NOMENCLATURE

1. PERFORMANCES
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Air mass flow rate

CO, mass flow rate

Molar mass

Air CO, concentration

Variation of room indoor COmass

Room indoor volume

Moist air specific volume

Thermal imbalance of the human body
Metabolism not converted in work and dissipateteet
Heat flow dissipated to ambiance through breatlimd skin
Metabolism

Mechanical efficiency

Enthalpy taken away by the breathing air
Perspiration i.e. steam diffusion through skin
Sweating steam diffusion

Heat flow through clothing

Radiation heat exchange with ambiance
Convection heat exchange with ambiance

Human bodykin area

Occupansusceptibility

Predicted Mean Vote

Predicted Percentage of Dissatisfied

Factor equal to 1 when comfort is required, O nvihésn’t
Temperature set point during occupancy period
Indoor temperature

Time

Degree-days

Moist air dry temperature

Moist air humidity ratio

kgdryair

Water mass flow rate

Fictitious surcharge of indoor moisture capacity
Water vapor partial pressure of moist air totakptee
Water vapor partial pressure of saturated moist air
Relative humidity of moist air

System efficiency

System coefficient of performance

kg/s
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2. SOLAR HEAT GAINSAND SKY RADIATION

dbw Heat gains from direct solar intensity through vang W
SF Window solar factor -

g Glazing solar factor -

frr Ratio of frame area in the whole window area -
I, Direct solar intensity on a plane of a given slapd azimuth ~ Wi/nf
A, Window area including glazing and frame nt
Iy Direct solar intensity measured on a horizontahela wW/mz2
0 Angle between sum beams and normal direction igengvall rad
0, Angle between sum beams and vertical direction rad
Aeqw Window equivalent solar area including glazing &niame '

p Wall slope Q for horizontal positiongr /2 for vertical) rad
y Sun azimuth( for sun on southz0 for sun on west) rad
Yp Wall azimuth Q for south facing wall>0 for west facing wall) rad
é Sun declination rad
7, Latitude rad
A Longitude rad
) True solar time rad
A Longitude expressed n h

wp True solar time expressedhn h
UTC Coordinated Universal Time im h
ET Equation of Time irh h
hew Clock time in winter h

hes Clock time in summer h
Rhsotar Solar time of the place under consideration h
Qar,w Heat gains from diffuse and reflected solar inteesithrough windows W
Iy Diffuse and reflected solar intensities on a plaha given slopeW/nf
Lan Diffuse solar intensity measured on a horizontahpl W/nt
Iy Direct solar intensity measured on a horizontah@la W/nf
Itn Total solar intensity measured on a horizontal @lan W/nt
p Surrounding ground albedo -

I Infrared radiation emitted by an adaa given slope W/nf
lir 1 Infrared radiation emitted by an horizontal plane W/nf
Liv hcs Infrared radiation of a horizontal plane for clsy conditions W/nf
Lir hcc Infrared radiation of a horizontal plane for covksky conditionsV/nf
Ji Relative solar intensity at a given time -

Jee Relative solar intensity for covered sky conditigns= 0,354 -

Jes Relative solar intensity for clear sky conditigps= 1 -

Ien Total solar intensity on a horizontal plane at\aegitime W/nt
It hes Total solar intensity on a horizontal plane foratleky conditionsV/nf
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3. WALL MODEL DEFINITION

l

t,t, Temperature variations expressed as complex gigantit °C
.0, Heat flow variations expressed as complex quastitie wW/mz2
) Pulsation rad/s

d Thickness m

a Thermal diffusivity m?/s

A Thermal conductivity W/m.K
p Mass density kg/nt

c Specific heat J/kg.K
K, Wall transmittance W/nf.K
A, Wall admittance W/nt.K
v Frequency of a sinusoidal signal st

fa Dampening factor of a sinusoidal signal -

R Wall heat transfer resistance m’.K/W
c Wall heat capacity JInf.K
¢ Useful proportion of wall overall heat capacity -

0 Accessibility of wall overall heat capacity -

U Wall overall heat transfer coefficient W/nf.K

4. BUILDING SIMPLIFIED MODEL DEFINITION

R, Heat transfer resistance of a zone light extemads K/W
Ry1, Ry Heat transfer resistances of a zone massive extealls K/W
C, Heat capacity of a zone massive external walls JIK
R; Heat transfer resistance of a zone massiveniateralls K/W
Cq Heat capacity of a zone massive internal walls JIK
(A Heat capacity associated to a zone indoor node JIK
R, Heat transfer resistance modeling zone verditdtieat losses K/W
R, Heat transfer resistance of light walls sepagationes K/W
Rs,1,Rs,,  Heat transfer resistances of massive walls sepgrabnes K/W
Cs Heat capacity of massive walls separating zones JIK
t; Outdoor node temperature °C
ty Node temperature associated’{a@apacity °C
ts Node temperature associated’{aapacity °C
ty Indoor node temperature °C
Quvent Ventilation heat exchange between zone and outdo wW
Qtransm Transmission heat exchange between zone andautdo wW
Q'heatl-ng Emission from zone heating system wW
Qsor Heat gains from direct solar intensity thrownghdows W
Qoce Heat gains from occupants, lighting and apekan wW
Ucy Energy stored id, capacity J
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5. BUILDING SIMPLIFIED MODEL VALIDATION

Qconvol

Outdoor heat flow response factor for indoorpenature impulse//nf
Indoor heat flow response factor for indoor temgpure impulse W/nf

Time step for the computation of walls respdiastors
Finite elements temperature interpolation matrix

Finite elements temperature-gradient interpohathatrix
Finite elements surface temperature interpotatiatrix
Finite elements capacity matrix

Finite elements conductivity matrix

Finite elements convection and radiation matrix

Heat transfer coefficient, including convectenmd radiation
Finite elements nodal temperatures vector

Finite elements surface nodes temperaturesivecto

Indoor heat flow from convolution on zone respofectors

Qout.isothermariNdoOr heat flow response to outdoor temperature
Qm’isothermal Indoor heat flow response to indoor temperature

Qin,adiabatic

for isothermal boundary conditions walls

Indoor heat flow response to indoor temperature

for adiabatic boundary conditions walls

Aout isothermai CONVolution correction factor fc@out,isothermal
Ainisothermar CONVoOlUtion correction factor f@;, isotnerma

Ain,adiabatic

Qheating

Qheating,max

hout

Qsol

sty,ir

Convolution correction factor f@;y, caiapatic

Emission from zone heating system

Maximum emission from zone heating system

Control factor

Indoor temperature

Temperature set point

Control factor

Invert of the differential of zone indoor tempenat controller
Reference indoor temperature

Daily mean indoor temperature

Daily indoor temperature amplitude

Root mean square of the error on indoor tempezat
Indoor temperature dampening ratio

Daily mean indoor temperature for a static cotapon
Daily indoor temperature amplitude for a stabeputation
Equivalent outdoor temperature

Outdoor air temperature

Shortwave absorption factor

Emissivity

Outdoor heat transfer coefficient (convectiod aadiation)
Solar radiation reaching outdoor wall surface

Sky radiation related to outdoor wall surface

S

Wint.K
W/m?2
W/m?2
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6. VENTILATION MODELS

Ap Pressure drop through ventilation aperture Pa

M Air mass flow rate through ventilation aperture kg/s
n Air mass flow rate exponer for laminar,1 for turbulent flow) -

K Constant of ventilation aperture resistance Pa.(s/kg)""
AP yina Wind pressure Pa

De Wind pressure factor -
Uind Wind speed m/s
Vout Outdoor air specific volume m3/kg
APpuoyancy BUOyancy pressure Pa

g Acceleration of gravity m/s2
z Level m

v Air specific volume m3/kg
CSO Controlled Supply Orifice

CEO Controlled Exhaust Orifice

TO Transfer Orifice

M, Mechanical supply air mass flow rate kg/s
M. Mechanical exhaust air mass flow rate kg/s
APguct Duct pressure drop Pa
Apynit Supply unit pressure drop including pressurerizaalevice Pa

Ap sy Pressure drop through Air Handling Unit Pa

7. AIR QUALITY ANALYSIS

Xco2 Air CO, concentration ppm
Xco2,set Air CO, concentration set point ppm

C Invert of the differential of indoor CQroncentration controller ppmi*
TPMfan Fan rotation speed rev/min
TPMrannom NOMINal fan rotation speed rev/min
COP.hiner  Chiller coefficient of performance -
tasucd Chiller condenser air supply temperature °C

8. SUMMER COMFORT ANALYSIS

tout Outdoor temperature °C
tin Indoor temperature °C
PPD Predicted Percentage of Dissatisfied %
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9. CONNECTION WITH HEATING OR HVAC SYSTEM

ts,floor Heating floor surface temperature °C
tin Indoor temperature °C
tw Water temperature °C
troomunder 1€mperature of the room under heating floor °C
Rfi00r,in Heat transfer resistance between floor surfaceratwbr node K/W
Ry floor Heat transfer resistance between water pipeslaaddurface  K/W
Rrioor 10sses  Heat transfer resistance between water pipesaord under  K/W
Crioor Floor heat capacity JIK
Qexﬂoor Heat flow supplied by the heating floor to th@eo W
quﬂoor Heat flow supplied by the water to the heatirpfl wW
Qﬂoomtomge Heat flow stored in the floor heat capacity W
Efloor Heating floor heat exchange efficiency -
C'Wﬂoor Heating floor water heat capacity rate WI/K
tw s floor Heating floor water supply temperature °C
tw,ex floor Heating floor water exhaust temperature °C
twsufloorser  Heating floor water supply set point temperature °C
tw.su floormom Heating floor water supply temperature for nomic@hditions °C
tout Outdoor temperature °C
tout nom Outdoor nominal temperature °C
tset Indoor set point temperature °C
Crs Feed-forward proportional action factor -
Crp Feed-back proportional action factor -

Cw Invert of the differential of water supply tempen controller K™
Cin Invert of the differential of zone indoor tempen&t controller K™
teground Ground capacity node temperature °C
tground Ground temperature °C
tgiw,suev Brine-water heat pump evaporator brine supply &natjpire °C
Ryrouna siuia  Heat transfer resistance between ground capaody and brine K/W
Rground Ground heat transfer resistance K/W
Cyround Ground heat capacity J/IK
Qo Heat flow supplied to the brine-water heat puewaporator W
qu,gmund Heat flow supplied by the ground heat exchanger W
ngund,swmgeHeat flow stored in the ground heat capacity W

NTU Heat exchanger number of transfer units -
AU Heat exchanger overall heat transfer coefficient WI/K
C, Heat exchanger air heat capacity rate WI/K
Cy Heat exchanger water heat capacity rate WI/K
€ Heat exchanger efficiency -
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Moist air humidity ratio

/kgdryair

Air mass flow rate

Steam mass flow rate

Moist air enthalpy

Steam enthalpy

Latent heat of vaporization

Vapor specific heat at constant pressure

Air specific heat at constant pressure
Convection heat transfer coefficient

Mass transfer conductance

Moist air humidity ratio for saturated air
/kgdryair

Enthalpy of saturated air at temperattjye
Moist air wet bulb temperature

Water side cooling coil thermal resistance
Metal cooling coil thermal resistance

Air side dry air cooling coil thermal resistance
Air side saturated air cooling coil thermal resiste
Wet cooling coil contact heat transfer coefficient
Wet cooling coil contact effectiveness

Wet cooling coil contact temperature

ngate r

kgdryair/ S
KQuated's
J/ kgjryair
J/KQvater
J/KQvater
J/kg.K
J/kg.K
Wi/nt.K
kg/nf.s
KQwater

J/Khiryair
°C

m?. K/W
m?. K/W
m?.K/W
m?. K/W
W/K

°C
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