UNIVERSITE DE LIEGE
Faculté des Sciences Appliquées
Institut d’Electricité Montéfiore

RUN - Research Unit in Networking

UNIVERSITE de Liége

WASP

Lightweight Programmable Ephemeral State on Routers to Support
End-to-End Applications

Sylvain Martin
Licencié en Informatique
Aspirant du FNRS

Submitted for the doctoral
Degree in Computer Science

July 2007

ii
Abstract

We present WASP (World-friendly Active packets for ephemhe3tate Processing), a
novel active networks architecture that enables ephersinage of information on routers
in order to ease distributed application synchronisatiwh@o-operation.

We aimed at a design compatible with modern routers hardamadewith network
operators’ goals. Our solution has to scale with the numbieterfaces of the device and
to support throughput of several Gbps. Throughout thisishee searched for the best
trade-off between features (platform flexibility) and guatees (platform safety), with as
little performance sacrifice as possible.

We picked the Ephemeral State Processing (ESP) routerloge@ekby K. Calvert’s
team at University of Kentucky, as a starting point and edtéehit with our own virtual
processor (VPU) to offer higher flexibility to the networlogrammer. The VPU is a min-
imalist bytecode interpreter that manipulates the cordétite “ephemeral state store” of
the router according to a microprogram present in packetstiately allows the micro-
program to drop or forward the packet on any router, actingea®tely programmable
filters around unmodified IP routing cores.

We developed two implementations of WASP: a “reference” a@¢br the Linux ker-
nel, and, based on that prototype experience, a WASP fil@@icapion for the IXP2400
network processor that proves feasibility of our platforrhigher speed. We extensively
tested those two implementations against their ESP cquartein order to estimate the
overhead of our approach. High speed tests on the IXP weoepaldormed to ensure
WASP'’s robustness, and were actually rich in lessons farréutievelopment on pro-
grammable network devices.

The nature of WASP makes it a platform of choice to detect grigs of the net-
work along a given path. Thanks to per-flow variables (evapifemeral) and its ability
to sustain custom processing at wire-speed, we can fomostenplement lightweight
measurement of QoS parameters or enforce applicationfispsangestion control. We
have however opted — in the context of this thesis — for a fasusnother use of the
platform: using the ephemeral state to advertise and deteatbers of distributed appli-
cations (e.g. grid computing or peer-to-peer systems) iaralp decentralised way. To
evaluate the benefits of this approach, we propose a modgb@é@to-peer community
where peers try and join former neighbours, and we show gireimulations how effi-
ciency and quality of user experience evolve with the prese&f more WASP routers in
the network.

Résumé

Nous proposon8VASP(World-friendly Active packets for ephemeral State Procegs
une nouvelle architecture de réseaux actifs qui permebd&est dans les routeurs pendant
un court laps de temps des informations provenant des pagaleéminés par le routeur,
de maniére a simplifier la synchronisation et la coordimaties applications distribuées.

L'enjeu principal dans la conception de la plate-forme WASPd obtenir un systéme
programmable qui soit compatible avec I'architecture @egaurs modernes et avec les
objectifs des opérateurs du réseau. La solution proposéertce autres rester efficace
guel que soit le nombre de cartes E/S dont dispose le routeupeorter des débits de
plusieurs Gbps. Nous avons donc cherché le meilleur conipremtre les fonctionnalités
(pour une meilleure souplesse du modéle de programmatitey garanties offertes (pour
la sécurité du réseau), tout en évitant de sacrifier les padoces.

Nous avons pris comme point de départ le routepinemeral State ProcessifigSP)
développé par K. Calvert et ses collaborateurs de I'Unitemdii Kentucky, que nous
étendons avec un processeur virtuel (le VPU) pour améliarsvuplesse de sa program-
mation. Le VPU est en réalité un interpréteur de bytecodémailiste qui peut manipuler
le contenu d’'une banque d’état éphémeégehemeral state storeu ESS présente sur la
carte d’E/S en suivant un microprogramme attaché au paquigt. tOutre les interactions
possibles a travers 'ESS, chaque paquet WASP a ainsi labaésde décider s’il doit
ou non continuer son chemin dans le réseau. WASP agit donmeame série dBltres
programmableswutour d’'un cceur de routeur IP classique.

En plus de I'implémentation de référence (sous la forme dwalule pour le noyau
Linux), nous avons réalisé une version de WASP pour le pesegsiXP2400 et nous
comparons les performances obtenues avec celles du filReEiSous a fourni le con-
cept et le code source de la banque d’état éphémere. Enyliartioous avons procédé a
une série de tests a hauts débits pour ajuster la robustesssrd solution et vérifier sa
capacité a traiter les requétes en soutenant le débit aesGigabit Ethernet.

Par sa nature-méme, WASP est une plate-forme parfaitentaptée a la détec-
tion des propriétés du réseau relatives a une connexionédonfsrace aux variables
(éphémeres) que chaque flux peut maintenir et a sa vitesgaitdgnent, il est par ex-
emple possible de mesurer certains criteres de qualitérdes®u de mettre en ceuvre
des mécanismes de contrble de congestion propres a uneagigplidonnée. Nous avons
cependant préféré nous concentrer dans cette these sutrenuaage de notre plate-
forme: annoncer et détecter via 'ESS les membres d’uneicgipin distribuée (telle
gu’un systéme pair-a-pair ou une plate-forme GRID), et ceagerf totalement décen-
tralisée. Afin d’évaluer les bénéfices d’'une telle approcioeis proposons un modele
de communauté pair-a-pair ou les membres tentent de regplaccommunauté en re-
contactant d’anciens voisins et nous montrons, a travessideulations, I'évolution de
I'efficacité de la communauté et de la qualité percue par fiisaieurs en fonction du
nombre de routeurs WASP présents dans le systeme.

Vi

Contents

1

Introduction 1
1.1 Active Networking
1.2 Ephemeral State Processing. 2
1.3 Active Packets for Ephemeral Store 3
1.4 MoreBuildingBlocks.
15 ProjectGoal
1.6 Structureof ThisWork
1.7 Previous Publications, 6
Active Networks 7
2.1 What Are Active Networks o
2.1.1 PacketsCarryingPrograms
2.1.2 Programmable Switches
2.1.3 Deploying Active Networks
2.1.4 Offloading Active Services
2.2 Major Active Platforms 01
22.1 ANTS . . . e,
222 Protean
2.2.3 PLANet/SwitchWare
2.3 Sample applications for Active Networks 14
23.1 ActiveCaches
2.3.2 Multimedia Flow Transcoder
2.3.3 MergeCast and video conferencing
2.3.4 Active Monitoring and Management 7
2.4 OpenProblemsandFutureUse 8
Network Processors 21
3.1 Routersdesign e
3.1.1 Traditional RoutersDesign
3.1.2 Intelligent Line Cards and Network Processors 22
3.1.3 Maximum Headroom, Please
3.1.4 PowerNPand IXP2xxX o e
3.15 RelatedWork

3.2 Overview of IXP2400 Network Processor 25

Vii

viii CONTENTS
3.21 ProcessingElements 26
3.2.2 StorageElements o Lo L 26
3.2.3 Developing on the Radisys ENP2611card 8 2

4 The WASP Platform 33

4.1 ModelofaWASP Router 34
411 WASPPackets 35
41.2 TheWASPNode 36
4.1.3 World-Friendly Platform 36

4.2 From ESP OperationstoWaspVPU 37
4.2.1 A Virtual Processing Unit for Ephemeral State 39
42.2 PacketVariables 43
4.2.3 EnvironmentVariables o oo 45

4.3 The Ephemeral State Store, 6 4
4.3.1 Ephemeral State Store Implementation 47
4.3.2 Managingthe State Store 48
4.3.3 FinerAccessControl 50

4.4 Reference Implementationonx86 51
4.4.1 \Validating the VPU's behaviour 25
4.4.2 Experimenting WASP withLinux 53
4.4.3 More Efficient AccesstoESSINWASP 57
444 TooCheap,Really? 60
445 Node and Interfaces Statistics 62

5 Experimenting WASP on IXP2400 67

5.1 DevelopmentonIXP 67
5.1.1 Overall Implementation 68
5.1.2 Parallel Programming on the Microengines 69

5.2 The WASP microblock 70
5.2.1 Structure Placement 70
5.2.2 Redesigning the Fetch/Decode 72

5.3 WASPprocessingdelay 73
5.3.1 Profiling the WASP microblock 73
5.3.2 There(onthelXP)andBack 74
5.3.3 Embedding Measurements on Microengines 76
5.3.4 Larger Entries anghapOpcode 79

5.4 High Availability at HigherRates 81
5.4.1 Behaviour of the ESP microblock 81
5.4.2 Behaviour of the WASP Microblock 85

55 ThroughputTests 87
55,1 Methodology 87
5.5.2 Results with Count/Compare Instructions 89
5.5.3 Results with Collect Instruction 19

5.6 Compiling WASP programsonthelXP 92

CONTENTS X

5.6.1 Environment for Run-time Compiled WASP Programs 93
5.6.2 Just-In-Time Compiling of WASP programs 94
5.6.3 Towards Self-Optimizing WASP Component 6 9
5.7 Uninterrupted Processing: Lessons Learned 98
58 Conclusions 100
6 WASP as Discovery Middleware 103
6.1 The case for Discovery Middleware 103
6.2 Discovery: Flavours and Existing Solutions 105
6.2.1 Local Service Discovery 105
6.2.2 Global Service Discovery, 105
6.2.3 Proxy Servicesina Transit Network 106
6.2.4 Joining a Peer-to-Peer Community 071
6.3 MagNet: Service discovery withWASP 108
6.3.1 FloodingLocally 110
6.3.2 Persistent Data in Ephemeral Store 110
6.4 HistoryFileProcessing 111
6.4.1 The Community Model 111
6.4.2 Bootstrap Quality Indicators 121
6.4.3 Behaviour ona“Regular"Network 113
6.5 Active Domains boostingP2P L. 151
6.5.1 Registering Membership in the State Store 116
6.5.2 Keeping the Community Running 117
6.5.3 Getting the Community Running. 118
6.5.4 Other Affecting Parameters 911
6.5.5 Dynamic Addressing vs. Active Domains 119
6.5.6 Avoid the Need foran Initial List 2a
6.6 Enforcing Registration Fairness 122
6.6.1 Hash-RequestingPackets. 122
6.6.2 Accessing ElectionResult 124
6.6.3 Practical Implementation of Code Hashing 124
6.7 Conclusionand Future Work, 612
7 WASP and Beyond 127
7.1 Rerouting e 127
7.1.1 IssueswithRerouting. 128
7.1.2 Network-Friendly Rerouting 912
7.1.3 \Validating Source Addresses 311
7.2 MulticasttoSmallGroup o 331
7.2.1 Small Group Multicast 134
7.2.2 Application-level Multicast. 134
7.2.3 Multicasting with ESP and Lightweight Modules 135
7.2.4 Building Small-Group Multicast with WASP 135

7.2.5 Pending Problems with WASP-SGM 138

CONTENTS

7.2.6 Interconnecting MulticastlIslands 140
7.3 Deploymentscenarios. e 411
7.3.1 WASP-awarelinecard 141
7.3.2 WASPfilter 141
7.3.3 WASP in a non-intrusive testbed system 142
7.3.4 Isolating WASP trafficontherouter 143
7.4 Conclusion 145
Conclusion 147
8.1 TowardsaWASP Socket
8.2 Rethinking the State Store?, 148
8.3 More onthe “Best Effort” We Provide 148
8.4 The Role of WASP in Autonomic Networks 491
8.5 Towards User-Friendly Reroutingin WASP149
8.6 Benefits of WASP for Research Network Operators150
WASP Opcode Reference 153
A.1l ControlOperations e 154
A2 STACKOperations it 154
A3 ALUOperations. o i 154
A.3.1 Miscellaneous ALU Operations 415
A4 BranchOperations i it 155
A5 Memory Operations o e e 155
A.5.1 Memory Movement Operations 155
A.5.2 Index Register Manipulations 615
WASP and ESP Packets Format 157
B.1 CountPacket 157
B.2 ComparePacket
B.3 CollectPacket 158
B.4 RchildPacket 158
B.5 RcollectPacket 159
Patches brought to ESP 161
C.1 Erratum#69 e e 161
C.2 WrongCRCpolynom i 161

C.3 ESSchainsupdate. e
C.4 NoQueueManager i i i it i e

C.5 Overlapping Ring-Buffer 162
C.6 LeakingClassifier 162

C.7 TrashingCRConHeaderUpdate

Code Samples 165
D.1 Microstore Reprogramming Benchmark 165

CONTENTS Xi

Acknowledgements

There are several people that have all brought their sneadeso this work and | want to
thank them all, even if | may miss some of them here.

Of course, I'd like to thank Pr. Guy Leduc for his invaluablepport, and Pr. Ken
Calvert for his interest in my work. Special thanks also flyismgbo Li for his help on
understanding the ESP package, Lukas Ruf, Jean-Patricls @ethLennert Buytenhek
for their expertise and advice on the ENP2611 board, Cyril Bricand Cyril Soldani
for their discussions on Peer-to-Peer and Grid systemsHagdes Smeets, a long-time
friend whose wisdom was precious to “keep things small anmgpla” when designing

WASP virtual processor.
Enfin, jadresse bien-sr un tout grand merci a mon épouski®et a ma famille

pour leur patience et leur attention tout au long de ce manath

Xii CONTENTS

There’s no place like 127.0.0.1

Chapter 1

Introduction

Not less than 10 years ago, the idea that the whole planetvzguinterconnected by
a network capable of supporting instant communicationsfezencing and gaming for
millions of individuals, which could offer access to dibuited data storage capable of an-
swering more questions than professional encyclopedthanencyclopedias, scientific
publications and daily news themselves would move to thatmedia and be maintained
collectively by communities of individuals was still sc@nfiction.

Not less than 5 years ago, the idea that this planetary nketwmwn as (the) Internet
would be accessiblanywhereby devices you could carry along for the whole day was
science fiction as well. Nowadays, “infospheres” detaiteddifi novels only differ from
today’s Internet by the exotic “neural interfaces” scifitaarts can think of...

Yet, managing and maintaining that network remains a dairgén for thousands of
operators and administrators all over the world, requigngstant manual intervention
on equipment for upgrading, repairing and maintenance.yMarentists as well as field
technicians agree to say that IP as we know it today has shewmits in several ways,
yet proposals for a next generation of planet-wide netwaykit haven’t replaced it so far
— for many reasons, few of them being technical.

1.1 Active Networking

During the last decade, tlaetive networkingesearch field has investigated and evaluated
ways for “bringing life to the network”, evolving from theagtc management nightmares
we know into a dynamically modifiable architecture wheretgeol stacks could be up-
dated to face end-users and operators demand — the same Waygas” technologies
have allowed extensibility of applications on desktop syH.

With active networking deployed, we could benefit of sufiitiprogrammability to
make QoS, multicast and whatever else the future of therlatdarings a simple matter
of injecting code into the network. Many different ways tthewe those goals have been
proposed, and the most relevant to this work have been susedan section 2.2. Some
proposals replace IP itself while others simply “extend® #xisting network layer. Oth-
ers again are orthogonal to data forwarding and rather acin@sv generation of control

1

2 CHAPTER 1. INTRODUCTION

32 bits

ESP Packet Header STORESUM(packet p) {

value sum = p.opA + p.opB
put(p.sumTag, sum);
Operand B (imm) forward(p);

Sum Tag (hi) }
Sum Tag (lo)

Operand A (imm)

Figure 1.1: Packet format for thesunst or e operation and pseudocode to be executed on the
router when such a packet is received.

protocols. In all cases, supporting active networking wethacy hardware is usually not
possible as protocol implementations are often hardwinedquipment. However, re-
cently introducedchetwork processorfHiFn04, IntelPRM, IntelHRM] have changed the
way routers are designed and it is now only a matter of hareh@ad human resources
investment to deploy a programmable solution in a smallrsefivork. As those proces-
sors evolve, higher bit-rates and higher loads are achisitadhe same programmability,
potentially making the technology available closer angetdo the core of the network.
Bringing an open programmable platform to the Internet isomgér a technical impasse,
which may give a second breath to active networking. ChaptaHl Beview two of those
processors and their potential applications in the fielcctifa networks.

1.2 Ephemeral State Processing

Ephemeral State ProcessiigSP) [Calvert02] is one of those approaches to make the
network more “informative and capable” developed by Dr. Keth Calvert and Dr. James
Griffoen at University of Kentucky. Its goal is to provide apen interface to deposit,
retrieve and process small pieces of data in routing elesnehiie keeping IP’s inherent
properties such as robustness, anonymity, generality mrgpsing cheapness. ESP does
not propose aeplacemenfor Internet Protocol, but rather comes as an extensiongo th
existing network layer that should provide the bare mininflexibility required to help
user applications build more capable solutions such aslelmulticasting [CalvertO1].

ESP defines a small set of generic operations that maniptihlatstate stored on the
routers. EacheSP packeprocessed by an ESP router invokes one of these instructions
over a specific set of data and may lead to modification of the p&cket’s content,
modification of the router’s stored data and a decision ontldrethe packet should be
forwarded or discarded. To better figure out how this worlesywl reuse the6SUMSTORE
packet example from N.R. Imam’s thesis [ImamO03]. We assu@aeBEBP routers imple-
ment pseudocode defined on Fig. 1.1. The header of ESP packetsns a numerical
operation code that identifies the computation to be applette the router identifies the
ESP packet as such, it retrieves the numerical opcode andhi®a towards the processing
routine that implements that specific operation.

The “sumstore packet” also contains the operands to beeapfar that specific com-
putation, such as the immediate values involved in the coatijom and the specific entry
in the router’s store (identified by the “sum tag”) to be maégped. Values are extracted

1.3. ACTIVE PACKETS FOR EPHEMERAL STORE 3

32 bits

LOAD | INX;
PUSH;
LOAD | INX;
ADD;
Operand A (imm) INSERT;
mm) : FORWARD;

WASP Packet Header,

WASP bytecode

oulhs WN -

Operand B (i
Sum Tag (hi)
Sum Tag (lo)

Figure 1.2 Structure of a WASP packet for tls@inmst or e operation with detailed bytecode
implementing the operation.

from the packet, addition is computed and written into th&eds store under the “sum-
tag” key, as detailed by the pseudocode given on Fig. 1.1. tddpaes a 64-bit integer
that acts as a variable name on that router. For a short pefiedthat packet has been
forwarded (and that's why the store is said todphemergl any packet that reuses the
same tag can retrieve the value computed bySt&STORRacket.

1.3 Active Packets for Ephemeral Store

ESP operations can be used in more complex applicationsasuaiable multicast: re-
ceivers that detect a missing frame serdACKpacket that sets state in routers towards
the source. That state can be used by oiw&CKpackets to avoid feedback implosion
at the source and by the retransmitted frame to focus retigas®n towards receivers
that are actually missing the frame. An implementation basethe generiCOMPARE
COUNTandCOLLECToperations is given in [Calvert02]. However, as the authoos p
pose more applications, it appears that new — and more carmglgerations are required.
The more complex operations become, the less obvious it ihéonetwork application
designer to pick the correct one. Moreover, such applinatiedicated operations contra-
dict with the generality principle that is essential to watkployment of any solution.

In WASP (World-friendly Active packets for ephemeral StRr@cessing) we attempt
to overcome such situations by replacing the pre-defineeérgeoperations of ESP by
“microcode” carried by packets themselves, much like eardyks in Active Network-
ing suggested thatapsulesvould carry their own forwarding code instead of using IP’s
generic function, with the notable difference that an ESErajon is orders of magni-
tude simpler than IP forwarding. A WASP router is thus in mavays similar to an
ESP router, with its packet classifier, its ephemeral stanesits IP routing logic, but it
replaces the set of pre-defined (and pre-compiled) opesatigth an interpreter for the
program expressed by the microcode.

Fig. 1.2 shows the code to be attached to a WASP packet tonnepiethe “sumstore”
instruction. Each of these “micro-instructions” is onedidng in the packet’s program.
The Virtual Processing Unitnterpreting these packets is detailed in section 4.2. bat n
we can assume that WASP works like a stack-based CPU. OpekanibB are placed on
the stack (lines 1-3) and then added together (4). The “INXdifier advances the “data
pointer”, accessing packet’'s operands in a way that mightne you Turing machines,

4 CHAPTER 1. INTRODUCTION

and when “insert” is invoked, the data pointer is over “Surg"Td he value on top of the
stack is thus written under the key “Sum Tag” in the ephen&mak (5), after which the
packet is forwarded.

1.4 More Building Blocks

In addition to that interpreter, WASP also extends the emvirent provided by ESP. It is
for instance possible to retrieve basic statistics aboutengnterface or generic informa-
tion about the router itself (such as its network addres§ &w multicasting abilities or a
local time counter). These additional building blocks deafiteresting network monitor-
ing functions which can benefit from the ephemeral storethmttweren’t possible with
ESP alone. With the sole addition of a local time stamp, fetance, an end-user appli-
cation can program packets to monitor fhter! they experience within a network. The
potential benefit of such measurements to validate intereulo service layer agreement
(SLA) has been presented in [Boschi05].

The local timef, observed when packét, crosses the router is written in the epheme-
ral store and next packét, can compare this with observed local timjeand build av-
erage, maximum and minimum values over a few packets (howsfewld be decided
according to the “ephemerity” of the store) before a spgmaaket collect those values in
each router.

Other statistics such as depth of output buffers, transomssrors, etc. or access to
the network packet header will of course allow more applicet Those applications
mainly focus ornsmall taskghat could be helpful for monitoring or detecting propestie
of specific network areas such as path taken by a given flow meatbwards a given
destination from multiple sources. In parallel, WASP maodie a key feature to ease the
deployment of fully distributed systems such as peer-&r-psgerlays since its presence
within the network could naturally replace things that currerdgtyuire centralized servers
such as discovering existing peers of a community.

1.5 Project Goal

In this work, we have defined and implemented a referencéovea$the WASP VPU that
has been integrated in the ESP implementation for Linufifiegtarchitecture. Whether
interpretation of WASP “bytecode” programs on a router ddo¢ made “too cheap to
meter” as ESP is not obvious, and one of the challenges werexplvith that reference
implementation is what techniques can make the interpoet@petitive over native code
that implements ESP operations in an ESP router before aleimnegmtation based on
IXP2400 network processor could be envisioned.

ESP had a very conservative approach about packet sourtegsimation addresses,
in the sense that all a packet could do to affect its forwaydsrto drop itself. In WASP,
we investigate to what extent we can offer more flexibilitylte network programmer. In

Lvariation of inter-packet reception time

1.6. STRUCTURE OF THIS WORK 5

many cases it can be interesting to allow packets to retlematurely to their source or
to allow them to change their destination under strict adrdf the router.

A cornerstone of this project was the implementation of th&SPF interpreter on a
IXP2xxx network processor. Along with this document, wedwoed a proof-of con-
cept implementation of the interpreter on a “filter” box irder to study its performance
compared to a native operation as in ESP, and whether it listredo hope wire speed
processing of WASP packets.

Finally, we intended to explore the potential applicatiohsur new framework. From
the start, it was felt that most interesting WASP appliaagiovould be in a “middleware”
role where it can offer support and network knowledge thsirithuted applications typi-
cally lack. This is probably the aspect of this thesis wheostof the future work should
be done, building real test cases with modified applicataorsI XP or x86 variant of the
WASRP filter box.

WASP initially stood for “Weightless Active packet for epheral State Processing”.
While working on the project it has become clearer and cletuar “W” could not be
“Weightless” (as low as we made it, thesean overhead against ESP) but should rather be
“World-friendly”. An architecture like WASP would have ndvance to escape research
labs nowadays if it were nahherentlysafe andresourceaware for both therouters,
Networkoperators anénd-user point of view. We hope the reader will agree with the fact
that “WASP” sounds better that “ISRARNOEUASP” and forgive thsulting buzzword.

1.6 Structure of This Work

In chapter 2, we will review active networking research aadet the major active plat-
forms that have inspired the development of the WASP prof@bapter 3 will then give
the reader an overview of what network processors look lilceleow they can be used to
build programmable routers. We will detail the IXP2400 mssor that is being used in
this work as well as the development environment aroundetie-2611Radisys card, a
commercial product embedding IXP2400 core in a Gigabitevan-PClI-board.

Chapter 4 presents our WASP architecture, its internal desigl some applications
it can support in addition to ESP operations. It will alsogamt the WASP prototype for
the Linux kernel and results of performance benchmarks. I XR2400 implementation
is then discussed and compared to ESP in chapter 5.

WASP can also have a great impact aniddlewarefor larger distributed systems. In
chapter 6, we illustrate this role through two examplesviserdiscovery and boosting
joining procedures in a peer-to-peer community.

In chapter 7, we explore the benefits and drawback of alloM#GSP to alter the
destination of packets, a feature that could potentiallysbthe flexibility of the platform,
but that turned out to be unpractical when trying to impletmemsing WASP only.

Our conclusions are finally presented in chapter 8.

The reader can find detailed programming information aldeaiPU in appendix A.
For reader’s comfort, we included the packet formats andg®eode of ESP operations
in the appendix B (original documentation in from [CalvemQ}h facing the correspond-

6 CHAPTER 1. INTRODUCTION

ing WASP microbytes emulating them with the VPU. Full sosroé our reference im-
plementation can be found online [MartinO6w]. The detaipafches we brought to the
esp-ixp2400 package is given in appendix C.

1.7 Previous Publications

We presented WASP router and the aspects relative to regoati IFIP International
Working Conference on Active Networks (IWAN’'05) in [MartiBB]. A previous paper
presented at “Active and Programmable Grid Architectuse@omponents” workshop of
ICCS 2005 ([Martin05]) addressed the potential applicatidVASP as a service discov-
ery framework. The aspects of using WASP as a peer-to-pseowkry middleware have
been presented at the 1st IEEE Workshop on Autonomic Commutimms and Network
Management (ACNM’07) in [MartinQ7].

Besides those papers that are directly related to this woekpnesented RADAR in
[Martin03] and [Martin02], a topology-discovery framewaspecially designed to meet
the lack of automatic setup of overlays for ANTS heterogesatetworks. Some of the
aspects of RADAR can be useful when using WASP for serviceod&y, and in other
aspects, WASP could be used as a substitute for RADAR, prayiaiway to discover
“active forwarders” in a network without requiring the colete active platform to be
deployed in all equipment.

A derived version of our “state of the art” chapter and “seevdiscovery” section
have been integrated in the deliverables 1.1 [JelgerO6RanfFdida06] of the European
IST “ANA’ Project (Autonomic Network Architecture), respively.

Captain’s log, stellar date 139.165.223.2
It's now been weeks since we're stuck in
Autonomous System 7007, looking for a
class C domain we could land on ...

Chapter 2

Active Networks

Abstract

This chapter gives the reader an overview of past researétctive Networks, and more
specifically, focusses on the applications that motivatedActive Networks approach —
most of which have then turned into “use cases” for many redeas.

We also study the concepts and mechanisms in use in threerhpégtforms against
which WASP will be compared later in this work.

2.1 What Are Active Networks

In the traditional model of Internet, router software caméathe whole logic to forward
packets to the proper interface solely based ord#stination addressarried by packets
and the content of theuting table All the additional complexity (congestion control,
error recovery) is handled by end systems. Nowadays thiplsifistore and forward”
model is extended over and over to provide more security@lieng and filtering rules),
better guarantees (differentiated services through gongaed scheduling) and improved
performance (explicit congestion notification, local patokaching and retransmission).

Breaking with that model, the DARPA “Active Networks” projgmtoposed that end-
systems (and thus end-users) could replace that plethospegfialised protocols with
programsinjected into the network and processed by the routers, iwiviauld turn in
someexecution environmerdombined with an abstract operating system [DARPA99]
that would coordinate the evaluation of those programs.

2.1.1 Packets Carrying Programs

Amongst the proposed models, tbhapsuleis a paradigm where each packet contains
the complete program stating each step to be performed gr eodforward the packet.
A typical capsule will read some packet status, lookup féwrimation left in the active
router by other capsules and then issue a “forwarding tdblaKup to the NodeOS to
know on which interface it will go. When pushed to the extrethe,capsule could even

7

8 CHAPTER 2. ACTIVE NETWORKS

choose its position in the interface’s queues or compldtelydle its own forwarding

table. Since it's fairly difficult to put such complex progna within data packets, the
ANTS project [Wetherall98] proposed that code should distibe downloaded separately
andcachedon the router. Each ANTS capsule only carrieefrenceof the code that

should be used (computed from a MD5 hash of that code) foruhggse of locating the

appropriate code in cache or to download it from the previmde.

On the other side, in the CANESs project [Merugu99, Sanderg@dgrammability is
only offered at pre-defineslotsthat are present in genericpacket processing function.
In essence, this is very close to the programming modeétflterin Linux kernel.

The various active platforms proposed usually differ by thehnique they use for
transporting code, by the control they offer on the undagynode and the mechanisms
they enforce to ensure proper operation of the node.

Running user-issued programs within the network has howeiszd a number of is-
sues. While many approaches have been envisioned to maleatoggams safe (through
interpretation or sandboxing, for instance), or give profaheir safety (known as proof-
carrying code), it remains unlikely that we could afford Iswhecks for every data flow
the router should handle, and the deeper we go into the nietiloe more unlikely it
becomes.

2.1.2 Programmable Switches

For the network operators point of view, giving user contmelhow the packet should be
handled is perceived as a threat rather than a progress, giacning and provisioning
bandwidth becomes almost impossible. However, the ideawhf quickly deployable
packet-processing functions on demand has received sigmifinterest. The notion of
active servicegncompasses those projects where extensible functiesadite available
to the user by means of operator-provigdagins The selection of those plugins, the sub-
set of nodes where they could be installed and the downlgaaid installation procedure
remains under the strict (automated) control of the netvopdsrator.

The way users specify which active services should be apphieheir own packets
may vary from platform to platform, but the general trenddsopt for a web service
where the users set gverlay topologiesnterconnecting sites that should benefit of the
same service. The main drawback of this approach is thabftes hard to extend it to
the interdomain, since it’s unlikely that all the operatonsan Internet path will agree on
which plugins to provide, the very same way they don't agnee @lobal multicast or
QoS infrastructure.

It is therefore not surprising that research being done neggmmable” networks
aims at different goals than “active” networks proper, fostance more focusing on
techniques that allow quick deployment and autonomic riégoration of distributed
Spam/DDoS/Worms detection and prevention mechanismahéoperator rather than
offering more flexibility to the end-users.

2.1. WHAT ARE ACTIVE NETWORKS 9

2.1.3 Deploying Active Networks

How could we test a new network paradigm that changes evewalyeforwarding is
achieved ? The idea of having “native” packet format foracpackets, replacing even
the IP layer, and being exchanged only between active utes been abandoned quite
early, as well as the idea of using something else than IRt@ting machines that were
part of the active network.

Yet, it was necessary, for testing purpose, to have patlsagiive routersvithin the
core network, so the A-Bone [Berson02] project has been sehdptiered NodeOS-
compliant platforms for packets carrying the Active Netlwdtncapsulation Protocol
(ANEP) header.

Apart from test bed environments, however, it's unrealisti expect every router to
be active (and to support the execution environment a gigévegpacket requires). Core
routers typically handle millions of flow (c.f. [Sivakumd&]) and therefore need to be as
stateless as possible. Moreover, technologies like MPeE@mmon within the network
core, meaning that the packet might actually not esegcore routers.

In several proposed architectures, only éugesof a domain are active and intercon-
nected with legacy hardware. The main two proposed appesdchandle heterogeneity
of active/legacy nodes within the network aetive optionandoverlays In the overlay
approach, active nodes in the network are identified andexiad to each other by means
of tunnels making the active packet appear as a legacy packet untilekieactive node
receives it, and making the tunnel appear just as a poiptiot wire for the active nodes.

On the other side, the active option paradigm [Wetherepk@@gests that active
routers will be able to identify active packets and do whatquired and that legacy
router will handle them exactly the way they handle legaaykpss. In this framework, it
is up to the active protocol designer to ensure that herisolkeeps working (or degrades
gracefully) when the density of active nodes in the systeonedeses.

Both approaches have benefits and drawbacks. While overlaygamathe illu-
sion of a fully-active network, they involve substantialilding and maintenance over-
head. Several works explore how this can be done in specifiicagions (such as
YOID [Francis00] in the case of multicast transmission or @hand Pastry [Stoica01,
Rowstron01] for distributed hash tables), but dealing witiplanned overlay require-
ments across different network operators remains unsaleoddr and solutions sketched
such as X-Bone or OPUS [Touch0O0, Braynard02] require a quagyhefrastructure for
operating successfully.

Another challenge for overlays is to maintain the illusitvattthe tunnel has fore-
seeable characteristics while the underlying network tgiy well change the route
tunnelled packets take, suffer from congestions due tgogedicular” traffic, etc. A reg-
ular point-to-point wire will not reorder packets it cagjea tunnel could very well do,
and it is not obvious to predict when it will do

Several parameters distinguish overlay networks froml’'megtworks, like the fact
that link costs may change at any time (due to a change in terlymg topology), or
the fact that there’s usually no broadcast facility to di@r@eer routers.

1This is discussed in section Il (Protean Network Manageinafi{Sivakumar00]

10 CHAPTER 2. ACTIVE NETWORKS

With the “active option” approach, no such infrastructulseaquired, but we might
very well find no active router on a given path while a smallidgon of the standard path
might have found one. Moreover, it’s up to the applicatiosigeer to ensure its solution
degrades nicely when fewer nodes in the system are active.

[Sivakumar00] highlights 4 questions to be answered by éimeanetwork architec-
ture:

1. Where should active routers be placed in the networks?

2. If not all routers are active, how can we abstract the sthieon-active’ portions
of the path?

3. How do active routers discover and communicate with otlegve routers?
4. How do users discover third-party services?

2.1.4 Offloading Active Services

To some extent, many of the applications suggested by theawttwork community do
not need to take plaaen the routers They mainly need to be appliedthin the network

If an overlay topology is built, nothing actually requirdsat the machines that process
active packetsre the physical devices that forward the packets.

In many “high-performance active node” research [Calvdr@®@&ive packets are iden-
tified by the ingress line card and dispatched through th&ckvabric to a “processing
card”, an additional hardware component that acts as adireeas far as the switch fabric
is concerned, but which actually features general-purposeessor capable of doing the
active processing required and then re-inject the packéeiswitch fabric once its actual
destination (or queue level) has been decided.

The Tamanoir Active Node [Gelas02] extends this conceptuggessting the use of a
processors cluster site connected to the border routetsgas@vten heavy tasks (such as
video flow transcoding) can be achieved at high rates.

However, the authors of [Sivakumar99] claim this approanimot effectively support
many of the services that motivated the design of active owdsvin first place. It would
be for instance more difficult for an “offloaded” active servito know the current state
of the routers it monitors (e.g. what is tlhestantaneous loss ratef a wireless link,
and should we provide more forwarding error code to incréasehance that the packet
transmits successfully).

2.2 Major Active Platforms

2.2.1 ANTS

ANTS [Wetherall01] is a capsule-oriented platform, whevde& used for packet process-
ing has access to a limited set of primitives:

e environment access functions such as retrieving node ssldcthannel properties,
localtime.

2.2. MAJOR ACTIVE PLATFORMS 11

e store and retrieve data from the protocol-speatit-store
¢ route the capsule towards another node or deliver it to d &alication.

Capsules code is organised irgmtocols(e.g. set of capsules that share code and
have access to the sas@ft-storeon a router). Both capsule and execution environment is
written in JAVA, which gives the portability, mobile codeort and a good substrate for
the required safety. ANTS comes with its own code downloadharism, based on MD5
hashing of the required bytecode (carried by the capsideshat therevious active node
can be requested to transmit the code group needed forietatipn of a given capsule
while maintaining the guarantee that the code that will afgeon the capsuls the code
expected to be uséd

An open-source distribution of ANTS running on top of thea@ctive NodeOS
([Tullman01]) is available at university of Utah since 20@ich has led to a collection
of ANTS-derivative works, some improving the performanddlesmaintaining the pro-
gramming model, others providing alternate code downloadhanisms to keep services
deployment under the control of the network operator. WhiNT& itself supports par-
tially active networks, nothing is provided to automatephecess of setting up neighbour
active routers. In the specifications, ANTS node could atsi tiariousserviceghat cap-
sules could connect to using tfirdExtension primitive. Such services could have
featured a database lookup, or any other ’specialised’timmcbut it has - to our best
knowledge - never been used or implemented.

Beyond the fact that its unclear a heavy environment such\&s dan be supported
in a core routet, the design of ANTS raises other issues.

First, each protocol has the option of storing data insibie store(a key-based object
storage). These data can be explicitly removed by the pobtwcthey can be reclaimed
by the node after a pre-defined ’idle’ timeout. Every time acsfic item in the soft store
is reused, the ’idle’ timeout is restarted, which means mafiloiwv of capsules is sufficient
to lock some memory on the node for arbitrarily long periofisimme. To keep things
running, ANTS will use per-context memory allocators, nmgksure than one protocol
cannot consume the whole memory of the node. However, dgfthmappropriate limit
while maximizing the number of running protocols is not &i#i task. This however im-
plies that several 'contexts’ may have to synchronise tiedras and cooperate to handle
a capsule, for instance when code for that capsule need towelabded or when the
capsule is delivered to an application, which results initaaithl context switching and
inter-context communication overhead.

In addition to ease memory management, per-protocol sti@aerimary requirement
to ensure it is not possible to write a 'scanning’ protocaittbrawls the network, detect-
ing what other protocols are running and modifying theitesfar malicious purposes:
protocols only compete for resources but they do not interféth each other state or
capsules.

2as long as we trust MD5 as a one-way hash function, and if weraahthe router operator to run a
properly-implemented ANTS router

3[Wetherall99] reports 4,000,000 packets/sec (minimakpasize of 70 bytes at OC-48 wire speed) in
the CISCO 12000 series, cf. [Tolly99]. On the other hand,“@l&eck Modular Router” achieves 'only’
70,000 packets per seconds on PC hardware according to Risibal. (SOSP’99)

12 CHAPTER 2. ACTIVE NETWORKS

By a sophisticated combination of JAVA sandboxing featuappropriate design pat-
terns for exposing information about the node withouttetttapsule code alter them, and
thanks to the inherent type-safety and bounds-checkinigeolieinguage, ANTS manages
however to keep the node as a safe place for everyone — whatatk solutions based
on native code cannot usually enforce unless the code hascoeepiled locally with a
'secure’ compiler adding safety checks.

Yet, malicious codenaybe written in the ANTS toolkit. Because the JAVA language
provides no mechanism to guarantee code completion in lealtiche constraint, even
a small capsule can consume CPU resource indefinitely. In ANI®s platform, this
is achieved bywatchdog timerghat will ensure long-running forwarding routines are
terminated. Once again, it is not obvious to define those hvdatg timers so that they
catchonly misbehaving code. A more concerning issue is that, acogtdiflawblitzel et
al. [Hawblitzel98], it is unsafe to terminate runaway thiein the JVM.

A steady flow of capsules where each capsule executes a sttiail aould very well
be consuming the same amount of CPU resources as a sparse féves @dth capsule
asks for long operations and yet the later one would be tet@ihby the watchdog and
the code would likely to be tagged as misbehaving, prevgrsilbsequent capsules with
the same code to execute on the node.

From [Wetherall99], there’s an intriguing idea that TTLskd bounds may not be
enough (even in the 'PLAN’ approach where TTL of child paskest subtracted from
TTL of parent packet), because they do not prevent a givekgbao consume all its
resourcen a specific locationIn other words, an initial resource bound required to reach
a fair amount of receivers through multicast-like servicaynstill allow an attacker to
send a capsule that quickly reaches its target and then toqpeg-pongs between a few
systems in the target’s domain

2.2.2 Protean

The PROgrammable TEchnology for Active Networks projeatd®umar00] follows the
'extensible services’ approach. A common packet clasgifieides whichuser network
context(UNC) should be applied to each packet. Those contexts ecoateollection of
(event, handlerpinding, customizing the processing that the packet wiénree. Events
include system events such as “incoming packet”, “packatlyeor transmission” or
“packet dropped”, but also triggering of periodic timerscastom events that other event
handlers fire off. The handlers are kept in dynamically Idédel&aernel modules, identified
via unique service profileand optionally retrieved from other nodes using the deditat
SPINE infrastructure.

The protean switch is equipped with a compiler for a safesidisC language (subC,
see [Sivakumar99b]) that will produce native code safe &nkl-level operations out of

4quoted from [Moore02b]

Sthe authors of [Wetherall99] suggests that (1) code thatbeaproved “safe” can get executed (e.g.
forwards toward fixed destination and don't create clon@y);unsafe” code is reviewed and validated by
a trusted authority using digital signature that can be lob@dy active node to know whether they can be
running the stuff without headaches and (3) that remainguggets “best effort” servicing

2.2. MAJOR ACTIVE PLATFORMS 13

source text downloaded from a nearby cache or directly flmsburce — a technique that
is quite common in the “programmable switch” apprdachrom a security perspective
however, this might be easier to fool than ANTS’s hashingesod (e.g. nothing guar-

antees that the source retrieved from a nearby cache wilatgtdo what the end-user

expects).

Unlike what happens iANTS it does not only define the node architecture, but also
network services that are required to support operatiotiseaiodes. Among other things,
the PROTEAN framework suggests that only a portion of theesod the edge of the
domain — might be programmable by the user, for scalabilitppses. In addition, PRO-
TEAN comes with its own hierarchical lookup service to mitg the storage location of a
code module based on compound names such as “edu.uiutroghg.siva.md5cksum”.
Finally, PROTEAN offers dink abstractionto compute and provide estimated character-
istics of tunnels between programmable nodes in terms sfrlie, delay and bandwidth,
helping the services programmer build services that wilikneven when not all nodes
are active.

2.2.3 PLANet/ SwitchWare

Compared to most other projects that distribute the activke eather viaout-of-band
mechanism (e.g. active packets contain an identifier usedrieve the plugin either from
a cache or from a code server [Bossardt02]) orinthand mechanism (e.g. the code is
present in the packet), PLANet uses an interesting mix ofitlee The active packets
contain scripts expressed in a safe language — PLAN [Hidkg9®acket Language for
Active Networks — that will make use of out-of-band instdlkctive extensionthat are
under the control of the network operator. The PLAN scripexréfore acts as a “glue”
for operator-offered services composition.

Safety and security iRLAN is achieved through the language design rather than from
virtual machine properties. PLAN is a functional languagmee expressibility is limited
but that guarantees termination of programs. Active ext@nsan balance that limitation
by offering more complex services.

One of the main drawbacks of PLAN is that the program repitesien can be quite
long and that converting that representation into somgthiat can be handled by the
interpreter (e.g. parsing the code, unmarshalling packeied data) can be inefficient.
SNAP (Safe Networking with Active Packets [Moore99]) is tver packet language de-
fined in the context of th&witchWareoroject of University of Pennsylvania designed to
fix that problem. While PLAN uses a high-level functional laage that has to be con-
verted between network representation and executablesepiation at each node, SNAP
bytecode is executabla situ in the packet buffer, combining a compact representation
with high speed interpretation.

For a programmer’s point of view, SNAP splits the packet leetm/stack” and “heap”,
where the heap contains for instance the data arrays foctive axtensions. The authors
of SNAP have proven that each instruction either grows thekdby one item, or shrinks
the stack. Moreover, SNAP can only tak@ward jumps, which means that evaluation

Sthe OKE Corral (IWAN’2002) uses similar approach

14 CHAPTER 2. ACTIVE NETWORKS

time is now alinear function of the code size (in PLAN, the execution time coué b
bounded by a function of the code size as well, but it couledonentigl. Finally, when
a new packet is sent, its initis@source countevalue is subtracted.

As a result, if we consider a set of packéfs= P, ..., P, in the network, the sum
of resource counters for each packet iteemination functiornfor the computation ex-
pressed by those packets, and thus bounds the overall amioprticessing required on
that packets. The following properties are demonstrate8NAP packets of lengthy|
(in bytes):

1. On any node, processing a packenly takesO(|p|).
2. On any node, processing a packemnly requiresO(|p|) memory.

3. The overall network bandwidth consumed by a pagkistat mostO(n|p|) where
n is the resource bound of the packet at its creation.

An exhaustive list of SNAP bytecode is given in Jonathan ToM(s dissertation
“Practical Active Packets” [Moore02]. Among the interestiderivative works, a com-
piler to translate PLAN into SNAP is presented in [HicksOafia just-in-time compiler
of SNAP bytecode on the PowerNP network processor is predem{Kind02].

2.3 Sample applications for Active Networks

Several proposed applications of active networks propasédhow cases” have become
so popular in the active networks community that they’re ofwn reused as use cases for
people designing new active platforms. This section prtsssyme of those applications,
highlighting the possible benefit of active networks in thoases.

An interesting investigation found in [Sivakumar00] is tassify the services accord-
ing to the requirements they have:

routing the service allows the modification of the path packets takbéger to provide
better quality of service, multipath routing for resilienor mobility support.

differentiation the service provides differential packet processing bgcglg schedul-
ing, dropping priority, etc. to be applied.

data manipulation services like transcoding, compression, decompressianygtion,
decryption operate directly on the application data flowglifying even the payload
(and thus potentially the number of packets and their siz&jeoflow.

data forwarding services may alter the end-to-end communications by cggehimoop-
ing and retransmitting data, but they do not “produce” neta daecmselves.

2.3.1 Active Caches

In several client-server applications, including the Weder-perceived performance ben-
efits of the presence chcheswithin the network, installed on intermediate systems {usu
ally proxieg. Since only a small fraction of available content (i.e. th@ular con-
tent) accounts for most of the traffic, keeping a copy of papitems in a cache located

2.3. SAMPLE APPLICATIONS FOR ACTIVE NETWORKS 15

Figure 2.1 A uncompressed video flow (top) and the corresponding keyframgs dfhd
deltaframes(2-4) flow

nearby clients usually save both server bandwidth and stdatency. [Arlitt95] esti-
mates that only 0.3 to 2.1 percent of server-offered congernequested, and that it is
frequent that only 10% of the content accounts for up to 95%llofequests. Several
studies [Lopez95, Bowman95, Gwertzman95] have exhibiteptitential advantage of
hierarchical distributed caches where a local cache misbeaesolved at sibling or par-
ent caches. The Internet Caching Protocol [Wessels97] ikcakpdesigned for such
cases.

Beyond Web content caching [Lefévre03], the RESAM LaboratfrfENS-Lyon
combinesinternet Backplane Protocq[Plank01]) with their Tamanoir architecture to
provide a large caching facility with a world-available AlRked for instance in the im-
plementation of multicasepair serversor as a repository for large e-mail attachments
([BassiO2]). Using active networking, it is also possibleget rid of the management
hassle inherent to hierarchical caches. Rather than havieg proxy caches with large
storage capabilities, [Bhattach.98] suggests that all tides should be involved and pro-
vide room for a few objects. Those caching routers use aosg#nising policy to know
what router should cache what object. The “lookaround” gyouggests to reserve a
small portion of the storage capacity to kgasuntersto objects stored in neighbouring
nodes, a scheme that we find back in peer-to-peer distrilstioedge research such as the
OceanStore project [Kubiatowicz00].

2.3.2 Multimedia Flow Transcoder
MPEG Encoding

A video MPEG flow consists dfames each encoding the image to be viewed at a given
time to render the movie. Some of these frames (I-frame)ratepgendent of any other
frame and are encoded the same way as a still JPEG picturé. “Biia-frames”, also
called “keyframes” usually provide highly redundant infation over time, and thus
mainly serve as reference to “delta” frames such as P-frgpreslictive) or B-frames
(bidirectional). P-frames encode only the blocks thakediffetween previous I-frame and

16 CHAPTER 2. ACTIVE NETWORKS

the frame to be rendered, making compression more efficigntwvehen items are ani-
mated over a still background, while B-frames may referendaoth previous and next
I-frames.

The price to pay for that improved compression is that a P- éraBre cannot be
rendered properly without its corresponding I-frame(s).

Transcoding

A problem that arises when one tries to send a multimedia thavdollection of receivers
is that all the receivers might not have the same capalflitschudin98]. some may lack
the CPU power to decode a more complex encoding, others mayametthe required
bandwidth to support the whole flow. Others, again, mightdreltoded to support some
encoding and know nothing about the newer technologiesaihées is streaming.

The idea of active video/audio transcoders [Amir98] was etedt those situations
and to install transparent repeaters in the network thatdioelp the source by providing
streams with lower qualities (and lower bandwidth) or trawe the whole stream to a
newer encoding (such as MPEG to H.323 conversion and backije \iifs is a good ex-
ample of CPU-intensive feature that could happen in the cenwark, it is quite arguable
(and has been often criticised) whether it's a good thingaweehit within the network
rather than at the source:

1. unless the stream originates from a regular user with eoladwidth line, offering
both streams at the source is a quite valid option,

2. recently introduced MPEG2000 encoding (and all previeagelets encoding pro-
totypes) allow to scale down the quality by just droppingtfaXrames”, making
decoding-and-recoding obsolete.

In many scenarios, activieanscodingcould thus be efficiently replaced by active
dropping making sure that, if not enough resource is available tyd¢he whole stream,
then at least the most interesting parts of the stream aeethieceived. Early works with
MPEG [Bhattachrjee96] have shown that dropping entire g@fypctures or dropping
B-frames when I-frames’s fate is uncertain can lead to sigamti improvement on the
received signal. With layered video streaming in generad, PEG2000 specifically, it
gets even easier to keep useful information with a reducedtbisince the encoding is
organised in such a way that it's sufficient to drop packeds bielong to one layer to get
smooth degradation of stream quality.

Yet, in some specific applications [Sacks05], video tradsapremains an interesting
option, especially when it appears that channel propenze® evolved and that more
forward-error-code is now required to have proper transiois

2.3.3 MergeCast and video conferencing

Besides unicast and multicast, active networks can potnsapport more paradigms
for exchanging packet®Anycast(sending a packet towards a group, guaranteeing that at
least one member of the group will get the information) is ofiem. Another approach

2.3. SAMPLE APPLICATIONS FOR ACTIVE NETWORKS 17

that has received substantial attention from the activevords research community is
the oppositefunction of multicast, where a large amount of senders wangport infor-
mation towards a single receiver. This may happen in conééng environments (where
everyone should receive an audio stream that is obtainedropiaing the individual au-
dio flows of each member), but it is also required as soon atbtexk is wanted for a
multicast transmission.

The advantage of multicast is that it hides the amount ofivece from the sender,
allowing to send a single packet to an arbitrarily large camity without modifying
end-system code to make it scale. As soon as one wishes to whether data have
been received properly by the community, it is no longer fdsgo hide the amount of
receivers from the emitter as he will be exposed to the iddiai “acknowledge” message
of every receiver, a problem know as “Ack implosion” in theefature. In essence, the
receiver do not need to knowhich end-system didn’'t received the message, not even
how manyof them didn’t receive it properly (though this informatican be used to set
up state in the network for the retransmission, as shown itv§@@1]): we only need to
know that a retransmission is needed.

The idea of a concast/mergecast protocol would be that alirttividual informa-
tion from the senders can somehowdmmnbinednto a single message that the receiver
will use. Another common example would be the gathering ofperature monitoring
information from a large amount of sensors: each sensosiids its actual temperature
and the receiver wants to retrieve things like the averageinmim and maximum val-
ues among all the sensors. Timerge functionn Concast ([CalvertO1b]) is defined by 4
methods through which both the multicast acknowledge aggi@n, conferencing stream
aggregation, sensor averaging can be expressed:

getTag maps each packet to class of equivalence identifier

merge that actually combines the values contained in the packit tvose already ag-
gregated under the router-stored state for that class ofaguoce.

done which is a predicate telling whether the whole state has beeamuted or if more
packets are still needed

buildMsg which packs combined state into a new packet when the aggyegd values
is done.

The Application of ESP in video conference support based amaast-like services
are detailed in [Bond02]. Similar issues, and other derifingn the same generic appli-
cation, are further developed in [YamamotoO3].

2.3.4 Active Monitoring and Management

Network management remains a field where active networksigtdy appealing, and
recent activities arouna@utonomic networkare somehow a by-product of active network
research. Collecting information from a large pool of maekinidentifying recurring
events or coordinating actions is indeed still impractigdh standardised tools such as
SNMP. Active management entities could receive compledgnams that would watch
a specific combination of events (where traditional managegmsystems only allow to

18 CHAPTER 2. ACTIVE NETWORKS

install triggers for a single event in best cases), and exganformation with peer agents
in other monitored systems or take immediate response aeohay the management
station.

Another advantage of active management is that it allowssyiséem to react even
when the management station is offline. A important numbeeaént active applications
proposals are targeted at Distributed Denial of Service amnwpropagation fight-back.
The ability of running downloaded code (from secure soyrttest tune packet filters ac-
cording to a new attack signature or to exchange and coliémtrnation from thousands
of sites and correlate them to identify the attack patteemstfor programmable equip-
ments very similar to those proposed by active networks) évgere the end-user is not
invited to make use of active code.

Some other platforms such as [Schwartz98] or [Moore02kg atteempt to propose
active network solution for the “management agents” paradicoupling a safe language
with an interface to node’s Management Information Base (MN&)bile Agents plat-
forms are indeed more interesting if one can be sure that laemé&ving agent (due to a
programming error, for instance), will not be able to remautefinitely in the network
once unleashed. Resource-bound design of active networkedprhere design agents
that can only live for a few dozen of hops and will then havedtwm to thenetwork
operations centravhere the information they gathered is analysed and anotipaice-
ment agent might be released. With that paradigm, howewetpse a bit of flexibility
for safety, since it means agents cannot “settle in” at aipemde to keep monitoring
it.

2.4 Open Problems and Future Use

While all active platforms aim at running code on routers f@ purpose of improving
application performance, it is interesting to note thatalbapplications of active network
require the same level of participation from the networkglggating multimedia flows,
for instance, requires each packet to be processed butshilaeecessarily require that
they’re processed on each router. It doesn’t even implytti@tre processed on routers
at all. In many such applications, what’s interesting is not to codeon the routey
but rather to run codwithin the networkat some crossing point for some flows. In the
Tamanoir project [Gelas02], for instance, one can to takewatdige of those cases and
perform the required processing on a cluster co-locatell thvé router and later re-inject
packets into the network.

Technologies for running code safely on remote locationsnés of them showing
close similarities with solutions proposed by the activémogk community) are now
gaining maturity and are widely used in e.g. grid computiAdl&n01]). However, with-
out support from the network, it is still pretty hard to knevinerethe service should be
deployed. Remote code execution frameworks still oftenrassiinat the code initiator
knows that already, or just let the scheduler decide basembmputing resource avail-
ability.

2.4. OPEN PROBLEMS AND FUTURE USE 19

A similar issue is encountered in peer-to-peer networkihgne it's usually necessary
to know the location of a peer in advance to be able to join tmeraunity.

Safety in Active Networks

It was fairly clear from the start of active network reseatttdt the environment offering
execution of active code would have to $&fe— that is, it would prevent outages caused
by malicious or incorrect code [Moore02]. Avoiding routeash, or interference with
other traffic immediately comes to mind, as well as avoidingiva packets to modify
critical resources like the general IP table.

Another desired property is that the active network framé&sbouldn’t make denial-
of-services easier to build than they already are. If leftanstraint, an active network
technology has the potential to create as many clones olk@pasthe user want (possibly
replicating them at a large amount of remote nodes) and nteke &ll go to the same
victim destination. With a low cost for the attacker, thetwrcwill then be overloaded
with junk traffic, preventing it from receiving regular reggts. We invite the reader to
refer to [Bossardt05] for details.

To guarantee safety, active platforms usually use sandfterpireters or type-checking
compilers.

High-Performance Active Networks

Our overview of active networking research wouldn’t be céetg without mentioning
projects aiming at high-performance processing of packais a dedicated forward-
ing code, like PAN (Practical Active Networking, [Nygrerf®9ANN [Decasper99] or
CLARA [Ott00]. Using C rather than interpreted languages ostrs of PCs as routers,
these projects are interesting building blocks for a netveerator that wishes to setup a
low-cost packet processing infrastructure and keep the@omm what's being executed.

Long Live Active Networks ?

While interest for active networkinger sehas strongly decreased over the last years, we
can find active and programmable network inspiration inowsirecent disciplines. This
is e.g., the case in wireless sensor networks, wiegaskingthe nodes (e.g. to adapt their
behaviour to new monitoring objectives or optimize theotpcol even after deployment)
involve code dissemination with properties similar to #nastive networks have proposed
[LevisO3].

We can also see inspiration from active networking in therging autonomic net-
works research area [Schmid06]. Many of the aspects prahimt@utonomic networks
such as automated code distribution or self-configuratawme lalready received significant
research in the context of active network platforms or ajapions.

Moreover, the promise of additional flexibility and intgkince offered by active net-
work research made it a playground of choice to develop prpés of what could be
autonomic networks in the future. Many of the applicationgppsed by active network

20 CHAPTER 2. ACTIVE NETWORKS

researchers were instances of self-optimising servigasooe recently, ways to achieve
self-healing of the network.

As detailed in [Xie05], programmable networks are almoshdaory to build a net-
work resilient to flash crowd and DDoS attacks, as new pattefrattack may appear at
any time. Be it for detection modules that depend on apptioatyer protocol, for appro-
priate push-back protocols (to throttle the offendingficqor for network reorganisation
(to keep cross-traffic running), attempting to pre-progeamasilience solution sounds like
a futile exercise. With the recent development of progratsimaetwork hardware such
as network processors or the Field-Programmable Port BatgiPX), one can now de-
sign pattern-detection engines that enforce malware rahmothe access network rather
than on the end-systems [Lockwood03], and with proper boHations of local security
monitors, we might even have a chance to contain appearimmsvbefore they cause
excessive damage [HwangO05].

A robot must communicate via a series
[of] beeps and bloops, as long as such ac-
tion does not conflict with the First or Sec-

ond Law.

— Mike McCain, “The Nerd Test".

Chapter 3

Network Processors

Abstract

This chapter will introduce the technology of network prooessand detail how those
components can be used in router design. We will then coraterdn the specific hard-
ware used in this thesis (the Intel IXP2400 network procesadrthe Radisys ENP2611
board), and describe our development environment.

3.1 Routers design

3.1.1 Traditional Routers Design

One cannot design a good active router without first undedstg howpacket switches
are built and how they’ve evolved to cope with multi-gigabierfaces we have in network
cores nowaday.

The first generation of packet switches (see Fig. 3.1) wdswitih mainstream com-
puter having severdine cards(e.g. network interface 1/0 cards) connected to the I/O
bus. The interface cards typically handle LLC and MAC protsgcstore received packets
in queuegeither in main memory or located on the line card) and ndtig/core proces-
sor of the availability of a new packet — usually usinterruptsmechanism. The main
processor will retrieve the packet from the queue, decidd@®fappropriate output card
according to the routing table and add the packet to the gporaling queue.

While this is inefficient to many aspects, such routers canuie from cheap com-
ponents, operated with free software and still offer degemtormance for individuals,
small communities and corporates. The Linux router on d (oteclone) is the best proof
first-generation routers aren’t dead.

However, to handle higher speed with the same technologyirtt-generation model
isn't sufficient. Both the CPU, the 10 bus and main memory qyitcldcome bottleneck
points that throttle the router performance. By putting mameelligence” into the line
cards, itis possible to let them decide themselves the qugtibf each packet, offloading
the main CPU, and providing a naturally scalable and paraltedel. A more complex

21

22 CHAPTER 3. NETWORK PROCESSORS

’ control

(2) ’ processor

1 InLC outLc |1

processor
and RAM 2 InLC N x N Packet outLC |2
comple Switch Fabric

X

| In LC

1 3 | 10 bus

outLc | N

line card line card
line card

Figure 3.1 (left) First Generation Router. Main CPU may be involved in fetching packet fr
the linecard (1), moving the packet into the output card’s queue (2)datidering packet to the
output linecard (3). (right) 3rd generation packet switch.

bus is however required to allow line cards to directly exgepackets without the help
of the central CPU, which is now only responsiblecohtrol protocols.

The bus of those second-generation routers can howevemeegsevere bottleneck
at high speeds, since it can only handteepacket exchange between two line cards at a
time. To allow 1Gb speed on every of 10 line card with any cgsttern, for instance,
the bus should be able to sustain 10Gb. Third-generatiokepaevitches thus replace
the shared bus by switch fabric a N-to-N connecting element that can allow direct
interconnection of any pair of line cards simultaneouslyefEe are, of course, restrictions
and it is usually not possible for the switch fabric to hanalleet of requests where two
input cards request the same output card. In such situaideast one of the packet will
have to be blocked for another turn.

3.1.2 Intelligent Line Cards and Network Processors

Initially, a line card has little job to do. It is mainly a havere trie search engine that will
lookup for information associated with a given IP addre&ss performing sanity checks
on the packet such as CRC checking, TTL decrementation antkéhedls new function-
nality are added to the network, however, the line card assoth identify packets that
belong to the same connection (e.g. for firewalling) or tov@igiquality of service class.
More complex functions such as enforcing dropping prefegenn the output buffers or
scheduling packets from different queues also become dregqu

It is common to design a router as havindaat paththat handles all the 'regular’
packets and delegates the remaining packets to a more cosgftevare process (i.e.
the slow path). Fast path is usually implemented using Application Spetntegrated
Circuits and therefore offers virtually no room for exterilgip

Using technologies like ASIC or FPGA, it becomes difficultfa@e the increasing
demand for such new functionalities. Moreover, once a gsetrof functionnalities has
been implemented on a chip, it is not trivial to modify theletwork processorgresent

3.1. ROUTERS DESIGN 23

an alternative design where dedicated processing unithaadle packets even on the
datapath.

Along with those dedicated packet processing elementsrteagoengineon the Intel
IXP family or picoprocessorsn the IBM PowerNP family), the network processor chip
combines a set of dedicated coprocessors for hashingotieip, packet copies, etc. The
whole chip is operated under the control of an embedded geperpose processor that
implements the slowpath functions, forwarding tables tegiance, chip initialization and
guarantees synchronization with network processors aar tittecards.

3.1.3 Maximum Headroom, Please ...

As detailed in [Campbel02], it is critical for a router to bdeato process even minimal-
size packetsit line rate— that is, even if the router only receive minimal size paskit
should still be able to fully utilize the output links. If auter fails to meet this require-
ment and, for instance, can only sustain 50Mbps when allgiadkave the minimal size
(assuming 100Mbps fast Ethernet links), then an attackeeaasily deny routing to other
traffic with a traffic volume that the router should normalpniale without problems.

It is important not to misinterprete this rule. If we considg,;, as the transmission
time for a minimal packet, we could be utilizing the full outgapacity even if the router
took more thart,,,;, to forward the packet. The reason is that the forwardingcloguld
be usingpipeliningand separate the forwarding process into indeperstageghat can
happen in parallel. If all those stages can complete in le®sT,,;, then we can still
sustain a full flow of minimum-size packets. If, in additiamgiven stage receivesk
execution units — that is, we have replicated hardware andpatthing technique that
delivers packets from previous stage 1 to unit (i, 1) ... (i, k) then we can theorically
allow a processing timgT,,;,, for step:.

3.1.4 PowerNP and IXP2xxx

Among network processors two main designs have drawn meeatiain in active net-
working research [Sterbenz02], due to the genericity aagérformance they are capable
of: the IXP processors family from intel [IntelPRM, Johns@h@nd the IBM PowerNP
[Allen03], now known as the HiFn 5NP4G processor [HiIFN04]. tilBbhardware share
similarities in their basic design:

e the presence of a “controlling processor” with slower splegidcapable of every-
thing a generic processor can do,

e multiple sub-processors (pico-processors or microefngat can manipulate every
packet

e multiple levels of memory, with variable size and latenciasd mechanisms in
sub-processors to hide memory latencies.

e co-processors for checksums, trie lookup, encryptiomigiion, either on-die with
the core controller and sub-processors or as externalljabl@dedicated units.

e communication interface with either “media chips” (likeggbit ethernet, OC-3
through OC-48) or with a switch fabric.

24 CHAPTER 3. NETWORK PROCESSORS

The main way by which those systems differ is the intendedpimapof code blocks
on processing elements. The PowerNP architecture pronttiee§un-to-completion”
model where each packet is handled by a single hardwaredthiteen reception from
a media card to enqueueing into switch fabric interface. tiidl pico-processors of the
PowerNP share the same code memory which is sensibly ldrgerthe individuatode
storeof IXP’s microengines. In the IXP processor, by contras,riflatively small micro-
engine’s code store advocates for a pipelined model whete mécroengine is respon-
sible of a given functionality (receiving, checking sunpkig up IP table, enqueueing)
and has specific hardware resources to allow threads amangla stage” to cooper-
ate more efficiently. With introduction of IXP2xxx familyhis even goes further as each
microengine is natively chained with two other microengittfeough specific “neighbour
registers”.

Taking results of the previous section into consideratibfecomes obvious why
network processors have such large amount of fairly simpdegssing elements. The
IXP1200, for instance had 24 execution contexts distridbai@ong 6 microengines. The
IBM PowerNP NP4GS3 has 16 dual-threaded picoprocessorshantkekt generation of
IXP products (IXP2400) has 8 pipelined microengines withaBdware contexts each.
The goal is simple to understand: provide mbeadroonTfor interesting packet process-
ing — that is, more instructions cycles available beyondoiue 1Pv4 forwarding, while
still meeting the “full output link utilization” constratn

Later products like IXP2800 features up to 16 multithreaaghécioengines, achieving
10Gbps ethernet support with a single chip!

3.1.5 Related Work

In [Spalink01], the authors evaluate various forwardingchions on the 1XP1200 pro-
cessor and show what performance we can expect from therrdihe problem of dy-
namically creating optimized pipelines has been addressgtampbel02] by load-time
modification of code constants to avoid extra memory lookigesi by common dynamic
binding features. Authors of [Kind02] detail the two 'pregnming models’ for network
processorsrun to completionor pipeline and spot that hardware design of a network
processor can make it unsuitable to some model. In the cas@-db-completion model,
they implement a just-in-time compiler for SNAP language.

One of the active-network related research activities rrdawetwork processor focus
at building datapath dynamically [Ruf05], and managing tatefogeneity of resources
(e.g. multiple level of memory, restricted amount of codwestusually split over a poten-
tially high number of locations. An interesting alternatidepicted in [Baron05] consists
of using IXP network processor as TORlIoaderfor high-end servers. Some other appli-
cations are even more “exotic”, using the microengines telacate database operators
such as scans and joins [Gold05] or DNA processing [Bos04].

It would of course be over-selective to mention only IXP amaiwBrNP while the
wikipedia lists about 10 vendors of “network processordie Term “network processor”
actually hides a much wider variety in hardware designsicaéeid units and programma-
bility, such as CISCO’s NPE-G1, Xelerated X11, C-Port’s C5 DCPrance [Kohler04].

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 25

external media devices

P28

Media & ‘
SwitchFabric
) M Interface SRAM 8MB SRAM
MIFrO M controller /\\r:> (140 ns)
Engines
Cluster ‘
LE 600 MHz 256MB
Xscale DRAM DDR SDRAM
Micro | I StrongArm controller (200..300ns)
; [64-bit wide
Engines
Cluster
scratchpad
e— (16K, 26m) external memory
IXP2400 network processor

Figure 3.2 IXP2400 network processor structure diagram, annotated with timingsrted by
[Lu05]

Some, such as the C-Port’s Digital Communication Processere\een more monstru-
ously powerful than the Intel and IBM products, featuring t&&nnel processors” each
coupled to a programmable Gigabit Ethernet / Packet OveetS&®S) physical channel
and a 50Gbps internal bus to interconnect all internal efésneOthers such as EZchip
and Lucent processors have well-defitask-optimized processof§OP) organized into
distinct pipeline stages. The Xelerated X11 even pushssfiproach to the extreme with
24 elements of a “programmable pipeline” (PISC blocks)heslowed to execute a few
instructions per packet before the packet is handed ovéetoext PISC.

For active networking purposes, these devices are howessrpratical to deal with
than IXP features. It's not rare with the Xelerated proceskat packets needs to be
sent over a “loopback” wire after being flagged for additiomacessing, for instance.
Such considerations give a newer look at works such as Net¥&ldj05] that attemps
to abstract the particularities of each hardware (inclgdjaneric programmable devices
such as FPGAs equipped wibftcoreblocks) into a single model for the programmer.

3.2 Overview of IXP2400 Network Processor

The Intel IXP2400 network processor is a programmable cygable of processing pack-
ets at rates approaching 4Gbps. The most popular prodattsifeg an IXP2400 are the
Intel IXDP2400 development board and the Radisys ENP-26ddl d&e processor itself
doesn’t contain logic to receive and transmit packets dverGigabit Ethernet or OC-
xx physical medium, but it rather communicates with extet@acontrollers through a
genericmedia and switch fabric interfad@SF interface). Depending on the board de-
sign, the IXP can be used as a “standalone” component (iretbeeaf Radisys card) or as
a media card for a switch-fabric based system (in the cas¢@®PIcard).

The IXP processor also features components that facilitsteontrol from the PCI
bus. While in most cases it is just a convenient way to resetdheor inspect its state, it
can theorically be used to transfer packets (at degrades)ra¢tween several IXP-based

26 CHAPTER 3. NETWORK PROCESSORS

cards connected in a single PC. However, if one wants to bulatger router (cards
mentioned above range from 2 to 4 gigabit ports) with IXP pesors, a switch fabric
system and IXP2850-based blades should be preferred.

3.2.1 Processing Elements

At the lowest level, packets received by an IXP equipment kel handled by theni-
croengines These are 8 independent processors running at 606Mil a dedicated
RISC-inspired instruction set, each having up to 8 hardwanézts (threads) and a con-
trol memory of 4K instructions. Each microengine featureg general-purpose registers
(GPR) and a local memory of 640 words that can directly feed\thlg, plus 256 “trans-
fer registers” and 128 “next neighbor” registers that carubed to communicate with
SRAM, SDRAM and chained microengines.

Each microengine featurescantext arbiterthat will perform round-robin selection
among the activable threads everytime the running threladses the processing hard-
ware (for instance, waiting for a memory operation to cortgle Microengines are
chained by hardware, one to another to help build procegspelines where writes into
the “next neighbor” register of one microengine are immdyaavailable in the “next
neighbor” register of the next microengine for reading,idvm the need for external
RAM to exchange context information about the packet beinggssed. If memory la-
tency can be avoided, eanficrowordof the microengines is processed in one cycle.

Over those microengines stands the XScale core, an ARM5Tipatible proces-
sor clocked at 600MHz which has access to the same SRAM and SDiR&drces as
the microengines as well as to some of the microengines res®such as their control
store). The XScale is capable of hosting an embedded systemas QNX, VxWorks or
Linux that will provide a programming environment for theangengines, implementing
control protocols such as ICMP or OSPF, filling forwardinglésbused by the micro-
engines, starting and stopping microengines and filling ttwde store with appropriate
programs. If needed by the network application, the XScate can also be a good place
to handle “exception” packets such as fragmented packé&®, requests and whatever
might be processed on a “slow path” due to code size resingin the microengines. Un-
like the microengines, the XScale also has code and ingirucaches that hides SDRAM
latencies and a Memory Mapping Unit required for Linux opierss.

3.2.2 Storage Elements

Much like processing, storage on the IXP platform is splitheen different units, each
having their own technological properties and being baestdto some aspects of packets
handling. The DRAM is the largest one, ranging from 256 to 2GB of memory that use
the same technology as main memory of modern PCs, and the sawigettk concerning
access latency. DRAM is appropriate for storing the Stromgi&\operating system and

taccording to table 157 of [IntelHRM]
2IXP2xxx models actually use 100MHz DDR SDRAM. We will simpabel it “DRAM” in this work,
for readability.

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 27

Storage Type || access (ns) bus (ns)| 1XP2400 cycles
External DRAM || 226 (+12) | 59 (+4) 180
External SRAM| 81 (+5) | 51 (+4) 84
On-chip scratch| 21 (+3) | 37 (+3) 38

Local Store 11 (+4) 0 (+4) 11

Table 3.1 IXP2800 memory model used in [Labrecque06]; access exteri@AND takes
12+4+226+59=301 ns, 285 of which are "pipelined"

programs and typically used for storing packets that aregofirwarded and other bulk
data.

Basing on informations provided in programmer’s referene@ual [IntelPRM], we
may assume that DRAM access may take around 150 microengitesdp complete.
The actual latency of DRAM may depend on the memory actuabjaited and of the
memory access pattern (see [KozierokO1w]), still resuksented in [Labrecque06] and
in [LuO5] confirms that order of magnitude, despite the faetytonly consider IXP1200
and IXP2808. The memory-related parameters of that thesis are meutionable 3.1,
and illustrate the potential benefit bdirsttransfers where the “pipelined” portion will be
incurred only once for several accesses.

The SRAM area typically spans a few megabytes, but it can besaed twice faster
(with a latency around 85 cycles). Another important fagsothat while DRAM only
allows data stores and loads, SRAM is capable of atomic dpagfaddition, bit set-
ting and clearing or “test-and-set”) and allows individuadrds to be locked thanks to a
Content-Addressable Memory (CAM) companion unit. The SRAM typically contain
structures that needs to be manipulated by several thregdsallel.

When access speed really becomes a critical factor, it ispassible to use the on-
chip scratchpadSRAM. The scratchpad only provides a few (16) kilobytes of ragm
but can be accessed in about 16 processor cycles and hasitbisa of atomic opera-
tions as the off-chip SRAM. The scratchpad is typically usedtbre datapath variables,
counters, etc. that need global access but cannot suffgretiermance penalty of an
external memory access.

The other storage facilities (local memory and registers)daiplicated in every mi-
croengine but cannot be accessed from outside. Idded memoryprovides 640 words
of storage with a 3 instructions latency, but with mechasisuch as access pipelining
and post-incrementation that can help manipulate that mewithout delay cycles. The
register banks are large enough to accomodate not onlyguosedocal variables but also
application-global variables. While registers are usubthyind to a specific hardware
thread, the microengine assembler provides a facility ltmcate and use “global” regis-
ters that will be visible by all the threads of a single micrgime.

28 CHAPTER 3. NETWORK PROCESSORS

Figure 3.3 The Radisys ENP2611 card, with 3 optical ports

3.2.3 Developing on the Radisys ENP2611 card

The Radisys ENP2611 card is a PCI card hosting a complete sysitbna IXP2400,
dedicated DRAM and SRAM memory and up to three gigabit ethgrods interfaced
with the MSF through a FPGA bridging chip. Despite the ENRR6ard has 3 gigabit
ethernet connectors, these are the last things we’ll bggusindevelopment. Instead,
the management port — a traditionnal RJ-45 connector for 188B&thernet will carry
most of the traffic between the XScale embedded operatirigray@n our case, a patched
version of Linux 2.6.15) and the host machine.

A "null modem" cable (shipped with the card), connects them3LpART slot to the
serial port of the host PC. With a program like minicom ingdH- or any equivalent pro-
gram you’re happy with — we can connect to the most elememkavglopment interface
that the card features and control the booting sequenceétioefeatures a pre-installed
version of RedBoot manager on flash) or run diagnostic testse @ system is booted,
the serial interface is also the only console we have untdl@etcan be run over the
management port.

It should be noted that what the ENP2611 card really miss sea-ttiendly printed
manual with an all-in-one development kit on CD. Most of théstson is the result of
several weeks of crawling through kernel sources, dowmhgadf restricted Software
Development Kits at Intel and MontaVista corporations arstwssions with people on
the ixp2xxx mailing list. A large amount of our findings haveelm made public step by
step on the ENP FAQ, now promoted as the accompanying wikh®stXP2xxx support
project on SourceForge[Martin06]. Without the work penfied by Lennert Buytenhek
to integrate ENP2611 support into linux 2.6.16 kernel, tloeyswould have pretty much
ended here.

Sestimations presented here assume IXP2400 is just a IXR286Ked at 600MHz instead of 1GHz

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 29

Loading Something on the Card

Loading a linux kernel on the ENP is no different from loadaignix kernel on a diskless
X workstation, except that we're now in the 21th century ...

e DHCP configuration: the host (or any other machine on the labl}should be
running a DHCP daemon for giving the card its own IP addressh Wioper con-
figuration, RedBoot should report the management port’s IPesdcand the server
it has used just after memory scrubbing. We can notice thapdrts MAC address
as well (which can be helpful in DHCP configuration). We cancitthis step was
successful by just “pinging” the card.

e TFTP configuration: this is the protocol used when loadimgxi kernels on the
card. Here too, it's more convenient to have it on the ho&.alk simple as to put
any file in /tftpboot and issue thead -v -r -b 0x02000000 -m tftp
-h xxx.yyy.zzz.uuu /tftpboot/any-file command to check if it can
work properly.

¢ NFS configuration: only the kernel is transferred to the lmaater. Once it will be
launched, the Linux kernel will need its root filesystem widbv , /proc and the
appropriate files idbin and/sbin . MontaVista comes with an almost complete
base filesystem, but an appropriate debian installationweik as well.

Drivers for the ENP2611 card

Together with the core support of the board, the Linux kepneVides a network driver
(enp2611_mod.ko , developed by Lennert) for the gigabit Ethernet ports. QOnly
of the available eight microengines are required for thiy wmple functionality. Mi-
croengine 0 will be in charge of receiving packets from Gidiips through the Media
Switch interface, and microengine 1 will be transmittingket of the kernel to the Ether-
net chips. For both, packets are stored in DRAM (that is, wharex kernel stands too)
and the hardware-supported ring buffesgratchpadnemory connects the microengines
with the linux kernel.

However, Lennert’s driver is just that: a driver. While it hagrocode loading facil-
ities for its own purposes, it will not help load our microeohto the microengines. To
use the full power of intel's IXA SDK, we should instead use ttevice drivers provided
by Intel. These are made of two parts: a user-side libraryaakernel-side driver, glued
together by the /dev/medrv0 device. By porting Ha@Mev2.ko kernel module to the
2.6 kernel architecture, we now have the ability to use th@oobde loader for UOF files
(the native binary format used by intel tools) from user paogs.

In addition to medrvO device, application written for theAXSDK typically use
/dev/spi3br and/dev/pm338xx devices to program the gigabit ethernet hardware
of the ENP card. Examples provided by the IXA SDK as well asoestration provided
with the ENP SDK are oriented around the idea of a system @ijwn that takes the
control of all your board’s resources (microengine, GiGBtoallers, SPI3 bridge) for a
given purpose. The code for this application will e.g. ispugper IOCTL calls to enable
reception/transmission by the gigabit ethernet chips,repgre SRAM/SDRAM values

30 CHAPTER 3. NETWORK PROCESSORS

EEEEEESFEEEE B EFEEEEEEEEE BEREBEE

Figure 3.4: output of thebeaut i fy. pl script: annotated microstore content (left) and register
allocation map (right)

according to the expectations of the code running on migioes. The “system applica-
tion” takes care of loading the UOF file, starting/stoppihg microengines and it can as
well report/configure various parameters of the runnindiegon.

Like in the case of HalMev2 driver, ENP drivers are specifirtox 2.4, but hopefully,
they were way smaller than the microengines driver and eesport to 2.6 kernel.

Improving Our Tools

Writing code for the microengines is one thing, having theecaghning on the IXP is
another. We need @ontrol applicationrunning on the XScale core to transfer the binary
uof file in the control store of the different microengines, gsthe UCLO (microcode
loader) and the HalMEV2 libraries provided in the XA SDK.

Based on L. Buytenhek tutorial tools and the control applicatif the IPv4 forwarder
(part of the ENP2611 development kit) and of the ESP filter,gnexv our own “swiss
army knife” for WASP. More than a mere program loader, ourtcmrapplication for
WASP is capable of reporting and analysing most of the dyoaspects of WASP and
ESP microblocks behaviours, allowing us to inspect vitjuahy storage item on the
microengines, either on demand or repeatedly in a pre-pnogred statistic-gathering
loop.

While the XScale core can natively only access external mgmesources such as
scratchpad, SRAM or DRAM, we used the HAL library to suspendntieroengine we
want to inspect, replace a portion of its microcode store $grapling program that reads
the requested data item that will be then read through asstegister.

Based on our experience in operating system kernel develupmve also extended
the control application with generic debugging featureshsas registers inspection, mi-
croengine state dump and breakpoint management. This gdetmishell” in the control
application was preferably used in conjunction of a posepssed HTML view of the
Jist files produced by the microassembler, which mixes the agerarated machine
code and the (pre-processed) source code.

3.2. OVERVIEW OF IXP2400 NETWORK PROCESSOR 31

These human-readable views of the microengine code stergeaerated by a home-
brew perl script heautify.pl , see Fig. 3.4) that procedsst files and produces
HTML files of indented, annotated pre-processed code as itre@mgine see it. Its most
interesting uses were:

1. get a clear view of how code has been pre-processed, ardcadh@ (sometimes
out of many hardware-specific alternatives) has actuallgdresrated even before
giving it a run.

2. the ability to quickly locate all instructions of a certaype (e.g. all references to a
control/status registers, or all the manipulations oftetraings), even when nested
deep into macros libraries, and immediately see enclosexgyos and source lines
involved

3. when given a breakpoint address by the debugger, quiekligve the correspond-
ing code inthelist file, see the corresponding source file(s) and obtain registe
references by hovering the source. One can then ask thegietfog each register’s
content.

In order to get a global view of registers allocation andilifee, and getting ourselves
rid of “too many GPR” assembler errors, we extended the ugeadtify.plto produce a
mapof the register usage, allowing the developer to get an inetedverview of which
portions of its code use more registers, which register sieetle reallocated to different
physical registers, etc.

At several points, it allowed us to pinpoint registers tharevkept for abnormally
long code regions compared to the locations they were sepdpose useful.

32

CHAPTER 3. NETWORK PROCESSORS

Chapter 4 % 1

The WASP Platform

WASP is faster than ANTS

Abstract

This chapter describes the components of our architecw&SP packets, the ephemeral
store and the virtual processor, illustrating their roledlugh simple “use cases” of active
networks.

We will motivate and detail the restrictions we imposed on tichitecture to keep it
network and router-friendly. We also give the results of @eniance comparison against
the ESP active router for the x86 “reference” implementatio

Before going into the details of the WASP router design, itleamiseful to detail what
kind of “applications” WASP targets. First of all, WASP istreoreplacement for IP, and
is not concerned witlnouting proper. It is rather a pre or post-processing stage that can
be placed between the network and the router core. Secon8PViAdesigned to handle
smalltasks. Both code and data portions of a packet have small simpared to most
active networking architectures, and chances are thahpleimentations will also restrict
the number of ephemeral store accesses a single packetesste

To many respects, WASP adheres to the “philosophy” of Ephainstate Processing
(ESP) and of IP itself by beingnonymougsavailable to everyone artdo cheap to mea-
sure Processing a WASP packet should have the same order of tndgis processing
an IP packéetso that a router can still operate at full rate regardlessowf many per-
cent of its traffic is actually WASP packets. In addition, a 3Arouter doesn't care of
the identity of end-users when it processes packets: angai®wed to manipulate any
entry in the state stofe- much like an IP router doesn’t care about who has sent or will
receive a packet when it forwards it. Those two propertiesiigmity and lightweight)
imply that there’s no need for the router to perform auttetibn of any kind before it
processes a WASP packet and that there’s no need for indivadgounting.

A first use case for WASP is the identification of propertiesaogpecific path: as
packets traverse the network, they can gather router IDasuane how long they remain
on a given node, how long has elapsed since the last packiké gaime flow has been

1This is clearly not the case for ANTS capsules, for instance
2with a small exception for “super packets”, as we shall st Ia section 4.3.3

33

34 CHAPTER 4. THE WASP PLATFORM

eth0 packet

header

=0

center

Ephemeral
State
Store

outgoing

(ESS)

environment
variables

incoming

Figure 4.1 A WASP router and WASP execution environment. Gray items mean the &8°U h
read-only access to the resource

processed by the router, etc. Yet, it will be up to the endesysapplication to process
and react to such extra feedback. Another field of applinatidhe coordination of end-
system that contribute to a group without requiring a gldoawledge of that group. ESP
already takes advantage of this for multicast retransons&iut WASP could extend it to
peer-to-peer systems, flash crowd controlling, etc. A se&lbf such sample applications
are presented in the next chapter.

Last, but not least, WASP does not place any assumptionseonumber of active
nodes in the network to operate properly, and it meets tipdetobjective ofworld-
friendliness

User-Friendly: WASP should offer significant programmability while allowi the ap-
plications running on end-systems to know to what extent taa trust what they
get from the active network.

Network-Friendly: WASP should not become a nuisance to networks (and opey.altors
should require no configuration from the operator and the/owit load it produces
should be predictable.

Router-Friendly: Active packets should not be able to harm a router nor degtade
performance.

4.1 Model of a WASP Router

The overall model of the WASP router is derived from the EpbexhState Processing
[Calvert02]. The core of the router is therwarding logic which implements the basic
IP service consisting of looking up the IP table, switchihg packet to the appropriate
output queue(s) and updating the IP header.

Between this core and the network interfaces are the Ephé®&te Stores (ESS)
where WASP processing is applied, as shown on Fig. 4.1. Itiaddo ephemeral stores
associated with network interfaces, there is a single &é&mbcation which can be used
by more “control-oriented” packets. An active packet pssasl by the router typically
crosses three logical locations:

1. theincoming ESSbound to the network interface that received the packet,
2. thecenter ESSwhich all packets will traverse, and

4.1. MODEL OF A WASP ROUTER 35

——20 bytes——

goonnsnss===" '
IP Header IP Header + ESP Operation ;| Transport

(proto=Esp_pkr| 5P Operation (proto=xDP) i (IP option) i| Header PAYLOAD

ESP op- Operands or

Header |code WASP program CRC

32 bits

code data

X X Bytecode Packet Variables
size size

Flags

Figure 4.2 WASP packet format, both standalone (left) and piggybacked (right)

3. theoutgoing ESSbound to the network interface that will transmit the packe

Each packet can request execution on any combination of these location but it can
in no way alter the state in other stores. When forwarded flaisouthern” interface to
the “eastern” interface, a packet may not, for instancep dranspect state in “northern”
or “western” stores.

A special field of the ESP/WASP headénmstructs the router on which locations the
packet requests evaluation. This flexibility allows reduttof processing overhead to
the minimum while enabling interactions between packetsicg from a host and pack-
etsreturning tothat host (by e.g. making forward packets using B8P OUTPUTB&Nd
backward packets using tiSP_INPUT) as well as enabling interactions between pack-
ets from multiple sources that go to the same destination.

Keeping most of the processing at ihéerface cardevel is a key element for design
scalability: on a router with higher throughput, the prateg load can be distributed
among the available processors. As a resultctrgerlocation should be avoided every
time possible and the protocol designer should remain atat&VASP processing at the
router center might involve the delegation of the packet tgeaeric-purpose processor
and that the router implementers might enforce rate-ltmomaof active packets on that
location.

The specificity of WASP is that each Ephemeral State Storeupled with aVirtual
Processing Unif(VPU) that handles interactions between state store arkepatorage
according to a microcode carried by the packet itself.

4.1.1 WASP Packets

WASP usesn-band code transmission: each packet contains its own code andiathe
on which it can operate. The evaluation of packet code (upst [®tecoded micro-
instructions callednicrobyte$ terminates when @acket control microbytés encoun-
tered, which tells the router what to do with the packet. Iditon to “forward” and
“drop” semantics, WASP allows the packet to be sent back écstiurce at any router,

Stheloc field, which has one bit foESP_INPUT, ESP_CENTERNJESP_OUTPUTespectively

36 CHAPTER 4. THE WASP PLATFORM

which can be useful when a quick feedback of a discovered sta¢quired (e.qg. filtering
more packets in the router ahead of a congestion point).

During interpretation, the data part of the WASP packet milaile as a 128 byte
region of random-access memory and only the IP header ialégadOther parts (WASP
bytecode, other IP options, transport payload) are ureblailto WASP code.

As depicted on Fig. 4.2 WASP packets may exist in two flavduos) being inherited
from the ESP framework. The most simple is standalone waspwhere the WASP
packet is simply encapsulated in a IP header (just like an I@&tket is encapsulated in
IP). This will be the preferred case when WASP is used to implat a new protocol, or
when WASP packets act as autonomous monitors of the nesvstidde.

On the other side, WASP packets can alsgplggybackedwith other protocols, in
which case they are stored in an “option header” of IP, whigly tve useful when WASP
is used to regulate the flow of an existing transport protocol

4.1.2 The WASP Node

Each WASP node has a certain numbeephemeral State Storésat will associate 64-bit
keys (also called tag) with small, fixed-size data. Each ESS is associated withitaal
Processing Uni{VPU) that processes the WASP packets. Since all excharggesén
packets occur in the ESS, there is no need to store VPU statede the evaluation
of two packets. This greatly simplifies the synchronisagooblems, even on a multi-
processor system, since it means we can bind VPU data to ah€&) rather than to an
ESS.

Before a VPU starts evaluating a packet, it retrieves the modeinterfaceenviron-
ment variablesand exports them as banks of read-only memory to WASP codeserh
variables will typically include the node IP address, netkpdocal time, etc. plus statis-
tics about the current interface (recent packet transonssiatistics, queues status, etc.),
which can be useful for applications sensible to networkdd@mnms.

Considering the restricted resources of network processersied to keep the design
of WASP'’s virtual processor as simple as possible, whichesaklook more like an
embedded microcontroller than a modern microprocessum &n architectural point of
view, but the resulting interpreter for the base instrutset is only 4KB long — smaller
than the operation handlers of the native ESP filter.

4.1.3 World-Friendly Platform
WASP is User-Friendly

The additional flexibility provided by the presence of thelWRllows a larger scope of
problems to be addressed and it offers a more natural progiagrianguage than ESP’s
high-level instructions. Yet, a WASP router does not alecket flows of users that de-
cide not to use WASP and do not allow interaction betweenragpaVASP flows unless
end-systems explicitly use the same tags. This goal is Megedo theflexibility goal
mentioned by [Moore01] and thesabilitygoal in [Bond02]: offer a easy-to-use interface
to the active network that abstracts the inherent complefitnetwork programming.

4.2. FROM ESP OPERATIONS TO WASP VPU 37

To achieve that abstract objective, anonymity, automatanagement or best-effort ap-
proaches are the keys t&&ep It Small and Scalablé

WASP is Router-Friendly

Even if WASP is based on active packets, it is much more oésttithan general-purpose
capsules and user’s bytecode cannot waste router’s resources. nstance, WASP
bytecode language prohibits backward jumps and all instnus have predictable exe-
cution time, which makes packet processing time trivial dotool (as shown in SNAP
[Moore02]), and typically linear with the packet’s size. Rer’s memory is of course
taken into account as well, mainly thanks to the ephemeat store, which automati-
cally reclaims entries a fixed period after their creation.

If such restrictions are impractical for general-purposevises, they perfectly fit the
lightweight control tasks that WASP will have to perform. \¢halternative solutions
exist, such as associating a counter to any backward jumipeirteade, we believe the
benefit we could get in WASP is not worth the additional manaeye required.

WASP is Network-Friendly

Even if we take care of router resources, an ill-intentioaetive packet could easily
create an avalanche of clones to overload its destinatiomrA ‘first generation’ active
platforms, PLAN [Hicks98] was the only project that addessthis issue by making sure
all children’s resource counters receive a portion of thepigs counter. Unfortunately,
picking a “good” initial resource bound remains a complexes

In the case of th&VASPplatform, packets do not have the ability to create child
packets unless they are targeted at a multicast addresthdyutandrop themselves or
return to their source. If we focus on applications like servicecdigery or server load
balancing, we have no real need for more: we can store the astindtion in the active
packet,return the packet towards its source and let the source issue a nmavection
attempt to the real destination.

4.2 From ESP Operations to Wasp VPU

In the original Ephemeral State Processing router, eadtepaarries opcode and operands
for a single operation. This operation, however, is usually rather desnpnd may in-
volve several ESS references (for reading or writing), ssde packet-stored “imme-
diate” values and even perform arithmetic or logic operstio If we transpose these
packet-triggered operations on the ESS to the design ofopriccessors, the ESP op-
erations looks like instructions of a Complex Instructiot Semputer (CISC) machine.
As an example, the two operatioogunt andcollect involved on Fig. 4.3 could be
described as follow:

“http://en.wikipedia.org/wiki/KISS_Principle

38 CHAPTER 4. THE WASP PLATFORM

(b) (2;-) -> (1; v1+v2)

M

(1; v2) -> (0; v1+v2) (3;-) ->(2; v4)

(a)

2;-

Vo R RZ I

Figure 4.3 (a) First round labels each node with its number of children VG®UNT packets. (b)
COLLECT packets then compute the local aggregated value and forward it upwadrels no more
values are expected on the local node

COUNT (value_tag, threshold_imm): retrieveval from the ESS usingalue_tag and
setwal to zero if undefined. Incremenit:/ and store it back in the ESS using
value_tag. Packetis forwarded only ifal is below or equal to théhreshold_imm
parameter carried by the packet.

COLLECT (value_tag, counter_tag, value_imm, operator_imm): retrieveval from the
ESS usingualue_tag, then apply merging operator aml! andvalue_imm and
store the result back in the ESS undefue_tag. If value_tag was undefined,
the value carried by the packetlue_imm is stored without applying the oper-
ator. Available operators include addition, minimum andximaum. After this,
counter_tag is used to retrievetr from ESS is decremented and stored back. If the
decremented value ofr is zero, the packet is forwarded, otherwise, it is dropped.

These are only two “simple” operations out of the 5 defineddalyertO5w]. Those
two operations are for instance combined in a two-roundeqs® illustrated on 4.3 that
could for instance return the maximum value detected bygelaet of sensors by having
each sensor sendif@OUNTT, 1) first and thenCOLLECTV, T, x, M AX) afterwards.
Note that, as detailed in [Calvert02], this protocol is naitpcted against packet losses,
but it is protected against machines that are unresponding Wwhole round (these will
not send “count” so they do not prevent “collect” packets tofgrward). Two other
operationdRCHILD andRCOLLECTare provided when achieving reliable collection of
data is required, requiring 8 and 13 32-bit words of arguneeh.

COUNTT, 1) is an interesting special case as, if generated from a tiolfeof ma-
chines to the same destination address, it will label eagteravith the number of “chil-
dren” it has in a distribution tree. Each packet will traved ttree towards the root (its
destination) as long as no other packet with the same tagdsse@ through there and
stops on the first router that is a “branching point” with patskfrom other machines.
Note that children in this context will be machinasrouters: in order to know the num-
ber of end-systems, what is requiredd®LLECTT, V, 1, ADD).

To achieve that flexibility, theCOLLECToperation relies on theperator_imm
field that tells how to combine two values, and branches tabttee pre-defined handlers
for that operator. A similar behaviour is observed in @@MPARstruction which has
a field selecting amongqual?, less-than?less-or-equal?greater-than?andgreater-or-

4.2. FROM ESP OPERATIONS TO WASP VPU 39

equal?predicates. The programming model offered by those instmg remains tedious
to use and master. For a given problem where the designehbdsdling Ephemeral
State Store could be helpful, it is at best unclear of how ®@QUNTCOMPARENd
COLLECTo achieve that goal. In many other situation, we just exgre the frustration
that the operations defined are too specialised to be of any us

While ESP itself mainly focuses on multicast, reliable noast and implementation
of concastlike services [Calvert01b], thephemeral state storeself could be applied in
many other situations such as setting up and maintainingtpgeeer overlays, terminal
mobility support, or application-managed packet droppifige restricted instruction set
is of course not the only limiting factor and thus our progbaechitecture also extends
the ESP router with geroutingfacility (see Sec. 7.1.2) or with basic node and interfaces
status reporting (see Sec. 4.4.5).

4.2.1 A Virtual Processing Unit for Ephemeral State

Most ESP operations are non-trivial to describe, and tls@mgtimes lengthy) pseudo-
code often involves temporary variables, primitive opers on the ephemeral store,
packet-stored variables and immediates as well as cortiwaitsres (e.g.if-then-else
blocks). WASP started as a challenge of designing a smalialimachine that could ex-
press those operations with something looking morenkerocodefor a virtual proces-
sor. The ephemeral state and the packet-stored variabldd wen appear like memory
units in that virtual machine just like we have RAM or contexidressable memory in
a real machine. Going further with that concept, decisidnsacket forwarding or dis-
carding (and, as we introduced them lateturn or reroute would be control opcodes
just like a regular computer has opcodes for suspendingtpes, return from procedure
calls, or invoke the operating system.

The most complex of ESP operations features not less thanditmmal branches but
it still didn’t require a loop-like flow control mechanism.r&wing inspiration frorSNAP
([Moore02]), which also offers programmability through &mcode-like instruction set,
we decided to enforce the absence of loop as a key design mlerh®@/ASP’s virtual
processor. That certainly reduces the set of applicatioasdan be implemented with
WASP, but it also means that we keep execution time linedr thi¢ size of the packet
size, which is a serious advantage to achieve “too cheap &sune’” WASP packets.

The fact that the ALU and registers of the WASP VPU are 64-liitews of course
motivated by the fact operands of ESP packets, tags andsvialltiee ESS are themselves
64-bit wide. We expect that the additional cost for impletmenthe VPU on a 32-bit
machine should be affordable compared to the cost requireétode and execute one
extra bytecode. Another nice property of a 64-bit ALU is tiatlows us to manipulate
keys for the ESS easily and maybe combine packet-carriatesakith ESS values to
create new keys on the fly.

40 CHAPTER 4. THE WASP PLATFORM

Instruction Size

We chose to stick to a single instruction size of one byte ashnas possible. In the
context of WASP VPU, compactness of the encoding is cegptailesired property as the
code will be attached to data packets. In a few exceptionglle instructions to have
one extra word of immediate operands. While instruction seth as x86 may achieve
compact programs, it comes at the cost of a much more compleodihg logié€ that we
cannot afford if we want to meet code storage and executieadsponstraints.

Much like a RISC machine, the WASP VPU only offers a limitedafeipcodes and it
will often require that an operation such as “add 4 to memacgtion X” is broken down
into several steps such as loading registers with immedeltes and memory content,
perform the addition (which operates on registers only)arite back to memory. Yet,
RISC machines have longer (usually 4 bytes) instruction waud plenty of general-
purpose registers, which —again— we cannot afford.

Implicit or Explicit Operands

Another discriminating factor in CPU architecture is how iguels are “named” in the in-
structions. RISC systems typically have oekplicitoperands, that is in e.g. an addition,
there are fields for identifying the two source registers a as the destination registers.
In other architecture, some operandsianplicit, e.g., because one of the source operands
is automatically reused as destination.

Most modern processors can access any register at any tittn@myi opcode. While
this offers a great flexibility for the programmer, it is inagtical to interpret, even on an
architecture that has more registers than the interpreted o

If we consider a virtual instruction such as “add R3, R7, R2",ititerpreter would
be required to get the current value of the 3rd and 7th registethe register bank and
store the resulting sum in the 2nd register. We couldn’t nnapvirtual register bank on
some hardware registers of the real CPU as it would imply the @&3Jto operate not
on a specific register (such as GPR3), but ratitea register which identity is computed
at run time based on the fields of the virtual instruction. No instroctset we're aware
of supports such run-time indexing of the register bank &ng the VPU would have to
emulate its register bank through memory.

As a result, most of the interpreted architectures, inclg@NAP and WASP stick to
astackbased design where the actual register to be involved in Apération is known
when the interpreter is compiled and where intermediateegbre explicitly saved and
restored from a LIFO structure.

Accumulator and Stack

Breaking with the pure stack-based model, we decided to fiwd/PU anaccumulator
register that will be the sole location manipulated by mdshe opcodes. Much like the

Sinteger addition has 14 different encodings, not mentigtite optional prefixes
This is e.g., the case of JAVA and PostScript languages ds wel

4.2. FROM ESP OPERATIONS TO WASP VPU 41

<-{-(a) @cnt_tag: vV @cnt_tag: V @cnt_tag: V+1 @cnt_tag: V+1
1: lookup
2: inc
N Eph ral St
3: insert © (b) Ephemeral Store 1:1 3:1
4: push 0 2: v+l B 5 6: 4-v
= | | @ O | @ |
6: sub T Accumulator 4;1 e:T
; :})r\;;rd D <empty> D <empty> | V+1 D <empty>
9: drop | <empty> | <empty> D <empty> | <empty>
Stack & pointer
Packet code
' cnt_tag ' cnt_tag ' cnt_tag ' cnt_tag

Packet Data & pointer
(a) (b) (c) (d)

Figure 4.4: VPU interpretation of COUNT WASP packet

design around an accumulator simplified multiplexing/diiplexing logic of ancient 8-

bit microprocessors, the VPU interpreter code for almdshalopcodes will be simplified

if we know the accumulator is the only place where resultsagoywe can then map it
directly to one of the real processor’s registers. Singlerand instructions such aw,
decandnotwill for instance operate directly on the accumulator. Wheeeond operand

is required for arithmetic and logic operations, the top tack is used. The stack is
manipulated througpushandpopopcodes and ALU operation may remove one item at
the top. In a purstack-baseanachineaddwould instead use the two operands from the
stack, remove them and push the result instead.

In some sense the accumulator can be seen as an extension sthtk for ALU
operations. However, other operations (sucloakup are implicitly destructive and will
replace the old value of the accumulator with the new one. Rieguhe code to explicitly
save the previous value througlpashwhen needed is one of those compromise that can
keep the interpretor small enough. Unlike a stack, the aoctator is never “full” or
“empty”, and code for altering or checking the stack poimi@n thus be omitted in many
cases.

A Simple Example: Emulating COUNT Instruction

Fig. 4.4 illustrates how a small bytecode program can implaithe ESP “COUNT” op-
eration and how the ESS, accumulator, stack and packet datsed together to achieve
this goal.

(a) Packet emulation always begins in a known, clean stdtedata pointer at the start
of data packet, accumulator cleared, etc.

(b) lookup uses the packet-carried keypf _tag) to access the ESS and store the
value inacc. Our semantic is to leave the accumulator unmodified wheRefies
missing, and since the VPU guaranteesto be initially zero, we can skip the “set
to zero if undefined” step.

42 CHAPTER 4. THE WASP PLATFORM

immediate decode memory decode misc. decode
00 I I ol operation | 01 | y | X | C |operation| | 11 | operation
immediate8

SSL SSR INC DEC

NOOP IN- LOOK | SWAP

BDEF BUN- IMM LAX SERT -up
DEF

SGN SAX PSH POP

LOAD | STOR | YLOD | YSTO
PULL | TRASH SHL SHR

FWD | DROP RET ABRT

LIX8 | LIX16 | LIX32 | LIX64 ALU decode
| 10 I I nsl nal operation RND MAP EXT
branch decode ADD | SUB | OR | AND note: only opcode page 0
of misc. operations is used
00 1]iz)injz]|n . so far. We still have 48
I X I L tl P | | XOR NOT ATl (k=3 unassigned opcodes ...
Immediate

Figure 4.5 The instruction set of WASP processor, grouped by “decoding familgt share
common sub-operations

(c) after incrementation, the counter value is written becithe ESS withinsert
Note that the data pointer hasn’t moved so far, so we'rerstilsingcnt_tag as
key. The incremented valué + 1 is also explicitly saved on the stack wiplush
opcode.

(d) as detailed at the start of section 4.2, COUNT packet ig torwarded as long
as the updated valug is below a packet-stored threshold. In this packet’s case,
the threshold was the immediate valbie The last four instructions perform the
comparison and eithdorward ordrop the packet accordingly.

Hierarchically-Organised Decoder

While designing the instruction set for WASP, it appeared thast of the instructions
could be grouped into a “family” that would share a significpart of the interpretation
code. For instance, all instructions in “immediate decaakd to extract one extra byte
from the instructions stream and all “ALU” operations needdtrieve an operand from
the stack and update ALU flags. We decided to extend theseire and to provide
“per-family” instructions modifiers that will e.g. tell witeer the result of an ALU opera-
tion should or shouldn’t be written to the accumulatdiut also whether the data pointer
in the packet should be advanced (fH¢X modifier that will appear several times in
examples). This is one of the design decisions that has tead interpreter smaller than
the implementation of ESP operations on the x86 target.

’comparison operations can usually be achieved by sulairactibitwise logical functions where only
the flags are updated and the numerical result is discarded

4.2. FROM ESP OPERATIONS TO WASP VPU 43

4.2.2 Packet Variables

TheCOUNPacket is one of the rare cases where there’s no need farginformation in
the packet as result of evaluation, and the threshold wal enwugh to fit an immediate
constant inlined in the code. In many other situations, welrieue variables to be present
in the packet:

e larger operands are impractical for “imm(xx)” opcode and véther be loaded
from the packet’s “data” section;

e we might want to retrieve the current valuearit tag on a router, store it in the
packet and inspect it on the end-system;

e Wwe might even want to build a list of values on the packet, gatly one item on
each traversed router.

In the case of WASP, values stored in the data section of WAEs)fams” are used as
banks of RAM memory by the virtual processing unit. On the otige, ANTS capsules
can reference any number of sub-objects of any type. Thesdeaserialised when the
packet is received by the router an re-serialised when pasKerwarded. Previous
studies with ANTS [Wetherall99] have however highlightédttserialization steps can
be a significant share of active packet processing (up to 428632% of the smallest
ANTS capsule, respectively) and motivated active netwagighers to find solutions
where data can be manipulatedlace

WASP data section also has a fixed size. When the source emifsS# \fyacket, it
decides how many bytes will be present in the data portiongawel them their initial
value. If we want a “traceroute” packet collecting the IP r@dg of traversed routers,
and expect up to 16 routers to be met, we need to provision &&lmf data storage at
the source and to write packet code that will write values aifter the other (e.g. using
an additional packet variable as an index in that array).s Eontrasts with the SNAP
language where packets carry a stack of data that can grovstamtk as the packet
gathers or consumes values on routers, at the expense ofeacamoplex reassembling
before the packet can be forwarded. The fact that an ESP (#&®P)instruction may
be attached to a regular TCP or UDP packet by the source aégoiatafixed-sizedata
section rather than something like SNAP’s stacks.

Accessing Packet Variables

The VPU offersload andstore opcodes to exchange data between packet variables
and the accumulator. The actual variable to be read or writies pointed by théndex
register X. While RISC computers typically have a memory address encuadtbdthe
“load” instructions, the VPU requires that the address & foaded in the index register
through one of th&IX xx opcode and only then used wited , store or any of the
ESS access instruction (where it indicates the key to be)used

The analysis of operations available on the ESP router hesaled frequent cases
where a variable is read, modified and written back beforeo#imgr memory reference is

8This is sometimes also known asmrshallingandunmarshallingof the data

44 CHAPTER 4. THE WASP PLATFORM

issued, meaning that we can save one of the addresses iéatidimory operations use
the index register to indicate the address they're opayaim It is also frequent — due
to the small program size and the absence of loops — thatolesi@an be organised in
the packet so that code access them in sequence rather thamdiom order. This has
motivated the presence of thiX (for INcrement indeX register) modifier that allows
any of the memory-referencing instruction to post-incratriee data pointer.

To many aspects, this makes data access from the VPU look fikechccessing
the data tape of &uring Machine with the option of jumping to a specific position when
needed. When data access are carefully designed and takeagkvaflNX to avoid extra
explicit addresses in the program allowed us to halve thgtlheof bytecode implementing
COLLECTinstruction, with a substantially improved interpretatspeed.

Variable Types (absence of ...)

The virtual processor only knows two types of data: integdues and keys, and in most
cases, it doesn’t even distinguish the two. As soon as a tatais loaded in the ALU,
the VPU assumes it is an integer and allows all ALU operatars. Similarily, any data
item?® in the data section can be used as a key regardlelswft was put in the data
section.

In contrast, the SNAP interpreter also supports floats)gdr{though there’s no oper-
ator to modify them) and opaque data types and the langusejéig type-safe Unlike
WASP, SNAP is mainly designed as a glue between core sensoese of which may
require string arguments (such as a path in the Managementiation Base of SNMP)
and others may return parameters for other services agstaswell. It is clear that inter-
facing service components in a way that allow compondéms trust parameters received
from componenty” even if they have been exposed to a script requires strogger t
checking (and the presence of core-service definable typags)implementing WASP
programs.

The ability to manipulate keys through the VPU is a new funaiity brought by
WASP; ESP packets are less flexible in that regard since tharst&cs of a given data in
the packet is defined by the operation’s pseudo-code andd@ed in the router. Since
an end-user is allowed to generate ESP packets requestinkess anyway, we don't
believe restricting modification of those keys by the pagkegram improve the safety of
the platform. This may even be a key feature to enable moreistogated programs that
are sensible to some context information to pick the key’teeoing to use or decide of
a random key on the router itself.

The only data type really manipulated by the VPU is thus @4thisigned integers.
However, our experience with ESP has shown that applicatiesigners rarely need 64-
bit for their items. To allow storage of thresholds, IP adds®s etc. without wasting
space in the ESS or in packets, we allowlibwed andstore microbytes to operate on
smaller data items (bytes, 16-bit and 32-bit words). Thdiegion designed, through
one of theLIX xx microbytes, indicates the transfer size for subsequeats sistore s
and the VPU automatically expands and truncates valuesgsatke moved between the

®properly aligned on a 64-bit boundary

4.2. FROM ESP OPERATIONS TO WASP VPU 45

ALU and storage elements. As a side effect, INX advanceer®/ packet data uniés
defined in the “size” part of the index registédX8(p) ; INX will position the data
pointer one byte aftgn while LIX32(p) ; INX will place it 4 byte afteip. The result
is that, once the size and the base of an array of homogeneous has been defined by
LIX , we can scan the array by just repeatiff@AD|INX microbyte.

4.2.3 Environment Variables

With ephemeral store and the VPU alone, our expressivemesaims quite restricted.
As explained in the introduction, most of the monitoring gations require additional
information such as comparing the timestamps of two packetduate the current load
of the output link, etc. Other interesting information magyfbund in the IP header itself,
such as the actual source and destination, or the TTL of tblespalt is frequent to offer
a programming interface to access such information in @ctetworking. In SNAP, for
instance, it is provided by a collection of context-polliagcodes, but none is defined
with ESP. There was actually no need to define such an ineeifid€SP as the processing
was implemented by native code, but in WASP, they becomeitirenfeatures just like
ephemeral store access.

Rather than dedicating opcodes a la SNAP, we chose to offes, rinterface and
packet information through banks of read-only memory thASR programs can access
just like they access packet variables. Memory that can deeaded by OADandSTORE
microbytes is split in banks of 32 bytes, and each bank inescahether it can be written
or not.

Planned Per-Node Information

The node information bankontains environment variable that are global to the whole
router including thdeatures bitfieldwhich indicates whether the node supports MPLS,
IPv6, DiffServ, etc. This also includes for instance the gistimestamp with enough
precision (e.g.1us) to allow packet-related functions to be described, butigahtly
large (e.g. 32-bit) so that we can at least detect periodgdsarin addition, a second field
giving thenode uptimen seconds can be used when larger timescales are needed.

This bank also provides theode identifierand itsdomain identifiertwo 64-bit num-
bers that help figure out the topology of the network. EveryJgBf a single router will of
course provide the sanmede identifieand similarily we expect all the routers of a given
autonomous system to have the same domain identifier. Wil&dibmain” as seen by
wasp doesn’t necessarily match the autonomous system mutmeguires that any node
between two nodes; andn, that are member of domaib is also a member of domain
D. Moreover, some of the functionalities reported by fis@uresfield are inherently ho-
mogeneous over the whole domain. If a nadedvertises e.g. DiffServ quality-of-service
support, it implies the whole domain it belongs to is Difféeompatible.

Only core functionalities are described@aturedield, so that end-system can quickly
have a overview of what the network supports. Other bits trdgfine whether the current
node is an ingress, egress, core or end system and whetkén i istub, transit or core

46 CHAPTER 4. THE WASP PLATFORM

] Load @queue_state) ;

lookup Skey; | test (heavy_loaded bit);

EEISE (+71h) - DIROIPA | | bnz (+1); Forwarp;

FORWARD; /| insert skey;

S$key=0xdecafbad ! !'| FORWARD;

]
MPEG DATA (bframe) \ ! Skey=0xdecafbad

/_\/ ! | MPEG DATA (iframe)
-y]

~ - | 1 /_\ /
,

MPEG - Stream %

WASP router

frames dependencies

Figure 4.6 WASP code attached to MPEG | and B frames to implement smart dropping

domain. More detailed information could be provided at tisertion of the operator, for
instance by means of protected tags computed from a hasharfidesd capability name.

4.3 The Ephemeral State Store

A Simple Example

Most active protocols will need information to be stored pemarily on intermediate
nodes, so that it can be later retrieved by other active packeollowing the example
of MPEG flow processing (see Sec. 2.3.2), we could drop irgdrateB framesof a
video stream if thd frame they refer to has been dropped by the node or if it is likely
to be dropped, for instance due to a congested output linis rélquired frameto leave
information on the router status for further frames. Theestiefined by théframeshould

be distinct from states of other traffics (e.g. other applees, other end-systems) and is
only useful as long as some dependBiffamesare present in the network. Itis important
for network availability and performance that this localrsige remains easy to manage
and can automatically discard information that is no lorggtinent.

Figure 4.6 illustrates an implementation of that seledtigene filter with WASP pro-
grams. The code fdrframe checks a bit in the interface environments variables to-eval
uate the load on the output interface (e.g., set by a RED quaneager). If the queue is
too heavily loaded, a new entry is creat@wsért) in the router’s store.

All B framesthat depend on thatframewill carry the same key that acts as a unique
identifier of the application flow and group of pictures (dgdecafbad), and use it to
retrieve (ookup) the state and drop themselves if they are instructed to do so

Soft-Store vs. Ephemeral Store

ANTS [Wetherall98] and many other platforms ss#t-statebased memory management
to release memory that has not been used by packets for a@iweant of time. Each

item of a soft-store has an associated expiration timerishaset everytime the item is
accessed. Soft-state is common practice in network prtsdocensure devices do not

4.3. THE EPHEMERAL STATE STORE a7

Put(k, =
ut(k,5) Get(k)=5 Put(k,3) Get(k)=3

“f ———————— 10 s—l —————————————

Y I SOFT |

v EPHEMERAL STATE Y ‘ Get(k)=nil

Figure 4.7: Comparing the soft store against the ephemeral store whking 10 seconds

keep obsolete information: as long as the entities refreslr £ntries at least every
seconds, the information is kept. If an entity fails to refréhe information for more than
T seconds, the information is lost. Unfortunately, the stdi-e may become pretty hard
to manage, especially when it comes to tell whether therebeilsufficient memory to
accept a new flow.

It has been shown in [Calvert02] that memory will be much edsienanage in the
ephemeral stor@approach, that is if the store only keeps data for a constmbg (10
seconds)regardless of how frequent the data is referenced during pleaiod (see Fig.
4.7). If we also ensure that all the data slots in the store Hasame size, collecting free-
for-reuse slots becomes simple enough to execute withsturding packet forwarding
tasks on the router, and checking if the router will have sigffit resources to process an
additional flow simply requires that the router checks howyndifferent slots are used
by the flow. ESP terminology us&sSS entriesr when it refers to thékey, value) pairs
and the 64-bit word used to identify the value is caliaglor key.

Note that no access control is required for tags. It is simglyumed that each source
picks up a random 64-bit word and uses it whenever it needy.attew members of
a distributed application agree on the same key for a givesiae, how this key is ex-
changed to avoid eavesdropping is left to the applicatiselfit With randomly chosen
tags, [Calvert02] shows that the probability that e.g. a (@erong 16 millions) picking
tag X for the time periodt . . . t + 7] has a probability of 0~'2 to experience a collision,
meaning that the probability of at least one pair of useif &hong 16 million) pick
the same tag remains ®0—>. Even under those circumstances, a collision will only be
experienced if the two flows share at least one WASP routen@in path.

4.3.1 Ephemeral State Store Implementation

The Ephemeral State Store is implemented as a two-tabletsteu The largest one (typ-
ically held in DRAM) is theentry table which stores the (tag, value) pairs. Each time a
new entry must be created, the entry immediately after thtedlae is allocated, until the
next_available pointer reaches thiast_cleared , Which corresponds to a full
table. Every time ticks, a cleaning procedure sweeps tHe taidl advances tHast-
_cleared pointer so that all the remaining valid entries have a coedime less tham
seconds in the past. Since the entries are stored in chiginal@rder, cleaning operation
is fairly simple.

48 CHAPTER 4. THE WASP PLATFORM

tag next ctime value
X1 &
\ last_cleared
\y T '/0
hash chain<
Na .
T e eiries
Hash Table D 'S

next_available
Entry Table:

Figure 4.8 Layout of the Ephemeral Store. Valid entries are betwleaat _cl ear ed and
next avail abl e

In addition to the entry table, the state store also featesh tablehat contain®”
chain pointer¥ and that will be used to retrieve a specific tag in the entrietaVhen
a given tagTl’ is searched, we first compute its hash okeits x = h(7T) and lookup
hash|x]. If that entry is empty, the ta@ is not present in the store, otherwige,sh[z]
indicates the address of the oldest entry which tag matdietidsh. As shown on Fig.
4.8, when several tags in the store matched the same hagharénehained together
thanks to the “next” field of the entry. The ESP router willnh&alk the chain until the
matching tag is found.

In the native implementation of the ESP, operations araldivinto three phases. In
the first phase, all the lookups in the ephemeral store aferpged, and addresses of
the entries in DRAM (either existing or created) are kept talaegisters'. The second
step is the operation proper, which only manipulates thallmmisters. If the operation
completes successfully, the third phase will write back#seilts using the addresses kept
in phase one. The third phase thus requires no addition&invgathrough the table.

4.3.2 Managing the State Store

One of the advantages of the ephemeral state is that, unliteeicase of soft-state, the
system designer can compute in advance how much memory evihiough to handle
the worst traffic scenario (e.g. full load on the interfacethwhe smallest packets, all
requesting new entries in the ESS). In [Calvert03], the asthitustrate that principle
with the implementation of ESP on the IXP1200 network preoesWith a flow of10°
packets per second, and if at most 2 entries can be createe steite store by each packet
(corresponding to 1280 bit-second of storage),0° entries of ephemeral state will never
overflow — which asks for 46MB of ephemeral state on the device

1010 [Imam03], the hash table was?® slots large
or other low-latency memory resources such as the scraladacal memory in the case of IXP2400
implementation

4.3. THE EPHEMERAL STATE STORE 49

However, according to [NPForum03], a dual IXP2400 systaml{sas the IXDP2400
development board) may face up 12 - 10° packets per second when all packets have
minimal size (64 bytes). With a packet size of 128, 256, a2l fytes, the forwarding
rate drops to aroun@l5, 3.8 and 2 Mpps, respectively. In the worst case, it means we now
need 2746 MB of ephemeral state if we want to guarantee ttemflow cannot occur. For
WASP, where ESS entries have been extended to 32 bytes,2lié8éVB only allow the
referencing of one entry per packet, which will probablyuesl the flexibility of WASP
programs significantly. On the other hand, well-built WAS ets will typicallyreuse
entries created by other packets, which suggests a smtdterstore could statistically
handle a mix of legacy and wasp traffic with an acceptablefloveprobability. In that
case, however, the router wouldn't be protected againsabehESS service anymore.

We take the option ofot addressing this issue in WASP design but rather to leave it
open to the platform implementation. There are, howeveua elements of ESP/WASP
design that could help build solutions:

e since a network operator uses easily identifigirleate keysa WASP router could
reserve a portion of its physical memory to support privaggskonly, offering a
guarantee that network management applications based &Pi&main available
even in the event of a denial-of-storage attack.

¢ the 'computation ID’ (cID) of ESP packets clearly identifigkich packetseedto
be processed on the same store. For both performance aneskiconsideration,
the implementation is free to handle WASP packets on anyadeafESS provided
that packets carrying the same cID are handled on the same ESS

e a domain operator does not have to worry about fairness amiodgisers in gen-
eral, but only about fairness betwegsown clients In other words, all the traffic
from one ingress point could be aggregated when it comedltohiether the re-
guest for a new slot can be serviced.

We suggest that the WASP header receives carmptiress identifie(ilD) , an opaque
16-bit value that any WASP router within a domain could usguickly identify the quota
information that should apply to that packet. When a new paak#ves at an ingress
point, the router will stick the identifier of the receivingtérface in the WASP header.

Note that despite packets from the same source with diffemnputation IDcould be
handled on different ESS (and thus not sharing fate conogie8S availability), packets
with the same clDnustbe handled on the same ESS, regardless of their sourcestesti
addresses: failing to do so would prevent some ESS-basdidatpm to work properly.
As a result, even if many stores are available, it wouldn’tbeect to simply combine
the iID and the cID to balance requests among them and préwilgeess in that way.

Depending on the domain size, there might be too many or tedli2s to identify
all the ingress interfaces. We could imagine to combineptiegious domaiis ilD with
the unique interface ID of the ingress router to get a beli(that is, more accurately
identifying the traffic source) when few interfaces are usHdte however that, unlike
what’s done in [Yang05], the new iID still fits 16 bits and we miat build a ’list of iIDs’
that could be used as a path identifier (though the WASP codédvad course be free to
do so).

50 CHAPTER 4. THE WASP PLATFORM

In the opposite case where the domain has more 2Haimterfaces, further aggrega-
tion will be necessary (that is, the iID will not uniquely iy one interface but rather
a subset of the interfaces). This will act exactly as if therexe smaller 'aggregator’
domains submitting traffic to the 'core’ domain instead oéplarge domain. Similarly,
iIDs could be hashed on the router to retrieve one offthavailable quota slots — which
would only guarantee coarse fairness — or index a table ofagudefined by a service-
level agreement with the client connected to the correspgnithgress interface. The
operator is even free to re-allocate iIDs generated by theess routers and mix the two
techniques to offer fine-grain fairness to “premium” cleand coarse-grain fairness to
the masses.

4.3.3 Finer Access Control

As soon as WASP is used to locate services, packets need twsk-knownkey to
access information other participants might have left meos. Such a well-known key
can be for instance produced by hashing a service name, wiaikbs them easier to guess
for an external attacker than random keys of section 4.3.refoee WASP introduces
protected tagshat can only be modified bguper packets

If the domain operator ensures that no super packets can ftomeutside, the end
user can be sure that the information bound to the tag has detenp by the domain
operator. The node determines whether a tag is protectedtdoynchecking its key
against a specific pattefy and will allow writes to such tags only to packets that are
marked ‘super’ in their WASP header. Of course, this onlyksaof the network manager
filters out super packet coming from the outside.

Hash-Requesting Packets and Private Tags

When participants and attackers can come from the same dppratected tags are no
longer helpful. For such cases, WASP off@msvate tags, which work like protocol-
private data in ANTS. Unlike other tags, the applicationgpeanmer has no direct control
on the key that will be used for private tags. Instead, the WA8de will hash the code
contained in the packet and use the result aptheate keyfor that packet, which is kept
secret by the router. To make sure that regular packets datteohpt to use brute-force
scan, private tags have an identifiable prefix and any atteonde keys with that prefix
explicitly will abort packet execution.

If the hash method is carefully chosen (e.g. a one-way hkstsiHA-1), it means that
packets will have access to teameprivate spacenly if they have the same code, which
means we are sure they play the same game with same rules: tdade circumstances,
an attacker can only hope to break the protocol by sending rfwrless) packets than
expected by the protocol — which a properly designed prdtsicould handle anyway.
Note that the implementer of a WASP node is free to use any imashod that best suits
its hardware as the resulting hashes are used only on theutimgmode. The only rule

?highest 8 bits are all 1 in current implementation

4.4. REFERENCE IMPLEMENTATION ON X86 51

is that packets with the same hashed part operate on the saae pag and that packets
with different hashed parts operate on different privags ta

World-Readable, Protocol-Writable Tags

While private tags guarantee that a collection of participavill modify the state in the
router following a common set of rules (i.e. the protocdigit cost may not be accept-
able for packets that just need to follow the decision withaitering the state (e.g. a
multimedia stream). Each packet would also have to carryi@e protocol so that it
receives the same hash value, regardless of what part cbtleeig useful for itself.

As a result, theexpose opcode allows a hash-requesting packet to have its private
state accessible read-only as a protected tag. The resultass ESS tag that contains a
link to the private tag, which is transparently resolved by th&When a packet tries to
read it. Writing to an exposed tag via a link is of course naivadid.

Note that the presence of a link only tells that it exposegapei data, but notvhat
protocol exposes them. It will thus be up to the protocol designer suenthat the key
used for exposing the data cannot be guessed by an attadkes bee link is created. A
simple way to achieve this is to generate the key from a ranalamber on the router and
inform participants of its valuafter data has been exposed.

4.4 Reference Implementation on x86

Before starting the implementation of WASP on a network pssog it was important to
validate the concept and estimate the potential perforsman@ well-known architecture.
The availability of the ESP component as a Linux module (&ysion 2.4) led to the natu-
ral choice of x86/Linux for the reference environment. lcatieis module has been ported
to kernel 2.6 for both x86 and x86-64. An experimental porttfe XScale architecture
(the controlling processor of the IXP boards) is under catiph at the time of writing.

The Ephemeral State Processing component for Linux is saimletfilter module
[Welte07] that will intercept and process both stand-alané piggybacked ESP packets.
The netfilter API has been added to Linux kernel 2.4 to ease the construatimodular
firewalls. Severahooksare added to the default packet processing routine so tetirou
checks can tell whether packets can goNR (ACCEPT, should be droppeNF _DROP
etc. Netfilter defines 5 logical “locations” where hook cod@ te applied, out of which
three are especially interesting as they perfectly matetodationsdefined in ESP.

NF_IP_PRE_ROUTING: this hook is applied after IP packet has been received on a
network card and checked for validity, but prior routing idean is made. The
“indev” argument is pointing towards the receiving device;

NF_IP_FORWARD: this hook is applied right after the routing decision is madete
that packet destined for or originating from the local maeharenot processed
here.

52 CHAPTER 4. THE WASP PLATFORM

incoming packetd outgoing packets

Transport Protocol
H Handling |

v
NF_IP_LOCAL_IN NF_IP_LOCAL_OUT

'
A4

'
routing table NF 1P FORWARD routing table
lookup - - lookup

T l

forwarded packets ,

.
.
(NF_IP_PRE_ROUTING) (NF_IP_POST_ROUTING)
; 0

Y

retrieve ESP header
wrong location,
non-ESP or

not to execute

pick ESS

handle
return

discard
| packet

recompute

'

H v checksum
NIC driver ephemeral store: NIC driver ‘
(receive) (transmit)

@

Figure 4.9: Hooks in the Netfilter Architecture used by WASP router

NF_IP_POST_ROUTING this hook is applied before a packet is delivered to a target
network card for emission. The “outdev” argument will pdimthe device that will
have to send the packet.

In the context of this work, we modified the processing fumctof the ESP component
(depicted on Fig. 4.9) so that it can handle a new “operatighith happens to be the
interpretation of WASP bytecode. This policy guaranteeslly backward-compatible
packet format and processing semantic with ESP. In additidhenetfilter hook proper,
the WASP/ESP module also sets up a periodic timer that wilhksharge of collecting
the expired entries from the stores and updatesritezface statisticavailable through
WASP. Most of the node and interfaces environment variat@egin however statically
evaluated at module initialization and reloading the medwill be necessary after one
changes the IP address of a network card or connects a 100l a 10Mbps peer.

4.4.1 Validating the VPU'’s behaviour

Once the code for the virtual processor was written, andrbegtarting the integration
in a Linux module, we ran a collection of tests to ensure thatMPU was operating as
expected, including checks of the arithmetic operationseitions/lookups in the state
store, branches, etc. in a user mode environment. Thesecssist of a collection of
benchmark “packets” that are prepared in data structugksu#mitted to a VPU instance.
The resulting packets are then checked against asserienstre the proper results were
obtained.

This testing environment also proved very useful to dedignWASP programs used
to emulate ESP operations. In a normal packet processinganwent, the corg_init
andv_execute functions are called one after another and the resulting sththe
persistentvPUstructure is ignored: only the content of the packet itset! the return
code telling whether packet is forwarded, dropped, etc. naeaningful. In the case

4.4. REFERENCE IMPLEMENTATION ON X86 53

WASP vs ESP (CPU cycles)

2750+

2500-| (MESP
[l waspP
2250 | WASP+map
2000+
1750
1500+
1250
1000
750-|
500-|
ol
o L

count collect rchild rcollect

Figure 4.10 Comparing operation processing time, when executing native code (E&®pret-
ing WASP code based only omser t /Il ookup (WASP) or using the additionaap opcode
(WASP+MAP).

of the functions provided inpulib such as/pu_trace , we manipulate the packet’s
bytecode to insert “breakpoints” after every instructiand forcev_execute to operate
step by step on the packet. We can then read the state of thed/ptovide a meaningful
trace of the packet’s execution.

A second use of the “VPU library” in user mode is to profile tReaution of VPU and
ESP operations. Theme stamp countesf the Pentium processor is used to compute how
many CPU cycles have been spent during the processingeofecute andv_init
in order to compare their overhead against “native” impletagon of ESP operations.
Since code execution can be subject to several unpreddctabhts such as cache misses,
mispredicted branches or even simply interruption by Keroée, the actual measurement
is repeated 1000 tim&$ and the average timing is reported. Special care needgakée
to ensure that the virtual node remains in the same statesbatthe tests, so that the same
(longest) code sequence is evaluated at each iterationevera cases, these profiling
output were precious to choose one approach over the otliee implementation of the
VPU, such as deciding of the most interesting size for irgkstructures or organization
of virtual registers.

Fig. 4.10 shows the resulting measures obtained with thieigue on a Pentium I
machine running at 1GHz. Those results are pretty encaugagg we managed to have
interpreted code taking no more than 250% of native codethaue’s clearly room for
improvement. We will see in Sec. 4.4.3 how we can modify theeas to ESS entries
(through themap opcode) to speed up WASP interpreter.

4.4.2 Experimenting WASP with Linux

First of all, we have checked that WASP packets were handiexzkpected. The WASP
Linux module is installed olumblebegan AMD 300MHz debian machine, directly
connected to our workstation (asmodan). A collection oflktoals running on asmodan

13This is an empiric-defined value. Our tests have shown tHaesabtained with more iterations were
not more precise. The average also ignores iterationsterd by the kernel.

54 CHAPTER 4. THE WASP PLATFORM

No. l‘ﬁme J Source Destination IProtucuI | Info J =l
T T Toz oo s T9Z Too IoT A T2z TU5 TS TS5 9T U0 0U Ia oL ETT
4945 18.058104 192.168.1.1 192.168.1.3 IP Unknown (0xc8)
4 ! TCMP ™

. 1. 2 A LCMF estinatlion unrea
4947 0. 001183 192 168 1 1 192 165 1.3 IP Unknown (0xc8)

4949 0. 301964 192 168 1 1 192 165 1x3
4951 0. @00924
1 1,3 L.
4953 0.004986 192.168.1.1 192.168.1.3 IP unknnwh (OXCB)
4254 . 192.168.1.3 192.168.1.1 ICMF stination un
4955 0.386003 192.168.1.1 152.168.1.3 P unkmnwh (OXCB)
4956 0.001580 Unknown (0xc8)
4957 0.001385 192.168.1.1 192.168.1.3 P Unknown (0xc8)

4958 0.002403 182.168.1.1 192.168.1.3 P Unknown (0xc8)

4958 0.001240 192.168.1.1 192.168.1.3 IP Unknown (0xcg)

4960 4.595064 192.168.1.3 182.168.1.1 ARP Who has 192.168.1.17 Tell 192.168.1.3
4961 0.000027 192.168.1.1 182.168.1.3 ARP 192.168.1.1 1s at 00:ca:fe:ba:be:@0

| A EN

Fragment offset: ©

Time to live: 64

Prntncﬂl: @

Header checksum: 0xb692 [correct]

Source: 192.168.1.1 (192.168.1.1)

Destination: 192.168.1.3 (192.168.1.3)
Data (58 bytes)

[N]

Figure 4.11 Running WASP “count(5)” packets experiment. We can observe ®tsitiat made
it through the WASP filters (1), then 5 packets that were dropped by teives (2). Despite
Ethereal’s ignorance of the protocol (3), we can identify ESP headear{d WASP bytecode (5)
in the “raw data” section

will then send WASP or ESP packets to bumblebee, usingaivesocketAPI to forge the
appropriate transport-layer protocol unit. In additiorthe debugging messages logged
by the module, we can use network inspection tools sudtlresealethereal] to validate
our scenario. Of course, in this setup, is is mandatory thekgts are processed on the
input location.

Fig. 4.11 illustrates one of the most elementary test we gan a collection of 10
COUNT packets with a threshold of 5 are sent to bumblebeesalbuhe same tag. The
first five of them will find a counter value below 5 in the ESS anel thus allowed to
pass the netfilter, while the remaining five ones should bemld by the filter. After
passing through the netfilter, the WASP packets are detiveydoumblebee’s network
stack, and as the Linux kernel doesn’'t know about ESP/WAS&Rsport protocol, an
ICMP error message (destination unreachable) is sent babk source. These message
are especially useful for debugging as they include thendffeg packet in their payload
which allow us to check the VPU's output.

For more sophisticated test cases, suclt@kect operation where we need to
sendcount packets first, the ESP statistics provided through/pinec filesystem can
give a nice overview of what's going on. E.g. after sendingcb@nt(5) and 10
collect(3) packets, we can see that the netfilter hook has been invokeitin2e,
and that 6 packets were accepted (presumably the Sdiustt s and the lastollect)
and that 14 packets were dropped (lastdbint s plus the nine firstollect s which
had to “wait” for the final result to be available). Once agdims can be confirmed by
ethereal and we can check in the final ICMP error packet thathevalue is indeed cor-
rect. Such quick checks can become handy when test casedartblousands of packets
rather than a few.

The IP header plus 64 first bytes of payload, according to RFT 7

4.4. REFERENCE IMPLEMENTATION ON X86 55

ESP noop ‘ [] Other

‘ ‘ [l Processing time
‘ Checksum time
‘ ‘ IP time

WASP noop

ESP count ‘

WASP count

ESP collect ‘

WASP collect

\ \ \ \ \
0 10 20 30 40 50 60 70 80

Figure 4.12 Forwarding latencies on mylady, in microseconds, showing how diffetages of
packet processing contribute to the latency

We further confirmed the experiment by repeating it over almgy including Linux
routers and Cisco equipments to ensure “regular” routere wapable of forwarding
WASP packets even if they were not equipped with WASP, usoty k86, x86-64 and
XScale systems as a host.

Robustness tests included the submissionceint WASP packets to a host during
a period of several hours. This test has revealed a flaw inghereeral store imple-
mentation from University of Kentucky [CalvertO3w], due tongssing check in the ESS
cleaning process. Whesss_clean function reached the end of an ESS table, it wasn't
correctly wrapped back to the start of the table, leadingkerael crash. This flaw and a
few others were fixed in [MartinO6w] and reported to Calvete'am.

WASP on a Linux Router

The timings presented on Fig. 4.10 only take into accountithe required to execute
the WASP packet’s bytecode or the ESP operation’s routimlg,ane of the steps among
all the operations involved in forwarding a packet on a Limauter. To evaluate the
actual overhead, we compared the forwarding latency —he time spent between the
reception of the packet agthOand the transmission of the forwarded packeétril— on
mylady a 300MHz Pentium Il router featuring Linux kernel 2.4.18.avoid interference
with othernetfilter hooks, thaptablesfirewall was deactivated during the tests, and we
tried to minimize cross-traffic on the routers to minimizeegaing delays. Under these
conditions,myladytook on averagd4.6.s to forward an ICMP “echo request” packet
and99.8us to reply to a “ping”.

Packets were captured usietherealtool and stored ifdibpcap-compatible traces,
which were then processed by a custom Perl script to extraeaband departure time
of each packet, computing the average latency for each gpb{¢CMP, WASP, ESP,
UDP, TCP, etc). As Fig. 4.12 shows, there’s only a differenfcE386 between the total
forwarding time ofESP:count (59.42us) and WASP:count (67.65us) packets. A
similar interpretation overhead can be observect@dlect operation (16%, as WASP
took on averag&1.8..s against1.77us for ESP).

To better understand where the difference comes from, wesuned the latency of
the same packet flows when the WASP/ESP module is not loadedhwives us the

56 CHAPTER 4. THE WASP PLATFORM

IP forwarding timeof each packet. “IP forwarding” include the time requiredétrieve
the packet from the interface card, lookup the routing tadhgueueing and transmitting
the packet. Since all our packets have similar size and gbegsame destination, the
IP time is roughly constant for each packet. What does morerdepn the packet size,
however, is the time required by our module to computeGR& checksuraver the ESP
operation (or WASP program). While its contribution is sehssmaller, it may require
between 600 and 800 cycles on a Pentium-based machine, aeeds to be computed
twice per packet (first to check the received packet is coreex then to reflect the new
payload), which contributes to 7% of the forwarding timehe tase ofWASP:count ,
for instance.

What remains corresponds to the time sperinnxesp_hook function and can
be further split betweeprocessinghe WASP code proper and other supporting code,
such as locating the ESP header, identifying the propes state, checking the location,
etc. In addition, some of the supporting code must be caflegkttimes (on input, output
and center hooks) even if only one location needs to exebetedde. To evaluate the
contribution of the ESP processing routines that we profitesiection 4.4.1, we issued
noop packets that have the same sizeasnt packets but the simplest forwarding code.
To implementESP:noop , we simply used th&SP:compare packet, that has the same
size asESP:count , but we replaced the processing function with a functiomgaio
ESS access and just indicating that the packet should bafded. In the case of WASP,
thenoop packet starts with BWDmicrobyte and is padded witiOPmicrobytes to have
the same size a4/ ASP:count . The difference betweeWASP:noop andESP:noop
latencies is the overhead required to initialize the VP waiil be present for all other
WASP packets. Since time for “other support code” measurigud BSP:noop is inde-
pendent of the packet constant, we can now estimatprdeessing timeontribution of
each kind of packet.

Portability

For reader’s information, here follows the list of thingsitimeed adjustments in WASP
Linux module to allow portability across x86, x86-64 and Xfcarchitectures.

e CRC32 code needs adaptation to work on 64-bits machine (maipgting some
variables type).

e some of the kernel functions involved in packets reflectipgroute_ output
are obsolete in kernel 2.6 and had to be replaced ugirigute_output_key).

e encoding of ESP header is no longer correct on big-endiammes. We replaced
the C bitfields with explicit operations on individual bitstbe “flags” field.

e GCC back-ends for ARM and Intel x86 family do not have the same&ctire
padding and alignment rules. This is especially an issue tvé ESP header which
is only 6 bytes long to ensure word-alignment of ESP opera@dghe StrongARM
target, this structure was silently expanded to 8 bytes eytmpiler, screwing up
packet format.

11

4.4. REFERENCE IMPLEMENTATION ON X86 57

Listing 4.1:implementation of ESP “count” operation in Linux

static int esp_count{nt ess_no,operandxt operands)
{
value t cur_val;
ess_item_# item=ess_find_create(ess_no, COUNT VAL TAG, NULL);
if (litem) return —ESP_ERR_ESS_ FAILURE;
cur_val=ess_read (item);
cur_val=value_increase (cur_val ,1);
ess_write (item,cur_val);
if (value_comp(cur_val, COUNT_THRESH HOLD)<= 0) {
return ESP_ACCEPT;
} else {
return ESP_DROP;

}

}

4.4.3 More Efficient Access to ESS in WASP

Among all microbytes, interactions with the ephemeralessidre are the most important
to tune, as they are the most costly operations the VPU wil ha handle. In the case
of ESP implementation (on both x86 and IXP network procegséor instance, a lookup
does not only return thealueof the tag, but also a pointer to the entry itself that is later
used to write back the new result after the operation is cetagl(see line 11 on listing
4.1). Beside the cost of looking up the hash table (and hagshentpg), this can save us
from walking the chain in the ephemeral state in the caselb$ioms in the hash table.

In the case of WASP VPU, however, only the values are viewetheyrogrammer,
and a lookup-and-update cycle can only be identified by tbitifeat the same key is used
for thelookupand the nextipdate Things are further complicated by the fact that the data
pointer could have been moved or the key could have been rddifthe packet’s storage
area bystore microbytes issued betwedmokup andinsert . In other words, we
need to store the “resolved pointers” to ESS entries in aec@einsparent to the bytecode
programmer. We tested two cache policies, using the bendimgeramework described
in section 4.4.1:

no caching every lookup or insert is independent of any previous ES $abio®.
small cache the cache has a single entry that keeps the last resolvet&poin

full cache the cache has one entry for every possible key location.eShmere’s a max-
imum of 128 bytes for packet data and that keys must be aligneg#-bit bound-
aries, that makes a maximum of 16 tags to keep track of. Whehtkhkey in the
packet is used to lookup an entry, the correspondinge[k| entry is used and the
kth bit of cache controlling variable is set.

Table 4.1 show the measured timings for each caching paftidycampare them with
the “native” implementation of the equivalent ESP operatidote that thesmall caching

58 CHAPTER 4. THE WASP PLATFORM

policy behaves better thdnll cachinghere. This can be explained by the fact that ESP
operations (as described in [CalvertO5w]) don't look up fagieen variable more than
once and that updates can be done before another lookupiéslisthe “small caching”
policy is extremely efficient in those circumstances as tha tor setting up and main-
taining a more complex policy such &8l cachingis thus greater than the benefit one can
expect from the cache hit ratio.

Yet, generally speaking, it could be interesting to have aenflexible caching policy
than “small cache”. An implementation of WASP on IXP micrgeres, for instance,
could take advantage of the content-addressed memontyfaoilprovide a cache of a
few keys without requiring operations such &tere to be modified to enforce “full
cache” consistency.

Mapping Larger Entries

The idea of ESP was to provide a small amount of data per stcgagry — namely a
single 64-bit word. However, when we consider the applcatiof ESP (and WASP),
the state we process rarely remains atomic, but insteadsteid tuples. ThdRCHILD
and RCOLLECToperations used for the robust aggregation service, faameg, may
require 3 or 4 logical variables in the ESS to store all itsestin WASP, this is even more
concerning, since performance depends on the accessyftkays in the ESS. We could
make the VPU more efficient and easier to program if we'd allanger memory entries
in the ephemeral state.

We therefore decided to size up ESS entries to 32 Bytedich is enough to hold
all state required by the most complex ESP operation usinggheskey. Yet, 32 bytes
remains small enough so that protocols that required ondyGahbit value do not waste
too much memory. If we refer back to Fig. 4.8 that depicts thiternal structure of
the ephemeral store, we can observe that a single entryres(gd bytes of storage for
the tag, the 64-bit value and the control fields. In other wprderging two entries of
the “regular” ESS is enough to provide the requested 32 hyftssorage and, as soon
as a majority protocols require at least two values per nagge actually improving
memory efficiency. While the reference implementation singites upall entries, we
could rewrite the ESS access and cleaning procedures stwihd4-bytes entries are
effectively merged when a “bank” is requested.

For the network programmer, these enlarged entries aréablaithrough an addi-
tional bank of memory, using a new indexing registé) &nd a new pair of opcodes for

Swhich happens to be the size of a “memory bank” in the VPU: taaglarity at which we can define
read/write capabilities and access non-contiguous palsiemory

no caching| full | small| mapping| native
count 721 637 | 592 586 349
collect 1245 1082 | 958 842 633
rchild 2058 1830| 1845| 1509 775
rcollect 2980 2438 | 2394 | 2020 | 1091

Table 4.1 Comparing caching policies. Timings in CPU cycles on 1GHz Pentium llI

4.4. REFERENCE IMPLEMENTATION ON X86 59

|:> bank mapping

Figure 4.13 A summary of new memory-related opcodesser t andl ookup for direct access
to a 64-bit value from the ESBpad, st or e, yl oad andyst or e for exchanging data between
the accumulator and memory banks,x, map andswyx defining what is available through the
X andY banks

loading and storing values (namefijpad andystore). We can thus read individual
bytes, or aligned 16, 32 and 64-bit words out of a mapped antrich gives additional
flexibility to the programmer over the fixed-size of the reguwntries. Having two sepa-
rate banks for ESS mappings (defined through the meywopcode) and packet memory
compensate the lack of a more efficient way to implement trailylom access pattern to
memory resources of the VPU.

With the swyx opcode — which can be used to swap badkendY’, we can even
benefit of that new flexibility to perform copies from one paontof the packet to another
or between “environment variables” and packet data. Thawebr of those new opcodes
is summarized on 4.13.

As already shown on Tab. 4.1 and Fig. 4.10, rewriting WASHKe&scwith proper use
of themap opcode has allowed us to reduce execution time by about 308«caWeven
expect higher improvements on IXP architecture thanks tethitansfers with DRAM.
The “native” code we compare to, however, still uses 644ietsentry and would equally
benefit of larger entries even if we preferred to keep the saigeence through all the
tests.

Using the Pentium-based implementation, we compared theudiwn time of a se-
guence ofookup against amap followed by severalload . Tests show an improve-
ment of 18% (two variables per bank) to 35% (four variableshjaak) in the processing
time as soon as several variables need to be updated, andoeet @xprovement to be
even more important on saturated ESS storage (e.g. whesiaadl occur inside of the
ESS hash table).

Besides performance improvement, larger entries also pkigraficant role in the
support of operations atomicity in WASP. For protocols eotness, it is important we can
assume that state stored on routers always remains in aeculs¢ate. Either the program
behaves as expected and a new (coherent) state is writtethéstore, or the store should
be left untouched. In ESP, this is simply achieved by splitthe implementation in three
phases (lookup, compute, write back) that are typical ofsaations-based computing.

60 CHAPTER 4. THE WASP PLATFORM

By mappingESS entries that contain full protocol state, we can offeisgame correctness
without placing additional constraints on how packet cdaeutd be written. Modified
state is only written back to the ephemeral store when adlay anothemap opcode
or one of the packet control opcotteward ,return ordrop . If an error is detected
(either by the VPU or the packet’s program itself throwgdort), the modified state is
discarded and nothing is written back in the store.

Another potential interest in larger entries resides in shpport ofbloom filters
[Bloom70] operations with the VPU. In peer-to-peer literatuBloom filters [Zhao03]
are commonly used to offer a compact representation of asseteted with information
about where a more detailed set can be found. In its currgiementation, data aggre-
gation usingRCOLLECTrequires that each data source indicates whether it hastdeé
in the store or not by creating an entry whose tag is the nodergifier. While Calvert et
al. suggested that bloom filters could be used instead ta &¢(\N) state required on the
node, implementing bloom filters over 64-bit is less conwigdhan with 256-bit entries.
In the future, this might lead to additional microbytes tivatild copy, set or test bits over
a whole memory bank in a single VPU instruction.

4.4.4 Too Cheap, Really ?

Our goal is to make WASP “too cheap to measure” compared todFESP. To evaluate
whether we reached that goal, we ran a serie of throughpuunements comparing how
fast the x86 reference implementation is capable of hagdifiow mixingwasppackets
(a variant ofcountinstruction, 92 bytes on wire) aroulk packets (an IP header with
1024 bytes of payload). We crafted a packet-generator \&ithsockets API running on
bumblebeand sending packets througemodartowards a local source. Both machines
are connected using PCI RTL-8139 network cards that opendidliduplex 100Mbps
modé®.

Our packet generator runs a loop sending 100,000 packetsirgiiursts ofk wasp
packets and100 — k) bulk packets — with theendto system call. Ifsendto fails to
engueue the packet (e.g., because we already filled up lqraaks faster than what the
100Mbps card can handle), we introduce a small delay andgenauntil the packet is
successfully enqueued. We then monitored a collection wiflwith varying values ok
(and thus, varying average packet size) using lettierealandiptraf and measured the
generated load.

The first observation we can make is that the throughput ofsflommblebeecan
produce depends on the actual average packet size of thatvlbile large packets can
easily fill 97% of the wire, that value drops as soon as we auir®0% of small packets
and only 24Mbps are used when all packets are 92 bytes largethér observation is
that, without the intervention of a rate controller at thdatéan asmodans barely capable
of receiving 40% of the packets in the best case (largestgigck When the average
packet size decreases, the drop rate even increases amyl 38%r of the packets are
dropped when minimal size is used. While we haven't investigighe actual reason of

8as reported by ethtool

4.4. REFERENCE IMPLEMENTATION ON X86 61

Bandwidth from BumbleBee (count) BumbleBee Bandwidth (benchmark)
RS = e — 100 iinnuvﬁlﬁlrﬁ,‘“';-s"—-g-—.Tw::,@\ .
90 I 9 -+ o, I
L ', A
80 \ 2 80 T e M
\ =B 5 ", v
7 Vi 70 N
60 ‘\-'0:, = Forward » 60 ""» o BULK
8 N Y > Gl s 8 ¢ Check only
§ 50 N 8 S S 07 v Bench40
40 “ % 40 A COUNT
0 v, - 30| » Bench100
\v gy, B L
20 iz 20 -+
10 10
0 T T T T T T T T T T T T 1 0 T T T T T T 1
0 1 5 10 20 33 50 66 75 80 90 95 98 100 1024 880 800 720 640 560 512 400
WASP packets ratio (k) payload size

Figure 4.14 Maximum throughput achievable by 300MHz host (bumblebee) with (lefix af
92 bytes WASP and 1058 bytes bulk packets and (right) flows made ofdutit and benchmark
packets with homogeneous (but varying) packet size.

these drops, chances are that the receiving card is actuadlgle to follow 100Mbps
when all packets on the wire are to be caught.

A possible way to throttle down the emitter is to nptraf on bumblebee while emit-
ting. This has the effect of virtually halving the submittéuloughput (55Mbps whith
largest packets only), which the receiving card can nowovall We varied the average
packet size in this scenario and it appears that the lossaatbe maintained around 1%.
While we haven't investigated this behaviour either, it stgireasonable to assume that,
wheniptraf is running, packets we submit are also reported by the cagiining two
transfers over the PCI bus.

Host Performance

In order to measure the speed at whithimblebe&an submit packets, we're running the
packet generator without throttling in three differentrsmeos:

forward: no WASP module is loaded, neither on bumblebee, nor on asmddhés gives
us a comparison point about the performance of the legaay hetwork stack.

esp checking: WASP module is installed on bumblebee, but packets gemnktratpiest
execution onnput ESS and thus WASP hook terminates early for all packets. In
the case of “bulk” packets, this happens immediately afterdassification tests
while WASP packets will also inspect the “location” bits. tdd¢hat we reorganized
linuxesp_hook sothat CRCs aren't checked until we have the confirmation that
we are on the proper location.

wasp processing:this time, WASP packets request executionautput ESS and are
processed before being enqueuedbomblebee For those packets, two CRCs
are computed (over the 52 bytes of WASP payload) and the ttonstruction
is processed.

We can observe on Fig. 4.14(left) that, as long as there'saat [50% of “large” pack-
ets, all configurations behave roughly the same. Anotheresting fact is that after

62 CHAPTER 4. THE WASP PLATFORM

qdisc

Qdisc net_device (Fills)
ills .
+enqueue (sk_buff) qdisc_ingress |+name: [IFNAMSIZ] = | === === = >net_dewce_stats|
+dequeue [L—— {+if port: enum
q () . t_P ip_ptr +rx_dropped
+mtu +tx_dropped
next +tx_queue_len: max +rx_packets
+get_stats() +tx_packets
gstat +ethtools.getsettings() +rx_error
t
gnet_stats_queuel P im:{iirzg;
+backlog: bytes {fills}, 7 +collisions
+drops ’ in i
+qlen £ in_ifaddr
+overlimits ethtool_cmd +ifa_address: IP| ifd list

+cmd = ETHOOL_GSET +ifa_local
+speed: Mbps +ifa_mask
+duplex: bool

Figure 4.15 A simplified look at the structures, function calls and fields involved in node an
interface statistics reported by WASP

the “threshold” of 50%, the ratio between measured througbpith WASP module in-
stalled) and reference throughput (without WASP) remaandyf constant. The reader
should also note that while “normal” count packets are deapip the threshold is met,
the tweaked packets we generate hereabmaysforwarded.

A More Comprehensive Benchmark

In most WASP applications where bandwidth is a concern, waatousestandalone
WASP packets, but rather programs attached on regularct(effy. for enforcing prefer-
ential dropping on a video flow, measuring jitter). To sintelthat behaviour, we artifi-
cially “inflated” WASP packets to make them 1058 bytes on wasevell. In that case, the
performance degradation is solely due to our netfilter haokgssing, and not to some
interface-card side effect.

If we ensure that CRC manipulation only covers the WASP progdi@oh the entire
packet), then our “count” packets are indeed undistingloghfrom “bulk” packets for
payload sizes above 640 bytes. We thus ran further measaotemwéh abenchmark
packet that performs 8 ESS accesses, periodically chaedeyhand theomputation 1D
used by the generator (to fill the ESS) and copy a bank of memtwyhe packet. As Fig.
4.14 shows, that “benchmark” packet can still be generat&@ebps when all packets
in the flow require WASP processing — clearly expensive ehdadpe measured, but still
a honorable performance for the modest hardware runningabket generator. A flow
made only ofWASP:count packets behave slightly worse than a flow containing 40%
of “benchmark” packets and 60% of “bulk” packets.

With packet sizes lower than 100 bytes, even the code chgaidether the packet
should be executed on the VPU or not consumes too much CPUsadgckeep the inter-
face fully busy and we therefore didn’t include those figureee.

4.45 Node and Interfaces Statistics

Gathering and presenting statistics over node operatlfmosigh theenvironment vari-
ablesmemory banks in WASP is probably one of the trickiest parbgilementing WASP

4.4. REFERENCE IMPLEMENTATION ON X86 63

on Linux. Information is scattered in multiple structuresd Fig. 4.15), which all have
their own purpose. Theet_device structure for instance, which is our root to access
most information, is over 200 lines long and, besides lockksqueue entries of all types,
mainly contain pointers towards protocol-specific dategming disciplines instances,
etc. Unfortunately, an important number of these strustinave been revised between
versions 2.4 and 2.6 of the kernel and at the time of writingrevstill lacking a com-
prehensive documentation source covering the Linux nétsfarick (i.e. an equivalent of
[Wehrle03] or [Rio04] for 2.6).

When our module initializes, thepu_prepare_node function has to walk the
net_device list, checking each interface’s name and looking for a slatantry in the
list of in_ifaddr associated with the IP-specific sub-structuredevice , so that
we can fill address and netmask field for each interface stabiank. We also want to
offer a “primary node address” in the node state bank (i.ethasiode ID) but Linux
doesn’t provide such abstraction. Instead, each netwaikeenay have its own address.
We thus scan all the network interfaces to retrieve one thatehsuitable address (e.g.
we might prefer a routable address over a private 192.168)and pick one of the
remaining addresses as the node’s default address. Inceddite prepare the “static”
part of interface-related state.

In order to support QoS-related applications, we want te ger-interface statistics
such as packet drop ratio, or current and maximum bandw&time of these information
can be obtained from theet_device_stats structure and are periodically sampled
by vpu_update_stats() function. Only the queue’s length is updated “live” for
each packet processed by the WASP filter. It should be notddtir proof-of-concept
implementation of WASP on Linux doesn’t fully support QoS gqraeters yet and e.g.,
always advertises the full capacity to be available.

Due to the absence of division in the VPU, WASP programs nygeter prepared
statistics such as the ratio between current traffic loadistedface capacity rather than
the nominal traffic load itself. The interface capacity, lewer, is surprisingly difficult to
obtain and doesn’t appear anywhere in the device-relatectstes. Analysis of manage-
ment tools such as [ethtool] revealed that special IOCTLsca#tre made to the device
to have the device driver fill aathtool_cmd which reports interface speed (defined
during layer-2 negotiation) and full/half duplex statusor [evices that do not support
ethtooloperations, thé& port may provide the information, but it is clear that some
work should still be done in this area to have proper capaejprting of non-Ethernet
devices.

Concurrent Access

The VPU structure will contain all state required for execution oABP bytecode. In
order to ensure proper execution of a WASP packet, we neecke sure that only one
thread at a time will attempt to use a specific VPU structure.il&the usual solution
to this problem is to associatespinlockwith the structure, we can avoid this here and
offer higher throughput to multiprocessor systems by hgas many VPU structures as
hardware CPUs Using thesmp_processor_id() macro available in Linux, we can

64 CHAPTER 4. THE WASP PLATFORM

pick the right VPU every time we have to process a packet.eSime hooks are processed
with interrupts disabled, there’s no risk for a given CPU to start handling a new WASP
packet before the one we're interpreting gets completed.

It should further be noted that no restriction is putwamich locationthese VPUs are
bound to. A given VPU structure might once be associated &thiXinterface and then
be associated withthY a few microseconds later. Moreover, several running iT&sN
could be associated with the saptbXlocation : the ephemeral state stores have been de-
signed to allow such concurrent accesses with minimal padace penalties. Not only
the ephemeral stores are dynamically rebound to the VPUsalbo the node configu-
ration and interface statistic banks. As the VPU cannot fpdtiese statistics, there’s
no need for synchronization procedures here either. Attwvthe thread that performs
ESS cleanup and statistics update could modify the banKs aimacket takes a snapshot
of the whole bank. Like IP, WASP is a “best effort” service andill be up to the ap-
plication designer to take care of such updates if they devant for the service being
developed.

Endianness Strikes Back

The support of statistics banks in WASP raises another iaboat endianness of local
data storage. Data in WASP packets are always storeetimork byte orde(big-endian)
and, for performance reasons, the VPU registers as welltae®im the ephemeral store
are inhost byte order This is usually not a concern becadsad andstore instruc-
tions (that manipulate packet data) do network-to-hostost-to-network reordering as
they move data. However, if a program writes data byte-pés-im a ESS entry and an-
other program reads them back using 64-bit access, thel detiagpattern it will get will
depend on the host’s processor. While the problem curreathams open, there are two
approaches we could envision:

e Enforce network byte ordering everywhere but inside VPB(gsters. This requires
simply to modifyyload andystore to make them look more likkbad and
store . This is transparent for the IXP network processor, but bélexpensive
for x86 processors which have to do the conversion.

e Enforce network byte ordering for “statistics banks” andriiguration bank” so
thatitis possible to use 64-bit data movement to retriegetfjuickly and keep ESS
in host-ordering. The resulting programming model for tHéU/would however
have undefined behaviour when e.g. one writes two 32-bit tifiemin an ESS
entry and read back one 64-bit word.

Conclusions

We have provided a reference implementation of WASP rowterlanuxnetfiltermodule
for x86, x86-64 and XScale architectures. We also compdregérformance obtained

17Our experiments with WASP have shown that hook code hasdualiss to packet structure and that it
may be executed in non-interruptible context.

4.4. REFERENCE IMPLEMENTATION ON X86 65

by WASP versus those achieved by the native implementafi@&® operations. While
the execution time of WASP may be twice the time for native BS/dlers, we illustrated
that the actual impact on tHerwarding latencyon a Linux router is similar for the two
(between the time required to forward a similar packet aedithe required to reply to a
ping control packet).

Regarding performance on end-systems, we have shown tHagsas packets re-
main large enough (half of tidaximal Transfer Unibf 1500 bytes in our experiments),
the bandwidth achieved by a user-process forwarding WASRgta is identical to the
one achieved with regular IP packets of the same type (ab@otcd the 100Mbps link).
We also have observed that, for IP packets as well as WASRefmdke end-system have
increasing difficulties to achieve full wire speed as the sikpackets decreases.

Comparatively, ANTS [Wetherall99] announced a maximum df1bfs for packet
size approaching the MTU, and with a latency between 500 80d.¢ (against around
70 ps for WASP). Such comparison should of course be moderatetebfatt that those
performance depend strongly on the actual hardware usddbyathe fact ANTS provides
a flexibility we cannot compete with.

The whole design of WASP virtual processor has been orgaaisaind the idea that
processing WASP programs should be possible on a netwodegsor — namely the IXP
2400. At the end of this work, we have all reasons to beliea¢ tthe implementation of
WASP should indeed be possible on Intel IXP2400 and thateni®pnance gap between
WASP and IP (when measurable) has good chances to be evdarssnahat platform. In
his thesis, N. Imam concluded that an 1XP1200-based systeid switch ESP packets
at line speed with around 48MB of ephemeral storage. Whetkarowld do the same on
IXP2400 (which has gigabit Ethernet rather than 100Base+h) WASP or not couldn’t
be predicted accurately at this time, and chances are thihhase to enforce restrictions
on the packet-per-second ratio if we want to achieve fuldvadth.

66

CHAPTER 4. THE WASP PLATFORM

A Klingon Warrior uses only machine code,
keyed in on the front panel switches

in raw binary.

— The Klingon programmer, Steve Baker.

Chapter 5
Experimenting WASP on IXP2400

Abstract

This chapter details the structure and the working of a WASplamentation on the
IXP2400 network processor. We then compare the performah¥@A&P and ESP in
three aspects: forwarding latency under low stress conaitidorwarding latency when
saturating the state store and throughput under varyingesséore conditions. We finally
give guidelines for a future self-optimizing WASP framewtbikt could produce pre-
compiled operations for the most frequent programs.

5.1 Development on IXP

Over 20000 lines of assembly code written by 2 corporateamdversities, with heavy
use of macros and branches optimised for speed that will liteosp8 multi-threaded
processors. That short description could sound scary tg/ peogrammers, yet this is
what we have to deal with in the case of WASP on IXP.

We are well aware of the existence of th&ro-c language introduced by Intel with
the IXP2xxx development kits, but still we decided to keepkirg at the lower level of
micro-assembly. This choice is motivated first by the imragzlavailability of receiver,
transmitter and classifier microblocks for the ESP filteitt®@n in micro-assembly, as well
as macros for ephemeral store management that we will rewse ivork. Rewriting (and
debugging) those blocks micro-c would have required substantial work at a time we
weren’t very comfortable with the SDK and the IXP hardware.

The second motivation comes from the nature of the micrdblee plan to de-
velop. While writing the reference implementation of WASRenpreter in C, several
parts needed to be repeatedly disassembled and studiedaxého locate performance
bottlenecks and whether dedicating a register to this antdrgable, whether making this
or that function static for in-lining would benefit interpation speed. Such “hide-and-
seek” games with the compiler for performance profiling arly @ossible when one has

67

68 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Ingress NP
Xscale ——» (1
4-‘ I_@ ESP
Ina WASP
RX | CLS —— 0] | LUT ——m)| TX
Gb Eth, \ CSIX
OC-xx POS Switch
etc. \ | Fabric

TX |[De— SCHD

[@=— CLS |@=— RX
ESP | e

WASP T@<—I
M

L Xscale

Egress NP

Figure 5.1 Microengines and buffers in a (hypothetical) WASP NP-blade for a switmticfa
equipped router, showing individual MEs for packet reception (RXpdSification, Look Up ip
forwarding Table, SCHeDuling and transmission (TX)

a strong knowledge of the compiler’s behaviour and the gcture instruction set, both
of which we were lacking for the IXP.

By nature, the WASP interpreter does not involve complexrilgms or data struc-
tures, and we already had gone through “youth error” withréierence implementation.
We thus opted for micro-assembly WASP with good confidenaewie wouldn't face the
nightmares of spaghetti code or assembly source refagtorin

Most of the information we could give about our experiencdX® would likely be
perceived as “implementation details” by most of our audéeand we have tried hard
to keep this chapter readable for someone that has no pneliynknowledge of network
processors (other than what we explained in chapter 3). otetexperience taught us
that in the field of network processors, every bit of publésirdormation may save days
of measurement and debugging to other developers. Therrgladeld therefore not be
surprised to find this chapter rich in footnotes.

5.1.1 Overall Implementation

An application on the IXP is typically split in several conmamts (microblocks and soft-
ware components on the XScale) that will be running on tHemdiht processing elements.
Pipe-line processing is typically assisted by hardvearatch rings programmed to relay
packet handles (plus optionally few metadata) betweenaaigines.

The packet content is transmitted directly from 1/0O buffer® DRAM (by the RX
microblock) and only meaningful parts will be fetched on @ (e.g. by the classifying
microblock).

Fig. 5.1 shows how WASP and ESP microblocks could be insentadtypical line
card application using a double-IXP2xxx board connectindjiple gigabit Ethernet ports

1Alternatively to the use of scratch rings, we can exchangerimation using the “next-neighbour”
(NN) registers — a ME-to-ME FIFO queue facility. While NN retgirs offer lower latency (e.g. they do
not require access to external memory), they restrict tixébfldy as the “walk path” from one ME to the
next cannot be re-wired. Using NN registers is thus intargshainly when there is a single preferred path
between processing elements.

5.1. DEVELOPMENT ON IXP 69

NP
—EI
Gb Eth I—»EI ESP Gb Eth
>0 | WASP
e e e

Figure 5.2 Internal structure of our WASP/ESP packet filter. We actually allocatedNtits for
WASP/ESP processing and have one “spare” ME.

on one side and a CSIX-compatible switch fabric on the otluer. gAs it is usual for such
setup, the XScale processor is typically involved only wekception” packets such as
ARP request/replies or control protocols (e.g. packetsctyreddressed to the router
itself) — i.e. what we're used to call the “slow path” in routkesign.

For our proof-of-concept implementation, we placed our WASicroblock in a much
simpler (and cheaper) test bed depicted on Fig. 5.2. In @ae,d¢here is virtually no slow
path processing as we limited ourself to layer 2 forwardifipe XScale’s role is here
limited to microcode loading, monitoring and debugging e3& three tasks are fulfilled
by a Linux application that controls the microengings the Hardware Abstraction Li-
brary provided by Intel. In addition to basic counters rejpor(already available with the
ESP package), we extended that control application withoalirfe” debugging mode al-
lowing inspection of virtually all ME resources (generairpose registers, local memory,
transfer buffers, etc.) and application-specific regsstapnitoring, as well as real-time
ephemeral store dumping.

5.1.2 Parallel Programming on the Microengines

Multi-threading on the microengine differs from typical livthreading on a time-shared
(preempted) system. Here, context switches only occur wherunning context explic-
itly releases the processor with e.gcta_arb microword. The hardware context arbiter
will then evaluate the other threads in a round-robin faslaiod check their events status
registers to identify a thread that will receive the prooess

Since we have a massively parallel architecture for pracg3&/ASP packets, it is
important to ensure that computations will still be carr@a properly. We must for
instance ensure that twapunt packets or one€ount and the subsequenbllect
packet update the counter entry in a coherent fashion.

Still, it wouldn’t be practical to lock individual ESS ergs due to the absence of
atomic operations with the DRAM controller. It could also ba&remely inefficient as a
WASP interpreter thread cannot stop interpreting a pacdket €.g. should wait for an
entry to be updated) and continue interpretation with agrgplacket.

Instead, we impose (as in [ImamO03]) that packets that openathe same entry use
the sameComputation ID(CID). The computation ID acts as a “flow identifier” for the
classifier, which will allow for parallelism by multiplyinthe number of queues towards
the processing ME and which will guarantee ordering of peckarrying the sam€lD
by placing them in the same queue.

70 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

. - packet data, -
descriptors ephemeral stores
& queues

transfer
registers

[]
General Imaddr
Purpose @
Registers

ALU, control store,
internal busses, etc.

A Imaddr.
NN_GE e E

Figure 5.3 The microengine resources as seen by a thread in the WASP microblock

1 S-Read S-Write D-Read D-Write

Local
Memory

Each thread in the WASP microblock can pick packets from arguq, but the queue
will then remain “locked” to other threads until the packeitbmpletely processed and
ESS entries are updated. This means that we can now safelggscount andcollect
packets operating on the same entry even in the absenceeffrgiock, but this implies
an upper bound on the throughput we can achieve for a singi@atation.

5.2 The WASP microblock

Each thread in the WASP microblock performs the followingethtasks every time a
packet is received on the scratch ring:

1. fetch WASP code and data from DRAM and check their integrity
2. interpret the bytecode until a terminating opcode is antered,

3. write back modified parts (packet banks as well as ESSeshto the DRAM, and
compute the new CRC checksum if needed.

5.2.1 Structure Placement

An important point in the VPU design is how we map the logic&W structures (e.g.
stack and bytecode) onto the various storage facilitieh®fmicroengine. Considering
that accessing external memory is orders of magnitude fdhga reading a local register,
it is clear that we have to restrict ourselves to the micraepcal resources for storing
VPU state and required packets parts.

Even inside the microengine, we have an impressive numb&oadge facilities that
all have their properties that make them more or less suwitddferent content and access
patterns. The SRAM and DRAM transfer registers, for instanse, separate banks for
reads and writes. It is therefore not possible to use therarapdrary storage since we
will be unable to read back what we have written there. At sty might be used to

5.2. THE WASP MICROBLOCK 71

size indexed inc/dec offset read back
GPR| 128B no no no yes
SRAM xfer | 64B shared ++/— no no
DRAM xfer | 64B shared ++/— no no
NN regs.| 64B per-me ++ yes yes
local mem| 320B per-ctx = ++/— yes yes

Table 5.1 properties of the memory element on the IXP2400, along with the size in bgtes p
context

keep interface configuration or statistics. Hopefully egltoumuch details of the actual
microengine structure can be ignored and the programmesxgdowith a simpler model
depicted on Fig. 5.3.

For most structures in the VPU, we will prefer storage wittheked access and index
auto-increment after a memory move would be a plus. Thisimdiéed be a plus for data
banks (for implementingNX microbyte) as well as for the stack or sequential code pro-
gression. Table 5.1 summarises the properties of the éiffenemory areas within the
microengine. We consider here that the microengine’s “mexghbour’(NN) registers
have been set up so that the ME accesseswtsNN rather than another ME’s. It ap-
pears that local memory will be one of the most interestimgiions, among other things
because it has two independent index registers that arenatitally saved on context
switch.

Comparatively, we have only oméN_INDEXregister for the whole microengine, and
oneT_INDEX register that is shared for SRAM transfer and DRAM transferstegs
for all contexts of the microengines. In other words, if wentved preserve those index
content, we will be required to identify all instructionsatlcould cause a context switch
while they are alive and save the index value in a GPR.

Bytecode

We decided to use the NN registers to store up to 64 bytes @ cduk additional latency
for reading back values written in NN registers is not realtyissue since code is only
written once (in packet fetch phase), and the only place e/laar need extra attention
will be ESS access instruction (which may release the haeldizring DRAM transfers).

Comparatively, it would be more complicated to place codesig,, SRAM transfer
registers, since reads and writes are handled by diffefdeydigal registers. It is clear
that writing packet bytecode to SRAM and getting it back intiia@sfer registers would
be awfully inefficient. The DRAM transfer registers could sdunore appropriate, as
they do contain the code at least during packet fetch phaseriunately, we don’t have
enough room in the 64 bytes per context to store a useful lbhgtecodeand still keep
enough room to retrieve ESS entries during packet execution

72 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

VPU state

The program counter, virtual processor flags and accunmuktovell as other variables
that constitute the VPU state do not need indexed accesk dthaly can thus safely be
held in general-purpose registers. The notable excepgitimei management ofiemory
banksX and Y. We have so far the need for 4 registers of meta-datbhaek (including 2
registers for caching the current ’line’ of 64 bits withiretbank), and implementation of
load/store operations is simplified if we can abstract wiette operate on X or Y bank.
A proper design of local memory allows us to implement thégahtly: a simple increase
of the index will then “shift” to the alternate 'Y’ bank and cleasing the index restore
the use of the “main” bank.

The second local memory index is dedicated to the VPU statk, \8e may tem-
porarily need it for other purposes (like advancing to the fime’ in a memory bank) in
some instructions and we will have to save/restore it mayuathese instructions. We
believe that it is a necessary trade-off to take advantagfeecdxtra space available in the
local memory to keep full (WASP) packet data on the microeegiuring interpretation.

5.2.2 Redesigning the Fetch/Decode

After external memory accesses, conditional branchesragebthe most costly opera-
tion on the IXP microengines. While almost every instructiathcomplete in one cycle,
a branch requires discarding the instructions that aradyren the pipeline. As in many
RISC-inspired architectures, the IXP micro-assembler alowe to indicate the CPU
whether (and how many of) the instructions laying after anbraopcode should be exe-
cutedeven when the branch is takeSuch instructions are sadeferredand are one of
the keys for microcode optimisation.

Deferring instructions is convenient when you have mangjpahdent things to do in
a code block and that only a few things among them depend angescondition (e.g. a
bit set or cleared), but according to our experience, theyabnost impossible to fill when
it comes to implementdecision tregespecially when the next test to perform depends on
the result of the current test. Bad news is that the instrana&roding in our C reference
implementation is very close to a decision tree, especsaiige it first decodes instruction
families and then opcode within a family.

In several cases, it will be preferable to usgiap tablerather than a decision tree.
The microengine instruction set indeed allows one to jungcaimputed locatich There
are mainly three ways we can use thahp microinstruction:

1. A pure “trampoline” table, where each slot has only a gnglon-conditional)
branch to a block of code that resides anywhere in the progrBims will how-
ever lead to poor performance as we will experience a doubig jatency.

2. A pure “switch” code block where each slot takesnstructions and can either
continue to the next slot or branch to some “all done” label. il&/this may be
preferable for performance, it requires a perfect sizingawh slot to work properly,
which makes it very inflexible to changes.

2in the form base+offset, where the offset is typically cotegifirst in a register

5.3. WASP PROCESSING DELAY 73

3. A hybrid switch/trampoline where you give enough room éofprm initialisation
steps in the defer slots of the impending branch to a larganicbf code (if needed).
It can be especially interesting when many cases merge istogée code block
after case-dependent initialisation is performed.

Reducing the amount of cycles spent in fetch/decode partigairto have an inter-
pretor that can compete with ESP native operations, butwe,usled to many trade-offs,
be it on code readability or ease of debugging (the encodifdocation, for instance,
would sound totally awkward to an external developer).

More annoyingly, it questioned some of our initial opcodeating schemes, requir-
ing a change in instructions mapping or in modifiers semsahti/e have good hope that
these changes were needed to have an instruction set thedyigeeimplement oany
hardware platform, but it leaves a bitter taste anyway.

5.3 WASP processing delay

5.3.1 Profiling the WASP microblock

The IXP microengine features a high-precision timestamymter that is incremented
every 16 clock cycles (with microengine clocked at 600M)iavhich gives us a time
granularity of 26.6Gs.

With that timestamp counter, we have measured the progetsaie of both WASP
and ESP microblocks from the reception of the packet descrippm the classifier to its
dispatching on the transmission scratch ring. We expettttizatime we measure that
way is a good estimate of the overhead that WASP or ESP pagkeésience compared
to a regular packet of identical size.

The processing time of the last packet is stored in a GPR omibeoengine and
periodically retrieved by the code on the XScale. Thereilvebrk to do to automate
aggregation of those measurements, but as a first estimatmmave an average pro-
cessing time of 2.98s for aWASP:count packet with a deviation of 0.2Q04s among
42 sampled timings. We should keep in mind here that a DRAMsactaplies a non-
deterministic delay estimated between 200 and 300ns, wiplains why the relative
error is so high. Comparatively, 38SP:count packets took on average 2.14with a
deviation of 0.08%s.

We can thus estimate that the time requirepgricessa WASP:count packetis 137%
of ESP:count , a fairly encouraging result for the IXP implementatiomca under the
same circumstancesthe x86 WASP implementation took nearly twice as much as its
ESP counterpart.

3e.g. theCLRbit in memory opcodes that tells whether the accumulatoulshioe cleared before the
lookup is done is now active when cleared rather than when set

4again, according to hardware manuals [IntelHRM], table. 1Empirically confirmed by the 0 sec
lifetime of entries in the ESS, considering the way timegtamunter is converted to check delays.

Sat the moment, we don’t use any information cached from teeipus ESS lookup when we update
the entry

74 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Beetle

Radisys ENP-2611 boar;

WASP

[Ioc&EXEC_v
A
Pl eth2

[loc&EXEC_OUT]

Figure 5.4: Testbed setup for “There and Back” latency measurement. The catéiobn on the
left runs both (custom) traffic generation and Ethereal as a monitorink too

We should keep in mind that the measurements here take lgatuade than just in-
terpretation into account: packet fetch, CRC etc. are paleWASP/ESP microblocks,
while they weren't taken into account in the x86 comparisamKig. 4.10, section 4.4.1).

5.3.2 There (on the IXP) and Back

We set up a test bed to measure packet latency through the XES88Hilter, trying to
avoid the need for precise clock synchronisation betweenmolved machines. We
have indeed frequently observed a time offset of:4@vhen synchronising our Linux
PCs with a local NTP server. We expect to measure latenciesmé8,.s according to
our preliminary tests, and the NTP offset could introducegaicant bias in our results.

We thus opted for a setup where traffic is injected and catébly the same machine,
a 1GHz Pentium Il (Beetle) running Ubuntu Linux 2.6.12 anatfeing a 1Gbps PCI net-
work card. This machine is connected to port 2 of the ENP-2611 boardseéMap a static
forwarding rule that delivers packets from potbwards por{i+ 1) modulo Nports, and
wired ports 0 and 1 together.

As a result, a packet emitted by Beetle will be received on poforwarded on the
“loop” wire, received again on port 1 and sent back to Beetteegencing 3 queueing
and serializing over Ethernet wires and two IXP processseg Fig. 5.4). Measurements
are performed through the Ethereal application, using iptsgeriving from our tests on
x86 Linux router. The wiring is such that the WASP box only ggsses packets with
EXEC_IN bit set on port 2 (from Beetle) and packets WEKEC OUbit set on port 1
(before sending them back to Beetle). The main expected &atyarfrom this unusual
setup is that we do not have to rely on strong clock synchatiois. Considering we are
measuring times near %@ and that it is is not rare to see a time offset of oven:20
when checking synchronisation with a (local) NTP servergsecond, we believed it
was preferable not to introduce that additional bias to oeasarements.

For WASP packets, we can further control whether we want tekegt processed
once or twice by using thexecution locatiorilag. We could thus theoretically estimate

%Broadcom Corporation NetXtreme BCM5701

5.3. WASP PROCESSING DELAY 75

|

r 100%

- 80%

- 60%

'idle' counts
counts /bulk (1ME)

] /- counts /+bulk (1ME)
L 40% — — counts /bulk (2ME)

relative densuty function

- 20%

v'v¢ o A
60 160

round-trip latency (us)

Figure 5.5 Distribution of measured delays from Beetle MASP: count packets, with O
(idle"), 2.7 ('/bulk’) and 5.4 ('/+bulk’) Mbps of background trafficThe distribution shown is
relative to each experiment's most represented delay.

the amount of time consumed on the WASP microblock througldifference between
the delays of a packet that has b&KEC_IN andEXEC_OUTand of a packet having
only one of those bits set.

Typically, not allCOUNDackets will experience the same delay. The first packat afte
ESS cleaning, for instance, will have to create a new entrjyewdther packets simply
update an existing entry. In order to see to what extent thi#fezent code paths lead to
different delays, we extracted the distribution functidrvarious scenarios, as reported
on Fig. 5.5.

Cache miss and other side-effects

Going further with our measurements, it appeared howearttte actual average delay
we measured was very sensitive to the amount of traffic arxgdbe router. For instance,
a regular “ICMP echo” packet will take around 6 to cross the IXP and come back
when there is no background traffic, while as soon as we st&ream of “bulk” packets
(2.7 Mbps using frames of 1066 bytes on wire), the averagmdat of ICMP packets
drops to 64us.

We observed a similar effect witWASP:GETpackets and Fig. 5.5 shows how it af-
fects measurements GOUNTackets. The thick “idle” line, plotting latency distrilom
when we send on€OUNTpacket per second with no background traffic, has a single
strong spike matching with the observed average latencyt93). This spike covers
76% of the actual packets and is centred at 88.2When we add the stream of bulk
packets (“/bulk” line), the major part of the traffic is nowsttibuted on two spikes; a
small one centred on 73.74 that covers 16% of the traffic, and the larger one centred at
87.61us that covers 63% of the traffic.

Now, as we double the amount of bulk traffic (e.g. comparirmg‘'thulk” line with the
“/+bulk” one), the distribution of packet latency betwe&e two spikes changes. We now
have 38% of the traffic processed inZ9and only 49% of the traffic taking on average

76 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

84 . Nothing in our code on the IXP could explain such a behayisoiwe suspected
something strange was happening with cache performandeed?PQ platform itself.

We thus repeated the experiment, replacing our Beetle witle&abre 3GHz Xeon
running SUSE Linux 2.6.11 in 64-bit mode and featuring arboard Intel 82541GlI/PI
Gigabit Ethernet controller. It definitely confirmed that wieouldn’t rely on a PC to
measure network latency at 1Gbps. Indeed, on the Xeon, ke sppear in the graph
and it looks like packets now experience a delay that is amifp drawn between 30 and
150us. Under those circumstances, we have no hope to accuratelyureeanything that
happens on the microengines, so we opted for modifying vefteansmit microblocks of
the IXP application to make them measure directly the pdekency.

While we haven't investigated further what caused the csrjghienomenon detailed
in this section, we believe that the behaviour observed ®ébtle could be explained
by the way network drivers are typically implemented in binwhen a packet is first
received, the network card issues an interrupt that wilhayaly make the CPU execute
driver code. On most drivers, however, the driver will nadtjpick one packet, but it will
greedily consume packets on the card until buffers are eljgptst given time quota has
been reached). The kernel firewall behave similarly, rupimra “tasklet” (also known as
a “bottom half”) that acts as a dedicated thread inside tihedte Code and data locality
is thus higher when we process one packet within a burst theenva single packet is
processed by network driver, then by firewall, etc.

The Intel 82541GI network card additionally implementsemtipts moderationto
avoid excessive CPU time consumption by frequent switchésdas: user and kernel
mode, at the cost of more variable in-card delays. Obtaimicgurate measurements
with such hardware might require us to disable interrupayiel in the card, and might
also have to hack the kernel to ensure timestamps for paekeption/transmission are
performed as close as possible from the actual I/0O opermation

5.3.3 Embedding Measurements on Microengines
Methodology

Our implementation of the WASP filter reuses the genericénex’ (RX) and “transmit”
(TX) microblocks provided by Intel as part of the IXA SDK. Thsfers with the Me-
dia Switch Frame (MSF) is typically something that requipesfect knowledge of the
IXP hardware and extremely precise synchronisation betiaeads to sustain the wire
speed — two objectives that are rather incompatible with code akdidy, despite the ex-
tensive commenting of the code package. We have thus lorngnhkegtification of those
blocks as a last resort until it became obvious that PC haele@uldn’t fulfil the task.
Packets received by the MAC cards are delivered in chunka®btes called “mpack-
ets” to the microengines. Threads on the RX microblock pids¢hmpackets as they
arrive and attempt to rebuild the packet they come from usiate associated with each

’see application notes [IntelAP450, IntelAP453] for detaih interrupt moderation and small packet
traffic performance optimisation

8e.g. some operations such as obtaining the buffer for thiepaeket are performed ahead of time while
we increment counters for the current packet and thus agplicwith every ‘receive case’

5.3. WASP PROCESSING DELAY 1

media port in the local memory. When the packet is completsdbuffer handle is trans-
mitted to the classifier block.

We modified the RX block to capture the local time counter imiaiedly after the
MSF wakes the thredd In case we identify the reception of a “Start of Packet” (3OP
mpacket, that timestamp will be stored along with reassgsialte in the local memory.
In all other cases, the captured timestamp is discarded. \&iméEBnd-of-Packet” (EOP)
mpacket is detected, the timestamp associated with thesmonding SOP is added to the
packet descriptor in SRAM that will be available for later gessing blocks.

The timestamp is then kept untouched by classifier and WASIP/&icroblocks. It
will be retrieved with other buffer metadata by the TX midaatk. When the last mpacket
has been transferred back from DRAM to the buffers of the tratisig interface and we
have acknowledged the M&¥a second local counter capture takes place. The difference
between this timestamp and the one we retrieved with metagiaes us thesoftware
processing time of the packet on the platform: we might missrastant and payload-
independent additional response delay from the MAC unitsthe MSE2.

To avoid extra interference, microengines simply keep #s¢ measured delay in a
register that we periodically sample from the XScale. Taghhique gives us more pre-
cise delay measurement, but we lose the ability of isolatiaific classes as we did with
Ethereal in previous tests.

Still, We have a different counter for packets that are dyarte mpackei(128 bytes
and less) and packets that arenpacket®r more. We can thus isolate some ESP/WASP
operations by artificially “inflating” some packets typesg(e havingcount packets
sized up to 400 bytes to keep them apart ofgbe or collect packets that we plan to
measure).

Results

In the conditions described above, our WASP filter forwah&SP:count packets with
an average latency of 6.342. Dumb packets of identical size have an average latency
of 2.451s and WASP:count packets that are not processed (i.e. that have all their
execution location bits cleared) take on averag®es i.s. The same experience repeated
with ESP:count packets showed an average latenc$.af0 us.

In other words, WASP processing is 47% of the complete It count packet,
and the interpreted version takes 116% of the native vetsio® The results focol-
lect , on the other side, are less impressive: 136% of the natrsore With8.581 s
for WASP against.295 us for ESP, we clearly see here the impact of a longer WASP
program.

Sthreads that are willing to process incoming mpackets agid idtentification, together with the address
of a transfer register where the status word will be writterthe “freelist” maintained by the MSF and are
automatically activated when the mpacket is ready in thesfea buffers

Othat is, at the start of phase 3, where debugging counteis@amented, etc. and before the buffer is
returned to the free pool

hy manual inspection of the microengine state, we have agtirthis additional delay between 3 and
6 ius, but such measurements are hard to reproduce and can oritydieenl with sufficiently large packets
with the current code.

78 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

latency for COUNT operation latency for COLLECT operation

—=— wasp A

es
| T 25% | —+— wasp /cache 2%
|

v‘: —— wasp /map
il |
i 20% t 20%

|
|
ook AR RS

K 10% I e

y 6000 7000 8

6000 6500 7000 : packet latency (ns)
packet latency (ns)

Figure 5.6: Distribution of packet forwarding latency at low throughput &aunt andcol | ect
instructions

We then implemented caching of ESS pointers betwleekup and subsequent
insert on the same key the same way we did in the x86. We can then @baarv
improvement of).37 us for count (one SRAM and one DRAM access saved when writ-
ing back the counter), an@78 us for collect (two SRAM+DRAM accesses saved).
In the IXP implementation, caching the last ESS pointer comeually for freé?), but
the effect remains modest (10 and 13% of the interpretaitoa tespectively) compared
to the 23% improvement observed with x86 processors (seedSBc

Comparatively, the IPv4 forwarder demonstration applasgtlPForum03], takes on
average 6.92:s to forward a 64-byte packet under 25% throughput (see Fig). This
demonstration application from Intel involves looking e destination’s IP address and
resolve the appropriate MAC address for the next hop, whileapplication is a simple
filter that doesn’t alter any of L2 or L3 headers.

As shown on Fig. 5.6, we observe again that the latency ligton is mostly split in
two (or sometimes three) spikes. We can notice too that 95&beo§amples are located
no further tharb2 ns from the spikes centres. We can likely consider that thisasponds
to variance in latency of DRAM accessdés

A most intriguing fact is that the spacing between the spilggsis on averagé16 ns
with very small deviatiort* independently of the actual packet’s program and regasdles
of whether ESP or WASP is considered. Our first hypothesistxgtssome collisions in
the ESS hash table occurred for some of the lookups, leadiegtta DRAM access, but
probing the distribution of chain lengths during the tesesded that all chains were of
one single element. We also observed that the time betweaske{p@ception and packet
drop (for droppedVVASP:count) does not exhibit such a “slotted” distribution, but rather
has a continuous, Gaussian-like shape (&g j.s, stdevl.41 us).

On the other side, the delay 616 ns on average almost exactly correspond to the
time required to transmit a minimal-sized packet (64 bytesthe 1Gbps medium. While

Zpasically, they can remain in transfer registers if we emshat other operation do not trash the retrieved
ESS entry

Bremind that while [Johnson03] reports a latency of 120 a/¢R00ns) for a DRAM access, other
sources[Lu05] report from 200 to 300ns, which would confinmi2 ns variance observed here

¥Actually, we can only observe eithgd7 or 533 n.s due to the26.6 ns granularity of our measurements

5.3. WASP PROCESSING DELAY 79

IPv4 Forwarder Latency at 25% Throughput

latency (us)

40+

35

304 —o— average
—B— min
254 —A— max

10 —

5

packet
64 128 256 512 1024 1280 1518 size (bytes)

Figure 5.7: IPv4 forwarding latency, according [NPForumO03]

we haven't investigated this any furtAemat the moment of writing, it sounds reason-
able to consider that the spacing between spikes is intemthyg the transmit component
depending on whether it is found idle or busy when our trahsaguest is submitted.

5.3.4 Larger Entries andmap Opcode

The timings forcollect in the previous session are based on bytecode that exdjusive
useslookup andinsert microbytes. We have already shown in the case of x86 im-
plementation that it is more interesting for performancippse to replace these multiple
accesses by a singheap opcode [Martin05b].

On the IXP, saving space in the ephemeral store is of incddaggortance if we want
to support 1Gbps, so we modified the lookup/insert code asasedtore cleanup routine
to accommodat&oth 24-byte (single 64-bit value) and 48-byte (mapped bankjent
Since each ESS entry is aligned on a 64-bit boundary, we oarnhes3 lowest bits of
“chain” pointers to store extra information about the entsglf, and one of them has
been used to tell large entries apart from small entries.

Supportingnapopcode also required a couple of modificationstiore implemen-
tation so that we identify correctly the following cases wipacket interpretation ends:

o the packet data is dirty (e.g. we usstbre on a packet data bank): we need to
write those data back in DRAM and compute a new CRC.

e a mapped ESS entry has been updated during interpretatibis atill waiting to
be written back in DRAM.

e a mapped ESS entry has been created during interpretatibsheuld be written
back.

Bfurther investigations would e.g. require us to guess tteial state of the transmit logic and e.g. save
measured latency tdelay _ready or delay busy accordingly. However, according to [Johnson03]
(p. 123), there isn't anything like a “ready to transmit” bitthe IXP2xxx MSF, and therefore no way for
us to further confirm our hypothesis.

80 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We should remind that in the case of x86 implementation,gusiap (compared to a
small cache implementation) has virtually no impactonnt instruction, but improves
latency ofcollect by 18%. Still, interpretation time takes respectively 16&8d 133%
of their native ESP counterpatrt.

Figure 5.6 shows that there is only a small improvement (inet®) in the case
of count . Comparing packet latency measurement against the costrwéifding a
WASP:count packet that does not require execution, we can estimatevedrage in-
terpretation time otount /map as2.866 us while count /cache takes3.062 us,
giving a 6% improvemer?. In both case, these measurements only take into account
count packets that have to create the ESS entry.

The most interesting result is however the fact iN&SP:collect /map achieved
a forwarding latency almost equal (101%) of native ESP cenpatrt. Indeed, aBSP:-
collect packet needs to lookup and update two keys, requiring 4 DRAbAsEC at
best’, and 3 SRAM accesses in the case where the second entry neke<teated.
Comparatively, both the packet counter and the computatoeoraulator are held in a
single entry when usingap, and collect suffers no entry creation penalty.

Finally, only 1 SRAM and 2 DRAM access are nhow needed, whichetsave between
680 and880 ns in memory accesses, and the resulting bytecode is simphechviinally
make us save416 ns againstWASP:collect /cache . While they achieve similar
latency at low load, it should be mentioned that we expeatgssing of an ESP packet
to be essentiallyjnemory-intensivevhile WASP packets arepu-intensivelt will thus be
important to repeat those tests at higher loads to ensureavmasaturating microengines
with computation to the point it is too busy to fully benefit miemory waits by other
threads.

Atomicity and Aborted Mappings

Another advantage of usingapis that we can more easily implement atomic operations
(see section 4.4.3). In case of interpretation error (staekflow, etc.) or if theabort
opcode is executed, the packet interpretation is hatiigtbut writing back the mapped
bank in the ESSNVhat remains in the state store is thus the (consistend) fetand before
starting packet execution.

However, we need to take extra care when aborting a pdlckejust created a new
entryvia themap opcode. When a packet creates a new entry, we give the inter@are
zeroed bank and the “defined” bit in its status is cleared. fidwe entry is then chained
but its state will only be defined for the first time when paoketcution completes (or
when anothemap will be issued by the same interpreter). It may be importansbme
protocol to distinguish a zeroed entry that was alreadygmefsom a new entry creation.

e Once an entry has been allocated, it is generally not pessibfree” it before it is
reclaimed by the store cleaner. As a result, entry allonaiod chain linkingnust
be kept together if we want to avoid wasting entries.

interpreting WASP:count /map thus takes 111% oprocessingESP:count , while latency of
WASP:count /map takes 106% oESP:count .
7assuming that there is no chain to walk

5.4. HIGH AVAILABILITY AT HIGHER RATES 81

¢ Modifying the chain separately from looking for the entryg(eat packet forward-
ing) will require to check the DRAM (or SRAM) again to ensure wi# know the
end of the chain.

The approach we envision is to letap create the new entry anyway, but to tag it
as “invalid” (using the extra status bits mentioned abovd)l it has been validated by
a write-back. This way, the chain férush(k) is immediately valid and we can use a
single-shot write-back in DRAM, and still have WASP prograsesect appropriately the
absence of a valid state if the creator has been abortedaticdlse, one “dangling” entry
for k remains allocated in the store, and another packet thakéskocan still use it (and
define it), but the entry’s lifetime will be defined by the fipsicket. This approach will be
completed by anap|die modifier which instructs themapopcode that packet execution
should be immediately aborted if the entry does not exists €iminates the need for
constructs such as “map, then branch to abort if not definetd{iecode that would have
inevitably led to dangling entries.

5.4 High Availability at Higher Rates

As we have seen in section 4.3, it is possible, due to the aatuthe Ephemeral State
Store, to engineer a ESP component so that we can guaramjeer @xecution of any
program simply by enforcing a limit onow many keya packet can create. We have also
seen, unfortunately, that 681 MB of DRAM is required per GigB&thernet port — almost
three times the amount of memory available on our ENP-26dd. ca

In this section, we will study how the ESP microblock and oukS% microblock
behave when approaching these levels of performance. Natéhte nature of the traffic
we send prevents us from using an existing traffic generaichr as D-ITG[Avallone04]
or thrulay[ShalunovO5w], for instance.

5.4.1 Behaviour of the ESP microblock
Test Setup

For these tests, the ENP-2611 card has been configured aug leasingleport pair be-
tween the two machinéd/aspandBeetle Any packet received on one port is forwarded
on the other, and vice versa, as one could expect from a reguitch.

The ESP and WASP microengines are both given 32 queues tvegmekets from
the classifier, of 2048 entries ed&hWe have 4 ephemeral store of S8MB DRAM each,
with a hash table of 64KB.

The test traffic consists of pairimpunt andcollect packets (e.g. evergollect
packet reuses a key that has been installed by a precmwst packet, with sufficient

Bthese multiple queues allow parallel processing of WASRams while enforcing ordering preserva-
tion between packets that belong to a same computation

82 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Wasp Beetle

Radisys ENP-2611 board

Figure 5.8 The setup used for the state-store stressing testbed. Note that only a fewillests
involve traffic on the Beetle-to-Wasp path.

spacing® between correspondirmpunt andcollect . We used the x86 internal times-
tamp counter[IntelRdtsc, Bindels] to enforce a minimum dddagween two subsequent
send system calls.

The traffic generation tool we use here can adjust the numbkeys used by the
test traffic in order to accommodate a given size of ephenséwed. In this scenario, we
would like to avoid exaggerated variation in chain lengthle/avoiding the need for a
complex function generating random ké&ysThe technique we used was to reuse some
bits of the CRC that protects the ESP Pb#s the lowest bits of the key for PDUt 1.
Every N packets, we simply restart with our first key, where

N = max{z = 2" : 48z < |ESS|}

Forwarding Latency with Short Chains

The maximum capacity of the generator\Wasp(dual-core Xeon, 3Ghz) was 907 Mbps
with all packets having the maximum size and 170 kpps (98 Miwgdsen using only
minimume-size packets. This is still quite below the thelgatmaximum throughput of a
single port-pair Gigabit Ethernet Forwarder where eaafrfate can receive 1.488 Mpps
21 put it already gave us the opportunity of stressing the sttatre.

We first placed ourselves in an optimistic scenario (on &eraentries in a ESS
chain) where the generated traffic will only require from 16td MB of state store and
using the full processing capabilities of the chip (16 thisedoing ESP packets process-
ing). The latencies and chain length distribution in theultasy scenarios are depicted on
Fig. 5.9.

Note that the packets whose size are mentioned on Fig. StBexellect packets.
All the count packets were 128 bytes large in this test.

In all cases, the percentage of packets effectively foraduay the ENP card was at
least 98.5%. We have tuned the “threshold”colunt packets so that none should be
dropped as a result of normal processing, butéblect packet is processed with a

sendespmorecc.c will send 1024count packets before the firsollect is issued

20The ESP implementation uses hardware-acceletsst_64 and keeps appropriate lowest bits de-
pending on the table size

2if we take inter-packet gaps (12 bytes) and preamble (8 pijtesaccount and assume minimum-sized
packets (64 bytes)

5.4. HIGH AVAILABILITY AT HIGHER RATES 83

Latency (ps) Probability distribution

20 100%
187 — 128K
16| 80% —: o g‘z‘i
14| 16K
12 60% 1
10 | I

8- 40% 1

6 N i p

4] 20% 1/

2 N ; N ~

0 0% =" e —

T T T T T T T [T T
0 256 512 768 1024 1280 1536 0 2 4 6 8 10 12 14 16
Packet size (bytes) Chain Length

Figure 5.9: (left) ESP: col | ect packet latency with varying packet sizes and (right) ESS chain
length distribution for various state store usage ranging from 16384 to 13w0itRie keys

value entry that is older than theount 22, we might experience a drop anyway. We
estimate that this occurs for 79% of the packets activelppled by the ENP card — which
still represents less than 0.8% of the received traffic. Emeaining dropped packets are
due either to lack of space in the ESS (16%) or a missmgnt tag when aollect
packet is processed (4%).

The most likely source of packets loss in our tested is thasn#twork card on the
receiving PC (1GHz Pentium IIl) which may not be able to pescall those small packets
(or the Linux kernel lacking buffers to process them all).

Saturating the State Store

In the following tests used a packet flow miximgllect packets sized up to 438
bytes (including Ethernet headers) azwlint packets of 78 bytes, which corresponds
to 253 kpps (17% of the maximum throughput per interface).

We then selected the number of different keys generatedttwasa the ephemeral
state store (in its current state, it can handle 34950 new ey second) in order to have
most of the chains longer than 10 entries. The test has beeatexl by limiting further
and further the number of differeabmputation IDsn use, thereby limiting the number of
gueues used to relay ESP packets between the classifierapdessing microblocks,
but also the level of parallelism in the processing microklo

With two threads (on the same microengine) and 256K entiga¢ K traffic pat-
terr?®), we start seeing forwarding latencies approaching seweithseconds, and the
number of packets dropped by the ENP card dramatically asa®

What actually occurred is that, given the restricted sizehefhtash tableof our
ephemeral store (16K entries for a 8MB store), the averagendangth grew up to 16
ESS entries for the same hash, a threshold at which the miogasme of an individual
find_create was exceeding the inter-packet time for our test traffic (dtkpps, we
receive a new packet every4).

2?meaning thatount tag has already been collected, katue hasn’t been so far
Zwhich correspond to the setting -storesize 8000000 and anlask ofOx 1ffff

84 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We automated the process described in section 5.3.1, gavingre precise gathering
of the number of cycles speint the ESP microblockWith the2¢256 K pattern, we have
between a mean processing time of §.45wvith a deviation approaching;3, against
2.14us on average per packet when the system is near idle state.

With 4 threads, the average time spent on a packet in the E&®Itock is 8.4Qus
(with a deviation of 4us), as the DRAM bus is now facing twice the amount of requests.
However, the rate at which our 4 threads consume packetstfrenmg buffer is sufficient
compared to the offered traffic.

Reducing the number of entries used in the state store to &tsalves the problem.
Due to the restricted size of the ephemeral store, howeeearanot capable of reproduc-
ing the same experiment with 4 running contexts (the star #aturates and we cannot
increase the chains length further). By submitting traffib@th ends of the ENP-2611,
we can still increase the load to a total of 393 kpps (2.5#hter-packet arrival time) and
put the ESP microblock to a similar state where queues stagstlfull for a few seconds
before getting empty again.

Experimental Results vs. Queueing Theory

With an average processing time of ¢.6(2¢256 K), two “servers” (the individual worker
threads) and inter-packet arrival time of4, the system should in theory be able to drain
buffers to a normal state. However, we observed that quenedseavily loaded most of
the time.

We should first note that what we measured isn’t exactly theripacket departure
time of the queues. the processing time doesn’t take intouatcthe time needed by
a thread to acquire a packet descriptor on the SRAM queue.e Silhthe threads of a
microengine poll the 16 queues in a round-robin fashion, wghtrbe missing a delay
of several SRAM accesses (156 each) before one of the thread probes one of the two
gueues in use.

Moreover, the traffic pattern isn't as regular as we couldehdpecause we first send
a burst of 1024&ount packets (which are smaller), we have a temporary burst @ate a
proaching 274 kpps (3.4 inter-packet time), and exactly enough buffers to accommo-
date that burst when only 2 queues are in use.

We also don't have precise measurements of the load the eghkstore cleaning
might add on the DRAM and SRAM controllers. Cleaning indeed app'between”
packet servicing, and simply means the system will temjlgraerve queues with 7
threads rather than 8 — which should be unnoticeable when2omi 4 queues are loaded.
Cleaning, however, will issue continuous requests to the DRANtroller to check each
entry’s expiration time and SRAM requests to update the ghainters in the hash table,
which might temporarily increase the processing time ahdgibuffers.

Finally, a cleaning burst is likely to be followed by a colien of entries creation,
which is also significantly more expensive than entry logkepich will delay buffer
drain.

5.4. HIGH AVAILABILITY AT HIGHER RATES 85

Further significant modifications of our statistic grabbtogl would be required to
investigate those kinds of behaviours, collecting queatestraffic patterns, servicing
time in a single experiment.

5.4.2 Behaviour of the WASP Microblock

Now that we have a clearer understanding of the dynamics Bf&tfdl the state store, we
can compare latency of a flow of ESP count/collect packetsmagan equivalent WASP
flow. We picked generator parameters so that the chain legigthbution in the state
store and the traffic rate in terms of packet per second isaime $n both scenarios.

It should be mentioned that in this type of scenario, it makéde sense (if any)
to study the latency ofount andcollect packets separately. Indeed, both will be
received in the same queue and may access ESS entries thatsame chains. The
effect of e.g. a longer average processing timecfatect packets will increase the
average queueing time (and therefore the latencgpaht packets.

To keep things comparable, an ESP flow assuming a store ofSsig#l typically
compete with a WASP flow assumirx$?*. The implementation ofWVASP:collect
we're considering here is indeed usiNgAPand needs only one entry per “computation”,
therefore requiring us to double the number of individuathpatations if we want to keep
the same chain length distribution.

Store Cleaning Effects

As in the case of ESP processing, we first studied the behagioWASP for critical
chain length. Theoretically, at a certain length, the pssoceg time will be such that mi-
croengines cannot sustain the offered traffic. Buffers betwbe classifier and the pro-
cessing microengines will then fill up permanently and esivesraffic will be dropped.

In this section, we mainly focused on a test bed with 2 workezdds (thus only two
distinct CIDs) on the same microengine and a virtual storeaiA 28K entriesdg128 K)
for ESP and WASR(2¢128K) (giving an average chain length of 8 entries and a maxi-
mum chain length over 15 entries, see Fig. 5.9).

We indeed observed such behaviours when offering a comiboaeld fromWaspand
Beetlg of 440 kpps with latencies then approaching s, but as soon as the load gets over
250 kpps, we can see transient states with high buffers ukagedrain at a speed depend-
ing on the offered load. The periodicity of those bufferiiij states is close enough to
the ESS entry lifetime to suggest that we are observing shdtref a state store cleaning.
Unfortunately, the mechanism we use for probing buffer esagoo intrusive to allow
more than one probe per second — a rate at which providingtitptase result, but since
we observe less than 2 seconds with empty buffers betweebuvats at 434 kpps, we
can reasonably suggest that the “knee” load is somewhenebrt434 and 440 kpps.

It should be noted that our traffic unfortunately starts gsiirtually all the keys of
the store at the same time, meaning that store cleaning hgappébursts” during which

24e.0.2¢128K is achieved througkstoresize 4000000 while w2¢128K requires-storesize
8000000

86 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Forwarding Latency Distribution, avg chain length=8

0.07 5

0.06 1

0.05 1

0.04 4

0.03 4

w2q128K; 250kpps
m— esp 20128K; 250kpps

0.02 4 —— w2q128K 200kpps

0.01 4

T
0 10 20 30 40
latency (ps)

Figure 5.1Q0 Evolution of the latency distribution as offered load approaches saturation

the processing time in the WASP microblock can be up to twheeaverage value. Be it
because of an increased load on the DRAM controller, the naeckéating new entries
or because chains are found locked by worker threads, thé reshat the now-longer
WASP processing struggles the consumption of WASP pacotet fhe classifier’s buffers
that will fill up. The time needed to drain buffers will thenpid on the difference
between the offered load and the current throughput of th&S®Avorkers, which has
been measured on average at 400 kpps in the setup, but sheaviagjons from 380 to

440 kpps.

Measuring the packet latency through the system with lo&d 280 kpps gives virtu-
ally no clue on the behaviour of the processing microblockillastrated by Fig. 5.10,
the latency is then mostly dominated by the queueing deldyaimost fits a exponential
distribution. Moreover, the smallest deviation in the gated load may translate into an
effect on the packet latency that is close to the observéddrdifce between WASP and
ESP. We have e.g. measured an average lateney@f ;.s for WASP packets at 266 kpps
againstl5.36 us for ESP.

We thus tried to study the average processing fimen WASP and ESP microblocks,
but the best we can say is that it fluctuates betwgrmand4.4 ;s without showing any
clear relationship between the load &fig, nor any clear way to tell which of ESP or
WASP performs better. At 418 kpps, for instan@g, for WASP is3.85 ;s and4.12 ys
for ESP, but WASPI» increases up td.4 us as the load is increased to 470 kpps while
we observed the minimum value Bf = 3.88 s at 465 kpps for ESP.

Latency at Non-Critical Loads

Since we know the buffering effect becomes sensible mainlgads of 250 kpps and
over, we ran a set of experiments to collect packet latentyden 220 and 240 kpps.

5.5. THROUGHPUT TESTS 87

Latency Comparison with avg len=8

14
— 124 {k :
9] —
< 109
> T A g Ao A A
g 8 - = i = = -
3 i
L g
g | —&— WASP-2q
2 4 —B— ESP-2q
&2 ~ A WaSP-4q
] B ESP-4q
0 : ‘ ‘
220 225 230 235 240
offered load (Kpps)

Figure 5.11 Average latency

This range has been chosen to compensate the difficulty ¢ssphe obtain the same load
with the two different generators. All the observed latenales® were belows0 s this
time, which confirms store cleaning has a much moderatedteifeour measurements.
Still using the same traffic patterg128 K andw2¢128 K, we can see on Fig. 5.11 a
small advantage for WASP and a smooth increase of the lateiticythe offered load.

We then repeated the experiment with 4 worker threadstniditisg how ESP better
benefits of additional parallelism. This time indeed, WASfprmance is slightly lower
than ESP, but more intriguing, ESP latency tendsl@creaseas the load is increased.
For the comparison, we measured latency at 200 kpps with ker®rgiving very close
latencies oB.4 and&.66 us for ESP and WASP, respectively.

5.5 Throughput Tests

5.5.1 Methodology

As observed in section 5.4.1, none of the machines in our lalpawerful enough to
stress a single Gigabit Ethernet wire in terms of packetspeond.

We could have used a cluster of emitters and receivers at l@ates, using switches
to aggregate traffic between clusters and the ENP-2611.oMetyaffic-generation tools
aren’t designed to cooperate with other generators, gatgrieading to duplicate entries
creation or other sorts of ESS oddities. Moreover, not alldbaseT switches might be
able to handle the highest rate of 1488 kpps of the GigabgHat.

Since we are dealing with a programmable device, we mighe logted for a purely
software approach, rewiring tiseratch ringghat feed the classifier and sink of the WASP
and ESP microblocks. An external tool on the XScale core didlén pre-fill packet
descriptors with a given traffic pattern, and an additionakrablock would simply bridge
sources and sink, gathering throughput measurements. Wislmight be the preferable
approach in many cases, it is also unfortunately the most-dednanding one.

2Swe are collecting one sample every 20 ms, a granularity ieghby the Linux scheduling interval

88 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Radisys ENP-2611 board r-..d eth0 l! \

-
WASP
!

' sEE s == =2 splitter

R WASP, even CID
——--» WASP, odd CID

@ qum

<---- othertraffic

Figure 5.12 Packet flow in our testbed, highlighting the full-duplex use of the loop-bakk lin

The approach we finally keep draws inspiration from the puseftware method pre-
sented above, but uses wires instead of lines of code. Ormie, age will connect port 2
of the ENP-2611 board to a single test machM@agp and wire the two remaining ports
together, as depicted on Fig. 5.12. However, the staticdaimg rule of the classifier
has been rewritten to enforce the following policy:

1. regular packets coming on port 2 are simply returned tbzor

2. WASP/ESP packets that are flagged as having errors, ocdhabt be processed
because of their “location” flags are delivered on port 2 rélgas of their input
port.

3. WASP/ESP packets coming on port 2 are delivered eitheodrOpr 1 depending
on a bit of the computation ID.

4. packets received on port 0 are delivered on port 1 andwecsa.

The result is the creation of a two-way loop involving one VBRSSP processing and
one transmitting delay that will keep packets until theypdtileemselves. We can “load”
this loop by sending incremental traffic from the test maehand watch the impact on
the system. Note that one WASP microengine actually presgsackets from both “odd”
and “even” CIDs, but leaves half of each to the other ME, uniikeat the picture might
suggest.

Rule #1 ensures that the loop remains noise-free during oasumnements. We have
indeed observed that the test machine automatically egesaa few packets every time
we reload the test software, which may quickly lead to anae2600 kpps stress on the
loop. While we lack a mechanism to purge the loop manuallygjothan reloading the
software), rule #2 ensures that we do not keep corruptedep@okthe measurement.

Temporarily disabling rule #1, we can measure a maximunugtput of 2972 kpps
in the loop for “regular” packets, which is 99.86% of the tretical maximum throughput
of a full-duplex Gigabit Ethernet link. Any throughput litation that we will measure
with ESP and WASP packets will then be attributed either toSNAESP microblock, or
to WASP/ESP specific part of the classifier.

5.5. THROUGHPUT TESTS 89

queues| 1 2 3 4 5 6 7 8 16
WASP (1ME) || 315| 528 | 608 | 653 | 692 | 746 | 756 | 764 | 788
ESP (IME)|| 390 | 672 | 950 | 1096 | 1183 | 1258 | 1380 | 1430 || 1546
WASP (2ME) || 315| 632 | 836 | 1026 | 1106 | 1190 | 1242 | 1293 || 1552
ESP (2ME)|| 390 | 779 | 1047 | 1298 | 1483 | 1603 | 1680 | 1744 | 1744

Table 5.2 throughput (kpps) of WASP and ESP microblocks, with single entry ashlchain and
varying number of active queues and hardware contexts

5.5.2 Results with Count/Compare Instructions

We injected an increasing amountWASP:count andESP:compare packets in the
loops, using the “transmitted packet” counter of the TX middock to estimate WASP and
ESP throughput. Note that the byte code of WASP packets dag#ie implementation
of the ESP operation have been modified to allow unlimiteedgholds in both cases.

We also observed that packets that simply start wik\@microbyte can be processed
at a maximum throughput of 2966 kpps by a single ME. The samgram padded to 16
microbytes and carrying one bank of unused data (thus withitas fetch/checksum cost
than aWASP:count) will grow to 100 bytes on wir€ and will limit the throughput to
2046 kpps — 98.22% of the theoretical maximum for packethatfsize.

Performance with 1 Entry per Chain

Like in the state-store stressing test bed, we have repdageexperiment using fewer
microengines by reducing the number@Ds present in the test traffic. Table 5.2 shows
the throughput obtained by adding more processing powemamd parallelism. The best
performance of ESP and WASP on a single microengine comelsiacb8 and 38% of the
maximal throughput, respectively.

Note that using 8 different queues may not be enough to réa&cmaximum through-
put of the WASP or ESP microblock. Even with no hardware ttretarving on the
microengine, the presence of 8 permanently empty queuexiudes a significant de-
lay for acquiring a new packet to process. We have thus obedehroughputs ranging
from 606 to 788 kpps with 8 hardware threads doing WASP psgiggsvhen varying the
number of queues from 8 to 16 (which is the total number of ggeane ME checks).

With a lower impact, the worst spacing between two used qumay also affect the
performance. Using queues 0 to 7 and leaving queues 8 to 1y domnstance, leads to
a throughput of 755 kpps while we can achieve 764 kpps if wereerfthat no more than
2 empty queues appear between 2 used queues.

We then reproduced the experiment with one to 8 threads @xdbon two different
microengines to estimate how increased CPU power helps tf@mpance. A “4 threads”
setup thus means that we will have 2 active queues servedcbmaaroengine.

Comparing rows 1 and 3 in Table 5.2 also confirms that the WA&®preter is CPU-
bound. Indeed, while balancing the load on two differentroeagines leads to through-
put increased by 20% with ESP, WASP sees its throughput meprby 57 (4 queues) to

26including Ethernet header and checksum, or 120 bytes wigh-pracket gap and preamble)

90 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

chainlen AME)] 2 4 6 8 | 10 2VME) [2 6 | 10
ESP (compare)| 1502 | 1403 | 1296 | 1207 | 1124 ESP|[1733] 1470 1314
WASP (lookup)|| 946 | 931 | 902 | 868 | 826 W(k) || 1858 | 1686 | 1476
WASP (map)|| 774 | 757 | 730 | 699 | 680 ||| W(map)| 1526 | 1396 | 1225

Table 5.3 Throughput (kpps) with 16 queues, depending on the average lgmajth, with one
(left) or two (right) microengines.

70% (8 queues), and the maximum throughput when all 16 quengessed has almost
doubled.

Increasing Chain Length

So far, the throughput we can achieve with one WASP micraenig only 50% of ESP
performance. The results are a bit more in favour of WASP wigeng two MEs (88%).
However, these figures are obtained with an extremely low wathe ESS (on average
one entry per chain), which may not be a fair test. Indeedlathger the chains, the less
WASP interpretation will have a negative impact on micraeag’ CPU availability.

We extracted chains of colliding keys observed in the starend the previous exper-
iments (Sec. 5.4.1) and generated for each individual “agatn” a series ok packets
that will reference one of the keys that belong to the same chain, therefore experiencing
chain traversal of length from 1 tb. In all cases, we used 16 independent computa-
tions, avoiding extra delays due to empty queues, and ailtpfar the maximum CPU
parallelism on microengines.

With a single ME for processing, we can note that the gap batvieSP and WASP
performance is reduced as the average chain length insréasm 50 to 60%). We can
also observe that the relative throughput reduction isilegsrtant in the case of WASP
(the worst observed throughput is 87% of the best one with B/AGainst 74% in the
case of ESP).

We have further tried to reduce the cost of WWASP:count program, using earlier
versions. Since the microengine is fully used, shortenegWASP program by a single
byte immediately translates to lower inter-packet departime directly corresponding
to the number of cycles we saved. Removing ¥¢Copcode inWASP:count , for
instance, still keeps theount semantic, but using the first slot in the mapped bank
rather than the second one {A8\SP:collect requires). In that case, we can see that
the throughput is boosted from e.g. 730 to 800 kpps in thernmdiate case of chains
with an average length of 3.5 entries. Similar improvememésobserved for all chain
lengths we have tested.

Another interesting result is achieved when using the oldisa of WASP:count
that usedookup andinsert microbytes rather thamap. In this case, not only the
code is shorter, but it also requires less bandwidth on the I2RAs.

An intriguing fact is that, when we fully load the two micragnes, theWASP:-
count packet usingookup outperformsthe native implementation offered by ESP,
and this regardless of the ESS state. The final explanat®bden found in the code: the
ESP microblock — in its current state — will re-generate the @REcksum and update

5.5. THROUGHPUT TESTS 91

Compared Collect Throughput

Hl max
H 2x8th
[1x16th
B3 2x4th
B 1x8th
B 1x4th

E2 W2 E4 W4 E6 W6 E8 W8 E10 W10

Figure 5.13 Measured throughput for theol | ect operation with chain length varying from
2 to 10 entries, for both ESP and WASP (e.g. E6 is ESP walking a 6-entri@s),ctiarying
the amount of threads and microengine used for processing (e.g. Zx&nisroengines, each
processing 8 queues).

packet header and operands in DRAM regardless of the conputa¢rformed. The
WASP VPU, comparatively, keeps track of data and stateifdiss” and will only issue a
DRAM update when the content of the packet has been modifiedehwlever happens
in the case otount .

Note that we can obtain much more precise throughput meabyrdeactivating store
cleaning. The resulting values we obtain that way confirrhedésult presented here, but
they require less time for the average to “stabilise” ang fegedback from the experi-
menter to ensure the proper value is reached.

5.5.3 Results with Collect Instruction

Another benefit of disabling store cleaning is that we can keep a long chain without
necessarily keeping the packets that created that cham iloop. For instance, a collec-
tion of “count” packets with a threshold of O can build a chaifength before we send
another set of packets with an infinite threshold but thay mdkup for thekth key in the
chain. Using this technique, it becomes possible to medktwaghput of more complex
operations with sufficient precision.

We modified the code dfollect to ensure it will no longer drop packets and ex-
tracted chains of colliding keys from state store dumps e¥ious state store saturation
tests. A vertical bar in Fig. 5.13 reports the throughputmé scenario (i.e., either ESP
or WASP, and chain length) for increasing amount of procgspower. We can observe
here again how ESP takes advantage of additional threadsf(em 1 ME x 4 threads to

92 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

1 ME x 8 threads) and how WASP rather benefits of an additiomadamngine, even with
the same number of threads (e.g., 1 ME x 8 threads to 2 ME x adBje

We have seen in section 5.3.4 that we could come with a similacessing time
for thecollect operation, and as expected, on a single microengine, WASRINs
way behind in terms of throughput (see e.g., the 1x8 seri#d}ih two microengines
doing WASP processing, however, we can now (slightly) otdgwen ESP when using the
full power of two microengines. It should be noted, too, timathis case, both ESP and
WASP have to commit the packets’ variables into DRAM. The@enlance improvement
can thus be fully attributed to the reduction of memory asessluring the ESS entries
lookup.

We should note however, that in the worst case (10 memorysaesger ESS lookup),
WASP reaches a throughput (829 kpps) that is only 98% of ERB.i§ a rather surprising
fact given that the performance gap was expected to inciesatige number of memory
access per lookup increased. We need to keep in mind, havieaedespite WASP will
require less memory accesses, each memory access tramgéershe amount of bytes
per access, theoretically requiring more DRAM bandwidtmtB&P to sustain the same
number of packets per second.

Without extensive additional tests and tools to measur®RAaM bandwidth on the
IXP, we cannot directly assert that lower performance ofithe) test is due to a memory
bottleneck. It is clear, however, that reading a full ban& §tes, including meta-data)
while walking the chain in the state store was an optimisécision that lead to sub-
optimal behaviour once the chain gets long enough. We thplaaged the chain-walking
code of theMAPopcode so that it only fetches 24 bytes of memory during thench
walk and issue an extra access to get the remaining 24 bytestbae correct entry is
found (the “max” series folV’8 andW10 on Fig. 5.13). This indeed slightly improved
the throughput (from 829 to 840 kpps fdr 10 and from 924 to 928 kpps fdi’28), but
actually degrades the performance for chains of 6 entrid$alow.

It should be mentioned that with the first 24 bytes of the eatone, we can already
set the VPU in a state capable of processing the followingungons. The remaining 24
bytes of data would only be required on the ngitCinstruction, which allows us to re-
sume execution of the VPU while we have a memory access pgntlims is typically the
kind of programming technique that the IXP microenginesdasigned to do efficiently,
and our first estimations suggest that we could achieve u@d@ps. It would require,
however, a significant revision of our code since we needtiectiéhe case where data are
still pending, and update the partially mapped bank tramesyly.

5.6 Compiling WASP programs on the IXP

So far, we have only discussed the possibilityndérpretingWASP programs. The choice
for an interpreter-based approach was motivated by thesd@ssupport as many applica-
tions as possible. Ideally, an end-system using a new \tasfancontrol operation could
simply issue the code and the WASP routers wouldn’t evercadhat it is something
new.

5.6. COMPILING WASP PROGRAMS ON THE IXP 93

It is clear, however, that interpretatidrasa cost, and that replacing the interpreta-
tion by some pre-compiled native code could potentiallyesasources on the network
processor. We estimated that interpreting one ed@@OPconsumes 36 cycles on the
microengine and may take 0.05 more for each packet. When time on the CPU of the
microengine is the performance bottleneck, even such al smeaément in processing
time may lead to 160,000 to 320,000 packets per second theamreot process anymore
when approaching the maximal throughput (2046 and 2966Kppp.).

Through this section, we discuss two potential approaatrasdnslating WASP byte-
code into microcode for the IXP microengines: just-in-ticoenpiling (section 5.6.2) and
statistical optimiser (section 5.6.3). They both perfonm $ame kind of code translation,
but differ by how many programs may benefit of a native versiba program and how
often the set of native programs available is updated. Imefging such optimisations
for WASP is beyond the scope of this work, but we tried to pdeviandmarks and to
identify technical difficulties for future works.

5.6.1 Environment for Run-time Compiled WASP Programs

The ephemeral store library for IXP2400, as detailed in [€d08] and [Imam03], has
been designed to minimize the cost of access synchromzatin important side effect,
however, is that we cannot use the same ESS from two diffenembengines.

As a result, any run-time compiled instruction will have wexist with the WASP
interpreter on a single micro-engine. This isn’t much of abem for the available size
in the istore, as the interpreter currently consumes only 1753 out of 0#64vailable
uwords where the ESP microblock took up to 3182 uwgtds

Reusing Interpreter Code

Out of the existing code, the “packet fetch” and “packet siparts of the WASP mi-
croblock could probably be shared by the interpreter anecprepiled programs. Most
of the WASP microbytes have a sufficiently short implemeatato be written directly
in a “compiled code chunk”. ESS-related microbytes — as a®kh few memory-related
instructions such aslX — are significantly more complicated, and we could prefeet s
them available as “independent” code chunks that woulcdiied by the compiled code.

Considering how those “heavy” microbytes are implementedercurrent interpreter,
and especially, the tight binding between the microbyteesr code and the microbyte
fetch/decode, we're very likely to need two instances of thgLOOKURmMicrobyte, one
that is designed to be invoked as part of the interpreteraanther that is designed to be
called by a pre-compiled code chunk.

2Te.g. chains in the hash table are locked via ME-local coraddtessable memory, input queues are
shared using global GPR, etc.
28partially thanks to our new code for fetch and sink phases

94 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

5.6.2 Just-In-Time Compiling of WASP programs

Just-in-Time compilation is a dynamic code generationrigpke that translates bytecode
for a virtual machine into machine code at runtime, priorteceiting it natively. The ex-
perience from general-purpose bytecode languages sueliaadd LISP have illustrated
the benefits that just-in-time (JIT) compiling can bring gdrode evaluation. As soon
as code reuse is sufficient, it gets more efficient to compideltytecode into machine
code for the host platform and then execute that machine. cDde actual performance
benefit will actually depend on several factors such as homyrtimnes the code is reused,
whether it contains loops or not, how complex the JIT compdgeetc.

In [Kind02], the authors show that it is possible to perforii dompilation of a
SNARderived language on the PowerNP network processor. ThHeeutepart from
definition of the SNAP[Moore02] bytecode specification bipaling (restricted) loops
in their packets. They then compare the processing timeeointierpreter (initialization,
sand-box checks, instruction interpretation and cleavepus JIT-compiled execution
(compilation, execution).

They study three kinds of executions:

LCLE: Long Code, Long Execution, e.g.ti@cerouteimplementation as executed by a
router, that has no loops and executes most of the instnscpicesent,

LCSE: Long Code, Short Execution, e.gtracerouteimplementation as executed by an
end-system, which would terminate after only a few instond,

SCLE: Short Code, Long Execution, e.g. tkengested hop countewhich iterates
on the available queues of each router and gather statiimst their congestion
status.

Only in the third case, we can see a significant improvemeatalthe JIT compiling.
For LCLE-packets, there is a slight penalty from the comitaphase, and LCSE may
suffer from a even higher penalty sinak the code is compiled even when only a couple
of instructions will actually be processed. Note that thera similar problem with the
sand box checks in the interpretation version, but with alemianpact. With the excep-
tion of SCLE programs (which have no equivalent in WASP, sinogs are forbidden),
the main benefit of JIT compiler for packet-carried code wépend on the ability to
cache and reuse results of compilation by subsequent gacket

Dynamic Code on the IXP

Compared to the PowerNP architecture, however, the Intehi®ork processor appears
poorly suited to just-in-time compiling. First the micragnes themselves have a very
small instruction store (4K word on 1XP2400 against 128K @#for the PowerNP),
meaning that the StrongARM control processor will be the solmponent that could
perform the compilation. Passing a packet to the StrongARM &ar code compilation
will unfortunately involve additional delays, making thetpntial benefit of JIT much
more hypothetical than on a PowerNP.

5.6. COMPILING WASP PROGRAMS ON THE IXP 95

IXP2400 pstore reprogramming time

1000

800

600

time (us)

400

200 +

=— measured
—-—-y=30+0.25 x

T T T T T T
0 500 1000 1500 2000 2500 3000 3500
code chunk size (pwords)

Figure 5.14 reprogramming time of the IXP2400 network processor, measuraadryuption of
a busy loop on the reprogrammed microengine

Moreover, the instruction storés{ore) of a microengine cannot be modified while the
microengine is active. The StrongARM therefore has to deatetitemporarily the micro-
engine whoséstoreis to be reprogrammed, write the new content and then reaetitie
istore

According to [Spalink01], it will take 800 cycles (4) to rewrite 10 instructions of the
istoreof an IXP1200. Projecting those results to the IXP2400, lréulrite of theistore
could take 1.638 n18 under the conservative assumption that the memory techyolo
used for thastorehasn't evolved much between the 1XP1200 and IXP2400.

Comparatively, Lee and Coulson [Lee06] report a delay of 60analting/updat-
ing/restarting a microengine. While the authors acknowdetig fact that reprogramming
a whole microengine is actually rare when reconfiguring avagk application, they did
not provide a detailed report of the actual time required dshepart of the process, nor
the potential cost of a small update.

With proper adaptation of our controller/debugger for thAS® microblocks, we
have gathered measurements of delay experienced by theldrégode running on a
microengine when another part of the same microengine isgepmmed, as reported on
Fig. 5.14. Our code issues 3 calls to the halMEv2 driveatMe_Stop , halMe_Put-
Uwords andhalMe_Start , with varying amount of microwords submitted through the
PutUwords call. ThePutUwords call itself will take care of saving microengine state,
load the proper registers and feed the microstore with neasby

On the microengine side, we have a single thread running @ tleat continuously
reads the timestamp register and detects any iteratiomdeg@iven threshold (64 cy-
cles, while our loop is 8 instructions plus a hardware yield)l other threads on the
microengine are suspended to avoid interferences. Thabasrmally iteration’s length
is collected in a specific GPR where the user can read the megasnt. Meaningful code
samples for this experiment are documented in Appendix D.3.

29409, 6 - 4 ps

96 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

We have observed an average delag®@8 1.s when reprogramming less than 10 in-
structions. At this scale, the delay is mostly dominatedhgyttvo kernel/user transitions,
which will highly depend on the operating system installadloe XScale core.

The additional delay per 10 instructions reprogrammed beatyeer2.2 and3.6 us,
with the higher values observed with chunk sizes betwee® H2@ 2500 instructions
(9600 to 20000 bytes). These are also the ranges where thertiigviation is observed in
the measurements, and it sounds reasonable to say thab$ersizes, the cost of reading
instructions on the XScale produces an additional overfsade we are approaching the
size of the data cache (32KB).

These results suggests a full-reprogrammation cost ctode6tms for one micro-
engine. We should however keep in mind that this doesn't talceaccount the delay
before the microengine can be halted, which depends onegfjaéncy of voluntary CPU
release in the microengine code.

Code Caching and Memory Storage

The time required for compiling and installing JIT-genedatode is not the only argu-
ment for avoiding JIT in the case of WASP. We have to keep irdiinat the active router
may have to handle flows from thousands of users, all haviagdtitential of submitting
new code in their packets. In these conditions, storagelfegdnerated code becomes
a scarce resource, and the active node becomes vulneraddedml denial of (active)
service such as:

e “regular” active service not finding translated code in tlele store because of
excessive amount of service running at the same time,

e delivery of “regular” packets delayed because of repeatbthsssion of (useless)
code to the JIT translator.

To avoid such misbehaviours, it would be necessary to atitae the individuals
that submit code requests to enforce quota so that each flewa fear chance of having
its own code compiled and available. Such requirement wbalthcompatible with our
“anonymous” service objective.

5.6.3 Towards Self-Optimizing WASP Component

While there are chances that a 'just-in-time’ approach watildorth the price for WASP
programs, this doesn’t mean that we cannot take advantgge-@ompiled code anyway.
An interesting alternative consists in letting the “cohfptane” decide which programs
are requested frequently enough to be worth optimizing bgteve code chunk. In this
section, we will study how we could evolve the existing WAS®rpreter towards a more
“self-evolving” group of components.

Components Organization

profiler: Before starting compiling anything, we need to gather stesi@bout the fre-
guency of each program processed by the WASP interpretece 3 CRC check-

5.6. COMPILING WASP PROGRAMS ON THE IXP 97

sum of the packet code has already been generated by th&retegrwhen receiving
the packet, all we need to do is to incrementikil coarse-level counter every time
a packet withn lowest bits oferc(P) matchingk is forwarded.

sampler: When the self-optimizer running on the XScale control preoekas identified
a set of programs that represent an important share of tfe,tid can request
more accurate sampling for a few valueskofThis sampling involves delivering a
complete copy of the packet’s bytecode to the control pmesver e.g. a scratch
ring.

analyzer: On the control processor, the sampled packets are furthssified using a
more precise hashing mechanism. Immediate values embeddbé packet's
bytecode may also be replaced by wildcards, etc. The stafisinalysis will then
identify programs that are frequent, but also those who areraomputationally
intensive and for whom a compiled version would mean a higleeiormance im-
provement.

compiler: Still hosted on the control processor, this component witidoice the mi-
crocode to be added, and the associated matching rulesfotassifier.

match-checker: Extending the classifier, this component will be requireddentify
packets for which we have compiled code available in the E®PV®ASP mi-
croblocks.

The match-checker is probably the component that will nesiie most careful design
and implementation. It is unclear at the moment whetheratkhrather be implemented
in the classifier or in the WASP/ESP microblock. The IXP haadwsuggests one of the
two following implementations:

1. The whole packet’s bytecode is hashed and the contenéssitble memory (CAM)
hardware will try and map the hash to a code identifier. Thal tmtmber of pre-
compiled code chunk we can support here will be limited bysthe of the hardware
CAM (16 entries per ME in IXP).

2. The packet’s bytecode is compared word-by-word to a triectre that contains
code chunk identifiers (that maps to pre-compiled code churlkhe trie is prefer-
ably stored in local memory and has limited degree per node.

Note that the trie-based structure could off@rtial bytecode compilation: even if it
is not possible to provide pre-compiled alternative fortlad possible WASP programs,
many of them could be boosted by a code chunk that would perfloe few first instruc-
tions (e.g.map, etc) that are common to many packets. By having “intermetietde
chunk identifiers in non-leaf nodes of the tree, we can comsgenthe match-checking
cost by a shorter interpretation time.

Note too that beyond the obvious generation of code repgmocessingf packets,
we could also generate code that optimizes the fetchingkihg phase for a given class
of packets, for instance fetching less bytes from DRAM or gkig byte-alignment phase
for packets that are already aligned.

98 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Seamless Microengines Reprogrammation

As detailed in [Lee06], programming a microengine may regaisubstantial amount of
time. Buffering up to 58MB of packets while a component redtrcation occurs due to
a policy change may be affordable, but it is certainly notrdéde when we are simply
optimizingsomething that is already present.

Hopefully enough, when packets are passed from one micheetganother they do
not care about their peer microengine, but rather aboutigbufferthat is used to relay
packets between the two. In other terms, we could perfectly&hWASP microblock
running on ME#16 and start another one on ME#17 and keep timsticed by the clas-
sifier microblockas long as the ring on which packets are delivered is kept umpba
Moreover, the atomicity of ring-handling operations is gurdeed by the hardware and it
is perfectly safe to have threads in different MEs trying ¢ data from the same ring in
parallel.

Provided that we havespare microengineand with proper synchronization from the
control processor, we could then program the spare ME wém#w code and then swap
the ME running the old code and the spare ME seamlessly faeiteof the application.
Special care will be needed when we are “deactivating” saongpded code, especially if
the match-checker component is running on the classifiehdincase, we indeed need to
make sure that no packets requesting the leaving code ckurdim in the queues leading
to the reprogrammed microengibeforethe actual ME swapping takes place.

5.7 Uninterrupted Processing: Lessons Learned

Our number one design goal for the WASP filter box is that hagtdlor misbehaviour of
the WASP service may not lead to packet losses or other $epstformance degradation
of theforwardingof non-active packets.

Our experience with programming and debugging the WASR fitel XP taught us
how an apparently insignificant implementation choice daarrupt the behaviour of the
whole box. This section reports some of those cases that heyé&&o be worth mention-
ing and for which we can suggest good-practice rules for agtywrocessor programmers.

The Classifier Gets Going...

Most of the behaviour of WASP/ESP microblocks can be safghpied by the rest of
the network appliance since they are running on separat@+aitgines and therefore do
not consume CPU resource of the other processing elemeritsasudassifier, etc. We
should take more care, however, when modifying the classlfideed, in that case CPU
cycles on the microengine will be shared by all kind of trafind we should thus ensure
that the most complex cases do not require more than the #vudgrresponding to the
maximum packet rate.

In a single port-pair forwarder, the system will then reeesvnew packet to process
every 336us, which would mean a budget of 201 cycles for each packet ifagsdmly one

5.7. UNINTERRUPTED PROCESSING: LESSONS LEARNED 99

thread in the classifier. In a more typical setup (e.g. 4 faters, 8 threads), a new packet
could appear every 1683 and we are allowed 806 cycles (1344) in the classifier.

Our measurement reports on average from 434 to fer ESP packet on the clas-
sifier (using different traffic patterns, ESS loads, etcof, counting the latency for en-
gueuing the descriptor and fetching the next one (whichlagerand would take some
additional 8hs). We can thus expect headroom of 492 cycles per ESP packetivet
current classifier structure, which could easily accomn®ita one more DRAM access
(from 120 to 180 cycles).

We need to ensure that threads in the classifier do not gekddowhile trying to
enqueue packets to the TX microbldtkWe observed such behaviours during develop-
ment of the WASP microblock, for instance as the result of @akpoint” instruction.
The classifier and the RX microblocks were indeed simply periiog a busy loop while
checking that a given queue is capable of holding one morkepaxr not, leaving the
actual task of dropping excessive packets to the MAC chips.

This would of course be unacceptable on a production-grpgiasace, and quickly
becomes annoying on a prototype. Indeed, most of microrenggprogrammation or
status query features require that the current contexasekethe execution on the chip.
Even a soft-reset is impossible when the micro-engine igltiain such a busy loop. The
most elementary fix we implemented consists in releasing®B&fore looping, provided
that the code does not need some exclusive access when theuergjattempt occurs.

In its current state, the classifier in WASP prototype willes# if a queue remains full
for an abnormally long time and enters a debugging mode dgijgens. That 'debugging
mode’ could easily be replaced with code that drops or fodwg@ackets.

Keep The Buffers Available

Even with dedicated CPU resource and well-behaving clasdifiere is unfortunately a
way our WASP/ESP microblock could deny forwarding for natinee traffic: the lack of
buffers.

The WASP/ESP filter — much like any network application — wsbst of free buffers
where the RX microblock will pick a handle every time a new pactarts and where
other components (TX, ESP, WASP, classifier) will returrféxsf once a packet has been
completely processed. We unfortunately experienced akwases where all the buffers
we provisioned for our application ended up in the 32 rinffdys leading to the ESP mi-
croblocks (a grand total of 16K entries, while we have 12Kdmsfavailable), leaving the
RX block starving for buffers regardless of whether it reesiactive or regular packets.

It should be also mentioned that it is surprisingly easy foreawvork processor pro-
grammer to introduce a “buffer leak” in his program, by signphitting to enqueue a
buffer in the free list, or (more subtle) by having the sam#édsienqueued in more than
one queue as the result of microblock processing (which ratgy result in loops and
item loss in the free list). Such errors are extremely harginpoint and an autonomic

30assuming worst case of 4x1488Kpps
3las well as between RX and classifier microblocks
$%throughctx_arb[voluntary] uword

100 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

network device that makes use of 3rd-party code blocks ghikaly provide a “garbage
collector” component that would identify buffers that ane tise” for too long and return
them to the free list.

Moreover, ring buffers leading to “auxiliary” componenkdi the ESP/WASP filter
should be better calibrated than the naive approach ciyrwesad in WASP. A good prac-
tice rule should be to ensure that

> Qi+P<T—(FP+FQ)

Where(Q); is the size of an auxiliary queu®, the number of auxiliary threads (which
can hold a buffer each); the total amount of available bufferg,P the number of pro-
cessing threads on tliast pathand F'() the number of queues on the fast path.

Keep The Chains Short

The length of chains in DRAM is probably one of the major isswesolve if we want to
allow wire speed processing of ESP/WASP packets. In thieadiictory paper [Calvert02],
Calvert et al. assumed that not ondgintersof the hash table, but algagsandchain
pointerscould be stored in SRAM, while DRAM would take carewaflues Even with
the maximum of 64MB SRAM, we could only hold 5.33M entries thaty while a sin-
gle Gigabit interface will require 14.4M entri€s Chances are that this motivated the
alternate design used in IXP-based implementations.

Moreover, the initial assumption was that the rafip jetween the number of entries
in the store {n) and the number of pointers in the hash table could be kepteset 0.5
and 2. Comparatively, our prototype setup uses a ratio 0.04, and could reasonably
reconfigured to offeh = 0.37 (512KB of hash and 8MB of state per store). Again, this
speaks in favour of our “larger state per key” approach.

Simply enforcing that no more than /7 entries per second can be created on a sin-
gle store is thus not enough to guarantee good behaviour,iewe can offer fairness
to the various traffic sources. Even with a small ratiomofr entries created and suffi-
cient knowledge of the hash function used by the router, tatlker could easily craft a
stream of requests that builds a chain sufficiently long abftirther packets will experi-
ence arbitrarily long processing time, denying executmmother ESP/WASP traffic and
severely reducing the amount of buffers available for otrefic.

Instead, we should measure the average service time for &3e1s for various chain
lengths, and enforce a chain length limit according to theneded rate of ESP packets
and the available number of hardware threads.

5.8 Conclusions

We have implemented and tested WASP VPU on the IXP 2400 nktpiarcessor in
a “filter box” setup. Under low load, the interpreter is coripes with pre-compiled

33assuming each packet is allowed to create an entry that memagésent for 10 seconds

5.8. CONCLUSIONS 101

operations as seen in ESP. We confirmed the advantage af éargies for the ephemeral
state store on this platform.

It should be noted, though, that the VPU processing makes mtensive use of the
microengines ALU and that throughput will not scale with thenber of active threads
as well as it does with ESP. It does, however, scale well griumber omicroengines
while ESP will experience only small throughput improvemehether the same number
of flows are processed by 1 or 2 microengines. We therefoiieveethat it would be
preferrable to integrate both code (ESP and WASP), maybeshsgvruntime-compiled
optimizations of frequent WASP programs, on a single micgiee, which would better
balance the ALU usage.

We also observed that the increase of the average chairhlangtthe absence of a
mechanism limiting the longest chain in the state store naaselan important impact
on the forwarding latency of WASP and ESP packets. For agjbics doing network
performance measurement or that try to enforce a giventgudiservice, it might even be
preferrablenotto execute the WASP program in that case and just use defawiafding.

We envision that this could be solved by modifying the in&structure of the state
store, replacing the “flat” hash table by something capab#plitting a chain into a trie-
like structure, or simply by denying the creation of a newrgmthen the chain length
exceeds a given threshold. We unfortunately lack time fongla proper test of these
proposals and they will be kept for further research.

Altogether, we are still far from a ready-to-deploy softe/grackage for a multi-
linecard router. We believe however that the time investethis implementation and
benchmarking is rich in lessons for further development etwork processors and that
the IXP series is a good tool to prototype solutions that khaork with multi-Gigabit in-
terfaces. The dual-IXP2xxx development board is howewveiepable over our ENP2611
board for someone willing to simulate a linecard on a swiatbric based router.

102 CHAPTER 5. EXPERIMENTING WASP ON IXP2400

Chapter 6

WASP as Discovery
Middleware

Abstract

In this chapter, we present how WASP can be used as buildirg bfadistributed appli-
cations, and more specifically, how it can help scattered beemof such applications to
discover each other through the ephemeral store, using pkeenmotivated by Grid and
Peer-to-Peer computing frameworks.

Through simulations, we provide a quantitative estimatibtime benefit we can expect
on the peer bootstrapping process with varying amount of WW8#ters in the network
and how it depends on user’s average behaviour or ISP usenaindiz addressing.

6.1 The case for Discovery Middleware

Through the literature review of chapter 2, we have seenabtte networks can offer
a number of interesting improvements to resource usageaityjof experience for the
end-user. Real-time auctions delivery, cooperating htéreal web caches and video
stream adaptation were the most popular use cases, andabkelybe joined nowadays
by new applications inspired from Grid computing. Collegtiavailable computations
sites, routing computations requests towards the closekqs loaded) point of presence
or even performing distribution/aggregation of compuatatiequests hierarchically could
be seen as so many additional examples where in-networkidarnzan help a distributed
application on end-systems. For network operators, theniinge for integration of such
services is the same as e.g. the support of HTTP proxy cauhscing the traffic towards
the global Internet through local processing and storage.

Nowadays, structured peer-to-peer [Keon05] variants, Risttibuted Hash Tables
(DHT) in particular [Stoica01, Rowstron01, MaymounkovO02em to have unlimited
applications and are seen in proposals for document piasamnfKubiatowicz00], mul-
ticast streaming [Castro03] and even new network infragirac[Stoica02] or routing
[Caesar06, Caesar06b]. In many cases, a peer-to-peer netwold offer a similar

103

104 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

service to the end-systems. Some technical issues hawsrt tompletely solved yet,
mostly in the field of locality awareness (also called “netwoongruence”), which are
of higher importance for multimedia and real-time gamingy, frojects such as OASIS
[FreedmanO06] are a first step in the good direction.

Yet, the unability tarust operations performed by members of the network limits the
application field of peer-to-peer solutions, and there nidlybg an interest for network
operators to support “value-added services” themselveshriically speaking, however,
most of the services mentioned above are poorly suited tinangware of routers and
other network devices. Offloading their processing task teeavice providing farm”
raises another problem as flows and service processing rlieme longer see each other
— something that active applications are typically not yetachandle.

The presence of WASP-capable routers in the network allowslegant solution to
that kind of problems. The state store can indeed be useathagge location of “service
providers™ with end-user flows, and the lightweight nature of WASP aflaws to inspect
packets at wire speed on the border routers. We further sisitis approach in section
6.3.

We have observed that a similar use of the state store coulddfal for peer-to-peer
overlays. One major problem to be solved in these systenfigrebe/e can depend on
them for network architecture, is how to bootstrap them. Heduestion How do you
find a contact node in the overlay to joitji€astro02], the answer is too oftefeave that
to the end-usér We studied the solutions proposed for P2P bootstrappingxisting
implementations, aiming for a fully decentralised and-selfifiguring mechanism. As
reported in section 6.2.4, we mostly found a collection afidsavorking around the lack
of a proper support from the Internet architecture: ultehateither the user will have to
provide a contact node, or the software vendor will have awigion a server to process
every bootstrap request.

In other contexts, that problem of communicatioootstrappingis typically solved

by a designated router on the local network advertising ¢éhg.local entry point to a
distributed database (such as DNS server advertised thrDiCP). But peer-to-peer
networks are not part of the architecture and there is apgigneo incentive for network
operator to advertise the closest machine member of evessilge P2P network — which
may not even be in their own network. Here too, the key/vakiespstorage offered by
WASP may offer an interesting alternative to the existingons: rather than relying on
a well-known end-system to gather membership, we could theveformation collected
and availablen the network itself

In section 6.4, we propose a model of a commonly used bopfsirg mechanism
(history lists) in which nodes try and join the community lyntacting nodes that were
their neighbours in the previous session. We also proposgcneo evaluate the per-
formance of that mechanism under varying network conditioive then show how the
presence of “active” routers featuring an ephemeral stag improve the performance
of that method in section 6.5.

li.e. “nodes offering the packet filter/split/merge service't ndernet Service Providers

6.2. DISCOVERY: FLAVOURS AND EXISTING SOLUTIONS 105

6.2 Discovery: Flavours and Existing Solutions

6.2.1 Local Service Discovery

The most obvious services the user can think of is usuallptieeclosest to the physical
world: printing, e-mail servers, local file storage, etc. eQnf the goals of IPv6 in this
regards was to bring “plug and play” to the network, and wité increasing success of
wireless and portable devices, it has almost turned intg@imement. Considering inter-
dependency between service discovery and naming in lobabnles, the Zeroconf IETF
working group [IETFO6] has studied the problem and propd3iE&-Service Discovery
(DNS-SD) [Cheshire05]

Even in IPv4, much of the bare IP configuration can now be deéetjto DHCP
[Droms97] servers, which reply to broadcast requests oroited network. In the case
where no DHCP entity is present, which could be the case in dmadetwork, link-
local IP addresses can be used to allow interconnectionwoteeeven in the absence
of any infrastructure. The “Bonjour” technology availabte MacOS X [Apple05] is
an example of how those link-local addresses, together mENS-SD [Cheshire05b]
(the ’service discovery’ variant of DNS) can be used to aghiaterconnection in such
'unpredictable’ environments. Devices with more specieds typically come with a
vendor-specific feature advertisement and lookup (e.g.Cikeo Discovery Protocol),
which is limited to one or a few LANS.

When the ’locality’ goes beyond a simple LAN, but remains togeally close to
the client, theexpanding ring searcfBoggs82, Boggs83] is one of the most common
techniques used. The key idea is to make use of multicastosufgpsend the service
location request towards a multicast address that all piateservice providers will be
listening to. Since we want to avoid to flood the whole domaitihwequests, the search
is performed ring after ring, using thiene to livefield of IP packets to increase the search
distance allowed at each step.

6.2.2 Global Service Discovery

On the opposite side of the spectrum, global services desgawill locate an itenwher-
ever it standsSuch systems usually expect that the client has locatedrdyaode that
is member of a distributed database. Domain Name Servideesuose one of the oldest
example of such distributed lookup facility, where resploifises of each node depends
upon its level in the hierarchy. Similar hierarchical datsésare proposed in active net-
works literature, such as Spine, the network infrastrecpuotocol used with thprotean
active network. It is based on a tree where each node repsese@utonomous domain,
labelled by a name and a collection of leaf nodes. Each spde fists known active
routers, each “user network context” (e.g. user-instghi@cket processing functions).

When the nature of information can no longer be made hieraatlior cannot be
arbitrarily split), hierarchical systems such as DNS beed@ss obvious to use and one
might prefer thalistributed hash tabléDHT) approach [Stoica0l1, Rowstron01].

106 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

D D D
8 (‘? 9 1. advertise
o = =
| ! P2 . P2 | = >
\ | : \ ,” |_2. lookup
-
P1 P1 \’j
. Tookup

S

(a) (b) (c) (d)

Figure 6.1 Comparing expanding ring search (a) with two variants of oriented multisearch
(b and c), and the domain-wide advertise/lookup mechanism (d).

6.2.3 Proxy Services in a Transit Network

There is a number of situations, however, where the senaithar fits a local search, nor
a global. Application-level caching and multimedia filtegiare examples of such services
that could be located in ISPs or even transit networks angvfach ring search sounds
unappropriated. Many applications of active networkingsfRID computing platforms
[Lefévre02] also falls in this category.

Unlike the case of local or global discovery, the end-systéfsee Figure 6.1) that
looks for a proxy service is planning to use that service wb@mmunicating with a
destination end-systei whose address has been learnt by an out-of-band method. The
distance should be measured based on the shortestpath, rather than between the
endpoints themselves, in order to limit the path stretchnwrhaking a detour through the
proxy service.

Among the existing solutions, one can mention orientedisagt [Magoni02], which
suggests a new forwarding mechanism allowing a query mességlly flowing from
S to D to be duplicated and forwarded in directions orthogonalh® $D path. By
orthogonal, the authors mean that it will be flooded on evetgrface that does not lead
either toS or D, therefore limiting redundancy. Moreover, such duplisatzeive a new
TTL value (the range) that controls how far from the shorpesgth the request may go
(cases (b) and (c) on Fig. 6.1). Unfortunately, the oriemtedticast protocol (OMP)
does not allow one to control the amount of replies for a giyeery, except if used in an
expanding oriented search approach. Moreover, a malisiouce could even bomb the
destination using a very widely available service and a toad range.

Alternatively, one could set up an infrastructure that dayitally creates overlay net-
works interconnecting end-systems and intermediate pticough tunnels that achieve
the desired topology. This assumes that every potentiadypnas joined a distributed
database that can be searched for proxies nearby a giverijgdtrtunately, the existing
proposals following this approach (e.g. OPUS [Braynard®ihe X-Bone [Touch00])
do not come with a truly scalable and completely decengdlimethod for identifying
available proxies in a very large-scale network. Moreoneintaining the infrastructure
(that is, capturing the global network topology), monibgrithe available resources and

6.2. DISCOVERY: FLAVOURS AND EXISTING SOLUTIONS 107

expressing applications needs in a generic fashion remaaiasource-intensive activity,
even when hierarchically distributed like in OPUS.

In section 6.3, we will show how, with sensibly less suppootf all sides, WASP
manages to offer enough informationgiod-systemandservice providershrough domain-
wide advertisements (see 6.1d) so that they can take strakegjsions themselves.

6.2.4 Joining a Peer-to-Peer Community

In virtually all peer-to-peer applications, the operataioining the networks separated
into two steps:

1. find acontact nod€or bootstrapping peer);
2. use that contact node to locate your neighbours in theanktw

Depending on the desired network properties, the procdsgating neighbours will
of course vary, involving e.g. searching nodes with an ifientlose to yours, detecting
peers in your physical vicinity, etc. The incoming peer &fere needs a way to probe its
current neighbourhood and ask peers for their neighbosirari order to compare them
and improve its own set.

The role of thecontact noden this process is to provide the incoming peer an initial
set of peers so that it can start this incremental neighlomatiselection. Most (if not all)
architecture papers consider the location of that contadé ras an implementation issue
and assume the joining algorithm already has an “entry pwirihe network.

There are different techniques implemented to locate thatact node, but none of
them are fully satisfactory:

user knows: the application expects the user to provide the locatiomotlger running
node to join, and provide a way for starting a 'stand alon@endr his is for instance
the case in Chord [Stoica01].

static node: the application is bundled with a few addresses (or DNS naaf@sachines
that will handle the bootstrap process. These machinesk@spong serversn
the gnutella network [Limewire01w]) will register everyegreand reply with a list
of peers that are believed to be still alive. The obvious thak is that as soon as
the pong server is put offline, the application simply stopsking.

address-encoded:the user gives the application data that contain the addfelse pong
server to be used. This is for instance the case diti®rrentprotocol[Cohen04w]
where atorrent file contains both metadata of what you will download, and the
location of thetracker that will be your “pong server”. However, theorrent
file needs to be transmitted through some off-line means {esmg mails, news-
groups or a website) and there is no collaboration betweersgownloading dif-
ferent contents.

pool service Jelasity et al. [Jelasity06] suggest that a pool of potépears should be
maintained by a separate distributed service. While thaswaliquick spawning of
P2P topologies from a set of stable nodes (interesting ircdise of Grid comput-
ing), they still rely on off-line mechanisms to include thaede into the pool in first
place.

108 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

history file: rather than relying on some external pong server, each jpedad store the
list of neighbours it identified in the last session and trgettonnect to them (this is
the case e.g. in FreeNet[Clarke00]). Depending on how long $gstem has spent
offline, the size of that history and how dynamic the netwsrkigeneral[Rhea04],
this technique might offer fair performance or turn into @taightmare. The actual
success of the application will strongly depend on the presefsuper peershat
are running 24/7 at fixed IP address and on a mechanism tafideaper peers in
that history.

An intriguing alternative[Castro02] suggests the use of & PtHe Universal Ring) to
associate identifiers gervice DHTwith a list of contact nodes for that specific DHT. The
authors advocate that the Universal Ring, being more widghpasrted that application-
specific overlay, could be more easily located and could inecpart of the network ar-
chitecture itself.

The techniques suggested to locate nodes of the UniversgldRerhowever not more
convincing than what we found in other literature. Moreotee proper operation of the
Universal Ring requires that each member of the ring and eachce obtain a digital
certificate for their private key, which is — in our humble miph — only practical in very
restricted deployment scenarios.

6.3 MagNet: Service discovery with WASP

Rather than using a typical “all-in-one” active network aggarh, the custom service could
be offered as follows:

1. identify anchor points in the networkd. machines able to host the service),
2. detect at which anchor point(s) service deployment aéegically most useful,
3. route packets requiring the service towards depl@gedice provider(£)

4. apply merge/split/filter service on packets receivedigydervice provider(s).

We can thus decouple the service processing from the seaihiscevery discovery, and
use WASP to locate the most interesting service providar@@pendently of what the ser-
vice will actually do. Once service-providing node(s) h&reen located, the end-system
can adjust application behaviour so that the relevant floesgbrough the discovered
provider(s).

When a new applicative flow is initiated, small active paclets used to probe the
network on the route to be taken. Each time such a probe @@s®¥¢ASP node, it will
lookup the node store to see if it can fiadvertisementef the expected service, consist-
ing of the provider address and cost for reaching that pesvicom the local node. The
same kind of active packets can also be used by the servie&lprs to install advertise-
ments in routers of the local domain. Figure 6.2 illustrales two-phase process: servers
A andB first flood the domain with WASP packets advertising theispreee, avoiding to
re-install an advertisement in a router that already costaibetter one (e.g. advertising

%i.e. “nodes offering the packet filter/split/merge service't ndernet Service Providers

6.3. MAGNET: SERVICE DISCOVERY WITH WASP 109

B tag advertising A as service provider ==« message carrying advertisements from A

tag advertising B as service provider message carrying advertisements from B

Figure 6.2 Advertising (left-side) and looking for (right-side) service

a closer or less loaded service provider). A sowagan then use another WASP packet
to record those advertisements as a list of provideand branch poiniX information:
(Paddr, Xadar, cost(S, X), cost(X, P)).

This approach — codenamed “MagNet allows the network operator to remain in
control of the additional load generated by service lookupis domain by deciding the
refresh rate for advertisements. However, since adverése is limited to the domain
that hosts the service provider, the end-systems still neddve an initial destination
and will only find providers from domains that lead to thattaegion. In other words,
unlike what a globadnycas{Partridge93] service could offer, you cannot “get the ekis
news aggregator” with MagNet, but you can “get the closessreggregator between me
and slashdot”.

To work properly, MagNet discovery requires that end-systand operators agree
on awell-known tagunder which advertisements for a given service will be staed
on the data layout of advertisements. An ESS entry couldyemstommodate for a few
provider addresses and their associated costs (hop-cmanhce, server load or even a
mix of the two).

Thanks to the additional programmability offered by WASPplacations that use
MagNet to locate service providers are free to apply thecbelaghaviour that best suits
their need. When looking for a HTTP cache, for instance, onghtrpprefer toreturn
towards the source at the first match. Another applicatiaghtyprefer to filter out poor
advertisements, or keep searching (keeping track of thedsk®rtisement) along the
whole path and only return if a provider with a sufficientlyrattive cost is found. A grid
application that has to retrieve and merge several reswoits $cattered computing sites
might instead prefer to retrieve all the potential provided later inspect those results
on the end-system to see where the deployment of mergingidnneould optimise the
transfers.

Swith our mechanism enabled, providers can “attract” relepackets in their neighbourhood, but they
don't affect “regular” (non-magnetic) packets — hence théemame.

110 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

The service application can equally benefit of WASP prograiifity to express poli-
cies that will decide whether an advertisement should cepéaother one in the router,
how much advertisements are stored, and so on. The adwetdeackets may also
report the location of other providers to their emitter, Isattthe available resources of a
domain can coordinate their efforts by themselves.

6.3.1 Flooding Locally

In order to advertise the service, providers have to locad&®/routers in the local do-
main and send them WASP packets that will install advertesgrntags. We benefit here
from the fact that WASP processingagtional so no overlay of WASP-enabled routers
need to be pre-established. In our previous work [Martin@@]showed how knowing the
routing table of the local domain suffices to discover alldlgve routers of that domain.
The topology internally built out of the link-state databad the underlying routing pro-
tocol is annotated with the capabilities of routers so thy ®VASP-capable routers are
explicitly refreshed.

As an alternative, we could use the 'opaque LSA option’ oflthle state advertise-
mentmessages. Data in those opaque LSA are flooded to the whoelenkebut they
are ignored by the routing algorithm of OSPF. This approaalsed in [Keller03] to ex-
change CPU, memory and load information of active nodes tovaksource allocation
within a given domain. In both approaches, the routing daemeeds to be modified to
allow external programs to retrieve information gatherethe database, and the 'opaque
LSA option’ also requires an API to define the local option éottansmitted by OSPF.

Note that there is an implicit trust relationship betwees tisers of Internet and op-
erators of transit domains. If we want that relationshipxteed to services provided by
the operator, we need to make sure that advertisementsdimd@ee from the operator.
An attacker that would manage to put his own address in arrtskment for e.g. HTTP
proxy service could gain a privileged position to eavesdraffic from other users. This
can be prevented by using ontyotectedtags to advertise services. Protected tags (as
described in Sec. 4.3.3) can only be written and modified byasledsuper packetsand
we expect the network operator to clear the “super bit” of WA ckets of all packets it
receives from other domains.

6.3.2 Persistent Data in Ephemeral Store

A particularity ofephemerastorage is that the advertising tag will be deleted afterexfix
period 7, regardless of any refresh we could try to perform. Theesftinere may be
a small delay between the moment where a WASP router deadesriove an adver-
tisement tag and the moment where an advertisement refoesbsc Even if the server
manages to learn precisely the tag’s lifetimé cannot completely avoid the risk that
client packets may not see any advertisement. If this riskhgabe afforded, it is still
possible for a service to use two separate keyand k, that will be refreshed with a
periodT + € but such as advertisementsigfandk, are separated by a delay of erg2.

6.4. HISTORY FILE PROCESSING 111

A client that doesn't find the “primary tag” (referenced Ay can then check the “backup
tag” (referenced by,) to see whether the service is really missing.

Depending on the service constraints and on the end-apphgaolicy, several vari-
ants to this scheme can be implemented, such as:

e using the router’s clock to decide whetligror k5 should be preferred when insert-
ing/looking up information, in order to improve our chanteget information in
one try.

e always update both keys once one of them has been insertbdtsbé application
can get the most recent information regardless of whetheseitt, or ks.

e usek, = f(k;) with a key-modification functiorf (k) that can be computed by the
VPU (e.g. toggling a given bit pattern) to avoid the need famrging two keys in
the packet.

6.4 History File Processing

Among the mechanisms presented in section 6.2.4 to join atpgeeer community,
bootstrapping based on history files is the only one thauly ttecentralised. This sec-
tion presents a model of this process along with performamtieators that we will use
through the rest of this paper.

The reader should stay aware of the major inherent drawbiduktory processing: it
requires an initial list. For machines that have been rupainleast one session, joining
the network again is only a matter of patience, but for thgstesn on which we just
installed the P2P software, we need some out-of-band meschario obtain a history.
We will first assume that we have “imported” that initial I{gtg. shared by e-mail, from
a friend inviting the user to join, or retrieved from a webreg. We will see later in
section 6.5.6 how we could bypass this requirement.

6.4.1 The Community Model

The community is made of a collection péersthat are connected to the Internet via a
specificstub AS. Each peer belongs to a givelassthat defines its average online and
offline time (e.g. “stud” nodes that are online for 2 out of 21Fs, “home” nodes that are
online for 2 out of 14 hours and “desk” nodes that are online8fbours out of 24). We
assumed here that, for a world-wide deployed system, waelagealsonably consider that
nightly shutdowns have no globally observable effects.

Each peer’s behaviour is defined by the state transitiorraimag@f Fig. 6.3. When a
peer enters or leaves the “offline” state, it will pick a ramddurationd before it leaves
or returns to that state. As soon as the machine is poweratwili,contact peers in its
history list (“connecting” state) observing a random padisbefore each attemptSince
we want to avoid a partitioning of the whole peer-to-peewek, we only consider that

4dy follows an exponential distribution around an averageydela5 minutes, which we selected to
approximate the timeout of a TCP connection establishment

112 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

4 . ———)
Online delayed
dy=exp(retry)
. J
A
[empty history] [dy==0]

\ 4

) 4 N\
offline [d==0] / d=exp(uptime) connecting

d=exp(downtime) dy=exp(retry) z
z Ifound [dy<1] Ifound [dy>=1]

connected

- J

Figure 6.3 The UML state transition model of the peers

a neighbour has been found when we manage to contact a ndde th&connected”
state. When a peer has scanned its whole list without manégicantact anyone, it will
enter the “delayed” state where it remains inactive for atsiroe interval before it tries
scanning its list again.

Note that the system is greedy in the sense that a peer thatrbady found a neigh-
bour will continue processing the rest of the list and theghbkour list of its neighbours.
At shutdown, the peer will only keep a fixed amount of addressets history list (typ-
ically set to 10 in our experiments) and it will prefer longtablished neighbours over
other addresses.

Note too that the value of is theintendedsession length. When the system is in the
“connecting” state, we added a random return to “offline” mlbdg the behaviour of a
frustrated user who connected his machine mainly with tba af using the peer-to-peer
system and just powers it off because the service is too losgttup.

In the following text, we will use the term “online” to refev peers that are in one of

“connecting”, “connected” or “delayed” state.

6.4.2 Bootstrap Quality Indicators

In a typical simulation of the community we described, wetstath a predefined amount

N, of online peers. After a progression phase, the system sglllate around the “equi-

librium” amount of online peersn,, which can be derived from the online and offline

time. For instance, when ontlesk(A) andhome(B) classes are involved, we will have
oy, UA up

= l—a)———— 6.1
N QUA+dA+< a)uB—i-dB ()

where N is the total amount of peers anmdis the ratio ofdesknodes among themu
andd 4 being respectively the average time spent online and offlimenutes).

In order to compare the quality of different bootstrap mecsras, we measure the
following indicators:

6.4. HISTORY FILE PROCESSING 113

failed attempts: this is the ratio between thensuccessfuttempts and the total amount
of connection attempts, that is, those who contact a madhateis down, that is
not connected to the community yet, or an identifier that isamger (or not yet)
associated with a machine that can join the community.

frustration ratio: is the ratio between the number of sessions aborted befaresthed-
uled “ontime” expires (e.g. due to a bored user) and the &otedunt of sessions in
the simulation.

bootstrap efficiency: measures the percentage of the time spent online durindhwiec
node actually has access to the community.

TCOTLTL@C €
off = STt
Z Tonline
For most indicators, the progression phase exhibits éiffevalues than the oscillation
(equilibrium) phase. There are thus two kinds of scenarionight study:

bootstrapping: We initiate the community with a small amount of connectede®
which are all aware of one another (e.g. through coordinatediguration) and
then study whether (and how fast) the whole community caohrélae “equilib-
rium” phase. This allows us to simulate to what extent histmaised peer boot-
strapping is viable as the sole mechanism for a peer-toquemunity.

survival: We initiate the community with a number of connected nodes iclose to
ony, and study how long this “equilibrium” can be maintained. sTban be used
to simulate the history-based peer bootstrapping as aatddlismechanism when
another system (e.g. a pong server) suddenly becomes latdeaDue to the lack
of a global rendez-vous point for the community, the netweak remain “online”
only as long as at least two members ren@innected If we enter a state where
the lastconnectednember goes offline, any connection attempt will fail and the
community will not recover.

6.4.3 Behaviour on a “Regular” Network

Intuitively, the probability of a successful contact wi#gend on the amount of connected
peers, which itself depends on the amount of online peensirin a high success proba-
bility will increase the number of connected peers and floeeaeduce the probability of
anticipated poweroff.

We ran a sequence of experiments with a 1000-peer commuaitying the amount
of “stud”, “home” and “desk” machines to explore valuesaf, ranging from 90 to 165
online nodes on average per simulation. The number of coadgeers at the start of
each simulation has been set to madely, for that specific setup, allowing us to have
more accurate results on a relatively short (2000 minuies) span. We can see on
Fig. 6.4, however, that the actual number of online peers beayip to 17% below the
expectetn,;,, which can be explained by the fact that the formuladey, doesn’t take
into account anticipated poweroffs.

114

CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

160

nodes
140
1204
1004

801
¥
60 +

40

204

0

—e—connected

—4—online
¥-online (alt)

< connected(alt)

T
130
on_th

T T T
90 100 110 120

T T T 1
140 150 160

170

100%

80%
60%
40%

y

20% {

0%

—s=—frustration
m--frustr(alt)
—a— Efficiency
v eff. (alt)

T
90 100

T
110

T
130
on_th

T
120

T T T
140 150 160 170

Figure 6.4: (left) Average number of online and connected peers for different valuthe theo-
retical ony;, parameter. (right) Efficiency and frustration ratio varying with e,

up,da upg,dp « ongp, len eff

H+S | 120,720 120,1200 0.387 110(1 94 0.43
D+S(alt) | 480,960 120,1200 0.082 109{9112 0.57
H+D | 120,720 480,960 0.958 150/0109 0.75
S+D(alt) | 120,1200 480,960 0.750 150(7151.4 0.81

Table 6.1 comparing efficiency in two simulations with identieal;;,, but different mean session
length {en); « is the portion of nodes of typg in Egn. 6.1. Up and down times given in minutes.

As the theoretical number of online peers increases, we earat the frustration
ratio decrease from 19% to 3%, which is accompanied by a nurerate approxima-
tion of the actual average of online peersdy,. A few additional experiments with a
home:desk ratio of 5:5, 3:7 and 1:9 (leadingtq,, values of 237, 275 and 313 respec-
tively) confirmed the progression we observed. With an ayeat 313 online machines,
the efficiency reaches 97% and the frustration ratio tenaaris 0, which makes the
relative error orong, of only 2%.

We repeated the experiment using only machines from “stad™“desk” class, and
report the result in the “(alt)” data series of Fig. 6.4. Wihiie average number of online
peers for these simulations is virtually identical to theifgs obtained with “stud+home”
and “desk+home” mixing of the previous simulations, thermate simulations exhibit
a higher efficiency. We then investigated the mean sessigilgsee table 6.1), which
revealed as expected a longer mean session in the altermad@tsons. This mean that,
for identical average community size, it is preferable teehfewer “better peers” if they
have a longer average session length.

One should note that in both simulations, efficiency andtfati®n can be directly
expressed as a linear function of the probability of a sugfoésonnection attempt. This
confirms our a priori feeling that we should try to improve grebability of a successful
“hello” if we want to improve the overall system performance

6.5. ACTIVE DOMAINS BOOSTING P2P 115

6.5 Active Domains boosting P2P

A simple way to increase the chances for a hello message tadeessful is to make
it more capable of detecting running peers on its way. Witdul& IP processing, a
“hello” packet will test only one machine and will be sucdagsnly if that machine is
connected If instead the “hello” packet could be distributed to aktimachines running
in a given domain (e.g. all the clients of one ISP), our chamméédaving a positive answer
will become:

P(success) = 1 — (1 — P(conn))™

P(success)probability of a successful reply if the packet is targeted tmachine in do-
main D.

P(conn) probability for a machine ob of being connected. We assume in this formula
that the domairD is homogeneous and that all its clients have an equal prittlgabi
of being member of the community.

N is the number of clients in domaih that have already been members of the commu-
nity.

Such a technique, however, would lead to excessive unsalitiaffic. We can still
achieve similar improvement with substantially less oeaxhif edge routers of the ISP
domain are capable of storing information about which otiisnts are member of the
community. Such an ISP is then called active domainand the community members
connected through it are said to &etive peersf their software is capable of periodically
sending active packets that store their address on the tanger.

In the following simulations, we model active domairas a domain on which it is
possible to issue probethat will return the address of a random peer in the community
that is client of that domain. Even a successful probe tharme an address does not
immediately cause a transition to tbennectedtate. Rather, the address is pushed at the
head of the 'pending list’, and will be processed as the negt o probe.

There are two situations where a peer can benefit from theeaatuters support:
either it could have the address of an “active peer” in hitonyslist, or it could be itself
a client of an active domain and do a ’local probe’ for conadgbeers. The results
presented in the following sections assume that both pgofmiechanisms (i.e. local and
remote) are in use. Our early simulations with remote pmlaoinly showed that adding
local probes does improve efficiency, but only by a few petsen

Note that the above formula only holds for domains whigfeonn) of clients is inde-
pendent. This won't be the case, for instancd)iis a geographically concentrated area
and if all machines inD observe similar nightly shutdowns — such as in a corporate ne
work [Bolosky00]. It should be considered as a theoreticglenpound onP(success)
rather than a way to predict it. Note too, that it is the proliginf a successful connec-
tion attempigiven that the packet is sent to an active dom&ife should thus moderate it
with the probability that an entry in the history list is aesit of an active domain.

Sin that case, we simply hav@(success) = P(conn)

116 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.5.1 Registering Membership in the State Store

Compared to most of the active network frameworks proposdiderast years, the sup-
port we require from the network in this chapter is extrenmetydest. The most elemen-
tary requirement is the presence of a publicly availatéde storeon the active router
where packets could resolve a community name (or its hasltaifmmunity keyx) into
an address (or a short list of addresses) of community mesnber

Using this framework, the peer discovery protocol could tnplemented with two
(simple) WASP programs:

peer adv(K, addr) this packet is sent periodically by community members to a
random peer. When processed on an outgoing interface, itrwib add its source
addressiddr to the list maintained under kdy in the ESS. If the list is full, it will
return to its source where it could trigger a self-regulatimechanism (see below).

peer probe(K) thisisthe probe packet sent together with connection atteto the
addresses mentioned in a history list. When processed orteafarre, it will look
for a list of peer in the ESS and copy the addresses into packetatch” area. It
will return to its source if any address has been found and gods way otherwise.

A peer that bootstraps will first issud@cal probethat looks for a WASP router with
membership information in its local domain (e.g. using adan target address and a
small TTL). Then, together with the connection establishhatempts for each address
in the history list, the peer issues@mote probehat will come back if the community
key is found in a router on the path to the probed address. dimegeer_probe()
program executed on thautgoinginterface of the source’s domain or on tileoming
interface of the destination’s domain can implement locatmote probe respectively.

On each WASP router, we only need one entry (32 bytes) per contynindepen-
dently of the number of peers that are members of this commusach entry should be
refreshed at least once per “ephemeral periodtypically 10 seconds), and preferably
by drawing a random delay uniformly betweef2 andr to approach the random peer
selection mechanism mentioned in the model.

While a single hardware context on a modest network processeported to handle
about 200,000 ESS requests per second [Calvert03], thustjadie supporting up to 2
million members in a single domain like a charm, it is cleatthwould be preferable to
use the feedback information provided by returpedr_adv to estimate the amount of
local peers and adapt advertisement period accordingly.

Similarly, if we have each online peer issuing one probeye%aninutes on average,
a single hardware context could handle aggregated redoestound 63 millions peers,
in the unlikely event that they all probed an address behimdauter. Still, even a simple
network processor such as the IXP1200 used in [CalvertO3fiame up to 16 hardware
contexts for WASP packets processing, and we could eadltyadfthe egress router by
adding WASP processing on access routers too.

6.5. ACTIVE DOMAINS BOOSTING P2P 117

avgpeers-150 active50-150

180 180

T T T T
online online
connected ------- connected -----—-

160
140

120 b,

100
80 | ‘ 4 80 |
60 | B 60 |-
40 b E 40 |

20 1 q 20 |

L L L L L L L L L 0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 6.5 plotting the amount of online and connected peers over time in a regulardladtan
active (right) simulation

6.5.2 Keeping the Community Running

In these simulations, we will investigate the benefit ohactietworks during a “survival”
scenario. 1000 nodes are first randomly assigned to theeahitfedlomains which are then
randomly “activated” to reach 100 active p&ersll the following simulations use a
population of 950 “home” machines and 50 “desk” machinesardtarted witlon,, =
150 connected peers. Each simulation set contains 20 independes of 2000 minutes.

regular This is our “reference” simulations set, with no active geeAs detailed in
the previous section, this leads to an average of 106 coshgxters, a system
efficiency of 75% and a frustration ratio of 4%.

act:med This set has on average 103 active peers and an average dineain 20 peers.
It leads to an average of 128 connected nodes and improveeerdy of 87%. We
can also notice the low frustration ratio of 0.99%

act:small In this set, we have on average 100 active peers and an awoagEn Size
of 10 peers, which leads to 125 connected nodes and systanemtli of 86%.
Smaller domains thus clearly offer more modest performéoost over the “regu-
lar” network, but still, this remains clearly a boost ovee tleference set.

act:huge Here we have only one active domain whose size is on averageddrs,
resulting in an average of 130 connected nodes and systasieedly of 89%. It
also has the lowest frustration ratio of 0.66%.

All the active simulations thus outperform the referencewations, be it by the size
of the community they manage to maintain, the number of gatiively terminated ses-
sions (e.g. frustrated users), or the amount of time requ@rget connected to the system.
These performance gains still hold with a population of 2p86rs as long as other pa-
rameters are also scaled accordingly (e.g. 200 active peerpreserving the average
domain size).

SAs a side effect of this policy, we will experience a higheriamce in simulations featuring only 10
domains

118 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

sust postavg | tsg Tio0 Tsust
regular| 106 108 | 607 815 943
act:small| 125 129 | 263 348 676
act:med| 128 131 | 196 265 562
act:huge| 130 131 | 150 226 584

Table 6.2 number of connected peers at equilibriusudt), after equilibrium level has been
reachedfostavg), and time (in minutes) required to reach 80, 100 amet connected peers.

It should also be mentioned that, for the user starting hishin@, the improvement
of “only” 14% in efficiency in our simulations implies an apgation that is ready for use
twice faster.

6.5.3 Getting the Community Running

Now that we know the average number of connected peers thayttem is able to main-
tain in various settings of active domains, we can compavefast the system reaches its
“cruise level”. The following simulations have been stdniath relatively few (v, = 30)
connected machines (that could e.g. be the set of systembkdkaéeen up during the
week-end), and let the system evolve to restore its equuifitor

Table 6.2 summarises the result we obtain for those sinoulgiti For each setting,
it shows the average amount of connected peers the systesustin (as measured in
section 6.5.2) and the average time needed to reach thafdetee first time (,.;). The
value oft,,.; identifies a “knee” point on the curve where the system hashezhits equi-
librium and now oscillates around the average value. Weraksasured the actual average
valuepastthe knee point (that is, farin ¢, . .. 2000), as reported in thpostavgcol-
umr’. So not only the active routers can help having more nodesemed on Mondays
morning, but it can also cut to 60% the time required to rebthle community ,.;)
in the regular network. If we are rather interested in how &h setting can reach an
arbitrary value, we can see in columiyg andt,y, that even the less optimistic scenario
(act:small, with an average of 10 members per active donsimpre than twice as fast
as the regular network, and that with larger active domawes;an even be 4 times faster.

Another benefit brought by active networking here is the sfzée initial set required
to actually bring the community connected. We reproducedettperiment with {, =)
25, 20, 15, 10 and 5 machines initially connected to see homyroathe 20 simulations
could still “take off” and grow to the expected equilibriuralue. Indeed, if new peers
cannot find those “initial members” quickly, the initial mbers themselves might discon-
nect and we will end with an “aborted” community where no oae connect anymore.

With a regular system, things starts getting wrong with= 20, where 10% of the
simulations aborted, and further degrades so that With= 12, we have less than 50%
chance of seeing the community taking off. On the other sad®g;stem with 100 active
peers in a configuration similar tact:medcould still take off in all simulations with

"We can observe here that postavg is systematically sligiiihwe the average of section 6.5.2, which
could be due to the shorter runs not being able to compensatieef oscillations amplitude

6.5. ACTIVE DOMAINS BOOSTING P2P 119

act.\ Py, | 0% 10% 20% 30% 50% 70%
0% | 724 679 647 583 333 203

5% | 834 816 79.8 783 685 51,0

10%| 86.3 85.6 85.1 84.7 80.8 74[7
20% | 90.2 90.1 90.0 89.3 86.2 85)7

Table 6.3 Impact of dynamic addressing on system efficiency for various ratactife domain
support.

Ny = 12 and gives 90% and 60% of chances of a successful take off Wite 10 and
Ny = 5 respectively.

6.5.4 Other Affecting Parameters

The important random variable through these simulatiotisagprobability of finding an
online machine in a given time peridd The different scenarios we investigate in this
section all alter the 'default’ probability.

It is clear, too, that this probability depends on how marffecent addresses we can
test during period’. The delay between two connection attempts, for instanoectty
influences the percentage of time spent online, regardfegisaiher or not we have active
nodes.

Note that, in most implementations, the peer will scan sdwaidresses in parallel.
There is however, a maximum amount of attempts that we caulohda given platform,
meaning that e.g. we could have an average number of scaoned on a time slice
that isk times higher than what we observe in our simulations. Sitraraesults can
still be applied to such a system if we assume that the indatigrobability for a node to
be online is actually: times lower in the real system than in the simulation (e.givary
node doesn’t connect 2 hours every day, but rather 2 hourg é\days).

6.5.5 Dynamic Addressing vs. Active Domains

So far, we have assumed through all our tests that a peentgéwve system and then
joining it again will always reuse the same address. Howawveincreasingly high number
of ISPs only offerdynamicaddressing to their clients: every time a machine connects t
the Internet, it will receive one of the addresses from the p8ol, that it will keep during
its whole session, but chances are very slim that the santessli$ allocated twice in a
row to the same machine, especially hours after the lasiosess

In the following simulations, peers have probabilRy,,, of being client of adynamic
domain Those domains will assign a new address to their clientyéwvee they connect.

If we assume that the community members (both online andhejfliepresent a frac-
tion £ of the number of addresses available in the domain’s posiletis now a probability
(1 — k).Py,, that an address we find in our history list no longer corredpdn a peer,
but that it rather has been reallocated to a machine thahdaas the P2P software.

The first row in table 6.3 shows the efficiency of the P2P comitgywvith F,,,, varying
from 0.1 to 0.7 and being fixed to 0.1 (i.e. the size of each dynamic domain’s b0

120 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

times its number of peefpwithout any active router. As we can see, the system effigien
quickly degrades when we add more dynamic domains. We alseredd a significant
degradation of the frustration ratio and the average coniynaize.

On the other side, addiragtivenetworks results in an improvement of the bootstrap
efficiency and other studied parameters. Moreover, it isim@ortant to have a high
number of active domains to obtain a significant effect: £eet of domains being active
is enough to gain 11% of bootstrap efficiency, but we needthalflomains to be active
if we want to gain another 11% of efficiency.

It is interesting to note that a dynamic domain that is capalblstoring information
for active packets will behave here like a static, active domindeed, the fact that new
addresses are allocated every time a node connects is ceatpérby the fact we can
obtain the address of a community member (if any) using adyesd previously seen in
that domain.

Moreover, as depicted in Table 6.3, the presence of a feweadtimains in the system
can compensate the degradation resulting from the presdgriygmamic domains. Even
with only 10% of the domains supporting the active packetscan almost annihilate that
degradation and keep the same efficiency regardless of tbardarof dynamic domains
in the network.

There is a new phenomenon that appears Wit > 0.4. Some of the nodes might
end up with only unassigned addresses in their histor3; liseaning that they have vir-
tually no chances of connecting to the peer-to-peer netwerém F,,,, = 0.7, the phe-
nomenon can no longer be neglected since it will affect omemye2% of the members —
a value that will quickly grow over 25% of the members whiép, = 0.9.

Note that even in extreme conditions suchfgg, = 0.9, where a regular network
couldn’t maintain the community alive for more than a couplidours, the presence of
10% of active peers allows the system to survive for arbiyréong time, although with
a degraded efficiency (around 66%) and a significant numbeoaés that might end up
with a useless history list (18%, against 26% without aativdes).

Indeed, the community model only takes into account the dgeneighbour when
it picks the addresses it will archive in its history list fime next run. While an active
address has more chance to be kept from one run to the otbexdtiiess from an active
disconnected peer will not be preferred over a dynamic, ectad peer, although the
latter will likely be useless in the next run.

6.5.6 Avoid the Need for an Initial List

So far, we have illustrated that exchanging member addsedseetive routers could help
the peer-to-peer community to recover from unusually lotivdg and that its efficiency
can be boosted through the improved probability of a sufglessnnection attempt.

8While there are typically almost more clients than addressas ISP that does dynamic addressing, it
would be utopian to assume all those clients already run 2Brd@ftware

Sthe simulator considers an address unassigned when itgsetorthe pool of a dynamic domain, but
not currently assigned to any member of this domain

6.5. ACTIVE DOMAINS BOOSTING P2P 121

Still, there is a major drawback of history-based peerdefsystems we haven’t ad-
dressed yet: the need for an initial history list. An ins&fthe P2P software freshly
installed on a machine has no other system to connect to. ®asting systems will
overcome this through off-line process to obtain this 8sch as publishing it on a forum
or manual transmission through e-mails. In this sectionwilereview a collection of
techniques enabled by the presence of WASP in the networkdloiéd avoid that need.

First, when the new machine’s ISP runs WASP routers, we ntigitd our initial list
by looking for other peers in our own domain. Picking a randtastination address and
sending a probe should be sufficient here to hit the bordderan which other peers
of the same domain have advertised their address. Relyirygoonthis automatic setup
might work well when the software is actually “pushed” by &P (such as a GRID
platform promoted by the managers of the domain), but itgeterally be frustrating for
lambda users downloading some P2P software regardlessath&ttheir ISP supports
WASP or not and whether there is already a sufficient useribabeir vicinity.

We can envision another successful deployment scenate isoftware vendor can
afford setting up a WASP router at the entry point of his owtwoek domain. In that
case, the software can be designed so that, as a last opfoobes the vendor’'s domain
for some initial contact node. One might valuably argueugiy that this is no different
from running a pong server from an architectural point otwie

The good thing WASP routers offer here is that all we need tiractive domains
that contain members, not members themselves. If the veradorot upgrade to WASP
routers but WASP is sufficiently spread on the network, hddceimply run a scanning
software that would probe all ISPs and include a list of @tigmains as the “initial peers
list” for the shipped software.

If we want to build a peer-to-peer system based solely omiyidists, as opposed to
systems where that list is just the most scalable and pt#éenaechanism before we fall
back to a pong server, itis clear that we need an additionabifveebuilding the list when
it is empty or useless. Once again, thanks to the presenc&8Pwbuter, the process of
scanning the network for other peers is greatly simplifiedhgyfact that we simply have
to send a packet to any address (even if not currently agsigna running machine) of
an active domain where another peer is running to get a miitubwing that, we can opt
for different techniques that will gather addresses ta test

netstat: The P2P application might periodically run a netstat-lii@ to learn the current
connections the hosting system has with other machines sémed probes to those
locations to see whether peers can be found.

web browsing: Rather than waiting for the user to establish connectiongnvaét im-
port the history of previous connections from e.g. the sderdwser. We can then
build a list of destination addresses out of the URLs and clifesle can see any
active router.

address book: Another potential source of peer addresses would be thessitook of
the user’'s mailing application. Out of “John.Smith@Bigk&itn”, we can extract
the IP block associated with “BiglSP.com” and send activédbpsato see whether
there are online peers in that location.

122 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

The drawback with the “web browsing” approach is that theesuafortunately little
chance that popular web servers are co-located with patgrgers. There is a way an
active “server” site could be helpful if it is popular enoudhdeed, we could technically
use a website like slashdot or google as a rendez-vous foninesclooking for a peer
to join (which might visit the site too). It would however tgge the community to pro-
actively scan for active routers frequently visited by ssard to maintain ephemeral state
present by periodically refreshing on routers that woulteotvise never carry traffic for
our P2P activities.

Comparatively, the “address book” scheme is more likely tofpas to domains that
hostusersrather than services. With a simple component filtering oastirequent
webmail providers, we can concentrate our search effortpaots of the network that
could be running compatible P2P software.

6.6 Enforcing Registration Fairness

In applications like peer-to-peer community discovery aspresented above, it is of in-
creased importance that the actpedtocolis respected by the different parties. Amongst
other things, we want to guarantee that:

1. X cannot prevent other peers from appearing in the list if tegistered themselves
2. X cannot insert “fake” IP addresses in the'fist

3. on sufficiently large timescale, all machines have sindlances of appearing in
the list of machines that will be returned in probe replies.

Clearly, if we leave WASP unrestricted, there is no chance aveemforce such kind
of rules. Indeed, because of the nature of community disgaapplication, the store’s
key needs to bavell-known(e.g. a hash of some community name) and we cannot opt
for some kind of “protected key” this time. Note however,tttiee problem isn’t specific
to WASP and that even if we implemented the “probe” and “riegisalgorithms as new
ESP instructions rather than using the bytecode intenpnete still couldn’t prevent an
attacker from using e. gCOUNTor COLLECToperations to alter the list we're gathering.
What we need is to ensure thatly the correct protocotode can be applied to the
corresponding key. With pre-compiled operations, thidade achieved for instance by
using a part of the key to encode restrictions on the set afadipas allowed.

6.6.1 Hash-Requesting Packets

We can implement a similar protection in WASP by hashing ttednde into a-bit key
and use a specific bit pattern (e.gk-dit prefix, withn + k£ = 64) that is automatically
added to the code hash to form the “private key”. We then nydtid implementation of
LOOKUPRINSERT and MAPMmicrobytes to guarantee they will abort packets that try to
use a key using thg-bit prefix reserved for private keys. This will fullfill regqements

0we assume here that we can at least rely on the ISP that owk¢X8@ router for ensuring that source
addresses aren’t forged.

6.6. ENFORCING REGISTRATION FAIRNESS 123

Listing 6.1: pseudo-code for fageer_adv election process on a WASP private entry

if (MAP(private) == CREATED) {

private .goal = random ();
private . list[0] = ip.src;
done;

} else {
addr = ip.src;

d = addr XOR private .goal;
#repeat i=0..k
if (private.list[i] XOR private.goal > d) {
tmp=private . list[i];
private . list[i]=addr;
addr=tmp;
d = addr XOR private .goal;
}
#endrepeat
done;

}

(1) and (2) in our list (provided that the information addedhe list comes from the IP
header rather than from some packet variables), but it dossiorce fairness by itself.

Given a set of machineB;...P,, and a WASP-based protocol that allows ohlgad-
dresses to be stored in a list, a simple way to offer each maehiair chance of appearing
in the list would be to impose nodes to wait for a random dedanging from0.57to 1.5 7
(7 being the lifetime of ephemeral entries — typically 10 se&s)rbetween two registra-
tion messages, therefore randomizing the firsiodes that will be allowed to appear in
the list at each entry expiration.

Unfortunately, we have no way to prevent an attacker fromifgsmore traffic than
expected, and cooperating attackers could then deny listing for requésarp by simply
using an inter-registration interval sufficiently smalhgoared tor. This is an important
concern, since they will by this mean become the preferratbconodes for an important
share of the community. In most P2P applications, peersngithe network via such
compromised contact node will have no way to tell whethey’teeactually using the real
network or a attacker-controlled fac-simile of that netkor

To avoid those risks in the community discovery protocob(anany other election-
style protocol based on WASP), we suggest that the memipersbistration bytecode
first detects whether thBlIAPopcode has created a new entry or not and generates a
random goalfor the current round. Whenever a new address is to be addéx ilmst,
we then compare the distance between the new address andah@g. using a XOR
instruction) with distances of addresses that are alreadlya list. The new address is
then only allowed to replace another one if it has smalldadise.

Note that we can easily support independent elections foyrnammunities without
altering election code by simply hashing@ammunity keyn addition to the bytecode.

124 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.6.2 Accessing Election Result

Thepeer_adv /peer_probe mechanism involved in the case of peer discovery differs
from regular election protocol in the sense that the elaa&sult needs to bgublic. Not
only the participants (in the current domain), but everyrpeeeds to know who has been
elected.

A simple approach would simply be to extend the protocol gméed in listing 6.1
so that each packet either participates in the election aloggthe result depending on
some packet variable. The drawback of this approach istivapioses that all the peers
interested in the election result can only use the resultiaythat has been foreseen by
the protocol designer. For higher flexibility, we would pre& mechanism that decouples
how the election is performeflom what it is used for and that somehow (partially)
exposeshe state manipulated by the protocol.

It should be noted, too, that enforcing a fair election psso@ould be useless if we
just publish the election result in a well-known regular tagt any malicious packet can
modify. When considering one-to-one or one-to-many comgaiian patterns, we can
work around that risk by generating a random tag as part giribtecol and delivering it to
the other participant(s). In our context, however, we haveray to communicate all peers
that could potentially lookup on a rout&rfor election result without also communicating
the information to attackers.

The most promising alternative consists in embedding teetiein code in a special
portion of thepeer_probe packet, so that it isn't interpreted when the packet is re-
ceived, but remains available for a spedi®\P_ALTopcode. The corresponding se-
mantic is “please retrieve content that has been generatexiding to the included pro-
tocol”. The information is then of course mappedréad-onlymode, and not all the
state may be available. The example presented in listingf@:instance, requires that
private.goal remains undisclosed. We envision that many other protocolsd
have similar requirements, and we propose thahdsh-requesbption of WASP packets
include additional flags indicating how the entry can be egaoto public packets. Po-
tential options would of course include “do not expose” alRf expose”, but also “only
expose first longword” and “expose all but first longword”.

6.6.3 Practical Implementation of Code Hashing
One-Way Hash at Wire Speed

Performing one-way hash for an important number of packeta ocouting equipment
may quickly become a potential bottleneck in the implemigmta While some network
processors are equipped with security co-processorbfBBiehat provide hardware im-
plementation of MD5 and SHA}, most will have to work with a software implementa-
tion.

In [YueO6], a pioneering paper in the domain, the authorehsudied the perfor-
mance of several cryptographic algorithms, including yekeSHA-1 and MD5 on the

in addition to ciphering standards like 3DES or AES

6.6. ENFORCING REGISTRATION FAIRNESS 125

IXP microengines. Good news is that hashing algorithmsirequo external memory
lookups beyond fetching the plaintext and storing the digddoreover, unlike keyed
message hash (e.g. MD5-HMAC), they can live without any dartternal look-up table
or per-flow state.

Software implementation of MD5 on the IXP2400, for instarmasumes about 600
instructions, and about 60% of the execution time is spem¢gular ALU instructions
(plus about 40% spent in fetching data from DRAM). Comparétjtbe SHA-1 hashing
is twice larger, spends a significant amount of time (10%gessing “load immediate”
instructions (for initialization purpose).

MD?5 hashing also outperforms SHA-1 by a factor 2 in terms oddighput. [Yue06]
reports 1.2, 2.4 and 4.8 Gbps throughput with 1,2 and 4 migioes respectively. Note
that since the MD5 algorithm is totally cpu-bound, the perfance is completely inde-
pendent on the number of threads doing MD5 computations.

Since the WASP interpreter itself is also cpu-intensiveyauld probably be pre-
ferrable to off-load MD5 to a thread in a ME that rather perisrmemory-intensive oper-
ations, such as a forwarding table lookup component or thHe 8cessing microblock.

A CRC-Based Alternative

In many contexts, the computation-intensive MD5 might b&a@ng blocker for the acti-
vation of private state support on a WASP router. On the dift, virtually all network
processors offer a hardware implementation of CRC algorittias could be used to
produce a hash of the bytecode. Since the result of hashingvier disclosed to other
equipments, each router indeed has the opportunity of qgctie hashing method that
best suits its owner’s preferences.

Given a protocolP with Hp = crc(P), it is however trivially easy to fix attacking
code(into ' such thatere(Q') = Hp[mdgrayO3w]. The idea is thus to haatmix of
the bytecode and of a secret bitstream so that the attackeneig the result/ » to be met.
Note that simply prefixing or XORing the bytecode with somerseealue offers poor
protection, while interleaving bytes of plain bytecodehwsecret bytes seems to offer a
decent protection.

The weakness of this mechansim is that shenesecret is used for hashiradl pro-
tocols. As a result, the attacker might use a simple protddblat installs a well-known
piece of data in the state store, and then generates vadghatsother protocolB that
simply checks whether state has been created or not, andacerttye content of the state
with the well-known signature if anything is present. If gignature is found, that means
that the attacker has foung} such thatiash(A) = hash(B;) (with probability depend-
ing on the “quality” of the signature), which could substalty ease the discovery of the
secret bitstream used to scramble the bytecode. If thekattadas full access to a 1Gbps
interface, the23? packets testing all the possible CRC values could be sent int S060
seconds, which suggests the router’s secret should be etidregiuently enough to keep
protocols’ state truly private, but still kept for long emgfuto minimize the event of a
protocol state “disappearing” due to a change of the sedsttdam.

126 CHAPTER 6. WASP AS DISCOVERY MIDDLEWARE

6.7 Conclusion and Future Work

It is our belief that the currently existing peer-to-peeplagations lack a scalable, robust
and user-friendly way to let peers join the network, be itttog first or thenth time.
We have however no doubt that peer-to-peer technology hagiven enough proofs of
its potential and that we are likely to see more and more egipdins and architectures
involving P2P networks in the future.

Through this chapter, we have shown how the presence ofgrogable ephemeral
state in the network could allow a significant improvemenP@P system performance,
and that it might even allow us to distribute peer-to-peémse without having to dedi-
cate online resource to its support.

In section 6.2.4, we mentioned the two-phased nature ahjgia peer-to-peer system.
The second phase (neighbours selection) is oversimplifiedii simulations, and while
we have good hope that our proposal could equally apply toa& @hord ring, we still
need additional simulations with an enhanced model takit@yaccount ring maintenance
algorithms to validate our belief.

While the CRC-based approach presented in section 6.6.3 soumussimg, we do
not have, at the time of writing, more precise informatiowatbthe robustness of this
method, and one should certainly not implement it for pueggasther than testing.

Finally, the approaches for initial list avoidance presenh section 6.5.6 clearly need
more research before getting convincing. We have howewved ¢aith that they can be
useful building blocks of a heuristic technique which — givaufficient WASP support
from the participating domains — could strongly reduce tbmber of cases where in-
stalling the software requires extra user intervention.

Chapter 7 .

WASP and Beyond

UL a0l
ANTS can handle harder tasks than
WASP

Abstract

It is tempting to propose more disruptive services relyinghe presence of a generic key-
value store on the router’s fast path, suchtasfic rerouting([Stoica02, Schmid04]). The
potential applications of this “extended” WASP would fortarsce include the support
of fast terminal mobility and load balancing for server fanin this chapter, we rather
focus on improving the feasibility of Internet-wide multaas most of the applications
based orcol | ect operations suggest that we're responding to a multicastgation.

Allowing WASP programs to change packet destination, howieweradical decision
compared to the conservative restriction we presented iptenat. We will investigate
through this chapter what kind of compromise we could find ireotd keep that rerouting
extension “world-friendly” before studying of what help itdd be to multicast distribu-
tion.

The use case of multicast through WASP also raised questgasding the actual
implementation and deployment of WASP in a production nétwathether it comes on
a programmable line card, as a filter box or as a router “sidgkibox has implication
on what we can practically do.

7.1 Rerouting

One of the most fundamental principles of IP forwarding esfirct that packet destination
is decidedoncewhen the packet is emitted by the source. While the actualiptakes
can still be unknown (e.g. routers might reconfigure whike placket is on its way), the
packet should eventually reach the machine correspondiwat the source has decided
to be the destination and only that machine. There are, henvesveral cases where this
is not the most preferable behaviour.

It is common practice in Web hosting, for instance, to runustar of servers behind
a front-end switch or proxy responsible for load balancihgthat situation, changing

127

128 CHAPTER 7. WASP AND BEYOND

the destination of the packets at the switch may be suffiteebalance the load among
servers without requiring clients to be exposed to the idd&l machines of the clusfer

Another strong example is the case of mobile terminals [@3)awhere the same
end-system\/ receives successifereign addressegeflecting its actual location, in ad-
dition to thehome addresthat uniquely identifies it. Even with Mobile IP — a protocol
that allows such foreign addresses to be dynamically akaoicand bound to the home
address, there are practical limits to the speed at whichfoesign addresses can be
assigned.

Drawing inspiration from “Internet Indirection Infrastrtwre” [Stoica02] and “Net-
work Pointers” [Tschudin03] proposals, we wanted to ina¢g@a generic way athang-
ing packets’ destinatiowhile they're on their way — what we catroutingthe packets —
into WASP, with the hope that it would greatly extend the esgivity of the platform.

Finally, rerouting may offer help to support partial mudtst on the Internet. Actually,
an operator that offers multicast to his clients virtualfecs no more than multicast-
ing a flow from one of his client to his other clients. Withobetsupport of a world-
wide multicast-capable backbone, chances that we carveeeay. CNN by multicast in
Japan remains thin. With WASP and rerouting, clients of dicagt-capable (and WASP-
capable) domain may cooperate and setup unicast-to-mstitierouting at domain border
so that they appear as a single client to CNN.

7.1.1 Issues with Rerouting

Because this is a major difference with the traditional IP elpspecial care needs to be
taken to ensure such destination changes do not put the mketive router or the end-user
applications at risk.

Multiple Lookups

Forwarding tablelookup is a complex operation, involviegeral access to high-latency
memory and usually the use of ASICs or dedicated coprocessbrge allow WASP
packets to lookup that table more than once, there’s a pateisk that the lookup engine
is not sufficiently available to process other packets,ifeptb packets queueing at the
interface, even if there are chances that high-end netwa&egsors could handle two
IP lookups per packet. Problems mainly arise when rerousimgquestedt the output
interface(see Sec. 4.1), and especially when it appears that the netmakeon should
be reached throughanotherinterface. Should we allow the packet to leave the router
with that new address or should we instead give the packét toathe forwarding core
of the router? None of these alternatives are satisfacterthey both allow a WASP
packet to concentrate resource consumption on a singleosgio¢ network, for instance
by repeatedly requesting rerouting to another output faxterthan the current one (and

INote that in more subtle scenarios the proxy running on thretfend may require to inspect application
payload to pick the most appropriate router [Zhao05], inchifdase there’s more than the target address to
modify

7.1. REROUTING 129

therefore making a single packet stay in the forwarding cdrthe router until its TTL
reaches zero).

Looping Packets

Letting the packet leave routét on any interface with any destination address is not a
more desirable alternative. In most cases, the networkraglbver this at the next hop
S by forwarding the packet on the shortest path fr6rto the new destination, just like
S would have processed any packet to that destination, wittexiception that here, the
interface where the packet goes might be the one it comes from

More malicious packets, however, could then “turn backheitinitial destination as
S has sent them back 1, forcing R to send the packet t§ again, and making the packet
“ping-pong”ing between two routers, increasing artifilidhe load on the link between
them. Even if we ensure that packets never do such “turn b&kjer loops can be built,
concentrating resource consumption in a slightly largeaar

Where Do My Packets End Up?

The main concern for the end-user will be to ensure that gact# reach the expected
destination, even when re-routing applies. When the seguafrbestination addresses to
the final target is given explicitly in the packet’s variafléhe offered service has the same
security semantics as loose source routing in IP. When tliptesee is retrieved from
ESS, however, we need to ensure that no one is trying to abesant-systems to gain an
intermediate position on a specific data flow. We are confittettprotected/private tags
should however help the end-user build reliable reroubaged applications.

If we're to implement rerouting, it is clear from the pointspeessed above that we
need to enforce restrictions arherethose rerouting operations may take place and what
subset of destinations is allowed at each “rerouting-estidbcation. As a primary re-
striction, rerouting is amnter-domainfunctionality and as soon as the “input” interface
of an ingress router has processed a WASP packet, no otloertirgr of that packet is
allowed until the packet reaches the output interface oetress router in the local do-
main. That way, rerouting becomes almost transparent topleeator: packets “enter”
the domain with the destination that will be used along thenaio until the last router
has processed them.

7.1.2 Network-Friendly Rerouting

It should be reminded that there is a strong hierarchy betwa@sit domain operators in
the Internet, mainly due to economical customer/provid&tionships. Only a few “Tier-
1” operators provide world-wide connectivity and most I8Bsnot afford the services of
a Tier-1. Instead, they establish contracts with theiraioeistomers (namely “Tier-2")
or with the customers of these laters (“Tier-3").

With the exception of Tier-1, an autonomous system on thermet can thus be seen as
an operator that pays his own providers to get connectivityslls back that connectivity
to its own clients. To cut down operation costs, operatotiseasame level in the hierarchy

130 CHAPTER 7. WASP AND BEYOND

customer to|
—$> provider

relationship

peering
< — > relationship

——
]
O Terouted
v

- —_—
A to U

(b)

Figure 7.1: Typical inter-domain policies for domain A (a), broken by blind reroutibp (

will typically try to establishpeeringcontracts to exchange traffic between their respective
customers without paying their provider to do so.

Invitations-Based Rerouting

From the operator’s point of view, the main difficulty in retong comes from the fact
that, generally speaking, we do not want to allow any paakbgtreceived from any link.
Business agreements with other peer domains, for instanag,omly allow a domain

A to use link to domainB to reachB’s clients, but not to reach other peer domains
or providers ofB (see Fig. 7.1a). Nowadays, most of these agreements aneedfoy
filtering routes advertised by BGP [Rekhter04] rather thanltgriing packets, but blindly
enabling rerouting of WASP packets could lead to situatwhsre a packet leaveswith

a destination address falling in one Bfs clients and then reroute itself to anothmrer
domain onB’s ingress router, thus cheating the business model (se€ Hil).

WASP overcome those problems by meangneitationsleft in the ESS by former
packets. When a WASP packet executes on an interface VPU) itreate a new tag
carrying its source address by means ofithete =~ opcode. The binary pattern of the
key used withnvite tells the VPU that the value can be safely used as a rediretztiget.
Depending on how the interface is configured, twmute opcode will accept either
any target value (e.g. for customers-ingress links) or bélrestricted to tags and invita-
tions (e.g. for any other link). This way, “ping-ponging”theen domains is no longer
possible if all egress interfaces restrict rerouting tatew destinations. An invitation to
addresy” present on the interface means that the peer router fortteaface has recently
sent a packet coming fromi, and thus it should be able to route another packet towards
Y properly.

We can also prevent cheating on the business model if nentdljuest) packets can
leave invitations only oincomingVPU of ingress routers. More precisely, if we make
sure that WASP packets from peers and providers are tagggdess when they reach
the center(see Fig. 4.1) of their ingress router and thsfite opcode is not allowed for
guest packets, then a packeteceived on a non-client ingress interface that is targeted
to a client domain can only be delivered to a client domain. Byt@adiction, suppose

7.1. REROUTING 131

V is the first VPU where rerouting changes packKstdestination towards a non-client
destination/. This is only possible if an invitation to’ is present i/, however:

e if V is on a core router, it cannot have the invitation since gpaskets can only
leave invitations on their ingress VPU (unless source ade®are spoofed by one
of B’s clients).

e if VV is on a border router, it implie®’ is bound to an outgoing interface, sy
towards domain/. Note thatp can only reach that hypothetical interfaceitff
connects to both clients and non-clients domains (likelyg@ configuration error).

In Fig. 7.1, note thatB is not protected ifA allows blind rerouting on its egress
interface toB (we could easily disable blind rerouting on output inteefaanyway). If
both A and B configure rerouting properly, malicious clients frofncannot leadA to a
situation where it unwillingly misroutes packets through

Note that even if rerouting does not, by itself, allow sowspeofing (which is the root
of most DDoS attacks [Bossardt05]), it might disturb toolsdzhon header-hashing for
traceback of packets used to react to those attacks. Alfpwiter-operations between
rerouting and traceback might include storing previousidason in a field of the WASP
packet or keeping traces of applied rerouting on routersvahde an interesting chal-
lenge for future work.

Invitations and “Out”vitations

At a given ESS location that allows rerouting, we will havetiypes of packets: packets
thatleavethe domain through that interface and packets #émerthe domain through
that interface. Both are usually allowed to drop an invitaid the interface. However,
we do not want the domain ingress to “reflect” packets by aligvan incoming packet to
follow an invitation left by another incoming packet. Iraditons will be carrying a status
bit indicating whether they were left by entering or leavipackets and when a packet
will try and reroute using an invitation, attempt to follomwvitations left by packet “of the
same type” will abort packet execution.

Alternatively, we could state that packets can only leavéations when they’re on
ingressrouters, not oregress This is only equivalent when one considers two domains
that both support WASP, and that an invitation from a hostlioan be dropped o®’s
ingress router rather than o's egress router, which would be a severe deployment
blocker.

7.1.3 Validating Source Addresses

In the discussion above, we've been assuming that clieots #t and B couldn’t spoof
their source address. In other words, tWaand B enforce firewalling rules such that
clients of A never send packets that have an address ffbm their “source address”
field. This is required so that we can assume that receivioggta with source address
S on interfacel” implies thatl” can safely be used to send packets with destination

132 CHAPTER 7. WASP AND BEYOND

source ok ~\
(local client) s

\l XN only border
interface can

X do invite()

-

source valid:
V sends packets to A + b XS

through U. T
.
\ e eemmmmmmmmnd Y
3
cannot invite: just a
guest packet ...

Figure 7.2 lllustrating hot potato routing and troubles for invitation mechansim

Unfortunately, several ISPs do not perform those minimé&tgachecks, and it is
unlikely that everyone will eventually do so. As a resultyibuld be wise to ensure,
when inserting invitation t&, that the receiving interfacg is actually the interface that
we would use to send packets foas a kind of minimal authentication of the emitter.
The importance of such checks is further increased when WASter also operate on
multicast addresses, as we will detail later in Sec. 7.2.5.

Note that, again, enforcing the “source validation” megsignat the router level
works poorly. In several cases it may occur that the netwarsd't deliver packets
from S on routerR on the interface thak uses to forward packets t For the purpose
of load balancing, quality of service or any other trafic eegiring mechanism, it could
even happen thak receives (or forwards) a packet fromf&ahrough multiple interfaces.
We will thus instead distribute the responsibility of sauk@lidation on the edges of the
domain. Each machine that receivesiavitation-capablepacket from another domain
is required to confirm by the mean of a flag in the WASP headérthigapacket indeed
originated from the expected interface.

It should be noted, however, that in order to validate a soaddress, the WASP
component needs access to the inter-domain forwarding.td@bis is not a concern when
the WASP component is located e.g. on a line card (and therédosharing memory
with the IP forwarding component), but it may be a practisalie when considering an
independent WASP filter installed before a border router.

Invitations and Asymmetric Routing

The “invite/reroute” model presented above works fine ag sthe routes from to B
and fromB to A use the same routers. However, it is frequent on the Inténagtoutes
are actuallyasymmetricas the result of the “hot potato routing” principle. As dgpd on
Fig. 7.2, we suppose we have two large domains that havedgrea peering relation-
ship, one hostingl and the other hosting. Both domains are e.g. transatlantic bearer
so when packets travel “horizontally”, they need to be tpamned over long distances,

7.2. MULTICAST TO SMALL GROUP 133

involving a higher operating cost. Since there is peerirtavben the domains, however,
delivering packet from one domain to the other (that is,gHlavg “vertically”) is virtually
free. Under these conditions, operators typically conégheir routers so that packets
that have to go to the peer network will go through the clobestler router. The shortest
path fromA to B will thus cross thd/ — V' link while the path back fronB to A will
cross linky — X.

In order to invite B, however, A needs to leave an invitation oK or Y’s border
interfaces, but packets coming frafnusually don’t cross those routers. Evenliends a
message targeted fo or to Y, this message will be delivered to application layer withou
going through the interface we're interested in. Moreoirethe case ot’, we have no
guarantee that the inviting packet framwill be received on the expected interface and
Y might conclude that this packet comes from a spoofed solfrdestead we send our
invitation for B towardsX, it will be received on an internal interface that does nimval
invitation storage or usage.

The good thing is that WASP gives us the toolkit to detect thy@ranetry as well
as the address of, the place where invitations should be installed. Yet, aditemhal
mechanism is required to allow packets receivedXonto be interpreted ok s rather
than being immediately delivered to the upper layer&XofThe protected invitations that
are involved in multicast support in Sec. 7.2.4 could be algramdidate here.

7.2 Multicast to Small Group

Multicasting (many-to-many packet distribution) has b#encentre of attention for num-
ber of research since Steve Deering’s initial suggesti@n b years ago. Its primary goal
was to allowanysource to send packets t@eupaddress and let the network deliver the
packets only to those nodes which subscribed to that grough. té initial multicast, as
standardised by IETF, the source is no longer exposed tqtiter(tially huge) number
of receivers, but several issues remain such as the abocatiglobally unique group
address and the (complex) protocol required in every raatarap each group address to
the corresponding set of interfaces.

For those reasons, even if multicast has been successgplpykd in national re-
search networks, it is unlikely that the Internet will evepport a protocol that allows any-
one to send a message to arbitrary groups. “Source-Spediftchst” (SSM [Fenner06])
alleviates some of the problems related to group addregsesking the source address
part of the group identification. The communication modehiss simplified to “one-to-
many”. This means that the receiver needs to know explitiéyaddress of the source
to join (regular multicast could allow any number of soureesl usually use a rendez-
vous mechanism to match sources and receivers), using etgibBrotocol-Independent
Multicast : Sparse Mode” messadés inform routers of which (group address, source
address) pair they would like to subscribe to.

2those messages where initially designed to allow receteewitch to a source-specific tree to improve
performance

134 CHAPTER 7. WASP AND BEYOND

7.2.1 Small Group Multicast

Yet, SSM does only address partially the problems of IP masti. For core routers,
it remains impossible to keep per-flow state that would beired if millions of users
each want to run a multicast session with a couple of friefidss case of figure (also
known as “one-to-few” distribution) is the target of the “8inGroup Multicast” pro-
posal [Boivie00]. Unlike other multicast flavours, SGM (anchiéar protocols such as
explicit multicast [Boivie05] or IPv6 “Multiple Destinatits” option [Imai02])do ex-
pose the sender to the global group. SGM datagrams typicellyde the complete list
of receivers in each message (and require virtually no statere routers) and let the
“branching routers” create duplicates of the packet aserked

At each SGM-enabled router, that list is processed andtipaid to know which
subset of the destinatia$} needs to be sent over each output interfacehis implies the
router has to be designed to perform not only one IP tabledpger packet, but up to
lookups (wherer is the number of destinations carried by the SGM packet).

While SGM removes the need for per-group state in the netwoird, ¢his comes at
the expense of a larger per-packet processing time, and adaeplexity that a regular’
router will hardly handle. While Boivie et al. claim in [AlleB) that “for a network
processor such as the PowerNP, SGM is a simple niattieere is apparently no study
of what SGM packet rate a network processor could handle maw‘small” the groups
should be to avoid excessive use of the hardware lookup esgin

7.2.2 Application-level Multicast

Due to the difficulties to get a global multicast architeetworking and deployed at the
network layer, several solutions have been proposed toléanditicast atapplication
level, making each receiver of a streamedayer of that stream too such as in YOID
(Your Own Internet Distribution) [Francis00], one of theopeers in that area. More
recent works such as SplitStream ([Castro03]) get furthdremrsures that each of the
receivers contributes to a fair share of the retransmissfimnt and that the stream is still
received correctly when a small portion of the nodes failgtver it properly.

Internet Indirection Infrastructuré3, [Stoica02]) even makes application-level multi-
cast retransmission transparent to the users by the meéaggersinstalled orindirection
servers One of those triggers could well be used asdhmip addresgor the multicast
retransmission and the sources will handle their packetsealosest i3 server, which
will be in charge of locating the i3 server responsible ofdestination trigger. Receivers
then register themselves by adding their address to thefldgstinations associated with
the trigger in i3 servers.

In those schemes, treurceof the stream is indeed off loaded compared to a pure
unicast model, but the delay between initial packet emmsaiod packet reception may
increase more than we wish. Because packets are relayed ksysteins — perhaps be-
hind asynchronous DSL — the retransmission time at one hopeeome significant and
the overall organisation of the distribution tree will playsignificant role. Localisation-
aware heuristics will be necessary for instance in the chleger groups where several
application-level relays are needed to keep the individiwglicating cost affordable at

7.2. MULTICAST TO SMALL GROUP 135

each relay (otherwise the packet might well travel acrogsaons several times before it
ultimately reaches its destination, leading to unaccéetdblays for real-time applica-
tions).

7.2.3 Multicasting with ESP and Lightweight Modules

Even if ESP alone — on which WASP is based — has not the optiongémenting a mul-
ticast function, K. Calvert et al. depict in [CalvertO1] thatiiticast could be implemented
using a simpldightweight processing moduie addition to ESP.

The ephemeral state is used to perform pingbes computatiothrough which the
source will identify the routers that play a strategic rolehe distribution tree (e.g. those
which will have to activelysplit the stream). ESP-enabled routers can perform simple
computations such as “setup” which leave state indicatiaga flow X goes through the
router, and “collect” which, when used on S-Y path, allowdétect the routers that paths
S-Xand S-Y have in common.

The second component lightweight packet processing moduleis a small code
package, strongly authenticated and loaded dynamicalllgarrouter that terminates in
bounded time. Active networking research have presentermus ways to support such
code and modern network processor can efficiently suppemthirhe authors advocate
that a small number of lightweight modules could cover adgogrtion of application
needs. In this case, the functionality required by the medpacket duplication. Each
installed module consists of classifier rules that will ikedhe processing instructions
with specific arguments and parameters.

The information gathered with ESP probes indicates to thecsowheredup() light-
weight modules should be installed. This module will catitkaan packets and forward
duplicates as needed. While this scheme has the advantagdesently supporting
topologies where not all nodes are capable of ESBum()ication, it is clear that, on
'branching’ routers, per-flow state (e.g. classifying ratel forward list) is inevitable.

7.2.4 Building Small-Group Multicast with WASP

With WASP, we can replace the in-router per-flow state wideispecific code in the
packets. Once, e.g. a specific roufehas been identified as a potential branching point
for a stream, packets of the stream can indeed contain WASP gt will perform
specific actions when arriving on this node.

Similarly, WASP code can replace the need of a classifier Ipji@tty invoking the
specialised function by means ofuaique keyfor that function. The ability of WASP
to rewrite packet destination addresses at network irdesfaan here be advantageously
used to replace the branching point address with@e-local multicast addregwhich is
named through a key stored in the packet) that will generdtgtcate on every required
interface and then, once the output interface has beenedacdwrite that multicast ad-
dress into the address of the next branching point (also ddinneugh a key).

136 CHAPTER 7. WASP AND BEYOND

S-->X;

node-local multicast address group_key: gk S->Y
227.0.0.(01010110)
gk => 0
7 1 (01010110 7 1
nlmcast
(01010110)
S->U
6le—— X ——» 2 —|6le— ¥} —> 2 —
S-->W
5 3 5 B
v
4 gk =>Z 4
L S->Z

Figure 7.3 Duplicating packets on a node using a local multicast address

Node-Local Multicast Addresses

Figure 7.3 illustrates the use of those node-local addsess#t a router having 8 in-
terfaces, meaning that we could encode on the last 8bits ofilicast address (say
227.0.0.x) the subset of interfaces that should receivetran@mission of the packet.
E.g. 227.0.0.86 would be asking for retransmission on raaterfaces 1,2,4 and 6 and
227.0.0.5 would be retransmitted on interfaces 0 and 2only

Of course, such addresses are not practical since the pzanketnly be handled by
one router. That’'s where rerouting enters the game ... Upoaption of the packet at
interface 7 (see Fig. 7.3.b), the WASP code will lookup thieezperal store and resolve
group_key into node-local address 227.0.0.86, which the switchigiclof the router
can interpret to duplicate packet on interfaces 1, 2, 4 andlt@ach of these interfaces,
WASP post-processing happens and looks upgtieeip_key in the interface-specific
ephemeral store, where it will retrieve the address of thx¢ Im@anching router that has to
process the packet.

The node-local multicast addresses, in this proposal, everrdisclosed directly to
other routers or end-systems. They are interesting forfgsbooncept implementations
where WASP processing is added on line cards of an unmodiigdhsfabric. In a
native implementation, the sender would useeall-known keythat corresponds to the
list of interfaces it wants to reach so that WASP processargresolve this into &irtual
node-local address for the switch faric

An Example ...

Referring to figure 7.4, the message sent to memBer§' and D carries WASP code
used on the branching routers to take the following insionst

3since86 = 26 + 2 + 22 + 2 and5 = 22 + 2°
“to guarantee the expected behaviour of that well-knownweycould useprivatekeys here

7.2. MULTICAST TO SMALL GROUP 137

o [A-->B
[=En=) :
A | —
|—> Rl ——» R2 —p R3 * » R4 u—
1 B
A-> R3 |Tems 2
=
3 C
IPsrc --> IPdst v b ---4
transmitted packet, ! M
’ list of destinations. RS ‘» R6
A-->R6 | 7 4
R branching router
@ tag in interface ESS —
with invitation to X D

Figure 7.4: Transmission of WASP-based multicast message to the small group “B,C,D

1. onits incoming interfacek3 will use keyk1 to rewrite packet destination into the
“node-local” multicast address corresponding to intesfaiowards R4 and R5 (e.g.
227.0.0.20 if we assume the same 8-interfaces router agyoi7 B).

2. the message is then delivered to those interfaces whewnell® a second lookup
and uses ke¥2 to follow invitations towards3 and R6 respectively.

3. when packet reaches incoming interfaceRof it uses keyk3 to rewrite destina-
tion into the new node-local multicast address (e.g. 2R71@) making the core
engueue packets on interfaces towards C and D.

4. destinations of the packets are finally rewritten ifitand D at the output interfaces
of R6.

WASP-SGM without per-flow state

To enforce minimum network security, WASP cannot allow sko reroute to arbitrary
addresses. Instead, ewitation mechanism is used to ensure that destinations of rerouted
packetssolicitedthe rerouting and that, if the packet is already on an outgetface, the
new address will not cause trouble. The drawback of thisagyr is that, even if the
source knows the new destination (for instance becaussviitien in the packet), it still
hasto use router-saved state because only those addressbs willsted and allowed for
rerouting by the router.

The reader will notice that the state stored in the routeovgdver not stream-specific
but that it can instead be reused by other streams. Eachbpossimbination of output
interfaces needs a ’rerouting invitation’ so that packets explicitly reroute to a local
address saying “retransmit on interfaces 1, 4 and 5”. IfeohasN interfaces2” such

138 CHAPTER 7. WASP AND BEYOND

entries might be required, which suggests an explicit wagame those combinations
should instead be standardised.

Similarly, several flows that share a chain of branch pointreaise the “output renam-
ing” entries, that is, a single rerouting entry f8f can be used o®; for every stream
that first duplicates aks; and then af?s, meaning that the required state is now depend-
ing on the number ofeighbourghe router has rather than on the number of end-system
receiving multicast streams.

7.2.5 Pending Problems with WASP-SGM
Network Friendliness ?

The potential danger of node-local multicasting is to owsrflhe network with duplicates
of a packet, by requesting forwarding on every output iategfof the routers again and
again. In the initial proposal for Small Group Multicastchuhreat is avoided since all
destination addresses are in the packet. The domain op#ratknows in advance how
much load the packet might bring.

A possible fix for this problem is to includereditsto the packet, indicating how
many times it can be replicated. Routers will then have to taairthe 'credits’ of each
duplicate so that the sum of running packets’ credits do roeéed the initial credits of
the parent packet. Those credits exactly report how mangireng destinations a packet
carries, and when a router will “split” the packet, WASP codt have to instruct how
many credits are given to each duplicate. From the routeiist of view, packet has an
initial credit of n destinations and it will useeroute with a key corresponding to a list
of interfaces(11, I, . . ., I;;) and a list of child credit$C, Cs, . .., Cy). What the router
then has to do is to ensure the sum(gfdoesn’'t exceedr and then enqueue modified
packets tal; with the corresponding new credit. This can be done without modifying
the instruction set of the WASP virtual processor, provitleat the code foreroute
interpretation detects the special case of a node-localgcast address and process credits
accordingly.

The node-local multicast approach of WASP keeps the folignadvantages over a
'pure’ packet cloning model as can be seen in SNAP:

e The switch fabric (or whatever technology interconnectsrifiaces) is used only
once, while a collection of “clone” commands could potentiallgregrate multiple
packets that differs even in payload.

¢ Asingle router will never output more than one packet pariiate when it receives
a packet, while cloning could potentially generate manykptecto be sent to the
same destination.

SThis assumes that the switch fabric is capable of delivefimges to a set of destinations. CSIX-L1
standards[Csix00] provide several ways to do this (all oftlvlare optional), but we should stay aware that,
generally speaking, it is not possible to send a single fraoma arbitrary set of ports. What is defined in
CSIX-L1 are the following multicast modes: 1) deliver toigndry set for 16 contiguous ports; 2) deliver to
two arbitrary ports; 3) allocate a 'group ID’ that maps arlyittary subsetZ?! groups available, registration
mechanism not covered by the standard)

7.2. MULTICAST TO SMALL GROUP 139

d
S
ﬁ
A
packet duplicated to
ingress of 'helper' | | =W _ ___..---="""

P domains ... T

n
yil

(masqueraded) |[=--"2
=] invite (src=T) < . duplicatas now appear as
* packets that need to get
out of the domain they're
entering and be routed to
target instead

H1

Figure 7.5: Building a DDoS attack using WASP rerouting and packet duplication

e A packet duplicate can only “leave” the router if proper tation or validation
token is known by the source.

DDoS Toolkit ?

To exploit the packet duplication feature to overload algidgstination, an attacker needs
to be “invited” by a sufficiently high amount of fake destilmgis (that is, which will never
receive the packets) and reroute to the actual target affgicdtes have been generated.
Those fake destinations, however, are only required to sesmhall amount of packets
towards the initiator of the attack (that is, enough to naminvitation state at the router,
but not more), making thus packet duplication feature of \WASpotential threat if ISPs
that allow them do not properly enforce a fair amount of dseger packét

The success of the attack will not depend much omtimaberof attackers but more on
how scattered they are on the network. It will also be necggbat those duplicates can
be rerouted towards the actual target of the attack, whighiémto find a WASP location
L where an invitation from the targét can be followed. Under normal circumstances,
such invitations can only be found on interfaces that pdimthie shortest path to, but
malicious hosts that use source spoofing could potentiashgll fake invitations. Fig. 7.5
illustrates that kind of attack and emphasises the needdafea way to insert invitations.

Note that if wevalidate source addresses before we allow invitations to be left in
routers (as suggested in section 7.1.3), the attack is rgetdmarmful. Moreover, the
validationmechanism do not need to be implemented by all ISPs to beegfiprovided
that it is implemented in all WASP routers. Indeed, invidas fromH 1, H2 and H3 are
now detected as fake by1, R2 and k3 and duplicated packets reaching those routers can
no longer be rerouted towards Only H4 has the opportunity to insert a fake invitation,
but this router will only receiveneinstance of the packet, regardless of how many helpers

6Since this is intended to be femallgroups, enforcing e.g. a maximum of 15 destinations pergtack
seems reasonable ...

140 CHAPTER 7. WASP AND BEYOND

like H4 are present in the same domainZage.g. the branching routers generate one
duplicate per output interface, not one per target address)

7.2.6 Interconnecting Multicast Islands

The idea ofSmall Group Multicastvas to offer multicast delivery without exposing the
routers to the per-session state and without requiring rtapo network knowledge in
the end-system. While rerouting provided an interesting wagchieve a similar goal
using the WASP platform, thmvitations initially required to ensure proper behaviour
of packets rerouting, force us to install (and refresh)estatthe routers. This state can
be shared by multiple sessions, but only if the routers tlebras have issued invitations,
which in turn implies that routers are aware of registratitrey forward and are capable
of sending an invitation to a peer router for the sake of mining state.

The presence of invitations also implies that the sourcet inufirst place discover
which keys should be used on each branching router. This ewyire that the source
knows much more about the network than we would like. We wdlded be able to use a
rerouting entry only if the expected branching router is.met

Alternatively to the SGM use case, we might wish to use rémgui translate des-
tination addresses into a group address when packets esteb @omain that natively
support multicast. We should note, however, that the iheitad mechanism is once again
hardly compatible with that use case. In order to have paaegtination translated from
a internet-wide addreds into a local group addresk, we are indeed required to issue
aninvite instruction from a packet using source addréss

Alternatively to the use case of small-group multicastalhijtysson04] and [Zhang06]
suggested approaches where application-lagehtsin the network would self-organize
into an overlay and help relaying packets between multicagable domain. Rather than
trying to turn WASP into a self-sufficient solution to mubliit delivery, it could be more
interesting to opt for a hybrid approach where WASP would beduby ISP-operated
agents to locate each other and synchronize their effortaiiticast distribution.

Rerouting remains interesting at the border of a multicagiable domain to translate
unicast addresses into a group address at wire speed, botld when be the role of the
local agent to install invitations (e.g. using a super-gaend protected tags) on behalf
of its clients or based on negotiation with peer agents ierodlomains.

WASP could also be useful in detection of intermediate roati-capable domain that
have a compatible agent, using techniques such as Maghes .(3e When such a “peer”
domain is detected, we can set up a tunel relaying multicastgds through in-between
unicast domains. Rather than letting the end-system dragaiions, we could guide it to
its local agent who will in turn search for a peer agent anthlhproper rerouting entries
in border routers’ state stores.

The kind of approach described above would keep WASP rotgerdf any contro-
versary feature that could break the “friendiness” prapsyiand it could allow a network
operator to upgrade the multicast “control” protocol withdnaving to update routers
(only the supporting agent would have to be modified). Stii§ clear that additional re-
search is required here, preferably cooperating with tdaaagg experience in multicast

7.3. DEPLOYMENT SCENARIOS 141

WASP box /==
Edge Router

Figure 7.6 Two techniques for extending a regular router with a wasp box (a) in a fiker-
topology, (b) splitter-and-processor topology

passive splitter

=

Edge Router

overlays, to estimate the potential benefits of the propappdoach and identify potential
deployment issue of such an hybrid scheme, including whrat &f modification would
be required in end-system clients.

7.3 Deployment scenarios

7.3.1 WASP-aware line card

Introducing WASP as a part of the processing on a router kneé is probably the most in-
teresting approach for many of the extensions presentéisichapter. More specifically,
when the network processor implementing WASP also hosigaialing table lookup, we
have more opportunity to integrate invitations checkiegouting request lookups and the
destination lookup. To some extent, the result of a “rergyitcould be not only picking
a new destination, but also instructing what kind of operdefined specific functional
block should process the packet.

The down side is that better integration also means morefenésmces from WASP
processing on the bare forwarding performance. A high loathe DRAM bus due to a
high WASP activity might badly affect IP tables lookup.

7.3.2 WASRP filter

The functionality is implemented through a “WASP box” thaterrupts the router link,
as represented in Fig. 7.6a. As mentionned before, thigisatup we implemented for
the IXP2400 network processor.

Interrupting the wire with an experimental equipment of rseuraise a number of
guestions regarding the availability of the connection. d&e however observe that the
ENP2611 card has a number of features that isolates its imeimdvom the hosting PC.
Among other things, it has an external power source for thE E&rd that makes it inde-

142 CHAPTER 7. WASP AND BEYOND

pendent from its host’'s power supply and the network prawesan continue to operate
even if the hosting machine crashes.

We can also observe that the “splitting” and “forwardinghétionalities are clearly
separated from the active processing. WASP is implementexseparate micro-engines
that can be restarted without affecting the receive, dgdsirward process. Most of the
“mission critical” code blocks come from a well-tested &by. A special care will be
required when designing and implementing the classifiezkylavhich is mission-critical
as well, but requires custom code and inter-operation WghWASP block&

7.3.3 WASP in a non-intrusive test bed system

Some ISPs and network operators might still be reluctamtdert an experimental device
on their customer’s data path. One might then wish to attaéls®/behind a passive
splitter (TAP) box, as depicted on Fig. 7.6b. The customeadfic is then completely
protected from a misbehaviour of the WASP box, but we intoadairadical change in the
semantic of the WASP service.

1. It is no longer possible for the WASP box fitier packets. Even with thBROP
opcode, a duplicate of the WASP packet has already beeredslivby the pas-
sive splitter to the next hop. Consequently, applicatioks doncast active QoS
enforcers will fail to work properly.

2. WASP is no longer capable of collecting information alepath in a single packet.
Suppose we write a WASP program that reads the current naddigss, stores it
in packet data and forwards, a WASP box behind a passivéespliill actuallyfork
such packet, one copy mentioning the forking device as bamipe path, and the
other copy not mentioning it.

3. by requesting the return of a WASP packet, we no longeragtiee that the packet
doesn’t go any further. As a result, if an end-system sendsckeb to discover the
closest instance of a service, it will suddenly receive coydor every provider
rather than a single packet coming from the closest device.

It is clear that we cannot allow a box with such a different aetits to process every
WASP packet without at least warning the end-user that ltredeive a different service.
At least, the WASP packet format should be extended with aifidigating whether or
not a program is suitable for execution on a device that tsapiable of filtering packets.

Unfortunately, the semantic difference is only the smaikesie we have to deal with.
The splitter device is typically not equippeditgecttraffic on the wire, which means that
if we want to forward a modified packet after WASP processingas to be submitted
again to the edge router. If the program ended W@RWARDpcode, that also means
the same passive splitter will duplicate the packet agaththat the WASP box will see
it a second time. It would thus be required to alter the WASEketformat to include the
identity of the last WASP-capable device which processestengpacket so that we can
avoid processing the same packet endlessly.

’For instance, it would be wise to ensure that delivering > a WASP block is aborted (rather
than delayed) if the core-to-wasp buffers are full.

7.3. DEPLOYMENT SCENARIOS 143

regular packets
< o Peer AS
unprocessed ingress WASP

_>
-->
—» processed ingress WASP
4 -
—

unprocessed egress WASP I --
1 Desired placement of

rocessed egress WASP
P g 'the WASP box.

. R oAl route
table table Edge Router

Actual placement of

the WASP sidebox.

Figure 7.7. WASP as a sidebox companion for the edge router, showing processirggass and
egress WASP packets inside the router

Finally, the “split-then-process” approach is a severedhto the network safety. As
we have discussed abovel-@RWARErminated program actually result in a packet du-
plication on which we have no control, meaning that our seaptiemonstration program
sent along a chain of splitters will turn into a denial-of-service attempt &f packets.

In other words, by placing the WASP box like depicted on Fighb7 we've broken the
WASP model and lost the invariant that WASP processing damsallt in an increase of
the network load, on which most of WASP safety relies.

As a conclusion, placing a WASP box behind a passive spstieuld be considered
as a severe installation mistake.

7.3.4 Isolating WASP traffic on the router

An alternative to the use of a TAP box is to let the router’'sial extract WASP packets
from the regular flow. In the most favorable case, the fireestifies can redirect matching
packet to an alternate routing table, which we will buildtstizat all traffic is directed to
the companion WASP box.

Figure 7.7 illustrates how we could configure such firewd#suo make a “side-box”
behave as if it were a WASP filter. WASP packets received ftoepeer AS (in red) are
separated from regular packets using a simple rule baserbtycpl number on interface
F'1 and an alternate route table that forwards all packets t&h8P box by default. The
wasp box can then re-emit packets that need to be forwardede there is no rule to
catch them o0, they will simply use the regular route table and go on theiy o the
proper output interface.

We can apply a similar mechanism for packets to be transnittehe peer AS (in
blue on Fig. 7.7). An output firewall filter rule ofA'l will intercept them and redirect
them to the wasp box through the alternate routing table. é¥evw after they have been
processed by the WASP box, they will hit interfaEé again. We should then haveo
output rules orF'1: a first one that catches packets seen for the first time anavithde

144 CHAPTER 7. WASP AND BEYOND

tagged before they are delivered to the WASP box, and a seatmthat catches tagged
packets and clear the tag before accepting them for trasgmisn the interface.

Unsupported redirection

The features mentioned above are available e.g. in the &uropters J,M,MX and T-
series[juniper]. On other hardware, we might unfortunalstk the ability of redirecting
packets based on firewall rules. Such routers could stitiglgr support a WASP side-
box if they are capable of dropping packets based on prot@esion (e.g. CISCO routers
supporting Flexible Packet Matching). The idea is then maipassive splitter to deliver
WASP packets (along with all the traffic) to the WASP box anscdrding the WASP
packets that directly come into the router to avoid the flawsigcussed in section 7.3.3.

Missing features

By placing the WASP box aside the router rather than on the fimdinwe however lost
the ability to use WASP as a lightweight path monitoring tdoteed, since the box will
not “see” all the traffic going trough the interface on whitlwsilogically attached, it is
unable to compute correct statistics on the number of redepackets, drop ratio and
instantaneous queue sizes.

Moreover, even firewalls that are capable of filtering “natiWwVASP packets may
be unable to detect the WASP IP option used to piggyback WA®F on a regular
TCP/UDP packet.

Multiple interfaces supported with one side-box

In figure 7.7, it is relatively easy for the WASP box to tell oehalf of which interface
it should process packets. In the original ESP/WASP desigoh interface is associ-
ated with its own Ephemeral State Store, and packets thatiffierent interfaces cannot
interfere with each other.

Since the WASP box only receives WASP packets here, we might t® implement
several “virtual filter box” with a single side-box. This ngdges that we are capable of
demultiplexing packets on the WASP box though they all caromfthe same physical
interface. We will also need a way to tell which of the “exexon input interface” and
“execute on output interface” bit should be checked for ihiztrface.

When there is only one virtual filter, we can easily tell ingraad egress packets apart
by means of the tag that is used by the output firewall filterisgrdminate unprocessed
from processed packets. Depending on router features, we be restricted to e.g.
DSCP modification.

Encoding both the (un)processed state and the originatitegface through DSCP
values might become tricky and we might want to rather deddaweral alternate routing
tables that would all direct traffic to the WASP box, but usitiiferent IP addresses for the
WASP box. Each of those IP addresses would be resolved infteeedt MAC address,

8Differentiated Service Code Point — a 6-bit field in the “TyqfeService” byte of IP header

7.4. CONCLUSION 145

allowing us to use the destination MAC address on the WASPtbarfer the ESS we
should operate on. This technique will unfortunately ndyyaaquire several IP aliases,
but also one alternate routing table per additional alias.

7.4 Conclusion

The option of changing packets’ destination on the fly magvathe introduction of new
services in the network. Through this chapter, we tried topadhe point of view of a
network operator and to suggest mechanisms that would psucth destination changes
only in ways that couldn’t break the rules that apply to ndrpzkets.

We have unfortunately found ourselves limited by the faet thhe current Internet
cannot guarantee packets actually come from their sourdeessl in which case our
rerouting framework may be a severe threat of distributedadef-services attacks, es-
pecially when combined with multicast distribution.

The alternatives we can envision (see section 7.1.3 angl) g@ickly require too much
knowledge of the network either for the end-system or foMH#ESP box. In some cases,
the actual implementation of the WASP functionnalilty oe tlouter might even further
restrict what is reasonably possible (e.g. a separated litbe may not have access to
BGP tables).

This suggests that we are trying to solve at the network laygroblem that rather
require cooperation of multiple layers to work properlyicking with the philosophy that
WASP should not try to achieve complex things but shouldeimdtfocus on what can be
done at wire speed for cheap, the wisest move we could suggesallow packets to
reroute according to invitations at WASP level, but to riesgetup of those invitations to
trusted agents operated by the network owner.

The design of actual solutions involving WASP as a reroutmddleware for coop-
erating end-systems and operator agents require a betlerstanding of the existing
mechanisms and will be dealt with in future work.

146 CHAPTER 7. WASP AND BEYOND

Chapter 8

Concluding Remarks,
Future Directions

We proposed WASP, an active networking framework base&mmemeral State Store
that allows end-systems to install, retrieve and manipusaall pieces of information
within the network. We have shown how, compared to the Ephainstate Processing
(ESP) router designed at University of Kentucky, the byddecinterpretation by a vir-
tual processor (VPU) has enlarged the potential applicdigdd of WASP while keeping
safety guarantees offered by ESP.

Unlike other active platforms, however, the language ardpttogramming environ-
ment of WASP remain highly restricted. Compared to ANTS, fatance, which has
the full expressiveness of JAVA language, WASP programsi@aexceed 256 bytes in
length and the VPU doesn’t allow any kind of loop. Yet, we hatewn that useful
services such as application-controlled dropping pdi@e jitter measurement can be
built using the bytecode language to express operationpmreilow ephemeral state and
generic statistics about the network card. Through thiskwibrappeared however that
WASP gets even more powerful when it is usedraddlewarefor other distributed appli-
cations such as equipment involved in a multicast sessiergrchical proxies for HTTP
caching or agents supporting terminal mobility.

In addition to the “reference” x86 implementation, we pa®d and benchmarked an
IXP2400 “proof-of-concept” implementation of the WASPanpreter as a Gigabit-filter
box. We have shown that the performance we can get from WA8Bneatly depend on
the number of live keys in the store — and more importantlylenléngth of the chains
colliding for a given entry in the hash table. Still, with nevdte use of the state store, we
were able to sustain 90% of the throughput of a pair of gigathiernet ports with merely
40% of the processing power of the chip.

8.1 Towards a WASP Socket
The way we send and receive WASP packets in this work is orilgise for preliminary

tests and measurements. Much like University of Kentuclovipled an “ESP socket”
option to attach count, compare, etc. programs to packatsoser a socket, we would

147

148 CHAPTER 8. CONCLUSION

need system calls to have the kernel attaching WASP progtarpackets and a way
to sendstandaloneWASP programs to a given machine without having to rely on raw
sockets. The problem of retrieving data from packets recelby an end-system also
requires attention. Finally, application developers wdkd a library of validated WASP-
basedransport protocolso that once a “reliable multicast” socket is opened, all exeh

to do is send our data over the socket.

8.2 Rethinking the State Store?

Through this work, we have taken the state store “as is”, authrying to modify its
implementation or its semantics more than resizing itsentHowever, our experiments
with the IXP implementation show that the time required tdkveachain may quickly be-
come critical under certain traffic patterns. Still, the amioof required SRAM needed to
support full-speed operations gives the feeling that thop@ance gap between a multi-
100baseT and a multi-gigabit equipment haven't really ksdcipated when designing
the ephemeral store. While the presence of hash pointers ilv8Ray offer shorter “best
case” when the use of the state store is low, scaling the &ionaintain the “available for
all” principle may require impractically high amount of (@nsive) SRAM.

If we end up with a typical average chain length of e.g. 8 estrive may even
guestion the pertinence of such a pointers table and premgar pointers table fully
stored in DRAM. Evaluating the performance of such an apgr@aainst the existing
implementation would be one of our priorities in future woke also envision a hybrid
approach where a chain (pointed from SRAM) could be “split'several sub-chains
(using a DRAM extension of the pointers table) when the chemgth goes over a given
threshold.

We are unfortunately strongly limited in the ways we can rhotlie state store if we
want to keep a straightforward and lightweight cleaningcpss. Even arranging chains
entries to follow a Most Recently Used order could lead togremnce degradation due
to the additional number of DRAM writes required to maintdia thain pointers.

Our latency and throughput experiments on the IXP impleatent of WASP have
also highlighted the need for a finer control of the entrieation rate. Not only a burst
of entries creation will immediately slow down packets @s&ing, but it also means that
we will experience a sudden higher cleaning cost, whichdaadonger buffering than
what real-time applications may accept.

8.3 More on the “Best Effort” We Provide

There is an important (and unaddressed) decision concetinen“best-effort” nature of

WASP/ESP that came to attention during section 5.7. For gpatecols (such as robust
collection of an important number of samples), it may not beeatable that a router
forwards a WASP packet without performing the computatiesp(if other packets of
the same computatidmvebeen processed on that router).

8.4. THE ROLE OF WASP IN AUTONOMIC NETWORKS 149

On the other side, dropping packets that carry a WASP progradapplication-level
data could be a bad idea. If the proper operation of the caatipat requires that all
packets see the same set of routers, we could then prefeattivatehe packet, clearing
its execution bit, and simply forward it. That way, the eyditem can still receive the
packet, and the computation semantics is preserved.

Finally, some computation’s output is independent of whsplecific routers do or
don’t process the packet, but dropping or deactivating ket would have a significant
drawback. This is for instance the case of multicast retréssion (see [Calvert02]) and
service discovery application (see section 6.3).

Considering the possible combination, the best approachdwmobably consist of
letting the application tell — via a proper control bit in WR®ieader — what is best to do
with such “off-profile” packets.

8.4 The Role of WASP in Autonomic Networks

The recently introduced discipline of Autonomic Networksia at evolving the Internet
towards an architecture that could be both more resistanitiges and attacks and more
efficiently managed, mostly through strong automation affiguration and optimisation
tasks.

For many, the actual implication of “autonomic” paradignmstbe actual network ar-
chitecture is still fuzzy, but all acknowledge the need ff-sonfiguring, self-optimising
and self-healing devices and networks. By sensing its owia,sdad via learning and in-
ference algorithms, the network management componentdheuwable to detect changes
in its own structure or in its “environment” (peering domaisubmitted traffic, etc), and
react accordingly to preserve high-level objectives.

To many aspects, the research done in active networks tasisgdars may provide
an interesting substrate for those kinds of problems, asatagldd in [Jelger06]. Among
other things, the attempts to make active networks selfigonng and the mechanisms
for code deployment can be useful building blocks for a newm@amic network archi-
tecture.

We believe that WASP (or a similar service) could be anotlegriuilding block for
these architectures, providing a simple mechanism fornygugipeer nodes’ capabilities,
discover helper agents in the network and perhaps evengtakire of information gos-
sipping or aggregation in a scalable fashion. We hope to tievepportunity to further
explore these applications of programmable ephemera stahe context of the ANA
European initiative.

8.5 Towards User-Friendly Rerouting in WASP

Through this work, and especially through chapter 7, wensppsed applications based
on an ever-updated virtual processor. At the time of writmgcodes such asroute
invite , expose and the corresponding mechanisms haven't been implemgsted
Thanks to the hierarchical nature of inter-domain routing,have shown how rerouting

150 CHAPTER 8. CONCLUSION

can be made loop-free and can adjust to existing traffic pgeyolicies by means of
invitationsleft in the ESS.

The success of applications based on rerouting will howstvengly depend on whe-
ther the end-systems can ultimately trust those invitatmmnot. Most of the security of
such rerouting-based applications depends on the facthieatg used for rerouting is
either unknown or unmodifiable by malicious third-parti&nforcing such secret while
making sure regular members of the applicakkoowthe “secret” tag will require cryp-
tographic aspects that we haven't investigated so far.

With a look back at all the technical difficulties we identifiabout rerouting (asym-
metric routes, spoofed source addresses, inter-domaindsssules), we should ask our-
selves whether the proper abstraction for switching dastin on the fly has been found.
Having rerouting in WASP is appealing because WASP remaifesiest levels of packet
processing. It could thus be applied on every packets ergssirouter and it doesn’t
require identification of user flows — few other platforms campete with that. More
investigations are needed to see if theitation mechanism could be made safer — e.g.
allowing only invitation from super-packets and relyingaomain-hosted services to in-
stall those invitations.

8.6 Benefits of WASP for Research Network Operators

Learning from experience and related discussions of ottteregplatforms designers, we
have tried through this work to take into account the expigta of network operators in
our design. Guaranteeing that the presence of a WASP bog imettwork never becomes
a nuisance for the operator has been our golden rule for mesigmchoices.

However, it typically requires more than this to convincensone in charge of a pro-
duction network. We tried to collect in this section argutsehat could receive interest
from research network operators such as Dante (operagguropean GEANT research
network).

Traffic statistics made automatically available to the resarchers

The use of ephemeral counters helps distributed applitatmmeasure their own traffic
whenever required without the need for authorised acceasglobal statistics facility.

However, as long as the key used for the measurement is kejgclwsed, third par-

ties cannot eavesdrop others’ traffic share. With the awiitha of per-interface global

statistics, one can even estimate its relative share ofltiabtraffic.

A more flexible platform for quality of service enforcement

Combining the presence of per-flow counters and precise tamgss from the routers,
we can embed code that evaluates e.g. jitter or packet ltssl@ng a path and let the
application adapt appropriately.

8.6. BENEFITS OF WASP FOR RESEARCH NETWORK OPERATORS 151

Simplifying network programmability once for all

A research network operator is frequently solicited by mekwesearchers wishing to
implement their own solution by modifying code in the rosterhis is unfortunately (for
them, and probably hopefully for everyone else) not possitnld the alternative of co-
hosting an application-dedicated server with the routerl@eng, complicated and costly
process. Moreover, it might even just be useless unlessspéradtall firewalling rules and
alternate route tables so that the traffic of the applicasgerocessed by the companion
server.

Ephemeral entries in WASP can easily be used by a server ¢oehibsted with the
router or running at another location) to advertise its @nes to traffic from end-systems
that might benefit from the new function. Operation arouredbre router is thus a one-
host investment for any further request, but it also offemartransparency since only
flows thatlook for the new service will be affected.

152 CHAPTER 8. CONCLUSION

Appendix A

WASP Opcode Reference

ssing

nin

acc the accumulator used for most operations.
STy...S8T15 stack content
TOP Stack Pointer STrop is the top-of stackToS).
NF Negative Flag Highest bit of the last generated word is set.
ZF Zero Flag Indicates the last generated word has all bits cleared.
UF Undefined Flag Indicates the key used for last ESS operation was mi
in the store
Xp index bank Tells the memory bank used by the “X” window
Xo index offset Tells the item pointed by the index registeXip
Xg datasize Tells the size (U8, U16, U32 or U64) of the current iten
X
Yg,Yo,Ys alternate sgme asp, Xp andXg, but for the alternate “Y” memory
window
imm immediate the value of immediate constant (for instructions support-
ing immediate values)
PC program counter indicates the next opcode to be processed.

immediate decode memory decode misc. decode
00 I Iol operation I 01 InyI cloperationl I 11 I operation I
immediate8
NOOP | IN- | LOOK | SWAP SSLo| SSR | INC) DEC
BDEF | BUN- | IMM LAX SERT | -UP
DEF
LOAD | STOR | YLOD | YSTO SGN | SAX | PSH | POP
PULL | TRASH | SHL SHR
FWD | DROP | RET | ABRT
LIX8 | LIX16 | LIX32 | LIX64 ALU decode
I 10 I Inslnaloperationl RND MAP EXT
branch decode ADD | SUB OR AND note: only opcode page 0
of misc. operations is used
00 1]izlin] z]n . so far. We still have 48
I I I I I I XOR NOT o Jax unassigned opcodes ...
immediate8

153

154 APPENDIX A. WASP OPCODE REFERENCE

A.1 Control Operations

ABORT Current mapped ESS entries ai@ written back and packet “error” flag is set.
FORWARD Write back mapped entries. Packet will continue to its destination.
DROP Write back mapped entries. Packet is discarded by the node.

RETURN Write back mapped entries. Paclggturceand destinationaddresses are swapped.
Packetexecutdlags are shifted, and packeflectflag is set.

REROUTE get() retrieves one word from ESS used as new destination for the packepedap
entries are written back. See section 7.1.2 for detalils.

All these operations ends packet evaluation. If the program execast$he end of actual code
without encountering one of these operation, packet abortsw@®D_ OUTOFBOUNBIEor.

A.2 STACK Operations

PUSH TOP «— TOP — 1; STrop < acc
VSTK_FULLerror occurs ifTOP is zero.

POP acc < STrop ; TOP +— TOP +1
VSTK_EMPTYoccurs ifTOP is already larger than 15.

TRASH TOP « TOP + imm
the resulting value of'O P saturates at 16 (empty stack).

PULL acc « STTOP+imm
VSTK_OUTOFBOUNRS&or occurs ifl’OP + imm is larger than 15.

A.3 ALU Operations

Prior executionp is loaded withT'0S anda with acc, then one of the following operations are
taken.

ADD b«+—b+a
SUBb«—a—-0

OR b« a BITWISE ORb
AND b <« a BITWISE AND b
XOR b+ b EXCLUSIVE ORb
NOT b «— BITWISE NOT a

The flagsN F' and Z F' are modified to reflect the value in The result is then written back in
acc unless theNOACGnodifier is set. The stack pointer is incremented (pop) unlesBI@8TK
modifier is set.

A.3.1 Miscellaneous ALU Operations

These operations updateF’ andZ F flags according to the new value of the accumulatfSPACC
andNOSTKmodifiers do not apply here.

A.4. BRANCH OPERATIONS 155

SSL shift acc left by X g bits (e.g. 8, 16, 32 or 64)
SSR shift acc right by X g bits

INC acc «— acc+1

DEC acc «— acc—1

SGN extends aX g-bit signed value imcc to 64-bit.
E.g. with Xg = 8 andacc = Oxfl , we would end up witluce = Oxffff ffff ffff
fffl

SHL shift acc left by imm bits.
SHR shift acc right by imm bits.

IMM acc «— imm
RND fills acc with 64 random bits.

A.4 Branch Operations

These operations alter the program sequence thrédglk— PC +imm. No backward jumps are
allowed: the resulting”C' is always greater than the previous one. The immediate value indicates
the number of microbytes to skipA jump that goes over program size aborts packet execution
with VCOD_JUMPTOOFASROr.

BDEF branch ifUF is cleared.
BUNDEF branch ifUF is set.

The “generic” branch (any opcode wittIMP_ISIMPin the “immediate decode” family) has 4
bits interpreted in the following way.

1. if IGNOREZERG® s set, skip to step 3.

2. don't branch iiSZERO doesn’t match the value ¢f F.
3. if IGNORENEG:s set, skip to step 5.

4. don't branch ifiISNEG doesn’t match the value @f F'.
5. branch unless stated otherwise previously.

Unconditional branches can be achieved by setting lBMOREZERGNd IGNORENEG
Note that the combination where bagnore...bits are cleared and boit.. bits are set leads to a
branch that is never taken.

A.5 Memory Operations

A.5.1 Memory Movement Operations

We will refer asX (resp. Y) the memory location in bank (resp. Yz) at offset X (resp.
Yo) that is X5 (resp. Ys) bits long. accyp.. x| is the lowestXs bits of the accumulator. IELR
modifier is usedqcc is zeroed before the instruction takes place.

STORE X « accy.. xg4[-
May fail with VRAM_WRONGACCHSSe bank is not writable.

156 APPENDIX A. WASP OPCODE REFERENCE

YSTORE Y « accj.. .y
May fail with VESS_READONLLI the mapped entry is not writable.
LOAD acc — X.
accix.. 63 IS cleared ifXg < 64.

YLOAD acc« Y.

NOOP acc + acc.

INSERT tag <« Xg4 ; put(tag, acc). UF is updated.

LOOKUP tag < Xg4 ; acc < get(tag). UF is updated.

SWAP tag « Xgq ; tmp < get(tag) ; put(tag, acc) ; acc — tmp. UF' is updated.

After instruction is executedNX modifier will advanceX, by Xg/8 bytes in the bank.
Respectively,YNCadvances’p by Ys/8 bytes. If eitherXo or Yo goes over 32 bytes, it will
wrap back at the start of the memory bank. In order to m&vegister accross banksLaX xx
instruction is requiredNOOP|INX can be used if one wants to advance fieegister without
performing a memory move.

A.5.2 Index Register Manipulations

In the following, bank(i) is an internal function retrieving th&h bank of the VPU’s memory.
Banks 0 to 3 map packet data and banks 4 to 7 map node environment \&arifbbeme bank
isn't available, the “dead” bank is mapped instead. Content of the deddibaead-only and
undefined. Theize(i) is an internal function decoding 0 int@8, 1 into U16, 2 into U32 and 3

into U64.

MAP tag «— Xg4. Yp is linked to the corresponding entry in the ES&F indicates whether
this entry has just been creatdd{’ cleared) or was already ther¥y is reset andXy is
automatically advanced by 8 bytes.

SWYX SwapsXp andYg. Xo, Yo, Xg andYs are kept untouched.

LIX xx Load Immediate into X
Xo «— immyg._4; Xp < bank(imms;_7); Xs = zz. We enforce thaK is a multiple of
xx/8 bytes. E.g., aftekIX32(imm) , X is aligned on a 32-bit word in the bank.

LAX Load Accumulator into X
Xo < acco. 4 ; Xp < bank(immraces. g) ; Xg «— size(immg.1). Note that the
highest bit of the bank (indicating whether the bank belong to packetde wariables) is
always taken from the immediate parameter rather than from the accumulator.

SYSZ SetY SizZe
Xg « size(immyg._ 1) ; Ys < size(immag, 3)

Appendix B

WASP and ESP Packets Format

B.1 Count Packet

COUNT (packet p)

curVal = get (p.compValTag)
if (curVal ==7)
curVal =0
curVal = curVal + 1
put (p.compValTag, curVal)
if (curVal - p.thresh)
forward p
else
discard p

(a) COUNT Pseudo code

B.2 Compare Packet

COMPARE (packet p)

curVal = get (p.compValTag)

if (curval ==7?)

put (p.compValTag, p.pktVal)
forward p

else if (p.op (curVal, p.pktVal))
put (p.compValTag, p.pktVal)
forward p

else

discard p

(a) COMPARE Pseudo code

32 bits Iword xfer
Computation Value Tag (hi) 5 10
Computation Value Tag (lo) 11
Threshold (immediate, hi) p 12
Threshold (immediate, lo) 13

(b) COUNT Op erands

vars key:long;
LOOKUP |CLR, INC, INSERT, PSH;
IMM(5), SUB,BL (1), FWD,DROP;
(c) WASP microbytes
32 bits Iword xfer
Computation Value Tag (hi) 5 10
Computation Value Tag (lo) 11
Current Packet Value (immediate, hi) 6 12
Current Packet Value (immediate, lo) 13
Operation (immediate) 7 14

(b) COMPARE Op erands

vars key:long, val:long;

getval: LOOKUP |INX,PSH,LOAD;
BUNDEF (novalue) ;
check: CMP, BG (novalue) , DROP;

novalue: LIX64 (Skey), INSERT,FWD;

(c) WASP microbytes

157

158 APPENDIX B. WASP AND ESP PACKETS FORMAT

B.3 Collect Packet

COLLECT (packet p) 32 bits lword xfer
curVal = get (p.compValTag) Computation Value Tag (hi) 10
if (curVal ==7) Computation Value Tag (lo) > 11

curVal = p.val Child Counter Tag (hi) 12
else Child Counter Tag (lo) 6 13

curVal = p.op (curVal, p.val) Packet Value (immediate, hi) 14
put (p.compValTag, curVal) - - 7
chldCnt = get (p.Chl antTag) Packet Value (immediate, 10) 15
if (chldCnt == ?) Operation (immediate) 8 16

abort (b) COLLECT Op erands
chldCnt = chldCnt -1
put (p.chldCntTag, chldCnt) vars key:long, val:long;
if (chldCnt == 0) prepare: MAP,LOAD,PSH, YLOD;

p-val = curVal process: ADD,YSTO|YNC,PSH;

forward p cntchld: YLOD,DEC, YSTO,BZ(+1),DROP;
else forward: POP,STOR,FWD;

discard p

(a) COLLECT Pseudo code (c) WASP microbytes

B.4 Rchild Packet

RCHLD (packet p) 32 bits lword xfer
§;anFbC= get (Iz).s1antTag) Packet 1d (hi) s 10
! (bsé: tnt .) Packet 1d (Io) 1
sibCnt =
pktldSeen = get (p.pktld) Sibling Count Tag (hi) 6 12
if (pktldSeen == 7?) Sibling Count Tag (lo) 13
pktldSeen =1 Forward Count Tag (hi) ; 14
put (p.pktld, pktld) Forward Count Tag (lo) 15
sibCnt :)CSlbgnt + l'bC Forward Threshold (immediate, hi) g 16
fwglétm (IiSIget nt (pa%\;/ d Cnst}I'agr)lt) Forward Threshold (immediate, lo) 17
if (fwdCnt == ?) (b) RCHLD Operands
fwdCnt = 0
fwdCnt = fwdCnt + 1 vars key:long, pktid:long;
put (p.fwdCntTag)
if (fwant _ pfwdThresh) MAP, LOOKUP |CLR | YNC, BDEF (fck) ;
P pktIdSeen — NODEID incr: INC, INSERT,YLOD,YSTO|YNC,JMP (1);
) fck: YNC;
forward p YLOD,PSH, IMM(3) ,CMP,BG (forw) , DROP;
else forw: POP, INC,YSTO,LIX32 (@NodeID) ;
discard p LOAD |CLR, LIX64 ($pktid), STOR, FWD;

c) WASP microbytes
(a) RCHLD Pseudo code (c) icroby

B.5. RCOLLECT PACKET

B.5 Rcollect Packet

RCOLLECT (packet p)
pktldSeen = get (p.pktld)

if (pktldSeen == ?)
abort
sibCnt = get (p.sibCntTag)
if (sibCnt ==7?)
abort
if (pktldSeen == 1)

pktldSeen = 0
put (p.pktld, pktld)
sibCnt = sibCnt - 1
put (p.sibCntTag, sibCnt)
compTot = get (p.compld)
if (compTot == ?)
compTot = p.val
else
compTot = p.op (compTot, p.val)
put (p.compld, compTot)
else
compTot = get (p.compld)
if (sibCnt == 0)
fwdCnt = get (p.forwardCount)
if (fwdCnt == ?) fwdCnt =0
fwdCnt = fwdCnt + 1
put (p.forwardCount, fwdCnt)
if (fwdCnt <= p.fwdThresh)
p.pktld = NODEID
p.-val = compTot
forward p
else discard
else discard

(a) RCOLLECT Pseudo code

159

32 bits Iword xfer

Packet Id (hi) 10

Packet Id (lo) > 11

Sibling Count Tag (hi) 12
Sibling Count Tag (lo) 6 13
Forward Count Tag (hi) 14
Forward Count Tag (lo) 7 15
Computation Id Tag (hi) 16
Computation Id Tag (lo) 8 17
Forward Threshold (immediate, hi) 18
Forward Threshold (immediate, lo) ? 19
Packet Value (immediate. hi) 20
Packet Value (immediate, 1o) 10 21
Operation (immediate) 11 22

(b) RCOLLECT Op erands

160 APPENDIX B. WASP AND ESP PACKETS FORMAT

Appendix C
Patches brought to ESP

The software package provided by Jiangbé Wwas in no way a “software release”, but rather a
“software escape”. As such, we identified and fixed a collection of lmgisother mistakes that
we report here.

C.1 Erratum #69

According to erratum #69 in Intel's specifications update [IntelSU], sohtheobuffer elements
of the MSF may corrupt data. In our context (128 bytes mpackets), etsmamber 4,9 and 13
are affected. We fixedpacket rx_free_all rbuf _elements so that it ignores those
RBUF elements.

C.2 Wrong CRC polynom

IXP hardware only implements the CRC polynom specified in Autodin/EthenteA&M AALS
standard§ while the Linux implementationlip/espcksum.c) used CRC32C. For the sake
of simplicity, we changed the software “reference” implementation to matciwaaetl

C.3 ESS chains update

There is a miscalculation of the DRAM address in ESS chains update (+lddt®u8 to skip a
whole longword insuper_find_create) that causes ESS content to be trashed and exhausts
ESS available space.

C.4 No Queue Manager

The ESP application does not use any queue manager entity. This is usmalproblem as the
only actual queue used is the packets free list and it needs no manadmyend initialization.
However, the queue manager is typically in charge of recycling buféss. (when several chunks
need to be chained to hold a single packet). In some platessp_core_drop in the “core”

lesp-ixp2400-12-22-2004.tar.gz, md5sdfasde7fbfOffb20ee9109a22f2a25¢3
2032 4 226 + 223 4 222 + 210 + 212 4 2t + 210 428 + 27 + 2% + 2t + 22 + 2t + 20, [Kercheval94]
3We expect any network appliance to have hardware suppothefiet CRC anyway

161

162 APPENDIX C. PATCHES BROUGHT TO ESP

microengines), this has been handled by halting the processor and naétfogger interaction,
but in other placesdl_sink in the “classifier” microengine, and in RX microblock), we still
enqueue those buffers on a scratch ring that is simply never processed

The whole code has been patched to catch the (improbable) event of éegdmfier drop
and interrupts execution if that happens, thereby guaranteeing thaomeleak buffers without
notice.

C.5 Overlapping Ring-Buffer

The size of ring-buffers for transmitting packets to the ESP rings wasrapedy encoded. Under
high load, this could lead to messages (and buffer handles) dispatchee tomtext to overwrite
an existing entry in another ring. This is probably the most evil programmirgg gou could
introduce on a network processor since it will (independently of theectiress of other compo-
nents) drop some buffers randomly and introduce other buffers twiceitfribe list”. We fixed
esp_sram_ring_init according to Table and enforced 512-entries buffer (16 KB) foheac
of the queues leading to ESP or WASP microblocks.

C.6 Leaking Classifier

The classifier is not capable of detecting whethestiaen[put,...] commands that enqueues
a packet on a SRAM ring towards ESP or WASP microblock was sucdegsfia result, when
load on a specific queue increases, the system will experirrifars leakagentil the total number
of buffers available in the system equals the size of the saturated gueue(s
Unlike scratchrings, SRAM rings do not provide an easy way for the microcode to determine
a priori whether a “put” command will be successful. The program has first tofaaé signal
indicating that the command has been completed and then check the resulrisfertragistet.
The current structure of the classifier do not allow us to easily fix this j4sudy duplicating
the “get from scratch ring” code block, we managed to keep track optid&ousbuffer handle
past the command that reads the next request, and thexathat the previous buffer was correctly
enqueued.Hopefully enough, transfer registers involved iatdm[put] andscratch[get]
did not overlap.

C.7 Trashing CRC on Header Update

The CRC instructions are a bit uncomfortable to deal with on the IXP 2400onkt@rocessor.
Not only they require precise instruction latency between initialization, summmdgead-back
of the CRC remainder register, but there is oalye CRC_REMAINDERegister for the whole
microengine, which means as soon as more than one thread on the ME is &Sngv€ should
no longer do external memory access without first saving the conterg QfRIC register in a GPR
and restore it once the access is done.

4scratch ring state can be probed usimginp_state instruction.
Ssee the notes asram_ring_put() in [Johnson03] and section 3.2.56 of [IntelPRM] for additial
information

C.7. TRASHING CRC ON HEADER UPDATE 163

There was a flaw in write_back_control_header macrd where the header of the
ESP packet was written first to DRAM after the header bytes have beeksiimmed, but without
proper save/restore.

Note that a similar flaw remains in the packet fetching phase, but it only eppden the
ESP packet is larger than 64 bytes, which never occurs with the caperdtions.

%in esp-block/esp_core_util.uc

164 APPENDIX C. PATCHES BROUGHT TO ESP

13

18

23

28

Appendix D

Code Samples

D.1 Microstore Reprogramming Benchmark

Listing D.1: IXP microstore reprogramming performance iitammng — microengine side

.reg report ,now, last ,count

local_csr_rd[timestamp_low]

immed[last ,0]

immed[count ,0]

br!=ctx[0,just_sleep #]
stress #:

.reg delta

local_csr_rd[timestamp_low]

immed[now, 0]

alu[delta ,now;—,last]

move (last ,now)

br_bset[delta ,31,stress#] // ignore timewraps

alu[——,delta ,—,4]

bgt[report#] /I hmm. It took us long to loop.

ctx_arb[voluntary]
br[stress#]

/I more than 64 cycles to run a loop of 9

instructions ?

/!l that sounds like we were interrupted. Let’s report.

report#:
move (report ,delta)
alu[count,count ,+,1]
br[stress#]

/!l only one thread is kept alive, to avoid
/I at ctx_arb][].
just_sleep #:

ctx_arb[kill]

br[just_sleep #]

interference

165

11

16

12

17

166 APPENDIX D. CODE SAMPLES

Listing D.2: IXP microstore reprogramming performance itamng — reading back GPR

void ShowRegister¢harx line)
{
uint me, ctx ,bank,reg;
if (sscanf(line+27%d %d %d %x"&me,&ctx ,&bank,®)!=4)
fprintf(stderr ,"usage: r <me> <ctx> <bank> <reg>\a\n");
else {
uint errcode=halMe_IsMeEnabled (me);
uint enabled=(errcode==HALME_MEACTIVE) || (errcode==HME ENABLED);
uint x=0xdeadbeef;
fprintf(stderr ,"reading ME%d,CTX=%d, GPRAC Ox%x ... "
me, ctx, bank?B’:’A’, reg);
if (enabled) halMe_Stop(me,0 xff);
errcode=halMe_GetRelDataReqg (
me, ctx , bank?IXP_GPB_REL:IXP_GPA REL,reg, &x);
if (enabled) halMe_Start(me,0 xff);
fprintf(stderr ,"%x %s\n",x,UcLo_perror(errcode));

Listing D.3: IXP microstore reprogramming performance itanng — XScale side

void PutUwords (charx line)
{
uint me,from,nb;
if (sscanf(line+27%d %d %d",&me,&from,&nb)!=3)
fprintf(stderr ,"usage: U <me> <addr> <nb>\a\n");
else {
uint errcode=halMe_IsMeEnabled (me);
uint enabled=(errcode==HALME_MEACTIVE) || (errcode==tME ENABLED);
uword_T dumbcode[nb];
uint i;
for (i=0;i<nb;i++)
dumbcode[i]=0XxEO000010000ull/« ctx_arb[kill] =x/;

fprintf(stderr ,"rewriting uwords %x..%Xx ME%d ... 'from,from+nb,me);
if (enabled) halMe_Stop(me,0 xff);
errcode=halMe_PutUwords (me, from ,nb,dumbcode);
if (enabled) halMe_Start(me,0 xff);

fprintf(stderr ,"%x %s\n",UcLo_perror(errcode));

Bibliography

[Allan01] R.J. Allan and M. Ashworth *A Survey of Distributed Computing, Compu-
tational Grid, Meta-computing and Network Information Tdql$echnical Report,
CCLRC Daresbury Laboratory, 2001.
http://www.ukhec.ac.uk/publications/reports/survey.pdf

[Allen03] J.R. Allen, JR., et al. “IBM PowerNP Network Processor: Hardware, Soft-
ware, and Applications’ IBM Journal “Research & Development” vol. 47 No. 2
March/May 2003

[Amir98] E. Amir, S. Mc Canne, R. Katz"An Active Service Framework and its Appli-
cation to Real-time Multimedia Transcoding’in Proc. of ACM SIGCOMM’'98,
Vancouver .

[Apple05] Apple Computer Inc.“MacOSX : Bonjour”, Technology Brief, April 2005.

[Arlitt95] M. Arlitt and C. Williamson : “Web server workload characterization: the
search for invariants; in Proc. of ACM SIGMETRICS '95.

[Avallone04] “D-ITG v. 2.4 Manual”, S. Avallone, A. Botta et al., University of Napoli,
Dec. 2004,
http://www.grid.unina.it/software/ITG

[BaldiO5] Mario Baldi and Fulvio Risso “Towards Effective Portability of Packet Han-
dling Applications Across Heterogeneous Hardware Platf&rno appear in Proc.
of 7th International Working Conference on Active and Prograable Networks
(IWAN’05) .

[Baron05] C. Baron, Y. Luo and L. Bhuyan“Protocol Offloading Using an IXP2400
Network Processor,’Intel IXA Summit 2005.

[BassiO2] A. Bassi, J-P. Gelas and L. LefevréTamanoir-IBP: Adding Storage to Ac-
tive Networks’; in Proc. of 4th IEEE workshop on Active Middleware Services
(AMS’02) .

[Berson02] S. Berson, B. Braden, L. Ricciullfintroduction to the ABONE
http://www.isi.edu/abone/DOCUMENTS/ABonelntro.pdf , Febru-
ary 2002.

167

168 BIBLIOGRAPHY

[Bhattach.98] S. Bhattacharjee, K. Calvert, E. Zegui@elf-Organizing Wide-Area Net-
work Caches; in Proc. of INFOCOM 1998, pp. 600-608 .

[Bhattachrjee96] S. Bhattacharjee, K. Calvert E. Zegut®n Active Networking and
Congestion’ Technical Report GIT-CC-96/02, Georgia Institute of Tecbgyl
ftp://ftp.cc.gatech.edu/pub/coc/tech_reports/19964GC-96-02.ps.Z

[Bindels] “The OS FAQ — How can i tell CPU speed?P. Bindels, S. Martin et al.
http://www.osdev.org/wiki/Detecting_CPU_Speed . Jan. 2006

[Bloom70] Burton Bloom :“Space/time trade-off in hash coding with allowable errors”
Communications of the ACM, 13(7): 442-426, July 1970.

[Boggs82] D.R. Boggs ‘Internet Broadcasting’; Ph. D. thesis, Electircal Engineering
Dept., Stanford, 1982.

[Boggs83] D.R. Boggs ‘Internet Broadcasting’; Technical Report CSL-83-3, Xerox
PARC Palo Alto, California.

[Boivie00] R. Boivie, N. Feldman, C. Metz“Small Group Multicast: A New Solution
for Multicasting on the Internet’IEEE Internet Computing, may-june 2000 issue.

[BoivieO5] R. Boivie, N. Feldman, Y. Imai, W. Livens, D. Ooms,ca@®. Paridaens, :
“Explicit multicast (xcast) basic specificationlETF Internet-Draft (draft-ooms-
xcast-basic-spec-05.txt), Aug. 2003.

[Bolosky00] W. Bolosky, J. Douceur et al‘Feasability of a Serverless Distributed File
System Deployed on an Existing Set of Desktop P@s'Proc. of SIGMETRICS
2000, Santa Clara, USA, pp. 34-43.

[Bond02] M. Bond, K. L. Calvert, J. Griffioen, et al‘ActiveCast: Toward Application-
Friendly Active Network Services'in Proc. of DANCE 2002: 274-290

[Bos04] H. Bos and K. Huang “On the Feasibility of Using Network Processors for
DNA Queries’; in Proc. of Workshop on Network Processors & Applicatioriz3N
Madrid, Spain, Feb, 2004.

[BoschiO5] E. Boschi, M. Bossardt, T. DubendorfefValidating Inter-Domain SLAs
with a Programmable Traffic Control Systemih Proc. of IWAN’05

[Bossardt02] M. Bossardt, T. Egawa, H. Otsuki, B. Plattnéintegrated Service De-
ployment for Active Networks”in Proc. of International Working Conference on
Active Networks (IWAN), 2002 LNCS 2546, pp. 74-86.

[BossardtO5] T. Dubendorfer, M. Bossardt and B. Platttv&daptive Distributed Traffic
Control Service for DDoS Attack Mitigation’ln Proc. of SSN 2005, April 2005,
Denver, USA.

BIBLIOGRAPHY 169

[Bowman95] C.M. Bowman, P. Danzig, D. Hardy et atHarvest: A scalable, cus-
tomizable discovery and access systefgchnical Report CU-CS-732-94, U. of
Colorado - Boulder, 1995.

[Braynard02] R. Braynard, D. Kostiet al. :“Opus: an Overlay Peer Utility Service'in
Proc. of the 5th IEEE OPENARCH, pp 168-178, New York, June 2002.

[Caesar06] M. Caesar, M. Castro et alvirtual ring routing: network routing inspired
by DHTs”, in Proc. of ACM SIGCOMM, September 2006, Pisa, Italy, pp. 351 -
362.

[Caesar06b] M. Caesar, T. Condie et dlROFL: Routing on Flat Labels; in Proc. of
ACM SIGCOMM’06, Sept. 2006, Pisa, Italy, pp. 363 - 374 .

[CalvertO1] S. Wen and J. Griffioen and K. CalverBuilding Multicast Services from
Unicast Forwarding and Ephemeral State”in Proc. of IEEE OPENARCH'01
Anchorage, Alaska, USA, Apr. 2001.

[CalvertOlb] : “Concast: Design and Implementation of an Active Network Sefyi
IEEE Journal on Selected Area in Communications, 19(3):428-March 2001.

[Calvert02] Kenneth L. Calvert, James N. Griffioen, and Su Wénghtweight network
support for scalable end-to-end servicesh Proc. of ACM SIGCOMM, 2002 .

[Calvert03] K.L. Calvert, J. Griffioen, N. Imam, J. Li*Challenges in Implementing an
ESP Service” in Proc. of IWAN'03, Kyoto LNCS 2982, pp. 3-19.

[CalvertO3w] ESP implementation for Click and Linux routefihe Activecast Research
Group, 2003,
http://protocols.netlab.uky.edu/"esp/download.html

[CalvertO5w] “ESP Instruction Pseudocode and Operandsid “ESP General Packet
Header Specifics"K. Calvert et al., May 2005,
http://protocols.netlab.uky.edu/"esp/document.html

[Calvert99] Calvert, K. L., ed. " “Architectural Framework for Active Networks'Version
1.0, Active Network Working Group, July 1999.

[Campbel02] A.T. Campbell, S.T. Chou, M.E. Kounavis, V.D. $tas and J. Vicente
: “NetBind: A Binding Tool for Constructing Data Paths in NetworkoPessor-
Based Routers” in Proc. of 5th International Conference on Open Architexgu
and Network Programming (OPENARCH’02)

[Castro03] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, Rowstron and A.
Singh : “SplitStream: High-bandwidth multicast in a cooperativeveanment”,
in Proc. of SOSP’03, Lake Bolton, New York, October, 2003 .

170 BIBLIOGRAPHY

[Castro02] M. Castro, P. Druschel“One Ring to Rule them All: Service Discovery
and Binding in Structured Peer-to-Peer Overlay Network#i Proc. of SIGOPS
European Workshop, Saint-Emilion, France, 2002, pp. 4®-1

[Cheshire05] Cheshire, S., Krochmal, M‘DNS-Based Service DiscoverylInternet-
Draft (work in progress), 2005.

[Cheshire05b] Cheshire, S., Krochmal'Performing DNS queries via IP Multicast”
Internet Draft (work in progress) (2005).

[ClarkeQ0] I. Clarke, O. Sandberg et &Freenet: A Distributed Anonymous Informa-
tion Storage and Retrieval System’in Proc. of Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, USA, July 25-260D, LNCS 2009, pp.
46-66 .

[Cohen04w] BitTorrent Protocol SpecificatigBram Cohen, 2004
http://www.bittorrent.org/protocol.html

[Csix00] “CSIX-L1: Common Switch Interface Specification-L10%, Public Distribu-
tion, May 2000.

[DARPAQ99] L. Peterson (Editor). :“NodeOS Interface Specification’DARPA AN
NodeOS Working Group Draft, 1999.

[Decasper99] D. Decasper, G. Parulkar, S. Choi, et‘&#.Scalable, High Performance
Active Network Node”IEEE Network, volume 13, Jan 1999.

[Droms97] R. Droms :* Dynamic Host Configuration Protocol’Bucknell University,
March 1997. IETF RFC 2131.

[ethereal] Gerald Combs et atEthereal: A Network Protocol Analyzer”
http://www.ethereal.com/

[ethtool] David Miller et al. :“ethtool - Ethernet diagnostic and tuning toql”
http://directory.fsf.org/All_Packages_in-
_Directory/ethtool.html , May 2005

[Fdida06] S. Fdida, |. Stavrakakis et al. “ANA Project Autonic Network Architecture
— Deliverable D2.1 First draft of routing design and servdiscovery”, Sixth
Framework Programme Priority FP6-2004-1ST-4 Situated/Aumdnomic Commu-
nications (SAC) Project Number: FP6-IST-27489,
http://www.ana-project.org/autonomic/network/-
deliverables.html , Dec. 2006.

[Fenner06] B. Fenner, M. Handley, H. Holbrook and I. Kouvel&3rotocol Independent
Multicast - Sparse Mode (PIM-SM): Protocol SpecificatioreyRed)’, draft-ietf-
pim-sm-v2-new-09.txt (work in progress)

BIBLIOGRAPHY 171

[Floyd02w] Sally Floyd:“Adaptive Web Caching”
http://www.icir.org/floyd/web.html , Sep. 2002

[FrancisO0] Paul Francis“Yoid: Extending the Internet Multicast Architecturg”
www.aciri.org/yoid/docs/index.html , April 2000

[Freedman06] M. Freedman, K. Lakshminarayanan and Davizidvies“OASIS: Any-
cast for Any Servicg” in Proc. of Networked Systems Design & Implementation,
2006, San Jose, CA, pp. 129 - 142

[Gelas02] J.P. Gelas, L. Lefevre “Performance et dynamicité dans les réseaux :
I'approche Tamanoir’ in Proc. of JDIR 2002, Toulouse, France, Mars 2002 .

[Gelas] J-P. Gelas and L.LefévréGestion de flux TCP actifs”(unpublished work).
[George03] “Taming the IXP network processor”, Lal Georgd Matthias Blume

[Gold05] B. Gold, A. Ailamaki L. Huston B. Falsafi‘Accelerating Database Operators
Using a Network Processoy”in Proc. of 1st Int'l Workshop on Data Management
on New Hardware (DaMoN), June 2005 .

[Gopal03] Gopal Racherlaa, Sridhar Radhakrishnanb, Chandskharanc. “Perfor-
mance evaluation of wireless TCP with rerouting in mobile neksgr Computer
Communications 26 (2003) 542 551.

[Gwertzman95] M. Seltzer and J. Gwertzman : “The case forggguhical push
caching”, in Proc. of Hot Operating System, 1995 .

[Haas03] R. Haas, C. Jeffries et afCreating Advanced Functions on Network Proces-
sors: Experience and Perspective$EEE Network, 14 April 2003, pp. 46-54.

[Hawblitzel98] C. Hawblitzel, C-C. Chang, et al. “Implementiktgltiple Protection Do-
mains in Java”, in Proc. of USENIX technical conference eJLf98 .

[HicksO1] M. Hicks, J. T. Moore, and S. Nettles: “Compiling RN to SNAP”, in
Proc. of 3rd International Working Conference on Active Natks, Sep. 2001
(IWAN’01)

[Hicks98] Hicks, Kakkar, Moore, Gunter and Nettles : “PLAN:Packet Language for
Active Networks” in Proc. of ACM SIGPLAN 1998 .

[HIFN04] “HiFn 5NP4G Network Processor Product Brief”
http://www.hifn.com/uploadedFiles/Library/-
Product_Briefs/SNP4G_pb_vl.pdf

[Hjalmtysson04] Gisli Hjalmtysson, Bjérn Brynjalfsson andafdr R. Helgason, "Self-
configuring Lightweight Internet Multicast.” in proceedsof IEEE SMC 2004,
Hague, Netherlands, September 2004.

172 BIBLIOGRAPHY

[HwangO05] K. Hwang and Y.-K. Kwok et al'GridSec: Trusted Grid Computing with
Security Binding and Self-Defense against Network Worms dalSDAttacks” In
International Workshop on Grid Computing Security and Resalanagement
(GSRM 05), in conjunction with the ICCS-2005, pages 187 1955200

[IETFO6] Cheshire and the IETF Zeroconf Working GroufiZero Configuration Net-
working (Zeroconf);
http://www.zeroconf.org/

[Imai02] Y. Imai : “Multiple Destination Option on IPv6 (MD®)” , IETF Internet-
Dratft,
http://www.ietf.org/internet-drafts/-
draft-imai-mdo6-02.txt

[ImamO03] Najati R. Imam :“Implementation of an Ephemeral State Processor on the
Intel IXP1200”, thesis for master’s degree, University of Kentucky, 2003.

[IntelAN] : “Intel ® IXP2800 Network Processor Optimizing RDRAM Performance:
Analysis and Recommendationsitel Application Note, August 2004

[IntelAP450] “Interrupt Moderation Using Intel Gigabit Ethernet Conttets”, Appli-
cation Note (AP-450) Revision 1.1 September 2003 — InteldPres

[IntelAP453] “Small Packet Traffic Performance Optimization for 8255x1&@254x Eth-
ernet Controllers’, Application Note (AP-453) — Intel Press

[IntelHRM] “Intel ®) IXP2400 Network Processor, Hardware Reference Manuiaitel
Press, July 2005.

[IntelPRM] “Intel ® IXP2400 and IXP2800 Network Processor, Programmer s Refer-
ence Manual’ Intel Press, Order Number: 278746-019, July 2005

[IntelPB] “Intel IXP2350 Product Brief”, Intel Corporation,
http://www.intel.com/design/network/prodbrf/303678.htm

[IntelRdtsc] “Using the RDTSC Instruction for Performance Monitoringhtel Corpo-
ration, 1997,
http://developer.intel.com/drg/pentiumll/appnotes/-
RDTSCPM1.HTM

[IntelSU] “Intel IXP2400 Network Processor — Specification Updatdhtel Press,
March 2004. Document Number: 301161-010,
ftp://download.intel.com/design/network/specupdt/-
30116110.pdf

[Jelasity06] M. Jelasity, A. Montresor and O. Babaodllihe Bootstrapping Service”
in Proc. of IEEE ICDCSW’06, Los Alamitos, CA, USA, July 2006, p..11

BIBLIOGRAPHY 173

[Jelger06] C. Jelger and S. Martin, “ANA Project AutonomictiNerk Architecture
— Deliverable D.1.1 - State of the Art”, Sixth Framework Pienmgme Priority
FP6-2004-1ST-4 Situated and Autonomic Communications (SA®)ect Number:
FP6-1ST-27489,
http://www.ana-project.org/autonomic/network/-
deliverables.html , Aug. 2006.

[Johnson02] E. Johnson and A. KunzéXP-1200 Programming’, Intel Press 2002.

[Johnson03] E. Johnson and A. Kunz8XP2400/2800 Programming — The Complete
Microengine Coding Guide”Intel Press, April 2003

[juniper] “JUNOS 8.2 Policy Framework Configuration Guide”
http://lwww.juniper.net/techpubs/software/-
junos/junos82/swconfig82-policy/html/-
about-swconfig82-policy3.html#187130

[KellerO3] R. Keller and B. Plattner :“Self-Configuring Active Services for Pro-
grammable Networks”in Proc. of IWAN 2003 LNCS 2982, pp. 137-150

[Kercheval94] Michael Yuen and Berry Kercheval, Sep. 199€RC-32 Calculation,
Test Cases and HEC Tutorigl”
http://www.cell-relay.com/cell-relay/publications/-
software/CRC/32bitCRC.html

[Keshav97] S. Keshav*An Engineering Approach to Computer Networkingtddison-
Wesley.

[Keon05] E. Keon, J. Crowcroft et al*A Survey and Comparison of Peer-to-Peer Over-
lay Network SchemesCommunications Surveys & Tutorials, IEEE, 2005, pp. 72—
93.

[Kind02] A. Kind, R. Plekta and B. Stiller : “The potential ofgtrin-time compilation in
active networks based on network processors”, in Proc. bf\Wairkshop on Open
Architectures and Network Programming, June 2002 OPENAREZHIP. 79-90

[Kohler04] Mark Kohler :“Introduction to Network Processors”
http://www.netrino.com

[KozierokO1lw] Charles M. Kozierok *PC Guide : Choosing your SDRAM®April
2001,
http://www.pcguide.com/art/sdramTiming-c.html

[Kubiatowicz00] Kubiatowicz J., et al. “Oceanstore: An architecture for global-scale
persistent storage” in Proc. of ACM ASPLOS IX, Cambridge, USA, Nov. 2000,
pp. 190-201 .

[Labrecque06] Martin Labrecque‘Towards a Compilation Infrastructure for Network
Processors; Master Thesis at University of Toronto, 2006.

174 BIBLIOGRAPHY

[Lee06] K. Lee and G. Coulsort'Supporting Runtime Reconfiguration on Network Pro-
cessors; in Proc. of Advanced Information Networking and Applicats, 2006,
Vol.1, Iss., 18-20 April 2006 pp. 721- 726

[Lefévre02] L. Lefévre and J-P. GelaSTowards the design of an Active Grid”in Proc.
of ICCS 2002, LNCS 2330, pp. 578-587, Amsterdam, The Nethes|atokil 2002

[Lefévre03] L. Lefévre, J-M. Pierson, S. Guebli*‘Deployment of collaborative Web
Caching with Active Networks”in Proc. of IWAN 2003 LNCS 2982 pp. 80-91

[LevisO3] Ph. Levis, “Viral Code Propagation in Wireless SenNetworks”, Network
Embedded System Technology Summer Retreat 2003.

[LimewireO1w] Gnutella protocol v0.4June 2001,
http://www9.limewire.com/developer/gnutella%?20-
protocol%200.4.pdf

[Lockwood03] J. Lockwood and J. Moscola et‘@pplication of Hardware Accelerated
Extensible Network Nodes for Internet Worm and Virus Protettitn International
Working Conference on Active Networks (IWAN 03), Decembe®20

[Lopez95] A. Lpez—Ortiz and D.M. German“A multicollaborative push-caching http
protocol for the WWW, poster at World Wide Web Conference 1995 (WWWS5).

[Love05] Robert Love :“Linux Kernel Development, Second EditianNovell Press,
ISBN 0-672-32720-1.

[LuO5] Jie Lu & Jie Wang *Performance Modeling and Analysis of Web Switches{
Proc. of 31th International Computer Measurement Group Cenée, Dec. 4-9,
2005, Orlando, Florida, USA pp. 665-672.

[MagoniO2] D. Magoni and J. Pansi6Network layer search service using oriented mul-
ticasting”. In 21th IEEE INFOCOM, pages 1346 1355, 2002. New York.

[Martin02] Sylvain Martin and Guy Leduc“RADAR: Ring-Based Adaptive Discovery
of Active Neighbour Routers”in Proc. of IWAN 2002 LNCS pp. 62-73

[Martin03] Sylvain Martin and Guy Leduc*A Dynamic Neighbourhood Discovery Pro-
tocol for Active Overlay Networks”in Proc. of IWAN 2003 LNCS 2982 pp. 151-
162

[Martin05] Sylvain Martin and Guy Leduc ‘An Active Platform as Middleware for
Services and Communities Discoveryin Proc. of International Conference on
Computational Science 2005 LNCS 3516 (part 3) pp. 237-245.

[MartinO5b] S. Martin and G. Leduc “Interpreted Active Packets for Ephemeral State
Processing Routers”to appear in in Proc. of 7th Int. Working Conference on
Active and Programmable Networks (IWAN), Sophia Antip@@&05

BIBLIOGRAPHY 175

[Martin06] S. Martin, P. Cascon, HolyLich, L. Buytenhek et al.“ENP-Faq: The
Hitchiker Guide to ENP-2611"
http://ixp2xxx.sf.net/wiki/

[Martin0O6w] WASP implementation for Linux 2.6, prealphdaase, S. Martin
http://www.run.montefiore.ulg.ac.be/"martin/resources-
/wasp-prealpha.tar.gz

[Martin07] S. Martin and G. Leduc ‘Ephemeral State Assisted Discovery of Peer-to-
peer Networks; to appear in in Proc. of 1st IEEE Workshop on Autonomic Com-
munications and Network Management, Munich, May 2007 .

[Maymounkov02] P. Maymounkov and D. MaziereKademlia: A peer-to-peer infor-
mation system based on the XOR metrigh Proc. of IPTPS 2002, Cambridge,
USA, March 7-8, 2002, Revised Papers, LNCS 2429, pp. 53-65.

[mdgray03w] “Spoofing the Wily Zip CRC'mdgray 2003,
http://www.codeproject.com/cpp/crcspoof.asp

[Merugu99] S. Merugu, S. Bhattacharjee et atBowman and CANEs: Implementation
of an Active Network” Invited paper at 37th Annual Allerton Conference, Monti-
cello, IL, Sept 1999.

[MooreO1] J. Moore and S. NettleSTowards Practical Programmable Packets”in
Proc. of 20th IEEE INFOCOM. Anchorage, Alaska, April 2001 .

[Moore02] Jonathan T. Moore : “Practical Active PacketshDPThesis, University of
Pennsylvania, 2002.

[Moore02b] J.T. Moore, J.K. Moore, S. Nettle$redictable, Lightweight Management
Agents’, in Proc. of IWANO2, zurich LNCS 2546, pp. 111-119

[Moore99] Jonathan T. Moore‘Safe and Efficient Active PacketsTechnical Report
MS-CIS-99-24, University of Pennsylvania, October 1999.

[NPForum03] D. Meng, E. Eduri, M. Castelino“IXP2400 Intel Network Processor
IPv4 Forwarding Benchmark Full Disclosure Report for Gigalbthernet, revision
1.0”, The Network Processing Forum, March 2003.

[NSTinc] pC anduL products download, Network Speed Technologies, inc.
http://www.network-speed.com/Products/index.html

[Nygren99] E. Nygren, S. Garland, and M. KaashoéRAN: A High-Performance Ac-
tive Network Node Supporting Multiple Mobile Code Systenis’Proc. of IEEE
OPENARCH, pp. 78-89, New York, March 1999 .

[Ott00] M. Ott, G. Welling, S. Mathur “CLARA: A Cluster based Active Router Archi-
tecture”, in Proc. of Hot Interconnects VIII, Aug. 2000 .

176 BIBLIOGRAPHY

[Partridge93] C. Partridge, T. Mendez and W. MillikenrfiHost Anycasting Service”
IETF Request for Comments 1546.

[Plank01] J. Plank, M. Beck et al.“Managing data storage in the network”in Proc.
of IEEE Internet Computing 5, sept. 2001 .

[Rekhter04] Y. Rekhter, T. Li, and S. Hare$A Border Gateway Protocol 4 (BGP-4).”
Internet Draft draft-ietf-idr-bgp4-26.txt, October 2004

[Rhea04] S. Rhea, D. Geels, et &Handling Churn in a DHT”, in Proc. of USENIX
Technical Conference, June 2004, pp. 127-140.

[Rio04] , Miguel Rio, Mathieu Goutelle, Tom Kelly, Richard HuegrJones, Jean-
Philippe Martin-Flatin, Yee-Ting Li. :“A Map of the Networking Code in Linux
Kernel 2.4.20", Technical Report DataTAG-2004-1, 31 March 2004

[Rorner96] T.H. Rorner, D. Lee, G.M. Voelker, et alThe Structure and Performance
of Interpreters”, in Proc. of 7th International Conference on Architectunabort
for Programming Languages and Operating System (ASPLO&),1096 .

[Rowstron01] A. Rowstron and P. DruschefPastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systemsi Proc. of Middleware
2001 LNCS 2218, pp 329-

[RufO5] L. Ruf, K. Farkas, H. Hug and B. PlattnetNetwork Services on Service Exten-
sible Routers? in Proc. of 7th Int. Working Conference on Active and Progaaia
Networks, nov. 05, Sophia Antipolis, France(IWAN'05) .

[Sacks05] L. Sacks, H. Sellapan et al.On the manipulation of JPEG2000, in-flight,
using active components on next generation satelljtés™Proc. of IWAN’05 .

[Sanders01] M. Sanders, M. Keaton et al‘Active Reliable Multicast on CANEs: A
Case Study; in Proc. of IEEE OpenArch 2001

[Schmid04] S. Schmid, L. Eggert, et &urfNet: An Architecture for Dynamically Com-
posable Networks”In Proceedings of 1st IFIP TC6 WG6.6 Workshop on Auto-
nomic Communication (WAC 2004), October 2004. Berlin, Gerynan

[Schmid06] S. Schmid, M. Sifalakis and D. Hutchison, “TodsAutonomic Networks”,
in Proc. of 1st IFIP Conference on Autonomic Networking, ®aFrance, Sept.
2006, pp. 1-11

[Schwartz98] B. Schwartz, A.W. Jackson, W.T. Strayer et ‘é@mart Packets for Active
Networks",
http://citeseer.ist.psu.edu/schwartz98smart.html

[ShalunovO5w]“thrulay, network capacity tester’S. Shalunov, Oct. 2005.
http://www.internet2.edu/"shalunov/thrulay

BIBLIOGRAPHY 177

[Sen02] S. Sen and J. Wand'Analysing peer-to-peer traffic across large networks”
in Proc. of 2nd ACM SIGCOMM Workshop on Internet measurmentydddle,
France, 2002, pp. 137-150

[Shin01] Myung-Ki Shin, Yong-Jin Kim, Ki-Shik Park, and SgitHa Kim : “Explicit
Multicast Extension (Xcast+) for Efficient Multicast Patkeelivery”, Electronics
and Telecommunication Research Institute (ETRI) Journdljmve 23, number 4,
December 2001.

[Sivakumar00] R. Sivakumar, S.W. Hanand V. Bharghavdi’ROTEAN: A Scalable
Architecture for Active Networks”in Proc. of OPENARCH’00

[Sivakumar99] R. Sivakumar, S. Ha, S. Han, V. BharghavafiThe Protean Active
Router: Design and Implementation’in Proc. of The 14th IEEE Computer Com-
munication Workshop IEEECCW’99.

[Sivakumar99b] R. Sivakumar, N. Venkitaraman, V. Bharghavdihe Protean Pro-
grammable Network Architecture: Design and Initial Expedes’ in Proc. of
International Working Conference on Active Networks (IWAMerlin, Germany,
1999

[Song05] H. Song, S. Dharmapurikar, J. Turner, J. Lockwddeast Hash Table Lookup
Using Extended Bloom Filter: An Aid to Network Processingh Proc. of SIG-
COMM 05, August 22 26, 2005, Philadelphia, Pennsylvania, USA

[Spalink01] T. Spalink, S. Karlin, L. Peterson and Y. Gettif : “Building a Robust
Software-Based Router Using Network Processorsi Proc. of Symposium on
Operating Systems Principles 2001 pp. 216-229

[Stallings03] William Stallings *Organisation et Architecture de I'Ordinateu® Edi-
tion”, Pearson Education, ISBN 2-7440-7007-6.

[Sterbenz02] James P.G. Sterbefiintelligence in Future Broadband Networks: Chal-
lenges and Opportunities in High-Speed Active Networking™Proc. of IEEE IZS
2002, Zurich, Feb. 2002 pp. 2-1 — 2-7

[Stoica01] Stoica , Morris et al. “Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications; in Proc. of ACM SigComm 2001 149-160

[Stoica02] I. Stoica, D. Adkins, S. Zhuang et allnternet indirection infrastructure’,
in Proc. of ACM SIGCOMM Computer Communication Review Volume 3&sule
4 (October 2002) .

[Tolly99] The Tolly Group :“Cisco 12000 Series GSR POS: Performace Evaluation. No.
199128", Manasquan, NJ, Sep. 1999.

[Touch00] J. Touch and S. HotZ’'Dynamic Internet Overlay Deployment and Manage-
ment Using the X-Boneh Proc. of ICNP 2000, Osaka Japan, pp. 59-68.

178 BIBLIOGRAPHY

[Tschudin98] A. Bansch, W. Effelsberg, C. Tschudin and V. Tur&Multicasting Mul-
timedia Streams with Active Networksih Proc. of IEEE Local Computer Network
Conference LCN’98, Boston, MA, Oct 11-14, 1998, pp. 150-

[Tschudin03] C. Tschudin and R. GoltNetwork Pointers”, Computer Communication
Review 33(1) pp. 23-28, 2003.

[Tullman01] Patrick Tullmann, Mike Hibler, and Jay Leprealdanos: A Java-oriented
OS for Active Networks”IEEE Journal on Selected Areas of Communication. Vol.
19, Issue 3, March 2001.

[Wehrle03] K. Wehrle, F. Pahlke, H. Ritter, D. Muller, M. Beeht “Architecture Réseau
Linux, Conception et implémentation des protocoles réseanogau Linux’, Vuib-
ert Informatique, ISBN 2-7117-4812-X

[Welte07] Harald Welte ‘Netfilter/iptables project homepage”
http://www.netfilter.org/

[Wessels97] D. Wessels, K. Claffy : “Internet Cache Proto¢GP), version 2”, tech.
rep., IETF Network Working Group, 1997. draft-wesselsu&03.txt.

[Wetherall01] D. Wetherall, A. Whitakef’ANTS - an Active Node Transfer System. ver-
sion 2.0.2”
http://www.cs.washington.edu/research/networking/ants/

[Wetherall98] D. Wetherall, J. Guttag and D. Tennenhous®&NTS - A Toolkit for
Building and Dynamically Deploying Network Protoco]sih Proc. of IEEE OPE-
NARCH’'98 .

[Wetherall99] Wetherall, D. “Active network vision and reality: lessons from a capsule-
based system’Operating Systems Review, vol.33, ACM, Dec. 1999. p.64-79.

[Wethereall96] David J. Wetherall and David L. Tennenhou8éhe Active IP Option’,
in Proc. of 7th ACM SIGOPS European Workshop, Sept. 1996 .

[Xie05] L. Xie, P. Smith, J. Sterbenz, and D. HutchistBuilding Resilient Networks
using Programmable Networking Technologiebkt 7th International Working Con-
ference on Active and Programmable Networks (IWAN 05), 2005

[YamamotoO3] Lidia Yamamoto ‘Adaptive Group Communication over Active Net-
works”, Doctoral Thesis, University of Liege. Collection des Paations de la Fac-
ulté des Sciences Appliquées de I'Université de Liege,2#, 2003.

[Yang05] X. Yang, D. Wetherall, and T. AndersofiA DoS-limiting Network Architec-
ture”, in Proc. of of ACM SIGCOMM 2005, Philadelphia, August 2005 .

[Yue06] “NPCryptBench: A Cryptographic Benchmark Suite for Wetk Processors”,
Y. Yue, C. Lin and Z.Tan, ACM SIGARCH Computer Architecture News|.\34,
No. 1, March 2006. pp. 49-56

BIBLIOGRAPHY 179

[Zhang06] B. Zhang, S. Jamin, and L. Zharigniversal IP multicast delivery” ACM
Journal of Computer and Telecommunications Networkinguia 50, Issue 6
(April 2006), pp. 781 - 806

[Zzhao03] B. Zhao, L. Huang, J. Stribling et al.“Tapestry: A Resilient Global-Scale
Overlay for Service DeploymentlEEE Journal on Selected Areas in Communica-
tions, 2003.

[Zhao05] L. Zhao, Y. Luo, L. Bhuyan and R. lyer,'Design and Implementation of A
Content-aware Switch using A Network Processairi Proc. of 13th International
Symposium on High Performance Interconnects (Hot-105anfetrd, CA, August
2005

