of-band method. The
distance should be measured based on the shortest pathS − D, rather than between the
endpoints themselves, in order to limit the path stretch when making a detour through the
proxy service.

Among the existing solutions, one can mention oriented multicast [Magoni02], which
suggests a new forwarding mechanism allowing a query message initially flowing from
S to D to be duplicated and forwarded in directions orthogonal to the SD path. By
orthogonal, the authors mean that it will be flooded on every interface that does not lead
either toS or D, therefore limiting redundancy. Moreover, such duplicates receive a new
TTL value (the range) that controls how far from the shortestpath the request may go
(cases (b) and (c) on Fig. 6.1). Unfortunately, the orientedmulticast protocol (OMP)
does not allow one to control the amount of replies for a givenquery, except if used in an
expanding oriented search approach. Moreover, a malicioussource could even bomb the
destination using a very widely available service and a too broad range.

Alternatively, one could set up an infrastructure that dynamically creates overlay net-
works interconnecting end-systems and intermediate proxythrough tunnels that achieve
the desired topology. This assumes that every potential proxy has joined a distributed
database that can be searched for proxies nearby a given path. Unfortunately, the existing
proposals following this approach (e.g. OPUS [Braynard02],or the X-Bone [Touch00])
do not come with a truly scalable and completely decentralised method for identifying
available proxies in a very large-scale network. Moreover,maintaining the infrastructure
(that is, capturing the global network topology), monitoring the available resources and

6.2. DISCOVERY: FLAVOURS AND EXISTING SOLUTIONS 107

expressing applications needs in a generic fashion remainsa resource-intensive activity,
even when hierarchically distributed like in OPUS.

In section 6.3, we will show how, with sensibly less support from all sides, WASP
manages to offer enough information toend-systemsandservice providersthrough domain-
wide advertisements (see 6.1d) so that they can take strategic decisions themselves.

6.2.4 Joining a Peer-to-Peer Community

In virtually all peer-to-peer applications, the operationof joining the networkis separated
into two steps:

1. find acontact node(or bootstrapping peer);
2. use that contact node to locate your neighbours in the network.

Depending on the desired network properties, the process oflocating neighbours will
of course vary, involving e.g. searching nodes with an identifier close to yours, detecting
peers in your physical vicinity, etc. The incoming peer therefore needs a way to probe its
current neighbourhood and ask peers for their neighbours list, in order to compare them
and improve its own set.

The role of thecontact nodein this process is to provide the incoming peer an initial
set of peers so that it can start this incremental neighbourhood selection. Most (if not all)
architecture papers consider the location of that contact node as an implementation issue
and assume the joining algorithm already has an “entry point” in the network.

There are different techniques implemented to locate that contact node, but none of
them are fully satisfactory:

user knows: the application expects the user to provide the location of another running
node to join, and provide a way for starting a ’stand alone’ node. This is for instance
the case in Chord [Stoica01].

static node: the application is bundled with a few addresses (or DNS names) of machines
that will handle the bootstrap process. These machines (known aspong serversin
the gnutella network [Limewire01w]) will register every peer and reply with a list
of peers that are believed to be still alive. The obvious drawback is that as soon as
the pong server is put offline, the application simply stops working.

address-encoded:the user gives the application data that contain the addressof the pong
server to be used. This is for instance the case of theBitTorrentprotocol[Cohen04w]
where a.torrent file contains both metadata of what you will download, and the
location of thetracker that will be your “pong server”. However, the.torrent
file needs to be transmitted through some off-line means (e.g. using mails, news-
groups or a website) and there is no collaboration between peers downloading dif-
ferent contents.

pool service Jelasity et al. [Jelasity06] suggest that a pool of potential peers should be
maintained by a separate distributed service. While this allows quick spawning of
P2P topologies from a set of stable nodes (interesting in thecase of Grid comput-
ing), they still rely on off-line mechanisms to include the node into the pool in first
place.

108 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

history file: rather than relying on some external pong server, each peer could store the
list of neighbours it identified in the last session and try toreconnect to them (this is
the case e.g. in FreeNet[Clarke00]). Depending on how long your system has spent
offline, the size of that history and how dynamic the network is in general[Rhea04],
this technique might offer fair performance or turn into a total nightmare. The actual
success of the application will strongly depend on the presence ofsuper peersthat
are running 24/7 at fixed IP address and on a mechanism to identify super peers in
that history.

An intriguing alternative[Castro02] suggests the use of a DHT (the Universal Ring) to
associate identifiers ofservice DHTswith a list of contact nodes for that specific DHT. The
authors advocate that the Universal Ring, being more widely supported that application-
specific overlay, could be more easily located and could become part of the network ar-
chitecture itself.

The techniques suggested to locate nodes of the Universal Ring are however not more
convincing than what we found in other literature. Moreover, the proper operation of the
Universal Ring requires that each member of the ring and each service obtain a digital
certificate for their private key, which is – in our humble opinion – only practical in very
restricted deployment scenarios.

6.3 MagNet: Service discovery with WASP

Rather than using a typical “all-in-one” active network approach, the custom service could
be offered as follows:

1. identify anchor points in the network (i.e. machines able to host the service),
2. detect at which anchor point(s) service deployment is strategically most useful,
3. route packets requiring the service towards deployedservice provider(s)2,
4. apply merge/split/filter service on packets received by the service provider(s).

We can thus decouple the service processing from the servicediscovery discovery, and
use WASP to locate the most interesting service provider(s)independently of what the ser-
vice will actually do. Once service-providing node(s) havebeen located, the end-system
can adjust application behaviour so that the relevant flow goes through the discovered
provider(s).

When a new applicative flow is initiated, small active packetsare used to probe the
network on the route to be taken. Each time such a probe crosses a WASP node, it will
lookup the node store to see if it can findadvertisementsof the expected service, consist-
ing of the provider address and cost for reaching that provider from the local node. The
same kind of active packets can also be used by the service providers to install advertise-
ments in routers of the local domain. Figure 6.2 illustratesthat two-phase process: servers
A andB first flood the domain with WASP packets advertising their presence, avoiding to
re-install an advertisement in a router that already contains a better one (e.g. advertising

2i.e. “nodes offering the packet filter/split/merge service”, not Internet Service Providers

6.3. MAGNET: SERVICE DISCOVERY WITH WASP 109

Figure 6.2: Advertising (left-side) and looking for (right-side) service

a closer or less loaded service provider). A sourceS can then use another WASP packet
to record those advertisements as a list of providerP and branch pointX information:
(Paddr, Xaddr, cost(S,X), cost(X,P)).

This approach – codenamed “MagNet”3 – allows the network operator to remain in
control of the additional load generated by service lookup in his domain by deciding the
refresh rate for advertisements. However, since advertisement is limited to the domain
that hosts the service provider, the end-systems still needto have an initial destination
and will only find providers from domains that lead to that destination. In other words,
unlike what a globalanycast[Partridge93] service could offer, you cannot “get the closest
news aggregator” with MagNet, but you can “get the closest news aggregator between me
and slashdot”.

To work properly, MagNet discovery requires that end-systems and operators agree
on awell-known tagunder which advertisements for a given service will be stored and
on the data layout of advertisements. An ESS entry could easily accommodate for a few
provider addresses and their associated costs (hop-count distance, server load or even a
mix of the two).

Thanks to the additional programmability offered by WASP, applications that use
MagNet to locate service providers are free to apply the search behaviour that best suits
their need. When looking for a HTTP cache, for instance, one might prefer toreturn
towards the source at the first match. Another application might prefer to filter out poor
advertisements, or keep searching (keeping track of the best advertisement) along the
whole path and only return if a provider with a sufficiently attractive cost is found. A grid
application that has to retrieve and merge several results from scattered computing sites
might instead prefer to retrieve all the potential providerand later inspect those results
on the end-system to see where the deployment of merging function would optimise the
transfers.

3With our mechanism enabled, providers can “attract” relevant packets in their neighbourhood, but they
don’t affect “regular” (non-magnetic) packets – hence the codename.

110 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

The service application can equally benefit of WASP programmability to express poli-
cies that will decide whether an advertisement should replace another one in the router,
how much advertisements are stored, and so on. The advertisement packets may also
report the location of other providers to their emitter, so that the available resources of a
domain can coordinate their efforts by themselves.

6.3.1 Flooding Locally

In order to advertise the service, providers have to locate WASP routers in the local do-
main and send them WASP packets that will install advertisement tags. We benefit here
from the fact that WASP processing isoptionalso no overlay of WASP-enabled routers
need to be pre-established. In our previous work [Martin03], we showed how knowing the
routing table of the local domain suffices to discover all theactive routers of that domain.
The topology internally built out of the link-state database of the underlying routing pro-
tocol is annotated with the capabilities of routers so that only WASP-capable routers are
explicitly refreshed.

As an alternative, we could use the ’opaque LSA option’ of thelink state advertise-
mentmessages. Data in those opaque LSA are flooded to the whole network but they
are ignored by the routing algorithm of OSPF. This approach is used in [Keller03] to ex-
change CPU, memory and load information of active nodes to allow resource allocation
within a given domain. In both approaches, the routing daemon needs to be modified to
allow external programs to retrieve information gathered in the database, and the ’opaque
LSA option’ also requires an API to define the local option to be transmitted by OSPF.

Note that there is an implicit trust relationship between the users of Internet and op-
erators of transit domains. If we want that relationship to extend to services provided by
the operator, we need to make sure that advertisements indeed come from the operator.
An attacker that would manage to put his own address in an advertisement for e.g. HTTP
proxy service could gain a privileged position to eavesdroptraffic from other users. This
can be prevented by using onlyprotectedtags to advertise services. Protected tags (as
described in Sec. 4.3.3) can only be written and modified by so-calledsuper packets, and
we expect the network operator to clear the “super bit” of WASP packets of all packets it
receives from other domains.

6.3.2 Persistent Data in Ephemeral Store

A particularity ofephemeralstorage is that the advertising tag will be deleted after a fixed
period τ , regardless of any refresh we could try to perform. Therefore, there may be
a small delay between the moment where a WASP router decides to remove an adver-
tisement tag and the moment where an advertisement refresh comes. Even if the server
manages to learn precisely the tag’s lifetimeτ it cannot completely avoid the risk that
client packets may not see any advertisement. If this risk cannot be afforded, it is still
possible for a service to use two separate keysk1 andk2 that will be refreshed with a
periodτ + ǫ but such as advertisements ofk1 andk2 are separated by a delay of e.g.τ/2.

6.4. HISTORY FILE PROCESSING 111

A client that doesn’t find the “primary tag” (referenced byk1) can then check the “backup
tag” (referenced byk2) to see whether the service is really missing.

Depending on the service constraints and on the end-application policy, several vari-
ants to this scheme can be implemented, such as:

• using the router’s clock to decide whetherk1 or k2 should be preferred when insert-
ing/looking up information, in order to improve our chancesto get information in
one try.
• always update both keys once one of them has been inserted so that the application

can get the most recent information regardless of whether itusesk1 or k2.
• usek2 = f(k1) with a key-modification functionf(k) that can be computed by the

VPU (e.g. toggling a given bit pattern) to avoid the need for carrying two keys in
the packet.

6.4 History File Processing

Among the mechanisms presented in section 6.2.4 to join a peer-to-peer community,
bootstrapping based on history files is the only one that is truly decentralised. This sec-
tion presents a model of this process along with performanceindicators that we will use
through the rest of this paper.

The reader should stay aware of the major inherent drawback of history processing: it
requires an initial list. For machines that have been running at least one session, joining
the network again is only a matter of patience, but for those system on which we just
installed the P2P software, we need some out-of-band mechanisms to obtain a history.
We will first assume that we have “imported” that initial list(e.g. shared by e-mail, from
a friend inviting the user to join, or retrieved from a web search). We will see later in
section 6.5.6 how we could bypass this requirement.

6.4.1 The Community Model

The community is made of a collection ofpeersthat are connected to the Internet via a
specificstubAS. Each peer belongs to a givenclassthat defines its average online and
offline time (e.g. “stud” nodes that are online for 2 out of 22 hours, “home” nodes that are
online for 2 out of 14 hours and “desk” nodes that are online for 8 hours out of 24). We
assumed here that, for a world-wide deployed system, we could reasonably consider that
nightly shutdowns have no globally observable effects.

Each peer’s behaviour is defined by the state transition diagram of Fig. 6.3. When a
peer enters or leaves the “offline” state, it will pick a random durationd before it leaves
or returns to that state. As soon as the machine is powered up,it will contact peers in its
history list (“connecting” state) observing a random pausedy before each attempt4. Since
we want to avoid a partitioning of the whole peer-to-peer network, we only consider that

4dy follows an exponential distribution around an average delay of 5 minutes, which we selected to
approximate the timeout of a TCP connection establishment

112 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

Figure 6.3: The UML state transition model of the peers

a neighbour has been found when we manage to contact a node that is in “connected”
state. When a peer has scanned its whole list without managingto contact anyone, it will
enter the “delayed” state where it remains inactive for a short time interval before it tries
scanning its list again.

Note that the system is greedy in the sense that a peer that hasalready found a neigh-
bour will continue processing the rest of the list and the neighbour list of its neighbours.
At shutdown, the peer will only keep a fixed amount of addresses in its history list (typ-
ically set to 10 in our experiments) and it will prefer long-established neighbours over
other addresses.

Note too that the value ofd is theintendedsession length. When the system is in the
“connecting” state, we added a random return to “offline” modelling the behaviour of a
frustrated user who connected his machine mainly with the idea of using the peer-to-peer
system and just powers it off because the service is too long to set up.

In the following text, we will use the term “online” to refer to peers that are in one of
“connecting”, “connected” or “delayed” state.

6.4.2 Bootstrap Quality Indicators

In a typical simulation of the community we described, we start with a predefined amount
N0 of online peers. After a progression phase, the system will oscillate around the “equi-
librium” amount of online peersonth which can be derived from the online and offline
time. For instance, when onlydesk(A) andhome(B) classes are involved, we will have

onth

N
= α

uA

uA + dA

+ (1− α)
uB

uB + dB

(6.1)

whereN is the total amount of peers andα is the ratio ofdesknodes among them (uA

anddA being respectively the average time spent online and offlinein minutes).
In order to compare the quality of different bootstrap mechanisms, we measure the

following indicators:

6.4. HISTORY FILE PROCESSING 113

failed attempts: this is the ratio between theunsuccessfulattempts and the total amount
of connection attempts, that is, those who contact a machinethat is down, that is
not connected to the community yet, or an identifier that is nolonger (or not yet)
associated with a machine that can join the community.

frustration ratio: is the ratio between the number of sessions aborted before their sched-
uled “ontime” expires (e.g. due to a bored user) and the totalamount of sessions in
the simulation.

bootstrap efficiency: measures the percentage of the time spent online during which the
node actually has access to the community.

eff =

∑
Tconnected∑
Tonline

For most indicators, the progression phase exhibits different values than the oscillation
(equilibrium) phase. There are thus two kinds of scenario wemight study:

bootstrapping: We initiate the community with a small amount of connected nodes
which are all aware of one another (e.g. through coordinatedconfiguration) and
then study whether (and how fast) the whole community can reach the “equilib-
rium” phase. This allows us to simulate to what extent history-based peer boot-
strapping is viable as the sole mechanism for a peer-to-peercommunity.

survival: We initiate the community with a number of connected nodes that is close to
onth and study how long this “equilibrium” can be maintained. This can be used
to simulate the history-based peer bootstrapping as a fallback mechanism when
another system (e.g. a pong server) suddenly becomes unavailable. Due to the lack
of a global rendez-vous point for the community, the networkcan remain “online”
only as long as at least two members remainconnected. If we enter a state where
the lastconnectedmember goes offline, any connection attempt will fail and the
community will not recover.

6.4.3 Behaviour on a “Regular” Network

Intuitively, the probability of a successful contact will depend on the amount of connected
peers, which itself depends on the amount of online peers. Inturn, a high success proba-
bility will increase the number of connected peers and therefore reduce the probability of
anticipated poweroff.

We ran a sequence of experiments with a 1000-peer community,varying the amount
of “stud”, “home” and “desk” machines to explore values ofonth ranging from 90 to 165
online nodes on average per simulation. The number of connected peers at the start of
each simulation has been set to matchonth for that specific setup, allowing us to have
more accurate results on a relatively short (2000 minutes) time span. We can see on
Fig. 6.4, however, that the actual number of online peers maybe up to 17% below the
expectedonth, which can be explained by the fact that the formula foronth doesn’t take
into account anticipated poweroffs.

114 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

Figure 6.4: (left) Average number of online and connected peers for different values of the theo-
retical onth parameter. (right) Efficiency and frustration ratio varying with theonth

uA, dA uB, dB α onth len eff

H+S 120,720 120,1200 0.387 110.1 94 0.43
D+S(alt) 480,960 120,1200 0.082 109.9 112 0.57

H+D 120,720 480,960 0.958 150.0 109 0.75
S+D(alt) 120,1200 480,960 0.750 150.7151.4 0.81

Table 6.1: comparing efficiency in two simulations with identicalonth, but different mean session
length (len); α is the portion of nodes of typeA in Eqn. 6.1. Up and down times given in minutes.

As the theoretical number of online peers increases, we can see that the frustration
ratio decrease from 19% to 3%, which is accompanied by a more accurate approxima-
tion of the actual average of online peers byonth. A few additional experiments with a
home:desk ratio of 5:5, 3:7 and 1:9 (leading toonth values of 237, 275 and 313 respec-
tively) confirmed the progression we observed. With an average of 313 online machines,
the efficiency reaches 97% and the frustration ratio tends towards 0, which makes the
relative error ononth of only 2%.

We repeated the experiment using only machines from “stud” and “desk” class, and
report the result in the “(alt)” data series of Fig. 6.4. Whilethe average number of online
peers for these simulations is virtually identical to the figures obtained with “stud+home”
and “desk+home” mixing of the previous simulations, the alternate simulations exhibit
a higher efficiency. We then investigated the mean session length (see table 6.1), which
revealed as expected a longer mean session in the alternate simulations. This mean that,
for identical average community size, it is preferable to have fewer “better peers” if they
have a longer average session length.

One should note that in both simulations, efficiency and frustration can be directly
expressed as a linear function of the probability of a successful connection attempt. This
confirms our a priori feeling that we should try to improve theprobability of a successful
“hello” if we want to improve the overall system performance.

6.5. ACTIVE DOMAINS BOOSTING P2P 115

6.5 Active Domains boosting P2P

A simple way to increase the chances for a hello message to be successful is to make
it more capable of detecting running peers on its way. With regular IP processing, a
“hello” packet will test only one machine and will be successful only if that machine is
connected5. If instead the “hello” packet could be distributed to all the machines running
in a given domain (e.g. all the clients of one ISP), our chances of having a positive answer
will become:

P (success) = 1− (1− P (conn))N

P(success)probability of a successful reply if the packet is targeted to a machine in do-
mainD.

P(conn) probability for a machine ofD of being connected. We assume in this formula
that the domainD is homogeneous and that all its clients have an equal probability
of being member of the community.

N is the number of clients in domainD that have already been members of the commu-
nity.

Such a technique, however, would lead to excessive unsolicited traffic. We can still
achieve similar improvement with substantially less overhead if edge routers of the ISP
domain are capable of storing information about which of itsclients are member of the
community. Such an ISP is then called anactive domain, and the community members
connected through it are said to beactive peersif their software is capable of periodically
sending active packets that store their address on the border router.

In the following simulations, we model anactive domainas a domain on which it is
possible to issue aprobethat will return the address of a random peer in the community
that is client of that domain. Even a successful probe that returns an address does not
immediately cause a transition to theconnectedstate. Rather, the address is pushed at the
head of the ’pending list’, and will be processed as the next peer to probe.

There are two situations where a peer can benefit from the active routers support:
either it could have the address of an “active peer” in his history list, or it could be itself
a client of an active domain and do a ’local probe’ for connected peers. The results
presented in the following sections assume that both probing mechanisms (i.e. local and
remote) are in use. Our early simulations with remote probing only showed that adding
local probes does improve efficiency, but only by a few percents.

Note that the above formula only holds for domains whereP (conn) of clients is inde-
pendent. This won’t be the case, for instance, ifD is a geographically concentrated area
and if all machines inD observe similar nightly shutdowns – such as in a corporate net-
work [Bolosky00]. It should be considered as a theoretical upper bound onP (success)
rather than a way to predict it. Note too, that it is the probability of a successful connec-
tion attemptgiven that the packet is sent to an active domain. We should thus moderate it
with the probability that an entry in the history list is a client of an active domain.

5in that case, we simply haveP (success) = P (conn)

116 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.5.1 Registering Membership in the State Store

Compared to most of the active network frameworks proposed inthe last years, the sup-
port we require from the network in this chapter is extremelymodest. The most elemen-
tary requirement is the presence of a publicly availablestate storeon the active router
where packets could resolve a community name (or its hash, the community keyK) into
an address (or a short list of addresses) of community members.

Using this framework, the peer discovery protocol could be implemented with two
(simple) WASP programs:

peer_adv(K, addr) this packet is sent periodically by community members to a
random peer. When processed on an outgoing interface, it willtry to add its source
addressaddr to the list maintained under keyK in the ESS. If the list is full, it will
return to its source where it could trigger a self-regulation mechanism (see below).

peer_probe(K) this is the probe packet sent together with connection attempts to the
addresses mentioned in a history list. When processed on an interface, it will look
for a list of peer in the ESS and copy the addresses into packet’s “scratch” area. It
will return to its source if any address has been found and goes on its way otherwise.

A peer that bootstraps will first issue alocal probethat looks for a WASP router with
membership information in its local domain (e.g. using a random target address and a
small TTL). Then, together with the connection establishment attempts for each address
in the history list, the peer issues aremote probethat will come back if the community
key is found in a router on the path to the probed address. The samepeer_probe()
program executed on theoutgoinginterface of the source’s domain or on theincoming
interface of the destination’s domain can implement local or remote probe respectively.

On each WASP router, we only need one entry (32 bytes) per community, indepen-
dently of the number of peers that are members of this community. Each entry should be
refreshed at least once per “ephemeral period”τ (typically 10 seconds), and preferably
by drawing a random delay uniformly betweenτ/2 andτ to approach the random peer
selection mechanism mentioned in the model.

While a single hardware context on a modest network processoris reported to handle
about 200,000 ESS requests per second [Calvert03], thus potentially supporting up to 2
million members in a single domain like a charm, it is clear that it would be preferable to
use the feedback information provided by returnedpeer_adv to estimate the amount of
local peers and adapt advertisement period accordingly.

Similarly, if we have each online peer issuing one probe every 5 minutes on average,
a single hardware context could handle aggregated requestsfor around 63 millions peers,
in the unlikely event that they all probed an address behind our router. Still, even a simple
network processor such as the IXP1200 used in [Calvert03] could use up to 16 hardware
contexts for WASP packets processing, and we could easily offload the egress router by
adding WASP processing on access routers too.

6.5. ACTIVE DOMAINS BOOSTING P2P 117

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

avgpeers-150

online
connected

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

active50-150

online
connected

Figure 6.5: plotting the amount of online and connected peers over time in a regular (left)and an
active (right) simulation

6.5.2 Keeping the Community Running

In these simulations, we will investigate the benefit of active networks during a “survival”
scenario. 1000 nodes are first randomly assigned to the different domains which are then
randomly “activated” to reach 100 active peers6. All the following simulations use a
population of 950 “home” machines and 50 “desk” machines andare started withonth =
150 connected peers. Each simulation set contains 20 independent runs of 2000 minutes.

regular This is our “reference” simulations set, with no active peers. As detailed in
the previous section, this leads to an average of 106 connected peers, a system
efficiency of 75% and a frustration ratio of 4%.

act:med This set has on average 103 active peers and an average domainsize of 20 peers.
It leads to an average of 128 connected nodes and improved efficiency of 87%. We
can also notice the low frustration ratio of 0.99%

act:small In this set, we have on average 100 active peers and an averagedomain size
of 10 peers, which leads to 125 connected nodes and system efficiency of 86%.
Smaller domains thus clearly offer more modest performanceboost over the “regu-
lar” network, but still, this remains clearly a boost over the reference set.

act:huge Here we have only one active domain whose size is on average 113 peers,
resulting in an average of 130 connected nodes and system efficiency of 89%. It
also has the lowest frustration ratio of 0.66%.

All the active simulations thus outperform the reference simulations, be it by the size
of the community they manage to maintain, the number of anticipatively terminated ses-
sions (e.g. frustrated users), or the amount of time required to get connected to the system.
These performance gains still hold with a population of 2000peers as long as other pa-
rameters are also scaled accordingly (e.g. 200 active peersand preserving the average
domain size).

6As a side effect of this policy, we will experience a higher variance in simulations featuring only 10
domains

118 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

sust postavg t80 t100 tsust

regular 106 108 607 815 943
act:small 125 129 263 348 676
act:med 128 131 196 265 562
act:huge 130 131 150 226 584

Table 6.2: number of connected peers at equilibrium (sust), after equilibrium level has been
reached (postavg), and time (in minutes) required to reach 80, 100 andsust connected peers.

It should also be mentioned that, for the user starting his machine, the improvement
of “only” 14% in efficiency in our simulations implies an application that is ready for use
twice faster.

6.5.3 Getting the Community Running

Now that we know the average number of connected peers that the system is able to main-
tain in various settings of active domains, we can compare how fast the system reaches its
“cruise level”. The following simulations have been started with relatively few (N0 = 30)
connected machines (that could e.g. be the set of systems that has been up during the
week-end), and let the system evolve to restore its equilibrium.

Table 6.2 summarises the result we obtain for those simulations. For each setting,
it shows the average amount of connected peers the system cansustain (as measured in
section 6.5.2) and the average time needed to reach that level for the first time (tsust). The
value oftsust identifies a “knee” point on the curve where the system has reached its equi-
librium and now oscillates around the average value. We alsomeasured the actual average
valuepast the knee point (that is, fort in tsust . . . 2000), as reported in thepostavgcol-
umn7. So not only the active routers can help having more nodes connected on Mondays
morning, but it can also cut to 60% the time required to rebuild the community (tsust)
in the regular network. If we are rather interested in how fast each setting can reach an
arbitrary value, we can see in columnst80 andt100 that even the less optimistic scenario
(act:small, with an average of 10 members per active domain)is more than twice as fast
as the regular network, and that with larger active domains,we can even be 4 times faster.

Another benefit brought by active networking here is the sizeof the initial set required
to actually bring the community connected. We reproduced the experiment with (N0 =)
25, 20, 15, 10 and 5 machines initially connected to see how many of the 20 simulations
could still “take off” and grow to the expected equilibrium value. Indeed, if new peers
cannot find those “initial members” quickly, the initial members themselves might discon-
nect and we will end with an “aborted” community where no one can connect anymore.

With a regular system, things starts getting wrong withN0 = 20, where 10% of the
simulations aborted, and further degrades so that withN0 = 12, we have less than 50%
chance of seeing the community taking off. On the other side,a system with 100 active
peers in a configuration similar toact:medcould still take off in all simulations with

7We can observe here that postavg is systematically slightlyabove the average of section 6.5.2, which
could be due to the shorter runs not being able to compensate for the oscillations amplitude

6.5. ACTIVE DOMAINS BOOSTING P2P 119

act.\Pdyn 0% 10% 20% 30% 50% 70%
0% 72.4 67.9 64.7 58.3 33.3 20.3
5% 83.4 81.6 79.8 78.3 68.5 51.0

10% 86.3 85.6 85.1 84.7 80.8 74.7
20% 90.2 90.1 90.0 89.3 86.2 85.7

Table 6.3: Impact of dynamic addressing on system efficiency for various ratio ofactive domain
support.

N0 = 12 and gives 90% and 60% of chances of a successful take off withN0 = 10 and
N0 = 5 respectively.

6.5.4 Other Affecting Parameters

The important random variable through these simulations isthe probability of finding an
online machine in a given time periodT . The different scenarios we investigate in this
section all alter the ’default’ probability.

It is clear, too, that this probability depends on how many different addresses we can
test during periodT . The delay between two connection attempts, for instance, directly
influences the percentage of time spent online, regardless of whether or not we have active
nodes.

Note that, in most implementations, the peer will scan several addresses in parallel.
There is however, a maximum amount of attempts that we could do on a given platform,
meaning that e.g. we could have an average number of scanned nodes on aτ time slice
that isk times higher than what we observe in our simulations. Simulation results can
still be applied to such a system if we assume that the individual probability for a node to
be online is actuallyk times lower in the real system than in the simulation (e.g. a given
node doesn’t connect 2 hours every day, but rather 2 hours every k days).

6.5.5 Dynamic Addressing vs. Active Domains

So far, we have assumed through all our tests that a peer leaving the system and then
joining it again will always reuse the same address. However, an increasingly high number
of ISPs only offerdynamicaddressing to their clients: every time a machine connects to
the Internet, it will receive one of the addresses from the ISP pool, that it will keep during
its whole session, but chances are very slim that the same address is allocated twice in a
row to the same machine, especially hours after the last session.

In the following simulations, peers have probabilityPdyn of being client of adynamic
domain. Those domains will assign a new address to their clients every time they connect.

If we assume that the community members (both online and offline) represent a frac-
tionk of the number of addresses available in the domain’s pool, there is now a probability
(1 − k).Pdyn that an address we find in our history list no longer corresponds to a peer,
but that it rather has been reallocated to a machine that doesn’t run the P2P software.

The first row in table 6.3 shows the efficiency of the P2P community with Pdyn varying
from 0.1 to 0.7 andk being fixed to 0.1 (i.e. the size of each dynamic domain’s poolis 10

120 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

times its number of peers8) without any active router. As we can see, the system efficiency
quickly degrades when we add more dynamic domains. We also observed a significant
degradation of the frustration ratio and the average community size.

On the other side, addingactivenetworks results in an improvement of the bootstrap
efficiency and other studied parameters. Moreover, it is notimportant to have a high
number of active domains to obtain a significant effect: 5 percent of domains being active
is enough to gain 11% of bootstrap efficiency, but we need halfthe domains to be active
if we want to gain another 11% of efficiency.

It is interesting to note that a dynamic domain that is capable of storing information
for active packets will behave here like a static, active domain. Indeed, the fact that new
addresses are allocated every time a node connects is compensated by the fact we can
obtain the address of a community member (if any) using any address previously seen in
that domain.

Moreover, as depicted in Table 6.3, the presence of a few active domains in the system
can compensate the degradation resulting from the presenceof dynamic domains. Even
with only 10% of the domains supporting the active packets, we can almost annihilate that
degradation and keep the same efficiency regardless of the amount of dynamic domains
in the network.

There is a new phenomenon that appears withPdyn > 0.4. Some of the nodes might
end up with only unassigned addresses in their history list9, meaning that they have vir-
tually no chances of connecting to the peer-to-peer network. FromPdyn = 0.7, the phe-
nomenon can no longer be neglected since it will affect on average 2% of the members –
a value that will quickly grow over 25% of the members whenPdyn = 0.9.

Note that even in extreme conditions such asPdyn = 0.9, where a regular network
couldn’t maintain the community alive for more than a coupleof hours, the presence of
10% of active peers allows the system to survive for arbitrarily long time, although with
a degraded efficiency (around 66%) and a significant number ofnodes that might end up
with a useless history list (18%, against 26% without activenodes).

Indeed, the community model only takes into account the age of a neighbour when
it picks the addresses it will archive in its history list forthe next run. While an active
address has more chance to be kept from one run to the other, the address from an active
disconnected peer will not be preferred over a dynamic, connected peer, although the
latter will likely be useless in the next run.

6.5.6 Avoid the Need for an Initial List

So far, we have illustrated that exchanging member addresses at active routers could help
the peer-to-peer community to recover from unusually low activity and that its efficiency
can be boosted through the improved probability of a successful connection attempt.

8While there are typically almost more clients than addressesin an ISP that does dynamic addressing, it
would be utopian to assume all those clients already run our P2P software

9the simulator considers an address unassigned when it belongs to the pool of a dynamic domain, but
not currently assigned to any member of this domain

6.5. ACTIVE DOMAINS BOOSTING P2P 121

Still, there is a major drawback of history-based peer-to-peer systems we haven’t ad-
dressed yet: the need for an initial history list. An instance of the P2P software freshly
installed on a machine has no other system to connect to. Mostexisting systems will
overcome this through off-line process to obtain this list,such as publishing it on a forum
or manual transmission through e-mails. In this section, wewill review a collection of
techniques enabled by the presence of WASP in the network that could avoid that need.

First, when the new machine’s ISP runs WASP routers, we mightbuild our initial list
by looking for other peers in our own domain. Picking a randomdestination address and
sending a probe should be sufficient here to hit the border router on which other peers
of the same domain have advertised their address. Relying only on this automatic setup
might work well when the software is actually “pushed” by theISP (such as a GRID
platform promoted by the managers of the domain), but it willgenerally be frustrating for
lambda users downloading some P2P software regardless of whether their ISP supports
WASP or not and whether there is already a sufficient user basein their vicinity.

We can envision another successful deployment scenario if the software vendor can
afford setting up a WASP router at the entry point of his own network domain. In that
case, the software can be designed so that, as a last option, it probes the vendor’s domain
for some initial contact node. One might valuably argue, though, that this is no different
from running a pong server from an architectural point of view.

The good thing WASP routers offer here is that all we need to find is active domains
that contain members, not members themselves. If the vendorcannot upgrade to WASP
routers but WASP is sufficiently spread on the network, he could simply run a scanning
software that would probe all ISPs and include a list of active domains as the “initial peers
list” for the shipped software.

If we want to build a peer-to-peer system based solely on history lists, as opposed to
systems where that list is just the most scalable and preferable mechanism before we fall
back to a pong server, it is clear that we need an additional way of rebuilding the list when
it is empty or useless. Once again, thanks to the presence of WASP router, the process of
scanning the network for other peers is greatly simplified bythe fact that we simply have
to send a packet to any address (even if not currently assigned to a running machine) of
an active domain where another peer is running to get a match.Knowing that, we can opt
for different techniques that will gather addresses to test:

netstat: The P2P application might periodically run a netstat-like tool to learn the current
connections the hosting system has with other machines, then send probes to those
locations to see whether peers can be found.

web browsing: Rather than waiting for the user to establish connections, wemight im-
port the history of previous connections from e.g. the user’s browser. We can then
build a list of destination addresses out of the URLs and checkif we can see any
active router.

address book: Another potential source of peer addresses would be the address book of
the user’s mailing application. Out of “John.Smith@BigISP.com”, we can extract
the IP block associated with “BigISP.com” and send active probes to see whether
there are online peers in that location.

122 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

The drawback with the “web browsing” approach is that there are unfortunately little
chance that popular web servers are co-located with potential peers. There is a way an
active “server” site could be helpful if it is popular enough. Indeed, we could technically
use a website like slashdot or google as a rendez-vous for machines looking for a peer
to join (which might visit the site too). It would however require the community to pro-
actively scan for active routers frequently visited by users and to maintain ephemeral state
present by periodically refreshing on routers that would otherwise never carry traffic for
our P2P activities.

Comparatively, the “address book” scheme is more likely to point us to domains that
host usersrather than services. With a simple component filtering out most frequent
webmail providers, we can concentrate our search efforts onparts of the network that
could be running compatible P2P software.

6.6 Enforcing Registration Fairness

In applications like peer-to-peer community discovery as we presented above, it is of in-
creased importance that the actualprotocol is respected by the different parties. Amongst
other things, we want to guarantee that:

1. X cannot prevent other peers from appearing in the list if theyregistered themselves
2. X cannot insert “fake” IP addresses in the list10

3. on sufficiently large timescale, all machines have similar chances of appearing in
the list of machines that will be returned in probe replies.

Clearly, if we leave WASP unrestricted, there is no chance we can enforce such kind
of rules. Indeed, because of the nature of community discovery application, the store’s
key needs to bewell-known(e.g. a hash of some community name) and we cannot opt
for some kind of “protected key” this time. Note however, that the problem isn’t specific
to WASP and that even if we implemented the “probe” and “register” algorithms as new
ESP instructions rather than using the bytecode interpreter, we still couldn’t prevent an
attacker from using e.g.COUNTor COLLECToperations to alter the list we’re gathering.

What we need is to ensure thatonly the correct protocolcode can be applied to the
corresponding key. With pre-compiled operations, this could be achieved for instance by
using a part of the key to encode restrictions on the set of operations allowed.

6.6.1 Hash-Requesting Packets

We can implement a similar protection in WASP by hashing the bytecode into an-bit key
and use a specific bit pattern (e.g. ak-bit prefix, withn + k = 64) that is automatically
added to the code hash to form the “private key”. We then modify the implementation of
LOOKUP, INSERT andMAPmicrobytes to guarantee they will abort packets that try to
use a key using thek-bit prefix reserved for private keys. This will fullfill requirements

10we assume here that we can at least rely on the ISP that owns theWASP router for ensuring that source
addresses aren’t forged.

6.6. ENFORCING REGISTRATION FAIRNESS 123

Listing 6.1: pseudo-code for fairpeer_adv election process on a WASP private entry

1 i f (MAP(p r i v a t e) == CREATED) {
p r i v a t e . goa l = random () ;
p r i v a t e . l i s t [0] = i p . s r c ;
done ;

} e l s e {
6 addr = i p . s r c ;

d = addr XOR p r i v a t e . goa l ;
r e p e a t i = 0 . . k

i f (p r i v a t e . l i s t [i] XOR p r i v a t e . goa l > d) {
tmp= p r i v a t e . l i s t [i] ;

11 p r i v a t e . l i s t [i]= addr ;
addr =tmp ;
d = addr XOR p r i v a t e . goa l ;

}
e n d r e p e a t

16 done ;
}

(1) and (2) in our list (provided that the information added in the list comes from the IP
header rather than from some packet variables), but it doesn’t enforce fairness by itself.

Given a set of machinesP1...Pn, and a WASP-based protocol that allows onlyk ad-
dresses to be stored in a list, a simple way to offer each machine a fair chance of appearing
in the list would be to impose nodes to wait for a random delay ranging from0.5 τ to 1.5 τ
(τ being the lifetime of ephemeral entries – typically 10 seconds) between two registra-
tion messages, therefore randomizing the firstk nodes that will be allowed to appear in
the list at each entry expiration.

Unfortunately, we have no way to prevent an attacker from issuing more traffic than
expected, andk cooperating attackers could then deny listing for regular peers by simply
using an inter-registration interval sufficiently small compared toτ . This is an important
concern, since they will by this mean become the preferred contact nodes for an important
share of the community. In most P2P applications, peers joining the network via such
compromised contact node will have no way to tell whether they’re actually using the real
network or a attacker-controlled fac-simile of that network.

To avoid those risks in the community discovery protocol (and in any other election-
style protocol based on WASP), we suggest that the membership registration bytecode
first detects whether theMAPopcode has created a new entry or not and generates a
random goalfor the current round. Whenever a new address is to be added in the list,
we then compare the distance between the new address and the goal (e.g. using a XOR
instruction) with distances of addresses that are already in the list. The new address is
then only allowed to replace another one if it has smaller distance.

Note that we can easily support independent elections for many communities without
altering election code by simply hashing acommunity keyin addition to the bytecode.

124 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.6.2 Accessing Election Result

Thepeer_adv /peer_probe mechanism involved in the case of peer discovery differs
from regular election protocol in the sense that the election result needs to bepublic. Not
only the participants (in the current domain), but every peer, needs to know who has been
elected.

A simple approach would simply be to extend the protocol presented in listing 6.1
so that each packet either participates in the election or grabs the result depending on
some packet variable. The drawback of this approach is that it imposes that all the peers
interested in the election result can only use the result in away that has been foreseen by
the protocol designer. For higher flexibility, we would prefer a mechanism that decouples
how the election is performedfrom what it is used for, and that somehow (partially)
exposesthe state manipulated by the protocol.

It should be noted, too, that enforcing a fair election process would be useless if we
just publish the election result in a well-known regular tagthat any malicious packet can
modify. When considering one-to-one or one-to-many communication patterns, we can
work around that risk by generating a random tag as part of theprotocol and delivering it to
the other participant(s). In our context, however, we have no way to communicate all peers
that could potentially lookup on a routerR for election result without also communicating
the information to attackers.

The most promising alternative consists in embedding the election code in a special
portion of thepeer_probe packet, so that it isn’t interpreted when the packet is re-
ceived, but remains available for a specialMAP_ALTopcode. The corresponding se-
mantic is “please retrieve content that has been generated according to the included pro-
tocol”. The information is then of course mapped inread-onlymode, and not all the
state may be available. The example presented in listing 6.1, for instance, requires that
private.goal remains undisclosed. We envision that many other protocolscould
have similar requirements, and we propose that thehash-requestoption of WASP packets
include additional flags indicating how the entry can be exposed to public packets. Po-
tential options would of course include “do not expose” or “fully expose”, but also “only
expose first longword” and “expose all but first longword”.

6.6.3 Practical Implementation of Code Hashing

One-Way Hash at Wire Speed

Performing one-way hash for an important number of packets on a routing equipment
may quickly become a potential bottleneck in the implementation. While some network
processors are equipped with security co-processors[IntelPB] that provide hardware im-
plementation of MD5 and SHA-111, most will have to work with a software implementa-
tion.

In [Yue06], a pioneering paper in the domain, the authors have studied the perfor-
mance of several cryptographic algorithms, including unkeyed SHA-1 and MD5 on the

11in addition to ciphering standards like 3DES or AES

6.6. ENFORCING REGISTRATION FAIRNESS 125

IXP microengines. Good news is that hashing algorithms require no external memory
lookups beyond fetching the plaintext and storing the digest. Moreover, unlike keyed
message hash (e.g. MD5-HMAC), they can live without any sort of internal look-up table
or per-flow state.

Software implementation of MD5 on the IXP2400, for instance, consumes about 600
instructions, and about 60% of the execution time is spent inregular ALU instructions
(plus about 40% spent in fetching data from DRAM). Comparatively, the SHA-1 hashing
is twice larger, spends a significant amount of time (10%) processing “load immediate”
instructions (for initialization purpose).

MD5 hashing also outperforms SHA-1 by a factor 2 in terms of throughput. [Yue06]
reports 1.2, 2.4 and 4.8 Gbps throughput with 1,2 and 4 microengines respectively. Note
that since the MD5 algorithm is totally cpu-bound, the performance is completely inde-
pendent on the number of threads doing MD5 computations.

Since the WASP interpreter itself is also cpu-intensive, itwould probably be pre-
ferrable to off-load MD5 to a thread in a ME that rather performs memory-intensive oper-
ations, such as a forwarding table lookup component or the ESP processing microblock.

A CRC-Based Alternative

In many contexts, the computation-intensive MD5 might be a strong blocker for the acti-
vation of private state support on a WASP router. On the otherside, virtually all network
processors offer a hardware implementation of CRC algorithmsthat could be used to
produce a hash of the bytecode. Since the result of hashing isnever disclosed to other
equipments, each router indeed has the opportunity of picking the hashing method that
best suits its owner’s preferences.

Given a protocolP with HP = crc(P), it is however trivially easy to fix attacking
codeQ into Q′ such thatcrc(Q′) = HP [mdgray03w]. The idea is thus to hasha mixof
the bytecode and of a secret bitstream so that the attacker ignores the resultHP to be met.
Note that simply prefixing or XORing the bytecode with some secret value offers poor
protection, while interleaving bytes of plain bytecode with secret bytes seems to offer a
decent protection.

The weakness of this mechansim is that thesamesecret is used for hashingall pro-
tocols. As a result, the attacker might use a simple protocolA that installs a well-known
piece of data in the state store, and then generates variantsof another protocolB that
simply checks whether state has been created or not, and compare the content of the state
with the well-known signature if anything is present. If thesignature is found, that means
that the attacker has foundBi such thathash(A) = hash(Bi) (with probability depend-
ing on the “quality” of the signature), which could substantially ease the discovery of the
secret bitstream used to scramble the bytecode. If the attacker has full access to a 1Gbps
interface, the232 packets testing all the possible CRC values could be sent in about 3000
seconds, which suggests the router’s secret should be changed frequently enough to keep
protocols’ state truly private, but still kept for long enough to minimize the event of a
protocol state “disappearing” due to a change of the secret bitstream.

126 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.7 Conclusion and Future Work

It is our belief that the currently existing peer-to-peer applications lack a scalable, robust
and user-friendly way to let peers join the network, be it forthe first or thenth time.
We have however no doubt that peer-to-peer technology has now given enough proofs of
its potential and that we are likely to see more and more applications and architectures
involving P2P networks in the future.

Through this chapter, we have shown how the presence of programmable ephemeral
state in the network could allow a significant improvement ofP2P system performance,
and that it might even allow us to distribute peer-to-peer software without having to dedi-
cate online resource to its support.

In section 6.2.4, we mentioned the two-phased nature of joining a peer-to-peer system.
The second phase (neighbours selection) is oversimplified in our simulations, and while
we have good hope that our proposal could equally apply to e.g. a Chord ring, we still
need additional simulations with an enhanced model taking into account ring maintenance
algorithms to validate our belief.

While the CRC-based approach presented in section 6.6.3 sounds promising, we do
not have, at the time of writing, more precise information about the robustness of this
method, and one should certainly not implement it for purposes other than testing.

Finally, the approaches for initial list avoidance presented in section 6.5.6 clearly need
more research before getting convincing. We have however good faith that they can be
useful building blocks of a heuristic technique which – given sufficient WASP support
from the participating domains – could strongly reduce the number of cases where in-
stalling the software requires extra user intervention.

Chapter 7

WASP and Beyond

ANTS can handle harder tasks than
WASP

Abstract

It is tempting to propose more disruptive services relying on the presence of a generic key-
value store on the router’s fast path, such astraffic rerouting([Stoica02, Schmid04]). The
potential applications of this “extended” WASP would for instance include the support
of fast terminal mobility and load balancing for server farms. In this chapter, we rather
focus on improving the feasibility of Internet-wide multicast, as most of the applications
based oncollect operations suggest that we’re responding to a multicast solicitation.

Allowing WASP programs to change packet destination, however, is a radical decision
compared to the conservative restriction we presented in chapter 4. We will investigate
through this chapter what kind of compromise we could find in order to keep that rerouting
extension “world-friendly” before studying of what help it could be to multicast distribu-
tion.

The use case of multicast through WASP also raised questionsregarding the actual
implementation and deployment of WASP in a production network. Whether it comes on
a programmable line card, as a filter box or as a router “sidekick” box has implication
on what we can practically do.

7.1 Rerouting

One of the most fundamental principles of IP forwarding is the fact that packet destination
is decidedoncewhen the packet is emitted by the source. While the actual pathit takes
can still be unknown (e.g. routers might reconfigure while the packet is on its way), the
packet should eventually reach the machine corresponding to what the source has decided
to be the destination and only that machine. There are, however, several cases where this
is not the most preferable behaviour.

It is common practice in Web hosting, for instance, to run a cluster of servers behind
a front-end switch or proxy responsible for load balancing.In that situation, changing

127

128 CHAPTER 7. WASP AND BEYOND

the destination of the packets at the switch may be sufficientto balance the load among
servers without requiring clients to be exposed to the individual machines of the cluster1.

Another strong example is the case of mobile terminals [Gopal03], where the same
end-systemM receives successiveforeign addressesreflecting its actual location, in ad-
dition to thehome addressthat uniquely identifies it. Even with Mobile IP – a protocol
that allows such foreign addresses to be dynamically allocated and bound to the home
address, there are practical limits to the speed at which newforeign addresses can be
assigned.

Drawing inspiration from “Internet Indirection Infrastructure” [Stoica02] and “Net-
work Pointers” [Tschudin03] proposals, we wanted to integrate a generic way ofchang-
ing packets’ destinationwhile they’re on their way – what we callreroutingthe packets –
into WASP, with the hope that it would greatly extend the expressivity of the platform.

Finally, rerouting may offer help to support partial multicast on the Internet. Actually,
an operator that offers multicast to his clients virtually offers no more than multicast-
ing a flow from one of his client to his other clients. Without the support of a world-
wide multicast-capable backbone, chances that we can receive e.g. CNN by multicast in
Japan remains thin. With WASP and rerouting, clients of a multicast-capable (and WASP-
capable) domain may cooperate and setup unicast-to-multicast rerouting at domain border
so that they appear as a single client to CNN.

7.1.1 Issues with Rerouting

Because this is a major difference with the traditional IP model, special care needs to be
taken to ensure such destination changes do not put the network, the router or the end-user
applications at risk.

Multiple Lookups

Forwarding tablelookup is a complex operation, involving several access to high-latency
memory and usually the use of ASICs or dedicated coprocessors. If we allow WASP
packets to lookup that table more than once, there’s a potential risk that the lookup engine
is not sufficiently available to process other packets, leading to packets queueing at the
interface, even if there are chances that high-end network processors could handle two
IP lookups per packet. Problems mainly arise when reroutingis requestedat the output
interface(see Sec. 4.1), and especially when it appears that the new destination should
be reached throughanother interface. Should we allow the packet to leave the router
with that new address or should we instead give the packet back to the forwarding core
of the router? None of these alternatives are satisfactory as they both allow a WASP
packet to concentrate resource consumption on a single spotof the network, for instance
by repeatedly requesting rerouting to another output interface than the current one (and

1Note that in more subtle scenarios the proxy running on the front-end may require to inspect application
payload to pick the most appropriate router [Zhao05], in which case there’s more than the target address to
modify

7.1. REROUTING 129

therefore making a single packet stay in the forwarding coreof the router until its TTL
reaches zero).

Looping Packets

Letting the packet leave routerR on any interface with any destination address is not a
more desirable alternative. In most cases, the network willrecover this at the next hop
S by forwarding the packet on the shortest path fromS to the new destination, just like
S would have processed any packet to that destination, with the exception that here, the
interface where the packet goes might be the one it comes from.

More malicious packets, however, could then “turn back” to their initial destination as
S has sent them back toR, forcingR to send the packet toS again, and making the packet
“ping-pong”ing between two routers, increasing artificially the load on the link between
them. Even if we ensure that packets never do such “turn back”, larger loops can be built,
concentrating resource consumption in a slightly larger area.

Where Do My Packets End Up?

The main concern for the end-user will be to ensure that packets still reach the expected
destination, even when re-routing applies. When the sequence of destination addresses to
the final target is given explicitly in the packet’s variables, the offered service has the same
security semantics as loose source routing in IP. When that sequence is retrieved from
ESS, however, we need to ensure that no one is trying to abuse the end-systems to gain an
intermediate position on a specific data flow. We are confidentthat protected/private tags
should however help the end-user build reliable rerouting-based applications.

If we’re to implement rerouting, it is clear from the points expressed above that we
need to enforce restrictions onwherethose rerouting operations may take place and what
subset of destinations is allowed at each “rerouting-enabled” location. As a primary re-
striction, rerouting is aninter-domainfunctionality and as soon as the “input” interface
of an ingress router has processed a WASP packet, no other rerouting of that packet is
allowed until the packet reaches the output interface of theegress router in the local do-
main. That way, rerouting becomes almost transparent to theoperator: packets “enter”
the domain with the destination that will be used along the domain until the last router
has processed them.

7.1.2 Network-Friendly Rerouting

It should be reminded that there is a strong hierarchy between transit domain operators in
the Internet, mainly due to economical customer/provider relationships. Only a few “Tier-
1” operators provide world-wide connectivity and most ISPscannot afford the services of
a Tier-1. Instead, they establish contracts with their direct customers (namely “Tier-2”)
or with the customers of these laters (“Tier-3”).

With the exception of Tier-1, an autonomous system on the Internet can thus be seen as
an operator that pays his own providers to get connectivity and sells back that connectivity
to its own clients. To cut down operation costs, operators atthe same level in the hierarchy

130 CHAPTER 7. WASP AND BEYOND

A
B

 $

$

(a)

$

= =

 $

=

customer to
provider
relationship

peering
relationship

Provider

Peer

to:
 X,Y

to:
 any

 $
$

X Y

A B

Provider

Peer

XU

 $

U

 regular
 A to U

fake
A to X

rerouted
A to U

(b)

v

Figure 7.1: Typical inter-domain policies for domain A (a), broken by blind rerouting (b)

will typically try to establishpeeringcontracts to exchange traffic between their respective
customers without paying their provider to do so.

Invitations-Based Rerouting

From the operator’s point of view, the main difficulty in rerouting comes from the fact
that, generally speaking, we do not want to allow any packet to be received from any link.
Business agreements with other peer domains, for instance, may only allow a domain
A to use link to domainB to reachB’s clients, but not to reach other peer domains
or providers ofB (see Fig. 7.1a). Nowadays, most of these agreements are enforced by
filtering routes advertised by BGP [Rekhter04] rather than by filtering packets, but blindly
enabling rerouting of WASP packets could lead to situationswhere a packet leavesA with
a destination address falling in one ofB’s clients and then reroute itself to anotherpeer
domain onB’s ingress router, thus cheating the business model (see Fig. 7.1b).

WASP overcome those problems by means ofinvitations left in the ESS by former
packets. When a WASP packet executes on an interface VPU, it can create a new tag
carrying its source address by means of theinvite opcode. The binary pattern of the
key used withinvite tells the VPU that the value can be safely used as a redirection target.
Depending on how the interface is configured, thereroute opcode will accept either
any target value (e.g. for customers-ingress links) or willbe restricted to tags and invita-
tions (e.g. for any other link). This way, “ping-ponging” between domains is no longer
possible if all egress interfaces restrict rerouting to invited destinations. An invitation to
addressY present on the interface means that the peer router for that interface has recently
sent a packet coming fromY , and thus it should be able to route another packet towards
Y properly.

We can also prevent cheating on the business model if non-client (guest) packets can
leave invitations only onincomingVPU of ingress routers. More precisely, if we make
sure that WASP packets from peers and providers are tagged asguest when they reach
thecenter(see Fig. 4.1) of their ingress router and thatinvite opcode is not allowed for
guest packets, then a packetp received on a non-client ingress interface that is targeted
to a client domain can only be delivered to a client domain. By contradiction, suppose

7.1. REROUTING 131

V is the first VPU where rerouting changes packetp’s destination towards a non-client
destinationU . This is only possible if an invitation toU is present inV , however:

• if V is on a core router, it cannot have the invitation since guestpackets can only
leave invitations on their ingress VPU (unless source addresses are spoofed by one
of B’s clients).
• if V is on a border router, it impliesV is bound to an outgoing interface, sayitf,

towards domainU . Note thatp can only reach that hypothetical interface ifitf
connects to both clients and non-clients domains (likely tobe a configuration error).

In Fig. 7.1, note thatB is not protected ifA allows blind rerouting on its egress
interface toB (we could easily disable blind rerouting on output interface, anyway). If
bothA andB configure rerouting properly, malicious clients fromA cannot leadA to a
situation where it unwillingly misroutes packets throughB.

Note that even if rerouting does not, by itself, allow sourcespoofing (which is the root
of most DDoS attacks [Bossardt05]), it might disturb tools based on header-hashing for
traceback of packets used to react to those attacks. Allowing inter-operations between
rerouting and traceback might include storing previous destination in a field of the WASP
packet or keeping traces of applied rerouting on routers andwill be an interesting chal-
lenge for future work.

Invitations and “Out”vitations

At a given ESS location that allows rerouting, we will have two types of packets: packets
that leavethe domain through that interface and packets thatenter the domain through
that interface. Both are usually allowed to drop an invitation at the interface. However,
we do not want the domain ingress to “reflect” packets by allowing an incoming packet to
follow an invitation left by another incoming packet. Invitations will be carrying a status
bit indicating whether they were left by entering or leavingpackets and when a packet
will try and reroute using an invitation, attempt to follow invitations left by packet “of the
same type” will abort packet execution.

Alternatively, we could state that packets can only leave invitations when they’re on
ingressrouters, not onegress. This is only equivalent when one considers two domains
that both support WASP, and that an invitation from a host inA can be dropped onB’s
ingress router rather than onA’s egress router, which would be a severe deployment
blocker.

7.1.3 Validating Source Addresses

In the discussion above, we’ve been assuming that clients from A andB couldn’t spoof
their source address. In other words, thatA andB enforce firewalling rules such that
clients ofA never send packets that have an address fromB in their “source address”
field. This is required so that we can assume that receiving packetp with source address
S on interfaceV implies thatV can safely be used to send packets with destinationS.

132 CHAPTER 7. WASP AND BEYOND

Figure 7.2: Illustrating hot potato routing and troubles for invitation mechansim

Unfortunately, several ISPs do not perform those minimal safety checks, and it is
unlikely that everyone will eventually do so. As a result, itwould be wise to ensure,
when inserting invitation toS, that the receiving interfaceV is actually the interface that
we would use to send packets toS as a kind of minimal authentication of the emitter.
The importance of such checks is further increased when WASProuter also operate on
multicast addresses, as we will detail later in Sec. 7.2.5.

Note that, again, enforcing the “source validation” mechanism at the router level
works poorly. In several cases it may occur that the network doesn’t deliver packets
from S on routerR on the interface thatR uses to forward packets toS. For the purpose
of load balancing, quality of service or any other trafic engineering mechanism, it could
even happen thatR receives (or forwards) a packet from/toS through multiple interfaces.
We will thus instead distribute the responsibility of source validation on the edges of the
domain. Each machine that receives aninvitation-capablepacket from another domain
is required to confirm by the mean of a flag in the WASP header that the packet indeed
originated from the expected interface.

It should be noted, however, that in order to validate a source address, the WASP
component needs access to the inter-domain forwarding table. This is not a concern when
the WASP component is located e.g. on a line card (and therefore is sharing memory
with the IP forwarding component), but it may be a practical issue when considering an
independent WASP filter installed before a border router.

Invitations and Asymmetric Routing

The “invite/reroute” model presented above works fine as long as the routes fromA to B
and fromB to A use the same routers. However, it is frequent on the Internetthat routes
are actuallyasymmetric, as the result of the “hot potato routing” principle. As depicted on
Fig. 7.2, we suppose we have two large domains that have agreed on a peering relation-
ship, one hostingA and the other hostingB. Both domains are e.g. transatlantic bearer
so when packets travel “horizontally”, they need to be transported over long distances,

7.2. MULTICAST TO SMALL GROUP 133

involving a higher operating cost. Since there is peering between the domains, however,
delivering packet from one domain to the other (that is, travelling “vertically”) is virtually
free. Under these conditions, operators typically configure their routers so that packets
that have to go to the peer network will go through the closestborder router. The shortest
path fromA to B will thus cross theU − V link while the path back fromB to A will
cross linkY −X.

In order to inviteB, however,A needs to leave an invitation onX or Y ’s border
interfaces, but packets coming fromA usually don’t cross those routers. Even ifA sends a
message targeted toX or toY , this message will be delivered to application layer without
going through the interface we’re interested in. Moreover,in the case ofY , we have no
guarantee that the inviting packet fromA will be received on the expected interface and
Y might conclude that this packet comes from a spoofed source.If instead we send our
invitation forB towardsX, it will be received on an internal interface that does not allow
invitation storage or usage.

The good thing is that WASP gives us the toolkit to detect the asymmetry as well
as the address ofX, the place where invitations should be installed. Yet, an additional
mechanism is required to allow packets received onXN to be interpreted onXS rather
than being immediately delivered to the upper layers ofX. The protected invitations that
are involved in multicast support in Sec. 7.2.4 could be a good candidate here.

7.2 Multicast to Small Group

Multicasting (many-to-many packet distribution) has beenthe centre of attention for num-
ber of research since Steve Deering’s initial suggestion over 15 years ago. Its primary goal
was to allowanysource to send packets to agroupaddress and let the network deliver the
packets only to those nodes which subscribed to that group. With the initial multicast, as
standardised by IETF, the source is no longer exposed to the (potentially huge) number
of receivers, but several issues remain such as the allocation of globally unique group
address and the (complex) protocol required in every routerto map each group address to
the corresponding set of interfaces.

For those reasons, even if multicast has been successfully deployed in national re-
search networks, it is unlikely that the Internet will ever support a protocol that allows any-
one to send a message to arbitrary groups. “Source-Specific Multicast” (SSM [Fenner06])
alleviates some of the problems related to group addresses by making the source address
part of the group identification. The communication model isthus simplified to “one-to-
many”. This means that the receiver needs to know explicitlythe address of the source
to join (regular multicast could allow any number of sourcesand usually use a rendez-
vous mechanism to match sources and receivers), using a subset of “Protocol-Independent
Multicast : Sparse Mode” messages2 to inform routers of which (group address, source
address) pair they would like to subscribe to.

2those messages where initially designed to allow receiversto switch to a source-specific tree to improve
performance

134 CHAPTER 7. WASP AND BEYOND

7.2.1 Small Group Multicast

Yet, SSM does only address partially the problems of IP multicast. For core routers,
it remains impossible to keep per-flow state that would be required if millions of users
each want to run a multicast session with a couple of friends.This case of figure (also
known as “one-to-few” distribution) is the target of the “Small Group Multicast” pro-
posal [Boivie00]. Unlike other multicast flavours, SGM (and similar protocols such as
explicit multicast [Boivie05] or IPv6 “Multiple Destinations” option [Imai02])do ex-
pose the sender to the global group. SGM datagrams typicallyinclude the complete list
of receivers in each message (and require virtually no statein core routers) and let the
“branching routers” create duplicates of the packet as needed.

At each SGM-enabled router, that list is processed and partitioned to know which
subset of the destinationSi needs to be sent over each output interfacei. This implies the
router has to be designed to perform not only one IP table lookup per packet, but up ton
lookups (wheren is the number of destinations carried by the SGM packet).

While SGM removes the need for per-group state in the network core, this comes at
the expense of a larger per-packet processing time, and added complexity that a ’regular’
router will hardly handle. While Boivie et al. claim in [Allen03] that “for a network
processor such as the PowerNP, SGM is a simple matter”, there is apparently no study
of what SGM packet rate a network processor could handle nor “how small” the groups
should be to avoid excessive use of the hardware lookup engines.

7.2.2 Application-level Multicast

Due to the difficulties to get a global multicast architecture working and deployed at the
network layer, several solutions have been proposed to handle multicast atapplication
level, making each receiver of a stream arelayer of that stream too such as in YOID
(Your Own Internet Distribution) [Francis00], one of the pioneers in that area. More
recent works such as SplitStream ([Castro03]) get further and ensures that each of the
receivers contributes to a fair share of the retransmissioneffort and that the stream is still
received correctly when a small portion of the nodes fail to deliver it properly.

Internet Indirection Infrastructure (i3, [Stoica02]) even makes application-level multi-
cast retransmission transparent to the users by the mean oftriggersinstalled onindirection
servers. One of those triggers could well be used as thegroup addressfor the multicast
retransmission and the sources will handle their packets tothe closest i3 server, which
will be in charge of locating the i3 server responsible of thedestination trigger. Receivers
then register themselves by adding their address to the listof destinations associated with
the trigger in i3 servers.

In those schemes, thesourceof the stream is indeed off loaded compared to a pure
unicast model, but the delay between initial packet emission and packet reception may
increase more than we wish. Because packets are relayed by end-systems – perhaps be-
hind asynchronous DSL – the retransmission time at one hop can become significant and
the overall organisation of the distribution tree will playa significant role. Localisation-
aware heuristics will be necessary for instance in the case of larger groups where several
application-level relays are needed to keep the individualduplicating cost affordable at

7.2. MULTICAST TO SMALL GROUP 135

each relay (otherwise the packet might well travel across oceans several times before it
ultimately reaches its destination, leading to unacceptable delays for real-time applica-
tions).

7.2.3 Multicasting with ESP and Lightweight Modules

Even if ESP alone – on which WASP is based – has not the option ofimplementing a mul-
ticast function, K. Calvert et al. depict in [Calvert01] that multicast could be implemented
using a simplelightweight processing modulein addition to ESP.

The ephemeral state is used to perform theprobes computationthrough which the
source will identify the routers that play a strategic role in the distribution tree (e.g. those
which will have to activelysplit the stream). ESP-enabled routers can perform simple
computations such as “setup” which leave state indicating that a flow X goes through the
router, and “collect” which, when used on S-Y path, allows todetect the routers that paths
S-X and S-Y have in common.

The second component –lightweight packet processing module– is a small code
package, strongly authenticated and loaded dynamically inthe router that terminates in
bounded time. Active networking research have presented numerous ways to support such
code and modern network processor can efficiently support them. The authors advocate
that a small number of lightweight modules could cover a large portion of application
needs. In this case, the functionality required by the module is packet duplication. Each
installed module consists of classifier rules that will invoke the processing instructions
with specific arguments and parameters.

The information gathered with ESP probes indicates to the source wheredup() light-
weight modules should be installed. This module will catch stream packets and forward
duplicates as needed. While this scheme has the advantage of inherently supporting
topologies where not all nodes are capable of ESP ordup()lication, it is clear that, on
’branching’ routers, per-flow state (e.g. classifying ruleand forward list) is inevitable.

7.2.4 Building Small-Group Multicast with WASP

With WASP, we can replace the in-router per-flow state with tree-specific code in the
packets. Once, e.g. a specific routerR has been identified as a potential branching point
for a stream, packets of the stream can indeed contain WASP code that will perform
specific actions when arriving on this node.

Similarly, WASP code can replace the need of a classifier by explicitly invoking the
specialised function by means of aunique keyfor that function. The ability of WASP
to rewrite packet destination addresses at network interfaces can here be advantageously
used to replace the branching point address with anode-local multicast address(which is
named through a key stored in the packet) that will generate aduplicate on every required
interface and then, once the output interface has been reached, rewrite that multicast ad-
dress into the address of the next branching point (also named through a key).

136 CHAPTER 7. WASP AND BEYOND

Figure 7.3: Duplicating packets on a node using a local multicast address

Node-Local Multicast Addresses

Figure 7.3 illustrates the use of those node-local addresses with a router having 8 in-
terfaces, meaning that we could encode on the last 8bits of a multicast address (say
227.0.0.x) the subset of interfaces that should receive a retransmission of the packet.
E.g. 227.0.0.86 would be asking for retransmission on router interfaces 1,2,4 and 6 and
227.0.0.5 would be retransmitted on interfaces 0 and 2 only3.

Of course, such addresses are not practical since the packetcan only be handled by
one router. That’s where rerouting enters the game ... Upon reception of the packet at
interface 7 (see Fig. 7.3.b), the WASP code will lookup the ephemeral store and resolve
group_key into node-local address 227.0.0.86, which the switching logic of the router
can interpret to duplicate packet on interfaces 1, 2, 4 and 6.At each of these interfaces,
WASP post-processing happens and looks up thegroup_key in the interface-specific
ephemeral store, where it will retrieve the address of the next branching router that has to
process the packet.

The node-local multicast addresses, in this proposal, are never disclosed directly to
other routers or end-systems. They are interesting for proof-of-concept implementations
where WASP processing is added on line cards of an unmodified switch fabric. In a
native implementation, the sender would use awell-known keythat corresponds to the
list of interfaces it wants to reach so that WASP processing can resolve this into avirtual
node-local address for the switch fabric4.

An Example ...

Referring to figure 7.4, the message sent to membersB, C andD carries WASP code
used on the branching routers to take the following instructions:

3since86 = 26 + 24 + 22 + 21 and5 = 22 + 20

4to guarantee the expected behaviour of that well-known key,we could useprivatekeys here

7.2. MULTICAST TO SMALL GROUP 137

Figure 7.4: Transmission of WASP-based multicast message to the small group “B,C,D”

1. on its incoming interface,R3 will use keyk1 to rewrite packet destination into the
“node-local” multicast address corresponding to interfaces towards R4 and R5 (e.g.
227.0.0.20 if we assume the same 8-interfaces router as on Fig. 7.3).

2. the message is then delivered to those interfaces where wewill do a second lookup
and uses keyk2 to follow invitations towardsB andR6 respectively.

3. when packet reaches incoming interface ofR6, it uses keyk3 to rewrite destina-
tion into the new node-local multicast address (e.g. 227.0.0.17) making the core
enqueue packets on interfaces towards C and D.

4. destinations of the packets are finally rewritten intoC andD at the output interfaces
of R6.

WASP-SGM without per-flow state

To enforce minimum network security, WASP cannot allow packets to reroute to arbitrary
addresses. Instead, aninvitationmechanism is used to ensure that destinations of rerouted
packetssolicitedthe rerouting and that, if the packet is already on an output interface, the
new address will not cause trouble. The drawback of this approach is that, even if the
source knows the new destination (for instance because it iswritten in the packet), it still
hasto use router-saved state because only those addresses willbe trusted and allowed for
rerouting by the router.

The reader will notice that the state stored in the router is however not stream-specific
but that it can instead be reused by other streams. Each possible combination of output
interfaces needs a ’rerouting invitation’ so that packets can explicitly reroute to a local
address saying “retransmit on interfaces 1, 4 and 5”. If router hasN interfaces,2N such

138 CHAPTER 7. WASP AND BEYOND

entries might be required, which suggests an explicit way toname those combinations
should instead be standardised.

Similarly, several flows that share a chain of branch point can reuse the “output renam-
ing” entries, that is, a single rerouting entry forR6 can be used onR3 for every stream
that first duplicates atR3 and then atR6, meaning that the required state is now depend-
ing on the number ofneighboursthe router has rather than on the number of end-system
receiving multicast streams.

7.2.5 Pending Problems with WASP-SGM

Network Friendliness ?

The potential danger of node-local multicasting is to overflow the network with duplicates
of a packet, by requesting forwarding on every output interface of the routers again and
again. In the initial proposal for Small Group Multicast, such threat is avoided since all
destination addresses are in the packet. The domain operator thus knows in advance how
much load the packet might bring.

A possible fix for this problem is to includecredits to the packet, indicating how
many times it can be replicated. Routers will then have to maintain the ’credits’ of each
duplicate so that the sum of running packets’ credits do not exceed the initial credits of
the parent packet. Those credits exactly report how many remaining destinations a packet
carries, and when a router will “split” the packet, WASP codewill have to instruct how
many credits are given to each duplicate. From the router’s point of view, packet has an
initial credit ofn destinations and it will usereroute with a key corresponding to a list
of interfaces(I1, I2, . . . , Ik) and a list of child credits(C1, C2, . . . , Ck). What the router
then has to do is to ensure the sum ofCi doesn’t exceedn and then enqueue modified
packets toIi with the corresponding new creditCi. This can be done without modifying
the instruction set of the WASP virtual processor, providedthat the code forreroute
interpretation detects the special case of a node-local multicast address and process credits
accordingly.

The node-local multicast approach of WASP keeps the following advantages over a
’pure’ packet cloning model as can be seen in SNAP:

• The switch fabric (or whatever technology interconnects interfaces) is used only
once5, while a collection of “clone” commands could potentially generate multiple
packets that differs even in payload.
• A single router will never output more than one packet per interface when it receives

a packet, while cloning could potentially generate many packets to be sent to the
same destination.

5This assumes that the switch fabric is capable of deliveringframes to a set of destinations. CSIX-L1
standards[Csix00] provide several ways to do this (all of which are optional), but we should stay aware that,
generally speaking, it is not possible to send a single frameto an arbitrary set of ports. What is defined in
CSIX-L1 are the following multicast modes: 1) deliver to arbitrary set for 16 contiguous ports; 2) deliver to
two arbitrary ports; 3) allocate a ’group ID’ that maps any arbitrary subset (221 groups available, registration
mechanism not covered by the standard)

7.2. MULTICAST TO SMALL GROUP 139

Figure 7.5: Building a DDoS attack using WASP rerouting and packet duplication

• A packet duplicate can only “leave” the router if proper invitation or validation
token is known by the source.

DDoS Toolkit ?

To exploit the packet duplication feature to overload a single destination, an attacker needs
to be “invited” by a sufficiently high amount of fake destinations (that is, which will never
receive the packets) and reroute to the actual target after duplicates have been generated.
Those fake destinations, however, are only required to senda small amount of packets
towards the initiator of the attack (that is, enough to maintain invitation state at the router,
but not more), making thus packet duplication feature of WASP a potential threat if ISPs
that allow them do not properly enforce a fair amount of credits per packet6.

The success of the attack will not depend much on thenumberof attackers but more on
how scattered they are on the network. It will also be necessary that those duplicates can
be rerouted towards the actual target of the attack, which implies to find a WASP location
L where an invitation from the targetT can be followed. Under normal circumstances,
such invitations can only be found on interfaces that pointsto the shortest path toT , but
malicious hosts that use source spoofing could potentially install fake invitations. Fig. 7.5
illustrates that kind of attack and emphasises the need for asafer way to insert invitations.

Note that if wevalidate source addresses before we allow invitations to be left in
routers (as suggested in section 7.1.3), the attack is no longer harmful. Moreover, the
validationmechanism do not need to be implemented by all ISPs to be efficient provided
that it is implemented in all WASP routers. Indeed, invitations fromH1, H2 andH3 are
now detected as fake byR1, R2 andR3 and duplicated packets reaching those routers can
no longer be rerouted towardsT . Only H4 has the opportunity to insert a fake invitation,
but this router will only receiveoneinstance of the packet, regardless of how many helpers

6Since this is intended to be forsmallgroups, enforcing e.g. a maximum of 15 destinations per packet
seems reasonable ...

140 CHAPTER 7. WASP AND BEYOND

like H4 are present in the same domain asT (e.g. the branching routers generate one
duplicate per output interface, not one per target address).

7.2.6 Interconnecting Multicast Islands

The idea ofSmall Group Multicastwas to offer multicast delivery without exposing the
routers to the per-session state and without requiring important network knowledge in
the end-system. While rerouting provided an interesting wayto achieve a similar goal
using the WASP platform, theinvitations, initially required to ensure proper behaviour
of packets rerouting, force us to install (and refresh) state in the routers. This state can
be shared by multiple sessions, but only if the routers themselves have issued invitations,
which in turn implies that routers are aware of registrations they forward and are capable
of sending an invitation to a peer router for the sake of minimizing state.

The presence of invitations also implies that the source must in first place discover
which keys should be used on each branching router. This may require that the source
knows much more about the network than we would like. We will indeed be able to use a
rerouting entry only if the expected branching router is met.

Alternatively to the SGM use case, we might wish to use rerouting to translate des-
tination addresses into a group address when packets enter astub domain that natively
support multicast. We should note, however, that the invitations mechanism is once again
hardly compatible with that use case. In order to have packets destination translated from
a internet-wide addressU into a local group addressM , we are indeed required to issue
an invite instruction from a packet using source addressM .

Alternatively to the use case of small-group multicast, [Hjalmtysson04] and [Zhang06]
suggested approaches where application-levelagentsin the network would self-organize
into an overlay and help relaying packets between multicast-capable domain. Rather than
trying to turn WASP into a self-sufficient solution to multicast delivery, it could be more
interesting to opt for a hybrid approach where WASP would be used by ISP-operated
agents to locate each other and synchronize their efforts inmulticast distribution.

Rerouting remains interesting at the border of a multicast-capable domain to translate
unicast addresses into a group address at wire speed, but it would then be the role of the
local agent to install invitations (e.g. using a super-packet and protected tags) on behalf
of its clients or based on negotiation with peer agents in other domains.

WASP could also be useful in detection of intermediate multicast-capable domain that
have a compatible agent, using techniques such as MagNet (see 6.3). When such a “peer”
domain is detected, we can set up a tunel relaying multicast packets through in-between
unicast domains. Rather than letting the end-system drop invitations, we could guide it to
its local agent who will in turn search for a peer agent and install proper rerouting entries
in border routers’ state stores.

The kind of approach described above would keep WASP router free of any contro-
versary feature that could break the “friendiness” properties, and it could allow a network
operator to upgrade the multicast “control” protocol without having to update routers
(only the supporting agent would have to be modified). Still,it is clear that additional re-
search is required here, preferably cooperating with teamshaving experience in multicast

7.3. DEPLOYMENT SCENARIOS 141

Figure 7.6: Two techniques for extending a regular router with a wasp box (a) in a filter-like
topology, (b) splitter-and-processor topology

overlays, to estimate the potential benefits of the proposedapproach and identify potential
deployment issue of such an hybrid scheme, including what kind of modification would
be required in end-system clients.

7.3 Deployment scenarios

7.3.1 WASP-aware line card

Introducing WASP as a part of the processing on a router line card is probably the most in-
teresting approach for many of the extensions presented in this chapter. More specifically,
when the network processor implementing WASP also hosts forwarding table lookup, we
have more opportunity to integrate invitations checking, rerouting request lookups and the
destination lookup. To some extent, the result of a “rerouting” could be not only picking
a new destination, but also instructing what kind of operator-defined specific functional
block should process the packet.

The down side is that better integration also means more interferences from WASP
processing on the bare forwarding performance. A high load on the DRAM bus due to a
high WASP activity might badly affect IP tables lookup.

7.3.2 WASP filter

The functionality is implemented through a “WASP box” that interrupts the router link,
as represented in Fig. 7.6a. As mentionned before, this is the setup we implemented for
the IXP2400 network processor.

Interrupting the wire with an experimental equipment of course raise a number of
questions regarding the availability of the connection. Wecan however observe that the
ENP2611 card has a number of features that isolates its behaviour from the hosting PC.
Among other things, it has an external power source for the ENP card that makes it inde-

142 CHAPTER 7. WASP AND BEYOND

pendent from its host’s power supply and the network processor can continue to operate
even if the hosting machine crashes.

We can also observe that the “splitting” and “forwarding” functionalities are clearly
separated from the active processing. WASP is implemented on separate micro-engines
that can be restarted without affecting the receive, classify, forward process. Most of the
“mission critical” code blocks come from a well-tested library. A special care will be
required when designing and implementing the classifier block, which is mission-critical
as well, but requires custom code and inter-operation with the WASP blocks7.

7.3.3 WASP in a non-intrusive test bed system

Some ISPs and network operators might still be reluctant to insert an experimental device
on their customer’s data path. One might then wish to attach WASP behind a passive
splitter (TAP) box, as depicted on Fig. 7.6b. The customers’traffic is then completely
protected from a misbehaviour of the WASP box, but we introduce a radical change in the
semantic of the WASP service.

1. It is no longer possible for the WASP box tofilter packets. Even with theDROP
opcode, a duplicate of the WASP packet has already been delivered by the pas-
sive splitter to the next hop. Consequently, applications like concast, active QoS
enforcers will fail to work properly.

2. WASP is no longer capable of collecting information abouta path in a single packet.
Suppose we write a WASP program that reads the current node’saddress, stores it
in packet data and forwards, a WASP box behind a passive splitter will actuallyfork
such packet, one copy mentioning the forking device as beingon the path, and the
other copy not mentioning it.

3. by requesting the return of a WASP packet, we no longer guarantee that the packet
doesn’t go any further. As a result, if an end-system sends a packet to discover the
closest instance of a service, it will suddenly receive one copy for every provider
rather than a single packet coming from the closest device.

It is clear that we cannot allow a box with such a different semantics to process every
WASP packet without at least warning the end-user that it will receive a different service.
At least, the WASP packet format should be extended with a flagindicating whether or
not a program is suitable for execution on a device that isn’tcapable of filtering packets.

Unfortunately, the semantic difference is only the smallest issue we have to deal with.
The splitter device is typically not equipped toinject traffic on the wire, which means that
if we want to forward a modified packet after WASP processing,it has to be submitted
again to the edge router. If the program ended withFORWARDopcode, that also means
the same passive splitter will duplicate the packet again and that the WASP box will see
it a second time. It would thus be required to alter the WASP packet format to include the
identity of the last WASP-capable device which processed a given packet so that we can
avoid processing the same packet endlessly.

7For instance, it would be wise to ensure that delivering a packet to a WASP block is aborted (rather
than delayed) if the core-to-wasp buffers are full.

7.3. DEPLOYMENT SCENARIOS 143

Figure 7.7: WASP as a sidebox companion for the edge router, showing processing of ingress and
egress WASP packets inside the router

Finally, the “split-then-process” approach is a severe threat to the network safety. As
we have discussed above, aFORWARD-terminated program actually result in a packet du-
plication on which we have no control, meaning that our simplest demonstration program
sent along a chain ofn splitters will turn into a denial-of-service attempt of2n packets.
In other words, by placing the WASP box like depicted on Fig. 7.6b, we’ve broken the
WASP model and lost the invariant that WASP processing cannot result in an increase of
the network load, on which most of WASP safety relies.

As a conclusion, placing a WASP box behind a passive splittershould be considered
as a severe installation mistake.

7.3.4 Isolating WASP traffic on the router

An alternative to the use of a TAP box is to let the router’s firewall extract WASP packets
from the regular flow. In the most favorable case, the firewallentries can redirect matching
packet to an alternate routing table, which we will build such that all traffic is directed to
the companion WASP box.

Figure 7.7 illustrates how we could configure such firewall rules to make a “side-box”
behave as if it were a WASP filter. WASP packets received from the peer AS (in red) are
separated from regular packets using a simple rule based on protocol number on interface
F1 and an alternate route table that forwards all packets to theWASP box by default. The
wasp box can then re-emit packets that need to be forwarded: since there is no rule to
catch them onE0, they will simply use the regular route table and go on their way to the
proper output interface.

We can apply a similar mechanism for packets to be transmitted to the peer AS (in
blue on Fig. 7.7). An output firewall filter rule onF1 will intercept them and redirect
them to the wasp box through the alternate routing table. However, after they have been
processed by the WASP box, they will hit interfaceF1 again. We should then havetwo
output rules onF1: a first one that catches packets seen for the first time and that will be

144 CHAPTER 7. WASP AND BEYOND

tagged before they are delivered to the WASP box, and a secondrule that catches tagged
packets and clear the tag before accepting them for transmission on the interface.

Unsupported redirection

The features mentioned above are available e.g. in the Juniper routers J,M,MX and T-
series[juniper]. On other hardware, we might unfortunately lack the ability of redirecting
packets based on firewall rules. Such routers could still partially support a WASP side-
box if they are capable of dropping packets based on protocolversion (e.g. CISCO routers
supporting Flexible Packet Matching). The idea is then to use a passive splitter to deliver
WASP packets (along with all the traffic) to the WASP box and discarding the WASP
packets that directly come into the router to avoid the flaws we discussed in section 7.3.3.

Missing features

By placing the WASP box aside the router rather than on the mainlink, we however lost
the ability to use WASP as a lightweight path monitoring tool. Indeed, since the box will
not “see” all the traffic going trough the interface on which it is logically attached, it is
unable to compute correct statistics on the number of received packets, drop ratio and
instantaneous queue sizes.

Moreover, even firewalls that are capable of filtering “native” WASP packets may
be unable to detect the WASP IP option used to piggyback WASP code on a regular
TCP/UDP packet.

Multiple interfaces supported with one side-box

In figure 7.7, it is relatively easy for the WASP box to tell on behalf of which interface
it should process packets. In the original ESP/WASP design,each interface is associ-
ated with its own Ephemeral State Store, and packets that take different interfaces cannot
interfere with each other.

Since the WASP box only receives WASP packets here, we might want to implement
several “virtual filter box” with a single side-box. This requires that we are capable of
demultiplexing packets on the WASP box though they all came from the same physical
interface. We will also need a way to tell which of the “execute on input interface” and
“execute on output interface” bit should be checked for thatinterface.

When there is only one virtual filter, we can easily tell ingress and egress packets apart
by means of the tag that is used by the output firewall filter to discriminate unprocessed
from processed packets. Depending on router features, we could be restricted to e.g.
DSCP8 modification.

Encoding both the (un)processed state and the originating interface through DSCP
values might become tricky and we might want to rather declare several alternate routing
tables that would all direct traffic to the WASP box, but usingdifferent IP addresses for the
WASP box. Each of those IP addresses would be resolved into a different MAC address,

8Differentiated Service Code Point – a 6-bit field in the “Typeof Service” byte of IP header

7.4. CONCLUSION 145

allowing us to use the destination MAC address on the WASP boxto infer the ESS we
should operate on. This technique will unfortunately not only require several IP aliases,
but also one alternate routing table per additional alias.

7.4 Conclusion

The option of changing packets’ destination on the fly may allow the introduction of new
services in the network. Through this chapter, we tried to adopt the point of view of a
network operator and to suggest mechanisms that would permit such destination changes
only in ways that couldn’t break the rules that apply to normal packets.

We have unfortunately found ourselves limited by the fact that the current Internet
cannot guarantee packets actually come from their source address, in which case our
rerouting framework may be a severe threat of distributed denial-of-services attacks, es-
pecially when combined with multicast distribution.

The alternatives we can envision (see section 7.1.3 and 7.2.6) quickly require too much
knowledge of the network either for the end-system or for theWASP box. In some cases,
the actual implementation of the WASP functionnalilty on the router might even further
restrict what is reasonably possible (e.g. a separated filter box may not have access to
BGP tables).

This suggests that we are trying to solve at the network layera problem that rather
require cooperation of multiple layers to work properly. Sticking with the philosophy that
WASP should not try to achieve complex things but should instead focus on what can be
done at wire speed for cheap, the wisest move we could suggestis to allow packets to
reroute according to invitations at WASP level, but to restrict setup of those invitations to
trusted agents operated by the network owner.

The design of actual solutions involving WASP as a reroutingmiddleware for coop-
erating end-systems and operator agents require a better understanding of the existing
mechanisms and will be dealt with in future work.

146 CHAPTER 7. WASP AND BEYOND

Chapter 8

Concluding Remarks,
Future Directions

We proposed WASP, an active networking framework based onEphemeral State Store
that allows end-systems to install, retrieve and manipulate small pieces of information
within the network. We have shown how, compared to the Ephemeral State Processing
(ESP) router designed at University of Kentucky, the byte-code interpretation by a vir-
tual processor (VPU) has enlarged the potential application field of WASP while keeping
safety guarantees offered by ESP.

Unlike other active platforms, however, the language and the programming environ-
ment of WASP remain highly restricted. Compared to ANTS, for instance, which has
the full expressiveness of JAVA language, WASP programs cannot exceed 256 bytes in
length and the VPU doesn’t allow any kind of loop. Yet, we haveshown that useful
services such as application-controlled dropping policies or jitter measurement can be
built using the bytecode language to express operation overper-flow ephemeral state and
generic statistics about the network card. Through this work, it appeared however that
WASP gets even more powerful when it is used asmiddlewarefor other distributed appli-
cations such as equipment involved in a multicast session, hierarchical proxies for HTTP
caching or agents supporting terminal mobility.

In addition to the “reference” x86 implementation, we provided and benchmarked an
IXP2400 “proof-of-concept” implementation of the WASP interpreter as a Gigabit-filter
box. We have shown that the performance we can get from WASP will greatly depend on
the number of live keys in the store – and more importantly on the length of the chains
colliding for a given entry in the hash table. Still, with moderate use of the state store, we
were able to sustain 90% of the throughput of a pair of gigabitEthernet ports with merely
40% of the processing power of the chip.

8.1 Towards a WASP Socket

The way we send and receive WASP packets in this work is only suitable for preliminary
tests and measurements. Much like University of Kentucky provided an “ESP socket”
option to attach count, compare, etc. programs to packets sent over a socket, we would

147

148 CHAPTER 8. CONCLUSION

need system calls to have the kernel attaching WASP programsto packets and a way
to sendstandaloneWASP programs to a given machine without having to rely on raw
sockets. The problem of retrieving data from packets received by an end-system also
requires attention. Finally, application developers willneed a library of validated WASP-
basedtransport protocolsso that once a “reliable multicast” socket is opened, all we have
to do is send our data over the socket.

8.2 Rethinking the State Store?

Through this work, we have taken the state store “as is”, without trying to modify its
implementation or its semantics more than resizing its entries. However, our experiments
with the IXP implementation show that the time required to walk a chain may quickly be-
come critical under certain traffic patterns. Still, the amount of required SRAM needed to
support full-speed operations gives the feeling that the performance gap between a multi-
100baseT and a multi-gigabit equipment haven’t really beenanticipated when designing
the ephemeral store. While the presence of hash pointers in SRAM may offer shorter “best
case” when the use of the state store is low, scaling the storeto maintain the “available for
all” principle may require impractically high amount of (expensive) SRAM.

If we end up with a typical average chain length of e.g. 8 entries, we may even
question the pertinence of such a pointers table and prefer alarger pointers table fully
stored in DRAM. Evaluating the performance of such an approach against the existing
implementation would be one of our priorities in future work. We also envision a hybrid
approach where a chain (pointed from SRAM) could be “split” inseveral sub-chains
(using a DRAM extension of the pointers table) when the chain length goes over a given
threshold.

We are unfortunately strongly limited in the ways we can modify the state store if we
want to keep a straightforward and lightweight cleaning process. Even arranging chains
entries to follow a Most Recently Used order could lead to performance degradation due
to the additional number of DRAM writes required to maintain the chain pointers.

Our latency and throughput experiments on the IXP implementation of WASP have
also highlighted the need for a finer control of the entries creation rate. Not only a burst
of entries creation will immediately slow down packets processing, but it also means that
we will experience a sudden higher cleaning cost, which leads to longer buffering than
what real-time applications may accept.

8.3 More on the “Best Effort” We Provide

There is an important (and unaddressed) decision concerning the “best-effort” nature of
WASP/ESP that came to attention during section 5.7. For someprotocols (such as robust
collection of an important number of samples), it may not be acceptable that a router
forwards a WASP packet without performing the computation (esp. if other packets of
the same computationhavebeen processed on that router).

8.4. THE ROLE OF WASP IN AUTONOMIC NETWORKS 149

On the other side, dropping packets that carry a WASP programandapplication-level
data could be a bad idea. If the proper operation of the computation requires that all
packets see the same set of routers, we could then prefer todeactivatethe packet, clearing
its execution bit, and simply forward it. That way, the end-system can still receive the
packet, and the computation semantics is preserved.

Finally, some computation’s output is independent of whichspecific routers do or
don’t process the packet, but dropping or deactivating the packet would have a significant
drawback. This is for instance the case of multicast retransmission (see [Calvert02]) and
service discovery application (see section 6.3).

Considering the possible combination, the best approach would probably consist of
letting the application tell – via a proper control bit in WASP header – what is best to do
with such “off-profile” packets.

8.4 The Role of WASP in Autonomic Networks

The recently introduced discipline of Autonomic Networks aims at evolving the Internet
towards an architecture that could be both more resistant tooutages and attacks and more
efficiently managed, mostly through strong automation of configuration and optimisation
tasks.

For many, the actual implication of “autonomic” paradigms on the actual network ar-
chitecture is still fuzzy, but all acknowledge the need for self-configuring, self-optimising
and self-healing devices and networks. By sensing its own state, and via learning and in-
ference algorithms, the network management component should be able to detect changes
in its own structure or in its “environment” (peering domains, submitted traffic, etc), and
react accordingly to preserve high-level objectives.

To many aspects, the research done in active networks these last years may provide
an interesting substrate for those kinds of problems, as we detailed in [Jelger06]. Among
other things, the attempts to make active networks self-configuring and the mechanisms
for code deployment can be useful building blocks for a new autonomic network archi-
tecture.

We believe that WASP (or a similar service) could be another key building block for
these architectures, providing a simple mechanism for querying peer nodes’ capabilities,
discover helper agents in the network and perhaps even taking care of information gos-
sipping or aggregation in a scalable fashion. We hope to havethe opportunity to further
explore these applications of programmable ephemeral state in the context of the ANA
European initiative.

8.5 Towards User-Friendly Rerouting in WASP

Through this work, and especially through chapter 7, we’ve proposed applications based
on an ever-updated virtual processor. At the time of writing, opcodes such asreroute ,
invite , expose and the corresponding mechanisms haven’t been implementedyet.
Thanks to the hierarchical nature of inter-domain routing,we have shown how rerouting

150 CHAPTER 8. CONCLUSION

can be made loop-free and can adjust to existing traffic peering policies by means of
invitationsleft in the ESS.

The success of applications based on rerouting will howeverstrongly depend on whe-
ther the end-systems can ultimately trust those invitations or not. Most of the security of
such rerouting-based applications depends on the fact thatthe tag used for rerouting is
either unknown or unmodifiable by malicious third-parties.Enforcing such secret while
making sure regular members of the applicationknowthe “secret” tag will require cryp-
tographic aspects that we haven’t investigated so far.

With a look back at all the technical difficulties we identified about rerouting (asym-
metric routes, spoofed source addresses, inter-domain business rules), we should ask our-
selves whether the proper abstraction for switching destination on the fly has been found.
Having rerouting in WASP is appealing because WASP remains in lowest levels of packet
processing. It could thus be applied on every packets crossing a router and it doesn’t
require identification of user flows – few other platforms cancompete with that. More
investigations are needed to see if theinvitation mechanism could be made safer – e.g.
allowing only invitation from super-packets and relying ondomain-hosted services to in-
stall those invitations.

8.6 Benefits of WASP for Research Network Operators

Learning from experience and related discussions of other active platforms designers, we
have tried through this work to take into account the expectations of network operators in
our design. Guaranteeing that the presence of a WASP box in the network never becomes
a nuisance for the operator has been our golden rule for many design choices.

However, it typically requires more than this to convince someone in charge of a pro-
duction network. We tried to collect in this section arguments that could receive interest
from research network operators such as Dante (operating the European GEANT research
network).

Traffic statistics made automatically available to the researchers

The use of ephemeral counters helps distributed applications to measure their own traffic
whenever required without the need for authorised access toa global statistics facility.
However, as long as the key used for the measurement is kept undisclosed, third par-
ties cannot eavesdrop others’ traffic share. With the availability of per-interface global
statistics, one can even estimate its relative share of the global traffic.

A more flexible platform for quality of service enforcement

Combining the presence of per-flow counters and precise timestamps from the routers,
we can embed code that evaluates e.g. jitter or packet loss rate along a path and let the
application adapt appropriately.

8.6. BENEFITS OF WASP FOR RESEARCH NETWORK OPERATORS 151

Simplifying network programmability once for all

A research network operator is frequently solicited by network researchers wishing to
implement their own solution by modifying code in the routers. This is unfortunately (for
them, and probably hopefully for everyone else) not possible and the alternative of co-
hosting an application-dedicated server with the router isa long, complicated and costly
process. Moreover, it might even just be useless unless we also install firewalling rules and
alternate route tables so that the traffic of the applicationis processed by the companion
server.

Ephemeral entries in WASP can easily be used by a server (be itco-hosted with the
router or running at another location) to advertise its presence to traffic from end-systems
that might benefit from the new function. Operation around the core router is thus a one-
host investment for any further request, but it also offers more transparency since only
flows thatlook for the new service will be affected.

152 CHAPTER 8. CONCLUSION

Appendix A

WASP Opcode Reference

acc the accumulator used for most operations.
ST0 . . . ST15 stack content

TOP Stack Pointer STTOP is the top-of stack (ToS).
NF Negative Flag Highest bit of the last generated word is set.
ZF Zero Flag Indicates the last generated word has all bits cleared.
UF Undefined Flag Indicates the key used for last ESS operation was missing

in the store
XB index bank Tells the memory bank used by the “X” window
XO index offset Tells the item pointed by the index register inXB

XS data size Tells the size (U8, U16, U32 or U64) of the current item in
XB

YB, YO, YS alternate same asXB, XO andXS , but for the alternate “Y” memory
window

imm immediate the value of immediate constant (for instructions support-
ing immediate values)

PC program counter indicates the next opcode to be processed.

153

154 APPENDIX A. WASP OPCODE REFERENCE

A.1 Control Operations

ABORT Current mapped ESS entries arenot written back and packet “error” flag is set.

FORWARD Write back mapped entries. Packet will continue to its destination.

DROP Write back mapped entries. Packet is discarded by the node.

RETURN Write back mapped entries. Packetsourceand destinationaddresses are swapped.
Packetexecuteflags are shifted, and packetreflectflag is set.

REROUTE get() retrieves one word from ESS used as new destination for the packet. Mapped
entries are written back. See section 7.1.2 for details.

All these operations ends packet evaluation. If the program executes past the end of actual code
without encountering one of these operation, packet aborts withVCOD_OUTOFBOUNDSerror.

A.2 STACK Operations

PUSH TOP ← TOP − 1 ; STTOP ← acc
VSTK_FULLerror occurs ifTOP is zero.

POP acc← STTOP ; TOP ← TOP + 1
VSTK_EMPTYoccurs ifTOP is already larger than 15.

TRASH TOP ← TOP + imm
the resulting value ofTOP saturates at 16 (empty stack).

PULL acc← STTOP+imm

VSTK_OUTOFBOUNDSerror occurs ifTOP + imm is larger than 15.

A.3 ALU Operations

Prior execution,b is loaded withToS anda with acc, then one of the following operations are
taken.

ADD b← b + a

SUB b← a− b

OR b← a BITWISE ORb

AND b← a BITWISE AND b

XOR b← b EXCLUSIVE ORb

NOT b← BITWISE NOTa

The flagsNF andZF are modified to reflect the value inb. The result is then written back in
acc unless theNOACCmodifier is set. The stack pointer is incremented (pop) unless theNOSTK
modifier is set.

A.3.1 Miscellaneous ALU Operations

These operations updateNF andZF flags according to the new value of the accumulator.NOACC
andNOSTKmodifiers do not apply here.

A.4. BRANCH OPERATIONS 155

SSL shift acc left by XS bits (e.g. 8, 16, 32 or 64)

SSR shift acc right byXS bits

INC acc← acc + 1

DEC acc← acc− 1

SGN extends aXS-bit signed value inacc to 64-bit.
E.g. withXS = 8 andacc = 0xf1 , we would end up withacc = 0xffff ffff ffff
fff1 .

SHL shift acc left by imm bits.

SHR shift acc right by imm bits.

IMM acc← imm

RND fills acc with 64 random bits.

A.4 Branch Operations

These operations alter the program sequence throughPC ← PC +imm. No backward jumps are
allowed: the resultingPC is always greater than the previous one. The immediate value indicates
the number of microbytes to skip. A jump that goes over program size aborts packet execution
with VCOD_JUMPTOOFARerror.

BDEF branch ifUF is cleared.

BUNDEF branch ifUF is set.

The “generic” branch (any opcode withVJMP_ISJMP in the “immediate decode” family) has 4
bits interpreted in the following way.

1. if IGNOREZEROis set, skip to step 3.

2. don’t branch ifISZEROdoesn’t match the value ofZF .

3. if IGNORENEGis set, skip to step 5.

4. don’t branch ifISNEG doesn’t match the value ofNF .

5. branch unless stated otherwise previously.

Unconditional branches can be achieved by setting bothIGNOREZEROand IGNORENEG.
Note that the combination where bothignore...bits are cleared and bothis... bits are set leads to a
branch that is never taken.

A.5 Memory Operations

A.5.1 Memory Movement Operations

We will refer asX (resp. Y) the memory location in bankXB (resp. YB) at offsetXO (resp.
YO) that isXS (resp.YS) bits long. acc[0...XS [is the lowestXS bits of the accumulator. IfCLR
modifier is used,acc is zeroed before the instruction takes place.

STORE X ← acc[0...XS [.
May fail with VRAM_WRONGACCESSif the bank is not writable.

156 APPENDIX A. WASP OPCODE REFERENCE

YSTORE Y ← acc[0...YS [.
May fail with VESS_READONLYif the mapped entry is not writable.

LOAD acc← X.
acc[XS ...63] is cleared ifXS < 64.

YLOAD acc← Y .

NOOP acc← acc.

INSERT tag ← X64 ; put(tag, acc). UF is updated.

LOOKUP tag ← X64 ; acc← get(tag). UF is updated.

SWAP tag ← X64 ; tmp← get(tag) ; put(tag, acc) ; acc← tmp. UF is updated.

After instruction is executed,INX modifier will advanceXO by XS/8 bytes in the bank.
Respectively,YNCadvancesYO by YS/8 bytes. If eitherXO or YO goes over 32 bytes, it will
wrap back at the start of the memory bank. In order to moveX register accross banks, aLIX xx
instruction is required.NOOP|INX can be used if one wants to advance theX register without
performing a memory move.

A.5.2 Index Register Manipulations

In the following, bank(i) is an internal function retrieving theith bank of the VPU’s memory.
Banks 0 to 3 map packet data and banks 4 to 7 map node environment variables. If one bank
isn’t available, the “dead” bank is mapped instead. Content of the dead bank is read-only and
undefined. Thesize(i) is an internal function decoding 0 intoU8, 1 intoU16, 2 intoU32 and 3
into U64.

MAP tag ← X64. YB is linked to the corresponding entry in the ESS.UF indicates whether
this entry has just been created (UF cleared) or was already there.YO is reset andXO is
automatically advanced by 8 bytes.

SWYX SwapsXB andYB. XO, YO, XS andYS are kept untouched.

LIX xx Load Immediate into X
XO ← imm0...4 ; XB ← bank(imm5...7) ; XS = xx. We enforce thatXO is a multiple of
xx/8 bytes. E.g., afterLIX32(imm) , X is aligned on a 32-bit word in the bank.

LAX Load Accumulator into X
XO ← acc0...4 ; XB ← bank(imm7acc5...6) ; XS ← size(imm0...1). Note that the
highest bit of the bank (indicating whether the bank belong to packet or node variables) is
always taken from the immediate parameter rather than from the accumulator.

SYSZ Set Y SiZe
XS ← size(imm0...1) ; YS ← size(imm2...3)

Appendix B

WASP and ESP Packets Format

B.1 Count Packet

COUNT (packet p)

curVal = get (p.compValTag)

if (curVal == ?)

curVal = 0

curVal = curVal + 1

put (p.compValTag, curVal)

if (curVal _ p.thresh)

forward p

else

discard p

(a) COUNT Pseudo code

(b) COUNT Op erands

5
10

11

12

lword xfer32 bits

Computation Value Tag (hi)

Computation Value Tag (lo)

Threshold (immediate, hi)
6

13Threshold (immediate, lo)

(c) WASP microbytes

vars key:long;

 LOOKUP|CLR, INC, INSERT, PSH;

 IMM(5),SUB,BL(1),FWD,DROP;

B.2 Compare Packet

COMPARE (packet p)

curVal = get (p.compValTag)

if (curVal == ?)

put (p.compValTag, p.pktVal)

forward p

else if (p.op (curVal, p.pktVal))

put (p.compValTag, p.pktVal)

forward p

else

discard p

(a) COMPARE Pseudo code

(b) COMPARE Op erands

5

6

10

11

12

13

lword xfer

7 14

32 bits

Computation Value Tag (lo)

Computation Value Tag (hi)

Operation (immediate)

Current Packet Value (immediate, hi)

Current Packet Value (immediate, lo)

(c) WASP microbytes

vars key:long, val:long;

getval: LOOKUP|INX,PSH,LOAD;

 BUNDEF(novalue);

check: CMP,BG(novalue),DROP;

novalue: LIX64($key),INSERT,FWD;

157

158 APPENDIX B. WASP AND ESP PACKETS FORMAT

B.3 Collect Packet

p.val)

COLLECT (packet p)

curVal = get (p.compValTag)

if (curVal == ?)

curVal = p.val

else

curVal = p.op (curVal,

put (p.compValTag, curVal)

chldCnt = get (p.chldCntTag)

if (chldCnt == ?)

abort

chldCnt = chldCnt − 1

put (p.chldCntTag, chldCnt)

if (chldCnt == 0)

p.val = curVal

forward p

else

discard p

(a) COLLECT Pseudo code

(b) COLLECT Op erands

5

6

10

11

12

13

lword xfer

7
14

15

168

32 bits

Computation Value Tag (hi)

Computation Value Tag (lo)

Child Counter Tag (hi)

Child Counter Tag (lo)

Packet Value (immediate, hi)

Packet Value (immediate, lo)

Operation (immediate)

vars key:long, val:long;

prepare: MAP,LOAD,PSH,YLOD;

process: ADD,YSTO|YNC,PSH;

cntchld: YLOD,DEC,YSTO,BZ(+1),DROP;

forward: POP,STOR,FWD;

(c) WASP microbytes

B.4 Rchild Packet

RCHLD (packet p)

sibCnt = get (p.sibCntTag)

if (sibCnt == ?)

sibCnt = 0

pktIdSeen = get (p.pktId)

if (pktIdSeen == ?)

pktIdSeen = 1

put (p.pktId, pktId)

sibCnt = sibCnt + 1

put (p.sibCntTag, sibCnt)

fwdCnt = get (p.fwdCntTag)

if (fwdCnt == ?)

fwdCnt = 0

fwdCnt = fwdCnt + 1

put (p.fwdCntTag)

if (fwdCnt _ p.fwdThresh)

p.pktIdSeen = NODEID

forward p

else

discard p

(a) RCHLD Pseudo code

Sibling Count Tag (hi)

Sibling Count Tag (lo)

32 bits

Packet Id (hi)

Packet Id (lo)

Forward Threshold (immediate, hi)

Forward Threshold (immediate, lo)

Forward Count Tag (hi)

Forward Count Tag (lo)

5

6

10

11

12

13

14

lword xfer

15
7

8
16

17

(b) RCHLD Operands

vars key:long, pktid:long;

 MAP,LOOKUP|CLR|YNC,BDEF(fck);

incr: INC,INSERT,YLOD,YSTO|YNC,JMP(1);

fck: YNC;

 YLOD,PSH,IMM(3),CMP,BG(forw),DROP;

forw: POP,INC,YSTO,LIX32(@NodeID);

 LOAD|CLR,LIX64($pktid),STOR,FWD;

(c) WASP microbytes

B.5. RCOLLECT PACKET 159

B.5 Rcollect Packet
RCOLLECT (packet p)

pktIdSeen = get (p.pktId)

if (pktIdSeen == ?)

abort

sibCnt = get (p.sibCntTag)

if (sibCnt == ?)

abort

if (pktIdSeen == 1)

pktIdSeen = 0

put (p.pktId, pktId)

sibCnt = sibCnt − 1

put (p.sibCntTag, sibCnt)

compTot = get (p.compId)

if (compTot == ?)

compTot = p.val

else

compTot = p.op (compTot, p.val)

put (p.compId, compTot)

else

compTot = get (p.compId)

if (sibCnt == 0)

fwdCnt = get (p.forwardCount)

if (fwdCnt == ?) fwdCnt = 0

fwdCnt = fwdCnt + 1

put (p.forwardCount, fwdCnt)

if (fwdCnt <= p.fwdThresh)

p.pktId = NODEID

p.val = compTot

forward p

else discard

else discard

(a) RCOLLECT Pseudo code

5

6

7

8

10

11

12

13

14

15

16

17

lword xfer

9

10

18

19

20

21

2211

32 bits

Sibling Count Tag (hi)

Sibling Count Tag (lo)

Forward Count Tag (hi)

Forward Count Tag (lo)

Packet Id (hi)

Packet Id (lo)

Computation Id Tag (hi)

Computation Id Tag (lo)

Operation (immediate)

Forward Threshold (immediate, hi)

Forward Threshold (immediate, lo)

Packet Value (immediate. hi)

Packet Value (immediate, lo)

(b) RCOLLECT Op erands

160 APPENDIX B. WASP AND ESP PACKETS FORMAT

Appendix C

Patches brought to ESP

The software package provided by Jiangbo Li1 was in no way a “software release”, but rather a
“software escape”. As such, we identified and fixed a collection of bugsand other mistakes that
we report here.

C.1 Erratum #69

According to erratum #69 in Intel’s specifications update [IntelSU], some of the buffer elements
of the MSF may corrupt data. In our context (128 bytes mpackets), elements number 4,9 and 13
are affected. We fixed_packet_rx_free_all_rbuf_elements so that it ignores those
RBUF elements.

C.2 Wrong CRC polynom

IXP hardware only implements the CRC polynom specified in Autodin/Ethernet and ATM AAL5
standards2, while the Linux implementation (lib/espcksum.c) used CRC32C. For the sake
of simplicity, we changed the software “reference” implementation to match hardware3.

C.3 ESS chains update

There is a miscalculation of the DRAM address in ESS chains update (+1 should be +8 to skip a
whole longword insuper_find_create) that causes ESS content to be trashed and exhausts
ESS available space.

C.4 No Queue Manager

The ESP application does not use any queue manager entity. This is usually not a problem as the
only actual queue used is the packets free list and it needs no managementbeyond initialization.
However, the queue manager is typically in charge of recycling buffers (esp. when several chunks
need to be chained to hold a single packet). In some places (dl_esp_core_drop in the “core”

1esp-ixp2400-12-22-2004.tar.gz, md5sum76a8de7fbf0ffb20ee9109a22f2a25c3
2x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0, [Kercheval94]
3We expect any network appliance to have hardware support of Ethernet CRC anyway

161

162 APPENDIX C. PATCHES BROUGHT TO ESP

microengines), this has been handled by halting the processor and wait for debugger interaction,
but in other places (dl_sink in the “classifier” microengine, and in RX microblock), we still
enqueue those buffers on a scratch ring that is simply never processed.

The whole code has been patched to catch the (improbable) event of a complex buffer drop
and interrupts execution if that happens, thereby guaranteeing that we won’t leak buffers without
notice.

C.5 Overlapping Ring-Buffer

The size of ring-buffers for transmitting packets to the ESP rings was not properly encoded. Under
high load, this could lead to messages (and buffer handles) dispatched to one context to overwrite
an existing entry in another ring. This is probably the most evil programming error you could
introduce on a network processor since it will (independently of the correctness of other compo-
nents) drop some buffers randomly and introduce other buffers twice in the “free list”. We fixed
esp_sram_ring_init according to Table and enforced 512-entries buffer (16 KB) for each
of the queues leading to ESP or WASP microblocks.

C.6 Leaking Classifier

The classifier is not capable of detecting whether thesram[put,...] commands that enqueues
a packet on a SRAM ring towards ESP or WASP microblock was successful. As a result, when
load on a specific queue increases, the system will experiencebuffers leakageuntil the total number
of buffers available in the system equals the size of the saturated queue(s).

Unlike scratchrings4, SRAM rings do not provide an easy way for the microcode to determine
a priori whether a “put” command will be successful. The program has first to waitfor a signal
indicating that the command has been completed and then check the result in a transfer register5.

The current structure of the classifier do not allow us to easily fix this issue, but by duplicating
the “get from scratch ring” code block, we managed to keep track of thepreviousbuffer handle
past the command that reads the next request, and checkthenthat the previous buffer was correctly
enqueued.Hopefully enough, transfer registers involved in thesram[put] andscratch[get]
did not overlap.

C.7 Trashing CRC on Header Update

The CRC instructions are a bit uncomfortable to deal with on the IXP 2400 network processor.
Not only they require precise instruction latency between initialization, summing and read-back
of the CRC remainder register, but there is onlyoneCRC_REMAINDERregister for the whole
microengine, which means as soon as more than one thread on the ME is using CRC, we should
no longer do external memory access without first saving the content of the CRC register in a GPR
and restore it once the access is done.

4scratch ring state can be probed usingbr_inp_state instruction.
5see the notes onsram_ring_put() in [Johnson03] and section 3.2.56 of [IntelPRM] for additionnal

information

C.7. TRASHING CRC ON HEADER UPDATE 163

There was a flaw in_write_back_control_header macro6 where the header of the
ESP packet was written first to DRAM after the header bytes have been checksummed, but without
proper save/restore.

Note that a similar flaw remains in the packet fetching phase, but it only appears when the
ESP packet is larger than 64 bytes, which never occurs with the currentoperations.

6in esp-block/esp_core_util.uc

164 APPENDIX C. PATCHES BROUGHT TO ESP

Appendix D

Code Samples

D.1 Microstore Reprogramming Benchmark

Listing D.1: IXP microstore reprogramming performance monitoring – microengine side
. r eg r e p o r t , now , l a s t , coun t
l o c a l _ c s r _ r d [t imestamp_low]

3 immed [l a s t , 0]
immed [count , 0]
b r != c t x [0 , j u s t _ s l e e p #]

s t r e s s # :
. reg d e l t a

8 l o c a l _ c s r _ r d [t imestamp_low]
immed [now , 0]
a l u [d e l t a , now,− , l a s t]
move (l a s t , now)
b r _ b s e t [d e l t a , 3 1 , s t r e s s #] / / i g n o r e t imewraps

13 a l u [−−, d e l t a ,− ,4]
bg t [r e p o r t #] / / hmm . I t t ook us long t o loop .
c t x _ a r b [v o l u n t a r y]
b r [s t r e s s #]

18 / / more than 64 c y c l e s t o run a loop o f 9 i n s t r u c t i o n s ?
/ / t h a t sounds l i k e we were i n t e r r u p t e d . Le t ’ s r e p o r t .
r e p o r t # :

move (r e p o r t , d e l t a)
a l u [count , count , + , 1]

23 br [s t r e s s #]

/ / on l y one t h r e a d i s k e p t a l i v e , t o avo id i n t e r f e r e n c e
/ / a t c t x _ a r b [] .
j u s t _ s l e e p # :

28 c t x _ a r b [k i l l]
b r [j u s t _ s l e e p #]

165

166 APPENDIX D. CODE SAMPLES

Listing D.2: IXP microstore reprogramming performance monitoring – reading back GPR
1 void ShowRegis te r (char∗ l i n e)

{
u i n t me , c tx , bank , reg ;
i f (s s c a n f (l i n e +2 ,"%d %d %d %x ",&me,& ctx ,&bank ,& reg) ! = 4)

f p r i n t f (s t d e r r ," usage : r <me> <c tx > <bank> <reg >\a \ n ") ;
6 e l s e {

u i n t e r r c o d e =halMe_IsMeEnabled (me) ;
u i n t enab led =(e r r c o d e ==HALME_MEACTIVE) | | (e r r c o d e ==HALME_ENABLED) ;
u i n t x=0 xdeadbee f ;
f p r i n t f (s t d e r r ," r ead ing ME=%d , CTX=%d , GPR−%c 0x%x . . . ",

11 me , ctx , bank ?’B ’ : ’A ’ , r eg) ;
i f (enab led) halMe_Stop (me , 0 x f f) ;
e r r c o d e =halMe_GetRelDataReg (

me , c tx , bank ?IXP_GPB_REL : IXP_GPA_REL , reg , &x) ;
i f (enab led) ha lMe_S ta r t (me , 0 x f f) ;

16 f p r i n t f (s t d e r r ,"%x %s \ n " , x , UcLo_perror (e r r c o d e)) ;
}

}

Listing D.3: IXP microstore reprogramming performance monitoring – XScale side

void PutUwords (char∗ l i n e)
2 {

u i n t me , from , nb ;
i f (s s c a n f (l i n e +2 ,"%d %d %d ",&me,& from ,&nb) ! = 3)

f p r i n t f (s t d e r r ," usage : U <me> <addr> <nb >\a \ n ") ;
e l s e {

7 u i n t e r r c o d e =halMe_IsMeEnabled (me) ;
u i n t enab led =(e r r c o d e ==HALME_MEACTIVE) | | (e r r c o d e ==HALME_ENABLED) ;
uword_T dumbcode [nb] ;
u i n t i ;
f o r (i =0; i <nb ; i ++)

12 dumbcode [i]=0 xE000010000ul l/∗ c t x _ a r b [k i l l] ∗ / ;

f p r i n t f (s t d e r r ," r e w r i t i n g uwords %x . .% x ME=%d . . . ", from , from+nb , me) ;
i f (enab led) halMe_Stop (me , 0 x f f) ;
e r r c o d e =halMe_PutUwords (me , from , nb , dumbcode) ;

17 i f (enab led) ha lMe_S ta r t (me , 0 x f f) ;

f p r i n t f (s t d e r r ,"%x %s \ n " , UcLo_perror (e r r c o d e)) ;
}

}

Bibliography

[Allan01] R.J. Allan and M. Ashworth :“A Survey of Distributed Computing, Compu-
tational Grid, Meta-computing and Network Information Tools” , Technical Report,
CCLRC Daresbury Laboratory, 2001.
http://www.ukhec.ac.uk/publications/reports/survey.pdf

[Allen03] J.R. Allen, JR., et al. :“IBM PowerNP Network Processor: Hardware, Soft-
ware, and Applications”, IBM Journal “Research & Development” vol. 47 No. 2
March/May 2003

[Amir98] E. Amir, S. Mc Canne, R. Katz :“An Active Service Framework and its Appli-
cation to Real-time Multimedia Transcoding”, in Proc. of ACM SIGCOMM’98,
Vancouver .

[Apple05] Apple Computer Inc. :“MacOSX : Bonjour”, Technology Brief, April 2005.

[Arlitt95] M. Arlitt and C. Williamson : “Web server workload characterization: the
search for invariants”, in Proc. of ACM SIGMETRICS ’95 .

[Avallone04] “D-ITG v. 2.4 Manual”, S. Avallone, A. Botta et al., University of Napoli,
Dec. 2004,
http://www.grid.unina.it/software/ITG

[Baldi05] Mario Baldi and Fulvio Risso :“Towards Effective Portability of Packet Han-
dling Applications Across Heterogeneous Hardware Platforms” , to appear in Proc.
of 7th International Working Conference on Active and Programmable Networks
(IWAN’05) .

[Baron05] C. Baron, Y. Luo and L. Bhuyan :“Protocol Offloading Using an IXP2400
Network Processor”, Intel IXA Summit 2005.

[Bassi02] A. Bassi, J-P. Gelas and L. Lefèvre :“Tamanoir-IBP: Adding Storage to Ac-
tive Networks”, in Proc. of 4th IEEE workshop on Active Middleware Services
(AMS’02) .

[Berson02] S. Berson, B. Braden, L. Ricciulli :“Introduction to the ABONE”,
http://www.isi.edu/abone/DOCUMENTS/ABoneIntro.pdf , Febru-
ary 2002.

167

168 BIBLIOGRAPHY

[Bhattach.98] S. Bhattacharjee, K. Calvert, E. Zegura :“Self-Organizing Wide-Area Net-
work Caches”, in Proc. of INFOCOM 1998, pp. 600-608 .

[Bhattachrjee96] S. Bhattacharjee, K. Calvert E. Zegura :“On Active Networking and
Congestion”, Technical Report GIT-CC-96/02, Georgia Institute of Technology.
ftp://ftp.cc.gatech.edu/pub/coc/tech_reports/1996/GIT-CC-96-02.ps.Z

[Bindels] “The OS FAQ – How can i tell CPU speed?”, P. Bindels, S. Martin et al.
http://www.osdev.org/wiki/Detecting_CPU_Speed . Jan. 2006

[Bloom70] Burton Bloom :“Space/time trade-off in hash coding with allowable errors”,
Communications of the ACM, 13(7): 442-426, July 1970.

[Boggs82] D.R. Boggs :“Internet Broadcasting”, Ph. D. thesis, Electircal Engineering
Dept., Stanford, 1982.

[Boggs83] D.R. Boggs :“Internet Broadcasting”, Technical Report CSL-83-3, Xerox
PARC Palo Alto, California.

[Boivie00] R. Boivie, N. Feldman, C. Metz :“Small Group Multicast: A New Solution
for Multicasting on the Internet”, IEEE Internet Computing, may-june 2000 issue.

[Boivie05] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms, and O. Paridaens, :
“Explicit multicast (xcast) basic specification”, IETF Internet-Draft (draft-ooms-
xcast-basic-spec-05.txt), Aug. 2003.

[Bolosky00] W. Bolosky, J. Douceur et al. :“Feasability of a Serverless Distributed File
System Deployed on an Existing Set of Desktop PCs”, in Proc. of SIGMETRICS
2000, Santa Clara, USA, pp. 34-43 .

[Bond02] M. Bond, K. L. Calvert, J. Griffioen, et al. :“ActiveCast: Toward Application-
Friendly Active Network Services”, in Proc. of DANCE 2002: 274-290

[Bos04] H. Bos and K. Huang :“On the Feasibility of Using Network Processors for
DNA Queries”, in Proc. of Workshop on Network Processors & Applications NP3,
Madrid, Spain, Feb, 2004.

[Boschi05] E. Boschi, M. Bossardt, T. Dübendorfer :“Validating Inter-Domain SLAs
with a Programmable Traffic Control System”, in Proc. of IWAN’05

[Bossardt02] M. Bossardt, T. Egawa, H. Otsuki, B. Plattner :“Integrated Service De-
ployment for Active Networks”, in Proc. of International Working Conference on
Active Networks (IWAN), 2002 LNCS 2546, pp. 74-86.

[Bossardt05] T. Dübendorfer, M. Bossardt and B. Plattner:“Adaptive Distributed Traffic
Control Service for DDoS Attack Mitigation”. In Proc. of SSN 2005, April 2005,
Denver, USA.

BIBLIOGRAPHY 169

[Bowman95] C.M. Bowman, P. Danzig, D. Hardy et al.:“Harvest: A scalable, cus-
tomizable discovery and access system”, Technical Report CU-CS-732-94, U. of
Colorado - Boulder, 1995.

[Braynard02] R. Braynard, D. Kostić et al. :“Opus: an Overlay Peer Utility Service”, in
Proc. of the 5th IEEE OPENARCH, pp 168-178, New York, June 2002.

[Caesar06] M. Caesar, M. Castro et al. :“Virtual ring routing: network routing inspired
by DHTs”, in Proc. of ACM SIGCOMM, September 2006, Pisa, Italy, pp. 351 -
362 .

[Caesar06b] M. Caesar, T. Condie et al. :“ROFL: Routing on Flat Labels”, in Proc. of
ACM SIGCOMM’06, Sept. 2006, Pisa, Italy, pp. 363 - 374 .

[Calvert01] S. Wen and J. Griffioen and K. Calvert :“Building Multicast Services from
Unicast Forwarding and Ephemeral State”, in Proc. of IEEE OPENARCH’01
Anchorage, Alaska, USA, Apr. 2001.

[Calvert01b] : “Concast: Design and Implementation of an Active Network Service”,
IEEE Journal on Selected Area in Communications, 19(3):426–437, March 2001.

[Calvert02] Kenneth L. Calvert, James N. Griffioen, and Su Wen :“Lightweight network
support for scalable end-to-end services”, in Proc. of ACM SIGCOMM, 2002 .

[Calvert03] K.L. Calvert, J. Griffioen, N. Imam, J. Li :“Challenges in Implementing an
ESP Service”, in Proc. of IWAN’03, Kyoto LNCS 2982, pp. 3-19.

[Calvert03w] ESP implementation for Click and Linux routers, The Activecast Research
Group, 2003,
http://protocols.netlab.uky.edu/˜esp/download.html .

[Calvert05w] “ESP Instruction Pseudocode and Operands”and “ESP General Packet
Header Specifics”, K. Calvert et al., May 2005,
http://protocols.netlab.uky.edu/˜esp/document.html

[Calvert99] Calvert, K. L., ed. :“Architectural Framework for Active Networks”, Version
1.0, Active Network Working Group, July 1999.

[Campbel02] A.T. Campbell, S.T. Chou, M.E. Kounavis, V.D. Stachtos and J. Vicente
: “NetBind: A Binding Tool for Constructing Data Paths in Network Processor-
Based Routers”, in Proc. of 5th International Conference on Open Architectures
and Network Programming (OPENARCH’02)

[Castro03] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A.
Singh : “SplitStream: High-bandwidth multicast in a cooperative environment”,
in Proc. of SOSP’03, Lake Bolton, New York, October, 2003 .

170 BIBLIOGRAPHY

[Castro02] M. Castro, P. Druschel :“One Ring to Rule them All: Service Discovery
and Binding in Structured Peer-to-Peer Overlay Networks”, in Proc. of SIGOPS
European Workshop, Saint-Emilion, France, 2002, pp. 140-145 .

[Cheshire05] Cheshire, S., Krochmal, M. :“DNS-Based Service Discovery”, Internet-
Draft (work in progress), 2005.

[Cheshire05b] Cheshire, S., Krochmal :“Performing DNS queries via IP Multicast”,
Internet Draft (work in progress) (2005).

[Clarke00] I. Clarke, O. Sandberg et al.“Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System”, in Proc. of Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, USA, July 25-26, 2000, LNCS 2009, pp.
46-66 .

[Cohen04w] BitTorrent Protocol Specification, Bram Cohen, 2004
http://www.bittorrent.org/protocol.html

[Csix00] “CSIX-L1: Common Switch Interface Specification-L1 1.0”, Public Distribu-
tion, May 2000.

[DARPA99] L. Peterson (Editor). :“NodeOS Interface Specification”, DARPA AN
NodeOS Working Group Draft, 1999.

[Decasper99] D. Decasper, G. Parulkar, S. Choi, et al. :“A Scalable, High Performance
Active Network Node”, IEEE Network, volume 13, Jan 1999.

[Droms97] R. Droms :“ Dynamic Host Configuration Protocol”, Bucknell University,
March 1997. IETF RFC 2131.

[ethereal] Gerald Combs et al :“Ethereal: A Network Protocol Analyzer.”
http://www.ethereal.com/

[ethtool] David Miller et al. :“ethtool - Ethernet diagnostic and tuning tool”,
http://directory.fsf.org/All_Packages_in-
_Directory/ethtool.html , May 2005

[Fdida06] S. Fdida, I. Stavrakakis et al. “ANA Project Autonomic Network Architecture
– Deliverable D2.1 First draft of routing design and servicediscovery”, Sixth
Framework Programme Priority FP6-2004-IST-4 Situated andAutonomic Commu-
nications (SAC) Project Number: FP6-IST-27489,
http://www.ana-project.org/autonomic/network/-
deliverables.html , Dec. 2006.

[Fenner06] B. Fenner, M. Handley, H. Holbrook and I. Kouvelas: “Protocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol Specification (Revised)”, draft-ietf-
pim-sm-v2-new-09.txt (work in progress)

BIBLIOGRAPHY 171

[Floyd02w] Sally Floyd:“Adaptive Web Caching”
http://www.icir.org/floyd/web.html , Sep. 2002

[Francis00] Paul Francis :“Yoid: Extending the Internet Multicast Architecture”,
www.aciri.org/yoid/docs/index.html , April 2000

[Freedman06] M. Freedman, K. Lakshminarayanan and David Mazières“OASIS: Any-
cast for Any Service”, in Proc. of Networked Systems Design & Implementation,
2006, San Jose, CA, pp. 129 - 142

[Gelas02] J.P. Gelas, L. Lefèvre :“Performance et dynamicité dans les réseaux :
l’approche Tamanoir”, in Proc. of JDIR 2002, Toulouse, France, Mars 2002 .

[Gelas] J-P. Gelas and L.Lefèvre :“Gestion de flux TCP actifs”, (unpublished work).

[George03] “Taming the IXP network processor”, Lal George and Matthias Blume

[Gold05] B. Gold, A. Ailamaki L. Huston B. Falsafi :“Accelerating Database Operators
Using a Network Processor”, in Proc. of 1st Int’l Workshop on Data Management
on New Hardware (DaMoN), June 2005 .

[Gopal03] Gopal Racherlaa, Sridhar Radhakrishnanb, Chandra N. Sekharanc. :“Perfor-
mance evaluation of wireless TCP with rerouting in mobile networks”, Computer
Communications 26 (2003) 542 551.

[Gwertzman95] M. Seltzer and J. Gwertzman : “The case for geographical push
caching”, in Proc. of Hot Operating System, 1995 .

[Haas03] R. Haas, C. Jeffries et al. :“Creating Advanced Functions on Network Proces-
sors: Experience and Perspectives”, IEEE Network, 14 April 2003, pp. 46-54.

[Hawblitzel98] C. Hawblitzel, C-C. Chang, et al. “ImplementingMultiple Protection Do-
mains in Java”, in Proc. of USENIX technical conference, June 1998 .

[Hicks01] M. Hicks, J. T. Moore, and S. Nettles: “Compiling PLAN to SNAP”, in
Proc. of 3rd International Working Conference on Active Networks, Sep. 2001
(IWAN’01)

[Hicks98] Hicks, Kakkar, Moore, Gunter and Nettles : “PLAN:A Packet Language for
Active Networks” in Proc. of ACM SIGPLAN 1998 .

[HiFn04] “HiFn 5NP4G Network Processor Product Brief”,
http://www.hifn.com/uploadedFiles/Library/-
Product_Briefs/5NP4G_pb_v1.pdf

[Hjalmtysson04] Gísli Hjálmtýsson, Björn Brynjúlfsson and Ólafur R. Helgason, "Self-
configuring Lightweight Internet Multicast." in proceedings of IEEE SMC 2004,
Hague, Netherlands, September 2004.

172 BIBLIOGRAPHY

[Hwang05] K. Hwang and Y.-K. Kwok et al.“GridSec: Trusted Grid Computing with
Security Binding and Self-Defense against Network Worms and DDoS Attacks”. In
International Workshop on Grid Computing Security and Resource Management
(GSRM 05), in conjunction with the ICCS-2005, pages 187 195, 2005.

[IETF06] Cheshire and the IETF Zeroconf Working Group :“Zero Configuration Net-
working (Zeroconf)”,
http://www.zeroconf.org/ .

[Imai02] Y. Imai : “Multiple Destination Option on IPv6 (MDO6)” , IETF Internet-
Draft,
http://www.ietf.org/internet-drafts/-
draft-imai-mdo6-02.txt

[Imam03] Najati R. Imam :“Implementation of an Ephemeral State Processor on the
Intel IXP1200”, thesis for master’s degree, University of Kentucky, 2003.

[IntelAN] : “Intel R© IXP2800 Network Processor Optimizing RDRAM Performance:
Analysis and Recommendations”, Intel Application Note, August 2004

[IntelAP450] “Interrupt Moderation Using Intel Gigabit Ethernet Controllers” , Appli-
cation Note (AP-450) Revision 1.1 September 2003 – Intel Press

[IntelAP453] “Small Packet Traffic Performance Optimization for 8255x and 8254x Eth-
ernet Controllers”, Application Note (AP-453) – Intel Press

[IntelHRM] “Intel R© IXP2400 Network Processor, Hardware Reference Manual”, Intel
Press, July 2005.

[IntelPRM] “Intel R© IXP2400 and IXP2800 Network Processor, Programmer s Refer-
ence Manual”, Intel Press, Order Number: 278746-019, July 2005

[IntelPB] “Intel IXP2350 Product Brief”, Intel Corporation,
http://www.intel.com/design/network/prodbrf/303678.htm

[IntelRdtsc] “Using the RDTSC Instruction for Performance Monitoring”, Intel Corpo-
ration, 1997,
http://developer.intel.com/drg/pentiumII/appnotes/-
RDTSCPM1.HTM

[IntelSU] “Intel IXP2400 Network Processor – Specification Update”, Intel Press,
March 2004. Document Number: 301161-010,
ftp://download.intel.com/design/network/specupdt/-
30116110.pdf

[Jelasity06] M. Jelasity, A. Montresor and O. Babaoglu,“The Bootstrapping Service”,
in Proc. of IEEE ICDCSW’06, Los Alamitos, CA, USA, July 2006, p. 11.

BIBLIOGRAPHY 173

[Jelger06] C. Jelger and S. Martin, “ANA Project Autonomic Network Architecture
– Deliverable D.1.1 - State of the Art”, Sixth Framework Programme Priority
FP6-2004-IST-4 Situated and Autonomic Communications (SAC)Project Number:
FP6-IST-27489,
http://www.ana-project.org/autonomic/network/-
deliverables.html , Aug. 2006.

[Johnson02] E. Johnson and A. Kunze :“IXP-1200 Programming”, Intel Press 2002.

[Johnson03] E. Johnson and A. Kunze :“IXP2400/2800 Programming – The Complete
Microengine Coding Guide”, Intel Press, April 2003

[juniper] “JUNOS 8.2 Policy Framework Configuration Guide”,
http://www.juniper.net/techpubs/software/-
junos/junos82/swconfig82-policy/html/-
about-swconfig82-policy3.html#187130

[Keller03] R. Keller and B. Plattner : “Self-Configuring Active Services for Pro-
grammable Networks”, in Proc. of IWAN 2003 LNCS 2982, pp. 137-150

[Kercheval94] Michael Yuen and Berry Kercheval, Sep. 1994 ,“CRC-32 Calculation,
Test Cases and HEC Tutorial”,
http://www.cell-relay.com/cell-relay/publications/-
software/CRC/32bitCRC.html

[Keshav97] S. Keshav :“An Engineering Approach to Computer Networking”, Addison-
Wesley.

[Keon05] E. Keon, J. Crowcroft et al. :“A Survey and Comparison of Peer-to-Peer Over-
lay Network Schemes”, Communications Surveys & Tutorials, IEEE, 2005, pp. 72–
93.

[Kind02] A. Kind, R. Plekta and B. Stiller : “The potential of just-in-time compilation in
active networks based on network processors”, in Proc. of 5th Workshop on Open
Architectures and Network Programming, June 2002 OPENARCH’02, pp. 79-90

[Kohler04] Mark Kohler :“Introduction to Network Processors”,
http://www.netrino.com .

[Kozierok01w] Charles M. Kozierok :“PC Guide : Choosing your SDRAM”April
2001,
http://www.pcguide.com/art/sdramTiming-c.html

[Kubiatowicz00] Kubiatowicz J., et al. :“Oceanstore: An architecture for global-scale
persistent storage”, in Proc. of ACM ASPLOS IX, Cambridge, USA, Nov. 2000,
pp. 190-201 .

[Labrecque06] Martin Labrecque :“Towards a Compilation Infrastructure for Network
Processors”, Master Thesis at University of Toronto, 2006.

174 BIBLIOGRAPHY

[Lee06] K. Lee and G. Coulson :“Supporting Runtime Reconfiguration on Network Pro-
cessors”, in Proc. of Advanced Information Networking and Applications, 2006,
Vol.1, Iss., 18-20 April 2006 pp. 721- 726

[Lefèvre02] L. Lefèvre and J-P. Gelas :“Towards the design of an Active Grid”, in Proc.
of ICCS 2002, LNCS 2330, pp. 578-587, Amsterdam, The Netherlands, April 2002
.

[Lefèvre03] L. Lefèvre, J-M. Pierson, S. Guebli :“Deployment of collaborative Web
Caching with Active Networks”, in Proc. of IWAN 2003 LNCS 2982 pp. 80-91

[Levis03] Ph. Levis, “Viral Code Propagation in Wireless Sensor Networks”, Network
Embedded System Technology Summer Retreat 2003.

[Limewire01w] Gnutella protocol v0.4, June 2001,
http://www9.limewire.com/developer/gnutella%20-
protocol%200.4.pdf .

[Lockwood03] J. Lockwood and J. Moscola et al.“Application of Hardware Accelerated
Extensible Network Nodes for Internet Worm and Virus Protection” . In International
Working Conference on Active Networks (IWAN 03), December 2003.

[Lopez95] A. Lpez–Ortiz and D.M. German :“A multicollaborative push-caching http
protocol for the WWW”, poster at World Wide Web Conference 1995 (WWW5).

[Love05] Robert Love :“Linux Kernel Development, Second Edition”, Novell Press,
ISBN 0-672-32720-1.

[Lu05] Jie Lu & Jie Wang :“Performance Modeling and Analysis of Web Switches”, in
Proc. of 31th International Computer Measurement Group Conference, Dec. 4-9,
2005, Orlando, Florida, USA pp. 665-672.

[Magoni02] D. Magoni and J. Pansiot.“Network layer search service using oriented mul-
ticasting”. In 21th IEEE INFOCOM, pages 1346 1355, 2002. New York.

[Martin02] Sylvain Martin and Guy Leduc :“RADAR: Ring-Based Adaptive Discovery
of Active Neighbour Routers”, in Proc. of IWAN 2002 LNCS pp. 62-73

[Martin03] Sylvain Martin and Guy Leduc :“A Dynamic Neighbourhood Discovery Pro-
tocol for Active Overlay Networks”, in Proc. of IWAN 2003 LNCS 2982 pp. 151-
162

[Martin05] Sylvain Martin and Guy Leduc :“An Active Platform as Middleware for
Services and Communities Discovery”, in Proc. of International Conference on
Computational Science 2005 LNCS 3516 (part 3) pp. 237-245.

[Martin05b] S. Martin and G. Leduc :“Interpreted Active Packets for Ephemeral State
Processing Routers”, to appear in in Proc. of 7th Int. Working Conference on
Active and Programmable Networks (IWAN), Sophia Antipolis2005

BIBLIOGRAPHY 175

[Martin06] S. Martin, P. Cascòn, HolyLich, L. Buytenhek et al.: “ENP-Faq: The
Hitchiker Guide to ENP-2611”,
http://ixp2xxx.sf.net/wiki/ .

[Martin06w] WASP implementation for Linux 2.6, prealpha release, S. Martin
http://www.run.montefiore.ulg.ac.be/˜martin/resources-
/wasp-prealpha.tar.gz

[Martin07] S. Martin and G. Leduc :“Ephemeral State Assisted Discovery of Peer-to-
peer Networks”, to appear in in Proc. of 1st IEEE Workshop on Autonomic Com-
munications and Network Management, Munich, May 2007 .

[Maymounkov02] P. Maymounkov and D. Mazieres :“Kademlia: A peer-to-peer infor-
mation system based on the XOR metric”, in Proc. of IPTPS 2002, Cambridge,
USA, March 7-8, 2002, Revised Papers, LNCS 2429, pp. 53-65 .

[mdgray03w] “Spoofing the Wily Zip CRC”, mdgray 2003,
http://www.codeproject.com/cpp/crcspoof.asp

[Merugu99] S. Merugu, S. Bhattacharjee et al., :“Bowman and CANEs: Implementation
of an Active Network”, Invited paper at 37th Annual Allerton Conference, Monti-
cello, IL, Sept 1999.

[Moore01] J. Moore and S. Nettles:“Towards Practical Programmable Packets”, in
Proc. of 20th IEEE INFOCOM. Anchorage, Alaska, April 2001 .

[Moore02] Jonathan T. Moore : “Practical Active Packets”, PhD Thesis, University of
Pennsylvania, 2002.

[Moore02b] J.T. Moore, J.K. Moore, S. Nettles :“Predictable, Lightweight Management
Agents”, in Proc. of IWAN02, zurich LNCS 2546, pp. 111-119

[Moore99] Jonathan T. Moore:“Safe and Efficient Active Packets”Technical Report
MS-CIS-99-24, University of Pennsylvania, October 1999.

[NPForum03] D. Meng, E. Eduri, M. Castelino :“IXP2400 Intel Network Processor
IPv4 Forwarding Benchmark Full Disclosure Report for Gigabit Ethernet, revision
1.0”, The Network Processing Forum, March 2003.

[NSTinc] µC andµL products download, Network Speed Technologies, inc.
http://www.network-speed.com/Products/index.html

[Nygren99] E. Nygren, S. Garland, and M. Kaashoek :“PAN: A High-Performance Ac-
tive Network Node Supporting Multiple Mobile Code Systems”, in Proc. of IEEE
OPENARCH, pp. 78-89, New York, March 1999 .

[Ott00] M. Ott, G. Welling, S. Mathur :“CLARA: A Cluster based Active Router Archi-
tecture”, in Proc. of Hot Interconnects VIII, Aug. 2000 .

176 BIBLIOGRAPHY

[Partridge93] C. Partridge, T. Mendez and W. Millikenn :“Host Anycasting Service”,
IETF Request for Comments 1546.

[Plank01] J. Plank, M. Beck et al. :“Managing data storage in the network”, in Proc.
of IEEE Internet Computing 5, sept. 2001 .

[Rekhter04] Y. Rekhter, T. Li, and S. Hares :“A Border Gateway Protocol 4 (BGP-4).”,
Internet Draft draft-ietf-idr-bgp4-26.txt, October 2004.

[Rhea04] S. Rhea, D. Geels, et al.:“Handling Churn in a DHT”, in Proc. of USENIX
Technical Conference, June 2004, pp. 127-140 .

[Rio04] , Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard Hughes-Jones, Jean-
Philippe Martin-Flatin, Yee-Ting Li. :“A Map of the Networking Code in Linux
Kernel 2.4.20”, Technical Report DataTAG-2004-1, 31 March 2004

[Rorner96] T.H. Rorner, D. Lee, G.M. Voelker, et al. :“The Structure and Performance
of Interpreters”, in Proc. of 7th International Conference on Architectural Support
for Programming Languages and Operating System (ASPLOS), Oct. 1996 .

[Rowstron01] A. Rowstron and P. Druschel :“Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems”, in Proc. of Middleware
2001 LNCS 2218, pp 329-

[Ruf05] L. Ruf, K. Farkas, H. Hug and B. Plattner :“Network Services on Service Exten-
sible Routers”, in Proc. of 7th Int. Working Conference on Active and Programable
Networks, nov. 05, Sophia Antipolis, France(IWAN’05) .

[Sacks05] L. Sacks, H. Sellapan et al. :“On the manipulation of JPEG2000, in-flight,
using active components on next generation satellites”, in Proc. of IWAN’05 .

[Sanders01] M. Sanders, M. Keaton et al. :“Active Reliable Multicast on CANEs: A
Case Study”, in Proc. of IEEE OpenArch 2001

[Schmid04] S. Schmid, L. Eggert, et al.“TurfNet: An Architecture for Dynamically Com-
posable Networks”. In Proceedings of 1st IFIP TC6 WG6.6 Workshop on Auto-
nomic Communication (WAC 2004), October 2004. Berlin, Germany.

[Schmid06] S. Schmid, M. Sifalakis and D. Hutchison, “Towards Autonomic Networks”,
in Proc. of 1st IFIP Conference on Autonomic Networking, Paris, France, Sept.
2006, pp. 1-11

[Schwartz98] B. Schwartz, A.W. Jackson, W.T. Strayer et al. :“Smart Packets for Active
Networks”,
http://citeseer.ist.psu.edu/schwartz98smart.html

[Shalunov05w]“thrulay, network capacity tester”, S. Shalunov, Oct. 2005.
http://www.internet2.edu/˜shalunov/thrulay .

BIBLIOGRAPHY 177

[Sen02] S. Sen and J. Wang :“Analysing peer-to-peer traffic across large networks”,
in Proc. of 2nd ACM SIGCOMM Workshop on Internet measurment, Marseille,
France, 2002, pp. 137-150

[Shin01] Myung-Ki Shin, Yong-Jin Kim, Ki-Shik Park, and Sang-Ha Kim : “Explicit
Multicast Extension (Xcast+) for Efficient Multicast Packet Delivery”, Electronics
and Telecommunication Research Institute (ETRI) Journal, volume 23, number 4,
December 2001.

[Sivakumar00] R. Sivakumar, S.W. Hanand V. Bharghavan :“PROTEAN: A Scalable
Architecture for Active Networks”, in Proc. of OPENARCH’00

[Sivakumar99] R. Sivakumar, S. Ha, S. Han, V. Bharghavan :“The Protean Active
Router: Design and Implementation”, in Proc. of The 14th IEEE Computer Com-
munication Workshop IEEECCW’99.

[Sivakumar99b] R. Sivakumar, N. Venkitaraman, V. Bharghavan: “The Protean Pro-
grammable Network Architecture: Design and Initial Experiences” in Proc. of
International Working Conference on Active Networks (IWAN), Berlin, Germany,
1999

[Song05] H. Song, S. Dharmapurikar, J. Turner, J. Lockwood :“ Fast Hash Table Lookup
Using Extended Bloom Filter: An Aid to Network Processing”, in Proc. of SIG-
COMM 05, August 22 26, 2005, Philadelphia, Pennsylvania, USA.

[Spalink01] T. Spalink, S. Karlin, L. Peterson and Y. Gottlieb" : “Building a Robust
Software-Based Router Using Network Processors”, in Proc. of Symposium on
Operating Systems Principles 2001 pp. 216-229

[Stallings03] William Stallings :“Organisation et Architecture de l’Ordinateur,6e Edi-
tion” , Pearson Education, ISBN 2-7440-7007-6.

[Sterbenz02] James P.G. Sterbenz :“Intelligence in Future Broadband Networks: Chal-
lenges and Opportunities in High-Speed Active Networking”, in Proc. of IEEE IZS
2002, Zürich, Feb. 2002 pp. 2-1 – 2-7

[Stoica01] Stoica , Morris et al. :“Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications”, in Proc. of ACM SigComm 2001 149-160

[Stoica02] I. Stoica, D. Adkins, S. Zhuang et al. :“Internet indirection infrastructure”,
in Proc. of ACM SIGCOMM Computer Communication Review Volume 32 , Issue
4 (October 2002) .

[Tolly99] The Tolly Group :“Cisco 12000 Series GSR POS: Performace Evaluation. No.
199128”, Manasquan, NJ, Sep. 1999.

[Touch00] J. Touch and S. Hotz :“Dynamic Internet Overlay Deployment and Manage-
ment Using the X-Bone”in Proc. of ICNP 2000, Osaka Japan, pp. 59-68.

178 BIBLIOGRAPHY

[Tschudin98] A. Bansch, W. Effelsberg, C. Tschudin and V. Turau : “Multicasting Mul-
timedia Streams with Active Networks”, in Proc. of IEEE Local Computer Network
Conference LCN’98, Boston, MA, Oct 11-14, 1998, pp. 150-

[Tschudin03] C. Tschudin and R. Gold,“Network Pointers”, Computer Communication
Review 33(1) pp. 23-28, 2003.

[Tullman01] Patrick Tullmann, Mike Hibler, and Jay Lepreau. : “Janos: A Java-oriented
OS for Active Networks”, IEEE Journal on Selected Areas of Communication. Vol.
19, Issue 3, March 2001.

[Wehrle03] K. Wehrle, F. Pählke, H. Ritter, D. Müller, M. Bechler : “Architecture Réseau
Linux, Conception et implémentation des protocoles réseau du noyau Linux”, Vuib-
ert Informatique, ISBN 2-7117-4812-X

[Welte07] Harald Welte :“Netfilter/iptables project homepage”,
http://www.netfilter.org/

[Wessels97] D. Wessels, K. Claffy : “Internet Cache Protocol (ICP), version 2”, tech.
rep., IETF Network Working Group, 1997. draft-wessels-icp-v2-03.txt.

[Wetherall01] D. Wetherall, A. Whitaker:“ANTS - an Active Node Transfer System. ver-
sion 2.0.2”
http://www.cs.washington.edu/research/networking/ants/

[Wetherall98] D. Wetherall, J. Guttag and D. Tennenhouse :“ANTS - A Toolkit for
Building and Dynamically Deploying Network Protocols”, in Proc. of IEEE OPE-
NARCH’98 .

[Wetherall99] Wetherall, D. :“Active network vision and reality: lessons from a capsule-
based system”, Operating Systems Review, vol.33, ACM, Dec. 1999. p.64-79.

[Wethereall96] David J. Wetherall and David L. Tennenhouse: “The Active IP Option”,
in Proc. of 7th ACM SIGOPS European Workshop, Sept. 1996 .

[Xie05] L. Xie, P. Smith, J. Sterbenz, and D. Hutchison.“Building Resilient Networks
using Programmable Networking Technologies”. In 7th International Working Con-
ference on Active and Programmable Networks (IWAN 05), 2005.

[Yamamoto03] Lidia Yamamoto :“Adaptive Group Communication over Active Net-
works”, Doctoral Thesis, University of Liège. Collection des Publications de la Fac-
ulté des Sciences Appliquées de l’Université de Liège, nr. 224, 2003.

[Yang05] X. Yang, D. Wetherall, and T. Anderson :“A DoS-limiting Network Architec-
ture” , in Proc. of of ACM SIGCOMM 2005, Philadelphia, August 2005 .

[Yue06] “NPCryptBench: A Cryptographic Benchmark Suite for Network Processors”,
Y. Yue, C. Lin and Z.Tan, ACM SIGARCH Computer Architecture News, Vol. 34,
No. 1, March 2006. pp. 49-56

BIBLIOGRAPHY 179

[Zhang06] B. Zhang, S. Jamin, and L. Zhang.“Universal IP multicast delivery”. ACM
Journal of Computer and Telecommunications Networking, Volume 50, Issue 6
(April 2006), pp. 781 - 806

[Zhao03] B. Zhao, L. Huang, J. Stribling et al. :“Tapestry: A Resilient Global-Scale
Overlay for Service Deployment”, IEEE Journal on Selected Areas in Communica-
tions, 2003.

[Zhao05] L. Zhao, Y. Luo , L. Bhuyan and R. Iyer, :“Design and Implementation of A
Content-aware Switch using A Network Processor”, in Proc. of 13th International
Symposium on High Performance Interconnects (Hot-I05), Stanford, CA, August
2005

