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Introduction  

This thesis is dedicated to the analysis of singing behavior and the neural structures 

that underlie its learning and production in a seasonal songbird species, the 

domesticated canary (Serinus canaria). We will start by describing the utility of the 

songbird species in neuroscience research and describing the neural network 

controlling song. Next, we will outline the mechanisms controlling seasonality in avian 

species. Sex steroid hormones play a critical role in the seasonal modulation of the 

song system and therefore the following section will explain the steroid hormone 

actions involved. The last two sections of this introduction will then characterize in 

more detail the plasticity of the song control system and the nature and controls of 

birdsong itself.   

Part 1. The songbird model 

A model for human vocal development 

Vocal learning is a rare trait in the animal kingdom. Among non-human mammals it 

has been identified only in cetaceans, elephants and a few species of bat. The oscines, 

also called songbirds, comprise 4500+ species that learn their species-specific 

vocalizations and use them as a form of communication. A major reason for interest 

in songbirds as a model comes from the translational perspective – the way songbirds 

learn to sing is similar in many ways to how human babies learn to speak. The findings 

generated by songbird research have been applied with some success to studies of 

human conditions with deficits in vocal learning, such as the autistic spectrum disorder 

(Panaitof, 2012). 

Learning to sing or speak requires a complex interaction of the motor and 

perceptual systems. Disruption of auditory feedback at any point in the individual’s life 

has a substantial detrimental effect on singing and speaking, although this is 

particularly damaging when this disruption takes place early in vocal development. 

Both in humans and songbirds vocal learning starts with listening. During this purely 

‘sensory’ period, songbirds save a template of their tutor’s song, which they use in 

their later efforts of matching their own song to the tutor song. In fact, thanks to the 

neural template, continued exposure to the tutor is not necessary at the latest stages 

of vocal development. After the sensory phase and before the production of mature 

vocalizations, birds start producing sounds and comparing them both to the live tutor 
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(if still present) and to the saved template; in this way they slowly increase the similarity 

between their own vocalizations and those of the tutor. In humans, this phase is 

commonly referred to as babbling, in songbirds it is divided in two phases, first 

subsong followed by plastic song. Both humans and songbirds start by producing a 

wide range of sounds, with time narrowing them down to the sounds typical to their 

native language or species, respectively. Another parallel between human languages 

and birdsong is the presence of dialects in both. Even the geographical distribution of 

songbird dialects is not too dissimilar to that of human dialects, at least in some parts 

of the world  (Planqué et al., 2014). 

Another important similarity between songbirds and human vocal behavior 

concerns the timing of ontogenetic development. Correlative studies and case studies 

have shown that humans are only capable of learning to speak up to a certain age 

(Friedmann and Rusou, 2015). Having missed the ‘critical window’ of opportunity, they 

will not be able to learn to speak if exposed to language only at later phases (Fromkin 

et al., 1974). In songbirds, it has been experimentally established that a critical window 

for learning also exists. Zebra finches deprived from a tutor until the age of 100 days 

post-hatch develop abnormal, simplified songs compared with normal, learned song 

(Marler, 1970) although they still show some features of species-specific song (Marler 

and Sherman, 1985), indicating that there are some innate predispositions towards 

learning and developing species-specific song. Multiple morphological and 

physiological changes in the brain occur simultaneously with the closure of the critical 

period and possibly constitute its mechanistic basis, including changes in spine 

density, axonal arborization, NMDA receptor current decay and perineural nets 

(reviewed by Brainard and Doupe, 2013). The precise timing of critical period closure 

depends on the individual’s experience and hormonal state – it can be prolonged by 

social isolation or sensory deprivation, but testosterone speeds up the development 

of the fully mature stable song also called its crystallization (Templeton et al., 2012; 

Whaling et al., 1995) while decreasing testosterone concentrations via castration 

prolongs the critical period for learning (Marler et al., 1988). 

Stereotypical behavior and clear anatomical substrate 

An important reason for the popularity of the songbird model in research resides in the 

clear demarcation of the behavioral and neuroanatomical measures that can be 

collected. It is reasonably unambiguous to define a song, when it starts and finishes, 
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to break it down into subparts such as phrases, syllables and notes (see figure 1) and 

to compare different versions of it across time in the same individual or in different 

individuals within the same species.  

 

Figure 1. Example of a spectrogram of a recording of canary song with the different phrases constituting 

it indicated below by numbers (left) and a magnified view of phrase two from the same song showing 

the notes and syllables in this phrase (right), (Williams, 2004). 

At the same time, since the discovery of the song control nuclei in the 1970s, it 

has also become possible to identify and study the specific brain regions controlling 

individual features of song. These brain nuclei differ from their neighboring regions by 

many anatomical, neurochemical and physiological parameters, making them distinct 

and well-defined. The combination of a well-defined neural substrate associated to a 

specific behavior provides the opportunity to make relatively straight-forward 

conclusions about the mechanisms of neural regulation of this behavior. Furthermore, 

the hierarchical organization, gene expression patterns and morphological properties 

of the song control system in songbirds is similar in many ways to the equivalent 

circuits controlling vocal production in the human brain (see figure 2).  

 

Figure 2. Schematic representation of song control nuclei (a) and diagram showing the homology 

between songbird and human brain regions controlling vocal production, (Brainard and Doupe, 2013). 
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The song control system 

The songbird brain contains a specialized neural network that controls the learning 

and production of song, the so-called song control system (Nottebohm et al., 1976). 

This series of nuclei, discovered through tract-tracing and lesion experiments, is 

absent in other avian species. The song control system is generally parsed into two 

interconnected pathways – the motor and learning pathways (see figure 3 – motor 

pathway in green and learning pathway in yellow) and includes telencephalic, 

diencephalic, mesencephalic and myelencephalic nuclei (reviewed by Balthazart and 

Ball, 2016). Both are connected also with auditory areas (see figure 3, blue and red 

arrows), whose inputs are very important for learning and maintaining song throughout 

life.  

 

Figure 3. Schematic representation of the song control system. The motor pathway is indicated in green, 

the anterior forebrain (learning) pathway in yellow, the ascending auditory input in blue and the higher-

level auditory inputs in red, (Brenowitz and Beecher, 2005). 

Motor pathway 

The motor pathway starts with the pre-motor nucleus HVC (high vocal center, used as 

a proper name, Reiner et al., 2004) where the structure and organization of song is 

determined (Yu and Margoliash, 1996). Signals generated in HVC are transmitted to 

the motor nucleus RA (robust nucleus of the arcopallium), which in turn projects to the 

tracheosyringeal part of the nucleus of the XIIth cranial nerve (nXIIts) that innervates 

the vocal production organ, the syrinx (Wild, 2004, 1994). Bilateral lesions of nuclei in 
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this motor pathway eliminate the production of song (Nottebohm et al., 1976; Simpson 

and Vicario, 1990). Detection of immediate early genes and electrophysiological 

responses during singing in these nuclei (Jarvis and Nottebohm, 1997; Kimpo and 

Doupe, 1997; Yu and Margoliash, 1996) provide further evidence of their role in song 

production. HVC neurons firing shapes the electrophysiological pattern of activity of 

RA neurons (Dave et al., 1998; Leonardo and Fee, 2005), which in turn determines 

the spectro-temporal features of song (Vu et al., 1994). HVC encodes a different level 

of song structures than does RA (Yu and Margoliash, 1996): microstimulation in HVC 

causes an interruption of singing, while the same stimulation in RA disrupts only the 

structure of syllables without altering song patterning (Vu et al., 1994).  

RA also projects to several other medullary components of this circuit, including 

two nuclei that coordinate respiration with song production, the nucleus 

retroambigualis (RAm) and the nucleus parambigualis (PAm) (Schmidt and Wild, 

2014). Additionally, RA has an indirect projection to these same medullary nuclei via 

the dorsomedial portion of (DM) of the nucleus intercollicularis (ICo). DM is equivalent 

to parts of the periaqueductal gray (PAG) of mammals (Holstege, 1989; Wild and 

Balthazart, 2013) and when electrically stimulated will drive vocalizations 

accompanied by appropriate respiratory patterning in both songbirds and non-

songbirds (Wild, 1997; Wild and Balthazart, 2013). Finally, the respiratory centers 

send recurrent information back to HVC via the thalamic nucleus uvaeformis (Uva) 

and the auditory interfacial nucleus (Nif) indicating the importance of bidirectional 

coordination between telencephalic and brain stem structures in vocal control 

(Schmidt et al., 2012). These bilateral projections are likely also involved in mediating 

the hemispheric coordination observed during song production (Ashmore et al., 2007; 

Schmidt, 2003; Wild et al., 2000). Uva and Nif are implicated in organizing syllables 

into larger units of vocalization (Margoliash, 1997).  

Learning pathway 

In this pathway, not required for song production but critical for song learning and 

maintenance (Jarvis et al., 1998), HVC also projects to RA but indirectly via an anterior 

forebrain loop. Anatomical, physiological and behavioral evidence supports the 

identification of this pathway as a specialized basal ganglia-thalamo-cortical loop, 

homologous to the cortico-basal ganglia reward circuit in mammals (Fee and Scharff, 

2010). HVC projects to Area X, a homologue of parts of the mammalian striatum and 
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pallidum. The pallidal segment of Area X sends inhibitory projections to the medial 

nucleus of the dorsolateral thalamus (DLM). DLM projects to the lateral magnocellular 

nucleus of the anterior neostriatum (now nidopallium, LMAN), a frontal cortex-like 

nucleus and from here the circuit is closed with a projection to RA. This excitatory 

projection constitutes the integrated output of the anterior forebrain pathway 

processing (Brainard and Doupe, 2013). LMAN additionally projects to Area X, both of 

which are targets of strong midbrain dopamine projections (Bottjer and Johnson, 

1997).  

LMAN input into RA injects variability into song which is essential for 

sensorimotor song learning (Nottebohm, 2005). LMAN appears to facilitate motor 

variability via its glutamatergic projections to RA and this results in a functional 

remodeling of RA circuits that in turn modifies behavioral output (reviewed in 

Nottebohm, 2005). Similar to what is observed in the motor pathway, singing activity 

leads to induction of immediate early genes in this pathway (Hessler and Doupe, 1999; 

Jarvis and Nottebohm, 1997; Jin and Clayton, 1997). One theory of how the anterior 

forebrain pathway maintains song structure is via an error correction process (Benton 

et al., 1998; Brainard, 2004; Brainard and Doupe, 2000).  

Lesions of the nuclei in this circuit during song learning prevent birds from 

developing normal adult songs (Bottjer et al., 1984; Sohrabji et al., 1989a), consistent 

with a function in sensory or sensorimotor learning. More specifically, lesions of the 

output nucleus, LMAN, during development causes a strong reduction in song 

variability and an inability of developing song to fully match the tutor song (Bottjer et 

al., 1984; Scharff and Nottebohm, 1991). Lesions of Area X similarly disrupt song 

learning but do not affect song variability (Scharff and Nottebohm, 1991). On the other 

hand, lesions to nuclei in this pathway in adult birds do not immediately alter song 

production (Bottjer et al., 1984; Scharff and Nottebohm, 1991; Sohrabji et al., 1990), 

however there is a subtle decrease in song variability and in some forms of adult song 

plasticity (Brainard and Doupe, 2000; Kao et al., 2005; Thompson et al., 2007). DLM 

seems to have a role in song initiation, a lesion of this nucleus in combination with an 

HVC lesion has an overall effect on reducing the song output, compared to HVC lesion 

alone (Chen et al., 2014).  
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Auditory inputs 

The primary auditory cortex homologue in songbirds is Field L, which projects to higher 

level processing regions, the caudo-medial nidopallium (NCM) and caudo-medial 

mesopallium (CMM). Both regions display immediate early gene expression and 

neurophysiological activity in response to  hearing song (Knudsen and Gentner, 2010; 

Moorman et al., 2011). Auditory information from the cochlea reaches field L via the 

thalamic nucleus ovoidalis (Ov) and the mesencephalic dorsal part of the lateral 

mesencephalic nucleus (MLd, reviewed in Hahnloser and Kotowicz, 2010). A discrete 

sub-region of field L, the interfacial nucleus (Nif) projects to HVC, constituting the 

primary auditory input into the song control system (Fortune and Margoliash, 1995). 

During the initial song memorization period of song learning, Nif is required for 

successful imitation of the tutor song, lesions lead to impaired song imitation (Roberts 

et al., 2012). In adult songbirds, lesions of Nif do not significantly affect singing except 

during the first two days following the surgery (Otchy et al., 2015), indicating that Nif 

is not necessary for maintenance of crystallized song. However, activity in Nif 

increases shortly before the onset of vocalizations, suggesting a premotor role for Nif 

in song production (McCasland, 1987). A subregion of the CMM, the avalanche 

nucleus (Av) also has bidirectional connections both with HVC and Nif, Av additionally 

receives projections from the thalamic nucleus Uva (Akutagawa and Konishi, 2010).  

Different learning trajectories 

The study of singing in oscine species has been particularly informative due to the 

diversity of species in this clade. The different learning trajectories and neurochemical 

adaptations across species provide an opportunity to learn about the control of 

vocalization through a comparative approach (see figure 4). The zebra finch, the 

songbird species most commonly studied (Williams, 2004), is an example of a closed-

ended learner: song development entirely happens during the first 90 days after 

hatching and is completed around the time of sexual maturity (Bohner et al., 1990; 

Eales, 1985). The sensitive period for song memorization covers the first 25–60 days 

post-hatch, while the sensorimotor phase begins around 35 days post-hatch. Song is 

gradually improving in structure until it is crystallized in its adult form around 120 days 

post-hatch (Nordeen and Nordeen, 2004). Each zebra finch develops its own ‘song 

motif’ which is made up of elements usually repeated in the same order (Williams, 

2004). Although small variations in note number and sequence persist beyond 
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puberty, the acoustic structure of individual notes remains fixed (Brainard and Doupe, 

2001; Nordeen and Nordeen, 1993, 1992).  

In contrast, canaries and starlings are open-ended learners, they are able to 

modify their songs or syllables in adulthood and continue to add new songs to their 

repertoires every year (Chaiken et al., 1994; Nottebohm and Nottebohm, 1978). Song 

sparrows are closed-ended learners but the stereotypy and rate of their song 

production varies seasonally even if syllables that are sung do not vary after birds 

reach adulthood (Marler and Peters, 1987; Smith et al., 1997). Other species, like 

brown-headed cowbirds are not able to learn new songs throughout life, but they delay 

the rehearsal and production of some of the phrases learned in early ontogeny to their 

second and/or third year of life (O’Loghlen and Rothstein, 2002).  

Although research on zebra finches has been very useful in elucidating the 

mechanisms of song learning and production, this species is unusual compared to 

other songbird species in multiple ways. As already discussed, the sensitive period for 

song learning is taking place very early and is short compared to other species, and 

the song repertoire is a single song, while other species have up to tens or hundreds 

of songs in their repertoire. Additionally, zebra finches imitate their tutor closely and 

only if it is a zebra finch song, while many other species can also imitate songs from 

species other than their own or copy the tutor song only partially, modifying song 

elements to create novel songs. Lastly, in some species song development is possible 

even when subjects are raised in isolation: this has for example been shown in grey 

catbirds and sedge warblers (Brenowitz and Beecher, 2005). The diversity of song 

learning strategies along all these parameters allows for a very informative 

comparative approach for determining the mechanisms of song learning, choosing the 

species most appropriate for answering specific questions or directly comparing 

across species. Examples of the former approach include studying the correlation 

between neurogenesis and song memorization versus song rehearsal in swamp 

sparrows where these two processes take place at different times during development 

(Nordeen et al., 1989), as opposed to zebra finches where they overlap.  An example 

of a useful species comparison concerns the study of electrophysiological responses 

of different types of HVC neurons to the birds own song using different song types in 

swamp sparrows who have a repertoire size of 2-5 song types (Mooney et al., 2001) 

rather than just one song type in zebra finches. The comparative approach has also 
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been used to show that adult HVC neurogenesis is not necessarily linked to adult song 

plasticity. This had been thought to be the case based on studies in canaries who have 

higher rates of neurogenesis during the seasons when they are adding new song 

syllables (reviewed in Nottebohm, 2004), but song sparrows do not demonstrate song 

learning in adulthood while they show seasonal peaks in HVC neurogenesis 

(Tramontin and Brenowitz, 1999). 

 

Figure 4. Continuum of song learning strategies in different species of songbirds, (Brenowitz and 

Beecher, 2005). 

Sex dimorphism 

In many songbird species, particularly the species that live in temperate climates, 

singing is a sexually differentiated behavior and examining the details of sex 

differences in singing and in the song control system provides further insight into brain-

behavior relationships. Males sing to attract females during the breeding season, while 

females respond to high quality male songs by breeding with them. In many species, 

females will develop a male-like song (Nottebohm, 1980a) and at the same time male-

like neural attributes in the song system (DeVoogd and Nottebohm, 1981a; Madison 

et al., 2015) after being treated with testosterone. In some songbird species that live 

in tropical climates females sing to the same extent as males and often engage in 

duets with them (Fortune et al., 2011).  

A comparative approach in examining sex differences is also useful. Songbird 

species can be categorized along a continuum ranging from those species in which 

only males sing to those where males and females engage in complex, interactive 

duets (Brenowitz and Arnold, 1986). Comparing across these different species it can 

be noted that there is in general a direct relationship between the degree of sex 

differences in singing behavior and of the volumes of song control nuclei, suggesting 

that the capacity to sing may be constrained by the size and number of neurons in the 

song control system (Brenowitz and Arnold, 1986; Kirn, 2010; MacDougall-Shackleton 

and Ball, 1999), even if there are some exceptions to this rule. In the case of zebra 

finches where females do not sing at all, even after treatment with exogenous 
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testosterone, the major motor projection connecting HVC to RA, is very diminished 

and the projection from HVC to Area X is even completely absent (Konishi and 

Akutagawa, 1985).  

 

Part 2. Seasonality 

Avian photoperiodism 

Seasonal songbirds use day-length as a predictive cue to anticipate the onset of the 

forthcoming breeding season and adjust their physiology accordingly. This is 

particularly important for species living in the temperate zone. In spring increasing 

daylengths stimulate the secretion of gonadotropin-releasing hormone (GnRH) 

leading to the gonadal maturation necessary for breeding (Dawson et al., 2002). After 

a certain duration, the same long photoperiod that stimulated the growth of the gonads 

also causes their regression, a state called photorefractoriness. During this phase, 

even 24-hours of light cannot stimulate growth of the gonads (Hamner, 1968). The 

mechanism of onset of photorefractoriness under the same photoperiod that was 

previously stimulating is yet unknown. A short-day photoperiod dissipates 

photorefractoriness, reinstating the sensitivity to light (Lofts and Coombs, 1965; Steel 

et al., 1975).  However, some seasonally breeding avian species, such as Japanese 

quail, do not enter a photorefractory state during the same long-day photoperiod that 

was previously photostimulating. Instead a decrease in daylength is needed in order 

to start gonadal regression (Robinson and Follett, 1982). In these species, the 

daylength that will initiate regression is however longer than the photoperiod that is 

initiating gonadal growth, therefore there is still an asymmetry in the breeding season; 

these birds are considered to show relative photorefractoriness, as opposed to 

absolute photorefractoriness.  

Male and female canaries of the Border strain have small gonads when 

maintained on  a photoperiod of 8 hours of light and 16 hour of dark (8L:16D) but 

exhibit a robust gonadal growth when transferred to 16L:8D (Storey and Nicholls, 

1978). Furthermore, after 6 weeks of exposure to a long-day photoperiod they show a 

spontaneous gonadal regression (Follett et al., 1973; Hurley et al., 2008; Storey and 

Nicholls, 1978, 1976), indicating that they have reached absolute photorefractoriness. 

Around this period molting begins, which is necessary because feathers tend to get 
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worn out over the year and good quality feathers are critical for both flying and 

insulation. Breeding and molting both have high metabolic costs and therefore are 

often timed to proceed sequentially. 

Species that show absolute refractoriness exhibit a marked plasticity of GnRH 

immunoreactivity in the preoptic area and accordingly in Border canaries GnRH 

immunoreactivity is high in during photostimulation, low in photorefactory individuals 

and intermediate in photosensitive birds (Hurley et al., 2008). Due to this intermediate 

expression during photosensitivity, canaries are in a state of readiness during late 

winter and indeed, studies of wild canaries have shown that gonadal development can 

start as early as 6 weeks prior to the day when daylength reaches 12L:12D (Leitner et 

al., 2003), suggesting that cues other than photoperiod also can trigger gonadal 

development (to be further discussed later in this section).  

Circadian and circannual cycles are critical in regulating avian reproduction. 

The daylength determines the photoperiodic state of the individual, however, the 

critical variable is not the number of hours of light, but the time relative to dawn during 

which the light is received. Short light pulses (e.g. 14D:0.5L:9.5D) applied during the 

12–16 hours after subjective dawn place the bird in a subjective long day and lead to 

the release of gonadotropins from the pituitary gland and gonadal recrudescence, a 

phenomenon called photoinduction. If light is detected during the photoinducible 

period, thyroid-stimulating hormone beta-subunit (TSH-β) expression in the pars 

tuberalis segment of the pituitary increases (Nakao et al., 2008). This leads to an 

increased expression of type II deiodinase and a decreased expression of type III 

deiodinase, both of which result in an increased production and concentration of the 

bioactive thyroid hormone - triiodothyronine (T3). T3 acts on the median eminence 

leading to a retraction of glial endfeet (Yamamura et al., 2004). Under a short-day 

photoperiod, the glial endfeet are surrounding GnRH-I nerve terminals. Their retraction 

leads to a greater contact of GnRH-I nerve terminals with the basal lamina of the 

median eminence, allowing the release of gonadotropins and consequently gonadal 

growth (Yamamura et al., 2004).  

Perception of light 

Birds perceive light not only through their eyes, but also through light-sensitive 

receptors in the medial basal hypothalamus. In fact, as far back as 1935 Benoit 

showed that photoperiodic gonadal growth in ducks does not require the bird to have 
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eyes (Benoit, 1935). In fact, neither the eyes nor the pineal gland are necessary for 

either photostimulation of gonadal growth by long-day photoperiods, development of 

photorefractoriness after a period of long-day photoperiod or dissipation of 

photorefractoriness by short-day photoperiod (Wilson, 1991). However, the precise 

nature of the receptors mediating this response and the mechanism involved remained 

elusive until more recently. The wavelength capable of inducing these responses was 

identified as 492 nm, similar to the wavelength affecting rhodopsin (Foster et al., 1985) 

and a variety of opsins have been suggested as the photopigment involved (Davies et 

al., 2012; Nakane et al., 2010; Wang and Wingfield, 2011). Three main candidates 

have been considered. Melanopsin (OPN4) has been suggested based only on 

anatomical and correlational studies (Kosonsiriluk et al., 2013). Neuropsin-5 was first 

discovered in the mammalian brain (Tarttelin et al., 2003) and, like the other opsins, 

has a spectral sensitivity close to what the avian hypothalamic light-sensitive region 

could respond to (Nakane et al., 2010). In quail it is expressed in the paraventricular 

organ, a circumventricular organ within the medial basal hypothalamus (Nakane et al., 

2010). The knockdown of neuropsin-5 via small interfering RNA antisense increases 

TSHβ expression (Stevenson and Ball, 2012), providing a potential mechanism of 

photoregulation of avian reproduction. Unlike the others, the vertebrate ancient opsin 

(VA) is expressed in the GnRH neurons themselves, where it could have a much more 

direct action on the HPG axis (García-Fernández et al., 2015). 

Social and other supplementary cues 

Notwithstanding the importance of the photoperiod, the optimal conditions to breed 

are not dictated solely by the daylength. Therefore, avian species have adapted to use 

additional information from the environment to fine-tune the exact timing of gonadal 

development and breeding. Supplementary cues such as temperature, rainfall, or food 

availability can influence the timing of breeding (Hahn et al., 1997; Voigt et al., 2011; 

Wingfield et al., 1999). For example, song sparrows that live at similar latitudes but 

different altitudes develop their gonads at different times, with up to 2 months of 

difference. These timings are correlated to differences in the daily temperature range, 

appearance of new green shoots and flowers (Perfito et al., 2004).  

Another important cue for controlling when to start breeding is the social 

environment. Social cues can modify hormone-dependent behaviors by acting on 

peripheral reproductive physiology including circulating hormone levels (Hinde, 1965; 
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Hinde and Steel, 1976) or central physiology including gonadotropin-releasing 

hormone (GnRH) expression (Stevenson et al., 2008). Supplementary cues, 

especially social signals, seem to be particularly important for female songbirds. For 

example, in a laboratory setting, while males respond to photostimulation alone with a 

full activation of the reproductive axis, including complete growth of the testes, 

maturation of gametes, and stimulation of sexual behaviors including song (Farner 

and Wilson, 1957), in females, photostimulation does activate the hypothalamus and 

pituitary, but ovarian follicles often only show partial development (Farner et al., 1966; 

Wingfield et al., 2003). Exposure to males stimulates follicle development and egg-

laying (Perfito et al., 2015; Silverin and Westin, 1995; Stevenson et al., 2008).  Even 

presentation of male song alone is sometimes enough to stimulate enhanced follicular 

development and females exposed to male song lay eggs earlier and at a greater 

frequency (Bentley et al., 2000). In female canaries, male song-playback, and in 

particular specific types of song elements called “sexy syllables”, also elicit a sexual 

behavior pattern called copulation solicitation display, a posture that facilitates 

mounting and signals to the male the female’s sexual receptivity (Kreutzer et al., 1994; 

Leboucher et al., 1994; Vallet and Kreutzer, 1995). During this display, the female 

raises her tail and head while rapidly fluttering her wings and producing a characteristic 

vocalization.  

In males, singing behavior and the underlying neuroplasticity are strongly 

modulated by the social environment. In many species males greatly decrease their 

singing activity when exposed to a female (Alward et al., 2014; Boseret et al., 2006; 

Catchpole, 1973; Cuthill and Hindmarsh, 1985; Krebs et al., 1981; Shevchouk et al., 

2017a). The social group composition can also influence song control system 

neuroplasticity (Adar et al., 2008; Alward et al., 2014; Boseret et al., 2006; Lipkind et 

al., 2002; Shevchouk et al., 2017a; Voigt et al., 2007; Voigt and Gahr, 2011; Walton 

et al., 2012). 

 

Part 3. Sex hormones 

Hypothalamic-pituitary-gonadal axis 

We have seen in the section on seasonality that the photoperiod regulates 

reproduction by acting on gonadotropin-releasing hormone (GnRH) neurons whose 
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activity leads to an increase of sex hormone production. Now we will review this 

process in more detail. GnRH neurons, sometimes called the master-regulators of 

reproduction, are present in different nuclei of the hypothalamus (Blähser et al., 1986; 

Hahn and Ball, 1995; Saab et al., 2010; Saldanha et al., 1994) however, the GnRH 

population that is crucial for fertility resides in the preoptic area (POA). A second form 

of GnRH, GnRH-II is expressed in the brainstem and is involved in the regulation of 

sexual behavior but not in fertility (Maney et al., 1997), so it will not be considered 

here. GnRH neurons release the GnRH peptide in a pulsatile manner into the median 

eminence, a region devoid of the blood-brain barrier and connected to the 

hypophyseal portal system – a local blood circulation carrying molecules from the 

hypothalamus to the pituitary gland (Knobil and Neill, 1988). GnRH neurons are 

relatively few in number, but they can have an impact on their targets in the pituitary 

by synchronizing GnRH release into the median eminence. The mechanism of 

synchronization has not been fully elucidated yet but there is a possible involvement 

of gap junctions between GnRH fibers and cells in the preoptic area and median 

eminence (Pinet-Charvet et al., 2015). The portal system transports the GnRH peptide 

to gonadotrophs in the anterior pituitary, which respond by releasing two hormones 

into the general blood circulation. Pituitary beta cells produce follicle-stimulating 

hormone (FSH) and gamma cells produce luteinizing hormone (LH, Tixier-Vidal and 

Follett, 1973). LH and FSH work together to act upon the gonads, supporting the 

production of gametes as well as stimulating secretion of gonadal steroids. In turn, the 

gonadal hormones provide feedback signals to the brain and the pituitary gland.  

Testosterone and estrogens production 

In males FSH induces proliferation and development of spermatogonia and Sertoli 

cells, with little effect on the Leydig cells, while LH primarily induces differentiation of 

the testicular interstitium (Brown et al., 1975) and stimulates androgen secretion 

(Maung and Follett, 1977) from Leydig cells (Idler, 2012; Nakamura and Tanabe, 

1972). In seasonally breeding avian species the testis size changes on a scale of 100-

fold between the breeding and nonbreeding seasons. These changes are much more 

pronounced than in seasonally breeding mammals, where changes tend to be in the 

range of three- to five-fold in magnitude (Dawson et al., 2001). This difference in 

magnitude is associated with differences in the underlying cellular mechanism. In 

European starlings, seasonal regression of the testis involves apoptosis of Sertoli 
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cells, a cell type not known to undergo cell death in mammalian species (Young et al., 

2001). In females, LH increases levels of progesterone and testosterone in the plasma 

and thecal cells (Shahabi et al., 1975), whereas LH and FSH together increase plasma 

levels of progesterone (Camper and Burke, 1977). During ovarian follicle development 

progesterone is enzymatically converted into testosterone and then aromatized into 

estradiol in the granulosa and theca layers (Bahr et al., 1983; Johnson, 1986).  

Transport, metabolism and neurosteroids 

Due to their lipophilic properties, sex steroid hormones can freely cross cell 

membranes, as well as the blood-brain barrier. On the other hand, steroids do not 

dissolve well in water and therefore in order to be efficiently carried through the blood 

circulation system, they bind to water-soluble carrier proteins. Both testosterone and 

estrogens  bind and are transported by sex hormone binding globulins (SHBG, 

Hammond, 1995).  

Testosterone is a substrate for three main enzymes – aromatase, 5α-reductase 

and 5β-reductase. The products of these thermodynamically irreversible enzymatic 

conversions are estrogens (estradiol or estrone), 5α-dihydrotestosterone (DHT) and 

5β-DHT. 5α-DHT is an androgenic steroid with an affinity for the androgen receptor 2-

3 times stronger than testosterone (Bruchovsky and Wilson, 1968). 5β-DHT has a very 

weak affinity for the receptor and does not activate androgen-dependent behaviors. 

All these enzymatic reactions can take place in the brain as well as some peripheral 

organs such as the adrenal glands, which also produce dehydroepiandrosterone 

(DHEA) that can be converted within the brain to androstenedione and further into 

androgens and estrogens (Labrie et al., 2001). Additionally, the brain, including the 

song control system, can produce sex steroid hormones de novo starting from 

cholesterol or from any steroid intermediates in the steroidogenesis pathway (London 

et al., 2009). Therefore, there is a gonadally-independent and very specific regulation 

of sex hormone action in brain regions relevant to singing behavior.  

Modes of action 

Androgen and estrogen receptors can be nuclear or located at the cell membrane. The 

nuclear action of androgens and estrogens, often called the “classical pathway”, 

modulates gene transcription and affects physiological or behavioral responses after 

hours to days. The androgen receptor (AR) and two of the estrogen receptors (ER), 

estrogen receptor α (ERα) and estrogen receptor β (ERβ), exert a large part of their 
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effects via this nuclear mode of action (Charlier et al., 2010; O’Malley and Tsai, 1992). 

After binding to their ligand, the receptors dimerize and enter the nucleus where ERs 

bind to estrogen response elements (EREs) and ARs to androgen response elements 

(AREs). These are short sequences of DNA within the promoter region of a gene that 

are able to bind a specific hormone receptor complex. For example the promoter of 

the gene coding for the neurotrophin called brain-derived neurotrophic factor (BDNF) 

contains an ERE (Sohrabji et al., 1995). Additionally, coregulators form a complex with 

the liganded receptor enhancing (coactivators) or repressing (corepressors) 

transcription at specific sites. These mechanisms thus increase the spatial and 

temporal precision of regulation of transcription by steroids and their receptors 

(Duncan and Carruth, 2011). For example, the coactivator SRC-1 is expressed in a 

sexually differentiated way specifically in many brain regions relevant to song control 

(Charlier et al., 2003).  

In addition, to their role as nuclear receptors, ERα and ERβ can translocate to 

the cell membrane where their binding to estrogens will activate multiple intracellular 

signaling cascades and thus biological responses that do not depend on the synthesis 

of new proteins (Cornil et al., 2012). Three additional membrane ERs have been 

identified or at least suggested which do not seem to have nuclear actions – ER-X, 

GPR30 and Gq-mER (Filardo and Thomas, 2005; Qiu et al., 2006; Toran-Allerand et 

al., 2002). Although androgen receptors have been detected in the membrane of some 

cell types (Berg et al., 2014), little is known about their function and it is not clear how 

many neurons have membrane AR and where these are located. Membrane-

associated ERs act by interacting with G-protein coupled receptors, growth factor 

receptors such as the epidermal growth factor (EGF) receptor and insulin-like growth 

factor (IGF) receptor. They can trigger the phosphorylation of intracellular messengers 

(reviewed by Levin, 2009) and interact with metabotropic glutamate receptors 

(mGluRs) whose trafficking to the membrane is influenced by estrogens (Bondar et 

al., 2009; Micevych and Dominguez, 2009). These intracellular events can take place 

in a few seconds to minutes (reviewed in Cornil et al., 2006), with their behavioral 

effects following slightly later, after a few minutes (Cornil et al., 2012). 
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Part 4: Plasticity in the song control system 

Sex steroid hormone metabolism and action in SCS 

Sex steroid hormones exert a powerful influence on the song control system, 

regulating many aspects of its neuroplasticity. These effects are mediated by receptors 

for sex steroid hormones located inside the song control system. The main song 

control nuclei express androgen receptors, including HVC, RA, Area X, LMAN, DLM, 

nXIIts as well as the “auditory” nucleus Nif (see Fig. 5, Balthazart et al., 1992a; Kim et 

al., 2004; Metzdorf et al., 1999; Nastiuk and Clayton, 1995; Sohrabji et al., 1989b). In 

HVC, RA-projecting neurons but also to a smaller extent Area X-projecting neurons 

have androgen receptors, while estrogen receptors are only expressed in the Area X-

projecting neurons, their density is particularly high in the region medial  of HVC, 

sometimes called the paraHVC (Johnson and Bottjer, 1995, 1993; Sohrabji et al., 

1989b). In fact, HVC is the only song control nucleus that expresses ERα (Bernard et 

al., 1999; Fusani et al., 2000; Gahr et al., 1987; Nordeen et al., 1987). ERβ is not 

expressed in any song control nucleus but is densely expressed in the medial preoptic 

nucleus (POM) which is implicated in the control of singing motivation as well as in the 

auditory region NCM (Bernard et al., 1999). The newly discovered membrane estrogen 

receptors have not been systematically studied in the song control system, however 

one study has demonstrated the presence of a sexually dimorphic expression of the 

membrane ER GPR30 in HVC, RA and to a lesser extent in Area X and LMAN 

(Acharya and Veney, 2012). 
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Figure 5. Expression of androgen and estrogen receptors in the song control nuclei, (London et al., 

2009). 

Aromatase is not expressed inside any song control nucleus but is highly 

expressed in the auditory region NCM as well as in regions of the caudal nidopallium 

and hippocampus, close to nucleus HVC and in the POM (Pinaud et al., 2006; 

Saldanha and Coomaralingam, 2005). In zebra finches, the sex difference in 

aromatase concentration is most pronounced in synaptosomes purified from the 

auditory telencephalon. Synaptic aromatase in NCM is selectively upregulated in 

singing birds compared to non-singing birds, although it has not yet been formally 

demonstrated that the increased synaptic aromatase was due to the singing activity 

per se and was not pre-existing before the experiment (Remage-Healey et al., 2009). 

Synaptic aromatase activity is most likely regulated by acute interactions between 

steroids and modulatory neurotransmitters. Aromatase is colocalized with NMDA 

receptors in the zebra finch brain (Saldanha et al., 2004) and both aromatase enzyme 

activity in the quail preoptic area (Balthazart et al., 2006) and forebrain estradiol levels 

in zebra finches are acutely regulated by glutamate (Remage-Healey et al., 2008). 

Finally, many other steroidogenic enzymes are present in the song control nuclei (see 

figure 6), suggesting that there is a very specific local sex hormone concentration 

regulation. For example, in HVC there is an expression of all enzymes necessary to 

biosynthesize every steroid in the pathway from cholesterol to testosterone (London 

et al., 2006).  

 

 

 

 

Figure 6. Expression of genes coding for steroidogenic enzymes within the song control nuclei (left) and 

the steroidogenic pathway (right), (London et al., 2009). 
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Mechanisms of plasticity 

Nuclei volumes 

In species living in the temperate zone, the song control system undergoes profound 

changes across seasons and in response to other environmental stimuli. Now, we will 

look more closely at the nature of this neuroplasticity. The most simple and common 

method to evaluate whether a particular stimulus has impacted the song control 

system is to measure the volume of the song control nuclei. In seasonal songbird 

species the volumes of HVC, RA, area X (see figure 7) and nXIIts are increased by 

the rise in testosterone during spring (DeVoogd et al., 1991; Nottebohm, 1980a; Riters 

et al., 2002). HVC and RA show the most dramatic changes in size, reaching during 

the breeding season values up to 3 times larger than the nonreproductive baseline 

(Tramontin and Brenowitz, 2000). In female canaries androgenic and estrogenic 

metabolites act synergistically to increase HVC and RA volume, while in Area X DHT 

alone partially increases the volume above the level of controls (Yamamura et al., 

2011). However, not all song nuclei exhibit seasonal volumetric changes. For example, 

although multiple studies have evaluated the volume of LMAN in different seasons, no 

one has reported a change in this measure (Brenowitz et al., 1998; Smith et al., 1997; 

Tramontin et al., 1999). The vernal growth of song control nuclei depends on different 

cellular mechanisms depending on the nucleus. In HVC there is an increase of neuron 

number due to sex hormone-modulated neurogenesis during breeding season (see 

following section) and a rapid cell death when testosterone concentrations fall at the 

end of the breeding season (recently reviewed by Balthazart and Ball, 2016). 

Increases in the volume of RA and Area X are due to changes in the size of the 

neuronal soma and the dendritic tree (see next section). Testosterone increases the 

volume of HVC by acting directly on the estrogen and androgen receptors in this 

nucleus, while the increase of RA and Area X volumes are dependent, at least in part, 

on a trans-synaptic effect of testosterone action in HVC (Brenowitz and Lent, 2002, 

2001).  



28 
 

 

Figure 7. Nissl-stained sections showing (a) HVC, (b) RA and (c) Area X cross-sections during spring 

(left) and winter (right) in wild male spotted towhees, (Tramontin and Brenowitz, 2000). 

The volume of the song control nuclei is sexually dimorphic in all temperate 

zone songbird species studied (MacDougall-Shackleton and Ball, 1999; Nottebohm 

and Arnold, 1976) and these differences are established during development primarily 

due to differential concentrations of sex hormones in the brain (Holloway and Clayton, 

2001), although there is also a contribution of the genetic sex (Agate et al., 2003). The 

caudal portion of the hypoglossal nucleus (tracheosyringeal, nXIIts) which contains 

the motor neurons that innervate the syrinx is 83% larger in male than in female 

canaries (DeVoogd et al., 1991). This is caused primarily by a sex difference in 

neuropil volume as there is no significant sex difference in the number of neurons. 

nXIIts grows by 34% in females given testosterone as adults. It is 8% larger on the left 

than on the right side, likely reflecting the left syrinx dominance during song production 

in canaries and some other songbird species (Hartley et al., 1997; Nottebohm and 

Nottebohm, 1976).   Besides sex steroid hormones, many other factors have been 
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shown to modulate the volume of the song control nuclei including photoperiod 

(Bernard and Ball, 1997), melatonin (Bentley et al., 1999), social context (reviewed in 

Balthazart and Ball, 2016 and in chapter 1 of this thesis) and stress (Buchanan et al., 

2004).  

Neuronal size and spacing 

It has been demonstrated that neuronal spacing is modulated by either season or 

testosterone in HVC, RA and Area X (Rasika et al., 1994; Thompson and Brenowitz, 

2005; Tramontin et al., 2000). Testosterone also increases neuronal soma size in 

these three song control nuclei (Rasika et al., 1994; Thompson and Brenowitz, 2005; 

Tramontin et al., 2000; Tramontin and Brenowitz, 1999). In fact, in RA and Area X the 

increases in neuronal spacing and soma size are the primary cellular changes that 

account for the seasonal change in nucleus volume (Smith et al., 1997; Thompson 

and Brenowitz, 2005). The increase of neuronal soma size in RA during long-day 

photoperiods depends on a synergistic effect of estrogen and androgen receptors in 

HVC and can be replicated under short-day photoperiod conditions with stereotaxic 

infusions of DHT and E2 near HVC but not near RA (Meitzen et al., 2007). Androgen 

receptor activation in RA is permissive but not sufficient for an increase in RA soma 

area. Increased spacing between neurons can be an indicator of a larger dendritic tree 

and indeed in RA it has been shown in female canaries that testosterone increases 

the size of the dendritic tree through a synergistic effect of its estrogenic and 

androgenic metabolites (DeVoogd and Nottebohm, 1981a). The difference in 

testosterone concentrations explains the sex difference in dendritic length and 

distribution (DeVoogd and Nottebohm, 1981b).  

Electrophysiology and synaptic plasticity 

In RA, spring-like conditions increase the spontaneous firing rate of neurons through 

a synergistic effect of androgenic and estrogenic metabolites (Meitzen et al., 2007; 

Park et al., 2005). Since there are no estrogen receptors in RA, the estrogenic 

component of the effect must be trans-synaptic, akin to the trans-synaptic effect of 

testosterone action in HVC mediating the increase in RA volume (Brenowitz and Lent, 

2001). Indeed, long-day photoperiods increase the firing rate in RA, but systemic 

aromatase inhibition, HVC lesions or androgen and estrogen receptor antagonism in 

HVC, prevent this effect, while DHT and E2 implants near HVC are sufficient to 

increase the firing rate in RA even under short-day conditions (Meitzen et al., 2007). 
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Testosterone and spring-like conditions both increase the number of synapses onto 

RA neurons by 51% in female canaries, as well as the number of synaptic vesicles per 

synapse and the size of the pre- and post-synaptic process (DeVoogd et al., 1985; Hill 

and DeVoogd, 1991). Testosterone also increases the number of synapses and the 

synaptic efficacy of neurons in nXIIts, however this effect is much smaller than the 

massive increase in synaptogenesis seen in RA following treatment with testosterone 

(DeVoogd et al., 1991). In HVC, males in breeding conditions have a higher proportion 

of neurons firing action potentials of a shorter duration and higher frequency than 

either non-breeding season males or females recorded in either season (Del Negro 

and Edeline, 2002). Seasonal changes in electrophysiological properties have also 

been reported in the auditory regions. In females, spring-like conditions increase the 

proportion of cells in the auditory forebrain that use spike timing information rather 

than firing rate information and increase the temporal resolution required for optimal 

intensity encoding, while no effects of season were found in males (Caras et al., 2015).  

Connectivity 

In addition to the changes seen across seasons within the song control nuclei, the 

connections between them also change. Using diffusion tensor imaging, which detects 

the directionality of water molecule movements in brain tissue, De Groof and 

colleagues (2008) showed that in breeding condition male European starlings have an 

increased connectivity between HVC and RA, more fibers around RA and an 

increased myelination of the fibers from RA to the mesencephalic dorsomedial nucleus 

of the intercollicular complex (DM). In canaries, testosterone increases myelination of 

both HVC and RA (Stocker et al., 1994). Perineural nets are aggregates of 

proteoglycans that surround neurons, primarily interneurons, limiting their capacity to 

make new synaptic contacts and therefore modulating their plasticity (reviewed in 

Cornez et al., 2017). Although perineural nets do not seem to be modulated seasonally 

in European starlings (Cornez et al., 2017), testosterone increases the number and/or 

density of perineural nets in HVC, RA and Area X in female canaries (Cornez et al., 

2016). 

HVC neurogenesis and cell death 

HVC is one of the neurogenic regions of the songbird telencephalon and neurogenesis 

largely accounts for the increased volume of HVC during the breeding season 

(Meitzen and Thompson, 2008). Testosterone and its metabolites modulate 



31 
 

neurogenesis via several mechanisms (Balthazart and Ball, 2016), which will be 

outlined after a brief general overview of HVC neurogenesis.  

Birth 

Adult neurogenesis occurs almost exclusively in the ventricular zone (VZ) lining the 

lateral ventricle walls (Goldman and Nottebohm, 1983), although the density of neural 

progenitor cells along the VZ is not the same everywhere. Regions of the VZ 

concentrating the proliferating cells are located in the ventrolateral and dorsomedial 

parts of the ventricle. These regions also have a higher number of radial glial cells 

(Alvarez-Buylla et al., 1990), along which the newborn neurons migrate, at least the 

first part of the route through the parenchyma, to their final destination (Alvarez-Buylla 

and Nottebohm, 1988; Scott et al., 2012). Based on mathematical modeling (Vellema 

et al., 2010), on developmental neurochemical studies of VZ specialization (Scott and 

Lois, 2007), on a small-scale live-imaging study following the movements of GFP-

labeled neuroblasts in transgenic zebra finches (Scott et al., 2012) and on a lesion-

study (Chen et al., 2014), the region of the VZ directly dorsal to HVC has been 

assumed to be the origin of (most) adult-born HVC projection-neurons, although 

conclusive evidence for this notion is lacking so far. Expression of the neuronal marker 

Hu starts as early as four hours after the final division of the progenitor cells. By twenty-

four hours after progenitor division one third of cells express the marker, reaching 

100% in the following 4 days (Barami et al., 1995).  

Migration and differentiation 

During the same time-frame (1-4 days) the newborn neurons down-regulate N-

cadherin and migrate into the parenchyma (Barami et al., 1994), reaching HVC within 

about one week (Kirn et al., 1999). One month after their final division, a large 

proportion of the newborn neurons have extended axons to target RA neurons (Kirn 

et al., 1999) but adult-born HVC neurons do not project to Area X (Alvarez-Buylla et 

al., 1988; Kirn et al., 1999). Selective laser photo-ablation of RA-projecting HCV 

neurons increases the incorporation of new RA-projecting neurons, but the equivalent 

manipulation of Area X neurons does not induce any incorporation of Area X-projecting 

HVC neurons (Scharff et al., 2000). HVC interneurons are most likely not replaced in 

adult songbirds as birth-labeled neurons do not co-express GABA, parvalbumin, 

calretinin or calbindin (Scotto-Lomassese et al., 2007; Walton et al., 2012), the most 

common markers of inhibitory interneurons (but see Scott and Lois, 2007). The 
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neurons that project to the two different target nuclei and interneurons constitute three 

distinct neuronal populations with different morphological and physiological properties 

(Dutar et al., 1998). HVC neurons are often found in clusters with soma-soma contacts 

(Burd and Nottebohm, 1985) and newborn neurons preferentially arrest their migration 

in close contact to a mature Area X-projection neuron (Kirn et al., 1999; Scott et al., 

2012). It is possible that the newborn neurons entrain the electrophysiological signals 

of their neighboring mature Area X neurons through gap junctions, which have been 

shown to exist between HVC neurons by freeze fracture (Gahr and Garcia-Segura, 

1996) and by demonstration of passage of small molecular dyes between HVC RA-

projecting neurons (Dutar et al., 1998). This speculation could explain how the circuit 

maintains the information necessary for a relative stability of song repertoire despite 

an annual replacement of about 50% of RA-projecting HVC neurons (Kirn and 

Nottebohm, 1993).   

Survival 

As newborn neurons mature, an increasing proportion of them is activated by singing 

activity (Tokarev et al., 2016). Post-synaptic activity increases the chance of the 

newborn neurons survival: infusion of a GABA-receptor agonist in RA decreases its 

spontaneous activity and HVC newborn neuron incorporation, while an infusion of KCl 

in RA increases the spontaneous activity in RA and the survival of newborn neurons 

in HVC (Brenowitz and Larson, 2015; Larson et al., 2013). On average about half of 

the newborn neurons that enter HVC one week after their final division die within their 

first three weeks of life (Kirn et al., 1999). The exact proportion of newborn neurons 

that dies depends on the season during which they were born (Nottebohm et al., 1994) 

as well as the hormonal environment, as will be seen in the next section.  

Functional modulation 

Adult neurogenesis decreases with age across songbird species (Absil et al., 2003; 

Larson et al., 2014; Walton et al., 2012; Wang et al., 2002; Wilbrecht and Nottebohm, 

2004) but seems to be increased by singing activity (Alvarez-Borda and Nottebohm, 

2002; Alward et al., 2016a; Alward et al., 2013; Li et al., 2000). The positive trophic 

feedback of singing activity on neurogenesis in HVC is also suggested indirectly by 

the study of Tang and Wade (2014) in which a tracheosyringeal nerve transection (a 

surgery which results in the bird’s muteness) decreased BDNF in HVC; BDNF is 

required for the survival of newborn neurons (Rasika et al., 1999).  
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Hearing song and the social environment also have complex effects on adult 

neurogenesis in songbirds. Male canaries housed with a female have a higher density 

of newborn neurons in HVC despite having a lower song rate than males housed in 

isolation (Alward et al., 2014; Balthazart et al., 2008), although this effect might depend 

on the photoperiod (Shevchouk et al., 2017a, see chapter 1 of results). In zebra 

finches, a highly gregarious species, there is no difference in newborn neuron 

incorporation between isolated and paired individuals, however housing in a large 

group increases the survival of newborn neurons compared to either isolation or paired 

housing (Lipkind et al., 2002). In the zebra finch NCM, younger newborn neurons (40 

days) survive more after a larger change in the social environment, while slightly older 

neurons (60 days) have a higher survival following a mild social change (Barnea et al., 

2006). Together these data suggest that in songbirds, just as in mammals (Belnoue et 

al., 2011), newborn neurons have critical periods during which their survival is 

sensitive to different environmental stimuli. In zebra finches both deafening (Wang et 

al., 1999) and paralysis of the vocal muscles (Pytte et al., 2011) decrease the 

incorporation of newborn neurons into HVC, suggesting that newborn neuron survival 

is increased not only by activity in RA but also by trophic inputs from auditory regions. 

However, other studies have found no difference (Pytte et al., 2012) or the inverse 

relationship between deafening and HVC neurogenesis (Hurley et al., 2008) 

Sex differences and sex hormones 

I. During development 

The sex difference in HVC volume seems to be established, at least in part, during 

development by an increased concentration of centrally produced estradiol in males 

(Holloway and Clayton, 2001). In zebra finches HVC is first visible at 4 days post-hatch 

(dph), but its volume is equal across sexes until at least 11 dph (Kim and Arnold, 2005). 

In Bengalese finches at 15 dph proliferation rates in the VZ dorsal to HVC (Zeng et al., 

2007) are higher in males. In zebra finches by 20 and 30 dph there is no sex difference 

in proliferation in this VZ region (DeWulf and Bottjer, 2002). Nevertheless, male zebra 

finches at all post-hatching stages (between 2 days and 30 days post-hatch) have 

approximately 6 times more newborn neurons in HVC than females (Kirn and 

DeVoogd, 1989), suggesting a role for neuronal death in establishing the sex 

difference. At 15 dph there is a sharp increase in apoptosis in the female HVC, with 

up to 25,000 neurons being lost in 5 days (Burek et al., 1997; Kirn and DeVoogd, 

1989).  The HVC of an adult female has only 15% of the neurons of a 15 dph female 
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(Kirn and DeVoogd, 1989). Implanting a zebra finch with estradiol in the first days 

posthatch will masculinize the proliferation rates in the VZ dorsal of HVC (Zeng et al., 

2007) and apoptosis in HVC (Burek et al., 1997). 

II. Proliferation 

In adults, the rate of proliferation of progenitors giving rise to HVC neurons is not 

markedly different between the sexes. Mirzatoni and colleagues (2010) cultured male 

and female zebra finch VZ explants in a medium containing BrdU for 2 hours and found 

no sex difference in proliferation. However, the number of labeled cells after 18 hours 

compared to 2 hours was reduced in female but not male explants, suggesting more 

cell death early after mitosis in females. However, Barker and colleagues (Barker et 

al., 2014) investigated the proliferation in male and female adult canaries throughout 

the VZ and found that females had higher proliferation rates in the VZ close to Area X, 

but not dorsal to HVC while testosterone increased the proliferation rate at the level of 

the septum and of HVC but only in the ventral VZ. Other studies investigating 

proliferation rates only in the VZ dorsal to HVC have not found any effect of either 

testosterone or estrogen on the mitotic rates (Brown, 1993; Hidalgo et al., 1995; 

Rasika et al., 1994). 

III. Migration 

Neural progenitor cells express N-cadherin whose down-regulation allows the 

newborn neuron to migrate away from the VZ (Barami et al., 1994). In rodents N-

cadherin is regulated by both testosterone and estradiol (Monks et al., 2001a, 2001b). 

Additionally, estrogens upregulate IGF-1 (Norstedt et al., 1989; Sahlin et al., 1994) 

which in turn also downregulates N-cadherin in rodents (Roark et al., 1992). 

Furthermore, in songbirds IGF-1 increases the number of neurons emigrating from VZ 

explants (Jiang et al., 1998), although this effect happens on a slower time scale, 

starting after 6 days of treatment. Finally, estradiol facilitates newborn neuron 

migration via developmentally-restricted NgCAM-dependent calcium signaling 

(Barami et al., 1994; Williams et al., 1999). The timing of this calcium response to 

NgCAM corresponds to when the newborn neurons transverse a subventricular layer 

of estrogen-receptive neurons, 3-4 cells deep from the VZ (Hidalgo et al., 1995; Jiang 

et al., 1998; Williams et al., 1999). 
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IV. Recruitment, survival and integration in HVC 

In contrast to proliferation, the recruitment and/or survival of newborn neurons in HVC 

is clearly increased by testosterone and estradiol both during development (Chen et 

al., 2014) and adulthood (Balthazart et al., 2008; Goldman and Nottebohm, 1983; 

Hidalgo et al., 1995; Rasika et al., 1994). Administering testosterone 20 days after the 

final division of newborn neurons still increases their survival, indicating that a 

substantial part of the effect of testosterone on neurogenesis is taking place when the 

neurons are already in HVC and are starting to integrate within the song control circuit. 

Doublecortin (DCX), a microtubule-associated protein, labels migrating bipolar 

(fusiform DCX+) neurons and larger, multipolar (round DCX+) neurons, that are either 

post-migratory or in the ‘wandering’ phase of migration (Scott et al., 2012). 

Testosterone, E2 or DHT increase the density of fusiform but not round DCX neurons 

in the HVC of female canaries (Yamamura et al., 2011) and both fusiform and round 

DCX neurons in male canaries (Balthazart et al., 2008). Moreover, testosterone 

increases the number of new endothelial cells and the diameter, perimeter and area 

of capillaries in HVC via VEGF-signaling. HVC endothelial cells are a local source of 

brain-derived neurotrophic factor (BDNF, Louissaint et al., 2002) and therefore with 

greater vascularization there is an increased production of BDNF. BDNF is critical for 

newborn neuron survival;  blocking BDNF signaling in testosterone-treated female 

canaries decreases the newborn neuron density to the level of subjects not treated 

with testosterone (Rasika et al., 1999). BDNF is up regulated in response to 

testosterone but only after 2 weeks (Louissaint et al., 2002; Wissman and Brenowitz, 

2009) and newborn neurons are maximally responsive to BDNF in the period 14-20 

days after their birth (Alvarez-Borda et al., 2004). BDNF administered when newborn 

neurons are either 4–10 or 24–30 days after birth, does not enhance their survival 

compared to untreated subjects (Alvarez-Borda et al., 2004). Additionally, the 

increased VEGF induces matrix metalloproteinase release (Kim et al., 2008), 

promoting the breakdown of the HVC interstitial matrix. This facilitates the migration 

of new neurons, the remodeling of the HVC neuropil and liberates sequestered growth 

factors, including VEGF, from bound matrix stores (Chen et al., 2013). Testosterone 

also increases gap junctions between HVC neurons (Gahr and Garcia-Segura, 1996), 

facilitating the incorporation of newborn neurons into existing networks.  
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V. Neuronal death 

At the end of the breeding season testosterone concentrations fall causing the song 

control nuclei to regress. Withdrawal of testosterone causes HVC to collapse within 

12 hours after changing from a long-day (LD+T) to a short-day photoperiod (SD-noT). 

This shrinkage is initially due to a decrease of the inter-neuronal space (Thompson et 

al., 2007). However, a decrease in neuron numbers via cell death follows soon 

thereafter. One day after the change from LD+T to SD the number of neurons in HVC 

is intermediate between LD+T and SD, while the number of cells positive for activated 

caspase-3 (a marker of programmed cell death) is significantly increased by two days 

after the switch and intermediate between these two values on day 1 (Larson et al., 

2014). Interestingly, blocking neuronal death by a mixture of caspase inhibitors 

decreases the rate of proliferation in the VZ (Larson et al., 2014) and the incorporation 

of newborn neurons in HVC (Thompson and Brenowitz, 2009) providing support for 

the hypothesis that newborn neurons migrate to HVC to fill in the “vacancies” created 

by apoptotic neurons (Nottebohm, 2004; Scharff et al., 2000).  

Part 5. Singing behavior 

Function 

Birdsong is a form of communication – a series of sounds which serve to pass on 

information to other members of the same species, enabling the receiver to better 

predict the attributes of the sender, for example their species, sex, size, state of health, 

motivation, etc. One way we know that birdsong is a form of communication is because 

it modifies the behavior of the receiving individual (Slater, 1983), however this 

definition excludes passive signal detection. Singing has evolved to increase the 

individual’s reproductive success - in males by attracting females and warding off other 

males from their territory, while in females the detection of certain features of the 

males’ song enables her to discriminate ‘high quality’ from ‘low quality’ males for 

mating. Some species also use singing as a signal to warn about predators or to 

ensure flock cohesion.   

In most species, the peak of singing activity is associated with breeding when 

males often sing for hours without obviously interacting with other birds, and it is 

difficult to know whether females, other males, or both are the intended audience. 

Evidence that song deters competitor males comes from experiments where male 

songbirds have been muted by syringeal denervation or interclavicular air sac 
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puncture. These individuals progressively lose all or part of their territory (McDonald, 

1989; Peek, 1972; Smith, 1979). On the other hand, removing a male from his territory 

and periodically broadcasting his species-specific song from that territory, will delay 

re-occupation of the territory by a new male compared to the re-occupation of territory 

without the song broadcasting (Falls, 1988; Göransson et al., 1974; Krebs, 1977; 

Nowicki et al., 1998b; Yasukawa, 1981).  

The role of singing in mate attraction is supported by studies showing that song 

rate increases in males upon removal of their mate and decreases again when the 

mate is reinstated (Catchpole, 1973; Cuthill and Hindmarsh, 1985; Krebs et al., 1981; 

Otter and Ratcliffe, 1993). Male canaries in the laboratory also show lower song rates 

when housed with a female than when housed alone or with another male (Alward et 

al., 2014; Boseret et al., 2006; Shevchouk et al., 2017a). These studies are thus 

consistent with the role of song in mate attraction: song is no longer necessary when 

the female is continuously present. Females are more likely to approach and enter a 

nest-box that contains a male decoy and is broadcasting species-specific song than a 

nest-box just containing a male decoy (Eriksson and Wallin, 1986; Johnson and 

Searcy, 1996; Mountjoy and Lemon, 1995). In addition, male song stimulates female 

reproductive behavior and physiology on many levels. Male song will often induce a 

female to display a sexual receptivity behavior -  the female raises her tail and head 

while rapidly fluttering her wings and producing a characteristic vocalization (Maney 

et al., 1997; Searcy, 1992). Male song can also induce a higher rate of nest building, 

egg-laying and ovarian growth (Bentley et al., 2000). Specific song features determine 

how much a female will be attracted by a male: these features include song rate (Eens 

et al., 1991; Kempenaers et al., 1997; Wasserman and Cigliano, 1991), song 

complexity (Buchanan and Catchpole, 1997; Hasselquist et al., 1996; Searcy, 1984; 

Yasukawa et al., 1980), local song structure (Searcy, 1992) and vocal performance 

(Ballentine et al., 2004; Vallet and Kreutzer, 1995). The “nutritional stress hypothesis” 

suggests that the link between song and male quality depends on the fact that brain 

structures underlying song learning largely develop during the first few months post-

hatching and that during this period birds are likely to be susceptible to developmental 

stress, largely due to undernutrition, that will handicap the attainment of their full 

potential (Nowicki et al., 1998a). Therefore, males who are able to produce a high 

quality song are more likely to be more healthy and robust in general. 
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Seasonal modulation 

Although the most active singing happens during the breeding season, many songbird 

species continue to sing year-round. Non-breeding season song often has a different 

structure and function than breeding season song (Leitner et al., 2001a; Rost, 1990; 

Smith et al., 1997) and its mechanistic basis has been less studied. For example, 

European starlings sing throughout the year, but their songs are shorter in autumn 

than in spring (Riters et al., 2000). In this species, some neurotransmitter systems are 

modulated by singing in a season-specific manner (DeVries et al., 2015; Heimovics et 

al., 2009; Heimovics and Riters, 2008; Kelm-Nelson and Riters, 2013).  

The mechanistic basis of non-breeding song has been studied to some extent 

in male song sparrows, who continue to sing in autumn but with greater variability 

compared to spring (Baker et al., 1984; Smith et al., 1997). During the non-breeding 

season the plasma testosterone levels are very low and castration does not decrease 

non-breeding season song, however song rate is decreased by a combination of 

aromatase inhibition and androgen receptor blocking (Soma et al., 1999) and also by 

treatment with an aromatase inhibitor alone (Soma et al., 2000). 

Dehydroepiandrosterone (DHEA), an androgen produced by the adrenals is, in 

contrast to testosterone and estrogen, elevated during the non-breeding season in 

song sparrows (Soma and Wingfield, 2001). It is this steroid that is likely activating the 

non-breeding season singing, via its neural metabolism to androgens and estrogens, 

but possibly via other mechanisms too (for review see Soma et al., 2014).  

Although wild canaries living in the Canary Islands and in Madeira, the 

ancestors of domesticated canaries, sing highly stereotyped syllable types throughout 

the seasons and the size of the repertoire does not change (Gahr et al., 2001), 25% 

of their songs in the repertoire do change seasonally (Leitner et al., 2001b). 

Additionally, changes in singing behavior across seasons have become more 

pronounced in domesticated canaries that have been living for centuries in the 

temperate zone, where daylength changes across seasons are more important, such 

as Europe or North America. These changes could be partially due to selective 

breeding that was implemented to reinforce specific aspects of song. The common 

domesticated canaries studied in Seewiesen, Germany, do not change their repertoire 

size across seasons, however the song duration, number of sexually attractive 

syllables and proportion of repeated syllable types are all higher in breeding season 
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compared to non-breeding season (Voigt and Leitner, 2008). Waterschlager canaries, 

additionally have a period of “unstable song” during non-breeding season when new 

syllable types are added to the song repertoire, resulting in an overall increase in 

repertoire size with age (Nottebohm et al., 1987, 1986; Nottebohm and Nottebohm, 

1978).  

Song quality versus motivation 

There is a wide variety of ways in which the songs of different songbird species are 

organized. Zebra finch songs, which are among the least complex and variable, 

consist of relatively few notes that are delivered in a fixed sequence. Yet even these 

songs have a limited form of variability: sequences of song notes can be omitted, with 

the song stopping short or skipping the initial syllables (Williams, 2004). Canaries, on 

the other hand, usually have a repertoire of dozens of notes grouped into syllables 

that are repeated rapidly to form trills. Together the string of different trills constitutes 

a song and can continue for well over a minute. Although transitions between the 

different trills are highly predictable, they are nevertheless somewhat variable and the 

exact sequence within a given song is very rarely an exact replicate of the previous 

song (Williams, 2004). Overall, these features make the canary adult song highly 

stereotypical, both in the acoustic structure of the song syllables and in the sequence 

in which syllables are sung. Song stereotypy is particularly high during the breeding 

season, when testosterone levels are high (Alward et al., 2013; Madison et al., 2015) 

and stereotyped song is indeed more effective in attracting a mate (Botero et al., 2009; 

Byers et al., 2010; Sakata and Vehrencamp, 2012). To measure the stereotypy of a 

bird’s singing during a certain period, the different renditions of singing are compared 

for similarity by calculating the coefficient of variation of some of their parameters, for 

example the song duration, bandwidth or entropy.  

As will be discussed in the following section, the stereotypy of song is under 

control of testosterone, but it takes weeks of exposure to high levels of testosterone 

to increase the stereotypy of singing to breeding season level (Tramontin et al., 2000). 

On the other hand, song rate is increased by testosterone in a faster manner, reaching 

breeding season levels within days.  Song rate and song duration are considered to 

be variables that reflect the bird’s motivation to sing and are regulated independently 

of song quality variables such as stereotypy and complexity (Alward et al., 2017).  
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Control by testosterone and its metabolites 

Field studies have revealed a remarkable coincidence between the timing of seasonal 

peaks in plasma testosterone concentrations and in singing activity (Rost, 1992), 

providing correlative evidence for the role of testosterone in the control of song rate.  

Testosterone administered to juveniles who are still developing their song leads to 

premature crystallization (Korsia and Bottjer, 1991; Templeton et al., 2012; Whaling et 

al., 1995), in some cases producing an abnormal song (Whaling et al., 1995). In adult 

songbirds, castration causes a decrease in singing activity during the breeding season 

(Arnold, 1975b; Nottebohm, 1980a), although not if the surgery is performed during 

the non-breeding season (Alvarez-Borda and Nottebohm, 2002; Pinxten et al., 2002) 

when singing rates are already low in many species and song likely serves a different 

purpose (Riters, 2012).  Conversely, implanting testosterone increases the frequency 

and duration of singing in castrated males (Arnold, 1975a; Nottebohm, 1980a; Pröve, 

1974) and females (Leonard, 1939; Madison et al., 2015; Nottebohm, 1980a). 

While systemic implants of testosterone induce an increase in singing, 

implanting the steroid stereotaxically either near HVC or near RA does not induce any 

singing (Alward et al., 2016c; Brenowitz and Lent, 2002). These studies suggest that 

testosterone-action in the SCS alone is not sufficient to activate singing behavior. An 

alternative strategy to examine the role of testosterone-action in the song control 

system is to inhibit androgen and estrogen action in this region while keeping the birds 

intact and on a stimulating photoperiod. Using this approach Meitzen and colleagues 

observed a decrease in song stereotypy, but no change in the rate of singing (Meitzen 

et al., 2007). This suggests that testosterone action in the song control system plays 

a role in regulating song quality but not song motivation.  

The actions of testosterone on singing are mediated at least partially through 

its conversion to an estrogen (Fusani et al., 2003; Fusani and Gahr, 2006; Harding, 

2004; Harding et al., 1988, 1983; Sartor et al., 2005). The action of estrogens on song 

is, at least in part, rapid as confirmed by the observation that inhibiting aromatase 

activity in male canaries decreases the song rate within hours of treatment (Alward et 

al., 2016b). Blocking aromatization in T-treated female canaries increases song 

duration by increasing the number of tours (a series of repetitions of the same syllable) 

per song relative to females treated with testosterone alone (Fusani et al., 2003). The 

organization of songs in stable sequences of different tours marks the transition from 
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plastic to crystallized song (Güttinger, 1979), therefore the study of Fusani and 

colleagues suggests that the estrogenic component of testosterone signaling is 

necessary for the full development of song structure. Another feature of the songs of 

the aromatase-inhibited females was a decreased number of tours with a rapid syllable 

repetition rate compared to the females treated with testosterone only. Females show 

more sexually-receptive behaviors in response to songs with a high repetition rate of 

syllables (Vallet and Kreutzer, 1995), even if these songs are recorded from 

testosterone-treated females (Kreutzer et al., 1996). In conclusion, syllable repetition 

rate, a song variable which strongly affects the reproductive success of a male 

songbird seems to depend on estrogens. 

Although testosterone can induce singing under both long (Madison et al., 

2015) and short-day photoperiod (Sartor et al., 2005), the photoperiodic condition of 

birds modulates their response to the steroid, with a higher song rate elicited by 

testosterone in photosensitive than in photorefractory male European starlings (Rouse 

et al., 2015). In photosensitive male canaries, androgenic and estrogenic metabolites 

act synergistically to increase the song rate, while either metabolite by itself is not able 

to increase the song rate above the level of castrated controls (Sartor et al., 2005). 

Motivation to sing 

SCS-independent 

Testosterone circulating in the songbird’s periphery is highly correlated with song rate, 

however manipulating testosterone action in HVC has no effect on the rate of singing 

(Meitzen et al., 2007), suggesting that song motivation is regulated outside of the SCS. 

This is also supported by a case study where a male canary with bilateral lesions of 

HVC displayed no audible components of singing, however continued to display the 

posture and movements associated with singing (Nottebohm et al., 1976). In 

photostimulated male canaries, a blockade of androgen receptors in HVC or RA 

decreased the variability of syllable usage and sequencing and syllable and trill 

acoustic variability, respectively (Alward et al., 2016a). Other regions in the SCS are 

only involved in the learning aspects of singing and therefore are not likely to be 

important for song motivation. Three areas outside of the song control system have 

been suggested to modulate the motivation to sing (reviewed in Ball and Balthazart, 

2010). 



42 
 

Catecholaminergic nuclei of the mesencephalon 

The catecholaminergic nuclei of the mesencephalon and pons express AR and ER 

(Maney et al., 2001) and project to the SCS (Appeltants et al., 2002, 2000). 

Testosterone increases the area covered by tyrosine hydroxylase-immunoreactive 

structures (fibers and varicosities) in the song control nuclei HVC and RA (Appeltants 

et al., 2003). Song rate is correlated with expression of immediate early genes in the 

VTA and PAG (Lynch et al., 2008; Maney and Ball, 2003), however there is so far, no 

direct evidence for a regulation of singing motivation by the catecholaminergic system.  

Vasotocinergic cells of the lateral septum 

The lateral septum expresses vasotocin in a sexually dimorphic manner. This 

expression is decreased by castration and increased by implanting with testosterone 

(Aste et al., 1997; Voorhuis et al., 1988). Bilateral lesions of the lateral septum 

decrease song rate, while vasotocin infusions into the lateral septum increase the rate 

of singing behavior (Goodson, 1998; Goodson et al., 1999). 

Medial preoptic nucleus (POM) 

The medial preoptic nucleus (POM) plays a critical role in the appetitive aspects of 

sexual behavior (Balthazart et al., 1998; Balthazart and Ball, 2007; Panzica et al., 

1996). Breeding season song is a sexually-motivated behavior and indeed bilateral 

lesions of the POM decrease song rate in male starlings during the breeding season 

without affecting neither the functioning of the HPG axis nor motor behavior in general 

(Alger and Riters, 2006; Riters and Ball, 1999). During the non-breeding season POM 

lesions increase singing rate, suggesting it is inhibitory for non-sexually motivated 

singing behavior (Alger and Riters, 2006). The POM expresses AR, ERα and ERβ 

(Bernard et al., 1999) as well as high levels of aromatase during the  season (Riters 

et al., 2000). Male starlings in breeding condition that have obtained a nest-box 

(necessary to attract a female for breeding) sing more and have a larger POM volume 

than breeding condition males without a nest-box or males in non-breeding condition 

(Riters et al., 2000). Both dopamine and opioid signaling in the POM have been related 

to singing behavior in a context-dependent manner. Expression of tyrosine 

hydroxylase and D1 but not D2 receptors in the POM is negatively correlated to time 

spent singing sexually-motivated song, but only in breeding season (DeVries et al., 

2015; Heimovics et al., 2009; Heimovics and Riters, 2005). On the other hand, non-

breeding season singing is correlated with the expression of mu-opioid receptors 

(Kelm-Nelson and Riters, 2013), which also correlate to the extent to which the bird 
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find singing rewarding (as measured by a conditional place preference assay, Riters 

et al., 2014).  

Recent studies have shown that testosterone action in the POM is sufficient to 

increase the rate of singing in castrated male canaries to the same level as systemic 

testosterone (Alward et al., 2016c; Alward et al., 2013). On the other hand, the quality 

of the song in these birds remains inferior compared to those treated with testosterone 

either systemically (Alward et al., 2013) or in both POM and HVC (Alward et al., 

2016c). These studies provide further evidence for the important role of POM in 

regulating the motivation to sing. 
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Goals of this research 

The aim of this PhD project was to study the seasonal plasticity of brain regions 

involved in regulating singing behavior, especially the song control nucleus HVC 

(formerly high vocal center, now used as proper name) and the medial preoptic 

nucleus (POM), which controls song motivation in canaries. Furthermore, to address 

the question of sex differences we endeavored to include both male and female 

canaries in the experiments whenever possible. Seasonal transitions involve changes 

in photoperiod, sex hormones, social group composition/relevance as well as other 

environmental changes concerning for example temperature and vegetation. We were 

particularly interested in the former three variables and in the time course of 

neuroplastic changes induced by these variables. Thus, the first experiment was 

designed to evaluate the impact of different social contexts on HVC neurogenesis in 

males and females (chapter 1). Since the effect of stimuli on newborn neurons can 

vary according to their age, we developed methods to simultaneously quantify neurons 

born at different times relative to the experimental manipulation by combining two 

exogenous and one endogenous marker of neurogenesis. Additionally, we addressed 

the question of mechanisms by testing the hypothesis that differences could be driven 

by differential levels of stress. Since the first experiment indicated that the social 

composition modulated song rate, we decided to explore in more detail how the bird’s 

perception of their cagemate affects their singing behavior. Therefore, in chapter 2, 

we explored the behavioral effects of introducing a mirror in the homecage. 

The next question we intended to address was the time course of changes, 

following transition from a short-day photoperiod and low levels of testosterone to a 

long-day photoperiod with or without treatment with exogenous testosterone, in song 

control nuclei volumes, HVC neurogenesis, POM volume and POM aromatase 

expression in female and male canaries. Due to an unexpected activation of singing 

behavior in the majority of males while they were castrated and exposed to short days, 

the time course study was only performed in females (chapter 3). The experiment in 

males was thus, performed only with those few castrated birds that did not sing and 

therefore was limited to an attempt to replicate one of the main findings of the female 

time course in males namely the very rapid increase in POM volume and aromatase 
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expression in this nucleus after treatment with testosterone (chapter 4). Implants of 

testosterone in POM increase not only singing rate, but also the volume of song control 

nuclei. In chapter 5 we attempted to explain the mechanism of this increase in song 

control nuclei volume. The experiment was designed to distinguish between an 

increase mediated by singing-activity feedback and an increase mediated by trophic 

signals being transported from POM to song control nuclei via poly-synaptic 

connections by collecting brains at different time points.  

The castrated males who had initiated singing during exposure to short days 

offered an opportunity to study the mechanism of song activation in non-breeding 

condition. Therefore, we modified the aim of this study and tested instead whether the 

singing of males in this condition and the volume of their song control nuclei, was 

dependent on sex steroid hormone action by pharmacologically blocking androgen 

receptors and inhibiting aromatase in half of the subjects (chapter 6). Finally, in view 

of some surprising results obtained in some of the experiments, the nature of the 

photoperiodic responses in the strain of canaries that we used could be questioned. 

Therefore, we designed a final experiment to characterize the changes in males and 

females of this strain of canaries in response to changes in photoperiod (chapter 7), 

in order to validate them as a model of seasonal plasticity in the song system.  
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Results 
 

Chapter 1. Studies of HVC Plasticity in Adult Canaries Reveal 

Social Effects and Sex Differences as Well as Limitations of 

Multiple Markers Available to Assess Adult Neurogenesis
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Abstract

In songbirds, neurogenesis in the song control nucleus HVC is sensitive to the hormonal and

social environment but the dynamics of this process is difficult to assess with a single exoge-

nous marker of new neurons. We simultaneously used three independent markers to investi-

gate HVC neurogenesis in male and female canaries. Males were castrated, implanted with

testosterone and housed either alone (M), with a female (M-F) or with another male (M-M)

while females were implanted with 17β-estradiol and housed with a male (F-M). All subjects

received injections of the two thymidine analogues, BrdU and of EdU, respectively 21 and 10

days before brain collection. Cells containing BrdU or EdU or expressing doublecortin (DCX),

which labels newborn neurons, were quantified. Social context and sex differentially affected

total BrdU+, EdU+, BrdU+EdU- and DCX+ populations. M-M males had a higher density of

BrdU+ cells in the ventricular zone adjacent to HVC and of EdU+ in HVC than M-F males. M

birds had a higher ratio of BrdU+EdU- to EdU+ cells than M-F subjects suggesting higher sur-

vival of newer neurons in the former group. Total number of HVC DCX+ cells was lower in M-F

than in M-M males. Sex differences were also dependent of the type of marker used. Several

technical limitations associated with the use of these multiple markers were also identified.

These results indicate that proliferation, recruitment and survival of new neurons can be inde-

pendently affected by environmental conditions and effects can only be fully discerned through

the use of multiple neurogenesis markers.

Highlights

• Endogenous and exogenous markers of new neurons differentially identify

neurogenesis

• Thymidine analogues label neuronal populations born at specified moments

• Doublecortin gives an integrated view of neurogenesis changes over extended periods

• BrdU antibodies detect EdU-positive cells to a variable extent depending on their age

• Young and slightly older HVC neurons are differentially affected by social conditions
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Introduction

Adult neurogenesis was first discovered in the rat hippocampus [1], however, it was a series of

experiments in songbirds that conclusively demonstrated the production, functional integra-

tion and electrophysiological activity of newborn neurons in the adult brain [2], triggering a

new wave of interest in the phenomenon. Songbirds continue to be a useful model for the

study of adult neurogenesis due to some unique features of the phenomenon in this taxon

such as widespread migration of newborn neurons throughout the telencephalon, higher rates

of proliferation than in mammals and the establishment of long-distance projections made by

the newborn neurons in certain cases [3,4]. One specific neurogenic region, the song control

nucleus HVC (used as a proper name), is of particular interest due to its important and specific

role in the regulation of song behavior. By investigating the regulation of HVC neurogenesis,

we can not only gain insight into the molecular and cellular aspects of this process, but also

probe for the function of adult neurogenesis.

HVC is at the crossroad of three pathways involved in the learning, maintenance and produc-

tion of song–the caudal motor pathway, the anterior forebrain ‘feedback’ pathway and the audi-

tory pathway related to the perception of species-typical auditory signals. HVC is highly plastic

and sensitive to a range of modulating factors including hormones and a variety of environmental

stimuli. In seasonally breeding songbirds the volume of HVC during the breeding season is 1.3 to

3 times larger than during the non-breeding season (reviewed in [5]). Neurogenesis contributes

importantly to this growth, although soma size also changes across season [6]. Neuronal prolifera-

tion takes place in the lateral ventricle [7]. The neuronal progeny then migrate along radial glia

into the parenchyma [8] reaching HVC within 1–2 weeks. During this same period only about

50% of these newborn neurons will survive [9] and this survival rate is enhanced by testosterone

[10] and estradiol [11]. Post-synaptic activity also enhances the new neurons survival during their

first month of life once they have extended their axon to the nucleus robustus arcopallialis [12].

Traditionally neurogenesis is studied with the use of one of two thymidine analogues, [3H]-

thymidine or 5-bromo-2’-deoxyuridine (BrdU) and there are a few cases when these two

markers have been combined in the same study (see [13] for an example in birds). More

recently endogenous markers that label specific phases in proliferation and neuroblast devel-

opment have also been used. Both exogenous and endogenous markers of neurogenesis have

advantages but also pitfalls (for a comprehensive review see [14]). For example, BrdU, consid-

ered the gold standard for measuring neurogenesis by many, only stays in the circulation for a

limited period after injection (less than an hour for songbirds: [15]) and therefore labels only a

limited population of newborn neurons that replicated their DNA during a short time win-

dow. Given that newborn neurons have critical periods to environmental influences [16], ana-

lyzing only one specific cohort of neuroblasts born at a specific time potentially leads to

overlooking experimental effects on neuroblasts born at a different time. In addition, BrdU

incorporates into all proliferating cell types and does not discriminate between newborn neu-

rons, glia and endothelial cells unless an additional cell-type marker is used in combination,

which is technically more challenging and can decrease the detection sensitivity. Increasing

the dose or number of injections can also lead to DNA damage followed by DNA repair during

which BrdU is incorporated [17], so that cells with newly repaired DNA can be falsely counted

as newly born cells. This type of labeling is however rare with the doses and injection schedules

that are generally used by most investigators and the vast majority of BrdU-labeled cells after a

substantial survival time are in fact new neurons as attested by the fact that they co-express in

high proportion markers of young neurons such as doublecortin [18,19].

There are equally important problems associated with the use of endogenous markers of

neurogenesis such as calretinin, Ki67, PCNA, pHH3, PSA-NCAM and doublecortin. Although
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several of these endogenous markers have still not been used in birds due to the lack of anti-

bodies that cross-react with the avian antigens, doublecortin (DCX) has been validated as a

marker of neuroblasts in neurogenic regions of the songbird brain [20]. DCX labels newborn

neurons that present two distinct types of morphology–fusiform DCX cells that are presum-

ably young migratory neurons and round DCX cells that likely represent neurons in the early

differentiation stage [20,21]. At the sub-cellular level, DCX plays a role in controlling the poly-

merization of microtubules and stabilization of the cytoskeleton [22–24] both of which are

important for the migration of young neurons [21,25]. However these mechanisms are also

involved in reorganization of the dendritic arbor, neurite outgrowth and synaptogenesis [26–

28]. Thus neurons undergoing these processes could also express DCX, but it has been demon-

strated that DCX-positive cells found in neurogenic regions are in the vast majority of cases

newborn neurons. For example, in rats that have been injected with BrdU for 12 days, 90% of

DCX-immunoreactive cells in the dentate gyrus are strongly positive for BrdU and therefore

are very likely to be newly born neurons [29]. In canaries injected with BrdU twice a day for 5

days, over 70% of doublecortin-positive neurons in HVC co-label for BrdU 10 days after the

first injection [18,19]. Between 10 and 30 days post-BrdU injection the proportion of BrdU-

positive DCX-immunoreactive neurons displaying a fusiform morphology decreases while the

proportion of round DCX neurons increases, suggesting that indeed the fusiform phenotype is

the more immature form that later develops into round DCX neurons.

The social environment profoundly influences the behavior and physiology of songbirds

[30–32]. For example, in several species it has been shown that the presence of a female greatly

reduces a male’s song output [33–35], while removal of the female reinstates high levels of

singing [36]. Although there is evidence that singing activity per se has a positive feedback

effect on HVC neurogenesis [37,38], one study from our laboratory indicated that males

housed with a female have a larger volume of HVC than their more actively singing counter-

parts housed with another male [39], suggesting either a stimulatory effect of the female or an

inhibitory effect of the male presence. Additionally, males housed with a female sing less than

males housed in isolation, yet their density of newborn neurons in HVC is higher [35]. In

zebra finches a rich social environment increases newborn neuron survival in HVC, Area X

and the caudal nidopallium [40]. In the latter region younger newborn neurons (40 days) sur-

vive more after a larger change in the social environment, while slightly older neurons (60

days) have a higher survival following a mild social change [41,42]. Together these data suggest

that in songbirds, just as in mammals [16,43], newborn neurons have critical periods during

which their survival is sensitive to different environmental stimuli.

On the other hand, in many temperate zone songbird species, including canaries, females

rarely sing and have smaller song control nuclei, including HVC, than males [44] even though

the presence of song in females seems to be an ancestral feature [45]. Although female canaries

are frequently used as a model to study the activational effects of testosterone on song behavior

and growth of song control nuclei in adults in response to testosterone [46] including HVC

neurogenesis [10,47], few studies have directly compared the male and female HVC volumes

and neurogenesis in the same study. A sex difference in HVC volume persists in canaries

when both sexes are treated with the same amount of exogenous testosterone [48]. Similarly,

male starlings in the same hormonal condition as females continue to have a larger HVC vol-

ume but a lower density of newborn neurons [49]. Other studies have compared the neurogen-

esis in males and females in different endocrine conditions. Male canaries had a higher density

of fusiform DCX-positive (DCX+) neurons than females in all photoperiodic conditions that

they experience during an annual cycle, i.e., irrespective of whether they are photosensitive,

photostimulated or photorefractory [18]. Male brown-headed cowbirds and red-winged
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blackbirds in breeding condition had larger HVCs and a lower density of DCX+ neurons than

the females of their species [50].

To investigate the mechanism mediating the sex differences and the social effects on

HVC volume and neurogenesis, we compared here males housed in three conditions–alone,

with a female or with a male. The females housed with a male were treated as experimental

subjects as well as stimuli in order to simultaneously investigate sex differences in neuro-

genesis. Sex steroid concentrations were clamped at levels representative of breeding condi-

tion for each sex via subcutaneous Silastic™ implants filled with testosterone in males and

with estradiol in females. This was done to distinguish between direct effects of the social

conditions on HVC (female presence, male-related stress, . . .) and effects mediated by the

possible activation by the female of the hypothalamo-pituitary-gonadal axis [51,52]. Given

the limitations associated with the use of only one type of marker for labeling newborn neu-

rons, we decided to use a combination of markers of neurogenesis to test whether a better

understanding of the regulation of HVC neurogenesis by the social environment and sex of

the bird could be gained through this approach. All birds were thus injected with two ana-

logues of thymidine at different times points to label neuronal populations born at two dif-

ferent times and evaluate whether neurons of different ages are differentially sensitive to

the social environment. We complemented this approach with a quantification of the

endogenous marker of newborn neurons, DCX. Previous studies in mammals and birds

have combined the use of two markers for labeling new neurons (e.g., [13,53,54], see [14]

for discussion) but this is to our knowledge the first time that two exogenous and one

endogenous marker are used simultaneously, in particular for analyzing neurogenesis in

the songbird HVC, a model system characterized by a very intense neurogenesis (much

more active than in the mammalian hippocampus) that provides more sensitive measures

of changes in the neurogenesis process.

Methods

Animals

A total of 18 canaries of the Fife fancy breed were used in this study. All birds were in their second

year; they were born and had gone through a full breeding cycle in the colony maintained at the

University of Antwerp, Belgium during which they had been exposed to a minor immune chal-

lenge or its control manipulation and their body temperature had been recorded between 9 and

12 months of age (see [55] for details on the procedure and its effects). This manipulation was bal-

anced across the groups formed for the current study so that it could not affect the group differ-

ences to be observed here. All experimental procedures complied with Belgian laws concerning

the Protection and Welfare of Animals and the Protection of Experimental Animals, and this

experimental protocol was approved by Institutional Animal Care and Use Committee (IACUC)

called the Ethics Committee for the Use of Animals at the University of Liege (Protocol number

926). The canaries were exposed to a natural photoperiod for the months preceding their arrival

in our lab at the University of Liege in September and were then housed in single sex groups of

9–10 subjects on short days (8L:16D) for 2 months before the start of the experiment to induce

photosensitivity. One month after arrival (at the time of castration), it was confirmed that the

males had regressed testes and were in a nonbreeding condition. Throughout their stay in the lab-

oratory, all birds had ad libitum access to food (a mix of various seeds designed for canaries), grit,

cuttlebone and water for drinking and bathing. A small amount of egg yolk food was additionally

added approximately once a week. Their health status and food/water provision was checked daily

including during weekends as required by the Belgian law on the use of experimental animals.
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Experimental procedures

Castration of all males was performed under general isoflurane anesthesia (3% for induction

followed by 2–2.5% for maintenance) as described previously by Sartor and colleagues [56].

Each testis was removed through an ipsilateral incision during two surgeries separated by one

week of recovery. Birds were then maintained under a warm lamp under visual inspection

until they fully recovered from the anesthesia (a process that took only a few minutes) after

which they were returned to their home cage. They were then checked several times during

the next 24 hours to detect any possible problem. All subjects were observed to perch and

feed within one hour. After both testes had been removed, males were allowed to recover

for a minimum of two weeks. One day before being transferred to the experimental condi-

tions, all subjects received a Silastic™ implant (Degania Silicone; internal diameter 0.76 mm,

external diameter 1.65 mm, length 10 mm) which had been pre-incubated in 0.9% saline at

37˚C overnight. For males, the Silastic™ implant was filled with crystalline testosterone, for

females with 17β-estradiol (both Fluka Analytical, Sigma-Aldrich), in order to clamp the

concentrations of these sex steroid hormones in both sexes to high values typical of the

reproductive season. These experimental conditions were selected to allow us to separate

direct effects of social conditions on neurogenesis from indirect effects that would result

from a change in circulating concentrations of testosterone induced by the different social

conditions. Females were treated with estradiol to ensure they would be receptive and thus

provide optimal stimuli for the males. These implants have been shown to establish in the

canary blood stable concentrations of testosterone or estradiol and activate morphological

and behavioral responses that are typical of what is observed during reproduction for peri-

ods longer than 3 weeks (e.g., [46,48,57–60]).

One day after implantation of the Silastic™ capsules, subjects were moved from their group

housing cages to their respective experimental social context and the photoperiod was changed

from 8L:16D to 11L:13D. During that day subjects were also injected intraperitoneally with

bromodeoxyuridine (BrdU, Fluka [Sigma Aldrich], ref no. 16880; 10mg/mL in 0.01M Phos-

phate Buffer Saline, PBS) 5 times with 2 hours between each injection, at a dose of 50mg/kg

per injection. The first of these injections was given at the same time when birds were moved

from their group housing to the experimental social conditions and other injections followed 2

hours apart. On day 12 of the experiment all subjects were injected 5 times with 5-Ethynyl-2

´-deoxyuridine (EdU, Invitrogen, ref no. E10187) at a dose equimolar to the dose of BrdU, i.e.

41.07 mg/kg EdU in 0.01M PBS, following exactly the same injection schedule as for BrdU.

Social context manipulations and behavioral observations

The social context manipulations consisted of housing birds in one of the three following con-

ditions: testosterone-treated male housed alone (M; n = 3), testosterone-treated male housed

with another male in the same endocrine condition, i.e. treated with testosterone (M-M;

n = 6), testosterone-treated male housed with an estradiol treated female (M-F). In the M-F

condition both birds served as experimental subjects; results of the male in the pair will be

labeled M-F (n = 5) while results of female in the pair will be labeled F-M (n = 4 due to the loss

on one brain). Care was taken to distribute birds from the same pre-experimental cage across

different treatment groups and to ensure that birds housed together for the experiment were

neither siblings nor members of a previously breeding couple. Due to time constraints, the

experiment was run in 4 replicates that were started 2 days apart. Each replicate contained

roughly equal numbers of birds in each of the 4 treatment groups. The subjects from one repli-

cate were placed in adjacent cages to facilitate simultaneous behavioral observations. Subjects

in one social condition were distributed randomly in the room. All subjects were in the same
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room in visual but not acoustic isolation from other cages. Final numbers of subjects in each

group and for each dependent variable are indicated in all figures.

Every 2nd day of the experiment starting from day 3, song rate of male subjects was quanti-

fied during a total of 10 min per day (total of 10 observation days). Each male subject was mon-

itored for number of songs produced for 5 minutes in the morning and 5 minutes in the

afternoon. During these 5 minutes, the observer sat quietly in front of the cages and noted the

number of songs produced by each male. The different birds were observed each time in a dif-

ferent randomized order. We operationally defined song as a vocalization longer than approxi-

mately one second in duration after at least a 500 msec period of silence.

EdU-BrdU cross-reactivity validation

The BrdU antibody we used (ABD Serotec, OBT0030, clone BU1/75) to quantify BrdU+ cells is

known to cross-react with EdU [61] which could confound the detection of cells that incorpo-

rated only BrdU. To quantify the extent of cross-reactivity, we injected an additional four male

canaries (obtained from a local breeder in Belgium) with EdU only at the same dose and fol-

lowing the same protocol as for other subjects in this experiment. Either 4 hours (n = 2) or 24

hours (n = 2) after the 5th injection birds were killed by transcardial perfusion. The perfusion,

brain collection, cryoprotection and processing followed the same protocol as for the other

subjects in this study. One series of brain sections obtained from these subjects were labeled

for BrdU and EdU.

Blood collection and hormone measurements

Blood samples were taken from all subjects 4 to 7 days before the experiment (baseline), 4 days

after the onset of social context manipulations, and during brain collection. 30–100 μL of blood

was drawn from the brachial vein, in most cases within 3 minutes of catching. Samples collected

between 3 and 4 minutes did not show increased corticosterone concentrations above baseline,

therefore only a few samples collected more than 4 minutes after the initial bird capture were

excluded from analyses of corticosterone. Blood samples were collected into heparinized micro-

pipettes (Brand, Wertheim, Germany), transferred into Eppendorf™ microtubes and stored on

crushed ice. Samples were centrifuged at 9000 g for 9 minutes, the supernatant plasma was col-

lected and stored at -80˚C until further use.

Before hormone enzyme immunoassays (EIA), steroids were extracted from the samples

to remove potentially interfering compounds using liquid phase extraction. Spiked samples

were always processed in parallel with the experimental samples to assess extraction recovery.

Spiked samples consisted of the same type, amount and dilution of plasma as experimental

samples but contained in addition 30,000 counts per minute (CPM) of the tritiated hormone

of interest. Recovery rates (ratio of CPM recovered to CPM added) were used to correct all

assay results.

10 μL of plasma was diluted in 150 μL of deionized water (MilliQ) in glass test tubes, sam-

ples were kept at +4˚C for 30 minutes, and 2 mL of the non-polar organic solvent dichloro-

methane was added. Samples were vortexed and then left immobile for 1–2 hours to allow

separation of the organic and aqueous phases. The organic phase was moved to a new test tube

and dried under nitrogen gas at 40˚C. The dichloromethane extraction was repeated a second

time and pooled extracts were kept at -20˚C until the EIA assay. Average recovery rates were

80% for testosterone and 84% for corticosterone. Testosterone and corticosterone concentra-

tions were measured using EIA kits (Cayman Chemicals). On the day of the assay, samples

were re-suspended in 400 μL EIA buffer from the kit (including 10% ethanol in the case of

testosterone) and placed on a shaker set to 1350 rpm for 1 hour. The assay was performed
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immediately after following instructions provided with the kit. These assays have been previ-

ously validated for measuring these hormones in avian plasma [62–67].

Brain collection and processing

After 21 days of exposure to the experimental conditions, all birds were deeply anaesthetized by

an injection of 0.03–0.04 mL Nembutal™ (Sodium Pentobartbital 60mg/ml) and brains were col-

lected from all subjects after transcardial perfusion. Blood was cleared from the brain by perfu-

sion with 200 mL PBS 0.01M, followed by 200 mL 4% paraformaldehyde (PFA; 4.3 g/L NaOH,

40 g/L paraformaldehyde, 18.8 g/L NaH2PO4.H20). The brain was extracted from the skull

immediately after perfusion and post-fixed overnight in 15 mL PFA. The following day brains

were cryoprotected in 30% sucrose (15.6 g/L Na2HPO4, 1.5 g/L KH2PO4, 300g/L sucrose) until

they sunk to the bottom of their vial. Brains were then frozen on dry ice and stored at -80˚C

until further use. Brains were cut coronally into 4 series of 30 μm thick sections on a Leica CM

3050S cryostat and stored in anti-freeze (0.01M PBS with 10 g/L polyvinylpyrrolidone, 300 g/L

sucrose, and 300 mL/L ethylene glycol) at -20˚C.

Nissl and immunohistochemical staining

Nissl staining and volume reconstruction. One series of sections was mounted on Super-

frost slides, dried at least overnight, and Nissl-stained with toluidine blue. After differentiation in

Walpole buffer and molybdate, they were dehydrated in a series of increasing isopropanol con-

centrations, in 99% ethanol and finally in xylene and coverslipped using Eukitt as a mounting

medium. To reconstruct HVC volumes, photomicrographs were taken of each section in the

series containing the nucleus, in both left and right hemispheres with a camera connected to an

Olympus BH-2 light microscope at 4x magnification. An outline was drawn around the perime-

ter of each cross-section of the nuclei using ImageJ v1.47v (National Institutes of Health) and the

delimited area was measured. When a section was missing, the area was estimated by taking the

average of the two sections immediately rostral and caudal to it. The volumes of nuclei were cal-

culated by summing the areas and multiplying by 120 μm, the distance between two successive

sections in the series. The volume of the nuclei in each hemisphere was calculated separately and

the average of the two measures was used for statistical analyses.

Doublecortin (DCX) and BrdU immunohistochemistry. A second series of sections was

double-labeled by immunocytochemistry for BrdU and doublecortin (DCX). Sections were

washed 3 times in Tris-Buffer Saline (TBS) 0.05M at the start and between each subsequent

step except prior to primary antibody incubation. All sera and antibodies were diluted in

TBST (TBS + 0.1% Triton-X100), while H2O2, avidin, biotin and diaminobenzidine (DAB)

were diluted in TBS. Endogenous peroxidases were blocked using 0.6% H2O2 for 20 minutes,

DNA was denatured to reveal the BrdU epitope in the chromatin by incubating the tissue in

2N HCl at 37˚C for 20 minutes. The pH of the tissue was then neutralized during a 10-minute

incubation in 0.1M sodium borate buffer. The non-specific binding of the secondary antibody

was blocked by incubation in 10% donkey serum for 30 minutes and BrdU was labeled over-

night with a primary rat anti-BrdU antibody (ABD Serotec, OBT0030) at a concentration of

1:2000. On the next day, sections were incubated for 2 hours with donkey anti-rat biotinylated

antibody (Jackson, 1:2000), the signal was amplified by incubation for 90 minutes in ABC kit

(Vectastain Elite PK-6100, Vector Laboratories), both components A and B being used at a

concentration of 1:400. The BrdU antibody binding sites were revealed using 0.04% DAB in

0.012% H2O2 for 10 minutes, which produced a brown precipitate (Fig 1A and 1C).

For the second immunostaining sequence, sections were again incubated for 20 minutes in

0.6% H2O2, blocked for non-specific binding of the second biotinylated antibody by incubation

Multiple Markers of HVC Neurogenesis in the Canary

PLOS ONE | DOI:10.1371/journal.pone.0170938 January 31, 2017 7 / 31



for 15 minutes each, first in avidin then biotin solution, both at a concentration of 1:5. Sections

were blocked in 10% rabbit serum and incubated for 2 hours at room temperature and then for

two days at 4˚C in goat anti-DCX (Santa Cruz, sc-8066) at a concentration of 1:200. Next, sec-

tions were incubated with 1:100 biotinylated rabbit anti-goat antibody for 2 hours, for 90 min-

utes in ABC kit as previously, and finally revealed for the DCX antibody binding sites with

Vector SG Substrate kit (Vector laboratories, 15 μL chromogen and 24 μL H2O2 per mL of TBS)

for 6 minutes, which produced a blue-gray precipitate (Fig 1A and 1C). Sections were mounted

on glass slides and coverslipped using Eukitt (Sigma-Aldrich) as a mounting medium.

Hu immunohistochemistry combined with EdU Click-IT reaction. The Click-IT kit

(Invitrogen, Catalog number C10338, using Alexa Fluor1555 azide, 555/565 nm excitation/

emission, as fluorochrome) was used to label cells that incorporated EdU. In order to delineate

Fig 1. Photomicrographs illustrating the different labels used to identify new neurons in HVC at low (A-B) and high (C-D) magnifications.

The first two panels show sections through the entire HVC that were stained for BrdU (brown) and DCX (blue; A) or with Hu (green) and EdU (red; B)

illustrating the fact that these markers highlights the boundaries of HVC (arrows). Panel C shows at higher magnification a cell labeled for BrdU only

(brown arrow), two DCX-positive neurons indicated by blue arrows, one round (left) and one fusiform (right) in shape) and one DCX-positive neuron

also containing BrdU in its nucleus (dotted arrow). Panel D illustrates the double label for BrdU and EdU with arrows pointing to cells labeled for BrdU

only (green), EdU only (red) and for both thymidine analogs (dotted arrow). Magnification bars are 200 μm in A-B and 50 μm in C-D.

doi:10.1371/journal.pone.0170938.g001
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the HVC area, this was combined with immunohistochemistry for Hu, a neuronal marker that

has been shown in songbirds to be expressed specifically by neurons starting soon after their

birth [68]. Many neurons in HVC are larger and denser than in the surrounding nidopallium

and therefore the Hu-staining can be used to visualize the borders of HVC (Fig 1B). EdU-

labeling was performed according to the instructions of the kit and Hu immunohistochemistry

was started immediately after. PBS 0.01M and PBST 0.1% were used and 3 washes followed

each step. The epitope was unmasked by incubating sections in citrate buffer (2.1g/L citric

acid, adjusted to pH 6 using 1N NaOH, 0.5 mL/L Tween 20) for 2 hours at 37˚C. The primary

antibody incubation (1:100 mouse anti-Hu, Invitrogen, A-21271) was combined with 10%

normal goat serum blocking and was performed for 2 hours at room temperature followed by

overnight incubation at 4˚C. Sections were then incubated with biotinylated goat anti-mouse

secondary antibody at a concentration of 1:100 for 2 hours at room temperature. Finally, sec-

tions were incubated with streptavidin conjugated to Alexa Fluor 488 at a concentration of

1:100 for 90 min at room temperature. After the final wash, the sections were mounted on

glass slides and coverslipped using Vectashield with DAPI as a mounting medium.

BrdU immunohistochemistry combined with EdU Click-IT reaction. EdU-labeling was

performed according to the instructions provided by the manufacturer and BrdU immunohis-

tochemistry was started immediately after. PBS 0.01M and PBST 0.1% were used for washes

and antibody/serum dilutions. The sections were washed 3 times at the start to remove the

antifreeze and following each incubation. DNA was denatured to reveal the BrdU epitope in

the chromatin by incubating the tissue in 2N HCl at 37˚C for 20 minutes. The pH of the tissue

was then neutralized during a 10-minute incubation in 0.1M sodium borate buffer. The non-

specific binding of the secondary antibody was blocked by incubation in 5% goat serum with

1% bovine serum albumin for 60 minutes and BrdU was labeled overnight at 4˚C with a pri-

mary rat anti-BrdU antibody (ABD Serotec, OBT0030) at a concentration of 1:500. Sections

were then incubated with biotinylated goat anti-rat secondary Alexa Fluor-488 antibody at a

concentration of 1:500 for 2 hours at room temperature (Fig 1D). After the final wash, the sec-

tions were mounted on glass slides and coverslipped using Vectashield with DAPI as a mount-

ing medium.

Microscopy

BrdU and/or DCX-positive cells in HVC. A representation of the HVC borders was

drawn on paper with the help of a camera lucida and a symbol was added on the drawing for

each labeled cell, categorized as following: BrdU+DCX-, BrdU-Fusiform-DCX+, BrdU-Round-

DCX+, BrdU+Fusiform-DCX+ and BrdU+Round-DCX+. The numbers of the different cell

types were summed up for each HVC and the procedure was repeated on both sides of the

brain and for 3–4 sections containing HVC per subject (except for 1 female where only 1 sec-

tion with HVC could be counted). The total from both hemispheres was then averaged for all

sections of a given subject and these mean values per section were used for analysis (see Statis-

tical analysis). In addition, the BrdU+ cells in the ventricular zone (VZ) dorsal to each of these

HVCs were quantified separately, as well as the length of this segment of VZ. For these counts,

we only considered cells that were entirely included in the thickness of the VZ and ignored

labeled cells as soon as their perikaryon had migrated out of this periventricular cellular layer.

EdU-Hu. EdU+ cells were quantified with a Leica fluorescence microscope (Leica DMRB

FL.100; excitation filter BP545/30, dichromatic filter 565, suppression filter BP10/75) con-

nected to a digital camera (Leica DFC 3000G). A photomicrograph was taken of each HVC, as

detected by the dense group of Hu+ cells (observed with excitation filter BP480/40, dichro-

matic filter 505, suppression filter BP 527/30), in one series at 5x magnification and was used
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to quantify both the area of the nucleus and the number of EdU+ cells. The area was delineated

based on the limit of the brighter, larger somas of neurons in HVC compared to surrounding

nidopallium. EdU+ cells were counted manually in the entire cross section of HVC on these

photographs in 3 to 6 sections per subject (except two females and one male with 1–2 sections

of HVC counted). The EdU+ cells in the VZ dorsal to each of these HVCs were quantified sep-

arately, as well as the length of this segment of VZ, as described for BrdU and DCX cells.

EdU-BrdU. To quantify EdU+ and BrdU+ cells, the brain sections were visualized with a

Leica fluorescence microscope (Leica DMRB FL.100; for EdU see filter specifications in 1.8.2;

for BrdU: excitation filter BP480/40, dichromatic filter 505, suppression filter BP 527/30) and

photomicrographs were taken with a digital camera (for cross-reactivity validation study—

Leica DFC 480, for social context experiment—Leica DFC 3000G). In the cross-reactivity vali-

dation the EdU+ and BrdU+ cells in the VZ were counted on photomicrographs taken at 20x

magnification on 4–6 sections from each brain. For the social context experiment brains,

EdU+ and BrdU+ cells in one section of HVC were quantified on photomicrographs taken at

10x magnification.

Statistical analyses

Densities of cells labeled by neurogenesis markers (DCX, BrdU, EdU) were obtained by dividing

number of positive cells by the cross-sectional area of the HVC they had been counted in (num-

ber of cells/mm2). The density of cells/mm2 was corrected by the section thickness (30 μm) to

obtain a density per mm3 (multiplied by 1000/30 = 30,3) and this density was then multiplied by

the volume of the nucleus in mm3 to obtain an estimate of the total number in the entire nucleus.

HVC volumes for this calculation were obtained from quantifications in Nissl-stained sections.

These numbers that are extrapolated to the entire HVC provide a useful index to compare groups

within the present experiment but should not be used for comparisons with independent studies

since they are not absolute and depend on several parameters of the current study such as the sec-

tion thickness and microscopic depth of field with the objective that was used, not to mention the

staining efficiency.

The number of BrdU+ and EdU+ cells in the VZ was analyzed both as a number of cells in

the entire VZ adjacent to HVC (per section, regardless of length) or as number of cells per mm

of VZ adjacent to HVC. Although the VZ length per section was obviously different between

males and females and possibly across male groups, since a large number of the new HVC neu-

rons seem to originate in the adjacent VZ ([69] but see [4] for discussion), both analysis pro-

vide complementary information: data for the entire VZ relate more or less directly to the

numbers of cells calculated for the entire HVC whereas data per mm of VZ relate to the densi-

ties within HVC.

A larger group of animals had initially been included in the experiment, however a subset of

birds lost their Silastic™ implants during the experiment and thus had to be eliminated from the

analysis. Additionally, in 3 males and 1 female the HVC was not complete in the sections that

were collected because the caudal end of brain had been lost during processing. These subjects

are excluded from the analyses that require the full extent of HVC, such as volume, but not

other analyses, such as density of neurons where these markers were evaluated in only a subset

of HVC sections. Extrapolation of these cells densities to the total numbers of cells in the entire

HVC was obviously also impossible in these cases. The final numbers of data points available

for each analysis are indicated in all graphs that also contain a representation of individual data

points so that intragroup variability can be accurately appreciated. These small sample sizes

obviously call for caution when interpreting the observed group or sex differences but they nev-

ertheless allow us to establish the clear value of using multiple markers of neurogenesis in the
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same subjects. This approach should in the future be used more generally to dissect the time

course of the production and incorporation of new neurons in HVC.

Analyses of the total numbers of different cell types in HVC were performed after either

eliminating the subjects without a full HVC or after substituting the group means for these

subjects. These two approaches yielded the same results, therefore only results of the former

approach will be reported. In one female no BrdU+ cells were detected in the brain, thus this

subject was excluded from all BrdU-analyses. For pre-experimental corticosterone measure-

ments three male subjects were excluded because the volume of plasma collected was too small

to be assayed reliably.

All behavioral and morphological measures including measures of neurogenesis were ana-

lyzed by non-parametric methods as the majority of data sets were not distributed normally, as

determined by the Kolmogorov-Smirnov test. For each variable, the data from the three groups

of males and one group of females is displayed side by side on a single graph for each measure,

however the statistical analyses were performed separately. A Kruskal-Wallis ANOVA was

used to compare the three groups of males and a Mann-Whitney U test to compare the males

to the females in the M-F group. When the Kruskal-Wallis ANOVA indicated a significant dif-

ference between groups, a Dunn’s Multiple Comparisons post-hoc test was performed. All

analyses of the three male groups were additionally performed taking the average data per

male-male dyad rather than using individual data of the two males in the dyad, in order to test

whether social interactions within a dyad had a major impact on the conclusion. The results

obtained in these two approaches were very similar and therefore only the latter type of analy-

sis is reported. Corticosterone plasma concentrations were analyzed by a repeated-measures

ANOVA with social context/sex and time as factors and the Bonferroni procedure was used as

a post-hoc test. Linear regression was performed to correlate the number of EdU+ and BrdU+

cells in the VZ in the cross-reactivity validation study. Statistical analyses were performed

using GraphPad Prism (GraphPad Software Inc.) or STATISTICA (StatSoft). All data are pre-

sented by the mean ± standard error of the mean (SEM). Effects were considered statistically

different if the p-value (two tailed for comparisons of two groups unless otherwise mentioned)

for the analysis was equal to or lower than 0.05.

Results

Singing behavior

Total numbers of songs recorded over the three weeks of observation were compared across

the three male social conditions. The highest rate of singing was observed in male subjects

housed alone (M) followed by males housed with another male (M-M) and then by males

housed with a female, (M-F) (Fig 2A). Statistical analyses confirmed that the differences

between groups were significant (H (df = 2, N = 14) = 8.251, p = 0.0162). Dunn’s Multiple

Comparison post-hoc test showed that the male-alone group was significantly different from

male with a female. Note however that a hypothesis-driven Mann Whitney test directly com-

paring the singing rates in the M-M and M-F groups suggested the existence of a significant

difference also between these groups (U (N1 = 6, N2 = 5) = 3, one-tailed p = 0.015).

HVC volume

As expected based on previous work [44,48] in the M-F dyads, HVC volume was bigger in

males than in females (U (N1 = 4, N2 = 3) = 0, one-tailed p = 0.0286; Males: 0.257±0.021,

Females: 0.122± 0.020, all means ± SEM; Fig 2B). HVC volume was not significantly different

in males housed in different social conditions (H (df = 2, N = 11) = 4.303 p = 0.1161). The
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limited numerical differences between groups followed however the same general pattern as

the differences in singing behavior (M> M-M > M-F).

HVC neurogenesis

BrdU+ cells. The overall number of BrdU+ cells in the VZ dorsal to HVC was significantly

different between three groups of males subjected to different social conditions during 21 days

(H (df = 2, N = 14) = 7.47, p = 0.024; Fig 3A). A post-hoc test showed that males housed with

another male had more BrdU+ cells in the VZ than males housed with a female, the latter was

not different from males housed alone. When the number of BrdU+ cells was normalized by

the length of VZ, the difference in BrdU+ cells between the three groups of males was still sig-

nificant (H (df = 2, N = 14) = 6.70, p = 0.035), however a post-hoc test did not reveal any pairs

Fig 2. Effect of social conditions on total number of songs measured during all observations (A) and

on the volume of HVC measured in Nissl stained section (B). HVC volume in females is also shown. M:

male-alone, M-F: male housed with female, M-M: male housed with another male, F-M: female housed with a

male. The figures on the bars indicate the numbers of available data. * = p<0.05.

doi:10.1371/journal.pone.0170938.g002
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of groups that were significantly different from each other Fig 3B). Comparing the BrdU+ cells

between males and females in the M-F group revealed no significant difference in terms of

cells per section (U (N1 = 5, N2 = 3) = 7, p = 1.000), nor in terms of cells per mm of VZ (U

(N1 = 5, N2 = 3) = 7, p = 1.00).

Inside HVC, the density of BrdU+ cells was also higher in male subjects housed with

another male than the other two groups of males, but this difference did not reach significance

(H (df = 2, N = 14) = 3.89, p = 0.143; Fig 3C). No sex difference in the BrdU+ density in HVC

was found (U (N1 = 5, N2 = 3) = 5, p = 0.572). The estimated number of BrdU+ cells in the

Fig 3. Number of BrdU+ cells in the ventricular zone (VZ) dorsal to HVC as an absolute number per section (A) and normalized by the length of the

VZ (B). Density (number per mm2) of BrdU+ cells in HVC (C) and number of BrdU+ cells estimated for the entire HVC (D). M: male-alone, M-M: male

housed with another male, M-F: male housed with female, F-M: female housed with a male. The figures on the bars indicate the numbers of available data

points. * = p<0.05.

doi:10.1371/journal.pone.0170938.g003
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entire HVC was not significantly different across male subjects in different social conditions

(H (df = 2, N = 11) = 4.55, p = 0.103; Fig 3D), neither was it different between sexes of equiva-

lent social conditions (U (N1 = 4, N2 = 2) = 4.00, p = 1.000).

EdU+ cells. No difference between treatment groups was found in the number of EdU+

cells in the VZ dorsal to HVC in males (H (df = 2, N = 14) = 1.37, p = 0.504; Fig 4A). When the

number of EdU+ cells in the VZ was normalized by the length of the VZ, no difference was still

seen between different social conditions either (H (df = 2, N = 14) = 1.54, p = 0.463; Fig 4B).

Comparison of sexes in equivalent social treatments (M-F vs. F-M) showed that females had

fewer EdU+ cells per section (U (N1 = 5, N2 = 4) = 0, p = 0.016; Figs 4, 5A and 5B), but this

Fig 4. Number of EdU+ cells in the VZ dorsal to HVC as an absolute number per section (A) and normalized by the length of the VZ (B). Density

(number per mm2) of EdU+ cells in HVC (C) and numbers of EdU+ cells estimated for the entire HVC (D). M: male-alone, M-M: male housed with

another male, M-F: male housed with female, F-M: female housed with a male. The figures on the bars indicate the numbers of available data points.

* = p<0.05; (*) = p<0.05 after an ANOVA showing only a statistical tendency (p = 0.053).

doi:10.1371/journal.pone.0170938.g004
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difference disappeared when counts were normalized by the VZ length (U (N1 = 5, N2 = 4) = 0,

p = 0.016; Fig 5B).

The density of EdU+ cells in HVC was marginally different between social condition groups

in males (H (df = 2, N = 14) = 5.87, p = 0.053; Fig 4C) largely because males housed with another

male tended to have a numerically higher density of EdU+ in HVC than males housed with a

female (even if this difference is not significant). No significant difference was found in this mea-

sure between sexes in equivalent social conditions (U (N1 = 5, N2 = 4) = 8.00, p = 0.730). The

estimated number of EdU+ cells in the entire HVC was not different between social conditions

(H (df = 2, N = 11) = 2.91, p = 0.233: Fig 4D) neither between sexes in equivalent social condi-

tions (U (N1 = 4, N2 = 3) = 2.00, p = 0.229).

Cross-reactivity validation. In male canaries injected with EdU only whose brains were

collected 4 or 24 hours after the last injection there was a high degree of cross-reactivity of

Fig 5. Photomicrographs illustrating the sex difference in numbers of EdU+ cells in the VZ dorsal to HVC (A-B; Males >Females) and in the

number of DCX+ neurons in HVC (C-D; Females>Males). In panels A-B, EdU+ cells (white arrows) were labeled in red by the Click-IT reaction while the

limits of HVC were identified by the higher density of Hu+ cells labeled in green. In all panels, the ventral edge of HVC is indicated by a dotted line. The

magnification bars are set at 500 μM.

doi:10.1371/journal.pone.0170938.g005
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BrdU antibody (ABD Serotec, OBT0030) with EdU as shown by the correlation of the number

of EdU+ and BrdU+ cells counted in segments of the VZ in the combined sections collected at

both intervals after BrdU injections (r2 = 0.84, y = 0.70x + 10.79, Fig 6). The average percentage

of EdU+ cells detected by the BrdU antibody was 87.6% (SEM = 3.7%, n = 19 sections). These

data thus suggested that it should be possible to quantify both BrdU and EdU in sections from

subjects injected with both thymidine analogs by subtracting from the BrdU-positive counts

the numbers of EdU-positive cells.

BrdU-EdU co-labeling. Although the cross-reactivity validation showed that the BrdU

antibody we used recognizes most EdU+ cells, the quantification of BrdU+ and EdU+ cells in

the brains of subjects from the main experiments that had been injected with both markers

identified some subjects with more EdU+ cells than BrdU+ cells. There were even social condi-

tions where such a difference (more EdU+ than BrdU+ cells) was seen in the average counts

(e.g. in the VZ of M-F males). This suggested that at least in some cases the cross-reactivity was

not as complete as expected. To further investigate this question, we double-labeled for BrdU

and EdU one section through HVC from each subject of the main experiment and quantified

the single-labeled and double-labeled cells in the VZ dorsal to HVC and inside HVC.

Overall, the pattern of the single-labeled EdU+ and BrdU+ cells across groups was similar to

the quantification of these labels performed on different sets of sections as summarized in Figs

3 and 4 (data not shown). Confirming our hypothesis regarding the lack of complete cross-

reactivity in these brains, we observed that, on average, only 43.7 ± 0.06% (n = 18) of EdU+

cells in the VZ and 42.8% ± 0.07% (n = 18) of EdU+ cells in HVC were also labeled by BrdU. If

we assume that some of these cells were BrdU+ because they had incorporated BrdU as well as

EdU, the extent of cross-reactivity would be even lower. This is however unlikely since the

BrdU and EdU injections were made 11 days apart.

Putting this methodological limitation aside, these counts of double-labeled cells allowed us

to obtain an estimate of how many BrdU+ cells truly contained BrdU only (BrdU+EdU-) by

subtracting from the total BrdU+ cells the number of BrdU+EdU+ cells. Although this number

is possibly an underestimate because some of the EdU+BrdU+ cells could have incorporated

both compounds (an unlikely event as discussed earlier in this section), this number still

Fig 6. Linear regression of number of EdU-positive cells versus number of BrdU-positive cells in the

VZ of the combined sections of birds injected with EdU only 4 and 24 hours before brain collection.

doi:10.1371/journal.pone.0170938.g006
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provides a useful estimate of how many of the cells born at the start of the social context

manipulation and had incorporated BrdU at that time survived for 21 days. This analysis

revealed that males housed with a female tended to have fewer BrdU+EdU- cells than the

other two groups of males both in the entire VZ (H = 5.32 (df = 2, N = 14), p = 0.070) and

in HVC (H = 5.581 (df = 2, N = 14), p = 0.061; data not shown). This pattern was also pres-

ent in the analysis of the density (numbers per mm or per mm2) of BrdU+EdU- cells in the

VZ (H = 5.51 (df = 2, N = 14), p = 0.064, Fig 7A) and in HVC (H = 6.43 (df = 2, N = 14),

p = 0.093, Fig 7C). Comparing the males and females in the M-F group revealed a numeri-

cally larger number (VZ: U (N1 = 5, N2 = 4) = 3, p = 0.112; HVC: U (N1 = 5, N2 = 4) = 4,

p = 0.190; not shown) and density (VZ: U (N1 = 5, N2 = 4) = 3, p = 0.112, Fig 7A; HVC: U

(N1 = 5, N2 = 4) = 2, p = 0.064, Fig 7C) of BrdU+EdU- cells in the brains of the females than

in those of the males although these differences did not reach statistical significance.

We also compared across groups the ratio of BrdU+EdU- cells over EdU+ cells as a measure of

how many early born compared to late born cells survived. This comparison showed a significant

difference between the three groups of males in the VZ (H = 9.44 (df = 2, N = 14), p = 0.009, Fig

7B) and a trend in HVC (H = 5.55 (df = 2, N = 13), p = 0.063, Fig 7D). Post-hoc tests indicated

that males housed alone had a higher ratio of BrdU+EdU- over EdU+ cells in the VZ than males

housed with a female. Males housed with a female also had a lower ratio for the VZ than the

females they were housed with (U (N1 = 5, N2 = 4) = 1, p = 0.032, Fig 7C) but this difference was

not significant in HVC (U (N1 = 5, N2 = 4) = 3, p = 0.112, Fig 7D).

Doublecortin (DCX). The density of fusiform DCX+ neurons in HVC was not different

between social groups (H (df = 2, N = 14) = 1.07, p = 0.586; Fig 8A). The comparison between

sexes in the M-F group showed however a significantly higher density of fusiform DCX+ neu-

rons in females compared to males (U (N1 = 5, N2 = 4) = 0, p = 0.016). A similar pattern was

found for round DCX+ neurons, with no difference between social treatment groups (males: H

(df = 2, 14) = 0.55, p = 0.759 and a significant sex difference with higher densities in females

(U (N1 = 5, N2 = 4) = 0, p = 0.016; Fig 8C).

The estimated number of fusiform DCX+ neurons in the entire HVC was significantly differ-

ent between the male social condition groups (H (df = 2, N = 11) = 7.05, p = 0.029; Fig 8C). A

post-hoc analysis showed that males housed with a female had significantly fewer fusiform DCX+

neurons/HVC than males housed with another male. Males also tended to have a larger total

number of fusiform DCX+ neurons in HVC than females (U (N1 = 4, N2 = 3) = 0, p = 0.056).

There was a significant effect of social condition on the estimated total number of round DCX+

neurons for HVC in males (H (df = 2, N = 11) = 7.05, p = 0.029; Fig 8B), but the post-hoc analysis

did not reveal any pairs of groups that were significantly different from each other. No sex differ-

ence was found in the estimated total number of round DCX+ neurons in HVC (U (N1 = 4,

N2 = 3) = 5, p = 1.000).

Hormone measurements

The blood samples collected at the end of the experiment from male subjects were assayed for

testosterone concentrations, while samples from males and females collected at all three time

points were assayed for corticosterone. Testosterone concentrations in the plasma of male sub-

jects ranged from 1.24 to 6.84 ng/mL (mean = 3.56 ng/mL) and were not different between

social conditions (H (df = 2, N = 14) = 1.07, p = 0.586).

A two-way repeated-measures ANOVA of corticosterone concentrations in the three male

groups with time and social context as factors did not identify any main effects (time of sam-

pling: F2, 16 = 1.90, p = 0.182, social context: F2, 16 = 0.36, p = 0.708) nor interaction between

these factors (F4, 16 = 1.40, p = 0.278; Fig 9). The equivalent ANOVA comparing females and
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males in the M-F group identified no effect of time of sampling (F2, 14 = 2.75, p = 0.099), no

main effect of sex (F1, 14 = 0.65, p = 0.448) but a significant interaction between the two factors

(F1, 14 = 4.22, p = 0.037). Post-hoc analysis showed that before social context manipulations

corticosterone concentrations were higher in males than in females. Interestingly, 4 days after

Fig 7. Number of BrdU+EdU- cells in the VZ dorsal to HVC per mm (A) and density (number per mm2) of BrdU+EdU- cells in HVC (C). Ratio of

BrdU+EdU- over EdU+ cells in VZ (B) and HVC (D). M: male-alone, M-M: male housed with another male, M-F: male housed with female, F-M: female

housed with a male. The figures on the bars indicate the numbers of available data points. * = p<0.05.

doi:10.1371/journal.pone.0170938.g007
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onset of social conditions this pattern was reversed with females having a higher concentration

of corticosterone than males, although this difference was not significant.

Discussion

Most studies on adult songbird neurogenesis to have date employed a single proliferation

marker. However due to the limitations of each marker, these investigations could be missing

Fig 8. Density of fusiform DCX+ (A) and round DCX+ neurons (C) in HVC. Numbers of fusiform DCX+ neurons (B) or round DCX+ neurons (D)

estimated for the entire HVC. The figures on the bars indicate the numbers of available data points. * = p<0.05, # = p<0.06.

doi:10.1371/journal.pone.0170938.g008
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valuable information about the dynamics and regulation of neurogenesis. BrdU and other

exogenous markers label small populations of cells born at specific times immediately after

injections, doublecortin labels a broad population of neurons born over a large period before

brain collection, although some disagreement exists concerning how long this labeling will last

(see [14,69,70]). Exogenous markers are non-specific as regards the cell type that they label (in

the brain they label both new neurons and glial/endothelial cells even if the former are more

numerous, >70% of the total than the latter based on the co-localization with DCX; see [70]

for discussion concerning the HVC of canaries) but largely label in a specific manner newly

born cells. On the other hand doublecortin is neuron-specific but may also label neurons

undergoing other types of plasticity. To exploit the advantages of both approaches, we com-

bined here doublecortin and two exogenous markers, EdU and BrdU, to investigate effects of

social context on HVC neurogenesis in male and female canaries. Each approach revealed sub-

stantially divergent patterns of neurogenesis as a function of the social condition or the sex of

the birds.

Methodological issues

EdU was introduced relatively recently and has proven to be very useful for studying cell pro-

liferation (see for example [71–74]). Its detection, using a commercially available kit, is very

specific, not labeling any other analogue of thymidine and compared to immunohistochemical

staining of BrdU, the labeling is simpler, faster and the signal is stronger. Unfortunately, it is

now becoming clear that this tool also has some drawbacks. Since our experiment was per-

formed, a study comparing the survival time of cells labeled with EdU and CldU observed in

mouse brain and in primary cultures exposed to EdU (but not to CldU) an increase in pyknotic

cells and a decrease in EdU cells starting from 24 hours post-incorporation [53]. We noticed

here that on the day after EdU injection, the injected birds were not looking healthy: their feath-

ers were puffed up and some were sleeping with the head turned around in the night sleeping

Fig 9. Plasma corticosterone concentrations measured in the 4 experimental groups before the

experiment and after 4 and 21 days of exposure to the different social conditions. * = p<0.05.

doi:10.1371/journal.pone.0170938.g009
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position. These organismal symptoms disappeared after 1–2 days but the cellular toxicity might

have remained. Therefore, this marker should probably be used during in vivo studies only

when the tissue of interest will be collected within 24 hours after injection.

An additional problem of EdU relates to its dose-dependent cross-reactivity with most anti-

BrdU antibodies. Before initiating the main experiment presented here, a cross-reactivity test

was performed with canaries that had been injected with EdU only; their brain had been col-

lected 4 or 24 hours later and labeled for both EdU and BrdU. In this test, the cross-reactivity of

our BrdU antibody (ABD Serotec OBT0030 rat monoclonal antibody) with EdU was 87.6%.

Since this number was close to 100%, we assumed that we would be able to calculate the number

of cells containing BrdU in sections of brains injected with both EdU and BrdU by subtracting

the number of EdU+ cells detected from the number of BrdU+ cells detected. However, when the

brains from the main study, which had been injected with both thymidine analogs 10 or 21 days

before brain collection respectively were labeled for EdU and BrdU, the apparent cross-reactivity

of the BrdU antibody with EdU was much lower: on average only 43.7 ± 0.06% (n = 18) of EdU+

cells in the VZ and 42.8% ± 0.07% (n = 18) of EdU+ cells in HVC were also labeled by BrdU.

This apparent decrease in cross-reactivity is possibly due to the fact that while at 24 hours

most cells that had incorporated EdU had survived, 10 days later the cells that had incorpo-

rated a large amount of EdU had died and only those that had incorporated a smaller amount

of EdU were still surviving. While the detection of EdU with the EdU kit is very sensitive and

powerful, the detection of the low concentration of EdU in these cells by the BrdU antibody

might give a weaker signal that was not detectable during quantification. An additional factor

potentially decreasing the amount of EdU in cells at 10 days compared to at 24 hours post

injection is that some cells had undergone their final division after multiple divisions of a pro-

genitor that had incorporated EdU, each division further diluting the label.

The simultaneous use of these two thymidine analogs is thus bound to result in significant

problems that relate to the toxicity of EdU, limiting its use to label cell proliferation just before

tissue collection, and to its cross reactivity with most anti-BrdU antibodies [61]. We had also

tried in preliminary experiments an anti BrdU antibody that has been claimed not to cross-react

with EdU (antibody Exbio mouse monoclonal BrdU antibody, MoBu-1 clone, 11-286-C025:

[61]) but this antibody was also very poor at detecting BrdU itself and had to be discarded. Until

more specific BrdU antibodies have been developed or identified, we would thus suggest avoid-

ing the simultaneous use of these two markers.

We assessed here for each marker both the density of positive cells as well as their estimated

number in the entire HVC calculated based on the volume of this nucleus. In several cases a

different pattern of group or sex differences was detected by these two approaches due to the

contribution of the differences in HVC volume to the total count. Similarly, Yamamura and

colleagues [75] found diverging effects of testosterone and its metabolites, 5α-dihydrotestos-

terone (DHT) and E2 alone or in combination, on total numbers of DCX neurons in HVC

and on DCX+ neurons density in female canaries. These diverging effects on density and total

number of newborn neurons in HVC probably relates to the fact that the growth of HVC is

due not only to an increase in neuron number but also to changes in soma size and spacing of

neurons. The two types of measures of neurogenesis are thus not necessarily correlated and

this raises the question of which measure better relates to functional outcomes such as memory

formation or production of specific song features. Although many interesting hypotheses have

been proposed about the function of adult neurogenesis such as its role in song learning or

song perception, a recent critical review (see [3]) has pointed out that the lack of clear causal

links between the occurrence of adult neurogenesis and any behavioral or cognitive outcome

suggests that the function of neurogenesis itself largely remains to some extent an open ques-

tion (see [3]).
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Effects of social conditions

Compared to isolated males, the males housed with a female had a reduced rate of singing, a

phenomenon that has been described in other songbird species including canaries [35]. In the

current study males housed in a same-sex dyad also sang at rates that were intermediate

between the M and M-F males. Although the difference of singing rates between M-M and

M-F males was not significant in the general non parametric analysis, it became significant in

a hypothesis-driven Mann Whitney tests focused on these two groups only, which thus repli-

cates the result of a previously published study [39].

The number of subjects per group was reduced in the present experiment due to technical

problems such as the loss of Silastic™ implants and this limited the statistical power of the

study. However, the patterns of differences between groups clearly indicated that the way the

three populations of newborn neurons labeled by BrdU, EdU and DCX were affected was not

always equivalent. In a first step we quantified the BrdU and EdU labels separately on different

sets of brain sections. Inside HVC both the EdU and BrdU density/total numbers per HVC

tended to be higher in the M-M condition than in the other two groups even if group differ-

ences did not reach statistical significance in many cases (see Figs 3 and 4). This similarity

probably reflects the fact that many of the BrdU-labeled cells are actually EdU cells detected by

the BrdU antibody. Indeed, in the sections double-labeled for BrdU and EdU, almost one half

of BrdU cells in HVC were also positive for EdU. This pattern seen in the total BrdU and EdU

cells in the separate sets of sections was also observed when BrdU and EdU were co-labeled in

the same set of sections (data not shown).

We additionally quantified BrdU and EdU cells in the putative site where many (most?)

HVC new neurons are born: the VZ dorsal of HVC [76–78]. Although this measure does not

represent the real rate of proliferation since large numbers of cells labeled at this location had

plenty of time to migrate away and progenitors remaining in place could have lost a detectable

signal over time after multiple divisions, it can serve as an indirect indicator of the prolifera-

tion rate at the time of injection or conversely as a negative measure of progenitor migration.

Both the cells per section and cells per mm again showed a similar pattern for BrdU and EdU

with the M-M group having more labeled cells than the other two groups, although in both

measurements the effect was much less pronounced for EdU than for BrdU, thus providing a

first suggestion that the cross-reactivity of BrdU with EdU cells does not completely explain

the effect seen in BrdU. In the VZ of double-labeled sections approximately half of BrdU cells

were also positive for EdU. These neurogenesis measures thus suggest a higher rate of prolifer-

ation and survival in males housed with another male, although this group also often displayed

high inter-variability that prevented difference with other groups from being significant. This

variability could be due to the dominance-hierarchy that was established in some pairs or alter-

natively reflect simply preexisting differences in birds assigned to the M-M group that poten-

tially had a constitutively more active neurogenesis.

The double-labeled sections (BrdU and EdU) provided a more precise measure of cells that

had incorporated BrdU by excluding from the total the BrdU cells that were also positive for

EdU. The pattern for these BrdU+EdU- cells (Fig 7) was somewhat different from the total

BrdU+ or EdU+ cell counts (Figs 3 and 4). Males housed with a female had here a much lower

number and density of these cells both in VZ and HVC than the other groups of males. Fur-

thermore, when we assessed the number of BrdU+EdU- cells relative to the number of EdU+

cells as a measure of relative survival of the older cells, the males housed with a female also had

a lower ratio than the other groups, with males housed with another male falling in between

the other two groups. These data thus suggest that in presence of a female, newborn cells that

had been labeled by BrdU survived less than in other conditions. This effect can relate to
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migration, recruitment and/or survival but presumably not to a difference in proliferation

since the BrdU labeling occurred when different social conditions had just been established for

a few hours. The fact that this difference was not found in the count of EdU+ cells suggests that

either social condition did not have enough time to affect these cells labeled only 10 days

before brain collection or that an increase in proliferation compensated the decrease in recruit-

ment/survival.

The density of fusiform or round DCX+ neurons was not different across social conditions

in males, however the estimated number of fusiform and round DCX neurons for the entire

HVC was numerically lower in males housed with a female than the other two groups of males,

although this difference was significant only for the comparison of fusiform cells between the

M-M and M-F groups (Fig 8B). In contrast, previous studies reported that males housed with a

female have a higher density of DCX neurons than males housed alone [35] or males housed

with another male [18]. Birds in both these studies were however maintained under a long-day

photoperiod (16L:8D) while they were here on 11L:13D and in the former study birds were in

acoustic isolation and exclusively affected by the social environment inside their cage, whereas

the birds in the current and previous [18] study were visually isolated but could hear all other

birds present in the same room. They could thus integrate acoustic cues from a large number of

other birds and this complex acoustic environment could have partly masked some effects of

the partner present in the same cage. These differences in design possibly explain why we saw a

different pattern from previously published studies. Photoperiodic gating of the effect of social

environment on HVC neurogenesis will be further discussed below.

Singing activity in M-M males was intermediate between activity in the M and M-F groups.

Overall the ratio of BrdU+EdU- over EdU+ in HVC and at the VZ level, and HVC volumes fol-

lowed a similar pattern. The differential levels of singing between the groups could explain differ-

ences in some measures of neurogenesis. Singing has been shown to have a positive feedback

effect on BDNF expression and neurogenesis in HVC [37]. It is interesting that this pattern is

seen in measures of BrdU+EdU- cells (presumably older neurons), of HVC volumes and to some

extent in the numbers of DCX+ neurons in the entire HVC but not in the densities or total num-

bers of EdU+ cells (presumably younger neurons) nor in measures of total BrdU+ cells that are

contaminated by EdU cross-reactivity. This would suggest that singing activity affects the survival

of new neurons but only does so after a minimal amount of time that would, based on the current

data, definitely need to be longer than 10 days. It has been suggested in mammals [16,43] and in

zebra finches [41,42] that newborn neurons have a critical sensitive period when they are respon-

sive to certain environmental cues. For example, work on the social context effect on neurogen-

esis in the caudal nidopallium of zebra finches indicates that changes in social conditions (trans-

fer from a small group to isolation or to a large group) differentially affects cells labeled by BrdU

if brain collection is performed 40, 60 or 150 days after labeling. It is thus possible that the EdU+

cells that were about 10 days of age at brain collection had not yet reached the sensitive period

when the social context can affect their survival. Alternatively, the toxicity of EdU means that a

large number of labeled cells must have died before brain collection and it is conceivable that

those cells that survived constitute a sub-population that is less or not sensitive to the social

environment.

Males housed with a female also had somewhat smaller HVC volumes and reduced levels of

singing compared to other males, although this difference was only significant for the songs

produced by males alone versus males housed with a female. There was also a lower rate of

putative neuronal proliferation and survival in males housed with a female as detected by sev-

eral measures which contrasts with previous studies that had identified effects in the opposite

direction based on measures of HVC volumes or counts of DCX+ neurons [18,35,39]. Multiple

factors could explain this discrepancy.
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The effects of the social environment can indeed be complex. Our previous work showed

that males housed with a female had a larger HVC than males housed with another male [18,39]

but this experiment did not allow us to discriminate between an increase due to the female pres-

ence from a decrease due the presence of another male. Other studies have also found that

males in acoustic isolation have a smaller HVC than males housed in group although the spe-

cific aspect of the social condition playing a key role have not been identified in a definitive

manner [79]. The behavior of congeners including their vocalizations could for example be the

determining variable here and more work should be done concerning the question of social

effects on brain plasticity.

We also wondered whether the multiple manipulations performed in this but not in previ-

ous studies (blood sampling on day 4, multiple injections of BrdU on day 0 and of EdU injec-

tions on day 12, . . .) had potentially induced a stress preventing the positive effect of female

presence. Assays of plasma corticosterone provided however no evidence for this interpreta-

tion: concentrations of this steroid were similar in the three male groups and, if anything,

decreased in M-F males in the course of the experiment.

Another difference between this study and previous studies concerns the photoperiod the

birds were exposed to. We kept birds under an 11L:13D photoperiod that insures they do not

become photorefractory during the experiment, while previous studies identifying a positive

effects of females on HVC were performed under an 16L:8D photoperiod [35,39,80]. It is pos-

sible that males become more sensitive to social cues related to reproduction and/or alterna-

tively that females only start emitting positive signals conducive to enhanced neurogenesis

under photoperiods mimicking spring and summer conditions. Moore showed [52] that male

sparrows housed with females implanted with estradiol displayed an increased rate of mount

attempts and higher testosterone and LH levels than males housed with non-sexually receptive

females with empty implants when held on long-days but that under short-days males still

mounted more the E2-treated females but no longer showed the increased testosterone and

LH concentrations compared to the control males housed with sexually non-receptive females.

In addition, the stimulatory effects of female presence on the development of the hypothala-

mus-pituitary-gonadal axis has been shown in quail to be effective only or more effective in

long days [81]. On the female side, effects of estrogens on receptivity and on the response to

stimulatory male songs are also influenced by the photoperiod. In ovariectomized canaries

for example, exposure to male songs increases the estrogen-induced nest building only in

marginally stimulating photoperiods (12L:12D). In short days nest building is not observed

at all but in long days, activity is so intense that no further increase can be observed after

exposure to male songs [32]. Similarly, in white-crowned sparrows, male song playback

increases ovarian growth if females are in 12.5L:11.5D or in 14L:10D but not under 6L:18D

or 11L:13D [82,83]. These studies provide evidence that neuroendocrine responses to

behavioral cues can be dependent on the photoperiodic condition the bird experiences [83].

It is thus conceivable that under the photoperiodic conditions used here either females did

not produce and send the adequate stimulatory stimuli to the males or males were not sensi-

tive to these stimuli.

Sex differences

The comparison of males and females in the M-F group also identified divergent patterns of

sex differences as a function of the marker of neurogenesis employed. In HVC, the total num-

bers and the density of BrdU+ and EdU+ cells were both similar in the two sexes (Figs 3 and 4)

and again, the similarity of these two sets of results probably reflects the cross-reactivity of the

BrdU antibody with EdU. In contrast, however, the density of BrdU+EdU- cells (Fig 7C), the
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ratio of BrdU+EdU- to EdU+ cells (Fig 7D) and the density of both fusiform and round DCX+

neurons (Fig 7A and 7C) were higher in the female than in the male HVC.

However, when cell numbers were estimated for the entire HVC, the sex difference in round

DCX+ neurons disappeared (Fig 7D) and the difference in fusiform DCX+ neurons was even

reversed (males>females, Fig 7C). Together the data are thus supporting the fact that progeni-

tor proliferation at the VZ and young neuron recruitment by HVC are overall very similar in

males and females [84,85] even if small localized differences favoring females do exist in the ros-

tral telencephalon [86] but since HVC volume is smaller in females, the density of these new

neurons is larger in females than in males. Why this sex difference in density in favor of females

was not detected in the analysis of EdU+ cells remains unexplained. It could be hypothesized

that the cytotoxicity of EdU discussed in the previous sections could block migration of young

neuroblasts away from the VZ thus causing a local accumulation and in parallel decreasing the

density of EdU+ cells in HVC so that F-M values are equivalent to values in the M-F group (Fig

4C). Why this would affect females proportionally more than males is however unclear.

It is interesting to note that sex differences in HVC neurogenesis favoring females were

detected with markers related to relatively older neurons (BrdU+EdU- cells, DCX+ neurons)

but not with EdU that was injected only 10 days before tissue collection and thus labeled com-

paratively younger cells. This sex difference concerning BrdU+EdU- cells and DCX+ neurons

but not EdU+ cells could be taken as evidence suggesting that female neurons are recruited

and/or survive in HVC comparatively longer than male neurons. Unpublished data from our

lab indeed suggested that newborn neurons in the HVC of females mature more slowly than in

the male HVC, taking longer to down-regulate DCX [87]. This specialized difference related to

older neurons could also potentially relate to the lower baseline corticosterone concentration

in the females compared to males of the same M-F group. Since this difference was seen in

baseline samples, before the establishment of differential social contexts, it has to reflect a pre-

existing sex difference that later vanished in samples collected on days 4 and 21. Corticoste-

rone decreases neural proliferation in mammals [88] and in male songbirds [89,90]. Exposure

to a higher corticosterone concentration before but not during the experiment might thus

explain the lower rate of neurogenesis in males compared to females observed in measures of

older but not comparatively younger neurons.

The more active neurogenesis in females compared to males could seem at first sight counter-

intuitive given that testosterone is known in males to increase new neurons survival [18,75,84,

91–95] It must be recalled however that females in the present experiment were treated with

estradiol and estrogens also increase neurogenesis in the canary HVC [11] while in female star-

lings, blocking estrogenic action decreases neurogenesis to the same low level as in males [49]. In

agreement with the present study, female starlings, red-winged blackbirds and brown-headed

cowbirds also had a higher density of DCX neurons in HVC than males [49,50]. This higher den-

sity of DCX neurons in females than males contrasts with results of a previous study where males

had more fusiform DCX neurons and tended to have more round DCX neurons than females

[18]. However, all the canaries in the present study were treated with exogenous hormones—tes-

tosterone for the males and 17β-estradiol for females—whereas birds in [80] were only exposed

to their endogenous steroids. Although the photostimulated females in this previous study likely

had relatively high levels of circulating estrogens, concentrations were not measured and they

were possibly not as high as in estradiol-treated females of the present study. The discrepancy of

results could also be due to the presence of gonads in males of the study of Balthazart et al [80]

but not here, or to the different quantification approaches (counts in the entire cross-section of

HVC here vs. counts in a 200 μm x 200 μm square in the center of HVC in [18].

Note also that the pattern of sex difference density per mm of BrdU+EdU- cells in the

VZ was similar to the pattern observed for the density of these cells in HVC (Fig 7A vs. 7C)
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suggesting that even 21 days after injections of the exogenous marker, the density of labeled

cells in the VZ still reflects the initial proliferation rate despite the migration away of many

labeled progenitors. This was however not true for the density of EdU+ cells per mm of VZ

possibly due to the toxicity of this compound discussed before (Fig 4A vs. 4C). More work

should clearly be devoted to understanding how EdU incorporated into cells replicating their

DNA affects the subsequent survival of these cells.

Conclusion

These results, despite their limited power related to small final sample sizes, demonstrate that the

use of multiple markers is a very useful tool to understand the complexities of environmental

influences on HVC neurogenesis. A limited number of endogenous markers have been validated

for use in songbirds, including doublecortin that is particularly useful because it is neuron-spe-

cific and discriminates two different stages of neuroblast development, especially when combined

with different analogues of thymidine which enable us to follow the trajectories of newborn neu-

ron populations born at a specific time relative to the treatments administrated. Technical prob-

lems are however associated with the simultaneous use of multiple thymidine analogs including

cross-reactivity in their detection and potential toxicity of EdU that should only be used as a

marker of proliferation and injected less than 24 hours before brain collection. Even with these

limitations, the present data suggest that proliferation, recruitment and survival of new neurons

can be independently affected by environmental conditions with DCX providing cumulative

information not necessarily reflected in measures of single new populations (BrdU+ or EdU+).
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Abstract  

Social context plays a key role in the control of singing rate across songbird species. Male 

canaries sing at high rates when housed alone but very rarely in the presence of a female. 

On average a male housed with another male sings at a rate intermediate of an isolated 

male and a female-paired male, however singing rate in male-male pairs is highly variable 

likely depending on the specific hierarchical relationship established between the males. 

Songbirds readily respond to the presence of a mirror, which is often interpreted as 

showing the presence of a congener even if cases of self recognition seem to exist in 

oscines. We investigated the effect of a mirror on song rate in male canaries in two small 

scale studies. The preliminary study showed promising results with a significant 

suppression of song rate in individuals housed with a mirror. However, the follow-up study 

failed to support the inhibitory role of a mirror on singing motivation. Early in the 

experiment, two out of three subjects without a mirror sang at high rates, compared to 

only one out of five subjects with a mirror. However, later on in the experiment this trend 

disappeared. The average song rate of the two groups never differed significantly. The 

reason for the discrepancy between the two studies could be related to the different 

photoperiods birds were exposed to, different strains of canary used or strong individual 

differences. Previous studies of budgerigars and European starlings have indeed shown 

large differences in individual responses to a mirror, which seemed to depend on the 

subject’s social experiences during development. 
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Introduction 

 

Birdsong is a complex vocal behavior acquired during development in a process similar 

to the learning of human speech (Brainard and Doupe, 2013). Like human speech, 

singing is a social behavior—male songbirds often use it in courtship or in territorial 

defense (Catchpole and Slater, 2008; Collins, 2004). The social context affects singing 

behavior in many ways. When a male zebra finch sings to a female, variability in syllable 

sequencing and syllable structure is reduced relative to when males sing alone (Kao et 

al., 2005; Sossinka and Böhner, 1980). Male white-crowned sparrows and canaries sing 

at different rates depending on the social housing conditions (Alward et al., 2013; Boseret 

et al., 2006; Shevchouk et al., 2017a; Tramontin et al., 1999).  

A well-established social effect is the suppression of singing in males by the 

presence of a female which has been shown in European starlings (Cuthill and 

Hindmarsh, 1985),  sedge warblers (Catchpole, 1973), great tits (Krebs et al., 1981) and 

canaries (Alward et al., 2014; Boseret et al., 2006; Shevchouk et al., 2017a). These 

studies are thus consistent with the role of song in mate attraction: song is no longer 

necessary when the female is continuously present. The song rate of males housed with 

other males is intermediate between female-paired males and isolated males (Shevchouk 

et al., 2017a). As a territorial behavior, singing rate can reflect the social status of a male 

songbird. Dominant male canaries sing at higher rates than subordinate males (Boseret 

et al., 2006; Sartor and Ball, 2005; Wiley et al., 1993), therefore the intermediate singing 

rate found in male-male pairs in which social hierarchy has not been determined could be 

a reflection of heterogeneity in the population.  

In this study, we tested whether housing male canaries with a mirror would reduce 

song rate by simulating the effect of the presence of another male. Avian species identify 

their mirror reflection as a conspecific (Buckley et al., 2017; Diamond and Bond, 1989; 

Friedman, 1977; Henry et al., 2008; Lott and Brody, 1966) although work with corvids has 

suggested that some species might be recognizing themselves (Prior et al., 2008; but see 

Soler et al., 2014). In general the specific behavioral responses of avian species to a 

mirror reflection are poorly understood and seem to depend on the sex of the bird and its 
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previous social experience (Buckley et al., 2017; Henry et al., 2008). A mirror can also 

induce physiological changes. Female ring doves who can hear a dove colony or a single 

male’s vocalizations respond to their own mirror reflection with growth of the reproductive 

tract, but do not show this response if they have only the auditory stimulation (Friedman, 

1977; Lott and Brody, 1966). Cichlid fish exposed to their own reflection aggressively 

attack it, but they show no change in circulating testosterone concentration, whereas 

circulating testosterone decreases when males of this species lose a fight and increases 

when they win a fight (Oliveira et al., 2005). This suggests that although a mirror can 

evoke territorial behavior, the hierarchy of the “dyad” formed by a subject and its reflection 

is less clear, making it an interesting situation to examine the social modulation of song 

rate.  

 Moreover, a method to reduce song rate in a non-invasive way could be a useful 

tool for studying the effect of a songbird’s own singing on the plasticity of its song control 

system. Male canaries who were prevented from singing had a lower expression of the 

neurotrophin BDNF (brain-derived neurotrophic factor) and a lower incorporation of 

newborn neurons in the song control nucleus HVC, compared to control birds (Li et al., 

2000). The method for reducing the song rate in this study, an experimenter waving his 

hands whenever the birds started to sing, could however be stressful for the birds. Stress 

induces the release of corticosterone which inhibits neurogenesis both in mammals 

(reviewed by Mirescu and Gould, 2006) and songbirds (Katz et al., 2008; Newman et al., 

2010). Therefore, it is not clear whether the decreased neurogenesis in birds of the study 

by Li and colleagues (Li et al., 2000) was due to their decreased singing rate or their 

increased stress. If a mirror could decrease song rate without causing substantial stress, 

this behavioral setup could be used to confirm the positive effect of the birds’ own singing 

on neurogenesis in HVC, as well as on other forms of neuroplasticity related to singing. 

 

Materials and Methods 

 

Experiment 1 

The full methodology of this preliminary experiment is described in chapter 1 of this thesis. 

Briefly, photosensitive male canaries of the Fife fancy breed were castrated, implanted 
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with a 10 mm-long Silastic™ implants filled with testosterone and housed individually on 

a photoperiod of 11L:13D. Being part of a study on HVC neurogenesis all subjects were 

injected 5 times with 100 µl of a 10 mg/ml Bromodeoxyuridine (BrdU) solution (dissolved 

in 0.9% saline with 28 mg/L NaOH) one day after receiving the testosterone-filled implants 

and 5 times with an equimolar dose of 5-ethynyl-2'-deoxyuridine (EdU) in 0.01M PBS 

eleven days later. Three subjects had a mirror 16 cm wide x 16 cm high attached to one 

wall of their cage (Mirror group, these subjects were not included in the experiment 

described in chapter 1 but were treated in the same way as the subjects in that 

experiment). The other eight subjects (included in chapter 1 experiment) were housed in 

equivalent conditions but did not have a mirror in their cage – No-mirror group. Singing 

behavior was recorded by direct observation once every second day for five minutes in 

the morning and five minutes in the afternoon, for a total of 10 observations.  

 

Experiment 2 

Experimental animals 

Eight male canaries of an unknown strain used in this study were obtained from a local 

breeder in Belgium. All subjects had been on natural daylight during the months preceding 

their arrival in our laboratory at the University of Liege, Belgium, in late September. 

 

Experimental procedures 

Upon arrival subjects were housed on medium short day photoperiod (11L:13D) for 7 

months and on short day photoperiod (8L:16D) for 5 weeks, in single-sex groups of 5-7. 

One week after arrival all males were castrated following a procedure similar to that 

described in Sartor et al., (Sartor et al., 2005). Briefly, under isoflurane anesthesia each 

testis was removed via an ipsilateral incision posterior of the last rib. Testes were found 

to be regressed in all subjects. The incision was sutured, the subject was allowed to 

recover under a heat lamp until perching and then returned to its home cage. One day 

before the start of the experiment the subjects received a single subcutaneous 10 mm-

long Silastic™ implant (Dow Corning reference no. 508-004; inner diameter 0.76 mm, 

outer diameter 1.65 mm) filled with crystalline testosterone (Fluka Analytical, Sigma-

Aldrich) and sealed on both sides with medical silicone (Medical Adhesive Silicone, Dow 
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Corning). All implants were checked under a stereo-microscope to make sure they were 

well sealed and were incubated in 0.9% NaCl at 37°C overnight before being inserted 

subcutaneously.  After implanting the Silastic™ the subjects were housed individually in 

new cages with a mirror on one wall of their cage (exactly the same as in experiment 1) 

– Mirror group (n=5), or without a mirror (No-mirror group, n = 3). Since these subjects 

were also part of a study on HVC neurogenesis, the following day they were injected with 

100 µl of a 10 mg/ml Bromodeoxyuridine (BrdU) solution (dissolved in 0.9% saline with 

28 mg/L NaOH) 5 times with 2 hours in between each injection. The birds weighed on 

average 20 grams, therefore the BrdU dose per injection was 50 mg/kg. On the same 

day, the photoperiod was changed to 14L:10D and the behavioral observations 

commenced (see next paragraph for details). On days 1, 2, 7 and 10 all birds were 

checked for presence of implants and on day 10 most subjects were found to have 

implants that started to pierce the skin and fall out. Therefore, on day 14 all 

subcutaneously implanted Silastic™ capsules were removed and new testosterone-filled 

Silastic™ implants, prepared in exactly the same way as previously, were inserted under 

light isoflurane anesthesia (1.5-3%) into the intraperitoneal space via an incision posterior 

of the last rib. Behavioral observations were resumed 7 days after this surgery, as no 

subject was found singing during the first 7 days, and continued for another 8 days.  

 

Song observation 

The song rate of all subjects was quantified during a total of 10-30 min per day in 10 

minute sessions over a total of 13 observation days. During the observations, the 

observer sat quietly in front of the cages and noted the number of songs produced by 

each male. Due to the small number of subjects all birds could be observed 

simultaneously. We operationally defined song as a vocalization longer than 

approximately one second in duration after at least a 500 msec period of silence. In the 

first six days the observer was not hidden from the subjects view and they were only 

observed to produce calls and short simple songs (2-3 seconds long), although longer 

more complex songs were heard outside of observation periods. This experimental phase 

will be referred to as the phase 1. For the rest of the experiment a cardboard blind was 

used to conceal the experimenter during song observation. During these further 
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observations, long complex songs were observed and therefore calls and short-songs 

were no longer considered relevant and were not recorded.  The observer-hidden part of 

the experiment was divided into a further 3 phases. The 2nd phase was similar to the first, 

the only difference being the concealment of the observer. During the 3rd phase in addition 

to the observer being hidden, a song-playback was used during or directly preceding the 

song observation. The song-playback was a song recording made from one of the birds 

in the experiment. The 4th phase had the same conditions as the 2nd phase, however the 

testosterone-implants were implanted intraperitoneally instead of subcutaneously, as 

described in the experimental procedures.  

 

All experimental procedures complied with Belgian laws concerning the Protection 

and Welfare of Animals and the Protection of Experimental Animals, and experimental 

protocols were approved by the Ethics Committee for the Use of Animals at the University 

of Liege (Protocol number 926). In all housing situations food, water, baths, cuttlebone 

and grit were available ad libitum. 

 

Statistical analyses 

The number of calls, short songs and longs songs in the 4 phases of experiment 2 and 

total number of songs in experiment 1 were all compared across the two groups (Mirror 

vs No-mirror) by a t-test. All statistical analyses were performed using GraphPad Prism 

and differences were considered significant for p<0.05. All data are represented here by 

their mean ± SEM. 

 

Results 

 

Experiment 1 

The preliminary study compared the singing rates in males with or without a mirror 

maintained on intermediately short photoperiod (11L:13D). All No-mirror subjects sang at 

higher rates than subjects with a mirror (Fig. 1). A t-test confirmed that the difference in 

singing rate between the groups was significant (t9 = 2.40, p = 0.040).  



85 
 

Experiment 1

Mirror No mirror
0

100

200

300

400 *

T
o

ta
l 

s
o

n
g

s

 

Figure 1. Total numbers of songs recorded during the 20 observation sessions of experiment 1. *= p<0.05 

for individually-housed male canaries with a mirror compared to male canaries housed without a mirror. All 

data are represented by their mean ± SEM. 

 

Experiment 2 

The interesting result of the preliminary study motivated us to repeat the experiment, this 

time exposing the birds to a long photoperiod to induce breeding conditions and a 

maximal singing rate. In phase 1 the experimenter was visible to the subjects, which 

seemed to inhibit their singing. Only calls and simple short songs (2-3 seconds) were 

observed, although complex songs were heard outside of observation periods. Although 

the average number of calls was higher in the No mirror than in the Mirror group (Fig. 2A), 

this difference did not reach significance (t6 = 1.19, p = 0.280). Most subjects did not sing 

short songs; there was only one subject in each group who sang at higher rates and no 

difference was detected between groups (Fig. 2B, t6 = 0.34, p = 0.744). 
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Figure 2. Total calls (A) and short simple songs (2-3 seconds) (B) recorded during 6 sessions of phase 1 

(experimenter visible to the birds during observation sessions) in male canaries individually-housed with or 

without a mirror. All data are represented by their mean ± SEM. 

 

In phase 2 the experimenter was hidden from the view of the birds and more 

complex longer songs were produced during the observation sessions, therefore calls 

and short songs were ignored. Two out of three No-mirror birds sang, while only one out 

of five males sang in the Mirror group (Fig.3), however this difference in song rate 

between groups did not reach significance (t6 = 1.76, p = 0.129). 
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Figure 3. Total number of songs recorded during 4 sessions of phase 2 (experimenter hidden from the birds 

view during observation sessions) in male canaries individually-housed with or without a mirror. All data are 

represented by their mean ± SEM. 
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In phase 3 song-playback occurred during or immediately prior to the song rate 

observation.  This increased the number of birds singing in the Mirror group but not in the 

No-mirror group (Fig. 4). Overall, song rates were slightly higher than in the previous 

phase (both phases had 4 observation sessions and so are comparable), but the 

difference between the two groups was even smaller than previously (t6 = 1.26, p = 0.256).  
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Figure 4. Total number of songs recorded during the 4 sessions of phase 3 (with song-playback during or 

immediately prior to observation, experimenter hidden from the birds) in male canaries individually-housed 

with or without a mirror. All data are represented by their mean ± SEM. 

 

During phase 4, the birds had already been in the experimental conditions for 3-4 

weeks and had been intraperitoneally re-implanted with testosterone-filled Silastic™ 

implants after having lost the subcutaneously inserted ones. In this phase, 3 out of 5 

Mirror subjects were observed to sing and 2 out of 3 No-mirror subjects. Overall, the same 

birds were singing at high rates in phase 4 as the ones singing in phase 3. There was no 

significant difference between the song rates of the two groups (Fig. 5, t6 = 0.28, p = 

0.789).  
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Figure 5. Total number of songs recorded during 10 sessions of phase 4 (experimenter hidden from the 

birds during observation sessions, 3-4 weeks after onset of experimental conditions, testosterone re-

implanted intraperitoneally after subcutaneous implants fell out) in male canaries individually-housed with 

or without a mirror. All data are represented by their mean ± SEM. 

 

Discussion 

 

In this study the effect of housing with a mirror on singing rate in male canaries was 

investigated in two small studies. The first study found a significantly suppressed song 

rate in subjects individually housed with a mirror compared to their counterparts housed 

without a mirror. Since the only difference between the two groups, which had 

substantially different song rates, was the mirror, we concluded that the subjects paid 

attention to the mirror and something about seeing their own reflection there influenced 

their motivation to sing. This result can be interpreted in a few ways. Since housing with 

a female also has the effect of suppressing song in male canaries, while housing with 

another male usually does so to a variable degree, this could mean that the subject 

regarded his reflection as a female bird, perhaps because that bird did not behave in an 

aggressive, territorial way. Canaries do not have a sexually dimorphic appearance and it 

is not yet clear which sensory cues allow canaries to identify the sex of conspecifics. A 

second interpretation is that the subject perceived the reflection as another male, however 

since that ‘other male’ did not attempt to show signs of dominance, he was not seen as a 

threat and thus, the territorial singing that is usually seen in two males housed together 
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did not occur. A third possibility is that, because the behavior of the reflected bird in the 

mirror did not fit into the subject’s expectations, this image was stressful for the subject 

and it was the stress that inhibited the singing activity. In this case, the use of a mirror to 

study the effect of a birds own singing on HVC neurogenesis would not be better than an 

experimenter waving his/her hands when the birds start to sing. The interpretation that 

the subject recognized himself in the reflection is unlikely because that should make them 

equivalent to subjects housed alone without a mirror and these subjects did not sing at 

the same high rates as subjects kept alone without a mirror.  

 The follow-up study showed no consistent inhibition of singing motivation by 

housing with a mirror. The first phase of the experiment was not conclusive because the 

sight of the experimenter inhibited all birds from singing during the observation sessions, 

therefore in all following phases the experimenter hid behind a blind. In phase two, 

although there was no significant difference in the average song rate between the two 

groups, there was a suggestion that the mirror might be inhibiting singing in a subset of 

subjects.  

Being a social behavior, singing is produced at higher rates when other individuals 

around are also singing, at least in zebra finches (Jesse and Riebel, 2012). Since there 

was a low number of subjects in the experiment and very few of them were singing at all, 

we hypothesized that the overall low rates of singing in the No-mirror group could be due 

to the lack of social stimulation. To test this hypothesis, we stimulated the subjects with 

song-playback and recorded their song rate during and immediately after the song-

playback. Although this manipulation did indeed slightly increase the average song rate 

in the room, the trend towards a difference between groups completely disappeared 

during this phase of the experiment. In phase four, even though no song-playback was 

used, the pattern was exactly the same as in phase 3, with exactly the same subjects 

singing at significant rates and the same subjects producing no songs. The song playback 

failed to activate singing in one No-mirror and two Mirror subjects, which never were 

observed to sing in the entire experiment, despite the long-day photoperiod and high 

circulating testosterone that the implants would presumably have induced.  

 The first study maintained the male canaries on an intermediate daylength of 

11L:13D. Although this photoperiod was longer than the 8L:16D photoperiod they were 
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previously exposed to and thus was probably partially photostimulating, it is most likely 

that these subjects were not in fully breeding condition, while the subjects in the follow-

up study were housed on 14L:10D and likely were in full breeding condition. This 

difference might suggest that the mirror can inhibit singing but only under some 

circumstances, including an adequate photoperiod. It is also conceivable that the effect 

of a mirror on the subjects’ behavior changes over time, with the subject changing its 

perception of the reflection via “social interactions” with it. A case study of the interaction 

of a Kea (a parrot, Nestor notabilis) with its own reflection shows substantial changes in 

the nature of the interactions over time (Diamond and Bond, 1989). It is possible that the 

inhibiting effect of the mirror was strongest early in the experiment and that the suboptimal 

methods used at the beginning of the experiment prevented us from seeing the inhibiting 

effect. Another possible difference between the two studies was the strain of canary used. 

Experiment 1 was conducted with Fife fancy canaries, while the strain of the canaries in 

experiment 2 was not known (Generic Belgian singers) as they were purchased from a 

commercial breeder.  

 Finally, it is possible that the reason why a robust effect of the mirror on singing 

rate was found in the first but not in the second experiment is the pre-existence of strong 

individual differences in response to the mirror, which were shaped by the subjects’ early 

social environment. Male starlings that had been raised either in isolation or in a large 

group responded to a mirror with more “attention focusing” and movement, with more 

behaviors of the following types: move, rub wings, rub beak, shake and gaze at mirror, 

while male starlings raised in pairs responded calmly to the mirror, showing a higher 

frequency of behaviors such as preen, scratch and stretch (Henry et al., 2008). All females 

in this study also responded calmly to the mirror, possibly because in captivity females 

tend to form dyads, while males usually form small groups (Hausberger et al., 1995). 

Budgerigars that had a stronger pair-bond prior to experience with a mirror, spent more 

time interacting with a mirror than those with a weaker pair-bond (Buckley et al., 2017). 

Both these studies illustrate the complexity of avian responses to a mirror and their 

dependence on previous social interactions and possibly also on inborn social 

dispositions (Buckley et al., 2017). Especially when the subject size of the groups is small, 

like in the current experiment, there is a chance that the experimental groups are 
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heterogenous, some birds showing an inhibition of singing by a mirror (such as all 

subjects in experiment 1 and some in experiment 2) due to their history and inborn 

preferences, and some birds, with different kinds of early social experiences, not showing 

this inhibition. This study reminds of the danger in using very small groups to study 

complex social interactions.  In order to use a mirror to suppress song and study the effect 

of this on HVC neurogenesis, more studies are needed to understand the circumstances 

in which a mirror exerts an inhibitory effect on song rate, including photoperiodic 

conditions and the role of past social experience.  
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Abstract: Testosterone plays a key role in the control of seasonal changes in singing 

behavior and its underlying neural circuitry. After administration of exogenous testosterone, song 

quality and song control nuclei volumes change over the course of weeks, but song rate increases 

within days. The medial preoptic nucleus (POM) controls sexual motivation and testosterone 

action in POM increases sexually motivated singing. Here, we investigated the time course of 

testosterone action in the song control nuclei and POM, at the gross anatomical and cellular level. 

Photosensitive female canaries were injected with BrdU to label newborn neurons. One day later 

they were transferred to a long day photoperiod and implanted with testosterone-filled or empty 

implants. Brains and blood were collected 1, 2, 9 or 21 days later. Testosterone increased POM 

volume within one day, whereas the volume of song control nuclei increased significantly only on 

day 21 even if a trend was already observed for HVC on day 9. The density of newborn neurons 

in HVC, labeled by Bromodeoxyuridine (BrdU) and doublecortin, was increased by testosterone 

on days 9 and 21 although a trend was already detectable on day 2. In POM testosterone 

increased the number and size of aromatase-immunoreactive neurons already after one day. This 

rapid action of testosterone in POM supports its proposed role in controlling singing motivation. 

Although testosterone increased the number of newborn neurons in HVC rapidly (9, possibly 2 

days), it is unlikely that these new neurons affect singing behavior before they mature and 

integrate into functional circuits. 

 

Full text: https://orbi.ulg.ac.be/handle/2268/205891 
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Abstract  

Testosterone acts in the songbird brain to facilitate singing in a myriad of ways. By 

affecting different forms of neuroplasticity within song control nuclei, testosterone and its 

metabolites change the quality of singing, however these changes take weeks to develop 

fully. By contrast, testosterone activates singing within days in castrated males. Lesion 

and stereotaxic implantation of testosterone have suggested the medial preoptic nucleus 

(POM) as the site where testosterone mediates the motivation to sing, expressed as 

differential rates of singing. Confirming this hypothesis, testosterone increases the 

volume of POM within one day in female canaries, while the increase in volume of song 

control nuclei takes several weeks. The current study was designed to test for rapid 

testosterone-induced changes in HVC and POM of male canaries. Four photosensitive 

castrated male canaries were implanted with testosterone-filled Silastic™ implants and 

another six with empty implants. Both groups were switched from short- to long-day 

photoperiod on the same day. Two days later a blood sample and brains were collected 

from all subjects. Plasma testosterone was elevated in testosterone-treated but not in 

control subjects. HVC volumes were not different between groups, however there was in 

the testosterone-treated group a significant increase in POM volume, number and 

average somal area of aromatase-immunoreactive (ARO-ir) neurons and fractional area 

covered by ARO-ir material in POM. Comparison with females in an equivalent hormonal 

and photoperiodic state also suggests the existence of a sex hormone-independent sex 

difference in POM volume in canaries. These results show that testosterone induces POM 

growth within two days and support the hypothesis that testosterone increases singing 

motivation via its action in POM.  
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Introduction 

Male songbirds sing profusely during the breeding season to attract females and defend 

their territory (reviewed in Catchpole and Slater, 2008; Collins, 2004). Like many courtship 

behaviors, singing is largely under the control of testosterone (reviewed in Alward et al., 

2017; Ball et al., 2003; Schlinger, 1997). Implanting testosterone in adult songbirds 

increases frequency and duration of singing in a number of species (Madison et al., 2015; 

Nottebohm, 1980a; Pröve, 1974). Castration causes a decrease in singing activity during 

the breeding season (Arnold, 1975b; Nottebohm, 1980a; Pröve, 1974), although this is 

not the case if surgery is performed during the non-breeding season (Alvarez-Borda and 

Nottebohm, 2002; Pinxten et al., 2002). Testosterone regulates most aspects of song 

through a synergistic effect of its androgenic and estrogenic metabolites (reviewed in Ball 

et al., 2003). 

The songbird brain contains a specialized neural network, called the song control 

system (SCS) that controls the learning, maintenance and production of song. 

Testosterone and its metabolites increase the volumes of nuclei in this network 

(Nottebohm, 1980a; Yamamura et al., 2011) by altering various cellular properties in a 

region-specific manner (Ball et al., 2004; Brenowitz and Beecher, 2005). Despite the 

profound impact that testosterone has on the song control system, testosterone action 

within these nuclei does not seem to be responsible for the vernal increase in song rate. 

Meitzen and colleagues (Meitzen et al., 2007) showed that blocking androgen and 

estrogen receptors in the HVC of white-crowned sparrows induces a decrease in song 

stereotypy, but no change in song rate. Similarly, blocking androgen receptors in the HVC 

or RA of male canaries affects different aspects of song structure, but does not decrease 

song rate (Alward et al., 2016a). Together these studies suggest that testosterone acts in 

HVC to regulate the quality but not the rate of singing. 

The medial preoptic nucleus (POM) is a critical brain site where testosterone acts 

to activate appetitive aspects of sexual behavior in Japanese quail as well as songbirds 

(Alger and Riters, 2006; Balthazart and Ball, 2007; Panzica et al., 1996; Riters and Ball, 

1999). Bilateral lesions of POM decrease song rate of male starlings during the breeding 
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season (Alger and Riters, 2006; Riters and Ball, 1999). Conversely implanting 

testosterone in the POM of castrated male canaries is sufficient to increase the singing 

rate, but not the song quality, to the same level as systemic treatment with testosterone 

(Alward et al., 2016c; Alward et al., 2013). Testosterone increases the rate of singing 

within 3-6 days in female or castrated male canaries (Madison et al., 2015). Therefore if 

this behavioral effect is mediated by an action in the POM, testosterone-induced changes 

in POM should be evident after even shorter latencies. Male quail and female canaries 

implanted with testosterone display an increased POM volume one day after the 

beginning of the treatment (Charlier et al., 2008; Shevchouk et al., 2017b), while the 

increase in volume of the song control nuclei HVC, RA and Area X in female canaries 

takes three weeks (Shevchouk et al., 2017b). The current study investigates whether 

there is a rapid increase of POM volume following testosterone implantation in male 

canaries, as previously seen in females. 

Materials and Methods 

 

Experimental animals 

The 10 male canaries of the Fife fancy breed used in this study were obtained from a 

colony maintained at the University of Antwerp, Belgium. They were born and had gone 

through a full breeding cycle in this colony. All subjects had been on natural daylight 

during the months preceding their arrival in our laboratory at the University of Liege, 

Belgium, in late March. All experimental procedures complied with Belgian laws 

concerning the Protection and Welfare of Animals and the Protection of Experimental 

Animals, and experimental protocols were approved by the Ethics Committee for the Use 

of Animals at the University of Liege (Protocol number 926). 

 

Experimental procedures 

Upon arrival, subjects were housed on long day photoperiod (16L:8D) for five months, on 

intermediately long day photoperiod (12L:12D) for 2 months and on 8L:16D for five 

months to transition the subjects first through photoregression and then maintain them in 

a photosensitive state. During the first two months, the subjects were housed in an aviary 

containing a large mixed-sex group of canaries. They were subsequently moved to single-
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sex housing with 5-6 males per cage in a separate room with no visual contact and 

minimal acoustic contact with the females. In all housing situations food, water, baths, 

cuttlebone and grit were available ad libitum. Three weeks after the change to short-day 

photoperiod subjects were castrated following a procedure similar to the procedure 

described by Sartor and colleagues (Sartor et al., 2005). Briefly, under isoflurane 

anesthesia each testis was removed via an ipsilateral incision posterior of the last rib. 

Testes were regressed in all subjects. The incision was sutured, the subject was allowed 

to recover under a heat lamp until perching and then returned to the same cage with the 

same male companions as previously. Two months before the onset of the experiment 

(in February) the subjects were individually housed in sound-attenuated boxes for three 

days to record their baseline singing behavior. Immediately before the cage change they 

were weighed, their cloacal protuberance length and width was measured and a blood 

sample was collected from their wing vein. These recordings showed an absence of 

singing in all subjects except for one.  

Two days before the treatment onset (in May) subjects were transferred again to 

sound-attenuated boxes for baseline recordings to verify that they were still singing at a 

minimal rate. Each subject then received a single subcutaneous 10 mm-long Silastic™ 

implant (Dow Corning reference no. 508-004; inner diameter 0.76 mm, outer diameter 

1.65 mm) that was either filled with crystalline testosterone (n= 4, Fluka Analytical, Sigma-

Aldrich) or kept empty as control (n = 6). All implants were sealed on both sides with 

medical silicone (Medical Adhesive Silicone, Dow Corning) and were checked under a 

stereo-microscope to make sure they were well sealed. They were incubated in 0.9% 

NaCl at 37°C overnight before being inserted subcutaneously.  After implantation of the 

Silastic™ capsules, the subjects were returned to the same sound-attenuated box as 

previously and their singing behavior was recorded for two days. On the morning of the 

2nd day after implantation a blood sample was collected from the wing vein, the subjects 

were deeply anaesthetized and perfused to fix their brain (see below for details).   

 

Song recording and analysis 

Singing was recorded inside 16 individual custom-built sound-attenuated boxes for two 

hours each day immediately following lights-on (0900h). Sound was acquired from all 16 
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channels simultaneously via dedicated microphones (microphone from Projects 

Unlimited/Audio Products Division, amplifier from Maxim Integrated) and an Allen & Heath 

ICE-16 multichannel recorder. The sound file was acquired and saved as a .wav file by 

Raven v1.4 software (Bioacoustics Research Program. (2011). Raven Pro: Interactive 

Sound Analysis Software (Version 1.4). Ithaca, NY: The Cornell Lab of Ornithology) at a 

frequency of 44,100 Hertz. The spectrograms were analyzed for song rate manually for 

post-treatment recordings and with a custom-built program for pre-treatment recordings 

(for details see methods of chapter 6).  

 

Blood collection and hormone analysis 

Blood samples of 150 µl were collected from the wing vein of all subjects during the 

transfer to sound-attenuated boxes for baseline recordings, just before the subcutaneous 

implants and on the day of brain collection. Blood collection was always performed within 

3 minutes of catching the birds in their cage and within 90 minutes after lights on. The 

blood was collected into Na-heparinized micropipettes (Brand, Wertheim, Germany) and 

any further blood flow was stopped by pressing cotton on the vein puncture. Blood was 

centrifuged at 9,000 g for 9 minutes and the supernatant plasma was collected and stored 

at -80° C until further use.  

 

Testosterone Enzyme Immunoassay 

10 µl of plasma from each sample was diluted in 150 µl of ultra-pure water. Recovery 

samples were spiked with 20,000 CPM of tritiated-testosterone (Perkin-Elmer). All 

samples were extracted twice with 2 ml of dichloromethane. The organic phase was 

eluted into clean tubes, dried with nitrogen gas and stored at -20°C until further use. 

Average recovery rate was 76.3%. 

 Extracted samples were re-suspended in 400 µl Enzyme Immunoassay (EIA) 

buffer by vortexing for 30 seconds and shaking for 90 min at 1350 rpm. Re-suspended 

samples were assayed for testosterone concentration in a single assay using a Cayman 

Chemicals testosterone EIA kit (ref. 582701) following manufacturer’s instructions. The 

minimum and maximum detection limit of the EIA measuring testosterone in the samples 

collected at the end of the experiment, as determined by the lowest and highest 
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concentration detected, were 10.79 pg/ml and 169.73 pg/ml respectively. The average 

intra-assay variation for the assay was 11.1%. For the pre-experimental samples the 

minimum and maximum detection limit of the EIA was 4.66 and 69.44 pg/ml respectively, 

and the average intra-assay variation was 15.5%. 

 

Brain collection and processing 

Two days after the introduction of implants, a blood sample was taken from the wing vein 

of each subject, they were weighed, their cloacal protuberance was measured and then 

birds were anaesthetized with ~0.03ml of Nembutal (Ceva, 60 mg/ml). Once reflexes had 

stopped the birds were perfused intracardially with phosphate-buffered saline (PBS, 1.43 

g/L Na2HPO4, 0.48 g/L KH2PO4, 7.2 g/L NaCl) to remove blood and immediately after with 

4% paraformaldehyde (PFA, 4.3 g/L NaOH, 40 g/L paraformaldehyde, 18.8 g/L 

NaH2PO4.H20) to fix the brain. After perfusion, the brain was immediately extracted from 

the skull and post-fixed overnight in 15 ml PFA. 

 The syrinx was extracted and weighed, the presence of implants and, when 

relevant, presence of testosterone inside the implants was confirmed. On the following 

day, brains were transferred to 15 ml of 30% sucrose solution (15.6 g/L Na2HPO4, 1.5 g/L 

KH2PO4, 300 g/L sucrose). Once the brains had sunk to the bottom of the vial they were 

frozen on dry ice and stored at -80° C until used. Brains were cut on a cryostat into 30 

µm thick coronal sections. The sections containing the medial preoptic nucleus were 

collected separately into one series – these included all sections between the rostral end 

of tractus septopallio-mesencephalicus (TSM) and 240 µm caudal to the anterior 

commissure (AC), while the rest of the brain was cut into four series. Sections were stored 

in anti-freeze (0.01M PBS with 10 g/L polyvinylpyrrolidone, 300 g/L sucrose, and 300 ml/L 

ethylene glycol) at -20°C until further use.  

 

Nissl staining 

One series of sections was mounted on Superfrost slides, dried at least overnight, and 

Nissl-stained with toluidine blue. After differentiation in Walpole buffer and molybdate, 

they were dehydrated in a series of increasing isopropanol concentrations, in 99% ethanol 

and finally in xylene and coverslipped using Eukitt as a mounting medium.  
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Aromatase immunohistochemistry 

A second series of brain sections was stained by immunohistochemistry for aromatase. 

Washes were performed with Tris-buffered saline (TBS) or TBST (TBS with 0.2% Triton 

X-100). The blocking sera and antibodies were diluted in TBST with 5% normal goat 

serum (NGS) and 1% bovine serum albumin (BSA). Sections were washed three times 

for five minutes to remove antifreeze and after all other steps except for the blocking 

serum. Endogenous peroxidases were inhibited by incubating the sections in 3% 

hydrogen peroxide in a solution of 50% methanol for 20 minutes. Sections were blocked 

in TBST-NGS-BSA solution for 60 minutes and incubated in primary antibody for one hour 

at room temperature and overnight at 4°C (1:10,000 rabbit anti-quail aromatase antibody, 

a kind gift from Prof. Harada, Fujita Health University, Toyoake, Japan). This antibody 

has been especially developed and validated for quail (Foidart et al., 1995a) and also 

validated in songbirds (Balthazart et al., 1996a). On the following day, sections were 

blocked again in TBST-NGS-BSA solution for one hour, and incubated with the secondary 

antibody for two hours at room temperature (1:200 goat anti-rabbit biotinylated, DAKO, 

ref. E0432). The binding was amplified by incubating sections in ABC kit solution (both 

solution A and B at 1:400, Vectastain Elite PK-6100 2001). The binding sites were 

revealed by incubating for 10 minutes in 0.04% diaminobenzidine (DAB) with 0.012% 

H2O2 diluted in TBS. Sections were mounted from TBS with gelatin onto glass slides, 

dried overnight, immersed in xylene for 10 minutes and coverslipped with Eukitt mounting 

medium.  

 

Microscopy and image analysis 

HVC volume reconstruction in Nissl-stained sections 

To reconstruct HVC volumes, photomicrographs were taken of each section in the series 

containing the nucleus, in both the left and right hemispheres, with a Leica DMRB FL.100 

microscope connected to a Leica DFC 480 color camera at a magnification of 5x using 

the same light settings for all pictures. An outline was drawn around the perimeter of each 

cross-section of the nuclei using ImageJ v1.47v (National Institutes of Health) and the 

delimited area was measured. In the few cases that a section was missing, the area was 
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estimated by taking the average of the two sections immediately rostral and caudal to it. 

The volumes of nuclei were calculated by summing the areas and multiplying by 120 µm, 

the distance between two successive sections in the series. The volume of the nucleus 

in each hemisphere was calculated separately and the average of the two measures was 

used for statistical analyses.  

 

Aromatase 

Aromatase staining was analyzed on a Leica DMRB FL.100 microscope connected to a 

Leica DFC 480 color camera. Photomicrographs of each POM in the series were taken 

at 10x magnification using the same light settings for all pictures, starting from the most 

rostral section containing aromatase-immunoreactive (ARO-ir) cells ventral of the TSM 

and finishing at the section containing the full extent of the AC. However, since some 

brains had damage in at least one of the three first sections in this series, the first three 

sections were excluded from the quantification of POM volume for all brains. The cluster 

of ARO-ir cells that correspond to the POM was delineated and its surface measured with 

ImageJ FIJI (National Institute of Health). The volume of the nucleus was calculated by 

adding these areas in all sections and multiplying by 60 µm, the distance between two 

consecutive sections.  

 The photomicrograph representing the middle section of the POM in the rostro-

caudal axis in each bird was additionally analyzed for cellular level changes.  Within an 

852 x 852 µm square surrounding the POM (this square fully included the largest POM 

cross-section from all subjects) the number of aromatase-expressing neurons, the 

percentage of area covered by aromatase staining and the mean somal area of the ARO-

ir neurons were quantified. Briefly, images were converted to 8-bit, a grey-value threshold 

was set to include all clearly visible aromatase-expressing neurons, but exclude all 

background. All particles over 30 µm in area and over 0.15% circularity (circularity = 4π 

x area/(perimeter)2, with a value of 1.0 indicating a perfect circle) were counted and 

measured. Additionally, the ARO-ir neurons in the same square were manually counted 

on the raw, non-thresholded image as a control. A linear regression showed that the 

manually and automatically counted numbers of neurons were significantly correlated (r17 

= 0.92, p < 0.001).  
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Statistical analyses 

A repeated-measures ANOVA was used to analyze the effect of treatment and time on 

body mass, cloacal protuberance area (length x width measured) and plasma 

testosterone as measured two months before treatment (February) and on the day of 

brain collection (May).  When a significant interaction was found Tukey’s post-hoc test 

was used to identify the origin of the effect. A t-test was used to investigate whether there 

is a difference between the control and testosterone-treated group in syrinx mass, HVC 

and POM volumes, the number of ARO-ir neurons, their average somal area and the % 

area covered by ARO-ir material in the rostro-caudally middle section of the POM. A linear 

regression was performed to compare the number of ARO-ir neurons counted manually 

versus automatically with a grey-value threshold analysis. A one-way ANOVA was used 

to analyze the POM volume of the two groups in the current study and subjects singing 

at a high rate from the same batch that were used in a separate experiment (See Chapter 

6 of this thesis). A two-way ANOVA was used to compare the POM volumes and plasma 

testosterone concentrations in the males of the current study and female canaries that 

had been transferred to long days and implanted with testosterone-filled or empty 

Silastic™ capsules (See Chapter 3 of this thesis). The brains of the females were 

collected after two days of treatment. A paired t-test was used to test whether volumes of 

HVC and POM, the number and area of ARO-ir cells and the fractional area covered by 

these cells in POM were lateralized. These tests show that none of these measures were 

lateralized. All statistical analyses were performed using STATISTICA and differences 

were considered significant for p<0.05. All data are represented here by their mean ± 

SEM.  

 

Results 

Morphological measures and testosterone 

The subjects were weighed and their cloacal protuberance was measured two months 

prior to the experiment (February) as a baseline and these measures were compared with 

those obtained on day of brain collection (May) in a repeated-measures ANOVA. There 

was no effect of treatment on body mass (Fig. 1A, F1,8 = 1.12, p = 0.322), however over 
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time both groups showed a slight decrease in body mass (F1,8 = 8.67, p = 0.019), with no 

interaction between the factors (F1,8 = 0.36, p = 0.564). The cloacal protuberance area 

was not affected by either time (although a trend toward an increase was present; Fig. 

1B, F1,8 = 3.84, p = 0.086) or treatment (F1,8 = 1.63, p = 0.238), and the factors did not 

interact (F1,8 = 0.14, p = 0.719). Similarly, the treatment did not affect the mass of the 

syrinx as measured on the day of brain collection (Fig.1C, t8 = 0.25, p = 0.811).  
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Figure. 1. Body mass (A), area of the cloacal protuberance (length x width, B) two months before treatment 

(February) and at the time of brain collection (May) and mass of the syrinx at time of brain collection (C). 

All white bars represent averages for subjects implanted with empty Silastic™ capsules (n=6), all black 

bars represent averages of subjects implanted with Silastic™ capsules filled with testosterone (n=4). Brain 

collection occurred two days after transfer to long-day photoperiod and implantation of Silastic™ capsules. 

All data are represented here by their mean ± SEM. 

 

The two-way ANOVA of plasma testosterone concentration revealed a main effect 

of time (F1,8 = 25.70, p < 0.001), treatment (F1,8 = 28.64, p < 0.001) and an interaction of 

these factors (F1,8 = 27.65, p < 0.001). A post-hoc test showed that while there was no 

difference between the control and testosterone-treated birds at baseline, the 

testosterone concentrations were significantly elevated in the treated group following 

treatment onset (Fig. 2).   
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Figure 2. Circulating testosterone concentration in control and testosterone-treated subjects as measured 

two months before treatment (February) and on the day of brain collection (May). ***= p<0.001 for 

testosterone-treated compared to control birds on the same day. All data are represented here by their 

mean ± SEM. 

HVC volumes 

The volume of HVC was not different between the control and testosterone-treated group 

(Fig. 3) as confirmed by a t-test (t8 = 1.38, p = 0.205). 
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Figure 3. HVC volume in control and testosterone-treated subjects measured 2 days after the transfer to 

long days and implantation of Silastic™ capsules filled with testosterone or left empty. All data are 

represented here by their mean ± SEM. 
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POM volume and ARO-ir properties 

The volume of POM was significantly larger in the testosterone-treated group than in the 

control group (Fig.4 first two bars, t8 = 5.13, p < 0.001). A one-way ANOVA was used to 

test for differences between the two groups of the current study and subjects from the 

same batch that were singing with a high rate during baseline recordings (N=15, see 

Chapter 6). Some of these latter subjects had been treated with drugs that inhibit 

aromatase and block androgen receptors, but this treatment did not affect the volume of 

their POM, therefore they were pooled for the current analysis. The one-way ANOVA 

showed a main effect of group (F2,22 = 13.61, p < 0.001). A post-hoc test showed that 

while the control group was significantly different from both testosterone-treated group 

and the high-singers with no testosterone, there was no significant difference between 

the testosterone-treated group and the high-singers with no testosterone (Fig. 4).  
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Figure 4. POM volume measured in subjects from the current study (control and testosterone-treated 

subjects measured 2 days after the transfer to long days and implantation of Silastic™ capsules filled with 

testosterone or left empty) and from a separate study of castrated male canaries which had low 

concentrations of testosterone but were singing at high rates. ***= p<0.001. All data are represented here 

by their mean ± SEM. 
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A previous study also compared the POM volume of female canaries treated for 

two days with testosterone at an equivalent dose to the current study and controls with 

no testosterone (see Chapter 3). A two-way ANOVA comparing the males in the current 

study with the aforementioned female canaries shows a main effect of hormonal 

treatment (F1,20 = 54.92, p < 0.001), a main effect of sex (F1,20 = 23.37, p < 0.001) and an 

interaction between these factors (F1,20 = 10.19, p = 0.005). A post-hoc analysis shows 

that testosterone increases POM volume both in males (p < 0.001) and females (p = 

0.018), however the effect is much stronger in males (Fig. 5A). The post-hoc test also 

indicates that there is no significant difference between control males and females (p = 

0.636), but there is a significant difference between testosterone-treated males and 

females (p < 0.001). Comparing the same subjects in an equivalent analysis for circulating 

testosterone concentrations shows that there is a main effect of hormonal treatment (F1,20 

= 23.04, p < 0.001), however no main effect of sex (F1,20 = 2.46, p = 0.132) and no 

interaction effect (F1,20 = 0.17, p = 0.688), indicating that the males and females were 

equivalent in terms of circulating testosterone concentrations (Fig. 5B).  
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Figure 5. POM volume (A) and plasma testosterone concentration (B) in female and male canaries 

measured 2 days after the transfer to long days and implantation of Silastic™ capsules filled with 

testosterone or left empty (control). *= p<0.05; ***= p<0.001 for testosterone-treated compared to control 

birds within the same sex. All data are represented here by their mean ± SEM. 

The testosterone treatment also increased the number of ARO-ir neurons in the 

rostro-caudally middle section of POM (Fig. 6A, t8 = 4.92, p = 0.001), the somal area of 
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those neurons (Fig. 6B, t8 = 6.66, p < 0.001) and the % area covered by ARO-ir material 

in that section (Fig. 6C, t8 = 6.50, p < 0.001). 
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Figure 6. Number of ARO-ir neurons (A), mean somal area of ARO-ir neurons (B) and fractional area 

covered by ARO-ir material (C) quantified in a section located in the middle of the POM in the rostro-

caudal axis in the brains of control and testosterone-treated subjects collected after 2 days of exposure to 

long-day photoperiod associated or not with testosterone. **= p<0.01; ***= p<0.001 for testosterone-

treated compared to control birds. All data are represented here by their mean ± SEM. 

Singing behaviour 

One bird from the control group sang at high rates both before and after treatment. This 

bird had a POM volume that was somewhat higher than the rest of the control group (data 

point represented by a diamond in the graph, Fig. 7). Two other birds were not singing 

during the February recordings, but did start to sing during the May pre-recordings, 

although at relatively low rates. One of them, which was in the testosterone-treated group, 

did continue to sing also after treatment at approximately the same rate as before the 

treatment, the other was in the control group and did not sing after treatment onset. All 

other birds did not sing either before or after treatment.   
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Figure 7. POM volume in low-singer control (circles), high-singer control (diamond) and low-singer 

testosterone-treated (square) subjects collected after 2 days of exposure to long-day photoperiod 

associated or not with testosterone. Statistical significance not indicated.  

Discussion 

Photosensitive male canaries of the Fife fancy strain were treated with testosterone or 

control implants for two days before harvesting of brains and blood, to investigate whether 

there is a rapid effect of testosterone-treatment on POM volume, similar to what has been 

seen in female canaries (Shevchouk et al., 2017b). The testosterone-treatment was 

effective, as demonstrated by the significantly elevated circulating testosterone 

concentrations in the treated subjects compared to control subjects. The magnitude of 

this increase was similar to what was seen in female canaries implanted with the same 

dose of testosterone for two days. However, unlike what was seen in gonadally intact 

females, no indication of an increase in testosterone in the castrated male controls of the 

present experiment following transition from short-day to long-day photoperiod. Neither 

the area of the cloacal protuberance nor the mass of the syrinx were significantly 

increased in treated subjects. These two organs increase in size in an androgen-

dependent manner across a variety of songbird species (Appeltants et al., 2003; Hall and 

MacDougall-Shackleton, 2012; Luine et al., 1980; Tramontin et al., 2003, 2000), however 

it is likely that a duration longer than two days is required for this effect to take place. In 
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female canaries testosterone increased both cloacal protuberance length and syrinx 

mass after nine days, but had no effect on the size of these organs after only two days of 

treatment (Shevchouk et al., 2017b).  

The volume of HVC was not increased in testosterone-treated subjects compared 

to controls. An increase in HVC volume following testosterone treatment has been 

demonstrated in both male and female canaries but after longer treatment durations 

(Madison et al., 2015; Nottebohm, 1980a; Rasika et al., 1999; Tramontin et al., 2000; 

Yamamura et al., 2011). It should however be noted that few studies to date have 

investigated short-term changes in HVC volume following testosterone treatment in male 

canaries. The current study suggests that a period longer than two days is necessary for 

testosterone to increase the volume of HVC. Testosterone-treatment in female canaries 

increases HVC volume after 21 days, with marginal increases being already detected 

after 9 days, but no effect at all after 1 or 2 days of treatment. The relatively slow changes 

seen in HVC following testosterone treatment are compatible with the role of testosterone 

action in HVC in modulating the quality of song (Meitzen et al., 2007), which takes place 

over the course of weeks rather than days (Tramontin et al., 2000). We did not measure 

here the volume of RA and Area X, the other two major song control nuclei, because it 

has been repeatedly shown that these nuclei grow with a slower time course than HVC 

(Shevchouk et al., 2017b; Smith et al., 1997; Tramontin et al., 2000).  

In contrast, the volume of the POM was significantly larger in the testosterone-

treated group than in control birds after only two days. Although in this study POM volume 

was evaluated based on the ARO-ir cell cluster, previous studies have shown covariation 

in POM volume as measured by aromatase immunohistochemistry and a Nissl stain 

(Balthazart et al., 1996b, 1992b; Charlier et al., 2008; Foidart et al., 1994). An increase 

of POM volume within two days of exposure to testosterone is compatible with the role of 

this nucleus in the control of singing motivation as song activation in castrated males 

occurs three to five days following the introduction of a testosterone implant (Alward et 

al., 2013; Madison et al., 2015; Meitzen et al., 2009).  

Comparing the male canaries in current study with female canaries treated with 

testosterone from a previous study (Shevchouk et al., 2017b) indicates that although 
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testosterone-treated females had a significantly larger POM volume than controls, this 

volume remained about twice smaller than in testosterone-treated males. This sex 

difference was maintained despite the fact that the Silastic™ implants induce similar 

concentrations of circulating testosterone in males and females. In quail the volume of 

the POM is larger in sexually mature males than in sexually mature females, it is 

increased by testosterone in gonadectomized birds but there is no sex difference in its 

volume when males and females are exposed to the same concentration of testosterone 

(Panzica et al., 2001, 1996, 1987). Although the sex difference observed here should be 

confirmed in a future study that would include both testosterone-treated males and 

females implanted within the same experiment, our results suggest that in canaries there 

is possibly a sex difference in POM volume that is not eliminated by equalizing the 

circulating testosterone concentrations.  

Although POM volume was clearly increased by testosterone in the present study, 

a comparison of the POM volumes in subjects of the current study (singing at low rates 

and treated with T) with subjects from the same batch that were singing at high rates, but 

had very low levels of circulating testosterone (see Chapter 6), shows that the POM 

volume of high-singers was equivalent to the POM of the present subjects. This 

comparison suggests that high concentrations of testosterone are not necessary for the 

growth of this nucleus, although the causality of the correlation between high rates of 

singing and large POM volumes is not clear. This observation provides extra support for 

the involvement of POM in song motivation.  

The effects of testosterone on singing behaviour are partially mediated via its 

estrogenic metabolites (Fusani et al., 2003; Fusani and Gahr, 2006; Harding, 2004; 

Harding et al., 1988, 1983) and inhibiting aromatase decreases song rate in a rapid 

manner in canaries (Alward et al., 2016b). Therefore, it was relevant to examine here the 

changes in the expression of aromatase in POM. Not only was the overall volume of POM 

as defined by the ARO-ir cell cluster larger in testosterone-treated subjects, but the POM 

in these subjects also contained a higher number of ARO-ir neurons and a bigger 

proportion of it was covered by aromatase-stained material. This increase in aromatase 

expression could be what underlies the increase in POM volume, although other cellular 
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changes are also probably involved. The average ARO-ir somal area was also 

significantly larger in testosterone-treated subjects than in the control group. Although it 

is not possible to compare directly between two separate studies, it can be noted that the 

area of ARO-ir neurons increased more slowly in female canaries treated with 

testosterone than in the males used here, with the first significant difference being 

observed only on day 9 after the initiation of the testosterone treatment and no difference 

on day 2, contrary to what was seen in males in the current study. This comparison 

suggests that this parameter changes more rapidly in male than female canaries, 

although this would need to be confirmed in a study including both sexes in a single 

experiment.  

Alward and colleagues (Alward et al., 2013) showed that implanting testosterone 

stereotaxically in POM increases within a week the song rate in castrated male canaries 

to the same level as in subjects peripherally implanted with testosterone. The 

peripherally-implanted birds were however already singing at a higher rate than castrated 

control subjects by day 3 following surgery whereas birds with T in POM were at that time 

still behaviorally inactive and their singing rate reached the level seen in birds treated 

systemically with testosterone only by day 7. Thus, there was a four-day delay in the 

activation of singing behavior by testosterone depending on whether it was applied to 

POM only or to the entire brain as well as to peripheral organs such as the syrinx in 

systemically treated subjects. The current study demonstrates the presence gross 

morphological changes in the POM after two days of testosterone-treatment as well as 

an increase in the number and size of aromatase-expressing neurons in the POM. The 

reasons for the four-day delay are unclear, but could indicate the involvement of 

downstream brain regions or suggest that other molecular changes besides the increase 

of aromatase-expression within POM are necessary for increasing singing motivation. 

Further studies will be necessary to answer this question, including investigations of the 

activation of POM neurons that possess anterograde projections to areas potentially 

mediating song activation and the identification of estrogen-responsive genes that are up-

regulated in POM following the increase of aromatase expression in this nucleus.  
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Abstract  

Testosterone (T) acts in the songbird brain to regulate the quality of singing via song 

control nuclei (SCN) and simultaneously controls the motivation to sing via the medial 

preoptic nucleus (POM). T stereotaxically implanted in the POM increases song rates to 

the same level as systemic T, but also increases the volume of SCN, a form of 

neuroplasticity that accompanies seasonal changes in song. Singing activity has a 

positive feedback on neurogenesis in HVC, therefore the increases of SCN volumes 

produced by T implanted in POM could be an indirect consequence of the increased rates 

of singing. Alternatively, the increase could be due to trophic factors that reach SCN from 

POM via poly-synaptic connections. The current experiment aimed to discriminate 

between these two mechanisms by comparing the HVC volume of birds with T implanted 

in POM for 9 days, which is the start of song activation, and the HVC volume of birds that 

had T in POM for 25 days, 16 days after song activation. A difference between these two 

conditions would suggest that singing feedback is driving HVC plasticity, while no 

difference would indicate that poly-synaptic neural connections are primarily driving the 

HVC volume growth. Circulating T concentrations were elevated in peripherally implanted 

subjects and low in no T subjects and all subjects with central T implants. However, 

imprecision of stereotaxic coordinates prevented from having a sufficient number of 
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subjects per group to run valid statistical tests to test for differences in HVC volume and 

make a conclusion about the hypothesis proposed.   

 

Introduction 

Three families of avian species share with humans the unique ability to communicate via 

learned vocalizations – oscines (songbirds), hummingbirds and parrots. The study of 

singing in oscine species has been particularly informative due to the diversity of species 

in this clade. Songbirds possess a network of nuclei – the song control system - 

specialized in processing information pertaining to the learning and production of song 

(Nottebohm, 1980b). HVC and RA are involved in controlling the production of song, the 

former is also part of the learning and maintenance, along with the nuclei Area X, LMAN 

and DLM (recently reviewed in Ziegler and Marler, 2008). A particular interest in studying 

some songbird species is the marked neuroplasticity that is seen in the song control 

system in adulthood across seasons. Seasonal songbird species, such as canaries, 

respond to increasing daylengths with an activation of the hypothalamic-pituitary system 

leading to gonadal growth and ultimately to an increase in the concentration of circulating 

sex hormones (Wingfield et al., 1980). These changes prepare the songbird for 

reproduction, including motivational aspects of reproduction such as courtship behavior.  

Implanting exogenous testosterone in male or female songbirds increases frequency and 

duration of singing in a number of species (Arnold, 1975a; Madison et al., 2015; 

Nottebohm, 1980a; Pröve, 1974).  

In parallel to changes in singing behavior, the song control nuclei in seasonal 

songbird species increase in size 1.3-3 times between autumn and spring (Tramontin and 

Brenowitz, 2000). Subcutaneous testosterone implants increase the volume of song 

control nuclei in castrated males (Madison et al., 2015; Nottebohm, 1980a). Given that in 

spring testosterone, singing rate, song quality and song control nuclei volumes all 

increase, it was long assumed that testosterone acts directly on the song control system 

to regulate song motivation and song structure via the morphological changes that take 

place in these nuclei; however some more recent studies have challenged this view. For 

example, in Corsican blue tits the recrudescence of the song control system has been 
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shown to occur earlier in the season than the rise in testosterone and in song rates (Caro 

et al., 2005), suggesting that testosterone is not necessary for growth of the song control 

nuclei. Furthermore, song control system growth can occur in the complete absence of 

sex steroid action: in photostimulated white-throated sparrows, castration and treatment 

with an aromatase inhibitor, ATD, and an androgen receptor blocker, flutamide does not 

decrease the volume of HVC below the level of photostimulated untreated controls 

(Robertson et al., 2014).  

These two studies show that testosterone action is not always required for song 

control system plasticity, yet both androgen and estrogen receptors are expressed in the 

song control system (Bernard et al., 1999). What is then the role of sex hormone signaling 

in the song control nuclei in singing behavior? In white-crowned sparrows blocking 

androgen and estrogen receptors in HVC by infusing the anti-androgen flutamide and the 

ER antagonist faslodex increases the coefficient of variation of multiple song attributes, 

suggesting these receptors are involved in increasing the stereotypy of song (Meitzen et 

al., 2007). This pharmacological intervention had however no effect on the rate of singing, 

suggesting that testosterone action in HVC is involved in regulating the qualitative but not 

quantitative aspects of singing behavior. In photostimulated male canaries, a blockade of 

androgen receptors in HVC or RA decreased the variability of syllable usage and 

sequencing and syllable and trill acoustic variability, respectively (Alward et al., 2016a). 

Neither manipulation affected the song rate, again suggesting that sex hormone action in 

the song control system regulates the quality of singing but not the quantity.  

The time spent singing can be considered to reflect the motivation of the bird to 

sing. Being a courtship behavior, frequency of singing is therefore indicative of the bird’s 

sexual motivation (Ball et al., 2002). It may therefore be useful to consider which brain 

regions are known to regulate sexual motivation in general. Testosterone action in the 

medial preoptic nucleus (POM) is very important in controlling sexually motivated 

behaviors, such as copulation (Balthazart and Surlemont, 1990). Lesions in the POM in 

European starlings decrease singing rate during the breeding, but not during the non-

breeding season, consistent with a role of this nucleus in sexually-motivated song (Alger 

and Riters, 2006; Riters and Ball, 1999). Male canaries implanted stereotaxically with 
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testosterone in POM sing after one week at rates equivalent to birds implanted with 

testosterone systemically (Alward et al., 2016c; Alward et al., 2013) and both sing more 

than controls which have testosterone implanted outside POM or an empty cannula inside 

POM.  

Is this effect indirectly mediated via the song control system? POM does not have 

any mono-synaptic projection to the song control nuclei, however there are at least four 

important di-synaptic connections to the song control system via the dorsomedial nucleus 

intercollicularis (DM), mesencephalic central gray (Gct), area ventralis of Tsai (AVT) and 

locus ceruleus (LoC) (Riters and Alger, 2004). In fact, HVC, RA and Area X volumes in 

birds stereotaxically implanted with testosterone in POM are larger than in controls with 

no testosterone in POM and not different from birds with systemic testosterone implants 

(Alward et al., 2016c; Alward et al., 2013).  It is not yet clear how testosterone implanted 

in the POM can affect the growth of song control nuclei. One hypothesis is that POM 

stimulates growth of song control nuclei by inducing higher rates of singing activity, which 

in turn has a positive feedback effect on song control system plasticity. HVC volumes and 

singing rates are correlated in canaries (Nottebohm, 1981; Nottebohm et al., 1987). 

Furthermore, male canaries that naturally sing at lower rates incorporate fewer newborn 

neurons into HVC than actively singing canaries (Li et al., 2000) and HVC neurogenesis 

is a major contributor to HVC growth. Another study showed that there is a strong 

correlation between song rate and number of newborn neurons in the HVC in castrated 

but not in T-implanted males canaries (Alvarez-Borda and Nottebohm, 2002). The growth 

of song control nuclei after implantation of T in the POM could thus be activity-dependent. 

A second hypothesis proposes that the growth of song control nuclei in birds implanted 

with T in POM could be independent of singing activity, but mediated by trophic signaling 

originating from POM and reaching the song control system via an intermediate locus 

such as DM, Gct, AVT or LoC (Riters and Alger, 2004). In order to discriminate between 

these two hypotheses, photosensitive male canaries were transferred to a long 

photoperiod and implanted with testosterone in POM. Their brains were then collected 

and HVC volume was measured either after 9 days, when singing activity is just beginning 

to be established) or after 25 days when birds have been able to sing for an extensive 

period of time.  
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Materials and Methods 

Experimental animals 

Twenty 3-year old male canaries of the Fife fancy breed raised in the breeding colony 

maintained at the University of Antwerp, Belgium were used for this study. All subjects 

had been part of previous experiments but these involved only behavioral observation. 

Some subjects had bred and raised chicks previously, others had not and this was 

balanced across groups for the experiment.  

All males were bilaterally castrated under isoflurane anesthesia, with one week of 

recovery between the removal of each testis, following the procedure described in Sartor 

et al. (2005). After both testes had been removed, males were allowed to recover for two 

months to ensure that physiological and behavioral effects of T would disappear. 7 days 

prior to being implanted with testosterone, subjects were switched from group housing on 

short-day photoperiod (8L:16D) to individual housing on long-day photoperiod (14L:10D). 

This involved moving the subjects to another room where they were exposed to four 

actively singing male canaries from another experiment. All subjects were in visual but 

not acoustic isolation from all other birds in the same room. The experimental subjects 

were split into four replicates with a schedule staggered by one day. Each replicate 

contained as far as possible similar numbers of birds from each group. 

All subjects received a subcutaneous Silastic™ implant (Degania Silicone; internal 

diameter 0.76 mm, external diameter 1.65 mm, length 10 mm) which had either been 

filled with crystalline testosterone (Fluka Analytical, Sigma-Aldrich) or had been left empty 

depending on the experimental group (see experimental design section for explanation 

of groups). All Silastic™ implants had been pre-incubated in 0.9% saline at 37°C 

overnight and were inserted intraperitoneally via a small incision posterior to the last rib.  

All experimental procedures complied with Belgian laws concerning the Protection 

and Welfare of Animals and the Protection of Experimental Animals, and experimental 

protocols were approved by the Ethics Committee for the Use of Animals at the University 

of Liege. The subjects had been exposed to natural daylight prior to their arrival in our lab 

at the University of Liege in early April. Upon arrival they were housed on short-day 

photoperiod (8L:16D) for 3 months to make sure they would be photosensitive. They were 
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housed in single-sex groups of 5-6 and continuously had seeds, water, sand and 

cuttlebone available ad libitum. After 4 weeks of short-day photoperiod an evaluation of 

the molting status was completed giving a score of 1-4 to each bird, with 1 signifying that 

they did not start molting at all and 4 that most of the new feathers were fully regrown. 

The majority of the subjects had almost completed molt with a median molt score of 3.5 

and a mean of 3.2 (SEM=0.2).  

Experimental design 

In order discriminate between the two hypotheses concerning how testosterone in POM 

can induce growth of the song control system - via trophic signaling between POM and 

SCS or via singing-activity feedback, we formed 4 groups of castrated subjects whose 

brains were collected at one of two time points, 9 or 25 days after the initiation of the 

treatments. The first group of subjects was treated with testosterone peripherally (PER-

T) via a subcutaneous Silastic™ implant filed with T and received an empty implant in the 

POM, this group was a positive control group which would show the maximum HVC 

growth, all subjects in this group were sacrificed at the second time point. The second 

group (no T) was a negative control group where the subjects received an empty implant 

both peripherally and in the POM, some subjects in this group were sacrificed at each 

time point. The third and fourth groups received an implant filled with testosterone aimed 

at the POM and an empty implant peripherally. Brains of subjects in group 3 were 

collected on day 9 of treatment (POM-T 9 days), this was the day that followed the first 

instance of song observed from one member of this group, while brains in group 4 (POM-

T 25 days) were collected 16 days after onset of singing to allow time for singing activity 

feedback to influence the plasticity of the song control system. Any difference in HVC 

volumes between the POM-T 9 days and POM-T 25 days groups would indicate the 

contribution of singing-activity feedback on HVC volumes. On the other hand, a lack of 

difference between these two groups, as well as a difference between POM-T 9 days and 

the no T group would indicate a contribution of trophic inputs from POM to HVC.  

Several birds from the POM-T 9 days and POM-T 25 days groups were found to 

have a testosterone-filled implant either touching a ventricle or in a different region of the 

brain. In the former case they were assigned to two additional groups called ventricle-T 
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(VEN-T) 9 days and VEN-T 25 days. In the latter case they were assigned to the no T 

group. The VEN-T groups were considered separately because in these cases there was 

a substantial possibility that the testosterone was leaking into the ventricle and reaching 

the entire brain via the cerebrospinal fluid. 

 



122 
 

 

Figure 1. Schematic representation of location of brain implants in male canaries in two groups, with brain 

collection 9 days (upper panel, previous page) or 25 days (lower panel, this page) after surgery.  

The brain implants were prepared, filled with crystalline testosterone and implanted 

into the POM following the procedure described in Alward et al (2013). Briefly, implants 
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were prepared using blunted 27 gauge needles filled over a length of 1 mm with crystalline 

T or left empty as a control.  Under isofluorane anesthesia subjects were fixed in a 

stereotaxic apparatus with ear bars and a beak holder holding the head in a standardized 

position. The following stereotaxic coordinates were used to target the POM: 

dorsoventral: −6.5 mm from the dorsal surface of the brain; anterior–posterior: 2.2 mm 

from the rostral tip of the cerebellum; and medial–lateral: ±0.15 mm from midline. The 

skull immediately over this coordinate was removed with a micro-drill, the implant was 

lowered to the target coordinate and dental cement was applied around the implant, and 

the skin was sutured. The bird was placed under a heat lamp to recover until perching 

and then placed back in its home cage. The following day all subjects were injected 

intraperitoneally 5 times with a 50 mg/kg dose of bromodeoxyuridine (100 µl of 10 mg/ml 

BrdU dissolved in 0.9% saline with 28 mg/L NaOH) with two hours in between each 

injection. Immediately following the first injection, birds were placed in a new individual 

cage in a room where only subjects from the current study were present. The birds were 

monitored for song rate (see following section for details) during 9 or 25 days, after which 

they were sacrificed by transcardial perfusion.  

Song rate observation 

All song quantifications were carried out by direct observation, with the experimenter 

hidden from the birds’ view, and all subjects were monitored simultaneously. It was 

possible to observe all birds simultaneously because overall the song rate of most 

subjects was very low. The number of songs performed per session was recorded. A song 

was defined as a sequence of syllables performed during a minimum of one second and 

with a minimum 0.5 seconds of silence preceding and following it. During the 7 days of 

long-day photoperiod preceding the implant surgery all birds were observed for singing 

during 10-15 minutes per day, only 1 bird (consequently allocated to the PER-T group) 

was observed to sing in this period. One day after the BrdU injections and continuing for 

the rest of the experiment, the observation period increased to 60 minutes per day.  

Perfusion 

On day 9 or 25 after the initiation of treatments, the subjects were caught and, within 3 

minutes, a blood sample was collected from the brachial vein into microcapillaries and 
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stored on crushed ice until centrifugation. 1-2 hours later, the blood samples were 

centrifuged at 9000 g for 9 minutes, the supernatant plasma was collected and stored at 

-80°C until assaying. After blood sampling, the bird was weighed, the length of its cloacal 

protrusion was measured and the subject was deeply anaesthetized with 0.03 ml 

Nembutal (60mg/ml, Ceva). The subjects were perfused transcardially with 0.01 M 

phosphate-buffered saline (PBS, 1.43 g/L Na2HPO4, 0.48 g/L KH2PO4, 7.2 g/L NaCl) 

followed by 4% paraformaldehyde (PFA, 4.3 g/L NaOH, 40 g/L paraformaldehyde, 18.8 

g/L NaH2PO4.H20) to fix the brain. The brain was extracted from the skull and placed in a 

vial of PFA for overnight post-fixation. The syrinx was extracted and weighed, the 

absence of testicular material and presence of SilasticTM implants were verified. The 

following day brains were transferred to 30% sucrose. Upon sinking, the brains were 

frozen on dry ice and stored at -80°C until further use.  

Testosterone Enzyme Immunoassay (EIA) 

10 μl of plasma was diluted in 150 μl of deionized water (MilliQ) in glass test tubes, 

samples were kept at +4°C for 30 minutes, and 2 ml dichloromethane (a non-polar organic 

solvent) was added. Samples were vortexed and left immobile for 1-2 hours for 

separation. The organic phase was then moved to a new test tube and dried under 

nitrogen gas at 40°C. The dichloromethane extraction was repeated a second time and 

pooled extracts were kept at -20°C until the EIA assay. The average recovery rate was 

80%. Testosterone concentrations were measured using an EIA kit (Cayman Chemicals) 

following the manufacturer’s instructions. On the day of the assay, samples were re-

suspended in 400 µl EIA buffer from the kit with 10% ethanol to improve recovery and 

placed on a shaker set to 1350 rpm for 1 hour. The assay was performed immediately 

after following the instructions provided with the kit, on a single plate. These assays have 

been previously validated for measuring testosterone in avian plasma (de Bournonville et 

al., 2016; Dickens et al., 2011). The minimum and maximum detection limit of the EIA, as 

determined by the lowest and highest concentration detected, were 5.20 pg/ml and 

198.69 pg/ml respectively. The average intra-assay coefficient of variation was 19.3%. 
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Nissl staining and brain analyses 

Brains were cut coronally into 4 series of 30 µm thick sections on a Leica cryostat. One 

series was collected on superfrost slides for performing Nissl staining, the other three 

were stored in anti-freeze at -20°C. The procedure for Nissl staining was the following: 

brain sections were pre-hydrated in Walpole buffer then stained in Toluidine blue for 90 

seconds, washed twice in Walpole buffer for 15 minutes each, differentiated in a 

molybdate solution for 2.5 minutes, washed for 1 minute in deionized water and 

dehydrated for one minute each in 20%, 70%, 90% isopropanol, 2 minutes in 99% ethanol 

and 1 minute in xylene. The slides were coverslipped immediately using Eukitt as a 

mounting medium.  

Nissl stained sections were examined for the location of needle track left by the 

implant under an Olympus (BH-2) light microscope. The implant was considered to 

contact the POM if the end of the needle track was within 300 µm of the borders of POM. 

HVC was visualized on the same microscope, in the same series of Nissl stained sections. 

Photomicrographs of every HVC section were taken at 4x magnification in left and right 

hemispheres. An outline was drawn around the perimeter of each cross-section of the 

nucleus using ImageJ v1.47v (National Institutes of Health) and the delimited area was 

measured by the program. The volume of the nucleus was calculated by summing the 

areas and multiplying by 120 µm, the distance between two successive sections in the 

series. The volume of the nuclei in each hemisphere was calculated separately and the 

average of the two measures was used for statistical analyses.  

Statistics 

Subjects from the T-POM 9 days and T-POM 25 days groups in whom the brain implant 

did not contact POM were not different from subjects in the no-T group in any measure. 

Therefore, these subjects were all pooled into one no-T group (n = 4). Two subjects (one 

from no-T group, one from T-POM 25 days group) were excluded from all analyses due 

to high circulating testosterone concentration which presumably indicated that their 

castration was not complete or more probably a piece of testis had regrown in the 

abdominal cavity and was not detected at autopsy. Further, one subject was removed 

from the analysis of syrinx mass due to damage of the syrinx during extraction. Molt 
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status, body mass, cloacal protrusion length, syrinx mass, plasma testosterone 

concentration, song rate and HVC volumes were compared across the six groups (PER-

T, no-T, POM-T 9 days, POM-T 25 days, VEN-T 9 days and VEN-T 25 days) by one-way 

ANOVA using STATISTICA (Version 13). Differences were considered significant for 

p<0.05 and all data are represented here by their mean ± SEM.  

Results 

Physiological condition 

An evaluation of molting was performed prior to the experiment to ensure that all subjects 

were photoregressed. A one-way ANOVA of the molt scores showed that the subjects 

assigned to different groups did not differ in their progression through molting (Fig. 2A, 

F5,12 = 2.85, p = 0.539). Body mass was measured on the day of brain collection to 

evaluate whether the treatment had a non-specific effect on the general condition of the 

subjects. No difference between groups was found in body mass (Fig. 2B, F5,12 = 2.85, p 

= 0.064).  
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Figure 2. The extent of molting (score from 0 to 4) of the experimental subjects 2 months before the 

treatment (A) and body mass on the day of brain collection (B) in castrated male canaries treated for 9 or 

25 days with empty implants (no T), a peripheral testosterone implant (PER-T), a testosterone implant in 

POM (POM-T) or a testosterone implant touching a ventricle (VEN-T).  
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Testosterone and androgen-sensitive measures 

To ensure that castration was complete and testosterone was not leaking from the 

implants in the groups with no peripheral testosterone implant, circulating testosterone 

and two androgen-sensitive measures were compared between groups. As expected, 

testosterone concentration was elevated in the PER-T group (Fig. 3A). This was 

confirmed by a one-way ANOVA (F5,12 = 4.75, p = 0.013), followed by a post-hoc test. 

PER-T subjects had significantly higher concentrations of testosterone than the no-T 

group, VEN-T 9 days group and VEN-T 25 days group. There was a trend for PER-T to 

have higher testosterone concentration than the POM-T 9 days and POM-T 25 days 

groups (p = 0.063 and 0.061, respectively). Surprisingly, there was no corresponding 

increase in cloacal protuberance length (F5,12 = 1.87, p = 0.174) and syrinx mass (F5,11 = 

1.05, p = 0.435) even if the largest values of cloacal protuberance were observed in the 

PER-T group.  
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Figure 3. Testosterone concentration (A), cloacal protuberance length (B) and syrinx mass (C), measured 

on the day of brain collection in castrated male canaries treated for 9 or 25 days with empty implants (no 

T), a peripheral testosterone implant (PER-T), a testosterone implant in POM (POM-T) or a testosterone 

implant touching a ventricle (VEN-T). *= p<0.05. 

Song rates 

The total number of songs observed during the experiment was compared across groups 

as a measure of singing motivation. Although higher average numbers of songs were 

produced in the PER-T, POM-T 25 days and VEN-T 25 days groups compared to the 

other three groups, the ANOVA failed to reveal significant group differences, presumably 
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due to high variations with the three groups singing at high rate combined with the low 

numbers of subjects (Fig. 4, F5,12 = 1.63, p = 0.227).  
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Figure 4. Total number of songs observed in castrated male canaries treated for 9 or 25 days with empty 

implants (no T), a peripheral testosterone implant (PER-T), a testosterone implant in POM (POM-T) or a 

testosterone implant touching a ventricle (VEN-T). 

HVC volumes 

The volume of HVC was not significantly different between groups (Fig. 5, F5,12 = 0.49, p 

= 0.777). 
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Figure 4. HVC volume observed in castrated male canaries treated for 9 or 25 days with empty implants 

(no T), a peripheral testosterone implant (PER-T), a testosterone implant in POM (POM-T) or a testosterone 

implant touching a ventricle (VEN-T).  
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Discussion 

Photosensitive castrated male canaries were implanted with testosterone peripherally, in 

POM or in the ventricles for 9 or 25 days. Brains were collected at these two time-points 

that were chosen to ensure that one group had testosterone in the POM for as long as 

possible but no positive feedback of their own singing behavior, while the other had a 

substantial period of feedback from their own singing activity. The overall physical 

condition of the subjects was not different between groups, as confirmed by comparing 

their molting status prior to the experiment and their body mass at the end of the 

experiment, both of which did not differ between groups. Circulating testosterone 

concentration was elevated in the group that had been treated with testosterone 

systemically compared to the groups that had no testosterone implants and the two 

groups that had testosterone implants touching the ventricles. Additionally, there was a 

trend for peripherally implanted birds to have significantly higher circulating testosterone 

than the two groups with testosterone implants in POM, although this did not reach full 

significance, presumably due to the small sample size as well as some intra-group 

variation. There was no significant difference in the circulating testosterone concentration 

between the groups with no implants and the groups with implants either in the ventricles 

or in POM. Although it is possible and likely that the implants touching the ventricles 

released some testosterone into cerebrospinal fluid that could act in other brain regions, 

the quantity that escaped the brain into the general circulation was apparently not 

sufficient to be detected as being above the level of castrated control males at the time-

points examined. Size of the cloacal protuberance, an androgen-sensitive measure 

(Appeltants et al., 2003; Tramontin et al., 2003), was somewhat elevated in the 

peripherally implanted group, however the small sample size and variability prevented the 

difference from becoming significant.  There was no difference in the weight of the syrinx 

between the groups.  

Birds systemically treated with testosterone started singing after 4-5 days of 

treatment, while the first songs in birds with implants in the ventricle were observed after 

8 days of treatment and the only subject with an implant in POM that was observed to 

sing started to display the behavior after 6 days of treatment. These latencies between 

initiation of treatment and song activation are quite similar to what was reported by Alward 
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and colleagues (Alward et al., 2013) for PER-T and POM-T birds. The latency of song 

activation can vary from one individual to another, but it was surprising that within the 

VEN-T 25 days and even the PER-T group a few birds never started singing during the 

experiment. As a consequence of this inter-individual variation, the comparison of song 

rates did not identify statistically significant differences between groups, although it is 

clear that birds with no testosterone did not sing and that 9 days of testosterone treatment 

either in POM or in the ventricle is not sufficient for activating substantial singing behavior. 

Although illustrated by only a single subject, the data confirm the findings of Alward and 

colleagues (Alward et al., 2016c; Alward et al., 2013) that testosterone action in POM can 

be sufficient to induce high rates of singing behavior, providing further support for the role 

of POM in song motivation.  

Alward and colleagues (Alward et al., 2016c; Alward et al., 2013) showed that 

implanting testosterone in POM not only increases the song rate, but also increases the 

volume of the song control nuclei HVC, RA and Area X. A moderate positive correlation 

between the song rate and volumes of these nuclei in individual birds led the authors to 

conclude that the increase in song control nuclei volume is attributable to the increased 

singing activity that the birds experience following T-POM implants, due to a positive 

feedback of singing on BDNF and neurogenesis in HVC (Li et al., 2000). However, an 

alternative explanation is that testosterone in POM triggers molecular changes that cause 

a growth of song control nuclei via trophic poly-synaptic inputs via DM, Gct, AVT and LoC 

(Riters and Alger, 2004). The current study tried to discriminate between the two 

explanations by collecting brains either at a time when subjects had time to sing only very 

few songs, or a time when the subjects already sang a substantial amount of songs, 

capable of causing trophic feedback on neurogenesis in HVC. Unfortunately, the number 

of subjects with testosterone implants actually located in POM was too low in the current 

study to make a conclusion about this question.  

All the poly-synaptic connections between POM and SCN are almost exclusively 

ipsilateral (Appeltants et al., 2004, 2000; Ashmore et al., 2007; Riters and Alger, 2004). 

Therefore, any trans-synaptic effect on SCN growth due to T-action in POM should also 

be primarily ipsilateral. Alward and colleagues (Alward et al., 2016c; Alward et al., 2013) 
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do not find any lateralization of the growth of SCN volumes in subjects implanted with T 

in POM. Similarly, the expression of doublecortin, a marker of newborn neurons, is not 

lateralized in the HVC of birds with T in POM. Although not conclusive, these studies thus 

support the hypothesis that SCN volumes increase in response to T in POM is activity-

dependent and due to the feedback of the increased singing behavior produced by these 

birds. 
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Abstract (247 words) 

In seasonal songbirds such as canaries, singing behavior is predominantly under the 

control of testosterone and its metabolites. Increasing daylengths in spring activate 

singing via both photoperiodic and hormonal mechanisms. In this study, we show that 

surprisingly a large proportion of castrated male Fife fancy canaries maintained for four 

months under a short-day photoperiod began to sing at high rates. Singing rate was not 

correlated with the (low) circulating concentrations of the steroid. These singing castrated 

male canaries were then systemically treated with a combination of ATD, an aromatase 

inhibitor, and flutamide, an androgen receptor blocker or empty implants as a control to 

test whether this singing activity was steroid-dependent. Singing behavior was recorded 

for 27 days, the birds were then perfused and volumes of HVC and of the medial preoptic 

nucleus (POM) were measured, and ARO-ir neurons in POM were quantified. The 

treatment transiently and slightly decreased the number of songs detected per day and 

possibly increased the number of syllables per song, but did not affect any other measure 

of song. Multiple testosterone-dependent measures such as the volume of HVC and of 

the POM, as well as number of, average somal area and fractional area covered by ARO-

ir neurons in POM were similarly not affected by the treatment. Several indirect indices 

suggested however that the ATD+flutamide treatment was effective for the whole duration 

of the experiment. We tentatively conclude that singing in castrated canaries induced by 

long-term exposure to short-days is largely sex steroid hormone-independent.  

HIGHLIGHTS 

▪ Long-term short-day photoperiod can activate singing in castrated male Fife 

canaries 

▪ Singing rate in these birds did not correlate with the low circulating testosterone 

concentration 

▪ Treatment with ATD+flutamide only marginally affected song and did not decrease 

measures of androgen-dependent structures 

▪ Short-day singing and the underlying neuroplasticity are predominantly sex steroid 

hormone-independent 
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Introduction 

Sex steroid hormones play a critical role in both the development and in seasonal 

changes of singing behavior in songbird species such as canaries. They exert these 

effects mostly by binding to androgen and estrogen receptors that are expressed within 

the network of brain nuclei dedicated to the control of singing behaviour (Bernard et al., 

1999; Metzdorf et al., 1999), such as in the nucleus HVC (formerly high vocal center, now 

used as a proper name), as well as in sites involved in activating singing motivation, such 

as the medial preoptic nucleus (Bernard et al., 1999).  In seasonal songbirds, the 

increasing day length initiates the growth of the testes resulting in an augmented 

testosterone production and other physiological changes, preparing the bird for breeding. 

In many species, the annual breeding terminates because birds become photorefractory 

and their reproductive system is no longer activated by the long-day photoperiod. 

Exposure to short-day photoperiods then restores photosensitivity for the following 

breeding season (for review see Farner and Wingfield, 1980). Both the lengthening 

photoperiod per se and the vernal rise in testosterone play a role in the seasonal changes 

in song and their relative contribution seems to vary from one species to another. 

Implanting exogenous testosterone in male or female songbirds increases 

frequency and duration of singing in a number of species (Arnold, 1975a; Madison et al., 

2015; Nottebohm, 1980a; Pröve, 1974). Castration causes a decrease in singing activity 

during breeding season (Arnold, 1975b; Nottebohm, 1980a; Pröve, 1974), although 

usually not in non-breeding season (Alvarez-Borda and Nottebohm, 2002; Pinxten et al., 

2002). Testosterone regulates most aspects of song through a synergistic effect of its 

androgenic and estrogenic metabolites (reviewed in Ball et al., 2003). 

 Although in many species testosterone alone increases HVC volume even under 

short-day photoperiods to values typical of breeding conditions (Rouse et al., 2015; Sartor 

et al., 2005; Yamamura et al., 2011), HVC volume also increases in direct response to 

long-day photoperiods in castrated male American tree sparrows (Bernard et al., 1997). 

Furthermore, Robertson et al (2014) showed that castration and blockade of both 

androgen receptors and estrogen production during photostimulation in male white-

throated sparrows did not decrease the size of the song control nuclei relative to untreated 
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photostimulated birds. Dloniak & Deviche (2001) similarly showed that photostimulation 

increases HVC volume even in castrated male dark-eyed juncos, compared to 

photosensitive or photorefractory castrated individuals. However, in this study only 

castrated males that were treated with testosterone sang at all, independently of their 

photoperiodic state.  

 Despite the important role of testosterone in song activation, some songbird 

species continue to sing during the non-breeding season when testosterone plasma 

concentrations are very low. Non-breeding season song often has a different function 

than breeding season song (Leitner et al., 2001a; Rost, 1990; Smith et al., 1997) and its 

mechanistic basis has been less studied. For example, European starlings sing 

throughout the year, but their songs are shorter in autumn than in spring (Riters et al., 

2000). In this species, the relationship between the expression of opioid receptors (Kelm-

Nelson and Riters, 2013) or dopamine signaling (DeVries et al., 2015; Heimovics et al., 

2009; Heimovics and Riters, 2008) with singing behavior varies as a function of the 

season. Male song sparrows continue to sing in autumn but with greater variability 

compared to spring (Baker et al., 1984; Smith et al., 1997). Although during the non-

breeding season the testosterone levels are very low and castration does not decrease 

non-breeding season song, this singing behavior is still partially under the control of sex 

steroid hormones. Song rate in non-breeding song sparrows is decreased by a 

combination of aromatase inhibition and androgen receptor blocking (Soma et al., 1999) 

and also by treatment with an aromatase inhibitor alone (Soma et al., 2000). Multiple lines 

of research converge to show that dehydroepiandrosterone (DHEA), an androgen 

produced by the adrenals is, in contrast to testosterone and estrogen, elevated during the 

non-breeding season in song sparrows (Soma and Wingfield, 2001) and that this steroid 

is activating the non-breeding season singing, likely via its neural metabolism to 

androgens and estrogens, but possibly via other mechanisms too (for review see Soma 

et al., 2014).  

  Canaries in the wild (Leitner et al., 2001a) as well as domesticated canaries (Voigt 

and Leitner, 2008) do continue to sing during non-breeding season, albeit with shorter 

song durations. However, in laboratory conditions, canaries are rarely observed to sing 
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under short-day photoperiod, especially following castration. We report here that 

castrated male Fife fancy canaries maintained on short-day photoperiod for an extended 

length of time start to dramatically increase their song rate after four months, despite 

having negligible circulating testosterone concentrations. We examined the contribution 

of sex hormones in this form of non-breeding condition singing behavior by treating half 

of the subjects with the inhibitor of aromatase androstatrienedione (ATD) combined with 

the anti-androgen flutamide, while continuing to monitor their singing. These treatments 

had minimal or no effect on all steroid-dependent measures that were quantified including 

singing rate. These data indicate that onset of active singing in photosensitive male 

canaries is possible in the absence of either photostimulation or circulating testosterone 

and that the role of sex hormones in singing under these conditions appears to be 

minimal.  

Materials and Methods 

 

Experimental animals 

Sixteen male canaries of the Fife fancy breed used in this study were obtained from a 

colony maintained at the University of Antwerp, Belgium. They were born and had gone 

through a full breeding cycle in this colony before being transferred to our laboratory. All 

subjects had been on natural daylight during the months preceding their arrival in our 

laboratory at the University of Liege, Belgium, in late March. All experimental procedures 

complied with Belgian laws concerning the Protection and Welfare of Animals and the 

Protection of Experimental Animals, and experimental protocols were approved by the 

Ethics Committee for the Use of Animals at the University of Liege (Protocol number 926). 

In all housing situations food, water, baths, cuttlebone and grit were available ad libitum. 

 

Experimental procedures 

Upon arrival subjects were housed on long day photoperiod (16L:8D) for five months to 

make them photorefractory. During the first two months, subjects were housed in an 

aviary with a large mixed-sex group. Three recordings of molting status (see detail of 

method below) during this period showed no initiation of molting in these conditions. Since 

the socio-sexual interactions taking place in these conditions appeared to delay molting 
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and the development of photorefractoriness, males were switched to single-sex housing 

with 5-6 males per cage in a separate room with no visual contact and minimal acoustic 

contact with the females. Another six recordings of molting status then showed a slow but 

steady progression through molting in these conditions indicating that birds had become 

photorefractory at least partially and were photoregressing (for more details on molting 

see chapter 7 of this thesis). They were then moved to an intermediate photoperiod 

(12L:12D) for 2 months, to further push the photoregression. 

 Next, the photoperiod was changed to 8L:16D for five months to induce birds to 

become photosensitive again and prepare them for testing effects of testosterone on 

singing behavior under short days. Three weeks later all males were castrated following 

a procedure similar to that described in Sartor et al. (2005). Briefly, under isoflurane 

anesthesia each testis was removed via an ipsilateral incision posterior of the last rib. 

Testes were found to be regressed in all subjects. The incision was sutured, the subject 

was allowed to recover under a heat lamp until perching and then returned to their home 

cage.  

 To our surprise, after four months of short-day photoperiod (February), many of 

these birds were observed to sing at relatively high rates. They were thus transferred to 

single-housed sound-attenuated boxes for three days to record their singing during two 

hours every morning at the time of lights on. At that time, blood samples were collected 

to test via enzyme immunoassay whether their circulating testosterone levels were 

actually low. This was indeed the case, which confirmed that castration had been 

complete. After the three days of isolation in the sound-proof boxes, the subjects were 

returned to their previous group cages. We decided at that time to investigate whether 

this singing activity displayed by short day castrated males was nevertheless steroid-

dependent, instead of testing effects of exogenous testosterone. Of the twenty-six males 

that were recorded, sixteen males sang at a high rate.  The other 10 subjects were not 

included in the rest of the study because they were mostly singing at a low rate and would 

not have permitted to investigate whether inhibition of sex steroid action inhibits singing 

behavior. They were included in another experiment (see chapter 4 of this thesis).  

 One month later the sixteen behaviorally active males were distributed into a 

treatment (n= 8) and a control (n= 8) group, balancing the body mass and cage of origin 
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between the two groups and they were placed back in the sound-attenuated boxes for 

two days to obtain a new baseline recording of their singing behavior just prior to 

treatment onset. The following day they were implanted subcutaneously with four 10 mm 

Silastic™ implants (inner diameter: 1.47 mm, outer diameter 1.96 mm, Dow Corning, ref. 

508-006), sealed with medical silicone (Medical Adhesive Silicone, Dow Corning) on both 

sides. For the control subjects all four implants were empty, for treated subjects two 

implants were filled with 1-4-6 androstatrien-3,17-dione (ATD, Steraloids, ref. A4100-000) 

and the other two filled with trifluoro-2-methyl-48-nitro-m-propionotoluidide (flutamide or 

FLUT, Sigma-Aldrich, ref. F9397-1G).  

 ATD is a steroidal aromatase inhibitor (Foidart et al., 1995b) that inactivates 

aromatase irreversibly (Numazawa and Tachibana, 1997) and additionally inhibits 

aromatase mRNA transcription (Foidart et al., 1995b). Flutamide is a non-steroidal 

reversible androgen receptor antagonist (Labrie, 1993; Neri et al., 1972). Several studies 

have used these compounds in songbird species either separately (e.g. Archawaranon 

and Wiley, 1988; Beletsky et al., 1990; Hegner and Wingfield, 1987; Schwabl and Kriner, 

1991; Sperry et al., 2010; Walters and Harding, 1988), or in combination (e.g. Johnson 

and Bottjer, 1995; Moore et al., 2004; Robertson et al., 2014)  

All implants were checked under a stereo-microscope to make sure they were well 

sealed and they were incubated in 0.9% NaCl at 37°C overnight before being inserted 

subcutaneously.  After implanting the Silastic™ capsules the subjects were returned to 

the same sound-proof box as previously and their singing behavior was recorded daily 

during the 2 hours after lights on for twenty-seven days. On the 28th day blood samples 

were collected from the wing vein and jugular vein, the subjects were deeply 

anaesthetized and perfused with paraformaldehyde (see below for details).   

 

Molting status recording 

Molt was scored following the method described in (Dawson and Newton, 2004), which 

has previously been used to evaluate molt in canaries by Hurley and colleagues (Hurley 

et al., 2008). The eight primary feathers on the subjects’ right wing were evaluated for 

molting – these were identified as being the eight first feathers starting from the lateral 

side of the wing. Molting of the other feathers on the wings and rest of the body were also 
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observed but were not quantified. A score of 0 was given to a feather that had not yet 

fallen out, 1 for a new feather that was ¼ regrown, 2 for a half-regrown feather, 3 when it 

was ¾ regrown and 4 for a fully regrown new feather. A total molt score for each subject 

on a given day was calculated by summing the molt index of all eight feathers and dividing 

this total by 32 to provide a final score ranging from 0 (no molt) to 1 (complete molt).  

 

Song recording and analysis 

Singing was recorded inside custom built sound-proof boxes for two hours daily 

immediately following lights-on (0900h). Sound was acquired from all 16 channels 

simultaneously via custom-made microphones (microphone from Projects 

Unlimited/Audio Products Division, amplifier from Maxim Integrated) and an Allen & Heath 

ICE-16 multichannel recorder. The sound file was acquired and saved as a .wav file by 

Raven v1.4 software (Bioacoustics Research Program 2011; Raven Pro: Interactive 

Sound Analysis Software, Version 1.4, Ithaca, NY: The Cornell Lab of Ornithology) at a 

frequency of 44100 Hertz.  The sound files were analyzed by software specifically 

designed for canary song analysis designed by Ed Smith and Bob Dooling, University of 

Maryland at College Park. The program defines a vocalization as a song if it is at least 

one second long, is preceded and followed by at least 0.4 seconds of silence and is at 

least 30 dB above background noise. The program computed for each song defined in 

this way the following measures: number of syllables per song, song duration (in 

seconds), time vocalizing (in seconds), percent of time vocalizing (seconds), syllable 

average duration (in milliseconds), syllable standard deviation of duration (in 

milliseconds), syllable average root mean square (RMS) power level, syllable standard 

deviation of RMS power level, song average RMS power level, song total RMS power, 

song entropy, song bandwidth (in hertz), song centroid frequency (in hertz), song 1st, 2nd 

and 3rd quartile frequency. The average of these measures for all the songs produced by 

each bird in one day was used for further analyses. Additionally, for each day the number 

of songs detected, the song durations and the time vocalizing were summed to make a 

total per day.  For these three measures, a zero value was attributed on days when no 

songs were detected. For all other measures the value attributed to days with no singing 

was the average of the preceding and following day from that bird, in order to do statistical 
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analyses that do not allow for missing values. To validate that the software was detecting 

songs correctly, ten recording sessions were quantified manually by visually counting the 

songs on the spectrograms generated by Raven Pro. The numbers of songs detected 

with the two methods were strongly correlated (r2
153 = 0.98, p < 0.001, see Fig.1). 

 

Figure 1. Validation of custom-built song analysis software. Regression of number of songs detected 

automatically by software with the number of songs detected manually by in the same recordings in 10 

recordings from the 16 experimental birds. 

 

Blood collection and hormone analysis 

Blood samples of 150 µl were collected from the wing vein of all subjects during the 

transfer to sound-proof boxes for baseline recordings, just before placing the 

subcutaneous implants and on the day of brain collection. Wing vein blood collection was 

always performed within 3 minutes of catching the birds in their cage and within 90 

minutes after lights on. In addition, just prior to perfusion a 100-200 µl blood sample was 

taken from the jugular vein. Blood was always collected into Na-heparinized micropipettes 

(Brand GMBH + CO KG, Wertheim, Germany) and any further blood flow was stopped 

by pressing cotton on the vein puncture. Blood was centrifuged at 9000 g for 9 minutes 

and the supernatant plasma was collected and stored at -80° C until further use.  

 

Testosterone Enzyme Immunoassay 
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10 µl of plasma from each sample was diluted in 150 µl of ultra-pure water. Recovery 

samples were spiked with 20,000 CPM of tritiated-testosterone (Perkin-Elmer). All 

samples were extracted two times with 2 ml of dichloromethane. The organic phase was 

eluted into clean tubes, dried with nitrogen gas and stored at -20°C until further use. 

Average recovery rate was 72.8%. 

 Extracted samples were re-suspended in 400 µl Enzyme Immunoassay (EIA) 

buffer by vortexing for 30 seconds and shaking for 90 min at 1350 rpm. Re-suspended 

samples were assayed for testosterone concentration in two assays on three plates from 

a single Cayman Chemicals testosterone EIA kit (ref. 582701) following manufacturer’s 

instructions. The minimum and maximum detection limit of the EIA, as determined by the 

lowest and highest concentration detected, were 4.79 pg/ml and 313.71 pg/ml 

respectively. The inter-assay coefficients of variation were 10.5 and 17.8% and the intra-

assay variation for the plates were 8.7% and 13.5% respectively. 

 

Confirmation of testosterone concentrations by GC/MSs 

Androgens (dehydroepiandrosterone, androstenedione, testosterone, 5-

dihydrotestosterone, 3α5α-tetrahydrotestosterone) and estrogens (estrone, 17β-

estradiol) concentrations were determined in plasma samples collected from the jugular 

vein of six control and six treated subjects by GC/MS according to the protocol described 

by Liere et al. (2000) with minor modifications. Briefly, steroids were extracted from 

individual plasmas by adding 10 volumes of methanol. Internal standards were introduced 

for steroid quantification: 2 ng of epietiocholanolone (for 5α-dihydrotestosterone, 3α,5α-

tetrahydrotestosterone and dehydroepiandrosterone), 2 ng of 2H5-testosterone (for 

testosterone), 2 ng of 2H5-17β-estradiol (for 17β-estradiol, and estrone) and 5 ng of 19-

nor progesterone (for androstenedione). Samples were purified and fractionated by solid-

phase extraction with the recycling procedure (Liere et al., 2004). The steroid sulfates-

containing fraction was directly derivatized with 20 µl heptafluorobutyric anhydride 

(HFBA) in 100 µl anhydrous acetone for 30 min at 20°C and analyzed by GC/MS. The 

unconjugated steroids-containing fraction was filtered and further purified and 

fractionated by high performance liquid chromatography (HPLC) as previously described 

(Hertig et al., 2010; Labombarda et al., 2006). Three fractions were collected from the 
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HPLC system: 5α/-dihydroprogesterone were eluted in the first HPLC fraction (3-10 min) 

and were silylated with 50 µl MSTFA (N-methyl-N-

trimethylsilyltrifluoroacetamide)/NH4I/DTE (1000:2:5 vol/vol/vol) for 15 min at 70°C. The 

second fraction (10-31 min) contained pregnenolone, progestagens, androgens, estrone 

and 17-E2 was derivatized with 25 µl HFBA and 25 µl anhydrous acetone for 1h at room 

temperature. Corticosterone, cortisone, cortisol and estriol were eluted in the third HPLC 

fraction (31-45 min) and derivatized with 50 µl HFBA and 25 µl anhydrous hexane for 1h 

at 80°C. All the fractions were dried under a stream of N2 and resuspended in hexane for 

GC/MS analysis. 

Calibration and biological samples were analyzed by GC/MS with an AS 3000 

autosampler (ThermoFisher Scientific, USA). The Focus GC gas chromatograph is 

coupled with a DSQII mass spectrometer (ThermoFisher Scientific, USA). Injection was 

performed in the splitless mode at 250°C (1 min of splitless time) and the temperature of 

the gas chromatograph oven was initially maintained at 50°C for 1 min and ramped 

between 50 to 200°C at 20°C/min, then ramped to 285°C at 10°C/min and finally ramped 

to 350°C at 30°C/min. The helium carrier gas flow was maintained constant at 1 ml/min 

during the analysis. The transfer line and ionization chamber temperatures were 300°C 

and 220°C, respectively. Ionization was performed by electronic impact with electron 

energy of 70 eV. Derivatized steroids were identified by their retention time and two 

diagnostic ions in single ion monitoring (SIM) (Table 1). Quantification was performed 

according to the major diagnostic ion, called the quantification ion. The detection 

thresholds for all the screened steroids in plasma are reported in Table 2. 

 

Table 1- Parameters used for steroid identifications and measurements by GC-MS 

Steroids (Molecular weight) Derivatized steroids 
(molecular weight) 

Retention 
time 

(min.) 

Diagnosti
c ions 
(m/z) 

35-tetrahydrotestosterone 
(292) 

35- tetrahydrotestosterone -
3,17- HFB2 (684) 

12.54 455 and 
470 

* 2H5-Testosterone (293) 2H5-Testosterone, 17-HFB2 (685) 13.16 682-685 
Testosterone (288) Testosterone-3,17-HFB2 (680) 13.20 665 and 

680 
* 2H5-17β-estradiol (277) 2H5-17β-estradiol-3,l7-HFB2 

(669) 
13.57 667-669 
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17β-estradiol (272) 17β-estradiol-3,17- HFB2 (664) 13.60 451 and 
664 
 

* Epietiocholanolone (290) Epietiocholanolone-HFB (486) 14.90 442 and 
486 

Dehydroepiandrosterone (288) Dehydroepiandrosterone-3-HFB 
(484) 

15.71 255 and 
270 

4-androstene 3,17-dione 
(286) 

4-androstene 3,17-dione-3-HFB 
(482) 

15.74 467 and 
482 

    
Estrone (270) Estrone-3-HFB (466) 16.17 422 and 

466 
5-dihydrotestosterone (290) 5- dihydrotestosterone-17-HFB 

(486) 
16.50 414 and 

486 
* 19 nor-progesterone (300) 19 nor-progesterone-HFB (496) 17.25 481 and 

496 
The diagnostic ions in bold face served for quantification 

*: Internal standards 

 

Table 2- GC/MS detection threshold in avian plasma 

Steroids ng/ml 
3α5α-tetrahydrotestosterone 0.001 
Testosterone 0.002 
17β-estradiol 0.002 
Dehydroepiandrosterone 0.010 
4-androstene 3,17-dione 0.010 
Estrone 0.020 
5α-dihydrotestosterone 0.005 
 

Estradiol Enzyme Immunoassay  

15 or 30 µl of plasma was diluted in 2ml MilliQ water (depending on volume available). 

Recovery samples were spiked with 200 pg/ml estradiol diluted from the stock solution 

supplied in the EIA kit and were treated the same as the unspiked experimental samples. 

C18 columns (Sep-Pak C18 Vac cartridge, Waters) were first primed with 1ml ethanol 

and washed with 2 ml MilliQ water. After loading the 2ml of diluted sample, the columns 

were again washed with 2ml MilliQ water and dried. Steroids were eluted with 1ml of 90% 

methanol (HPLC-grade) and dried at 40°C under a nitrogen gas flow, the walls of the 

tubes were rinsed with 500 µl HPLC-grade ethanol and re-dried under nitrogen gas. 

Average recovery was 72.9%. Dried samples were stored at -20°C overnight. 

 Extracted samples were re-suspended in 180 µl EIA buffer with 0.7% ethanol, 

vortexed for 30 seconds and shaken for 90 min at 1350 rpm. Re-suspended samples 
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were assayed for estradiol concentration on three plates from a Cayman Chemicals 

estradiol EIA kit (ref. 582251) following manufacturer’s instructions. The minimum and 

maximum detection limit of the EIA, as determined by the lowest and highest 

concentration detected, were 9.17 pg/ml and 691.23 pg/ml respectively. The inter-assay 

variation was 12.6% and the intra-assay variation for the 3 plates was 26.4, 15.9, 21.1% 

respectively. 

A parallelism validation, performed within the same assay, showed that sample 

dilution decreased the estradiol detected in parallel with the standard curve dilution (see 

Fig. 2) and the coefficient of variation of the sample assayed at different dilutions was 

7.3%, confirming that the assay is specifically measuring estradiol in our canary plasma 

samples.  

  

Figure 2. Parallelism of estradiol detection of sample at different dilutions by the estradiol EIA-kit used for 

assaying experimental samples. 

 

Brain collection and processing 

28 days after the implantation of Silastic™ capsules, subjects were weighed, the length 

and width (in millimeters) of their cloacal protuberance was measured, a blood sample 

was taken from the wing vein and then birds were anaesthetized with ~0.03ml of 

Nembutal. Once reflexes had stopped, a blood sample was taken from the jugular vein 

and immediately after the birds were perfused intracardially with phosphate-buffered 

saline (PBS, 1.43 g/L Na2HPO4, 0.48 g/L KH2PO4, 7.2 g/L NaCl) to remove blood and 
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immediately after with 4% paraformaldehyde (PFA, 4.3 g/L NaOH, 40 g/L 

paraformaldehyde, 18.8 g/L NaH2PO4.H20) to fix the brain. After perfusion, the brain was 

immediately extracted from the skull and post-fixed overnight in 15 ml PFA. 

 The syrinx was extracted and weighed, the presence of implants and, when 

relevant, presence of drug inside the implants was confirmed. On the following day, brains 

were transferred to 15 ml of 30% sucrose solution (15.6 g/L Na2HPO4, 1.5 g/L KH2PO4, 

300 g/L sucrose). Once the brains had sunk to the bottom of the vial they were frozen on 

dry ice and stored at -80° C until used. Brains were cut coronally on a cryostat into 30 

µm-thick sections. The sections with the preoptic nucleus were collected separately into 

one series – these included all sections between the start of tractus septopallio-

mesencephalicus (TSM) and 240 µm posterior to the anterior commissure (AC), while the 

rest of the brain was cut into four series. Sections were stored in anti-freeze (0.01M PBS 

with 10 g/L polyvinylpyrrolidone, 300 g/L sucrose, and 300 ml/L ethylene glycol) at -20°C 

until further use.  

 

Brain sections staining 

Nissl staining 

One series of sections was mounted on Superfrost slides, dried at least overnight, and 

Nissl-stained with toluidine blue. After differentiation in Walpole buffer and molybdate, 

they were dehydrated in a series of increasing isopropanol concentrations, 99% ethanol 

and xylene and coverslipped using Eukitt as a mounting medium.  

Aromatase immunohistochemistry 

A second series of brain sections was stained by immunohistochemistry for aromatase.  

Washes were performed with Tris-buffered saline (TBS) or TBST (TBS with 0.2% Triton 

X-100). The blocking sera and antibodies were diluted in TBST with 5% normal goat 

serum (NGS) and 1% bovine serum albumin (BSA), this solution will be referred to as 

TBST-NGS-BSA. Sections were washed three times for five minutes to remove antifreeze 

and after all other steps except for the blocking serum. Endogenous peroxidases were 

inhibited by incubating the sections in 3% hydrogen peroxide in a solution of 50% 

methanol for 20 minutes. Sections were blocked in TBST-NGS-BSA solution for 60 

minutes and incubated in primary antibody for one hour at room temperature and 
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overnight at 4°C (1:10,000 rabbit anti-quail aromatase antibody, a kind gift from Prof. 

Harada, Fujita Health University, Toyoake, Japan). This antibody has been especially 

developed and validated for quail (Foidart et al., 1995a) and also validated in songbirds 

(Balthazart et al., 1996a). On the following day, sections were blocked again in TBST-

NGS-BSA solution for one hour, and incubated with the secondary antibody for two hours 

at room temperature (1:200 goat anti-rabbit biotinylated, DAKO, ref. E0432). The binding 

was amplified by incubating sections in ABC kit solution (both solution A and B at 1:400, 

Vectastain Elite PK-6100 2001). The binding sites were revealed by incubating for 10 

minutes in 0.04% DAB with 0.012% H2O2 diluted in TBS. Sections were mounted from 

TBS with gelatin onto glass slides, dried overnight, immersed in xylene for 10 minutes 

and coverslipped with Eukitt mounting medium.  

 

Microscopy and image analysis 

HVC volume reconstruction in Nissl-stained sections 

To reconstruct HVC volumes, photomicrographs were taken of each section in the series 

containing the nucleus, in both the left and right hemispheres with a Leica DMRB FL.100 

microscope connected to a Leica DFC 480 color camera at a magnification of 5x using 

the same light settings for all pictures. An outline was drawn around the perimeter of each 

cross-section of the nuclei using ImageJ v1.47v (National Institutes of Health) and the 

delimited area was measured. In the few cases that a section was missing, the area was 

estimated by taking the average of the two sections immediately rostral and caudal to it. 

The volumes of nuclei were calculated by summing the areas and multiplying by 120 µm, 

the distance between two successive sections in the series. The volume of the nuclei in 

each hemisphere was calculated separately and the average of the two measures was 

used for statistical analyses.  

Aromatase 

Aromatase staining was analyzed on a Leica DMRB FL.100 microscope connected to a 

Leica DFC 480 color camera. Photomicrographs of each medial preoptic nucleus (POM) 

in the series were taken at 10x magnification using the same light settings for all pictures, 

starting from the most rostral section containing aromatase-immunoreactive (ARO-ir) 
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cells ventral of the TSM and finishing at the section containing the full extent of the AC. 

However, since a substantial proportion of brains had damage in at least one of sections 

with TSM, these sections were excluded from the quantification of POM volume for all 

brains. The cluster of ARO-ir cells that correspond to the POM was delineated and 

measured with ImageJ FIJI (National Institute of Health) and the volume of the nucleus 

was calculated by adding these areas in all sections and multiplying by 60 µm, the 

thickness between two consecutive sections.  

 The photomicrograph representing the middle section of the POM in the rostro-

caudal axis was additionally analyzed for cellular level changes.  Within an 852 x 852 µm 

square surrounding the POM (this square fully included the largest POM cross-section 

from all subjects) the number of aromatase-expressing neurons, the percentage of area 

covered by aromatase staining and the mean somal area of the ARO-ir neurons were 

quantified. Briefly, images were converted to 8-bit, a grey-value threshold was set to 

include all clearly visible aromatase-expressing neurons, but exclude all background. All 

particles over 30 µm2 in area and over 0.15% circularity (circularity = 4π x 

area/(perimeter)2, with a value of 1.0 indicating a perfect circle) were counted and 

measured. Additionally, the ARO-ir neurons in the same square were manually counted 

on the raw, non-thresholded image as a control.  

 

Statistical analyses 

A t-test was used to determine whether birds who had started singing (n = 16) were 

different in testosterone concentration and cloacal protuberance area (length x width) 

from the birds who did not sing (n = 10). A linear regression was preformed to verify 

whether testosterone or cloacal protuberance area correlated with the total duration of 

singing detected in these twenty-six birds.  

Two-way repeated-measures ANOVA with treatment and time as main factors was 

used to analyze the following measures collected one month before the experiment, on 

the day of implantation of Silastic™ capsules and on the day of brain collection: body 

mass, cloacal protuberance area (length x width), testosterone and estradiol measured 

from the wingvein by EIA. A two-way repeated-measure ANOVA was also used to 

analyze testosterone and estradiol measured by EIA from the wing versus jugular veins, 
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with treatment as a between-subjects factor and vein as a within-subjects factor.  

Whenever a significant interaction between factors was found, Tukey’s post-hoc tests 

were performed. A t-test was used to test for differences between the groups in syrinx 

mass, testosterone, androstenedione, 5α-dihydrotestosterone, 3α5α-

tetrahydrotestosterone, dehydroepiandrosterone, 17β-estradiol and estrone 

concentrations according to GC/MS, HVC volume, POM volume, number of ARO-ir 

neurons, their average somal area and the % cover by ARO-ir material in the rostro-

caudally middle section of POM. Linear regression was used to test for correlation 

between the testosterone and estradiol detected by EIA in the wing vein versus the jugular 

vein separately in the treated and control subjects. A two-way repeated-measures 

ANOVA was also used to analyze the song features, however in this case when a 

significant interaction was found a planned-comparisons test was used to verify 

differences between the two groups at specific time points.  

A one-way ANOVA was used to compare the cloacal protuberance area, syrinx, 

POM volume, ARO-ir neuron number, area and % cover in the subjects of the current 

study with castrated photostimulated males implanted with testosterone-filled (CX+T) or 

empty (CX) Silastic™ implants from previous studies. A t-test was used to compare the 

HVC volumes of subjects in the current study with males implanted with testosterone.  

For estradiol measurements among the 64 samples (4 per bird) 4 data points are 

missing due to insufficient plasma. All 64 samples were included in the analysis of 

testosterone by EIA, however many values for the treated birds after treatment exceeded 

the limits of the standard curve therefore likely are not accurate. One bird was excluded 

from measurements of POM volume and ARO-ir neuron properties due to damage to the 

hypothalamus during brain extraction from the skull. Additionally, one more bird was 

excluded from the analyses of ARO-ir neuron properties due to poor labeling and non-

specific labeling of blood vessels. One bird was completely excluded from all song 

analysis because almost no songs were detected on any day from this bird. For all song 

measures day 1 was excluded from all analyses because no songs were detected from 

any bird on this day. On day 11 no song recording was made due to a technical problem. 

For all but three song measures (number of songs, total song duration and total vocalizing 

duration) two birds and the first 10 days of recording were excluded because a very low 
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number of songs were detected in both these cases. For six song measures (average 

number of syllables per song, average syllable duration, standard deviation of syllable 

duration, average song RMS power, average syllable RMS power and standard deviation 

of syllable RMS power) for the days where no songs were detected, an average value of 

the previous and following days for that measure was used.  

 A paired t-test was used to test whether the dependent variables that were 

considered here were lateralized. Specifically, we looked for the presence of differences 

between the left and right hemisphere in the volume of HVC and POM, the number and 

area of ARO-ir cells and the fractional area covered by these cells in POM. These tests 

showed that none of these measures were lateralized except for number of ARO-ir 

neurons (t13 = 2.72, p = 0.018) and % cover by ARO-ir material (t13 = 2.24, p = 0.043). 

Furthermore, using the values for each hemisphere separately to analyze the group 

differences gave very similar results therefore an average of the two hemispheres was 

used. The magnitude of these differences between sides was small and concerned two 

tests out of many.  

These differences are thus not further considered. All statistical analyses were 

performed using STATISTICA and differences were considered significant for p<0.05. All 

data are represented here by their mean ± SEM.  

 

Results 

Hormone-behavior correlations during initial observations 

The birds included in this experiment (n=16) and those who did not sing at all initially 

(n=10) were recorded one month before the experimental treatment, to establish baseline 

singing rates and balance the subjects across the two groups according to song rate. 

These groups were formed based on manual counting of songs on the spectrograms 

made from three days of baseline recording, the non-singing birds were not observed to 

sing at all during this period, while singing birds sang between 26 and 195 times. At the 

same time a blood sample was collected to measure testosterone to confirm that their 

castration was complete. Despite the recordings showing high rates of singing in a subset 

of birds, testosterone concentrations were basal in all birds (mean ± SEM = 0.58 ± 0.06 

ng/ml) with the exception of one bird measured at 1.65 ng/ml. Furthermore, testosterone 
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concentrations did not differ between singing and non-singing birds (Fig. 3A, t24 = 0.74, p 

= 0.467). The total song duration detected (as identified by song analysis software, which 

is a more precise measure than the manual counting of songs) over these three days of 

recording were regressed against the concurrent concentrations of testosterone (Fig. 3B), 

but no correlation was evident (r2
24 = 0.02, p = 0.470). Similarly, there was no difference 

in cloacal protuberance area between singers (9.40 ± 0.79 mm2) and non-singers (11.78 

± 1.59 mm2, t24 = 1.49, p = 0.149) and no correlation between cloacal protuberance area 

and total song duration (r2
24 = 0.01, p = 0.656, data not shown). 
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Figure 3. Plasma testosterone concentrations in male canaries maintained for 4 months on short-day 

photoperiod that sang at high rates (n =16) or remained silent (n=10), all data are represented here by their 

mean ± SEM (A). Correlation between the testosterone concentrations and total song duration during three 

days of recordings in the same birds (B).  

The rest of this presentation will focus on the 16 birds singing at a high rate that 

were treated with ATD and flutamide or kept as controls. 

Morphological measures 

Body mass was not different between control and treated subjects either before or after 

treatment (F1,28 = 1.60, p = 0.226, see Fig. 4A), however there was a slight decrease in 

body mass of all subjects over time, presumably due to the mild stress of handling and 

social isolation (F2,28 = 31.01, p < 0.001), with no interaction between the two factors (F2,28 
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= 2.08, p = 0.143). A post-hoc analysis of the significant time effect showed that all three 

timepoints were different from each other.   

The area (length x width) of the cloacal protuberance was not significantly different 

between treatment groups (F1,28 = 0.22, p = 0.649, Fig. 4B) or time points (F2,28 = 2.52, p 

= 0.098) and there was no interaction between the factors (F2,28 = 1.16, p = 0.328). The 

cloacal protuberance areas of these subjects were compared to castrated, 

photostimulated testosterone-implanted males (henceforth called CX+T males) that were 

singing at similarly high rates as the subjects of the current study as well as their controls 

– castrated photostimulated males implanted with empty Silastic™ capsules (CX males). 

A one-way ANOVA showed the cloacal area of the three groups was significantly different 

(F2,24 = 16.38, p < 0.001), a post-hoc test showing that the CX-T group had significantly 

larger cloacal protuberance areas (26.50 ± 4.64 mm2) than both the CX controls (12.90 ± 

4.29 mm2) and the subjects of the current experiment (7.78 ± 0.67 mm2), with no 

difference between the latter two groups.  

The syrinx mass on the day of brain collection was also not different between the 

groups (t14 = 0.57, p = 0.581, Fig 4C). A one-way ANOVA comparing the subjects of the 

current study with CX+T and CX males showed that syrinx mass of the three groups was 

significantly different (F2,24 = 8.38, p = 0.002), a post-hoc test showing that the CX-T group 

had significantly heavier syrinx (30.33 ± 3.46 mg) than both the CX controls (20.98 ± 3.41 

mg) and the subjects of the current experiment (19.44 ± 0.82 mg), with no difference 

between the latter two groups.  
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Figure 4. Morphological measures. Body mass (A) and cloacal protuberance (B) of subjects one month 

prior to onset of treatment, just before treatment and on the day of brain collection in control and treated 

subjects. Syrinx mass of subjects in the two groups at end of the experiment (C).  

Song behavior 

The number of songs detected per day was analysed in a repeated-measures ANOVA 

with treatment group as an independent factor. The main effect of treatment was not 

significant (F1, 338 = 2.14, p = 0.167). There was a significant effect of time (F26,338 = 11.51, 

p < 0.001) and a significant interaction between the two factors (F26,338 = 2.24, p < 0.001, 

see Fig. 5A). Planned-comparison post-hoc tests showed that treated subjects were 

significantly different from controls on day 18 of the treatment with an alpha-value below 

0.05 and there was additionally a statistical tendency with alpha values between 0.05 and 

0.1 on days 16, 17, 19, 20, 21, 22, 24 and 25. On all these days the treated group sang 

on average fewer songs than the control group.  

 The same analysis performed on total song duration recorded on each day 

detected no main effect of group (F1,338 = 0.00, p = 0.952), a significant effect of time 

(F26,338 = 11.16, p < 0.001) but no interaction (F26,338 = 1.03, p = 0.430, see Fig. 5B). A 

similar pattern of results was also detected in the analysis of the total time vocalizing: no 

effect of group (F1,338 = 0.05, p = 0.824), a main effect of time (F26,338 = 11.98, p < 0.001), 

but no interaction (F26,338 = 1.03, p = 0.430, see Fig. 5C).  
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Figure 5. The song rate (A), total song duration (B) and total time vocalizing (C) detected on days -2, -1 

and days 2-27 of the treatment in the control and treated groups.  

The other measures of song were also analyzed with a repeated-measures 

ANOVA with groups as an independent factor, however the first 11 days of the experiment 

and 2 subjects were eliminated because no songs were detected. The analysis of 

number of syllables per song showed a main effect of treatment (F1,187 = 7.22, p = 

0.021), a main effect of time (F17,187 = 2.95, p < 0.001) and an interaction (F17,187 = 1.98, 

p = 0.014, see Fig. 6A). Planned-comparison post-hoc tests showed that there was a 

difference between treated subjects and controls on all days between day 12 and day 27 

of the treatment.  A similar analysis of the average syllable duration showed no main 

effect of treatment (F1,187 = 2.14, p = 0.172), a main effect of time (F17,187 = 5.35, p < 0.001) 

and no interaction (F17,187 = 0.70, p = 0.803, see Fig. 6B). The standard deviation of 

syllable duration showed no main effect of groups (F1,187 = 2.83, p = 0.121), a main effect 

of time (F17,187 = 3.94, p < 0.001) and no interaction (F17,187 = 0.89, p = 0.589, see Fig. 

6C). The average song RMS power showed no main effect of groups (F1,187 = 1.47, p = 

0.250), a main effect of time (F17,187 = 7.60, p < 0.001) and no interaction (F17,187 = 0.89, 

p = 0.583, see Fig. 6D). The syllable RMS power also showed no main effect of 

treatment (F1,187 = 0.61, p = 0.453), a main effect of time (F17,187 = 8.31, p < 0.001) and no 

interaction (F17,187 = 0.71, p = 0.790, see Fig. 6E). Similarly, the standard deviation of 

the syllable RMS power showed no main effect of groups (F1,187 = 1.16, p = 0.304), a 

main effect of time (F17,187 = 8.29, p < 0.001) and no interaction (F17,187 = 0.81, p = 0.679, 

see Fig. 6F). 
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Figure 6. Average number of syllables/song (A), average syllable duration (B) standard deviation of syllable 

duration (C), average song root mean square power (D), average syllable root mean square power (E), 

standard deviation of syllable root mean square power (F) detected on days -2, -1 and days 12-27 of the 

treatment in the control and treated groups.  

 An additional 10 measures of singing behavior were treated similarly to the six 

measures discussed in the previous paragraph, however, since the graphs showed no 

obvious difference between the groups, these measures were not analyzed statistically. 

The evolution in time of these measures is however shown in the supplementary materials 

(see Fig. S1).  

A commonly used measure of quality of song that has been shown to be modulated 

by sex steroid hormones (Alward et al., 2016c; Alward et al., 2013; Meitzen et al., 2007) 

is the coefficient of variation of various measures. To be sure that we were not missing 

more subtle effects of the treatment on song stereotypy over time we analyzed the 

coefficient of variation of song bandwidth, entropy and duration. This was done across 

days (1 pre-treatment bin of two days and 3 post-treatment bins of 8-9 days each) and 

within days (1 day before treatment and 3 days after treatment, evenly spaced across the 

experimental duration, see Fig. S2).  However, these analyses did not show any group 

differences, therefore the corresponding statistical analyses are not presented here. The 

graphs representing the changes of coefficient of variation of these measures are 

presented in the supplementary materials.  
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Neuroplasticity 

Subjects treated with ATD+FLUT did not have different HVC volumes compared to control 

subjects (t14 = 0.73, p = 0.478, see Fig. 7A). The POM volumes were also not different 

between these two groups (t13 = 0.43, p = 0.674, see Fig. 7B). The number of ARO-ir 

neurons in the middle section of the POM in the rostro-caudal axis was not different 

between groups (t12 = 0.23, p = 0.821, Fig. 7C) and likewise, no difference was found in 

the somal area of these ARO-ir neurons (t12 = 0.05, p = 0.964, Fig. 7D) nor in the % area 

covered by ARO-ir material (t12 = 0.03, p = 0.976, Fig. 7E).    
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Figure 7. HVC volume (A), POM volume (B), number of (C) and average somal area of (D) ARO-ir neurons, 

% area covered by ARO-ir material (E) in middle section of POM, measured in control and treated group. 

Compared to CX+T males of previous experiments in our laboratory the subjects 

of the current experiment had a large HVC volume (CX+T: 0.32 ± 0.02 mm3, current study: 

0.40 ± 0.03 mm3, t28 = 2.28, p = 0.031). The average POM volumes of subjects in the 

current study (0.19 ± 0.05 mm3) was compared to CX+T males (0.22 ± 0.04 mm3) and 

CX males (0.10 ± 0.03 mm3) from previous experiments. The one-way ANOVA showed 

a significant effect of group (F2,22 = 13.61, p < 0.001). A post-hoc test showed that subjects 

of the current study had significantly larger POM volumes than the CX males but not 

different CX+T males. The number of ARO-ir neurons in one section of POM was 

significantly different across these three groups (F2,21 = 4.62, p = 0.022). The post-hoc 

test indicated that this measure was not statistically different in the subjects of the current 

study (76.89 ± 8.65 neurons) from either the CX+T (113.60 ± 4.06 neurons) or CX (60.17 
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± 8.30 neurons) groups, but these last two groups were statistically different from each 

other, with a higher number of neurons in CX+T. The average somal area of the ARO-ir 

neurons was also different in the three groups (F2,21 = 4.14, p = 0.031). A post-hoc test 

showed that the CX+T group (73.45 ± 1.25 µm2) had statistically larger ARO-ir neurons 

than the subjects of the current group (61.82 ± 2.41 µm2) and showed a tendency to have 

larger neurons than the CX group (62.39 ± 1.07 µm2, p = 0.070). The three groups were 

also different in the extent to which ARO-ir material covered the POM section analyzed 

(F2,21 = 5.18, p = 0.015). A post-hoc test showed that the CX+T group (1.15 ± 0.03%) had 

a higher percent cover than both the CX group (0.52 ± 0.08%) and the subjects of the 

current group (0.69 ± 0.10%), the latter two did not differ from each other.  

Sex steroids plasma concentrations 

Testosterone measured by EIA revealed a greatly elevated concentration of testosterone 

in subjects treated with ATD+FLUT when measured after onset of treatment, while all 

other plasma samples contained relatively low levels of testosterone, below what is 

typically seen in breeding condition (see Fig. 8A). A repeated-measures ANOVA of the 

testosterone detected in the wingvein by EIA at two time points before treatment and once 

after treatment, showed a significant effect of group (F1,28 = 22.25, p < 0.001), of time 

(F2,28 = 23.30, p < 0.001) and an interaction between these two factors (F2,28 = 23.10, p < 

0.001). A post-hoc test showed that there was a significant difference in testosterone 

concentration between the two groups on the day of brain collection only.  

 Comparing the two samples collected from the wing and jugular veins on the day 

of brain collection showed an effect of groups (F1,14 = 17.59, p < 0.001), of the vein of 

origin (F1,14 = 20.10, p < 0.001) and an interaction between these factors (F1,14 = 20.22, p 

< 0.001). The post-hoc tests showed a difference between treated and control subjects 

for the jugular samples (p = 0.016) and a more pronounced difference was found in the 

wing vein (p = 0.001). On the other hand, when samples collected from the jugular vein 

at time of brain collection were measured with GC/MS both control and treated subjects 

showed very low concentrations of testosterone, well below concentrations found in 

breeding conditions and no difference between the two groups was found (t10 = 0.50, p = 

0.630, see Fig. 8B).  
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 Surprisingly, no difference was found between groups in the concentration of 

estradiol measured by EIA in the wingvein (F1,20 = 0.19, p = 0.676); there was also no 

effect of time (F2,20 = 1.62, p = 0.224) and no interaction (F2,20 = 2.03, p = 0.158, see Fig. 

8C). The jugular and wing vein concentrations were also associated with no main effect 

of treatment (F1,13 = 0.33, p = 0.574), no main effect of vein (F1,13 = 0.87, p = 0.369) and 

no interaction (F1,13 = 0.01, p = 0.998). GC/MS analysis similarly showed that estradiol 

levels in the jugular vein were not different between groups (t10 = 0.23, p = 0.825, see Fig. 

8D).  

The GC/MS assay did not detect any difference between groups in the 

concentrations of estrone (control: 0.03 ± 0.01, treated: 0.02 ± 0.01, t10 = 0.41, p = 0.689), 

or 5α-DHT (control: 0.4 ± 0.03, treated: 0.03 ± 0.02, t10 = 0.20, p = 0.845). 

Androstenedione, dehydroeipandrosterone and 3α5α- tetrahydrotestosterone were below 

detection limit in all subjects. 
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Figure 8. Testosterone (A) and estradiol concentrations (C) as measured by EIA in samples collected during 

baseline recordings one month before treatment, on the day of implantation of Silastic™ capsules and on 

the day of brain collection from the wing vein and on day of brain collection from the jugular vein of control 

and treated subjects and testosterone (B) and estradiol concentrations (D) as detected by GC/MS in jugular 

vein samples collected on day of brain collection from control and treated subjects. 

 We wondered whether the extremely high “testosterone” concentrations identified 
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by the EIA in the ATD-FLUT group and the discrepancy between the results of the two 

types of assays for testosterone could be explained by a cross-reactivity of the EIA either 

with the drugs themselves or with a metabolite of the drugs. We therefore assayed a 

range of doses of these two drugs in the testosterone EIA. No cross-reactivity with 

flutamide was identified in the testosterone assay, but a low cross-reactivity of the kit with 

ATD was found. ATD cross-reacted in a non-linear manner in the range of 0.13 – 0.61% 

in our measures. We also asked Cayman Chemical, the company providing the assay kit, 

whether they had information about this potential cross-reactivity and they indicated that 

in their hands the ATD cross-reactivity in this EIA was 0.197%. Interestingly a strong 

correlation between the “testosterone” concentrations in the wing and jugular vein was 

detected by the EIA in treated subjects (r2
6 = 0.91, p < 0.001, see Fig. 9A), while no such 

correlation was found in the corresponding measures in control subjects (r2
6 = 0.08, p = 

0.505, see Fig. 9B). This might suggest that an exogenous compound was at the origin 

of this high correlation. 

 We extended these tests of specificity to the estradiol EIA kit but found no cross-

reactivity of ATD in this assay (0.008 – 0.009% detected in our own assays, 0.003 

reported by Cayman Chemicals). Correlatively estradiol concentrations in the jugular and 

wing vein, as measured by EIA, showed no correlation for either treated (r2
6 = 0.21, p = 

0.253) or control subjects (r2
5 = 0.285, p = 0.217).  
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Figure 9. Correlation of ‘testosterone’ concentrations as detected by EIA between jugular and wing veins 

in treated (A) and control (B) subjects. 
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Discussion 

This study identified an unexpected high rate of singing in a large proportion of castrated 

male canaries that had been kept for several months under short days. This singing 

activity was associated with very low basal testosterone concentrations and there was no 

difference in testosterone concentration between birds singing at a high rate and birds 

that were mostly inactive. We then tested whether this singing activity was dependent on 

sex steroids that would be produced in the brain by treating birds with an aromatase 

inhibitor combined with an antiandrogen, but this only very moderately and transitorily 

affected the behavior. We therefore suggest that the singing observed in short day 

castrated canaries is largely steroid-independent but several aspects of this conclusion 

require proper evaluation. 

Hormones and morphological measures 

The levels of circulating testosterone were basal at all sampling time points in control 

birds and in the pre-treatment samples of ATD+FLUT subjects, below the level usually 

seen in breeding condition in this strain of canaries (Iserbyt et al., 2015). The EIA 

detected, however, extremely high levels of testosterone in plasma from ATD+FLUT birds 

after treatment, well above the physiological level observed in male canaries during the 

breeding period. The jugular vein samples from the day of brain collection were also 

analyzed by gas chromatography/mass spectrometry, which detected in these samples 

basal levels of testosterone in both control and treated birds. The inflated values from the 

EIA for treated birds thus suggest that the testosterone antibodies in the EIA kit cross-

reacted with ATD or flutamide present in the plasma of those subjects, or alternatively 

with a metabolite or another downstream signalling molecule of one of these two drugs. 

Flutamide is not likely to cross-react by itself with the testosterone assay since it is a non-

steroidal compound. Indeed, specificity tests identified no cross-reactivity at all with 

flutamide, but there was a modest cross-reactivity of ATD with the testosterone EIA. 

However since this cross-reactivity was low (well below 1%), it is unlikely that the high 

levels of testosterone detected (around 50 ng/ml) could be accounted for by cross-

reactivity with ATD alone because this would imply that concentrations of ATD in the 

blood of the treated subjects should be in the range of several micrograms per milliliter, 
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which is unlikely given the total quantity of ATD implanted in each bird one month earlier 

was about 20 mg and release from Silastic™ implants is very slow.  

 Interestingly there was in the treated subjects a strong correlation between the 

“testosterone” detected by EIA in the jugular and the wing veins, while in contrast no 

correlation between these two measures was found in control subjects. This discrepancy 

is specific to testosterone, the concentrations of estradiol detected by EIA in the wing vein 

were not correlated to concentrations detected in the jugular vein in either the control or 

the treated subjects. This suggests that endogenous concentrations of testosterone and 

estradiol are significantly affected by the brain as shown previously for estradiol in zebra 

finches (Schlinger and Arnold, 1992), but that another compound was “freely” circulating 

in the body of ATD+FLUT subjects that was not altered during the passage of blood 

through the brain. 

 The results of the testosterone EIA are thus not useful for determining the real 

concentrations of testosterone circulating in the subjects treated with ATD and flutamide, 

however, they do provide an indirect confirmation that the drugs, or at least one of them, 

were released from the Silastic™ capsules and were still present at the end of the 

experiment. Overall, the wing veins of treated subjects contained a higher concentration 

of pseudo-testosterone as detected by EIA, this difference was significant in a two-way 

repeated measures ANOVA with group and veins as factors. More work should however 

be done to reach a better understanding of the nature of the cross-reacting compound.  

 Surprisingly, the estradiol levels were not different between the control and treated 

groups in either the wing or jugular veins and did not change substantially over the 

different time points measured. The specificity of the estradiol EIA in canary plasma was 

demonstrated with a parallelism and only a few samples were outside of the sensitivity of 

the assay, therefore it is unlikely that a floor effect explains the lack of difference between 

groups. The GC/MS assay showed a similar range of concentrations and confirmed that 

estradiol levels were not different between groups. It is possible that the estradiol was not 

decreased by ATD at the timepoint examined because over time a compensation 

mechanism had restored initially depressed levels of estradiol. Nevertheless, it remains 
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a possibility that the ATD was not successful in inhibiting aromatase and this could explain 

the weak effect of the treatment seen on singing behavior.  

 Furthermore, the GC/MS assay did not identify a difference in concentration 

between groups in either estrone or 5α-DHT and found below detection limit levels of 

3α5α-THT, DHEA and androstenedione. This suggests that it is unlikely that these 

hormones are important in regulating song rate under the current photoperiodic 

conditions. The low levels of DHEA found in the current study will be further discussed in 

the final section of the discussion.  

 The treatment did not have an effect on body mass, although this measure slightly 

decreased over time, presumably due to the stress of handling and social isolation. The 

drugs similarly did not change the area of the cloacal protuberance and mass of the 

syrinx, both androgen sensitive organs. Comparing the cloacal protuberance area and 

syrinx mass of all male canaries in this study with previous experiments conducted in our 

lab using the same strain of canary indicates that these organs were small in the subjects 

of this study, similar to castrated males and much smaller than in testosterone-implanted 

males (Ghorbanpoor et al., unpublished).  Together these data confirm that indeed 

circulating testosterone concentrations were basal in all subjects throughout the 

experiment, despite presence of high rates of singing behavior.  

Singing behaviour 

A substantial decrease in singing behavior was seen in the first week following 

implantation of the Silastic™ capsules, probably due to stress from handling, Silastic™ 

capsule implantation and isolation. The singing rates started to restore back to baseline 

levels in the second week and in the third week a difference between the control and 

treated groups developed, which was close to being significant by planned-comparison 

tests on some recording days (one day at p<0.05, several days at p<0.10). In the final 

week, the singing rates of the treated group started to increase and reach the level of the 

control group, possibly due to compensation which has been shown previously for 

flutamide (Fusani et al., 2007) and ATD+FLUT (Adkins-Regan and Leung, 2006).  
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 Despite the difference on some days in the number of songs between the groups, 

the total song duration and time vocalizing did not differ on any day between the groups, 

presumably because the treated birds surprisingly sang on average longer songs. This 

fact is also suggested by slightly longer average song durations of the songs produced 

by the treated group, although this effect does not reach significance (see figure S2 in 

supplementary materials). This assumption is further confirmed by the greater number of 

syllables per song on all days from day 14 till the end of the experiment in the songs 

produced by the treated subjects compared to the controls. It is possible, however, that 

this effect is driven by a subset of birds in the treated group that tended to sing more 

syllables per song even prior to treatment, because there is a statistically not significant 

but visible difference between the two groups in this measure already during baseline 

recordings (days -2 and -1).  

 A higher number of tours (a series of repetitions of the same syllable) per song 

were found to be produced by female canaries treated with testosterone and fadrozole 

(another aromatase inhibitor), than by females treated with testosterone alone (Fusani et 

al., 2003). In the current study the method of song analysis did not discriminate between 

the syllables of different tours, so it is not possible to compare our result directly with this 

observation from Fusani and colleagues, however the higher number of syllables per 

song detected in the songs of the treated group of the current study could be consistent 

with a higher number of tours per song.  

 Although many other qualitative measures of song were analyzed in the recordings 

made in this experiment, no other differences between groups were detected. Similarly, 

when the coefficients of variation of song duration, bandwidth and entropy within four 

recording days from different weeks of the treatment and across four bins of all days were 

analyzed, no differences between the groups were observed either. The manipulation of 

testosterone action in HVC has been shown to modulate the coefficient of variation of 

song duration in Gambel’s white-crowned sparrows (Meitzen et al., 2007) and of song 

bandwidth and entropy in canaries (Alward et al., 2016c), however, both these 

experiments were performed with birds maintained on long-day photoperiod.  Globally, 

the weak and transitory effect of the pharmacological treatment on singing behavior 
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suggests that the singing observed in castrated male canaries that were kept under short 

days presumably in a photosensitive status for several months is not strongly regulated 

by sex hormone action. The possibility that the lack of effect is due to a failure or ATD 

and flutamide to exert its intended pharmacological effects is considered later in this 

discussion.  

Neuroplasticity 

In line with the weak effects of the blockade of aromatase and androgen receptors on 

singing behavior, there was no change of volume of HVC, a nucleus involved in both 

production and feedback/maintenance of song (Bottjer and Johnson, 1997; Simpson and 

Vicario, 1990). A previous study using lower doses of both ATD and flutamide in male 

canaries similarly found no difference in HVC volume between the control group and 

subjects treated with these two drugs (Johnson and Bottjer, 1995), but detected larger 

HVC volumes in subjects treated with testosterone, which confirmed the sensitivity to sex 

hormone action of the birds involved in that study. In comparing the current experiment 

with previous studies performed in our lab using the same strain of canaries, it can be 

noted that the volumes of HVC in the current study are even larger than in male canaries 

stimulated with testosterone (Shevchouk et al., 2017a). Although surprising in light of the 

low levels of testosterone in these birds, this fact is congruent with the high levels of 

singing that the subjects displayed.  

 Although located outside the song control system itself, the medial preoptic 

nucleus (POM) has been shown to play a role in the control of singing rate and thus 

singing motivation (for a review see Alward et al., 2017). Since the only effect of the 

treatment on behavior we observed was on song rate, we decided to investigate whether 

neuroendocrine changes in the POM could underlie this effect. There was no difference 

in the volume of POM between groups. Similarly to what was seen for the volume of HVC, 

the POM volume of both the groups in the current study were significantly larger than that 

in castrated males and not different from castrated testosterone-treated males from 

previous experiments performed in similar conditions in our laboratory, tentatively 

suggesting that both testosterone and singing play additive roles in determining POM 

volume. Previous studies have suggested that measuring properties of ARO-ir neurons 
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in the middle section of POM can be a more sensitive measure than the volume of POM. 

However, we found no difference in the number of ARO-ir neurons, their average somal 

area or the % cover by ARO-ir material suggesting that these variables also were not 

markedly affected by the treatment in the present birds. Unlike the POM volume, the 

measures of ARO-ir neurons in the brains of the subjects of this experiment were more 

similar to what is seen in castrated males and decreased compared to castrated 

testosterone-treated males. This discrepancy suggests that while POM volume can be 

driven by singing feedback or other unidentified signalling that was increased in the 

current experiment, the number, size and extent of cover by aromatase-expressing 

neurons in POM is more critically dependent on circulating testosterone concentrations.   

Efficiency of pharmacological treatments 

In view of the absence of effect of the treatment on all measures of neuroplasticity that 

were considered and of the weak effects on the singing behavior of the canaries in the 

current study, one could of course question whether the ATD+FLUT treatments did in fact 

produce the expected endocrine effects. Given the presence of a compound that cross-

reacted with the testosterone EIA in the plasma of the treated birds, it is unlikely that the 

drugs did not diffuse from the Silastic™ implants, neither that their diffusion was finished 

before the end of the experiment. This is also confirmed by the strong correlation 

observed between the “testosterone” detected by the EIA in the wing and jugular veins. 

In control subjects there was no such correlation, suggesting that the concentrations of 

real testosterone is regulated differentially across these two veins and it is another 

compound, likely ATD or one of its derivatives, that was present in proportional 

concentrations in these two compartments of the blood circulation. Admittedly these 

observations do not demonstrate that both drugs were present in the circulation but this 

is extremely likely based on previous literature.  

 The effectiveness of ATD and flutamide as aromatase inhibitor and androgen 

receptor blocker has been shown across a wide range of songbird species. The 

combination of these two drugs (administered subcutaneously and using the same or 

lower doses than the one we used) has been shown to inhibit sex hormone-dependent 

behaviors successfully in zebra finches (Adkins-Regan and Leung, 2006; Tomaszycki et 
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al., 2006), European stonechats (Canoine and Gwinner, 2002), spotted antbirds (Hau et 

al., 2000), rufous-collared sparrows (Small et al., 2015), dark-eyed juncos (Tonra et al., 

2011), song sparrows (Soma et al., 1999) and great tits (Van Duyse et al., 2005).  Many 

more studies have shown inhibition of behavior in songbirds by one of the two drugs (e.g. 

Sperry et al., 2010; Strand et al., 2008). This suggests enough homology in both the 

aromatase and androgen receptor genes between songbird species that it is likely these 

drugs work across the clade. The inhibition of aromatase by ATD has been quantified in 

zebra finch brain tissue (Wade et al., 1994) and the inhibition of sexual behavior by ATD 

in zebra finches has been shown to work specifically via inhibition of estrogen as the 

inhibited behaviors are restored by the co-administration of estradiol. Flutamide has been 

shown to decrease androgen receptor mRNA in canary kidney and testis, although the 

study found an upregulation of the transcript in the liver (Nastiuk and Clayton, 1994). The 

results of all studies cited in this paragraph thus give confidence that the pharmacological 

treatment used in the current study was effective and therefore that the singing behavior 

observed is indeed largely steroid-independent.  

 It must also be noted that the absence of effect on the cloacal protuberance and 

syrinx are not surprising since the testosterone levels were very low in both groups and 

indeed in these subjects, regardless of the drugs, the size of these organs did not differ 

from that found in castrated individuals but were significantly smaller than testosterone-

treated individuals. The absence of a decrease in estradiol levels in the treated group is 

concerning but could be explained by a compensation mechanism.  

 Significance 

One hypothesis explaining why some songbirds sing during the non-breeding season 

when sex hormone levels are low is that androgen and estrogen receptors and/or the 

aromatase enzyme are upregulated, making the song control nuclei more sensitive to sex 

steroid hormone action. This idea is supported by data showing in canaries a higher 

expression of ERα during autumn than spring (Fusani et al., 2000), likely due to estrogen 

having a negative feedback effect on its own receptor (Lauber et al., 1991; Lisciotto and 

Morrell, 1993). Additionally, a study on spotted antbirds, a tropical suboscine that displays 

territoriality year-round, found during the non-breeding season a higher expression of 
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ERα in POM, of AR in nucleus taeniae and a tendency towards higher expression of 

aromatase in nucleus taeniae, compared to non-breeding season (Canoine et al., 2006). 

However, the results of the current study do not support this hypothesis because blocking 

androgen receptors and aromatase activity left the singing behavior observed in 

photosensitive male canaries largely intact: there was only a slight and transient decrease 

in the number of songs detected per recording session. Our data suggest instead that 

singing behavior can be activated largely independently of sex steroid hormone action, 

possibly via activation of other neurochemical systems that have been shown to play a 

role in singing behavior such as catecholamines (Appeltants et al., 2003; Lynch et al., 

2008; Maney and Ball, 2003), nonapeptides (Goodson et al., 1999; Voorhuis et al., 1991) 

or opioids (Kelm-Nelson et al., 2013; Riters et al., 2014). Under normal photoperiodic 

conditions all of these systems are regulated by testosterone, but it is conceivable that 

steroid-independent photoperiodic cues or other unidentifed cues can similarly regulate 

this signalling.  

Contrary to the present findings, Soma and colleagues (1999) reported that songs 

produced in response to a simulated territorial intrusion by wild song sparrows decrease 

in rate after 30 days of treatment with ATD+FLUT, using the same doses of the two drugs 

as done here. The same results were obtained both during autumn and winter, and during 

both periods the song sparrows had low levels of circulating testosterone, similar to the 

subjects in the current study. The divergence of findings suggests that short-day singing 

in song sparrows is based on a different mechanism from the singing triggered by long-

term exposure to short-days in castrated canaries. Indeed in the studies of Soma and 

colleagues, the song sparrows were found to have high circulating concentrations of 

DHEA that was metabolized in the brain into testosterone and estradiol, two sex steroids 

that were responsible for the activation of singing. In contrast, the GC/MS assays 

performed here did not detect measurable amounts of DHEA in the circulation of the 

canaries of the current study. 

After four months of exposure to a short-day photoperiod, the majority of which 

(over three months) was in the absence of testes, male Fife canaries started to sing at 

high rates. The song activation was clearly not based on any photoperiodic cues, however 
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it is not clear if it was triggered by an internal or an external stimulus. It might be relevant 

to mention that these canaries started to sing in February which is the very beginning of 

the season for reproduction in Belgium. Although the birds could not technically detect 

the increasing daylength outside the laboratory since the photoperiod was fixed to 8L:16D 

in their housing that has no window, it is possible that they detected subtle changes in 

some other seasonal cue. Although the room was maintained at a more or less constant 

temperature, the outside temperature does partially influence the internal temperature 

and other cues such as the humidity might change seasonally. Independent of whether 

the cue that triggered song activation was internal or external, the fact that only a subset 

of birds started to sing indicates that there is individual variation in the ability to detect or 

react to this cue and it would be very important to identify the basis of this individual 

variation.  
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Supplementary figures
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Figure S1. Evolution over time of other song parameters measured in song recordings of control and treated 

castrated male canaries maintained on 8D:16L for 5 months. 
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Abstract  

Seasonal birds in the temperate zone initiate breeding in response to photostimulation 

and most species cease to respond to long days at the end of breeding season, entering 

a photorefractory phase. Short daylengths dissipate photorefractoriness, inducing the 

ability to respond again to increasing photoperiod with gonadal growth. Some species 

reveal their photorefractoriness only when the daylength starts to decrease; the same 

daylength that initially stimulated gonadal growth now causes gonadal regression. They 

are said to display relative photorefractoriness. Other species in contrast undergo 

absolute photorefractoriness, they regress their gonads even under increasing 

photoperiods. Border canaries are clearly photoperiodic and show absolute 

photorefractoriness while American Singer canaries seem to have partially lost these 

photoperiodic responses. The photoperiodic responses of the Fife fancy strain of canaries 

have not been previously investigated and this information is important to properly design 

experiments on the seasonal control of singing behavior and its underlying 

neuroplasticity. Male and female Fife canaries were maintained on long-day photoperiod 

while regularly evaluating ovarian growth in females and molting score, cloacal 

protuberance (CP) length and body mass in both sexes. In both males and females body 

mass and molting score increased over time while CP length decreased, however molting 

was not complete after 5 months of photostimulation. Females had a larger body mass 

initially, shorter CP always and progressed through molting at an even pace while in 

males molting score increased in a step-wise fashion, lagging behind females at some 

time-points.  In addition, females displayed robust ovarian growth after three weeks of 

photostimulation. Overall, these data suggest that Fife canaries are photoperiodic as 

evidenced by measures of gonadal development but the molting response suggest that 

they only display relative photorefactoriness. 
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Introduction 

Seasonal songbirds such as canaries use day-length as a predictive cue to anticipate the 

onset of the forthcoming breeding season and adjust their physiology accordingly. Annual 

events such as breeding and molting are associated with substantial metabolic costs and 

therefore must be precisely timed to optimize fitness. Feathers are necessary for flight as 

well as insulation, and therefore for survival. Since feathers wear out, they need to be 

replaced each year which, like reproduction, imposes significant energetic demands 

(Farner et al., 1983). Both reproduction and molt are timed to occur during the period of 

food abundance, molting usually starting immediately after breeding (Dawson et al., 

2001). 

 Increasing daylengths during spring stimulate the secretion of gonadotropin-

releasing hormone (GnRH), which in turn leads to the gonadal maturation necessary for 

breeding (Dawson et al., 2002). Short days induce a decrease in GnRH secretion which 

leads to gonadal regression, but in many species this regression takes place before the 

end of the summer long day period. The same long photoperiod that stimulated the growth 

of the gonads with a certain delay now causes their regression through a process called 

photorefractoriness. During this photorefractory phase, even 24-hours of light cannot 

stimulate growth of the gonads (Hamner, 1968). The detail of the mechanisms controlling 

the onset of photorefractoriness under a photoperiod that was previously stimulating is 

yet unknown but clearly involves thyroid hormones (Dawson et al., 1986). Short-day 

photoperiods reinstates the sensitivity to light, the state of photosensitivity (Lofts and 

Coombs, 1965; Steel et al., 1975).   

 A subset of seasonally breeding birds, such as the Japanese quail, do not become 

photorefractory if continuously exposed to photostimulating long days but they will start 

gonadal regression under slightly decreasing photoperiods that are nevertheless largely 

longer than the daylength that initially initiated gonadal growth (Robinson and Follett, 

1982). Since the daylength inducing this onset of regression is longer than the daylength 

initiating gonadal growth in the spring, the breeding season in these species is 
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asymmetrically distributed with respect to the annual changes of the photoperiod. They 

are said to show relative photorefractoriness, as opposed to absolute photorefractoriness.  

 Male and female canaries of the Border strain have small gonads when maintained 

on 8L:16D but exhibit a robust gonadal growth when transferred to 16L:8D (Storey and 

Nicholls, 1978). Furthermore, after 6 weeks of long-day photoperiod they show a 

spontaneous gonadal regression (Follett et al., 1973; Hurley et al., 2008; Storey and 

Nicholls, 1978, 1976), indicating that this strain of canary belongs to the group of 

photoperiodic seasonal breeders that shows absolute photorefractoriness. Border 

canaries initiate molting around the time that the gonads are regressing and complete 

molting about 5 weeks later. GnRH immunoreactivity in the preoptic area is high during 

photostimulation, low in photorefactory individuals and intermediate in photosensitive 

birds (Hurley et al., 2008).  

 In contrast, studies of wild canaries have demonstrated their flexibility in the onset 

of gonadal development that starts as early as 6 weeks prior to the annual time point 

when the daylength reaches 12L:12D, which is classically considered as the minimal 

stimulatory daylength (Leitner et al., 2003). This is likely because the dissipation of 

photorefractoriness by short-days leads by itself to an increased hypothalamic GnRH 

expression (Hurley et al., 2008); this puts the photosensitive individuals in a state of 

readiness to breed during which cues other than photoperiod also can trigger gonadal 

development.  

 Photostimulation of the American Singer strain of canaries has been shown to 

cause an increase of male gonads size followed by a regression, suggesting absolute 

photorefractoriness (Bentley et al., 2003). However, females of this strain did not show 

significant changes of gonad size when exposed to different photoperiodic conditions. 

Furthermore, both males and females showed no significant difference of the molt score 

across the three photoperiodic conditions, although the number of birds molting was 

significantly smaller in the photostimulated group than in the photosensitive or 

photorefractory groups. If molting occurred immediately following gonadal regression in 

this canary strain, the molt score would be expected to increase in photorefractory 

individuals only. Furthermore, unlike what was seen in Border canaries, hypothalamic 
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GnRH immunoreactivity was not different between photoperiodic states, suggesting that 

American Singer canaries might have become a relative rather than absolute 

photorefractory species or even have partially lost their aptitude to show photoperiodic 

responses in general, presumably due to prolonged domestication.  

 These two strains of canaries thus show divergent patterns of seasonal 

neuroplasticity related to hypothalamic GnRH expression, as well as of molting and 

female gonadal growth. These different photoperiodic responses could have implications 

for future investigations of neuroplasticity of the song control system, a major focus of our 

laboratory. Anecdotal evidence originating mainly from amateur breeders suggests that 

the Fife fancy canary strain, which we work with, is closely related to the Border strain of 

canaries, however no study has formally investigated whether the Fife fancy canary strain 

shows the robust photoperiodic responses that have been identified in Border canaries. 

We investigated here the effect of prolonged exposure to long-day photoperiods on 

photoregression in male and female Fife canaries by measuring molting, cloacal 

protuberance (CP) length and body mass, as well as the effect of photostimulation in 

females (the sex that seems less photoperiodic in American Singer canaries) on CP 

length, ovary mass and ovary area in order to evaluate photoperiodicity in this strain of 

canary.  

Materials and methods 

Experimental subjects 

Thirty-nine female and thirty-two male canaries of the Fife fancy breed were used in the 

evaluation of photoregression and twenty-six females for the photostimulation study, all 

obtained from a colony maintained at the University of Antwerp, Belgium. They were born 

and had gone through a full breeding cycle in this colony, during this time they took part 

in experiments where behavior was measured, but did not receive any invasive 

manipulations. All subjects had been on natural daylight during the months preceding 

their arrival in our laboratory at the University of Liege, Belgium, in late March for the 

photoregression study and in January for the photostimulation study. All experimental 

procedures complied with Belgian laws concerning the Protection and Welfare of Animals 

and the Protection of Experimental Animals, and experimental protocols were approved 



175 
 

by the Ethics Committee for the Use of Animals at the University of Liege (Protocol 

number 926). 

 

Photoregression study 

Experimental procedures 

Upon arrival (March 27th) subjects were housed on long day photoperiod (16L:8D) for 

five months to evaluate the subjects’ transition through photoregression as measured by 

the molt score, body mass and CP length. During the first two months, the subjects were 

housed in an aviary with a large mixed-sex group. The first three measures of molt (see 

next paragraph for details), body mass and CP length were performed during this period. 

They were subsequently changed to single-sex housing - males were in cages with 5-6 

individuals per cage and the females remained in the same aviary as before. The males 

and females were housed in separate rooms with no visual contact and minimal acoustic 

contact between them. Another 6 sets of measures were collected during this period. In 

all housing situations food, water, baths, cuttlebone and grit were available ad libitum.  

Evaluation of molting 

Molt was scored following the method described in Dawson and Newton (2004), which 

has previously been used to evaluate molt in canaries by Hurley and colleages (2008). 

The eight primary feathers on the subjects’ right wing were evaluated for molting – these 

were identified as being the eight first feathers starting from the lateral side of the wing. 

Other feathers on the wings and rest of the body were also observed for molting but were 

not quantified. A score of 0 was given to a feather that had not yet fallen out, 1 for a new 

feather that was ¼ regrown, 2 for a half-regrown feather, 3 when it was ¾ regrown and 4 

for a fully regrown new feather. A total molt score for each subject on a given day was 

calculated by summing the molt index of all eight feathers and dividing this total by 32 to 

provide a final score ranging from 0 (no molt) to 1 (complete molt). 

 

 

 



176 
 

Photostimulation study 

Upon arrival subjects were housed on a short-day photoperiod (8L:14D) for at least 11 

days in same-sex groups of 10 per cage. Since the subjects also took part in another 

study that investigated HVC neurogenesis, they were injected with Bromodeoxyuridine 

(BrdU) solution 5 times during the same day and received a subcutaneous 10 mm-long 

Silastic™ implant that was kept empty and sealed on both sides with medical silicone. 

Another group not discussed here was treated in parallel with implants filled with 

testosterone. 2-3 weeks after arrival the subjects were single-housed and the photoperiod 

was changed to 14L:10D. A blood sample was collected from their wing vein once during 

the short-day photoperiod (baseline) and once during the long-day photoperiod on the 

day of brain collection. CP length, ovary weight, length and width (multiplied to give ovary 

area) were also measured on the day of brain collection – 1, 2, 9 and 21 days after onset 

of long-day photoperiod. Brain collection and processing are not relevant to the current 

study and will not be described here.  

Statistical analyses 

In the photoregression study, the molt score, CP length and body mass were compared 

between males and females by a two-way repeated-measures ANOVA with sex and time 

as factors. When a significant interaction was found a planned-comparison post-hoc test 

was used to compare males and females with each other on specific days. Additionally, 

the molt scores of males and females on the final observation day were compared to the 

maximum score of 1 with a one-sample t-test, to test statistically whether the molting was 

complete in either sex. A simple t-test was used to compare the CP length on the last day 

of testing in the current experiment with the CP length of castrated males from other 

studies. In the photostimulation study, CP length, ovary mass and ovary area were 

compared by a one-way ANOVA with time-points as the main factor. When a significant 

effect was detected, Tukey’s post-hoc tests were used to locate the significant 

differences. All statistical analyses were performed using STATISTICA and differences 

were considered significant for p<0.05. All data are represented here by their mean ± 

SEM.  
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Results 

The thirty-nine female and thirty-two male canaries were inspected for progression of 

molting of the eight primary feathers a total of 9 times. The first three times (10/04, 24/04 

and 11/05) no feathers had fallen out and therefore the molting score was zero for all 

birds. During this period all subjects were housed together in a mixed-sex group in a large 

aviary. Since no molting was observed on these days, these results were not included in 

any statistical tests.  

The subjects were then separated by sex on 05/06 and were simultaneously 

inspected for molting. At this time a subset of subjects had initiated molting of the primary 

feathers. Starting from this molting test there was a gradual increase of the molt score, 

with both males and females progressing to about 40% of full molt in the three months up 

to the end of August (see Fig. 1A). A two-way ANOVA of the effect of time and sex on the 

molt score showed a significant effect of time (F5,340 = 282.37, p < 0.001). There was also 

a trend for sex to have an effect on molt score (F1,340 = 3.18, p = 0.079) and there was a 

significant interaction between these two factors (F5,340 = 5.37, p < 0.001). Planned-

comparison tests showed that the molt score of females was significantly larger than in 

males (molt more advanced) on July 22nd (p < 0.001) and there was also a statistical trend 

towards on August 26th (p = 0.074). No other difference between sexes was observed. 

Note also that males and females did not complete their molt during the five months of 

photostimulation, as confirmed by a one sample t-test comparing the molt scores to the 

maximum possible value of 1 (females: t38 = 27.08, p < 0.001; males t30 = 31.01, p < 

0.001).  

A two-way ANOVA showed that the body mass changed in all subjects over time 

(F8,536 = 37.18, p < 0.001), slightly increasing from the beginning to the end of the 

observations (see Fig. 1B). There was no main effect of sex (F1,536 = 0.43, p = 0.514), 

however, sex and time interacted significantly in their effect on body mass (F8,536 = 3.55, 

p < 0.001). A planned-comparison test showed that females had a significantly higher 

body mass on April 10th and 24th and on 11th May whereas males had a significantly higher 

body mass on 19th June. Note that males and females were separated on 5th June and 

breeding stopped soon after this time-point.  



178 
 

Molting

10 Apr 24 Apr 11 May 5 Jun 19 Jun 7 Jul 22 Jul 9 Aug 26 Aug
0.0

0.1

0.2

0.3

0.4

0.5
Females

Males

***

[*]

M
o

lt
 s

c
o

re

Body mass

10-Apr 24-Apr 11-May 5-Jun 19-Jun 7-Jul 22-Jul 9-Aug 26-Aug
0

5

10

15

20

25

* * ***

M
a
s
s
 (

g
ra

m
s
)

Cloacal protuberance

10-Apr 24-Apr 11-May 5-Jun 19-Jun 7-Jul 22-Jul 9-Aug 26-Aug
0

2

4

6

** *** *** *** ***

not
measured

L
e
n

g
th

 (
m

m
)

A

B

C

 

Figure 1. Molt score (A), body mass (B) and CP length (C) in males and females maintained on 16L:8D 

photoperiod in a mixed-sex group for the first 2 months (represented by male and female canary inside a 

single box at the bottom of the figure) and single-sex groups for the following 3 months (represented by 

male and female canaries in individual boxes). * = p<0.05, **= p<0.01, ***= p<0.001, [*] = 0.5<p<0.1 for 

measures in females versus males measured on the same day. All data are represented here by their mean 

± SEM. 
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The length of the CP was significantly affected by time as confirmed by a two-way 

ANOVA (F7,469 = 59.03, p < 0.001), with an overall decrease being seen in both sexes 

over time (see Fig. 1C). The ANOVA also showed a significant sex difference (F1,469 = 

51.63, p < 0.001), with an overall longer CP in males than females. There was also a 

significant interaction between these two factors (F7,469 = 9.87, p < 0.001). The post-hoc 

tests showed that CP length was longer in males than females on April 10th, and 24th, 

May 11th, June 5th and July 22nd. On all these days, the CP was longer in males than 

females. In general, during the 2nd half of the experiment the CP of males seemed to be 

fully regressed. We compared the CP length measured in males during the last 

observation of the current study with the CP length of castrated males from other studies 

(n= 21, mean ± SEM = 2.60 ± 0.17) and indeed, there was no significant difference 

between these two groups (t49 = 1.08, p = 0.286). 

Photostimulation study 

Photosensitive female Fife canaries were stimulated with 14L:10D photoperiod and CP 

length, ovary mass and ovary area were measured on days 1, 2, 9 and 21 of 

photostimulation (see Fig. 2). CP length was significantly affected by time, significantly 

increasing at later time-points (F3,22 = 3.89, p = 0.023). Post-hoc tests showed that the CP 

was significantly longer in females measured on day 21 than in those measured on day 

2 of photostimulation. Ovary mass was also significantly increased over time (F3,22 = 3.15, 

p = 0.046). A post-hoc test showed that ovary mass was higher on day 21 than on day 1 

of the treatment. Ovary area (length x width) was significantly different across time-points 

(F3,22 = 10.48, p < 0.001), with a post-hoc test indicating that on day 21 ovary area was 

larger than all other time-points, with no difference between the latter.   
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Figure 2. CP length (A), ovary mass (B) and ovary area (C) in photosensitive female Fife canaries measured 

on day 1, 2, 9 and 21 of photostimulation. * = p<0.05, **= p<0.01, ***= p<0.001. All data are represented 

here by their mean ± SEM 

Discussion 

The current study was designed to investigate whether Fife fancy canaries display robust 

photoperiodic responses like Border canaries (Hurley et al., 2008), or have partially lost 

this response, like American Singers canaries (Bentley et al., 2003). Measurements made 

over five months of photostimulation indicated that Fife fancy males show signs of 

gonadal regression (decreasing CP length) as expected in a photoperiodic species. In 

addition, exposure to long days progressively induces molting although this molt was still 

only partial after 5 months contrary to what is seen in birds showing absolute 

photorefractoriness. Additionally, photostimulation of females led to a robust growth of 

the ovaries after 3 weeks of long-day photoperiod. 

The clearest indication of photoperiodism in the current study was the robust and 

relatively rapid increase in ovary mass and size in females. After three weeks of 

photostimulation there was a clear difference in the ovary size as compared to baseline 

values in short days. In American Singer female canaries follicular volume was not 

different during the photosensitive, photostimulated and photoregressed phases (Bentley 

et al., 2003). Although the two studies report different measures of female gonadal 
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changes, it seems likely that the gonadal growth is more responsive to photoperiodic 

changes in female Fife canaries than in American Singers. 

The length of CP is sensitive to circulating androgens (Appeltants et al., 2003; 

Tramontin et al., 2003). During photostimulation and treatment with testosterone of male 

juncos the CP increases with a delay about one week (Tonra et al., 2011), although this 

has not been investigated, it is likely that the decrease of CP during photoregression also 

follows the decrease in testosterone concentrations (due to gonadal regression) with a 

delay. After 10 weeks of 16L:8D a decrease of CP length was observed here, which 

seemed to reach two weeks later its minimum size and stabilize to values that are not 

different from those observed in castrated male Fife canaries. The observations were 

presumably started too late to witness the increase of CP length in response to 

photostimulated gonadal growth, especially since the canaries were exposed to gradually 

increasing natural daylength before their arrival at our lab so that they had probably fully 

recrudesced gonads by that time. The pattern of CP length decrease observed while birds 

were being exposed to a stable long-day photoperiod is indicative of an absolute 

photorefractory response, not requiring any decrease in photoperiod to induce 

photoregression. Together with the robust ovarian growth observed in females, this 

supports the conclusion that Fife canaries are indeed photoperiodic. The length of CP in 

females was smaller than in males at all time-points as expected given the sex difference 

in androgen concentrations but it also decreased over the course of observations 

suggesting the development of photorefractoriness in this sex also. The slightly longer 

CPs observed in females at the start of the experiment was possibly related to the fact 

that they were egg-laying at that time and produced higher concentrations of sex steroids. 

Breeding and egg-laying then ended when males were removed from the females’ aviary.  

Both males and females started molting after approximately 10 weeks of 16L:8D 

and approximately at the same time as the males started to decrease CP length. This 

timing was consistent with what has been reported in Border canaries, who started 

molting after 11 weeks of 14L:10D (Hurley et al., 2008). CP size is a marker of 

testosterone concentrations but, as discussed, most probably its decrease lags by a few 

days or even weeks behind the decrease of circulating testosterone. Thus, molting started 
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probably after gonadal regression as would be expected in a photoperiodic species. More 

surprisingly, the pace of molting was much slower than what has been shown in Border 

canaries. Hurley and colleagues (Hurley et al., 2008) reported that molting was almost 

complete by 16 weeks of 14L:10D, whereas in the current study after 5 months of 16L:8D 

molting was less than halfway to being complete. Unfortunately, in this study the effect of 

decreasing the photoperiod on molting was not examined, but the prolonged duration of 

molting under a long-day photoperiod suggests that Fife canaries are possibly not 

showing the full signs of physiological regression under long days and might need a 

decreasing photoperiod to complete molting.  

 There was a sex difference in the pattern of molting, with females on average 

increasing their molt score in a steady fashion, while males showed a step-wise pattern 

of increases, with no increase for one month followed by a big increase on the next one, 

catching up to the molt score of the females. Due to these different patterns, the molt 

score was different between males and females on some days but not on others. This 

difference is possibly due to different hormonal influences in males and females. Molting 

is inhibited by both androgens and estrogens in canaries (Farner et al., 1983; Takewaki 

and Mori, 1944) and in other avian species it is also possibly modulated by progesterone 

(Adams, 1956; Juhn and Harris, 1956; Shaffner, 1955) and prolactin (Farner et al., 1983; 

Kobayashi, 1953), but the precise role of these hormones and how they influence the 

process of molting in males and females has not been studied.  

Body mass was initially higher in females but this was reversed after the 

termination of breeding. In general body mass increased in both males and females over 

the five months of observation. Photostimulation has been shown to increase body mass 

in several avian species (Boon et al., 2000; Morton et al., 2004; Tonra et al., 2011). 

Therefore, the increase in body mass seen in both males and females in the current 

experiment might be another confirmation of the sensitivity to changes in photoperiod of 

Fife canaries. The social conditions likely did not induce the onset of either molting or the 

decrease in CP length as both seemed to have been initiated on 5th June which is the day 

when the males and females were separated. It can however not be excluded that the 
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separation of the birds from congeners of the other sex did in fact increase the rate of 

molting and CP regression thereafter.  

In conclusion, the data presented here clearly demonstrates that Fife fancy 

canaries are photosensitive and also supports the idea that this breed displays absolute 

photorefractoriness as indicated by the induction of molt and decrease in CP reflecting 

inhibition of gonadal activity. Molting started after gonadal regression, however, three 

months later it was less than half-way to being complete. In nature if the molting would 

continue at this pace it would only be completed during the winter, which would not be 

adaptive. It thus appears that the full molt can only take place if the birds are exposed to 

a decreasing photoperiod, which would be a characteristic of species displaying relative 

and not absolute photorefractoriness. Taken together, these data suggest that Fife fancy 

canaries are photosensitive but display mixed signs of absolute and relative 

photorefractoriness.  
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General discussion 

The results presented in this thesis enlarge our understanding about how sex hormones, 

social environment, photoperiod and sex of the bird modulate the plasticity of brain 

regions that control singing. Here we will discuss the contributions made by this thesis 

regarding the plasticity of song control volumes, HVC neurogenesis, POM plasticity and 

song behavior. Finally, we will summarize the knowledge gained specifically about sex 

differences, the role of photoperiod and some methodological concerns raised by the 

experiments presented in this thesis.  

Song control system plasticity 

Nuclei volumes 

The vernal increase in testosterone influences many aspects of song control system 

neuroplasticity and in this thesis we have explored the time course of some of these 

changes. We investigated the increase in volume of three song control nuclei in female 

canaries (chapter 3) at four time-points following the onset of photostimulation and 

testosterone treatment compared to photostimulated but untreated females. The volume 

of HVC in the treated females was increased relative to controls at 21 days of treatment, 

but there was a trend for an increase already at 9 days. For RA and Area X there was no 

trend at 9 days, but at 21 days of treatment the testosterone-treated birds had significantly 

larger volumes. Thus, we confirmed in canaries the delayed increase of the volumes of 

RA and Area X relative to HVC that had been shown in song sparrows (Smith et al., 1997). 

Testosterone has a trans-synaptic trophic effect from HVC to Area X and RA: lesioning 

HVC in testosterone-implanted sparrows prevents the increase of RA and Area X 

volumes, while implanting testosterone stereotaxically near HVC, but not near RA, 

increases the volume of RA and Area X (Brenowitz and Lent, 2002, 2001). Our study 

suggests that the mechanism of RA and Area X volume growth in female canaries is likely 

also to involve a trans-synaptic effect of testosterone and/or estradiol acting in HVC. On 

the other hand, compared to what has been shown in male Gambel’s white-crowned 

sparrows, the progression of HVC growth is different in female canaries. In the former, 

HVC volume is already at the maximum size by 7 days of treatment, while our study 

showed that although HVC had started to grow by 9 days of treatment, there was a further 
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increase between this timepoint and 21 days. Based on our experiment, we cannot know 

whether three weeks is enough for the female HVC volume to increase to its maximum 

extent.  

Although we were not able to investigate the time course of song control volume 

changes in male canaries due to their unexpected singing behaviour (chapter 6), we 

showed that two days of photostimulation and testosterone treatment is not sufficient to 

increase the volume of HVC above the level of photostimulated control males (chapter 

4). In contrast, the transfer of male white-crowned sparrows to a short-day photoperiod 

and removal of their testosterone implant significantly decrease HVC volume after only 

one day (Thompson et al., 2007). Most likely the divergence of time-scales reflects the 

differential mechanisms involved: a decrease of inter-neuronal space followed later by a 

decrease of neuron number for the regression, while the addition of new neurons might 

be necessary for HVC growth. Species differences might however also contribute to 

explain this discrepancy.  

In chapter 1 we showed that when exposed to an intermediately short photoperiod 

males housed with another male, a female or alone do not have a different volume of 

HVC, in contrast to what had been demonstrated in male canaries housed in a long-day 

photoperiod (Boseret et al., 2006). In that study the males housed with a female had a 

larger HVC volume than males housed with another male. Another study has housed 

male canaries alone or with a female on long-day photoperiod and found no significant 

difference in their HVC maximum areas (Alward et al., 2014).  

The importance of the photoperiod for song control nuclei plasticity has also been 

demonstrated in chapter 6. Castrated male canaries housed on a short-day photoperiod 

for five months who had started singing profusely had larger HVC volumes than 

photostimulated testosterone-implanted male canaries singing at similar rates that had 

not been maintained on a short-day photoperiod for a similarly long period. This suggests 

that sex steroid hormones is not the single factor controlling the growth of song control 

nuclei. This conclusion is further supported by a lack of decrease of HVC volume in 

subjects treated with a combination of an androgen antagonist and an aromatase 

inhibitor. This result is similar to what has been shown in European starlings: 
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photostimulated males treated with the same two drugs did not have a significantly 

decreased volume of HVC, RA or Area X (Robertson et al., 2014). Since the male 

canaries in chapter 6 had been actively singing for at least one month, it is possible that 

the large volume of their HVCs was due to activity-driven feedback of singing on HVC 

neurogenesis, but the causality of these two observations cannot be established from our 

study. The question of activity-dependence of song control nuclei growth was also 

addressed in chapter 5, however the low number of subjects and low hit rate of 

testosterone implants in POM prevented us from reaching any conclusion.  

HVC neurogenesis 

An important form of plasticity in HVC is the replacement of neurons. The addition of new 

neurons mediates the increase in volume of this nucleus and their survival is increased 

by testosterone. In this thesis, the time course of changes during testosterone treatment 

was investigated in female canaries (chapter 3). The time course allowed us not only to 

analyze the effect of testosterone but also map in more detail the sequence of events in 

the early life of new neurons. From day 1 to day 2 after mitosis, we observed a slight 

increase of BrdU-labeled cells in the VZ, likely indicating divisions between these two time 

points. Subsequently, from day 2 to day 21 there was a decrease in the number of BrdU 

cells in the VZ and a concomitant increase inside HVC. The decrease of BrdU-labeled 

cells in the VZ reflects a combination of migration away from VZ and loss of BrdU label 

over time due to multiple divisions. The first BrdU-labeled cells appeared in HVC 1 day 

after mitosis, however the appearance of double-labeled BrdU-doublecortin neurons 

followed one day later. This suggests that there is a non-neuronal population of newborn 

cells that migrates more rapidly to HVC than newborn neurons or perhaps is even born 

inside HVC. Alternatively, it could be that doublecortin is only expressed two days after 

mitosis. Comparing the numbers of single and double-labeled cells suggests that the 

majority of newborn cells entering HVC are neurons and the non-neuronal cells do not 

increase over time, as has been also shown by Alvarez-Buylla and Nottebohm (1988). A 

decrease from day 9 to day 21 of fusiform DCX neurons while the number of round DCX 

neurons increases in this period is consistent with a transition of newborn neurons from 

one morphology to the other.  
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Testosterone treatment had no effect on number of proliferating cells, confirming 

what has been previously shown (Barker et al., 2014; Brown et al., 1993; Rasika et al., 

1994). The recruitment of DCX neurons born one day before the treatment (labelled by 

BrdU) into HVC was increased by testosterone at all time-points from 2 days of treatment 

onwards, as was also the total fusiform neurons in HVC. However, testosterone did not 

affect the density of round DCX neurons. Yamamura and colleagues (Yamamura et al., 

2011) also report an effect of three weeks of testosterone on fusiform but not round DCX 

neurons in the HVC of female canaries, while in males an effect of testosterone has been 

shown on both morphologies of DCX after four weeks (Balthazart et al., 2008). One 

explanation of the discrepancy is that newborn neurons mature more slowly in the female 

HVC; therefore the majority of round DCX neurons even at 3 weeks were born before the 

testosterone treatment and their survival was not affected by it. A positive effect of 

testosterone on the number of fusiform DCX neurons at time points as early as 2 days 

suggests that testosterone and its metabolites protect newborn neurons from cell death 

not only during their integration and differentiation in HVC, as has been shown previously 

(Rasika et al., 1994), but also during the early migration phases. In this early phase 

testosterone could be acting via pathways involving n-Cadherin (Barami et al., 1994), 

NgCAM (Williams et al., 1999) and IGF-1 (Jiang et al., 1998) which have been shown to 

regulate early newborn neuron migration in the songbird brain.  

In chapter 1 we also identified an increased density of both fusiform and round 

DCX neurons in females as compared to males in an equivalent social context, a finding 

that has also been reported in starlings (Hall and MacDougall-Shackleton, 2012), brown-

headed cowbirds and red-winged blackbirds (Guigueno et al., 2016). This observation is 

in line with the hypothesis that newborn neurons in the female HVC develop more slowly 

than in the male HVC. Females also had a higher density of older newborn neurons 

(BrdU-labelled, not cross-reacting with EdU) and a higher ratio of older newborn neurons 

to newer newborn neurons in the VZ and a trend toward the same pattern in HVC.  On 

the other hand, the newer newborn neurons (EdU-labelled) were fewer in the female VZ 

than in the male. Overall, the data suggests that in females the newborn neurons seem 

to survive longer than in males.  
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Analyzing the effect of social context on HVC neurogenesis in males we observed 

that the younger newborn neuron (EdU-labeled) were increased in males that were 

housed with another male more than in those housed with a female. The same pattern 

was also seen in older newborn neurons (BrdU-labeled not cross-reacting with EdU), 

although it did not reach significance in that case. The ratio of older to younger newborn 

neurons was higher in males housed alone than males housed with a female. Finally, the 

total number of fusiform DCX neurons per HVC was lower in males housed with a female 

than in those housed with another male. Overall, our data suggest that both older and 

newer newborn neurons survived less in the males housed with a female. This result is 

unexpected given that previous studies have shown that males housed with a female 

have bigger HVCs (Boseret et al., 2006) and a higher density of round DCX neurons 

(Alward et al., 2014).  The males housed with a female did not have a higher concentration 

of corticosterone during the treatment, therefore differential levels of stress do not explain 

this result. This group did have higher baseline levels of corticosterone compared to 

females, but this was not significantly different from the other male groups. This surprising 

result could be due to the different photoperiod used in this experiment compared to the 

two previous studies.   

POM plasticity 

The medial preoptic nucleus (POM) is a critical brain area controlling appetitive sexual 

behaviors (Balthazart and Ball, 2007; Panzica et al., 1996), including courtship song 

(reviewed in Alward et al., 2017). Lesions of POM in male starlings reduce the song output 

during the breeding season when male song often serves the purposes of attracting a 

female (Alger and Riters, 2006; Riters and Ball, 1999). The high density of androgen and 

estrogen receptors in this region (Bernard et al., 1999) suggested that testosterone could 

be acting in POM to modulate the song rate. Indeed after 7 days of treatment, 

testosterone implants into POM increase the rate of singing to the same level as systemic 

testosterone treatment in male canaries, while the quality of song remains unchanged 

(Alward et al., 2016c; Alward et al., 2013). We have investigated the time course of POM 

plasticity following testosterone treatment in order to confirm its role in song motivation 

and increase our understanding of the testosterone-induced changes that could mediate 

the increase in singing. Previous studies have shown that song rate increases within 5-6 



189 
 

days of treatment with exogenous testosterone (Madison et al., 2015), therefore the 

changes in POM would be expected to take place earlier than this time-point. In chapter 

3 we showed that photostimulated females treated with testosterone had an increased 

volume of POM relative to photostimulated untreated controls after a single day of 

treatment; this volume peaked at 2 days of treatment and then remained stable for the 

rest of the experiment (until day 21). The POM volume of control photostimulated females 

did not increase over this time-period and always remained significantly lower than in the 

treated group. This rapid time course of POM volume growth in response to testosterone 

is in line with the role of POM in activating song behavior.  

In males only one time point was investigated, but it was confirmed that as was 

seen in female canaries two days of testosterone-treatment is sufficient to significantly 

increase the volume of POM above the level observed in similarly castrated, 

photostimulated but untreated control male canaries (chapter 4). A rapid testosterone-

induced increase of POM volume after just one day of treatment and before the activation 

of sexual behavior by the steroid, has also been demonstrated in male quail (Charlier et 

al., 2008). It is likely that the increase of POM volume in male canaries would be also 

evident following just one day of treatment, although this remains to be tested in future 

experiments. Further support for the role of POM in song motivation is provided by 

observing that the only control male canary that had been singing at high rates prior to 

the experiment, had a somewhat increased POM volume relative to the rest of the control 

group, although not as large as in testosterone-treated subjects (graph 7 in chapter 4). 

This suggests that testosterone and singing could have additive effects on POM volume, 

but further research should address this question more comprehensively.  

Interestingly, although testosterone increased POM volume in both sexes, the 

magnitude of the increase was larger in males (chapter 4). Testosterone-treated males 

had twice larger POM volumes than testosterone-treated females, while in untreated 

subjects the two sexes did not differ. In Japanese quail the volume of the POM is larger 

in sexually mature males than in sexually mature females, it is increased by testosterone 

in gonadectomized birds however there is no sex difference in POM volume when males 

and females are exposed to the same concentration of testosterone (Panzica et al., 2001, 
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1996, 1987). We showed here that in canaries the sex difference in POM volume is 

apparently maintained despite equal concentrations of testosterone (see figure 4 in 

chapter 4).  However, this sex difference should be confirmed in a future study that would 

include both testosterone-treated males and females within the same experiment.  

Additionally, we investigated the changes in the number of neurons expressing 

aromatase, their somal area and the percentage of POM area covered by aromatase-

immunoreactivity (ARO-ir). In females, the number of ARO-ir neurons and the percent 

area covered by ARO-ir material increased more dramatically than the POM volume, 

especially in the earlier time-points. In males, the magnitude of increase of the three 

measures was more similar, probably due to the higher magnitude of the increase of POM 

volume compared to females. Comparing between the male and female data for the day 

2 time point also suggests that in males the increase of ARO-ir neuron somal area is more 

rapid than in females. These observations provide clues suggesting that the mechanism 

of POM volume growth is different between the sexes, which could account for the sex 

difference in POM volume seen in testosterone-treated individuals.  

Although we showed that testosterone has a powerful effect on POM plasticity, 

chapter 6 presents some tentative evidence that sex steroid hormones are not absolutely 

necessary for POM growth accompanied by an increase in song rate. Castrated male 

canaries maintained on a short-day photoperiod had basal levels of testosterone, but 

spontaneously started to sing at high rates. Using a standardized method, we compared 

the POM volume of these subjects with those of subjects that had been under the same 

conditions but did not sing. The high-singing low-testosterone subjects had POM volumes 

significantly larger than low-singing control subjects (with similarly low levels of 

testosterone) and POM volumes not significantly different from testosterone-treated low-

singing subjects (figure 4, chapter 4). Furthermore, when some of the high-singing low-

testosterone subjects were treated with an inhibitor of aromatase and antagonist of the 

androgen receptor for 28 days, the POM volumes did not significantly decrease compared 

to untreated controls. Similarly, there was no decrease of number of ARO-ir neurons, their 

somal area or percent of area covered by ARO-immunoreactivity. These data suggest a 

steroid independent mechanism of POM volume growth and a correlation between 
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singing rates and POM volume, but cannot address the question of causality – did singing 

increase POM volumes or did the canaries start to sing because their POM volumes had 

increased due to another mechanism?  

Song behavior 

In addition to a relatively detailed examination of the effect of social and hormonal 

modulation of song system neuroplasticity, some of the experiments reported in this 

thesis also investigated the effect of the same factors on song behavior itself. In chapter 

1 we confirmed that male canaries housed with a female display a markedly decreased 

rate of singing compared to isolated males (Alward et al., 2014) and compared to males 

housed with another male (Boseret et al., 2006). In our study, all three conditions were 

compared simultaneously, which showed that the isolated males sing at the highest 

frequency, significantly more than males with a female, while males housed with another 

male are intermediate in song rate, not differing significantly from either isolated males or 

males with a female. The male-male groups showed the highest variability in song rate, 

suggesting that the more complex social dynamics in these dyads make it more difficult 

to detect a clear effect of this social context on song rate. In chapter 2, two small-scale 

studies attempted to address this question. A mirror was placed in the cage of the 

experimental males but not the control males and the subjects likely perceived their 

reflection as another bird living in the same environment (Buckley et al., 2017; Henry et 

al., 2008). The first study in chapter 2 suggested that a mirror suppresses singing in males 

maintained on a short-day photoperiod, however a follow-up study conducted on long-

day photoperiod did not replicate this result.  

In chapter 6 we showed that prolonged exposure of castrated male canaries to a 

short-day photoperiod caused an activation of singing in a subset of birds despite basal 

levels of testosterone. This singing was not blocked by antagonizing androgen receptors 

and inhibiting aromatase, although the song rate was transiently decreased by the 

treatment. Despite the difference on some days in the number of songs between the 

groups, the total song duration did not differ on any day between the groups, likely 

because the treated birds sang slightly longer average songs with a greater number of 

syllables per song. Although many parameters of song quality were assessed, no effect 
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of the treatment was seen on any of these measures. Several indirect indices suggested 

that the treatment was effective for the whole duration of the experiment, therefore we 

tentatively conclude that singing in castrated canaries induced by long-term exposure to 

short-days is largely sex steroid hormone-independent.   

The experiment reported in chapter 4 showed that in photostimulated visually and 

acoustically isolated male canaries two days of testosterone-treatment is not sufficient to 

activate singing, the only subject that sang in this period was already singing before the 

testosterone treatment. In chapter 5 photostimulated males systemically treated with 

testosterone started to sing after 4-5 days, while the subject who was successfully 

implanted with testosterone in POM started singing on day 6 of the experiment. These 

latencies were similar to what was reported by Alward and colleagues (Alward et al., 

2013). In subjects who had testosterone-implants close to and likely leaking into a 

ventricle, song activation took on average 10 days. The slight delay in the ventricle-

implanted birds relative to POM-implanted birds could be due to the potentially lower 

concentration of testosterone reaching POM in the former group. One subject in the 25-

day brain collection group with a testosterone implant touching the ventricle did not start 

singing, however the implant was touching the lateral ventricle, from where testosterone 

is less likely to reach the POM, while the other subjects had the implants close to either 

the cerebral aqueduct or the subarachnoid space. Although the low sample size in all 

groups prevents us from concluding anything, these data suggest that song activation 

timing depends on the concentrations of testosterone reaching and acting in POM.   

Sex differences 

Songbirds exhibit some of the most extreme sex differences in brain and behavior of all 

vertebrates (MacDougall-Shackleton and Ball, 1999). In this thesis sex differences have 

been addressed wherever possible. As discussed earlier, chapter 1 demonstrated that 

females have a higher density of doublecortin-positive newborn neurons in HVC, a higher 

proportion of older newborn neurons than newer newborn neurons surviving and fewer 

proliferating cells labeled 10 days earlier in the ventricular zone than males. Chapter 3 

does not compare males and females directly, however juxtaposition of the data reported 

in this chapter with previous studies suggests that newborn neurons could be developing 
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more slowly in the HVC of female canaries than in the male HVC. In chapter 4, a 

comparison of POM volume growth in males is made with the equivalent data in chapter 

3, showing that despite equivalent concentrations of plasma testosterone, treated males 

have twice larger POM volumes than females. In chapter 7, a sex difference is shown in 

cloacal protuberance length (M>F) and body mass (F>M) in photostimulated condition, 

but not in photoregressed condition. Furthermore, the extent of molting is different 

between sexes at some time-points. A careful examination of the molting patterns shows 

that while in females the molt score increases over time in a gradual fashion, the molt 

score of males increases in a step-wise fashion, with periods of no change followed by 

an increase of a bigger magnitude, causing the molt score of males and females to 

diverge and converge at different times. Together these data indicate that even when 

placed in similar endocrine conditions male and female canaries still differ in a number of 

traits suggesting that either these traits are organized by early hormone action or they 

depend on intrinsic genetic differences. This topic could be the subject of exciting 

additional research. 

Photoperiod 

Many effects of season on song behavior and neuroplasticity are mediated by changes 

in sex steroid hormones, however some sex hormone-independent photoperiodic effects 

have also been reported (Bernard et al., 1997; Bernard and Ball, 1997; Robertson et al., 

2014). Although not directly assessing the effect of photoperiod, the results reported in 

chapter 1 when compared to previous studies suggests the existence testosterone-

independent effects of photoperiod. While we report no difference in HVC volumes 

between social conditions and a decreased rate of survival of older newborn neurons in 

males housed with a female compared to males housed with a male (figure 7 in chapter 

1), Boseret and colleagues (2006) showed that HVC volumes were larger in males 

housed with a female. An important difference between our study and that of Boseret is 

the photoperiod the birds were exposed to, suggesting that the social effect on HVC 

plasticity could be gated by photoperiod. 

In chapter 6 we report photoperiod-induced, sex hormone-independent effects on 

song behavior and song system neuroplasticity. Additionally, we also present data 
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concerning photoperiodic effects that are most likely sex hormone-dependent. In chapter 

3 we used one-way repeated measures ANOVA to probe for photostimulation-induced 

changes in intact female canaries. Although no changes in the neuroplasticity were 

evident, the photostimulation caused an increase in ovary mass, cloacal protuberance 

and syrinx mass. Interestingly, there was also a transient increase in testosterone 

concentrations in intact untreated females one day after onset of long-day photoperiod, 

with a significant difference in the concentration on this day compared to day 21 of 

photostimulation.  

In chapter 7 we investigated the process of photoregression in male and female 

canaries by exposing them to long-day photoperiod for five months. After approximately 

two months both males and females started molting and around the same time the length 

of the cloacal protuberance started to decrease in males. Over the five months there was 

a progressive increase in body weight in both sexes. All three measures indicate that the 

long-day photoperiod had induced a transition into photoregression, suggesting that a 

decrease in daylength is not necessary for this strain of canaries to photoregress. The 

reduction in cloacal protuberance length in males was completed by approximately 11 

weeks of photostimulation. At this time point the length of male cloacal protuberance was 

not significantly different from castrated male canaries from a different experiment and 

after this there was no further decrease. On the other hand, the molting in both males and 

females was not complete after the five months of photostimulation. In Border canaries 

molting takes approximately 11 weeks (Hurley et al., 2008) so that this extended period 

of molting identified in our study suggests that the molting response of Fife canaries 

reflects a relative rather than absolute photorefractoriness: full molt probably requires a 

decrease of photoperiod to be completed, although this was not directly investigated.  

Methodological concerns 

In addition to theoretical contributions to the field of songbird neuroendocrinology and 

neuroplasticity, this thesis has addressed multiple methodological issues. In chapter 1 we 

warned about the potential problems associated with the use of 5-ethynyl-2'-deoxyuridine 

(EdU) as a marker of proliferation. At the time when we conducted the experiment it was 

not well known that EdU can be toxic to the organism at longer survival periods. During 
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the experiment, we noticed that in the days following EdU injection, the injected birds 

were not looking healthy: their feathers were puffed up and some were sleeping with the 

head turned around in the night sleeping position. Around the time when our experiment 

ended a direct confirmation of the toxicity of EdU to cells that have incorporated this 

thymidine analog was published – the majority of cells that incorporate EdU undergo 

apoptosis within 72 hours (Ponti et al., 2013). In our study the organismal symptoms 

disappeared after 1–2 days but the cellular toxicity might have remained. This marker 

should thus be used during in vivo studies only when the tissue of interest will be collected 

within 24 hours after injection. Furthermore, our data suggest that the cross-reactivity of 

the BrdU antibody with EdU is dose-dependent. When the brain is collected 24 hours 

after exposure to EdU, most cells that have incorporated EdU are still surviving, including 

the ones with a high concentration of EdU. Under these conditions, the cross-reactivity of 

BrdU antibody was 87.6%. However, when the EdU was injected further away in time 

from the time of brain collection, most of the cells with a high concentration of EdU had 

presumably died but some cells that had incorporated less EdU were probably still 

surviving. The cross-reactivity under these conditions was on average only 43.7% in the 

VZ and 42.8% in HVC. This dose-dependent cross-reactivity should be kept in mind when 

EdU and BrdU are both injected to study multiple populations of proliferating cells.  

In chapter 3 testosterone was administered subcutaneously to female canaries in 

Silastic™ implants. This method of hormone administration was chosen because it has 

been shown to induce stable concentrations of steroid hormones over a long duration in 

multiple avian species (Desjardin and Turek, 1977; Turek et al., 1976). In our study, we 

assayed plasma testosterone at 1, 2, 9 and 21 days of treatment and observed a sharp 

decrease in the concentration from the first day of treatment to day 2 and a further 

decrease until day 21. A similar pattern of decreasing testosterone concentrations in 

female canaries implanted with Silastic™ implants over time has been shown (Fusani, 

2008; Ko et al., 2015), however it remains unclear whether this phenomenon also 

happens in male individuals and in other species; this should be investigated in future 

studies.   
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When assaying by a testosterone enzyme immunoassay (EIA, Cayman Chemical) 

the plasma of individuals treated systemically with the steroidal aromatase inhibitor ATD 

and non-steroidal androgen receptor antagonist flutamide, extraordinarily high 

concentrations of ‘testosterone’ were detected. However, an assay of the same samples 

with gas chromatography/mass spectrometry showed basal concentrations of 

testosterone, suggesting a cross-reactivity of the EIA with an unknown compound in the 

plasma of treated subjects. A direct test of cross-reactivity of ATD and flutamide with the 

EIA showed only a modest cross-reactivity with ATD and none with flutamide, suggesting 

that at least a part of the ‘testosterone’ signal given by the EIA should be a metabolite 

that somehow results from this treatment, rather than one of these two pharmacological 

agents. This methodological issue concerns multiple published articles that have reported 

high concentrations of ‘testosterone’ following treatment with the same two drugs (Moore 

et al., 2004; Small et al., 2015; Van Duyse et al., 2005) and should be investigated further.  

Finally, this thesis reports the validation and results generated by a new canary 

song analysis software (chapter 6). Software for analyzing zebra finch song has been 

developed and used extensively for over a decade (Tchernichovski et al., 2000). 

However, the song of other songbird species, including canary song, is significantly more 

complex and up to now has been analyzed either completely manually (for example 

Leitner et al., 2001a) or in a semi-automated manner: the experimenter pre-selects 

sections of recordings that represent songs and uses a software to analyze specific 

parameters of these recording segments (Alward et al., 2013; Madison et al., 2015). In 

chapter 6 we show some validations of a program for analyzing canary song in a fully 

automated way, developed by our collaborators at the University of Maryland. We report 

a strong correlation between the number of songs detected by the software and manually 

by visual inspection of the spectrogram (r2 = 0.98), indicating that the software is correctly 

detecting songs. Furthermore, we used this software to analyze a large quantity of song 

recordings, which would take weeks of the experimenters’ time to analyze manually. From 

this analysis, we were able to show that treatment of male canaries maintained for five 

months on short-day photoperiod with an aromatase inhibitor and androgen receptor 

blocker transiently reduces song rate, possibly increases the average number of syllables 

per song, but does not affect other song parameters. Further validations of the software 
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are underway but will not be reported in this thesis. Once fully validated, the software can 

be used to reliably and automatically analyze canary song with minimal time-expenditure 

on the part of the experimenters.  
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