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I- Processes of novel vessels formation 

I-1 Generalities 

I-1-1 Blood vessels types 

Nearly 100.000 kilometers of blood vessels and capillaries cover the entire volume of the 

human body. In a highly organized circuit, blood oxygenated in the lungs is pulsed from the 

heart to the organs by aorta, arteries, arterioles and finally capillaries that allow exchanges 

with the extra-vascular compartment. Blood flows then into veinules and veins up to the lung 

to enable its reoxygenation.  

The inner lining of all types of blood vessels is the endothelium formed by vascular 

endothelial cells (Mehta and Malik, 2006). Capillaries are the simplest vessels.  They can be 

considered as immature or mature depending on the presence of a continuous basement 

membrane and of mural cells, referred to as pericytes (Gerhardt and Betsholtz, 2003; Sims, 

1991) (Fig 1A) that play critical functions in the stabilization of the vessels (Benjamin et al., 

1998; Dor et al., 2002). The intermediate (arterioles and veinules) and large (arteries and 

veins) vessels are surrounded by one or many layers of vascular smooth muscle cells 

(VSMC) (Gerhardt and Betsholtz, 2003) located at the interface between the endothelium 

and the surrounding tissue. This localization close to endothelial cells gives VSMC a crucial 

role in angiogenesis, notably by secreting growth factors (Allt and Lawrenson, 2001; Sims, 

1986).  

I-1-2 Blood vessels origin 

The development of the blood vascular system is one of the earliest events in 

embryogenesis, all other organs depending on vascular supply for delivery of nutrients and 

oxygen and for clearance of wastes. During embryonic development, the nascent vascular 

network is formed through two processes (Fig 1B). In the first one, identified as 

vasculogenesis, new vessels form de novo via the assembly of mesoderm-derived 

precursors (hemangioblasts differentiating in angioblasts) that evolve into a primitive 

vascular labyrinth (Eichmann et al., 1997; Isner and Asahara, 1999). In the second process, 

referred to as angiogenesis, the pre-existing vasculature progressively spreads through a 

mechanism of vessel sprouting (also called capillary branching) (Karamysheva, 2008). 

These two processes, together with progressive remodelling mechanisms will finally end up 

into a highly organized and stereotyped vascular network of large vessels ramifying into 

smaller ones (Carmeliet, 2000; Potente et al., 2011) (Fig 1B).  



General Introduction 

 

20 
 

 

Figure 1 : Development of the vascular system 
(A) Mature capillaries are formed by endothelial cells surrounded by a basement membrane and 
partly covered by pericytes. (B) Vessels development during embryogenesis. By vasculogenesis, 
endothelial progenitors (hemangioblasts) give rise to a primitive vascular labyrinth of arteries and 
veins. During the subsequent step of angiogenesis, the network extends and pericytes (PCs) and 
smooth muscle cells (SMCs) cover nascent endothelial channels. From (Carmeliet, 2005) 

I-1-3 Blood vessel formation in adulthood 

In adulthood in physiological conditions, the formation of new blood vessels is highly 

regulated and restricted to some defined situations such as embryonic implantation, wound 

healing and menstrual cycles for example. Excessive or abnormal angiogenesis is a key 

process in cancer, ocular or inflammatory diseases but is also implicated in pathological 

conditions such as asthma, diabetes, cirrhosis, multiple sclerosis, endometriosis, obesity and 

autoimmune diseases (Carmeliet, 2005). By contrast, insufficient angiogenesis is observed 

in ischemic disorders, pre-eclampsia and chronic ulcers. 

Angiogenic sprouting (Fig 2A) is the main, but not the unique, mechanism of blood vessel 

formation in the adult (Adams and Alitalo, 2007; Carmeliet and Jain, 2011). Indeed, 

endothelial precursors cells (EPC) can be mobilized from bone marrow or from tissue niches 

and incorporated into the walls of growing blood vessels where they differentiate into 

endothelial cells. This process corresponds to the previously mentioned vasculogenesis (Fig 

2B) (Kirton and Xu, 2010). Intussusception is another process allowing the spreading of the 

vascular network. It involves transluminal tissue pillars development and fusion within a 

mother blood vessel, thus delineating two new daughter vessels (Burri et al., 2004; Kurz et 

al., 2003) (Fig 2 C). 

I-1-4 Blood vessel development in cancer 

Interactions between cancer cells and their microenvironment are crucial for promoting 

tumour growth and invasiveness. Together with degradation and remodelling of the 

peritumoural extracellular matrix, development of blood vessels is a key factor regulating 
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cancer progression (Ferrara and Kerbel, 2005) by allowing the supply of sufficient amounts 

of oxygen and nutrients (Folkman, 1995). It is usually considered that the growth of tumours 

beyond 2-3 mm3 and the formation of metastases are largely dependent on angiogenesis 

(Folkman, 1972). Recently, additional mechanisms of vascularization have been identified in 

tumour environment (Carmeliet and Jain, 2011) (Fig 2D-F). For vessel co-option, appearing 

usually in well-vascularized tissues, cancer cells initially associate with and grow 

preferentially along pre-existing normal vessels. This favours tumour growth without any 

actual angiogenic response. By contrast, in vascular mimicry and cancer stem cell 

differentiation, cancer cells directly participate in blood vessel formation by differentiating 

and functioning as endothelial cells. These different processes may exist concomitantly in 

the same tumour or may be selectively involved in a specific tumour type or host 

environment. 

 

Figure 2 : Blood vessels formation in normal tissues and tumours.  
Blood vessels can be formed by sprouting angiogenesis (A) and by vasculogenesis (B), a process 
involving the recruitment of bone-marrow-derived endothelial progenitor cells (EPCs) that differentiate 
into endothelial cells (ECs). Intussusception refers to a mechanism where a vessel is split in two 
vessels of smaller diameter (C). Tumours cells can grow along the pre-existing vessels by a 
mechanism referred to as vessel co-option (D) or can participate to tumour vessel formation together 
with endothelial cells (vascular mimicry, E). Endothelial cells with cytogenetic abnormalities and 
probably deriving from putative cancer stem cells have also been described in the literature (F). 
Unlike normal tissues, which use only angiogenesis, vasculogenesis and intussusception (A-C), blood 
supply in tumours can rely on any of the six modes of vessel formation (A-F). From (Jain and 

Carmeliet, 2012) 
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I-2 Cellular and molecular mechanisms of angiogenesis 

Angiogenesis is initiated by various types of stimuli, including hypoxia, inflammation and 

mechanical solicitation such as shear stress (Milkiewicz et al., 2006). In hypoxic conditions, 

the cellular level of HIF1α (Hypoxia-Inducible Factor 1α) is increased, resulting in vascular 

endothelial growth factor-A (VEGF-A or VEGF) synthesis and secretion, which, in turn, 

participates to the recruitment of blood vessels towards hypoxic tissues (Kelly et al., 2003).  

The process of sprouting angiogenesis involves several sequential steps, each requiring the 

coordinated action of mechanisms involving the activation of a large set of ligands and 

receptors (Karamysheva, 2008). The overall process is depicted in Figure 3. 

 
Figure 3 : Angiogenic sprouting  
(A) Sprouting angiogenesis is promoted when pro-angiogenic processes (+) overwhelm anti-
angiogenic (-) ones. In these conditions, some endothelial cells (EC) (green) are selected among 
others (grey) to become “tip cells” able to sprout. Sprouting is composed of several crucial steps:  the 
adoption of an apico-basal polarity, the induction of motility and invasiveness, the modulation of the 
contacts with adjacent cells (other EC and pericytes, PC) and the degradation of the surrounding 
matrix (ECM). (B) The growing EC sprout is guided by a gradient of growth factors, such as VEGF. 
Other cues may include attractive (+) or repulsive (-) signals from matrix and cells found in the tissue 
environment. Then, the “tip cells” secrete PDGF to induce the recruitment of PC to the newly formed 
vessel. These cells allow to maintain EC-EC junctions and to prevent excessive vessel permeability. 
(C) Adhesive and repulsive interactions occur when “tip cells” meet each other. This controls the 
fusion of adjacent sprouts and the formation of the new vessel. (D) Fusion processes at the EC-EC 
interfaces establish a continuous lumen. As blood flow improves oxygen delivery the hypoxia-induced 
pro-angiogenic signals are reduced. Blood circulation also promotes the final maturation processes 
consisting in stabilization of cell junctions, matrix deposition and tight PC attachment. From (Adams 
and Alitalo, 2007)  
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I-2-1 Increase of vascular permeability 

VEGF secretion controls the initial step of angiogenesis by inducing dilatation and increased 

permeability of the vessels.  These two processes involve nitric oxide pathway (NO, see 

paragraph VI-2) and the remodelling and destabilization of the junctions between adjacent 

endothelial cells (Dejana et al., 2009). This results in the release of plasma proteins in the 

ECM to form a provisional scaffold permissive for the migration of endothelial cells (Potente 

et al., 2011). Prior to endothelial cells migration, mature vessels need to be destabilized. 

This process is induced by Angiopoietin 2 (Ang 2) and includes VSMC detachment and 

degradation of the surrounding matrix by several proteolytic enzymes, such as MMP (Matrix 

Metalloproteinases). These proteases further release and/or activate growth factors 

sequestered within the extracellular matrix (Thomas and Augustin, 2009). 

I-2-2 Endothelial cell proliferation and migration 

Some endothelial cells within the vessel wall are elected to initiate the newly formed vessel 

formation. These cells are named “tip cells” because they migrate and lead the growing 

sprout. The neighbouring endothelial cells form the “stalk” of the vascular sprout, 

proliferating and staying behind to maintain the integrity and perfusion of the growing 

vascular bed (Gerhardt et al., 2003). 

The “tip” or “stalk” phenotype is mainly regulated by the VEGF-VEGFR2 and Notch-Dll4 

pathways. First, VEGF-A signalling via VEGF-R2 (VEGF-Receptor 2) induces the 

chemotactism and the invasiveness of the “tip cell”. It also stimulates Dll4 (Delta-like ligand 

4) expression in “tip cells” which activates Notch receptors in adjacent cells, which is 

responsible for the induction of the “stalk cell” phenotype (Liu et al., 2003; Sainson et al., 

2005; Uyttendaele et al., 2001). As Notch activation also induces Dll4, this mechanism 

propagates the Dll4-Notch-mediated lateral inhibition along the developing vessels, limiting 

therefore the number of “tip cells” and precluding anarchic vascular development (Hellstrom 

et al., 2007; Suchting et al., 2007).  

In addition to motility features, “tip cells” are also characterized by a proteolytic phenotype 

responsible for invasiveness. Indeed, they secrete MMPs that are able to breakdown the 

basement membrane and the surrounding matrix. “Tip cells” also possess numerous 

filipodial protrusions sensing in their environment the gradients of different attractive (eg. 

VEGF) and repulsive cues allowing tightly regulated guidance of the sprout (Gerhardt et al., 

2003). When a “tip cell” moves forward up to a “tip cell” of another sprout or to existing 

capillaries, it loses its motile phenotype and establishes strong EC-EC adhesive interactions 

(Karamysheva, 2008). During all these processes, “stalk cells”, controlled by the VEGF-



General Introduction 

 

24 
 

VEGFR2 axis, maintain vessel integrity by proliferating and maintaining contacts together 

and with the leading tip cell (Adams and Alitalo, 2007; Adams and Eichmann, 2010; Chung 

et al., 2010; Eilken and Adams, 2010; Herbert and Stainier, 2011; Potente et al., 2011). 

I-2-3 Lumen formation  

The establishment of blood flow requires the formation of a lumen, which may occur within 

the sprout before or after they have joined with other vessels. Initially, forming blood vessels 

consist of multicellular rods of endothelial cells that are interconnected by uniform junctions. 

Thus, the formation of the lumen needs a lateral redistribution of adhesion molecules and 

the acquisition of an apico-basal polarity. This process is further expanded by several 

mechanisms that may be cell or situation dependent. For instance, we can mention 

modifications of cell shape or the formation and the coalescence of intracellular vacuoles 

that fuse with the apical surface of the cells delimitating the lumen (Herbert and Stainier, 

2011). 

I-2-4 Vessels stabilization and maturation 

The generation of a lumen and the onset of blood circulation improve oxygen delivery which 

consequently decreases the local VEGF production (Karamysheva, 2008). This resolution 

phase is associated with the interruption of endothelial cells proliferation. Endothelial cells 

secrete platelet-derived growth factor-B (PDGF-B), which promotes recruitment of pericytes 

to nascent vessels (Hellstrom et al., 1999; Lindahl et al., 1997). Pericytes establish then 

direct contacts with endothelial cells in the immature vessels (Gerhardt and Betsholtz, 2003). 

Vessel maturation relies also partly on transforming growth factor β (TGFβ) signalling which 

stimulates mural cell formation (Gerhardt and Betsholtz, 2003) and also promotes the 

production of extracellular matrix molecules.  

Several other signalling pathways are further implicated in these maturation processes, such 

as Ang1 ligand/Tie2 receptor (Tyrosine kinase with Immunoglobulin-like and EGF-like 

domains 2) signalling (Holash et al., 1999; Ramsauer and D'Amore, 2002; Suri et al., 1996). 

Finally, secretion of specific extracellular matrix molecules by endothelial cells and 

surrounding cells results in the formation of a subendothelial basement membrane and the 

transition to a quiescent state (Adams and Alitalo, 2007; Chung et al., 2010; Potente et al., 

2011). 

I-3 Specific aspects of cancer blood vessels 

Pathological angiogenesis relies on many similar inducers, regulators and mechanisms as 

those involved in physiological neo-vessels formation. A striking difference is however 
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observed at the end of the process. In physiological conditions, perfusion of the new vessel 

initiates cascades that will contribute to its final maturation and terminate angiogenesis. By 

contrast, during pathological conditions, such as tumour angiogenesis, the angiogenic 

cascade is persistent and generates an anarchic formation of blood vessels (Sitohy et al., 

2012). This specific aspect is driven by VEGF over-expression and gives rise to 6 different 

types of vessels by angiogenesis and arterio-venogenesis (Fig 4) (Nagy et al., 2010; Nagy et 

al., 2007). In the first process, small capillaries and veinules are transformed in “mother 

vessels”, enlarged vessels devoid of pericyte and basement membrane. This structure can 

then evolve into three types of “daughter vessels”:  

 “Glomeroïd Microvascular Proliferation” units, which are poorly ordered structures 

composed of proliferative endothelial cells, pericytes and macrophages; 

 “capillaries”, obtained by a process of intussusception 

 “vascular malformation”, a mother vessel which acquired a dense coat of VSMC. 

 

Figure 4 : Blood vessel types observed in tumours or after implantation of adenovirus 
expressing VEGF164a 

VEGF expressed by tumour cells is responsible for the formation of typical cancer blood vessels. 
“Mother vessels” (MV), derived from capillaries and veinules, give rise to “Glomeroïd Microvascular 
Proliferation” (GMPs) units, “Vessel Malformations” (VM) and, by a process of splitting, new 
“Capillaries”. Remodelling of arteries and veins generates respectively “Feeder arteries” (FA) and 
‘”Draining Veins” (DV). These latter vessel types, as well as “Vessel Malformation” and Capillaries, 
are surrounded by VSMCs (orange) and/or pericytes (yellow), a sign of maturation conferring 
resistance to anti-VEGF therapy. By contrast, “Mother vessels” and “Glomeroïd Microvascular 
Proliferation” units have been described to be sensitive to anti-VEGF therapy (Dashed line box). 
From (Sitohy et al., 2012). 
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Arteries and veins are also affected during tumour angiogenesis. They undergo an 

enlargement resulting from proliferation of endothelial cells and VSMC to give birth to feeder 

arteries and draining veins. These vascular patterns determine resistance or sensitivity to 

anti-VEGF therapy (see chapter VII). 

 

II- Alternative splicing 

In Eukaryotes, most of the genes are transcribed as pre-mRNA composed by an alternation 

of coding (exons) and non-coding (introns) sequences (Berget et al., 1977; Chow et al., 

1977). During a maturation step, introns are then spliced out while exons are joined together 

to form mature mRNA. This process is referred to as constitutive splicing when it remains 

unchanged in any condition.  For more than 90 % of the genes, however, such as VEGF-A 

for example (Munaut et al., 2010), the pre-mRNA can give rise to several mRNA and 

proteins through a process of alternative splicing of defined sequences (Hilmi et al., 2012; 

Wang et al., 2008). This highly regulated mechanism can lead to a variety of combinations 

such as exclusion of one, several or part of exons or retention of sequences that are intronic 

in other transcripts (Fig 5). The different mRNA variants can then encode different proteins 

that may possess distinct or, sometimes, opposite functions. 

 

Figure: 5 Mechanisms of alternative splicing  

Constitutive splicing refers to a mechanism leading always to an identical process of intron excision 
and exon joining.  Introns are represented by black or violet lines and exons by green, grey or blue 
boxes, respectively. Alternative splicing of pre-mRNA can generate several isoforms (variants) of 
mRNA and proteins. Several mechanisms of alternative splicing can affect pre-mRNA such as 
“cassette exon” splicing (skipping of one or several complete exons), “intron retention” (a situation 
where the newly included sequence (violet line) can be formally considered as an intron for other 
variants, “mutually exclusive exons” (one exon (grey) or the other (blue) is present, but never both 
together) and “alternative 3’ or 5’ splice site (SS)” selection. From (Miura et al., 2012) 
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Several regulatory cascades and factors control the alternative splicing process. For 

instance, Akt (Blaustein et al., 2005) or SR-proteins kinases, SRPK1 and SRPK 2 (Nowak et 

al., 2010), can act as potent regulators by phosphorylating the SR-proteins (Serine and 

Arginine rich proteins) which induces their translocation to the nucleus where they can affect 

splicing decisions (Stamm, 2008). 

During cancer formation and progression, pre-mRNA of many genes undergo alternative 

splicing to give rise to novel variants conferring specific advantages to tumour cells (Miura et 

al., 2012; Skotheim and Nees, 2007). Furthermore, many chemotherapeutic agents can alter 

alternative splicing (Sumanasekera et al., 2008). An interesting example is the generation of 

a novel VEGF variant, VEGF111, by treating various tumour cells with cytotoxic drugs (Mineur 

et al., 2007). This example has a direct link with our work and will be therefore detailed 

below (see paragraph IV-8). 

 

 

III- Vascular Endothelial Growth Factor-A 

III-1 Discovery and  generalities 

VEGF-A, usually referred to as VEGF, is a glycoprotein described by N. Ferrara (Ferrara and 

Henzel, 1989)  in the conditioned culture medium of pituitary gland cells as a factor able to 

trigger endothelial cells proliferation. It was also previously identified as VPF (Vascular 

Permeability Factor), a factor secreted by numerous tumour cells lines (Senger et al., 1983) 

or as FSdGF (Follicular Stellate-derived Growth Factor) (Gospodarowicz et al., 1989) and 

Vasotropin (Plouet and Moukadiri, 1990b; Plouet et al., 1989).  

VEGF-A is now considered as the main growth factor regulating both physiological and 

pathological angiogenesis (Ferrara, 2004; Ferrara and Alitalo, 1999). Its expression is crucial 

for development as inactivation of a single VEGF allele in mice causes early embryonic 

mortality due to deficient endothelial cell proliferation, defective blood vessels formation and 

consequently numerous vascular abnormalities (Carmeliet et al., 1996; Ferrara et al., 1996; 

Gerber et al., 1999).  

VEGF-A is a member of the VEGF family which also includes VEGF-B, -C, -D and PlGF 

(Placental Growth Factor). VEGF-E and -F are also considered as being members of this 

family although they are not of mammalian origin but produced from the pox virus genome or 

present in some snake venom, respectively (Ogawa et al., 1998; Pieren et al., 2006; 

Yamazaki et al., 2005). The specific functions of each of these VEGF are largely, but not 
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only, dictated by their affinity for three receptors and two co-receptors (Fig 6). For example, 

most of the activities of VEGF-A rely on its capacity to interact with VEGF-R1, VEGF-R2 

and, according to the isoform, to neuropilins 1 and 2. VEGF-B and PlGF bind to VEGF-R1 

and NRP1 but not VEGF-R2 (de Vries et al., 1992; Neufeld et al., 2002; Soker et al., 1998). 

VEGF-C and VEGF-D acts through VEGF-R2 and VEGF-R3 to drive lymphangiogenesis 

(Koch et al., 2011). 

 

Figure 6 : VEGF family members and their receptors 

VEGF-A, -B, -C, -D, -E and -F and PlGF are soluble growth factors regulating cell phenotype through 
binding to different receptors (VEGF-R1, VEGF-R2, VEGF-R3) and co-receptors (NRP and 
proteoglycans (not shown here)). A short summary of what is known about the (co-)receptors is 
provided elsewhere (paragraph VI-3, VI-4 and VI-5). Although a single VEGF member can bind to 
several (co-)receptors, redundancy between their roles is limited. VEGF: Vascular Endothelial Growth 
Factor, VEGF-R: VEGF-Receptors, NRP: Neuropilins 1 or 2, PlGF: Placental Growth Factor. From 
(Berger and Ballmer-Hofer, 2011) 

 

III-2 General structure of VEGF 

VEGF-A gene contains 8 exons (Ferrara et al., 2003). After transcription, the pre-mRNA 

gives rise to several mRNA coding for VEGF-A variants possessing some specific 

properties. The first 4 exons (E1-E4) are present in all mRNA variants while the terminal 

exons (E5-E8) can be alternatively spliced by mechanisms of cassette exon skipping, partial 

exon retention and alternative 3’ splice sites (Fig 5, Fig 8). The nature of the regulations 

influencing the alternative splicing of the VEGF-A pre-mRNA remains poorly understood 

(Gout et al., 2012). The resulting proteins are identified by a code corresponding to the 
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number of amino acid present in the molecule after cleavage of the signal peptide and a 

letter, “a” or “b”, indicating the nature of the terminal exon, either E8a or E8b, encoding the 

last six amino acids (Fig 8). 

As the most critical domains required for the correct folding of the VEGF molecules are 

located in the sequence encoded by exons 1 to 4, it is generally accepted that all these 

variants possess a similar general organization.  VEGF is active only as a dimer formed by 

two monomers positioned in a head-to-tail manner (Muller et al., 1997; Pieren et al., 2006) 

(Fig 7). Disulfide bridges between Cys residues encoded by exons 3 and 4 are crucial for the 

proper folding of individual monomers (intra-chain bridges involving Cys57 and Cys102, Cys61 

and Cys104, Cys26 and Cys68) but are also required for stabilizing the dimer (inter-chain 

bridges, Cys51 and Cys60).  Formation of dimers by two monomers of different size has been 

demonstrated (Keyt et al., 1996a) but their properties have not been thoroughly studied 

(Kurz et al., 1998; Morbidelli et al., 1997).  In the same context, VEGF-A/PlGF (DiSalvo et 

al., 1995) and VEGF-A/VEGF-B (Olofsson et al., 1996) heterodimers have been also 

identified, adding an additional level of complexity in the study of the functions of the 

individual family members.  

 

Figure 7 : 3D-Structure of VEGF dimer 

VEGF, in this case VEGF-E used as a model, are composed of 2 monomers linked by 2 disulfides 
bonds (yellow) in head-to-tail manner. In VEGF-A, Cys

51
 and Cys

60
 are the two critical residues 

involved in the formation of these disulfide bonds. Each monomer contains a “Cystin-Knot” structure 
(blue) where Cys

57
 and Cys

102
, Cys

61
 and Cys

104
, Cys

26
 and Cys

68 
form intra-chain bonds. The binding 

sites to VEGF-R2 are drawn here in red. 
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III-3 Regulation of VEGF-A expression 

VEGF-A is expressed in almost all healthy tissues where it plays a crucial role for blood 

vessels homeostasis (Berse et al., 1992; Ferrara et al., 1992; Ferrara et al., 1991b). Besides 

alternative splicing, its expression is also controlled at the levels of transcription and mRNA 

stability (Neufeld et al., 1999). 

VEGF is up regulated in tumours and many other pathological situations such as diabetes, 

rheumatoid arthritis and cardiovascular diseases (Ferrara and Davis-Smyth, 1997). It is also 

overexpressed in several eye diseases characterized by abnormal blood vessel formation, 

as, for example, age-related macular degeneration (AMD) (Kvanta et al., 1996), retinopathy 

of prematurity (ROP) and diabetic proliferative retinopathy (Aiello et al., 1994). High levels of 

VEGF are detected in vitreous and aqueous humors in patients with retinal and anterior 

segment pathologies (Aiello et al., 1994). The concentration is even more severely increased 

in patients presenting neovascular symptoms. 

The VEGF expression is driven by hypoxia during development (Levy et al., 1995; Shweiki et 

al., 1992; Stone et al., 1995) but also during post-natal neovascularization and in ischemic 

conditions (Damert et al., 1997; Dor et al., 2001; Forsythe et al., 1996; Ikeda et al., 1995; 

Iyer et al., 1998; Shweiki et al., 1992). HIF-1 is the main factor implicated in this process 

(Kelly et al., 2003). The molecule is formed as a heterodimer composed of two subunits HIF-

1α and HIF-1β (Chung and Ferrara, 2011). In normoxic conditions, HIF-1α is maintained at 

low level by a constant degradation driven by von Hippel-Lindau tumor suppressor protein. 

On the contrary, a decrease of the oxygen concentration or the activation of the oncogene v-

src promotes its expression and association with HIF-1β (Strieter, 2005). The complete 

heterodimer translocates then in the nucleus and binds to a hypoxia response element 

hosted in the promoter of the VEGF-A gene which induces its mRNA transcription and 

production of VEGF protein (Tanimoto et al., 2003). Alternatively, VEGF upregulation can 

also be induced by several growth factors, including EGF, TGF, IGF-1, FGF and PDGF as 

well as by oncogenes, including activated ras (Neufeld et al., 1999; Okada et al., 1998; Rak 

et al., 1995). 

IV- VEGF variants 

Alternative splicing of the pre-mRNA gives rise to several isoforms of VEGF proteins (Fig 8) 

that possess specific characteristics regarding diffusibility (Ferrara, 2010), receptor activation 

(Soker et al., 2002), vessels maturation (Mineur et al., 2007) and pro- or anti-angionenic 

functions (Bates et al., 2002).  
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Figure 8 : Schematic representation of the different VEGF isoforms 

Alternative splicing of the VEGF-A pre-mRNA gives rise to several isoforms of mRNA and proteins. 
(A) Exons (numbered from 1 to 8b) and introns are represented by boxes and lines, respectively. The 
biological functions associated with the protein domains encoded by different exons are provided.   
(B) Drawing of the main isoforms of VEGF. The amino-terminal portion (encoded by exons 1 to 4) is 
found in all known variants while the carboxy-terminal composition is highly variable. VEGF165b is a 
particular variant where the six amino acids encoded by exon 8a are replaced by six amino acids 
encoded by the alternative exon 8b. VEGF111a is the only variant which does not possess the exon 5 
encoded domain where main sites of proteolytic cleavages are located. 

 

VEGF variants are differentially expressed depending on tissue and life stages (Bacic et al., 

1995; Ng et al., 2001). VEGF121a and VEGF165a are usually the most abundant variants 

(Ferrara et al., 1991a). In some circumstances, however, the proportion of other variants can 

be significantly increased.  As an example, VEGF189a is the dominant isoform in the uterus 

when progesterone is highly expressed (Ancelin et al., 2002). 

It has been suggested that the combine expression of VEGF121a, VEGF165a and VEGF189a is 

crucial to induce a VEGF gradient favouring a correct sprouting angiogenesis and vessel 

maturation (Grunstein et al., 2000). This hypothesis has been later nuanced. Even though it 

has been confirmed that the expression of only VEGF120a or VEGF188a (the murine 

analogous of VEGF121a and VEGF189a, respectively)  is not sufficient to allow a good 
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vascular development (Carmeliet et al., 1999), the combination of both variants (Ruhrberg et 

al., 2002) or the solely expression of VEGF165a seems to be sufficient during embryogenesis 

(Stalmans et al., 2002).  

IV-1 VEGF165a (E1-E5 ; E7; E8a) 

VEGF165a was the first identified VEGF molecule and is still the most investigated VEGF 

variant (Ferrara and Henzel, 1989; Harper and Bates, 2008). As a result the 

characterizations of the VEGF properties described in the literature mostly concern 

VEGF165a. Its mRNA is formed by exons 1 to 5 (E1-E5), E7 and E8a. It binds to VEGF-R1, 

VEGF-R2, NRP1 (see chapter VI) and NRP2 but also to HSPG. It displays intermediate 

affinities for components of the extracellular matrix conferring it with an optimal “diffusibility” 

and availability for endothelial cell (Ferrara, 2010). This is illustrated by the fact that mice 

expressing exclusively the VEGF164 variant (analogous to human VEGF165a) display a 

normal development (Carmeliet et al., 1999; Maes et al., 2004; Stalmans et al., 2002).  

IV-2 VEGF121a (E1-E5 ; E8a) 

As VEGF165a, VEGF121a is an abundant isoform. It binds with high affinity to VEGF-R1 and 

VEGF-R2 (Gitay-Goren et al., 1992; Kaplan et al., 1997; Leung et al., 1989).  It differs from  

VEGF165a by the absence of E7-encoded domain, which strongly reduces its affinity for 

heparin, proteoglycans and several components of the ECM (Cohen et al., 1995; Houck et 

al., 1992). As a consequence VEGF121a is able to stimulate endothelial cells and to be active 

at distance from its site of secretion (Ferrara, 2010; Grunstein et al., 2000). Interestingly, its 

binding properties to NRP1 remain controversial being described as binder and non binder 

(Cebe Suarez et al., 2006; Herve et al., 2008; Pan et al., 2007b; Parker et al., 2012; Soker et 

al., 1996). This latter point has been investigated in this work. 

The exclusive expression of VEGF120a (the murine analogous of VEGF121a) during the 

embryonic life is not sufficient to allow a correct foetus development (Carmeliet et al., 1999), 

with about 50 % of pups dying perinatally because of impaired myocardial angiogenesis and 

ischemic cardiomyopathy. In the retina, it has been also noticed that VEGF120/120 mice have a 

reduced number and shorter filopodia at the surface of “tips cells” (Gerhardt et al., 2003), 

larger capillaries, reduced vessels branching and delays in recruitment of mural cells 

(Ruhrberg et al., 2002; Stalmans et al., 2002). Similarly, overexpression of VEGF120a during 

development decreases branching and increases the number of endothelial cells per 

capillary (Ruhrberg et al., 2002).  
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IV-3 VEGF189a (E1-E5 ; E6a ; E7; E8a) 

In addition to the sequences present in VEGF165a, VEGF189a contains also the 24 amino 

acids encoded by exon 6a (Keck et al., 1989). As this domain is highly enriched in Arg and 

Lys basic residues, it largely explains why VEGF189a binds strongly to heparin and heparan 

sulphate proteoglycans and is almost only found either trapped at the cell surface or 

immobilized in the ECM (Houck et al., 1992; Tischer et al., 1991). This variant is therefore 

considered as a reservoir of VEGF becoming active and available for endothelial cells only 

after cleavage (Ferrara, 2010; Houck et al., 1992), treatment by heparin (Plouet et al., 1997) 

and/or degradation of the ECM (Park et al., 1993). As expected from these properties, 

expression of VEGF189a by tumour cells seems to induce angiogenesis only locally 

(Grunstein et al., 2000).  Although VEGF189a was initially reported to be active only after 

cleavage within the exon6-encoded sequence, by plasmin or urokinase for example (Plouet 

et al., 1997), more recent studies describe however its effect as an uncleaved molecule on 

the induction of endothelial cell proliferation and migration, on the formation of dilated blood 

vessels in vivo (Herve et al., 2005; Herve et al., 2008) and as an inducer of vascular 

permeability (Ancelin et al., 2002). Interestingly, VEGF189a binds to NRP1 with a higher 

affinity and a slower dissociation rate than VEGF165a, probably leading to the formation of 

more stable tri-molecular complexes (VEGF-R2, VEGF189a, NRP1) and to an increased 

VEGF-R2 signalling that could be related to the formation of large vessels (Herve et al., 

2008; Miao et al., 2000). Finally, VEGF189a presents the remarkable property of binding to 

fibronectin and vitronectin (via αvβ5 and α5β1) and stimulating the recruitment of pericytes 

(Tozer et al., 2008), which plays a crucial role during tumour implantation and growth 

(Oshika et al., 2000). 

In a mouse model, overexpression of VEGF188a (the murine analogous of VEGF189a) 

induces an excess of endothelial cells filopodia favouring hyperbranching of blood vessels 

during development and a reduction of the number of cells per capillary (Ruhrberg et al., 

2002). These latter data are in contrast with those observed in tumour model expressing 

VEGF189a where the blood vessels are dilated.  Finally, in a model of mice expressing only 

VEGF188a, cartilage and bone developments are impaired (Maes et al., 2004). 

IV-4 VEGF206a (E1-E5 ; E6a ; E6b ; E7; E8a) 

VEGF206a is considered as the full length variant as its mRNA contains all the exons (E1 to 

E8a). Similarly to VEGF189a, from which it differs only by the presence of the 17 amino acids 

encoded by E6b (Lange et al., 2003), it remains largely cell and matrix associated (Park et 

al., 1993) and can induce vascular permeability. Furthermore, when attached to the ECM, it 



General Introduction 

 

34 
 

is also able to stimulate endothelial cells proliferation (Houck et al., 1991; Park et al., 1993). 

Its expression is mainly restricted to the pre-natal period (Houck et al., 1991; Jakeman et al., 

1993).  

IV-5 VEGF145a (E1-E5; E6a ; E8a) 

VEGF145a has been identified in tumourigenic cell lines established from the female 

reproductive system but also in ovine placenta and foetal membranes, penis, kidney and 

skin (Burchardt et al., 1999; Charnock-Jones et al., 1993; Cheung et al., 1995; Poltorak et 

al., 1997; Whittle et al., 1999). It is secreted by some cancer cells lines in the medium and 

can be purified using a heparin-Sepharose affinity chromatography. VEGF145a displays a 

higher affinity for matrix components than VEGF165a (Kawamura et al., 2008b; Lange et al., 

2003; Poltorak et al., 1997). Interestingly this does not seem to be related to interactions with 

heparin, because heparitinase treatment does not release VEGF145a from ECM (Poltorak et 

al., 1997).  

VEGF145a binds to VEGF-R2 and to NRP2 but probably not to NRP1 (Gluzman-Poltorak et 

al., 2000; Poltorak et al., 1997) although this is still debated (Kawamura et al., 2008b). It 

induces endothelial cells proliferation and migration, although less efficiently than VEGF165a. 

When transfected in tumour cells, it induces a significant blood vessels invasion in vivo 

(Kawamura et al., 2008b; Poltorak et al., 2000; Poltorak et al., 1997). 

IV-6 VEGF162a (E1-E5 ; E6a ; E6b ; E8a) 

VEGF162a was identified in human ovarian carcinoma cell line (Lange et al., 2003). It induces 

HUVECs mitogenesis with an intermediate activity as compared to VEGF165a and VEGF145a. 

It also triggers the formation of blood vessels in vivo. Interestingly, its affinity for HSPG is 

lower than the affinity of VEGF145a, suggesting that the amino acid sequence encoded by 

E6b has some inhibitory effect (Lange et al., 2003). 

IV-7 VEGF183a (E1-E5 ; E6a truncated  ; E7; E8a) 

Although ubiquitously expressed (Jingjing et al., 2000), VEGF183 has been discovered in the 

eye where it is synthesized by Müller cells (glial cell of the retina). Its expression is up-

regulated under hypoxic conditions (Jingjing et al., 1999). It differs from VEGF189a by the 

absence of the 6 amino acids encoded by the 3’-end of E6a, due to the presence of a 

conserved alternative splicing donor site (Lei et al., 1998). Except for a slightly reduced 

affinity for some extracellular components, it is considered to possess the same properties 

than VEGF189a (Jingjing et al., 2001). 
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IV-8 VEGF111a (E1-E4 ; E8a) 

VEGF111a is the only VEGF that does not possess the E5-encoded domain (Lambert et al., 

2008; Mineur et al., 2007) as the entire sequence between E4 and E8a is spliced out (Fig 8). 

It is the shortest and the more recently described variant. It was identified in many cells 

types upon “stress” in culture by either UV-B irradiation, exposure to chemotherapeutic 

drugs (Mineur et al., 2007) or cold shock and rewarming (Neutelings et al., 2013, in revision). 

When produced in mammalian cells, VEGF111a is secreted under its glycosylated form while, 

interestingly, a significant part of the other variants remain always non glycosylated (Mineur 

et al., 2007). This might influence its biological properties although it was never 

demonstrated. 

VEGF111a has pro-angiogenic activities (Fig 9). It initiates the phosphorylation of VEGF-R2 

and the activation of the downstream ERK1/2 (Extracellular signal-regulated kinases 

phosphorylation 1/2) signalling pathway.  It stimulates the proliferation of endothelial cells in 

culture and vasculogenesis in a model of embryoid body formation in vitro. It signals also 

through VEGF-R1 as illustrated by its capacity to induce monocyte migration. Its activity was 

also studied in a model of tumoural angiogenesis using HEK293 cells expressing a single 

VEGF variant and implanted in nude mice. In these conditions, VEGF121a and VEGF165a 

were shown to promote the formation of enlarged blood vessels inside the tumour mass.  By 

sharp contrast, expression of VEGF111a did not modify the intra-tumoural angiogenesis but 

induced the formation of a dense network of functional capillaries in the peritumoural tissue. 

Beside demonstrating a strong activity in vivo, these observations also suggested that 

VEGF111a is probably able to diffuse almost freely without any interaction with the ECM. 

As another interesting and very specific property resulting from the absence of the E5-

encoded sequence, VEGF111a is resistant to degradation by plasmin, an enzyme with broad 

spectrum substrates, and by the cocktail of proteases present in skin ulcer exudates (Mineur 

et al., 2007). All these characteristics make VEGF111a a variant with many potential clinical 

applications and implications in various pathologies. In acute or chronic ischemia (heart 

infarction, stroke, skin ulcer, tissues grafting, ...) its use could potentially be beneficial for the 

patients by preventing endothelial cell apoptosis and stimulating the formation of new blood 

vessels.  By contrast its endogenous expression could be detrimental in diseases where 

abnormal or excessive angiogenesis is observed (cancer, arthritis, ...). 
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Figure 9 : Characterizations of VEGF111a 

(A) As demonstrated by western-blot analyses of VEGF variants treated with Peptide-N-Glycosidase 
F (PNGase), VEGF111a is secreted only as a glycosylated protein while the “classical” variants 
(VEGF121a and VEGF165a), are identified as glycosylated and non glycosylated polypeptides. 
VEGF111a is as efficient as VEGF121a and VEGF165a (B) for stimulating the phosphorylation of ERK1/2 
and (C) the proliferation of endothelial cell (VEGF111a, black circle, VEGF121a, open triangle, 
VEGF165a, black triangle and control, open circle). (D) VEGF111a displays an increased resistance to 
proteolytic degradation by plasmin. (E) As compared to VEGF121a and VEGF165a that induce 
intratumoural vascularization, VEGF111a stimulates the formation of a dense network of small 
capillaries in the surrounding normal skin. From (Mineur et al., 2007) 

 

IV-9 VEGFxxxb variants 

IV-9-1 Discovery, generalities and expression 

A study of VEGF mRNA isoforms in kidneys led to the identification of a new class of 

variants reported as anti-angiogenic and characterized by the presence of an alternative 

exon 8b (Bates et al., 2002; Bates and Jones, 2003). Although a recent controversy 

questioning their existence/biological significance (Catena et al., 2010; Harris et al., 2012), 

we felt that their description and study were nonetheless fully relevant to our work for three 

independent reasons: 

 There are tens of publications from several laboratories describing their expression; 
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 Due to their properties, their use as recombinant proteins is promising for treating 

human pathologies, even if they are not significantly produced as physiological native 

proteins; 

 Their characterization and comparison with other variants provide fundamental new 

knowledge concerning the function of the different domains alternatively present in 

the various VEGF variants. 

In their original publication, Bates and co-workers found that this new variant was expressed 

in podocytes in normal kidneys but was down-regulated in tumour samples and cell lines 

(Bates et al., 2002; Cui et al., 2004). By sequencing, they identified a new terminal coding 

sequence that is present in the other variants but only in the 3’-UTR (Xu et al., 2011b). This 

new sequence, referred to as exon 8b (E8b) (Woolard et al., 2004), codes for six amino 

acids and a stop codon followed by a 3’-UTR. The alternative splicing mechanism leading to 

its formation has been studied.  It has been shown that VEGF with E8b or E8a are 

generated as a result of the alternative use of 2 different splice sites (Fig 10).  Beside 

VEGF165b (E1-E5; E7; E8b) described in the original publication (Bates et al., 2002), others 

have been identified such as VEGF121b (E1-E5 ; E8b), VEGF145b (E1-E5 ; E6a ; E8b) and 

VEGF189b (E1-E5 ; E6a ; E7; E8b) (Cui et al., 2004; Harper and Bates, 2008; Miller-Kasprzak 

and Jagodzinski, 2008; Rennel et al., 2009b; Woolard et al., 2004). As already mentioned, 

VEGF variants possessing E8a or the alternative E8b are referred to as VEGFxxxa or 

VEGFxxxb, respectively. The expression of this new class of variants was reported to be 

significant and it was even postulated that they could be more abundant in healthy tissues 

than the VEGFxxxa isoforms (Bevan et al., 2008; Pritchard-Jones et al., 2007; Rennel et al., 

2008; Varey et al., 2008; Woolard et al., 2004), which is however another controversy in the 

field.  

VEGFxxxa and VEGFxxxb isoforms are generated by the selection of a proximal (PSS) or a 

distal (DSS) splice site, the latter being localized 66 bp further downstream in the terminal 

exon 8 (see Fig 10) (Woolard et al., 2004). Cascades of molecules, such as growth factors 

and splicing factors, are implicated in the choice of the splicing site. Studies in primary 

epithelial cell, podocytes and endothelial cells demonstrate that factors such as IGF1 and 

TNFα (Tumor Necrosis Factor α) favour the PSS, which leads to the synthesis of VEGFxxxa,  

while TGF-β1 favours DSS and secretion of VEGFxxxb (Nowak et al., 2008).  

IGF induces the PKC (Protein Kinase C) pathway (Fig 10A) and SRPK1 (Serine/Arginine 

Protein Kinase 1) activation, which induces the phosphorylation and the translocation of 

ASF/SF2 (also known SRSF1: Serine/Arginine-rich Splicing Factor 1) in the nucleus where it 

participates to the preferential selection of the PSS (Nowak et al., 2010).  By contrast (Fig 
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10B), TGF-β1 activates successively p38 and Clk1 (CDC-like kinase 1) pathways, which 

induces the phosphorylation of SRp55 (also known SRSF6) allowing its binding to the VEGF 

pre-mRNA, which favours the selection of the DSS and the synthesis of VEGFxxxb (Manetti 

et al., 2011; Nowak et al., 2008). Endostatin and the E2F1 transcription factor could also 

participate to the selection of the DSS by triggering the activation of the splicing factor SC35 

(Li et al., 2011; Merdzhanova et al., 2008; Merdzhanova et al., 2010). However, a positive 

correlation between the expression of VEGFxxxa and E2F1 has been identified in colorectal 

cancer samples, suggesting that the relationship between these two factors is probably 

complex (Diaz et al., 2008). Finally, WT1 (Wilms Tumour protein 1) can bind to SRPK1 and 

down-regulate its expression, which represses the expression of VEGFxxxa. Interestingly, in 

Deny Drash Syndome, a urogenital disorder, WT1 is expressed as a mutated form unable to 

bind and to inhibit SRPK1 (Amin et al., 2011; Schumacher et al., 2007), which stimulates an 

overexpression of VEGFxxxa responsible for renal failure. 

 

  

Figure 10 : Regulation of the alternative splicing in the terminal exon of the VEGF-A pre-mRNA 

Several growth factors, kinases and splicing factors are implicated in pathways regulating the 
selection of a proximal (A) or a more distal (B) splice site, which leads to the synthesis of either 

VEGFxxxa or VEGFxxxb isoforms, respectively. From (Peiris-Pages, 2012) 
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VEGF165b (E1-E5; E7; E8b) is the most investigated VEGFxxxb isoform.  It has been 

produced as a recombinant protein (Fig 11A) (Bates et al., 2002; Catena et al., 2010).  It is 

efficiently secreted (Leung et al., 1989), forms dimers (Bates et al., 2002; Woolard et al., 

2004), and has high affinities for VEGF receptors (Hua et al., 2010).  An antibody targeting 

the 6 amino acids encoded by E8b has been produced and used to detect, by 

immunohistochemistry or ELISA, the presence of VEGF165b in kidney and plasma samples 

(Bills et al., 2009; Woolard et al., 2004).  

The 6 amino acids encoded by E8b (Ser-Leu-Thr-Arg-Lys-Asp or “SLTRKD”) largely differ 

from those derived from E8a (Cys-Asp-Lys-Pro-Arg-Arg or “CDKPRR”) (Bates and Jones, 

2003), which has potential functional implications. In VEGF165a, the Cys residue encoded by 

E8a is expected to form a disulfide bond with Cys146 (derived from E7) (Claffey et al., 1995).  

This brings the two terminal Arg encoded by E8a close to the basic residues derived from 

E6, which forms a highly basic 3D-domain. By sharp contrast, the domain encoded by E8b 

does not contain a Cys and ends with an Asp acidic residue (Cebe-Suarez et al., 2008), two 

features that could strongly modify the 3D-conformation and the properties of VEGF165b as 

compared to VEGF165a.  

VEGF165b binds to VEGF-R1 and VEGF-R2 (Fig 11B and 11C) (Hua et al., 2010; Woolard et 

al., 2004) but not to NRP1, heparin or HSPG (Cebe Suarez et al., 2006; Kawamura et al., 

2008b). Surprisingly, however, it has been shown in independent studies that endothelial 

cells treatment by VEGF165b induces only a faint and transient phosphorylation of VEGF-R2 

and a very limited activation of ERK and Akt downstream signalling pathways (Catena et al., 

2010; Cebe Suarez et al., 2006; Magnussen et al., 2010; Manetti et al., 2011; Woolard et al., 

2004). Other studies have further shown that impaired phosphorylation of VEGF-R2 affects 

several Tyr residues (Cebe Suarez et al., 2006; Kawamura et al., 2008b; Magnussen et al., 

2010). The involved mechanism is not yet fully understood.  According to a first hypothesis, it 

could be related to the lack of binding of VEGFxxxb isoforms to NRP1. This hypothesis is 

however hampered by the fact that VEGFxxxa variants that have no affinity for NRP1 are 

however strong inducers of VEGF-R2 phosphorylation. Another more appealing hypothesis 

suggests that VEGF165b would not be able to dictate the perfect orientation of the two VEGF-

R2 molecules forming a functional dimer, which would affect tyrosine “trans-phosphorylation” 

and explain the quasi absence of activation of downstream pathways (Fig 11D).  In this 

context it is not surprising that VEGF165b is not able to trigger endothelial cells proliferation 

(Fig 11E), migration (Fig 11F) and tube formation in vitro or angiogenesis (Fig 12A) and 

vascular dilatation in vivo (Bates et al., 2002; Manetti et al., 2011; Rennel et al., 2008). The 
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low level of activation of these cascades seems however sufficient to have a biological role 

since VEGF165b treatments promote survival of endothelial cell in vitro (Bevan et al., 2008; 

Magnussen et al., 2010; Woolard et al., 2004). Besides this protective function it was 

reported that VEGF165b is able to repress the VEGFxxxa-induced angiogenesis by a 

mechanism that would involve a competition for VEGF-R2.  

  

  

Figure 11 : In vitro effect of VEGF165b on angiogenesis 

VEGF165a and VEGF165b can both be evidenced by Westen Blotting using an antibody targeting the 
N-terminus of the molecules, while only VEGF165b can be visualized by an antibody raised against the 
E8b-derived sequence (A). VEGF165b is able to bind to VEGF-R1 (B) and VEGF-R2 (C) as 
demonstrated by Surface Plasmon Resonance. (D) However, experiments performed in vitro on 
endothelial cells demonstrated that VEGF165b cannot activate ERK pathway and inhibits the 
VEGF165a-induced phosphorylation as shown by western-blot and the corresponding quantification. 
(E) VEGF165b can repress VEGF165a-induced endothelial cells proliferation when both variants are 
mixed in an equimolar amount as shown by ³H-thymidine incorporation. (F) VEGF165b has the 
property to inhibit VEGF165a induced endothelial cells migration in a dose-dependent manner as 
shown by the decrease percentage of cell migration relative to VEGF165a taken as 100%. (D E, F) The 
statistical significances are reported by comparison to the treatment with VEGF165a alone. From 
(Bates et al., 2002; Hua et al., 2010; Rennel et al., 2008; Woolard et al., 2004). 

This antagonistic effect regarding the pro-angiogenic isoforms of VEGF was also 

investigated and confirmed in vivo in models of pathological neovascularization in the eye 

(Konopatskaya et al., 2006; Magnussen et al., 2010; Rennel et al., 2009b) and in tumours 
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(Fig 12B) (Peiris-Pages et al., 2010; Rennel et al., 2008; Rennel et al., 2009a; Rennel et al., 

2009b). A small number of publications report however a weak but significant pro-angiogenic 

effect of VEGF121b and VEGF165b in a matrigel plug assay in vivo (Catena et al., 2010), 

which led to the hypothesis that the inhibitory of effect of VEGF165b would be limited to 

situations where the pro-angiogenic VEGFxxxa isoforms are highly expressed.  It was also 

shown that VEGF165b is able to increase vascular permeability by signalling through VEGF-

R1, although less efficiently than VEGF165a (Glass et al., 2006) that acts mainly through 

VEGF-R2 (Whittles et al., 2002). 

 

  

Figure 12 : In vivo effect of VEGF165b on angiogenesis 

(A) Unlike VEGF165a, VEGF165b does not induce ocular vascularization (upper panel). When present 
in equimolar concentration VEGF165b inhibits the VEGF165a-induced effect (lower panel). (B) LS174t 
carcinoma cells express high levels of VEGF165a.  They form vascularized tumours when grafted in 
nude mice.  By contrast, chronic injection of recombinant VEGF165b reduces tumor growth and 
vascularisation. From (Rennel et al., 2008; Woolard et al., 2004) 

IV-9-2 VEGFxxxb/VEGFxxxa ratio in health and disease 

The VEGFxxxb/VEGFxxxa ratio plays a significant role in the maintenance of the physiology of 

the organ in adulthood (Oltean et al., 2012b).  It is also developmentally regulated in ovaries, 

testes and eyes (Artac et al., 2009; Baba et al., 2012; Baltes-Breitwisch et al., 2010; Caires 

et al., 2012; McFee et al., 2012). In placenta, where angiogenesis is active, VEGFxxxb 

represents only 1.5% of the total VEGF (Bevan et al., 2008). 

VEGFxxxb isoforms are down-regulated in tumours as compared to healthy tissues in favour 

of VEGFxxxa (Bates et al., 2002; Bevan et al., 2008; Rennel et al., 2008). VEGFxxxb are also 
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the main variants expressed in normal eye but their concentration decreases during the 

proliferative angiogenesis occurring in the vitreous of diabetic patients (Hua et al., 2010; 

Perrin et al., 2005). By contrast, in glaucoma, a non-angiogenic pathology where VEGF is 

over-expressed, the VEGFxxxb isoforms are the most abundant (Ergorul et al., 2008). All 

these information underscore a shift from VEGFxxxb to VEGFxxxa which is responsible for 

pathological blood vessels formation (Harper and Bates, 2008). This hypothesis is however 

not supported in breast tumours where up-regulation of VEGFxxxb isoforms has been 

observed (Catena et al., 2010). A decreased VEGF165b/VEGF165a ratio is also involved in 

mesangial sclerosis and renal failure in patients suffering from Denis Drash Syndrome 

(Schumacher et al., 2007). An increased expression of VEGF165b is involved in systemic 

sclerosis (Manetti et al., 2011), a chronic disease characterized by alterations of 

angiogenesis and vascular repair, which affects skin and internal organs (Manetti et al., 

2010).  

IV-9-3 VEGFxxxb in clinic 

Bevacizumab is an antibody trapping VEGF-A molecules (see paragraph VII-1). Today, it is 

the gold-standard treatment for inhibiting angiogenesis. Besides a limited effect, it has also 

specific disadvantages. It targets both VEGFxxxa and VEGFxxxb isoforms, which potentially 

reduces its anti-angiogenic properties. Bates and collaborators proposed to use the 

VEGFxxxb/VEGFxxxa ratio as a predictive biomarker for bevacizumab efficacy in metastatic 

colorectal cancer (Bates et al., 2012). Using samples of the phase III study (Giantonio et al., 

2007), they have demonstrated a significant improvement of the survival of patients with a 

low VEGFxxxb/ VEGFxxxa ratio as compared to the patients with a high ratio.   

When used at high doses in the eye for treating macular degeneration, bevacizumab can 

alter the viability of retinal pigment endothelial cells (Spitzer et al., 2006).  Using recombinant 

VEGFxxxb variants as therapeutic molecules to reduce pathological angiogenesis is an 

interesting concept because it inhibits angiogenesis while being cytoprotective for retinal 

pigment endothelial cells, even used at very high concentrations (Bates and Harper, 2005; 

Harper and Bates, 2008). The most promising effects were observed in in vivo models 

mimicking eyes diseases such macular degeneration and retinopathy of prematurity (ROP). 

In a choroidal neovascularization model (CNV), VEGF165b limits the excess of abnormal 

blood vessels induced by laser exposure (Hua et al., 2010). Similarly, a benefit of VEGF121b 

and VEGF165b treatment on the neovascularization has been reported in several model of 

oxygen deprivation (Konopatskaya et al., 2006; Magnussen et al., 2010; Rennel et al., 

2009b).  
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VEGF165b has however its own disadvantages, such as a short half-life in vivo (Rennel et al., 

2008). This could be improved however by increasing its resistance to degradation by 

endogenous proteases. An alternative would be to induce its synthesis in vivo by the host 

machinery by favouring its expression at the expense of the VEGFxxxa isoforms, a 

therapeutic goal that could be achieved by regulating the alternative splicing of the VEGF 

pre-mRNA (Oltean et al., 2012a). For instance, SRPIN340, an antagonist of SRPK1, 

improves symptoms in a rat model of ROP (Nowak et al., 2010) and knocking down SRPK1 

in colorectal tumor cell lines decreases their growth (Amin et al., 2011). 

IV-10 Other  variants 

VEGF148 results from the skipping of E6 and of a sequence encompassing E7b to the 

beginning of E8a, which further changes the reading frame of the 3’-end of the mRNA and 

leads to a novel carboxy-terminal amino acid sequence (Harper and Bates, 2008; Whittle et 

al., 1999; Zygalaki et al., 2005). Alternative start codons upstream the canonical ATG codon 

can also be used, giving rise to isoforms longer than classical VEGF (Tee and Jaffe, 2001). 

However they do not display activity and their relative importance is still questionable. 

Some artificial variants were also created to better understand the role of E6b and E8a as, 

for example, VEGF138 (E1-E5; E6b; E8a), VEGF182: E1-E5; E6b; E7; E8a) or VEGF159 (E1-

E5; E7) (Cebe Suarez et al., 2006; Houck et al., 1991; Lange et al., 2003).  

 

V- Role of the domains encoded by the exons of VEGF 

Because of the very active and dynamic mechanism of alternative splicing affecting the 

VEGF-A pre-mRNA, differences between the VEGF variants directly depends on the 

presence in the mRNA of specific exon(s) or part of.  For this reason, protein domains are 

usually described in direct relationship with their exonic origin.  Their specific functions are 

briefly summarized here. 

Exons 1 and 2 

The two first exons code for the ATG start codon and for the 26 hydrophobic amino acids 

sequence form the signal peptide (Houck et al., 1992; Tischer et al., 1991). This sequence is 

therefore cleaved during the secretion process and absent from the mature forms.  
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Exon 3  

The binding site for VEGF-R1 is encoded by E3, with a special importance of three amino 

acids: Asp63, Glu64 and Glu67 (Keyt et al., 1996b). Two Cys residues (Cys51 and Cys60) 

required for the formation of functional VEGF dimers are also part of the E3-derived 

sequence (Harper and Bates, 2008; Muller et al., 1997). 

Exon 4  

The E4-derived sequence contains the binding domain for VEGF-R2, with Arg82, Lys84 and 

His86 playing a critical role (Keyt et al., 1996b), and the only glycosylation site (Asn75) 

present in VEGF-A molecules (Claffey et al., 1995; Neufeld et al., 1994). 

Exon 5 

The E5-encoded domain contains the main site of cleavage by plasmin (between Arg110 and 

Ala111) (Keyt et al., 1996a; Lauer et al., 2002). The amino-terminal peptide resulting from the 

digestion possesses 110 amino acids, is still dimerized (Houck et al., 1992) and able to bind 

to VEGF-R1 and VEGF-R2 (Plouet et al., 1997). It is still active but much less than the intact 

VEGF165a (Mineur et al., 2007).  This domain contains also cleavage sites for MMPs (Lee et 

al., 2005). For instance in human, MMP3 cleaves VEGF165a into VEGF114 (between Glu114 

and Asn115). This cleaved form triggers vascular dilatation while a mutated MMPs-resistant 

VEGF165a generates anarchic hyper-branching. This illustrate the importance of taking into 

consideration the protease micro-environment when studying the effect and properties of 

VEGF isoforms (Coussens and Werb, 2002). 

Exon 6a 

The E6a-derived sequence plays a main role in binding to heparin and proteoglycans 

because of the presence of 12 basic amino acids (Tischer et al., 1991). This domain was 

also reported to have affinity for NRP1 (Herve et al., 2008; Jia et al., 2001) and NRP2 

(Gluzman-Poltorak et al., 2000). It further contains a cleavage site by uPA (urokinase-type 

Plasminogen Activator) corresponding to its carboxy-terminal sequence (Tyr-Lys-Ser-Trp-

Ser-Val), absent in VEGF183 (Jingjing et al., 1999).  

Exon 6b 

VEGF162 (E1-5 ; E6a ; E6b ; E8a) possesses significantly less affinity for ECM than VEGF145 

(E1-5 ; E6a ; E8a) but more than the artificial recombinant  VEGF138 (E1-5 ; E6b ; E8a) 

(Lange et al., 2003). This suggests that the E6b-derived sequence has no affinity for ECM 

components and is even able to limit the affinity of the E6a domain for matrix components. 
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Exon 7 

The E7 domain possesses 3 accessory sites of cleavage by plasmin (Arg123/Arg124, 

Lys125/His126 and Lys147/Ala148) (Lauer et al., 2002) and two additional cleavage sites by 

MMPs (Ser121/Gln122 and Lys136/Cys137) (Lee et al., 2005). An affinity for heparin (Krilleke et 

al., 2007) and VEGF-R1 (Allain et al., 2012) has been reported. It contains also the first 

identified binding site for NRP1 (Soker et al., 1997). 

Exon 8a 

The CDKPRR sequence derived from E8a is currently considered as the main binding site to 

NRP1 by some authors (Pellet-Many et al., 2008) as suggested by the use of different 

synthetic peptides (Allain et al., 2012). 

Exon 8b  

Substitution of the CDKPRR sequence (E8a) by the SLTRKD sequence (E8b) strongly 

modifies the biological properties of VEGF-A variants (Bates et al., 2002; Catena et al., 

2010) by mechanisms that would involve modifications of the 3D-structure of the entire 

molecule and alteration of pockets formed by positively charged amino acids.  

 

VI- VEGF-receptors and co-receptors 

As already briefly mentioned, the regulation of cell phenotype by VEGF-A variants involves 2 

transmembrane tyrosine kinase receptors and several co-receptors in charge of modulating 

their availability and presentation to the receptors.  

VI-1 Vascular Endothelial Growth Factor Receptor 1 

The Vascular Endothelial Growth Factor Receptor 1 (VEGF-R1, initially described as FLT-1 

or Fms-Like Tyrosin Kinase-1) was the first described VEGF receptor. It was identified as an 

endothelial cell surface protein able to complex with VEGF and possessing similarities with 

the PDGF receptor (Plouet and Moukadiri, 1990a; Seetharam et al., 1995). Further 

characterizations showed that VEGFR-1 is a transmembrane receptor containing an 

extracellular region (7 IgG-like domains), a transmembrane sequence and an intracellular 

tyrosine kinase domain (Shibuya, 1995). Soluble and truncated versions also exist and are 

referred to as sVEGF-R1.  They are produced both by alternative splicing of the pre-mRNA 

and by proteolytic processing (Cai et al., 2006; Shibuya, 2001). They play an anti-angiogenic 

role by sequestrating VEGF-A in the extracellular space, which prevents its binding on 
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transmembrane receptors present at the cell surface. Like the full-size VEGF-R1, sVEGF-R1 

can also act as inhibitor by forming non-functional heterodimer with VEGF-R2 (Cudmore et 

al., 2012; Kendall and Thomas, 1993; Kendall et al., 1994).  

VEGF-R1 binds with high affinity (15 pM) to VEGF-A variants through the IgG loop 2 (Davis-

Smyth et al., 1996; Tanaka et al., 1997). The initial binding of VEGF-A on a single VEGF-R1 

molecule induces the recruitment of a second VEGF-R1 to form an active dimer. This 

induces conformational changes allowing trans-phosphorylation of specific tyrosine residues 

and activation of downstream signalling pathways (Lemmon and Schlessinger, 2010).  

However, despite the presence of several potential tyrosine phosphorylation sites (Ito et al., 

1998), VEGF-R1 is only slightly phosphorylated in endothelial cells upon VEGF-A exposure 

(de Vries et al., 1992; Meyer et al., 2006). VEGF-R1 is therefore considered as a decoy 

receptor in charge of repressing excessive angiogenesis. This is illustrated in vivo in mouse 

models.  VEGF-R1-/- embryos die in utero, due to hyperproliferation of endothelial cells and 

severe disorganisation and dysfunction of the vascular system (Fong et al., 1995) while the 

deletion of its tyrosine kinase domain has no effect on angiogenesis (Hiratsuka et al., 1998).  

In the same context, it has been postulated that preventing interactions between VEGF-A 

and VEGF-R1 would favour the binding to VEGF-R2 and stimulate angiogenesis (Ho et al., 

2012).  This could be achieved by PlGF as this VEGF family member binds exclusively and 

with very high affinity to VEGF-R1 therefore competing with VEGF-A for VEGF-R1, and 

increasing the amount of VEGF-A available for VEGF-R2 (Park et al., 1994).  

Beside the control of angiogenesis, VEGF-R1 plays also a role in the inflammatory 

response, as shown in cancer, by participating to the recruitment of bone marrow-derived 

monocytes (Hiratsuka et al., 2001) and macrophage chemotaxis through interactions with 

PlGF (Clauss et al., 1996; Fischer et al., 2008) but also with VEGF-A isoforms (Barleon et 

al., 1996; Hiratsuka et al., 1998; Mineur et al., 2007). 

In vivo, VEGF-R1 expressed at the surface of macrophages increases their recruitment to 

wound sites (Lauer et al., 2000) and favours the healing process while sVEGF-R1 seems to 

delay tissue repair likely by inhibiting inflammatory cells chemotaxis and angiogenesis 

(Eming et al., 2004). 

VI-2 Vascular Endothelial Growth Factor Receptor 2 

VEGF-R2, initially identified as KDR (Kinase-insert Domain Receptor) or Flk-1 (Foetal liver 

kinase-1), is a 210-230 kD glycoprotein with similarities to VEGF-R1 (Koch et al., 2011). It is 

the main receptor of VEGF in the regulation of angiogenesis (Gille et al., 2001; Terman et 

al., 1992) as demonstrated by using mutated VEGF variants.  An absence of binding to 
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VEGF-R1 does not affect the pro-angiogenic properties of the mutated VEGF. By contrast, 

mutations preventing interactions with VEGF-R2 totally abolish the VEGF angiogenic activity 

(Keyt et al., 1996b). The VEGF-A-VEGF-R2 signalling is central to the regulation of 

endothelial cell differentiation, proliferation and migration, but also to blood vessel 

homeostasis and functions (formation, fenestration, maintenance (survival), permeability...) 

(Fig 13) (Ferrara et al., 2003). The critical function of VEGF-R2 was confirmed in vivo since 

VEGF-R2-/- embryos die at 8.5 - 9.5 dpf, at a development time and with alterations 

resembling those of VEGF-A-/- embryos (Shalaby et al., 1995). 

 

Figure 13 : Effect of VEGF through VEGF-R2 on endothelial cells 

The effects of VEGF-A on endothelial cells is mainly mediated by VEGF-R2. VEGF-A binding on one 
molecule of VEGF-R2 induces the recruitment of a second VEGF-R2 monomer. Their dimerization is 
a key step for transphosphorylation of specific tyrosines residues and activation of downstream 
signalling pathways.  Integration of these signals is central for regulating endothelial cell phenotype 
and vessels homeostasis. From (Farhat et al., 2012) 

 

VEGF-R2 is mostly expressed in vascular endothelial cells although it can be found also in 

lymphatic endothelial cells, neurons, cancer cells and macrophages (Bellon et al., 2010; 

Dineen et al., 2008; Silva et al., 2011; Smith et al., 2010). Its expression is increased in 

activated endothelial cells and during sprouting angiogenesis, being more elevated in “tip 

cells” than in “stalk cells” (Gerhardt et al., 2003). Similarly to VEGF-R1, soluble versions, 

referred to as sVEGF-R2, have been identified (Ebos et al., 2004; Wen et al., 1998). Beside 
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potential sequestration of VEGF, these soluble variants seem to regulate mural cells 

migration and vessels coverage (Lorquet et al., 2010).  

Activation 

VEGF-R2 interacts with VEGF-A via its IgG-like domains 2 and 3.  The reported affinity 

between the two proteins is high (750 pM) although lower than with VEGF-R1 (15 pM) 

(Millauer et al., 1993; Terman et al., 1992). The initial interaction between VEGF and VEGF-

R2 triggers the recruitment of a second receptor molecule, which allows trans-

phosphorylation of several tyrosine residues within the dimer and activation of several 

downstream signalling pathways (Fig 13) (Stuttfeld and Ballmer-Hofer, 2009). Interestingly, 

the formation of VEGFR1-VEGFR2 heterodimers have been reported, which could represent 

another level of regulation by VEGF-R1 of the VEGF-R2 induced effects (Cudmore et al., 

2012; Huang et al., 2001). After activation, the VEGF-R2/VEGF complex is rapidly 

internalized by clathrin-mediated endocytosis, which does not hamper, and even perhaps 

increases, downstream signalling (Lampugnani et al., 2003). It can be then recycled to the 

plasma membrane (Zwang and Yarden, 2009) or degraded, depending on the type of 

endocytosis vesicles involved.  

All phosphorylated Tyr are not equivalent as they trigger different signalling cascades 

(Matsumoto et al., 2005; Takahashi et al., 2001). 

Tyr1175 

Tyrosine1175 in human VEGF-R2 (Tyr1173 in mouse) is probably the most important tyrosine 

for mediating the VEGF-A effects. Its replacement by a phenylalanine residue has been 

investigated in vivo.  VEGF-R2Phe1173 homozygous embryos die at 9.5 dpf because of defects 

similar to those observed in VEGF-R2-/-
 embryos (Sakurai et al., 2005). Tyr1175 

phosphorylation allows the binding of several intracellular molecules (PLC , SHB, Sck) that 

initiate intracellular signalling (Fig 14) (Cunningham et al., 1997; Holmqvist et al., 2004; 

Takahashi et al., 2001; Warner et al., 2000). For example, PLCγ (PhospoLipase C gamma) 

is responsible for the activation of PKC (protein kinase C) and, consequently, ERK1/2 

(Takahashi et al., 2001). This leads to endothelial cells proliferation. SHB (SH2-domain-

containing adaptor protein B) and Sck (Src homology and collagen homology related adaptor 

protein) induce FAK (Focal Adhesion Kinase) phosphorylation and contribute to cells 

attachment and migration (Abu-Ghazaleh et al., 2001; Holmqvist et al., 2003). Finally, Sck 

controls Ras activation and cell proliferation (Meadows et al., 2001).  
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Figure 14 : VEGF-R2 phosphorylation sites, their related signalling pathways and their effects 
on endothelial cell phenotype and angiogenesis.  

Upon interactions with VEGF-A, VEGF-R2 is phosphorylated on several tyrosine residues. Tyr
1175

 is 
the most important phosphorylation site as it activates, directly or indirectly, several key factors (PLCγ, 
ERK, FAK, p38...) that regulate endothelial cell proliferation and migration. Tyr

951
, Tyr

1054
, Tyr

1059
 and 

Tyr
1214

 are implicated in vessels migration. It is not completely clear which tyrosine residue(s) is (are) 
related to Akt pathway. Main tyrosine sites and main downstream molecules studied in the literature 
are circled. From (Koch et al., 2011) 

 

Tyr951 

Tyr951 is phosphorylated during angiogenesis, where it plays a role in migration and actin 

reorganization via activation of TSAd (T-cell-Specific Adapter molecule) (Matsumoto et al., 

2005). However, its mutation (into Phe) does not impair mice development showing that this 

phosphorylation event and its downstream cascades are not critical (Koch et al., 2011). 

Tyr1054-Tyr1059 

Tyr1054 and Tyr1059 are also crucial residues for VEGF-R2 activity because they are required 

for complete receptor internalization and activation (Dougher and Terman, 1999; Kendall et 

al., 1999). Indeed, Tyr1059 allows a maximal phosphorylation of Tyr1175 by a positive feedback 

involving the binding Src and the activation IQGAP1 pathway (IQ-motif-containing GTPase-
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activating protein 1). This finally regulates cell-cell contacts, proliferation and migration 

(Meyer et al., 2008; Yamaoka-Tojo et al., 2006). 

Tyr1214 

Tyr1214 (Tyr1212 in mouse), by recruiting the Nck adaptator molecule (non-catalytic region of 

tyrosine kinase adaptor protein 1) and the Fyn tyrosine kinase, plays a role in the activation 

of the p38 mitogen-activated protein kinase (MAPK) pathway (Lamalice et al., 2006). 

However, VEGF-R2Phe1212 homozygous mice are viable and fertile (Sakurai et al., 2005). By 

sharp contrast however, p38-/- mice embryos die at 10.5-11.5 dpf because of vascular 

abnormalities (Aouadi et al., 2006) and VEGF165a efficiently stimulates p38 phosphorylation 

in endothelial cell expressing only the VEGF-R2Phe1214 mutant (Kawamura et al., 2008a). 

These conflicting data most probably suggest that other phosphorylated tyrosine can also 

triggers the p38 pathway. 

Other regulatory pathways 

Although Pl3K (phosphatidylinositol 3-kinase) is a key factor for VEGF-A induced regulation, 

the mechanisms leading to its activation remain poorly understood (Koch et al., 2011). PI3K 

regulates endothelial cells migration and survival through Rac and Akt, respectively (Datta et 

al., 1999). Via eNOS, it regulates also vessels permeability, the first identified role of VEGF-

A, which is an essential process for normal tissue homeostasis and during the first steps of 

angiogenesis (Bates and Harper, 2002).  Increased permeability can result from the 

formation of transendothelial pores and/or from the destabilization of the junctions formed 

between endothelial cells (Garrido-Urbani et al., 2008). Other cascades involving Src and 

YES can also regulate cell-cell adhesions through the β-catenin/VE-cadherin pathway 

(Roura et al., 1999; Wallez and Huber, 2008).  

 

VI-3 Neuropilin 1 

Neuropilin 1 (NRP1) is a 130 kD transmembrane protein that was initially identified in neural 

central system as a receptor for semaphorin 3A/Collapsin1 (Sema3A), a secreted 

polypeptide playing a role in nerve guidance during development (He and Tessier-Lavigne, 

1997; Kolodkin et al., 1997). It can also bind VEGF-A variants at the level of two coagulation 

factor V/VIII homology domains, referred to as B1 (b1) and B2 (b2), present in the large 

extracellular region (Fig 15) (Appleton et al., 2007; Pellet-Many et al., 2008). In the recent 

years, many ligands for NRP1 have been identified (Bagri et al., 2009).  The molecule 

contains also a transmembrane and a small cytoplasmic domain containing a PDZ-binding 
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motif (SEA domain) but lacking intrinsic catalytic function (Fujisawa et al., 1997). Association 

between this SEA intracytoplasmic motif and an adaptor molecule named synectin (or GIPC) 

would allow signalling from NRP1 to intracellular pathways of regulation (Cai and Reed, 

1999). Phosphorylations on serine and threonine residues have also been suggested 

(Shintani et al., 2009) and could participate in the NRP1-induced regulation although it is 

considered that the main functions of NRP1 rely on its activity as a co-receptor. Soluble 

variants resulting from AS mechanisms have also been identified and would act as anti-

angiogenic factors (Cackowski et al., 2004). It can be also post-translationally modified, in a 

cell type specific manner, by the addition on Ser612 of either a chondroitin sulfate or a 

heparan sulphate chain, which can modify its affinity for ligand (Pellet-Many et al., 2008; 

Shintani et al., 2006).  

In the specific field of angiogenesis, it has been shown that NRP1 is expressed at the 

endothelial cells surface, especially in arteries (Herzog et al., 2001; Soker et al., 1998), and 

in pericytes (Shintani et al., 2006). It is also upregulated in many tumours and transformed 

cell lines (Bielenberg et al., 2006; Frankel et al., 2008; Jubb et al., 2012b; Klagsbrun et al., 

2002), especially in cells with a high metastatic potential (Bachelder et al., 2001; Latil et al., 

2000). NRP1 is also present at the surface of immune cells such as naive T-cell and 

dendritic cells where it plays a role in the regulation of the immune response (Prud'homme 

and Glinka, 2012; Tordjman et al., 2002). 

 

 

Figure 15 : Schematic structure of Neuropilin 1 

Neuropilin 1 is a transmembrane co-receptor containing different domains. An extracellular region 
contains two CUB domains (a1, a2), two coagulation factor V/VIII homology domains (FV/VIII; b1, b2) 
and a MAM domain, implicated in oligomerization (c). Domains a1, a2 and b1 are involved in 
Semaphorin binding while b1 and b2 are involved in VEGF binding. In the extracellular portion, a 
glycosylation site (CS GAG: Chondroitin Sulfate Glygosaminoglycans) located on Ser

612 
domain is 

identified. The co-receptor domain is also composed of a transmembrane sequence (TM) and a short 
cytoplasmic regions (cyt) containing the PDZ binding domain (BD), critical for NRP1 function and 
formed by the SEA sequence. CUB: Complement protein subcomponents Clr/Cls, Urchin embryonic 
growth factor and Bone morphogenic protein domain, MAM: Meprin/A5-protein/PTPmu domain. From 
(Pellet-Many et al., 2008) 
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NRP1 is crucial during development, as illustrated in NRP1-/- embryos that die at 12.5-13.5 

dpf largely because of vascular problems (Kawasaki et al., 1999). Similar alterations were 

observed in mouse embryos where NRP1 expression was repressed in endothelial cells only 

and in the zebrafish model by the use of NRP1-specific morpholinos, demonstrating the 

critical importance of NRP1 for the development of the cardiovascular system (Gu et al., 

2003; Lee et al., 2002).   

NRP1-NRP2 double KO mice die at 8.5 dpf with even more severe vascular defects 

(Takashima et al., 2002) while overexpressing NRP1 triggers an excess of capillary growth 

and anarchic sprouting leading to mortality in utero (Kitsukawa et al., 1995). 

VI-3-1 NRP1 in angiogenesis and cancer 

As already briefly mentioned, NRP1 could potentially have a direct signalling activity upon 

ligand binding. It is considered however that its role as a co-receptor is probably the most 

significant, especially in endothelial cells.  

Co-receptor activity 

Initially NRP1 was considered only as a co-receptor “presenting” VEGF variants to VEGF-

R2, as demonstrated for VEGF165a and VEGF121a for example (Pan et al., 2007b; Shraga-

Heled et al., 2007). However, NRP1 is also central to the formation of multi-molecular 

complexes containing specific VEGF variants (mostly VEGF165a and VEGF189a), VEGF-R2 

and sometimes heparin and HSPG (Fig 16). These associations strengthen the interaction 

between VEGF and VEGF-R2, which increases the activation of signalling pathways  

regulating endothelial cell phenotype (Becker et al., 2005; Oh et al., 2002; Soker et al., 2002; 

Whitaker et al., 2001). As compared to VEGF121a, an isoform unable to initiate the formation 

of such complexes, VEGF165a induces a stronger phosphorylation of p38 in endothelial cells, 

an increased branching of vessels and a most efficient recruitment of pericytes (Cebe-

Suarez et al., 2008; Grunstein et al., 2000; Kawamura et al., 2008a). These properties are 

inhibited by a blocking antibody for NRP1, further confirming its crucial role in modulating 

angiogenesis (Pan et al., 2007a). In another example, NRP1 downregulation during wound 

healing delays the repair process by reducing blood vessel formation (Gu et al., 2003; 

Matthies et al., 2002). Surprisingly, however it seems that VEGF-induced vascular 

permeability is not influenced by NRP1 (Pan et al., 2007a). 

Expression of NRP1 in “tip cells” has been described as a key element controlling sprouting, 

by regulating filopodia formation and guiding the direction of migration (Gerhardt et al., 

2004). It has also been shown that VEGF165a can induce the formation of complexes 
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involving VEGF-R2 and NRP1 molecules expressed on the surface of adjacent cells 

(VSMC), a process probably required in “tip cell” guidance (Cebe-Suarez et al., 2008; 

Gerhardt et al., 2003). 

 

Figure 16 : VEGFR2-VEGF-NRP1-HSPG tetrameric complex 

VEGF165a or VEGF189a (green) can form a complex with VEGF-R2 (red), NRP1 (orange) and HSPG 
(brown). The E4-encoded domain of VEGF is required for binding to VEGF-R2.  The E6, E7 and E8 
domains are involved in binding to NRP1 while interactions with HSPG/heparin are mediated by the 
E6 and E7-derived basic amino acids. This complex strengthens the signalling downstream of VEGF-
R2 phosphorylation. Other functions or properties of NRP1 rely on its intracytoplasmic domain 
through interactions between the SEA sequence and synectin, which would participate in the control 
of internalization and degradation or recycling of VEGF-R2. From (Koch et al., 2011) 

 

Besides influencing signalling, NRP1 affects also VEGF-R2 internalization, trafficking and 

degradation (Ballmer-Hofer et al., 2011). When cells are treated with VEGF165a, complexes 

between NRP1 and VEGF-R2 can be recycled to the plasma membrane through Rab11 

vesicles.  By contrast, VEGF165b, which does not bind NRP1, induces internalization in Rab7 

vesicles leading to the receptor degradation (Ballmer-Hofer et al., 2011). The SEA domain, 

by interacting with synectin, plays a critical role in the recycling process (Berger and Ballmer-

Hofer, 2011). It has been also suggested that these complexes regulations involving NRP1, 

VEGF and VEGF-R2 probably operate in other cell types such as pericytes and glioma cells 
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(Hamerlik et al., 2012; Liu et al., 2005).  They are also possibly involved in tube formation by 

renal epithelial cells (Karihaloo et al., 2005). 

Direct signalling activity 

It was suggested that NRP1-VEGF binding, without any further interaction with VEGF-R2, 

could regulate endothelial cells attachment and migration, but not proliferation (Murga et al., 

2005; Wang et al., 2003). The SEA-carboxyterminal sequence and its interacting partner, 

synectin, are essential for these regulations as demonstrated in zebrafish where expression 

of NRP1 lacking the SEA-motif or, alternatively, the knockdown of synectin, alter blood 

vessels formation (Wang et al., 2006). p38 is the downstream signalling pathway involved in 

this process (Ballmer-Hofer et al., 2011; Evans et al., 2011).  It has been suggested also that 

NRP1 could participate in cell adhesion independently of binding to any growth factor (Murga 

et al., 2005; Shimizu et al., 2000).  

NRP1 expression in cancer correlates with poor prognosis, advanced disease state and 

invasiveness (Hansel et al., 2004; Kawakami et al., 2002; Wang et al., 2012). In absence of 

VEGF-R2 expression by cancer cells, it was shown that VEGF-NRP1 interactions can 

regulate however their adhesion, chemotaxis and proliferation in vitro and in vivo (Bachelder 

et al., 2001; Herve et al., 2008; Yaqoob et al., 2012). In fibrosarcoma, hypoxia drives NRP1 

expression, which stimulates tumour growth through induction of vascular mimicry (Misra et 

al., 2012).  Interestingly, NRP1, in its chondroitin sulphate modified form, could stimulate 

invasion of human glioblastoma through downstream activation of the p130cas pathway 

(Frankel et al., 2008).  

VI-3-2 Potential use in therapy 

Different strategies for inhibiting the VEGF-NRP1 interactions have been tested and 

evaluated for their efficiency in reducing tumour growth, either directly or indirectly by 

altering angiogenesis. 

 Blocking NRP1 antibodies inhibit angiogenesis in vivo and synergizes with an anti-VEGF 

antibody for reducing tumour growth and blood vessels organization and maturation, 

particularly by inhibiting pericytes recruitment (Pan et al., 2007a). 

 Soluble forms of NRP1 could be used as VEGF trap. Their effects are either direct, by 

inhibiting cancer cells migration for example (Cackowski et al., 2004; Gagnon et al., 

2000), or indirect, by repressing intratumoural angiogenesis (Yamada et al., 2001). 

 VEGF mimetic peptides have been also used for the same purpose. A synthetic peptide 

analogous to the E8a-encoded domain reduces the growth of tumours formed by MDA-



General Introduction 

 

55 
 

MB231 cells by controlling blood vessel density (Starzec et al., 2006). Other peptides 

were also evaluated such as those mimetic of the E6a- (Jia et al., 2001) or E7-derived 

sequences (Soker et al., 1997), or Tufstin (NH2-Thr-Lys-Pro-Arg-COOH), a peptide with 

affinity for the b1 domain of NRP1 implicated in VEGF binding (Vander Kooi et al., 2007; 

von Wronski et al., 2006).   

As many aggressive tumour cells are characterized by high levels of NRP1 expression, such 

peptides conjugated to cytotoxic drugs could be used for targeted therapy, although potential 

side effects on endothelial cells have to be carefully considered and evaluated (Prud'homme 

and Glinka, 2012). Promising data have also been observed with peptides coupled to a 

photosensitizer molecule (Benachour et al., 2012; Tirand et al., 2006). 

 

VI-4 Neuropilin 2 

NRP2 displays many similarities with NRP1, such as a 44% sequence identity, high 

expression levels in the nervous system (Chen et al., 1997; Fujisawa et al., 1997; Kolodkin 

et al., 1997) and implication, as a co-receptor, in the regulation of angiogenesis (Gluzman-

Poltorak et al., 2000; Sulpice et al., 2008). Additionally, NRP2 possesses also a small 

cytoplasmic domain lacking intrinsic catalytic function (Fujisawa et al., 1997), can be 

produced as soluble factor (Rossignol et al., 2000) and is upregulated in cancer and is 

associated with aggressiveness and poor outcomes (Chen et al., 1997; Fakhari et al., 2002; 

Goel et al., 2012; Handa et al., 2000; Jubb et al., 2012a). It interacts with VEGF-R1 

(Gluzman-Poltorak et al., 2001) and induces the formation of NRP2-VEGF165a-VEGF-R2 

complexes. Their effects on endothelial cells survival and migration have been reported 

(Favier et al., 2006).   

NRP2 possesses however specific properties and function. It is mainly expressed in veins 

and lymphatics (Herzog et al., 2001; Yuan et al., 2002). Nrp2-/- mice are viable with normal 

veins and arteries but display a reduced network of small lymphatic vessels and capillaries 

(Yuan et al., 2002). A reduction of VEGF-induced neo-angiogenesis in NRP2-/- mice has also 

been reported (Shen et al., 2004). Its b domains can interact with PlGF and VEGF-A variants 

(Geretti et al., 2007; Gluzman-Poltorak et al., 2000), but with a lower affinity than the 

corresponding domain of NRP1 because of the absence of critical acidic residues. NRP2 

forms also complexes with VEGF-C or VEGF-D and VEGF-R3, which explains its role in 

lymphangiogenesis (Karpanen et al., 2006). As for NRP1, treatments with NRP2 antibodies 

or soluble NRP2 reduce lymphangiogenesis, tumour growth and metastasis (Caunt et al., 

2008; Geretti et al., 2010). 
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VI-5 Heparan Sulfate Proteoglycans and heparin 

VI-5-1 Structure 

The basic proteoglycan unit consists of a "core protein" with one or more glycosaminoglycan 

(GAG) chain(s) covalently attached on a Ser residue in an appropriate consensus sequence. 

Proteoglycans can be categorized depending upon the nature of their GAG chains (heparan, 

chondroitin, dermatan or keratan sulfate), which may be cell type specific. Heparan sulfate is 

a glycosaminoglycan structurally closely related to heparin. It consists of a variable number 

of repeating “glucuronic acid - glucosamine” disaccharide units that can be further modified 

and partially sulfated. It is mostly found at the cell surface and in the ECM (Esko and 

Selleck, 2002). 

VI-5-2 Role in angiogenesis and cancer 

VEGF was initially identified as a heparin and heparin sulphate proteoglycan (HSPG)-

binding factor (Ferrara and Henzel, 1989; Senger et al., 1983). Later it was demonstrated 

that VEGF binding to heparin (Cebe Suarez et al., 2006; Houck et al., 1992) and HSPG 

(Kawamura et al., 2008b) was isoform-specific. These differences in affinities for HSPG are 

responsible for the variable capacity of the VEGF-A isoforms to be immobilized in the ECM. 

As an example, VEGF189a forms stables complexes with heparin and is efficiently trapped 

and stored in the ECM and at the cell surface (Park et al., 1993) while VEGF121a does not 

interact with heparin and is therefore more “diffusible”. VEGF165a displays intermediate 

properties (Houck et al., 1992). The simultaneous expression of the three isoforms by 

tumour cells generates a VEGF gradient that stimulates the formation of a well-organized 

vascular network (Grunstein et al., 2000). However, a more recent study demonstrates that 

the binding to heparin is not essential for the localization of the blood vessels in response to 

VEGF isoforms (Springer et al., 2007).  

HSPG have affinity for VEGF-R1, VEGF-R2 and NRP1, but not NRP2 (Park and Lee, 1999; 

Vander Kooi et al., 2007; Xu et al., 2011a). It was initially reported that HSPG increased the 

binding of VEGF to its receptors and co-receptor NRP1 (Dougher et al., 1997; Fuh et al., 

2000; Gitay-Goren et al., 1992; Tessler et al., 1994), but this was not confirmed in another 

study for VEGF-R1 and VEGF-R2 (Keyt et al., 1996b). As previously mentioned, HSPG and 

heparin potentiate VEGF signalling by facilitating the formation of VEGFR2-VEGF-NRP1 

complexes at the surface of endothelial cells (Ashikari-Hada et al., 2005; Kawamura et al., 

2008a).  

http://en.wikipedia.org/wiki/Protein
http://en.wikipedia.org/wiki/Glycosaminoglycan
http://en.wikipedia.org/wiki/Covalent_bond
http://en.wikipedia.org/wiki/Glycosaminoglycan
http://en.wikipedia.org/wiki/Heparin
http://en.wikipedia.org/wiki/Disaccharide
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VI-6 Other  receptors for VEGF 

Some VEGF variants, especially the longer variants with affinities for HSPG, present also 

affinity for other receptors such as integrins, which are transmembrane heterodimers 

regulating the interactions of cell with the ECM and, therefore, cell adhesion, migration and 

survival (Chen et al., 2010; Herve et al., 2008; Hutchings et al., 2003). For instance, VEGF 

can form complex with αvβ3, which regulates p38 and FAK pathways activation and affects 

cell adhesion and migration (Borges et al., 2000; Mahabeleshwar et al., 2006).   

 

VII- Benefits and pitfalls of inhibiting angiogenesis in clinic  

The concept of inhibiting angiogenesis for starving tumour and fighting cancer is an old 

concept (Folkman, 1972). A proof-of-concept study using a blocking antibody targeting 

VEGF-A was published two decades ago (Kim et al., 1993) and confirmed later in different 

experimental models (Borgstrom et al., 1998; Borgstrom et al., 1996; Mesiano et al., 1998; 

Warren et al., 1995).  

It rapidly became clear however that using VEGF inhibitors as a monotherapy was efficient 

only transiently and had only very limited effect on long term outcome. By contrast, 

treatments combining “classical” chemotherapeutic agents and anti-VEGF molecules 

currently seem more promising (Ferrara et al., 2007; Garcia et al., 2008; Micha et al., 2007). 

A concept of vasculature “normalization” explains this synergistic therapeutic effect (Jain, 

2005). In tumours, there is an excessive expression of pro-angiogenic molecules, which 

alters the balance between pro- and anti-angiogenic factors (Fig 17).  As a result, the 

vasculature is poorly organized and vessels remain immature, tortuous and permeable. This 

has several consequences. The interstitial fluid pressure in the tumour is higher than in the 

other tissues, which strongly limits the access of chemotherapeutic drugs in the tumour 

mass.  This causes also local hypoxia, which further stimulates pro-angiogenic pathways 

and contributes to keep abnormal vasculature in the tumour (Fig 17B).  

Anti-angiogenic treatments, by restoring a correct balance, tend to destroy preferentially 

immature vessels and to normalize the vasculature, which reduces intra-tumoural pressure 

and hypoxia (Fig 17C) and facilitates the delivery of cytotoxic drugs to cancer cells (Jain, 

2001). The use of anti-angiogenic molecules requires however a careful dosage because, 

when use in excess, they can also lead to the destabilization of mature and normal vessels 

(Fig 17D, upper panel) (Jain and Carmeliet, 2012). In the best case, it may result in tumour 

regression but usually associated with a reduction of the efficacy of the chemotherapy. In the 
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worst case, the induced hypoxia could favour metastases and/or stimulate cancer cells to 

activate alternative pathways for improving their resistance to the treatment. Some of these 

anti-angiogenic molecules are listed in Table 1 and will be briefly described. They can either 

target directly VEGF or VEGF-receptors and co-receptors. These compounds can also be 

used with some success for curing eye diseases due to excessive angiogenesis. 

 

Figure 17 : Blood vessels organization according to the balance between pro- and anti-
angiogenic molecules 

Normal vasculature homeostasis results from an optimal balance between pro- and anti-angiogenic 
factors (A). In tumours, blood vessels network is anarchic because of a large excess of pro-
angiogenic molecules (B). Restoring a correct balance with optimal dosage of anti-VEGF drugs 
normalizes the blood vessel network (C). Too high concentrations of anti-angiogenic factors strongly 
affect the vasculature (D, upper panel) and stopping the therapy leads to a rapid return to abnormal 
vessel organization (D, lower panel). From (Jain and Carmeliet, 2012) 

 

VII-1 Bevacizumab (Avastin ®) 

Bevacizumab (Avastin®) is a humanized monoclonal IgG1 antibody raised against the E2-

E4 encoded sequence of VEGF-A (Presta et al., 1997). Therefore it recognizes both the pro- 

and anti-angiogenic isoforms as well as the aminoterminal part of cleaved molecules 

(Gutierrez et al., 2008; Muller et al., 1998; Varey et al., 2008). Bevacizumab is currently the 

most widely used anti-angiogenic molecule (Jain and Carmeliet, 2012). It can be used as a 

single agent in second line treatment of glioblastoma but its association with cytotoxic 

molecules has been approved by the FDA (Food and Drugs Administration of the USA) for 

treating several cancers, such as advanced colorectal cancer (Escudier et al., 2007; Ferrara 

et al., 2005; Hurwitz et al., 2004; Rini et al., 2008). As another example, the combination of 

Avastin and docetaxel was evaluated in metastatic breast cancer. This combined treatment 

was reported to increase the survival of patients up to 6.0 months as compared to docetaxel 

alone (Ramaswamy et al., 2006). This synergistic effect seems however to be specific of 
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some cancer types as the benefit is modest or absent in advanced and metastatic pancreatic 

cancer (Hayes, 2011; Kindler et al., 2010; Van Cutsem et al., 2009). Furthermore, the initial 

observation of the positive effect of Avastin for the treatment of metastatic breast cancer has 

been recently contested (Hayes, 2011) 

 

VII-2 Ranitizumab (Lucentis®) 

Ranitizumab, a humanized Fab fragment derived from bevacizumab, is also able to 

recognize all the VEGF variants (Ferrara et al., 2006). In addition to be much smaller than 

the parent molecule, it has been designed to have a stronger affinity to VEGF. Its efficiency 

has been proved in the context of eyes diseases and it is currently the gold reference for the 

treatment of AMD. 

 

VII-3 VEGF trap (Aflibercept®)  

This VEGF decoy is formed by a fusion of extra-cellular domain 2 of VEGF-R1 and domain 3 

of VEGF-R2 thanks to the Fc domain of IgG1 (Holash et al., 2002; Teng et al., 2010). It is 

currently approved as a therapy for AMD and it displays efficacy when combined with 

chemotherapeutic agents in improving survival of patients with metastatic colorectal cancer 

(Van Cutsem et al., 2012) 

 

Table 1: Non-exhaustive list of VEGF and VEGF receptors inhibitors  

Name Brand name Type Application 

Bevacizumab Avastin Anti-VEGF Humanized antibody Cancer 

Ranitizumab Lucentis 
Anti-VEGF Humanized antibody 

fragment 
Ocular neo-angiogenic diseases 

VEGF-trap Aflibercept 
Extracellular domains of VEGF-R1 and -

R2 fused by Fc 

Ocular neo-angiogenic diseases, 

Cancer 

Sunitinib Sutent Multi-target RTK inhibitor Cancer 

Sorafenib Nexavar 
Multi-target RTK and Raf pathway 

inhibitor 
Cancer 

Pazopanib Votrient Multi-target RTK inhibitor Cancer 

Axitinib Inlyta Multi-target RTK inhibitor Cancer 

Pegaptanib Macugen Aptamer anti-VEGF165a Ocular neo-angiogenic diseases 

MNRP1685A  NRP1 antibody Cancer 
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VII-4  Pegaptanib (Macugen®) 

Pegaptanib is an aptamer with a specific affinity for VEGF165a. When injected in the eye it 

represses pathological neovascularisation (Ng et al., 2006). As opposed to bevacizumab 

(Varey et al., 2008), it has the advantage of not recognizing VEGF165b, the variant that 

permits the survival of endothelial cells but not their proliferation (Magnussen et al., 2010). It 

is proposed as an alternative to bevacizumab or ranitizumab for the treatment of eyes 

diseases (Adamis et al., 2006). 

VII-5 VEGF-R2 TKI  

Several VEGF-R2 tyrosine kinase inhibitors (VEGF-R2 TKI) are currently in development: 

Sunitinib (Sutent®), Sorafenib (Nexavar®), Pazopanib (Votrient®) or Axitinib (Inlyta®). All of 

them target VEGF-R2, but some of them can inhibit other tyrosine kinase receptors. They 

have been proved to display efficacy in cancer therapy by preventing the intracellular 

phosphorylation of the VEGF-R2 (Escudier et al., 2009; Rini et al., 2009; Sternberg et al., 

2010). Amongst them, Sorafenib has the additional advantage to target also downstream 

signalling pathways (c-Raf, B-Raf) of the VEGF-R2 (Adnane et al., 2006). 

VII-6 Resistance and side effects 

The use of anti-angiogenic factors in cancer therapy has been so far disappointing for 

several reasons (Table 2) (Kerbel, 2012; Miller et al., 2005). Resistance to treatment has 

been reported many times. It could be related to the lack of sensitivity to VEGF of the mature 

vessels feeding the tumours (Fig 4) (Bergers et al., 2003; Sitohy et al., 2012). The activation 

of alternative pro-angiogenic pathways, such as the cascade triggered by c-Met, is another 

mechanism of resistance to current therapies (Casanovas et al., 2005; Huang et al., 2010; 

Shojaei et al., 2010; You et al., 2011). Another problem relates to dangerous side effects 

such as thrombo-embolism, hypertension and proteinuria (Kabbinavar et al., 2003; Launay-

Vacher and Deray, 2009; Mir et al., 2011). The absence of reliable biomarker that could 

allow an evaluation of the efficacy of anti-angiogenic drugs and their price, especially for 

Avastin®, are other features that prevent further development and use. Finally, any 

interruption in the treatment leads to a rapid reformation of the previous vasculature network 

because the remaining of dead vessels (channels, ECM including basement membrane, 

surviving pericytes...) serve as preferential scaffolds for neo-angiogenesis (Mancuso et al., 

2006). Other adverse effects such as an increase of metastasis have been observed after a 

short-term treatment with Sunitinib (Ebos et al., 2009).  
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Table 2 : Major Problems of Anti-angiogenic therapies 

Disappointing results Resistance to treatment, limited effect (if any) in Phase III studies 

Adverse side effects 
Re-growth of tumor after stopping treatment, hypertension, 

proteinuria 

Cost Excessive price (Avastin) 

No biomarker available Absence of control of the efficacy 

From Conference of X. Pivot, Fourth Congress of French Society of Angiogenesis 

 

VII-7 Endocan: a potential biomarker of the expression of VEGF by tumours 

The identification of biomarkers allowing the evaluation of the progression of 

neovascularisation in cancer and during anti-VEGF treatment is needed. Endocan, also 

referred to as ESM-1 (Endothelial cell-Specific Molecule 1), is a secreted proteoglycan 

composed of a 165 amino acids core protein covalently linked to one dermatan sulphate side 

chain (Bechard et al., 2001; Bechard et al., 2000). Its expression is induced by VEGF (Abid 

et al., 2006; Recchia et al., 2010; Rennel et al., 2007; Strasser et al., 2010) and in cancer, 

especially during the switch from dormant to fast-growing angiogenic tumours (Almog et al., 

2009). Increased endocan concentrations have been measured in serum of patients with 

lung and renal cancers, as compared to healthy subjects (Leroy et al., 2010; Scherpereel et 

al., 2003). All these observations suggest that circulating endocan could be a biomarker of 

neo-angiogenesis and tumour aggressiveness. 

 

VIII- Stimulation of angiogenesis for the treatment of ischemic diseases 

While cancers and many eyes diseases could be cured by anti-angiogenic therapies, several 

clinical conditions are directly or indirectly related to insufficient perfusion, either acute 

(stroke, heart infarction, tissues grafting) or chronic (angina, skin ulcers...). 

Wound healing delay 

During tissue repair, hypoxia, pro-inflammatory cytokines and growth factors trigger VEGF 

secretion by keratinocytes and infiltrating inflammatory cells (Detmar et al., 1995; Frank et 

al., 1995; Fukumura et al., 1998; Kishimoto et al., 2000). This leads to vascular permeability, 

local angiogenesis and to the recruitment of additional inflammatory cells and bone-marrow 

derived endothelial progenitor cells (Brown et al., 1992; Eming and Krieg, 2006; Galiano et 

al., 2004). Reduced concentrations of VEGF-A delay the healing process. This is illustrated 
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in a model of normal mice treated with a blocking VEGF antibody (Howdieshell et al., 2001) 

and in diabetic (db/db) mice where low levels of VEGF in the skin largely participate to the 

impaired tissue repair. Moreover, treating db/db mice with VEGF165a accelerates healing 

(Corral et al., 1999; Galiano et al., 2004; Romano Di Peppe et al., 2002; Roth et al., 2006). 

However, this effect is restricted to mice with a delay phenotype as animals overexpressing 

VEGF do not heal better than their wild-type controls (Hong et al., 2004). 

Based on these data it was suggested that VEGF could be used to accelerate the healing 

process of chronic ulcers that are frequent in diabetic patients and in patients with venous 

problems. The first experimental evaluations were however disappointing. Several 

hypotheses have been made to explain this absence of efficacy, such as bad access of 

VEGF to endothelial cells in the wound bed or degradation of VEGF by the proteases-rich 

environment (Keyt et al., 1996a; Lauer et al., 2000; Lauer et al., 2002). In this context, the 

use of variants that are more resistant to proteolysis and more “diffusible” such as VEGF111a 

could help solving these limitations (Lauer et al., 2002; Mineur et al., 2007).  
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Scientific context 

VEGF-A, a major regulator of angiogenesis, is involved in physio-pathological processes 

such as development, menstrual cycle, wound healing, cancer and several eyes diseases. 

Its expression is regulated at the transcriptional level by activation of its promoter but also by 

post-translational mechanisms, mainly in hypoxic conditions. Alternative splicing of the pre-

mRNA is also a potent regulator of VEGF-A activity as it induces the production of several 

VEGF variants possessing specific properties. While the role of the constant amino-terminal 

portion encoded by exons 1 to 4 is currently well defined, the functions of the alternative 

carboxy-terminal domains have to be deeply characterized in order to better understand why 

the different VEGF variants have very specific properties regarding the regulation of 

angiogenesis.  

 

 

Aims of the work 

This work, aiming at better defining the roles and potential cooperation of the domains 

encoded by the E5 to E8a/E8b terminal exons, can be divided in 4 different but related 

steps: 

 

 Production and purification of relevant VEGF variants 

 

 Characterization at a biochemical level by determining: 

- their affinity to VEGF receptors and co-receptors 

- their resistance to proteolysis. 

 

 Evaluation of their role on angiogenesis by measuring their effects 

- on various endothelial cell types in vitro 

- on tumoural angiogenesis in vivo. 

 

 Preliminary characterizations regarding potential clinical applications of our studies 

are also provided. 
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I- Cell culture and transfected cell lines 

HEK293 cells were cultured in DMEM (BioWhittaker, Walkersville, MD, USA) containing 10% 

FBS (Foetal Bovine Serum), penicillin (100 IU/ml) and streptomycin (100 IU/ml) except 

otherwise indicated. Hygromycin B (100 µg/ml, Roche, Basel, Switzerland) was added to the 

medium for selection of cells stably transfected with the various expression vectors. Human 

Umbilical Vascular Endothelial Cells (HUVECs) were cultured on a gelatin coat in M200 

medium (Cascade Biologic, Portland, OR, USA) supplemented with LSGS kit (Cascade 

Biologic) and penicillin. Porcine aortic endothelial cells (PAEC) were cultured in Ham’s F-12 

(Bio Whittaker) supplemented with 10% FBS, penicillin and fungizone (0.5 µg/ml). For cells 

overexpressing human VEGF-R1 (PAEC-R1), VEGF-R2 (PAEC-R2) or NRP1 (PAEC-NRP1) 

(Becker et al., 2005; Waltenberger et al., 1994), G418 (0.5 mg/ml) was used to maintain 

selection. In order to produce PAEC-R2 further expressing human NRP1, a full length NRP1 

cDNA was cloned into the pcDNA4/T0 vector (Invitrogen, Carlsbad, New-Mexico, USA) and 

the construct was transfected into PAEC-R2 using cationic lipids (GeneJuice Transfection 

Reagent, Novagen, UK). Cells were then selected in Ham’s F-12 containing Zeocin  

(Invitrogen, Belgium) at 150 µg/ml.        

For quantifying the secretion of endocan HUVEC were seeded in M200 supplemented with 

LSGS on a gelatin-coated 12 wells-plate. At 80% of confluence, cells were starved in M200 

containing 0.2% FBS for 4h before the addition of VEGF isoforms (at 1nM). Conditioned 

media were sampled after 24h and 48h. 

II- Chemicals and antibodies 

Human plasmin, Evans’ blue and formamide were obtained from Sigma-Aldrich (St-Louis, 

MO, USA). The following antibodies were used for Western blot: anti-ERK 1/2 (rabbit 

polyclonal, M-5670) and anti-phospho ERK 1/2 (mouse monoclonal, M-8159) were 

purchased from Sigma-Aldrich; anti-VEGF (rabbit polyclonal, SC-152) was purchased from 

Santa Cruz Biotechnology (Santa Cruz, CA, USA); anti-human VEGF-R2 (clone 55B11, 

rabbit); anti-phospho Tyr1175 of VEGF-R2 (rabbit), anti-Akt (rabbit) and anti-phosphoAkt 

(rabbit) were purchased from Cell Signalling Technology (Danvers, MA, USA). Goat anti-

Rabbit antibody coupled to peroxydase (Cell Signalling Technology) was used for rabbit 

antibodies. Other secondary antibodies were purchased from Dako (Glostrup, Denmark).  
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Mimetic peptides A7R (NH2-Ala-Thr-Trp-Leu-Pro-Pro-Arg-COOH) (Starzec et al., 2006) and 

R8R (NH2-Arg-Pro-Lys-Lys-Asp-Arg-Ala-Arg-COOH) were obtained from Polypeptide Group 

(Strasbourg, France).  

III- Cloning, production and purification of VEGF variants 

recombinant proteins 

Cloning of VEGF111a, VEGF121a and VEGF165a cDNAs and transfection of HEK293 cells 

were described elsewhere (Mineur et al., 2007). The coding sequence of VEGF111b, 

VEGF121b, VEGF155a, VEGF155b, VEGF165b, VEGF179a and VEGF179b cDNAs were 

chemically synthesized (Genscript, Piscataway, NJ, USA), subcloned in a pCEP-4 vector 

and transfected into HEK293 cells using FuGENE 6 transfection reagent (Roche). 

Hygromycin-resistant transfected cells were cultured up to 90% confluence in medium 

supplemented with 10% FBS. For VEGF production it was replaced by medium containing 

1% FBS and cultures were continued for 2 additional days. VEGF variants were then purified 

from conditioned media by affinity chromatography using Bevacizumab (Avastin, Roche) 

coupled to Affi-Gel Hz (Biorad, Hercules, CA, USA) as described by the manufacturer. After 

sample loading and washing (Tris 0.05 M, NaCl 0.15M, pH 7.5), VEGF was eluted (Glycine 

0.1M, pH 3.5) and the recovered fractions were immediately neutralized with 1:10 volume of 

1M Tris. Some VEGF variants were also purified by affinity chromatography using heparin-

sepharose (CL6B, GE Healthcare). After sample loading and washing (H2PO4
--HPO4

2- 0.01 

M, NaCl 0.25M, pH 7.3), VEGF were eluted with increasing concentrations of NaCl (0.5M, 

1M, 1.5M and 2M). Purity and concentration were evaluated after SDS-PAGE (15% 

acrylamide) and Sypro Ruby (BioRad) staining (see chapter IV-2). Proteins were dialysed 

against HBS-EP buffer (GE Healthcare, Little Chalfon, UK) for Surface Plasmon Resonance 

or diluted in PBS for other purposes.  

IV- Analytical procedures 

IV-1 Western blot 

Western blot analyses were used to evaluate the quality and the purity of the different VEGF 

variants and to determine the phosphorylation and activation of VEGF-R1, VEGF-R2 and 

downstream signalling molecules. Proteins were separated by SDS-PAGE (Sodium Dodecyl 

Sulfate PolyAcrylamide Gel Electrophoresis) and transferred onto polyvinylidene difluoride 

membranes (Perkin Elmer, Waltham, MA, USA) by electroblotting. Membranes were blocked 

for 1 hour in PBS-Tween (0.05%) buffer supplemented with 3 % fat free dry milk before 

probing with the primary antibodies. After washing in PBS-Tween, membranes were 
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incubated with the appropriate HorseRadish Peroxydase (HRP)-conjugated secondary 

antibodies. Signals were detected by chemiluminescence using the ECL Western Blotting 

Analysis Substrate (Thermo, Fischer Scientific Waltham, MA, USA) and x-ray film exposure 

before quantification using the Fluor-S Multimager and Quantity One software (Bio-Rad 

Laboratories, Hercules, CA, USA). 

IV-2 Sypro Ruby 

After SDS-PAGE separation, gels were fixed (30 min) in a solution containing 50% methanol 

and 7% acetic acid for half an hour, stained in Sypro ruby solution for 4 hours and washed in 

a solution containing 10% methanol and 7% acetic acid for 30 min. The quantification was 

performed using the Fluor-S Multimager and Quantity One software. The VEGF 

concentrations were evaluated by comparison to BSA (Bovine Serum Albumine) samples of 

defined concentrations run on the same gel. 

IV-3 Quantification by ELISA  

VEGF concentrations were also evaluated by ELISA using either panVEGF or VEGF165b 

Duoset (R&D systems). Endocan concentration was assessed using JDIYEK ELISA kit 

(Lunginnov, Lille, France). 

IV-4 Mass Spectometry 

The amino acids terminal sequence of VEGF variants was analyzed by MALDI-TOF (Matrix-

Assisted Laser Desorption/Ionisation and time-of-flight mass spectrometry) process at the 

GIGA-Proteomic Platform (University of Liège). 

V- Binding to VEGF-receptors and co-receptors 

V-1 Surface Plasmon Resonance 

Surface Plasmon Resonance (SPR) analyses were performed on a Biacore X-100 system 

(GE Healthcare) as previously described (Fig 18) (Herve et al., 2008). Briefly, Fc chimera 

human VEGF-R1 or VEGF-R2 and Fc chimera Rat NRP1 or NRP2 (R&D Systems, 

Minneapolis, MN, USA) were bound to the CM5 Sensorchip (GE Healthcare) using goat 

polyclonal antibodies against Human Fc (Sigma-Aldrich) fixed by amine binding to the chip. 

Biotinylated heparin was coupled to a carboxymethylated dextran pre-immobilized with 

streptavidin (Sensorchip SA, GE Healthcare). For routine evaluation the samples were 

diluted in HBS-EP buffer and injected for the indicated period of time (100-300 sec) followed 

by washing in HBS-EP (150-600 sec) in order to evaluate the association and dissociation 

curves, respectively. For more quantitative measurements (BIAevaluation software 4.1, GE 
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Healthcare), increasing concentrations of samples (0.4, 1.3, 4.0, 13.0 and 40.0 nM) were 

successively injected on the chip. 

 

Figure 18 : Surface Plasmon Resonance analyses   

VEGF (co-)receptors (blue) are bound to the chip using anti-human Fc antibodies (green) immobilized 
on the chip (grey) by amine bonds (orange). (A) In absence of any ligand an incident light is refracted 
with specific characteristics, here shown by the black dotted lines. (B) After binding of a ligand (VEGF 
here, red triangle), the angle of the refraction of the light is modified (red dotted line). This modification 
can be measured, quantified and used to evaluate the association and dissociation parameters. 
VEGF-R: VEGF-Receptor 

 

V-2 Solid Phase Assay 

For direct binding evaluation, solid phase assays were performed by coating 110 ng of 

VEGF in 50 µl PBS-Tween 0.1% containing BSA 0.1% on a flat bottom polystyrene plate 

(Maxisorp, Nunc Thermo Scientific) overnight at 4°C. After blocking (PBS-tween-BSA for 

24h at 4°C) and washing (PBS-Tween-BSA), VEGF-R2-Fc (0.5µg/ml), NRP1-Fc (0.5µg/ml) 

+ heparin (1µg/ml) or NRP2-Fc (0.5µg/ml) + heparin (1µg/ml) were added in 50µl of buffer 

for 1 hour at room temperature. Diluted (1/1200) biotinylated antibody against Human Fc 

(Sigma-Aldrich) was then added and incubated for 30 min at room temperature. Streptavidin-

HRP and ABTS substrate (RnD systems) were then added. The Optical Densitiy (OD) was 

measured at 415 nm after 30min of reaction. 
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For competition assays, the surface of flat bottom polystyrene wells was treated overnight at 

4°C with 100 µl of 2 µg/ml anti-Fc IgG in phosphate buffer saline (PBS, Sigma). After 

washing and saturation of non-specific interactions with bovine serum albumin (BSA, 

Sigma), purified recombinant rat NRP1-Fc (20 ng/well in 50 µl PBS-Tween-80 containing 

BSA 0.5% (PBT), R&D Systems, Abingdon, UK) was added in the wells. Then peptides 

solution (50 µl in PBT from 0.01 to 300 µM, final concentration) or VEGF (from 5 to 450 nM, 

final concentration) and biotinylated VEGF165a (1nM, final concentration, R&D Systems) 

diluted in PBT containing 2 µg/ml of heparin were successively added. After overnight 

incubation at 4°C, the wells were washed and treated with Streptavidin-HRP and ABTS 

substrate.  

VI- Resistance to degradation  

20ng of the different VEGF variants were treated with increasing concentrations of plasmin 

(0-32 x 10-2 IU) or of exudates from skin ulcer and incubated at 37°C for 4, 24 and 48 hours. 

The products of the reactions were analyzed by western blot as described above. 

VII- Angiogenesis in vitro 

VII-1 Phosphorylation assay 

PAEC (Porcine Aortic Endothelial Cells) control, PAEC-R1, PAEC-R2, PAEC-NRP1, PAEC-

R2-NRP1 and HUVECs were seeded in 6-well plates and allowed to spread overnight. Cells 

were then starved for 18 h (PAEC) or 6 h (HUVECs) in appropriate medium deprived of FBS. 

VEGF variants were added at the indicated concentration and time according to the protocol 

previously described (Catena et al., 2010; Woolard et al., 2004). Serum-free media and 

media containing 10% FBS were used as controls. Reactions were stopped by placing cells 

on ice, immediate washing with ice-cold PBS and lysis in 200 µl of Laemmli buffer. The 

lysates were sonicated and stored at -20°c until western blot analysis. Quantifications of the 

signal were performed and the relative phosphorylation indexes (phosphorylated protein/total 

protein) were calculated. Due to large differences in the levels of phosphorylation, films 

obtained after different times of exposure were quantified, samples providing intermediate 

intensities being used as internal comparative calibration signals. To facilitate the 

comparison between all the samples, the phosphorylation index calculated for VEGF165a 

was arbitrary set at 1. 
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VII-2 Proliferation and survival assay 

WST-1 and [3H]-thymidine incorporation assays were performed to measure cell proliferation 

and survival. Different media and time were tested in preliminary experiments for defining 

the optimal conditions for the different assays. 

For the WST-1 assays, 3x10³ HUVECs were seeded overnight in gelatin-coated 96-wells 

plates (Greiner Bio-One, NC, USA) in M200 supplemented with LSGS. Cells were washed 

with PBS and incubated in M200 containing 0.5% FBS in the presence or absence of VEGF 

variants (250 pM). Two days later, 10 µl of WST-1 reagent were added to each well. After 2 

hours, the optical density was measured at 450 nm. 

For [3H]-thymidine incorporation assays, 1.5x104 HUVECs were seeded overnight in gelatin-

coated 24-wells plates in M200 supplemented with LSGS. Cells were washed with PBS and 

further cultured for 24 h in M200 containing 0.5% FBS for the evaluation of proliferation (or 

0.1% for the survival assay) supplemented or not with VEGF (250 pM). [3H]-thymidine (1 µM 

final concentration, 2.5 Ci/mol, Perkin Elmer, Waltham, MA, USA) was then added to the 

culture medium and the 10 % TCA-precipitable radioactivity was measured 24 h later. 

VII-3 Migration assay 

The capacity of VEGF variants to induce migration of HUVEC was evaluated using the 

Boyden Chamber assay. VEGF variants (1nM in 500 µl of M200 supplemented with 0.001% 

FBS) were placed in the bottom chamber of a 24-wells plate. Inserts with 8 µm diameter 

pores (Millipore) were coated with attachment factor (Invitrogen) for 1 hour at 37°C and then 

placed in wells before seeding serum-starved HUVEC in the top chamber (100.000 cells in 

M200 / 0.001% FBS). After 8 to 16h at 37°C for allowing cells to migrate from the top to the 

bottom chamber, the inserts were washed twice with PBS and fixed in PFA 4% for 20 min. 

Using a cotton swab, cells of the upper chamber were removed before staining with Hoechst 

(Invitrogen) for 5 min. Cells which migrated from top to bottom chamber were counted in 10 

fields and the percentage of migration were calculated using the following formula. 

Percentage of migration = (Cells per Field*1/0.0028637/1x105)x10. (0.0028637) represents 

the area of the insert visible by 1 field of view. 

 

VIII- VEGF Half-life in vivo 

Six week-old C57bl6 mice were divided into twelve groups (4-6 mice per group). They 

received intravenous, intraperitoneal or subcutaneous injections of VEGF111a, VEGF111b, 
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VEGF165a and VEGF165b (5 µg in 100µl). Blood samples were collected in the tail using 

heparitinazed capillaries (Hirschmann Laborgerate, Eberstat, Germany) directly and 0.5, 1, 

2, 4 and 8 hours after injection. After centrifugation at 11,7000 rpm for 5 minutes using 

Autocrit ULTRA-3 centrifuge (BD, Franklin Lakes, NJ, USA), plasma were collected and 

stored at -20°C before further analysis. VEGF concentrations were evaluated using 

panVEGF and VEGF165b Duo set ELISA kit (R&D systems). Half-life was evaluated by 

constructing exponential regression using Excel software (Redmonds, WA, USA), 

y=a*exp(bx), where “a” and “b” are the maximal concentration and the exponential constant, 

respectively. Half-life were then calculated according to the following formula : t1/2=ln(2)/b. 

 

IX- Angiogenesis in vivo 

Experimental protocols were approved by the local animal ethical committee (University of 

Liège, approval document n° 1125).  2x106 HEK293 cells transfected with the empty vector 

or expressing human VEGF variants were mixed with 200µl of Matrigel depleted in growth 

factors (Becton Dickinson, Franklin Lakes, NJ, USA) and injected subcutaneously in the 

flank of nude mice (6-week-old Swiss Nu/Nu, Charles River Laboratories, Wilmington, MA, 

USA) as described by Mineur and collaborators (Mineur et al., 2007). Four to 19 mice were 

used per group. Three weeks later, animals were sacrificed and dissected. Tumours and 

peritumoural tissues were collected and used for RNA purification and RT-PCR 

amplification, protein analysis and histological and immunohistochemical evaluations. VEGF 

mRNAs expression in the tumours was evaluated by RT-PCR using panVEGF primers 

(specific for sequences corresponding to exons 2 and 4, thus common to all isoforms) or 

VEGFxxxa, VEGF111b, VEGF121b and VEGF155-165-179b specific primer pairs (Table 3). 

VEGFxxxb protein levels were quantified in protein extracts using VEGF165b specific ELISA 

(R&D Systems). Angiogenesis was evaluated by measuring CD31 mRNA expression by RT-

PCR (Table 3). 

For immunohistochemistry analyses, anti-mouse CD31 (rabbit antiserum, at dilution 1:20, 

Dianova, Hambourg, Germany), anti-collagen IV (in-house developed rabbit anti-serum, at 

dilution 1:100), anti-α smooth muscle actin (α-SMA, mouse monoclonal, at dilution 1:400, 

Sigma-Aldrich) and anti-VEGF (1:50) were used. Secondary antibodies were obtained from 

Dako. The CD31 labelling of vessels in tumoural and peritumoural mouse tissues was 

quantified as the positive area relative to the total area by using Image J Software (National 

Institute of Mental Health, Bethesda, MD, USA).  
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Table 3 : mRNA primers and amplicons size  

 

Primers name Primers sequences (5’ to 3’) 
Size 
(bp) 

mRNA 

P1 (forward)     
P2 (reverse) 

CTG CTC TAC CTC CAC CAT GCC AA     
AGG GGC ACA CAG GAT GGC TTG AA 

197 PanVEGF 

P3 (forward)     
P4 (reverse) 

CCT GGT GGA CAT CTT CCA GGA GTA 
CTC ACC GCC TCG GCT TGT CAC A 

245              
275                
377              
407               
449 

VEGF111a 
VEGF121a 
VEGF155a 
VEGF165a 
VEGF179a 

P5 (forward)      
P6 (reverse) 

CCT GGT GGA CAT CTT CCA GGA GTA 
TCC TGG TGA GAG ATC TGC ATT CAC 

237 VEGF111b 

P7 (forward)     
P8 (reverse) 

CCT GGT GGA CAT CTT CCA GGA GTA 
GTC TTT CCT GGT GAG AGA GTT TTC TT 

273 VEGF121b 

P9 (forward)   
P10 (reverse) 

CCT GGT GGA CAT CTT CCA GGA GTA 
CGA TCG TTC TGT ATC AGT CTT TCC T 

368         
398         
440 

VEGF155b  
VEGF165b 
VEGF179b 

P11 (forward) 
P12 (reverse) 

GTT CAC CCA CTA ATA GGG AAC GTG A 
GAT TCT GAC TTA GAG GCG TTC AGT 

212  
269* 

28S 

P13 (forward) 
P14 (reverse) 

CAA GGC GAT TGT AGC CAC CTC CA   
CCA ACA ACT CCC CTT GGT CCA GA              

209 CD31 

 

RT-PCR using P3-P4 allows to measure the amplification product of the 5 studied VEGFxxxa variants, 

which are discriminated according to their size after migration on SDS-PAGE. VEGF111b and 

VEGF121b are amplified using the P5-P6 and P7-P8 primers, respectively. RT-PCR using P9-P10 

allows to measure the amplification product of 3 of the 5 studied VEGFxxxb variants, which are 

discriminated according to their size after migration on SDS-PAGE. CD31 is amplified using the P13-

P14 primers. *internal control. bp: base pairs. 
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X- Inhibition of Neoangiogenesis 

IX-1 Choroidal Neovascularization assay (CNV) 

Six week-old C57bl6 mice were anesthetized by intraperitoneal injection of 0.1 ml of a 50:50 

mixture of ketamine hypochloride (20 mg/ml) and xylazine hypochloride (100 mg/ml, Phoenix 

Pharmaceutical, St Joseph, MO, USA). They received 2 to 4 photocoagulation lesions per 

eyes delivered with a diode green laser (  - 810nm, 250mV, 75ms, 75 m, 2 to 4 lesions/eye 

250mW, IRIDEX Oculight GLX, Moutain View, CA, USA). Eyes were immediately treated 

with intravitreal (IVT) injection of 2µl PBS containing 10 ng of VEGF111b (15 lesions) or 

VEGF165b (25 lesions) in one eye and 2µl of PBS (22 lesions) in the other, as negative 

control (Hua et al., 2010). Injections were performed using a 33-gauge needle (Nanofil, 

World Precession Instruments, Sarasota, FL, USA) after dilatation of the pupils using 2.5% 

phenylephrine hydrochloride and 0.8 % tropicamide. Injections were repeated on day 7. On 

day 14, mice were sacrificed. Choroids were dissected, fixed in 4% PFA and stained with a 

specific endothelial cell marker (isoloectin B4, 1:100, Vector Laboratories, Burlingame, CA, 

USA). Areas of pathological neovascularization were measured using Image J software.  

IX-2 Oxygen Induced Retinopathy assay (OIR) 

For oxygen induced retinopathy (OIR), Sprague Dawley® rats (n=6 per group) were exposed 

at birth to 7 cycles of atmosphere at 50% O2 for 24 hours followed by another 24 hours of 

atmosphere at 10 % oxygen (Penn and Rajaratnam, 2003; Penn et al., 1994). After 14 days 

animals were placed at room air (21% oxygen). At this time point, they received 10ng of 

VEGF111b in 2µl PBS in one eye and 2µl PBS in the other as described for CNV. On day 20, 

pups were sacrificed and retinas were dissected and stained as previously described for 

CNV (Hua et al., 2010). A clock hour analysis method (Penn et al., 1994) was performed to 

quantify intravitreal neovascularization (IVNV). Arterial tortuosity, vessels’ diameter and 

avascular areas were analysed using Image J software. 

IX-3 Cytoprotection assay 

Fresh retinal pigment epithelial cells (RPE) and arising spontaneously transformed retinal 

pigment epithelial cells (ARPE19) were used to evaluate the cytoprotective effect of VEGF 

variants against toxic doses of ketocholesterol. 15x103 ARPE19 or 12x103 primary RPE cells 

were seeded in a 96-wells plate in full DMEM-Glutamax overnight. Cells were starved in 

absence of FBS and treated with 2.5nM of VEGF isoforms or EGF, used as a positive 

control (5-wells per condition). 24h later, cells were treated with 14 to 40µM of 
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Ketocholestrol. After 24h, cell activity was measured by WST-1 reagent (Roche) or LDH 

(Lactate Deshydrogenase) released in culture media (Promega, Madison, WI).  

 

XI- Permeability in vivo 

Vascular permeability in vivo was evaluated by using a Miles and Miles modified assay 

(Sounni et al., 2010) using 6 to 8 week-old BALB/C mice. The backs of the animals were 

shaved 2 days before the experiment. 10µl of VEGF isoforms (50 ng) were injected 

intradermally in the back of anesthetized mice (n=5 for VEGF121a and VEGF121b; n=6 for 

VEGF111b, VEGF155a, VEGF155b and VEGF165b; n=7 for VEGF111a and VEGF165a). Five 

minutes later, Evans’ blue dye was injected intravenously (30 mg/kg in 100 µl PBS). After 30 

minutes, mice were perfused intracardiacally with 20 ml of PFA 1%. The skin surrounding 

the site of injection (~20 mm2) was then excised, weighed and the Evans’ blue dye was then 

extracted in 1 ml of formamide at 65°c during 48h. The blue staining was quantified (620 nm) 

and normalized for skin weight. 

 

XII- Effects of VEGF variants on mouse physiology 

VEGF111a, VEGF111b, VEGF165a and VEGF165b (4 µg in 200 µl PBS) and PBS were injected 

daily subcutaneously in six week-old C57Bl6 mice (n=5 per group). Animals were monitored 

every day by a general examination controlling animal behaviour, colour of the mucosae and 

hydration level (pinching test). Mice were also weighed every three days. After 14 days of 

treatment, the mice were sacrificed and blood was collected. The total blood fractions were 

used for blood cell counting and characterization (CELL-DYN 3700, Abbott Laboratories, IL, 

USA). ALT (Alanine Transaminase) and AST (Aspartate Transaminase) hepatic markers 

were quantified in serum (Department of Biochemistry, Faculty of Veterinary Medicine, 

University of Liège). Finally isolated cells were used for FACS (Fluorescence Activated Cell 

Sorting) analysis to evaluate the proportion of specific bone-marrow derived cells population. 

The following markers were used: GR1 (Granulocytes), CD45b (Lymphocytes), CD11b 

(Macrophages), TER119 (Erythrocytes) and CD3 (Lymphocytes T). Spleen and liver were 

collected and weighed while tissues near the site of chronic injections were also recovered, 

fixed and evaluated for their blood vessels content by immunohistochemistry using a CD31 

antibody.  
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I- Production of purified recombinant VEGF-A variants 

Recombinant human VEGF variants (VEGF111a, VEGF111b, VEGF121a, VEGF121b, VEGF155a, 

VEGF155b, VEGF165a and VEGF165b, Fig 19A) were produced using HEK293 cells 

transfected with pCEP4 vector containing the appropriate cDNA. These cells were selected 

for their low to undetectable intrinsic expression of VEGF. VEGF111b (E1-E4 & E8b), 

VEGF155a (E1-E4 & E7-E8a) and VEGF155b (E1-E4 & E7-E8b) are artificial variants never 

described in vivo. All these variants were efficiently produced as described in Material and 

Methods. After purification, they were analyzed by SDS-PAGE under reducing conditions 

followed by Sypro Ruby staining or by Western blot analysis (Fig 19B, 19C). VEGF111a, 

VEGF155a and VEGF155b appeared as single products corresponding to the glycosylated 

monomer while VEGF111b, VEGF121a, VEGF121b, VEGF165a and VEGF165b were expressed 

as glycosylated and non-glycosylated polypeptides. The increased glycosylation for variants 

that do not possess the E5-encoded domain was not expected as the single glycosylation 

site was reported to be in the E4-encoded sequence (Claffey et al., 1995), which is present 

in all the produced variants. No correlation could be established between the glycosylation 

rate and the level of VEGF expression (data not shown). Western blots were probed with 

anti-pan VEGF antibody (Fig 19C, upper panel) or anti-VEGFxxxb antibody (Fig 19C, lower 

panel), which recognized only the recombinant VEGFxxxb isoforms as expected. 

Quantification of the concentration of the VEGF-A isoforms by the panVEGF ELISA was not 

fully satisfactory because the antibodies used in the ELISA have not an identical affinity for 

all the variants when quantified in their native form. Indeed, VEGF121a and VEGF165a were 

efficiently detected while the sensitivity of the assay was reduced for VEGF111a, VEGF111b, 

VEGF155a and VEGF165b leading to underestimation of their concentration. The VEGFxxxb 

ELISA was specific as it allowed quantification of VEGF111b and VEGF165b and did not 

provide any signal for VEGFxxxa variants.  

Gel staining after SDS-PAGE was therefore used for determining the concentration of all the 

variants. In this assay, we compared in the same run all the VEGF variants to a BSA curve. 

Depending on the selected cell lines and on the VEGF isoform, the complete production and 

purification processes allow the recovery of purified recombinant protein at a final 

concentration ranging from 20 to 150 µg/ml. 
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Figure 19 : Structure and analysis of the various recombinant VEGF isoforms 

(A) Structure of the human VEGF-A variants used in this part of the work. Exons are represented by 
boxes and are not drawn to scale. Dotted lines identify the lacking exons in the various isoforms. E6a 
and E6b are absent from all the isoforms presented here. (B) SDS-PAGE analysis of the recombinant 
VEGF variants after production and purification by affinity chromatography using Avastin-Sepharose. 
Gel was stained with Sypro Ruby. (C) Representative Western blot of the purified VEGF variants 
using primary antibody against all VEGF isoforms (Pan VEGF, upper panel) and VEGFxxxb (lower 
panel). Ab: Antibody. 

 

These VEGF preparations were then used for further biochemical and biological 

characterizations performed in our laboratory or in collaboration with other laboratories. For 

instance, recombinant VEGF111a was used to improve vascularization of xeno-

transplantation of ovarian tissue in vivo (Labied et al., 2013) (see annex 2). 
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II- Receptors binding assay 

II-1 Surface Plasmon Resonance 

Surface Plasmon Resonance was used to evaluate the ability of the various VEGF variants 

to bind to VEGF receptors, VEGF-R1 and VEGF-R2, and their co-receptors, NRP1, NRP2 

and heparin. This assay also allowed to evaluate the potential formation of complexes 

between VEGFR-2, VEGF and NRP1 or between NRP1, VEGF and heparin for example.  

II-1-1 Binding to VEGF-R1 

Increasing concentration of VEGF111a, VEGF111b, VEGF165a and VEGF165b were injected on 

VEGF-R1 coated chip. As expected from the presence of E3 encoded domain, which 

contains the binding site for VEGF-R1 (Fig 20A), all these isoforms displayed rapid 

association to the receptor followed by a slow dissociation rate (illustated for VEGF111a and 

VEGF165b, Fig 20B, 20C). Dissociation constant (Kd) were quantified. Values were 

measured within the 1.4 to 4.5 x 10-10 range, which is in accordance with published data 

reporting high affinity of VEGF for VEGF-R1. The addition of soluble heparin (1µg/ml) and/or 

soluble NRP1 (10nM) did not significantly modified the calculated values. 

 

Figure 20 : Binding of VEGF isoforms to VEGF-R1 

(A) In VEGF-A, the binding domain for VEGF-R1 is encoded by E3. (B, C) Sensorgrams obtained 
using VEGF-R1 coated chip. 0, 4, 10 and 40 nM of VEGF111a (B) or VEGF165b (C) were injected for 
~250 seconds followed by injection of HBS-EP buffer in order to visualize the dissociation rate. RU: 
Response in arbitrary units. 
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II-1-2 Binding to VEGF-R2 

VEGF111a, VEGF111b, VEGF121a, VEGF121b VEGF155a, VEGF155b, VEGF165a and VEGF165b 

were able to bind to VEGF-R2 with similar Kd within a range from 1x10-10 to 1x10-11 M 

(illustrated for VEGF111a and VEGF165b, Fig 21B, C). These results were in accordance with 

published data (Hua et al., 2010; Waltenberger et al., 1994). Interestingly, we reproducibly 

observed a higher association rate for VEGF111a (Ka=2.6x1011) as compared to VEGF165a 

(Ka=0.15x1011). 

Addition of heparin (1µg/ml) to VEGF165a (10nM) did not modify the affinity of the ligand for 

its receptor. However, when VEGF165a was used at a lesser concentration (4nM), heparin 

increased the response by a factor of about 2 (data not shown).  

 

Figure 21 : Binding of VEGF the various isoforms to VEGF-R2 depends on the presence of E4-
encoded domain 

(A) The VEGF-R2 binding site is located in the E4-encoded domain. (B, C) Sensorgrams obtained 
using VEGF-R2 coated chip. 0, 1, 4, 10 and 40 nM of VEGF111a (B) and VEGF165b (C) were injected 
for ~250 seconds followed by injection of HBS-EP buffer in order to visualize the dissociation rate. 
RU: Response in arbitrary units 
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II-1-3 Binding to NRP1 

When NRP1 was immobilized on the chip, only VEGF165a and VEGF121a bound efficiently 

(Fig 22C, 22E). VEGF155a was also able to bind but with a reduced association rate as 

visualized by the flattened slope of the curve (Fig 22D). The absence of interaction of 

VEGFxxxb (illustrated only for VEGF165b in Fig 22G) confirmed previous data describing the 

implication of the E8a-encoded sequence in binding to NRP1 (Cebe Suarez et al., 2006; Pan 

et al., 2007b). By contrast, the absence of interaction of VEGF111a (Fig 22B) suggests that 

the E8a domain is not sufficient for binding. Since the presence of the entire E8a-encoded 

sequence was confirmed by mass spectrometry analysis of VEGF111a (data not shown), it 

suggests that the E8a-domain must cooperate with another domain for efficient binding. 

Because the only difference between VEGF111a (non-binder) and VEGF121a (binder) is the 

presence of the domain encoded by exon 5, its contribution to the binding capacity to NRP1 

is likely.  

 

The binding of VEGF to NRP1 coated sensorchips was stimulated by heparin only for 

VEGF155a (1.5-fold) and VEGF165a (4.5-fold) (not illustrated) suggesting a role for the E7 

domain in the formation of multimolecular complexes. A role for the E5-encoded basic 

domain is also suggested when considering the marked difference between SPR responses 

obtained with VEGF155a and VEGF165a. 



Results 

86 
 

 

 

Figure 22 : Binding of VEGF variants to NRP1 

Binding of VEGF variants (40nM) to NRP1 was measured by Surface Plasmon Resonance. (A) HBS-
EP control buffer, (B) VEGF111a, (C) VEGF121a, (D) VEGF155a, (E) VEGF165a alone or (F) in  
combination with the R8R peptide (300µM, mimicking the E5 encoded sequence) and (G) VEGF165b 
were injected (black arrow) for ~250 seconds followed by injection of HBS-EP buffer (open arrow) in 
order to visualize the dissociation rate. RU: Response in arbitrary units. 
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II-1-4 Binding to NRP2 

None of the tested VEGF-A variants (VEGF111a, VEGF111b, VEGF165a and VEGF165b) had a 

significant direct affinity for NRP2. When heparin (1µg/ml) was co-injected, only VEGF165a 

was able to form stables complexes (illustrated for VEGF111a and VEGF165a in Fig 23A and 

23B). 

  

Figure 23 : Binding of VEGF variants to NRP2 

The binding of VEGF111a (A) and VEGF165a (B)  (both at 40 nM) to NRP2 was evaluated in absence 
or presence of heparin (1µg/ml). HBS-EP control buffer (green), VEGF with (red) or without heparin 
(blue), or heparin alone (violet) were injected for ~250 seconds followed by injection of HBS-EP buffer 
in order to visualize the dissociation rate. RU: Response in arbitrary units; B: Buffer ; H: Heparin ; 
111a: VEGF111a ; 165a: VEGF165a. 

 

II-1-5 Binding to heparin 

Some VEGF variants have been reported to interact with heparan sulfate proteoglycans 

through their E7-encoded domain (Kawamura et al., 2008b). SPR experiments indicated that 

the injection of VEGFxxxa variants to biotinylated heparin coupled to a streptavidin-coated 

sensorchip resulted in a significant binding of VEGF165a and VEGF155a, although at a 

considerably lesser extent, while the other variants failed to bind, which confirms the 

importance of the sequence encoded by exon 7 (Fig 24). However, VEGF165b and VEGF155b 

(illustrated for VEGF165b in Fig 24F), two variants possessing the sequence encoded by 

exon 7, also failed to bind to heparin, demonstrating a direct implication of the E8a domain 

or an inhibitory function of the E8b sequence on this interaction. Moreover, the important 

difference between VEGF155a and VEGF165a suggests a role for the E5-encoded domain. 

These data were confirmed using heparin-sepharose affinity chromatography (data not 

shown). 
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Figure 24 : Binding of VEGF variants to heparin 

Binding of VEGF variants (200 nM) to heparin was measured by Surface Plasmon Resonance. (A) 
HBS-EP buffer, (B) VEGF111a, (C) VEGF121a, (D) VEGF155a, (E)  VEGF165a and (F) VEGF165b were 
injected (black arrow) for ~250 seconds followed by injection of HBS-EP buffer (open arrow) in order 
to visualize the dissociation rate. RU: Response in arbitrary units.  
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Simultaneous injection of VEGF165a (40nM) and soluble NRP1 (15nM) on the heparin chip 

(Fig 25) strongly improves the binding (566 RU) as compared to VEGF165a (132 RU) and 

NRP1 (131 RU) alone. Such synergy was not observed when soluble NRP1 was injected 

concomitantly with VEGF121a, confirming data previously observed with the NRP1 chip. 

 

 

 

 

Figure 25 : Reinforcement of binding to heparin in presence of sNRP1 

Binding of VEGF165a (40 nM) and soluble NRP1 (15nM), separately or concomitantly, to heparin was 
measured by Surface Plasmon Resonance. (A) HBS-EP buffer, (B) soluble NRP1, (C) VEGF165a and 
(D) mixture of VEGF165a and soluble NRP1 were injected for ~250 seconds followed by injection of 
HBS-EP buffer in order to visualize the dissociation rate. RU: Response in arbitrary units.  
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II-1-6 VEGFR2-VEGF multimolecular complexes 

The formation of multimolecular complexes between VEGF-R2, NRP1, heparin (H) and 

VEGF variants was also evaluated. The different VEGF variants (20 nM) and NRP1 (20 nM) 

were sequentially injected in the absence or presence of heparin (1 µg/ml) on a VEGF-R2 

sensorchip (Fig 26). As expected, the initial injection of VEGF induced a response on the 

sensorgram (illustrated here for VEGF165a (Fig 26A), VEGF121a (Fig 26D) and VEGF165b (Fig 

26H) for example). When VEGF165a is already bound on VEGF-R2, subsequent injection of 

NRP1 alone (Fig 26A) had only a limited effect but resulted in a sharp additional response in 

the presence of heparin (compare Fig 26B to Fig 26A).  When VEGF165a was omitted the 

response to NRP1 + H was much more modest (compare Fig 26C to Fig 26B), indicating 

weaker or less numerous protein interactions and underscoring the importance of VEGF165a 

in the formation of large complexes with VEGF-R2. VEGF155a, the only other tested isoform 

possessing both the E7 and E8a-derived sequences, was also able to induce the formation 

of complexes with NRP1 in presence of heparin (not shown). By sharp contrast, none of the 

other isoforms was able to significantly mediate the interactions between VEGF-R2 and 

NRP1 as shown by a similar response to NRP1+H in presence or absence of VEGF as 

illustrated for VEGF121a and VEGF165b (compare Fig 26D and Fig 26H to Fig 26C).  

 

To address the question of a potential competition between the various VEGF variants, 

successive injections on VEGF-R2 chips were performed. As an example, a saturating 

amount of VEGF165a (80 nM) was injected first followed by sequential injections of VEGF165b 

(20nM) and NRP1+heparin. In these conditions, VEGF165a could efficiently bind to VEGF-R2 

and induce the formation of VEGFR2-VEGF-NRP1-heparin complexes (Fig 26E). By 

contrast, when VEGF165b (80nM) was injected first only a limited amount of VEGF165a could 

be immobilized and the formation of the complex was strongly inhibited (Fig 26F). Similar 

data were obtained when VEGF121a (Fig 26G) or VEGF155b (not shown) were used in place 

of VEGF165b for the first injection, again demonstrating a competition of these variants with 

VEGF165a for binding to VEGF-R2 and further confirming that VEGF165a is able to promote 

the formation of complexes while VEGF155b, VEGF165b and VEGF121a are not efficient 

(summarized in Fig 26I).  

 



Results 

91 
 

 

Figure 26 : Ability of VEGF variants to form VEGFR2-VEGF-NRP1-heparin complexes 

(A-H) The formation of the VEGFR2-VEGF-NRP1-heparin complexes was measured by Surface 
Plasmon Resonance. VEGF-R2 was coated on the sensorchip and successive injections were made 
as indicated on the drawings. (I) Increment of response induced by addition of NRP1+heparin after 
injection of various VEGF variants. b: HBS-EP buffer; 121a: VEGF121a; 165a: VEGF165a; 165b: 
VEGF165b; NRP1: neuropilin-1; H: heparin. 
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The effect of PlGF on the formation of VEGF-R2-NRP1-heparin complexes was also 

investigated. Surprisingly, despite an absence of direct binding of PlGF to VEGF-R2, it 

reduced the binding of NRP1 to VEGF-R2 (Fig 27). All the data obtained by Surface 

Plasmon Resonance are summarized in Table 4. 

 

 

  

Figure 27 :  PlGF inhibits direct binding of NRP1 to VEGF-R2 

The influence of PlGF on formation of the VEGFR2-NRP1-heparin complexes was measured in 
duplicate by Surface Plasmon Resonance on VEGF-R2 coated sensorchips. Successive injections 
consisted in either HBS-EP Buffer followed by NRP1 + heparin (blue) or PlGF and then NRP1 + 
heparin (red).   
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Table 4 : Summary of the ability of the VEGF variants to bind to VEGF receptors and co-

receptors 

 

 

nd: not determined; E: exon; H: heparin 

 

 

 

 

 

 

 

 

 
 

Presence of the 
relevant exon-

encoded domain 

Direct binding on 
Formation of complexes 

including: 

VEGF-R1 VEGF-R2 NRP1 NRP2 H 
NRP2+

H 
NRP1+

H 
VEGFR2+N

RP1+H 

VEGF111a E1-4 ; E8a Yes Yes No No No No No No 

VEGF111b E1-4 ; E8b Yes Yes No No No No No No 

VEGF121a E1-4 ; E5 ; E8a nd Yes Yes nd No nd Yes No 

VEGF121b E1-4 ; E5 ; E8b nd Yes No nd No nd No No 

VEGF155a E1-4 ; E7 ; E8a nd Yes Yes nd Yes nd Yes Yes 

VEGF155b E1-4 ; E7 ; E8b nd Yes No nd No nd No No 

VEGF165a E1-4 ; E5 ; E7 ; E8a Yes Yes Yes No Yes Yes Yes Yes 

VEGF165b E1-4 ; E5 ; E7 ; E8b Yes Yes No No No No No No 
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II-2 Solid phase assay 

Data obtained in the SPR model were further validated in a solid phase ELISA assay using 

VEGF111a, VEGF111b, VEGF165a, VEGF165b and PlGF-coated plates. VEGF-R2 bound 

efficiently to all variants while only VEGF165a was able to interact with NRP1 or NRP2 in 

presence of heparin, as expected from the SPR data (Fig 28). As expected, PlGF bound to 

NRP1 but not to VEGF-R2 and NRP2. In another experimental setting, a solid phase assay 

was also used for evaluating the competition for immobilized NRP1 between fixed 

concentration of biotinylated VEGF165a  and increasing amount (from 5 to 450 nM) of other 

VEGF variants.  As a control, we first verified that VEGF165a was able to completely inhibit 

the binding of biotinylated VEGF165a. By contrast, none of the other variant was able to 

compete with VEGF165a for NRP1, except for a slight effect of VEGF155a at 40 nM, again in 

agreement with the SPR results (not illustrated). 

 

  

Figure 28 : Binding of VEGF variants to VEGF-R2, NRP1 and NRP2 as determined in a solid 
phase assay 

96-wells plates were coated with PlGF, VEGF111a, VEGF111b, VEGF165a or VEGF165b, washed and 
incubated with solution containing BSA (negative control) or Fc-coupled VEGF-R2 (VEGF-R2-Fc), 
NRP1 (NRP1-Fc) or NRP2 (NRP2-Fc) in presence of heparin. After washing and incubation with 
HRP-coupled anti-Fc antibody, the relative amounts of bound protein were detected by quantifying the 
HRP activity immobilized in the wells. PlGF: Placental Growth Factor, BSA: Bovine Serum Albumine, 
OD: Optical Density. 
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II-3 Effect of mimetic peptides of E5 and E8a encoded domain on VEGF binding to NRP1 

The study of the various VEGF isoforms by Surface Plasmon Resonance and solid phase 

assay suggested the implication of the E5- and E8a-encoded domains for NRP1 binding. 

This hypothesis was further investigated by using synthetic peptides. Peptides mimicking the 

E8a domain, A7R, (Starzec et al., 2007; Starzec et al., 2006) or the E5 domain (R8R) were 

used. They fully inhibited the binding of VEGF165a on NRP1 immobilized on SPR sensorchip 

(illustrated for R8R, compare Fig 22F to Fig 22E), confirming previous data. They also 

prevented the formation of the super-complexes involving VEGF-R2, NRP1, VEGF165a and 

heparin  (Compare Fig 29A to 29B, for effect of A7R and 29A to 29C for effect of R8R), 

confirming that these two domains are required. 

 

 

Figure 29 : Effect of peptides mimicking the E5- (R8R) or the E8a- (A7R) derived domains on 
the formation of VEGFR2-VEGF165a-NRP1-heparin super-complexes  

(A-C) The formation of the VEGFR2-VEGF165a-NRP1-heparin super-complexes was assessed by 
Surface Plasmon Resonance. VEGF-R2 was coated on the sensorchip and successive injections 
were made as indicated on the drawings. (D) Quantification of the response induced by the addition of 
NRP1+H in the absence or presence of mimetic peptides (A7R and R8R). Results are expressed in 
percentage of values recorded in absence of peptide. b: HBS-EP buffer; H: heparin. 
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These properties were further investigated in a solid phase assay where NRP1 was 

immobilized in the well. Pre-treatment with A7R, R8R or a peptide with the sequence 

encoded by exon 8a totally inhibited the binding of biotinylated VEGF165a on immobilized 

NRP1 (Fig 30) whereas a peptide with the sequence encoded by E8b had no effect. 

Altogether these results clearly demonstrated the importance of the E5- and E8a-encoded 

domains for VEGF binding to NRP1, the E8b sequence being not involved.  

 

 

 

 

Figure 30 : Effect of mimetic peptides on the binding of VEGF165a on NRP1 

Biotinylated VEGF165a was incubated in 96-wells plates previously coated with NRP1 and pre-treated 
with increasing concentrations(0 to 300 nM) of peptides mimetic of the domain encoded by exon 8a 
(Ex8a, A7R), exon 8b (Ex8b) or exon 5 (R8R). After washing and incubation with HRP-coupled 
streptavidin, quantification of the immobilized HRP activity was used to evaluate the relative level of 
VEGF165a bound to NRP1. Data are expressed comparatively to the values obtained in absence of 
peptides, taken as 100%. 
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III- Resistance of VEGF isoforms to proteolysis 

As we have shown in chapter II, the C-terminal domains of VEGF are required for the 

formation of complexes with NRP1 and heparin while the VEGF-R1 and VEGF-R2 binding 

sites are located more NH2-terminally. As a result, any proteolytic cleavage in the middle of 

the VEGF molecule should strongly affect its overall biological activity, underscoring the 

importance of evaluating the sensitivity to proteases of the different variants. The various 

VEGF isoforms were incubated for increasing times with increasing concentrations of 

plasmin and analyzed by Western blot using an antibody specific for a N-terminal epitope 

(Fig 31A). Both glycosylated and non-glycosylated forms of VEGF165a and VEGF165b were 

rapidly converted into smaller products, likely corresponding to the VEGF110 fragment 

obtained after cleavage at a previously described site in the E5-derived sequence 

(Arg110/Ala111, (Keyt et al., 1996a)). As expected from the absence of this sensitive region, 

VEGF111a and VEGF111b were resistant to degradation, even at the highest concentrations 

and the longest incubation times (Fig 31A), and VEGF111b fully kept its E8b-encoded 

terminal domain, as shown by using a specific anti-E8b domain antibody (Fig 31B). In spite 

of the lack of the E5-sequence, cleavage products of VEGF155a and VEGF155b already 

appeared with 2-4 x 10-2 IU of plasmin. The size of the two degradation products observed 

was compatible with a cleavage occurring in the sequence encoded by E7. This was further 

supported by the loss of immunoreactivity to the VEGFxxxb antibody of the plasmin-treated 

VEGF155b (Fig 31C), suggesting that the E7-encoded domain might become more exposed 

to plasmin in absence of the E5-sequence. The situation for the VEGF121 isoforms was more 

complex since VEGF121a was cleaved by plasmin while VEGF121b was not although it did 

possess the E5-derived domain. This suggests that the alternative use of the sequence 

encoded by E8a or E8b affects the three-dimensional structure of the molecules and the 

accessibility to the proteolytic enzymes. 

 

VEGF111a, VEGF111b, VEGF165a and VEGF165b were also incubated with fluids collected 

from non-healing wound of three patients with a chronic skin ulcer (Fig 31D) as these 

exudate are known to be rich in various proteases including plasmin (Palolahti et al., 1993) 

and metalloproteinases (Yager et al., 1996). After 24h of treatment, VEGF111a and VEGF111b 

remained intact whereas VEGF165a and VEGF165b were degraded likely into VEGF110. 

 

 



Results 

98 
 

 

 

 

 

 

Figure 31 : Effect of treatment by plasmin and exudate from skin ulcer on VEGF variants 

(A) 20ng of VEGF variants were treated with increasing amounts of plasmin (expressed in 10
-2

 IU) for 
the indicated times at 37°C. The products of the reactions were analyzed by Western blot using a 
panVEGF antibody.  (B, C) VEGF variants were treated for 4 h with the indicated concentrations of 
plasmin before Western blot analysis using an anti-VEGFxxxb antibody. (D) VEGF variants were 
incubated for 4 h in PBS (-) or in exudate from skin ulcer (u) before Western blot analysis using a 
panVEGF antibody. 111a: VEGF111a, 111b: VEGF111b, 165a: VEGF165a, 165b: VEGF165b, IU: 
International Unit.  
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IV- In vitro assay 

IV-1 Effect of  VEGF variants on VEGF signalling 

The effects of the VEGF variants were extensively characterized in various culture 

conditions. Only some data will be presented here to illustrate specific features and findings. 

Two cell models were used for evaluating angiogenesis in culture. Porcine Aortic Endothelial 

Cells (PAEC) do not express VEGF receptors and co-receptors at their surface. They were 

stably transfected with an empty vector (PAEC control) or with expression vectors for human 

NRP1 (PAEC-NRP1), VEGF-R1 (PAEC-R1), VEGF-R2 (PAEC-R2) or VEGF-R2 and NRP1 

(PAEC-R2-NRP1) (Becker et al., 2005; Miao et al., 1999; Waltenberger et al., 1994). The 

second model used HUVEC, primary human endothelial cells that express VEGF-R1, VEGF-

R2, NRP1 and HSPG at their surface. 

IV-1-1 VEGF variants do not regulate endothelial cells through direct interactions with 

NRP1 

For evaluating any potential direct effect of VEGF variants, PAEC cells, either control or 

expressing NRP1, were treated with VEGF isoforms. The activation of ERK1/2 was 

measured as it is one of the main pathways regulating endothelial cells proliferation. An 

increased phosphorylation was induced by FBS, used as a positive control independent of 

NRP1 signalling. None of the VEGF variants was active, confirming that these cells are not 

responsive and that no direct effect can be mediated by NRP1 (Fig 32). 

 

 

Figure 32 : Evaluation of the effect of VEGF variants on ERK phosphorylation in PAEC either 
control or expressing NRP1 

 (A) PAEC-Control and (B) PAEC-NRP1 were treated by addition of FBS or with 1 nM of VEGF 
variants for 10min in serum free medium. Protein extracts were then analyzed by Western blot using 
antibodies against ERK1/2 (ERK) or phospho-ERK1/2 (P-ERK). -: Control medium; FBS: medium 
containing Foetal Bovine Serum; 111a: VEGF111a; 111b: VEGF111b; 165a: VEGF165a; 165b: 
VEGF165b; 111a+111b: VEGF111a and VEGF111b added both at 1nM; 165a + 165b: VEGF165a and 
VEGF165b added both at 1nM.  
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IV-1-2 VEGF variants act  through VEGF-R2 but not through VEGF-R1 

The presence of VEGF-R1 at the cell surface of PAEC did not result in any marked specific 

response triggered by VEGF variants (Fig 33A). By contrast, the presence of VEGF in the 

culture medium induced a rapid phosphorylation of VEGF-R2 in PAEC-R2 (Fig 33B). Most 

interestingly, the level of phosphorylation was highly variant-specific and was correlated to 

the level of ERK1/2 and Akt phosphorylation. Co-treatment of VEGF111a and VEGF111b or of 

VEGF165a and VEGF165b did not result in any synergistic or antagonistic effects. 

 

 

 

Figure 33 : Effect of VEGF variants on VEGF-R1/R2 phosphorylation and signalling pathways 
activation in PAEC-R1 and PAEC-R2 

PAEC-R1 (A) and PAEC- R2 (B) were treated with FBS or with 1 nM of VEGF variants for 10 min in 
serum free medium. Protein extracts were analyzed by Western blot using (A)  antibodies against 
VEGF-R1 (R), phospho-VEGFR1 (P-R1), ERK1/2 (ERK), phospho-ERK1/2 (P-ERK), AKT or 
phospho-AKT (P-AKT) and (B) VEGF-R2 (R2), phospho-VEGFR2 (Tyr1175, P-R2), ERK1/2,  
phospho-ERK1/2, AKT or phospho-AKT. -: Control medium; FBS: medium containing Foetal Bovine 
Serum; 111a: VEGF111a; 111b: VEGF111b; 165a: VEGF165a; 165b: VEGF165b; 111a+111b: VEGF111a 
and VEGF111b (both at 1nM); 165a + 165b: VEGF165a and VEGF165b (both at 1nM). 
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IV-1-3  NRP1 potentiates the VEGF-R2 phosphorylation induced by VEGF165a  

The effects of the 8 VEGF variants were also studied in parallel on PAEC-R2 and PAEC-R2-

NRP1 for evaluating the activity of NRP1 as a co-receptor stimulating VEGF-R2 

phosphorylation and activation of downstream signalling factors. The shortest VEGF 

isoforms, whatever the composition of the terminal exon (VEGF111a/b and VEGF121a/b), were 

the strongest inducers of VEGF-R2 phosphorylation in PAEC-R2, while VEGF165a was active 

but to a lesser extent (Fig 34A). VEGF155a, VEGF155b and VEGF165b were barely active, 

although they possess the VEGF-R2 binding sequence. A similar pattern of 

phosphorylation/activation was observed for ERK1/2 (Fig 34A, 34C). The results obtained in 

PAEC-R2-NRP1 cells (Fig 34B, 34D) were similar to those in PAEC-R2, with the significant 

exception that VEGF165a was as active in these cells as the short VEGF isoforms. 

 

 

Figure 34 : Effect of VEGF variants on PAEC-R2 and PAEC-R2-NRP1 

 (A) PAEC-R2 and (B) PAEC-R2-NRP1 were treated with 1 nM of VEGF variants for 10 min in serum 
free medium and analyzed by Western blot using antibodies against VEGF-R2 (R2), phospho-
VEGFR2 (Tyr1175, P-R2), ERK1/2 (ERK) or phospho-ERK1/2 (P-ERK). For P-ERK two different film 
exposures are shown (10 s and 1 min). (C, D) The phosphorylation indexes (P-ERK/ERK) were 
calculated and compared to the index measured for VEGF165a (arbitrary set at 1) in each cell line. 
FBS: Foetal Bovine Serum; 111a: VEGF111a; 111b: VEGF111b; 121a: VEGF121a; 121b: VEGF121b; 
155a: VEGF155a; 155b: VEGF155b; 165a: VEGF165a; 165b: VEGF165b. *p<0.05, **p<0.01, ***p<0.001 
(t-test of Student, sample versus control or between two specific conditions indicated by the bar).  
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IV-1-4 VEGF165a is the most active isoform in HUVEC 

HUVEC are characterized by the simultaneous expression at their surface of a relatively 

physiological number of VEGF-R1, VEGF-R2 and NRP1 (5,000 – 20,000 compared to 

150,000 in the PAEC-R2 or PAEC-R2-NRP1 cells) (Herve et al., 2008; Waltenberger et al., 

1994). This did not modify however their response to VEGF except for an increased relative 

stimulation of the VEGF-R2 signalling cascade specifically in presence of VEGF165a (Fig 

35A, 35B). This makes this isoform the most active in HUVEC and confirms the SPR and 

solide phase assay data showing that VEGF165a is the only isoform able to interact 

significantly with NRP1 and to induce the formation of complexes with VEGFR2 and NRP1. 

This also suggests that in physiological situations where VEGF-R2 and NRP1 are less 

abundant than in transfected cells, VEGF165a is more active than the other isoforms. 

 

 

 

 

Figure 35 : Effect of VEGF variants on HUVEC 

(A) HUVEC were treated with 1nM of VEGF variants for 10min in serum free medium and were 
analyzed by Western blot using antibodies against VEGF-R2 (R2), phospho-VEGFR2 (Tyr1175, P-
R2), ERK1/2 (ERK) or phospho-ERK1/2 (P-ERK). For P-ERK two different film exposures are shown 
(10 s and 1 min). (B) The phosphorylation indexes (P-ERK/ERK) were calculated and compared to 
the index measured for VEGF165a (arbitrary set at 1).  FBS: Foetal Bovine Serum; 111a: VEGF111a; 
111b: VEGF111b; 121a: VEGF121a; 121b: VEGF121b; 155a: VEGF155a; 155b: VEGF155b; 165a: 
VEGF165a; 165b: VEGF165b. *p<0.05, **p<0.01, ***p<0.001 (t-test of Student, sample versus control or 
between two specific conditions indicated by the bar).  
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To further characterize the specific activity of the different isoforms, HUVEC and PAE-R2 

were also treated during increasing periods of time or with various concentrations of VEGF. 

Time-course experiments showed a maximal ERK1/2 phosphorylation 5 to 15 min after 

addition of any VEGF variant (Fig 36A, 36B). No effect was observed at 1 min and the 

phosphorylation was highly reduced at 30 min whatever the VEGF isoforms. Using various 

concentrations (0.1 to 3nM), we also confirmed that treatment with 1 nM of VEGF was the 

most appropriate concentration for comparing the effects of all the variants (data not shown). 

Indeed stimulation of phosphorylation was already detected after treatments at 0.1 nM in 

PAEC-R2 or at 0.3 nM in HUVEC while 3 nM was already a saturating concentration for both 

cell lines. 

 

 

 

 

Figure 36 : Time-course experiments evaluating the effects of VEGF variants on ERK1/2 
phosphorylation on endothelial cells 

(A) PAEC-R2 and (B) HUVEC were treated with 1nM of VEGF variants for 0, 1, 5, 15 or 30 min in 
serum free medium. Protein extracts were then analyzed by Western blot using ERK1/2 (ERK) and 
phospho-ERK1/2 (P-ERK) specific antibodies 



Results 

104 
 

IV-1-5 VEGF165b does not affect VEGF165a-induced phosphorylation  

VEGF165b has been reported in the literature to be able to inhibit the VEGF165a-induced 

activation of the VEGF-R2 signalling pathway (Woolard et al., 2004). Such inhibitory effect 

was however not observed in the previous experimental settings used with PAEC-R2 (Fig 

33B). This was further investigated here in PAEC-R2 and HUVEC, using various types of 

treatments and different concentrations of VEGF165a and VEGF165b (Fig 37). Inhibition of the 

VEGF165a-induced activation was never observed, even with cells pre-treated with VEGF165b 

before the addition of VEGF165a (Fig 37C, 37D). 

 

 

Figure 37 : Effect of VEGF165b on VEGF165a-induced phosphorylation of VEGF-R2 and ERK1/2 

 (A) PAEC-R2-NRP1 were treated with 1nM of VEGF165a and VEGF165b, added alone or together for 
10min in serum free medium. (C) HUVEC were pre-treated without or with VEGF165a or VEGF165b for 
15 min, before addition of VEGF165a or VEGF165b for 10 min. Cells were lysed and analyzed by 
Western blot using antibodies against VEGF-R2 (R2), phospho-VEGFR2 (Tyr1175, P-R2), ERK1/2 
(ERK) or phospho-ERK1/2 (P-ERK). (B, D) The phosphorylation indexes (P-ERK/ERK) were 
calculated and compared to the index measured for VEGF165a alone (arbitrary set at 1).  FBS: Foetal 
Bovine Serum, 165a: 1nM VEGF165a, 165b: 1nM VEGF165b, 4x165b: 4nM VEGF165b, 165b/165a: pre-
treatment with VEGF165b during 15’ then addition of VEGF165a.  
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IV-2 Effect of VEGF variants on endothelial cells proliferation and survival 

Several preliminary experiments were performed to determine the best experimental 

conditions to evaluate the effects of VEGF on HUVEC survival and proliferation. Different 

conditions of medium and times of treatment were tested but the most critical parameter was 

the serum concentration. A concentration of 0.1% FBS for 48h was chosen for the survival 

assays while for the proliferation assays 0.5% for 48h was the best compromise, being high 

enough to prevent any side effect related to survival issues but too low to stimulate 

proliferation in absence of VEGF. 

 

Using a WST-1 assay, we demonstrated that the proliferation rate was drastically increased 

by VEGF165a and to a lesser extent by VEGF111a, VEGF111b, VEGF121a, VEGF121b and 

VEGF155a while VEGF155b and VEGF165b had no stimulatory effect (Fig 38A). The effect of 

combining VEGF165a (250 pM) with either VEGF165b or VEGF155b (1 nM) was also evaluated. 

Surprinsingly, the effect of VEGF165a was suppressed by the two VEGFxxxb variants and the 

proliferation rate returned to control levels. These results were confirmed by using a [3H]-

thymidine incorporation assay (data not shown). 

 

It was previously suggested that VEGF165b favours endothelial cells survival despite its 

reduced effect on VEGF-R2 signalling pathway (Woolard et al., 2004). This was clearly 

confirmed here as it had the same activity as VEGF165a and VEGF111a used as positive 

controls. VEGF111b was also active (Fig 38B).      
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Figure 38 : Effect of VEGF variants on HUVEC proliferation and survival 

HUVEC were seeded in complete medium during 16h. They were then washed before being cultured 
for 48h: (A) in a medium containing 0.5% FBS or (B) in a medium containing 0.1% FBS with or 
without 250pM of VEGF variants in order to evaluate (A) their proliferation or (B) their survival, 
respectively. -: Control medium; H: 1µg/ml heparin; FBS: Foetal Bovine Serum; 111a: VEGF111a; 
111b: VEGF111b; 121a: VEGF121a; 121b: VEGF121b; 155a: VEGF155a; 155b: VEGF155b; 165a: 
VEGF165a; 165b: VEGF165b; 165a + 4x 155b: 250pM VEGF165a mixed with 1nM VEGF165b; 165a + 4x 
165b: 250pM VEGF165a mixed with 1nM VEGF155b; *p<0.05, **p<0.01, ***p<0.001 (t-test of Student, 
sample versus control or between two specific conditions indicated by the bar). 
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IV-3 Effect of VEGF variants on endothelial cells migration 

Various VEGF isoforms, alone or in combination, were evaluated for their capacity to induce 

the migration of HUVEC in Boyden chambers assay. A strong activity was observed for 

VEGF111a, VEGF111b and VEGF165a (Fig 39). By contrast, VEGF165b was not chemotactic 

and was further able to inhibit the VEGF165a-induced migration. The addition of an antibody 

specific for the VEGFxxxb isoforms inhibited the chemotactic activity of VEGF111b and the 

inhibitory function of VEGF165b, further strengthening the data obtained in cell proliferation 

assay.  

 

 

 

Figure 39 : Effect of VEGF variants on HUVEC migration 

The chemotactic effect of VEGF variants were assessed in a Boyden chambers assay. VEGF 

isoforms were used alone (1 nM) or in association (1 nM each). In some conditions the VEGFxxxb 

antibody was added (1 nM). The percentage of migrating cells was calculated as described in Material 

and Method. 111a: VEGF111a, 111b: VEGF111b, 165a: VEGF165a, 165b: VEGF165b, Abxxxb: Specific 

antibody directed against VEGFxxxb isoforms. ** p<0.01 (t-test of Student, sample versus control), +++ 

p<0.001 (t-test of Student, between two specific conditions indicated by the bar). 
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IV-4 Role of exon 5 binding to NRP1 in VEGF effects in vitro 

In VEGF-A, the E5-encoded domain is involved in binding to NRP1 and HSPG (Fig 22, 24, 

28-30). Its role as an inducer of the VEGF-R2 signalling cascade was investigated in culture 

by the use of the R8R mimetic peptide. Endothelial cells were pre-treated with the R8R 

peptide before supplementing the medium with VEGF165a. In PAEC-R2, the peptide did not 

modify the VEGF165a-induced phosphorylation of VEGF-R2 (Fig 40A, 40C), which was 

expected as these cells do not express NRP1. By contrast, in similar conditions the peptide 

markedly reduced the VEGF-R2 activation in PAEC-R2-NRP1 (Fig 40B, 40D). Most 

importantly, R8R was also able to inhibit the VEGF165a-induced proliferation of HUVEC (Fig 

40E) to a rate similar to that observed with VEGF111a, confirming the antagonistic effect of 

the E5-mimetic peptide and the implication of the E5-encoded domain on the NRP1 function. 

 

Figure 40 Effect of R8R on VEGF-induced signalling in vitro 

(A) PAEC-R2 and (B) PAEC-R2-NRP1 were treated for 10 min at 37°c with 1 nM of VEGF111a or 1nM 
of VEGF165a in the absence or presence of R8R (300µM). Protein extracts were then analyzed by 
Western blot using VEGF-R2 (R2 tot) and phospho-VEGFR2 (P-R2) specific antibodies (C, D). 
Calculated P-R2/R2 ratio in (C) PAEC-R2 and (D) PAEC-R2-NRP1. (E) HUVEC proliferation was 
measured by WST-1 assay in absence of VEGF, in the presence of VEGF111a (250 pM), in the 
presence of VEGF165a (250pM), or in the presence of both VEGF165a (250 pM) and R8R (300µM). 
Only statistics related to the effects of R8R are reported.  **p<0.01, ***p<0.001 (t-test of Student). 
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IV-5 Cytoprotective effect of VEGF isoforms on RPE cells   

VEGF165b was reported to be cytoprotective in retina (Magnussen et al., 2010) as it protects 

retinal pigment epithelial cells (RPE cells) from apoptosis induced by toxic doses of 

ketocholesterol. This previously published protocol was used to assess the effect of 2.5nM of 

VEGF111a, VEGF111b, VEGF165a or VEGF165b. 

In immortalized retinal ARPE19 cells, the addition of all isoforms, including VEGF165b, 

induced a 1.5-fold increase of cell viability after ketocholestrerol treatment, which is similar to 

the effect observed with EGF used as a positive control (Fig 41A). The protective effect was 

also indirectly confirmed by LDH release in the culture medium (Fig 41B). A similar trend 

was observed with primary RPE cells, although VEGF isoforms were slightly less active than 

EGF (Fig 41C). Altogether these data suggest that VEGF111a, VEGF111b, VEGF165a and 

VEGF165b conferred a survival advantage to the retinal epithelial cells, which could benefit to 

therapy of eyes diseases. 

 

Figure 41 Effect of VEGF variants on cytoprotection of retinal epithelial cells 

(A, B) ARPE19 and (C) RPE cells were treated with a toxic concentration of ketocholesterol (18 µM) 
and VEGF variants or EGF as described in Material and Methods. Cells viability was evaluated using 
(A, C) The WST-1 colorimetric method and (B) measurement of the LDH released in the medium. 
ARPE19: Spontaneously Arising Retinal Pigment Epithelial Cells; Primary RPE: Primary Retinal 
Pigment Epithelial Cells, -: control, 111a: VEGF111a, 111b: VEGF111b, 165a: VEGF165a, 165b: 
VEGF165b, EGF: Epidermal Growth Factor. Statistical difference between control and treated cells: 
*p<0.05, ** p<0.01, ***p<0.001, paired t-test. 
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V- VEGF isoforms generate different patterns of angiogenesis in vivo. 

 

HEK293 cells transfected with the empty vector or expressing the various VEGF isoforms at 

a similar level in vitro were used to locally deliver recombinant VEGF variants in nude mice. 

Animals were weighed during the entire experiment. No significant weight variation was 

noted among the different groups, as it was previously observed for VEGF111a, VEGF121a 

and VEGF165a (Mineur et al., 2007). After three weeks, mice were sacrificed and tumours 

were dissected. The overall level of human VEGF produced in vivo by HEK293 cells was 

measured in the tumours at the mRNA level. Primers (P1-P2) enabling amplification of 

sequence between E2 to E4 of the human but not the mouse transcripts were used (Table 

3). No significant difference of VEGF mRNA levels was observed among the various groups 

injected with VEGF-expressing HEK293 cells while no signal was detected in the group 

injected with control cells (Fig 43A). Immunodetection using a VEGF antibody showed an 

intense and similar labelling in the tumour tissue for all the VEGF isoforms (data not shown) 

confirming the RT-PCR quantifications. By using primers specific for each of the VEGFxxxa 

(P3-P4) or VEGFxxxb subfamily (P5-P6, P7-P8 and P9-P10) (Table 3), we validated also the 

identity of the expressed VEGF variants (not illustrated).   
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Tumours and surrounding tissues were examined macroscopically. The most obvious 

differences were the intense reddish colour of the VEGF165a and VEGF121a tumours 

compared to the others, and the formation of a dense network of small capillaries in the 

dermis close to tumours, especially those expressing VEGF111a or VEGF111b (Fig 42A). The 

number of vessels, their size and their partition between the tumours and surrounding 

tissues were also evaluated by immunolabelling using anti-mouse CD31 antibodies (Fig 42B, 

42C). Control tumours contained a low number of small blood vessels that were however 

functional based on the presence of red blood cells (not shown). As expected from 

macroscopic observation, vessels density was high within the tumour in the VEGF165a and 

VEGF121a mice, while it was scarce in VEGF111a, VEGF111b and VEGF121b tumours. Slightly 

higher levels were induced by VEGF155b and VEGF165b, and intermediate levels were seen 

in VEGF155a expressing tumours. To substantiate these observations, the surface of positive 

CD31 labelling was measured and expressed in the percentage of the total surface of the 

tumoural tissue present in the sections. It was significantly higher in VEGF121a and 

VEGF165a, and to a lesser extent in VEGF155a tumours as compared to the control tumours 

(Fig 43B). VEGF165b and VEGF155b were active, although markedly less than their VEGF165a 

and VEGF155a counterparts, while VEGF111a, VEGF111b and VEGF121b expression did not 

significantly increase the intratumoural CD31-positive surface, as compared to controls. By 

contrast, the ranking for the number of vessels in the skin adjacent to the tumours was 

VEGF111a = VEGF111b > VEGF121a > VEGF155b = VEGF165a = VEGF165b = VEGF155a > 

VEGF121b = control (Fig 42B, 42C and Fig 43C).   

 

 

Figure 42 : Effects of VEGF variants on in vivo tumour angiogenesis using HEK293 cells 
expressing the various VEGF isoforms 

Two millions HEK293 cells, transfected with the empty vector (control) or expressing the VEGF 
variants, were mixed with Matrigel and injected in the flanks of nude mice. (A) Macroscopic view of 
the tumours formed in each group. (B) CD31 immunostaining showing the presence of blood vessels 
in the tumour (T) and the adjacent skin (S) (scale bar = 100µm). (C) Enlarged view of the region 
delineated by the rectangle in each picture shown in (B) (scale bar = 25 µm). Staining of (D) type IV 
collagen and (E) α-SMA in regions where angiogenesis was the highest (scale bar = 25 µm). (Page 

111) 
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Figure 43 : Quantification of the effects of VEGF variants in tumour angiogenesis using 
HEK293 cells expressing the various VEGF isoforms 

Two millions HEK293 cells, either control or expressing VEGF variants, were mixed with Matrigel and 
injected in the flank of nude mice. (A) The VEGF mRNA levels (upper panel) were measured by RT-
PCR using primers P1 and P2 (see Table 1) that enable the amplification of all the VEGF variants 
with production of a single amplicon. The 28S rRNA was measured in parallel to normalize the 
quantities of RNA input in the reactions. * indicates the amplicon formed from an internal standard co-
amplified with 28S rRNA to take into account potential variations of the PCR efficiency. Percentages 
of the CD31 stained surfaces in (B) the tumour or (C) the adjacent skin were quantified using Image J 

software.  * p<0.05, ** p<0.01, *** p<0.001 (unpaired t-test).  

 

Maturation of the blood vessels was also investigated by immunostaining of the basement 

membrane (type IV collagen) and α-SMA positive pericytes. Whatever the conditions, the 

majority of the formed vessels were delineated by a basement membrane (Fig 42D). Striking 

differences were however observed by staining of α-SMA (Fig 42E).  Positive cells were 

found mainly in the vessels growing in or around the tumours expressing VEGF165a. They 

were also found although at a much reduced level, in the presence of VEGF155a and 

VEGF121a. They were almost totally absent in other samples, notably those expressing 

VEGF165b. 

Effect of tumour expressing VEGF variants on mice physiology 

Toxicity triggered by HEK cells, either control or expressing VEGF111a, VEGF111b, VEGF165a 

or VEGF165b, on nude mice (4 mice per group) was evaluated using different parameters. 

The weekly monitoring showed healthy animals with a normal general examination, pink 
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mucosae, normal hydration and absence of ascite. After death, control of organs did not 

identify any hepatomegaly or splenomegaly in mice bearing VEGF tumours except for 

VEGF111a mice which displayed a slightly higher spleen weight (1.20 ± 0.04 time the weight 

of the control spleen). Hepatic enzymes as well as complete blood counts were similar 

between the groups (not illustrated). 

Diffusibility of VEGF variants in Matrigel ex vivo 

The formation of dense network of small capillaries in healthy tissues close to the tumor and 

the absence of significant intra-tumoural vascularisation are highly specific to HEK293 cells 

expressing either VEGF111a or VEGF111b. This particularity is probably related to an 

increased “diffusibilty” of these variants. As HEK293 cells forming tumours in mice are 

injected in suspension in Matrigel, we further evaluated the diffusion of VEGF variants out of 

Matrigel matrix. Solutions of Matrigel containing the different VEGF isoforms (1 nM) were 

poured in 12-wells plate and polymerized at 37°c. Serum free culture medium was then 

added in the wells and the VEGF progressively released from Matrigel into the medium was 

quantified by ELISA (Fig 44). Maximal concentrations, indicative of an equilibrium between 

the VEGF present in the Matrigel and in the medium, were found within 2-4 hours for 

VEGF111a and later (8h-20h) for other tested isoforms. Although indirect, this semi-

quantitative evaluation shows again an increased diffusion for VEGF111a, VEGF111b having 

not been evaluated in this assay. 

 

 

Figure 44 : Diffusion of VEGF from Matrigel in vitro 

Matrigel solution (200 µl) containing VEGF variants (1nM) were polymerized in 12-wells plate and 
covered by serum free medium (200µl). VEGF released in the culture medium was quantified by 
ELISA after increasing incubation times (2 to 20 hours). Maximum concentration in the conditioned 
medium was observed already after 2-4 hours for VEGF111a and at later time points for the other 
isoforms. 



Results 

115 
 

Effect of the combination of VEGFxxxa and VEGFxxxb on angiogenesis in vivo 

Based on our observations that VEGF165b was able to significantly inhibit VEGF165a-induced 

proliferation and migration in vitro (Fig 38A and Fig 39), we evaluated if a similar repression 

also occurred in vivo. A total number of 2 x 106 HEK293 cells expressing VEGF165a and 

VEGF165b were injected at ratios of 1:1 or 1:4 (Fig 45). The observed patterns of 

angiogenesis were intermediate to those observed when VEGF165a or VEGF165b were 

expressed alone and seemed to result from the actual abundance of each isoform rather 

than to inhibition of the effect of VEGF165a by VEGF165b. The observations were similar for 

VEGF121a and VEGF121b. 

 

 

 

Figure 45 : Effects on tumour angiogenesis of co-expressing VEGF165a and VEGF165b or 
VEGF121a and VEGF121b 

Two millions HEK293 cells were mixed with Matrigel and injected in the flank of nude mice. In addition 
to control cells, mixture of HEK293 cells expressing VEGF165a and VEGF165b were evaluated, either 1 
x 10

6
 each (165a + 165b) or 4 x 10

5
 expressing VEGF165a and 1.6 x 10

6
 expressing VEGF165b (165a + 

4x165b). See Fig 40 for comparison with cells expressing only VEGF165a or VEGF165b.  The same 
experiment was performed for VEGF121a and VEGF121b (A) Macroscopic view of the tumours 
obtained in each group. Control (n=5), 121a+121b (n=5), 121a+4x121b (n=5), 165a+165b (n=4), 
165a+4x165b (n=5) (B) CD31 immunostaining on paraffin sections showing the tumour (T) and the 
adjacent skin (S) (scale bar = 100 µm). Black lined rectangles delineate the areas of the sections 
represented in (C) at higher magnification (scale bar = 25µm).  
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VI- As Opposed to VEGF165b, VEGF111b does not inhibit pathologically 

induced neovascularization in the eyes. 

 

As the pro-angiogenic effect of a VEGFxxxb isoform was not initially expected, we further 

evaluated VEGF111b in other in vivo models that previously allowed to demonstrate the 

specific properties of VEGF165b in reducing neovascularization in ocular models (Hua et al., 

2010; Magnussen et al., 2010).  

 

VI-1 Choroidal Neovascularization 

Choroidal neovascularization (CNV), a model of Age-related Macular Degeneration (AMD), 

was induced by LASER-photocoagulation in mice. The damaged eyes were then treated by 

injection of PBS, VEGF111b or VEGF165b. VEGF165b injection significantly inhibited 

neovascularization as compared with PBS (0.97 ± 0.34 x 104 µm² vs 2.62 ± 0.50 x 104 µm²) 

(Fig 46A, 46B). By contrast, VEGF111b did not inhibit neovascularisation and even induced a 

slight, although not statistically significant, increase of the neovascularized area (4.76 ± 1.28 

x 104 µm²) as compared to control eyes. 

 

VI-2 Oxygen Induced Retinopathy 

Oxygen Induced Retinopathy (OIR) in rat pups is a model of Retinopathy of Prematurity. In 

this assay, VEGF165b reduced pathological angiogenesis similarly to what was observed in 

the CNV model (Magnussen et al., 2010) (Gammons et al., unpublished data). By contrast, 

treatment with VEGF111b stimulated neo-vascularization as compared to PBS-treated eyes 

(Fig 46C). The diameter and the tortuosity of the vessels were however not affected. 
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Figure 46 : Effect of VEGF111b and VEGF165b on pathologically induced neovascularization in 
eye models 

(A, B)  Choroidal Neovascularization was induced in mice by LASER impacts and the eyes were 
injected with PBS, VEGF111b or VEGF165b immediately and 7 days later. (A) Representative pictures 
of the choroid after isolectin B4 immunofluorescence staining (scale bar = 50 µm). (B) Quantification 
of the area of neovascularization. (C) Oxygen Induced Retinopathy was induced in rats.  For each rat, 
one eye was injected with PBS and the other with 10 ng of VEGF111b, allowing paired comparisons 
(represented by lines). Quantification of the number of Intravitral Neovascularization (IVNV) per clock 
hour. Open circles represent quantifications in individual samples and black circles the mean. * 
p<0.05, (OIR, paired t-test of Student). ** p<0.01 ; *** p<0.001 (CNV, t-test of Student). CNV: 
Choroidal Neovascularization; OIR: Oxygen Induced Retinopathy; 111b: VEGF111b; 165b: VEGF165b. 
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VII- Effects of the different isoforms on vascular permeability in vivo 

Based on data of a preliminary dose-response experiment using VEGF165a (not shown), 50 

ng of the different VEGF isoforms were injected intradermally followed by an intravenous 

delivery of Evans’ blue dye. As compared to PBS controls, an increased permeability close 

to the site of injection was observed for VEGF111a, VEGF111b, VEGF121a, VEGF155a and 

VEGF165a while the effect of the other variants was not statistically significant (Fig 47A). The 

total surface of skin displaying an increased permeability is also an interesting parameter.  

Although hard to precisely quantify because of the difficulties to define the exact border 

between affected and non-affected skin, it clearly appeared that VEGF111a and VEGF111b 

were active at a longer distance than the other isoforms as shown in a representative 

example for VEGF111a and VEGF165a (Fig 47B), suggesting higher diffusibility. 

 

Figure 47: In vivo vascular permeability 

A Miles and Miles modified assay was used to evaluate vascular permeability induced by the VEGF 
variants. (A) Quantification of the Evans’ blue dye in the skin surrounding the site of injection (~ 20 
mm

2
). The results were normalized for the weight of the skin samples and compared to the PBS 

control in each mouse. (B) Picture of the back of a mouse injected with VEGF111a, VEGF165a and 
PBS. Areas of increased vessel permeability were delineated with a black dotted line. 111a: 
VEGF111a, 111b: VEGF111b, 121a: VEGF121a, 121b: VEGF121b, 155a: VEGF155a, 155b: VEGF155b, 
165a: VEGF165a, 165b: VEGF165b. * p<0.05, ** p<0.01 and *** p<0.001, (t-test of Student). 
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VIII- Pharmacokinetic and toxicology of VEGF variants in vivo 

VIII- 1 Half-life of VEGF variants in vivo 

The half-life in vivo of VEGF111a, VEGF111b, VEGF165a and VEGF165b was evaluated after 

intra-venous (IV), intra-peritoneal (IP) or subcutaneous (SC) injections in mice. Their 

plasmatic concentration was quantified using an ELISA specific for human VEGF (Table 5A). 

After IV injection, half-life of VEGF165b (12 ± 1 min) was the shortest and similar to the 

previously published values (12 min (Rennel et al., 2008); 13.2 min (Zhu et al., 2012)). The 

half-lifes of the other isoforms were slightly higher, ranging between 20 and 30 min. 

After IP injections, the isoforms with the longest and the shortest half-life were VEGF111a and 

VEGF165b, respectively, while after SC administration the ranking was VEGF111a > VEGF111b 

> VEGF165a > VEGF165b. Altogether, these data show that the variants possessing the 6 

amino acids encoded by exon 8b have a reduced half-life as compared to the equivalent 

variants possessing the alternative E8a-derived sequence. Moreover, these results highlight 

that the lack of the sequence encoded by E5 and E7 in VEGF111a confers an increased half-

life in vivo, likely related to the resistance to degradation or to reduced interactions with the 

ECM. 

 

Table 5 : Variations in the plasmatic concentrations of VEGF variants after different types of 

administration 

 A                                                                              B 

Half-life in blood stream (min)  
Maximal Plasmatic concentration (ng/ml) 

after non-systemic injection 

 
Method of injection  

 
Method of injection 

IV IP SC  IP SC 

VEGF111a 21±2 113±39 100±13  VEGF111a 35.0±8.1 37.2±11.8 

VEGF111b 29±8 38±5 72±19  VEGF111b 31.7±10.1 36.6±6.1 

VEGF165a 28±4 48±5 52±12  VEGF165a 9.6±3.1 8.0±3.7 

VEGF165b 12±1 14±5 25±12  VEGF165b 11.5±4.2 4.7±1.7 

 

IV: Intravenous, IP: Intraperitoneal, SC: Subcutaneous. 
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The release from the site of injection into the blood stream is another critical parameter to be 

considered for evaluating the potential effects of VEGF variants in vivo. The maximal 

plasmatic concentrations were detected after 1 to 2 hours for all the variants. Marked 

differences were however observed when considering the actual concentration at the peak 

(Table 5B). Data clearly demonstrate that VEGF111a and VEGF111b can diffuse more 

efficiently than VEGF165a and VEGF165b. 

 

The ability of VEGF111a and VEGF165a to diffuse in vivo was investigated in another model. 

The purified VEGF were injected under the skin of mice. After 8 hours tissues around the 

site of injection were recovered, total proteins were extracted and VEGF concentrations 

were determined. As compared to VEGF165a, the local concentration of VEGF111a was 

reduced confirming its increased diffusibility (Fig 48). 

 

 

Figure 48 : VEGF111a and VEGF165a diffusion in 
the skin in vivo  

VEGF111a and VEGF165a were injected 
subcutaneously. After 8h, proteins were extracted 
from the site of injection and the VEGF 
concentrations were measured. The results are 
reported as the ratio to total protein concentrations. 
** p<0.01, t-test of Student. 

 

 

 

VIII-2 Pathophysiological effects of VEGF variants in vivo  

Xue and collaborators reported that daily subcutaneous injections of 4 µg of VEGF165a for 14 

days induced splenomegaly and hepatomegaly (Xue et al., 2008). Later, they observed the 

similar effects in mice bearing tumor overexpressing VEGF165a together with increased 

hepatic parameters, ascite, anemia and bone-marrow defects (Xue et al., 2009). As we 

never saw such phenotype in our models of tumour angiogenesis, we decided to further 

characterize the effects of chronic injection of VEGF.  

4 µg of VEGF (VEGF111a, VEGF111b, VEGF165a, VEGF165b) or PBS were daily injected 

during 14 days in the neck of C57Bl6 mice. Every day monitoring of animals showed that 

they were healthy (normal general aspect, pink mucosae, absence of ascite, normal 
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hydration, for example). No death was recorded during the experiment. At the end of the 

experiment, blood samples were collected and mice were sacrificed and dissected. Spleen 

and liver had a similar weight in all groups. Different organs and tissues were fixed and 

embedded in paraffin. Hematoxylin-eosin staining did not reveal any striking difference 

among the mice. Blood cell populations were similar in all the conditions and hepatic 

markers (ALT and AST) did not show any liver alteration induced by VEGF treatment. 

Altogether these data demonstrate that a prolonged treatment with VEGF injected at a dose 

more than 100 times higher than the physiological concentration did not induced anemia, 

inflammation, liver failure or any other obvious side effect. 

Subcutaneous tissues close to the site of injection were also analyzed. They contained more 

blood vessels, as determined by CD31 immunostaining, for mice treated with VEGF111a, 

VEGF111b and VEGF165a than in the VEGF165b and PBS groups (not illustrated). 

 

 

IX- Effect of the combination of VEGF111a and VEGF165a on 

angiogenesis in vivo 

To evaluate any potential synergistic effects between VEGF111a and VEGF165a on 

angiogenesis in vivo, HEK293 cells expressing VEGF111a or VEGF165a were injected either 

simultaneously or alone as a control in nude mice. Tumours expressing both VEGF111a and 

VEGF165a were reddish and the adjacent skin invaded by numerous blood vessels (Fig 49A). 

An enlargement of the lateral thoracic vein was also seen, but at a lesser extent than with 

VEGF111a alone. This is probably due to the number of cells expressing VEGF111a: 2x106 in 

VEGF111a group alone as compared to 1x106 in “VEGF111a+VEGF165a” group. 

Microscopically, invasion of small and immature vessels (CD31+, α-SMA-) in the 

peritumoural tissue and formation of large vessels surrounded by pericytes inside or close to 

the tumour (CD31+, α-SMA+) were observed which was  indicative of an addition of the 

effects mediated by the two VEGF isoforms (Fig 49B, 49C). 
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Figure 49 : Tumour angiogenesis by cells co-expressing VEGF111a and VEGF165a 

Two millions HEK293 cells, transfected with the empty vector (control) or expressing one or both 
VEGF variants, were mixed with Matrigel and injected in the flanks of nude mice. (A) Macroscopic 
view of the tumours obtained in some groups. Control (n=4), VEGF111a (n=4), VEGF111a + VEGF165a 
(1x10

6
 HEK cells expressing VEGF111a and 1x10

6
 HEK cells expressing VEGF165a, n=6). (B) CD31 

immunostaining of paraffin sections showing the tumour (T) and the adjacent skin (S) (scale bar = 100 
µm). (C) α-SMA immunostaining showing the presence of pericytes (scale bar = 100µm). 
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X- Development of new VEGF variants 

The development of efficient pro-angiogenic therapies would probably benefit from the use 

of VEGF variants possessing complementary specific properties. As an example the use of 

variants displaying different affinities for the ECM should favour the formation of VEGF 

gradients for recruiting and guiding vessel sprouts. The development of a VEGF variant able 

to stimulate the VEGF-R2 signalling cascade while displaying no affinity for VEGF-R1 would 

also be worth testing as VEGF-R1 is believed to be a competitor for VEGF-R2 when 

expressed as a soluble form or at the endothelial cell surface. 

 

IX-1 VEGF179a and VEGF179b  

VEGF189a is mainly characterized by its high affinity for matrix components, due to the 

presence of the E6a-encoded domain (Houck et al., 1992; Park et al., 1993). This is a key 

property for forming gradient especially when co-expressed with more diffusible variants. It is 

however sensitive to proteolysis (Plouet et al., 1997). As VEGF111a and VEGF111b, are 

resistant to degradation presumably because of the absence of the E5-encoded domain, we 

produced VEGF179a and VEGF179b variants that are identical to VEGF189a and VEGF189b, 

excepted for the absence of the 10 amino acids coded by E5 (Fig 50A). 

 

Their characterization is ongoing. As expected, both isoforms are mainly found associated 

with the cell layer in normal culture conditions but they can be released in the culture 

medium in the continuous presence of heparin (Fig 50B). For each variant 2 to 3 major 

products were identified by Western Blot: the full size glycosylated product (≈ 31 kD) and 

lower molecular weight bands (≈ 22 kD and 20 kD) likely corresponding to cleaved products. 

The size of these products together with the fact that only the native form of VEGF179b is 

recognized by VEGFxxxb antibody (Fig 50C) suggest that cleavages occur in the E6a-derived 

basic domain. We are currently developing a procedure, combining Avastin-Sepharose and 

Heparin-Sepharose Chromatography, for purifying the full-size VEGF179a and VEGF179b as 

illustrated in Fig 50D. 
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Figure 50 : Production and purification of VEGF179a and VEGF179b  

 (A) VEGF179a and VEGF179b can be considered as VEGF189 variants lacking the E5-encoded 
sequence. (B) Western blot analyses (panVEGF antibody) of conditioned medium (left panel) and 
cell layer (right panel) of HEK cells expressing VEGF179a cultured in presence (H) or  absence (-) of  
heparin (50µg/ml). (C) Western blot analyses of conditioned medium of HEK cells expressing 
VEGF165a, VEGF179a or VEGF179b using panVEGF antibody (left panel) and VEGFxxxb antibody 
(right panel). VEGF179a and VEGF179b are both detected as a full size glycosylated product (≈30 kD) 
and smaller products probably resulting from proteolytic cleavage in the E6a-encoded domain (≈22 kD 
and 20 kD). (D) Western-blot (panVEGF antibody) of the different fractions collected during a Heparin 
Sepharose Chromatography of the conditioned medium from HEK293 expressing VEGF179a. Two 
exposures times (10 sec and 1 min) are shown. The cleaved products did not bind while the full size 
VEGF179a was eluted at 1 M NaCl. 165a: VEGF165a, 179a: VEGF179a, 179b: VEGF179b, CM: 
Conditioned Medium, NB: Not Bound fraction. 

 

Effect of VEGF179a and VEGF179b in vivo 

Besides the still ongoing in vitro characterizations of VEGF179a and VEGF179b, they were 

also used in vivo in the model of HEK293 cells implanted in nude mice. After 3 weeks, 

tumours expressing  VEGF179a or VEGF179b had the same general appearance as tumours 

expressing VEGF165a and VEGF165b, respectively (Fig 51A). Immunostaining of endothelial 

cells (CD31, Fig 51B) or smooth muscle cells /pericytes (α-SMA, Fig 51C) was in agreement 

with the macroscopic observations. The vascular network consisted in enlarged vessels 
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covered by α-SMA positive cells for VEGF179a and VEGF165a while vessels were much 

smaller and immature for VEGF179b as also observed for VEGF165b.  

Altogether these data show that the presence of the E6a-encoded domain does not modify 

the VEGF-induced angiogenesis, at least in this model. 

  

Figure 51 : In vivo tumour angiogenesis induced by VEGF179a and VEGF179b 

Two millions HEK293 cells, transfected with the empty vector (control) or expressing different VEGF 

variants, were mixed with Matrigel and injected in the flanks of nude mice. In this experiment, tumours 

expressing VEGF165a or VEGF165b were used as reference controls for VEGF179a and VEGF179b, 

respectively (A) Macroscopic view of the tumours obtained in each group. Control (n=5), VEGF165a 

(n=6), VEGF165b (n=6), VEGF179a (n=4), and VEGF179b (n=6). (B) CD31 immunostaining showing the 

presence of blood vessels in the tumour (T) and the adjacent skin (S). (C) α-SMA immunostaining 

showing the presence of pericytes (scale bar = 100µm). 

IX-2  VEGF111a-R1m 

As VEGF-R1 is considered as a decoy receptor for VEGF at endothelial cell surface and, 

consequently, as an inhibitor of VEGF signalling in angiogenesis, we designed, produced 

and purified VEGF111a-R1m, a VEGF111a mutated at the three critical sites for VEGF-R1 

binding (Asp63 mutated in Ala, Glu64 in Ala and Glu67 in Ala). In a preliminary experiment, 

VEGF111a-R1m significantly triggered VEGF-R2 and ERK1/2 phosphorylation as compared 
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to a negative control (not illustrated). This showed that the variant was active on 

angiogenesis at least in vitro. The effects of VEGF111a-R1m and VEGF111a were also 

compared in the HEK293 tumour model. VEGF111a-R1m displayed the same pattern of 

vascularization as the native VEGF111a with the formation in the adjacent skin of the tumour 

of a dense network of small blood vessels (Fig 52), not covered by pericytes as highlighted 

by an absence of staining with an anti-α-SMA immunostaining (not illustrated). 

 

 

Figure 52 : In vivo tumour angiogenesis induced by VEGF111a-R1m 

Two millions HEK293 cells, transfected with the empty vector (control) or expressing the VEGF 
variants, were mixed with Matrigel and injected in the flanks of nude mice. (A) Macroscopic views of 
the tumours obtained in each group. Control (n=4), VEGF111a (n=4), VEGF111a-R1m (n=6). (B) CD31 
immunostaining in the tumour (T) and the adjacent skin (S) (scale bar = 100 µm). Black lined 
rectangles delineate the areas of the sections represented in (C) at higher magnification (scale bar = 

25µm). 
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XI- Endocan as a marker of the activity of the VEGF variants 

Although the VEGF variants display specific effects in vitro and in vivo, it is not clear yet how 

regulations operating through a single receptor (VEGF-R2) can be responsible for such 

diverse responses. Endocan is a dermatan sulphate proteoglycan that promotes the activity 

of HGF (Sarrazin et al., 2006). It has been reported to be induced by VEGF in endothelial 

cells (Rennel et al., 2007). As a proteoglycan, endocan could also influence the cell 

response to VEGF by functioning as a co-receptor displaying preferential affinities for some 

specific VEGF variants. We therefore evaluated the induction of endocan secretion by our 

variants as an additional tool for comparing their biological activity. Its affinity towards VEGF 

receptors and co-receptors is currently under investigation. 

XI-1 Stimulation of endocan synthesis by VEGF 

HUVEC were treated with 1nM of VEGF variants for 24h or 48h. Endocan concentrations in 

the conditioned medium were quantified by ELISA (Fig 53). VEGF165b did not stimulate 

endocan secretion while VEGF165a was the most active (2.6-fold stimulation). Lower but still 

significant stimulations were observed for other variants (2-fold stimulation). Similar trends 

were observed after 48 hours (not shown) and were in good correlation with the proliferation 

assay data (Fig 38). 

 

Figure 53 : Secretion of endocan from endothelial cells treated with VEGF variants 

HUVEC were treated for 24h with 1nM of VEGF variants. Endocan secreted in the conditioned 
medium (CM) was quantified by ELISA. 111a: VEGF111a, 121a: VEGF121a, 155a: VEGF155a, 165a: 
VEGF165a, 165b: VEGF165b. * p<0.05, ** p<0.01 and *** p<0.001 (t-test of Student). 
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XI-2 Binding of Endocan to VEGF-receptors and co-receptors 

By SPR analyses, endocan was found to bind with high affinity to heparin (Fig 54) but not to 

VEGF-R2 or NRP1 (not illustrated). Binding was never observed when the two constituents 

of endocan, the protein core and the dermatan sulphate side chain, were injected separately. 

Future studies will evaluate the binding of VEGF variants on endocan and the effect of 

endocan on the formation of large complexes involving heparin, VEGF-R2 and NRP1. 

  

Figure 54 : Binding of endocan to heparin 

Binding of endocan (40 nM) to heparin was measured by Surface Plasmon Resonance. (A) HBS-EP 
buffer, (B) Endocan full size, (C) dermatan sulfate side chain alone, (D) endocan core protein alone 
(E) or VEGF165a (40nM), used as a positive control, were injected for ~250 seconds followed by 

injection of HBS-EP buffer in order to visualize the dissociation rate. RU: Response in arbitrary units.  
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VEGF is considered as a promising molecule for treating ischemic diseases whereas 

inhibiting its activity has found beneficial therapeutic applications in ocular diseases and 

cancers. VEGF is produced as several different isoforms resulting from a dynamic 

mechanism of alternative splicing of the primary transcript. The roles of the amino-terminal 

domains encoded by the exons 1 to 4 are well-established. They contain the signal peptide, 

dimerization and glycosylation sites as well as the binding domains to VEGF-R1 and VEGF-

R2. The functions of the C-terminal domains are also becoming more characterized. For 

example, a limited proteolytic processing (mainly in the E5-encoded sequence) is required 

for the release and the bioavailability of the VEGF variants firmly immobilized in the ECM by 

their E6a-encoded domain (Keyt et al., 1996a; Lee et al., 2005; Plouet et al., 1997). The C-

terminal part of VEGF is also required for interactions with NRP1. A role for the 6 amino 

acids encoded by E8a has been demonstrated but potential participation of other domains 

are still controversial (Cebe-Suarez et al., 2008; Cebe Suarez et al., 2006). An additional, 

but possibly related, controversy concerns the activity of the VEGF isoforms produced by 

differential splicing of E8 into E8a or E8b, the latter resulting in a VEGF subfamily referred to 

as VEGFxxxb (Bates et al., 2002; Harper and Bates, 2008). Although these variants were 

largely reported as anti-angiogenic (Bates et al., 2002; Hua et al., 2010; Rennel et al., 

2009b; Woolard et al., 2004), a recent publication reports a weak pro-angiogenic effect of 

VEGF121b and VEGF165b (Catena et al., 2010). 

To explore the functions of the C-terminal part of the VEGF-A protein, we generated and 

characterized the properties of a set of variants translated from mRNA containing exons 1-4, 

a combination of exons 5 to 7 and exon 8a or exon 8b: VEGF111a, VEGF111b, VEGF121a, 

VEGF121b, VEGF155a, VEGF155b, VEGF165a, VEGF165b, VEGF179a and VEGF179b. VEGF165a 

and VEGF121a are the two most abundant pro-angiogenic isoforms (Ferrara, 2010) while 

VEGF165b and VEGF121b are the two most largely described endogenous VEGFxxxb 

isoforms. VEGF111a is the shortest isoform produced by alternative splicing that still contains 

the binding sites for VEGF-R1 and VEGF-R2 (Mineur et al., 2007). The other variants 

(VEGF111b, VEGF155a, VEGF155b, VEGF179a and VEGF179b) have not been observed 

endogenously but were designed here as tools to investigate the functions of the different 

domains and to evaluate their potential therapeutic interest. All these variants possess the 

Cys residues required for the dimerization of VEGF and the Cystine knots that participate in 

the correct folding of the protein (Iyer and Acharya, 2011; Muller et al., 2002). To reduce the 

possibility of inappropriate folding and/or glycosylation, two features that could alter the 

properties of our recombinant growth factors, the different VEGF isoforms were produced in 

human cells. The data obtained during this work have been summarized (table 8) for 
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facilitating the understanding of the following discussion. VEGF111a, VEGF111b, VEGF121a, 

VEGF121b, VEGF155a, VEGF155b, VEGF165a and VEGF165b were systematically compared for 

their physical interactions with receptors and co-receptors and their biological effect, in cell 

culture and in vivo. VEGF179a and VEGF179b were produced more recently, which explain 

why their characterization is only partial. The discussion will address more specifically new 

insights provided by our work concerning the function of the C-terminal domain of VEGF-A 

isoforms. 

I- The domain encoded by E8a cooperates with upstream sequences 

for NRP1 and heparin binding 

NRP1 is a co-receptor for several factors, including VEGF. The formation of a complex 

between VEGF-R2, VEGF and NRP1 strengthens VEGF-R2 phosphorylation, downstream 

signalling pathways and angiogenesis (Soker et al., 2002). Amongst the most abundant 

isoforms, VEGF165a (E1-4, 5, 7, 8a) has been reproducibly shown to bind to NRP1 while 

VEGF121a (E1-4, 5, 8a) was initially described as unable to stably interact (Herve et al., 

2008). This apparent lack of high affinity binding has been later attributed to partial 

degradation of the E8a-encoded 6 amino acids sequence (CDKPRR:Cys-Asp-Lys-Pro-Arg-

Arg) (Cebe-Suarez et al., 2008; Pan et al., 2007a; Parker et al., 2012).  

By Surface Plasmon Resonance (SPR) we showed here a binding of VEGF165a (E1-5, 7, 

8a), VEGF121a (E1-5, 8a) and VEGF155a (E1-4, 7, 8a) on NRP1 and the absence of affinity of 

all the VEGFxxxb isoforms.  As the synthetic VEGF159 variant (exons 1-5, 7) is also unable to 

bind (Cebe Suarez et al., 2006), it strongly suggests that the absence of affinity of the 

VEGFxxxb isoforms for NRP1 is due to the absence of the CDKPRR sequence (E8a) and not 

caused by the presence of the E8b-encoded SLTRKD (Ser-Leu-Thr-Arg-Lys-Asp) sequence. 

Interestingly, VEGF111a (E1-4, 8a) has no affinity for NRP1, although it possess the 

CDKPRR terminal sequence, demonstrating that the E8a-encoded sequence alone is not 

sufficient and must cooperate with another domain for efficient binding. The E5-encoded 

sequence is probably involved as this 10 amino acids domain represents the only difference 

between VEGF111a and VEGF121a. In support of this hypothesis, we demonstrated that a 

peptide mimicking the E5-encoded sequence (R8R) blocks the binding of VEGF165a to 

NRP1, reduces the activation of VEGFR2-ERK1/2 pathway in PAEC-R2-NRP1 to a level 

similar to that observed in PAEC-R2 and partly inhibits the VEGF165a-induced proliferation of 

HUVEC. By contrast, VEGF155a does not possess this domain but can bind NRP1, although 

with a slower association rate as compared to VEGF165a and VEGF121a, suggesting a further 

cooperation between E8a and E7-encoded sequences.   
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Table 6 : Summary of the properties of the different VEGF isoforms 

 

E: Exon ; - : Negative ; +/- : Low ; + : Medium ; ++ : High ; +++ : Very High; nd: not determined

 
 

Exons 

Binding to Forma-
tion of 

complex 

Resis-
tance to 
plasmin 

Signaling 
Prolife- 
ration 

In vivo 
angiogenesis 

Vessel 
permeability 

VEGF 
-R2 

NRP1 Heparin 
PAEC- 

R2 
PAEC-R2-

NRP1 
HUVEC HUVEC 

Intra- 
tumoral 

Extra-
tumoral 

Local Distant 

VEGF111a E1-4; E8a Yes - - - Yes +++ +++ ++ ++ - +++ +++ +++ 

VEGF111b E1-4; E8b Yes - - - Yes +++ +++ ++ ++ - +++ +++ +++ 

VEGF121a E1-4; E5; E8a Yes Yes - - - +++ +++ ++ ++ +++ ++ +++ - 

VEGF121b E1-4; E5; E8b Yes - - - Yes +++ +++ ++ ++ - - - - 

VEGF155a E1-4; E7-8a Yes Yes Yes Yes - +/- + + ++ ++ +/- ++ - 

VEGF155b E1-4; E7-8b Yes - - - - +/- +/- +/- - + + - - 

VEGF165a E1-4; E5; E7-8a Yes Yes Yes Yes - ++ +++ +++ +++ +++ + +++ - 

VEGF165b E1-4; E5; E7-8b Yes - - - - +/- +/- +/- - + + - - 

VEGF179a E1-4; E6a; E7-8a nd nd Yes nd nd nd nd nd nd +++ + nd nd 

VEGF179a E1-4; E6a; E7-8b nd nd nd nd nd nd nd nd nd + + nd nd 
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NMR studies have shown that an intramolecular disulfide bridge is formed between Cys160 

(encoded by E8a) and Cys146 (encoded by E7) in VEGF165a, causing a specific folding that 

brings the KPRR basic C-terminal sequence close to other basic residues encoded by E7 

(Grunewald et al., 2010). A recent publication (Parker et al., 2012) reports that the E8a 

encoded C-terminal R is crucial for NRP1 binding and that the E7-derived sequence allows 

additional interactions that are however not essential since VEGF121a can bind NRP1. In the 

light of our results, we suggest that the maximal direct interaction between VEGF and NRP1 

involves three domains. The E8a-encoded 6 amino acids are crucial but need to cooperate 

with the E5 and/or the E7 sequences (Fig 52) to adopt an optimal 3D-structure. Such 

cooperation between these three domains are likely to participate in the specificity of the 

effects induced by the different VEGF isoforms.   

 

 

 

Figure 55 : Roles of the exon-encoded domains of VEGF for (co-)receptors binding and 
susceptibility to cleavage by plasmin 

This drawing is based on previous publications and on SPR studies performed during this work. More 
specifically, we have demonstrated that the E5-encoded sequence is crucial for efficient binding to 
NRP1 and that maximal interactions require the presence of the domains encoded by E5, E7 and 
E8a. Similar cooperation have been demonstrated for efficient heparin binding. It also shows 
preferential sites of proteolytic degradation (black scissors). This work confirmed that plasmin cleaves 
VEGF in E5-encoded domain and highlights that in absence of this sequence, additional sites of 
cleavage can be found in E7 encoded sequence. 
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The use of heparin in vitro allows mimicking the effect of HSPG found in the extracellular 

matrix. A strong binding of VEGF189a and VEGF206a to heparin and HSPG occurs through 

the highly basic E6a-encoded domain (Houck et al., 1991). Such strong affinity was also 

observed here for VEGF179a for example. As this domain is not present in the 8 variants 

extensively characterized in this work, this gave us the opportunity to investigate the 

potential role of domains with lower affinities. We showed that only variants possessing the 

E7+E8a domains (VEGF165a and VEGF155a) are able to bind to heparin (Fig 52). This is in 

agreement with a lack of retention of VEGF165b on heparin-Sepharose (Cebe Suarez et al., 

2006) or on HSPG coated nitrocellulose filters (Kawamura et al., 2008b). These data 

indicate that E7 and E8a both contribute to heparin binding of VEGF. A possible explanation 

relies on the formation of the disulfide bridge between Cys146 and Cys160 and on the proper 

positioning of basic residues present in E7 and E8a. Alternatively, the SLTRKD sequence 

from E8b, especially the acidic aspartic acid terminal residue, might prevent the interaction 

between heparin and the basic residues oriented at the surface of the E7 encoded domain.     

In the SPR assays, injection of VEGF165a in presence of heparin drastically increased the 

binding to NRP1 as compared to injection of VEGF165a alone. Conversely injection of 

VEGF165a in presence of soluble NRP1 drastically enhanced the binding to heparin as 

compared to injection of VEGF165a alone. These results are in agreement with a model 

describing two types of VEGF165a-NRP1 interaction, one being direct and the other bridged 

by heparin (Vander Kooi et al., 2007). Both of them implicate the E7-E8a domain and may 

synergize. Since the effect of heparin on the binding of VEGF155a to NRP1 is much more 

modest than the effect observed for VEGF165a, it strongly suggests that the highly basic E5-

derived domain is also involved. It remains to determine however whether this domain 

interacts with NRP1 independently or in synergy with the E7/E8a encoded sequence for 

forming a large negatively charged pocket. 

 

II- VEGF variants display diverse relative activities in different 

models due to dynamic interactions with receptors and co-

receptors  

The specific effects of the different VEGF variants were extensively explored at a cellular 

level in HUVEC and Porcine Aortic Endothelial Cells (PAEC) expressing VEGF-R1 only 

(PAEC-R1), VEGF-R2 only (PAEC-R2), NRP1 only (PAEC-NR1) or both VEGF-R2 and 

NRP1 (PAEC-R2-NRP1). PAEC-R1 and PAEC-NRP1 do not respond significantly to VEGF. 

When only VEGF-R2 is expressed (PAEC-R2), short variants (VEGF111a/b and VEGF121a/b) 
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are systematically and significantly more active than VEGF165a. This difference no longer 

exists in PAEC-R2-NRP1, illustrating the importance of NRP1 in the full activity of VEGF165a. 

In HUVEC, VEGF165a is the most active in terms of intracellular signalling and cell 

proliferation.  

 

These apparently surprising observations can be explained by considering the dynamic 

interactions between the VEGF variants and their receptors and co-receptors. For clarity 

reasons, VEGF111a and VEGF165a will be only considered here although the described 

mechanisms would affect similarly the activity of the other VEGF variants. As predicted by 

computational models (Mac Gabhann et al., 2006; Mac Gabhann and Popel, 2005, 2007a, 

b), the overexpression of recombinant VEGF receptors at the PAEC membrane induces a 

“Dynamic Pre-Dimerization” process in absence of any ligand (Fig 53A), while in more 

physiological situations most of these receptors are monomeric (Mac Gabhann and Popel, 

2007a). 

 

In PAEC-R2 (Fig 53A), the higher activity of VEGF111a as compared to VEGF165a probably 

results from two different features. In absence of the E5-E7 encoded regions, VEGF111a has 

no affinity for the ECM, which explains higher diffusibility and bioavailability. Moreover, its 

small size should improve its accessibility in the binding pockets present in the pre-dimerized 

receptors. This is supported by SPR data evaluating the binding of VEGF variants on VEGF-

R2. In this model where VEGF-R2 are pre-dimerized because of the Fc fragments, 

VEGF111a has a higher association rate as compared to VEGF165a while the Kd are similar. 

This strongly suggests that a limiting step is accessibility to the binding pocket within the 

dimer. 

 

In PAEC-R2-NRP1 (Fig 53B), VEGF-R2 is expected to be also pre-dimerized as in PAEC-

R2. However the presence of NRP1 increases the relative activity of VEGF165a by acting as 

a co-receptor (Becker et al., 2005; Soker et al., 2002) while it does not affect the signals 

triggered by VEGF111a, explaining why the signalling by both variants is now similar. 
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Figure 56 : Modelisation of VEGF-R2 activation by VEGF111a and VEGF165a in PAEC-R2 (A) and 
PAEC-R2-NRP1 (B) 

According to in silico models, a high number of VEGF-R2, as found at the surface of PAEC-R2 and 
PAEC-R2-NRP1, should result in a “Dynamic Pre-Dimerization” process. As VEGF111a has much 
more limited interactions with the ECM or the cell surface components than VEGF165a, it can bind 
more rapidly to pre-dimerized VEGF-R2. Its small size could also favour its interactions with the pre-
dimerized binding pockets. These two features would explain the high activity of VEGF111a in PAEC-
R2. (B) The additional presence of NRP1 is not expected to modify the pre-dimerized process. 
However, it should favour the “presentation” of VEGF165a, but not of VEGF111a, to VEGF-R2, 
explaining the increased activity of VEGF165a only. 
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The situation is completely different in HUVEC (Fig 54) because several receptors and co-

receptors (VEGF-R1, VEGF-R2, NRP1, NRP2 and HSPG) are expressed at the cell surface, 

all of them at more physiological levels than when expressed as recombinant proteins 

(Herve et al., 2008). In these cells, VEGF-R1 and VEGF-R2 are not pre-dimerized, which 

should strongly reduce problems related to accessibility, mainly for the longer isoforms. The 

presence of NRP1, and potentially NRP2, at the cell surface has several consequences, 

either clearly demonstrated or suggested by our data and other publications (Favier et al., 

2006; Soker et al., 1998). NRP1 favours the binding of VEGF165a on VEGF-R2 monomers, 

which induces dimer formation and downstream signalling (Fig 54A). Such mechanism is not 

possible for VEGF variants that do not bind NRP1, such as VEGF111a. As another potential 

mechanism, it was also reported that VEGFR2-VEGF165a-NRP1 complexes are internalized 

in specific endosomes (characterized by the presence of Rab 11) where they continue to 

activate downstream pathways (Ballmer-Hofer et al., 2011). In absence of NRP1, the 

endosomal trafficking is modified and degradation occurs more rapidly, which suppresses 

the VEGF-induced signalling.  

The presence of VEGF-R1 might have also important consequences (Fig 54B). Although it 

has high affinity for all the tested VEGF variants (SPR data) it does not induce a significant 

downstream signalling upon VEGF binding (PAEC-R1 in culture). At the surface of HUVEC, 

it sequesters VEGF isoforms, reducing their bioavailability for VEGF-R2. While it should 

affect similarly the effect of the different VEGF variants, this is not the case because of the 

presence of NRP1. It has been shown indeed that NRP1 can decrease the binding to VEGF-

R1 of VEGF165a but not of VEGF121a and probably not of VEGF111a (Fuh et al., 2000). It 

could also favour the release of VEGF165a already bound to VEGF-R1, which would increase 

its availability for VEGF-R2. Although not tested specifically here, it is most likely that the 

release from VEGF-R1 by NRP1 is directly related to the affinity of VEGF variants for NRP1. 

These dynamic and finely tuned interactions involving several molecules would explain some 

apparent discrepancies between data obtained in different types of models, such as short 

term VEGF-R2 phosphorylation and cell proliferation for example. For in vivo analyses, 

especially regarding clinical applications, it underlines also the critical need of studying the 

expression and the effect of individual variants rather than considering them globally as 

VEGF-A factors having identical properties. 
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Figure 57 : Modelisation of VEGF-R2 activation by VEGF111a and VEGF165a in HUVEC 

As compared to the different PAEC models, HUVEC express at their surface a more physiological 
number of VEGF-R1, VEGF-R2 or NRP1. The expression of NRP2 and of endothelial cell specific 
proteoglycans is not illustrated here although it is expected to fine tune the response of HUVEC to 
VEGF. Several non mutually exclusive mechanisms could explain the stronger effects of VEGF165a in 
these cells as compared to other isoforms, including VEGF111a. Two are illustrated here. (A) As 
VEGF-R2 is monomeric, the small size of VEGF111a is no longer an advantage for binding. Moreover, 
the presence of NRP1 should favour the binding of VEGF165a on VEGF-R2, which should stimulate its 
dimerization and trans-phosphorylation, and finally downstream signalling pathway. (B) It has been 
reported that NRP1 could reduce interactions between VEGF-R1 and VEGF165a, making it more 
available for VEGF-R2 binding and signalling. This mechanism is unlikely for VEGF111a as it does not 
bind to NRP1. 

 

 



General Discussion 

140 
 

III- The E8b-encoded sequence is not sufficient to determine the anti-

angiogenic activity of VEGFxxxb variants 

The effect of substituting the E8a-encoded sequence by its corresponding E8b counterpart 

was carefully investigated. The activity of the longest isoforms (VEGF155b and VEGF165b) 

was strongly affected by the substitution, whatever the cell model and independently of the 

presence of NRP1. These two VEGF variants were also able to prevent the VEGF165a-

induced proliferation of HUVEC, probably by a competition for VEGF-R2 as suggested by 

SPR data. It has been suggested that VEGF165b induces an incorrect relative 

positioning/orientation of the two VEGF-R2 molecules to form a functional dimer, which 

would prevent their efficient transphosphorylation (Kawamura et al., 2008b). This hypothesis 

is confirmed here since VEGF165b binds to VEGF-R2 (SPR) but is unable to induce a robust 

phosphorylation of the VEGF-R2 and the downstream intracellular signalling factors. 

In sharp contrast, VEGF121b and VEGF111b were pro-angiogenic in vitro, demonstrating that 

the presence of the E8b domain alone is not sufficient to convert an endothelial activating 

VEGF variant into an inhibitory factor. This observation does not correlate with previous data 

describing the anti-angiogenic properties of VEGF121b (Rennel et al., 2009b), but it is worth 

mentioning that these experiments were essentially performed in other models, including cell 

migration or tumour formation by cells expressing VEGF121b. Our in vitro data were validated 

in vivo in the two models of induced pathological angiogenesis in the eye that were 

previously used for the demonstration of the anti-angiogenic properties of VEGF165b (Hua et 

al., 2010; Magnussen et al., 2010). In contrast to VEGF165b, injection of VEGF111b did not 

inhibit, and even slightly stimulated, ocular angiogenesis, confirming our in vitro data. It is 

therefore unlikely that the SLTRKD sequence encoded by E8b is by itself sufficient for the 

specific properties of VEGF165b. This hypothesis is further strengthened by data showing that 

soluble SLTRKD peptide is not anti-angiogenic (unpublished observations, Rennel and 

Bates). Our data showing that VEGF155b and VEGF165b (and potentially VEGF179b, as 

described below) have the same properties suggest that the folding of the domain formed by 

the E7 and E8b-encoded sequences would induce steric hindrance and lead to modification 

of the conformation of the VEGF dimer, which would ultimately prevent perfect VEGF-R2 

dimerization and autophosphorylation (Harper and Bates, 2008). This might also explain why 

VEGF111b, although possessing the SLTRKD terminal sequence, is pro-angiogenic due to 

the lack of the E7-derived sequence and because its size is not sufficient to interfere with 

receptor dimerization.  
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IV- Combinations of the E5, E7 and E8a/E8b-encoded domains 

determine vessel density and patterning in vivo 

Subcutaneous injection of HEK293 cells provides an attractive model to evaluate the long 

term effects of the continuous expression of specific VEGF variants on angiogenesis (Mineur 

et al., 2007).  Indeed, these cells express low levels of endogenous VEGF and form a 

tumour-like mass containing few blood vessels and growing independently of VEGF 

expression, which facilitates data analyses by dissociating vascularization from other 

features. The expression of VEGF165a, VEGF155a or VEGF121a induced a dense 

vascularization of the tumor and led to the formation of enlarged blood vessels while 

VEGF111a or VEGF111b resulted in the presence of hundreds of small vessels but only in the 

adjacent dermis. Reasons for such differences remain to be firmly identified. It is not related 

to variability in protein production and receptor binding as all the variants were expressed in 

the tumour at similar levels and had comparable affinity for VEGF-R2. Different retention 

times in the Matrigel plug embedding the cells were also considered as potentially regulating 

the available VEGF concentration. This was evaluated in vitro by measuring the release of 

purified VEGF from a Matrigel plug immersed in culture medium. Diffusion rate was maximal 

for VEGF111a, the equilibrium between plug and medium concentrations being observed 

after 2 to 4 hours. All the other tested isoforms reached equilibrium within 8-20 hours. 

Although the differences are significant, they are not expected to play a major role in our 

model of tumour angiogenesis as the duration of the entire experiment is much longer (3 

weeks) and because the Matrigel plug is rapidly degraded in growing tumours. These data 

suggest however that VEGF111a and VEGF111b are able to diffuse more freely than the other 

isoforms and therefore to induce angiogenesis at longer distance from their site of 

production. This hypothesis was further evaluated in vivo in complementary models. 

In the Miles and Miles’ modified assay VEGF165a, VEGF111a and VEGF111b induce a similar 

vascular permeability close to the site of injection. However the total surface of affected skin 

was much larger for VEGF111a and VEGF111b which demonstrates their capacity to diffuse at 

long distance in tissues in vivo. In another model, VEGF variants were injected 

intraperitoneously and subcutaneously and their blood concentrations were evaluated as a 

function of time. VEGF111a was found at higher concentration and with a longer half-life as 

compared to VEGF165a for example, which again illustrates its high capacity to diffuse and its 

reduced interactions with the extracellular environment. 

The similar properties of VEGF111a and VEGF111b in vivo were expected from in vitro data. 

They further confirmed that the E8b domain alone is not sufficient to repress angiogenesis.  

By contrast, the weak pro-angiogenic activities of VEGF155b and VEGF165b in the tumoural 
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model were surprising as they were inactive or even inhibitors in other models. Proteolytic 

processing in the particular tumour environment, which is usually not observed in culture 

medium and in the eye (Fig 46A) (Magnussen et al., 2010), could account for this apparent 

discrepancy. The cleavage in the E5/E7 domains would shorten VEGF165b, prevent the 

steric hindrance induced by the substitution of E8a by the E8b sequence and thus convert 

an anti-angiogenic variant into moderately pro-angiogenic processed forms (Fig 55B). The 

strongly limited effect of VEGF121b in vivo, while it was pro-angiogenic in cell culture is not 

yet understood. Dose-response and time-course experiments performed in vitro do not show 

marked differences between VEGF121b and VEGF121a, VEGF111a or VEGF111b. Its 

remarkable resistance to degradation could potentially be implicated but the involved 

mechanisms still remain elusive.   

 

Figure 58 : The activity of VEGF165b may be regulated by proteolytic processing 

(A) In environments characterized by low protease activity, VEGF165b is not cleaved, which preserved 
its anti-angiogenic function. (B) In presence of active proteases, such as plasmin or MMP, most of the 
VEGF165b is processed (in the E5- and E7- derived domains) into smaller moderately pro-angiogenic 
fragments. 
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In all the experimental conditions, the blood vessels formed in or close to the tumours were 

lined by a continuous basement membrane and were functional as evidenced by the 

presence of red blood cells. However, only VEGF165a and, to a much lesser extent, 

VEGF121a and VEGF155a promoted the recruitment of pericytes/alpha-SMA positive cells 

around the vessels. These three variants are able to bind NRP1, suggesting a differential 

and more sustained regulation of endothelial cells that would subsequently recruit pericytes 

likely by secreting PDGF-B (Hellstrom et al., 1999; Lindahl et al., 1997). It would be 

interesting to evaluate the PDGF-B secretion by HUVEC treated by our VEGF variants. 

Alternatively, a direct recruitment of pericytes by some VEGF variants might be 

hypothesized since these cells have been suggested to respond to VEGF165a by a NRP1-

VEGFR2 axis (Liu et al., 2005) and/or by a NRP1-VEGFR1-PI3K axis (Banerjee et al., 

2008).  
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Our work aimed at a better understanding of the functions and cooperation between the C-

terminal domains of VEGF-A. Here, we provide new data demonstrating that the E5-

encoded domain regulates the VEGF properties by modifying its resistance to degradation, 

its capacity to diffuse and its binding to NRP1. We confirmed some previously reported 

effects of VEGFxxxb isoforms but we further showed that their anti-angiogenic properties 

strongly depend upon the domain organization of the VEGF molecule itself and upon the cell 

and tissue environment. The therapeutic use of VEGFxxxb isoforms in clinic as anti-

angiogenic molecules should therefore be considered in the context of isoforms resistant to 

degradation which could improve their effect. We have demonstrated that some VEGF 

variants induce the formation of small and poorly matured vessels at distance of their site of 

secretion while other isoforms trigger locally the formation of large vessels covered by 

pericytes. According to these data, we suggest also that the treatment of ischemic diseases 

by VEGF should probably benefit from using a combination of different isoforms synergizing 

for inducing a more robust angiogenesis. Among the different perspectives resulting from 

this work, some related fields of research seem more promising and would merit further 

studies. 

I-  Regulation of “tip”/”stalk” cells phenotype by VEGF variants 

The specific vascular patterns observed in vivo during our work demonstrate that different 

VEGF variants affect differentially sprouting angiogenesis and blood vessel maturation. 

Today the Notch receptor/ Notch ligand pathway is identified as one of the most critical 

cascade regulating the “tip”/ “stalk” fate during angiogenesis. 

In a preliminary experiment, we observed that VEGF165a, but not VEGF111a, stimulates the 

expression of Dll4 (a notch ligand). This could explain why VEGF165a favours the formation 

of mature and enlarged vessels (“stalk” cell phenotype) and why VEGF111a induces only 

poorly the Notch pathway which would shift the balance to “tips” cell phenotype and 

abundant sprouting. These observations should be confirmed and strengthened in other 

models. All the members of this regulating cascade (Notch 1 and 2; Jagged 1 and 2; Dll1 

and 4) should be also evaluated simultaneously as some of them have opposing effects on 

angiogenesis and compete for an identical receptor, as shown for Jagged 1 and Dll4 for 

example (Kume, 2012). Identifying the entire regulatory pathway, from VEGF binding at the 

cell surface to transcriptomic modifications, responsible for such marked differences in the 

regulation of endothelial cell fate would be most interesting for future clinical applications. In 

the same context, endocan could be used as a helpful marker, as it has been reported to be 

more specifically produced by tip cells (Abid et al., 2006; Recchia et al., 2010; Sarrazin et al., 
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2006; Strasser et al., 2010) and to be induced more efficiently by VEGF165a than by the 

other isoforms. 

II- Regulation of VSMC/pericytes by VEGF variants 

In our work we have shown that maturation of blood vessels by recruitment of smooth 

muscle cells/pericytes is much faster and efficient with VEGF165a. Several hypotheses could 

explain this specific effect and should be verified. As a first example, endothelial cells treated 

with VEGF165a could express a specific pattern of growth factors (as PDGF-B) and cytokines 

that would, in a second step, influence the phenotype of the pericytes. As a second example, 

VEGF165a could have a more direct effect on pericytes, either by direct signalling through 

NRP1 or by facilitating the formation of larges complexes containing VEGF-R1 and NRP1 for 

instance. These hypotheses could be first evaluated by transcriptomic analyses of 

endothelial cells and pericytes, cultured alone or in co-culture models and treated with 

different VEGF variants. Production and evaluation of the effects of VEGF165a mutated at the 

binding site for VEGF-R2 would also be useful for better defining VEGF functions related to 

the unique binding to NRP1, both in endothelial cells and VSMC/Pericytes.  

 

III- Development of new VEGF variants for future clinical applications 

Based on our data new types of variants with specific or improved properties could be 

envisaged. As a first example, modified versions of VEGF165b that would be more resistant 

to proteolysis and/or that would possess a C-terminal domain of increasing length for 

interfering with VEGF-R2 dimerization would be worth to be evaluated as anti-angiogenic 

factors. 

We have shown that VEGF111a and VEGF111b are pro-angiogenic and resistant to 

proteolysis. They are also freely diffusible which is an advantage for systemic or long 

distance effects. It limits however their use for local applications. Replacement of the E8a- or 

E8b-derived sequence by a short domain possessing affinity for cell surface or ECM 

components could help to solve this problem. 

Besides the development of new molecules, the effects of the association of already 

available variants should be more extensively characterized as their complementary 

properties could possibly improve the treatment of ischemic diseases. Experiment using 

VEGF111a only have been performed in several models including skin wound healing, heart 

infarction (in collaboration with FATH and CARD, Université Catholique de Louvain) and 
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ovary fragments grafting (Labied et al., 2013) (see annex 2). Some of these studies could be 

repeated for evaluating the benefits of using simultaneously several VEGF isoforms.  
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