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Abstract

This work deals with problems where multiple actors simultaneously take control decisions
and implement the corresponding actions in large multi-area power systems. The fact that
those actions take place in the same transmission grid introduces a coupling between the var-
ious decision-making problems. First, transmission constraints involving all actors’ controls
must be satisfied, while, second, the satisfaction of an actor’s operational objective depends, in
general, not only on its own actions but on the others’ too.

Algorithms and/or operational procedures are, thus, developed seeking to reconcile the multiple
actors’ simultaneous decisions. The confidentiality and operational autonomy of the actors’
decision-making procedures are preserved.

In particular, two specific problems leading to such a multi-actor situation have been treated.

The first is drawn from a recently emerging situation, at least in Europe, where several Trans-
mission System Operators (TSOs) have installed and/or are planning to install Phase Shifting
Transformers (PSTs) in such locations in their areas that, by properly adjusting the PST phase
angle settings, they can significantly control the power flows entering and exiting their systems.

A general framework is proposed for the control of PSTs ownedby several TSOs, taking into
account their interactions. The proposed solution is the Nash equilibrium of a sequence of op-
timizations performed by the various TSOs, each of them taking into account the other TSOs’
control settings as well as operating constraints relativeto the whole system. The method is
applied to a linearized network model and illustrated on theIEEE 118-bus system.

The second multi-actor situation dealt with in this work stems from the recently increasing
amount of discussions and efforts made towards creating theright market structures and op-
erational practices that would facilitate a seamless inter-area trade of electricity throughout
large interconnections. In this respect, in accordance with European Union’s goal of a fully
functional Internal Electricity Market where ideally every consumer will be able to buy elec-
tric energy from every producer all across the interconnection, the possibility of every market
participant to place its bid in whatever electricity marketof an interconnection has been con-
sidered.

This results in overlapping markets, each with its own schedule of power injections and with-
draws, comprising buses all around the interconnection, that are cleared simultaneously by
Transaction Schedulers (TSs). An iterative procedure is proposed to reconcile the various TS
schedules such that congestion is managed in a fair and efficient way. The procedure converges
to such schedules that the various TS market clearings are ina Nash equilibrium. The method
is then extended towards several directions: enabling market participants to place their bids si-
multaneously in more than one TS’s market, incorporatingN−1 security constraints, allowing
for joint energy-reserve dispatch, and, accounting for transmission losses.

The corresponding iterative algorithms are thoroughly illustrated in detail on a 15-bus as well
as the IEEE RTS-96 system.
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Chapter 1

Introduction

1.1 Background

Historically, electric power systems have been planned andoperated on an area basis. Each
such area1, was responsible for planning the installation of generation and transmission capac-
ities so as to serve the demand efficiently. An entity, typically called the area’s (country’s)
power system (or electric energy) company, was responsiblefor operating the bulk power sys-
tem (i.e. generation and transmission) of the area. Transmission tie-lines have been built con-
necting those areas which, like that, have formed large synchronous interconnections (like the
western continental European one). The main purpose for them being interconnected, however,
has been the increased level of security that was provided toall involved parties.

During the 90’s, this classical picture of a vertically integrated bulk power system started to
change. Each area has been gradually transformed into an electric energy market, where elec-
tricity is now traded freely as any other commodity. Generators are now separate entities which
compete with each other trying to sell their product to the area’s electricity consumers. In this
new liberalized, or deregulated as it has been also called, environment an entity called Trans-
mission System Operator (TSO) was created for each area (in USA the terms RTO and ISO are
mainly used, standing respectively for regional transmission organization and for independent
system operator). The role of the TSO is purely to operate thetransmission grid in a way that
allows equal, non-discriminatory access to all market participants, assuring at the same time
an adequate level of security. The TSO acts as a facilitator of the market, or even, in some
countries, as a Market Operator (MO)2.

Naturally, in the liberalized market-oriented and -drivenframework, a demand for inter-area,
or cross-border, trade of electricity has emerged. Transactions involving participants located in
different areas in an interconnection are presently commonpractice in both the European and
the North-American interconnections. Especially in Europe, facilitating such trading through

1In Europe, each area corresponds typically to a country.
2The term is used in this work to denote the entity that clears an area’s electricity spot market.
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2 Chapter 1

the different countries is an important step towards arriving to a fully functional European
Internal Energy Market (IEM), as dictated by the European Commission’s goals [EUI, ETS09].

However, despite the tendency towards multi-national, interconnected, seamless electric mar-
kets, with electric transactions taking place according tothe markets rules, the operation and
control of each area’s power system remains in the hands of the area’s TSO. Expectedly, due
to the presence of inter-area transactions, TSO control actions are in many cases affecting their
neighbors, and, without proper coordination, this may result in far from optimal operation of
the involved networks in the less severe case, while emergencies [ENTb] or even blackouts
[ENTa] have also been reported as a result of such a lack of coordination.

At the same time, congestion often appears, most usually on the tie-lines connecting different
control areas, due to increased demand to make commerce of electric energy from one part
of the interconnection to another. The reason why tie-linestend to get congested is the fact
that, as previously commented, they have been initially built for security purposes, without
provision for accommodating large transfer amounts, whichnow they do not have sufficient
transfer capacity to support.

Let us recall here that, in power systems, the term “congestion” is used to describe a situation
where the electric grid can no longer support a power transaction towards a certain direction
(over a branch, or a set of branches) without this compromising its security of operation. Fol-
lowing this definition, “congestion management” can be defined as the actions taken to avoid
or relieve congestion. More broadly, congestion management can be considered any systematic
approach used in scheduling and matching generation and loads in order to manage congestion
[KDMR02].

It is of interest to take a look at why cross-country transactions of electric energy are so present
already and are expected to be even more pronounced as the inter-area transfer capabilities
increase. Figure 1.1 shows the per country electricity production capacity by primary energy
source in the European Union (EU) [EU08]. Clearly, the mix ofproduction differs significantly
among the EU countries. As a result, depending on variable parameters, like fuel prices (mainly
oil and gas) in international markets or weather conditions(e.g. presence of wind), there may
appear demand for transferring power towards different directions. In addition, considerable
wind generation capacity is expected to be installed in Europe in the near future, mainly as
offshore wind mills in the Nordic and Baltic seas, which should be absorbed by loads all
over Europe making international transactions even more pronounced [Tra09]. Last but not
least, the combustion plants emission limits set by the EU [EUG, EUP] could create price
differences between areas, since power production should become more and more expensive
for those plants that do not manage to follow the environmental criteria. All in all, cross-border
power flows are expected to become more and more pronounced inEurope and more and more
unpredictable.

In this context, is has been understood that the developmentof market structures and rules that
would facilitate the inter-area power exchanges is of crucial importance. A major goal of the
EU is to come up with a fully functional IEM, where ideally every consumer will be able to
buy electric energy from every producer all across the interconnection.
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Figure 1.1: Electricity production in EU

1.2 Purpose and content of the thesis

This work, inspired by the new exciting situation, deals with two related emerging issues.

First, a multi-area control problem where the various TSOs of the interconnection simulta-
neously make control decisions and apply the correspondingcontrol actions is investigated.
Particular attention is given to the problem of the independent control of active power flows by
the various TSOs using Phase Shifting Transformers (PST). Other typical multi-area control
problems fitting the framework proposed in this thesis are the scheduling of an area’s reactive
power injections (Mvar scheduling) or the active generation re-dispatch problem.

Second, a market structure that allows free cross-border trade of electricity over an intercon-
nection is developed. The main objective of the proposed algorithms is to allow market partici-
pants to trade electric energy using the transmission network in a coordinated way. Again, this
corresponds to a situation where decisions are simultaneously made (i.e. the various markets
are simultaneously cleared) in the same common transmission network.
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1.2.1 Control of PSTs

A PST is a transformer that is installed in series with one or several transmission lines. It allows
to introduce a phase angle shift of voltages across its ends.By so doing, one can control the
active power that flows in a line (provided that there exist parallel paths, possibly consisting of
several branches, that link the two ends of the line) or a set of lines. Figure 1.2 shows such a
configuration. The two “boxes” at the ends of each figure represent the rest of the grid, which
is assumed to provide paths connecting the three lines underquestion.
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Figure 1.2: Example of PST operation

With PSTs properly located in series with some of the tie-lines of a control area, the TSO of this
area is able to re-direct some power flowing through its area,sending it, unavoidably, through
other areas of the interconnection. Although in normal operation the TSOs are not supposed to
take such actions without prior coordination with their neighbors, it would be unrealistic, on the
other hand, not to allow a TSO to use equipment it has installed if, in emergency situations, this
will save its system from damaging events. In this respect, an algorithm has been developed
aside the main line of this work that can be used by a TSO to control in real-time its PSTs in a
way that it keeps its system secure with the least possible nuisance to the rest.

Clearly, if left uncoordinated, simultaneous or sequential adjustments of PST phase angles by
different TSOs may end up in very undesirable power flows, endangering the security of the
system. Furthermore, a phase adjustment made by one TSO resulting in change of power flows
in another area may trigger a PST adjustment by the TSO of thatarea and so on, leading to very
inefficient and dangerous “control fights” among the TSOs. Answering to this, a framework
that allows the TSOs to simultaneously, and independently,control their respective PSTs while
preserving the overall system security is also proposed in this work.

1.2.2 Overlapping markets

As mentioned in Section 1.1, an important aspect in multi-area electricity trade is to come up
with market structures that facilitate such trade. In this respect, the possibility of every mar-
ket participant to place its bid in whatever electricity market of an interconnection has been
considered in this work. This supposition results in overlapping markets, each with its own
schedule of power injections and withdraws, comprising buses all around the interconnection.
Such a situation is visualized in Fig. 1.3. There, each contour corresponds to an area operated
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by a different TSO, while the different numbers next to the various generators and consumers
suggest that they are dispatched in a different market. The lines linking the various TSO areas
represent the fact that these areas are electrically connected with transmission lines. Clearly,
this introduces a distinction between “TSO area” and “market”. For the moment, in the re-
maining of the Introduction, we will call MO (Market Operator) the entity that clears a market.
Further discussion is found in the related chapters of this thesis. So, in the example of Fig. 1.3
there are three MOs (named MO1, MO2 and MO3), each schedulingmarket participants from
all around the interconnection, which justifies the use of the term ”overlapping” to describe
those markets.
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Figure 1.3: Visual example of overlapping markets

The main challenge of the proposed overlapping market structure is the management of con-
gestion. All transactions, scheduled in the various markets, use the same interconnected grid.
As a result, it is not obvious at first glance who should be responsible of approving the transac-
tion schedules, allocating the scarce transmission capacity, and, more generally, coordinating
the different acting entities. Neither is it obvious how this coordination should be performed.
The algorithm developed in this work to enable cross-bordertrading based on free participation
in multiple, generally overlapping, markets, deals with the above issues.

1.2.3 Unifying mathematical framework

Both problems dealt with in this work share some common characteristics that make it possible
to treat them in a similar way. They both involve different entities (like TSOs in the PST case
and MOs in the market case) taking decisions (PST phase angleadjustments and scheduling of
generators and loads, respectively) in the same environment (the interconnected transmission
grid) which makes those decisions interdependent.

Let us call “actor” each such entity. Every actor controls a set of variables; assigning values
to these variables is a control action. The decision-makingproblems of choosing the control
actions have been formulated in this thesis as optimizationproblems, where an objective func-
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tion is minimized/maximized subject to a set of constraintsinvolving the control variables. If
u is the control vector of an actor, then its decision-making problem could be formalized as
follows:

min
x,u

f(x,u) (1.1a)

s.t. h(x,u) = 0 (1.1b)

g(x,u) ≤ 0 (1.1c)

u ∈ U (1.1d)

wherex represents the “state” of the environment defined by the whole set of actors’ controls.
Of course, when the actor solving the optimization problem modifies its controls,x is generally
also affected. This is modeled by the equality constraints in (1.1b). So,x is a function of all
the controls in the interconnection;x = x(u,u−), with u− being the vector containing all
the other actors’ control actions3. For example, in the PST control problem,x could contain
the active power flow over a cutset inside the system of a TSO, which depends on the tap
positions of all the PSTs of the interconnection (not only those controlled by the TSO solving
the optimization problem). The inequality constraints in (1.1c) stand for the physical, security,
operational, regulatory and other limits that should be respected, whileU is the domain from
where the controlsu take their values.

From now on, for the sake of simplicity,x will be omitted from the presentation of the prob-
lems:h will be considered as implicitly expressed ing, while the objective functionf(·) and
the inequality constraintsg(·) ≤ 0 will be directly expressed as functions of all the control
actions. Like this, the optimization problem (1.1) of an actor is re-written as:

min
u

f(u,u−) (1.2a)

s.t. g(u,u−) ≤ 0 (1.2b)

u ∈ U (1.2c)

For instance, let us denote byϕ the vector of all PST settings in the interconnection,g the
vector of all generator injections,d the vector of all consumptions,i(ϕ, g,d) the vector of
branch currents andimax the thermal limits of the branches in the interconnection. Let

i(ϕ, g,d) ≤ imax (1.3)

be the set of constraints that should be respected at any operating point. In the PST control
problem, the generations and loads are considered fixed and each TSO controls a part of vector
ϕ (the PSTs of its area). In the overlapping market problem, the phase angles are considered
fixed and each MO controls a part of vectorsg andd (the generators and loads bidding in its
market). In both cases, the overall control decisions should be such that the constraints (1.3)
are satisfied.

3Generallyx should also depend on its previous value, but in the problemsdealt with in this thesis the system’s
state is defined by the actors’ controls in a unique way, and the more general dynamic case is not considered.
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Briefly stated, in each problem, the corresponding actors control their variables in order to
satisfy their security or cost objectives. Clearly, it may not be always possible for an actor to
modify its controls without this resulting in constraint violation, given the other actors’ con-
trols. The algorithms developed in this work seek to coordinate and reconcile the independent
decision-making by the corresponding entities at the same time guaranteeing the feasibility of
the overall solution.

In this work, basic notions stemming from Game Theory [FT91,Gib97] and Multi-Objective
Optimization [Mie99] have been used in order to model the emerging situations and to evalu-
ate the efficiency of the results. For instance, the above described situation can be viewed as
a “game”. The different actors take control decisions giventhe control decisions of the other
actors trying to finally obtain the best possible satisfaction of their objective. The game ends
at an operating point where no actor can further improve its objective given the control deci-
sions of the others. A different approach to deal with the same situation is to put together the
individual objectives of the various actors to form a singlelarge, multi-objective, optimization
problem. The solution of this problem yields a compromise between the satisfaction of the
different (partially conflicting) objectives. The relatedmaterial is briefly presented in Chapter
2 and referred to in the rest of the work.

1.2.4 Why not a single, centralized optimization?

A seemingly obvious solution to deal with the aforementioned problem would be to merge
all individual objectives into a single one, thereby resorting to a single objective optimization
involving all constraints.

Several reasons hamper this treatment.

• The objectives may differ significantly from one actor to another; the Mvar schedul-
ing problem provides such an example where a TSO may want to increase its reactive
reserves and another to decrease its active losses.

• The objectives may be somewhat contradictory to each other;for example, two TSOs
may be using their respective PSTs each in order to decrease power flows over specified
cutsets, but decreasing the flow over the cutset selected by the first TSO may result in a
flow increase over the cutset selected by the second TSO and vice versa.

• Even when a single common objective would make sense, like inthe case of overlapping
markets where each MO’s objective is to maximize its social welfare (so adding all the
objectives together would maximize the total social welfare of the interconnection4),
there remains the issue that this may imply favoring some objectives against the others.
For example, let us assume that two MOs clear independently their markets and come up,

4The ith MO, when clearing its market, will typically be maximizing the total social welfare of all its partic-
ipants, call itswi(ui). Adding together all these MOs’ social welfares makes up thetotal social welfare of the
interconnectionSW (u) = sw1(u1)+ sw2(u2)+ . . .+ swi(ui)+ . . .+ swM (uM ), with M the number of MOs.
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respectively, with schedulesu⋆
1 andu⋆

2 with corresponding social welfaressw⋆
1 andsw⋆

2.
Let us also assume that if the total social welfare,SW (u) = sw1(u1) + sw2(u2), was
minimized by a central entity, the resulting schedules would beû1 andû2, corresponding
to individual social welfareŝsw1 andŝw2. If for the ith MO ŝwi < sw⋆

i then this MO may
consider that it is unfairly treated by the centralized entity. Considering a single common
objective, even if it results in a higher total social welfare, would not be accepted by areas
whose social welfare deteriorates due to the common optimization.

• The different actors may not be willing to leave their decision-making authority to a
central entity. They may consider that this violates confidentiality issues, or simply that
it does not serve their interests.

All in all, this thesis is built around the request that the different actors’ objectives should be
treated as fully private and undisclosed to the others. However, in selected places comparisons
with a common objective optimization are made and commented.

1.3 How to (and not to) read this thesis

1.3.1 Structure of the thesis

The leitmotiv of this research work is the above described situation of multiple actors taking
simultaneous actions in a large power system. The methodology and line of thinking that is
used in this direction is presented in Chapter 2. Chapters 3 and 4 deal with the PST control
and the overlapping market problems, respectively, in the spirit defined in Chapter 2. However,
each of those problems deserves by itself special consideration, since it can be viewed as a self-
standing research topic. For this reason, in both cases, theresearch work has been extended
beyond the multi-actor framework, which is the backbone of the thesis, investigating in more
detail the particular characteristics of each problem.

Namely, apart from the multi-TSO aspect of the PST control problem, the problem has been
also considered from a single TSO viewpoint. In this respect, an algorithm addressed to a
single TSO for operating its PSTs has been developed. This algorithm is presented in an
Appendix because it is a deviation from the main line of thinking of the thesis. As regards the
overlapping market problem, the developed coordination algorithm has been extended to treat
a range of related issues. An additional chapter thus follows Chapter 4, where considerations
about the treatment of N-1 security constraints, of losses as well as the scheduling of reserves
are developed.

In fact, although it is not the main viewpoint adopted in thiswork, it is worth mentioning that
the two problems can be viewed separately, dividing the workinto two topics: one dealing with
the control of PSTs in an interconnection, both from a singleand a multiple TSOs perspective,
and another dealing with the idea of allowing multiple overlapping markets to operate across a
large power system, along with its implementation aspects.
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Fig. 1.4 outlines the aforementioned considerations and serves as a guide to reading this thesis.
The numbers in parenthesis give the chapter where the related material is located (A stands for
Appendix A).

2. incorporating N−1 security

EXTENSIONS

MULTI−ACTOR FRAMEWORK

3. scheduling reserves
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(2)

1. energy allocation

markets
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transmissionmulti−TSO

PST control

single−TSO

PST control

game theory

multi−objective optimization

Figure 1.4: Structure of the thesis

1.3.2 Pathway to the thesis’ content

Closing this Introduction, let us devote a few lines to the pathway of the presented research
work. The initial inspiration has been a seemingly new emerging situation in Europe, with
TSOs starting to equip their networks with PSTs in order themto gain controllability over
power flows wheeling through their areas. Belgium and Switzerland are two typical such cases
in Europe, which, due to their geographic location, are subject to significant power flows stem-
ming from external transactions. The need and ways of coordinating the PST operation has,
thus, been the first subject of this research work [Mar07].

This investigation drove consecutively our attention towards the operation and organization
of electricity markets. Two reasons mainly stimulated thisshift: first, the quest for market-
oriented objectives for the TSOs to control their PST angle settings, and, second, the recogni-
tion that the PST control coordination problem can be classified as a special case of the, more
general, congestion management problem that appears in thepresence of multiple independent
actors scheduling transactions in a common network.

As a matter of fact, a big discussion has been raised recently, at least in Europe, about the ques-
tion of how several, up to now separated, electricity markets (coinciding with closed geograph-
ical areas) could be (re-)organized to give new structures that would eventually correspond to a
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large single market where electric energy is seamlessly traded. Again, Belgium is in the heart
of these developments since it is, together with France and the Netherlands, one of the three
countries whose Power Exchanges (PXs) set up the so-called Trilateral market Coupling (TLC)
since 2006, coupling their day-ahead markets. The overlapping market approach proposed in
this work contributes towards creating a big unified marketplace all across a large interconnec-
tion, like the European one. Its timely and practical interest justifies the relatively larger space
devoted to this problem in this work compared to the PST coordination one.

1.4 Software implementation

Let us say two words about the software that has been used in order to implement and test the
algorithms that have been developed in this work.

Both algorithms dealing with the control of PSTs (see Chapter 3 and Appendix A) have been
implemented by modifying the source code of ARTERE, a power flow software developed at
the University of Liège. In particular, the PSTs have been modeled as aΓ-equivalent in cascade
with an ideal transformer with complex ratio, while linear sensitivities relating changes in PST
angles with changes in branch power flows were derived from the Jacobian of the full AC
network model. Optimization problems, stemming from the various TSO decisions, where
solved by resorting to the corresponding solvers of the IMSLmathematical library.

For the implementation and testing of the algorithms presented in the context of overlapping
markets (see Chapters 4 and 5), the mathematical programming environment of GAMS [GAM]
has been used. This offers a variety of solvers, while its significant advantage in the context
of this work (where, anyway, all optimization problems are linear) lies in the human-friendly
way the various problems are formulated by the user and in theinsight it offers regarding the
results of its solved problem. Although not naturally designed for this purpose, we have used
basic program flow control commands that exist in GAMS to implement the various iterative
algorithms presented in Chapters 4 and 5.

1.5 Publications

The present work gave rise to the following publications (chapter(s) where the related material
is presented are given in parenthesis):

• A. Marinakis, M. Glavic and T. Van Cutsem. Control of phase shifting transformers by
multiple transmission system operators. InProc. of IEEE PowerTech Conference 2007,
Lausanne (Switzerland), pp. 119-124, 1-5 July 2007, Print ISBN: 978-1-4244-2189-3.
(Chapter 3)

• A. Marinakis, A. G. Bakirtzis and T. Van Cutsem. Bidding and managing congestion
across multiple electricity spot markets. InProc. of 6th International Conference on
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the European Energy Market 2009 (EEM09), Leuven (Belgium), 27-29 May 2009, Print
ISBN: 978-1-4244-4455-7. (Chapter 4)

• A. Marinakis, W. D. Rosehart and T. Van Cutsem. A framework for the simultaneous
clearing of multiple markets within a common transmission system. InProc. of IEEE
PowerTech Conference 2009, Bucharest (Romania), 28 June - 2 July 2009, Print ISBN:
978-1-4244-2234-0. (Chapter 4)

• A. Marinakis, M. Glavic and T. Van Cutsem. Minimal Reductionof Unscheduled Flows
for Security Restoration: Application to Phase Shifter Control. IEEE Transactions on
Power Systems, vol. 25, no. 1, pp. 506-515, February 2010. (Appendix A)

• A. Marinakis, A. G. Bakirtzis and T. Van Cutsem. Energy and Transmission Allocation in
the Presence of Overlapping Electricity Markets.IEEE Transactions on Power Systems,
paper accepted for publication in 2010. (Chapters 4 and 5)

• A. Marinakis and T. Van Cutsem. Energy and transmission allocation in overlapping
electricity markets: incorporating N-1 security and accounting for losses. paper submit-
ted to the7th International Conference on the European Energy Market2010 (EEM10),
Madrid (Spain), June 23-25, 2010. (Chapter 5)

Besides the topics covered in this report, we were also involved in research work that led to the
following publications:

• B. Otomega, A. Marinakis, M. Glavic and T. Van Cutsem. Model Predictive Control to
Alleviate Thermal Overloads.IEEE Transactions on Power Systems, vol. 22, no. 3, pp.
1384-1385, August 2007.

• B. Otomega, A. Marinakis, M. Glavic and T. Van Cutsem. Emergency alleviation of ther-
mal overloads using model predictive control. InProc. of IEEE PowerTech Conference
2007, Lausanne (Switzerland), pp. 201-206, 1-5 July 2007, PrintISBN: 978-1-4244-
2189-3.
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Chapter 2

A framework for the optimization of
multiple interacting objectives by multiple
actors

In the Introduction the decision-making procedures employed by the different actors in both
the PST control and the overlapping market problem were generally presented as optimization
problems, described by equations like (1.2). It was stated that the interdependence of the actors’
decisions in each problem allows to formulate the situationas a game or as a multi-objective
optimization problem.

This chapter is devoted to presenting: (a) a basic background of these two fields of applied
mathematics, (b) a discussion of how they are linked to each other, and (c) the relationship
between them and the electric power systems problems treated in this thesis.

2.1 Different approaches to decision-making by multiple ac-
tors

For the sake of completeness and in order to put the viewpoints adopted in this work in per-
spective with existing practices and ideas, it is worth devoting some space to presenting a
classification of the different organizational possibilities that could deal with the multi-actor
problems under question.

These possibilities are differentiated in two ways. The first involves a separation between,
on one hand, resorting to a large single-objective optimization encompassing all the various
actors’ problems and constraints, and, on the other hand, allowing concurrent optimizations
of the various actors’ objectives. The second differentiation involves a separation between, on
one hand, a centralized solution of the various problems by one entity, and, on the other hand,
a decentralized approach, where each actor solves its own optimization problem.

13
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The above classification leads to four combinations as shownin Fig. 2.1. At one end there is
a centralized, single-objective treatment of the problem,while, at the other end, we have the
possibility of a decentralized, multiple-objectives approach.

centralized

DB CA

objective

single

objectives

multiple

decentralized

Figure 2.1: Different organizational possibilities for multi-actor framework.

Let us further examine what each of the four possibilities means.

Case A: This is a borderline case, where the existence of multiple actors is not acknowledged.
It consists in operating the whole interconnection by a single central entity. This “super-TSO”
would set all the available controls envisaging an objective which would probably be a com-
bined one that seeks for maximizing the total social welfarewhile attaining at the same time a
sufficient level of security. Such a super-TSO does not exist(neither it seems possible to exist
at least in the near future). Section 1.2.4 provided a list ofreasons explaining why such an
approach is not very likely to be accepted and, thus, it is notthe solution followed in this work.

It is of interest however to mention the recent creation of Coreso [Cor], an approach for a
regional coordination center within the Central Western European region1. Coreso supplies
the control centers of the relevant TSOs with forecasts about the security of the Central West
European grid for the following day (‘D-1 activities’). TheCoreso’s engineers base their anal-
ysis on data that are updated each day and submitted by the system operators, e.g. generation
schedules, international electricity flows and unavailability of power stations and grid compo-
nents. In this way, they assess the security of the grids, simulate various scenarios, such as the
sudden unavailability of an interconnecting line, and thenanticipate the measures that need to
be taken to master the consequences. These analysis, together with the proposed measures, are
submitted to the TSOs’ national control centers which assume operational responsibility for
secure operation of their respective grids [Cor].

Clearly, Coreso is not a control center itself, but a center aiming at coordinating control cen-
ters. One cannot say whether, in some future, areas that are presently controlled separately
will merge into larger control areas, but, for the moment, this does not seem to be envisaged.
However, the exchange of information like generation schedules and line power flows between
the TSO and the Coreso centers verifies what seems to be the present trend, at least in Europe:
exchange non-market sensitive information in order to achieve a higher level of coordination
in a pan-European level, ensuring the security of operationwhile enabling an integration of the
various electricity markets.

1France, Luxembourg, Germany, Belgium and the Netherlands
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Case B: This organizational possibility does not differ from the previous one (case A) in its
potential result. In both cases a single objective, concerning the whole interconnection, is
optimized. However, the implementation approach is completely different. Instead of requiring
the setting up and operation of a unique control center, which would assemble all the areas’
data and would send back to areas the computed controls, dedicated algorithms allow each area
to treat its own, possibly confidential, data and set its controls such that it participates in the
commonly optimized objective.

In this respect, considerable research results exist in thepower system literature that deal with
the solution of the so-called decentralized Optimal Power Flow (OPF) problem [KB97, CA98,
NPC99, AQ01, BB03]. In their essence, they are decomposition methods which split an orig-
inal single problem into several subproblems in such a way that little exchange of information
is needed in order parallel iterative solutions of the subproblems by different agents to lead to
the solution of the original problem. Section 2.2 contains abrief introduction to decentralized
OPF.

The decentralized OPF algorithms allow a single optimization to be performed for the whole
interconnection without the practical and maybe politicalcomplications that the creation of one
single central control center would pose. However, the resort to a single common objective is
anyway questionable as explained in Section 1.2.4. The remaining two organizational possi-
bilities are those of interest in this work since they involve the explicit, separate optimization
of the various objectives.

Case C: This possibility is the “natural” description of the situation under question: each
actor optimizes itself its objective using its own controls. Due to the coupling of the various
problems, however, those optimizations are not independent of each other. As explained in the
Introduction, an actor’s satisfaction from a control decision of its own, depends, generally, on
the other actors’ decisions as well. A game-theoretic framework provides the natural choice to
describe such a case.

Clearly, ensuring the satisfaction of the coupled constraints requires a minimum level of co-
ordination between the actors’ control decisions. In this respect, in the algorithms presented
in this work, the decentralized operation of multiple actors is in all cases complemented with
rules that coordinate the concurrent optimizations.

Case D: Finally, an alternative worth considering, could be to step back from the decentralized
operation viewpoint and have all the optimization problemssolved by one entity, which, at
the same time, would take care of all the constraints. This means that this central entity would
solve a multi-objective optimization problem. The main difficulty in this possibility stems from
the fact that it may not be obvious which of the, generally many, possible trade-offs should be
finally chosen so that all involved actors are convinced to accept this solution.

However, the multi-objective approach can provide useful insight into the possible ways that
the problems could be solved and, as will be commented later in this chapter, it could in some
sense quantify the “quality” of the solutions resulting from a game-theoretic procedure. Thus,
although the main line of this work goes with a coordinated game between the various actors,
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arguments and results stemming from a multi-objective consideration of the problems will be
used when appropriate.

2.2 Decentralized Optimal Power Flow

This section is devoted to briefly presenting the decentralized OPF approach. As already said,
this is not the direction followed in this work. The reader may as well skip this section and
proceed with Section 2.3 without loss of information for theunderstanding of this work.

In [NPC99, CNP02], a modified Lagrangian relaxation procedure is used for the decomposition
of the AC-OPF. The method results in a special treatment of complicating constraints (i.e.
constraints invoking variables of two adjacent areas). Complicating constraints are the active
and reactive power balance equations at the “from” and “to” buses of the tie-lines as well as
the tie-line flow limits. The decentralized OPF solution is achieved by the iterative solution of
modified area OPF subproblems. At each iteration, the modified OPF subproblem of a specific
area differs from a standard OPF in the following: (a) the objective function is augmented by
the Lagrangian terms corresponding to the complicating constraints of the adjacent area side
of all tie-lines and (b) the variables as well as multipliersof adjacent areas, that appear in the
complicating constraints, are held fixed to the values they attained during the previous iteration.

We outline hereafter the technique presented in [BB03] for the solution of the DC-OPF, build-
ing upon the ideas in [NPC99, CNP02].

Assume that there are only two areas, namelyA andB, connected by a single tie-lineij (bus
i located in areaA and busj in B). Each area’s TSO controls a vector of variables,uA for
A anduB for B, and minimizes a cost function, respectivelyfA(uA) andfB(uB). The vector
of variables contains the bus active power injections, the bus voltage phase angles and the tie-
line’s active power flow. Thus,uA = [PA θA TA] anduB = [PB θB TB], whereTA is the
tie-line flow from busi to busj as computed by TSOA, whileTB is the same flow as computed
by TSOB. A set of “local” constraints has to be respected by each TSO,gA(uA) ≤ 0 and
gB(uB) ≤ 0 respectively2. These constraints depend only on the local control variables.

The so-called “original” OPF problem, involving the entireinterconnection is described as
follows:

min
uA,uB

fA(uA) + fB(uB) (2.1a)

s.t. gA(uA) ≤ 0 (2.1b)

gB(uB) ≤ 0 (2.1c)

−Tmax ≤ T (uA,uB) ≤ Tmax (2.1d)

whereT (uA,uB) gives the tie-line flow as a function of both areas variables:T (uA,uB) =
(θi − θj)/xij , with xij the reactance of the tie-line.

2These constraints involve computation of phase angles and branch power flows using a DC model of the
network and they ensure the power balance is respected and nobranch gets overloaded.
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Optimization problem (2.1) is decomposed into two separateones, each involving the vari-
ables of only one TSO. The decentralized OPF algorithm consists in the two TSOs solving
iteratively their own problems until converging to a solution of (2.1). The objective function
(2.1a) is naturally decomposed into its two summands. Alike, constraints (2.1b) and (2.1c) are
easily attributed to the corresponding TSOs. This cannot bedone with (2.1d), since it involves
variables from both sides. So, the tie-line flowT is duplicated into

TA = T (uA, ûB) (2.2)

for TSOA, and
TB = −T (ûA,uB) (2.3)

for TSOB, with ûA (resp.ûB) the values ofA’s (resp.B’s) variables communicated to TSO
B (resp.A) stemming from the previous iteration. The constraint (2.1d) is now incorporated in
(2.1b) as−Tmax ≤ TA ≤ Tmax and in (2.1c) as−Tmax ≤ TB ≤ Tmax, while the two equality
constraints (2.2) and (2.3) constitute the coupling constraints of the decomposed problem. Ad-
ditionally, a term involving the other area’s coupling constraint Lagrange multiplier is added to
each subproblem’s objective function, which leads to the following two subproblems:

min
uA

fA(uA) + α̂BhB(uA, ûB) (2.4a)

s.t. gA(uA) ≤ 0 (2.4b)

hA(uA, ûB) = T (uA, ûB)− TA = 0 (dual variable:αA) (2.4c)

and

min
uB

fB(uB) + α̂AhA(ûA,uB) (2.5a)

s.t. gB(uB) ≤ 0 (2.5b)

hB(ûA,uB) = T (ûA,uB)− TB = 0 (dual variable:αB) (2.5c)

where the hatted values are provided by the other TSO and correspond to its previous subprob-
lem solution.

The algorithm stops whenTA = TB within some tolerance. At this optimal, the combined
Karush-Kuhn-Tucker (KKT) first order optimality conditions of the areas’ subproblems coin-
cide with the KKT conditions of the original problem. This has been achieved thanks to the
extra term added to each subproblem’s objective function.

The main feature of these algorithms is that they allow each TSO to optimize its system indi-
vidually, acting on its own controls only. Local constraints (i.e. referring only to a particular
subsystem) are included by each TSO in the subproblem it solves. Coupled constraints are
taken care by exchange of Lagrange multipliers of the optimization problems between the
TSOs and incorporation of terms in their objective functions.

This approach is practically a distributed way to solve one single problem. The single objective
that is finally optimized is the sum of all the TSOs individualobjectives. Each TSO, if acting
honestly (i.e. truly announcing the requested Lagrange multipliers at each iteration and truly
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incorporating those sent by the others in its OPF), is practically an agent participating in the
solution of a global problem. The approach has been presented in problems where the objective
of all TSOs was to minimize an operational cost (expressed ine/h). So, adding together all the
objectives, to formulate the global problem, made sense; the overall objective could be viewed
as the total operational cost of the interconnection. However, the algorithms equally work for
objectives of different natures, provided that the different objectives are properly scaled prior
to the execution of the algorithm.

It is worth stating explicitly the clear distinction between the techniques described in this sec-
tion and the game-theoretic viewpoint considered in the remaining of this chapter. The decen-
tralized OPF should not be viewed as a game where each TSO is a player. The reason is that the
different actors are not self-interested; they do not seek to optimize their individual objective,
but they participate in the optimization of a common one. A game-theoretic viewpoint would
question the willingness of the TSOs to announce true valuesof their Lagrange multipliers and
of properly incorporating the others’ multipliers in theirOPF problems. In a game-theoretic
approach, the TSOs would aim at making the iterative algorithm converge to a solution where
their individual objective function is optimized, even if the total cost does not. Clearly, this is
not the spirit of the publications referred to in this section.

2.3 Game-theoretic framework

2.3.1 Dynamic non-cooperative game theory: a brief background

A short description of what the term “game theory” refers to is given hereafter based on
[BO99].

In a nutshell,game theoryinvolves multi-person decision making; it isdynamicif the order in
which the decisions are made is important3, and it isnon-cooperativeif each person involved
pursues its own interests which are partly conflicting with others’.

It is relatively easy to delineate the main ingredients of a conflict situation: an individual has
to make a decision and each possible decision leads to a different outcome or result, which
are valued differently by that individual. This individualmay not be the only one who decides
about a particular outcome; a series of decisions by severalindividuals may be necessary. If all
these individuals value the possible outcomes differently, the germs for a conflict situation are
there.

The individuals involved are typically calledplayers(the termsdecision-makersor actorsare
also used).

The games played in the PST control and the overlapping market problems in this work are

3In other words, a game is dynamic if the individuals make sequential decisions by turn, while it is static if
they simultaneously choose and implement their actions.
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Table 2.1: The place of dynamic game theory
One player Many players

Static Mathematical programming (Static) game theory
Dynamic Optimal control theory Dynamic (and/or differential) game theory

dynamic because the different actors sequentially adjust their control actions after observing
the result of the others’ actions, while they are non-cooperative because each player seeks for
its own interest, formulated as the minimization or maximization of its objective function.

Scientifically,dynamic game theorycan be viewed as a child of the parents “game theory”
and “optimal control theory” (see Table 2.1). Its character, however, is much more versatile
than that of its parents, since it involves a dynamic decision process evolving in (discrete or
continuous) time, with more than one decision maker, each with its own cost function and
possibly having access to different information [BO99]. This view is the starting point behind
the formulation of “games in extensive form”, which startedin the 1930s through the pioneer-
ing work of Von Neumann (culminated in his book with Morgenstern [NM47]), and was then
made mathematically precise by Kuhn [Kuh53], all within theframework of “finite” games.
The general idea in this formulation is that a game evolves according to a road or tree structure,
where at every crossing or branching a decision has to be madeas how to proceed.

In spite of this original set-up, the evolution of game theory has followed a rather different path.
Most research in this field has been, and is being, concentrated on the normal or strategic form
of a game. In this form all possible sequences of decisions ofeach player are set out against
each other. In such a formulation dynamic aspects of a game are completely suppressed, and
this is the reason why game theory is classified as “static” inTable 2.1. In this framework
emphasis has been more on (mathematical) existence questions, rather than on the development
of algorithms to obtain solutions.

Independently, control theory gradually evolved from Second World War servomechanisms,
where questions of solution techniques and stability were studied. Then, Bellman’s “dynamic
programming” [Bel57] and Pontryagin’s “maximum principle” [PBGM62] followed, which
spurred the interest in a new field called optimal control theory. Here the concern has been
on obtaining optimal solutions and developing numerical algorithms for one-person single-
objective dynamic decision problems. The merging of the twofields, game theory and optimal
control theory, leads to even more concepts and to actual computation schemes.

Heretofore, we have safely talked about “decisions” made byplayers, without being very ex-
plicit about what a decision really is. This will be made moreprecise now in terms of infor-
mation available to each player. In particular, we shall distinguish betweenactions(also called
controls) on the one hand andstrategies(or, equivalently, decision rules) on the other.

If an individual has to decide about what to do the next day, and the options are fishing and
going to work, then a strategy is: “if the weather report early tomorrow morning predicts dry
weather, then I will go fishing, otherwise I will go to my office”. This is astrategyor decision
rule: what actually will be done depends on quantities not yet known and not controlled by the
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decision maker; the decision maker does not influence the course of the events further, once
he has fixed his strategy. Any consequence of such a strategy,after the unknown quantities are
realized, is called anaction. In a sense, a constant strategy (such as an irrevocable decision to
go fishing without any restrictions or reservations) coincides with the notion of action.

2.3.2 Nash games

Let us now recall what is considered to be a “game” in the context of game theory.

Definition. An N-persongameis a formal representation or a mathematical model
of a situation in which a number of players interact in a setting of strategic inter-
dependence [CKK04]. This means that the welfare of a player depends upon its
own actions and on the actions of the other participants in the game. AnN-person
game (in normal form) is defined as a three-tuple{N ,Ui, fi, i ∈ N}, where:

• N is the set of players,N = {1, 2, . . . , N};

• Ui is the set of possible actions (or strategy space, or feasible set) of theith
player (Ui ⊂ R

ni);

• fi is the payoff (or welfare, utility, profit, objective, etc.)function of theith
player that assigns a real number to each element of the Cartesian product of
the strategy spacesU = U1 ×U2 × . . .×UN .

Players play a game through actions. The information that a player has about its own and other
players’ past actions is theinformation setof that player. Apayoff functionexpresses the utility
that a player obtains given a strategy profile for all players.

Assume that there arei = 1, . . . , N players participating in a game. Each player can take an
individual action represented by a vectorui. All players acting together makes up a collective
action, which is a vectoru = (u1, . . . ,uN ). To emphasize theith player’s variables within
u, we sometimes write(ui,ui−) instead ofu. Each player selects its action from its feasible
set, i.e. ui ∈ Ui, while a collective action belongs in the collective actionsetU. If x =
(x1, . . . ,xN) andy = (y1, . . . ,yN) are elements of the collective action set, we define an
element(yi,xi−) ≡ (x1, . . . ,xi−1,yi,xi+1, . . . ,xN) of the collective action set as a set of
actions where theith player playsyi while the remaining actors are playingxj , with j =
1, . . . , i− 1, i + 1, . . . , N .

Assuming, without loss of generality, that each player tries to minimize an objective function,
theith player’s decision-making problem can be formulated as:

min
ui

fi(ui,ui−) (2.6a)

s.t. ui ∈ Ui (2.6b)
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Definition. A point u⋆ ∈ U is called aNash equilibriumof the game if, for alli,
we have:

fi(u
⋆) = min

ui∈Ui

fi(ui,u
⋆
i−). (2.7)

Notice thatu⋆ solves the game{N ,Ui, fi, i ∈ N} in the following sense: atu⋆ no player can
improve its individual payoff by a unilateral (i.e. its sole) action. For this reason, it is said that
the Nash equilibrium is strategically stable or self-enforcing.

Depending on the problem, there may exist multiple, a unique, or even no Nash equilibrium at
all4. The set of all Nash equilibria of a game is called theNash set.

Problems that fit in the above described framework are termedasNash games, or Nash equi-
librium problems(NEPs) as a recognition to the mathematician John Nash who was the first to
formally introduce them, in two papers [Nas50, Nas51] whichare a landmark in the scientific
history of the twentieth century.

2.3.3 Generalized Nash games

In Nash games, each player’s payoff function depends on the actions of the other players, but
each player’s feasible set does not; theith player chooses its action always from the same
strategy spaceUi irrespective of what the others’ decisions are. However, there exist problems
where the players interact also at the level of the strategy spaces. In other words, the players’
feasible sets depend on the players’ control actions, i.e.

Ui = Ui(ui−).

Such problems arise quite naturally from standard Nash problems if the players share some
common resource (a communication link, an electrical transmission line, a transportation link
etc.) or limitations (for example a common limit on the totalpollution in a certain area).

This class of problems has been named after a number of different terms in the literature,
such as pseudo-games, social equilibrium problems, equilibrium programming problems and
abstract economies. The two names that are used interchangeably in this thesis are: a)gener-
alized Nash equilibrium problems(GNEPs) that seems to emerge as the favorite in Operations
Research, and, b)coupled constraints games, because of its descriptive value for the problems
treated in this work. An excellent survey on GNEPs can be found in [FK07], from where the
material of this subsection has been borrowed.

Let us from now on assume that the setsUi(ui−) are given by

Ui(ui−) = {ui ∈ ℜ
i : gi(ui,ui−) ≤ 0}, (2.8)

4In fact, nopureNash equilibria; there will generally existmixedNash equilibria, but this is out of the scope
of this work.
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wheregi(ui,ui−) : R
n1×...×nN → R

Ci, Ci being the number of constraints of theith player.
Equality constraints, as well as constraints of theith player that depend only on its own vari-
ables, are included in (2.8) as particular cases.

Thus, the decision-making problem of theith player in the coupled constraints games is for-
mulated as:

min
ui

fi(ui,ui−) (2.9a)

s.t. gi(ui,ui−) ≤ 0 (2.9b)

Similarly to (2.7), ageneralized Nash equilibriumis defined as a pointu⋆ ∈ U, where for all
i, we have:

fi(u
⋆) = min

ui

fi(ui,u
⋆
i−) (2.10a)

s.t. gi(ui,u
⋆
i−) ≤ 0. (2.10b)

From here on, for simplicity, we will refer to such a point as aNash equilibrium point, irre-
spective of whether there exist coupling constraints or not.

Simply stated, a Nash equilibrium of a GNEP is a point (i.e. a vector of collective actions) at
which no player can, by a unilateral action, improve its objective without violating at least one
of the coupled constraints.

One may argue that a generalized Nash game is “unnatural” since in a non-cooperative frame-
work the players are expected to care only about their individual welfare and not about common
limitations (constraints). However, this point of view appears to be rather limited, and severely
undervalues [FK07]:

1. the descriptive and explanatory power of the GNEP model;

2. its normative value, i.e. the possibility to use GNEPs to design rules and protocols, set
taxes and so forth, in order to achieve certain goals, a pointof view that has been central
to recent applications of GNEPs outside the economic field (see application below);

3. the fact that in any case different paradigms for games canand have been adopted, where,
although in a noncooperative setting, there are mechanismsthat make the satisfaction of
the constraints possible.

As a matter of fact, the viewpoint expressed in the third point above has been adopted in this
work when dealing with power system problems. The corresponding algorithms are presented
in Chapter 3 for the PST control problem and Chapter 4 for the overlapping market problem.

Application (power allocation in a telecommunication system). This application, coming
from the telecommunication field, is an example where the GNEP is used for its normative
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value. The considered problem is the power allocation in a Gaussian frequency-selective in-
terference channel model [PSFW07]. In order to make the presentation self-contained and
clear, we consider a simplified variant which, however, captures all the technical issues that are
significant for our illustrative purposes.

Consider the Digital Subscriber Line (DSL) technology (a very common method for broadband
internet access). DSL customers use a home modem to connect to a Central Office through a
dedicated wire. In a standard setting, the wires are bundledtogether in a common telephone
cable, at least in proximity of the Central Office. Due to electromagnetic couplings, the DSL
signal in the wires can interfere with one another, causing adegradation of the quality of the
service. The current standards prescribe the use of discrete multitone modulation which, in
practice, divides the total available frequency band in each wire into a set of parallel subcarriers.
In this setting, the parameter that can be controlled is, foreach wireq and for each subcarrier
k, the powerpq

k allocated for transmission. For each wire, the transmission quality is given by
the maximum achievable transmission rateRq.

This quantity depends both on the vectorpq = [pq
1, . . . , p

q
N ] of power allocations across theN

available subcarriers for wireq, andpq−, the vector representing the strategies of all the other
wires (Q is the set of wires). Thus,Rq = Rq(p

q,pq−).

In this setting, there is a single decision maker to decide the power allocation. This decision
maker, loosely speaking, on the one hand wants to minimize the power employed while guar-
anteeing to each wireq a transmission rate of at leastRmin

q . Telecommunication engineers
have come to the conclusion that a desirable way to choose thepower allocation is to take it
as the equilibrium of a GNEP described below. Each wireq is a player of the game, whose
objective function is to minimize the total power used in transmission, with the constraint that
the maximum transmission rate is at leastRmin

q , i.e. the problem of the generic playerq is:

min
pq

N∑

k=1

pq
k

s.t. Rq(p
q,pq−) ≥ Rmin

q

pq ≥ 0

We stress that here the GNEP is used in a normative way. No one is really playing a game;
rather, a single decision maker has established that the outcome of the GNEP is desirable and
therefore (calculates and) implements it. This perspective is rather common in many modern
engineering applications of the GNEP.

It is interesting to note that the above technique fits in the context of Case D in Fig. 2.1.
Instead of solving a multi-objective optimization problem, the central entity could simulate the
execution of a game between the involved actors, taking intoaccount the satisfaction of the
coupled constraints. The difference, however, is that in the here-presented telecommunication
example the players are “defined” by the central entity for the purposes of the allocation, while
in the context considered in this work, the players, i.e. thevarious actors, are “self-existing”
and may rather prefer to be left free to privately decide on and implement their strategies and
behaviors.
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2.3.4 Reaching a Nash equilibrium

In general, a game may have one or more Nash equilibria or evenno equilibrium at all. Two
classical topics in mathematical programming are, in fact,investigating the existence and
uniqueness of Nash equilibria (e.g. [AD54]).

However, even if a unique Nash equilibrium is proven to exist, there is no guarantee that when
the game is actually played by the players, it will finally converge to this equilibrium. Similarly,
in a game with multiple equilibria, the game may not convergeto any of them. Even when it
does, one will not know in advance which equilibrium will be reached.

In its most general case, a game goes on as follows. The players, asynchronously with each
other, based on their information sets, solve their decision-making problems and implement the
corresponding actions. The actions taken by one player willgenerally modify the information
sets thus triggering new actions by the other players and so on. At a Nash equilibrium, the
information in each player’s information set is such that the player has no motivation to take
a new action (i.e. to modify its controls). Notice that, often, the information sets may contain
observable quantities but not the others’ control actions themselves. For example, in a PST
control problem, a TSO may observe the active power flow in a line changing as a result of
PST adjustments by the other TSOs without knowing what thoseactions are. Depending on
their technology or strategy, different players may observe their environment and compute and
take actions at different speeds.

Deviating from the above described general situation, one may easily imagine games where
actions are taken in a synchronous manner at specific momentswhen all players compute and
implement their actions. Additionally, a distinction can be made between games where the
players act in parallel with each other and games where they act sequentially (one after an-
other, each at its turn). Also, as a particular case, there may exist games where each player’s
information set coincides with all the players’ already taken actions (i.e. at any moment, the
players know the other players’ control actions).

Figures 2.2 and 2.3 illustrate the difference between asynchronous and synchronous playing of
a game, respectively, as well as between taking actions in parallel or sequentially.

All in all, a game may be played in different manners as regards the level and type of synchro-
nization of the players’ actions, as well as the informationbeing available during its execution.
Expectedly, the manner a game is played, in addition to its starting point will affect the equilib-
rium to which the game will converge. In addition, the speed at which a player is able to react
is generally expected to affect the final outcome, since a change in that speed will change the
whole “dynamics” of the game. However, it should be kept in mind that existence of equilibria
does not guarantee convergence to one of them; the game may betrapped in a limit cycle sit-
uation (oscillating between two or more different collective control actions) or even progress
endlessly without reaching a clearly observed pattern.
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Figure 2.2: Asynchronous vs synchronous execution of a game.
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Figure 2.3: Parallel vs sequential execution of a game.

2.3.5 Illustrative example

A simple example, taken by [TC01], is used here to illustratesome of the above issues. Assume
a two-person game, with respectivelyp1 andp2 the two players. They both control a scalar
variable (u1 andu2) and minimize an objective function (f1 andf2). Bothf1 andf2 depend on
both control variables. The game is formed as follows:

p1 : min
u1

f1(u1, u2)

s.t. 0 ≤ u1 ≤ 10

p2 : min
u2

f2(u1, u2)

s.t. 0 ≤ u2 ≤ 10

where f1(u1, u2) = 44.76u2
1 − 28.87u1u2 + 10.24u2

2 − 150u1 − 20u2

and f2(u1, u2) = 19.49u2
1 − 34.48u1u2 + 25.51u2

2 − 120u1.

Thanks to the simplicity of the example, one can compute whateach player will play as a
function of the other player’s present action (we call this aplayer’s reaction). For instance,
whenp2 playsû2, p1 will chooseû1 = arg min

0≤u1≤10
f1(u1, û2). Thus,û1 is nothing but the point
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where the first derivative off1 with respect tou1 becomes equal to zero, which gives:

∂f1(u1, û2)/∂u1|(u1=û1) = 0⇒ 89.52û1−28.87û2−150 = 0⇒ û1 = 0.32û2 +1.68. (2.11)

In the same way, one can find thatp2’s reaction is given by:

û2 = 0.68û1. (2.12)

In Fig. 2.4, the two players’ reactions as functions of the other player’s action are shown
graphically. The point(u⋆

1, u
⋆
2) where the two lines intersect is the (unique in this case) Nash

equilibrium of the game. This collective action satisfies both (2.11) and (2.12).
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Figure 2.4: Players’ reactions and Nash equilibrium of the game.

In Fig. 2.5, an execution of the game is shown. The two playersset their control variable one
after the other, as a response to the other player’s action. These moves are illustrated with solid
line. The end of each segment denotes an operating point, i.e. a collective action that is actually
played. The rest of the segment does not correspond to any action, it just aims at visualizing
the progress of the game by linking the different operating points. The starting point was
(û1, û2) = (9, 9) (right-up end of the solid line). The game is played sequentially andp1 is the
first to act. It changesu1 according to (2.11) bringing the operating point on the dash-dotted
line (that gives the optimalu1 for a givenû2). At its turn,p2 modifiesu2 according to (2.12)
bringing the operating point on the dashed line (that gives the optimalu2 for a givenû1). The
game goes on like this, until the Nash equilibrium is reached. There, no player is motivated
to change its control variable. This point can be easily computed in this simple example by
solving (2.11) and (2.12). It is(u⋆

1, u
⋆
2) = (2.15, 1.46).

The same game can be played with the players acting in parallel; they both make and imple-
ment their decisions at the same time. Fig. 2.6 shows the firstthree steps of such an execution.
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Figure 2.5: Playing sequentially until converging to the Nash equilibrium.
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Figure 2.6: Playing in parallel until converging to the Nashequilibrium (the first three steps
are shown with ‘x’s).

The ‘x’s correspond to operating points being actually implemented. For comparison, the solid
line showing the progress of the sequential execution has been kept in the figure. Starting again
from point(9, 9) both players at the same time compute and implement their reactions accord-
ing to (2.11) and (2.12). The collective action resulting from the two players’ simultaneous
actions corresponds to the operating point(4.56, 6.12), shown with the upper-right ‘x’ in Fig.
2.6. Then, the players take new actions and so on up to convergence to the Nash equilibrium.
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One can easily see that playing sequentially or in parallel changes the “dynamics” of the game;
the operating point follows a different trajectory towardsthe Nash equilibrium.

It is worth noting that in this example the information set ofeach player consists of the other
player’s action.

Pursuing with the example in [TC01], let us now assume that there exist some constraints
coupling the players’ actions. Namely, let those constraints be:u1 + u2 ≥ 6 andu1 + u2 ≤ 10.
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Figure 2.7: Players’ reactions, feasible region and set of Nash equilibria of the game.

Fig. 2.7 is a reproduction of Fig. 2.4 where the feasible region, dictated by the two added
inequality constraints, corresponds to the non-shaded area between the two sloping solid lines.
In the new game, the intersection of the two players’ reaction curves (i.e. the Nash equilibrium
of the game without coupled constraints) is no longer acceptable since it violates one of the
constraints. As a matter of fact, in this generalized Nash game there exist a whole set of
collective actions that are all Nash equilibria of the game (making up the Nash set). This set
is also illustrated in Fig. 2.7. The reader can easily check that at any point in the Nash set,
no player can take an action that decreases the value of its payoff function without violating a
constraint of the problem.

How the satisfaction of the two coupled constraints is guaranteed is an interesting issue. In this
example, we assume that each player, when making a decision,limits itself not to violate any
of those two constraints, given the actual value of the otherplayer’s control variable. In other
words, the two players share these constraints, and they both include them in their decision-
making problems, which become:
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p1 : min
u1

f1(u1, u2)

s.t. 0 ≤ u1 ≤ 10

u1 + u2 ≥ 6

u1 + u2 ≤ 10

p2 : min
u2

f2(u1, u2)

s.t. 0 ≤ u2 ≤ 10

u1 + u2 ≥ 6

u1 + u2 ≤ 10

One can notice that the new game is a generalized Nash game, sinceUi = Ui(uj), i, j = 1, 2.
IndeedUi(uj) = {ui : 0 ≤ ui ≤ 10, ui + uj ≥ 6, ui + uj ≤ 10}.
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Figure 2.8: Playing sequentially until converging to one ofthe multiple Nash equilibria.

Playing the game sequentially under the above rule gives thesequence of moves presented in
Fig. 2.8. The notation is as in Fig. 2.5 (players’ actions) and Fig. 2.7 (feasible region). Notice
that often the players are driven by the need to satisfy (1st move ofp1) or not to violate (1st
and 2nd move ofp2) a constraint. The parts of dashed-dotted and dashed lines that are in the
shaded area correspond to whatp1 and respectivelyp2 would have played had it not been for
the coupled constraints. Clearly, without a mechanism thatguarantees the satisfaction of those
constraints the game would have converged to the intersection of those reaction lines, which is
not acceptable. On the contrary, the game shown in Fig. 2.8 converged to one of the points in
the Nash set.

Figures 2.9 and 2.10 show another two executions of the same game, where, compared to Fig.
2.8, the order of moves has been inverted (see Fig. 2.9) or thestarting point has changed (see
Fig. 2.10). Again, one of the multiple Nash equilibria is attained, but different every time. This
is due to the change in the “dynamics” of the game.

The results shown in Figs. 2.8, 2.9 and 2.10 are indicative ofwhat was stated previously in this
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Figure 2.9: Playing sequentially, withp2 playing first, until converging to one of the multiple
Nash equilibria.
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Figure 2.10: Playing sequentially, starting from (9.5,9.5), until converging to one of the multi-
ple Nash equilibria.

section: “the manner a game is played, in addition to its starting point, affect the equilibrium to
which the game will converge”. The normal form of a game (see beginning of Section 2.3.2)
is not enough to predict its final outcome.

Although simple, the example captures a very interesting situation. In the game played in
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Fig. 2.9,p2, at its second move, playsu2 = 3.4 minimizingf2 given that̂u1 = 5, as suggested
by (2.12). However, just by looking at the figure, one can see that if p2 had played̂u2 = 2.5
instead of3.4 and thenp1 had played trying to minimize its payoff function given the new
û2, then the game would have converged to a Nash equilibrium better for p2, i.e. wheref2

has a lower value. This illustrates a very common situation in games: it involves players
trying to anticipate what the other players’ strategies are(i.e. what actions they should be
expected to take) and considering this when they choose their own actions. In other words, the
players, each time they make a decision, instead of naively and myopically acting in a way that
instantly minimizes their payoff functions, couldact strategicallyenvisaging the longer-term,
more constant and stable, benefit, thus looking forward to driving the game towards the most
profitable for them Nash equilibrium.

Let us now modify the example used throughout this section asfollows:
f1(u1, u2) = 54.76u2

1 − 98.87u1u2 + 10.24u2
2 − 100u1 − 20u2

and f2(u1, u2) = 19.49u2
1 + 109.52u1u2 + 49.435u2

2 − 120u1 − 960u2.
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Figure 2.11: Limit cycle situation; the Nash equilibrium isnever reached.

The resulting reactions, computed as in (2.11) and (2.12), are graphically shown in Fig. 2.11
(dash-dotted line forp1 and dashed line forp2). Coupled constraints are not considered in this
example. The intersection of those two lines is the (unique)Nash equilibrium of this game.

In the same figure, an execution of the game, played sequentially with p1 making the first move,
is also presented. The players’ actions are shown with ‘x’s,where the numbers0, 1, . . . , 5 refer
to the sequence of action.

It is easily seen that the game does not converge to the Nash equilibrium. In fact, the players
oscillate between 4 different operating points, making up alimit cycle. In particular, after the
4th move,p1 acts minimizing its payoff function and this brings the gameat point ‘5’ which
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coincides with the previously played point ‘1’. From then on, the game goes on repeating itself,
i.e. point ‘6’ coincides with ‘2’, ‘7’ with ‘3’ and so on.

This example illustrates the fact that the existence of Nashequilibria does not guarantee con-
vergence to one of them.

2.3.6 Computing Nash equilibria

For many applications, it is interesting or useful for an entity to compute beforehand the pos-
sible equilibria of a game (for example, the regulator of a market may want to check what the
effect of a particular policy would be). Algorithms have been developed to this purpose. A
good entry point to the related situation is [FK07]. In general, those algorithms take as in-
put all players’ payoff functions and strategy spaces and, by solving sets of equations and/or
optimization problems, they converge to a Nash equilibriumof the game. However, these al-
gorithms rely on assumptions regarding the mathematical properties of the payoff functions
(continuity, differentiability, etc.) and of the feasiblesets (convexity, concavity, etc.). Thus
they cannot be used for any game. Also, they generally do not make an exhaustive search for
all possibilities; non convergence to an equilibrium does not mean that the latter does not exist.
Finally, convergence to a Nash equilibrium does not provideinformation about the existence of
others, while different starting points may lead to different Nash equilibria. It is probably safe
to say that, as of writing this report, almost no algorithm can be shown to be globally conver-
gent under clear or reasonable assumptions [FK07], in spiteof a significant progress already
made by researchers.

We outline hereafter some of the existing methods and cite some applications in the power
system area.

We first considerpractitioners methods, i.e. methods that are popular mostly among practi-
tioners and whose rationale is easy to grasp. They are “natural” decomposition methods, be it
of Jacobi- or Gauss-Seidel-type (with well-known counterparts in the case of systems of linear
equations [SB02]).

Nonlinear Jacobi-type Method:

1. Choose a starting pointu0 = (u0
1, . . . ,u

0
N) and setk := 0.

2. If uk satisfies a suitable termination criterion, STOP.

3. Fori = 1, . . . , N : compute a solutionuk+1
i of

min
ui

fi(ui,u
k
i−) s.t. ui ∈ Ui(u

k
i−).

4. Setuk+1 := (uk+1
1 , . . . ,uk+1

N ), k ← k + 1 and go to step 2.
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At each iterationk, N optimization problems have to be solved in step 3. The objective function
fi(u

k
1, . . . ,u

k
i−1,ui,u

k
i+1, . . . ,u

k
N), (i = 1, . . . , N), has to be minimized over allui ∈ Ui(u

k
i−

),
whereas all block variablesuk

j of the other playersj 6= i are fixed. This algorithm does not
use the newest information, since, when computingui, we already have the new variables
uk+1

1 , . . . ,uk+1
i−1 and may use them instead ofuk

1, . . . ,u
k
i−1. Using these variables both infi and

in the feasible sets, leads to the following Gauss-Seidel-type method.

Nonlinear Gauss-Seidel-type Method:

1. Choose a starting pointu0 = (u0
1, . . . ,u

0
N) and setk := 0.

2. If uk satisfies a suitable termination criterion, STOP.

3. Fori = 1, . . . , N : compute a solutionuk+1
i of

min
ui

fi(u
k+1
1 , . . . ,uk+1

i−1 ,ui,u
k
i+1, . . . ,u

k
N) (2.13)

s.t. ui ∈ Ui(u
k+1
1 , . . . ,uk+1

i−1 ,uk
i+1, . . . ,u

k
N).

4. Setuk+1 := (uk+1
1 , . . . ,uk+1

N ), k ← k + 1 and go to step 2.

With reference to the examples presented in Section 2.3.5, the iterations of the Jacobi-type
method appear as the decisions taken by players acting in parallel, while those of the Gauss-
Seidel-type method correspond to players acting sequentially.

In the case of a NEP (defined in Section 2.3.2), it is easy to prove [FK07] that if the entire
sequence{uk} generated by one of these methods converges to a pointu⋆, thenu⋆ is a Nash
equilibrium of the NEP. Conditions which guarantee the convergence of the whole sequence
{uk}, however, are typically not known or extremely restrictive. The situation becomes even
more complicate for GNEPs where additional properties of the constraints are required in order
to prove suitable convergence results.

The methods described above are straightforward and easy toimplement, which explains their
popularity among practitioners. However, they can be considered, at most, good and simple
heuristics.

There exist more systematic methods to find Nash equilibria.For instance, a popular approach
consists in writing down the Karush-Kuhn-Tucker first-order necessary optimality conditions
[Kar39, KT51], for each player’s optimization problem and then solving them altogether. The
concatenation of all the players’ KKT conditions gives the so-calledKKT conditions of the
GNEP.

Using the representation (2.9) and assuming that all functions involved areC1 (differentiable
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with continuous derivatives), the KKT conditions for theith player are:

∇ui
Li(ui,ui−, λi) = 0 (2.14a)

gi(ui,ui−) ≤ 0 (2.14b)

λi ≥ 0 (2.14c)

(λi)k · (gi(ui,ui−))k = 0 k = 1, . . . , NCi (2.14d)

whereLi(u, λi) = fi(u) + λT
i gi(u) is the Lagrangian associated with theith player’s opti-

mization problem,∇ui
Li denotes the gradient ofLi with respect toui, (λi)k is thekth element

of λi, (gi)k is thekth element ofgi andNCi is the number of constraints in theith player’s
optimization problem.

Thus, the KKT conditions of the GNEP are given by:

L(u, λ) = 0 (2.15a)

λ ≥ 0 (2.15b)

g(u) ≤ 0 (2.15c)

(λ)k · (g(u))k = 0 k = 1, . . . , NC (2.15d)

where
λ =

[
λT

1 , . . . , λT
N

]T
,

g(u) =
[
gT

1 (u), . . . , gT
N(u)

]T
,

L(u, λ) =
[
∇T

u1
L1(u, λ1), . . . ,∇T

uN
LN(u, λN)

]T
and

NC is the total number of constraints in all the players’ optimization problems.

System (2.15) can be regarded as a first order necessary condition for the GNEP. The following
theorem [FK07] shows, provided some convexity assumptionshold true, that theu-part of a
solution of (2.15) is a solution of the GNEP, i.e. a Nash equilibrium of the game.

Theorem. Let a GNEP be defined by (2.9) and assume that all functions involved
are continuously differentiable.
(a) Letu⋆ be an equilibrium of the GNEP. Then, aλ⋆ exists that together withu⋆

solves (2.15).
(b) Assume that(u⋆, λ⋆) solves (2.15) and that for every playeri and everyui−,
fi(ui,ui−) is convex andUi(ui−) is closed and convex. Then,u⋆ is an equilibrium
of the GNEP.

System (2.15) is aMixed Complementarity Problem(MCP), i.e. a special variational inequal-
ity, for which efficient solvers are available [DF95, FP03, MFF+01]. This paves the way to
several approaches to the solution of GNEPs. Unfortunatelythis statement has to be imme-
diately qualified, since the requirements that must be satisfied in order for those methods to
convergence to a solution of the MCP are not easily applicable to the KKT system (2.15), and
the conditions one obtains this way are rather unnatural in terms of the original GNEP and are
not clear at all [FK07].
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The above method of formulating and solving an MCP has been largely applied by the power
system researchers trying to compute Nash equilibria of electricity markets. References [Hob01,
Sme97] and several subsequent ones such as [BCG+06, XYS04] formulate the market equilib-
rium conditions and solve the resulting MCP.

For instance, in [Hob01] two models of bilateral markets including a congestion management
scheme for transmission are formulated as mixed Linear Complementarity Problems (LCP), a
particular MCP formulation where the functions involved inthe complementarity constraints
are affine. Both models address a bilateral market in which imperfectly competitive generators
purchase transmission services from an ISO who prices scarce transmission capacity in order
to ration it efficiently. In terms of strategies, each generating company in both models plays
a Nash game in quantities sold. This is equivalent to each generation company assuming that
other firms will not alter their outputs, which is a case of Nash-Cournot game. In addition, each
producer merely assumes that its outputs will not significantly affect transmission prices. In
game-theoretic terms, this is a case of Bertrand game with respect to transmission. Given the
above market and strategy assumptions, both models calculate a market equilibrium for gener-
ation and transmission. A market equilibrium is defined as a set of prices, generator outputs,
transmission flows, and consumption that simultaneously satisfy each market participant’s first
order conditions for maximization of its profit while clearing the market (supply = demand). A
solution satisfying those conditions possesses the property that no participant has incentive to
alter its decisions unilaterally; it is a Nash equilibrium.

Reference [Sme97] concludes its survey of gas and electric market models by stating that
explicit statement and solution of equilibrium conditionsis a promising theoretical and com-
putational approach to modeling strategic behavior. The models of this application are mixed
LCPs as a result of using linear demand functions and marginal generation costs. Mixed LCPs
involving thousands of variables and complementarity conditions can be solved using avail-
able LCP software, such as the MILES and PATH solvers within GAMS [GAM]. This permits
application of strategic market models to large systems with thousands of power plants and
hundreds of constrained transmission interfaces.

One may guess a relationship between the lower level problemof the MPECs mentioned in
Section 2.3.5 and the here presented method of concatenating all the players problems’ KKT
conditions to formulate a MCP. In fact, if the players are solving MPECs instead of classical
optimization problems to come up with their actions, then the problem of obtaining an equi-
librium among such MPECs is called anEquilibrium Problem with Equilibrium Constraints
(EPEC) [DS01]. Because the MPEC problem is generally non-convex, such an equilibrium
might not exist or there might be multiple equilibria [HR04].

Other methods that are used to compute Nash equilibria include the “Nikaido-Isoda-function-
type methods”, the “penalty methods” and the “ODE-based methods” [FK07]. Some of them
have been applied in the power system literature, like for example in [CKK04], where a
Nikaido-Isoda-function method is presented for the calculation of Nash-Cournot equilibria in
electricity markets.
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2.4 Multi-objective optimization framework

The process of optimizing systematically and simultaneously a set of objective functions is
calledmulti-objective optimizationor vector optimization[MA04]. Typically, multi-objective
optimization problems appear when a decision maker wants tooptimize several objectives
which are functions of its control variables. The case of interest is when those objectives are
somewhat conflicting; setting the controls at optimal values for one objective deteriorates the
others. Thus, the solution sought by the decision maker is an“optimal” compromise between
its different objectives.

Several applications of multi-objective optimization appear in the power system literature and
practice. Objectives that are typically combined and optimized include cost of active gener-
ation, social welfare, active losses, cost of reactive support, voltage profile, loading margin
[BBIM01, BBM01, CL94, MCI03, RCQ03]. For example, in an electricity market environ-
ment, concerns of ensuring a fair market for participants and security of the system can lead
to conflicting decisions for the system operator, since a reduced operating cost may not be
achieved simultaneously with high security operating conditions [Rom06].

2.4.1 Pareto optimality

The general multi-objective optimization problem is posedas follows [MA04]:

min
u

F(u) = [f1(u), f2(u), . . . , fN(u)]T (2.16a)

s.t. g(u) ≤ 0 (2.16b)

whereN is the number of objective functions,u the vector of decision variables,fi(·) the ith
objective function,g(·) the set of inequality constraints (possible equality constraints being
implicitly taken care there) defining thefeasible setor feasible design spaceU = {u : g(u) ≤
0} andF is a vector containing all the objective functions. Afeasiblesolution of the problem
is a control vectoru ∈ U. Finally, the setZ containing the values thatF may take,{F(u) :
u ∈ U}, is called theattainable set.

Notice that problem (2.16) is not well posed from the mathematical viewpoint (it is not a math-
ematical programming problem); it is rather an intuitive way to visualize with mathematical
symbols the definition of the multi-objective optimizationproblem. However, a range of meth-
ods is available to convert the multi-objective formulation (2.16) into a substitute problem with
a scalar objective (scalarization) that can be solved with the tools of single-objective optimiza-
tion.

In contrast to single-objective optimization, a solution to a multi-objective problem5 is more of
a concept than a definition [MA04]. Typically, there is no single global solution and it is often
necessary to determine a set of points that all fit a predetermined definition for an optimum.

5We use the terms multi-objective problem and multi-objective optimization problem interchangeably.
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The predominant concept in defining an optimal point is that of Pareto optimality[Par06],
which is defined as follows:

Definition. A solutionuo of a multi-objective optimization problem is said to be
Pareto optimalif it is feasible and is not dominated by any other feasible solution.
This means that there is no other solutionu′ yielding at least one better objective
functionfi(u

′) (i.e. fi(u
′) < fi(u

o)) without worsening any of the rest (i.e. sat-
isfying thatfi−(u′) ≤ fi−(uo), where indexi− denotes all objectives but theith
one).

For any given problem there may be an infinite number of Paretooptimal solutions, making
up thePareto set. When it comes to solving a multi-objective problem, one must distinguish
between methods that provide the Pareto set or some portion of that set, and methods that
actually seek a single final solution.

A simple method for determining whether a control vectoruo is Pareto optimal or not consists
in solving the following single-objective problem [Ben78]:

min
u,δ

N∑

i=1

δi (2.17a)

s.t. fi(u) + δi = fi(u
o) i = 1, . . . , N (2.17b)

g(u) ≤ 0 (2.17c)

δ ≥ 0 (2.17d)

If at the solution of problem (2.17) allδis are zero thenuo is Pareto optimal, otherwise it is not.

In terms of a global criterionFg, [Sta88] presents the following sufficient condition for a Pareto
optimal solution, which is useful for evaluating the effectiveness of a scalarization method:

Theorem. Let F ∈ Z, uo ∈ U, andFo = F(uo). Let a scalar global criterion
Fg(F) : Z → ℜ be differentiable with∇FFg(F) > 0, ∀ F ∈ Z. Assume
Fg(F

o) = min{Fg(F) : F ∈ Z}. Then,uo is Pareto optimal.

The above theorem suggests that minimization of a global function Fg(F) is sufficient for
Pareto optimality ifFg(F) increases monotonically with respect to each objective function.
Furthermore, ifuo is Pareto optimal, then there exists a functionFg(F) that satisfies the above
theorem and capturesuo [MSM00]. If the Hessian ofFg(F) with respect toF is negative
definite, then the minimization ofFg(F) is a necessary condition for Pareto optimality [AP96].

2.4.2 Utopia point

An alternative to the idea of Pareto optimality, which yields a single solution, is the idea of a
compromise solution[Sal71a, Sal71b]. It entails minimizing the difference between the poten-
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tial optimal solution and autopia point(also called anideal point)6, which is defined as follows
[VG81]:

Definition. A point F△ =
(
f△

1 , . . . , f△
i , . . . , f△

N

)
is a utopia point iff∀ i =

1, . . . , N , it is f△
i = min

u∈U
fi(u).

In general,F△ is unattainable (if it was not, there would be no conflict between the objectives).
The next best thing is a solution that is as close as possible to the utopia point. Such a solution
is called a compromise solution and is Pareto optimal. A difficulty lies in the definition of
“close”. Usually it implies that one minimizes the Euclidean distanceD(u):

D(u) =
∣∣F(u)− F△

∣∣ =

√√√√
N∑

i=1

(
fi(u)− f△

i

)2

However, if the various objective functions have differentunits, they should be made dimen-
sionless. A “robust” approach for doing this, regardless the original range of the objective
functions, is called normalization and results in the following new objectives [KS87]:

fnorm
i (u) =

fi(u)− f△
i

fmax
i − f△

i

with fmax
i = max

1≤j≤N

{
fi

(
u
△
j

)}
, whereu△

j is the control vector that minimizes thejth objec-

tive function;u△
j = arg min

u∈U
fj(u).

An interesting application of the above concept in the powersystem literature is [PBPE08].
There, the authors consider an interconnected power systemwhere the various TSOs have
agreed to transfer some of their controls to a centralized entity. The role of the latter is to come
up with control decisions which are fair enough for every TSO. The resulting decision-making
problem is formulated as a multi-objective problem, where each objective function corresponds
to a TSO. An algorithm is proposed that selects the closest tothe utopia point solution. To this
purpose, the different objectives are normalized using some notions of fairness.

2.4.3 Methods for solving a multi-objective optimization problem

An excellent review of methods for solving multi-objectiveproblems can be found in [MA04].

As a primary goal in multi-objective optimization is to model a decision maker’s preferences
(ordering of relative importance of objectives and goals),methods are categorized according to
how the decision-maker articulates these preferences. This yields:

6The term “point” is used here referring to a specific set of values of the objective functions. Thus, a control
vectoru yields a point(f1(u), . . . , fi(u), . . . , fN(u)).
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1. methods that involvea priori articulation of preferences, which implies that the user in-
dicates the relative importance of the objective functionsor desired goals before running
the optimization algorithm;

2. methods witha posteriori articulation of preferences, which entail selecting a single
solution from a set of mathematically equivalent solutions;

3. methods that requireno articulation of preferences;

4. methods that involve aprogressive articulation of preferences, in which the decision
maker is continually providing input during the execution of the algorithm.

Most of the methods with a priori articulation of preferences (category 1 above) incorporate
parameters (like coefficients, exponents, constraint limits, etc.) that can either be set to reflect
the decision maker’s preferences, or be continuously altered in an effort to represent the com-
plete Pareto set. The best known method of this category is the weighted sum method, which
consists in minimizing a positively weighted convex sum of all the objective functions:

min
u

N∑

i=1

wifi(u) (2.18a)

s.t. g(u) ≤ 0 (2.18b)

wherewi ≥ 0 are scalar-valued weights. They are typically given valuesin the interval[0, 1].

The values of the weights define the importance given by the decision maker to each of the
objectives and are selected in advance. The theorem in Section 2.4.1 suggests that any solution
of (2.18) is Pareto optimal. Clearly, the relative values ofthe differentwi have a significant
effect on the solution of (2.18), in terms of which element ofthe Pareto set will be chosen. Var-
ious systematic approaches have been developed to select weights [Hob80, HY81]. However,
it should be kept in mind that an a priori selection of weightsdoes not necessarily guarantee
that the final solution will be acceptable (the decision maker may for example realize that some
objectives were too much/little taken into account); sometimes, the problem has to be solved
again with new weights.

The weighted sum problem may be also solved repeatedly with different sets of weights. In
this manner the decision maker learns about available trade-offs between the satisfaction of its
objectives and is offered a selection of candidate solutions. An approximation of the Pareto set
can be obtained in this way. It should be noted however that this method succeeds in getting
points from all parts of the Pareto set only when the Pareto set is convex [DD97] and that a
uniform spread of weight parameters rarely produces a uniform spread of points in the Pareto
set [DD97].

Other methods with a priori articulation of preferences include: the weighted global criterion
method, the lexicographic method, the weighted min-max method, the exponential weighted
criterion, the weighted product method, the goal programming methods, the bounded objective
function method and, finally, the physical programming.
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Methods with a posteriori articulation of preferences (category 2 above), on the other hand,
allow the decision maker to choose from a palette of solutions. To this end, an algorithm is used
to determine a representation of the Pareto set. Although anapproximation of the Pareto set can
be obtained by repeatedly solving a weighted formulation (like in the weighted sum method),
this may be inefficient in providing points that uniformly sample and significantly represent
the complete Pareto set. Methods dedicated to this task are the physical programming, the
normal boundary intersection (NBI) method [DD98] and the normal constraint (NC) method
[MIYM03]. These methods provide means for obtaining an evendistribution of Pareto optimal
points and, thus, allow the decision maker to view options before making a decision.

Clearly, when presenting solutions in tabular form, selecting a single solution can be an intim-
idating task in the presence of a relatively large number of objectives, variables, or solution
points. Consequently, methods with a posteriori articulation of preferences are best suited to
problems with a relatively small number of objectives.

2.5 Relationship between generalized Nash games and Multi-
objective Optimization problems

Game theory models the interactions among different actorswho are taking interdependent
decisions in a common environment. The actors typically take their individual decisions by
solving single-objective optimization problems. On the other hand, multi-objective optimiza-
tion is a tool that allows one to set its control variables in away that simultaneously optimizes
a set of conflicting objectives.

At first glance, the two fields seem totally different from each other. And, in fact, they generally
serve completely different purposes. However, it is noteworthy that they share the same basic
situation: multiple, partially conflicting objectives aresimultaneously optimized. To some
extent, this allows a game to be treated as a multi-objectiveproblem.

This section, built on the related analysis presented in [TC01], considers a game from a multi-
objective viewpoint. This allows quantifying the “quality” of the game’s Nash equilibria.

In [TC01] the authors describe a situation where multiple actors make control decisions in
a common environment. This typical game, after some iterations, settles down to a Nash
equilibrium. On the other hand, supposing that the actors work together on the aggregate
of their individual problems (they can do this either by placing themselves under centralized
control, or by abandoning competition and self-interest infavor of cooperation and altruism),
Pareto optimal solutions can be obtained.

More precisely, let us consider a generalized Nash game where each player’s decision problem
is described by (2.9). Putting all the players’ objective functions and all constraints under a
common umbrella, one can come up with a single decision makermulti-objective problem,
generally described by (2.16). There, the elements of the vector objective functionF are the
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individual objective functionsfi (i = 1, . . . , N), while the feasible setU is the aggregation of
all players’ feasible sets. From now on, we call this thecorresponding multi-objective problem
of a game.

Revisiting the example from reference [TC01] developed in Section 2.3.5, we formulate the
corresponding multi-objective problem of the game as:

min
u1,u2

w1f1(u1, u2) + w2f2(u1, u2) (2.19a)

s.t. 0 ≤ u1 ≤ 10 (2.19b)

0 ≤ u2 ≤ 10 (2.19c)

where f1(u1, u2) = 44.76u2
1 − 28.87u1u2 + 10.24u2

2 − 150u1 − 20u2

and f2(u1, u2) = 19.49u2
1 − 34.48u1u2 + 25.51u2

2 − 120u1.
A weighted-sum scalarization of the vector objective function is used, withw1 > 0, w2 > 0
andw1 + w2 = 1.
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Figure 2.12: Pareto set of the corresponding multi-objective problem.

Solving problem (2.19) repeatedly for different values ofw1 andw2 (sampling the entire range)
the Pareto set of the multi-objective problem is sketched inFig. 2.12. This graphical repre-
sentation of the Pareto set is typically named asPareto curve7 or Pareto front. It shows the
different Pareto optimal trade-offs that can be attained for the two objectives. Each point on
the figure corresponds to a combination of(f1, f2) values, i.e. it belongs to the objective func-
tions’ space8. By definition of Pareto optimality, all the points that are located left and below
of the Pareto curve do not belong to the attainable setZ defined in Section 2.4.1. Points that
are located right and above the Pareto curve are generally attainable (this, of course, depends

7Pareto surface for more than two objective functions.
8The figures presented in Section 2.3.4 were all in the controlvariables’ space.
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on the values thatu1 andu2 can take). Any attainable point in Fig. 2.12 (whether or not on the
Pareto curve) results from a feasible collective action(û1, û2)

9.

A collective action(uo
1, u

o
2) that yields a point on the Pareto curve in Fig. 2.12 is from now

on called a Pareto optimal operating point of the game. If theoutcome of the game was such
a Pareto optimal point, by definition, this would mean that noother collective action exists at
which at least one player’s objective is decreased without increasing any of the other players’
objectives. On the contrary, if a collective action yields apoint at the right-upper side of the
Pareto curve in Fig. 2.12, this means that another collective action could be played where at
least one of the players’ objectives is decreased without anincrease in any of the remaining
objectives.

It is straightforward to conclude that if the outcome of a game is not a Pareto optimal point,
then the players can, by a coordinated collective action, modify altogether their controls and
reach another operating point where they are all better-offthan previously10.
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f
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Figure 2.13: Nash equilibrium of the game with respect to thePareto set of the corresponding
multi-objective problem.

For instance, coming back to our example, Fig. 2.13 shows where the Nash equilibrium of the
game (without the coupled constraints) is situated in the objective functions’ space. A zoom
on the Pareto curve (close to the Nash point) is also shown in the same figure. It can be seen
that the Nash equilibrium of the game is not Pareto optimal. In fact, there exist a whole set of
feasible points for which both actors obtain a better result(smaller objective function value)
than if the collective action yielding the Nash equilibriumis played. In Fig. 2.13, these points
are all those located between the Pareto curve and the two dashed lines. Both players would be
willing to properly modify their control variables in orderto reach one of those points.

9Note that the figure does not provide information on the action (û1, û2) for each point.
10To be precise, there may be cases where one or more (but surelynot all) players are equally well, not better.



Chapter 2 43

In fact, it is not a coincidence of the example but rather a general property: the Nash equilibria
of a game do not, in general, coincide with Pareto optimal solutions of the corresponding multi-
objective problem. This means that, given a Nash equilibrium u⋆, there exist collective actions
yielding, for all actors, more satisfactory objective values than whatu⋆ does.

Unfortunately, the above mentioned Pareto optimal points are not self-enforcing, since they
are not Nash equilibria of the original game. This means thatif, at a given step of the game,
the players’ control vectors have values corresponding to aPareto point, at least one of the
players will be in position, by a unilateral action, to decrease the value of its objective, given
the others’ control vector values. Necessarily, this improvement of a player’s objective will
result in deteriorating at least another player’s objective, otherwise the operating point under
question would not have been a Pareto optimal one.
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Figure 2.14: Collective actions giving the Pareto points ofthe corresponding multi-objective
problem.

Returning to the control variables’ space representation,Fig. 2.14 shows the values that give
the Pareto curve of Figs. 2.12 and 2.13. Each ‘o’ in the figure corresponds to a point of the
Pareto curve. The players’ reaction curves (dashed-dottedand dashed lines) as well as the
sequence of operating points played towards the Nash equilibrium (‘x’s) are also presented in
the same figure. One can easily verify the statements made in previous paragraphs: 1. The
(unique here) Nash equilibrium is not a Pareto optimal point. 2. None of the Pareto optimal
points is a Nash equilibrium of the game; indeed, starting from whichever of those points the
game will, after some moves, converge to the Nash equilibrium.

It is interesting to repeat the exercise for the second version of the example presented in Section
2.3.4, where some coupled constraints are added to the original Nash game. In the same way
as in Fig. 2.14, Fig. 2.15 shows the collective actions that correspond to Pareto optimal points.
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Figure 2.15: Collective actions giving the Pareto points ofthe corresponding multi-objective
problem (example with coupled constraints).

A comparison of Figs. 2.14 and 2.15 suggests that one of the additional constraints causes
the Nash set to move closer to the Pareto set. In other words, additional rules (regulations),
expressed as constraints, if carefully designed, could move the Nash equilibria closer to the
Pareto set [TC01]. This is in accordance to the economists’ knowledge that the efficiency of a
completely free market (their version of an unregulated game) can be improved by the addition
of regulations. In [TC01], the authors suggest that in designing these regulations it is helpful
to represent them as constraints in the actors’ problems.

For instance, Table 2.2 compares the values of the objectivefunctions for various collective
actions. The first is the unique Nash equilibrium of the first example, while the remaining are
three of the multiple Nash equilibria of the second example.Precisely, they are the equilibria
reached after the executions of the game shown respectivelyin Figs. 2.8 (which is the same
case as in Fig. 2.15), 2.9 and 2.10. It can be seen that in all three cases with coupled constraints
both actors are better-off compared to the unconstrained Nash equilibrium. Worth mentioning
is also the fact that at each of the three Nash equilibria of the same game (lines 3 to 5 in
the table) a different trade-off is encountered between thetwo objectives;p1 would prefer the
equilibrium(2.77, 3.23) while p2 would favor(3.45, 2.55).

The final outcome of a game, i.e. the reached Nash equilibrium, corresponds to a certain
satisfaction for each actor. From a specific actor’s perspective, different Nash equilibria can
be easily compared. However, it is less obvious to classify Nash equilibria from a “neutral
observer’s” viewpoint.

NamingA, B andC the equilibria in the third, fourth and respectively fifth line of Table 2.2
and using the symbol> to denote an order of preference, forp1 it is B > A > C while for p2 it
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Table 2.2: Objective functions’ values for various Nash equilibria
Game played u⋆

1 u⋆
2 f1(u

⋆
1, u

⋆
2) f2(u

⋆
1, u

⋆
2)

without coupled constraints (Fig. 2.5)2.15 1.45 -213.0 -221.1
with coupled constraints (Fig. 2.8) 3.29 2.71 -245.7 -303.7
with coupled constraints (Fig. 2.9) 2.77 3.23 -288.3 -224.3
with coupled constraints (Fig. 2.10) 3.45 2.55 -223.2 -319.4

is C > A > B. If a neutral observer had to make a choice among the three, itwould not have a
clear criterion to prefer one to another (we can see that for whichever combination of equilibria,
the two actors would always disagree on what would satisfy them more). Maybe an instinctive
choice would beA, as a compromise solution. But even this choice is not supported, while it
does not even generalize well; if a fourth candidate solution D is such thatB > A > D > C
for p1 andC > D > A > B for p2, what should be the choice,A or D?

Borrowing the terminology from the multi-objective optimization literature, we say that a Nash
equilibriumu⋆ strictly dominatesanother Nash equilibriumu⋆′ if for all the involved players
i = 1, . . . , N we havefi(u

⋆) < fi(u
⋆′). We also say thatu⋆ weakly dominates(or just

dominates) u⋆′ if for at least one playeri we havefi(u
⋆) < fi(u

⋆′) while for each of the
remaining playersj it is fj(u

⋆) ≤ fj(u
⋆′). Clearly, dominated Nash equilibria can be classified

as worse than those which dominate them. In the same line of reasoning, all players have
interest to avoid converging to a strictly dominated equilibrium.

Since the outcome of a game (and hence the satisfaction of theplayers) depends, in part, on the
rules of that game (if any), or, as it is called in [TC01], the players’organization, one should
seek an organization such that convenient (at least non dominated) equilibria are reached. Even
more, if a game converges to an equilibrium which is not Pareto optimal, the organization
should be modified so that the new attracting equilibrium lies in the region of the objectives’
space defined by the Nash equilibrium and the Pareto front as sketched in Fig. 2.13. The
term organization is used in a general sense. It embeds the order and synchronization at which
players take actions, the exchange and/or share of information between players, the existence
of a coordinating entity or supervising authority, or even the level at which the players agree to
import in their own problems, objectives and constraints from the problems of the other players
(altruism) and the level at which they agree to cede some control of their decision variables to
others (deference).

As explained in [TC01], the organizational possibilities may lie in a range from a completely
unregulated game, where actors are autonomous and work asynchronously, unrestricted by
rules or regulations and driven by self-interest, to a “totalitarian regime” (centralized opera-
tion), where actors have no autonomy; they only execute instructions stemming from a central
planner. In between these two extremes, there is a continuumof increasingly regulated games.
The role of regulations is to allow actors to compete along some dimensions while ensuring
that they cooperate along others. In other words, they “require the actors to temper their self-
interest with altruism” [TC01].
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2.6 Final discussion

The problems dealt with in this work conceptually belong to the family of GNEPs; different
actors optimize their controls while there exists a set of constraints, coupling all the actors’
control decisions, that should be respected. These constraints stem from the operation and
feasibility limits of the transmission grid.

Coordination is needed to, at least, make sure that the reached operating point is a feasible one.
As stated in Sections 2.3.3 and 2.3.4, a mechanism is needed to ensure that the coupled con-
straints are satisfied. With reference to Fig. 2.8 for example, one can see that this mechanism
should prevent the actors from converging to the intersection of the two reaction curves, which
violates one of the coupled constraints. So, mechanisms forcoordination between the different
actors are sought. Of course, the coordination needs not necessarily be limited in ensuring the
satisfaction of constraints, it could also embed some efficiency and fairness objectives, as is the
case in the algorithm developed for the overlapping market problem.

Merging the various actors’ decision problems into a large central one seems a tempting so-
lution since it handles all constraints and interactions (it can be seen as the ultimate level of
coordination between the actors). However, several practical disadvantages of such a central-
ization exist, as listed in the Introduction of this report.

More specifically, let us say two words about the choice of centralization from the particu-
lar viewpoint of each separate problem. In the case of the PSTcontrol problem , the single
(common) objective would be to operate the grid in a secure way. The main inertia force
against the benefits of centralization is the fact that each system is generally financially self-
supported (example of countries in Europe), so TSOs do not trust ceding their control to a
central decision-maker as each of them fears that this couldresult in itself eventually paying
for the security of another TSO’s system. In the case of the overlapping market problem it can
be an objective by itself to allow different markets (thus, market structures) to co-exist. This
issue is further developed and discussed in Chapter 4.

In the already cited reference [PBPE08], the authors use notions of efficiency, fairness and
accountability to set up a single-objective optimization problem solved by a central decision-
maker to solve the Mvar scheduling problems of several TSOs.There, the original TSO ob-
jectives are of different nature (maximizing reactive reserves vs. minimizing system losses).
However, it seems still difficult to devise one or more metrics to judge whether a centralized
scheme is acceptable by the various involved actors.

The direction followed in this work is that of allowing the various actors to, simultaneously
and independently of each other, solve their decision-making problems and come up with their
sought actions. A set of obligations related to the actors’ decisions is imposed by a centrally
operated coordinator to reconciliate those independent decisions.

More precisely, coordination is achieved via the use of a common network model and via
constraints that actors should be obliged to satisfy when solving their decision problems. The
commonly shared models allow checking that each actor fulfils its obligations. On the contrary,
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the decision-making problems themselves remain undisclosed. Furthermore, each actor may
have its own objective and use its own operation procedures.

Creating and sharing a model of the entire network has been considered acceptable by the
involved TSOs. In fact, it is the present trend, at least in Europe, to come up with such large-
scale models and use them for various security reasons [VP05]. In particular, the ongoing
PEGASE project (Pan European grid advanced simulation and state estimation), supported by
the 7th Framework Program of European Union and involving a group of TSOs, companies and
research centers, is dealing with state estimation, optimal power flow and dynamic simulation
at the European level [PEG, SKCW08].
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Chapter 3

Control of phase shifting transformers by
multiple transmission system operators

In this chapter, a general framework is proposed for the control of Phase Shifting Transformers
(PSTs) owned by several TSOs, taking into account their interactions. The proposed solution
is the Nash equilibrium of a sequence of optimizations performed by the various TSOs, each of
them taking into account the other TSOs’ control settings aswell as operating constraints rela-
tive to the whole system. The method is applied to a linearized network model and illustrated
on the IEEE 118-bus system.

3.1 The phase shifter and its use

The possibility of controlling power flows by PSTs (or “phaseshifters” as they are also called),
and thus increasing the utilization of the bulk power system, was recognized long ago [Lym30,
Lym38, Blu51].

3.1.1 Description of PST operation

A PST allows to introduce a phase angle shift of the voltage (and current) at its ends. Phase
shifting is implemented by a parallel connected three-phase transformer, which generates a
quadrature component of voltage. This can be inserted into the line via a series connected
boosting transformer. An on-load tap changer can be used to change the value of the quadrature
component in order to obtain the corresponding variation ofthe voltage phase angle [Han82].
Fig. 3.1 illustrates such a set-up for one of the three phasesof a transmission line. A fraction
of the voltage taken between two phases is added to the voltage between the third phase and
the neutral.

49
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Figure 3.1: Phase Shifting Transformer
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V + ∆V

Figure 3.2: Phase angle change by a PST, one-phase diagram

Fig. 3.2 shows, in a one-phase diagram, the effect of a PST operation. One can see that a
considerable phase angle shift (∆φ in the figure) can be obtained with a very small change of
the voltage magnitude (denoted by the arrows’ lengths in thefigure). Note that there exist more
elaborate schemes, allowing to introduce a voltage phase angle shift without affecting voltages
magnitudes.

If a PST installed in a branch (connecting busi with busj) introduces a phase angle difference
∆φ at its ends, this will result in a new bus angle differenceθ′j − θ′i = θ′j(∆φ)1, depending on
the system’s electrical parameters.

Let us call an “ideal” PST a phase shifter for which two assumptions are made: 1. its reac-
tance is zero, and 2. it can incur a phase angle change∆φ without introducing any change in
the voltage magnitude. Inspired by the illustration in [Elg71], the effect of PST operation is
presented hereafter by means of a simple example.

1We take busi as the reference bus.
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Figure 3.3: Example of PST operation: before the PST action.
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Figure 3.4: Example of PST operation: after the PST action.

Suppose an ideal PST installed in a transmission line 1 in Figs. 3.3 and 3.4. The line’s resis-
tance is neglected while its reactance isx1. The parallel line 2 (see figures), with reactancex2,
is supposed to equivalently represent all the alternative paths (i.e. except line 1) in the network
that connect the two buses. The network carries an active powerP from bus 1 to bus 2.

Before the PST operation (∆φ = 0, Fig. 3.3)P was divided between line 1 and the rest of the
network (line 2) as follows:

P1 =
x2

x1 + x2

P (3.1a)

P2 =
x1

x1 + x2

P (3.1b)

After the introduction of∆φ (Fig. 3.4), the new line flows are given by the following equations
(where, for simplicity, the DC approximationsin x ≃ x is made for all angles):

P ′
1 =

V1V2

x1

(θ′ −∆φ) (3.2a)

P ′
2 =

V1V2

x2

θ′ (3.2b)

Since we assume an ideal PST, the voltage magnitude remains the same.

From (3.2), and using the fact thatP = P1 + P2, the following line power flows result:

P ′
1 =

x2

x1 + x2
P −

V1V2

x1 + x2
∆φ (3.3a)

P ′
2 =

x1

x1 + x2
P +

V1V2

x1 + x2
∆φ (3.3b)
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Comparing (3.1) with (3.3), one can see that a modification ofthe PST angle by∆φ caused a
variation of power flow

∆P1 = −
V1V2

x1 + x2
∆φ (3.4)

in line 1. This power flow is redistributed through the remaining of the network. Clearly, if no
alternative path exists for the power to flow from bus 1 to bus 2, thenx2 →∞ and∆P1 = 0.

Also, from Eqs. (3.2) and (3.3), using the expression of the power flow before the PST action,
P1 = V1V2

x1
θ or P2 = V1V2

x2
θ, we end up with the following expression relating the phase angle

differenceθ′ − θ with the phase shift∆φ:

θ′ − θ =
x2

x1 + x2
∆φ (3.5)

The above expression shows that, as expected, in the absenceof a path parallel to line 1 (x2 →
∞) the entire PST shift∆φ is seen as a voltage phase angle changeθ′− θ. On the contrary, the
more parallel paths exist (i.e.x2 → 0), the moreθ is held unchanged.

Although the effect of PST was illustrated using some approximations (ideal PST,sin x ≃ x),
the above presented results hold qualitatively true in general. If a PST installed in branchb
introduces a phase angle difference∆φ at its ends, then the branch flow will be modified by
an amount∆pb approximately proportional to∆φ, provided that there exist alternative paths
connecting the ends of branchb. How sensitive∆pb is to∆φ depends on the network topology,
parameters and, in general, operating point. Noteworthy here is the fact that in this work as
well as in other studies [Mar05, VHS+08], it has been observed that a linear approximation of
the PST effects on active power flows is very accurate.

3.1.2 Scope of PST control: literature review

Due to the above-described flow redirection capability, phase shifters are often installed in
branches that are deemed being at risk of getting overloadedand are operated according to
the simple rule: if the branch gets (or tends to get) overloaded, adjust the PST phase angle
so that the overload is cleared thanks to the resulting flow redistribution. This is a “local”
control strategy, where the PST actions are independent of the system security and economic
considerations. Another similar local control strategy consists in predefining the desired active
power flows (typically called MW schedules) in the branches where PSTs are installed and
adjust the PST settings such that the sought flows are imposed.

Alternatively, or sometimes in addition to a local control strategy, the PSTs that are installed
in a system can be controlled altogether, in a coordinated way, as it has been (already) briefly
suggested in Chapters 1 and 2, in order to enhance system security [CBC+02, MZBH01] or/and
to facilitate economically beneficial transactions, in this way improving the economic follow-
up for the market players [MC04].

Ref. [MZBH01] presents an integrated “OPF with PST” approach to enhance power system
security by removing line overloads. The problem dealt within that paper stems from the fact
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that, on one hand, the general OPF calculations are hourly based and the OPF control vari-
ables are continuous, while, on the other hand, the PST control calculations are daily based
and the variables related to PSTs are discrete. To address this problem, the paper develops a
scheme where PST control is incorporated into a rule-based OPF. In order to effectively allevi-
ate the line overloads, the ranking of phase shifter locations is conducted based on contingency
analysis and sensitivity analysis.

In the same spirit, Ref. [CBC+02] presents a methodology to include optimization of the
PSTs MW schedules in security constrained scheduling applications. The approach advocated
differs from conventional OPF in that it involves iterations between two modules: a schedule
optimizer and a security monitor. The data passed from the security monitor to the schedule
optimizer are critical security constraints, characterized by sensitivities of line flows to PST
control actions and limits. The schedule optimizer calculates the minimum cost dispatch of
generator resources and price-sensitive loads, while simultaneously satisfying both the control
variable constraints and system constraints. Representative test results obtained from a security
constrained unit commitment are shown to demonstrate the economic benefits and effectiveness
of the developed methodology. It is shown that optimal setting of the PSTs MW schedules can
significantly reduce the system operational cost.

The PST control problem, defined as the solution of an OPF-type optimization problem, incor-
porating proper modeling of the PST control effect, in orderto come up with the selected PST
tap settings, is formulated and solved for different objective functions in [Mar05]. A Model
Predictive Control-inspired approach is developed in thatwork, implementing a control scheme
where real-time PST adjustments keep the objective function at its optimal level despite normal
(variation of load) or emergency (equipment outages) changes that modify the power system
operating state.

An interesting coordinated PST control approach is presented in [MC04]. The proposed method-
ology consists in setting the phase shifter angles such thatthe overall transfer capacity is in-
creased towards the most economically valuable directions. A mechanism is also presented so
that the phase shifter owners are remunerated in proportionto the extra benefit created by the
optimal setting of their phase shifters.

All in all, thanks to the introduced phase shifts, PSTs offerthe opportunity to partially control
the flows in a power system. They are one of the principal control devices used to direct
power flows in specific parts of the transmission network. Although the operation of PSTs
incurs maintenance costs and losses, it remains less costlythan generation rescheduling and
definitely preferred to load shedding [HMB+91]. Finally, it is one of the controls, together
with topology changes, that fully remain in the hands of TSOs.

Within the just described perspective, several TSOs, in Europe noticeably, equip their networks
with more and more PSTs. Most of them are located to remove congestions on important lines,
typically tie-lines between countries, which are usual “bottlenecks” [BSA+04].

With reference to Fig. 3.5, the two PSTs can be controlled in acoordinated way to reduce the
fraction of power flow passing through the networkN as a result of the transaction from G to
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D. More PSTs are likely to be installed for increased controlof transit flows, as testified by the
situation in Belgium, where three PSTs have been put in operation on the Northern border of
the country [VHS+07, VHS+08].
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Figure 3.5: Transit flow due to external transaction

This situation is further analyzed in Appendix A, where an algorithm for real-time PST control
is presented. The control scheme aims at using the PSTs of an area to restore security by
decreasing as little as possible the transit flow passing through that area. The motivation behind
the developed algorithm is that the control should balance between two somewhat conflicting
objectives: be non intrusive to the rest of the interconnection on one hand, but protect the
area under question from unscheduled flows stemming from transactions in other areas of the
interconnection on the other hand.

3.1.3 Control of PSTs by multiple TSOs

In a large meshed interconnection, PSTs can impact active power flows in far-away distances.
As a result, PST control actions taken by one TSO will generally affect the operation of the
other TSOs’ systems. In some future, these interactions might lead to dangerous conflicting
situations, for instance if one TSO prevents transit power flows from passing through its system.
Such “fights” are obviously undesirable, not only from market viewpoint [BK97], but above
all for security of operation.

The optimal solution from a technical viewpoint would probably be a central “entity” coordi-
nating the various PSTs so as to reach a global objective. However, TSOs may not be open to
such a solution in which they would partly lose control on equipments they acquired to improve
their own system. Thus, the viewpoint adopted here is more toallow each TSO to have its own
objective, while avoiding conflicts that would endanger security.

To this purpose, in the remaining of this chapter, first a general framework is outlined, in which
multiple objectives, each relative to a particular TSO, areoptimized under a set of common
security constraints. While it is assumed that informationis shared by the partners in order to
avoid violating those constraints, each TSO is supposed to keep its objective undisclosed. The
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formulation leads to solutions that altogether constituteNash equilibria of the overall proce-
dure. This general formulation is then particularized to the problem of PST control, for which
linear programming is used by each TSO.

3.2 General multi-TSO optimization framework

3.2.1 Uncoordinated game between TSOs

We consider an environment in which each TSO uses its own controls to optimize an individual
objective, all of them operating the same interconnected system. For simplicity, we refer to a
case with two TSOs, named TSO1 and TSO2, withu1 andu2 their respective vectors of control
variables. Let us also group together into a set of inequality constraints whatever the operation
of the whole interconnection has to obey:

g(u1,u2) ≤ 0 (3.6)

This set of constraints is nothing but a very general way to express all security, operational,
physical and other limits that the involved TSOs should respect when optimizing their systems.

The setg(·) ≤ 0 is naturally decomposed according to the involved TSOs, into:

g1(u1,u2) ≤ 0 (3.7a)

g2(u1,u2) ≤ 0 (3.7b)

In other words, (3.6) is made up of all the involved TSOs individual set of constraints. Those
sets shall be in the largest part distinct, except maybe somecommon constraints, typically
involving tie-line flows, that can be duplicated in bothg1 andg2 without loss of generality.
Clearly, many constraints in (3.7a) and (3.7b) are expectednot to depend on the other TSO’s
controls; they are all expressed in the same way though, to keep the presentation simpler and
more homogenous.

Each TSO has its own objective function to be minimized. We denote them byf1(u1,u2)
andf2(u1,u2), respectively. These objectives may be quite different, but we assume that each
function is influenced by the whole set of controls, which is the expression of the already men-
tioned TSO interactions. Note that the decision-making procedure may be more complex than
just solving a mathematical programming problem: it could be heuristic, or it could involve
additional computations, dealing for instance with post-contingency security constraints. The
latter, for instance, has been considered in the algorithm presented in Appendix A.

In the worst case, when there is no level of coordination among the TSOs, each TSO solves a
problem including its own control variables only, the rest being explicitly or implicitly set to
some constant value, and focusing on its own operating constraints only. In this perspective,
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TSO1 computes:

û1 = arg min
u1

f1

(
u1,u

0
2

)
(3.8a)

subject to g1 (u1,u
0
2) ≤ 0 (3.8b)

whereu0
2 is the value ofu2 assumed by TSO12. A similar set of equations holds for TSO2,

which ends up with a solution̂u2. Since each TSO ignores the other TSO’s control actions, the
operating point resulting from these uncoordinated changes is likely to differ from what each
TSO model predicts. More importantly, the solution may not be feasible, sinceg(û1, û2) ≤ 0

does not necessarily hold true.

As discussed in Chapter 2, each TSOi could be expected to modify its control action according
to (3.8), updatingu0

i− based on its observations. Ifui− is observable, then the newu0
i− will be

theûi− stemming from the other’s solution of (3.8), otherwiseu0
i− will be estimated based on

the observation of changed quantities, such as branch flows.In general, a TSO will modify its
controls each time there is a modification triggered by the other TSOs. Nothing guarantees con-
vergence of such iterations. Furthermore, even when they doconverge to a Nash equilibrium,
this is likely to happen together with some of the following disadvantages:

1. the system may be operated for some time, during the iterations, in an emergency state,
i.e. with some of the constraints in (3.6) not respected;

2. too much control effort (with possible associated cost) may be wasted during the itera-
tions, each TSO annulling the other’s action.

3.2.2 Coordinated iterative procedure for multi-TSO optimization

A more “responsible and coordinated” scheme is considered in this work. It relies on the
following rules:

1. each TSO provides information on its operating constraints;

2. each TSO takes into account the whole set of operating constraints;

3. each TSO communicates its current preferred control settings (i.e.,ûi for the ith TSO),
which are taken into account by the other TSOs;

4. they iterate until an equilibrium is reached.

The first item suggests that the TSOs collaborate and exchange the necessary information to
jointly construct the set (3.6). This goes with the prerequisite considered in this thesis that the
TSOs are willing to put their efforts together in this direction (see Section 2.6).

2This could also be denoted asu0
1− according to the notation introduced in Chapter 2.
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The second and third items aim at achieving a level of coordination among the TSOs. In the
multi-TSO optimization presented in this chapter, this coordination is fully oriented towards
guaranteeing the system’s security, at any moment; thus thesecond item. The third item may
look too strong a prerequisite at first glance: why should a TSO announce its control action? Its
usefulness is justified by the fact that it allows the TSOs to correctly take into account the con-
straints (see second item), while it facilitates the verification, at any moment, that any TSO is
respecting its obligations (i.e., it does not take an actionthat violates the common constraints).
Not having the TSOs announcing their actions complicates the coordination, without, at least,
really protecting some sense of confidentiality; the network model transparency, included in
the construction of (3.6), is there to make sure that one TSO’s control actions are “seen” by the
others.

If, however, confidentiality issues are raised, a consensushas to be reached about the minimal
amount of data to be communicated, withholding sensitive pieces of information, so as to
render it commercially neutral for instance. On the other hand, a TSO should be able to justify
the security constraints it announced (if requested to do soby a regulatory body, for instance).

Finally, the fourth item stems from another prerequisite followed in this work: the TSOs’
decision-making procedures should remain undisclosed. This, as discussed in Chapter 2, ex-
cludes the solution of solving an overall single optimization for the whole interconnection and
leaves the choice of having the TSOs iterate in order for themto altogether optimize their
objectives.

It is important to point out that, for the moment, we make the assumption that each TSO has
the controllability to satisfy all the constraints, whatever the action of the other is. This may
not always be the case in practice. This issue of controllability is illustrated and commented
later on in this chapter, as well as in the forthcoming Chapter 4.

Under the above assumptions, at thekth iteration of the procedure, TSO1 knows the current
preferred valueuk

2 of TSO2 controls3. Using this information, it updates its own preferred
solution according to:

uk+1
1 = arg min

u1

f1

(
u1,u

k
2

)
(3.9)

subject to g1

(
u1,u

k
2

)
≤ 0

g2

(
u1,u

k
2

)
≤ 0

TSO2 carries out a similar computation, ending up with the updated solutionuk+1
2 . Both values

are used at the next iteration.

If convergence is achieved, the final solution reached is:

for TSO1: u⋆
1 = arg min

u1

f1 (u1,u
⋆
2) (3.10)

subject to g1 (u1,u
⋆
2) ≤ 0

g2 (u1,u
⋆
2) ≤ 0

3The ̂ symbol is omitted since the iteration indexk is enough to show that the vector is the solution of a
TSO’s decision problem.
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and for TSO2: u⋆
2 = arg min

u2

f2 (u⋆
1,u2) (3.11)

subject to g1 (u⋆
1,u2) ≤ 0

g2 (u⋆
1,u2) ≤ 0

where all security constraints are satisfied.

One can recognize that the proposed scheme makes up a GNEP (see Section 2.3.3). In other
words, the TSOs play a generalized Nash game. The solution(u⋆

1,u
⋆
2) is a Nash equilibrium

of this game. The rule that is chosen to guarantee the satisfaction of the coupled constraints
consists in all the players committing themselves to include those constraints in their decision-
making problems. Each TSO may be viewed as a self-interestedplayer acting towards optimiz-
ing its objective, all of them obeying the whole set of operating constraints. The information
set of each player contains all the players’ actions according to the third rule stated at the
beginning of this section.

Of course, the convergence of the above procedure and the existence of several Nash equilibria
remain questions of interest.

3.3 Application to PST control problem

As already mentioned, we consider an environment in which each TSO uses its PSTs to opti-
mize an individual objective. To model the effect of PST control on the network we adopt the
well-known DC approximation, which is acceptable for the problem of concern and leads to an
insightful linear problem. The PSTs are considered as ideal; no voltage magnitude change with
PST tap change is assumed. The impedance of a PST installed inseries with a transmission line
is considered fixed and is included into the line’s impedance. Further efforts could be directed
towards updating the operating constraints when large PST angle excursions take place as well
as adjusting the PST impedances with the tap position.

Under the DC approximation, the active power flows in transmission lines can be linearized
around a base case operating point, according to:

p = p0 + S
(
ϕ−ϕ0

)
(3.12)

wherep0 is the base case value of active power flowsp, and similarly forϕ0 with respect to the
PST anglesϕ. The sensitivity matrixS can be easily derived from the DC (or even AC) load
flow equations using a well-known general sensitivity formula involving the inverse transposed
Jacobian of the power flow equations [PPTT68]. The limits on branch power flows take on the
form:

−p ≤ S
(
ϕ−ϕ0

)
+ p0 ≤ p (3.13)

wherep is a vector of maximum branch power flow.
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Proceeding with the two-TSO example, these inequalities can be decomposed into:

−p1 − p0
1 ≤ S11

(
ϕ1 − ϕ0

1

)
+ S12

(
ϕ2 − ϕ0

2

)
≤ p1 − p0

1 (3.14a)

−p2 − p0
2 ≤ S21

(
ϕ1 − ϕ0

1

)
+ S22

(
ϕ2 − ϕ0

2

)
≤ p2 − p0

2 (3.14b)

where the notation is self-explanatory. To sketch out each TSO’s participation in each set of
constraints, the sensitivity matrix is decomposed into four parts (namelyS11, S12, S21 andS22).

According to what was presented in Section 3.2, the two TSOs will compute a sequence of
PST settings according to(k = 1, 2, . . .):

for TSO1: ϕk+1
1 = arg min

ϕ
1

f1

(
ϕ1, ϕ

k
2

)
(3.15)

s.t. −p1 − p0
1 ≤ S11 (ϕ1 − ϕ0

1) + S12

(
ϕk

2 − ϕ0
2

)
≤ p1 − p0

1

−p2 − p0
2 ≤ S21 (ϕ1 − ϕ0

1) + S22

(
ϕk

2 − ϕ0
2

)
≤ p2 − p0

2

ϕmin
1 ≤ ϕ1 ≤ ϕmax

1

and for TSO2: ϕk+1
2 = arg min

ϕ
2

f2

(
ϕk

1, ϕ2

)
(3.16)

s.t. −p1 − p0
1 ≤ S11

(
ϕk

1 −ϕ0
1

)
+ S12 (ϕ2 − ϕ0

2) ≤ p1 − p0
1

−p2 − p0
2 ≤ S21

(
ϕk

1 −ϕ0
1

)
+ S22 (ϕ2 − ϕ0

2) ≤ p2 − p0
2

ϕmin
2 ≤ ϕ2 ≤ ϕmax

2

where bounds on control variables have been added to branch flow constraints. These PST
angle bounds could correspond to physical limits, such as (a) maximum and minimum angles
that can be enforced by the PST or (b) maximum and minimum angle changes that the PST
can introduce within a defined time step. They could also correspond to “computational” limits
stemming from coordination demands of the procedure, as clarified later in this chapter.

Several objective functions may be thought of, such as minimum deviation of controls from
base case values, minimum active power losses (using an extension of the above DC model),
minimum deviation from a desired value of power flowing through a set of branches, etc. An
example is the algorithm for real-time PST control that has been developed aside of the main
workline of this thesis and is presented in Appendix A. Thus,the optimization procedure may
be more complex than shown above, the point being that each TSO takes into account the other
TSO’s controls and the whole set of operating constraints.

To implement the above ideas, information should be exchanged through a network of TSO
computers, first to build the model, then to exchange PST setting values until convergence is
reached. Before starting the iterations, the power flow Jacobian matrices of each system have
to be sent to a central computer, in order to be assembled intoa single JacobianJ, subsequently
factorized. TheS matrix can be computed column by column; each column requires solving
a sparse linear system withJ as matrix of coefficients, and an independent term stemming
from the individual TSO systems. Each TSO must also provide the value of its base case and
maximum power flows. From there on, optimizations of the type(3.15,3.16) can be performed
independently by the TSOs, with an exchange of theϕk

1, ϕ
k
2 PST settings in between iterations.
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3.4 The path to Nash equilibrium

As discussed in Section 2.3.4, the outcome of a game depends,in general, on the way it is
played. In the previous two sections (3.2 and 3.3) the contour of the approach was presented
(rules to be obeyed by the TSOs, exchange of information, PSTand network models to be
used). This section aims at presenting various possibilities that can be followed when translat-
ing the aforementioned principles into a precise procedure.

First, the iterative procedure suggested in the previous sections may take on form of:

• either a(computer-to-computer) negotiation, in which the iterations are performed until
reaching an equilibrium, to be the control settings subsequently implemented on the
system;

• or an actualstep-by-step implementationof the control changes in the course of iterating.

Second, the communication between actors can besynchronousor asynchronous, as sketched
in Fig. 3.6 for a three-TSO case. In asynchronous operation,each TSO announces4 its control
settings whenever it is ready for, while in a synchronous operation, each TSO is obliged to
announce its settings at specific times. Clearly, the synchronous mode yields more ordered
operation, in which each TSO calculation remain consistentwith the present state of the sys-
tem. On the contrary, in the asynchronous mode, each TSO performs its calculations based on
data referring to different points in time, depending on themoments at which the other TSOs
announced their settings. In synchronous operation, if thesolution targeted by one TSO is not
fully implemented at the time of communicating the settings, the part of it already implemented
is communicated.

0 time

time

TSO 1
TSO 2
TSO 3

synchronous operation

asynchronous operation

TSO 1
TSO 2
TSO 3

0

Figure 3.6: Asynchronous versus synchronous iterations

For a computer-to-computer negotiation, synchronizationseems necessary since the procedure
should converge to a final equilibrium, to be actually implemented, within a certain time. On
the other hand, in a step-by-step implementation, synchronization is not a prerequisite; TSOs

4and maybe implements
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could be free to adjust their PSTs whenever they want, as longas they respect the coupled
constraints and they announce their control action. It should be pointed out, however, that
introduction of synchronization in a step-by-step implementation procedure has some advan-
tageous consequences, at the expense, of course, of a less “free” and “independent” operation
by the TSOs. Those advantages are namely:

• in asynchronous operation, a TSO may not act against a constraint violation, waiting
the others to take the curative action, while, if the operation is synchronous, the TSO
obligations are better defined;

• in asynchronous operation, a TSO, when optimizing other parameters of its system, is
exposed to the risk that, at any time, another TSO may significantly modify its PST
settings, changing the first TSO’s operating environment, while, if the operation is syn-
chronous (and say executed on a hourly basis), the TSO can optimize its system knowing
that the overall PST settings will remain at the reached Nashequilibrium.

The above points are further discussed after the presentation of the procedure via an example.

Let us further consider the synchronous approach. With reference to the two-TSO case illus-
trated in Fig. 3.7, the iterative procedure can be run:

• in a parallel way: TSO1 computes its new settingsϕk+1
1 based on the previous setting

ϕk
2 of TSO2, while at the same time interval TSO2 computesϕk+1

2 based onϕk
1;

• in a sequentialway: each TSO waits for the other TSO to communicate its updated
settings before performing its own optimization.

time

TSO 2
TSO 1

TSO 1
TSO 2

sequential approach

parallel approach

k+1

k+1

kk−1

kk−1

time

Figure 3.7: Parallel versus sequential iterations

The sequential approach has the disadvantage of being oftenslower than the parallel one. This
becomes even more important when more than two TSOs are involved, which could be the
case in practice. On the other hand, the parallel approach, if applied strictly, may not keep the
system inside its feasible region at every moment. Indeed, although the solutions(ϕk+1

1 , ϕk
2)

and (ϕk
1, ϕ

k+1
2 ) are both feasible, there is no guarantee that this holds truefor the solution

(ϕk+1
1 , ϕk+1

2 ) to be implemented at the next time step. An additional level of coordination is
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needed to bring the solution back inside the feasible region. This must be designed to avoid
oscillating from one side to the other of the feasible regionboundary.

Finally, it may be useful to consider an additional degree ofcoordination between the TSOs
that would consist in not allowing a TSO to modify its PST settings above a certain∆ϕmax

every time it acts. In other words, the TSOs could agree to limit their rate of action. This could
possibly damp big oscillations among actors as well as help moving towards an equilibrium
more progressively. On the other hand, one could argue that such an additional restriction
would be unfair for TSOs who have invested in technologically more advanced devices. Again,
the question is further discussed after the illustration ofan example.

3.5 Illustrative example

3.5.1 The test system

We illustrate the proposed method on the well-known IEEE 118-bus test system [IEE]. The
latter has been decomposed into two sub-systems, named respectively “West” and “East” and
assumed to be operated by two different TSOs. The overall structure of the so-decomposed
system is shown in Fig. 3.8. Furthermore, a transaction of approximately 240 MW has been
added from the Southern part of the East system (where most ofits production is located) to
the Northern part of the West system (where most of its load islocated). The largest part of
this transaction flows through the Northern part of the East system, thus passing through the
“south-north cut” and “north interconnection” defined in Fig. 3.8. This makes the East system
operate closer to its limits and with higher losses.

PST W

cut
south−north

SOUTH interconnection

NORTH interconnection
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L3

PST E

Figure 3.8: Overall structure of the decomposed IEEE 118-bus system

Under this perspective, we suppose that TSO East installed aPST in series with tie-lines L1
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and L2 of the south interconnection. This allows East to control, up to a certain point (dictated
by the PST limits), the share of the power flow between north and south interconnections.
However, when a higher power flows in the south interconnection, line L3 (one of the links
between Southern and Northern parts of West system) tends tobe overloaded, due to its low
thermal capability. Therefore, we assume that TSO West placed a PST in series with that line
to protect it.

3.5.2 The objectives

For the above mentioned reasons, the objective of TSO East isto keep below a certain limit the
power flowing in the south-north cut, which is equivalent to keeping above some value the flow
in the south interconnection. On the other hand, TSO West wants to keep below a certain limit
the power flow in line L3. These two objectives, though not directly connected to each other,
turn out to be somewhat in contradiction, in the sense that improving one of them deteriorates
the other. This will be shown graphically in the sequel.

In the examples presented hereafter, each TSO’s decision-making problem has been expressed
as a linear programming optimization problem, like (3.15),with the objective function being,
for TSO East and respectively for TSO West, to make the power flow passing through the
south-north cut and, respectively, line L3 equal to the TSO’s maximum acceptable threshold
value. The equivalence with the actual objectives described in the previous paragraph stems
from the fact that in our examples we have always chosen the initial operating conditions to be
such that the TSOs’ power flow threshold values are violated and, thus, action is required by
both East and West to bring the power flows down to their maximum sought values.

3.5.3 Examples in the context of step-by-step implementation

We first present results obtained in the context of a step-by-step implementation of controls
by the two TSOs (see Section 3.4). Furthermore, we consider the synchronous and sequential
schemes. As already discussed, this preserves feasibilityof the solution during the iterations.
Thus, we assume that each TSO has some time to calculate its next target PST setting, im-
plement a part of it and communicate the resulting new setting to the other TSO. This can be
expressed with the following constraint for theith PST:−∆ϕi ≤ ϕk+1

i − ϕk
i ≤ ∆ϕi, with

∆ϕi ≥ 0.

Presentation in the control variables space: Figure 3.9 presents the evolution of the operating
point in the control variables space. “phiE” denotes the phase angle of the PST in East and
“phiW” the one in West. The two solid lines correspond to the thermal limits of lines L3 and
L4, respectively. The shaded part of the diagram is the infeasible region. The two dashed dotted
lines represent the TSO targets. East has the objective of keeping the active power flow in the
south-north cut (see Fig. 3.8) at 210 MW. Points located to the right of that line correspond to
higher (undesired) power flows. Similarly, West tries to keep the power flow in line L3 at 30
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Figure 3.9: Convergence to a unique Nash equilibrium
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Figure 3.10: Target of East decreased to 190 MW; multiple Nash equilibria

MW. Clearly, the target line is parallel to the constraint line corresponding to the thermal limit
of L3, which has been set to 50 MW.

The two trajectories in Fig. 3.9 correspond to different rates of change of the two PSTs. For the
trajectory shown with solid line, it was assumed that, inside the time interval given to announce
its new settings, East can change its phase angle by at most 5 degrees, and West by at most 1
degree. The dashed line, on the contrary, corresponds to faster moves by West.

As long as the system operates far enough from constraints, there is a single Nash equilibrium,
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Figure 3.11: Target of East decreased to 170 MW; multiple Nash equilibria
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Figure 3.12: Same case as in Fig. 3.11 with different speeds of control changes

at the intersection of the target lines in Fig. 3.9. There, each TSO is satisfied with the solution
so it has no motivation to proceed to any change. If the Nash equilibrium point lies inside
the feasible region and if this region is convex, the procedure always converges to that point.
Changing the relative speeds of the two PSTs does not influence the final point reached.

Remark. Lower limits on PST angle changes must be considered, to avoid moving by less than
one step. This has been neglected in Fig. 3.9 and in subsequent ones, in order not to disturb
the discussion with questions regarding discretization. Of course, in reality, the procedure will
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Figure 3.13: Sequence starting from an infeasible point

settle down somewhere very close to the aforementioned equilibrium.

In Fig. 3.10 the target power of East has been decreased to 190MW. Due to the linearity of
the model, this amounts to shifting the target line parallelto itself. As a result, the intersection
point of the two target lines does no longer fall in the feasible region. Now the operating point
moves along the East target line until it meets the constraint line corresponding to L4 overload.
The point cannot move any further since this would either violate the constraint or increase the
objective of East TSO. This final point is a Nash equilibrium.Furthermore, all points of the
feasibility boundary pointed out in Fig. 3.10 have the same property and are all Nash equilibria.

A similar situation is shown in Fig. 3.11 corresponding to a 170 MW target power for East.
The set of Nash equilibria is larger than in the previous case.

The final Nash equilibrium reached now depends on the system trajectory, and hence on the
starting point and the relative speeds of action of TSOs. As an illustration, consider Fig. 3.12
which differs from Fig. 3.11 only by the speeds at which the TSOs change their PST angles
(East five times faster than West in Fig. 3.11, both speeds identical in Fig. 3.12). A different
Nash equilibrium is reached. Moreover, the faster the PST, the better the final value of the
corresponding TSO objective.

Next, we consider in Fig. 3.13 a simulation starting from an infeasible point, which could result
from a disturbance, for instance. According to the algorithm (3.15, 3.16), the first priority of
TSOs is to restore feasibility. Hence, both start taking actions to remove the violation. Note
that for TSO East, this action is in a direction opposite to the one dictated by its objective,
while there is no such contradiction for TSO West.

Presentation in the objective functions space: Another view of the same simulation is pre-
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Figure 3.14: Case of Fig. 3.13 seen in the space of objective functions

sented in Fig. 3.14, showing the successive values of both objective functions. It is easily
seen that TSO East has its objective deteriorated until feasibility is restored. From there on, at
each iteration, one TSO ameliorates its objective while theother objective is deteriorated. Of
course, this deterioration is just a side effect, since a TSOdoes even not know the other TSO’s
objective; it only knows its constraints.

Evaluation of the result in terms of its Pareto efficiency: An interesting property of the
results is that the equilibria of the procedure happen to be Pareto optimal points of the corre-
sponding multi-objective problem of the game (see Section 2.5). For all Nash equilibria in our
examples, one cannot find another feasible operating point at which both objective functions
would assume a better value.

To show this, let us come back to Fig. 3.11, which we reproducein Fig. 3.15 without the
operating point trajectory. In this diagram, we arbitrarily pick one of the Nash equilibria of
the procedure, with the objective functions of TSOs East andWest taking valuesf ⋆

E andf ⋆
W

respectively. We then draw the two lines that correspond to points where the objectives have
valuesf ⋆

E and f ⋆
W , the solid line corresponding to TSO East and the dashed to TSO West.

Because of the linear relationship between the objective functions and the PST angles, the two
lines are parallel to the two target lines. For the objectiveof East to take a value better thanf ⋆

E,
the operating point should be at the left of the solid line. Inthe same way, for the objective of
West to take a value better thanf ⋆

W , the operating point should be below the dashed line. One
can easily observe that no operating point in the feasible region falls at the same time left of
the solid line and below the dashed one. Hence, the point is Pareto optimal. The same holds
true for whichever point in the Nash set.

In the case where the (unique) Nash equilibrium is inside thefeasible region (Fig. 3.9), the
point is also Pareto optimal since both objectives have taken their best possible values. This
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Figure 3.15: Showing that the Nash equilibrium is also Pareto optimal
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Figure 3.16: Non convex feasible region

holds true provided we assume that points corresponding to smaller line power flow than the
target are equally good as those where line power flow is equalto the target.

The just described property of the Nash equilibria being Pareto optimal solutions of the corre-
sponding multi-objective problem, is not a particularity of our examples. Even with different
targets and different equilibrium points, the geometric properties depicted in Fig. 3.15 will al-
ways hold true. It is not the purpose of this work to give strict mathematical proofs, but we
believe that what has been shown geometrically can also be proven in a more general algebraic
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way. An important assumption though is the convexity of the feasible region. If in is not con-
vex, there may exist Nash equilibria that are not Pareto optimal. Figure 3.16 illustrates this
situation. Here we have added artificial constraints to makethe feasible region non convex.

The fact that the equilibria of our iterative procedure turnout to be Pareto optimal in the PST
control problem, does not mean that this is a general property of the algorithm. The algorithm
is designed to work for non linear objectives as well (the operational objectives need not even
be formulated as mathematical programming problems), in which case there is no reason to
believe that the Nash equilibria will constitute Pareto optimal points of the corresponding multi-
objective problem.

Devising an additional coordination procedure so that the algorithm ends up in points as close
to Pareto optima as possible remains an interesting challenge [TC01].
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Figure 3.17: Initial infeasible point from which the procedure cannot start

Example where inability to restore feasibility is encountered: The sequential scheme con-
sidered in the previous examples guarantees that, once inside the feasible region the operating
point will always remain inside. Furthermore, Fig. 3.13 hasshown how the procedure can bring
the system back inside its feasible region. However, the procedure may not succeed doing so
in all cases. An example of difficult situation is depicted inFig. 3.17, in which anyindividual
change of the control variables fails bringing the operating point inside the feasible region.

This is, in fact, a general possible drawback of a scheme where coordination is achieved by
having each actor satisfy all coupled constraints every time it takes an action. It may happen
that none of the actors has enough controllability to restore feasibility. A more sophisticated
type of coordination is needed in this case. In Chapter 4 another coordination scheme is pro-
posed, dealing with the above issue, while some discussionscomparing the two schemes can
be found in Section 4.7.3.
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3.5.4 Example in the context of negotiation

An example of (computer to computer) negotiation (see Section 3.4) is given in Fig. 3.18. Here,
the intermediate points do not represent actual operating points, but are rather values announced
by each TSO during the iterative procedure. What is sought isthe Nash equilibrium, the real
PST adjustment taking place later. The scheme is still sequential. The control changes are not
restricted as in the previous figures, although in the example of Fig. 3.18, a maximum deviation
of 25 degrees has still been imposed. As expected, the convergence to a Nash equilibrium is
much faster. Due to the larger steps allowed, the order in which TSOs announce their settings
makes an important difference on the final equilibrium.
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Figure 3.18: Example of negotiation

The example presented in Fig. 3.18 illustrates how vulnerable to gaming such a negotiation
could be. In the negotiation of this example, TSO East would like the procedure to converge as
close to the upper-left edge of the Nash equilibria segment as possible, while TSO West would
like it to converge to the bottom-right edge of the segment. None of them has motivation to
“myopically” solve its original decision-making problem at its turn, but rather to solve another
problem which anticipates the evolution of the iterations (see Section 2.3.4). Clearly, such
behavior is far from what the “willing-to-collaborate framework” among the TSOs intends to
achieve.

3.6 Discussion

The coordination principles presented in Section 3.2.2 setthe spirit of a possible application of
the multi-TSO procedure. Let us repeat that the idea is to cutdown the negative consequences
of a completely uncoordinated operation (described in Section 3.2.1) preserving at the same
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time the independence and confidentiality of the TSOs objectives and operational procedures.
Section 3.4 exposed different possible implementations ofthe framework delineated in Section
3.2.2. In light of the examples presented in the previous section, additional remarks can be
made regarding those implementations.

3.6.1 Bounded vs. unbounded modification of PST settings

The different executions can be divided in two families:

• those where the TSOs’ control modifications from one iteration to another are bounded,
i.e. for PSTi:

−∆ϕi ≤ ϕk+1
i − ϕk

i ≤ ∆ϕi (3.17)

• those where the TSOs’ control modifications are not bounded,i.e. a TSO’s previous
control action (or announcement) does not constrain its next one.

Indicatively, the first case corresponded to the step-by-step implementation examples presented
in Section 3.5.3, while the second case to the negotiation examples of Section 3.5.4. This
should not suggest that implementation necessarily goes with bounded update of controls and
negotiation without: future electronically controlled PSTs will have their settings modified fast,
while a rule in a computer to computer negotiation could be that TSOs must respect constraints
like (3.17) every time they re-solve their decision problems. Thus, it is worth wonder, as a
question by itself, whether it is preferable to operate under the first or the second of the above
two cases.

Obviously, unbounded control modifications can make convergence extremely fast; in both ex-
amples shown in Fig. 3.18 two iterations have been enough forconvergence. On the other hand,
unbounded modifications could make the reached equilibriumtoo sensitive to the starting point
and, in case of sequential operation, the order in which TSOstake actions. Furthermore, the
TSOs may be more tempted to act strategically during the procedure, seeking for convergence
to the most profitable equilibrium. Finally, if parallel execution is chosen, allowing large con-
trol modifications between iterations could create oscillations between feasible and infeasible
operating points.

Clearly, if the control changes are actually implemented during the execution of the procedure,
the actions of fast devices must be limited so that transients (or instabilities) are not caused by
large PST angle excursions. However, for the reasons mentioned in the previous paragraph,
resort to constraints of type (3.17) could be also made to improve the convergence properties
of the procedure.
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3.6.2 Further steps towards an implementation

An advantage of running the procedure only between computers, before actually implementing
the computed and announced control actions, lies in the factthat this saves the time it takes to
actually move the PST taps. As a result, the procedure could be run quickly, for example on an
hourly-basis, and come up with the PST settings that the TSOsshould implement and respect
for the next hour. The TSOs could then optimize and operate their systems knowing all the PST
settings in the interconnection. Clearly, a constraining time should be available to the TSOs to
actually implement the computed solution.

The drawback of the above described approach is that it leaves the actual PST modifications
uncoordinated; the trajectory that the operating point will follow from the PST present set-
tings to the just computed new equilibrium could pass through the infeasible region since this
is nowhere checked (see [Mar05] for a Model Predictive Control approach dealing with that
issue). There are two ways to deal with this possibility. Either the TSOs estimate that their
systems can tolerate some constraint violations for a limited time5, or, they could impose such
constraints to the negotiation procedure, which would thencompute not only the final Nash
equilibrium but also the trajectory towards it.

The latter would make the negotiation rather a simulation ofthe actual implementation; the
intermediate steps announced by the TSOs during the negotiation should be those implemented
step-by-step (and in the same order, of course) afterwards.The advantage of doing so is that
the trajectory is computed faster (no need to reserve time between iterations for actual move
of the PSTs) and it is made known to all involved TSOs, which then can further optimize their
systems, while implementing their obligations (their previously announced PST modifications),
taking the trajectory into account.

In the two-TSO examples of Section 3.5 sequential operationwas considered, mainly for il-
lustrative purposes. Thanks to the simplicity of the examples (two PSTs, linear objectives and
models) the series of actions in case of parallel execution of the procedure (see Section 3.4)
can be easily figured out. In the examples of Figs. 3.9-3.13 itwould take half the time to arrive
to practically the same Nash equilibrium. For more than two TSOs, the acceleration would
be even larger. This is a motivation towards having the TSOs solve their decision problems in
parallel with each other.

The basic drawback of parallel execution lies in the danger that some collective PST actions
(ϕk

1, ϕ
k
2, . . .), computed during the execution, may not satisfy the security constraints, as ex-

plained in Section 3.4. However, if (a) some minor constraint violations are tolerated during the
execution of the procedure (this would typically consist inthe operating point slipping around a
constraint), and (b) a mechanism exists that does not allow the operating point to finally end up
oscillating inside and outside the feasible region, parallel execution seems the most reasonable
choice. In the example of Fig. 3.19, starting from point 1, a parallel execution of the procedure
would end up oscillating between points 2 and 3. The mechanism mentioned under item (b)
should be able to capture such an oscillation and stop it at the feasible side operating point (i.e.

5This is acceptable for thermal overloads.
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Figure 3.19: Oscillations in parallel execution

point 3 in Fig. 3.19). The TSOs could easily realize such behavior by observing the history
of operating points, and each of them could fix its controls atthe values corresponding to the
feasible operating point.

If a step-by-step implementation is chosen, then asynchronous operation could be envisaged.
This would practically mean that each TSO is allowed to act whenever it wants, but when it
does, it must do it according to the principles described in Section 3.2.2. This is enough to
keep the operating point always feasible (except if two or more TSOs happen to act exactly at
the same time). Special care should be taken when for some reason the system is operating in
the infeasible region.

A compromise should be found between security, speed, fairness and independence of TSOs.
For example, parallel execution favors speed and fairness (there is no “privileged” who acts
first), while sequential execution favors security. Asynchronous operation favors independence
of the TSOs, but it slows down the procedure and it may endanger security.

To conclude the above discussion, we believe that the following procedure for coordinated PST
control could be of practical interest and applicability:

1. On an hourly (or daily) basis the involved TSOs execute a (computer to computer) nego-
tiation to come up with their PST settings of the next hour (or, respectively, day).

2. Results of this negotiation are not only the final PST settings (i.e., the Nash equilibrium
reached) of the TSOs but also their trajectories towards those settings.

3. Thus, when the negotiation is over, the TSOs implement step-by-step the actions that had
been announced previously, reaching in this way the Nash equilibrium.
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4. A predefined time is available to the TSOs within which theymust implement each of
their PST moves.

5. In particular, within the negotiation procedure, the TSOs announce their actions in paral-
lel to each other, i.e. each TSO computes its new action knowing the other TSOs previous
actions.

6. A predefined time is available to each TSO to compute and announce its new settings. In
case of failure to do so, it is considered not to make a move at the iteration under question.
This will be mirrored to a corresponding no-action of the TSOin the implementation
phase that follows the negotiation.

7. At each iteration of the negotiation, a TSO cannot modify its PST settings by more than
a predefined amount∆ϕi. This amount is in accordance with physical limits of the PST
(the TSO must be able to implement the step change it announced) and security limits
(i.e., no undesirable transient will be caused by such a stepchange). Furthermore, the
∆ϕi values should be selected such that the procedure smoothly converges towards the
equilibrium, without sudden changes of power flows that could disturb the operation of
the network.

8. Finally, a higher level of coordination exists that detects if the procedure ends up in
oscillating between a feasible and an infeasible operatingpoint. In this case, it seems
reasonable to stop and take the feasible point as the sought equilibrium.

After the negotiation phase is over, the TSOs know what will be the PST settings for the next
hour (or day). They can include this information when they are dealing with their other security,
operational and market issues.

3.6.3 Sharing a common objective in case of emergency

A slightly modified version of the iterative algorithm described in Section 3.2.2 could consist in
changing the objectives in case of emergency. The idea is that if after an incident one or more
constraints are violated, all TSO change their objective functions to a common one representing
the least control effort (i.e. the fastest movement) and solve an optimization problem using all
the control variables. In sequence, each one implements thepart of the solution that involves
its own controls. In the two-TSO case, for instance, this could be formulated as follows:

TSO 1 computes:

(uk+1
1 ,uk+1

2 ) = arg min
(u1,u2)

(u1 − uk
1)

2 + (u2 − uk
2)

2 (3.18)

subject to g (u1,u2) ≤ 0

and implements:uk+1
1
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at the same time TSO 2 computes:

(uk+1
1 ,uk+1

2 ) = arg min
(u1,u2)

(u1 − uk
1)

2 + (u2 − uk
2)

2 (3.19)

subject to g (u1,u2) ≤ 0

and implements:uk+1
2

One can see that the two TSOs solve the same problem, and hencethey will come up with
the same solution. This results in globally acting in the most efficient way to alleviate the
emergency problem. In the original method the alleviation of emergencies is done in a less
coordinated way, where each one, forced by the constraints,moves its controls towards a di-
rection that solves the emergency problem. No one guarantees, however, that the combination
of TSO actions is the most efficient way to solve the problem. Changing the operating strategy
in case of emergency to the one just described, ensures the treatment of the emergency to be
most efficient. Furthermore, this approach solves the problem discussed in Fig. 3.17.

3.7 Conclusion

A multi-objective optimization framework has been proposed to deal with the operation of a
system by multiple interacting TSOs. The essence of the algorithm is an iterative approach
where TSOs successively compute control actions, taking into account the last actions of other
TSOs and obeying the whole set of constraints. This involvesinformation exchange between
TSOs, although their individual objectives are kept undisclosed. This framework has been
applied to the PST control problem with linearized constraints, and several schemes of potential
implementation have been outlined.

Examples relative to a two-PST, two-TSO case have been presented. Several features of the
procedure have been illustrated graphically: existence ofone or multiple Nash equilibria, sen-
sitivity to relative speeds of action, etc. In addition, some circumstances where the TSOs could
switch to single objective were presented in Section 3.6.3.

Future research should address, among others, the questions of existence and convergence
to Nash equilibria, as well as relationships with centralized control and Pareto optimum. In
this respect, extensions to controls having a cost and, hence, to market-type objectives are of
interest.
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Chapter 4

Coordinated use of transmission resources
by multiple transaction schedulers

The possibility for market participants to simultaneouslyplace their bids in different markets
across an interconnection is investigated in this and the next chapter. Transaction schedulers
settle multilateral transactions among participants, while a single central entity coordinates
the overall operation through interactions with the transaction schedulers. Two issues are dealt
with in this context. First, the market participants are allowed to place their bids simultaneously
in more than one transactions scheduler’s market, and, second, the available transmission ca-
pacity is fairly shared among the transaction schedulers. Economically interesting transactions
are favored, while confidentiality of market data and independence of transaction schedulers’
clearing mechanisms are preserved. The corresponding iterative algorithm is illustrated in de-
tail on a 15-bus as well as the IEEE-RTS system.

4.1 Introduction

4.1.1 Existing situation

In modern power systems, several areas, controlled by separate entities, form altogether larger
interconnections inside which electricity is traded [KS04]. In Europe, for instance, the entities
correspond to TSOs and, in most cases, the areas to countries1. While a lot of research effort
has been devoted to improving electricity markets inside areas, comparatively less attention has
been paid to organizational structures and algorithms allowing separate areas to be operated in
a seamless way in terms of inter-area electricity trade.

Long-term forward contracts between different areas have been in practice even before the
liberalization process. This work, however, focuses on theoperation of spot markets, from

1There are four TSOs in Germany.
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day-ahead up to real-time, and the development of algorithms to facilitate the inter-area trade.

A typical way to do so has been the posting by TSOs of AvailableTransfer Capacity (ATC)
values for importing and/or exporting at each interconnection and the selling of consistent
transmission rights to the market actors. This is referred to as explicit auction of transmission
capacity, since the latter is auctioned and sold separatelyfrom energy. In such a framework, for
instance, a broker purchases export and import rights from the areas where the generator and
the consumer respectively are located, in this way settlingan inter-area transaction. Explicit
auction is currently the prevailing allocation mechanism of scarce interconnection resources
in Europe. Although attractive in theory, this approach hasbeen found in practice to yield
some inefficient use of the network. The main reasons are: it is difficult for the participants to
anticipate what the value of each transmission line will be for them, some participants tend to
hoard capacity that they don’t finally use, and pancaking of allocations appears when several
borders are involved in a transaction [TLC06].

The alternative, increasingly used in the last years, is implicit auction for congestion manage-
ment, where the use of the transmission system is allocated implicitly at the time the energy
market is cleared [ETS09]. This is the main way intra-area congestion management is treated in
some parts of North America, with the several pool-based Locational Marginal Pricing (LMP)
approaches [SCTB88]. Another implicit auction approach, called market splitting, has been
used for years in the Nordic market (Scandinavian countries) where in case of congestion the
market is split in two or more price areas [CWW00].

It seems that implicit auction is the future (and already thepresent in some cases) way of
managing cross-border transmission capacities in Europe.The prevailing mechanism for doing
so is the so-called market coupling. Both the LMP and the market splitting approaches require
a centralized market operator that combines the bids in a market clearing procedure. On the
other hand, market coupling is an implicit auction similar to market splitting but performed in
reverse order. First, each sub-market is cleared; then, these markets are coupled. It is thus a
method performing coordination among different markets, each using its own rules inside its
area [GBD+05].

The first implementation of this approach was the TrilateralMarket Coupling (TLC) in oper-
ation since 2006 between France, Belgium and the Netherlands. It is organized as a decen-
tralized, multilateral contractual arrangement between the participants [ETS09]. The Power
Exchanges (PXs), namely APX, Belpex and Powernext, providethe IT systems and run the
common coupling algorithm, while, the TSOs, namely RTE, Elia and TenneT, calculate cross
border capacities, set up physical exchanges, share congestion revenues and pay the market
coupling service fee that is determined locally. Regulatory oversight remains with the national
regulators and/or is subject to national legislation.

A detailed description of the TLC algorithm can be found on the Web sites of the above PXs
(e.g. [TLC06]). Basically, it consists of each market participant bidding in the day-ahead mar-
ket of the area where it is physically located, using the rules and IT tools of the corresponding
PX. These (sell or purchase) bids are used by the PXs to construct the net export curve of their
markets, i.e. the difference between total sales and total purchases of this market as a function
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of the Market Clearing Price (MCP). These curves are assembled in the central coordination
module so that markets with the highest MCPs import electricity from markets with the lowest
MCPs. In the absence of congestion, the result is an import/export pattern between markets
in such volumes that the three local MCPs become equal. Otherwise, import/export is settled
up to the ATCs and the markets end up with different prices. This mechanism enables local
markets participants to “see” a larger liquidity, not limited to their area, within the limits of the
cross-border capacities of course.

Worth mentioning is the fact that, with the present TLC rules, this assemblement of PXs has
a monopoly over the inter-area spot market trade. The only way that two (or more) market
participants have in order to settle a bilateral (or multilateral) transaction in day-ahead is to
pass through the TLC system. The producer will have to sell toits local PX at the local price,
the consumer to buy from its local PXs at the local price and then they will have to pay one
another the difference between the prices imposed by the PXsand the price they had privately
agreed between themselves.

The extension of TLC to the five countries of the Central Western Europe (CWE) region has
been announced for 2010. This involves Germany and Luxembourg in addition to the three
TLC countries. A more sophisticated algorithm is envisaged[CWE08], although it retains
the ideas that a market participant interacts only with the PX of its area, while some central
calculations take care of energy being exported from low to high price areas, within the limits
of transfer capacity. First, an ATC-based modeling of the network constraints will be used,
but it is planned to switch soon to a more precise flow-based network model, in which critical
branches (tie- and some internal lines) will be defined by theCWE TSOs. For the time being,
the above market coupling mechanisms apply to day-ahead procedures only. Steps are also
taken towards opening intra-day and real-time markets to foreign players [VMB].

The above outlined trilateral, and soon pentalateral, initiative couples the markets of the in-
volved PXs. It should be noted, however, that these PXs do notinvolve but a fraction of the
spot energy trade in Europe, where trading arrangements aremainly bilateral. Most of the
wholesale trade is in the Over-The-Counter markets, often supplemented with day-ahead auc-
tion trade organized by the national PXs [MB07]. The advantage of having the PXs organizing
these auctions is that they use simple rules to settle contracts at a point of time where it is not
worth getting into time consuming negotiations. Power Exchanges are also counter-party for
all transactions so that trade is anonymous and traders do not have to worry about counter-party
risk. However, it could also be argued that PXs are not strictly necessary market components
[MB07]. Still, most European countries have a PX often as a result of private initiatives. The
PXs often do not have to take network constraints into account at all, or they do only partly.

It is worth noting here that usually there exists one PX (or none) per area, but in principle
nothing prevents several PXs from co-existing and competing within an area. On the other
hand, a PX can extend its activities over more than one area. This is going to happen in a near
future with the merging of Powernext and EEX (French and German PXs, respectively).

Compared to Europe, the North American wholesale markets appear more weakly linked, if at
all. As considered in [MB07, FER], it may be more difficult to couple these markets because
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they apply a different implementation of nodal pricing, making it practically difficult to har-
monize the handling of network constraints; even more if thelatter is already fine-tuned, which
is less the case in Europe. There is, however, a common marketinitiative between MISO and
PJM who are working towards the development of complementing system operations and one
robust, non-discriminatory wholesale electricity marketto meet the needs of all customers and
stakeholders [MIS].

4.1.2 Approach proposed in this work

As there exist various electricity market implementations, and it is not the objective of this
work to enter into the details of each one, let us call Transmission System Operator (TSO)
the entity responsible for operating the transmission system of a particular area, while we call
Transaction Scheduler (TS) every entity responsible for settling transactions between producers
and consumers2. For instance, a PX is a TS, but other entities also fit the description, such as
a broker who settles bilateral or multilateral transactions. The TSO is typically a TS when
dealing with real-time operation (balancing market, generation re-dispatch, etc.).

This work investigates whether the constraint that a wholesale market participant should be
part of a particular spot market, defined by its geographic location, could be relaxed. Thus, the
presented approach assumes that every market participant is allowed to bid in whatever market
(represented by a TS), irrespective of where it is located. More generally, a framework and
an algorithm are proposed to let market actors use the grid ina coordinated way to perform
commerce of electrical energy without them being constrained to do so via a TS covering only
their geographic location.

Clearly, the idea that any market participant may place its bids in the market of any TS op-
erating in the interconnection would result in the appearance of “overlapping markets” and
would make inter-area congestion management even more important. The development of a
coordinating framework is thus required. This framework should enable free spot trade of elec-
tricity. The TSs should be able to compete freely first to attract market participants interested
in settling transactions and second to obtain transmissioncapacity in order to support these
transactions.

Furthermore, as stated in the end of Section 2.6, this work isbased on the assumption that the
SOs of an interconnection are willing to co-operate in the setting up of a common model of the
grid and to delegate part of the congestion management tasksto a central coordinating entity.
These assumptions seem acceptable and go with the present trend, at least in Europe [Cor]. The
objective of this coordination among TSOs will be to operatethe grid in a way that electricity
trade is maximized, with priority given to the most valuabletransactions, without violating the
security limits.

2The term “market operator” (MO) provisionally used in the Introduction is, thus, from now on abandoned
and replaced by the more general term “transaction scheduler”. The term MO has been used in the Introduction,
as possibly more familiar to the reader, just in order to avoid introducing a new term there.
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All in all, the developed approach considers the following two prerequisites:

1. Transparency of the grid data: TSOs are responsible for constructing a common model
of the grid and make it available to all participants. In thisway everybody will be able to
check that the coordinating computations made by the TSOs are fair.

2. Confidentiality of each market data and procedures: the TSs should not be asked to
provide any intermediate information of their market clearing procedures. They should
only announce their final schedules and prices.

4.1.3 Related work

The proposed approach offers a decentralized way of coordinating multilateral transactions. In
this spirit, Ref. [WV99] proposed a new operating paradigm in which the decision mechanisms
regarding economics and reliability (security) of system operation are separated. In this frame-
work, economic decisions are carried out by private multilateral trades among generators and
consumers. Reliability is ensured by the TSO who provides publicly accessible data, based
upon which generators and consumers can determine profitable trades that meet the secure
transmission loading limits.

In [Hao05], the author proposes two decentralized procedures in which each Regional Trans-
mission Organization (RTO) administers its energy market and also acts as a transmission
coordinator to achieve feasible and efficient use of congested transmission by all markets in
the interconnection. Participants in any RTO market are allowed to schedule transactions into,
out of, or across any RTO control areas. The resulting overlapping markets are modeled, while,
since when transmission capacity is limited markets compete for the use of the limited trans-
mission paths, two methods for allocating this capacity areproposed. In both methods, the
author suggests that the TSs send to the coordinator the sensitivities of their cost functions to
the branch available capacities. Using this information, for all congested branches, the coordi-
nator, in what is referred to as “master problem”, shares their available capacities among TSs
so that they have the same value for everyone of them.

Closely related is also the work in [LNWB07], which proposesa decentralized model for
DC load flow based congestion management for the forward markets via optimal resource
allocation.

4.2 Statement of the problem and outline of the approach

4.2.1 Market clearing and transmission system modeling

Let M be the number of TSs. Each TS clears the market it represents,using its own rules. The
outcomes are scheduled generation and load quantities together with the corresponding prices
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offered to each generator or asked to each load.

Although the clearing may be implemented in various ways, itis convenient to formalize it as
an optimization problem where the market’s social cost is minimized (i.e. the social welfare is
maximized) [KS04]. For themth TS, this optimization takes on the form:

min
gm,dm

{cT
mgm − bT

mdm} (4.1a)

s. t. 1Tgm = 1Tdm (4.1b)

0 ≤ gm ≤ gm (4.1c)

0 ≤ dm ≤ dm (4.1d)

wherecm (respectivelybm) is a vector containing the bids of all generators (consumers) bid-
ding in marketm, gm (dm) contains the powers of generators (consumers) dispatchedby the
mth TS,1 is a unit column vector,gm is the vector of maximum powers that generators are
willing to produce for marketm, while dm is the vector of maximum powers that loads are
willing to consume. Equation (4.1b) expresses that each TS has a balanced schedule.

The net power injection at busk scheduled by themth TS is given by:

(nm)k =
∑

i∈k

(gm)i −
∑

j∈k

(dm)j (4.2)

where the expressioni ∈ k (resp.j ∈ k) is used to denote that theith generator (resp. thejth
load) is connected to thekth bus. Eq. (4.2) is written in vector form as

nm = Γ gm −∆ dm

where the elements of matricesΓ and∆ are zeros and ones so that they express whether a
generator or, respectively load, is connected to a bus.

The vector of net bus power injections is obtained as the summation of all the TS schedules:

n = Γ g −∆ d =
∑

m

{Γ gm −∆ dm} (4.3)

Once this vector is known, branch power flows can be computed using a model of the entire
network. A DC model of the interconnection is used in this work. This is a commonly used
model in market clearing problems and it is well suited to thelinear computations presented
in the remaining of the chapter. It is assumed that the various TSOs in the interconnection as-
semble and share such a network model, which they use to coordinate the overlapping markets
simultaneous clearings.

Let B be the number of branches andN the number of buses in the system. In order to assess
the impact of the power injection schedule on branch flows, weresort to well-known Power
Transfer Distribution Factors (PTDF). LetT kl

b be the fraction of a transaction from busk to bus
l that flows over branchb (k, l = 1, . . . , N ; b = 1, . . . , B). According to [CWW00]:

T kl
b =

Xik −Xjk −Xil + Xjl

xb

(4.4)
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wherei andj are the terminal buses of the branch,xb is its reactance,Xik is the entry in theith
row andkth column of theN ×N bus reactance matrixX, and similarly for the other entries.
Assuming that busN is the slack bus, theN th row and theN th column ofX have all zero
elements [WW96].

The effect of the power injectionnk at busk on the power flow in branchb can be seen as
the effect of a transactionnk between busk and the slack busN . The power flowing through
branchb is thus given by :

pb =

N∑

k=1

T kN
b nk (4.5)

This is easily written in matrix form as :

p = T n (4.6)

wherep is the vector of branch power flows andT is theB ×N matrix relating branch power
flows to bus power injections, and defined by:

(T)bk = T kN
b b = 1, . . . , B; k = 1, . . . , N (4.7)

The choice of the slack bus influences the elements ofT. However, when assessing the contri-
bution of the market schedules to branch flows, formula (4.6)will be applied to the injection
vectorn whose components sum up to zero, owing to (4.1b), (4.2) and (4.3). Therefore, the
net power injection caused by themth market at the slack bus is zero. Thus, the branch flows
computed in (4.6) do not depend on the choice of the slack bus (losses being neglected in this
derivation).

As long as there is enough reactive compensation to keep voltage magnitudes constant at all
buses, PTDFs have been shown to remain practically unchanged as the pattern of injections
changes the loading of branches [Bal07, BDO05, LG04].

4.2.2 Emerging issues

Clearing the above mentioned overlapping markets without any concern for the grid flows is
very likely to end up in branch overloads. Ifn̂m is the injection schedule of themth TS, nothing
guarantees that the resulting branch flowsp̂ = T

∑

m

n̂m respect the constraint

−p ≤ p ≤ p, (4.8)

with p the vector of maximum branch power flows.

The congestion could be alleviated by the various TSOs by, expost, rescheduling generation
inside their areas. However, this has been shown to result invery inefficient use of the com-
bined generation and transmission capacities (and, thus, it has prompted interest for implicit
allocation of both energy and transmission). Clearly, in order for a market overlapping scheme
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to be put into practice, a mechanism is needed to coordinate the various TSs’ simultaneous mar-
ket clearings. The objective in this work is to deal with the congestion management problem
implicitly at the same time when the TSs are clearing their markets.

Another issue has to do with the risk for the final schedule to be far from what could be reached
by optimizing the whole system as a single market. The reasonis that some attractive market
participants (e.g. cheap generators), having placed theirbids in a market, may be excluded
when the latter is cleared, and thus remain inactive while they could still be used by another
TS to reach a better schedule. One could argue that such a caseshould not persist in the long
term, because market participants will “find their place”. However, the problem will definitely
appear in the short term. Hence, a mechanism should allow efficient shifting of participants
between the various TS markets. This issue is covered in Section 5.1 of Chapter 5.

4.2.3 Outline of the proposed approach

Regarding the congestion management issue, the proposed approach consists in sharing be-
tween the TSs the capacity of the most used branches so that the mth TS, when clearing its
market, would obey reduced flow limitspov

m , where the upperscriptov denotes the set of over-
loaded branches. The modified limits are such that

∑

m

pov
m = pov, and are iteratively adjusted

to the schedules announced by the TSs.

The treatment suggests the presence of a coordinating entity that will iteratively communicate
to the TSs their corresponding reduced branch limits, whichit will compute based on an agreed
policy. This coordinator may result from the joint efforts of the involved TSOs. Its role is to
facilitate electricity trading, while respecting the confidentiality of the TS data and the inde-
pendence of their procedures. In this respect, the only information provided by the TSs to the
central coordinator are their power injection schedules.

4.3 General framework for congestion management

From a game-theoretic viewpoint, the TSs make up a set of actors, each setting its control
vector

um = [gT
m dT

m]T ∈ Um, (4.9)

whereUm encompasses the constraints (4.1b), (4.1c) and (4.1d), in order to minimize an ob-
jective function

fm(um) = cT
mgm − bT

mdm. (4.10)

At the same time, there is a set of constraints, coupling the various TSs’ controls, that should
be satisfied

−p ≤ T n ≤ p. (4.11)
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In other words, a generalized Nash game is played among the TSs, for which a mechanism is
sought to ensure the satisfaction of (4.11).

4.3.1 Why not the solution proposed in Chapter 3 ?

One way to deal with the problem could be to resort to the iterative algorithm presented in
Chapter 3. This would suggest that, at each iteration, themth TS includes in its clearing
problem (4.1) branch flow constraints of the type:

−p ≤ T(nm +
∑

m−

nm−) ≤ p (4.12)

wherem− denotes all TS markets but themth one. Indeed, this constraint means that a TS
will come up with a schedule that does not cause branch limit violation, given the last schedule
announced by the other TSs. Of course, since the other TSs areclearing their own markets at
the same time, the combined schedulen̂ may quite well lead to overloads.

The above idea was, in fact, tested. However, it turned out that the overlapping market problem
is too complicated to be coordinated in such a way. Constraints (4.12) practically require that a
TS clears any congestion by its own control means whenever itappears after an iteration. This
may not be always possible; a TS, with its injection schedule, may have little participation in
some overloads and thus little capability to unload them by changing its schedule. This issue
is further discussed in Section 4.7.3.

The branch flow limits cannot be enforced by acting on each market irrespective of what the
other markets are doing; instead, amorecoordinated congestion management scheme is re-
quired.

4.3.2 Nash equilibrium and corresponding multi-objectiveproblem of
the game

In order to make the presentation more compact, let us refer to themth TS’s market clearing
problem as follows:

min
um∈Um

fm(um). (4.13)

Furthermore, let us group the branch flow constraints in the following set of linear inequalities:

Au− p ≤ 0 (4.14)

whereu contains all TS injection schedules andA is a suitably adjusted matrix, constructed
using the PTDFs inT.
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A solution defined by a control vectoru⋆, is a Nash equilibrium if all constraints are satisfied,
and no TS can further improve its objective by modifying its own controls, given the control
vectors of the other TSs. Thus,u⋆ yields a Nash equilibrium if :

∀m ∈ {1, 2, . . . , M} : u⋆
m = arg min

um∈Um

fm(um) (4.15)

subject to Amum + Am− u⋆
m− − p ≤ 0

whereu⋆
m− denotes the sub-vector ofu⋆ containing the controls of all TSs but themth one,

andAm andAm− are the corresponding sub-matrices ofA.

Following the discussion in Chapter 2, one can group the various TSs’ objective functions into
a single scalar one,F (u) = F (f1(u1), . . . , fM(uM)) and write down the game’s corresponding
multi-objective problem. TakingF as a linear combination of the individual objectives, as is
typically done in such cases, yields the following optimization problem:

min
u

∑

m

wmfm(um) (4.16)

subject to Au− p ≤ 0

where thewm’s are weighting factors.

This optimization problem can be solved in the following twoways. Either in a centralized
scheme, solved by a central entity applying some commonly agreed rules regarding the al-
location of the common resources. Besides the high dimensionality issue, this approach has
the drawback of not respecting possible confidentiality restrictions that each TS may want to
preserve regarding individual data and strategy. Or, in a decentralized scheme, to deal with
the above dimensionality and confidentiality issues, resorting to one of the decentralized algo-
rithms that exist in the literature. There the interconnected system is decomposed into separate
sub-systems, each controlled by a TS, the aim being to process the information of each sub-
system locally, while at the same time solving the system-wide problem (4.16). To this pur-
pose, a coordination entity is in charge of passing information between players and possibly
performing some upper-level computation.

One practical issue when dealing with (4.16) is the choice ofthe weighting factorswm. Indeed,
the various TSs may question the priorities assigned to their respective objectives through
these weighting factors. One option is to try different weighting factors, but this may become
computationally intractable.

Normally, as far as market is of concern, all objectives correspond to costs (i.e. they are ex-
pressed in the same unit) and hence, a natural choice is to setall wm’s to 1, i.e. consider the
objective:

F (u) =
∑

m

fm(um) (4.17)

This leads to optimizing the total “social welfare of all participants” within the interconnection.

While this seems desirable from a global system perspective, a TS could argue that it would
have better market opportunities (higher social welfare for the market it clears) if it was not
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incorporated into the overall optimization. Even more, it goes with the freedom and indepen-
dence of each market to be cleared separately from the others, incorporating maybe its partic-
ular rules and operating strategies. The above justify our choice to consider several markets,
instead of a single integrated one.

4.3.3 Independent optimizations with a Coordinator

In the previous multi-objective approaches, a central entity is in charge of either solving
the system-wide multi-objective optimization or coordinating the decentralized computations
aimed at solving that problem. Alternatively, a central entity may be responsible for monitor-
ing and correcting multiple independent optimizations, performed by theM TSs, according
to certain rules. These rules will reflect a pre-definedpolicy to share the available resources
among the TSs.

Contrary to the single system-wide optimization approach previously considered, the idea is
to preserve the operational independence of the TSs. The TSsare not constrained to adopt a
common objective. On the contrary, they may formulate theiroperational strategies in different
ways. Thus, the TSs’ independence is preserved, but with additional rules applied by the
coordinator to reconcile the TSs’ decisions.

This approach is developed in the remaining of this chapter.The method consists in decoupling
the TS optimization problems by dividing the constraints among them in such a way that each
one respecting its part of the constraints will result in thewhole, original set of constraints
being satisfied. Formally, themth TS will solve a modified optimization problem of the type:

min
um

fm(um) (4.18a)

subject to Amum − pm ≤ 0 (4.18b)

where newpm limits have to be found so that:

Amum − pm ≤ 0, ∀m ∈ {1, . . . , M} ⇒ Au− p ≤ 0 (4.19)

Furthermore, the vectorspm should be adjusted by the coordinator in such a way that a well
defined and transparent policy is followed to share the available resources, allowing the TSs to
check the coordinator decisions.

These vectors could be assignedex anteby the coordinator, to have the TSs performM com-
pletely independent optimizations. A better option, however, is to construct “dynamically” the
vectorspm while observing the evolution of the successive optimizations performed by the
TSs, allowing in some sense the coordinator to intervene in this evolution. This second op-
tion is selected here since it combines flexibility of the coordination policy with an as large
as possible operational freedom for the TSs. In this spirit,a procedure is presented hereafter
where after a number of iterations between the TSs and the coordinator, the whole original set
of constraints is satisfied by the final solution of the individual optimization problems.
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4.3.4 Constraint decomposition

For the sake of presentation simplicity, we refer here to a case with two TSs, denoted TS1 and
TS2 respectively. The generalization to more TSs is straightforward.

After partitioning the control vector, (4.14) is rewrittenas:

A1u1 + A2u2 − p ≤ 0 (4.20)

It is easily seen that if the following constraints are satisfied:

by TS1: A1u1 − p1 ≤ 0 (4.21a)

by TS2: A2u2 − p2 ≤ 0 (4.21b)

where: p1 + p2 = p (4.21c)

then the overall constraints (4.20) are also satisfied. The constraints (4.21a) and (4.21b) are of
the type (4.19).

Consider now thebth constraint in (4.20), with the corresponding components(p1)b, (p2)b and
pb of thep1,p2 andp vectors, respectively. Clearly,(p1)b + (p2)b = pb. It can be guessed that
the values of(p1)b and(p2)b determine how much of the resource (branch capacity) is being
allocated to TS1 and TS2 respectively. For instance, for a higher value of(p1)b, TS1 may be
less constrained and a higher control effort will be put on TS2 to satisfy thebth constraint, and
conversely. Thus, the coordinator may implement the agreedcongestion management policy
by suitably choosing the values(pm)b for a congested branchb. Furthermore, the coordinator
should share the limited resource in a transparent way, thatis, its choice should be justified by
information that can be made public to all involved TSs.

Note that a solution(u1,u2) which satisfies (4.21) will satisfy the original constraints (4.20).
However, the converse is not true: it is possible to find controlsu1 andu2 satisfying (4.20) but
not both (4.21a) and (4.21b). Thus the use of (4.21) somewhatreduces the feasible space of the
original optimization problem. This is a price to pay for theconvenience of the decomposition
into independent optimizations.

This reduction of the feasible space, however, should be as low as possible. To this purpose, a
procedure is proposed that iteratively adjusts the values of p1 andp2, while converging towards
a solution satisfying (4.14).

4.3.5 Adjustment of constraints by the coordinator

Assume that, in a first step, the two TSs optimize their objective functions without taking care
of the constraints; let̂u1 andû2 be the corresponding controls. Assume furthermore that the
bth constraint in (4.14) is violated by these settings, i.e.

a1bû1 + a2bû2 − pb − δb = 0 (4.22)
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wherea1b anda2b are thebth rows of matricesA1 andA2, respectively, andδb > 0 is the
amount by which branchb is overloaded. New controlsu1 andu2 are sought, such that:

a1bu1 + a2bu2 − pb ≤ 0 (4.23)

Subtracting (4.22) from (4.23) gives:

a1b(u1 − û1) + a2b(u2 − û2) + δb ≤ 0 (4.24)

Let the amountδb be shared over the two TSs according to:

δb = α1δb + α2δb (4.25)

where the choice of theα1 andα2 coefficients reflects the coordinator’s policy regarding the
treatment of the constraint. Introducing (4.25) into (4.24) yields:

a1bu1 + α1δb − a1bû1 + a2bu2 + α2δb − a2bû2 ≤ 0 (4.26)

This inequality suggests the following decomposition of the bth constraint in accordance with
(4.21):

for TS1: a1bu1 + α1δb − a1bû1 ≤ 0 (4.27a)

for TS2: a2bu2 + α2δb − a2bû2 ≤ 0 (4.27b)

This is equivalent to setting:

(p1)b = a1bû1 − α1δb (4.28a)

(p2)b = a2bû2 − α2δb (4.28b)

It is easily checked that(p1)b + (p2)b = pb.

Generalizing, irrespective of the number of TSs, for each overloaded branch corresponding to a
constraintb, the coordinator should choose the coefficientsαb

m, with
∑

m αb
m = 1. As a result,

the branch capacity will be shared among the TSs, themth one receiving a modified bound
(pm)b, with

∑
m(pm)b = pb.

If all TSs solve their market clearing problems (4.1), each of them with one additional con-
straint of the type:

ambum − (pm)b ≤ 0 (4.29)

then, the new overall solution̂u will be such that thebth constraint will be satisfied. Now,
other constraints may be found violated by the new solution.If so, the coordinator will in
the same way share their transmission capacities among the TSs which, in their turn, will
clear their markets incorporating the new constraints. In order not to get violated again in
the remaining of the procedure, each constraintb found violated once should remain in the
set of constraints decomposed by the coordinator and incorporated into the TSs’ clearings
at subsequent iterations. If a constraint is no longer violated, δb will obviously be negative
(or equal to zero) but this does not affect the validity of theformula used for sharing the
transmission capacity.
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Figure 4.1: Graphical illustration

In summary, at every iterationk of the algorithm, the coordinator collects the TSs’ controlvec-
torsu

(k)
m , identifies the resulting branch overloads needing correctionsδ

(k)
b and the remaining

available capacities of branches that have been overloadedin a previous iteration, and, decides
the coefficientsα(k)

m that define the next share of the branch capacities by the various TSs.

As long as a branch does not get overloaded, the coordinator does not impose any constraint to
the TSs.

4.3.6 Graphical representation

The decomposition of the set of linear constraints, as well as the iterative adjustment of the
decomposed constraints can be illustrated in a graphical way as follows. A two-TS case with
one control variable per TS is assumed. Each constraintb is a linear combination of the two
controls:a1bu1 + a2bu2 + βb ≤ 0.

In Fig. 4.1 the feasible region corresponding to five such constraints is presented (non colored
area). Note that it is not possible to construct the same region by constraints that involve either
u1 only oru2 only.

Let us assume that the solution resulting from the independent market clearings violates two
of the constraints (point S0 and constraints A and B in Fig. 4.1). This infeasibility initiates
the iterative algorithm and each of the two constraints is decomposed following the congestion
management policy. This results into two constraints beingcommunicated to each TS, one for
each overloaded branch:a1Au1 + β1A ≤ 0 to TS1 anda2Au2 + β2A ≤ 0 to TS2 for branch A
(vertical and horizontal dashed lines starting from a pointon A), a1Bu1 + β1B ≤ 0 to TS1 and
a2Bu2 +β2B ≤ 0 to TS2 for branch B (similarly, dashed lines starting on B). Each pair of these
constraints guarantees that at the next iteration the original constraint will be satisfied while
they share the corresponding available transmission capacity between the two TSs. Note that
the non violated constraints remain “invisible” to the TSs;the searched space is not reduced
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unless a constraint violation is encountered. In fact, the searched space for the next solution is
the intersection of the above decomposed constraints and ishighlighted with horizontal lines
in the figure.

Let the point S1 in Fig. 4.1 be the new solution that results from the next iteration. As this so-
lution happens to be feasible, it could be chosen to be actually implemented and the procedure
could stop here. However, in order to give the TSs the opportunity to improve their schedules,
constraints A and B are once more decomposed, based on the present operating point (S1),
again according to the congestion management policy. The dashed-dotted lines in Fig. 4.1
indicate this new decomposition. One can see that the searched space for the new solution has
now been enlarged by the area shown with vertical lines in thefigure. This results in a new
solution (point S2). The procedure continues in the same, finally converging to the point SF
where one of the two initially violated constraints is active.

It is noteworthy that the coordinator has not as objective toguarantee the feasibility of the next
iteration’s solution. It just checks for convergence and shares the capacity of the already over-
loaded lines. If at any step of the algorithm a new branch getsoverloaded, the corresponding
constraint will be also subsequently decomposed among the TSs. Coming back to the example
of Fig. 4.1, if S1b had been the solution after iteration 1, then constraint D would have been
also decomposed and communicated to the TSs, obliging them to provide solutions above (for
TS2) and to the left (for TS1) of the two new decomposed constraints, making the searched
space be a rectangle.

4.3.7 Nash equilibrium property of the solution

It is important for the algorithm to provide solutions that are Nash equilibria of the original
uncoordinated problem, defined by each TS clearing independently its market as in (4.15). The
reason is that this makes the final point acceptable by all TSs, since nobody has the power to
modify it for its own profit by its sole means only.

This can be visualized in Fig. 4.1, where point SF denotes thefinal solution of the algorithm.
No TS can, modifying its control, improve its objective (assuming that TS1 tries to decreaseu1

and TS2 to increaseu2 as suggested by the example) without violating the problem’s original
constraints (in particular constraint A). This makes SF a Nash equilibrium.

Let us show that this is, indeed, a general property of the algorithm.

Let us recall that even if no branch is overloaded at a given iteration (noδb > 0) the proce-
dure continues, sharing among the TSs the remaining capacities of the previously overloaded
branches according to the congestion policy, until no change in flows is encountered between
two subsequent iterations. Hence, at the solution, all branches fall into one of the three cate-
gories: 1. they have never been overloaded; 2. their capacity is totally used (δb = 0); or 3. they
have been overloaded but, finally, their capacity is not fully used (δb < 0). The third case may
happen if a line flow is limited as a side effect of the effort tounload another branch.
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For the fully used branches, it can be shown using (4.22) and (4.28) that the corresponding
inequality constraint in (4.15) is the same as the constraint (4.29) at the equilibrium of the
proposed coordinated algorithm. The other constraints in (4.15) do not affect the solution
obtained at the last iteration of the proposed algorithm, since they are not binding. So, they
should not affect the solution of problem (4.15) either. As aresult, the solution obtained by
each TS when solving (4.15) with the other controls fixed to the solution of the algorithm, is to
keep itself the same control settings. This by definition makes this solution a Nash equilibrium
of the original uncoordinated problem.

4.4 Choosing a congestion management policy

4.4.1 Reduced transmission capacity allocation

The time has come to choose a policy for managing congestion.This policy essentially consists
in, dynamically during the execution of the procedure, allocating transmission capacity to be
used by the TSs to settle their transactions.

Assume that after the various market clearings the power flowp̂b in the bth branch(b =
1, . . . , B) exceeds its upper limit:

p̂b > pb (4.30)

Using Eqs. (4.3) and (4.6), this inequality can be rewrittenas:
∑

m

tb n̂m > pb (4.31)

wheretb is thebth row of theT matrix andn̂m is the schedule of themth TS, obtained as
described in Section 4.2.

It turns out thattbn̂m is the participation of themth TS in thebth branch flow. Obviously, all
TS participations add up to the actual branch flowpb.

As mentioned in Section 4.2.3, only non commercially-sensitive information, such as the
cleared schedules from TSs, should be communicated betweeninvolved parties. In this con-
text, it is proposed to allocate transmission capacity to TSs in proportion to their respective
utilizations of the congested branches.

Coming back to the overloaded branchb, let us call∆p−m > 0 the amount by which themth TS
is asked by the coordinator to decrease its contribution to the branch flowpb by modifying its
schedule from̂nm to a new valuenm. Following this notation, (4.27) takes on the form:

tb(nm − n̂m) ≤ −∆p−m (4.32)

with the sum of all∆p−m values being equal to the branch overload to be corrected:
∑

m

∆p−m = δb =
∑

m

tbn̂m − pb (4.33)
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Equation (4.32) can be equivalently written as:

tbnm ≤ tbn̂m −∆p−m (4.34)

where the left-hand side represents the new flow produced in branchb by the new schedule of
themth TS, and the right-hand side can be interpreted as a reducedcapacity allocated to that
TS.

The congestion management policy choice suggests that the constraint (4.34), reflecting the
share of the transmission capacity among the TSs, should be:

tbnm ≤
tbn̂m∑
m tbn̂m

pb (4.35)

The above equation is equivalent, as can be shown by using (4.33) and (4.34), to choosing:

∆p−m∑
m ∆p−m

=
tbn̂m∑
m tbn̂m

(4.36)

Similarly, if the branch overload has the opposite sign, i.e.

p̂b ≤ −pb < 0 (4.37)

themth TS is required to change its schedule so that its contribution to the branch flowpb is
increased by at least a specified amount∆p+

m > 0 (with
∑

m ∆p+
m = −pb −

∑
m tbn̂m):

tb(nm − n̂m) ≥ ∆p+
m (4.38)

with ∆p+
m taken as:

∆p+
m∑

m ∆p+
m

=
tbn̂m∑
m tbn̂m

(4.39)

Equation (4.35) suggests that the more a TS is using a congested branch the more it has the
right to keep on using it. This goes towards increasing efficiency: the more a TS uses a branch,
the more this is likely to be valuable for its schedule.

On the other hand, (4.35) can be rewritten as

tb(nm − n̂m) ≤
tbn̂m∑
m tbn̂m

(pb − tbn̂)

which shows that the more a TS participates in a congestion, the more it has to participate in
its alleviation. This meets the objective of fairness and practical acceptability of the policy: the
larger the responsibility of a TS in a flow, the larger the correction requested from this TS.

These two interpretations of (4.35) may look contradictoryat a first glance but are mathe-
matically equivalent owing to the choice of proportionality. This and further aspects of the
allocation rule are further discussed in Section 4.7.1.



94 Chapter 4

p̂b =
∑

m tbn̂m

0−pb pb

pb

tbn̂2

tbn̂1

tbn̂3

Figure 4.2: Example of counterflow situation

4.4.2 Counterflow situations

It may happen that the schedule of a TS creates a counterflow inan overloaded branch. This
situation is depicted in Fig. 4.2, which refers to a case withthree TSs. In the situation shown,
the branch is overloaded but the contributiontbn̂1 of the first TS is in the opposite direction
with respect to the power floŵpb. Clearly, this TS reduces the overload caused by the other
two TSs.

It would not be fair to impose a congestion management constraint to a TS that contributes
with such a counterflow, since the latter in fact reduces the overload created by the other TS
schedules. On the contrary, the counterflow leaves more roomfor the transactions of the other
TSs, which is good from the market viewpoint. Hence, when allocating the available capacities
among TSs, it is reasonable to let unconstrained the TSs thatcause counterflows and share the
effort among the other TSs. To this purpose, for a branch withan upper limit violation (4.30) it
suffices to use (4.36) with the sums extending only over the schedules with positive contribu-
tionstbn̂m. Similarly, for a branch with a lower limit violation (4.37), only the schedules with
a negative contribution are considered when using (4.39).

As explained in Section 4.3.5, iterations are performed between market clearings by the TSs,
on one hand, and Transmission allocation by the coordinator, on the other hand. If the TS
producing the counterflow is not requested to change its schedule, there is no reason for that
TS to depart from its optimum, and it will keep on contributing with the same counterflow.
On the other hand, if the handling of another branch overloadrequires the TS to change its
schedule, it may happen that its counterflow is decreased. Inthis case, at the next iteration,
the branch will still be overloaded and through a new application of (4.32), (4.38) the other
TSs will be requested to contribute more towards its alleviation. Obviously, if a TS stops
counterflowing, it enters the congestion management procedure as the other TSs.

4.4.3 Handling multiple congestions

As explained in Section 4.3.5, after a branch overload has been handled it should be prevented
from taking place again in subsequent iterations. To this purpose, the inequality constraints
(4.32), (4.38) stemming from previous congestion managements remain in effect when dealing
with new congestions. For the formerly congested branches,the constraints essentially share



Chapter 4 95

...

Transmission Allocation

tr
a

n
sm

is
si

o
n

 a
llo

ca
tio

n
 lo

o
p ...

yesno
stop

satisfied ?
termination criterion

n1 . . . nm . . . nM

4.40e
4.1,4.40d4.1,4.40d

4.40e4.40e
4.1,4.40d

∆p+
m, ∆p−

m

clearing clearing
marketmarket

clearing
market

Figure 4.3: Flowchart of the iterative Transmission allocation

among the TSs the remaining part of available capacity (i.e.∆p−m and∆p+
m are negative for

such branches).

4.5 Overview of the Transmission allocation procedure

In Fig. 4.3, the iterative procedure implored to manage congestion, from now referred to as
“Transmission allocation loop”, is illustrated in form of aflowchart. The criterion used to stop
the iterations is explained hereafter.

In Section 4.3.6 it was suggested that the algorithm is executed until convergence to an equilib-
rium. In practice this is done by preforming a convergence test on all branches that have been
involved in constraints (4.32, 4.38). If any power flow differs from the value at the previous
iteration by more than a toleranceǫ, the algorithm proceeds with a new Transmission allocation
loop; otherwise the procedure is completed.

One could think of stopping the iterations as soon as the schedules resulting from theM si-
multaneous market clearings do not lead to any new branch overload. The reason for not doing
so can be seen from the following counterexample. Due to the flow it causes in branchb,
the constrainttb(nm − n̂m) ≤ −∆p−m is imposed to themth TS, andtb(nk − n̂k) ≤ −∆p−k
to thekth TS. Assume furthermore that when clearing its market, thekth TS comes up with
a schedulennew

k such that its participation to thebth power flow is lower than expected, i.e.
tb(n

new
k − n̂k) < −∆p−k (which may happen if this TS has to satisfy other constraintsas well).

Then, some transmission capacity is left unused. The procedure should not stop but leave the
mth TS the opportunity to exploit this margin, for the sake of economic efficiency. However,
if needed due to limited remaining time, the procedure couldstop at an intermediate, already
available, feasible schedule.
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Figure 4.4: Three-area test system

4.6 Illustrative example

4.6.1 Test system

For clarity, we illustrate the features of the Transmissionallocation algorithm on a problem
where: (i) the loads are considered inelastic, i.e. only thegenerators are bidding, and (ii) each
TS serves the load of an area. Note that the method is generally able to handle situations where
each TS serves loads dispersed throughout the whole system,or some loads place bids to more
than one TSs.

Thus, each TS dispatches generation, located anywhere in the interconnection, so as to satisfy
the load located in its area. This leads to the simple market clearing for themth TS:

min
gm

cT
mgm (4.40a)

s. t. 1Tgm = 1Tdm (4.40b)

0 ≤ gm ≤ gm (4.40c)

tb(gm − dm − n̂m) ≤ −(∆p−
m)b b = 1, . . . (4.40d)

tb(gm − dm − n̂m) ≥ (∆p+
m)b b = 1, . . . (4.40e)

where all symbols have been previously defined, and the last two constraints stem from the
coordinator.

Consider the three-area 15-bus system shown in Fig. 4.4. It consists of three five-bus areas,
each of them serving 600 MW of load, and denoted by a letter (A,B and C) also used to
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name the TS that serves the area (“TS A”, “TS B” and “TS C”). Thethree areas are identical
as regards the distribution of loads and the location and capacity of generators. However,
they differ by the generator bids, which are the cheapest in area A and the most expensive in
area C. Next to each generator, its maximum production capacity (in MW) as well as its bid
(in e/MWh) are shown. In order to make the steps of the algorithm easier to follow in the
provided example, each generator capacity has been dividedby three, i.e. each generator bids
one third of its capacity to every TS (for example,(gm)A1 = 150MW for all three TSs). For
the same objective of clarity, the same bid per generator hasbeen placed to all the TSs (i.e.
(cA)i = (cB)i = (cC)i for all generatorsi). Generally, it is the choice of each generator how
much of its capacity it offers to every market and at what price (a generator may bid differently
to different markets). A table with the system’s branch reactances is presented in Appendix B.

4.6.2 Insight into the Transmission allocation iterations

In order to provide insight on how the algorithm performs, wepresent hereafter the results
obtained at the first three iterations of the procedure, followed by those of the final generation
schedule.

At the initial point, all TSs are allowed to schedule the generators that have placed bids in their
markets without any constraint other than (4.40b) and (4.40c). Obviously, this leads to all of
them demanding the cheapest generations, i.e. all TSs schedule generation in ascending order
of price until they reach the total load quantity. This yields the situation detailed in Table 4.1.
For each generator, Columns 1 and 2 give its name and bid (e/MWh), Columns 3 to 5 show
the power scheduled by each TS (MW), Column 6 gives its total dispatched generation (i.e. the
sum of Columns 3 to 5), while Column 7 shows its maximum production capacity (dividing
this quantity by three gives the maximum capacity that is offered to each TS).

At this stage, the coordinator can determine the resulting flows and check the corresponding
limits. All the branch flows, computed by the coordinator, are given in Table 4.2 (in MW).
Columns 2 to 4 show the participation of each TS to each branchflow, while Columns 5 and 6
give respectively the branch power flow and its limit. The last three columns of the table show
by how much each TS will be requested to change each power flow in its next market clearing,
according to (4.36). Adding together the various∆p−m values of a branch yields the overload
pb − pb that has to be corrected. A dash (-) in this field means that theTS has no obligation
regarding the corresponding branch flow when clearing its market at the next iteration.

It is noteworthy that TS A is obliged to decrease the flows in branches A1A3 and A2A3 by
less than the other two TSs, even if all three have scheduled the same power from generators
gA1 and gA2. This is due to the fact that TS A serves some loads on buses A1 and A2, which
makes it less responsible for the flows in those two branches.

Finally, the dash in the last but one row of Table 4.2 stems from the fact that TS A is not
requested to change its contribution to the branch flow A4C4 because it is counterflowing, as
explained in Section 4.4.2. Indeed, TS A has a negative contribution of -41 MW to the final
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Table 4.1: 1st iteration; generation scheduled by each TS
Gen Bid TS A TS B TS C Total Max

gA1 5 150 150 150 450 450
gA2 4 100 100 100 300 300
gA4 15 0 0 0 0 600
gA5 8 150 150 150 450 450
gB1 11 100 100 100 300 450
gB2 10 100 100 100 300 300
gB4 20 0 0 0 0 600
gB5 18 0 0 0 0 450
gC5 35 0 0 0 0 450

Table 4.2: 1st iteration; resulting flows
Branch TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A2 17 18 18 53 100 - - -
A1A3 32 133 133 298 150 16 66 66
A2A3 17 118 118 253 150 7 48 48
A3A4 8 -25 175 158 400 - - -
A4A5 -50 -150 -150 -350 400 - - -
B1B2 0 0 0 0 100 - - -
B1B3 100 0 100 200 150 25 0 25
B2B3 100 0 100 200 150 25 0 25
B3B4 41 75 275 391 400 - - -
B4B5 0 100 0 100 400 - - -
C1C2 0 0 0 0 100 - - -
C1C3 0 0 -100 -100 150 - - -
C2C3 0 0 -100 -100 150 - - -
C3C4 41 -125 -125 -209 400 - - -
C4C5 0 0 100 100 400 - - -
A3B3 -158 275 75 192 200 - - -
A4C4 -41 125 325 409 200 - 58 151
B4C3 41 -125 275 191 200 - - -

branch flow of 409 MW. The necessary power flow decrease by 409-200 = 209 MW is assigned
to the other two TSs, in proportion to their participation.

This completes the first execution of the Transmission allocation loop. At this point the TSs
perform new market clearings incorporating the constraints (4.40d) and (4.40e) (actually, in this
example, all new constraints are of type (4.40d)). The corresponding demanded generations
are shown in Columns 3 to 5 of Table 4.3.

What makes the TSs adjust their schedules with respect to thevalues in Table 4.1 is the addition
of the constraints dealing with the overloaded branches. For instance, TS C is obliged to
abandon most of the power it planned to obtain from generators located in system A, in order
to decrease by 151 MW the flow it causes on the tie-line A4C4 (see Table 4.2). In the same way,
TS A and B had to reschedule some generation in order to satisfy the additional constraints.

The new power flows are detailed in Table 4.4, which illustrates other features of the method.
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Table 4.3: 2nd iteration; generation scheduled by each TS
Gen Bid TS A TS B TS C Total Max

gA1 5 125 63 0 188 450
gA2 4 100 73 100 273 300
gA4 15 75 0 0 75 600
gA5 8 150 110 0 260 450
gB1 11 75 100 75 250 450
gB2 10 75 100 75 250 300
gB4 20 0 4 149 153 600
gB5 18 0 150 150 300 450
gC5 35 0 0 51 51 450

Table 4.4: 2nd iteration; resulting flows
Branch TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A2 9 -3 -35 -29 100 - - -
A1A3 16 67 35 118 150 -4 -18 -10
A2A3 9 70 65 144 150 0 -3 -3
A3A4 -46 -43 175 86 400 - - -
A4A5 -50 -110 0 -160 400 - - -
B1B2 0 0 0 0 100 - - -
B1B3 75 0 75 150 150 0 0 0
B2B3 75 0 75 150 150 0 0 0
B3B4 21 -21 75 75 400 - - -
B4B5 0 -50 -150 -200 400 - - -
C1C2 0 0 0 0 100 - - -
C1C3 0 0 -100 -100 150 - - -
C2C3 0 0 -100 -100 150 - - -
C3C4 21 -67 -26 -72 400 - - -
C4C5 0 0 49 49 400 - - -
A3B3 -129 179 -75 -25 200 - - -
A4C4 -21 67 175 221 200 - 6 15
B4C3 21 -67 374 328 200 7 - 121

First, one can see that all the previously overloaded branches have been brought back within
limits, except tie-line A4C4. The reason is that not all TSs have participated in alleviating the
congestion of that branch. Indeed, after the first iteration, the necessary A4C4 flow decrease
of 209 MW was assigned to TS B and C, while TS A was left unconstrained owing to the
counterflow it was creating. As a matter of fact, TS B and TS C have decreased their contribu-
tion by the expected 209 MW amount, but the new market clearing of TS A contributes to the
branch flow with -21 MW instead of the previous -41 MW. This change is driven by the new
constraints imposed to TS A. Therefore, the line remains overloaded by -21 - (-41) = 20 MW3,
as shown in Table 4.4. Hence, new corrections are going to be imposed, in which, again, TS
A will not participate since it continues to counterflow. In fact, when all TSs are assigned re-
sponsibility for an overload (i.e. no one counterflows), then, at the next step, the branch will
certainly be unloaded, since (4.19) holds true. On the contrary, when at least one TS is coun-

3The 1 MW of difference with respect to the 200-221=-21 MW in the table is due to roundoff when presenting
results without decimal digits.
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Table 4.5: 3nd iteration; generation scheduled by each TS
Gen Bid TS A TS B TS C Total Max

gA1 5 134 99 17 250 450
gA2 4 96 59 95 250 300
gA4 15 93 0 0 93 600
gA5 8 150 84 0 234 450
gB1 11 27 100 75 202 450
gB2 10 100 100 75 275 300
gB4 20 0 8 0 8 600
gB5 18 0 150 150 300 450
gC1 30 0 0 58 58 450
gC2 30 0 0 100 100 300
gC4 40 0 0 0 0 600
gC5 35 0 0 30 30 450

Table 4.6: 3nd iteration; resulting flows
Branch TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A2 13 14 -27 0 100 - - -
A1A3 21 85 44 150 150 0 0 0
A2A3 9 73 68 150 150 0 0 0
A3A4 -57 -23 160 80 400 - - -
A4A5 -50 -84 0 -134 400 - - -
B1B2 -25 0 0 -25 100 - - -
B1B3 53 0 75 128 150 -9 0 -13
B2B3 75 0 75 150 150 0 0 0
B3B4 14 -19 103 98 400 - - -
B4B5 0 -50 -150 -200 400 - - -
C1C2 0 0 -15 -15 100 - - -
C1C3 0 0 -28 -28 150 - - -
C2C3 0 0 -15 -15 150 - - -
C3C4 15 -61 10 -36 400 - - -
C4C5 0 0 70 70 400 - - -
A3B3 -113 180 -47 20 200 - - -
A4C4 -14 61 160 207 200 - 2 5
B4C3 14 -61 253 206 200 1 - 5

terflowing an overloaded branch, then it is possible that thebranch remains overloaded at the
next step. However, this does not really cause a problem; these calculations are nothing but
intermediate steps. At the end of the procedure no branch remains overloaded.

Next, it should be pointed out that for branches that were previously overloaded but are not
anymore (namely, A1A3 and A2A3) the remaining capacity is now shared among the TSs in
proportion to their contributions to the flows. This yields the negative values of∆p−m shown
in the table. In fact, the reader can ascertain that, for eachbranchb that has been overloaded
at least once, adding together the three∆p−m corresponding to the three TSs gives a total∆pb

which is exactly equal to the difference between the presentflow and the maximum one:∆pb =
pb− pb. This holds true irrespective of whether the branch is overloaded at this iteration or not.
If the branch is overloaded, the constraint distributes among the TSs the effort to bring back
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Table 4.7: Final point; generation scheduled by each TS
Gen Bid TS A TS B TS C Total Max

gA1 5 134 99 17 250 450
gA2 4 96 59 95 250 300
gA4 15 94 0 0 94 600
gA5 8 150 80 0 230 450
gB1 11 26 100 123 249 450
gB2 10 100 100 50 250 300
gB4 20 0 12 0 12 600
gB5 18 0 150 115 265 450
gC1 30 0 0 28 28 450
gC2 30 0 0 100 100 300
gC4 40 0 0 0 0 600
gC5 35 0 0 72 72 450

the branch flow within the feasible limits, while if it is not overloaded, the constraint shares the
remaining branch capacity among the TSs. The same congestion management rule is used in
both cases.

Finally, a new branch (B4C3) gets overloaded and hence enters the set of constraints (only for
TSs A and C, since TS B is counterflowing in this branch).

A new round of market clearings with these updated branch flowconstraints yields the gener-
ation schedules shown in Table 4.5 with the resulting flows ofTable 4.6.

4.6.3 Features of the final generation schedules

The algorithm proceeds similarly until the congested branch flows differ by less thanǫ = 2 MW
from their values at the previous iteration. This takes place after 7 iterations and yields the final
values presented in Table 4.7 (Columns 3 to 6). These are the generation productions to be
actually implemented, i.e. they are the quantities that theTSs will ask from the generators to
produce and for which they will have to pay them the corresponding prices (each TS according
to its own pricing rules).

From a market participant’s perspective, the results in Table 4.7 are the market clearing result(s)
of the TS(s) where it placed its bid(s). The previously presented iterations (see Section 4.6.2)
are computations executed between the TSs in order for them to “share” the use of the transmis-
sion network; these computations do not correspond to actual productions and consumptions
by the there-scheduled market participants neither do theyinvolve any action or decision from
their (i.e. the market participants’) part. The resulting branch flows are shown in Table 4.8.
No branch is overloaded, while all previously congested branches are fully used. These are the
branches that, from the first steps of the algorithm, turned out to be the most crucial for the
satisfaction of the most economic generation schedules.

It is also noteworthy that TS A finally manages to allocate mainly the less expensive generators
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Table 4.8: Final point; resulting flows
Branch TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A2 13 14 -27 0 100 - - -
A1A3 21 85 44 150 150 0 0 0
A2A3 9 73 68 150 150 0 0 0
A3A4 -57 -21 154 76 400 - - -
A4A5 -50 -80 0 -130 400 - - -
B1B2 -26 0 26 0 100 - - -
B1B3 52 0 98 150 150 0 0 0
B2B3 74 0 76 150 150 0 0 0
B3B4 14 -21 131 124 400 - - -
B4B5 0 -50 -114 -164 400 - - -
C1C2 0 0 -25 -25 100 - - -
C1C3 0 0 -47 -47 150 - - -
C2C3 0 0 -25 -25 150 - - -
C3C4 14 -59 -27 -72 400 - - -
C4C5 0 0 28 28 400 - - -
A3B3 -112 178 -42 24 200 - - -
A4C4 -14 60 154 200 200 - 0 0
B4C3 14 -60 246 200 200 0 - 0

iteration

flo
w

 (
%

 o
f b

ra
nc

h 
ca

pa
ci

ty
)

 

 

1 2 3 4 5 6 7
60

80

100

120

140

160

180

200

220
Branch limit
Branch A1A3
Branch B1B3
Branch A4C4
Branch B4C3

Figure 4.5: Evolution of power flows with iterations

(located geographically in its area), while on the other hand, TS C is mostly obliged to resort
to some expensive generators (geographically located in its area). This makes sense since TS
C is the main responsible for loading the tie-lines A4C4 and B4C3, and, consequently, it is the
one who is mainly assigned the effort for unloading.

Figure 4.5 shows the evolution of four of the congested branch flows through the successive
iterations. The horizontal line corresponds to the branch flow limit. Worth mentioning is the
fact that already in four iterations the flows have almost converged to their final values. Full



Chapter 4 103

Table 4.9: System-wide market clearing
Gen Bid TS A TS B TS C Total

gA1 5 150 50 50 250
gA2 4 100 100 50 250
gA4 15 0 0 0 0
gA5 8 150 150 0 300
gB1 11 0 100 150 250
gB2 10 50 100 100 250
gB4 20 0 0 0 0
gB5 18 150 0 150 300
gC1 30 0 0 0 0
gC2 30 0 100 100 200
gC4 40 0 0 0 0
gC5 35 0 0 0 0

Table 4.10: System-wide market clearing; resulting flows
Branch TS A TS B TS C pb pb

A1A3 33 67 50 150 150
A2A3 17 83 50 150 150
B1B3 17 0 133 150 150
B2B3 33 0 117 150 150
A3B3 -133 225 -92 0 200
A4C4 67 -175 308 200 200
B4C3 -67 75 192 200 200

utilization of the branch capacities is finally achieved.

For comparison purposes, a system-wide market clearing hasbeen considered. It consists
in minimizing the total production cost throughout the interconnection, i.e. minimize (4.17),
subject to all the TSs individual constraints as well as the branch flow coupling constraints.
This yields the following optimization problem:

min
gA,gB,gC

∑

m

cT
mgm (4.41a)

s. t. 1Tgm = 1Tdm ∀ m ∈ {A, B, C} (4.41b)

0 ≤ gm ≤ gm ∀ m ∈ {A, B, C} (4.41c)

−p ≤ T
∑

m

(Γ gm −∆ dm) ≤ p (4.41d)

The solution of (4.41) results in the schedules that correspond to the highest possible social
welfare for the whole interconnection, given the generatordecisions of where, how much and
at what price they bid their available quantities (i.e. given the vectorsgm andcm).

The resulting generations are provided in Table 4.9, while the corresponding flows in the con-
gested as well as the tie-branches are given in Table 4.10.

The congestion management policy is highlighted by comparing Tables 4.7, 4.8 with Tables
4.9, 4.10. As explained above, during the iterations TS C hasbeen forced to reschedule gen-
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Table 4.11: Costs comparison (ine/h)
Cost: TS A TS B TS C Total

one single system-wide clearing 5550 6950 8800 21300
transmission allocation iterative procedure4950 6412 10740 22102
three independent clearings, one per area3050 7050 18500 28600

eration and finally dispatch some more expensive one, located into its own area, in order to
alleviate, proportionally to its responsibility, the congestion appearing in the tie-lines A4C4
and B4C3 (both importing into area C). On the contrary, when the problem is solved as a sin-
gle optimization, the allocation of generators is made in such a way that, by properly creating
some counterflows, the use of more expensive generators in area C is decreased.

The same observation can be made by looking at the resulting costs, shown in Table 4.11.
Columns 2 to 4 show the cost of each TS, computed asCm = cT

mĝm, whereĝm is the final
generation schedule of themth TS. In column 5 the total cost,Ctot =

∑
m Cm, is presented.

The second row corresponds to the costs of the system-wide market clearing, and the third row
to the costs of the proposed Transmission allocation procedure. Expectedly, the single system-
wide optimization yields a set of TS schedules with lower total cost. This difference is due to
the smaller cost of the generation that the system-wide clearing dispatched for TS C. On the
other hand, the costs for TS A and TS B are larger. This confirmsthe comment made above,
when comparing tables 4.7 and 4.9, regarding the effect of the chosen congestion management
policy.

In fact, it is important to point out that the system-wide market clearing does not apply a
congestion management policy. This qualitatively differentiates the results of the proposed
approach from those of the system-wide clearing. The decomposition of the binding constraints
by the coordinator is not just a trick to let TSs clear their markets independently from each
other, it reflects a choice about how the use of the transmission network should be shared.

Clearly, the observed cost difference suggests that arrangements could be made between the
TSs, economically profitable for all of them, such that more expensive generation is released
in favor for some cheaper. It is not within the scope of this work to simulate such arrangements
but it is not incompatible with the proposed approach to let the TSs communicate with each
other and exchange allocated generation quantities while clearing their markets. Of course,
these inter-TS arrangements should remain consistent withthe congestion alleviation obliga-
tions as well as the already allocated quantities and pricesresulting from the coordinator’s
computations.

The last row of Table 4.11 gives the costs of three individualmarket clearings performed with-
out cross region bidding, i.e. with each TS considering onlythe generators located in its area.
To do so, three optimization problems were solved, one for each area, each of them consider-
ing only generation, load and branch flows geographically located within the area. Thus, the
generators of each area produce all together exactly the amount of the area’s total load. By
chance no line got overloaded. However this could happen in general, since no area considers
the effect of its schedule on the other areas. This result is shown in order to confirm that there
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is indeed high inter-area trade potential benefit in our testsystem.

The total generation cost that resulted from the proposed method is only3.76% higher than the
minimum cost that can be obtained (21300e/h) and significantly lower (29.4%) than the cost
resulting from the independent market clearings (28600e/h). This shows that the proposed
method and congestion management policy go with the objective of dispatching as much as
possible the cheapest generators, while in the same time preserving the independency of the
different markets. Let us emphasize, however, that the proposed algorithm is not aimed at
minimizing the total operating cost; it should not be confused with algorithms for optimizing
a single objective in a distributed manner [AQ01, BB03]. However, the fact that it yields an
overall cost very close to the one obtained when handling thewhole system as a single market
(i.e. perform the system-wide market clearing) appears to be an attractive feature. This issue
is further discussed in Section 4.7.2.

Finally, let us recall from Section 4.3.7 that the final dispatches consist a Nash equilibrium of
the procedure, as well as a Nash equilibrium of the original game itself. At the final sched-
ules no TS can further decrease its cost, by rescheduling itsalready dispatched generation or
replacing some of it with some of the remaining available one, without causing the violation of
one or more constraints.

This Nash equilibrium feature of the final solution explainswhy some cheaper generation re-
mains not fully exploited. For instance, TS C cannot resort to gC1 or gC2 instead of gC5
because shifting some generation from gC5 to gC1, for example, would cause the overload of
one or more branches. More generally, there is no other combination involving all the gen-
erators’ available quantities that results in a cost for TS Clower than 10740e/h. There is
no concern, though; TS C requested gC5 instead of gC1 or gC2 during the execution of the
algorithm, since this allowed to schedule more interestingcheap generation outside area C.

4.6.4 Assessing the final solution in multi-objective optimization terms

In order for the participants to adhere to a coordination framework like the proposed one, they
have to be convinced that the final result will be fair and willexploit in the best possible way
the transfer capacity of the electric network.

To this purpose, the Pareto efficiency of the final point has been checked. Given an operating
point defined by the generation schedules (ĝA, ĝB, ĝC), with resulting costs (CA, CB, CC), a
way to check whether this is Pareto optimal is to solve the system-wide market clearing prob-
lem (4.41) described in the previous subsection, with the following three additional constraints:

cT
mgm ≤ Cm , m ∈ {A, B, C} (4.42)

Let us call this thePareto Efficiency Optimization Problem(PEOP)4.

4One can easily observe that this problem is equivalent to (2.17).
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Table 4.12: Cost comparison with a Pareto point
Cost: TS A TS B TS C Total

proposed Transmission allocation4950 6412 10740 22102
PEOP 4900 6348 10052 21300

The proposed method provided a feasible solution, where:

cT
mĝm = Cm , ∀ m ∈ {A, B, C} (4.43)

So, if the outcome of PEOP satisfies (4.43) (this may happen even with a schedule different
than (̂gA, ĝB, ĝC)), then the equilibrium point of the proposed algorithm is aPareto optimal
one. Otherwise, at the solutiongo =

∑
m go

m of PEOP, at least one of the inequalities in (4.42)
is a strict one (cT

mgo
m < Cm), which means that there exists (at least) one solution thatdecreases

at least one of the cost functions without increasing any of the others; so the equilibrium point
is not a Pareto optimal one.

Figure 4.6 illustrates this discussion, in a two-dimensional example. A solution inside the
colored area dominates the Nash equilibrium, since both objectives are better off there. On the
contrary, a solution outside that area cannot be considered“better” than the Nash equilibrium,
since there one of the involved TSs is worse off than at the Nash solution.

It turned out that the final solution of the iterative procedure is not a Pareto optimal point. In
Table 4.12 the resulting costs are compared. Obviously, if that PEOP solution could be imple-
mented, it would be for the profit of all TSs, since it dominates the solution of the proposed
algorithm. However, finding this point has been made possible only after assembling together,
into a single problem, all the private information of the TSs, which would not preserve the
independence of the different markets.

The system-wide market clearing solution (see Table 4.11) is also Pareto optimal. However,
it cannot be judged “better” than the outcome of the proposedalgorithm because it is not a
simultaneous improvement of all the TSs’ costs.

Finally, using the objective in (4.16) instead of (4.17) andvarying the factorswi, gave more
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Table 4.13: Costs of different Pareto points
wA wB wC cT

AgA cT
BgB cT

CgC Total Cost

1.0 0.0 0.0 4450 6348 10633 21431
0.4 0.3 0.3 4450 6348 10502 21300
0.3 0.4 0.3 4900 5767 10633 21300
0.0 1.0 0.0 4900 5767 10633 21300
0.3 0.3 0.4 4900 6348 10052 21300
0.0 0.0 1.0 4900 6348 10052 21300

points dominating the equilibrium solution. However, the one presented in Table 4.12 turned
out to be the only one where all three TS costs are simultaneously decreased. In order to find
more generation schedules that improve all three objectives, (4.42) has been modified to the
following:

cT
mgm ≤ αCm , with α < 1 (4.44)

Forα < 0.99 the optimization problem turned out to be infeasible. This shows how close to the
Pareto set is the solution of the proposed algorithm. In Table 4.13 some results forα = 0.99
are presented for different weighting factorswi. A minimum reduction of1% is guaranteed
for all costs in all cases, while, depending on the relative values of the weighting factors, some
costs may be further decreased.

Interestingly, the simultaneous market clearing problem treated here belongs to a family of
games where all Pareto optimal points of the corresponding multi-objective problem consist at
the same time Nash equilibria of the game. This is due to the fact that each actor’s (i.e. TS’s)
objective depends only on its own control variables.

For instance, let us assume a Pareto optimal collective action uo = (uo
1, . . . ,u

o
i , . . .). If this

action was not a Nash equilibrium this would suggest that at least one of the actors, say the
ith one, could improve its objective function by modifying its actionui. However, since the
others’ objectives do not depend on this actor’s control values, the result of theith’s action
would be to improve theith objective while keeping the remaining constant at their previous
values. But this would negate the Pareto optimality assumption that was made regardinguo.
Hence, every Pareto optimaluo makes up as well a Nash equilibrium of the game.

4.7 Discussion

4.7.1 On the choice of the congestion management policy

A possibly controversial choice in the proposed algorithm,is the way the coordinator shares
the use of the branches that tend to get overloaded. Economictheory would suggest that, in
order to optimize the use of the whole system, each branch capacity should be shared according
to the economic value it has for each TS. More precisely, it was shown in [LNWB07] that at
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the operating point where total social welfare is maximum, all TSs equally value the use of
any congested branch. Indeed, if at least one branchb had a larger value for TS A than for
TS B, then the total social welfare could be further maximized by decreasing the share of the
branch capacity allocated to B and increasing correspondingly the share allocated to A. This in
turn requires computing the sensitivity of the individual TS social welfare (4.1a) to the branch
capacity assigned to that TS. Clearly, in order the above sensitivities to be compared, they must
be communicated to a coordinator [Hao05, LNWB07].

First, it must be recalled that the method proposed in this work does not aim at maximizing
the above total social welfare but instead focuses on simultaneously optimizing multiple over-
lapping markets (while making the best possible use of the transmission system). Next, the
proposed algorithm has been built on the premise that no TS should be asked to provide sensi-
tive private information. In this respect, the choice of relying on the TS participation in branch
flows preserves confidentiality, while it sounds reasonable, fair, and according to the test re-
sults, economically efficient. Even more, due to its simplicity, it is more transparent and could
be more easily accepted by market participants and TSs.

Even if this sensitivity information was asked from the TSs,it might not be possible for the co-
ordinator to check its validity. A mechanism should be thought to motivate the TSs to announce
true sensitivity values. This can be done through TSs bidding (in explicit auctions) for individ-
ual branch transmission capacity. This would be a step back towards separate transmission and
energy markets. Moreover, it may not be easy for a TS to value the use of each branch indi-
vidually, in the presence of several congested branches, especially in meshed systems. Indeed,
these values are much interdependent; the value of a branch for a TS would vary depending on
the TS expectation to allocate the use of other branches. This passes the complications of the
overlapping markets approach to the responsibility of the TS.

Clearly, the best way for allocating transmission capacityaccording to its real economic value
for each TS (instead of doing this according to the TS intention of use) would be to have them
revealing the bids that the market participants have placedto them in order for the coordinator
to run an optimization problem and figure out the transmission branches economic value per
TS. This would be a step towards centralization of the markets, while the proposed approach
aims at allowing co-existence of separate decentralized markets.

4.7.2 Comparison with centralized, fully integrated approach

The direction followed in this work is that of a decentralized approach for merging separate in-
terconnected markets into a single large one. An alternative is that the involved entities (market
participants, SOs, regulators and others) in the separate areas-markets agree to overcome the
administrative and maybe political difficulties to merge into a single centrally operated system.
In this case, the new central authority could clear the entire interconnection using an algorithm
that collects bids from all market participants and maximizes the social welfare of the entire
interconnection. Two objections may be raised at this point.
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First, the willingness of all involved parties to adhere to such a central common operation may
be argued. Indeed, an individual area may not want to participate into an overall social welfare
maximization because this may lead to a lower social welfarelocally inside this area. A set of
market participants would not agree to be part of a central solution if making an arrangement
between themselves is more profitable for them.

Second, whether it is preferable to operate the market in a centralized manner or coordinate
multilateral trades, has been extensively discussed. It isnot the intention of this work to come
up with a choice between the two, but it is worth pointing out some pros and cons of each.
In principle, centralized operation mimics the old vertical organization, with the market par-
ticipants’ bids replacing their marginal costs and benefits. Major advantages of this approach
are: (a) transmission network constraints are taken care ofimplicitly when clearing the energy
market and (b) experience shows that it is less exposed to “gaming” by market participants.
Centralized market clearing results in nodal LMPs, that is all market participants connected on
the same bus pay or get paid the same price.

The choice/need for centralization stems from the difficulty to efficiently coordinate multilat-
eral trades being simultaneously scheduled; it is not an objective by itself. On the contrary,
it goes with the principle of free trading to let market participants the option to buy and sell
electric energy in the terms they agree between themselves.However, given the transmission
network constraints that couple the different transactions, it is more challenging to coordinate
them in a decentralized way.

The proposed decentralized scheme allows the participantsto directly trade electricity in the
terms they wish. Different markets could operate with different individual rules, while compe-
tition should encourage the evolution of the TSs market designs, products, software interfaces,
efficiency of market clearing algorithms etc.

The co-existence of different markets allows for differentways of sharing the social welfare
and for different pricing mechanisms. A generator could sell part of its production at a high
price to consumers that value it a lot and another part at a lower price to consumers who are
not willing to pay this much. With this price discrimination[VHV05], neither low-paying
consumers are excluded from the market, nor are cheap generators obliged to obtain low profit
for energy sold to consumers that value it a lot.

The above reasoning is better illustrated through the simple example sketched in Fig. 4.7,
where a high price area is connected to a single-bus low pricearea through a 300-MW trans-
mission link. All generators of the high price area are assumed to have a marginal cost (mc)
greater than 10e/MWh and all loads a marginal benefit (mb) greater than 10e/MWh as well.
There is cheap generation available (mc=4e/MWh) in the low price area, but it cannot be
fully utilized owing to the transmission constraint. Additionally, there is some low-value load
(mb=6e/MWh) located in the low price area.

Let us first consider the case of a central market clearing resulting in nodal LMPs. If the cheap
generator bids its marginal cost, it will be scheduled for a 400 MW production at a price of
4e/MWh, which will result in a revenue of 1600e/h and zero profit (it will be the marginal
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Figure 4.7: Example illustrating the different shares of social welfare

generator within the low price area). The generator could anticipate that the load located in
the low price area is willing to pay more for energy and thus itcould bid a price of 6e/MWh.
In this case the generator will be again scheduled for a 400 MWproduction, but now at the
price of 6e/MWh resulting in a revenue of 2400e/h and a profit of 800e/h. Furthermore, the
cheap generator could anticipate the costs and willingnessto pay of the participants located in
the high price area and, thus, it could submit a bid of 10e/MWh. In this case the low-value
load will not be served and the cheap generator will be scheduled to produce 300 MW at a
price of 10e/MWh, resulting in a revenue of 3000e/h and a profit of 1400e/h. This behavior
maximizes the generator’s profit under the centralized LMP-based market clearing. However,
there remains some unserved load in the low price area, that is willing to pay more for energy
than the marginal cost of a generator who is able to provide this energy. Social welfare of
(6-4)x100=200e/h is lost.

In the decentralized approach proposed in this work, different TSs could serve the high-value
and the low-value load of the example. The cheap generator can again bid its capacity at
10e/MWh to the high-value load and make a revenue of 3000e/h. However, in this scheme,
the generator can also place a bid in the market of the TS that serves the low-value load. The
value of the generator’s bid price, between 4 and 6e/MWh, will define how the extra welfare
of 200e/h will be shared between the generator and the load of the lowprice area. For instance,
the cheap generator could be scheduled a 100 MW production at6e/MWh to serve the low-
value load, resulting in some extra 600e/h revenue.

As suggested, there is a welfare equal to
∑

i(prgi −mci) +
∑

j(mbj − prlj) (with prgi and
prlj the price paid to thei-th generator and paid by thej-th load) that, depending on the market
clearing mechanism, is to be shared between the participants. A part of this money should be
withheld by the TS who clears the market in order to cover its operational costs. One can see
that letting market participants the choice of TS, introduces competition among TSs to clear
their markets as efficiently as possible.

To close the centralized vs. decentralized discussion, it must be emphasized that a decentralized
approach like the one presented in this work does not aim at maximizing total social welfare
in the short-term, unlike what typically a centralized approach does. The former rather allows
for free electricity trade according to the market participants’ preferences. It is in the longer-
term that a decentralized approach may be more beneficial than the centralized one, due to the
market openness and the innovation it promotes. In this respect, if the short-term results of
a decentralized approach are far worse than those of the centralized one, this suggests that it
is not worth being considered, since its possible longer-term benefits will not be expected to
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compensate for the short-term inefficient use of the energy and transmission resources. On the
other hand, if a decentralized approach results in schedules with total economic value close to
the optimum obtained by the centralized solution, this is a good indication that the approach
under examination may be a worthy one.

4.7.3 Satisfying set of common constraints vs. sharing control effort for
feasibility restoration

Two different ways for coordinating the various actors’ control decisions have been used in this
work:

1. The coordination method presented in Chapter 3, where each actor is constrained to
satisfy all the system’s coupled constraints given the other actors’ last action, and,

2. the coordination method presented in this chapter, wherethe various actors solve their
decision problems without considering coupled constraints and, in case of constraint
violation, a coordinator shares the feasibility restoration effort among actors according
to an agreed rule.

In Sections 3.5.3 and 4.3.1, a potential weakness of the firstapproach has been outlined. If,
at a moment during the iterations, the collective controls correspond to an infeasible operating
point, restoring feasibility by their sole actions may turnout to be an impossible task for some
actors; they may not have enough controllability over the operating point. On the contrary, the
second approach requires from each actor to do less than the whole effort needed to restore
feasibility. In this respect, the rule of decomposing the effort in proportion to each actor’s re-
sponsibility goes towards the direction of not asking from an actor to do more than it is capable
of. It should be noted, however, that even this approach is not theoretically protected from the
here-discussed problem: it could happen, in case of multiple constraints getting violated, that
the way the coordinator shares the correction effort for each constraint individually ends up in
an overall impossible task for some actors. It should be noted however that we have not been
able to “create” a case that would encounter this problem, which may suggest that it is not very
probable to happen with the proposed congestion managementpolicy.

Why is the first approach suitable for the PST problem (but notfor the market problem)? The
answer stems from the fact that most likely the coupled constraints checked when coordinating
the operation of PSTs are those that are mainly affected by the PST actions. Given the locations
of the involved PSTs, off-line sensitivity studies can easily provide the information of which
constraints should be considered in the scheme. In addition, it can be checked up to which
point each TSO can affect every constraint and this controllability information may be used as
a maximum limit of required action for each TSO-constraint pair.

Applying a rule for sharing the feasibility restoration effort is not just a “computational trick”;
it applies a policy for managing congestion. On the other hand, in the absence of such a
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reasonable policy, it may be difficult to convince the various actors to adhere to a scheme
like the one presented in this chapter, even if it actually results in better coordination of their
actions.

4.8 Conclusion

This chapter has investigated the possibility of allowing external actors to bid in whatever
market of an interconnection, thereby leading to co-existence of several overlapping markets.
The procedure is based on the following premises:

• the TSOs put efforts together in order to come up with and share a common network
model as well as jointly operate a central coordinator;

• the various TSs can resort to different market clearing mechanisms;

• the coordination does not require the TSs to provide information that is either economi-
cally sensitive or difficult to validate (such as Lagrange multipliers).

An iterative method, named Transmission allocation procedure, has been proposed to deal with
the resulting congestion management problem. Its essence consists in checking, at each itera-
tion, for branch overloads and sharing among TSs the effort of alleviation. For this purpose, a
specific congestion management policy has been implemented, according to which the involved
TSs are asked to participate in the overload alleviation in proportion to their participation in
the branch loading.

The approach has been thoroughly illustrated on a small-scale example. The resulting solu-
tion has been assessed in two ways. First, its property of being a Nash equilibrium has been
shown, and, second, its proximity to the set of Pareto optimal solutions has been checked with
satisfactory results, since it turned out that, even by collecting all the supposedly private in-
formation and solving a single optimization problem, the TSs’ social costs can be improved
simultaneously by only 1%.

The following chapter builds on the here-presented Transmission allocation loop to extend
the overlapping market proposal, dealing with additional issues, namely: (a) allow market
participants to place their bids simultaneously into more than one TS markets, (b) incorporate
N − 1 security constraints, (c) jointly schedule reserves, and,(d) account for losses.
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Extensions towards a marketplace
encompassing transmission, energy and
security

A procedure that allows market participants to place their bids across multiple markets has
been proposed in Chapter 4. The developed Transmission allocation loop manages the resulting
congestion, coordinating the use of the transmission network by the various markets’ schedules.

In Section 4.2.2, another issue related to the overlapping market scheme was raised: attractive
market participants, having placed their bids in one TS, maybe left inactive at the end of
the Transmission allocation procedure while they could be scheduled in another TS market.
This chapter starts with proposing an additional loop in theprocedure, which we call Energy
allocation loop, to deal with that issue. The proposed solution consists in allowing market
participants to place their bids in more than one market simultaneously. After the market
clearings, a participant should be allocated to the TS from which it received the best offer (the
highest price to be paid if it is a generator, or the lowest price to pay if it is a consumer).

After the development of such an integrated Energy and Transmission allocation procedure,
extensions dealing with various additional issues, are presented in this chapter. First, security
constraints related to equipment outages are incorporatedin the mechanism of transmission
allocation. Second, one possible way is proposed for clearing, in the same procedure, not only
the energy but the reserve market as well. Third, transmission losses are accounted for during
the iterations, by having every TS scheduling some additional generation.

The last two sections of the chapter deal with two topics thatcould be further investigated. First,
the rule for transmission allocation is somewhat criticized, and then, it is briefly exposed how
a TS could try to anticipate the outcome of the Energy and Transmission allocation procedure
when clearing its market within the iterations.

113
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5.1 Energy and Transmission allocation procedure

5.1.1 Proposed Energy allocation loop

As explained in the beginning of this chapter, with the market participants deciding and firmly
placing their bids to one or more TSs and then having the Transmission allocation procedure
executed, cheap generators (or high bidding elastic loads)may be finally left unused. Table 4.7
suggests, for example, that TS A could decrease its cost if itused some of the remaining
capacity of generator gA51. For this reason the previously presented Transmission allocation
procedure has been enhanced with an additional feature, allowing market participants to bid
their entire capacities to all (or some of) the TSs at the sametime, as explained hereafter.

An iterative procedure, referred to as “Energy allocation loop”, is implemented by the coordi-
nator to allow this simultaneous dispatching of the market participants by all the TSs.

The procedure starts with the market participants placing their bids, each consisting of a max-
imum quantity (corresponding to available generation or toload asking to be served) and one
price per TS. Why market participants could bid differentlyto different TSs will be discussed
in the sequel. Letg be the vector containing all generators’ capacities andd the vector contain-
ing the powers of all loads asking to be served. Let also(cm)i be the bid of theith generator
submitted to themth TS and(bm)j the bid of thejth load to themth TS. Those bids are pri-
vate, in the sense that they are announced directly to the TS under question and are not revealed
during or after the execution of the Energy allocation loop.

The TSs compete with each other trying to allocate in their final dispatch the most interesting
participants. Thus, after having cleared its market, themth TS communicates to the coordi-
nator its demanded bus generation vectorg̃m and consumption vector̃dm, together with the
corresponding offered price vectorsπg

m andπd
m.

For a given generatori, if the total power demanded by the various TSs is below (or equal
to) its capacity, i.e.

∑
m(g̃m)i ≤ gi, that power is simply allocated to the various TSs as they

requested. Otherwise, there is a conflict, and the role of thecoordinator is to take care that
the generator is finally dispatched at the most profitable possible prices. To this purpose, the
coordinator allocates the power to one or several of the involved TSs by decreasing order of
offered price. In case several TSs compete for the same generator with equal offered prices,
the available power is shared in proportion with the requested quantities.

Hence, generally, some TSs will be left with power imbalances, and the markets have to be
cleared again. In order the power just allocated to a TS not tobe available to the others, the
coordinator communicates reduced bounds(gm) and(dm) to the latter TSs.

Thus, the TSs come up with new demanded quantities and offered prices. At this stage, the
coordinator repeats the above procedure, with the following two additional rules:

1Capacity that it cannot dispatch since it was not initially bidden into its market.
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1. what was previously allocated to a TS and is still requested remains with that TS;

2. what was previously allocated to a TS and is not requested any longer is made right away
available to the other TSs.

These iterative adjustments lead to a gradual allocation ofall demanded generations. Loads
are handled in a similar way, but with the allocation performed by increasing order of prices
requested by the TSs in order to serve them.

The procedure terminates when each market is balanced, no TShas incentive to further improve
its schedule by dispatching available generation or load, and no conflict is left for any resource.

Note that no market participant is obliged to participate inthe Energy allocation procedure.
Indeed, a market participant may prefer to place its bid directly in a TS market because of
a beneficial arrangement made with this TS or because it believes the announcement of the
clearing price by the TS would unveil its bid. Furthermore, no TS is obliged to accept such
bids. However, a TS may be willing to receive bids from the above described Energy allocation
procedure owing to the risk of being left without enough participants interested in placing their
bids in its market. Thus, what has been described refers to participants and TSs who choose to
take advantage of the higher liquidity offered by the proposed mechanism.

Note also that different markets may impose different obligations or offer different benefits to
their participants, which can make the prices that a participant receives from the various TSs
for the same amount of energy not directly comparable with each other. This will be generally
reflected on the individual price a market participant offers to each TS in its bid. Additionally, a
predefined correction term can be applied when prices are compared by the central coordinator.
This is easily incorporated in the presented procedure. Further discussion of this issue can be
found in [GAK99].

At the end of the Energy allocation procedure described above, the bus injection vector de-
fined in (4.3) is available. Note that in general this vector also includes power injections that
result from a bilateral (or multilateral) agreement between parties, and hence have not been
determined iteratively as described in this section.

5.1.2 Overall procedure for Energy and Transmission allocation

In the general case, iterations need to be performed betweenthe Energy and Transmission
allocation procedures. The overall procedure is outlined in Fig. 5.1.

The procedure starts with each TS clearing its market according to its own procedures and
rules. The resulting demanded (not approved yet) schedulesand corresponding offered prices
are communicated to the coordinator.

The latter first deals with Energy allocation. When the received schedules are in conflict, re-
sources are allocated as explained in Section 5.1 and new constraints regarding the availability
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Figure 5.1: Flowchart of the iterative Energy and Transmission allocations

of these resources are communicated to the TSs, which clear again their markets. The proce-
dure, depicted with dashed line in Fig. 5.1 is repeated untilthe coordinator eventually receives
schedules with no availability conflict; the latter are usedin the Transmission allocation block.

This block performs the computations presented in Section 4.4 and, in case of congestions,
sends back the constraints (4.32, 4.38) to the TSs for inclusion in their market clearing. This
makes up an outer loop, shown with heavy line in Fig. 5.1.

Before doing so, the convergence test is performed on all branches that have been involved in
constraints (4.32, 4.38). If any power flow differs from the value at the previous iteration by
more than a toleranceǫ, the algorithm proceeds with a new Energy allocation loop; otherwise
the procedure is completed.

5.1.3 Information flow during the execution of the algorithm

It is appropriate to summarize the information disclosed and communicated between parties.

Each market participant places its bid to a number of TSs (generally, different per TS). This
information is given only to the TS receiving the bid. At no point of the procedure it is revealed
to any other entity.

Every time the TSs simultaneously clear their markets, theyannounce to the coordinator their
preferred schedules and the prices they offer to the market participants. This information is
made available only to the coordinator during the procedure, but it could be disclosed at the
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Figure 5.2: Three-area test system

end so that interested parties can check that the coordinator has acted according to the rules.

The coordinator communicates to the TSs linear constraintsrelating their net bus power in-
jections with sought changes in branch flows. The model used by the coordinator to compute
those flows is in principle available to all market participants, allowing them to check that they
have been properly treated during the execution of the algorithm.

5.2 Illustrative examples

5.2.1 Simulation results on a 15-bus test system

The three-area 15-bus system presented in Section 4.6.1 is re-used to illustrate the combined
energy and transmission allocation. For the reader’s convenience, the test system is reproduced
in Fig. 5.2. As in Section 4.6.1, for the sake of clarity, eachTS serves the inelastic loads of an
area, while each generator bids the same price to all TSs. A marginal clearing price mechanism
has been assumed for all three TSs. Hence, the price offered by each TS, irrespective of the
generator, is the bid of the most expensive generator in its dispatch.

In order to provide insight on how the algorithm performs, wepresent hereafter the results
obtained at the first three iterations of the procedure, followed by those of the final generation
schedule.
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Table 5.1: Iteration 1: Generation allocated to each TS (in MW)
Gen Bid TS A TS B TS C Total Max

gA1 5 150 150 150 450 450
gA2 4 100 100 100 300 300
gA4 15 0 0 0 0 600
gA5 8 150 150 150 450 450

gB1 11 100 100 100 300 450
gB2 10 100 100 100 300 300
gB4 20 0 0 0 0 600
gB5 18 0 0 0 0 450

gC1 30 0 0 0 0 450
gC2 30 0 0 0 0 300
gC4 40 0 0 0 0 600
gC5 35 0 0 0 0 450

Table 5.2: Iteration 1: Power flows and requested corrections (in MW)
Line TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A3 32 133 133 298 150 16 66 66
A2A3 18 117 117 252 150 8 47 47
B1B3 100 0 100 200 150 25 0 25
B2B3 100 0 100 200 150 25 0 25
A4C4 -42 125 325 408 200 - 58 150

5.2.2 Examples of iterations

At the initial point, all TSs are allowed to compete for all generators without any other con-
straint than (4.40b) and (4.40c), with(gm)i = gi, ∀m. Obviously, this leads to all of them
simultaneously demanding the cheapest generations, namely all TSs ask for 300 MW from gA2
and 300 MW from gA1. Hence, the Energy allocation procedure merely divides the available
generation in equal parts2, and these constraints are sent back to the TSs for them to perform
new market clearings. This step is repeated, as shown by the dashed line in Fig. 5.1, until no
two TSs compete for the same power generation. This yields the situation detailed in Table 5.1.
Columns 3 to 5 show the power allocated to each TS.

At this stage, the coordinator can determine the resulting flows and check the corresponding
limits. The results for the overloaded branches are given inTable 5.2. As already explained
in Section 4.6.2, a∆p−m is computed per overloaded branch for each TSm according to the
congestion management rule. Again, the dash in the last row of Table 5.2 means that TS A is
not requested to change its contribution to the branch flow A4C4 because it is counterflowing.
The new constraints computed by the coordinator are communicated to the TSs.

This completes the first execution of the Transmission allocation loop shown with solid line
in Fig. 5.1. At this point the TSs perform new market clearings incorporating the constraints
(4.40d, 4.40e). The corresponding demanded generations are shown in Columns 3 to 5 of

2Due to the fact that in this example all TSs serve the same amount of load and use the same pricing rule, in
the absence of branch flow constraints they all offer the sameprice to generators.
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Table 5.3: Iteration 2: Generation schedule (in MW) after first iteration of the Energy allocation
loop

Gen Bid demanded by allocated to Total
TS A TS B TS C TS A TS B TS C

gA1 5 125 63 0 125 63 0 188
gA2 4 100 73 74 100 73 74 247
gA4 15 75 0 0 75 0 0 75
gA5 8 150 110 0 150 110 0 260

gB1 11 75 100 0 75 100 0 175
gB2 10 75 100 100 75 100 100 275
gB4 20 0 0 0 0 0 0 0
gB5 18 0 154 426 0 119 331 450

gC1 30 0 0 0 0 0 0 0
gC2 30 0 0 0 0 0 0 0
gC4 40 0 0 0 0 0 0 0
gC5 35 0 0 0 0 0 0 0

Table 5.3.

What makes the TSs adjust their schedules with respect to thevalues in Table 5.1 is the addition
of the constraints dealing with the overloaded branches. For instance, TS C is obliged to
abandon most of the power it planned to obtain from generators located in system A, in order
to decrease by 150 MW the flow it causes on the tie-line A4C4 (see Table 5.2).

When the second iteration starts, no TS can use the power allocated to another TS at the first
iteration. For example, TS A can only resort to 150 MW from generator gA5 since the remain-
ing 300 MW were already allocated to TSs B and C (see Table 5.1). More precisely, TS A can
either keep from gA5 those 150 MW already allocated to it or make it partly or fully available
to the other TSs, depending upon the outcome of its new marketclearing. Indeed, Table 5.3
shows that TS A is obliged to release part of the powers allocated to it from gA1, gB1 and
gB2, in order to meet the constraints stemming from branchesA1A3, A2A3, B1B3 and B2B3.
It should be noted how the constraint on the tie-line A4C4 hasaffected the market clearing
solutions of TS B and even more TS C, both obliged to replace cheap generation in area A by
more expensive in area B.

For generator gB5, the total demanded generation exceeds its capacity (see bold values in the
table). According to the rule discussed in Section 5.1, the TS making the best bid has priority.
In this particular case, it happens that both TS B and TS C (TS Adoes not ask any power
from gB5) offer the same price of 18e/MWh. Hence, according to the default rule suggested
in Section 5.1, the remaining capacity (in this case the whole 450 MW available) is allocated
to each TS proportionally to what it asks. Columns 6 to 8 in Table 5.3 show the quantities
allocated as a result of the above decisions.

Since there was one generator with demand higher than capacity, another execution of the En-
ergy allocation loop is performed, involving new market clearings. In the latter, the congestion
management constraints remain unchanged, but the(gm)i bounds in (4.40c) have been up-
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Table 5.4: Iteration 2: Generation allocated to each TS (in MW)
Gen Bid TS A TS B TS C Total Max

gA1 5 123 63 0 186 450
gA2 4 103 73 107 283 300
gA4 15 0 0 0 0 600
gA5 8 340 110 0 450 450

gB1 11 0 100 7 107 450
gB2 10 33 100 111 244 300
gB4 20 0 34 0 34 600
gB5 18 0 119 331 450 450

gC1 30 0 0 0 0 450
gC2 30 0 0 0 0 300
gC4 40 0 0 0 0 600
gC5 35 0 0 43 43 450

Table 5.5: Iteration 2: Power flows and requested corrections (in MW)
Line TS A TS B TS C pb pb ∆p−A ∆p−B ∆p−C

A1A3 16 67 38 121 150 -4 -16 -9
A2A3 10 70 70 150 150 0 0 0
B1B3 11 0 44 55 150 -20 0 -75
B2B3 21 0 75 96 150 -12 0 -42
A4C4 18 67 175 260 200 5 15 40
B4C3 -18 -67 382 297 200 - - 97

dated. For instance, TS A now sees 450 - 110 = 340 MW available from gA5, and 450 - 331 -
119 = 0 MW available from gB5. From the latter, TS B and TS C see 119 MW and 331 MW
respectively.

The resulting generation schedule is given in Table 5.4. As can be seen, TS A has released most
of the generation it had in area B in order to dispatch the lessexpensive that is now available in
area A (gA5). As there is no conflict between demanded and available quantities, the algorithm
proceeds with the Transmission allocation.

The new power flow corrections are detailed in Table 5.5.

A new market clearing with these updated branch flow constraints yield the generation schedule
shown in Table 5.6.

5.2.3 Features of the final generation schedule

The algorithm proceeds similarly until the congested branch flows differ by less thanǫ =2 MW
from their values at the previous iteration. This takes place after 5 iterations and yields the final
values presented in Table 5.7 (Columns 3 to 6).

Figure 5.3 shows the evolution of four of the congested branch flows through the successive
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Table 5.6: Iteration 3: Generation allocated to each TS (in MW)
Gen Bid TS A TS B TS C Total Max

gA1 5 132 98 0 230 450
gA2 4 99 54 89 242 300
gA4 15 0 0 0 0 600
gA5 8 326 68 0 394 450

gB1 11 10 100 23 133 450
gB2 10 33 100 167 300 300
gB4 20 0 0 0 0 600
gB5 18 0 179 141 320 450

gC1 30 0 0 0 0 450
gC2 30 0 0 0 0 300
gC4 40 0 0 0 0 600
gC5 35 0 0 181 181 450

Table 5.7: Final generation allocation (in MW)
Gen Bid TS A TS B TS C Total Single Max

gA1 5 136 113 0 249 250 450
gA2 4 98 56 96 250 250 300
gA4 15 0 0 0 0 0 600
gA5 8 324 58 0 382 300 450

gB1 11 9 100 48 157 250 450
gB2 10 33 100 167 300 250 300
gB4 20 0 0 0 0 0 600
gB5 18 0 173 89 262 300 450

gC1 30 0 0 0 0 0 450
gC2 30 0 0 0 0 200 300
gC4 40 0 0 0 0 0 600
gC5 35 0 0 200 200 0 450

iterations. The horizontal line corresponds to the branch flow limit. The branch flows almost
converge to their final values already from the 4th iteration.

For comparison purposes, a single market clearing has been considered. It consists in solving
a single optimization for the whole system, with the objective of minimizing the total cost (i.e.
maximizing total social welfare) while respecting branch flow limits. The resulting generations
are provided in Column 7 of Table 5.7, while the corresponding cost is given in Table 5.8. As
regards the proposed method, Columns 2 to 4 in the same table show the generation costs rela-
tive to the three TS final schedules, and Column 5 the sum of thelatter costs which corresponds
to the social welfare of the entire system, obtained by the proposed method.

One can notice that with the proposed method TS A managed to allocate the cheapest schedule
while TS C ended up with the most expensive one. This is due to the limited capacities of the
three tie-lines A4C4, A3B3 and B4C3 and to the fact that, during the execution of the proce-
dure, the TSs have been obliged to reschedule their generations in order to unload congested
branches. TS C has been assigned most of the effort to alleviate the overloads of these tie-lines
during the execution of the algorithm (see Tables 5.2 and 5.5).
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Figure 5.3: Evolution of power flows with iterations: branchA1A3 is shown with+, A2A3
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Table 5.8: Final generation costs (ine/h)
Single TS A TS B TS C Total
21300 4093 6467 11184 21743

At the final allocation no TS can further decrease its cost, byrescheduling its already allocated
generation or replacing some of it with some of the remainingavailable one, without causing
the violation of one or more constraints. This is why some cheaper generation remains not fully
exploited. For instance, TS C cannot resort to gC1 or gC2 instead of gC5 because shifting some
generation from gC5 to gC1, for example, would cause the overload of one or more branches.
More generally, there is no other combination involving allthe generators’ available quantities
(i.e. not already allocated to TSs A and B) that results in a cost for TS C lower than 11184e/h.
There is no concern, though; TS C requested gC5 instead of gC1or gC2 during the execution
of the algorithm, since this allowed to allocate more interesting cheap generation outside area
C.

Expectedly, the single system-wide optimization yields a schedule with lower total cost than
the proposed algorithm.

The cost of the system-wide optimal solution (21300e/h) is 2 % lower than the total cost
obtained by the proposed algorithm (21743e/h). Let us emphasize, however, that the proposed
algorithm is not aimed at minimizing the total operating cost; it should not be confused with
algorithms for optimizing a single objective in a distributed manner [AQ01, BB03]. However,
the fact that it yields an overall cost very close to the one obtained when handling the whole
system as a single market appears to be an attractive feature, as already discussed in Section
4.7.2.
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Table 5.9: Final point; generation scheduled by each TS
Gen Bid only Transmission allocation Energy & Transm. allocation

TS A TS B TS C Total TS A TS B TS C Total

gA1 5 134 99 17 250 136 113 0 249
gA2 4 96 59 95 250 98 56 96 250
gA4 15 94 0 0 94 0 0 0 0
gA5 8 150 80 0 230 324 58 0 382
gB1 11 26 100 123 249 9 100 48 157
gB2 10 100 100 50 250 33 100 167 300
gB4 20 0 12 0 12 0 0 0 0
gB5 18 0 150 115 265 0 173 89 262
gC1 30 0 0 28 28 0 0 0 0
gC2 30 0 0 100 100 0 0 0 0
gC4 40 0 0 0 0 0 0 0 0
gC5 35 0 0 72 72 0 0 200 200

Costs: (e/h) 4950 6412 10740 22102 4093 6467 11184 21743

It is of interest to compare the schedules that resulted whenthe generators had already shared
their available capacities among the TSs prior to the execution of the Transmission allocation
loop (see Table 4.7) with those that resulted with the generators making their capacities at
the same time available to all TSs and then having the combined Energy and Transmission
allocation method executed (see Table 5.7). The information contained in those tables, as well
as the related costs taken from Tables 4.11 and 5.8, have beengrouped into Table 5.9. Each
of rows 2 to 13 in this table corresponds to a generator, whoseproduction per TS and its total
production are shown in columns 3 to 6 and 7 to 10 for the execution of, respectively, the sole
Transmission allocation loop and both loops. The last row ofthe table contains the resulting
costs, per TS and total, for the two executions.

The generation allocation of TS A in the full method (column 7in Table 5.9) is indicative of
the benefit of the Energy allocation loop. One can see that some capacity of gA5 that was left
unused without the Energy allocation loop is dispatched by TS A in the full method, driving
down TS A’s as well as the overall generation cost. Furthermore, gA5 is alleviated from the,
maybe difficult, decision of choosing how much of its capacity it should offer to each TS; it
just announces its whole and the procedure takes care that, if it is economically interesting, the
generation is dispatched.

5.2.4 Simulation results on IEEE RTS-96 test system

The algorithm was also tested on the IEEE Three-Area Reliability Test System - 1996 docu-
mented in [RTS99]. This somewhat larger system was obtainedby triplicating the One Area
RTS-96 system, and consists of three topologically identical 24-bus systems connected with
five tie-lines. Fig. 5.4 provides a one-line diagram of this three-area system. Area 1 is at the
left, area 2 in the middle and area 3 at the right.

In order to create different price areas, the marginal costsof generators have been modified with



124 Chapter 5

Figure 5.4: Three-area RTS-96 test system

Table 5.10: IEEE RTS-96 system; intermediate results
outer loop inner loop cost (ine/h)
iter. count iterations of TS 1 of TS 2 of TS 3 total

1 11 10457.5 10457.5 10457.5 31372.5
2 1 10457.5 10457.5 10589.0 31504.0
3 3 10374.7 10374.7 10587.4 31336.8
4 1 10374.7 10374.7 10814.4 31563.8
5 4 10280.4 10280.4 10811.7 31372.5
6 1 10280.4 10280.4 11058.6 31619.4
7 4 10158.2 10158.2 11056.2 31372.6
8 5 9994.0 10120.0 11297.3 31411.3
9 1 9995.3 10120.9 11410.1 31526.3
10 2 9957.4 10091.3 11402.9 31451.6
11 1 9957.5 10091.6 11417.5 31466.6

respect to [RTS99] so that every generator in area 2 is twice as expensive as its counterpart in
area 1, while the generators in area 3 are made three times as expensive as those in area 1. The
generator data are presented in Appendix C. Note that in spite of these price increases, area
3 still includes attractive generators compared to the other areas. Again, it was assumed that
load demand is inelastic, each TS serves the loads of one arearesorting to any generator, and a
marginal clearing pricing mechanism is used by every TS. Theresulting scenario is interesting
owing to the involved generation (re-)allocation, as shownhereafter.

It took 11 iterations for the procedure to converge with a toleranceǫ = 2 MW. Intermediate
results are presented in Table 5.10. Each row refers to results obtained after executing the outer
(Transmission allocation) loop, while the second column gives the number of inner (Energy
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allocation) loop executions. Columns 3 to 5 present the individual TS costs, while Column 6
shows the sum of those three individual costs.

The overall procedure can be summarized as follows. At the first iteration, network congestions
are not handled yet and, since equal loads have to be served byall TSs, the cheapest generations
are allocated in equal parts to each of them. This explains the identical costs shown in the table.
As a result, the tie-lines of Area 3 are congested. Only TS 3 isresponsible for these overloads
since the other two TSs contribute with counterflows. Hence,TS 3 has to de-allocate generation
in Areas 1 and 2 and replace it by more expensive in Area 3. Thisexplains why only the cost
of TS 3 increases at iteration 2. The so released capacity is used by TS 1 and 2 at iteration 3,
which explains the corresponding cost decreases. This goeswith a decrease in the generation
allocated to TS 1 and 2 in Area 3. Therefore, the counterflows in the above mentioned tie-lines
somewhat decrease, which causes overload again. Hence, at iteration 4, TS 3 has to further
correct its schedule to keep the tie-line power flows within limits. The situation is unchanged
until iteration 7 when TS 1 and 2 stop counterflowing, and hence have to participate in the
congestion alleviation. Note that, in case of limiting time, the algorithm could even stop at this
stage, as suggested at the end of Section 4.5. From there on, no further line is congested and
no further power flow contribution changes sign; the last iterations are devoted to satisfying the
convergence criterion, i.e. small adjustments of generation schedules are made and the power
flows progressively converge to their final values (as is the case in the last 2 and, respectively,
4 iterations in the examples shown in Figs. 5.3 and 4.5).

As for the 15-bus system, a comparison was carried out with a single market clearing for the
whole system. The corresponding cost was found to be 31456.8e/h, which is to be compared
with the final total cost of 31466.6e/h obtained with the proposed procedure (see Table 5.10).
Again, it is noteworthy that the two costs are quite close to each other; they differ by 0.031 %
only.

5.3 Discussion on Energy allocation

5.3.1 Incorporating bilateral trades

It should be noted that the Energy allocation loop is optional in the proposed procedure; it
is the Transmission allocation that enables the simultaneous use of the network for multiple
trades. For instance, the procedure can easily accommodatebilateral trades scheduled in the
spot markets3.

A bilateral trade is nothing but a schedule submitted to the coordinator by one of the sides of
the trade (i.e. either the producer or the consumer plays therole of the TS). Clearly, in the
Energy allocation loop the bilateral trades are always allocated as they are announced. When
the feasibility of the overall schedule is checked in the Transmission allocation loop, however, it

3Bilateral trades that have been scheduled in forward markets are not involved in the proposed approach
(although they are taken into account when estimating the available transmission capacities).
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Figure 5.5: Energy allocation without revealing to the coordinator the prices offered by the TSs
to market participants

may be possible that a TS scheduling a bilateral trade is asked to decrease its flow contribution
to one or several overloaded lines. In this case, it will haveto cut a part of the trade. Of course,
if later on during the execution of the algorithm some of thistransmission capacity is made
available, the TS could use it to satisfy as much of the intended trade as possible.

5.3.2 Non-disclosure of offered prices

In the proposed Energy allocation procedure, the TSs announce to the coordinator the prices
they offer to the market participants. Since this information is to become public after the execu-
tion of the procedure (so that anyone can check that it has been properly treated), some market
participants may argue that this disclosure of offered prices violates the rule of confidentiality.
Two arguments can be said against this. First, the TSs do not announce the bids they received
by the market participants but only the prices resulting from their market clearings (unavoid-
ably, any market clearing mechanism could, to a smaller or larger extent, reveal some of the
participants bids). Second, the Energy allocation procedure is anyway optional; as already ex-
plained, any market participant can place its bid in one TS market only, thereby avoiding the
need for announcing the price offered to it.

However, if required, the procedure could become “price-proof”, at the expense of additional
communication effort. The energy allocation can be achieved with information exchange be-
tween the different TSs and the market participants individually. At the end of a set of mar-
ket clearings, the various TSs can communicate their demanded quantities and corresponding
prices individually to each of the various market participants. Each market participant can then
decide on its own on the quantities to offer in the next iteration to each TS (without conflict in
its capacity), without the need for central coordination. In this case, at the end of each iteration,
each market participant has to merely send to the coordinator: (i) an indication of a conflict
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and (ii) the quantities allocated to the TSs. If the coordinator does not receive any conflict
notification, then the Energy allocation loop is complete and the resulting injection schedules
should be announced to the coordinator in order to proceed with the Transmission allocation
loop.

Figure 5.5 illustrates the flow of information at one step of the Energy allocation loop in an
example with two participating generators (G1 andG2) and two TSs (TS A and TS B) where
G2 encounters a conflict.

5.3.3 Which prices are finally paid by/to the TSs ?

A question that deserves some discussion is: at the end of theprocedure (when the various TSs
have dispatched a set of market participants each) what actual price will each market participant
pay to (in case of load) or be paid by (in case of generator) theTS that has scheduled (a part
of) its available capacity?

As explained in Section 5.1, each time there is a conflict in the quantities that the various
TSs wish to dispatch in their markets, the coordinator resorts to the offered prices in order to
allocate market participants to TSs. Those allocations, made during the iterations, affect the
final outcome of the procedure. In this respect, it appears that if the TSs just pay to (or are paid
by) the market participants the prices that resulted from the last set of market clearings, then
the price signals and announced schedules used during the iterations to allocate energy (and
transmission) resources have no “actual cost” for the TSs.

For simplicity, let us refer to generators only. Consumers should be considered in an equivalent
way.

Let us assume that, at an energy allocation step, themth TS is allocated by the coordinator a
power(gm)i from theith generator based on an offered price(πm)i. Thus, this power is no
longer available to the other TSs, provided that themth TS continues to dispatch at least(gm)i

in future iterations. Clearly, if in future clearings of itsmarket the pricing rule used by this TS
suggested a new price(πm)′i < (πm)i, it would not be fair that theith generator is paid(πm)′i
instead of(πm)i. For this reason, it seems reasonable to apply the followingrule:

A TS that, during the iterations, has been allocated a powerĝi at an offered price
πi, is obliged to pay at least this price to theith generator for a quantitygi ≤ ĝi

finally allocated to that TS at the end of the Energy allocation procedure.

Note that if the TS under question finally dispatches more than ĝi, the above rule of paying at
leastπi should apply for onlŷgi. With reference to the above rule, the remaining powergi− ĝi

can be paid at a price maybe lower thanπi.

Tables 5.3 and 5.4 provide a suitable illustration of the above rule. At the end of the first energy
allocation iteration (Table 5.3), TS A is allocated 150 MW ofgA5 at 11e/MWh (price of the
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marginal generator gB1). But, in the same time, TS B and TS C had to release capacity from
gA5 due to branch flow constraints. Thus, at the end of the second (and final in this case) energy
allocation iteration (Table 5.4), TS A resorts to additional power from gA5, releasing some
more expensive power from gA4, gB1 and gB2. The price offeredby TS A to all dispatched
generators is 10e/MWh (the marginal generator is now gB2). Applying the above-explained
pricing rule, TS A has to pay 150× 11 + (340 - 150)× 10e/h to gA5 and 33× 11e/h to
gB2. It pays nothing to gA4 and gB1 which it did not finally dispatch.

With the above pricing rule, a TS is prevented from offering artificially very good prices during
the iterations just to be allocated the most interesting participants, intending to decrease those
prices later on during the procedure.

5.4 Incorporating security constraints in the Transmission
allocation procedure

A basic security requirement in power system operation is that the system should be able to
withstand the loss of any single element (i.e.N − 1 contingency) without entering into an
emergency situation. Generally, it is within the duties of each area’s TSO to check and make
sure that the system it operates can safely withstand anyN − 1 contingency, both to what
regards the existence of a feasible post-contingency operating point, as well as the stability of
the dynamic behavior towards the post-contingency operating point. System security can make
up a special market by itself (e.g. market for ancillary services [RKTR07b]). Often, security is
checked and restored after the energy markets have been cleared, where, typically, simplified
considerations about security are made, if at all.

To what regards the proposed structure for clearing overlapping markets, it is reasonable to
assume that, after the final TS schedules are available, eachTSO will take proper actions, if
necessary, to guarantee that its area of responsibility is in a secure state. Clearly, those actions
could involve rescheduling some generation, whose cost is to be finally paid by the area’s local
participants. It would be unrealistic to pass the whole security assessment complexity to the
market clearing procedure. However, as for the branch flow limits that are implicitly treated
by the proposed procedure, it would be a step towards improving security if the flows resulting
from a branch or a generator outage (i.e. aN − 1 contingency) were also limited.

To this purpose, the congestion management problem has beenextended incorporating the ad-
ditional constraint that the overall injection schedule,n, should be such that the power flows re-
sulting from the loss of any branch or generator do not overload any of the remaining branches.
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5.4.1 Line Outage Distribution Factors

Following the choice of a linear network model, we resort to well-known Line Outage Dis-
tribution Factors (LODF) [CWW00]. For each branch, these factors result from the PTDFs
of the system configuration with and without the branch underquestion [GFLS09, GGL07].
The LODFs are linear sensitivities, each of them giving the fraction of the power flowing in a
branchv before its outage, that is flowing in branchb after the outage. LetL theB×B matrix
of LODFs andpv

b the flow in branchb that results from the outage of branchv. We have:

∆pv
b = pv

b − pb = (L)bvpv (5.1)

wherepb andpv are thebth andvth branch flows before any outage. By definition ofL, we
have(L)bb = −1.

In (5.1) the pre-outage flows can be replaced by (4.6), which yields the post-outage flow as a
linear function of the injection schedule:

pv
b = (L)bvtvn + tbn = ((L)bvtv + tb)n (5.2)

where the row vectorst have been defined in Section 4.4.

Leaving aside contingency selection, theN − 1 security criterion requires to check, for each
of theB branches, theB − 1 power flows that take place after the outage of another branch.
Thus, for each pair(b, v) we check a security constraint of the type:

−α pb ≤ pv
b ≤ α pb (5.3)

whereα ≥ 1 accounts for possible overload allowed in post-contingency situation (typically
1.05 ≤ α ≤ 1.1).

Using (5.2) for every post-outage flowpv
b yields a linear relationship between the post-contingency

flows and the pre-contingency bus power injections.

The satisfaction of theB constraints of the type (4.8) as well as theB× (B− 1) constraints of
the type (5.3) makes up the congestion management problem dealt with in this section.

5.4.2 LODF-based constraints in the Transmission allocation loop

Let us assume that, after theM TSs have cleared their markets, anN −1 constraint is violated,
i.e. for the given injectionŝnm (m = 1, . . . , M) we have:

M∑

m=1

((L)bvtv + tb) n̂m > α pb (5.4)

for a pair(b, v).
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One can see that this constraint violation depends on the values of two branch flows, namely
p̂b =

∑
m tbn̂m andp̂v =

∑
m tvn̂m. The post-outage overload can be managed by decreasing

the pre-outage flow in either of the two involved branches.

In the same way as we previously defined the participation of themth TS in thebth branch’s
flow astbn̂m, we can now define the participation of themth TS in the overload of thebth
branch after the outage of thevth one as((L)bvtv + tb) n̂m. Again, all TS participations add
up to the post-outage overload (5.4).

The effort to alleviate the congestion is again shared amongthe TSs, with the coordinator
communicating to every TS a constraint involving only its own injection schedule in a way
that if all TSs satisfy their constraints, then the initial overload is cleared, as was the case
with (4.34). Let us call∆p̃−m the amount by which themth TS is requested to contribute to
the congestion alleviation. Note that this change refers toa post-outage flow, while the TS
is requested to modify its pre-outage schedule. This means that∆p̃−m can be obtained from a
∆p̃−m change of the TS’s participation in thebth branch flow, or by a∆p̃−m/(L)bv change of its
participation in thevth branch flow, or by a combination involving both flows.

The policy we advocate remains that of contributing proportionally to the participation in the
(now post-outage) overload, i.e.∆p̃−m is such that:

∆p̃−m∑
m((L)bvtv + tb)n̂m − αpb

=
((L)bvtv + tb)n̂m∑
m((L)bvtv + tb)n̂m

(5.5)

and themth TS will have to clear its market with the additional constraint:

((L)bvtv + tb) (nm − n̂m) ≤ −∆p̃−m (5.6)

A similar approach is followed for branches with
∑

m ((L)bvtv + tb) n̂m < −α pb. The
mth TS is requested to change its participation in the post-outage overload by∆p̃+

m, with∑
m ∆p̃+

m = −αpb −
∑

m((L)bvtv + tb)n̂m. This gives the following constraint for themth
TS:

((L)bvtv + tb) (nm − n̂m) ≥ ∆p̃+
m (5.7)

with
∆p̃+

m

−αpb −
∑

m((L)bvtv + tb)n̂m

=
((L)bvtv + tb)n̂m∑
m((L)bvtv + tb)n̂m

(5.8)

Following the same reasoning as with the pre-contingency overloads (see Section 4.4.2), “coun-
terflowing” TSs are assigned no constraint for a post-contingency overload. The term “coun-
terflowing” is used, maybe in a little abusing manner, to refer to any TS whose participation
((L)bvtv + tb) n̂m to the post-outage overload has a sign opposite to the overloaded branch
flow. Thus, when using (5.5) the sums extend only over the schedules with positive contribu-
tions((L)bvtv + tb) n̂m. Similarly, when using (5.8) the sums extend only over the schedules
with negative contributions.

All in all, the Transmission allocation loop presented in Chapter 4 has be extended to incorpo-
rate someN − 1 contingencies when managing congestion. The procedure remains otherwise
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Figure 5.6: Three-area test system

unchanged. Iterations are performed between TSs and the coordinator until the termination
criterion (see Section 4.5) is satisfied. The latter test also includes the post-outage overloaded
branches. As for pre-outage branch overloads, post-outageoverloads that have been solved
during the iterations are prevented from taking place againby applying for those, formerly
congested branches, constraints of type (5.6) and/or (5.7), which now eventually share the
possible remaining capacity among TSs.

Note that the Energy allocation procedure remains compatible with this extended Transmission
allocation one.

5.4.3 Illustrative example

The same example (with the test system’s diagram reproducedin Fig. 5.6) as in Section 5.2.1
is used to illustrate the additionalN − 1 security feature of the Transmission allocation loop.
In the post-outage limits (5.3) a parameterα = 1.1 has been chosen. Table 5.11 shows, in
columns 3 to 6, the resulting final generation schedules (perTS and total). All branches have
been tripped, except A4A5, B4B5 and C4C5 whose tripping would island the system. For
comparison, a single market clearing for the whole interconnection has been performed. The
outcome of this clearing minimizes the total generation cost, while respecting all pre and post-
outage power flow limits. The resulting generation schedules are presented in column 7 of
Table 5.11. Finally, the last two columns of the table contain, respectively, the outcome of
the proposed procedure and of a single system-wide market clearing whenN − 1 security
constraints are not considered.
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Table 5.11: Final generation allocation (in MW); incorporating N − 1 security constraints
Gen Bid with N − 1 constraints withoutN − 1

TS A TS B TS C Total Single Total Single

gA1 5 105 25 25 155 155 249 250
gA2 4 110 50 50 210 210 250 250
gA4 15 0 0 0 0 0 0 0
gA5 8 232 115 74 421 420 382 300

gB1 11 43 100 0 143 155 157 250
gB2 10 110 100 0 210 210 300 250
gB4 20 0 0 0 0 0 0 0
gB5 18 0 210 71 281 270 262 300

gC1 30 0 0 210 210 210 0 0
gC2 30 0 0 155 155 155 0 200
gC4 40 0 0 0 0 0 0 0
gC5 35 0 0 15 15 15 200 0

Table 5.12: Final point; resulting flows (in MW)
Branch pb pb Branch pb pb Branch pb pb

A1A2 -19 100 B1B2 -23 100 C1C2 19 100
A1A3 74 150 B1B3 66 150 C1C3 91 150
A2A3 91 150 B2B3 87 150 C2C3 74 150
A3A4 -62 400 B3B4 -20 400 C3C4 27 400
A4A5 -320 400 B4B5 -182 400 C4C5 85 400
A3B3 27 200 A4C4 158 200 B4C3 62 200

Table 5.13: Final generation costs (ine/h)
TS A TS B TS C Total Single

with N-1 security 4395 7127 13675 25197 25115
without N-1 security 4093 6467 11184 21743 21300

% of cost increase 7.38 10.21 22.27 15.89 17.91

Table 5.12 shows the branch power flows that result from the final generation schedules. The
information contained in this table together with the information in Table 5.11 illustrate the
effect of considering branch-outage constraints as well. For instance, with one of branches
A1A3 and A2A3 out, the maximum power that can flow from buses A1and A2 towards bus
A3 equals 165 (= 1.1× 150) MW. This is reflected to the total power injection schedules from
those two buses (155 + 210 - 100 - 100 = 165 MW). Similarly, the maximum power that can
flow inside area C equals 1.1× 200 = 220 MW. Thus, the remaining 600 - 220 = 380 MW
of the local load, served by TS C, must be produced inside the area. Indeed, one can notice
that when branch outages are considered, less generation isscheduled, compared to the case
without branch outages, from (a) generators gA1 and gA2, and, (b) generators gB1 and gB2.
More generation is scheduled from generators inside area C.

The effect in terms of costs can be seen in Table 5.13. Expectedly, all TS costs are higher
compared to the case whereN−1 constraints were not considered. TS A is less affected, while
TS C is the most. This is due to the fact that the post-outage branch flow limits have decreased
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the inter-area transfer capacities and, thus, each TS is obliged to resort more to generation
from inside the area where its load is located. It is noteworthy that the total generation cost that
resulted from the execution of the proposed algorithm is only 0.33% higher than the minimum
total that can be attained (system-wide single clearing).

5.4.4 Incorporating generator outage security constraints

Another typicalN − 1 security constraint is the ability of the system to withstand the outage
of a generator. In case of such an outage, other generators make up for the lacking active
power through frequency control typically. It is acceptable to assume that they will increase
their generation in proportion to a predefined participation factor. Assuming that the generators
that participate in the “correction” are anyway dispatchedto produce (we do not consider here
how this is ensured), participation factors can be used to compute the bus power injections that
would result after a generator outage and, thus, the resulting branch power flows.

Let as assume that after the outage of thejth generator, theith one takes on some additional
power according to:

∆gi = hij × gj

wheregj is the power that was produced by thejth generator before the contingency andhij

is the above mentioned participation factor. In general, the amount of extra power that theith
generator will produce after a generator outage does not depend on which is the lost generator,
but only on the amount of lost power. So, in most cases, the participation factorshij will be
equal for the variousj. An exception stems from the fact that if the lost generatorj is itself
participating in frequency control, then the various factors hij are somewhat larger in order to
account for the participation that was originally assignedto thejth generator.

In fact, before saying that theith generator will augment its power production by∆gi = hij ×
gj, it should be checked that, given the pre-contingency productiongi, there is enough remain-
ing capacity available, i.e. generatori takes on∆gi additional power only if∆gi ≤ (gi − gi),
otherwise it increases its production up togi and the remaining∆gi− (gi−gi) is shared among
the other participating generators according to corresponding updated participation factors.

To summarize, after the outage of a generatorj, we may assume that the making up of lacking
powergj will be distributed among some other generators in a way thatdepends on the prede-
fined participation factors and the operating point of the participating generators. To simplify
the reading, let us call∆gj the vector containing the change in power production ofall gen-
erators. By definition, we have(∆gj)j = −gj and(∆gj)i = 0 for a generatori that does not
participate in frequency control, independently ofj.

Thus, the post-contingency injection schedule,n′, is given by:

n′ = n + Γ ∆gj (5.9)

where matrixΓ, defined in Section 4.2.1, accounts for whether a generator is connected to a
bus.
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One can easily see that the branch flowspj that result from the outage of thejth generator are
given by:

pj = T n′ = p + T Γ ∆gj (5.10)

wherep is the vector of pre-outage branch flows and matrixT, defined in Section 4.2.1, con-
tains the PTDFs, linking branch power flows with bus power injections.

TheN − 1 security criterion requires that all the flows resulting from a generator outage are
within some limits:

−α p ≤ pj ≤ α p (5.11)

whereα ≥ 1 accounts for possible overload allowed in post-contingency situation (typically
1.05 ≤ α ≤ 1.1).

Coming back to our multi-TS problem, it is reasonable to consider that the generation changes
that result from the outage of thejth generator are assigned to each TS schedule in proportion
to how much of the lost generator’s power it had dispatched, i.e. themth TS’s new generation
schedule should beg′

m = gm + ∆gj
m, wheregm is its pre-contingency generation schedule. In

other words, the outage of thejth generator results in a change∆gj
m to themth TS’s allocated

generator schedule.

Equation (5.10) shows that the post-outage flowspj can be expressed as a linear function of all
the TS schedules. Thus, for a branch overload resulting froma generator outage, the overload
alleviation effort could be assigned to the various TSs in proportion to their participation in the
post-contingency branch flow, exactly in the same way that (4.36) and (5.5) were built.

Another, maybe more reasonable (because it is based on a TS’sinvolvement in the cause of the
overload), possibility is to assign responsibility to TSs,not in proportion to their participation in
the post-outage branch flow but, in proportion to how much of the lost generation’s production
they were dispatching. For instance, let us assume that after the outage of thejth generator,
branchb gets overloaded withpj

b > α p. We suggest that the alleviation

∆p = pj
b − α p

is shared among the TSs which have allocated some capacity ofthejth generator as follows:

∆pm

∆p
=

(gm)j∑
m(gm)j

(5.12)

Again, this results in linear constraints being assigned bythe coordinator to the various TSs
and is easily incorporated into the proposed Transmission allocation loop.
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5.5 Scheduling of reserves

5.5.1 Motivation

In electricity networks, the supply of power must equal the demand at all times in every lo-
cation, or the system could experience disturbances including load shedding and cascading
blackouts. The failure of a generator results in an imbalance between supply and demand that
needs to be corrected. To prevent involuntary load sheddingas a result of potential equipment
failure, or contingency, system operators schedule operating reserves [FOH].

In a broad sense, the term “operating reserves” covers a widerange of applications related
with the availability of generators and controllable loadsto increase or decrease their produc-
tion or consumption within a short timeframe. In [RKTR07a],they are classified as primary,
secondary and tertiary frequency control reserves, while avariety of power systems around
the world is considered, demonstrating the sometimes very different approaches followed by
different TSOs in the used terminology and classification oftheir reserve services.

In [HK03], operating reserves are grouped into regulation and contingency-replacement re-
serves. Regulation, or load following, is an increase or decrease in production or consumption
in response to unscheduled fluctuations. Contingency reserves are procured to guard against
cascading outages in the wake of contingencies. There are various types of contingency re-
serves (spinning, non-spinning, up- and down-reserves etc.) that are used at different times
after a disturbance has occurred. In principle, the idea is that, after a contingency, the system
may no longer be in a secure state (i.e. it may be unable to withstand a second contingency).
Thus, it is important for the TSO to have in its hands available corrective actions, such as
generation and/or load re-dispatch, so that it can bring thenew post-contingency system con-
figuration into a secure state of operation.

To avoid technicalities which could be different from one system to another, in this section
we group, for simplicity, different types of reserves, usedto control frequency and maintain
system security, into one single type of ancillary service which we simply refer to as “reserves”.
What follows describes the treatment of this generic ancillary service in its essence. It is not
suggested that each specific type of operating reserve fits this concept.

Typically, reserves are obtained by the system operator through a market process [NE, PJM,
ERC, IES], where generators and certain loads bid (part of) their capacities, making them
available to the system operator to use them if needed. For a generator this means that it
does not sell its whole energy production potential, keeping some capacity available if asked
to increase its output, while for a load this means that it offers the possibility to be partially
shed. For simplicity and without loss of generality, let us consider only generators as available
reserve units.

Obviously, a quantity that is scheduled as reserve cannot atthe same time be dispatched in the
energy market, i.e. the generator has an opportunity cost for offering its production capacity
as reserve. In separate energy and reserve markets, generators have to anticipate that cost
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in order to include it when assessing their reserve offer price as well as when deciding how
much of their capacity they will offer as reserve and how muchthey will keep to offer in the
energy market (or vice versa, depending on which order the two markets are cleared). This
is a rather complex problem for the generators and may resultin inefficient use of generation
capacities. For this reason,energy-reserve co-optimization(also referred to asjoint dispatch),
i.e. a simultaneous market clearing for energy and reserves, provides the most efficient way for
allocating resources [ZL08]. Experience in Singapore, NewZealand and Australia, suggests
that the co-optimization approach is successful in ensuring adequate provision of reserve and
in lowering the overall cost of providing a secure supply of electrical energy [TK06]. This
co-optimization simultaneously determines a price for energy and a price for reserve.

In fact, an intrinsic property of the joint energy-reserve approach, with a marginal pricing rule
for both energy and reserves, is that it makes up for the opportunity costs incurred by generators
which are competitive for producing energy but are called toparticipate in the provision of
reserves [CC07]. The energy price reflects the marginal costof supplying an increment in
load and is equal to the cost of generating the additional energy while respecting the reserve
requirement. On the other hand, the price of reserve reflectsthe marginal producer’s offer
to provide one more unit of reserve and the opportunity cost that this producer incurs when
decreasing generation to provide reserve.

In the Energy and Transmission allocation method proposed in this work, it could be possible to
let the various TSOs clear their local reserve markets independently, before or after the execu-
tion of the energy markets procedure. However, due to the above-mentioned higher efficiency
of a joint clearing of those resources, it would be of interest to extend the proposed procedure
to allow, during the scheduling of energy transactions, theimplicit scheduling of reserves as
well.

In this section a solution track is presented regarding the issue of incorporating the scheduling
of reserves in the proposed procedure.

5.5.2 Statement of the energy and reserve co-optimization problem

Ideally, energy and reserve offers should be cleared in sucha way that the overall cost is
minimized while all pre and post-contingency constraints are satisfied.

In this respect, Ref. [AG05] examines the short-term operation and pricing of the various
products traded in a joint energy-reserve market while accounting for transmission network
flow limits and security constraints. In this market, besides submitting offers to sell and bids to
buy energy, the participants can also contribute toward system security by offering to sell both
up and down-spinning reserves at different rates. The system operator clears such a market
by scheduling all the energy and reserve offers and bids so asto maximize the system social
welfare while satisfying all operational constraints including those imposed by the need to
survive the set of credible contingencies. Corrective security actions are explicitly accounted
for in the market-clearing process by ensuring that all operational constraints are satisfied under
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all credible contingencies. These corrective actions define the required levels of two distinct
types of reserve, namely, up and down-spinning reserves.

Recognizing the convenience for trading, and despite its theoretical suboptimality compared
to the explicit consideration of every single contingency approach, a zonal reserve model is
used in [ZL08, CC07, MSC99, AGM+98]. In this model, a reserve zone is established for
each import-constrained area based on historical studies.A zonal reserve requirement is then
determined based on the simulation of anN − 2 contingency event inside the local reserve
zone. To satisfy local reserve requirements, resources, both inside and outside of the reserve
zone, are utilized. Even simpler, Refs. [CSS+00, WRAP04, MQ00, GL03, WWW05] consider
a system-wide reserve requirement only.

For the purposes of our presentation, each TSO is assumed to have performed off-line studies
and have come up with the adequate reserve requirement for its area. This translates into a total
MW generation capacity,Rs, that needs to be scheduled as reserve inside thesth TSO area.
Assuming that thesth TSO resorts to a pool-based joint (energy and reserves) dispatch, with
transmission constraints also considered, yields the following optimization problem solved by
the TSO:

min
gs,rs

{
cTgs + ̺T rs

}
(5.13a)

s. t. 1Tgs = 1Tds (5.13b)

0 ≤ gs ≤ gs (5.13c)

0 ≤ rs ≤ rs (5.13d)

0 ≤ gs + rs ≤ gs (5.13e)

1T rs = Rs (5.13f)

−ps ≤ T (Γgs −∆ds) ≤ ps (5.13g)

where generatori bids its maximum production and reserve capacity, respectively (gs)i and
(rs)i (with obviously (rs)i ≤ (gs)i) at the corresponding (marginal) costsci and ̺i. The
various reserve bids,̺i, do not refer to the cost of lost opportunity to sell energy (this is
taken care implicitly by the dispatch’s pricing rule), but are, instead, related to the expected
cost of providing reserves, which might include some fixed administrative costs and some
variable operating costs associated with providing reserve (e.g. a generator may operate at a
higher heat rate and thus less efficiently when it produces less than its optimal output power)
[TK06]. Load is assumed to be inelastic. Equation (5.13f) stands for the area’s total reserve
requirement, while (5.13g) expresses the requirement thatthe energy schedules should satisfy
the transmission limits. TablesT, Γ and∆ are as defined in Section 4.2.1 and used throughout
this report.

The outcome of the above optimization is the vector of scheduled generation powersgs with
offered (by thesth TSO) pricesπ and the vector of scheduled reservesrs with offered prices
π′. Let us recall that the pricing rule is necessary such that the price(π′)i offered to theith
generator for providing reserves covers both its bid for reserve and its opportunity cost if some
of its capacity has not been scheduled for energy productionbecause it scheduled as reserve. A
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typical such reserve pricing mechanism is to offer to all generators a price equal to the Lagrange
multiplier of constraint (5.13f).

The above formulation may be easily extended to allow a TSO define zones in its area, each
of them having a different reserve requirement. To this purpose, (5.13f) would be substituted
by as many such equations as the defined zones, with each import-constrained zone involving
only generators that are located inside that zone.

5.5.3 Approach for scheduling reserves jointly with Energyallocation

Coming back to the overlapping market structure that has been proposed in this work, the
“high-level” objective would be to have the proper amount ofreserves,Rs, scheduled in each
areas at the end of the iterations. Furthermore, those reserves should be scheduled according
to market principles, i.e. most economic generators shouldbe favored on one hand, while, on
the other hand, generators’ interests should be preserved (they should not undergo opportunity
costs).

A natural choice seems to have the TSOs clearing reserves, while letting the TSs clear their
energy markets. At first glance, it seems that this can be incorporated into the procedure,
making use of the Energy allocation loop. At every iterationof the loop, the coordinator would
receive prices offered to the generators for energy from theTSs and for reserve from the TSOs.
That is, the TSOs would be solving a reduced version of problem (5.13), with the objective
function containing the second term only and with the constraints (5.13d) and (5.13f) only. The
coordinator would have to solve possible conflicts stemmingfrom the fact that the total energy
production asked by the various TSs for a generatori, together with the reserve quantity asked
by the TSOs where the generator is located, may overpass the generator’s maximum capacity,
i.e.

∑
m(g̃m)i +(r̃s)i > gi , where we recall that(g̃m)i is theith generator’s energy demanded

by themth TS and we similarly define(r̃s)i as theith generator’s reserve demanded by thesth
TSO.

However, the coordinator cannot take, based on offered prices, the dispatch decision that max-
imizes the generator’s profit, as is the case when only energyis in question. The reason is
that in order to compare an energy offer with a reserve offer for a given generator, one needs
to know the generator’s bid denoting its marginal operatingcost. For instance, in case of a
conflict between themth TS’s demand for energy from theith generator and thesth TSO’s
demand for reserve from the same generator, with corresponding offered prices, respectively,
(πm)i and(π′

s)i, the coordinator should give priority to themth TS if

(πm)i − ci > (π′
s)i − ̺i ,

where we recall thatci and̺i are the generator’s bids for energy and reserve, respectively,
while each side of the inequality gives the generator’s profit (for producing energy and for
providing reserve). But the coordinator does not know the generators’ bids, which are assumed
to be confidential and, as a result, it cannot allocate generation capacity to TSs and TSOs using
the rule described in Section 5.1.
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The above difficulty could be circumvented by resorting to the “price-proof” approach dis-
cussed in Section 5.3.2, where generators enter the Energy allocation loop to take the allocation
decisions on their own. However, two issues would remain unresolved:

1. It may not be appropriate to treat TSOs as competitors to TSs in the allocation of genera-
tors. Even more, considering the fact that the pricesπ′ offered for reserves by the TSOs
do not result from a energy-reserve co-optimization, it maybe very difficult for a TSO
to guess what price it should offer in order to allocate a generator as reserve.

2. For every areas, the satisfaction of the following inequality should be ensured at the
end of the procedure:

∑
i(rs)i = Rs. It is not acceptable to have all (or most of) the

generators allocating their capacities for energy production, without enough being left
for reserve. This suggests that a mechanism would be needed to tell which of the gener-
ators should produce less energy in order to provide reserveand at what price. In other
words, scheduling reserves jointly with energy, requires to compare, not only energy
with reserve offers for the same generator, but, also, offers made to different generators.

Let us further elaborate on point 2 presented above. If the generators are making the energy
and reserve allocation on their own, the coordinator would still have to check that the following
constraints are satisfied at each iteration for all TSOs:

∑

i∈s

{(g)i −
∑

m(gm)i} ≥ Rs s = 1 . . . (5.14)

wherei ∈ s denotes that theith generator is located inside thesth TSO area. The difficulty
with implementing the above is that the coordinator needs a rule in order to compare different
generator offers and decide which TS demand should be left unserved if needed. Let us clarify
this with an example.

We consider a very simple case, with two generators (1 and 2) located in an area with a reserve
requirement R and two TSs (A and B) dispatching those generators. Suppose that TS A asks
for a (g̃A)1 production from generator 1 and a(g̃A)2 from generator 2. At the same time, TS B
asks, respectively,(g̃B)1 and(g̃B)2. If (g̃A)1+(g̃A)2+(g̃B)1+(g̃B)2 > g1+g2−R then the TS
demands cannot be fully satisfied because they do not leave enough capacity for reserve. Some
of the TSs requested quantities should not be allocated. Assuming that(πA)1 > (πB)1 and
(πB)2 > (πA)2, one can easily say that the demand of TS A for generator 1 should be favored
against the demand of TS B for the same generator, while the demand of TS B should be favored
against the demand of TS A for generator 2. However, with the above information only, one
cannot say whether the coordinator should first satisfy the demand of TS A for generator 2 or
the demand of TS B for generator 1.

Note that the Energy allocation procedure of Section 5.1 wasfree of the above problem because
all comparisons were made for the same generator (or load in the general case); there had been
no need to compare offers for different generators.

All in all, it does not seem possible to have the TSOs involvedinto the Energy allocation
procedure as actors scheduling reserves: in order to achieve a joint dispatch, energy and reserve



140 Chapter 5

offers should be revealed to and treated by the same entity. Thus, we propose to incorporate
the scheduling of reserves into the Energy allocation procedure by requiringfrom the TSsto
take care of scheduling the required reserves jointly with their energy dispatches.

For this purpose, it is assumed that the various TSOs can express their area reserve requirement
Rs as a percentageαs of the total load dispatched (by the various TSs) in that area:

Rs = αs

∑

m

Ds
m ,

whereDs
m is the total load dispatched by themth TS in thesth area, given byDs

m =
∑

j∈s(dm)j.
In this way, each TS could be asked to schedule a certain amount of reserves in each area where
it dispatches some energy consumption. If themth TS dispatches a total loadDs

m in areas,
then it should schedule reservesrm inside that area such that

∑

i∈s

(rm)i = αsD
s
m .

The approach could be viewed as demanding from the TSs to schedule enough reserves to “sup-
port” their energy transactions, in the same spirit as they are asked to participate in congestion
alleviation and in covering of losses (as will be discussed in the next section).

The above idea could work as follows.

• The generators submit to TSs bids for energy production (cm being the vector of such
bids for themth TS) and for reserve provision (̺m being the vector of such bids for
the mth TS). They also submit to the coordinator their maximum energy and reserve
capacitiesg andr, respectively.

• Each TS clears a joint energy-reserve market, for instance solving a problem like (5.13),
with constraint (5.13f) being replaced by1T rs = αs1

Tds for each areas where the TS
dispatches some load. This gives the following joint marketclearing for themth TS:

min
gm,rm

{
cT

mgm + ̺T
mrm

}
(5.15a)

s. t. 1Tgm = 1Tdm (5.15b)

0 ≤ gm ≤ gm (5.15c)

0 ≤ rm ≤ rm (5.15d)

0 ≤ gm + rm ≤ gm (5.15e)∑
i∈s(rm)i = αs

∑
j∈s(dm)j s = 1, . . . (5.15f)

tb(gm − dm − n̂m) ≤ −(∆p−
m)b b = 1, . . . (5.15g)

tb(gm − dm − n̂m) ≥ (∆p+
m)b b = 1, . . . (5.15h)

where the last two constraints stem from the last transmission allocation iteration. Vec-
torsgm andrm contain the maximum available capacities for energy and, respectively,
reserve, communicated to themth TS by the coordinator at the previous energy alloca-
tion iteration.
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• Thus, themth TS comes up with a set of demanded energy quantitiesg̃m with corre-
sponding offered pricesπm and a set of demanded reserve quantitiesr̃m with corre-
sponding offered pricesπ′

m.

• This information cannot be treated by the coordinator to allocate quantities to TSs, since,
as explained, it does not have enough information to compareenergy with reserve offers
(as already explained, bidscm and̺m are not disclosed to the coordinator for confi-
dentiality reasons). To this reason, each TS “transforms” its offers for reserves into
equivalent (in terms of the generators’ profits) energy offers. This can be easily done
by themth TS if instead of offering a set of pricesπ′

m for demanded reserve capacities,
it offers πm

′′ = π′
m − ̺m + cm. Like this, the modified price for reserve provision

from theith generator(πm
′′)i offered by themth TS, can be compared with the offered

price for energy production from the same generator(πk)i offered by another TSk, us-
ing the allocation mechanism that is used in the sole Energy allocation loop presented in
Section 5.1.

• The Energy allocation loop is executed by the coordinator asexplained in Section 5.1.
Energy and reserve per generation are allocated in decreasing order of offered prices, up
to the generators’ available capacitiesg andr. Again, what has been allocated to a TS in
the previous iteration and is still asked by that TS, remainsto the TS.

Similarly, the procedure could be applied with the TSs beingrequested to schedule reserves in
proportion with the generation they dispatch in an area, instead of the load.

5.5.4 Illustrative example

Let us resort to the three-area 15-bus system used throughout this work (and recalled in Fig. 5.7)
to illustrate how the above joint energy and reserve allocation method works. We assume that
the amount of reserves in each area should equal 30% of the area’s total load. Since in our
example the loads are inelastic and each TS serves the load ofan area, the reserve requirement
translates into each TS having the obligation to schedule 180 MW of reserves from generators
that are located inside its area.

Again, each generator is assumed to place the same marginal cost bid to all TSs for energy
production, while, to what regards reserves, each generator’s bid is taken as0.3 times its energy
bid, i.e. for every generatori we have:(cA)i = (cB)i = (cC)i = ci and̺i = 0.3 × ci. In
addition, generators are assumed to make their whole capacities available for reserve provision,
i.e. r = g. In this example, each generator bids for reserve provisiononly to the TS that serves
the load of the area where the generator is located (since each area’s load is served by a single
TS). In general, of course, more than one TS may be dispatching load in an area, and, thus,
each generator is expected to place a reserve bid to all the TSs serving load in the area where
it is located. For simplicity,N − 1 security constraints are not considered. All TSs come up
with energy prices using a marginal clearing price rule, while, for reserves, their offered price
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Figure 5.7: Three-area test system

Table 5.14: Iteration 1: 1st Energy allocation step
Gen Energy Reserve Energy Reserves Max

Bid Bid TS A TS B TS C TS A TS B TS C

(in e/MWh) Demanded Quantities (in MW)

gA1 5 1.5 300 300 300 150 - - 450
gA2 4 1.2 300 300 300 0 - - 300
gA5 8 2.4 0 0 0 30 - - 450
gB2 10 3.0 0 0 0 - 180 - 300
gC1 30 9.0 0 0 0 - - 180 450

Clearing Prices (ine/MWh) 5 5 5 2.4 3 9

Allocated Quantities (in MW)

gA1 5 1.5 100 100 100 150 - - 450
gA2 4 1.2 100 100 100 0 - - 300
gA5 8 2.4 0 0 0 30 - - 450
gB2 10 3.0 0 0 0 - 180 - 300
gC1 30 9.0 0 0 0 - - 180 450

is the Lagrange multiplier of constraint (5.15f) (note thateach TS has one such constraint in its
market clearing problem, corresponding to the area where its load is located).

The first two Energy allocation loop iterations (where reserves are now also allocated) are
detailed as an illustration of how the method works. Note that those are inner loop executions,
inside the first transmission allocation iteration of the procedure, and hence no branch flow
constraints are yet considered by the TSs. In Table 5.14 results from the first energy allocation
step are shown for the generators that have been demanded by the TSs for energy production
or reserve provision. The first three columns of this table show the name of the generation, its
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Table 5.15: Iteration 1: 1st Energy allocation step; pricesrelated to TS A (ine/MWh)
Gen Energy Reserves

Bid Clearing Offered Profit Bid Clearing Offered Profit
cA Price(πA) Price(πA) (πA)− cA ̺A Price(π′

A) Price(πA
′′) (π′

A)− ̺A

gA1 5 5 5 0 1.5 2.4 5.9 0.9
gA2 4 5 5 1 1.2 / / /
gA5 8 / / / 2.4 2.4 8 0

energy bid and its reserve bid, respectively, while in the last column their respective capacities
are shown. The remaining of Table 5.14 (columns 4-9) is divided into three blocks. Rows
4-8 contain the demanded energy and reserve quantities per TS (a dash in some reserve fields
means that the corresponding TS does not schedule the corresponding generator as a reserve).
Row 9 contains the energy and reserve prices resulting from the market clearing that gave
the aforementioned demanded quantities. Finally, rows 11-15 contain the energy and reserve
quantities that have been allocated by the coordinator to the various TSs.

Table 5.15 serves as a complement to Table 5.14, helping to illustrate how the TSs are trans-
forming their reserve clearing prices to equivalent energyoffered prices. It refers only to TS
A. For both energy (columns 2-5) and reserves (columns 6-9),each row refers to one generator
and contains, respectively: the generator’s bid, the pricethat resulted from the market clear-
ing for that generator, the offered price announced to the coordinator by the TS that is to be
used for energy or reserve allocation, and, finally, the generator’s profit that corresponds to the
clearing price. The latter is the clearing price minus the generator’s bid, both for energy as
for reserves as well. In case of energy, the offered price, announced to the coordinator, is the
energy clearing price of the market. To what regards the reserves, one can check that, for each
generator, this price stems from the “transformation” (explained in the previous subsection)
allowing the coordinator to compare reserve with energy prices without any knowledge of the
bids. For instance, the reserve clearing price of 2.4e/MWh that TS A is offering to gA1, is
equivalent, in terms of gA1’s profit, to offering 5.9e/MWh for energy production. The / in
some fields means that no energy or reserve is requested from this generator by TS A.

Back to Table 5.14, one can see that, as already explained in Section 5.1, due to the absolute
“symmetry” of the TSs (equal served load, same marginal clearing pricing rule, absence of
branch flow constraints) they all three request the same energy quantities with equal offered
energy prices. As for reserves, each TS selects the cheapestsolution from each area (for TS A,
this means that it schedules the remaining 150 MW from gA1 andan additional 30 MW from
the more expensive gA5). The reserve clearing price of each TS (row 9) equals the reserve
bid of the most expensive generator. This reflects the fact that no generator encounters an
opportunity cost for being scheduled as reserve.

The quantities are allocated according to the already explained rule. Only in the case of gA1
and gA2 there is a conflict. Note that the 150 MW that TS A asked as reserve from gA1 have
been allocated to it, while the remaining 300 MW of gA1 have been equally shared among the
(equally demanding) TSs for energy production. The reason why TS A got the whole reserve
it asked from this generator, is that its offeredreserveprice for gA1 is higher than the offered
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Table 5.16: Iteration 1: 2nd Energy allocation step
Gen Energy Reserve Energy Reserves Max

Bid Bid TS A TS B TS C TS A TS B TS C

(in e/MWh) Demanded Quantities (in MW)

gA1 5 1.5 250 100 100 0 - - 450
gA2 4 1.2 100 100 100 0 - - 300
gA5 8 2.4 250 400 400 180 - - 450
gB2 10 3.0 0 0 0 - 180 - 300
gC1 30 9.0 0 0 0 - - 180 450

Clearing Prices (ine/MWh) 8 8 8 2.4 3 9

Allocated Quantities (in MW)

gA1 5 1.5 250 100 100 0 - - 450
gA2 4 1.2 100 100 100 0 - - 300
gA5 8 2.4 87.5 140 140 82.5 - - 450
gB2 10 3.0 0 0 0 - 180 - 300
gC1 30 9.0 0 0 0 - - 180 450

Table 5.17: Final energy and reserve generation schedules
Gen Energy Reserve Energy Reserves Max

Bid Bid TS A TS B TS C Total Single TS A TS B TS C Single

gA1 5 1.5 173 78 1 252 250 128 - - 130 450
gA2 4 1.2 173 70 4 247 250 52 - - 50 300
gA5 8 2.4 254 47 0 301 300 0 - - 0 450
gB1 11 3.3 0 145 105 250 250 - 130 - 130 450
gB2 10 3.0 0 122 128 250 250 - 50 - 50 300
gB5 18 5.4 0 138 162 300 300 - 0 - 0 450
gC1 30 9.0 0 0 0 0 0 - - 78 180 450
gC2 30 9.0 0 0 0 198 200 - - 102 0 300
gC5 35 10.5 0 0 2 2 0 - - 0 0 450

energyprices of all TSs (see Table 5.15 and row 9 of Table 5.14). The latter is due to the fact
that TS A had to resort to (the more expensive) gA5 to cover allthe reserves it needed, which
increased the marginal reserve price above the gA1’s reserve bid.

Table 5.16 shows the demanded, and allocated, quantities after the second step of the Energy
allocation loop. An interesting feature of the approach appears at this step and deserves some
comment. One can notice that TS A used the whole capacity of gA1 allocated to it by the
coordinator, for energy production, even if 150 MW of this capacity was initially meant to be
allocated to TS A as reserves. This is not an issue, but it should be stressed that 150 MW of
the now scheduled 250 MW of gA1’s energy production had been allocated to TS A at a price
of 5.9e/MWh and, thus, as explained in Section 5.3.3, TS A should paythis price (while for
the remaining 150 MW, it has to pay 5e/MWh, at which it was allocated this power).

The procedure goes on iterating between energy and transmission allocations, and, after 8
transmission allocation iterations, it converges to the final generation schedules shown in Ta-
ble 5.17. One can see that, since the use of gA1, gA2, gB1 and gB2 for energy production
has been limited due to transmission constraints, those generators, being less expensive, have
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been used for reserve provision. It is noteworthy that the total schedules that resulted from the
proposed procedure are practically identical to the schedules that result from a single system-
wide energy-reserve co-optimization (note that the reserve schedules in area C resulting from
the proposed method and those resulting from the system-wide clearing are equivalent in terms
of cost).

It seems that the proposed way to jointly schedule reserves in the Energy allocation loop works
as expected, without compromising the already presented feature of the approach. Admittedly,
more tests are needed to draw more definite conclusions.

Finally, let us recall that the proposed method has been built on the assumption that it is ac-
ceptable to have TSs scheduling reserves and that the areas’TSOs can express their reserve
requirements as proportional to their respective areas’ total dispatched load (or generation).
In case the above conditions are not met, other possible schemes that would achieve efficient
energy and reserve co-optimization should be thought of. Clearly, the intrinsic difficulty of
finding such schemes lies on the fact that generators’ energyand reserve bids need to be as-
sembled by one entity. Given the market participants’ confidentiality restrictions, this may not
be an easy task.

5.6 Accounting for losses in Transmission allocation

In the Energy and Transmission allocation procedure presented down to here, the transmission
system has been assumed lossless. However, losses correspond to a non negligible percent-
age of the energy production (for instance a figure of approximately 4% is cited in [GT00,
dSdCC03]). Thus, it is appropriate, when scheduling generation and allocating transmission
capacity, to also account for losses. The viewpoint adoptedhere is that each TS should be
assigned the responsibility for the losses it “creates” dueto its schedule.

5.6.1 Estimating transmission losses in DC models

In [SJA09], a review of DC models used in the power system literature and applications is pre-
sented. DC models are classified ashot-startor cold-startmodels. The former are constructed
at a solved AC power flow base case, while the latter are typically resorted to when a reliable
reference AC power flow solution is unavailable (usually dueto lack of good voltage/var data).
PTDF models belong to the general category of incremental DCmodels, i.e. sensitivities for
changes around a base case. The base case can be an existing ACor DC solution. Thus, in gen-
eral, PTDFs may correspond to a hot-start or to a cold-start model. The PTDF model used in
this work is a cold-start DC model, as it is derived directly from the network’s branch reactance
matrix (see Section 4.2.1).

Not accounting for transmission losses when using a DC modelmay result in significant errors,
which tend to accumulate close to the slack bus (or buses) chosen to compensate those losses.
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In order to avoid this, the losses of each branch can be modeled as additional power withdraws
at the two end buses of the branch [SJA09]. In case of hot-start models, those withdraws can
be evaluated from the already known branch losses. On the contrary, in cold-start models the
net transmission losses have to be estimated and then dispersed among the various buses in the
system.

For the simultaneous market clearings proposed in this work, in the absence of an accurate
estimate of losses, we resort to an approach proposed in [SJA09, LB07], where the estimation
of losses and their distribution among the system buses are performed iteratively while clearing
the market.

Initially the branch flows are computed according to the lossless model, as in (4.6). Then, the
losseslb in each branchb are calculated using the approximationlb = rbp

2
b , whererb is the

branch series resistance. Those branch losses are translated into bus power withdraws, to be
treated as loads at the next iteration. To this purpose, an additional power withdrawlb/2 is
assigned to each end bus of the branch. New generation schedules are then computed in order
to compensate for the additional withdraws and branch flows are again computed using (4.6).
The branch losses can then be updated based on the new flows, and so on. The procedure is
fast, it usually converges in at most three iterations [SJA09, LB07].

The above technique can be easily applied to the overlappingmarket problem, taking advan-
tage of the iterative nature of the market clearing procedure to update the power withdraws
accounting for losses. This is easily added to the Transmission allocation loop; the coordina-
tor, after computing the branch flows, calculates the corresponding losses as well. But, since
each of theM markets is power balanced, a mechanism is needed to share among the various
TS the additional generation needed to cover the additionalpower withdraws.

5.6.2 Allocating losses to TSs

Allocating responsibility for transmission losses to the various market participants is a topic
that has attracted a lot of attention in the power system literature. The basic motivation lies in
the need to allocate the cost of those losses. Some methods allocate branch losses to individual
generators and loads [Bia97, KAS97, CGK01, DA06], or to bilateral or multilateral transac-
tions [A. 00, DA04, LG04]. Furthermore, there exist methodswhere transmission losses are
computed from the full AC network model [Bia97, KAS97, CGK01, DA04, DA06] and others
where a DC model is applied [A. 00, LG04].

Different loss allocation techniques have been proposed, such aspro rata techniques [IGF98],
marginal techniques [Elg71, GCK02] (based on incremental transmission loss coefficients)
andflow tracingtechniques [Bia97, KAS97] (based on the neither provable nor disprovable as-
sumption that the inflows are proportionally shared among the outflows at each network node).
We resort toloss formulamethods [A. 00, LG04, CGK01, DA04], which are more appropriate
in terms of expressing losses with individual nodal injections or transactions [DA06]. These
methods express the losses in each branch according to the power flow equations, either in AC
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[CGK01, DA04], where the expressionlb = rb|ib|2 is used,|ib| being the magnitude of the
current branchb, or in DC [A. 00, LG04], with resort to the simplified expression lb = rbp

2
b .

The main challenge stems from the fact that system losses area nonseparable, nonlinear func-
tion of the bus power injections, which makes it impossible to divide the system losses into a
sum of terms, each one uniquely attributable to a generation/load or a transaction. Thus, the
final allocation contains always a degree of arbitrariness.This issue of fairness will probably
never be fully resolved [CGK01].

The nonseparable nature of losses is easily seen by using (4.3) and (4.6) in the DC approxima-
tion of the branch losses:

lb = rb

(
∑

m

tbnm

)2

= rb

(
∑

m

(tbnm)2 +
∑

m

∑

k 6=m

(tbnm)(tbnk)

)
(5.16)

where each bilinear term involves the participation of two TSs in the branch flow.

When allocating the losses to the various TSs, it seems straightforward to allocate each term
rb(tbnm)2 to themth TS. On the other hand, terms involving two TSs, i.e.rb(tbnm)(tbnk),
need to be shared among them. In [A. 00], the authors argue that it may be unfair to equally
divide each such term between the two TSs (as is done for example in [LG04, CGK01, DA04]),
i.e. to allocate to themth TS rb

2
(tbnm)(tbnk) for the term it shares with thekth TS.

To illustrate the authors’ reasoning in [A. 00], let us consider a two-TS case where sharing the
bth branch flowpb = 1.1p.u. among the TSs gives participationspA

b = 1.0p.u. for TS A and
pB

b = 0.1p.u. for TS B. Assuming thatrb = 0.1p.u., the branch losses equallb = rb(p
A
b +pB

b )2 =
0.121p.u., withrb(p

A
b )2 = 0.1p.u.,rb(p

B
b )2 = 0.001MW and2rb(p

A
b )(pB

b ) = 0.02MW. It may
be argued that simply diving the bilinear term by two gives a disproportional responsibility to
TS B for the losses.

Different ways for allocating the bilinear terms are thus proposed in [A. 00]. In the present
work, we followed the idea of allocating the bilinear term inproportion to the square of each
TS participation in the branch flow. The motivation for this choice is the quadratic relation-
ship between power flows and losses and the will to be consistent with the chosen policy for
congestion management (see Section 4.4). Hence, every bilinear term is assigned as follows:

to themth TS:
(tbnm)2

(tbnm)2 + (tbnk)2
rb(tbnm)(tbnk)

to thekth TS:
(tbnk)

2

(tbnm)2 + (tbnk)2
rb(tbnm)(tbnk)

Thus, coming back to the loss allocation mechanism performed in the Transmission allocation
loop, the coordinator, after computing the branch flows, allocates the branch losses to the vari-
ous TS and, together with the congestion management constraints, it communicates to the TSs
the corresponding bus withdraws to cover in their new marketclearings. For example, if the
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ith bus is connected with branchesb andv, then the following injection will be communicated
to themth TS for this bus:

−
rb

2

(
(tbnm)2 +

∑

k 6=m

(tbnm)2

(tbnm)2 + (tbnk)2
(tbnm)(tbnk)

)

−
rv

2

(
(tvnm)2 +

∑

k 6=m

(tvnm)2

(tvnm)2 + (tvnk)2
(tvnm)(tvnk)

)

5.6.3 Illustrative example

Again, we resort to the 15-bus three-area system to illustrate the operation of the enhanced
procedure. Each branch series resistance has been taken equal to 1/10 of the branch reactance.
Table 5.18 shows the final generation schedules that resulted from the execution of the Energy
and Transmission allocation procedure incorporatingN − 1 constraints (columns 3-6), as well
as ignoring theN −1 constraints (columns 8-11). Columns 7 and 12 present, with and without
N − 1 constraints respectively, the generation schedules that result from a single system-wide
market clearing. Iterations of market clearings, as described in Section 5.6.1, have been per-
formed in order to account for losses.

For comparison, Table 5.19 shows the generation schedules that have resulted from executing
the proposed procedure and a single system-wide clearing, without accounting for losses, both
with (columns 3-7) and without (columns 8-12)N−1 constraints. Expectedly, some additional
generation had to be dispatched to cover losses. In the case of Transmission allocation con-
sidering only pre-outage branch flow limits, one can notice that the final schedules are similar
in the two cases (with and without losses), with only some additional productions from some
generators in the case where losses are accounted for. This “similarity” holds in fact during the
whole sequence of iterations; whether losses are accountedfor or not, modifies the demanded
and allocated TS generations by only a few MW for all generators and TSs.

On the contrary, the reader can notice that, when post-outage branch flow limits are considered
in the Transmission allocation, accounting for losses resulted in a “qualitative” difference in
some TS generation schedules. Namely, “thanks to” the loss allocation mechanism, TS C has
been able to allocate some production from generators gB1 and, mostly, gB2, which allowed
it to resort by a less amount to the, more expensive compared to gB1 and gB2, generator gB5
(see numbers in bold in Tables 5.18 and 5.19). This affected TS A, who, in the case with
losses, did not allocated as much of gB2 as in the lossless case (again, see bold numbers in the
aforementioned tables).

The above result reveals, in fact, a general property of the proposed procedure, worth receiving
a comment. There exist two types of discrete “decisions”, taken by the coordinator in respec-
tively the Energy and the Transmission allocation loop, theoutcome of which may significantly
change the remaining iterations.

1. When market participants are allocated to TSs in the Energy allocation loop, in case of
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Table 5.18: Final generation allocation (in MW); accounting for losses
Gen Bid incorporatingN − 1 constraints withoutN − 1 constraints

TS A TS B TS C Total Single TS A TS B TS C Total Single

gA1 5 105 25 25 155 155 135 111 4 250 250
gA2 4 110 50 50 210 210 97 50 103 250 250
gA4 15 0 0 0 0 0 0 0 0 0 0
gA5 8 229 116 83 428 428 326 65 0 391 305

gB1 11 48 100 7 155 155 8 100 49 157 250
gB2 10 65 100 45 210 210 40 100 160 300 250
gB4 20 0 0 0 0 0 0 0 0 0 0
gB5 18 46 214 12 272 273 0 178 89 267 306

gC1 30 0 0 210 210 210 0 0 0 0 0
gC2 30 0 0 155 155 155 0 0 0 0 204
gC4 40 0 0 0 0 0 0 0 0 0 0
gC5 35 0 0 17 17 17 0 0 207 207 0

Table 5.19: Final generation allocation (in MW); no accountfor losses
Gen Bid incorporatingN − 1 constraints withoutN − 1 constraints

TS A TS B TS C Total Single TS A TS B TS C Total Single

gA1 5 105 25 25 155 155 136 113 0 249 250
gA2 4 110 50 50 210 210 98 56 96 250 250
gA4 15 0 0 0 0 0 0 0 0 0 0
gA5 8 232 115 74 421 420 324 58 0 382 300

gB1 11 43 100 0 143 155 9 100 48 157 250
gB2 10 110 100 0 210 210 33 100 167 300 250
gB4 20 0 0 0 0 0 0 0 0 0 0
gB5 18 0 210 71 281 270 0 173 89 262 300

gC1 30 0 0 210 210 210 0 0 0 0 0
gC2 30 0 0 155 155 155 0 0 0 0 200
gC4 40 0 0 0 0 0 0 0 0 0 0
gC5 35 0 0 15 15 15 0 0 200 200 0

conflict between two (or more) TSs, whether a TS will get or notthe right to dispatch a
participant depends on its offered priceπ in a switch-like manner. There is a threshold
value, defined by the other TSs offered prices for the market participant under question,
above/below4 which the TS will get all the quantity it asked for, and below/above which
it will get nothing5.

2. In the Transmission allocation loop, the switch-type rule stems from the treatment of
counterflowing TSs. For any congested branch, a flow participation of just below/above6

zero MW makes the difference between the TS under question receiving no constraint
for that branch or receiving a constraint that does not allowthe TS to increase/decrease
its branch flow contribution.

4Depending on whether the participant is a generator or a load.
5A third case is whenπ equals the threshold value, which results in the TS getting apart of what it asked for.
6Depending on the direction of the main flow.
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Table 5.20: Final generation costs (ine/h)
N − 1 losses TS A TS B TS C Total Single

yes
no 4395 7127 13675 25197 25115
yes 4817 7210 13271 25298 25300

no
no 4093 6467 11184 21743 21300
yes 4155 6572 11416 22142 21568

Coming back to our results, the counterflow-related switch-type behavior is the reason why
incorporatingN − 1 constraints ended up with the above mentioned difference between the
cases with and without losses accounted for, respectively.After the first iteration of the Trans-
mission allocation loop, in both cases (losses accounted ornot), branches B1B3 and B2B3
get overloaded and the alleviation effort is shared among the three TSs (in both cases a power
flow decrease of 25 MW is assigned to TS C for each of the two branches). After the second
Transmission allocation iteration, both branch flows are below their limits and according to the
congestion management policy the remaining capacity is shared among the TSs proportionally
to their participations in the flows. In the lossless case, ithappens that TS C is creating zero
flow in branches B1B3 and B2B3 (due to the various constraintsit received, it had to deallo-
cate all the generation it had dispatched from gB1 and gB2) and thus, according to the rule, it
receives zero from the remaining MW capacities of those branches. This results in TS C not
being able to schedule generation from gB1 and gB2 at the nextiteration (and, more generally,
in the remaining of the procedure). On the contrary, in the case with losses, again TS C is
obliged to deallocate all generation it had from gB1 and gB2,but now, due to the loss alloca-
tion mechanism, power withdraws at buses B1 and B2 have been assigned to it, stemming from
its participation in the previous iteration’s losses in branches B1B3, B1B2 and B2B3. Thus,
it happens that, after the second Transmission allocation iteration, TS C’s participation in the
B1B3 and B2B3 branch flows is a -0.242 MW flow for each branch. Inother words, TS C is
now counterflowing in those branches and, according to the rule, no constraint related to them
is assigned to it for the next iteration. This results in TS C scheduling, and keeping until the
end of the procedure, some generation from gB1 and gB2.

A possible way for dealing with this switch-type issue is mentioned in the section that follows.

Finally, Table 5.20 collects the resulting generation costs, for all four cases presented in Ta-
bles 5.18 and 5.19. One can see that accounting for transmission losses leads to a small aug-
mentation of generation costs. Where post-contingency constraints are incorporated into the
congestion management problem, the final total generation cost is practically the same as what
would have resulted from a single system-wide optimization(the fact that it turns out to be 2
e/h less than the single optimization cost is just due to some rounding effects). Where only
pre-contingency flow limits are considered in the congestion management problem, the cost
from the system-wide optimization is 2.6% lower than the cost obtained with the proposed
approach.
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5.7 A comment on the energy and the transmission alloca-
tion rule

In the previous section, it was shown with an example that a small change in a TS schedule
could result in a significant change in the final outcome, due to the two switch-type behaviors
of the Energy and Transmission allocation procedure.

To what regards energy allocation, this behavior could be easily overcome by having the co-
ordinator allocate capacitiesin proportion to the TSs’ price offers. Like this, an infinitesimal
difference in a TS’s price offer would always result in an infinitesimal difference in the quan-
tity it will be allocated. However, such a policy would go against the generators’ profits and,
more generally, against economic efficiency. Furthermore,it would be difficult to have it ac-
cepted (why should a generator be obliged to sell part of its capacity to somebody who values
it less than a competitor?). In fact, this switch-type behavior already exists and is accepted
in the various pool-based electricity markets, where, typically, a generator whose bid is even
infinitesimally higher than the bid of the marginal generator, is not dispatched for energy pro-
duction.

On the contrary, to what regards transmission allocation, the differentiation made between
counterflowing and non counterflowing TSs might not be considered acceptable. It would
seem more reasonable that a TS with a small positive contribution to an overload is not treated
significantly different than a TS with a small negative contribution (i.e. a counterflow) to the
same overload. In this respect, Fig. 5.8 outlines how low contributions to an overloaded branch
flow could be treated. In both diagrams, the horizontal axis shows the participation of a TS in
the branch flow, while the vertical axis shows the part of the branch’s capacity that is allocated
to this TS as a result of the congestion management policy. The left diagram corresponds to
the policy that has been used in this work and the right diagram to a “smoother” policy. For
simplicity it has been assumed that a counterflowing TS can use up to the whole capacity of a
branch.

The left diagram shows, as already explained in Chapter 4, that a TS counterflowing in a
congested branch (i.e. a branch that at some point during theiterations has been overloaded)
will be unlimited regarding the flow it creates in this branchat the next iteration, while a
TS which is not counterflowing will be allowed to use, at most,such part of the branch’s
capacity as it is presently using. One can easily understandthat a TS with a small contribution
to an overloaded branch, will practically be obliged to keepthis small contribution for the
remaining of the iterations (except if another TS, with highcontribution, decreases significantly
its participation in the flow).

The principle of the solution that is qualitatively shown inthe right diagram of Fig. 5.8, consists
in allowing: (a) TSs with low flow contributions to somewhat increase their utilization of the
branch, and (b) counterflowing TSs to remain unconstrainedprogressively, such that a TS with
an infinitesimal low counterflow is treated in almost the sameway as a TS with an infinitesimal
low positive contribution.
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Figure 5.8: Making the transmission allocation rule “smoother”

The rationale behind the “smoother” approach is twofold: first, a TS should not be treated sig-
nificantly different from another if their flow contributions are relatively close to each other,
and second, a TS should not be left trapped into having the right to use only a very small per-
centage of a branch’s capacity. Note that for larger positive or counter- flows, the “smoother”
approach goes asymptotically to the rule that has been used in this work. However, it may not
be obvious to choose the appropriate smooth function, whileconvergence difficulties may be
experienced (since the decomposed constraints assigned tothe TSs contributing to the coun-
terflow do not altogether alleviate the overload). Future implementation and testing of this
approach could be of interest.

5.8 Will TSs try to act strategically ?

5.8.1 Motivation

It is natural that the players in a game try to act strategically. To this purpose, a player may
anticipate what the others’ actions will be and include thisinformation into its decision-making
problem. For instance, in the proposed method for Energy andTransmission allocation, the
various TSs, when clearing their markets during the successive iterations of the algorithm,
could aim at dispatching their participants in a way that, given the other TSs’ market clearings
and the coordinator’s decisions, they obtain an as small as possible cost at the equilibrium of
the procedure.

The problem of an electricity producer’s optimal bidding strategy in a pool electricity mar-
ket provides an example of strategic behavior from the powersystem literature [BZTB07,
BCG+06, HMP00, WO02, RC09]. In this problem, the producer chooses the bid it should
submit to the market operator such that the market clearing’s outcome (i.e. the scheduled
quantity to be actually produced and the corresponding price to be received by the producer)
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maximizes the producer’s profit. The producer knows that themarket clearing depends on all
the producers’ submitted bids. For this reason, in the abovepublications, the producer’s bid se-
lection is formulated as a bi-level optimization problem with the variable being the producer’s
bid. In the “lower” (internal) level, the producer solves the operator’s market clearing prob-
lem, using an estimate of the other producers’ bids. This optimization problem is a constraint
in turn, embedded into the “upper” (external) level optimization problem, whose objective is
to maximize the producer’s profit (given the market clearingresulting from the lower level)
subject to additional technical constraints.

Since the lower-level problem is assumed to be continuous and convex, it can be replaced
by its Karush-Kuhn-Tucker first-order optimality conditions [Kar39, KT51], which yields a
Mathematical Problem with Equilibrium Constraints(MPEC) [RC09]. MPECs are inherently
non-convex, nonlinear optimization problems. The methodsused to solve them cannot, thus,
guarantee that the global optimal solution has been found [BZTB07]. A short description of
what a bi-level optimization problem is, as well as its connection with MPECs, is given in
Appendix D.

Clearly, solving the lower-level market clearing problem requires one to guess the behavior and
data of both “rival” producers and consumers. Hence, the better will a producer anticipate the
other producers’ submitted bids, the most profitable choicewill it make regarding its own bid.
In this respect, in [RC09] the authors incorporate the uncertainty associated with demand and
generating offers into the producer’s model by consideringmultiple lower-level market clearing
problems, each of them representing a possible realizationof the uncertain parameters.

Alternatively, the producer can exploit the fact that the same market clearing is performed
on daily basis and resort to an automatic learning algorithmin order to model its competitors’
behavior. In [BO01] the authors present a learning algorithm for generators that shares the same
essence with reactive learning, while in [YLT07, KBC+06] generation companies are modeled
as Q-learning agents. The analysis of electricity markets considering strategic bidding market
players with learning capabilities is called agent-based simulation [YLP10]. For example, in
[TB07] the authors employ agent-based simulation to study energy market performance and,
in particular, capacity withholding and the emergence of tacit collusion among the market
participants. In this respect, generators are modeled as adaptive agents capable of learning
through the interaction with their environment, followinga reinforcement learning algorithm
(the SA-Q- learning algorithm).

Acting strategically is, in general, a difficult task to achieve. In the particular problem dealt
with in the last two chapters, what makes it even more complicate are, first, the iterative nature
of the method, and, second, the existence of two steps of coordination. On the other hand, the
same (or, at least, a similar) game between the TSs is expected to be played on a regular basis
(say, every day) which could unveil some statistically repeated patterns that could be exploited
by the TSs when strategically clearing their markets.

At this point, let us see what the fact that a TS clears its market in a strategic way would mean,
i.e. what could a TS make else than just solving problem (4.40). The outcome of the latter
consists of a set of (demanded or allocated) generation quantities and a set of corresponding
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offered prices. Clearly, the TS strategically formulatingits market clearing would announce
generations that do not, at this moment, minimize its cost and/or prices that do not stem from
its official pricing mechanism.

Clearly, before putting any market clearing procedure intopractice, it should be carefully ex-
amined that it is not vulnerable to gaming by players who act strategically, in a way that the pro-
cedure’s outcome no longer meets the objectives of opennessand fairness that were originally
envisaged by the designers of the procedure. In this section, very preliminary considerations
are given, mainly focusing on how a TS could formulate its strategic behavior. The issue of
gaming remains an interesting research direction towards along the here-presented work could
be continued.

Before going on with the more involved case of the combined Energy and Transmission allo-
cation procedure, it is helpful to first consider how a TS could include into its clearing problem
information regarding a single iteration of one of the two loops.

5.8.2 Strategic behavior of a TS inside the Energy allocation loop

At a step of the Energy allocation loop, a TS announces to the coordinator demanded quantities
and corresponding prices and receives some generation allocation. This allocation, determined
by the coordinator’s computations, depends on the market clearings of all the involved TSs.
If the TS under question cleared its market considering whatwould be the outcome of the
remaining TSs’ market clearings as well as the outcome of thecoordinator’s computations, it
could announce demanded quantities and prices yielding more profitable allocation.

Let us assume that themth TS has been able to derive analytical models approximating in a
satisfactory manner the other TSs’ market clearings as wellas the coordinator’s energy alloca-
tion. This would mean that themth TS could express thekth TS’s market clearing outcome,
i.e. the demanded generationg̃k and the corresponding offered pricesπk as functions of other
variables involved in the procedure. For instance as:

g̃k = g̃k

(
gk, ∆p−

k , ∆p+
k

)
(5.17a)

πk = πk

(
gk, ∆p−

k , ∆p+
k

)
(5.17b)

wheregk, ∆p−
k and∆p+

k stem from previous computations of the coordinator. They have been
defined in Chapters 4 and 5 as, respectively, the new generation capacities available to thekth
TS (resulting from the last energy allocation computation)and the branch flow decremental and
incremental changes that should be provoked by thekth TS’s new injection schedule (resulting
from the last transmission allocation computation).

Note that the functions in (5.17) can, in general, be constructed to depend on more than
the three shown variables (those communicated to thekth TS by the coordinator). For in-
stance, if themth TS wants to consider that thekth TS may be also modeling the others,
it could express thekth TS’s market clearing approximation as a function ofmorevariables
appearing in the procedure. For example an approximation could be a function of the type
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g̃k = g̃k

(
g1, . . . , gM , ∆p−

1 , . . . , ∆p−
M , ∆p+

1 , . . . , ∆p+
M , π1, . . . , πM , . . .

)
, with the vectors in

the parenthesis being already defined. The same can be said for πk as well. Note also that,
in general, the expression modeling thekth TS’s market clearing implicitly incorporates some
estimation to what regards private information of others, like the various market participants’
bids to thekth TS.

Similarly, we assume that themth TS expresses the coordinator’s energy allocation computa-
tions with the following function:

g = g (g̃, π, ĝ) (5.18)

whereg includes the generation quantities allocated to TSs. As defined in previous sections,
vectorsg̃ andπ include all the TSs’ announced offers at this step of the Energy allocation
loop, while vector̂g contains the generation productions that where allocated to each TS in
the previous iteration of the Energy allocation loop. The new generation capacities available
to each TS are trivially computed from (5.18). For instance,the vector of generation limits
communicated to themth TS isgm = g −

∑
k 6=m gk.

Thus, themth TS can make use of theM−1 models of type (5.17) and the model (5.18) so that,
by properly modifying its original problem (i.e. the one given in (4.40)), it clears its market
in a way that yields some desirable generation allocation. For instance, if themth TS wishes
to clear its market so that after the coordinator’s allocation of generators it gets, at minimum
cost, generation quantities that cover the demand it serves, it could: first, computẽgk andπk

∀ k 6= m, using (5.17), and then, perform the following modified market clearing:

min
gm,g̃m,πm

{
πT

mgm

}
(5.19a)

s.t. πm ≥ cm (5.19b)

1Tgm = 1T dm (5.19c)

1T g̃m = 1T dm (5.19d)

0 ≤ g̃m ≤ gm (5.19e)

tb(g̃m − dm − n̂m) ≤ −(∆p−
m)b b = 1, . . . (5.19f)

tb(g̃m − dm − n̂m) ≥ (∆p+
m)b b = 1, . . . (5.19g)

gm = gm (g̃, π, ĝ) (5.19h)

At this point, it may be helpful to recall what is the market clearing problem, used in this work,
for a TS that does not act strategically:

min
g̃m

{
cT

mg̃m

}
(5.20a)

s.t. 1T g̃m = 1T dm (5.20b)

0 ≤ g̃m ≤ gm (5.20c)

tb(g̃m − dm − n̂m) ≤ −(∆p−
m)b b = 1, . . . (5.20d)

tb(g̃m − dm − n̂m) ≥ (∆p+
m)b b = 1, . . . (5.20e)
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In the above two optimization problems,n̂m is themth TS’s injection schedule based on which
the requested branch flow corrections∆p−

m and∆p+
m were computed at the last transmission

allocation iteration. As already explained,ĝ is the vector containing the generation productions
that were allocated to each TS in the previous energy allocation iteration. If problem (5.19) is
solved at the first energy allocation iteration, i.e. the onebefore which transmission allocation
was performed, then̂gm (i.e. the generator powers allocated to themth TS) is involved in̂nm

(let us recall thatnm = Γ gm −∆ dm). However, if the problem is solved at a next iteration
of the Energy allocation loop (this could happen if, for instance, themth TS, due to inaccurate
anticipation, did not get, after the first energy allocationiteration, all what it was aiming at),
thenĝ, which in (5.19h) refers to the last energy allocation iteration, corresponds to different
schedules than̂nm. Finally, let us recall thatcm is the vector containing all generators’ bids
placed in themth TS’s market at the beginning of the procedure.

The outcome of both (5.19) and (5.20) is a vector of demanded generation quantities̃gm and
a vector of offered pricesπm to be announced to the coordinator in order to proceed with
the Energy allocation. It should be noted, however, that, while in (5.20)πm is computed as
a side-effect of the optimization problem (according to thepricing rule used by themth TS,
for instance a marginal clearing price rule), in (5.19)πm is explicitly treated as a problem’s
variable.

Let us, indeed, have a deeper look in problem (5.19). In this problem, apart from̃gm andπm,
the generation quantitiesgm that the coordinator is expected to allocate to themth TS are also
modeled as variables. To compute them, the part of model (5.18) giving gm is incorporated
into the optimization problem as equality constraints, namely (5.19h). These constraints relate
gm with the other variables of the optimization,g̃m andπm. The estimate of the other TSs’
demanded quantities and offered prices are fixed parametersin (5.19), which have been com-
puted before performing the optimization. The objective ofthis strategic market clearing is to
minimize the actual cost of the TS, i.e. the amountπT

mgm that it will have to pay to satisfy
its demand. Constraint (5.19c) ensures that the TS will get exactly the amount of generation
is needs. The offered pricesπm do not stem from a pre-defined pricing rule but are part of
the TS’s strategic behavior: they result from the optimization such that, on one hand, they
minimize the cost to be paid (see the objective function), while, on the other hand, they allow
to the TS to get the generators of its choice (see constraints(5.19h)). The role of constraint
(5.19b) is to make sure that those prices are not lower than the bids submitted by the genera-
tors. Constraints (5.19e) to (5.19g), which are the same as in the non-strategic market clearing
(5.20), stem from the rules of the procedure. Finally, it is interesting to note that, in principle,
constraint (5.19d) could have been omitted since (5.19c) anyway ensures that the TS will get
what it needs. However, the announcement of a balanced schedule (i.e.1T g̃m = 1Tdm) is nec-
essary in order for the change in branch flows in constraints (5.19f) and (5.19g) to be correctly
computed.

One can see that problem (5.19) has no longer the form of a typical market clearing. Generators
are not necessarily dispatched in ascending order of price,neither are the offered prices com-
puted according to a pre-defined, clear to the participants,rule (such as a common marginal
clearing price or locational marginal prices). This may notbe acceptable if the TS is a PX
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or a TSO, since such entities have the obligation to dispatchthe market participants applying
a publicly announced algorithm. On the other hand, in the proposed framework the TS is a
general entity settling multilateral transactions, it does not necessarily coincide with a PX, and
as a result it could use undisclosed algorithms to clear its market. The role of a generic TS is
to settle transactions that are economically profitable forthe involved participants and, as long
as it offers prices larger or equal to the generators’ bids and smaller or equal to the loads’ bids,
then this role is fulfilled. In this respect, it would be appropriate to view the Energy allocation
loop as a common marketplace where any market participant can place its bid(s) knowing that
the coordinator will take care that the participant is dispatched to its highest profit.

Problem (5.19) tackles one single iteration of the Energy allocation loop. However, what really
counts for a TS is which generators will be allocated to it andat what price, at the end of
the loop. Clearing its market as in (5.19), at every step of the Energy allocation loop, could
already be enough for a TS to end up with a satisfactory generation allocation7. The reason is
that, along the iterations, the most interesting generators will tend to be allocated first; hence it
makes sense for a TS to have as a strategy to be allocated, at each step of the loop, the cheapest
generators. The anticipation will be more complete, though, if the TS models in its market
clearing problem several of (in theory, even all) the remaining iterations up to the point when
the method proceeds with the Transmission allocation.

It may be profitable for a TS to “refrain from rushing” to get all the generation capacity it
needs in one energy allocation step, because some other TSs are expected to release interesting
generators, previously allocated to them (and thus not presently available to the TS under ques-
tion), due to constraints of type (5.19f) and (5.19g) related to alleviation of branch overloads.
Tables 5.3 and 5.4 provide such an example, where at the first energy allocation iteration TS A
cannot ask for more than 150 MW from gA5 (see Table 5.3), but, at the same time, TS B and
TS C are obliged to release some or all the capacity of gA5 theyhad been allocated and, thus,
at the next iteration of the same Energy allocation loop TS A has access to an increased avail-
able capacity of gA5. The pricing rule introduced in Section5.3.3 suggests that a TS may be
motivated to wait for some cheap generation to be released. Dispatching expensive generation
and then releasing it for some cheaper one may end up in the TS paying more for what it could
have dispatched at lower price.

For example, if themth TS wishes to anticipate two Energy allocation iterations, with the
objective of being after those iterations allocated, at minimum cost, a total generation equal
to the total load it serves, it could clear its market by solving an optimization problem that is
presented step-by-step as follows.

Let us callg(1)
m andg

(2)
m the generator powers that themth TS expects to be allocated after the

first and the second energy allocation iteration, respectively. Thus, the total expected allocated

power isgm = g
(1)
m + g

(2)
m . Let us also denote by

(
g̃

(1)
m , π

(1)
m

)
and

(
g̃

(2)
m , π

(2)
m

)
the pairs of

demanded quantities and corresponding offered prices communicated by themth TS to the co-
ordinator at the first and second energy allocation iteration, respectively. More precisely, since

7It should be kept in mind that the models used by the anticipating TS are estimations only; in reality the TS
may not get all what it had predicted.
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the market clearing is supposed to take place at the first energy allocation iteration,
(
g̃

(1)
m , π

(1)
m

)

are the values that will be actually communicated to the coordinator, while
(
g̃

(2)
m , π

(2)
m

)
are

what themth TS anticipates to communicate to the coordinator at the mext energy allocation
iteration, provided that its predictions for the first energy allocation turns out to be correct.

The wish of themth TS to allocate the whole generation it needs to satisfy thedemand it serves
at minimum cost, suggests using the following objective in its market clearing:

min
{
π(1)T

m g(1)
m + π(2)T

m g(2)
m

}
(5.21)

with the constraints:

π
(1)
m ≥ cm (5.22a)

π
(2)
m ≥ cm (5.22b)

1Tg
(1)
m + 1Tg

(2)
m = 1Tdm (5.22c)

For the reasons already explained, the TS demanded generation quantities are at each step
such that they cover the (inelastic in our example) demand, and are bounded by the capacities
available to themth TS. This yields the constraints:

1T g̃
(1)
m = 1Tdm (5.23a)

1T g̃
(2)
m = 1Tdm (5.23b)

0 ≤ g̃
(1)
m ≤ gm (5.23c)

0 ≤ g̃
(2)
m ≤ g(1)

m (5.23d)

wheregm stems from the previous energy allocation and is a fixed parameter in the optimiza-
tion problem. On the contrary, vectorg(1)

m is a variable in the problem. It contains the generation
availability limits that are expected to be communicated tothemth TS at the end of the first
energy allocation iteration. The wayg(1)

m is computed within the optimization is explained in
the sequel.

Clearly, the schedule of themth TS should satisfy the branch flow constraints stemming from
the last transmission allocation iteration:

tb

(
g̃(1)

m − dm − n̂m

)
≤ −

(
∆p−

m

)
b

b = 1, . . . (5.24a)

tb

(
g̃(1)

m − dm − n̂m

)
≥

(
∆p+

m

)
b

b = 1, . . . (5.24b)

tb

(
g̃(2)

m − dm − n̂m

)
≤ −

(
∆p−

m

)
b

b = 1, . . . (5.24c)

tb

(
g̃(2)

m − dm − n̂m

)
≥

(
∆p+

m

)
b

b = 1, . . . (5.24d)

Note that all branch flow constraints refer to the schedulen̂m considered by the coordinator in
the last transmission allocation.

In order to anticipate the outcome of the coordinator’s computations, at both the first and second
energy allocation iteration, themth TS resorts to the coordinator behavior model it uses, i.e.to
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Eq. (5.18). This gives the following constraints to be incorporated in the optimization problem:

g(1) = g
(
g̃(1), π(1), ĝ

)
(5.25a)

g(2)
m = gm

(
g̃(2), π(2), g(1)

)
− g(1)

m (5.25b)

g
(1)
k = g −

∑

n 6=k

g(1)
n ∀ k (5.25c)

where
(
g̃(1), π(1)

)
and

(
g̃(2), π(2)

)
group all TSs’ demanded quantities and corresponding of-

fered prices submitted to the coordinator at the first and thesecond energy allocation iteration,
respectively. Vectorg(1) contains the generation powers allocated toall the TSs by the coor-
dinator at the end of the first energy allocation iteration. To what regards the second iteration,
only the generation powers allocated to themth TS itself are modeled (g(2)

m in (5.25b), similar
to (5.19h)), since the others are not used in themth TS’s market clearing. Finally, (5.25c)
gives the expected generation limits needed in (5.23d). Letus recall thatg includes the gen-
erator limits whileĝ includes the allocated generations stemming from the previous energy
allocation.

It is noteworthy that, for any TSk 6= m, g̃(1)
k andπ

(1)
k are fixed parameters in the optimization

problem. They are estimated by themth TS, before clearing its market, using its models (5.17).
On the contrary, all̃g(2)

k andπ
(2)
k arevariablesin themth TS’s market clearing problem. They

cannot be estimated in advance because they depend on other variables of the optimization. So,
to compute them, themth TS, resorting to its models (5.17) of the other TSs’ marketclearings,
adds the following constraints to the optimization:

g̃
(2)
k = g̃k

(
g

(1)
k , ∆p−

k , ∆p+
k

)
∀ k 6= m (5.26a)

π
(2)
k = πk

(
g

(1)
k , ∆p−

k , ∆p+
k

)
∀ k 6= m (5.26b)

Note thatg(1)
k is computed in (5.25c) for allk (i.e. includingm).

All in all, at the first energy allocation iteration, in orderto come up with̃g(1)
m andπ

(1)
m to be

announced to the coordinator, themth TS clears its market by solving the optimization problem
consisting of (5.21), (5.22), (5.23), (5.24), (5.25) and (5.26). The variables of this problem are:
g̃

(1)
m , π

(1)
m , g(1) ,g(1), g̃(2), π(2) andg

(2)
m .

5.8.3 Strategic behavior of a TS inside the Transmission allocation loop

In a similar way, a TS could anticipate what the outcome of theTransmission allocation loop
will be and properly dispatch its market participants to obtain the most profitable use of the
transmission network.

We now consider the only Transmission allocation procedure, without iterations for energy
allocation (this corresponds to the algorithm presented inChapter 4). We assume that themth
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TS has constructed analytical models of the other TSs’ market clearings, expressed as functions
of the coordinator’s requests for branch flow decreases or increases and of the modeled TS’s
previous injection schedule:

gk = gk

(
∆p−

k , ∆p+
k , n̂k

)
∀ k 6= m (5.27)

wheregk denotes thekth TS’s new generation schedule (load is again assumed inelastic).

Let us assume that, at a given step of the Transmission allocation loop, themth TS, solely
by using the∆p+

m and∆p−
m corrections received from the coordinator, as well as theM − 1

models (5.27), is able to predict the setsO′
− andO′

+ of overloaded branches for which it will
be requested to modify its flow (downwards and upwards, respectively). Let us finally assume
that themth TS is able to identify for each branchb− ∈ O′

− andb+ ∈ O′
+ the setsK(b−)

and, respectively,K(b+) of TSs that will also be requested to modify their flows (i.e. those
that are not counterflowing). Note thatO′

− andO′
+ may also contain branches that have been

overloaded in previous iterations. Let us callA− andA+ the sets of branches for which the
mth TS has already received decremental and, respectively, incremental flow constraints from
the coordinator. Clearly, it isA− ⊆ O′

− andA+ ⊆ O′
+.

Themth TS can then modify its market clearing, having as an objective to minimize its gen-
eration cost at the next transmission allocation iteration, i.e. after having adjusted its schedule
in order to meet the coordinator’s constraints. To this purpose, themth TS has to solve the
following optimization problem:

min
gm,g′

m,∆p
−
′

m ,∆p
+′

m

{
cT

mg′
m

}
(5.28a)

s.t. 1Tg′
m = 1T dm (5.28b)

0 ≤ g′
m ≤ gm (5.28c)

tb (g′
m − gm) ≤ −

(
∆p−′

m

)
b

b ∈ O′
− (5.28d)

tb (g′
m − gm) ≥

(
∆p+′

m

)
b

b ∈ O′
+ (5.28e)

1Tgm = 1Tdm (5.28f)

0 ≤ gm ≤ gm (5.28g)

tb (gm − dm − n̂m) ≤ − (∆p−
m)b b ∈ A− (5.28h)

tb (gm − dm − n̂m) ≥ (∆p+
m)b b ∈ A+ (5.28i)

(
∆p−′

m

)

b
=

tb(gm − dm)∑
k∈K(b) tb(gk − dk)



∑

k∈K(b)

tb(gk − dk)− pb


 b ∈ O′

− (5.28j)

(
∆p−′

m

)

b
=

tb(gm − dm)∑
k∈K(b) tb(gk − dk)


−

∑

k∈K(b)

tb(gk − dk)− pb


 b ∈ O′

+ (5.28k)
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In the above formulation, variables that refer to the second(i.e. anticipated) market clearing
are denoted by a′ symbol. Thus,gm is the actual outcome of the strategic market clearing (i.e.
the one resulting in the schedulenm = Γ gm−∆ dm to be communicated to the coordinator),
while g′

m is the generation schedule that themth TS expects to set up at the next transmission
allocation iteration.

Constraints (5.28b) and (5.28c) stand for the fact that the next generation schedule should
cover the demand and be within the generators’ capacities. The similar constraints (5.28f) and
(5.28g) relate to the present generation schedule, while (5.28h) and (5.28i) are the branch flow
limits stemming from the previous transmission allocationiteration.

The coordinator’s computations are anticipated with (5.28j) and (5.28k), giving the next branch
flow corrections (∆p−′

m and ∆p+′

m ) expected to be requested from themth TS. Those new
limits depend on all the TSs schedules. Themth TS generation schedule is a variable in the
optimization, while all the others’ have been computed according to the models (5.27) prior
to solving (5.28). Finally, the constraints in (5.28d) and (5.28e) are the estimated new branch
flow-related inequality constraints that themth TS will have to incorporate into its market
clearing at the next transmission allocation iteration.

As for the energy allocation iterations, a TS acting strategically could anticipate more than one
transmission allocation iterations by incorporating the corresponding models and variables into
its market clearing problem.

5.8.4 Strategic behavior in both Energy and Transmission allocation loops

One can envisage, at least in theory, that a TS combines the market clearing formulations that
were presented in the previous two subsections for, separately, energy and transmission alloca-
tion, and makes up an optimization problem where future energy and transmission iterations
are anticipated. This would offer similarities with Model Predictive Control approaches (e.g.
[Mac02, OMGC07b, OMGC07a]), in so far as a TS would optimize its sequence of actions over
multiple future steps, and each time implement only those actions that correspond to the first
step. The remaining computed actions (referring to future steps) would not be used, since at the
next iteration of the procedure the TS under question would once again solve its optimization
problem.

All in all, some strategic formulations of a TS’s market clearing have been sketched in this
section. To keep the presentation as simple as possible, those formulations have been based
on the assumption that the anticipating TS has been able to construct analytical models of the
other TSs’ market clearings and of the coordinator’s computations. In practice, however, this
would be a very difficult task to achieve, if at all possible. The various TS market clearings
take on, in fact, the form of optimization problems (like (5.20)). The same holds true for
energy allocation, where the coordinator’s objective is tomaximize each generator’s profit.
In addition, in both energy and transmission allocation, the coordinator takes some if-then
decisions which would have to be modeled as complementarityconstraints. Namely, those
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decisions stem from: (a) in energy allocation, the rule thata TS should keep whatever has been
allocated to it in previous iteration and it continues to ask, as well as the rule that, in case of
equal offered prices, allocation should be made proportionally to demanded quantities; and (b)
in transmission allocation, the rule that no alleviation constraints should be assigned to the TSs
that are counterflowing in an overloaded branch.

Thus, the modeling of other TSs and the coordinator by a TS acting strategically, would yield
multilevel optimization problems, i.e. optimization problems which involve as constraints
other optimization problems and/or equilibrium constraints (see Appendix D for a formulation
of such a problem). For instance, the models (5.17) would, infact, be optimization problems
of the type (5.20). Reference [CMS07] provides a good initial point to the literature of al-
gorithms for solving bi-level (i.e. a particular case of multilevel) optimization problems. It
should be noted, however, that these problems are intrinsically nonlinear and non convex and,
thus, difficult to solve (even the simplest bi-level problem, i.e. with all involved constraints and
objective functions being linear, has been shown to beNP-hard in [Jer85]). In the beginning
of this section, some approaches, taken from the power system literature, that involve solving
bi-level problems have been cited. Solving the bi- (or higher) level optimization problems that
stem from strategic behaviors by the TSs, in the approach proposed in this work, seems to be
an interesting and exciting topic for future research.

Alternatively, the strategic behavior of a TS could involveresorting to automatic learning al-
gorithms, such as reinforcement learning [EGCW09, YLT07, KBC+06], in order a TS to avoid
explicitly modeling the other TSs but, instead, use its experience from previous executions of
the procedure in order to, gradually, formulate an appropriate strategy for its market clearings.
This is another exciting topic worth of further investigation.

5.9 Conclusion

Starting from the Transmission allocation procedure developed in Chapter 4, this chapter built
upon covering a variety of issues, overall resulting in an enhanced Energy and Transmission
allocation scheme that contributes another step towards creating a common electric energy
marketplace in an interconnection, where congestion is implicitly managed in an efficient way,
from both a social welfare and an engineering viewpoint.

As regards the common marketplace, the proposed Energy allocation procedure allows dif-
ferent electricity markets to be coupled, thus offering more options to participants and more
liquidity to TSs. As for congestion management, the proposed Transmission allocation proce-
dure, complemented withN−1 security constraints, offers a mechanism that is fair and easy to
implement, while leading to efficient and secure use of the transmission network. Security can
be enhanced in an efficient way by allowing for joint energy and reserve scheduling. Finally,
the issue of transmission losses, which could be significantin case of long-distance transac-
tions, has been dealt with. In fact, embedding in the procedure the issues ofN − 1 security
constraints, reserves and losses, helps avoiding the occurrence of a situation where the TSOs
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of the involved areas would have, ex-post (i.e. after the outcome of the iterations), to make
important corrective adjustments.

The approach has been thoroughly illustrated on small-scale examples. Although they refer,
for clarity, to a simplified situation (inelastic load, all TSs using the same pricing mechanism,
etc.), the approach can encompass more involved situations. Admittedly, more testings are
needed before considering the proposed method for practical application. Future work should
deal with several issues such as: (a) incorporating complexbid structures; (b) vulnerability to
participants or TSs trying to “game” the procedure; (c) linkto existing transmission pricing
mechanisms and (d) possibility of reducing the number of iterations, if prohibitive.

Regarding (c), it was assumed in this work that one or severaltransmission pricing schemes
are in effect throughout the system. The latter are expectedto be reflected in the prices offered
by the TSs or/and the market participants.

Regarding (d), it is recognized that with the current state of the art the proposed iterative clear-
ing methodology would pose an important burden in the bidding-settling process and would
increase the transaction costs. However, as electricity markets mature, the bidding process
is expected to become routine for generators and the motive for profit will drive them to bid
across multiple markets, given the relevant framework. In addition, advances in online nego-
tiation and electronic trade using intelligent agents [VCJ08, NPT01] are likely to wipe out the
increased time requirements and transactions costs of the proposed iterative scheme.



164 Chapter 5



Chapter 6

Conclusion

6.1 Brief summary of the work

Operating large power systems in a decentralized manner is sometimes a challenging task,
which requires proper coordination of the different involved actors’ control decisions. With
reference to two specific, self-standing, power system problems, some algorithms and/or oper-
ational procedures have been developed in this work seekingto reconcile the multiple actors’
simultaneous decisions, while a unifying mathematical framework, borrowed from the fields
of Game Theory (basically) and of Multi-Objective Optimization (as a complement), has been
used as the main conceptual tool to formulate the proposed ideas.

Precisely, the situation where various TSOs, whose respective control areas are within the same
interconnection, simultaneously modify the angle settings of their respective PSTs, has been
our first field of application of a coordinated decentralizedframework. The second applica-
tion has stemmed from the development of a decentralized, transaction-based, market structure
where TSs settle multilateral power transactions throughout an interconnection. An improved
extension of the coordination framework that was used for the PST control problem has been
considered in order to properly manage the congestion resulting from those overlapping mar-
kets.

The choice of allowing the simultaneous optimization of multiple actor objectives has been
preferred against resorting to the optimization of a singleobjective that would be a combina-
tion of the individual objectives. This choice stemmed bothfrom practical reasons dealing with
the acceptability of a single-objective approach (for example, the various TSOs may not agree
conceding the control of their investments to a “super-TSO”) and from a viewpoint of promot-
ing openness and innovation by seeking coordination ratherthan centralization (in this respect,
market participants should, in principle, be let free to settle energy transactions between them-
selves). The confidentiality and operational autonomy of the actors’ procedures has been also
respected.
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In fact, both multi-actor problems that have been dealt withcan be classified as generalized
Nash games. The proposed algorithms have been shown to lead to Nash equilibria of those
games. Furthermore, the corresponding multi-objective problem of such a game has been
defined as an optimization problem that seeks to optimize (a trade-off of) all actors’ individual
objectives. Like this, the aforementioned Nash equilibriahave been assessed in terms of how
close they are to Pareto efficiency.

Besides the main theme of this work, it has been considered appropriate to enlarge the scope
of investigation in each of the two problems. To what regardsthe PST control problem, an
algorithm has been developed for a single TSO to control the several PSTs of its area in a
way that, by minimally reducing the transit flow passing through its system through preventive
PST actions, makes its system correctively secure vis-à-vis a selected set of contingencies1. To
what regards the proposed overlapping market structure, the developed Energy and Transmis-
sion allocation procedure has been enhanced with, namely, incorporation ofN − 1 security
constraints, account for transmission losses and some considerations regarding the scheduling
of reserves, in an effort to make it, overall, a practically implementable proposal for a decen-
tralized power market.

It is worth noting that the extended Energy and Transmissionallocation procedures presented
in Chapter 5 remain a multi-actor game. However, in that chapter’s presentation it has been
preferred to focus on the development of a practically operational overlapping market structure
viewpoint, rather than repeating multi-actor issues that have already been covered in Chapters
3 and 4.

6.2 Main contributions of the work

The following can be stated as the main contributions of thiswork:

1. The framework which has been applied in the PST control problem allowing the opti-
mization of multiple objectives while coordinating the operation of a system by multiple
interacting TSOs.

The algorithm requires that, before its execution, the involved TSOs exchange informa-
tion in order to construct and share a common model of the network that links phase
angle modifications to resulting branch flow changes. In addition, each TSO communi-
cates to the others a set of linear feasibility constraints representing branch flow limits.
The essence of the algorithm is an iterative approach where the TSOs successively com-
pute control actions taking into account the last actions ofother TSOs and obeying the
whole set of constraints.

2. The extension of the above approach to deal with the congestion management issue that

1Since it is not needed for the understanding of the remainingof this work, the single-TSO PST control
algorithm has been presented separately in Appendix A.



Chapter 6 167

arises from multiple overlapping markets simultaneously cleared in a common intercon-
nection, yielding the so-named “Transmission allocation loop”.

Again, a common model of the interconnection is constructed, and linear constraints
are expressed via this model. However, contrary to the previous approach, those con-
straints are not incorporated into the various TS market clearings, but they are treated
by a coordinator. The essence of the iterative algorithm is that the coordinator checks
for constraint violations and, by applying a predefined congestion management policy,
shares the alleviation effort among the TSs.

3. The extension of the Transmission allocation procedure with an “Energy allocation
loop” that couples the previously separate markets, allowing market participants to bid
their whole capacities to more than one TS market simultaneously.

This feature increases the economic efficiency of the final dispatch because it permits to
internalize (i.e. make implicit in the algorithm) the, possibly difficult, choice of how a
market participant should place its bid between the variousTSs.

4. The enhancement of the Transmission allocation procedure with the additional features
of: incorporatingN − 1 security constraints, allowing joint scheduling of reserves, and
accounting for transmission losses.

At every transmission allocation iteration, the coordinator checks also for constraint vi-
olations that would result from a branch or a generator outage and shares the alleviation
effort to TSs according to the same rule of proportional participation. Regarding re-
serves, the TSs have been assumed as been assigned the responsibility to schedule some
reserves together with their energy transactions. Finally, as for transmission losses, at
every transmission allocation iteration the coordinator computes an estimate of transmis-
sion losses and allocates them as additional bus withdraws to the various TSs according
to their schedules.

5. The assessment of the two proposed coordination schemes (see items 1 and 2 above) in
terms of resulting in Nash equilibria of the game and of theirPareto optimality.

In all cases, the converged final control settings of the various actors are Nash equilibria
of the generalized game; no actor can further improve its objective by its sole actions
without violating the coupled constraints. In the PST control problem, those equilibria
are also Pareto optimal solutions, while in the case of Transmission allocation they have
be found to be very close to Pareto optimality.

6. The algorithm, to be used by a TSO to control its PSTs, for security restoration via
minimal reduction of unscheduled flows.

The algorithm is presented in detail in Appendix A.

The operation of all presented algorithms have been thoroughly illustrated with properly set,
small-scale comprehensive examples. The test cases are complex not by the size but by the
conflict between actors they involve.
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6.3 Directions for future work

This work can be improved, complemented and extended towards several directions. We quote
some that seem as most natural:

• The switch-type behavior of the energy and transmission allocation rules could be made
smoother, as discussed in Section 5.6.3.

• The effects of possible strategic behavior of the various TSs and market participants
should be thoroughly investigated before putting such a scheme into practice.

Some preliminary reflections about the issue have been presented in Section 5.8. A com-
plete investigation of the topic should, among others, involve: (a) consideration of the
problem from an individual TS’s or market participant’s perspective. Strategies that max-
imize the TS’s or, respectively, the market participant’s profit at the end of an execution
of the Energy and Transmission allocation procedure shouldbe developed; (b) consider-
ation of the problem from a market designer perspective. Theresult of the various TSs
and/or market participants strategic behavior should be evaluated. Techniques (in the
form of additional rules and modifications of the procedure)to mitigate gaming should
be envisaged.

• The Energy allocation procedure could be extended to incorporate complex bidding
structures (including start-up generation costs and spanning over several periods of time),
placed in the TS markets by the various generators and loads.

Clearly, this would make energy allocation a more sophisticated task. On the other hand,
if one manages to coordinate the procedure, it seems that it would be another step to-
wards economic efficiency. For instance, the so-extended energy allocation procedure,
if properly designed, could, under the responsibility of the coordinator, allow a genera-
tor to be dispatched in one time-period by a TS and in the next by another, sharing the
generator’s start-up cost among the two involved TSs.

• Although the use of a DC network model seems justified by the nature of the problems
treated in this work, extensions towards using a full AC model could be envisaged.

• The problem of jointly scheduling reserves with energy should be investigated in more
detail.

The difficulty in embedding energy and reserve co-optimization into the proposed Energy
allocation procedure, stems from the fact that reserve offers and energy offers should be
somehow revealed to and treated by the same entity. In Section 5.5, it has been proposed
to overpass this difficulty by having the TSs responsible forscheduling reserves. How-
ever, this may not be the best option, and it deviates from present practice. In addition, in
order for the latter idea to be put into practice, more research should be devoted into how
each TSO could “divide” among TSs the amount of reserves it needs to be provisioned
in its area.
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• The method should be applied to and tested with large-scale systems.

If made possible, it would be very interesting to collect real data from an existing inter-
connection, like the continental European one, in order to test what the proposed Energy
and Transmission allocation procedure would give. A comparison with an existing cen-
tralized scheme would also be of interest.

• The convergence speed of all the iterative schemes presented remains an issue requiring
further investigation.

• Coupling the problem of optimizing the settings of PSTs (and, more generally, of FACTS
devices) by the TSOs with that of clearing overlapping markets by various TSs could be
of interest.

The PST angles could be dynamically set during the iterations of the procedure such
that they alleviate congestion and increase the network’s transfer capacity towards the
most interesting directions. A remuneration mechanism should be developed for the
PST owners.

• Finally, a very interesting, but somewhat vague, research direction could consist in envis-
aging more sophisticated coordination schemes, that wouldsystematically lead to Pareto
efficient solutions.
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Appendix A

Minimal reduction of unscheduled flows
for security restoration: Application to
phase shifter control

More and more TSOs, noticeably in Europe, equip their systems with PSTs to counteract tran-
sit flows that take place in a large meshed interconnection. In Chapter 3, a framework for
coordinating the interactions of the various TSO control actions has been developed. The work
presented here, as an appendix to the main body of the thesis,triggered from the investigation
of the multi-TSO PST control problem, consists in proposingan algorithm for the coordinated
control, by one TSO, of several PSTs located in its system, with the objective of reducing the
unscheduled flow through its system. Minimum reduction of unscheduled flow and minimum
deviation with respect to present operating point are sought in order to minimize the trouble
caused to other TSOs, while ensuring secure operation. Attention is paid to combining pre-
and post-contingency controls. The resulting algorithm, simple and compatible with real-time
applications, is illustrated on a realistic test system.

A.1 Introduction

A.1.1 Transit flows: causes and consequences

Loop flows, parallel path flows, inadvertent flows, and circulating flows are synonymous terms
that basically refer to the fact that power can flow through several paths in a meshed network
[HMB+91]. The term transit flow is used by ETSO (European Transmission System Operators)
[DS05] and is adopted throughout the appendix.

This share of flow between parallel paths has been observed inlarge interconnections since
the early ’60s. In USA, parallel flows have been reported in the PJM interconnection as well
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Figure A.1: Transit flow due to external transaction

as in the WECC system [HMB+91]. Transit flows are also common in Europe, where the
borders of some countries are crossed, at least partially, by power exchanges involving other
countries [GMZ+06, BSA+04]. This situation is symbolically depicted in Fig. A.1 where a
fraction of the power due to external transaction passes through the networkN not involved
in the transaction. In recent times, transit flows have played an important role in the 2003
North American blackout [Liv05] and in cross-border trading in European markets [Bow02]
thus necessitating proper management.

In large interconnections, consisting of several areas operated by different Transmission Sys-
tem Operators (TSO), the common practice is to plan inter-area transactions in advance, in
forward, day-ahead or even intra-day markets. For the sake of coordination, Available Trans-
fer Capacities (ATC) are computed between the different areas, taking into account security
criteria. The final transactions settlements should respect these ATCs.

In real-time operation, however, actual power flows may differ significantly from what has
been scheduled in ahead. This may originate from:

• unknown or uncoordinated transactions involving other partners in the interconnection,
for instance if transactions are scheduled according to thecontract path logic without
making use of a flow-based model of the whole interconnection;

• changes in external generation pattern, e.g. due to wind generation variability;

• outage of external equipments.

The Unscheduled Flow (UF), i.e. the discrepancy between actual and expected flows, becomes
a concern when it adds to the loading of inner and interconnection transmission lines and
endangers security, moving the system to insecure state (when some credible contingencies
could not be stood) or even emergency state (when thermal limits are overstepped even in the
current operating conditions) [BSA+04, UCT].
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A.1.2 Accommodating vs. controlling unscheduled flows

Several procedures are in place to deal with UFs [SFHC04, SH08, TLF06, WEC]. As long as
it does not endanger security, a certain level of UF can be accommodated and priced. On the
other hand, curtailment of transactions, such as in the transmission loading relief procedure
used in the USA, or re-dispatch of generation may be requiredin severe situations.

Additionally, power flows can be controlled by Phase Shifting Transformers (PSTs) or pos-
sibly the faster, but more expensive FACTS devices [HMB+91, BSA+04, WEC, MZBH01,
CBC+02]. PSTs are among the few controls, together with topologychanges, that fully remain
in the hands of TSOs. With reference to Fig. A.1, the two PSTs can be controlled in a coordi-
nated way to reduce the fraction of power flow passing throughN as a result of the transaction
from G to D. More PSTs are likely to be installed for increasedcontrol of transit flows, as
testified by the situation in Belgium, where three PSTs are going to be put in operation on the
Northern border of the country [VHS+07, VHS+08].

In the European interconnection, anex postinter-TSO payment has been put into practice since
2002. Countries receive a compensation for the use made by external agents of their networks.
At the same time, they are charged for their use of the other partners’ networks. The net
outcome of the compensation and charges for one country mustbe used to modify the annual
regulated transmission cost from which the transmission tariffs are computed. This results
in a system of entry/exit tariffs whereby an agent who pays the modified local access tariff
gains access to the entire European grid. Losses are compensated, while for infrastructure the
compensation is based on the cost of hosting cross-border flows [ITC07, ITC05]. However, no
real-time inter-TSO coordination procedure exists in Europe yet to mitigate UFs.

A.1.3 Objective of this work

This work deals with the real-time restoration of security when the appearance of some UF
causes the system to operate in insecure or even emergency mode (i.e. the system would be
in normal and secure state without the UF). Ahead schedulingthrough an ATC-type proce-
dure is assumed to be in operation, as well as a real-time orex postUF accommodation and
compensation scheme.

A real-time control tool is proposed enabling a TSO to quickly restore security in its system
through actions on its own controls. At the same time, this control is aimed at being as un-
intrusive as possible for the rest of the interconnection [RW01]. The first motivation for not
acting more than needed (and not acting at all when not required) is to facilitate overall system
operation and not to create congestions elsewhere. A secondmotivation may come from the
above-mentionedex postfinancial scheme which compensates the TSO for accommodating the
UF.

In this context, the possibility is considered to let the system operate without satisfying the
strict N-1 security criterion, but take advantage of post-disturbance corrective actions. Since
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equipment outages are relatively rare events, it is cost-effective to operate the system at the eco-
nomic (or market) optimum that corresponds to its present (intact) configuration, and wait for
the disturbance occurrence to take corrective action. However, post-contingency adjustments
may be limited, given the time left by thermal overloads, because the operator is unavailable or
not trained to react or because of constraints related to thefunctioning of the available controls
(generator ramps, change of PST settings etc). This suggests that a compromise should be
found between preventive and corrective control actions.

This fits the general problem of operating the system in the optimal, correctively secure manner
[MPG87, SAM87, CW08]. The general approach to this problem is the Corrective Security
Constrained Optimal Power Flow (CSCOPF).

However, as UFs are to be handled in real time, resorting to a standard CSCOPF may prove
inappropriate, owing to the complexity of this approach. Instead, through the introduction
of an inequality constraint on the UF and the use of a specific decomposition procedure, the
proposed algorithm avoids the above complexity and yields aprocedure more compatible with
real-time application.

The remaining of this appendix is organized as follows. In Section II, the above simplification
of the CSCOPF problem is exposed. The mathematical expression of the UF used to this
purpose is presented in Section III. After this general presentation, the approach is applied
specifically to the coordinated PST control in Section IV, considering a simplified optimization.
An illustrative example is detailed in Section V, while various additional aspects are discussed
in Section VI. The Conclusion in Section VII summarizes the main features of the approach.

A.2 Outline of the proposed procedure

A.2.1 Security constrained optimal power flow

Security constrained optimal power flow is the framework that has been advocated for a long
time to support security control activities in power systems. This problem itself has been for-
mulated under two modes: preventive (PSCOPF) and corrective (CSCOPF). In the former, the
adjustment of control variables in post-contingency states is not allowed, except if stemming
from automatic response to contingencies. The underlying assumption of CSCOPF is that op-
erational limits violation can be generally tolerated for some time without equipment damages,
thereby allowing post-contingency corrective actions to be implemented.
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The CSCOPF approach of interest in this work can be compactlyformulated as follows:

min
x,x1,...,xc,u,u1,...,uc

f (x,u) (A.1)

s.t. g (x,u) = 0 (A.2)

h (x,u) ≤ 0 (A.3)

gk (xk,uk) = 0 k = 1, . . . , c (A.4)

hk (xk,uk) ≤ 0 k = 1, . . . , c (A.5)

|uk − u| ≤ ∆umax
k k = 1, . . . , c (A.6)

The objectivef may be either economical (e.g. maximize social welfare) or technical (e.g.
minimize deviations with respect to a reference stemming from market).x (respectivelyu) de-
notes the vector of state (resp. control) variables in the pre-contingency configuration, (A.2) are
the pre-contingency power flow equations and (A.3) the corresponding operating constraints,c
is the number of contingencies,xk anduk are the state and control variables in thek-th post-
contingency configuration, with the corresponding power flow equations (A.4) and operating
constraints (A.5). Finally,∆umax

k is the vector of bounds on the variation of control variables
between the base case and thek-th post-contingency state.

For some problems, the above general formulation may not be the most appropriate. The
obvious issue is the high dimensionality of the problem, resulting in prohibitive computing
times and complexity of computations. To mitigate these drawbacks, the usual approach is
to consider a subset of potentially active contingencies, identified by means of (steady-state)
security analysis and contingency filtering techniques [SAM87]. Benders decomposition has
been also proposed [MPG87, SR96], as will be discussed in Section A.6.3 . Even with these
mitigating approaches, designing a CSCOPF compatible withreal-time requirements remains
a challenge for large systems and/or when many contingencies are considered. For the specific
situation of UFs threatening security, the simplification explained hereafter makes the problem
much more compatible with real-time requirements.

A.2.2 Simplifying the optimization problem

We consider the impact of contingencies such as branch or generator outages. We assume that
the system has entered an insecure (or even emergency) statewith respect to some contingen-
cies owing to an excessive transit flow1. Exploiting this correlation between excessive transit
flow and severity of contingencies, the idea is to force the transit flow to decrease up to the
point where the system is correctively secure.

1In fact, the unscheduled part of the transit flow is expected to be responsible for insecurity. For the scheduled
part, the system should have been already checked and made secure.
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Figure A.2: Variation of objective function withtmax

To this purpose, consider the simpler OPF problem includingpre-contingency constraints only:

min
x,u

f (x,u) (A.7)

s.t. g (x,u) = 0 (A.8)

h (x,u) ≤ 0 (A.9)

t(x,u) ≤ tmax (A.10)

wheret represents the transit flow andtmax a bound on the latter. Thet(.) function is defined
more precisely in the next section. Letf ⋆ be the value of the objective at the optimum.

A variation off ⋆ with tmax is sketched in Fig. A.2. Consider a progressive decrease oftmax,
starting from a large value for which the constraint (A.10) is not binding. At point A, this
constraint becomes active and starts impacting the valuef ⋆. From there on, the smallertmax,
the largerf ⋆. At the same time, smaller and smaller values of the transit flow t are forced and,
hence, the impact of contingencies becomes less severe. Therefore, we assume that there exists
a point O, where the system becomes correctively secure and remains so for even smaller
values oftmax. The curve stops at point B, where (A.7-A.10) becomes infeasible if tmax is
further decreased.

Point O is the sought operating point in the proposed method.Operating at this point is inter-
esting because security is restored but the transit flow is decreased to the least extent, thereby
disturbing the external system as little as possible.

Point O can be determined by searching iteratively fortopt, the largest value oftmax such that
the system is correctively secure. This single-dimensional search is simple. For a giventmax,
the corresponding OPF (A.7-A.10) is solved to obtain the pre-contingency operating statex⋆

and controlsu⋆. The next step is to determine if this operating state is correctively secure.

For thek-th contingency (k = 1, . . . , c), we check whether there exists (at least) oneuk with
|uk −u⋆| ≤ ∆umax

k , such that the post-contingency state given by (A.4) satisfies the operating
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constraints (A.5). This could be done by solving the following optimization problem:

min
xk,uk,ek

1Tek (A.11)

s.t. gk (xk,uk) = 0 (A.12)

hk (xk,uk) ≤ 0 (A.13)

|uk − u⋆| ≤ ∆umax
k + ek (A.14)

ek ≥ 0 (A.15)

where1 denotes a column vector with all components equal to 1. If thesolution of this problem
is such thatek = 0, then the post-contingency operating point is correctively secure.

An alternative way to check for the existence ofuk, chosen in this work, consists in solving the
following post-contingency OPF problem:

min
xk,uk

F (xk,uk) (A.16)

s.t. gk (xk,uk) = 0 (A.17)

hk (xk,uk) ≤ 0 (A.18)

|uk − u⋆| ≤ ∆umax
k (A.19)

If this turns out to be infeasible, it can be concluded that the post-contingency operating point is
not correctively secure. The advantage of this approach is that, if the optimization is feasible, its
solution provides the operator with a set of post-contingency control actions that can be stored
and implemented directly if the contingency ever actually occurs. Typically, the objective
F deals with control adjustments; alternatively, the objective f of the pre-contingency OPF
problem could be re-used.

The operating point is not correctively secure if there is atleast one contingency making (A.16-
A.19) infeasible.

A.2.3 Proposed decomposed CSCOPF approach

Figure A.3 shows the various steps of the proposed approach.First, contingencies are simu-
lated. If none of them creates a limit violation, the procedure stops; otherwise, the possibility
to correct the violations in post-contingency conditions is checked by solving the OPF prob-
lem (A.16-A.19) for each contingency (block 1). If all problems are feasible, the system is
correctively secure and the procedure terminates. Otherwise, insecurity being attributed to an
excessive transit flow,tmax (initialized to the observed transit flow) is set to a lower value
(block 2), and the corresponding pre-contingency statesx⋆ and controlsu⋆ are obtained by
solving the OPF problem (A.7 - A.10) (block 3). Based on the latter, corrective security is
checked again by block 1. If some contingencies still cannotbe corrected, the value oftmax

is further decreased by block 2, while if all contingencies can be corrected, a higher value of
tmax is tried. The procedure continues refining the value oftmax until topt is known up to some
tolerance.
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Figure A.3: Proposed decomposed CSCOPF approach

The above description clearly shows that by introducing (A.10) and iterating ontmax, the orig-
inal large problem (A.1-A.6) has been decomposed intoc + 1 much simpler sub-problems:
the problem (A.7-A.10) relative to pre-contingency conditions and thec problems (A.16-A.19)
relative to post-contingency.

Of course, adding the constraint (A.10) yields a sub-optimal solution, but this may be quite
acceptable in a real-time environment. Further discussionof this aspect is provided in the
results.

A.3 Formulation of the transit flow

There is no unique definition of a transit flow, and there is some degree of arbitrariness in its
definition. We introduce hereafter the notion used throughout this work, with the objective of
using it in the inequality constraint (A.10).

Consider a system exchanging power with the remaining of theinterconnection throughl tie-
lines, in which the active power flowspi are counted positively when exiting the system. Intu-
itively, there is a transit flow if some lines are bringing power in and some others are taking it
out. This means that not allpi’s have the same sign. We thus define the transit flow as:

t =
1

2

(
l∑

i=1

|pi| − |
l∑

i=1

pi|

)
(A.20)

In this expression,
∑

i pi is the net power interchange (typically controlled by AGC ifthe
system coincides with a control area), a positive value indicating a net power export. Clearly,
if all pi’s have the same sign, then

∑l

i=1 |pi| = |
∑l

i=1 pi| andt = 0. If not all flows have the
same sign,t > 0 whatever the net power interchange2.

2Compared to the definition given in [DS05], the above formulagives the same transit flow values but allows
an analytical treatment.
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Figure A.4: Transit flow as a function of external transaction

The effect of an external transaction is easily shown in the following example. Consider
Fig. A.1, with the base case power flows shown next to the tie-lines. The transit flow com-
puted from Eq. (A.20) is 50 MW. Assume now that a transactionT takes place from G to D,
with 40 % of the additional power passing throughN . Assume furthermore the following flow
distribution (the variation of losses being neglected): -0.4 T in line L1, 0.3T in L2, 0.1T in L3
and nothing in L4. Thus, the power flow is 100-0.4T in line L1, 100 + 0.3T in L2, 100+0.1T
in L3, and -50 in L4. The variation oft with T is shown with solid line in Fig. A.4. The transit
flow does not change as long asT remains below 250 MW. Indeed, no line flow changes sign;
instead, a mere redistribution of flows is taking place. ForT larger than 250 MW, the flow in
L1 reverses and the transit flow starts increasing as expected. A similar observation is made
for a reverse transactions (T < 0). The dotted line in Fig. A.4 refers to a base case with an
initial flow of -50 MW in L3. In this case, the transaction creates a counterflow in both L1 and
L3 and makes the transit flow decrease untilT exceeds 250 MW.

Note that (A.20) includes both scheduled and unscheduled parts of the transit flow. As indicated
earlier, it is likely that system security has been checked for the scheduled part and insecurity
stems from the unscheduled part.

A.4 Application to phase shifter control

A.4.1 Modeling simplifications

In the remaining of this appendix, the decomposition methodpresented in the previous section
is applied to security restoration through PST control. Since the emphasis is on coordinated
control of PSTs instead of OPF algorithms, the following simplifying assumptions are made:

1. a linear model is considered, for simplicity and computational efficiency. Although it
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might be obtained right away from the well-known DC approximation, a linearization
of the AC power flow equations has been considered in this work. This assumption is
justified by the almost linear variation of active power flowswith PST angles;

2. control variables are assumed to be the PST angles only. Weseek here for dedicated
algorithms that can quickly help operators in the specific task of adjusting PSTs, or in
some future even adjust the PSTs automatically;

3. the objective functionf is of technical (instead of economical) nature. A minimum
change of PST angles is considered. The motivation may be to minimize the increase in
power losses that generally accompanies such changes, or todeviate as few as possible
from the operating point set by the market, especially when PSTs are used to increase
transactions [MC04].

Under assumption 1, the branch active power flowsp vary with PST anglesφ according to:

p− p0 = S
(
φ− φ0

)
(A.21)

wherep0 andφ0 are the base case values of the power flows and phase angles, respectively,
andS is a b × n sensitivity matrix, whereb is the number of branches andn the number of
PSTs.

The PSTs have no influence on the net power interchange, underthe approximation that the
power losses remain unchanged. Thus the expression:

|
l∑

i=1

pi| = d (A.22)

does not vary with the PST angles. Using (A.20) and (A.22), the transit flow constraint can be
rewritten as:

l∑

i=1

|pi| − |
l∑

i=1

pi|

2
≤ tmax ⇔

l∑

i=1

|pi| ≤ d + 2tmax (A.23)

A.4.2 Controllability of transit flow by PSTs

We assume that the available PSTs are able to control the transit flow t up to a certain point.
To this purpose, there must be an adequate number of PSTs, they must be properly located so
that the terms of theS matrix relating tie-line power flows to phase angles are large enough,
and the range of PST angles should be wide enough. These important aspects, to be decided at
the planning stage, are out of scope of this work [GMZ+06, PVBY99].

In practice, the number, location and range of PSTs may not make it possible to decrease
the transit flow below some value. The smallest transit flowt that can be enforced with the
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available PSTs can be computed as:

t = min
p,φ

{
1

2

l∑

i=1

|pi| −
d

2

}

subject to p− p0 − S
(
φ− φ0

)
= 0

−pmax ≤ p ≤ pmax

φmin ≤ φ ≤ φmax

t is also the smallest value oftmax such that the optimization problem (A.24-A.28) is feasible.
It corresponds to point B in Fig. A.2.

A.4.3 The pre-contingency OPF

With a minimum deviation objective, the linear model (A.21)and the transit flow constraint
(A.23), the pre-contingency OPF (A.7-A.10) may take on the form:

min
p,φ

n∑

i=1

(φi − φ0
i )

2 (A.24)

subject to p− p0 − S
(
φ− φ0

)
= 0 (A.25)

−pmax ≤ p ≤ pmax (A.26)

φmin ≤ φ ≤ φmax (A.27)
l∑

i=1

|pi| ≤ d + 2tmax (A.28)

where (A.26) accounts for the thermal limits of the branches, and (A.27) for the available range
of PST angles. For a low enoughtmax, the constraint (A.28) will be active at the optimum,
unless an active constraint (A.26) forces a lower transit flow.

An L1-norm objective
∑n

i=1 |φi − φ0
i | can be also considered but has been found to cause

undesirable distortion of power flows, as it tends to make full use of controls with higher
sensitivities. TheL2 norm (A.24) distributes the control effort more evenly overthe PSTs.

Since the PSTs are discrete devices, eachφ has to be rounded to the value corresponding to the
nearest tap position.

To deal with the absolute value in (A.28) it is convenient to define two new variables, respec-
tively p+

i andp−i , such thatpi = p+
i − p−i with p+

i , p−i ≥ 0. The constraint (A.28) is then
rewritten as:

l∑

i=1

(p+
i + p−i ) ≤ d + 2tmax , with p+

i , p−i ≥ 0
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A.4.4 The post-contingency OPF

Let φ⋆ be the solution of the pre-contingency OPF (A.24-A.28).

The post-contingency OPF problem (A.16-A.19), aimed at checking if the system is correc-
tively secure with respect to thek-th contingency(k = 1, . . . , c) takes on the form:

min
p,φ

n∑

i=1

|φi − φ⋆
i | (A.29)

subject to p = p(k) + S(k) (φ− φ⋆) (A.30)

−pmax ≤ p ≤ pmax (A.31)

φmin ≤ φ ≤ φmax (A.32)

−∆φmax ≤ φ− φ⋆ ≤ ∆φmax (A.33)

whereS(k) is the post-contingency sensitivity matrix andp(k) the vector of post-contingency
branch flows, provided by a preliminary contingency analysis. The constraint (A.33) expresses
that in post-contingency conditions, PST angles cannot be changed from the pre-contingency
valuesφ⋆ by more than∆φmax, which is supposed to reflect the limited rate of change of PSTs
and/or the initial response delay of operators. The choice of the objective has been discussed
in Section A.2.2.

The following items are noteworthy:

1. The above optimization has to be performed for each contingency endangering the sys-
tem. Obviously, the correctionφ− φ⋆ is expected to vary with the contingency;

2. in the above procedure, it is implicitly assumed that the available PSTs have controlla-
bility over the overload problem. Thus, the contingencies of concern here are those that
can be corrected by the PSTs. To check this, the above optimization can be performed
with the constraints (A.33) removed. If the problem remainsinfeasible, the PSTs cannot
help, and the corresponding contingencies should be treated by other means;

3. ∆φmax may change with the contingency severity: a higher overloadmust be corrected
in a smaller time and hence a smaller∆φmax should be imposed.

A.5 Illustrative example

A.5.1 Test system

The results have been obtained on a test system,loosely inspired of a small portion of the
UCTE system. Its overall structure is shown in Fig. A.5. It ismade up of four sub-systems,
corresponding to different countries and different TSOs. The figure provides the number of
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Figure A.5: Test system structure and base case operating point

buses in each sub-system. The subsystem of Country 2 is equipped with two PSTs, identified
by PH1 and PH2.

The active power flows that exist in the base case situation, with both PST angles equal to zero
are shown in Fig. A.5. The transit flow through Country 2 ist = 3315−685

2
= 1315 MW.

A deeper look at the diagram reveals the presence of a “major”and a “minor” loop. The major
loop includes the tie-lines connecting the four systems. Inside this loop, Countries 1 and 3
are exporting power while Countries 2 and 4 are importing. The two PSTs of Country 2 are
placed cutting the loop, in parallel to each other. Moving their angles in the same direction,
the TSO of Country 2 can redirect some power flow from path 3-2-4 towards path 3-1-4. The
minor loop includes two paths from north to south of Country 2, one through the internal lines
N76-N32 and N76-N321 and the other through the tie-lines N87-N56 and N58-N71. The two
PSTs are placed in series with each other inside this minor loop, and moving their angles in
opposite directions redistributes the power between the two above-mentioned paths.

A.5.2 Security analysis

We consider security analysis in Country 2. Out of all N-1 contingencies, two of them end up
in line overloads: the loss of lines N76-N32 and N76-N321. Figure A.6 shows the distribution
of power flows after the tripping of N76-N321: line N76-N32 is significantly loaded above its
capacity of 1215 MW (taken as 90 % of its MVA capacity to account for reactive power and
leave a security margin).

As for the security analysis of any system nested inside an interconnection, a correct represen-
tation of the external system (Countries 1, 3 and 4 in this case) is essential to assess the effect
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Figure A.6: Power flows after tripping of line N76-N321

of both contingencies and PST adjustments. The tests have been performed assuming that the
whole system model is available to the TSO of Country 2, but anequivalent, or a combination
of unreduced and equivalent models could be also used to account for the system external to
Country 2.

A.5.3 Linearization

The model is obtained by linearizing the AC power flow equations as follows.

We start from a base case situation with PST anglesφ0 and power flowsp0. The sparse power
flow Jacobian is computed at this operating point and LU-decomposed. Using a well-known
sensitivity formula [PPTT68], each column of theS matrix is obtained by solving one sparse
linear system involving the available factors of the transposed Jacobian.φ0, p0 andS are
re-used each time the pre-contingency problem (A.24-A.28)is solved (block 3 in Fig. A.3) to
obtain an updatedφ⋆.

Before solving the post-contingency problem (A.29-A.33) (block 1 in Fig. A.3), and given the
PST anglesφ⋆, a full AC power flow is solved to obtain the flowsp(k) that result from both
thek-th contingency and the pre-contingency PST adjustments. The corresponding Jacobian
is LU-decomposed and used to determine theS(k) matrix, using the above mentioned formula.

The power flow model used to compute theS andS(k) matrices involves the external system,
unreduced and/or equivalenced, according to what is available to the TSO of concern. The
former option has been considered in this work.

Thanks to the very close to linear relationship between branch power flows and PST angles, as
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Figure A.7: Power flows after tripping of line N76-N321 and corrective control by PSTs

well as the sensitivity matrix updates, the linearized model was found to be extremely accurate.
A comparison of power flows obtained from respectively the linearized and the full AC power
flow models, revealed discrepancies no larger than 0.2 MW on the branch flows.

A.5.4 Corrective control of line overloads by PSTs

Before the application of the algorithm, we demonstrate theeffectiveness of the PSTs in al-
leviating the overload caused by the tripping of line N76-N32 1, which is the contingency
requiring the largest control effort.

We first consider the PST angles that correctively clear the overload without any limit of the
type (A.33). We thus solve the optimization problem (A.29-A.32) with φ⋆ equal to the base
case valuesφ0 = (0o, 0o). The angles and the resulting power flows are shown in Fig. A.7.
The line flow is reduced below its limit thanks to: (i) a commondecrease of PST angles that
redistributes the flows in the major loop, decreasing the transit flow though Country 2 from
1280 to 1175 MW; (ii) a more pronounced action of PH2 that redistributes the flows inside the
minor loop.

If the post-contingency change ofφ2 from 0o to −17o (see Fig. A.7) is deemed too large and
limited to a lower value,φ1 cannot compensate and the optimization problem (A.29-A.32)
becomes infeasible, indicating that the system is not correctively secure.
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Table A.1: Iterations to restore corrective security
iter. tmax block 3 block 1
No (in MW) φ∗

1 φ∗

2 outcome
0 1315 0o 0o not correctively secure
1 658 infeasible
2 986 -19o -20o correctively secure
3 1151 -10o -11o correctively secure
4 1233 -5o -6o not correctively secure
5 1192 -7o -8o correctively secure
6 1213 -6o -7o correctively secure

A.5.5 Preventive restoration of corrective security

We now illustrate the method presented in Section A.2 (see also Fig. A.3) to make the system
secure with respect to both contingencies previously mentioned.

We assume a maximum post-contingency angle change∆φmax of 10 degrees. Hence, for the
initial operating point shown in Fig. A.5, the system is not correctively secure (as shown in
Section A.5.4 for the loss of line N76-N321) and the PST angles have to be adjusted in the
pre-contingency configuration.

A binary search (also known as dichotomic search, or bisection method) is used in block 2 of
Fig. A.3 to determine the highest value oftmax such that the system is correctively secure. This
consists in building a smaller and smaller interval[tl tu] such that fortmax = tl the system is
correctively secure while fortmax = tu, it is not. At each step the valuetmax = tu+tl

2
is tested

and taken as the newtl (resp. tu) if the system is found correctively secure (resp. insecure).
The procedure is repeated until|tu − tl| becomes smaller than a toleranceǫ. The best initial
value for tl is t (discussed in Section A.4.2) but a 0 MW value has been taken inthe tests,
saving the computation oft at the expense of an additional iteration of the binary search. tu
has been initialized at the base transit flow (1315 MW).

The main results are listed in Table A.1. At the first iteration, with tmax set to 1315+0
2

=
658 MW, the optimization of block 3 is infeasible, meaning that the PSTs cannot force such a
low transit flow. Obviously, block 1 cannot be executed. Thus, after settingtl to 658 MW, we
proceed with the second iteration, corresponding totmax = 1315+658

2
= 986 MW.

The third and fourth column of Table A.1 give the pre-contingency settings determined by
block 3, while the last column indicates whether this new operating point is found correctively
secure by block 1. The toleranceǫ being set to 25 MW, the procedure stops after six iterations.

The settings to be finally actually implemented, in a preventive mode, areφ⋆
1 = −6o and

φ⋆
2 = −7o, which decrease the transit flow to 1213 MW.

Table A.2 presents the results obtained by repeating the procedure for various values of∆φmax
1 =

∆φmax
2 = ∆φmax. The second and third columns give the pre-contingency PST angles, leading

to the transit flow value shown in the fourth column. The last two columns provide the final
values that should be given to PST angles, in the post-contingency configuration, to clear the
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Table A.2: Preventive and corrective PST settings for various∆φmax

∆φmax φ∗

1 φ∗

2 t (in MW) φ
post
1

φ
post
2

5o -14o -16o 1065 -10o -21o

10o -6o -7o 1213 -5o -17o

15o -2o -2o 1280 -4o -17o

20o 0o 0o 1315 -4o -17o

line overload caused by the tripping of N76-N321. As expected, the more one resorts to cor-
rective control actions (i.e. the larger∆φmax), the less the pre-contingency operating point is
changed (and, hence, the less intrusive the change in transit flow).

The variations observed in the table can be explained as follows. First, the post-contingency
angles are the closest to the pre-contingency ones (φ⋆) that alleviate the post-contingency over-
loads. Second, for some pre-contingency PST angle settings, ∆φmax may be not large enough
to allow for post-contingency correction. In this case, thepre-contingency angles are modified
in the direction that reduces the transit flow, resulting into new values ofφ⋆. As a result, when
seeking for post-contingency corrections, starting from the newφ⋆, different post-contingency
settings will be found (still closest to this newφ⋆). This is why the post-contingency settings
vary so much with∆φmax.

A.6 Discussions

A.6.1 Requirements of the method

The following conditions have to be fulfilled for the proposed procedure to be successful. First,
the available PSTs must have controllability over the transit flow. Second, the contingency
should be secured by decreasing the transit flow. A typical situation is when a corridor is
loaded by the transit flow and the outage of a line in this corridor causes overload of parallel
lines. If the transit flow reduction cannot help, the contingency will remain harmful at the
minimum transit flowt. This point is further illustrated hereafter.

If these conditions are not met, another objective and/or additional (probably more expensive)
controls should be considered to address the security problem.

A.6.2 Optimality of the method

Figure A.8 shows a characterization of the pre-contingencyoperating points corresponding to
various values of(φ1, φ2). This diagram was obtained by repeatedly solving the optimization
problem (A.29-A.33) with(φ⋆

1, φ
⋆
2) set to each pair of integer values in the shown range. The

maximum post-contingency correction∆φmax was set to 10o, as in Table A.1. At the points
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Figure A.8: Characterization of pre-contingency operating points

shown with crosses the optimization problem was infeasible; hence, the system is not correc-
tively secure. At the points shown with circles, the problemhad a solution, indicating that the
system is correctively secure. Finally, at the points shownwith disks, the contingencies were
harmless and the system secure; there was thus no need for PSTadjustments.

Assume that the system is operating initially at(φo
1 = 0o, φo

2 = 0o). The arrow that starts from
this point in Fig. A.8 is the path of (pre-contingency) PST angles obtained by solving (A.24-
A.28) for decreasing values oftmax in (A.28), i.e. smaller and smaller transit flow. The points
generated by block 3 of the proposed procedure (see Fig. A.3)lie on this path. The binary
search converges to the point(φ1 = −6o, φ2 = −7o), where the arrow enters the correctively
secure region.

The variations of the post-contingency angle settings shown in Table A.2 can be further ex-
plained in the light of Fig. A.8. For smaller∆φmax, the correctively secure region shrinks
closer to the secure area. Hence, when moving along the arrowin Fig. A.8 (which decreases
the transit flow), the operating point enters the correctively secure region for different angle
settings. In particular, with∆φmax = 5o, this happens forφ⋆ = (−14o,−16o), from which the
closest secure angle settings are(−10o,−21o).

In fact there are many ways to enter the correctively secure region. For instance, minimizing
the Euclidian distance to the initial point(φo

1 = 0, φo
2 = 0) would lead to the solution(φ1 =

0o, φ2 = −7o). This operating point is closer to the initial point but at this point the operation
of system 2 is more disturbed due to a significant redistribution of power flows inside the minor
loop. The proposed algorithm does not yield this solution because the pre-contingency changes
are constrained to obey (A.28). In fact, having attributed the security problem to a certain cause
(an excessive transit flow), the algorithm tries to find the closest correctively secure operating
point towards the direction that mitigates this cause.

Assume now that the initial operating point is(φo
1 = −14o, φo

2 = 0o). The search direction is
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parallel to the previously discussed path, untilφ1 hits its minimum of−30o, causing the path
to change direction. In this case, the binary search will converge to(φ1 = −30o, φ2 = −19o).

The fact that the search is limited towards the direction that mitigatest may lead to not finding
a solution. This happens when∆φmax is small, shrinking the correctively secure region and
causing the path to pass around it. In addition, if the requirements listed in section A.6.1 are
not met, then the correctively secure region will not be reached by applying the method, since
either the search direction will not be towards this region,or the PSTs will not be able to affect
the transit flow and hence move the operating point towards the sought direction.

A.6.3 Analogy with Benders decomposition

The proposed problem decomposition offers some similarities with the Benders decomposition
method [MPG87, CW08, SR96, LM09, SV07] from which it differs, however, as discussed
hereafter.

In the context of PSCOPF and CSCOPF, the most appealing application of Benders decompo-
sition consists of splitting the original problem into:

• one master problem, in which a solution is found to the pre-contingency sub-problem
(A.1 - A.3), and

• several smaller slave problems, each dealing with one contingency and checking if there
exists a controluk satisfying (A.4 - A.6).

Each infeasible slave sub-problem generates the so-calledfeasibility cut constraint to be added
at the next iteration to the master problem. Iterations between the master and the slave sub-
problems continue, with the cuts updated at each iteration,until the original problem (A.1-A.6)
is solved to some tolerance.

In the proposed approach the problem is also split into a master problem dealing with the
pre-contingency situation (block 3 in Fig. A.3) and slave problems, each relative to a post-
contingency situation (block 1 in the same figure). The information passed from slave to master
problems is used to adjust the pre-contingency operating point.

However, the main differences with respect to Benders method lie in both the nature and the
handling of the information returned to the master problem.The latter consists of a synthetic
two-valued variable per contingency. The values stemming from the various contingencies are
easily combined into a single infeasible/feasible information. Instead of adding mathematical
constraints to the master optimization, the engineering knowledge of the problem (insecurity
attributed to transit flow) drives the pre-contingency adjustments. While being less general
(the situation of Fig. A.2 must apply) and sub-optimal (to the extent discussed in the previous
section), the proposed scheme guarantees fast convergenceto the solution, as a binary search
is used to find point O in Fig. A.2. This may not be the case with Benders decomposition,
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as quoted in some papers reporting on the non-monotonic decrease of the objective function
[CW08] or the slow final convergence (known as “tailing-off effect”) [SV07]. Finally, with
Benders decomposition, the size and the structure of the master problem vary from one iteration
to the other, depending on the cut constraints added. This isnot the case in the proposed
method.

A.6.4 Computational efficiency

Several features contribute to making the overall procedure suitable for real-time applications.

First, the decomposition presented in Section II (and applicable to nonlinear CSCOPF) suc-
ceeds replacing the highly-dimensional problem (A.1-A.6)with smaller sub-problems. The
binary search leads to a low, predictable number of iterations, which could even be decreased
by extrapolating/interpolating the next value of the transit flow from past iterations.

As regards the particular application to PST control considered in Section IV:

• the linearized formulation allows resorting to proven, efficient optimization solvers;

• by focusing on the PSTs, the optimization involves a reducednumber of control vari-
ables;

• the computation of a sensitivity matrixS involves factorizing the sparse power flow
Jacobian and substituting one sparse vector per column of the matrix, i.e. per PST.
Efficient sparsity programming solvers are available to this purpose. Furthermore, the
optimal ordering step can be performed once for all in the pre-contingency topology.

A.7 Conclusion

The coordinated control of multiple PSTs to decrease unscheduled flow experienced by a TSO
inside an interconnection has been considered.

First, a definition of the transit flow has been proposed, linked to tie-line power flows in oppo-
site directions.

Next, a simplification to the general corrective security-constrained optimal power flow prob-
lem has been proposed, which allows decomposing this large-scale problem into simpler sub-
problems. Based on the assumption that the security problemcan be attributed to an excessive
transit flow, the algorithm investigates a sequence of pre-contingency operating points towards
the direction that decreases this flow. It converges to the correctively secure operating point
with the transit flow reduced to the lowest extent possible. By so doing, the control is aimed at
being as few intrusive as possible for other TSOs in the interconnection.
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Finally, this approach has been applied to the reduction of an excessive transit flow by PSTs in
order to deal with insecure situations. The algorithm determines the best possible combination
of pre- and post-contingency PST adjustments, with limits specified on the post-contingency
angle changes.

The features and limitations of this procedure have been illustrated on a test system.

The embedded optimization problems are simple and suitableto real-time operation. The
method could assist the operator in quickly checking if transit flow control by PSTs can re-
store security or if more expensive actions are needed. The algorithm could be at the heart of a
controller coordinating the PSTs, and allowing faster post-contingency adjustments.
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Appendix B

Branch data of the three-area 15-bus test
system used in this work

The branch reactances, series resistances, as well as maximum MW limits of the three-area
15-bus test system that has been used throughout this reportare presented in Table B.1. A
100-MVA base has been used.

Table B.1: Three-area 15-bus system
Branch Reactance (in p.u.) Resistance (in p.u.) Limit p (in MW)

A1A2 0.020851 0.0020851 100
A1A3 0.024241 0.0024241 150
A2A3 0.024241 0.0024241 150
A3A4 0.069502 0.0069502 400
A4A5 0.069502 0.0069502 400
B1B2 0.020851 0.0020851 100
B1B3 0.024241 0.0024241 150
B2B3 0.024241 0.0024241 150
B3B4 0.069502 0.0069502 400
B4B5 0.069502 0.0069502 400
C1C2 0.020851 0.0020851 100
C1C3 0.024241 0.0024241 150
C2C3 0.024241 0.0024241 150
C3C4 0.069502 0.0069502 400
C4C5 0.069502 0.0069502 400
A3B3 0.069502 0.0069502 200
A4C4 0.069502 0.0069502 200
B4C3 0.069502 0.0069502 200
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Appendix C

Generator data of the IEEE RTS-96 test
system used in this work

The generator maximum capacitiesg and marginal cost bidsc that have been used in this work
are presented in Table C.1 . All other data of the IEEE RTS-96 system are as in Ref [RTS99].
Each three-column block corresponds to a TS area (we recall that each TS serves the inelastic
load of an area, dispatching generators from all areas). Thefirst column of each such block,
gives the name of the bus where the generator is connected.

195
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Table C.1: Generator data of the three-area IEEE RTS-96 testsystem
Area 1 Area 2 Area 3

Bus g (in MW) c (in e/h) Bus g (in MW) c (in e/h) Bus g (in MW) c (in e/h)

101 20 3.121 201 20 6.242 301 20 9.363
101 20 3.121 201 20 6.242 301 20 9.363
101 76 2.693 201 76 5.386 301 76 8.079
101 76 2.693 201 76 5.386 301 76 8.079
102 20 3.121 202 20 6.242 302 20 9.363
102 20 3.121 202 20 6.242 302 20 9.363
102 76 2.693 202 76 5.386 302 76 8.079
102 76 2.693 202 76 5.386 302 76 8.079
107 100 2.268 207 100 4.536 307 100 6.804
107 100 2.268 207 100 4.536 307 100 6.804
107 100 2.268 207 100 4.536 307 100 6.804
113 197 2.263 213 197 4.526 313 197 6.789
113 197 2.263 213 197 4.526 313 197 6.789
113 197 2.263 213 197 4.526 313 197 6.789
115 12 2.762 215 12 5.524 315 12 8.286
115 12 2.762 215 12 5.524 315 12 8.286
115 12 2.762 215 12 5.524 315 12 8.286
115 12 2.762 215 12 5.524 315 12 8.286
115 12 2.762 215 12 5.524 315 12 8.286
115 155 2.195 215 155 4.390 315 155 6.585
116 155 2.195 216 155 4.390 316 155 6.585
118 400 2.288 218 400 4.576 318 400 6.864
121 400 2.288 221 400 4.576 321 400 6.864
122 50 0.0 222 50 0.0 322 50 0.0
122 50 0.0 222 50 0.0 322 50 0.0
122 50 0.0 222 50 0.0 322 50 0.0
122 50 0.0 222 50 0.0 322 50 0.0
122 50 0.0 222 50 0.0 322 50 0.0
122 50 0.0 222 50 0.0 322 50 0.0
123 155 2.195 223 155 4.390 323 155 6.585
123 155 2.195 223 155 4.390 323 155 6.585
123 350 2.276 223 350 4.552 323 350 6.828
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Multilevel optimization

Multilevel optimization represents a hierarchy of optimization problems, where the outer opti-
mization problem is subject to the outcome of a set of enclosed optimization problems. Partly
motivated by the practical complexity of the multilevel optimization, most work in the recent
past has addressed the special case of bi-level optimization, i.e. with one enclosed optimization
problem only. The material in this appendix is largely borrowed from Ref. [CMS07], which is
a recent review on bi-level optimization.

The general formulation of a bi-level programming problem is:

min
x∈X,y

F (x,y) (D.1a)

s.t. G(x,y) ≤ 0 (D.1b)

min
y

f(x,y) (D.1c)

s.t. g(x,y) ≤ 0 (D.1d)

wherex ∈ R
n1 andy ∈ R

n2. The variables of problem (D.1) are divided into two classes,
namely theupper-level variablesx and thelower-level variablesy. Similarly, the functions
F : R

n1 × R
n2 → R andf : R

n1 × R
n2 → R are theupper-leveland lower-level objective

functions, respectively, while the vector-valued functionsG : R
n1 × R

n2 → R
m1 andg :

R
n1 ×R

n2 → R
m2 are called theupper-levelandlower-level constraints, respectively. In view

of the hierarchical relationship, Eqs. (D.1a) and (D.1b) make up theupper-level problem, while
Eqs. (D.1c) and (D.1d) thelower-level problem.

Two decision-makers are involved in (D.1), the upper- and the lower-level one. The upper-
level decision-maker sets the upper-level variablesx and, similarly, the lower-level decision-
maker setsy. In some applications, the upper-level decision-maker is called theleaderand
is supposed to issue directives to the lower-level decision-maker, called thefollower. In this
respect, the leader, anticipating the follower’s reaction, solves problem (D.1) in order to choose
its best (optimal) strategy accordingly. Like this, it comes up with its sought actionx ∈ X ⊆
R

n1 . Upper-level constraints involve variables from both levels (in contrast to the constraints
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specified by the setX) and play a very specific role. Indeed, they must be enforced indirectly,
as they do not bind the lower-level decision-maker.

It is not unusual to have more than one followers, in which case the bi-level problem expands
to a multilevel optimization problem, where every followeris represented by an optimization
problem like the lower-level problem in (D.1). This gives for every followeri a reaction set
Yi(x) corresponding to each actionx ∈ X of the leader. The latter wishes to optimize its
objective function subject to all the followers’ anticipated reactions.

As indicated in [CMS07], solving bi-level problems is a difficult task due to intrinsic nonlin-
earity and non convexity. Clearly, solving multilevel problems is even more difficult.

Finally, it is worth pointing out a connection between bi-level optimization problems andMath-
ematical Problems with Equilibrium Constraints(MPECs), i.e. optimization problems with
mixed complementarity problems (see Section 2.3.6). In fact, if the bi-level involves a lower-
level problem that is convex and differentiable, then its KKT necessary optimality conditions
can be derived and introduced as constraints to the upper-level problem. Thus, the resulting
MPEC would consist of minimizing (D.1a) subject to (D.1b) and to the KKT conditions of
(D.1c)-(D.1d).
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