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Summary 

This thesis addresses the problem of damage at elevated temperature with a view 
to analysing transverse cracking during the continuous casting of microalloyed steels. 
Based on the results of a previous project undertaken at the University of Liège to 
simulate the continuous casting process at the macroscopic level, the present research 
aims at studying the damage growth using a finite element mesoscopic approach that 
models the grains structure of the material. The developments are done at the 
mesoscopic scale using information from both the microscopic and macroscopic levels.  

In order to determine the constitutive laws governing the damage process at the 
mesoscopic scale, the physical mechanisms leading to the apparition of cracks during 
steel continuous casting are first investigated. It is acknowledged that in the studied 
temperature range (800 to 1200 °C), the austenitic grain boundary is a favourable place 
for cracks to initiate and propagate. The mechanisms of voids nucleation, growth and 
coalescence are established, the cavities evolving under diffusion and creep 
deformations. 

Having identified the damage mechanisms occurring under continuous casting 
conditions, a numerical approach for the modelling of these phenomena at the grain 
scale is proposed. The mesoscopic model, which is implemented in the Lagrangian 
finite element code LAGAMINE developed at the University of Liège, is built on the 
basis of a 2D mesoscopic cell representative of the material. The finite element 
discretization comprises solid elements inside the grains and interface elements on the 
grains boundaries. An elastic-viscous-plastic law of Norton-Hoff type, which represents 
the thermo-mechanical behaviour of the material, is associated to the solid elements for 
the modelling of the grains; and a damage law accounting for cavitation and sliding is 
linked to the interface elements for the modelling of the damage growth at the grains 
boundaries. The transfer between the macroscopic and mesoscopic scales is realised by 
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imposing the stress, strain and temperature fields, collected during the parent 
macroscopic simulation, as boundary conditions on the mesosopic cell. 

Macroscopic experiments, analytical computations and finite element 
simulations, as well as literature review and microscopic analyses, are used to define the 
parameters of the material laws. The experimental results and the identification 
methodology leading to the definition of the set of parameters specific to the studied 
steel are described. 

Finally, the influence of oscillation marks and process defects on cracks 
formation during the industrial process of continuous casting is analysed. The results are 
compared with in-situ observations and cracking risk indicators computed by the 
macroscopic model. 
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Principal symbols

NOTATIONS 

×   vector (row) 

{ }×  vector (column) 

[ ]×  matrix 

×  determinant 
T×  transposition 

d
dt
×

× =&  temporal derivative 

d ×  differentiation 
δ ×  variation 

0×  initial or reference value 

c×  variable relative to the contact problem 

crack×  variable at crack initiation 

i×  variable at step i 

R×  variable at rupture 

t×  variable at time t 

thr×  threshold value 

LATIN LETTERS 

a void size (radius) 

B creep coefficient 

b void spacing (half length between centre of voids) 

- ix - 



FE mesoscopic analysis of damage in microalloyed CC steels at high temperature 

[C] compliance matrix 

d grain size (diameter) 
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Chapter 1 

1 Introduction

1.1 SCOPE AND OBJECTIVES OF THE STUDY 

Continuous casting of steel has been introduced industrially around 1960. It has 
become more and more important for steel producers because of its advantages 
compared to the older technology of ingots casting: continuous production, energy and 
manpower savings, improvement of steel quality through a finer control of the process 
and better yield due to scrap reduction. Steel, aluminium and copper are continuously 
cast, but steel constitutes the highest tonnage proportion.  

Although the conditions to optimise the process have been widely studied during 
the past 30 years, one of the major problems that remains in steel continuous casting is 
transverse cracking. To minimize surface and internal cracks formation, the control of 
the steel chemistry and of the cooling rate is absolutely essential and a lot of research 
work is done in this domain by the metallurgical community. Nevertheless, the 
measures to prevent transverse cracks are divided into two parts: certainly the control of 
the steel chemistry but also the prevention of cracks initiation and propagation due to 
the thermo-mechanical loadings during the process. This second point is the principal 
objective of this study. 

Based on the results of a previous project undertaken at the University of Liège 
to analyse the continuous casting process from a macroscopic point of view, the present 
research aims at modelling the damage process at elevated temperature using a 
mesoscopic approach. The damage model is built on the basis of a 2D mesoscopic 
cellular model representative of the material. It allows the analysis of the effect of 
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factors such as grain size, oscillation marks, spatial gradient of composition or 
microstructure on the crack initiation and its propagation. Macroscopic experiments and 
simulations, as well as literature review and microscopic analyses, are used to define the 
parameters of the constitutive damage law. 

The present research lies at the intersection of various disciplines and in 
particular metallurgy, materials engineering and continuum mechanics. The length 
scales commonly dealt with in these fields are different and therefore the meaning given 
to the terms macro and micro differs among experts depending on their specific 
background. In this thesis, the terminology macro refers to the analysis at the process 
level, when continuum mechanics can be applied; meso refers to the modelling at the 
grain scale, the mesoscopic cell being a group of grains; and micro concerns the 
mechanisms that are linked to the smaller scales such as voids or inclusions. In this 
project, the developments are done at the mesoscopic scale using information from both 
the microscopic and macroscopic scales. 

The mesoscopic damage model is implemented in the non-linear Lagrangian 
finite element code LAGAMINE and applied to model the material behaviour during 
the industrial process of steel continuous casting. The development of LAGAMINE 
started in the MSM Department of the University of Liège in 1982 with the modelling 
of the rolling process of steel beams and pile sheets (Cescotto and Grober 1985). The 
library of solid elements (Jetteur and Cescotto 1991, Zhu and Cescotto 1995, Li and 
Cescotto 1997a, Li and Cescotto 1997b) and contact elements (Cescotto and Charlier 
1993, Habraken and Cescotto 1998a) has been progressively increased thanks to various 
research projects. The code is clearly focused on the modelling of material behaviour. In 
particular, studies have concentrated on solid phase transformation (Habraken and 
Bourdouxhe 1992a, Pascon et al. 2005) or recristallization (Habraken et al. 1998b), 
damage models to predict crack appearance (Zhu and Cescotto 1992b, Castagne et al. 
2002, Remy et al. 2002b, Castagne et al. 2003), phenomenological laws with gradient 
plasticity (Li and Cescotto 1996) or micro-macro laws (Duchêne et al. 2002, Habraken 
and Duchêne 2004). Specific processes such as deep drawing (Li et al. 1995, Duchêne 
and Habraken 2005), forging (Dyduch et al. 1992) or continuous casting (Pascon et al. 
2000, Castagne et al. 2004, Pascon et al. 2006) have also been simulated. 

Although the practical application of the model developed in this thesis is the 
simulation of the continuous casting process, the ultimate goal of the research is the 
exploration and development of techniques facilitating damage modelling at elevated 
temperature. The implementation of the model in a finite element code and its 
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application to an industrial forming process is essential to prove the viability and 
practicability of the method. 

1.2 CONTEXT OF THE RESEARCH 

This research project has been initiated at the University of Liège on the basis of 
previous work carried out in the field of metal forming and continuous casting 
modelling. Initial funding from the Belgian National Fund for Scientific Research 
(F.N.R.S.) and from the University of Liège (Crédit d’impulsion), has permit to set the 
foundations of the numerical model, to perform the experimental analyses and to 
present a proof of concept to the industrial partner Arcelor who had already shown a 
great interest in this research. The technical and financial support provided by Arcelor 
has been essential for the completion of the practical phase of the project. The 
involvement of Arcelor is also of great significance for the ultimate relevance of the 
work. 

1.3 OUTLINE OF THE THESIS 

After this introduction, the second chapter presents a literature review of damage 
at elevated temperature focusing on the models susceptible to be applied in continuous 
casting conditions. It starts with a description of the continuous casting process, 
followed by a review of cracks formation in continuous casting looking at the factors 
that are responsible for transverse cracking and at the involved physical mechanisms. 
Then, models developed for the analysis of cracks are presented, starting with 
traditional fracture and continuum damage mechanics models before focusing on multi-
scale approaches and numerical modelling of the crack propagation phase. This step is 
essential in determining the way forward for the development of the continuous casting 
damage model.   

Chapter 3 describes the finite element mesoscopic model. The main features of 
the model are the interface finite element which is used for the representation of the 
grain boundaries and the associated constitutive damage law that accounts for the 
damage processes at the mesoscopic scale. Solid elements that represents the grains are 
also included in the model, they are linked to an elastic-viscous-plastic constitutive law 
that defines the thermo-mechanical behaviour of the material. Initial simulations carried 
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out to verify the model and technical developments linked to its implementation within 
the finite element code LAGAMINE are also presented. 

The experimental analyses that have been carried out to define the parameters of 
the model are presented in Chapter 4 together with the numerical simulations which 
have been performed to identify these parameters. In particular, a metallographic 
analysis combining optical microscopy and picric acid etching has been preformed to 
establish the crystalline structure of the material. Mechanical compression tests have 
been carried out to determine the material properties of the steel and damage tests have 
been performed to calibrate the parameters that have to be introduced in the damage 
model. 

The object of Chapter 5 is the application of the damage model to the continuous 
casting process, starting with the definition of the appropriate cell size before 
transferring data from the macroscopic simulation to the mesoscopic cell. The final 
application is the comparison of the damage effects on a cell with or without oscillation 
marks when continuous casting conditions are applied. A reference case without defect 
and a case with misalignment of one pair of rolls, which is a problem that can arise 
during the industrial continuous casting process, are compared with in-situ observations 
and risk indices computed by the macroscopic continuous casting model.   

The last chapter summarizes the content of the thesis, presents generic 
conclusions and proposes recommendations for the future developments and 
applications of the mesoscopic damage model. 

1.4 METHODOLOGY 

The methodology followed comprises four main aspects corresponding to the 
four essential stages required to derive a viable model for the analysis of intergranular 
crack initiation and propagation at elevated temperature. These four steps also 
correspond to the four core chapters of the thesis: 

• identification of the involved physical phenomena and analysis of the 
existing theories and models that could be used as a starting point for the 
development of the mesoscopic damage and fracture model at elevated 
temperature (Chapter 2), 

• development, numerical implementation and verification of the model 
(Chapter 3), 
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• experimental analyses and calibration of the model for the particular 
material tested (Chapter 4), 

• application to the continuous casting process and validation of the model 
(Chapter 5). 

1.5 ORIGINAL CONTRIBUTIONS 

The work presented in this thesis follows an exploratory path that addresses the 
problem of crack initiation and propagation at elevated temperature with a particular 
application in the field of continuous casting. The following aspects can be emphasized 
as original contributions to this research project: 

• selection of a mathematical model that represents the physical 
phenomena linked to crack initiation and propagation at elevated 
temperature in the context of the modelling of transverse cracking during 
steel continuous casting, 

• implementation, verification and validation of an interface finite element 
associated with a damage law and adaptation of the finite element code 
LAGAMINE for the treatment of the mesoscopic model which 
comprises interface and grain elements, 

• proposition to use acoustic tests for the calibration of the damage law 
parameters and realisation of the parameters identification based on this 
technique, 

• definition of a methodology for the data transfer between the 
macroscopic and mesoscopic levels,   

• application of the developed mesoscopic model to the analysis of 
transverse cracking at the grain scale during the straightening phase of 
the continuous casting process. 
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Chapter 2 

2 An overview of damage in the context of 
continuous casting

2.1 DESCRIPTION OF THE CONTINUOUS CASTING PROCESS  

The main objective of this thesis is to develop a local damage model to be 
applied to steel subjected to continuous casting loading conditions. Therefore, the 
present section aims at introducing the basic concepts of continuous casting to give an 
understanding of the process before studying the local damage effects. A detailed 
description of the continuous casting process, as part of the whole steel production 
cycle, has been presented by Pascon (2003). 

The continuous casting process transforms molten steel coming from blast or 
electric arc furnaces into cast products, which are then processed by hot rolling before 
being commercialised as final products. The cross section of the cast products extracted 
from continuous casting mills depends on the shape of the final product. Two major 
families of final products can be distinguished: flat products (steel plates or sheets) 
produced by hot rolling of cast products of relatively wide rectangular cross-section 
called slabs (50 to 250 mm thick and 0.5 to 2.2 m wide), and long products (beams, 
rails, wires) produced by hot rolling of cast products of roughly square cross-sections 
called blooms (up to 400 mm thick and 600 mm wide) or billets (100 to 200 mm thick). 
More specific cast products cross-sections can be produced with a view to reducing the 
number of rolling passes, e.g. beam blanks for the production of I-beams.  
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Figure 2.1. Continuous casting process. 

Continuous casting mills can be straight or curved, depending on the application. 
Figure 2.1 shows a schematic representation of a curved continuous casting mill 
corresponding to the type of machine used to produce the cast products analysed in this 
thesis. 

Throughout the continuous casting process, molten steel is poured into a 
bottomless copper mould where it starts to solidify. A water cooling system helps to 
keep the surfaces of the mould at a relatively low and constant temperature (between 
100 and 200 °C) allowing the primary cooling phase to occur within the mould. During 
this phase, the liquid steel freezes in contact with the mould and a solidified skin starts 
to grow while the steel is moving down. To protect steel from oxidation, a specific 
powder is continuously put onto the free liquid steel surface in the mould. Lubricant 
agents are also contained in this anti-oxidation powder which develops its lubricant 
properties while melting in contact with the steel. In addition to the lubricant agents, a 
vertical oscillating movement is imposed to the mould to prevent sticking between the 
mould and the strand. The mould oscillations lead to the formation of marks on the slab 
surface which remain visible on the surface of the cast product and can be damaging for 
the final product if not properly controlled. These aspects are explained in more details 
in section 2.2.  

The secondary cooling phase takes place outside the mould where the steel 
continues to solidify. At the exit of the mould, the steel is still partially liquid and three 
material phases can be distinguished: the external solidified shell, the mushy zone made 
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of liquid and solid fractions, and the liquid core. The external shell must be thick 
enough to avoid cracking and contain the liquid steel. The control of the thickness of 
this shell is a very important factor for the quality of the process. Under the mould, 
extracting rolls pull the strand out and make it move forward in the machine at a 
controlled velocity called the casting speed. The position of the rolls imposes the path of 
the strand in the machine and controls its bending and straightening. Water sprays are 
placed between the rolls to continue the cooling of the strand and to regulate the 
solidification progression. The contact between the rolls and the strand also contributes 
to cooling as the rolls are equipped with an internal water cooling system, although the 
main purpose of the internal cooling system is to avoid rolls deformation. As the strand 
moves down, the thickness of the solidified shell grows until the entire section is 
solidified. The strand can then be cut and sent to storage before rolling. 

The loads that have to be sustained by the steel shell during solidification in the 
continuous casting mill are of various types: a ferrostatic pressure is imposed by the 
liquid core on the solidified shell which acts as a pressurized tube; compression and 
tensile loads are present in the shell due to the bending and straightening of the strand; 
frictional and compression loads, as well as indirect tensile loads due to the extraction 
forces, are imposed by the rolls; and finally thermal and phase transformation loads are 
initiated due to the thermal history.      

Computational modelling of continuous casting is an area of research in constant 
development (Thomas 2002, Costes 2004, Pascon et al. 2006). Mathematical models 
and simulations are used to analyse the effect of the parameters that have to be 
controlled to ensure high quality products, i.e. the mould cross-section and taper, 
casting speed, cooling rate or rolls position (Barber et al. 1991, Thomas and Ho 1991, 
Louhenkilpi et al. 1993, Ridoffi et al. 1994, Miyake et al. 1998, Ren and Wang 1998, 
Huespe et al. 2000, Pascon et al. 2000,  Park et al. 2002, Li and Thomas 2004). 

2.2 CRACK FORMATION IN STEEL CONTINUOUS CASTING 

Different types of internal and surface cracks may occur during the continuous 
casting process as illustrated in Figure 2.2. Two zones of low ductility are usually 
emphasized in steels: the first zone exists above 1340°C and accounts for the formation 
of all internal (midway, triple-point, centreline, diagonal) and surface longitudinal 
cracks while the second low ductility zone lies between 700 and 900°C and is related to 
the appearance of transverse cracks (Brimacombe and Sorimachi 1977). 
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Figure 2.2. Types of cracks in continuous casting.  

Steel ductility at high temperature and its relationship to the problem of crack 
formation after steel solidification in continuous casting conditions has been widely 
studied (Lankford 1972, Myllykoski and Suutala 1983, Revaux et al. 1994, Patrick et al. 
1997, Hiebler and Bernhard 1999). In particular, detailed reviews focusing hot ductility 
of steels and its link to transverse cracking have been published by Mintz (Mintz et al. 
1991, Mintz 1999). 

2.2.1 FACTORS INFLUENCING TRANSVERSE CRACKING 

Although the factors responsible for the formation of the majority of internal and 
surface cracks are known, transverse cracking in particular is extremely damaging for 
final products and constitute an important area of research. Cast products are inspected 
before rolling but the inspection phase does not always permit to detect and remove all 
transverse cracks. A transverse crack of a few millimetres depth on a slab can then be at 
the origin of defects that extend several meters on rolled plates or sheets as illustrated in 
Figure 2.3. 

 

Extension of the defect inside 
the plate or sheet after rolling

Transverse crack of a few
milimeters depth on the slab

Rolled plate or sheet

Continuous casted slab

 
Figure 2.3. Schematic illustration of the extension of a transverse crack after rolling.  
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Transverse cracks initiation takes place during the unbending phase of the 
continuous process when the slab is straightened at temperatures which coincide with 
the second low ductility zone of the material. Strain rate, grain size, precipitation state 
and inclusions content are the major parameters that influence hot ductility and 
transverse cracking in this temperature range.  

Increasing the strain rate and refining the grain size improve ductility by 
reducing the amount of grain boundary sliding and making it more difficult for cracks to 
propagate along the grain boundaries (Fu et al. 1988, Mintz et al. 1991). Fine 
precipitates generally weaken the grain boundaries and facilitate cracks interlinking. 
Although addition of titanium seems to be the most efficient to maintain a high 
ductility, typical micro-alloying elements such as aluminium, niobium and vanadium 
are usually responsible for a reduction in ductility and should be kept at the lowest level 
to meet the property requirements of the final product (Bernard et al. 1978, Cepeda et 
al. 1989, Harada et al. 1990, Mintz and Abushosha 1993, Cardoso et al. 1995). In 
particular, the combination of nitrogen with aluminium, which is used to prevent 
oxidation, niobium or vanadium is very detrimental due to the precipitation of nitrides 
and carbonitrides along grain boundaries (Vodovipec 1978, Mintz et al. 1991, 
Weisgerber et al. 1999). Niobium and vanadium can improve steel strength and 
weldability but undergo dynamic precipitation during straightening. Residual elements 
such as copper, sulphur and phosphorus influence precipitation and their presence 
should be limited (Mintz 1999). The carbon content is also a very important factor in 
mild steels, with a maximum susceptibility to transverse cracking between 0.10 and 
0.15 wt% (weight percentage) of carbon (Maehara et al. 1985). 

In addition to the factors presented here before, oscillations marks, which are 
caused by the vertical oscillations of the mould during the continuous casting process, 
are recognized as a factor at the origin of cracks initiation (Maehara et al. 1987, Suzuki 
et al. 1999). Transverse cracks may be formed at the subsurface below an oscillation 
mark where the local segregation is important and the material more fragile. The 
formation mechanism of the surface segregation, particularly of phosphorus which is 
present in the slag, has a close relation with the formation of oscillation marks (Harada 
et al. 1990). When an oscillation mark is formed, the partially solidified shell is 
deformed and the dirty segregated liquid steel present between the dendrite arms is 
squeezed out to the surface. The degree of segregation depends on the depth of the 
oscillation marks. 
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2.2.2 MECHANISMS OF TRANSVERSE CRACKS INITIATION AND PROPAGATION 

Ashby deformation-mechanisms maps indicate the field of dominance of a given 
deformation mechanism as a function of the normalized shear stress and temperature. 
Such maps have been defined for various materials (Ashby et al. 1979, Gandhi and 
Ashby 1979, Frost and Ashby 1982). Figure 2.4 gives two examples of deformation-
mechanisms maps, one for pure iron and one for a low-alloy steel. 

 

  
Figure 2.4. Deformation-mechanism maps for pure iron and low-alloy steel 

(Frost and Ashby 1982). 

General characteristics can be drawn by comparison of the Ashby maps. In 
particular, it is shown that for high temperature and low stress, the prevalent 
deformation mechanism is diffusional flow. Experimentally, transverse cracks in 
continuous casting have been shown to be intergranular, meandering along prior 
austenite grain boundaries. Moreover, during the continuous casting process, the stress 
and temperature levels are in accordance with the zone corresponding to boundary 
diffusional flow of the Abshy maps. Therefore, it is recognized that cracks in 
continuous casting are formed by integranular creep damage.  

The effect of creep on transverse cracking is associated with grain boundary 
sliding and diffusion (Ashby et al. 1979, Guttman 1982, Suzuki et al. 1984, Mintz et al. 
1991, François et al. 1993). In the lower temperature of the austenitic phase, dynamic 
recrystallisation becomes difficult and grain boundary sliding occurs to accommodate 
the creep deformation in the austenitic grains. This process stimulates the nucleation of 
voids at the grain boundaries. The local diffusion of voids, associated with the inverse 
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flow of material, contributes to their growth and to the creation of micro-cracks along 
the grain boundaries.  

A second mechanism linked to transverse cracking, and that explains the 
presence of a ductility trough for temperatures between 700 and 900°C, is the 
embrittlement by strain concentration and micro-voids coalescence at the grain 
boundaries. This phenomenon is induced by austenite-ferrite transformation that 
initiates along the grain boundaries and creates a thin film of softer ferrite around the 
grain boundaries, particularly in low and medium plain-carbon steel (0.05 to 0.4 wt% of 
carbon) (Suzuki et al. 1984). In niobium containing steels, the embrittlement is also 
linked to the formation of a weak free precipitate zone around the grain boundaries, 
which accompanies the grain boundaries precipitation (Mintz et al. 1991). 

During the strengthening of the slab, when the surface temperature coincides 
with the ductility trough, a combination of these mechanisms triggers crack initiation 
and propagation.  

2.3 MODELLING OF CRACKS AT HIGH TEMPERATURE  

Computational modelling of crack initiation and propagation in continuous 
casting conditions is not abundant in literature and particular applications to transverse 
cracking are almost inexistent. Li and Thomas (2004) propose a finite element model to 
analyse crack formation during the primary cooling phase. Pascon (2003) models the 
whole continuous casting process and uses macroscopic damage criteria to rank 
damaging events such as blocked nozzles or misaligned rolls that could affect the 
process. Gamsjäger et al. (2001) look at the austenite-ferrite transformation and its 
effect on strains at the grain boundary. Although these models help to understand the 
damaging effects of various parameters, none of them looks at local aspects of 
transverse cracking as part of the macroscopic continuous casting process.  

In order to determine the approach that should be followed to model transverse 
cracking in the scope of this thesis, it is necessary to analyse the problem of crack 
initiation and propagation in a more global context. Two separate currents of research 
have to be explored regarding cracks problems: fracture mechanics and damage 
mechanics. Multi-scale techniques constitute another area of interest since one the 
objective of the thesis is to link macroscopic data to local cracking behaviour. These 
approaches have overlaps with the two previous fields but are described in a separate 
section. Finally, the last section presents some of the techniques that have been used in 
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computational models to represent crack propagation. Most of the models presented 
hereafter have been developed for ambient temperature conditions; nevertheless, when 
information is available, specific high temperature applications are highlighted.   

2.3.1 FRACTURE MECHANICS   

Fracture mechanics is a relatively new science that has emerged in the 1920s 
with Griffith work (Griffith 1920) and has been more widely developed since the 1950s 
(Broek 1986, Leblond 2003, Anderson 2005). It initially focused on purely brittle 
materials and was further extended independently by Irwin (1948) and Orowan (1949) 
to account for plasticity at the crack tip. 

Brittle materials usually fail by cleavage, i.e. separation of atomic plans. Based 
on this assumption, different concepts have been developed to determine fracture 
criteria. Griffith first proposed that energy had to be released from the system to create 
new crack surfaces, the development of this idea led to the introduction of a new 
parameter to characterize the material: the critical energy released rate, which can be 
used as a fracture criterion (Irwin 1956). The concept of stress intensity factors, linking 
classical solid mechanics (strength of material) and fracture mechanics, has been 
developed later and fracture toughness proposed as another fracture criterion. The J-
integral developed by Rice (1968), which is an extension of Griffith energy method, and 
the crack tip opening displacement as proposed by Wells (1963), are two other fracture 
mechanics approaches that lead to the definition of fracture criteria. 

Fracture mechanics is used in industry to assess the danger of propagation of 
existing cracks and to design parts and structures that will sustain the load until 
detectable cracks are formed. This approach is often applied in conjunction with fatigue 
theories to predict the safe life of mechanical components.  

Nevertheless, fracture mechanics is not appropriate for applications at high 
temperature where large amount of plastic deformations are involved. Moreover, it does 
not account for any of the damage processes that occur before crack initiation and in 
particular for the diffusion phenomena that are important at high temperature.  

2.3.2 DAMAGE MECHANICS   

Damage mechanics, often referred to as ‘continuum damage mechanics’, 
generally concerns more ductile materials although it can be applied to creep, fatigue or 
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brittle failures (Lemaitre and Desmorat 2005, Voyiadjis 2005). This subject emerged in 
the 1960s and has been extensively studied in the past thirty years. 

There are two common ways to predict rupture in the field of continuum 
mechanics. The first method consists in using classical constitutive laws coupled with 
macroscopic rupture criteria. This approach is easily implemented in any numerical 
code. Nevertheless, this method is not general as it is difficult to find a single rupture 
criterion that can represent various modes of rupture. The second approach is a coupled 
damage analysis which is based on damage constitutive laws. Damage is treated through 
internal state variables that describe the irreversible process of internal structure 
degradation due to micro-defects. Damage in the material is represented by damage 
variables which measure the porosity of the material. The mechanical properties of the 
material are reduced according to these damage variables. Damage increases in the 
material due to plastic deformations and these phenomena lead to void growth and final 
failure by void coalescence. The coupled method, which integrates the stiffness 
decrease due to damage in the stress and strain computation, allows the prediction of 
different rupture types, the localisation of the rupture zone and the tracking of the crack 
growth path. 

2.3.2.1 Creep damage models 

As creep is recognised as one of the major phenomena that lead to crack 
formation during continuous casting, this first section focuses on creep damage models.  

The concept of damage variable and effective stress in damaged material was 
first introduced by Kachanov (1958) and Rabotnov (1968) for the modelling of creep. 
The initial creep damage law assumed that the damage evolution was a function of the 
effective stress in the material. In the uniaxial case of isotropic damage, the effective 
stress σ%  is formulated as follow: 

 
( )1 D

σσ =
−

%  (2.1) 

in which D is a scalar internal damage variable corresponding to the surface density of 
micro-cracks (  in the undamaged state) and 0D = σ  the Cauchy stress. The time to 
rupture is calculated by integration of the damage evolution law up to a critical damage 
value.  

Since the pioneering works of Kachanov and Rabotnov, a large number of 
papers on the modelling of creep damage for polycrystalline material have been 
published; Betten et al. (1999) present a review on the subject. Most analyses at 
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elevated temperature focus on the computation of the life time of structures in service. 
Usually creep damage parameters are incorporated into the models but time to rupture, 
tR, remains one of the most critical variable of the problem (McLean and Dyson 2000, 
Murakami et al. 2000, Ragab 2002).  

Betten et al. (1999) propose a three-dimensional creep model coupled with a 
damage vector. The model describes simultaneously damage induced anistotropy, 
different damage in tension and compression and different creep behaviour in tension 
and compression. Using the same initial formulation, they propose variations of the 
model able to reproduce the three stages of creep evolution for constant load (see Figure 
2.5): primary creep (decelerating strain growth), secondary creep (linear portion) and 
tertiary creep (accelerated strain growth) which finally leads to failure (Nabarro and de 
Villiers 1995). tR is the time at which the rupture occurs and Rε  the corresponding 

strain. 

 

time

Primary Secondary Tertiary

ε

ε = constant

Rupture

tR

εR

 
Figure 2.5. Typical creep deformation evolution at constant stress and temperature. 

Due to the high temperatures involved, the diffusion phenomena that induce 
creep facture occur at relatively high speed during the continuous casting process. 
Therefore, the classical models dedicated to creep are not appropriate to reproduce the 
damage phenomenon in continuous casting, whose time scale is smaller than traditional 
applications. Moreover, these models perform macroscopic analysis which focus on 
time and do not integrate the microscopic behaviour of the grain boundary. 

2.3.2.2 Damage models developed in the context of ductile fracture 

With a view to defining suitable models to be developed and applied for high 
temperature conditions, this section presents some continuum damage models initially 
dedicated to ductile fracture. Nowadays, the continuum damage theory is a field where a 
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tremendous amount of research work is available; Habraken (2001) proposes a detailed 
review of these models. Initially, Gurson (1977), Tvergaard (1982), Lemaitre and 
Chaboche (1985) and Perzyna (1986) proposed elastic-plastic and elastic-viscous-
plastic continuum theories for isotropic damage sensitive materials. New extensions 
which cover anisotropic cases have then been developed (Charles et al. 1997, Voyiadjis, 
and Deliktas 2000,  Benzerga et al. 2004). 

Two types of constitutive relations are found in literature to model the coupled 
phenomena of elastic-plasticity and material damage, either at the macroscopic or 
microscopic scale. 

Macroscopic damage models 
The macroscopic approach is based on phenomenological observations and 

thermodynamics considerations (Lemaitre 1985, Rousselier 1987, Ju 1989, Murakami et 
al. 1998, Voyiadjis and Park 1999). It is motivated by microscopic considerations but 
not deduced from them. The method only requires simple macroscopic experiments but 
is often confronted with localisation problems.  

The ductile fracture model proposed by Lemaitre is based on the concept of 
effective stress σ%  introduced by Kachanov and Rabotnov for the purpose of modelling 
fracture due to creep (see equation (2.1)). Using the hypothesis of energy equivalence, 
the constitutive relations of the damaged material are derived from those of the 
undamaged material by replacing the nominal stress σ  by the effective stress σ% . In 
case of non-isotropic damage, the scalar damage variable is replaced by a damage tensor 
and the effective stress by the stress tensor. The thermodynamics of irreversible 
processes is used to define the laws governing the evolution of the internal variables 
(Lemaitre 2005). 

Using a similar approach, Rousselier (1987) proposed a model where the 
damage parameter is a function of the density of the material. For some particular 
values of the parameters, if the void volume fraction is low and the triaxiality is high, 
the yield surface becomes identical to the Gurson potential presented in the next section, 
which was obtained following a totally different approach. He also treated the viscous-
plastic case by modelling it numerically like a plastic material but with a hardening 
curve depending on the strain rate (Rousselier et al. 1989). The resulting  viscous-
plastic model allowed the analysis of temperature effects on ductile fracture. 
Temperature dependence was introduced into a critical cavity growth criterion on the 
basis of experimental data. The model was applied to the damage analysis of stainless 
steel up to a temperature of 300°C. An extension of the Rousselier model has been 
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presented by Tanguy and Besson (2002) for the finite element analysis of ductile 
rupture under various strain rate and temperature conditions. 

Microscopic damage models 
Macroscopic continuum damage mechanics enables to compute damage 

evolution in complex structure. Nevertheless, for some applications, a more detailed 
physical description of microscopic processes involving damage are necessary to 
improve existing models. Indeed, it is difficult to account for all the physics of the 
phenomena with only macroscopic descriptions. Moreover, macroscopic damage 
models suffer from a lack of mesh independence and from localization phenomenon. 
The introduction of a material length scale is necessary to overcome this problem. 

The microscopic approach, also called local approach, is based on a detailed 
analysis of voids nucleation, growth and coalescence (Gurson 1977, Tvergaard and 
Needleman 1984, Leblond 2003). It requires microscopic experimental studies to define 
the model parameters and a transition or homogenisation method, such as those 
presented in section 2.3.3.1, to transfer results from the non-homogeneous microscopic 
state to the macroscopic level.  

Gurson model was initially developed on the basis of analytical studies of a 
microscopic cell containing a hollow sphere subjected to axisymmetric loadings. The 
cell was defined to represent an elementary volume in a porous medium and was made 
of rigid-ideally plastic material. In this model, the damage variable is the volume 
fraction of cavities, i.e. the porosity, whose evolution law contains contributions from 
voids nucleation and growth. Phenomenological evolution laws, which can be linked 
with statistically-based expressions (Chu and Needleman 1980), are defined for voids 
nucleation, either controlled by stress or plastic strain. Gurson model also comprises a 
yield function or plastic potential which links the macroscopic stress to the damage 
parameter and an associated flow rule which defines the macroscopic plastic strain; 
based on these characteristics, it is often categorized as a macroscopic model.  

The original Gurson model was initially dedicated to low porosity, spherical 
voids and random voids distribution, and presented the highest accuracy for high 
triaxialities. It was then extended and adjustable parameters were introduced to account 
for the void shape, the interaction between cavities and to avoid overestimation of the 
rupture strain (Tvergaard and Needleman 1984).  

Gurson model has been further developed by various authors in order to account 
for non spherical voids (Gologanu et al. 1993), to introduce hardening (Leblond et al. 
1995) or to avoid the localisation problem (Berger 1998). The study of a microscopic 
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representative unit cell was used to determine the macroscopic parameters to be 
introduced in these models. This approach, used for porous material, could also be used 
for damage in creeping material although the length scale in the case of creep rupture is 
smaller than for ductile fracture in porous material. 

Usually, Gurson model is not used at elevated temperature as the mechanism of 
creep is not directly included in the existing evolution laws. Nevertheless, Berger 
(1998) developed a model using the same principle of void growth in a unit cell and 
applied it to the determination of damage in stainless steels at temperatures up to 
1100°C.  

Horstemeyer and Mosher (1999) developed a law comprising nucleation, growth 
and coalescence of voids, whose plastic potential is similar to Gurson potential but 
whose damage evolution equations are different. The model is characterised by a 
multiplicative decomposition of the damage into nucleation and growth terms instead of 
an additive decomposition. The temperature appears explicitly in the damage 
constitutive law as a variable. The law is used from cold to hot temperature but the 
particular mechanisms appearing at different temperatures are not differentiated. 
Particularly, the high temperature sensitivity has been studied on notched tests for 
stainless steel. The parameters were determined over a range of temperatures varyig 
from 25 to 1000°C.  

Recently, Lassance et al. (2007) published a study focusing on the 
micromechanics of fracture in 6xxx series aluminium alloys for temperatures ranging 
between 20 and 600 °C. Damage micro-mechanisms specific to room and elevated 
temperature for this family of alloys were highlighted. Based on these experimental 
considerations, they proposed an extension to the Gurson model to capture the 
complexity of these various mechanisms.  

2.3.3 MULTI-SCALE APPROACHES FOR CRACK ANALYSIS 

In this section, multi-scale approaches are envisaged as a modelling technique 
for crack analysis in continuous casting: on the one hand, the physical description of 
cracks initiation and propagation in continuous casting involves steel microstructure and 
especially grain boundaries, which naturally leads to developing a model at the grain 
level also referred to as the mesoscopic level; on the other hand, a macroscopic 
modelling is required in order to capture the influence of the parameters of the industrial 
process.  
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Homogenisation techniques, which are necessary to transfer data and simulation 
results from one modelling scale to another, are first presented. Then, models to 
represent the microscopic phenomena of nucleation, growth and voids coalescence that 
lead to creep and ductile fractures are discussed. Finally, existing methods for the 
modelling of intergranular damage are described.  

2.3.3.1 Homogenisation techniques  

Most of the engineering materials are heterogeneous by nature. For example, 
porous materials, composites or polycrystalline materials are made of different phases.  
In particular, damaged materials are constituted of an intact matrix in which voids are 
included and can be treated either as porous materials or as a particular type of 
composites. Theories developed to define the macroscopic behaviour of heterogeneous 
materials are similar, whether they are specific to porous, polycrystalline, composites or 
damaged materials. 

A first approach to determine the mechanical behaviour of heterogeneous 
materials is to confine rigorously the macroscopic behaviour between an upper and 
lower bound. This method was developed on the basis of the mixing rules initially 
developed by Voigt and Reuss. In elasticity, the upper bound of Voigt is defined 
supposing that the deformations are uniform in the material while the lower bound of 
Reuss is defined considering that the stresses are homogenous in the material (Hill 
1952, Swan and Kosaka 1997). The bounds method has been extended to plasticity 
using the theory developed by Sachs, Taylor, Bishop and Hill (Goldsztein 2001). When 
the phases are very different, the bounds method results in a very large interval and it is 
necessary to have an estimation of the macroscopic behaviour using more sophisticated 
homogenisation methods. 

Other approaches estimate the macroscopic behaviour by averaging information 
from the microscopic state. Homogenisation methods have been first developed for 
elastic behaviour: knowing the macroscopic stress-strain state, the microstructure and 
the constitutive laws for the microscopic state, a localization tensor can be define which 
is used to compute the global stiffness tensor. In particular, multi-scale approaches are 
very common for the study of composite materials, which constitute an important 
source of information in the field of homogenisation. The most direct approach 
determines the properties of the composite by average on the constituents. This can also 
be applied to metal matrix with voids or inclusions or to other heterogeneous material 
such as concrete. Effective medium approximations, as proposed by Eshelby (1957), 
constitute a more refined approach to the problem of homogenisation. Eshelby is the 
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precursor in the development of self-consistent methods (Hill 1965), which were 
initially developed for the homogenisation of elastic polycrystalline materials to reduce 
the analysis of the whole material to the problem of one inclusion in a matrix: each 
grain sees the surrounding material as a homogenized material. He also proposed the 
idea of the equivalent inclusion method where the inclusion is replaced by a localized 
strain. In particular, the dilute limit method has been proposed to study materials where 
the density of inclusions is very weak, i.e. when there is no interaction between 
inclusions. The inclusion is analysed as if it was in an infinite medium with the 
properties of the matrix submitted to a macroscopic deformation. If the interactions 
between the inclusions have to be taken into account, the matrix behaviour can be 
replaced by the homogenized behaviour of the material, this technique is then 
equivalent to using the self-consistent method. To account for the matrix deformation, 
the method consists in considering that the mean deformation of the representative 
volume element is equal to the average of the deformations of the virgin matrix (Mori 
and Tanaka 1973).   

For non linear cases, the homogenisation methods presented here before are not 
accurate. In this case, the problem of deformation localization can no longer be resolved 
exactly and estimations of the local strain have to be computed by finite element 
analysis, by linearising the behaviour on an infinitesimal time interval or by comparison 
with a linear medium (Ponte Castañeda 1991, Suquet 1993). In particular, localization 
in a non linear matrix has been resolved using the Gurson model or methods introducing 
a perturbation in existing potentials (Duva and Hutchison 1984, Lee and Mear 1992). 
Homogenisation methods, specific to damage analysis in polycrystalline and composite 
materials (Chaboche et al. 1998, Pottier 1998, Gonzales and Llorca 2000) or to creep 
fracture analysis (Nguyen et al. 2000), have also been developed. 

Recently, computational homogenisation methods have been developed to 
overcome problems such as large deformations, complex loading paths or evolving 
microstructures (Ghosh et al. 1996, Kouznestova et al. 2002, Feyel 2003). These 
methods, also referred to as FE2 methods in the literature, are characterized by the 
definition of a representative volume element (RVE) and are based on the solution of 
two boundary problems, one for the macroscopic and one for microscopic scale. This 
technique does not aim at defining a macroscopic constitutive law for the material but to 
compute the macroscopic behaviour by performing a detailed microstructural 
calculation at each particular point of interest (see Figure 2.6). Computational 
homogenisation methods require high computer resources and they should only be used 
when the classical models fail to give the correct solution. 
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Figure 2.6. Illustration of the FE2 method: macroscopic mesh and RVE associated to each 
integration point. 

Another alternative to the problem of multi-scale modelling consists in using a 
finer finite elements discretization in specific areas when the position of the zones to be 
modelled with more details is known, e.g. a zone known to be more susceptible to crack 
initiation or a zone around an existing crack. Two-level models are represented in 
Figure 2.7, they comprise a first level model for the macroscopic scale and a second 
level model for the mesoscopic scale. Transfer of data is performed either by imposing 
forces or displacements extracted from a primary model at the macroscopic scale to a 
sub-model at the mesoscopic scale (Kiss and Dunai 2002) or through a progressive 
variation in the mesh refinement, going from coarse elements for the macroscopic state 
to finer specific elements for the mesoscopic state (Héraud 1998, Onck et al. 2000). 
Using this type of two-level models ensures that the boundary conditions are correctly 
applied to the mesoscopic zone. 

The combination of FE2 methods with multi-level discretization in a single 
model is often useful to take advantage of the particular capabilities of each of the 
techniques (van der Giessen et al. 2000, Ghosh et al. 2001, Raghavan et al. 2004). In 
these models, several computational sub-domains are defined, allowing the definition of 
different levels of homogenisation. The interest of the method is to define progressively 
more detailed models when approaching heterogeneous zones in the studied piece of 
material. 

RVE 

Macroscopic mesh 
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Figure 2.7. Illustration of the two-level method. a) Extraction of the data from the macrosopic 
level and transfer to the mesoscopic level (two calculations), b) progressive mesh refinement 

(one calculation). 

Macroscopic mesh Mesoscopic mesh 

Zoom on the zone modelled 
at the meoscopic level 

Macroscopic mesh 

2.3.3.2 Nucleation, growth and coalescence of voids 

The important aspects of crack initiation and propagation at the microscopic 
scale are the mechanisms of voids nucleation, growth and coalescence. Various models 
that represent these phenomena have been developed for creep and ductile fractures. A 
review of these models is necessary before integrating these mechanisms into a meso-
macro approach. 

In most engineering alloys, cavities have been observed to nucleate 
continuously. An experimental relation proposed by van der Giessen and Tvergaard 
(1994) suggests that the nucleation rate is a function of the normal stress, introduced to 
allow a faster nucleation on those grain boundaries which are perpendicular to the 
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loading direction, and the strain rate. It has also been established that in steady state 
creep, the number of cavities increases linearly with the creep strain (Aria and Ogata 
1998). The study of Hatanaka et al. (1999) who examined the correlation between the 
creep void parameters and the stress components by SEM observations of notched 
specimen associated with finite element calculations, confirmed that creep voids have a 
tendency to initiate and grow much easily at the grain boundaries that are perpendicular 
to the loading axis. In particular, detailed models have been developed to represent non 
uniform nucleation and hydrogen induced nucleation (Shewmon and Anderson 1998, 
Liang and Sofronis 2004) or void initiation by matrix/particle decohesion in ductile or 
composite materials (Lim and Dunne 1996, Sabirov and Kolednik 2005).  

The growth of grain boundary cavities has been widely studied since the 1950s, 
starting with the work of Hull and Rimmer (1959) for growth by grain boundary 
diffusion assisted by surface diffusion: the cavity grows by a diffusion of voids through 
the grain boundary coupled to an inverse flux of material from the internal surface of 
the cavity to the grain boundary. More elaborated mathematical formulation in which 
the defect geometry is introduced as a unknown parameter have been proposed later by 
Chuang et al. (1979). Models for pure creep growth have been proposed by Budiansky 
et al. (1982) who analysed the growth of spherical voids diluted in a power-law 
creeping solid without diffusion. The coupling between diffusional and creep cavity 
growth has been studied by Needleman and Rice (1980) who pointed out that there is an 
interaction between these two mechanisms. They proposed a unified variational 
principle which constitutes the basis of most of the numerical techniques developed up 
until now for the simulation of cavity growth under creep conditions (Tvergaard 1984, 
van der Giessen et al. 1995, Liu et al. 1998, Mohan and Brust 2000).  

Various cavity growth models are developped for specific practical applications. 
Westwood et al. (2000) propose a simplified numerical model for cavity growth by 
couple surface and grain boundary diffusion whose objective is to simulate creep 
damage localisation and diffusional crack propagation in polycrystalline materials and 
to analyse multi-cavity growth. Fracture modelling of ductile materials also requires 
particular void growth models (Biwa 1997, Thomson et al. 1999).  

The coalescence phenomenon is very important as it defines the rupture criterion 
and corresponds to the creation of micro-cracks. Nevertheless, as for nucleation, 
coalescence has not been studied as extensively as void growth in the literature. A 
typical way to account for coalescence is to define a rupture criterion linked to the 
maximum value of the voids volume fraction or to the voids spacing for which the 
material is still able to sustain the load (Tvergaard 1982, Onck and van der Giessen 
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1998, Ragab 2002). Generally, the value of the criterion is arbitrarily specified to be 
used in parametric studies or is fitted to match experimental results. Specific 
coalescence studies have been realised in the context of ductile fracture. In this case, the 
interactions that take place between neighbouring voids lead to the localization of the 
plastic flow within the ligament between voids. This phenomenon, coupled with the 
directional growth of the voids, dictates the onset of the void coalescence process. 
Recent work in this area has been published by Pardoen and Hutchinson (2000), 
Benzerga (2002), Thomson et al. (2003), Bandstra et al. (2004), Seppälä et al. (2004) 
and Lassance et al. (2006). 

2.3.3.3 Intergranular damage modelling 

Different approaches to model integranular creep damage are presented in 
literature using either a continuum damage formulation (Liu et al. 1998, Michel 2004) 
or a discrete approach (Onck and van der Giessen 1997). 

Liu et al. (1998) introduce a continuum damage variable, whose evolution is 
calculated on the basis of finite element simulations of a mesoscopic cell built to 
represent the polycrystalline microstructure of the material using the Voronoi 
tessellation method. Mechanism-based analyses of cavity nucleation and growth such as 
those presented in section 2.3.3.2 are implemented in the model. Within the mesoscopic 
cell, the damage variable, which is a tensor in the anisotropic case, accounts for the 
cracks and defects that are randomly distributed on the grain boundaries. This damage 
tensor, which is a purely geometrical representation of the internal microstructure 
degradation of material, is then coupled with the constitutive equations of continuum 
mechanics to analyse creep damage at the macroscopic level. Contrarily to the damage 
model, the material constitutive equation is formulated for a smeared continuum 
medium without considering its internal microstructure. The model was tested on 
copper up to 250°C subjected to uniform stress loading of uniaxial tension and reversed 
pure shear. 

Voronoi tessellation is used by various authors to model the polycrystalline 
microstructure of the material in order to have a certain randomness in the grain shapes 
while keeping the specific characteristics of the studied material (Cannmo et al. 1995, 
Liu et al. 1998, Wu and Guo 2000). The method consists in finding all the nearest 
points to a given nucleus and linking them to this nucleus to form a grain, all the nuclei 
having been randomly defined before. Considering that the growth rate of each grain is 
the same in all directions and that all the grain nuclei appear at the same time but are 
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located randomly in space, the microstructures derived by Voronoi tessellation are 
topologically equivalent to real metals or ceramics microstructures. 

Onck and van der Giessen (1997, 1998, 1999) propose a mesoscopic approach to 
creep damage in which the grains surrounding a propagating crack are represented 
individually in the near-tip region inside the damage zone while the surrounding 
undamaged material is described as a continuum. Cavitation and sliding along all grain 
boundaries in the damaged zone are described by a set of constitutive equations based 
on micromechanical studies at the smaller scales (van der Giessen et al. 1995). The 
numerical model proposed is based on the grain element representation (Onck and van 
der Giessen 1997). Each grain is represented by a special hexagonal finite element, the 
grain element, that accounts for creep deformation inside the grain in an average 
manner. The grain elements are connected by grain boundary elements that account for 
cavitation and sliding (van der Giessen and Tvergaard 1991). The grains and their grain 
boundaries are represented discretely. Propagation of the main crack occurs by linking 
up of neighbouring facet microcracks (Onck and van der Giessen 1999). Regular 
hexagonal grains are used in most of the applications but randomness can also be 
introduced in the model (Onck and van der Giessen 1997). 

Contrarily to the two previous models, Michel (2004) does not physically 
represent the microstructure of the material in terms of grains and grain boundaries but 
accounts for nucleation, growth and coalescence of intergranular voids through the 
evaluation of a continuum creep damage state variable which is based on physical 
foundations. The model offers the advantage of requiring only the identification of two 
parameters to fit nucleation and diffusion rates. It has been applied to austenitic steel at 
600°C. 

2.3.4 NUMERICAL MODELLING OF CRACK PROPAGATION 

Traditional fracture models focus on the prediction of damaged zones, where the 
material has lost part of its mechanical properties, and estimate crack initiation using 
fracture criteria. In many applications, it is not required to model the physical 
propagation of the crack within the material and the detection of the damaged zones is 
sufficient to optimise the design or the involved forming processes. 

When the definition of the crack propagation path is important, e.g. to analyse 
the fragmentation pattern, it is necessary to develop specific models which allow the 
visualisation of the evolution of the crack within the material. Such approaches are 
presented hereafter.       
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2.3.4.1 De-bonding and cohesive zone models 

In order to represent the propagation of a crack, i.e. the creation of new free 
surfaces, the numerical model has to include specific features that allow the mesh to de-
bond along certain surfaces. To apply this type of model, it is necessary to define a 
cohesive zone, i.e. an interface where the crack is allowed to propagate, an associated 
constitutive relation that relates forces and displacement jumps across the bond line, and 
a criterion for de-bonding (Needleman and Rosakis 1999). The technique requires that 
the crack propagates along elements boundaries and is therefore mesh dependant by 
definition. Cohesive zone surface elements can be used in the entire volume to be 
modelled (Tijssens et al. 2000), in specific zones where the crack is susceptible to 
propagate or at interfaces between different phases in composite materials (Foulk et al. 
2000, Tvergaard 2003), or inserted dynamically within the mesh when required to 
simulate any crack propagation path (Zhou and Molinari 2004). Cohesive zone models 
can be coupled with multi-scale approaches. This is done by describing the 
micromechanical phenomena occurring during crack growth and capturing these in a 
constitutive description of the cohesive surface (Xu and Needleman 1994).   

Creep cracks, which are known to be intergranular, constitute a typical 
application where cohesive models can be efficiently applied as the probable crack 
propagation paths are well defined in advance. The model is developed considering that 
the grain boundaries and the cohesive or de-bonding surfaces coincide (Onck and van 
der Giessen 1998, Xu and Bassani 1999). The cohesive zone technique is also 
advantageously applied to the analysis of delamination in composite materials 
(Espinosa et al. 2000, de Borst and Remmers 2006).  

2.3.4.2 Extended FEM and meshless methods 

A recent approach to crack analysis is the extended finite element method (X-
FEM) which predicts crack propagation without remeshing or predefining possible 
crack growth paths (Daux et al. 2000, Moës and Belytschko 2002, Bordas and Moran 
2006). Discontinuities such as cracks or voids are represented through enriched 
discontinuous functions that are associated with the regular finite element shape 
functions. The X-FEM allows a mesh independent crack propagation modelling which 
does not require the meshing of the cracks. Cracks are treated as separate geometric 
entities and the only interaction between the mesh and the crack occurs through the 
selection of the enriched nodes. 

- 27 - 



FE mesoscopic analysis of damage in microalloyed CC steels at high temperature 

The element-free Galerkin method constitutes another approach to crack 
propagation without the need for remeshing as no mesh is present (Carpinteri et al. 
2003, Duflot and Nguyen-Dang 2004, Brighenti 2005). The models are built using a 
cloud of nodes for the resolution of the partial differential equations that govern the 
problem and do not require any connectivity concept such as in the finite element 
method. This approach is often used in the context of fracture mechanics to study the 
propagation of existing cracks. In this case enriched shape functions are developed to 
account for the singularity at the crack tip.  

The natural element method (Sukumar et al. 1998) can also be advantageously 
applied to fracture mechanics problems. This method uses a multivariate data 
interpolation scheme referred to as natural-neighbour interpolation, which relies on 
concept such as Voronoi tessellation, and does not require a mesh.  

X-FEM and meshless methods are certainly of great interest to solve the 
problem of mesh dependency linked to the modelling of cracks propagation. 
Nervertheless, the model developed in this thesis aims at studying intergranular cracks 
whose possible propagation paths are known. Therefore, a classical finite element 
approach with specific interface elements to model the grain boundaries is an adequate 
choice for the resolution of this problem.  

2.4 OUTCOMES OF THE LITERATURE REVIEW 

The literature review presented in this chapter comprises two main aspects. The 
first part focuses on a global description of the industrial continuous casting process and 
on the physical mechanisms linked to the problem of transverse cracking for steel. The 
second part addresses the modelling of damage and crack propagation with a particular 
emphasis on approaches applicable at elevated temperature. 

It has been shown that in the studied temperature range (700 to 1200 °C), the 
austenitic grain boundary is a favourable place for cracks to initiate and propagate. The 
mechanisms of voids nucleation, growth and coalescence have been established, the 
cavities evolving under creep deformations and diffusion. The embrittlement by strain 
concentration and micro-voids coalescence at the grain boundaries has also been 
highlighted, this phenomenon being induced by austenite-ferrite transformation. The 
straightening phase of the continuous casting process appears to be the most critical for 
transverse cracks formation. In this zone of the caster, the temperature of the external 
part of the slab coincides with the low ductility trough for the material. Low carbon 
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steels with micro-alloying elements such as aluminium, niobium or vanadium are 
known to be susceptible to transverse cracking.   

Different theories developed in the field of fracture and damage mechanics have 
been presented. Fracture mechanics approaches that use energy criteria or stress 
intensity factors, will not be considered for the study of crack initiation at elevated 
temperature, mainly because they do not incorporate the various mechanisms occurring 
before crack initiation. Damage mechanics approaches integrating creep and diffusion 
processes are more appropriate for the present application. As the grain scale is the level 
at which the most relevant physical phenomena linked to transverse cracking appear, a 
multi-scale approach focusing on the development of a damage model at the 
mesoscopic scale using information from both the microscopic and macroscopic levels 
should be envisaged. The studied cracks meandering along the grain boundaries, the 
model will be developed using a standard finite element approach which incorporates 
specific elements to be localized at the grain boundaries for the modelling of the 
damage processes. These elements will be specifically designed to allow the de-bonding 
of the interface and the opening and propagation of the cracks. The developments of the 
numerical model are presented in details in the next chapter. 
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Chapter 3 

3 Numerical model: the mesoscopic cell 

3.1 CHOICE OF THE MODEL 

The literature survey presented in Chapter 2 in combination with discussions 
with experts in the field of metallurgy has identified creep as a major driver for 
transverse cracks propagation in continuous casting. The principal damage mechanisms 
that have to be modelled are grain boundary sliding and voids growth controlled by 
diffusion and creep deformation. By nature, creep damage is located at the grain 
boundaries, which implies that possible paths for the crack propagation are defined in 
advance when the microstructure is known. Therefore, the development of a grain type 
finite element model associated with a grain boundary damage model, such as the one 
presented by Onck and van der Giessen (1999), is adequate for the resolution of the 
problem. A major difference in continuous casting, compared to traditional applications 
in which creep is dominant, is that the temperatures are much higher. This means that 
the diffusion process progresses more quickly and that smaller time scales are involved.  

A grain type model can be implemented in the LAGAMINE finite element code 
using existing elements and constitutive laws, and introducing new developments 
specific to the microstructure modelling when required. The model at the grain scale is 
presented in the following sections and contains two-dimensional (2D) solid finite 
elements for the grains (section 3.3.1) and one-dimensional (1D) interface elements for 
their boundaries (section 3.4.2). An elastic-viscous-plastic law is used inside the grains 
(section 3.3.2) and a law with damage at its boundaries (section 3.4.3).  
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3.2 MULTI-SCALE CONTINUOUS CASTING MODELLING 

The main objective of the research is to model the continuous casting process 
and the evolution of the damage at the grain scale, referred to as the mesoscopic scale. 
Due to the huge amount of computational resources that would be required, it is not 
realistic to model the whole steel slab at the mesoscopic scale. Nevertheless, as the 
critical areas for crack initiation are well known, it is possible to determine specific 
zones on which the analyses have to be performed. Each specific studied zone can then 
be modelled using a mesoscopic representative cell which contains grains and grain 
boundaries. The mesoscopic model requires information from the macroscopic scale, 
which are available through a macroscopic finite element analysis of the continuous 
process previously carried out (Pascon 2003). 

Figure 3.1 illustrates the continuous casting problem at different scales: first at 
the slab scale (upper left corner) where the possible sections for a two-dimensional 
representation are shown in relation with the oscillation marks orientation; then at the 
section level (upper right corner) where the thermomechanical state, computed from the 
macroscopic model, can be applied to be transferred to the mesoscopic cell via the 
transition zone; then at the grain level (lower right corner) where the finite elements are 
defined; and finally at the grain boundary level where the damage mechanisms come 
into play through grain boundary sliding and voids growth (lower left corner). 
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Figure 3.1. Multiscale continuous casting modelling. 
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The work presented in this thesis focuses on the mesoscopic scale but it is 
evident from the analysis of Figure 3.1 that it encompasses both the micro-meso (from 
the voids to the grains) and the macro-meso (from the slab to the grains) transitions.  

3.3 MODELLING OF THE GRAIN 

To describe the grains, it is essential to define the elements and the material law 
by which they are represented. At the mesoscopic scale, each grain is considered as a 
continuum and is modelled using 2D solid elements. This section starts by a description 
of the solid elements used in the simulations before introducing the material law 
representative of the behaviour of metals at high temperatures. 

3.3.1 DESCRIPTION OF THE SOLID ELEMENTS 

The solid elements are used to model the inside of the grains at the mesoscopic 
level but also the steel as a continuum at the macroscopic level. Two solid elements are 
presented hereafter as well as the notion of generalized plane state. 

3.3.1.1 Mixed 4-node quadrilateral elements 

The grain model is developed using thermomechanical, 4-node, first-degree, 
quadrilateral elements of mixed type with one integration point as represented in Figure 
3.2 (left) (Zhu et al. 1995).  
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Figure 3.2. 4-node and 8-node solid elements. 

Dots symbolize nodes and crosses represent integration points.  

This element was derived using the Hu-Washizu variational principle (Washizu 
1982) for the calculation of the internal forces and stiffness matrix. The reduced-
integration scheme used in this element (i.e. integration limited to one single integration 
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point) can induce zero-energy displacements fields, whose corresponding deformations 
look like an hourglass and are called hourglass deformation modes (see Figure 3.3). 
Therefore, this element contains anti-hourglass stresses that prevent such zero-energy 
hourglass deformation modes to appear.  

 

x x

 

Figure 3.3. Example of a zero-energy hourglass deformation mode in 2D. 

An assumed strain method, in which the gradient matrix of the standard 
displacements is replaced by an assumed non-homogeneous gradient matrix, has also 
been used in the derivations to prevent shear and volume locking (Zhu 1992a).  

Throughout the thesis, this element is referred to as the mixed 4-node 
quadrilateral element. It was initially available for axisymmetric and plane strain states. 

3.3.1.2 Standard 8-node quadrilateral elements 

A second type of solid element has been used in specific sections of the work 
and in particular for the macroscopic simulations. It is referred to as the standard 8-node 
quadrilateral element and consists in a thermomechanical, 8-node, second-degree, 
element with four integration points (see Figure 3.2 (right)). This element, which is 
based on a standard isoparametric displacement formulation, has been specially 
developed for simulations in large deformations. Second-degree quadrilateral elements 
are recognised to provide the most accurate results when used with 4 integration points. 
Therefore, it does not require any anti-hour glass stresses as the under-integration is not 
used in this case. This element has been developed for axisymmetric, plane stress, plane 
strain and generalized plane states. 

3.3.1.3 Generalized plane state 

Definition and use of the generalized plane state 
The generalized plane state is a modelling technique which lies between the 2D 

and 3D state. It consists in using standard 2D finite elements whose thickness varies 
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linearly as a function of the global coordinates x and y. This approach is realised by 
adding three additional degrees of freedom to the model ( )1 2 3, , α α α , which account 

for the thickness variation of the slice of material (see Figure 3.4).  
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Figure 3.4. Illustration of the generalized plane state (Pascon 2003). 

The technique is particularly useful for the modelling of continuous casting 
problems as it can easily reproduce the dilatation of a slice of slab as well as its 
deformations in the bending and unbending zones of the continuous casting machine 
(Pascon 2003). It is also adequate to model a slice of material whose thickness is 
constant spatially but varies with time as it is the case for the mesoscopic cell. The 
advantage compared to full 3D elements is obvious for the applications presented here 
as the required 3D effects can be modelled without increasing dramatically the number 
of nodes and degrees of freedom. 

Implementation of the generalized plane state for the mixed 4-node element 
As the generalized plane state was not initially available with the mixed 4-node 

quadrilateral element, it has been decided to implement it in order to keep the advantage 
of using 4-node elements for the modelling of the microstructure. The mathematical 
derivations that have been performed to update the element are presented in details in 
the Appendix A.  

This section focuses on the initial tests that have been realised with the mixed 4-
node quadrilateral element in generalized plane state. In particular, several finite 
element simulations have been performed to verify that the modification brought to the 
mixed 4-node quadrilateral element for the introduction of the generalized plane state 
are correct and that this element is still efficient in terms of CPU time.  
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Calculation for one single finite element 

First, a calculation has been performed on one single finite element on which a 
uniaxial tension was applied. The results in terms of stresses and strains have been 
compared between the mixed 4-node quadrilateral element (four nodes, one integration 
point) and the standard 8-node quadrilateral element (eight nodes, four integration 
points) for a simulation in generalized plane state. The results obtained by the two 
simulations are very close with respect to the numerical errors and approximations 
relative to the finite element method. As the standard 8-node quadrilateral element in 
generalized plane state has been validated earlier, it can be concluded, as the same 
results are obtained, that the calculation with the mixed 4-node quadrilateral in 
generalized plane state are also correct.  

Then, for each of the elements (mixed 4-node and standard 8-node) the plane 
strain and axisymmetrical states have been simulated using either directly the plane 
strain or axisymmetrical state or the generalized plane state with particular value for the 
degrees of freedom of the additional node.  Indeed, it is possible to reproduce the plane 
strain or axisymmetrical state by imposing: 

• for the plane strain state: α1 = 1, α2 = α3 = 0 (with all the degrees of 
freedom αI fixed), 

• for the axisymmetrical state: α1 = 0, α2 = 1, α3 = 0 (with all the degrees 
of freedom αI fixed). 

For these cases, the results obtained with the different methods are also similar. 
This confirms that the generalized plane state is correctly implemented in the mixed 4-
node element and that the calculations in plane strain and axisymmetrical states 
continue to give accurate results after the modification of the mixed 4-node element. 

Full thermomechanical calculation 

A thermomechanical simulation has been performed with a mesh comprising 
approximately 400 mixed 4-node finite elements in axisymmetrical state. The objective 
was to verify that the global CPU time did not increase excessively after the 
introduction of a new loop in the mixed 4-node element. The comparison between the 
initial and the updated versions of the element shows that for the axisymmetrical state, 
the results are identical in terms of stresses and strains, which is an additional 
verification with regard to programming errors, and in terms of CPU time. In 
conclusion, it can be stated that the modifications proposed to account for the 
generalized plane state do not increase the global CPU time of the element. 
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3.3.2 GRAIN MATERIAL LAW: ELASTIC-VISCOUS-PLASTIC MATERIAL 

Inside the grains, the material is considered as a continuum and the hypothesis 
has been made that it follows a constitutive law identical to the law used for the 
macroscopic simulations. At elevated temperatures, viscosity plays an important role on 
the behaviour of metals, which implies that the strain rate influences the stress level. In 
particular, steel is known to follow an elastic-viscous-plastic law for the range of 
temperatures studied here (between 800°C and 1200°C). 

The law implemented in the code for the analysis of metals at elevated 
temperatures is a Norton-Hoff power law, which has been modified to account for 
softening and hardening effects (Habraken et al. 1998b, Pascon 2003). Its expression in 
terms of Von Mises equivalent stress eσ , strain eε  and strain rate eε&   is given by 

equation (3.1): 

 ( ) ( ) 3
4

pp
e e 1 e 2 e.exp p .p . 3. 3.σ ε ε ε= − &  (3.1) 

where the parameters p1 to p4 are temperature dependent. p1 represents the effect of 
softening, p2 is linked to the general level of the curve, p3 models the viscosity and p4 
the hardening. Figure 3.5, which represents the equivalent stress versus the equivalent 
strain rate, illustrates the effect of the variation of each of these parameters at constant 
temperature and strain rate, except for Figure 3.5(c) where three strain rates are 
compared.  

By increasing p1, it is possible to enhance the effect of softening for large strains 
as shown in Figure 3.5(a), where the end of the ( ),e eσ ε  curve decreases more quickly 
with eε  for higher values of p1. Figure 3.5(b) shows that when p2 increases, the 
maximum stress level reached is also increased. In this case, as all the other parameters 
are fixed, the general shape of the curve is not altered. The viscosity effect is 
highlighted in Figure 3.5(c) where three strain rates and two values of p3 have been 
tested. The first comment to be made is that the maximum stress level reached is a 
function of the strain rate: the higher the strain rate, the higher the stress for the same 
strain. The parameter p3, which also influences the general level of the curves, is mainly 
used  to calibrate the significance of the viscosity effect. For 0 e 1ε< <& , which is the 
case for all the simulations in this thesis, an increase of p3 reduces the viscosity effect, 
i.e. the variation between the curves ( ),e eσ ε  with the strain rate is smaller for higher 
values p3. Figure 3.5(d), illustrates the hardening effect at small strains. The parameter 
p4 is important to model properly the beginning of the ( ),e eσ ε  curve. It can be seen in 
Figure 3.5(d) that the hardening effect increases when p4 decreases, i.e. when all the 
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other parameters are fixed, the stress level reached at the beginning of the curve is 
higher for smaller values of p4. The modified Norton-Hoff law as defined by equation 
(3.1) allows the modelling of very detailed material behaviour, especially taking into 
account the fact that each of the parameters p1 to p4 can be given different values in 
function of the temperature. In practical examples, the parameters are fit using 
experimental tests results relating to several distinct temperatures and the program 
interpolates the coefficients linearly for the intermediate temperatures. 
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Figure 3.5. Examples of variation of the parameters of the modified Norton-Hoff law at 
constant temperature: a) variation of p1 at constant strain rate, b) variation of p2 at constant 
strain rate, c) variation of p3 for three strain rates, d) variation of p1 at constant strain rate. 

The modified Norton-Hoff law comprises an elastic part to account for the 
reversible deformations. The elastic behaviour follows the isotropic linear elastic 
Hooke’s law, defined through the Young’s modulus  and the Poisson’s ratio E ν , these 
two parameters being temperature dependent. The Hooke’s law is also used in case of 
unloading, where the stress decreases linearly along a straight line determined by the 
Young’s modulus.  

Due to the dependence of the modified Norton-Hoff law to the temperature and 
strain rate, the definition of the yield limit yieldσ  is not straightforward and various 
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options have been proposed to define the yield limit and to account for the passage 
between the elastic and viscous-plastic behaviour (Pascon 2003). For the applications 
presented in this thesis, the yield limit is automatically calculated by the program and 
corresponds to the intersection between the Hooke’s straight line and the modified 
Norton-Hoff curve. Figure 3.6 illustrates the application of the method at constant 
temperature, considering that the loads on the element result in an equivalent strain rate 

B
eε& . In this particular case, the model first follows the linear elastic law up to the point 

( , )yield yieldσ ε  as defined in Figure 3.6 and then continues on the curve B, which 

corresponds to the modified Norton-Hoff law for B
e eε ε=& & . 
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Figure 3.6. Passage from the elastic to the viscous-plastic behaviour. 

Figure 3.6 also shows that for a higher strain rate, the yield limit would be higher 
and vice-versa. When the strain rate varies, using the intersection of the curves to define 
the yield limit by opposition to defining a unique yield limit per temperature, improves 
the convergence properties of the model as it avoids jumps between the curves that 
would occur during the simulation if the second solution was to be used. 

Thermal dilatations due to temperature variations are computed using a thermal 
expansion coefficient (Pascon et al. 2006) that defines the thermal contributions to be 
added to the mechanical strain rate tensor associated to the modified Norton-Hoff law.  
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3.4 MODELLING OF THE GRAIN BOUNDARY 

The grain boundary model has to account for grain boundary sliding and voids 
growth. It is represented by 1D interface elements associated with a damage law. Before 
describing the specific features of the interface damage model, i.e. the interface element 
and the damage law, it is useful to summarize the characteristics of the traditional 
contact finite element which serves as a basis for the new developments. 

3.4.1 GENERAL DESCRIPTION OF THE CONTACT FINITE ELEMENT 

The interface element developed for intergranular crack modelling is based on a 
thermo-mechanical contact finite element initially developed to account for contact with 
friction between two strained bodies in large deformation (Habraken et al. 1992b, 
Habraken and Cescotto 1998a). The behaviour at the contact surface is calculated using 
a penalty method. Although the contact element presented in this section relates to the 
2D case, assuming a constant unit thickness for the element, there is no restriction to 
extend the developments to the 3D case.    

3.4.1.1 Mathematical formulation of contact and notations 

The physical quantities that are used to define the contact element are similar to 
those used for typical solid elements: a stress tensor and a strain tensor conjugated 
within a constitutive law. For the particular case of contact elements, these quantities 
are represented by vectors which have specific physical meanings. Their definitions are 
introduced in this section.  

Definition of the contact stress vector 
The forces that result from the contact between two solids are represented in 

Figure 3.7. ABF  is the force applied by solid A on solid B, while BA ABF F= −  is the 

reaction force applied by solid B on solid A.  
 

Solid A
Solid B

FAB

FBA

 
Figure 3.7. Contact between two solids. 
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The contact force can be decomposed into its normal and tangential projections 
onto the contact surface as represented in Figure 3.8 for the force BAF  applied by solid 
B on solid A, where BA

nF  is the normal component of the contact force and BA
sF  is its 

tangential component. 

 

Solid A

FBA

Fn
BA

Fs
BA

FBA

Fn
BA

Solid AFs
BA

 
Figure 3.8. Decomposition of the contact force. 

The zone of contact is generally not limited to a single point, therefore a contact 
surface has to be introduced, together with the concept of force by surface area. The 
components of the contact forces by contact surface area along the normal and 
tangential axes to the contact surface are used to define the contact stress vector cσ  in 
the local system of coordinates ( ),n se e : 

 c

p
σ

τ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (3.2) 

where p  is the contact pressure (positive in compression for the general contact case) 

and τ  the contact shear stress (see Figure 3.9).  

 
p

τ

en

es

ex

ey

Solid A Solid A

 
Figure 3.9. Contact pressure, shear stress and local axes at point of contact in solid A.  

As p  and τ  are forces by surface area, the integral of the contact stresses on the 

contact surface is equal to the total contact force: 

 ( )
contact surface

BA BA BA
n s n sp e e ds F F Fτ− ⋅ + ⋅ = + =∫  (3.3) 

where ds is the elementary surface area. 
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The contact stress vector is objective, i.e. that it is not affected by rigid body 
motion. Therefore, its variation rate is equal to its temporal derivation: 

 c
c

d
dt
σσ =&  (3.4) 

Definition of the contact strain rate 
The contact strain rate vector cε&  has a particular definition in the context of the 

contact element. It is associated to the relative velocity between the two surfaces in 
contact and can be represented in the local axes by:  

 c

u

δ
ε

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

&

&

&

 (3.5) 

where δ&  is the normal component of the relative velocity between the two surfaces in 
contact and  its tangential component. u&

In case of large deformations, the relative displacement between the two 
surfaces in contact can not be uniquely defined and therefore the integration of equation 
(3.5) has no physical meaning. Indeed, each point of one of the two solids will be in 
contact with a succession of different points of the second solid during the contact 
phase. The only quantity that can be uniquely defined is the distance between the two 
surfaces  (see Δ Figure 3.10). Its value can be calculated at each instant but is not equal 
to the integration of δ& . 

Solid B

en

Solid A

ex

ey

xA

xB

Δ

 
Figure 3.10. Distance between the two faces of the interface element. 
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If [ ]R  is the rotation matrix connecting the global axes ( ),x ye e  to the local axes 

( ),n se e , the distance relation between the distance vector in global axes d  and in local 

axes Δ  is given by: 

 [ ] [ ] ( )A BR d R x xΔ = = −  (3.6) 

As Δ  is an objective vector of the distance, the relative velocity between the two 

solids can then be computed by its temporal derivation: 

 
[ ] [ ] ( )

[ ]( ) ( )

A B
A B

c

A B A B

d Rd dx dxR x x
dt dt dt dt

R v v R x x

Δε
⎛ ⎞

= = − + −⎜ ⎟
⎝ ⎠

⎡ ⎤= − + −⎣ ⎦

&

&

 (3.7) 

Equation (3.7) shows that the relative velocity between the two surfaces 
comprises, in addition to the projection in the local axes of the difference between the 
velocities of each surface in global axes, a second term that accounts for the rotation 
velocity of the local axes. In most practical cases, the rotations are small so that the 
second term of equation (3.7) can be neglected. This is particularly the case when a 
penalisation method is used as a small interpenetration is required.  

Mathematical conditions of contact 
The mechanical contact between two solids is driven by a series of mathematical 

conditions. The first condition is that the contact pressure is always equal to zero (no 
contact) or positive (contact pressure): 

  (3.8) 0p ≥

The second condition is the non penetration condition given by equation (3.9) 
where A Bv v vΔ = −  is the relative velocity between the two solids: 

 0nv eΔ ⋅ ≤  (3.9) 

where ne  is the external normal at the contact point on solid A. 

0nv eΔ ⋅ =  corresponds to a contact case where the relative velocity can only be 
tangential (sliding contact) or equal to zero (sticking contact), while 0nv eΔ ⋅ <  implies 

a loss of contact (the bodies start moving apart from each other).  

The mechanical (equation (3.8)) and kinetic (equation (3.9)) relations are linked 
together in such a way that they can describe every contact situation. A third equation 
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makes this link and the complete set of three equations is known as the Signorini’s 
conditions of unilateral contact: 

 

( )

0
0

0
n

n

p
v e
v e p

⎧ ≥
⎪
Δ ⋅ ≤⎨
⎪ Δ ⋅ ⋅ =⎩

 (3.10) 

The third equation forces the stress to be equal to zero when the contact is lost 
(i.e. when 0nv eΔ ⋅ < ), and the contact to remain (i.e. 0nv eΔ ⋅ = ) when a contact 
pressure exists (i.e. when ).  0p >

To respect the non penetration condition as defined by equation (3.9) it is 
necessary to introduce specific constraint conditions linked to the contact element. 
Different approaches can be used to impose these constraints, e.g. the use of Lagrange 
multipliers, a penalty approach or an augmented Lagrangian method (Zienkiewicz and 
Taylor 2005). 

The method using Lagrange multipliers consists in imposing an additional force 
on each node of the contact element to prevent penetration, the exact geometry of the 
contact surfaces is respected and the stresses are calculated knowing the strain rate. The 
method introduces new unknowns, the Lagrange multipliers, which are added to the 
global vector of degrees of freedom during the finite element assembly process. The 
resolution of the equations system requires special attention as the global matrix is not 
positive definite when using the Lagrange multipliers technique because a zero diagonal 
local stiffness matrix corresponds to each multiplier term.  

The penalty technique relaxes the condition of non penetration by allowing a 
small penetration between the two solids in contact. This method avoids the 
computational difficulties of the Lagrange multipliers method but introduces small 
errors on the displacements. This technique has been implemented in the finite element 
code LAGAMINE and is further developed here below. 

The augmented Lagrangian approach is a compromise between the two previous 
methods where a penalty-method is used in conjunction with Lagrange multipliers 
which are updated during the simulation process (Simo and Laursen 1992, Bille et al. 
1994). 
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Penalty method and contact constitutive law  
 

Solid B

δ
δ

en

en

Solid A

 
Figure 3.11. Penetration of two solids for penalty technique. 

The penalty method aims to penalize the penetration of the solids into each 
others. To respect the non penetration condition, the penetration distance between the 
two solids in contact, δ , should be equal to zero in case of contact. However, the 
penalty technique consists in resolving the contact problem by allowing a small 
penetration. The value of δ  is considered as positive in case of penetration, it should be 
as small as possible and is dependant on the penalty coefficients chosen. The 
penetration of the two solids generates a repulsive stress that rejects the solids from 
each others. This stress corresponds to the contact pressure and is related to the 
penetration distance δ , which is the relative displacement in the penetration direction 

ne . In terms of increments, this relation can be written: 

 np k δ= ⋅ &&  (3.11) 

where δ&  is the normal relative velocity between the two solids and kn a penalty 
coefficient.  

In the same way, a reversible, i.e. elastic, slide is authorized, but a tangential 
force withstands this move:   

 sk uτ = ⋅& &  (3.12) 

where  is the relative velocity along u& se  and ks another penalty coefficient.  

Equations (3.11) and (3.12) form the constitutive law that links the stresses and 
strains in case of elastic contact. The contact constitutive tensor [C] is given by the 
diagonal matrix of the penalty coefficients: 

 [ ] [ ]c

0
with

0

n

c

s

k
C

k
Cσ ε

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

&& =  (3.13) 
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To model the contact, the penetration must be as small as possible, i.e. the 
penalty coefficients have to be as high as possible. Nevertheless, they can not increase 
up to a certain limit, which depends on the problem, to avoid convergence difficulties 
due to a poor conditioning of the global stiffness matrix. 

For the traditional contact element, when the contact shear stress reaches a 
threshold value, irreversible, i.e. plastic, sliding appears. One possibility to model these 
dissipation phenomena is to use the Coulomb’s friction law which introduces a friction 
parameter in the model and additional terms in the compliance matrix (Habraken et al. 
1992b). 

3.4.1.2 Contact element description and derivation of the stiffness matrix 

The contact element is defined by 2 or 3 nodes, for first or second degree 
discretization, respectively. These nodes are conventionally numbered in chronological 
order along the boundary of the solid, considering that the solid is on the left and its 
foundation (tool or other solid) is on the right (Figure 3.12).  
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Figure 3.12. Isoparametric 2-node (first degree) and 3-node (second degree) contact element. 

Local axes are defined as follows: ne  is the external normal to the solid and se  

is tangential to the surface, oriented from the first to the second or third node. For the 
foundation elements, the convention is to number the nodes in chronological order 
considering that the second solid or tool is located on the right. The external normal to 
the foundation fe  can then be uniquely defined. This convention, which is consistent 

with the definitions of Figure 3.9, is important to determine when the contact between 
an element and the foundation is possible. Figure 3.13 shows that one of the conditions 
that suggest a possibility of contact is that the normal vectors are oriented in such a way 
that 0n fe e⋅ < , i.e. that the two solids face each other. 
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Figure 3.13. Orientation of the vectors normal to the foundation and to the contact elements. 

The elements shown in Figure 3.12 have two integration points represented by 
crosses. The code allows to choose up to ten integration points for the modelling but for 
most of the applications two integration points are sufficient.  

When contact occurs, each integration point of each contact element is 
associated to a segment of foundation with which it is in contact. The foundation can be 
a tool or another solid, it can be rigid or deformable. In the derivation presented in this 
chapter, the contact element is always located on solid A and the foundation on solid B, 
except otherwise stated. Contact and foundation elements have to be compatible with 
the solid elements to which they are attached as they will share the same nodes, 
therefore the number of nodes chosen for the contact and foundation elements will 
depend on the degree of the solid elements used.  

The isoparametric contact element uses the same interpolation functions for the 
coordinates [ ],x x y=  and the displacements ,x yu u u⎡ ⎤= ⎣ ⎦ : 

   ( ) ( )andI I I
I I

Ix N X u N Uξ= =∑ ∑ ξ  (3.14) 

where [ ],I I IX X Y=  are the nodal coordinates, ,
I II x yU U U⎡ ⎤= ⎣ ⎦  the nodal 

displacements, ( )IN ξ  the interpolation functions and ξ  the intrinsic coordinate of the 

element, which is in the range 1 1ξ− ≤ ≤ . The index I takes the values 1 and 2 for the 
first degree element and 1, 2 and 3 for the second degree element. The vector X  
comprises all the nodal coordinates of one element, i.e. for 1 to 2 or 3I = , likewise U  

comprises all the nodal displacements of one element. The same technique is used to 
discretize the foundation. 
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Figure 3.14. Discretization of the two solids. 

In the finite element model, the interpenetration distance is determined by 
calculating the distance between the points SA and SB, where SB is defined by the 
intersection between the normal to the contact element at the integration point SA on 
solid A and the foundation element on solid B, as shown in Figure 3.14. In the global 
system of coordinates ( ),x ye e , the coordinates and displacements of SA can be defined 

as a function of the nodal variables using equation (3.14). As the position of SB depends 
on the local system of coordinates ( ),n se e  at point SA, the expression of its coordinates 

and displacements in the global system of coordinates will not only depend on the nodal 
coordinates and displacements of solid A ( ),A AX U  but also on those of solid B 

( ,B B )X U . Therefore, the strain rate vector at the integration point of the contact 

element on solid A can be expressed as: 

 ( ), , ,A B A B
c c X X U Uε ε= & && &  (3.15) 

It can be shown that this expression takes the following form: 

 [ ];

A

A B
c

B

U
Q Q Q U

Uu

δ
ε

⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎡ ⎤= = =⎨ ⎬ ⎨ ⎬⎣ ⎦
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

& &

&&

&&

 (3.16) 

where the component of the matrix [ ]Q  depend on AX  and BX  (Habraken and 

Cescotto 1998a). Similarly, if virtual displacements Uδ  are given to the nodes of the 

contact elements, the corresponding virtual contact strains are: 

 [ ];

A

A B
c

B

U
Q Q Q U

U

δ
δε

δ

⎧ ⎫
⎪ ⎪⎡ ⎤= =⎨ ⎬⎣ ⎦
⎪ ⎪
⎩ ⎭

δ  (3.17) 

The virtual work performed by the contact stresses on the element is: 
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1

1

T T
el c c c cel

W dl J dδ σ δε σ δε ξ
−

= =∫ ∫  (3.18) 

where l is the abscissa along the element and J  the determinant of the Jacobian of the 

l ξ→  transformation given by dlJ
dξ

= .  

The virtual work can also be written: 

 T
elW F Uδ δ=  (3.19) 

Using equations (3.17), (3.18) and (3.19), the nodal forces energetically 
equivalent to the stresses in the element are computed as follows: 
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1

1

T TA A T A
c c

IP

T TB B T B
c c
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σ ξ σ

−

−

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
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∑∫

∑∫

J w

J w
 (3.20) 

where TAF and TBF are the energetically equivalent forces computed from the contact 

stresses on the contact element and acting on the nodes of the contact element and its 
foundation respectively, indicates the sum on the integration points and w are the 

Gauss integration weight. 
IP
∑

The example presented here privileged the solid A by considering that contact 
elements were present on one side of the contact surface only. It is possible to do the 
same analysis using solid B as a reference in which case the energetically equivalent 
forces will be computed from the contact stresses on solid B. In theory, theses forces 
should be equal to those obtained by equation (3.20) but in practice, there will be some 
differences due to the numerical integration and discretization. Therefore, in case of 
coupled analysis with no privileged solid, the best practice rule is to put contact 
elements on each solid and to average the forces resulting from the calculations on each 
side. In this case, the nodal forces are divided by two in order to avoid a double stress 
evaluation, as each element already takes into account the action and reaction forces. 

The component of the stiffness matrix of the contact element are calculated by 
derivation of the contact forces with regard to the degrees of freedom, i.e. with regard to 
the nodal displacements. A classical assembly operation is then performed to obtain the 
global stiffness matrix of the finite element model (Habraken and Cescotto 1998a). 
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3.4.2 DESCRIPTION OF THE INTERFACE FINITE ELEMENT 

In the mesoscopic model, the 2D solid elements modelling the grains are 
connected by interface elements to account for cavitation and sliding at the grain 
boundary. As the thickness of the grain boundary is small in comparison with the grain 
size, the grain boundary can be represented by 1D interface elements. These elements 
have two nodes and two integration points and are associated with a constitutive law 
which includes parameters linked to the presence of precipitates, voids, etc. The damage 
variable explicitly appears in this law.  

3.4.2.1 Features of the interface element 

The interface element is composed of a modified contact element and a 
foundation element as represented in Figure 3.15. The nodes ( )•  of the linear elements 
coincide with the nodes of the quadrangular elements to which they are attached and 
possess the same degrees of freedom. The additional nodes ( )o  drawn on the exploded 
view in Figure 3.15 do not exist independently and are only represented for illustration 
purpose.  

 

σn

τ

x x

x

x x

x

x xi
solid element
(part of grain)

solid element
(part of grain)

foundation element associated
with solid element

contact element associated
with solid element

j

i

i

j

j

 
Figure 3.15. Interface element: contact element, associated foundation, linked solid elements. 

Dots symbolize nodes and crosses represent integration points. 

At each iteration, the program determines the foundation element associated to 
each integration point of each contact element by searching the intersection between the 
normal of the contact element at this integration point and the foundation elements 
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surrounding the area. The state variables for each integration point of each interface 
element are computed at each iteration using information from the two solids elements 
in contact (elements i and j in Figure 3.15), i.e. the solid elements attached to the 
contact element and foundation element determined for this particular integration point 
at this iteration. The state variables in the interface element are the corresponding mean 
values at the integration points of elements i and j. As the two surfaces of the interface 
can slide against each other, the foundation element facing a contact element may 
change during the simulation. Likewise, two integration points of a contact element may 
be linked to two different foundation elements, i.e. to two different solid elements. 

The original contact element was described in section 3.4.1 and is usually 
combined with a Coulomb’s friction law. This element has been modified in order to 
introduce a new interface law and a cohesion criterion. The stress components of the 
contact element are represented in Figure 3.15, their evolution is described by the 
following viscous-elastic-type relationships: 

  ( ) ( )ands s n nk u u k cτ σ δ= − = −& && & & & δ

)

 (3.21) 

In this penalty method, the penalty coefficients ks and kn are large to keep the 
deviations ( su u−& &  and ( )cδ δ−& &  small. u  and & δ&  are respectively the relative sliding 

velocity of adjacent grains due to shear stress τ  and the average separation rate, normal 
to the interface, due to damage growth. These variables are directly computed from 
nodal displacements. su&  and cδ&  are the corresponding variables to u  and & δ&  but related 

to the damage law. Their evolutions are described in the section 3.4.3 (equations (3.23) 
and (3.39)). Equation (3.21) enforces  and u& δ&  to be equal to su&  and cδ& , respectively. 

3.4.2.2 Behaviour of the interface compared to the classical contact element 

In order to implement properly the interface element in the finite element code 
LAGAMINE, a comparison with the classical contact element described in section 3.4.1 
is required.  

First, the interface element is linked to the same degrees of freedom than the 
classical contact element, which are the displacements of the nodes of the element itself 
and its foundation. The same stress vector can be used for both elements, although the 
normal stress defined by equation (3.21) must be related to the pressure component of 
equation (3.2) by the following relation: 

  np σ= −& &  (3.22) 
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The strain vector is equal for both elements and is given by equation (3.5). The 
penalty method is used in both cases: for the classical contact element, the objective is 
to impose the non-penetration condition whereas for the interface element, the objective 
is to impose a given displacement as shown by equation (3.21).  

The quantities su&  and cδ&  are calculated at each step of the simulation. They are 

indirectly function of the displacements of the nodes of the finite element mesh through 
the stresses and strains that are used in their calculation (see section 3.4.3). 
Nevertheless, this link is a second order effect which occurs through the sharing of state 
variables and it is acceptable to consider that su&  and cδ&  are constant for the derivation 

of the stiffness matrix of the interface element. Therefore, the same stiffness matrix as 
for the classical contact element can be used for the interface element within the 
Newton-Raphson solution process. The calculation of the nodal forces as given by 
equations (3.20) is done using the expressions (3.21) for the stress components and it is 
at this point that su&  and cδ&  are taken into account for the equilibrium. Indeed, the global 

solution equilibrates the external forces and the internal forces, which directly account 
for su&  and cδ& . 

The Signorini’s conditions defined in section 3.4.1.1 do not have to be respected 
for the interface element as the interface can be in tension. Likewise, the interface can 
be open without loss of contact and a negative penetration is allowed. The conditions 
for loss of contact, also called de-bonding, are not linked to the sign of the 
interpenetration or to the occurrence of a contact pressure but to the value of a damage 
criterion to be defined in section 3.4.3.2. 

At the beginning of the simulation, the contact and foundation elements 
constituting the interface are attached to each other and the damage inside the interface 
progressively increases due to the stresses and strains in the immediate environment of 
the element. When the fracture criterion is reached, the nodes of the interface de-bond, 
i.e. the contact element is no longer attached to the foundation, and the contact stresses 
are put to zero. From this stage, the two parts of the interface are considered as two 
independent solids. In case of recovering of contact, an element which has previously 
de-bonded, follows the classical contact behaviour associated with the Coulomb’s 
friction law. 
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3.4.3 INTERFACE MATERIAL LAW: EVOLUTION OF THE DAMAGE 

The major damage mechanisms at the mesoscale are viscous grain boundary 
sliding, nucleation, growth and coalescence of cavities leading to microcracks. The 
linking-up process subsequently leads to the formation of a macroscopic crack. 

3.4.3.1 Grain boundary sliding 

Grain boundary sliding is governed by: 

 s
B

u w τ
η

=&  (3.23) 

where su&  is the relative velocity between two adjacent grains, w is the thickness of the 
grain boundary, Bη  is the grain boundary viscosity and τ  the shear stress component 
(Ashby 1972). However Bw η  can be expressed in terms of the strain rate parameter Bε&  

defined as follows: 
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where d is a length parameter related to the grain size and n is the creep exponent (Onck 
and van der Giessen 1999). 0σ , 0ε&  are reference stress and strain rate that depend on 
the steel grade. The intergranular sliding can be characterized by the ratio e Bε ε& &  
between the grain equivalent deformation rate eε&  and the boundary deformation rate 

Bε& . This ratio e Bε ε& &  measures the relative resistance between the grain and the grain 
boundary. In case of free sliding ( Bη  = 0), e Bε ε& & = 0. When there is no sliding ( Bη → 
∞), e Bε ε& & → ∞.  

The Norton classical creep law is defined as: 

 ( )
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ne
e 0 e
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Bσε ε
σ
⎛ ⎞
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& & σ  (3.25) 

Using equations (3.24) and (3.25), the ratio Bw η  becomes: 

 ( ) ( )
n 1 1

n
B

B

w d ε
η

−

= & nB  (3.26)  

where  is the creep coefficient. Finally, equation B (3.26) is used in combination with 
equation (3.23) to calculate the grain boundary sliding su&  as a function the shear stress 
component τ . The ratio Bw η  is known when the viscosity parameter e Bε ε& & , the grain 
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size d and the creep parameters n and B are known; therefore, the ratio e Bε ε& & can be 
used as an input data instead of w and Bη . 

Four parameters are then necessary to define grain boundary sliding: the creep 
exponent n, the creep coefficient B, the grain size d and the parameter characterizing the 
grain boundary viscosity e Bε ε& & . The three first parameters are determined in Chapter 4 
using the experimental results, e Bε ε& &  is chosen equal to an intermediate value of 10 

(Onck and van der Giessen 1999). 

3.4.3.2 Voids evolution 

In the context of damage at high temperature, the mechanism of voids 
nucleation, growth and coalescence is established.  

 

 
Figure 3.16. Discrete and continuous representations of the grain boundary (Onck and van der 

Giessen 1999) and definition of  the cavity angle ψ . 

The model uses an idealized formulation of the grain boundary geometry where 
the cavities are supposed to be uniformly distributed on each grain boundary segment 
(i.e. at each integration point) with an average spacing of 2b and a diameter of 2a. 
Figure 3.16 illustrates this idealized representation: on the left, each individual void is 
represented; and on the right, the voids are replaced by a continuous variable cδ . Its 
evolution rate cδ&  is computed at the integration points of the interface elements to 

account for the interface thickness updating due to the presence of voids at the grain 
boundaries (see equation (3.21)). Detailed equations for the variables used for the 
computation of cδ&  are presented in the next sections. A fracture criterion is also 

proposed. 

Voids nucleation – computation of the cavity spacing growth rate  b&  

In most engineering alloys, cavities have been observed to continuously 
nucleate. The following experimental relation has been suggested: 

 

2
2

0

with 0n
n e n e nN F σβσ ε ε σ

Σ
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

& & & ≥  (3.27) 
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N is the average number of cavities per unit length of grain boundary. eε&  is the 
equivalent creep strain rate from the modified Norton-Hoff law (equation (3.1)). nσ  is 

the normal stress, introduced to allow a faster nucleation on those grain boundaries 
which are perpendicular to the loading direction. β is a material constant (van der 
Giessen et al. 1994) which is  related to Σ0 and to Fn. Σ0 is a normalization constant 
representative of the average stress level in the material surrounding the crack. Fn is the 
microstructural parameter which influences the nucleation rate at the grain boundary; 
zones where nucleation is more important can be modelled by increasing the value of 
this parameter. Fn can represent, among others, the precipitation state or the influence of 
the thin ferrite film that can form close to the grain boundary leading to strain 
concentration (Mintz et al. 1991). According to equation (3.27), the nucleation will 
begin with the plastification. However, experiment shows that nucleation appears later, 
that is why a threshold is used to indicate the beginning of the nucleation. For this 
purpose, the parameter S which combines the stress and the cumulated strain is defined 
as: 

 ( )2
0nS eσ Σ ε=  (3.28) 

The parameter S characterizes the state of the material before nucleation. It will 
grow with the strain until the threshold value Sthr is reached. Sthr is assumed to be related 
to the minimum cavity density NI from which nucleation can be observed and to the 
factor Fn that indicates the importance of the nucleation activity of the material: 

 thr I nS N F=  (3.29) 

Once nucleation begins the parameter S is not used any longer in the model. 

Finally, experience shows that the cavity density tends to saturate for large creep 
strains, then the nucleation of new cavities stops when N reaches the value Nmax. If 2b is 
the cavity spacing (see Figure 3.16), N is related to it by: 

  21N bπ=  (3.30) 

The evolution of the cavity spacing is found by derivation of equation (3.30): 

 1
2

Nb
N

= −
&

& b  (3.31) 

Substituting equations (3.27) and (3.30) in equation (3.31) leads to: 

 3 2

2 n eb bπ βσ ε= −& &  (3.32) 
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The nucleation rate  is related to the internal state variable of the material N 
as well as to the stress 

N&

nσ  and strain rate eε&  applied on the grain boundary. With a one-

dimensional element, this nucleation rate  can be interpreted as a measure of the rate 
of evolution of the cavity spacing . In practice, the finite element model uses 
equations 

N&

b&

(3.27) and (3.31) to compute the decrease rate of b due to continuous 
nucleation of cavities. 

Voids growth – computation of the cavity size growth rate  a&  

A detailed formulation of the cavity growth under diffusion and creep 
deformations was proposed by Tvergaard (1984). Assuming that a cavity is defined by 
two parameters: ψ the cavity tip angle and 2a its size, the cavity growth rate is: 

 ( ) ( ) ( )2
1 2/ 4 / 4a V a h V V a h2π ψ π⎡ ⎤ ⎡= = +⎣ ⎦ ⎣

& & && ψ ⎤⎦  (3.33) 

where ( ) ( ) 11 cos 0.5 cos
h

sin
ψ ψ

ψ
ψ

−+ −
=  (shape function of the cavity) and V  is the total 

cavity volume growth rate, which is divided into diffusion growth  (equation 

&

1V& (3.34)) 
and creep deformation  (equation 2V& (3.35)): 
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where ( )( ) 21 0.4319C n n n= − +⎡ ⎤⎣ ⎦  and ( )32 eA a hπε ψ= & . D is a constant related to the 

material diffusion, n is the creep exponent, eσ  and mσ  are the equivalent and mean 
stresses sustained by the material surrounding the grain boundary and nσ  is the normal 

stress applied on the grain boundary. The variable f used in equation (3.34) is the area 
fraction of grain boundary cavitated. It is defined as follows: 

 ( ) ( ){ }22f max a b , a a 1.5L⎡ ⎤= +⎣ ⎦  (3.36) 
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where ( )1 3

e eL Dσ ε= &  is a characteristic length which accounts for the coupling 

between diffusive and creep contributions to void growth. This coupling has the effect 
to shorten the diffusion path to a distance of order L, hence the definition of f by 
equation (3.36). Cavity growth is dominated by diffusion for small values of a/L (i.e. 

0.1a L ≤ ). For larger values of a/L, creep growth starts to dominate. Equations (3.34) 
and (3.35) have been established with 10a L ≤ .   

The diffusion parameter can be expressed as a function of the temperature by:  

 b0 b bDD exp
kT RT
δ Ω ⎛= ⋅ −⎜

⎝ ⎠

Q ⎞
⎟  (3.37) 

with b0 bD δ  the grain boundary diffusion coefficient, Ω the atomic volume,  the 

activation energy, T the temperature in Kelvin, k the Boltzmann’s constant and R the 
universal gas constant. 

bQ

Finally the discrete cavity distribution is replaced by a continuous distribution on 
each facet of the grain boundary so that the average separation between two grains cδ , 

which is equivalent to a grain boundary thickness, evolves in a continuous way on the 
facet (see Figure 3.16). cδ  is determined using the volume of grain boundary cavities V 

and their average spacing b:  

 2c
V
b

δ
π

=  (3.38) 

Then, the separation rate cδ&  used in equation (3.21) is given by: 

 2 2

2
c

V V
b b

δ
π π

= −
&&

& b
b

 (3.39) 

Finally, to resolve the equations of this section, the following independent 
parameters have to be defined: the initial voids size a0 and spacing b0, the nucleation 
parameter Fn, the normalization constant Σ0, the cavity tip angle ψ, the initial cavity 
density for nucleation NI and the maximum cavity density Nmax where nucleation stops. 
They are determined in Chapter 4 using the damage experiments except for ψ, which is 
assumed to remain constant during voids growth and taken equal to 75° (Onck and van 
der Giessen 1998). 
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Voids coalescence and fracture criterion 
Coalescence takes place when cavities are sufficiently close to each other to 

collapse. The parameter used to define the coalescence activation is the ratio a/b. It is 
called a damage variable in the current model. When this ratio reaches a critical 
threshold value dlim, coalescence is triggered and a crack appears.  At this moment the 
contact is lost between the foundation and the contact element of the interface element 
where the criterion has been reached and a crack physically appears in the finite element 
model.  

3.5 NUMERICAL IMPLEMENTATION OF THE MODEL  

The numerical implementation of the material constitutive laws and interface 
element has been updated all along the development and validation of the model in 
order to improve the convergence of the simulations and the accuracy of the results. The 
following description summarizes the final choices and explains their historical reasons. 
The potential improvements that have not been implemented are also listed. 

3.5.1 INTEGRATION OF THE CONSTITUTIVE DAMAGE LAW 

Different solutions are possible for the implementation of the damage 
constitutive law. In particular, regarding the integration of the law, one solution consists 
in calculating the evolution of each variable independently based on the calculation of 
its increment for each time step. A second solution consists in choosing two driving 
parameters, e.g. a and b, for which the increments are calculated and to compute all the 
other variables based on the integrated values of these variables. Due to the 
interdependence of the equations and to the different degree of non-linearities in the 
problem, this second method is more appropriate. It has been applied in practice in this 
research as it gives more coherent results between the variables at the end of the 
converged step although the model is less coupled as with the first method. Another 
improvement to the first method would have been to use under-intervals for the 
integration but this technique would have increased considerably the computation time.  

The state variables and their signification have been reported in Table 3.1. The 
equivalent strain, strain rate and stress as well as the mean stress are not directly 
associated to the interface but come from the surrounding solid elements. In practice, 
they are calculated by averaging the values found in the two solid elements directly 
attached to the interface.  
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Table 3.1. State variables. 

Variable Description 

ddam Damage variable a
b

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

su&  Sliding velocity 

cδ&  Interface spacing velocity 
V Cavity volume 

eε&  Equivalent strain rate   

eε  Equivalent strain 
N Nucleation variable 
a Void size 
b Void spacing 

nσ  Normal stress on the edge of the interface 

mσ  Mean stress 

eσ  Equivalent von Mises stress 

 

Threshold values have been introduced for the variables a and b to avoid 
inconsistencies in case of compression in the structure. These thresholds are defined in 
sections 3.5.1.1 and 3.5.1.2, respectively. Damage grows mostly due to tensile loads, 
nevertheless the model has to give realistic answers when certain elements are in 
compression. This situation can appear when the global structure is in compression or in 
tension. Indeed, even if the global structure is in tension, the heterogeneity introduced 
when an actual grain microstructure is modelled can lead to particular zones being in 
compression due to the movement and accommodation of the grains. Without a 
threshold value, negative values for a are allowed, which is unfeasible in practice as it 
corresponds to a negative void size. Likewise, the void spacing is limited by void 
saturation and there is a specific threshold underneath which b can not decrease when 
the maximum number of cavities has been reached. 

3.5.1.1 Evolution of a and V 

The volume increase at step i is calculated using all the information directly 
available at this step. In particular, the equivalent and mean stresses ( eσ  and mσ ) and 
strain rate ( eε& ) are calculated using the data of the current step. These data are available 

because they are calculated as an average between the corresponding state variables of 
the solid elements attached to the interface element at which the damage is calculated, 
the solid elements being treated before the interface elements by the finite element code. 
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For the other variables appearing in the equations, and especially for the state variables 
directly calculated in the interface damage law (a, b, nσ ), the most recent converged 

data available are used, i.e. the data corresponding to the values at step i-1. The index i 
or i-1 identifies for each variable the instant at which the value is adopted. 

Using equations (3.36) and (3.34), the computation of  (part of the void 

volume due the growth by diffusion) is realised as follows:  
1V

 ( ) ( ){ } ( )1 322
1 1 1 1max , 1.5 wherei i i i i i i ei if a b a a L L Dσ ε− − − −⎡ ⎤= + =⎣ ⎦ &e  (3.40) 
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The sign of   is directly linked to the sign of 1iV& 1niσ −  as the denominator of 
equation (3.41) is always positive because [ ]0,1if ∈ . The void size increases in tensile 

state and decreases in compression state. 
Using equation (3.35), the computation of  (part of the void volume due the 

creep deformation) is realised as follows: 
2V
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The sign of  also implies a growth of the cavity size in tension and a 

reduction in compression except for low triaxialities 

2iV&

1mi

ei

σ
σ

≤  for which equation (3.42) 

implies void growth. 

It is then possible to compute the evolution of a using equation (3.33) and taking 
into account the minimum threshold  amin: 

 ( ) ( ) ( )2
1 1 2 1/ 4 / 4i i i ii ia V a h V V a h2π ψ π−

⎡ ⎤ ⎡= = +⎣ ⎦ ⎣
& & && ψ−

⎤⎦  (3.43) 
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 1

min minIf then
i i i

i i

a a a t
a a a a

−= + Δ
≤ =

&
 (3.44) 

The sign of  is identical to the sign of . Therefore, the minimum value   
can only be reached if  is negative, i.e. in case of compression state. The value of  

is chosen equal to the initial void size given to the program. Another value could be 
chosen but it has to be greater than zero otherwise the voids will never grow again once 
the minimum value is reached as shown by equations 

ia& iV& mina

iV& mina

(3.40) to (3.44). 

Finally the computation of the total volume of voids is realised at the end of the 
step using: 

 ( )34
3
π ψ=i iV a h  (3.45) 

The total volume of voids could also be calculated by adding the increment 
 to the previous step value i iV V tΔ = Δ& 1iV − , but in this case there is a risk that equation 

(3.45) is no longer satisfied if the time steps are not small enough. 

3.5.1.2 Evolution of b and δ  

For the computation of b, δ  and their associated variables, the same technique 
as presented in the preceding section is used. 

The nucleation threshold thr I nS N F= , which is a constant for the simulation, is 

calculated using the initial parameters of the model. The first step is then to verify if this 
threshold has been reached by calculating  as given by equation iS (3.28): 

 ( )2
01i niS e iσ ε−= Σ  (3.46) 

If the threshold is exceeded ( ) and if the integration point is in tensile 
state  (

i thS S≥ r

1 0niσ − ≥ ), there is nucleation and b evolves according to equations (3.27) and 

(3.31) until saturation is reached: 
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It can be noticed that the value of b can only decrease. In compression state, b 
does not evolve, i.e. when the voids have been created they can not be ‘repaired’. The 
value of  corresponds to the value of b for which the nucleation threshold  is 

reached. Using equation 
minb maxN

(3.30) this gives: 

 min
max

1b
Nπ

=  (3.50) 

The evolution of cδ&  is then computed using increments calculated by equations  

(3.41), (3.42) and (3.47) for V  and  and the values at the beginning of the step, which 
are equivalent to the values at the end of the previous step, for V  and : 
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Finally, the remaining state variables are calculated at the end of the step: 

 2
1 and i

i ci
i i

VN
b b

δ
π π

= 2=  (3.52) 

3.5.1.3 Other improvements to be considered in the future 

The different variables that appear in the damage law offer the possibility to add 
additional features to the model in order to represent more detailed material behaviours. 
Although some modifications are pretty straightforward, these ideas have not been 
implemented in the code during the development phase of the model. Indeed, the focus 
was initially on the resolution of particular problems linked to damage in continuous 
casting and to the numerical performance of the simulations. Introducing new code 
developments implies phases of verification and validation which are time consuming 
and deviate from the global goal of the project. Nevertheless, it is worth to highlight at 
this point some of the possibilities and to keep them in mind for future developments. 

The damage history in the material could be recorded through the minimum void 
size parameter . In the standard model  is taken equal to the initial void size 

 but in reality, it is not excluded to have 
mina mina

0a min 0a a≤ . This choice could be useful to 

model cases where the void size actually decreases under its initial value in compression 
state, e.g. if the voids close up when grain boundaries get closer to each other. 

Another possibility is to consider that the minimum voids size threshold 
increases during the simulation to account for an irreversible damage progression. In 
this case, the void size can still decrease in compression, allowing for the voids to close 
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up slightly, but the maximum closure acceptable is reduced in proportion with the 
damage previously incurred. In this case, the impact on  is opposite to what has 

been described in the previous paragraph but for practical applications a combination of 
both effects can be taken into account. Characteristic curves for  can be introduced 

in the model as functions of other variables rather than single points if necessary. 

mina

mina

Concerning the minimum void spacing value , the model intrinsically 

considers that the value of b  can only decrease until saturation. Voids are created but 
they never disappear, so an increase of b  or  is not allowed. If the elements are in 

compression, the voids size can decrease but the voids will stay present (damaged grain 
boundaries never completely re-bond). Therefore, if it is required to allow re-bonding of 
the grain boundaries for particular applications, it has to be introduced via additional 
equations, independently from the nucleation process.  

minb

minb

The standard model allows shear stress to evolve without limit following the 
elastic penalty law during the simulation. A simple solution to avoid this problem is to 
impose a maximum critical shear stress cτ  for the simulation. When cτ  is exceeded, the 

shear stress τ  does not increase any longer, the evolution of τ  following to an elastic-
perfectly plastic model. Likewise, it is necessary to introduce a maximum shear 
displacement threshold for which fracture in shear appears if the shear deformations are 
too high. These improvements are not relevant for actual continuous casting simulations 
as the displacements in shear are very limited for this particular application. 

3.5.2 MODELLING OF THE CONTACT 

3.5.2.1 De-bonding of the interface element 

One of the most important features of the damage model is its ability to account 
for loss of contact when the fracture criterion is reached at one integration point. In the 
first developed model, in case of loss of contact, when the corresponding elements of 
the compliance matrix [C] were put to zero together with the contact pressure nσ  and 

shear stress τ , the contact state index CI was simultaneously set to its ‘non-contact 
case’ value. Using this method, the system started the next iteration in a non-contact 
configuration, which could lead to large oscillations of the associated equilibrium forces 
and to poor convergence properties. 

The solution adopted to improve convergence is based on the fact that if the 
contact state index is set to its ‘non-contact case’ value as soon as the fracture threshold 
is reached during one iteration within a time step of the simulation, the next iteration 
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will begin with a configuration corresponding to a non-contact case even if there is no 
certitude regarding the state of the contact at this point as the convergence criteria has 
not been reached yet. Therefore, it is preferable to update the contact case index only 
after convergence to avoid introducing unnecessary oscillations in the simulations when 
integration points detach during the iterations.  

 
 

Step i 
 

j = 1 

Iteration j 
 

CIj = CIi 

Loss of 
contact?

0nσ =  
0τ =  

[C] = 0 
 

CIj = ‘non contact 
case’ 

0nσ ≠  
0τ ≠  

[ ] 0C ≠   
 

CIj = ‘contact case’ 

Conver-
gence?

i = i + 1 
CIi = CIj 

j = j + 1 

Yes 

Yes 

No 

No 

Last 
step? 

Stop 

Start 
i = 1 

CIi = CIini 
 

Yes 

No 

 
Figure 3.17. Calculation of the contact case index CI during the iterations process. 

Using this method, in case of loss of contact, nσ , τ  and the elements of the 

compliance matrix [C] are set to zero for the corresponding iteration, but the new state 
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of the contact affects the contact configuration only at the beginning of the next time 
step, which globally increases the convergence performances while maintaining the 
accuracy of the results. This process is schematized on the flowchart of Figure 3.17. 

3.5.2.2 Single versus double interface 

For the modelling of contact using classical contact elements, it is sometimes 
required to use a contact element and a foundation on each side of the contact surface to 
represent accurately two deformable bodies (Habraken and Cescotto 1998a). In this 
case, the nodal forces are divided by two when computing the terms of the stiffness 
matrix. The use of contact elements on one side of the contact surface, with foundations 
on the other side only, is sometimes recommended when one of the bodies can be 
privileged with regard to the other. This approach has the advantage of reducing the 
number of contact elements and can be justified in some circumstances. If the two 
bodies are not discretized with the same accuracy, the privileged body, on which the 
contact elements are placed, must be the one with the more refined mesh.  

The standard interface element consists in a contact element associated with a 
foundation element as described in section 3.4.2. As this element is based on the 
traditional contact element, the two options discussed here before have been 
implemented and investigated. The objective was to analyse how the crack propagates 
when single or coupled double interfaces are used to model the grain boundaries. 

The first solution consists in using a single contact element with its associated 
foundation (single interface) as represented in Figure 3.15 and Figure 3.18(a). The 
second solution consists in putting a contact element and a foundation on each side of 
the interface, the global interface being composed of two single interface elements 
which are coupled as represented in Figure 3.18(b) (double interface). The contact 
element A attached to the solid element 1 is associated with the foundation element A 
attached to the solid element 2 to form the interface element A. Likewise, the contact 
element B attached to the solid element 2 is associated with the foundation element B 
attached to the solid element 1 to form the interface element B. In the double interface 
case, the nodal forces are divided by two during the computation of the terms of the 
stiffness matrix. The advantage of using the coupled double interface is that it facilitates 
the meshing of the grain structure. Indeed, as there is contact and foundation elements 
on every grain boundary segment, there is always a foundation facing a contact element 
to form an interface element, even if the grains slide against each others.  
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Two possibilities can be envisaged to represent the foundation: either defining a 
single global foundation made of all the foundation segments or defining for each 
contact element a foundation made of the segment facing the element in the initial state 
and of its direct neighbours. In the first case, the foundation segments list is pretty easy 
to realise but the search of the foundation segment in contact can be very time 
consuming during the simulation. The second solution reduces the contact search time 
during the simulation but complicates the meshing phase. 

 

Foundation elements
Contact elements
Grain boundaries

 

Contact element A

Contact element B
Foundation element A

Foundation element B
1

2

 

 (a) (b) 

Figure 3.18. Position of the foundation and contact elements in case of a) single interfaces,  
b) double interface element.   

The comparison between the two techniques (single versus double interface 
element) has been realised using the simple symmetric mesh of Figure 3.19. The mesh 
contains three interface elements (simple for the first simulation and double for the 
second one) represented by the bold line. The arrows correspond to enforced 
displacements while the lines ended by a stroke represent fixed nodes. The loads have 
been chosen to reproduce a tensile state around the zone with interface elements. The 
tensile stresses appear due to the bending of the specimen and are perpendicular to the 
possible crack propagation path, i.e. to the line of interface elements.  

The simulations have shown that with the use of double interface elements it is 
not possible to follow the propagation of the crack in an accurate way without important 
modifications in the finite element code. Indeed, a soon as one integration point reaches 
the maximum damage threshold on one side of the interface and detaches itself, the 
nodal forces of the corresponding interface element decrease. Therefore, the integration 
point that faces directly the detached one on the other side of the interface does not have 
to sustain the same forces, which implies that the damage at this integration point does 
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not increase as much and does not reach the de-bonding condition level. This 
phenomenon, which can be explained by numerical imprecision, appears even in a 
perfectly symmetric case where the two integration points are initially localised exactly 
at the same point in space and the attached solid elements are submitted to the same 
loads. In the particular example described by Figure 3.19, the crack evolves by de-
bonding of the integration points of the contact element on one side of the interface 
only, alternating from one side to the other when progressing from element to element. 
The second contact element composing each double interface does not detach itself, 
meaning that no true crack appears. 

 

1 mm

2 
m

m

Interface elements

 

Displacements 

2 mm 

Fixations 

ey

ex

Figure 3.19. Mesh used to compare single and double interface. 

1 mm 

To be able to use the double interface in a correct way, it would be necessary to 
implement the element in such a way that when one integration point detaches itself on 
one side of the interface, the corresponding integration point on the opposite side of the 
interface detaches simultaneously. This technique creates an artificial link between the 
contact elements and complicates the numerical developments.  

The analysis with single interface elements shows that the propagation of the 
crack can be modelled by successive de-bonding of the integration points of the 
elements.  

These tests have proved that it was better to develop the model using single 
interface elements to avoid errors and programming difficulties. Moreover, the use of 
double interfaces is not justified because on the one hand, for the particular problem of 
continuous casting, it is unlikely that large sliding movements between grains occur and 
on the other hand, due to the nature of the problem, both sides of the contact surface are 
discretized with the same precision, which means that no side of the interface will be 
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privileged while using single interfaces. Developments using double interfaces would 
require much more effort without bringing any added value. As a consequence of this 
choice, particular attention has to be given to the realisation of the mesh with regard to 
the respective position of the contact and foundation elements that constitute each 
interface element.  

3.5.2.3 Best practices for mesh generation 

To model a microstructure comprising grains and grain boundaries, it is essential 
to define one single interface element on every grain boundary segment and to avoid 
duplication. The orientation of the contact and foundation elements is also important as 
it determines the orientation of the external normal vectors which are used to check if 
the contact is possible.  

The mesh can be easily realised using the mesh generator GMAILL. The input 
files require the definition of all the zones and contours to be meshed and of the type of 
elements to be used for each zone. Various density of elements can also be defined, e.g. 
to impose a finer mesh along the grain boundaries. 

At the intersection of three grain boundaries (triple point), three different nodes 
have to be defined, each of them belonging to one of the grains that are in contact at the 
triple point. These nodes are localized at the same coordinates in the initial 
configuration but have independent degrees of freedom. This technique allows the 
grains to move against each others and to separate in case of crack propagation. 

The grains are the zones to be meshed with solid elements. These zones have to 
be defined counter-clockwise following the grain contour. As independent nodes have 
been defined at the triple points, all the grains are independent and are only linked via 
the interface elements.  

The grain boundaries are the contours to be meshed by interface elements. To 
constitute the interface elements, the grain boundaries segments have two sides, one 
with contact elements and one with foundation segments, each of which belonging to 
two independent grains. The technique used to mesh the grain boundaries is to follow 
each grain contour counter-clockwise and to define contact elements progressively if no 
contact element is already present on the other side of the grain boundary, i.e. on the 
part of the contour of the adjacent grain just facing it. This method is illustrated in 
Figure 3.20, for the meshing of the boundaries of ten successive grains, the arrows 
representing the numbering order for the contact elements.  
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Foundation elements
Contact elements
Grain boundaries1

2 3 4

5
6

7 8 9 10

 
Figure 3.20. Illustration of the meshing process for the grain boundaries. 

The parts of the contours that do not receive contact elements receive foundation 
elements. The nodes of the foundation segments are registered clockwise, i.e. in the 
opposite direction of the one defined by the arrows for the contact elements in Figure 
3.20, so that the orientation of the normal vectors is consistent with the convention 
discussed in section 3.4.1.2. By following rigorously this technique, the mesh realised 
will be complete and the elements correctly oriented. 

3.5.2.4 Contact search methodology  

The search of contact is a time consuming operation which has to be performed 
at each step of the simulation in order to define which foundation element can be 
associated with the contact element to form the interface element and to check if there is 
contact. Therefore, it is necessary to define a methodology that simplifies this operation 
and accelerates the simulation.  

For the modelling of a grain structure, the time required for the contact search is 
still increased due to the large amount of interface elements involved. In particular, if 
one single foundation that comprises all the foundation segments (i.e. corresponding to 
all the grain boundaries) is defined, the contact algorithm checks if there is an 
intersection between the normal to the contact element and every possible segment of 
foundation. As the displacements of the grains along one another are quite small, only 
several foundation elements can be in contact with a particular contact element. It is 
then possible to define a mesh where each grain boundary is associated with a particular 
reduced foundation but this choice complicates the generation of the mesh if it has to be 
done manually. To avoid these difficulties, the technique implemented in the code 
consists in defining a single foundation which comprises all the possible foundation 
segments and to use the traditional contact search algorithm to find a subset of 
foundation segments associated to each individual contact element. The subset of 
possible foundation segments of each contact element comprises the foundation 
segment which directly faces the contact element in the initial configuration and its 
closest neighbours. The number of neighbours to register has been fixed to five in the 
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present application. This operation is realised only once during the pre-processing 
phase. During the simulation, the contact search algorithm only takes into account the 
particular subset of foundation segments that has been initially defined for each 
individual contact element. 

3.5.2.5 Loss and recovering of contact 

When tensile and compression loads alternate, the interface element may lose 
contact and recover it successively. In the present model, all the interface elements are 
supposed to be in contact at the start of the process, unless there is already a crack in the 
model. During the loading of the material, the interface elements stay in contact until 
the maximum damage threshold is reached, i.e. until the interface breaks. Once an 
interface element is cracked at one integration point, the damage variable associated to 
this integration point is no longer taken into account and the interface behaves like a 
classical contact element with a Coulomb’s friction law.  

As the damage can not be repaired even if a compression load is applied on the 
cracked interface element, the two solid elements forming both sides of the interface are 
considered as two independent bodies in contact as soon as the contact is lost and for 
the remaining of the simulation.    
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Figure 3.21. Verification of the behaviour of the interface element in case of loss and 

recovering of contact. 
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A simulation using two solid elements linked by one interface element has been 
carried out to verify the behaviour of the interface element when the contact is lost and 
recovered. The two solid elements have a size equal to 1 mm ×  1 mm. A vertical 
displacement is imposed on the upper nodes of the top element and the vertical 
displacement of the lower nodes of the bottom element is restrained. The enforced 
displacement and the normal stress recorded in the interface during the simulation are 
shown in Figure 3.21. The model is first in tension: a positive displacement is imposed, 
which gives rise to a positive normal stress nσ  in the interface. During that phase, the 
interface is in contact but the damage and the thickness of the interface progressively 
increase. At t �  10 s, the damage threshold is reached and the interface breaks, the 
contact is lost and the normal stress in the interface is set back to zero. As the contact is 
lost, there is no load applied on the material and the two solid elements, which have 
been plastically deformed, are unloaded according to the elastic law. After that instant, 
the enforced displacement is reversed. At the beginning of this second phase, the two 
solid elements are still separated from each other by a distance linked to the thickness of 
the interface just before fracture and to the springback effect. Therefore, the contact is 
only recovered when the top element has been moved down to reach the bottom 
element. After that point, the model is in compression and the contact is regulated by 
the Coulomb’s friction law; a negative normal stress is recorded in the interface, which 
corresponds to a positive contact pressure. 

With this example, it has been proved that the code will manage properly 
situations of loss and recovering of contact, should they happen in the application 
simulations.  

3.6 INITIAL SIMULATIONS AND VERIFICATION OF THE MODEL 

To test the robustness of the new developments presented in this chapter, it is 
necessary to verify the numerical behaviour of the microstructural model, which 
comprises the elements and the constitutive laws presented in the preceding sections. 
The microstructural model is referred to as the mesoscopic cell and consists of grains, 
represented by 2D-solid elements with a modified Norton-Hoff constitutive law, and 
grain boundaries, represented by 1D-interface elements with a damage constitutive law, 
as described in section 3.4. Before studying actual grain microstructures, the model is 
tested using several simple structures.  
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As a first application of the model, the simple examples tested in this chapter 
allow the analysis of the stability of the LAGAMINE code during the propagation of a 
crack. They are also used to fix some parameters of the model such as the penalty 
coefficients ks and kn.  

The first examples, which focus on the analysis of the damage law, are done 
using a purely elastic law in the zone representing the grains. Then the elastic-viscous-
plastic law is substituted to the elastic law to model the actual behaviour of the grains. 
All these examples are useful to isolate and to solve the numerical problems relative to 
the intrinsic discontinuous behaviour of the model.  

3.6.1 DESCRIPTION OF THE CELLS 

The tested cells evolve from a simple case with only one grain boundary zone 
surrounded by a grain area through more complicated configurations to finally a 
structure which is relatively close to an actual grain microstructure. Every cell has the 
following dimensions: height  and width 2 mmh = 1 mmw = ; these dimensions being 

chosen on the basis of the information known with regard to the grain size at the 
beginning of the project. 

For each cell, the bold lines indicate the zone where interface elements have 
been introduced, i.e. the paths that the crack will have the possibility to follow. The 
convention to represent the boundary conditions are the following: the arrows represent 
enforced displacements whereas the lines ended by a stroke represent fixed nodes. The 
value of the displacement as a function of the time is chosen so that the correct order of 
magnitude is obtained for the strain rate in comparison to classical values known for 
continuous casting problems. This condition equates to an imposed displacement 
velocity of 2 10-3 mm s-1, which corresponds to strain rates of the order of magnitude of 
10-3 s-1 to 10-4 s-1 in the structure. The same displacements field is used for all the 
presented examples. 

Figure 3.22 illustrates the different structures analysed introducing complexity 
along the analysis process. Structure 1 is the first structure that has been defined for the 
simulations. This structure has been used to make choices with regard to the modelling 
of the interface as described in point 3.5.2. Structure 2 is made of a single grain zone in 
which a middle crack can propagate up to the centre. Structure 3 has been created in 
order to analyse the effect of a change of orientation of the crack propagation path, 
while in structure 4, the objective is to analyse which path the model chooses among 
several possible propagation paths. Structure 5 is a transition case between the simple 
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cells and an actual microstructure case. Those meshes have been realised using the 
automatic mesh generator GMAILL. A higher density of elements is imposed along the 
interface zones in comparison with the inside of the grains. Using this method, the mesh 
is sufficiently well refined along grain boundaries while the total number of elements 
remains reasonable. More details about the utilisation of this programme to define the 
mesh of the mesoscopic cell are given in section 3.5.2.3. 

 

 

ey 

ex

Figure 3.22. Simple mesoscopic cells. 

3.6.2 CHOICE OF THE PARAMETERS OF THE MODEL 

In all the examples discussed in this chapter, the thermal degrees of freedom 
have been fixed in order to concentrate only on the damage law at constant temperature. 
The temperature chosen for the simulations is 900°C and the thermal transfers with the 
environment and inside the cell are not considered.  

Tables 3.2 and 3.3 indicate the values of the different parameters used for the 
purely elastic or elastic-viscous-plastic law used for the grains (Table 3.2) and for the 
damage law used for the grain boundaries (Table 3.3). The data used for the elastic-
viscous-plastic law are identical to those used for the macroscopic continuous casting 
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simulations (Pascon 2003) while the damage law parameters are based on the data 
published by Onck and van der Giessen (1998, 1999). These data were presented in a 
non-dimensional form and have been scaled to be related to an average half grain 
boundary length of 0.01 mm. 
 

Table 3.2. Parameters of the elastic-viscous-plastic grain law at 900 °C. 

Parameter Description Value 
E Elastic Young’s modulus 32400 MPa 
ν Poisson’s ratio 0.3 
p1 Softening parameter (equation (3.1)) 0.0 
p2 Curve level parameter (equation (3.1)) 178.3 MPa 
p3 Viscosity parameter (equation (3.1)) 0.112 
p4 Hardening parameter (equation (3.1)) 0.217 

 

Table 3.3. Parameters for the grain boundary damage law. 

Parameter Description Value 
d Grain size (diameter) 0.364 10-1 mm 
n Creep exponent 5.0 
B Creep coefficient 0.474 10-11 MPa-n s-1

e Bε ε& &  Grain viscosity parameter 10 

Fn Nucleation parameter 0.169 109 mm-2

NI Cavity density for nucleation 127300 mm-2

Nmax Maximum cavity density 1273000 mm-2

Σ0 Normalization stress 29.16 MPa 
D Diffusion parameter 0.3429 10 –17 mm5  N-1 s-1

ψ Cavity angle 75° 
a0 Initial void size 0.67 10-5 mm 
b0 Initial void spacing 0.16 10-2 mm 
dlim Damage threshold 0.7 

 

The complete set of data relative to the specific material studied in the next 
chapters of this thesis was not available when the numerical model was being 
developed, which is the reason why the initial tests have been realised using data from 
the literature. 
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3.6.3 RESULTS  

For each structure of Figure 3.22, the stress yσ  (stress in the y-direction, which 
is the stress in the vertical direction for these examples) or mσ  (mean stress) is 
represented. It is particularly interesting to represent the stress yσ  for structure 1 as it is 

the stress in the direction perpendicular to the crack, i.e. the stress which plays the most 
important role in the initiation and propagation of this crack. For non horizontal cracks, 
the stress yσ  does not have a direct physical signification any longer, that is why the 
mean stress mσ  is used for the last examples as it is still interesting to analyse how the 

stresses relax when the crack propagates. In all these examples, the numerical results in 
terms of stresses or strains are not important but the major objective is to analyse how 
the crack propagates for the different configurations using the interface element 
presented in section 3.4.2. These simulations are also used to resolve numerical 
problems and to start the analysis of certain parameters of the model using simple 
examples.  

For simplicity reasons, the first developments and tests have been made using a 
linear elastic constitutive law inside the grains. Then, the elastic law has been replaced 
by the actual elastic-viscous-plastic law. 

3.6.3.1 Elastic material law in the grain 

Determination of the penalty coefficient using structure 2 
The penalty coefficients ks and kn have a great influence on the results as they 

introduce a certain amount of loss of rigidity in the model. The higher these coefficients 
the smaller the influence, nevertheless too high values lead to convergence problems. It 
is then necessary to start by defining acceptable values for ks and kn, values that will be 
kept constant for all the further calibration, validation and exploitation simulations.  To 
analyse the effect of ks and kn, simulations have been performed with different values of 
ks and kn compared among themselves and with a reference case where no interface 
element have been introduced (a), which corresponds to a case where ks = kn = ∞. Using 
these simulations, it is confirmed that when interface elements using a penalty method 
are introduced, it produces a zone of lower rigidity in the model. This effect is amplified 
if the penalty coefficients are lower and it is then necessary to take them as high as the 
convergence permits it to avoid perturbation of the results. 
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Figure 3.23. Stress results ( yσ ) before the initiation of the crack, elastic case, a) without 
interface element, b) with interface elements ks = kn = 10 000 MPa/mm, c) ks = kn = 100 000 

MPa/mm, d) ks = kn = 1 000 000 MPa/mm.  

Analysing results from Figure 3.23, it  can  be  concluded  that  using ks = kn = 
10 000 MPa/mm (b) is clearly insufficient. Indeed, with these values, even before the 
initiation of the crack as predicted by the fracture criterion, the zone around the crack 
lips is already relaxed. The crack seems to be open but this effect is only due to a too 
small penalty effect. For the two other cases, (ks = kn = 100 000 MPa/mm (c) and ks = kn 
=  1 000 000 MPa/mm (d)), the results present similar patterns than for the reference 
case without interface elements (a). 

A simulation up to crack propagation with ks = kn = 1 000 000 MPa/mm did not 
give any results due to convergence problems, this is the reason why the higher values 
of ks and kn presented are for ks = kn =  100 000 MPa/mm. 

Crack propagation 
Figure 3.24 illustrates the crack propagation in structure 2 for ks = kn = 100 000 

MPa/mm. For this value of the penalty coefficients, the comparison of the results with 
the reference case before crack initiation has shown that the perturbation introduced by 
the presence of interface elements was limited and therefore acceptable.  

Crack propagation is detected in Figure 3.24 and it can be seen that the stresses 
decrease along the lips of the crack during the propagation phase. Only several stages of 
the propagation have been represented: initially there is no crack (Figure 3.24(a)), then 
four elements are de-bonded (Figure 3.24(b)), then eight elements are de-bonded 
(Figure 3.24(c)) and finally the crack has propagated along the whole available zone 
(Figure 3.24(d)). To improve convergence, it is necessary to let the system stabilise 
itself each time an integration point is detached. Therefore, too big time steps, which 
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would allow several integration points to detach at the same time, have to be avoided. In 
this example, the maximum time step was fixed at 0.1 st = .  

 

     
<  -350

   -300

   -250

   -200

   -150

   -100

    -50

      0

     50

    100

    150

    200

>   250

 

 (a) (b) (c) (d) yσ  [MPa] 

Figure 3.24. Stress results ( yσ ) and crack propagation for structure 2.  
Elastic case with  ks = kn = 100 000 MPa/mm. 

3.6.3.2 Elastic-viscous-plastic law in the grain  

When the elastic-viscous-plastic law is used in the zone representing the grains, 
the global rigidity of the structure is less than for the elastic case. The difference in the 
order of magnitude of the terms of the rigidity matrix can then be more important and it 
is then necessary to analyse the results of the reference simulations carefully before 
fixing definitively the values of the penalty coefficients. 

Adaptation of the penalty coefficients for the elastic-viscous-plastic case 
Like for the elastic case, it has been necessary to test different values of the 

penalty coefficients when an elastic-viscous-plastic law is used to model the grains and 
to compare the results with a reference case without interface elements. The first 
simulations have been realised with kn = ks = 100 000 MPa/mm; no smaller values have 
been  tested.  Figure 3.25  shows that for all the values of kn and ks greater or equal to 
100 000 MPa/mm, the results are in accordance with the reference case (a) with regard 
to the value of the stress yσ  before the crack initiation. To obtain the best results for the 

simulation, the penalty coefficients will have to be fixed at the maximum possible value 
for which the reference case can be reproduced but without introducing convergence 
difficulties.  
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Figure 3.25. Stress results ( yσ ) before the initiation of the crack, viscous-plastic case a) 
without interface element, b) with interface elements ks = kn = 100 000 MPa/mm,  

c) ks = kn = 1 000 000 MPa/mm, d) ks = kn = 10 000 000 MPa/mm. 

Crack propagation 
In this section, the crack propagation in structures 2 to 5 is analysed. The initial 

results on structure 2 have shown that a value of ks = kn = 100 000 MPa/mm for the 
penalty coefficients is adequate with regard to the pre-crack behaviour in comparison 
with the reference case (Figure 3.25(b)) and first tests have shown that convergence is 
smooth with this value when the crack propagates.  

Figure 3.26 shows the crack propagation for structure 2 with ks = kn = 100 000 
MPa/mm. The crack propagation path is detected both by the physical opening within 
the mesh but also by the stress concentration zone around the crack tip. 
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Figure 3.26. Stress results ( yσ ) and crack propagation for structure 2.  
Viscous-plastic case with  ks = kn = 100 000 MPa/mm. 
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Figure 3.27 illustrates the case of structure 3 where a change in the crack 
orientation is imposed. With the elastic-viscous-plastic law, it is proved that the change 
of direction in the crack path is well managed by the finite element code. The crack 
continues to propagates after the bifurcation without any convergence problem for ks = 
kn = 100 000 MPa/mm. 
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Figure 3.27. Stress results ( yσ ) and crack propagation for structure 3.  
Viscous-plastic case with  ks = kn = 100 000 MPa/mm. 

For structures 4 and 5, several crack propagation paths are possible and the crack 
has to choose in which direction it will grow first, which adds another complication to 
the model. Figure 3.28 and Figure 3.29 show the crack propagation only and not the 
crack initiation as the interest of these cases is to show how the model deals with the 
modelling of a crack path passing through the intersection of three grains. 

Figure 3.28 illustrates the crack propagation in structure 4, in chronological 
order from stage (a) to (h). The passage of the triple point does not present any 
particular difficulties regarding convergence. After the intersection point, the crack 
starts to propagate towards the bottom of the cell, in the direction which corresponds to 
the smallest change of direction of the crack compared to the initial horizontal 
propagation path (Figure 3.28(e)). As the external load is along the horizontal direction, 
the bottom leg of the possible crack path, which is closer to the horizontal than the top 
leg of the path, also corresponds to the side where the normal stress is the highest. After 
that, the crack continues to propagate both in the lower and upper side of the predefined 
possible path. At each step, the zone of stress concentration at the crack tip is well 
marked. 
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Figure 3.28. Stress results ( mσ ) and crack propagation for structure 4.  
Viscous-plastic case with  ks = kn = 100 000 MPa/mm. 

Figure 3.29 illustrates cracks propagation in structure 5 which contains five 
grains. The stages are represented at constant intervals in chronological order from (a) 
to (n). Like in the previous simulations, the model shows that the stresses around the 
crack lips decrease when the crack propagates.  

Through this example, it has been demonstrated that the cracks propagate along 
all the possible paths without showing any convergence difficulties with the proposed 
set of parameters. Shear between grains before de-bonding has also been detected in this 
example and in particular between the two lower grains at stages (g) and (h). At the end 
of the simulation, several independent cracks have appeared and progressed within the 
cell.  
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Figure 3.29. Stress results ( mσ ) and crack propagation for structure 5.  
Viscous-plastic case with  ks = kn = 100 000 MPa/mm. 
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Although the number of grains has been increased, none of them are totally free; 
either one of the nodes of the grain boundary is fixed or displacements are enforced on 
some of the grain boundary nodes. When actual microstructure will be modelled, some 
of the internal grains will only be linked to the rest of the structure through the bond 
made via interface elements. 

The de-bonding technique, which has been applied to grains and grain 
boundaries in this section, is general and could be applied to other types of structures 
where possible paths for the crack growth are initially known. Different damage 
constitutive laws could also be associated with the interface without influencing the 
numerical implementation of the de-bonding mechanism. For example, the interface 
element developed in this thesis has been used in a research project studying fatigue 
cracks in welded beam-to-column connections (Lequesne et al. 2005). In this project, a 
cohesive zone law described crack propagation by analysing damage micro-phenomena 
behind the crack tip and the energy released during the creation of new surfaces. 

3.6.3.3 Influence of the penalty coefficients on the crack propagation 

The choice of the penalty coefficients is a critical step which has to be resolved 
before calibrating all the other damage parameters as it may influence the results. In 
Figure 3.30, the propagation of the crack is shown in structure 3 for two values of the 
penalty coefficients at two distinct instants.  
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Figure 3.30. Stress results ( yσ ) and crack propagation for structure 3. Viscous-plastic case with  

, , k1 100 st = 2 120 st = 1 = ks = kn = 10 000 MPa/mm and k2 = ks = kn = 100 000 MPa/mm. 
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It can be seen that for a higher value of the penalty coefficients, the crack 
progresses more slowly. This behaviour can be explained by the higher parasite 
deformations introduced locally in the model when lower penalty coefficients are used. 

As mentioned earlier, the penalty coefficients have to be as high as possible to 
avoid perturbations in the solutions compared to a case without interfaces but stay small 
enough to allow a smooth convergence of the simulation. Experience and best practice 
rules have shown that in most problems ks = kn = 100 000 MPa/mm is a suitable value. 
Once this value has been fixed, it has to stay constant for all the calibration and 
application simulations using a defined set of damage parameters. 

3.7 MACRO-MESO DATA TRANSFER 

It is necessary to define a methodology for the linkage between the macroscopic 
and mesoscopic simulations which allows the user to collect data issued from the 
macroscopic model and to transfer them to the mesoscopic mesh. In practice, stress and 
strain fields extracted from the macroscopic simulations are transformed in forces 
and/or displacements to be applied on the edges of the mesoscopic cell.  

Unlike the stresses and strains, which are calculated at the integration points of 
the finite elements and are function of the material laws specifically defined at the 
mesoscopic level, the temperatures can be directly applied on the nodes of the 
mesoscopic cell. If necessary, temperature gradients from the macroscopic model can be 
reproduced by interpolation between the nodes at the mesoscopic scale whereas the 
temporal variation of the temperature field is directly modelled via an imposed external 
temperature data file. The degrees of freedom corresponding to the temperatures are 
fixed at each time step and thermal exchanges have not to be calculated during the 
modelling at the mesoscopic scale as they have already been taken into account during 
the modelling at the macroscopic scale. Using this technique, it is possible to simplify 
the calculations and to avoid the difficulties encountered for fully-coupled or semi-
coupled staggered thermomechanical analysis. Only the thermal dilatations are taken 
into account via the thermal strain thε  which was included in the thermo-mechanical 
model when implementing the modified Norton-Hoff law (Pascon et al. 2006). The 
temperature field is then used to calculate the thermal strain thε  and to define the proper 
set of parameters to be used for the analysis as they are function of the temperature.  

Whatever the data to be transferred (temperatures, forces, displacements, strains 
or stresses), it is important to reproduce accurately the evolution of these fields in 
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function of the time as the constitutive laws used are non-reversible and strain rate 
dependant. In the illustration examples presented in this chapter, the loads are applied in 
a radial way for simplicity reasons. Nevertheless, for the actual continuous casting 
simulations, the real history of stresses, strains and temperatures will have to be 
followed. 

3.7.1 FROM THE SLAB TO THE MESOSCOPIC CELL 

The axes system used in this work has been chosen to be consistent with the 
macroscopic continuous casting model from which the macroscopic data will be 
extracted (Pascon 2003): the x-axis is parallel to the width of the slab, the y-axis is in 
the direction of the thickness of the slab and the z-axis corresponds to the casting 
direction as represented in Figure 3.31. 

For the macroscopic case, a slice model is developed in the plane x y−  (type 1 

section). The strains in the z-direction are modelled using the generalized plane state. As 
the slice moves in the continuous machine at a predefined velocity, it is possible to 
reconstitute a complete 3D solution, giving the total history of stresses, strains, strain 
rates and temperatures in the slab. In the mesoscopic model, slices in the x z−  plane 
(type 2 section) or in the  plane (type 3 section) are of particular interest as they 

allow the study of the effect of oscillation marks, which is not the case for the 
macroscopic model where the studied slice is parallel to the oscillation marks. 

y z−

 

1

2
3

Casting
direction

Oscillation
marks

 

ey

exez

Figure 3.31. Part of slab: studied sections. 

Using a generalized plane state approach at the mesoscopic scale, it is possible 
to impose the appropriate loading fields on the representative cell but particular 
attention must be paid to the definition of the axes.  
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3.7.2  COMPARISON OF RESULTS WITH OR WITHOUT INTERFACE ELEMENTS 

Test have been realised on a simple homogeneous mesh and hexagonal mesh 
with or without interface elements. Theses meshes are represented in Figure 3.32. The 
bold lines within the cell represent grain boundaries. Interface elements, i.e. contact 
elements and associated foundations, are defined along these lines in case of modelling 
with interface elements. Each cell has a dimension of 15 mm ×  15 mm, which 
corresponds to a grain diameter of the order of 3 mm for the hexagonal mesh. The 
objective is to analyse the accuracy of the data transfer and the impact of the interface 
elements on the global behaviour. 
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Figure 3.32. a) Homogeneous mesh, b) hexagonal mesh. 

3.7.2.1 Displacements driven simulations 

For this example, the applied strain field is constant on the cell but variable with 
time. It is given by , where t is the time. If small 

displacements are considered, the compatibility equations 

3 310 , 10 and 0x z xt tε ε γ− −= = z =

(3.53) can be used to compute 
the displacements field directly from the strains field: 
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The displacements to be applied along the edges of the cell obtained by 
integration of equations (3.53) are  along the x-axis and  along the 

z-axis. A radial loading history is imposed. Displacements are applied on the four edges 
of the cell (

310u t−= x t z310w −=

Figure 3.33). 

 

 
e

 
Figure 3.33. Illustration of the displacements imposed on the structure. 

As the displacements are enforced, the first verification aims at checking the 
stress level for the different meshes. Table 3.4 presents the results at t 2 s= .  
 

Table 3.4. Comparison of xσ , zσ , eε  et eε& for the three meshes at . 2 st =

Mesh type xσ  [MPa] zσ  [MPa] eε  eε&  [s-1] 

Homogeneous mesh 
without interface elements 120 120 0.2 10-2 0.67 10-3

Hexagonal mesh 
without interface elements 120 120 0.2 10-2 0.67 10-3

Hexagonal mesh 
with interface elements 103 102 0.18 10-2 0.57 10-3

 

For the meshes without interface elements, the stresses are strictly constant in 
the cell and vary only with time. For the mesh with interface elements, the stresses 
present small variations over the cell and the value given in Table 3.4 corresponds to a 
point localised in the middle of the mesh. A reduction in the stress level of 15% is 
measured for the case with interface elements compared to the case without interface 
elements. This phenomenon appears despite the fact that the same penalty coefficients 

z 

ex
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(kn = ks = 100 000 MPa/mm) as those defined in section 3.6.3.2 for the elastic-viscous-
plastic case to limit the perturbation of the stress field due to the presence of interface 
elements in the mesh, have been used. The proportion between interface elements and 
solid elements is higher in the present case than for the simple structures of section 
3.6.1, which can explain the variation in the stress level encountered here, the mesh 
being less rigid due the large amount of interface elements. Looking at the differences 
observed on the strains and strain rates, it is also concluded that part of the deformation 
is concentrated in the interface elements, which implies that the corresponding point on 
the (σ ε− ) curve for the solid elements in the middle of the mesh is different. Likewise, 
the strain rate is also smaller, which corresponds to another (σ ε− ) curve (see also 
Figure 3.6). 

3.7.2.2 Forces driven simulations 

The following total forces are applied uniformly on the edges of the cell: 
 on BC and 150  NxF t= 150  NzF t= on CD, where t is the time. No vertical 

displacements are allowed on AB while no horizontal displacements are allowed on AD 
(see Figure 3.34 ). 

 
Fx 

 

D C

Fz 

ez
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Figure 3.34. Illustration of the forces imposed on the structure. 

Table 3.5 compares the results for 10 st =  for nodes localised in the middle of 
the edges BC and CD. The results of Table 3.5 show that for forces driven simulations, 
the displacements at the edges of the cell are almost 15% higher when interface 
elements are introduced in the model compared to the case without interface element. 
Like for the displacements driven simulations, the structure is less rigid due to the 
presence of interface elements associated with a penalty method.   
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Table 3.5. Comparison of the displacements along the x- and z-axes for the three meshes at 
10 st = . 

Node (15, 7.5) Node (7.5,15) 
Mesh type x [mm] z [mm] x [mm] z [mm] 

Homogeneous mesh 
without interface elements 0.025 0.013 0.013 0.025 

Hexagonal mesh 
without interface elements 0.025 0.013 0.013 0.025 

Hexagonal mesh 
with interface elements 0.029 0.015 0.015 0.030 

 

For one element at the centre of the mesh, results in terms of stresses and 
deformations are equal for the three meshes: 100 MPax zσ σ= = ,  and 

. The differences on the displacements for the elements at the 

boundaries do not have any influence on these variables. It can be verified that by 
choosing an adequate value for the force increment as a function of the time, it was 
possible to impose a strain rate of the right order of magnitude compared to the range 
usually found in continuous casting applications. 

20.16 10eqε −=
3 10.12 10 seqε − −=&

3.7.2.3 Summary 

The previous analyses have shown that the use of interface elements introduces 
perturbations on the level of stresses and strains in the solid elements of the structure, 
even when no crack has appeared. This effect, which is due to the lower stiffness of the 
interface elements compared to the solid elements, is inevitable and is a function of the 
value of the penalty coefficients. Limiting the proportion of interface element compared 
to the solid element also reduced the impact.  

The differences are present on both the stresses and strains for a displacements 
driven simulation, while for a forces driven simulation, only the displacements along 
the edges of the cell are significantly influenced.  

3.7.3 TRANSITION ZONE 

By analysing the results of the simulations of section 3.7.2 it has been 
highlighted that boundary effects appear when forces or displacements are imposed on 
the edges of the cell. The objective of this section is to analyse these phenomena and to 
define best practice rules for the definition of the boundary conditions. In particular, the 
necessity to introduce a transition zone is verified. 
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3.7.3.1 Cell without transition zone 

The first example analyses the boundary effects on a cell without transition zone 
where forces drive the simulations. A distributed force is applied in the z-direction and 
varies linearly along x.  

 

Linear force to be distributed

Uniform value imposed
on one element

Sum of the contribution
of the two neighbours

exex  
Figure 3.35. Distributed forces in the z-direction. 

To compute the concentrate force to be applied on each node of a first degree 
element when a distributed force has to be modelled, the value at the middle of the 
element is first defined, as shown in Figure 3.35 for the particular case of a linear 
distributed force. Then, this value is multiplied by the length of the element and one half 
of the total load is applied on each node of the element. Apart from the nodes at the 
edges of the structure, each node receives the contribution of its two neighbour 
elements. 
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 (a) xσ [MPa]  (b) zσ [MPa] (c) xzτ  [MPa] 

Figure 3.36. Stress state in a cell without transition zone for a forces driven simulation. 
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For the example presented in Figure 3.36, a total load of  , where t is the 

time,  has been applied. The forces are applied using a radial distribution. 

210  Nt

Figure 3.36 
corresponds to the instant . 5 st =

It can be noticed that for a case of linear loads, important perturbations appear 
along the boundaries of the cell, close to the nodes where the forces are applied. The 
stress field that was supposed to be modelled is not accurately reproduced throughout 
the cell. As this effect is less important for displacements driven simulations (see Figure 
3.40(a)), one hypothesis is that the perturbations can be due to the fact that the method 
to distribute the forces on the individual nodes is not adequate because the simulation 
corresponds to a case of large displacements.  

3.7.3.2 Cell with transition zone 

To limit the problems encountered in the previous section relative to the 
perturbations of the stress field along the boundaries, a transition zone has been added 
to the model. The boundary conditions (forces or displacements) are applied along the 
edges of this transition zone, which reduces the boundary effect on the cell itself. 

 

L

L

L
L

2L

 
Figure 3.37. Representative cell with a transition zone. 

For the following simulations, the representative cell is surrounded by a 
transition zone whose size is calculated as represented in Figure 3.37. Each zone is 
meshed independently in order to facilitate the imposition of adequate mesh densities 
within the different part of the structure. The same number of divisions is imposed on 
the boundaries of each zone to allow the connection of the different meshes. If the mesh 
for the representative cell contains x elements, the numbering of the nodes for the 
transition zone will start at 1x + . A technique using ‘duplicata’ nodes is then used to 
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realise the bonding between the two meshes, i.e. that the two nodes that are localized at 
the same geometrical position will be allocated the same degree of freedom numbers 
within the global finite element vector of unknowns, although the nodes numbers are 
different. During the finite element calculation, the displacements associated to the two 
nodes will be identical, i.e. that from the finite element point of view the two nodes are 
considered as a single one. 

For testing purpose, the simulations have been initially realised using a 
structured mesh without interface elements. Then a mesh with interface elements has 
been created. In order to be as close as possible to realistic case studies, a grain structure 
based on an actual steel microstructure has been modelled. 

Structured mesh without interface elements 
The cell of Figure 3.36 has been surrounded by a transition zone as defined by 

Figure 3.37. The same loading case has been applied as in section 3.7.3.1, i.e. a linear 
distributed force. The total load is 780 , where t is the time.  Nt Figure 3.38 corresponds 

to the instant . 5 st =
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 (a) xσ [MPa]  (b) zσ [MPa] (c) xzτ  [MPa] 

Figure 3.38. Forces driven simulation on an homogeneous cell with transition zone. 

The results obtained with the transition zone show a better accuracy than those 
obtained without the transition zone. Perturbations are still present around the edges but 
the imposed stress field is well represented in the middle of structure where the 
representative cell is located. However, the evolution of the stress zσ  is not strictly 

linear. This is due to the fact that the calculations of the distribution of the forces have 
been done using the hypothesis of small deformations but the example of Figure 3.38 is 
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actually in large deformations. Given the levels reached, the stresses xσ  and xzτ  are 

considered to be equal to zero as required in the zone corresponding to the 
representative cell. 

Realistic mesh with interface elements 
Initially, a linear displacements distribution has been applied to the structure as 

shown in Figure 3.39. In this case the objective was not to apply a given strain field but 
to produce conditions favourable to crack initiation and propagation for testing purpose. 
The value of the enforced displacement is , where  is the displacement 

along the z-axis, t the time and x the coordinate in the horizontal direction. The  sign 
is used to differentiate between the upper 

310w t−= ± x w

±
( )+  and lower ( )−  edge of the structure. The 

loading history is radial, i.e. that the displacements field is applied following constant 
displacement rate. The horizontal displacements are free. One single node is fixed 
horizontally (middle node of left vertical edge) to avoid rigid body motion. 

 

    

ez 

ex

Figure 3.39. Mesh and enforced displacements for a realistic representative cell surrounded by 
a transition zone. 

The results of the simulation are shown in Figure 3.40, which represents the 
stress zσ  at different times between t 45 s=  and t 70 s= . An automatic strategy is 
used for the choice of the time step with a maximum step 1t sΔ = . The time step is then 

updated automatically during the simulation to optimize the convergence. The 
automatic procedure for the choice of time step checks the number of successive 
iterations before convergence and updates the time step by dividing or multiplying it 
according to the input parameters provided by the user (maximum and minimum time 
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step, maximum number of iterations in one step before reducing the time step, number 
of successive converged iterations without reducing the step before increasing the time 
step, number by which the time step has to be divided in case of non convergence). In 
this specific example, it can be noticed that the time step is automatically reduced when 
a major change appears in the simulation, e.g. when a new crack initiates or when 
several integration points reach the fracture threshold at the time. These events 
introduce perturbations in the simulation and the use of smaller time steps usually 
improves the convergence. When the perturbation has been handled, the step size 
increases usually automatically. In the example of Figure 3.40, the total number of steps 
for the simulation (whose total duration is 70 ) is 500 steps, i.e an average step 

.  
 s

0.14 stΔ =
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Figure 3.40. Crack initiation in a cell with transition zone for a displacements driven 
simulation. 
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The analysis of Figure 3.40 shows that several cracks initiate successively in the 
structure. Before the crack initiates, at 45 st = , it can be checked that the stress 
distribution in the mesh is consistent with the applied load, i.e. close to a constant along 
z and presenting a linear variation along x. The small deviation from linearity is due to 
the fact that large deformations are imposed and that a non-linear constitutive law is 
used. At , a first crack initiates along a grain boundary that is perpendicular to 
the direction of the maximum principal stress. At 

50 st =
55 st = , a second crack has appeared 

as shown by the zero stress zone in the figure. The propagation of the two cracks can be 
followed on from t = 55 s to t = 70s. The stresses concentrate around the crack tip and 
decrease on the border of the crack. The size of the mesoscopic cell was initially chosen 
to analyse the initiation of the cracks. To analyse properly the propagation phase, a 
larger cell would be necessary. Indeed, in the present case, perturbations in the stress 
levels appear at the junction between the representative cell and surrounding zone when 
cracks are propagating. This is due to the fact that no propagation is allowed in the 
transition zone, which does not contain any interface elements by definition. 
Nevertheless, this example proves the stability of the code when interface elements are 
de-bonding and constitutes a first demonstration of the ability of the code to handle 
crack initiation and propagation. 

Figure 3.41 corresponds to a forces driven simulation. For initial testing purpose, 
the objective is to apply a distributed force in the z-direction that varies linearly along x. 
In this example, it can be seen that the deformations have to reach a relatively high 
value before leading to crack initiation.  
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Figure 3.41. Crack initiation in a cell with transition zone for a forces driven simulation. 
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The conditions in terms of stresses and strains are totally different than those 
modelled in Figure 3.40. The objective was not to reproduce the same loading history in 
both cases but just to apply a linear load that leads to stresses and strain rates in a range 
corresponding to a continuous casting application. As for the previous model, the 
deviations from the linear case are due to the fact that a non-linear constitutive law is 
used and that large deformations, for which no corrections have been made with regard 
to the forces distribution in this demonstration example, occur. 

Crack initiation is detected at time 70 st =  in Figure 3.41 but after that event, 
the simulation presents convergence difficulties and it is not possible to proceed further. 
The calculation is less stable for forces driven simulations that for displacements driven 
simulations because the perturbation introduced after one integration point has 
disconnected from its foundation is not restrained by the imposed geometry. Therefore, 
it can be concluded than crack initiation can be analysed by force driven simulations but 
that it is better to used displacements driven simulations whenever possible because 
they have better convergence properties, especially when the crack propagation path has 
to be followed. 

Other advantages of the transition zone 
The necessity to use a transition zone has been confirmed through the previous 

examples. Indeed, the transition zone eliminates the boundary effect and assures that the 
correct stress, strain and strain rates fields are reproduce inside the representative cell. 
Another advantage is that when the displacements and forces to be applied to the edges 
of the transition zone have been defined to reproduce the desired loading fields, it is 
possible to place another representative cell inside the model without having to redefine 
the boundary conditions. This allows to run comparative simulations with different 
representative cells easily. 

If the external nodes of the transition zone match nodes of the macroscopic 
simulation, it is possible to transfer the displacements or forces directly from the 
macroscopic model to the mesoscopic model without having to recalculate the stresses 
and strains. This approach, which is illustrated in Figure 2.7(a), has been used by Kiss 
and Dunai (2002). It can be useful if the size of the zones to be studied mesoscopically 
is large enough compared to the size of the mesoscopic model and if the surface of the 
cell where the crack initiates is free. 
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Figure 3.42. Example of enforced displacements on a cell with transition zone. 

For the crack to propagate, it is necessary to leave the edge of the mesoscopic 
cell free of any enforced displacements, otherwise the movements are limited and the 
crack does not open itself. The transition zone allows to reproduce the displacements of 
the edge of the slab just above and underneath the representative cell as shown in Figure 
3.42. Then, the free edge of the representative cell follows the general movement of the 
slab. 

3.8 SUMMARY AND CONCLUSIONS 

This chapter has focused on the presentation of the mesoscopic finite element 
model which comprises solid and interface elements. The solid elements are associated 
with a modified Norton-Hoff constitutive law that describes the elastic-viscous-plastic 
material behaviour at elevated temperature. This law is used for the modelling of the 
material inside the grains and also as the macroscopic constitutive law for the parent 
simulations. The interface elements are used for the modelling of the damage at the 
grain boundaries, they are associated with a damage law that includes grain boundary 
sliding and voids nucleation, growth and coalescence by diffusion and creep 
deformations. 

 Preliminary simulations have been performed on simple representative cells to 
study and validate the mesoscopic model.  The penalty coefficients ks and kn have been 
defined so that the softer zone introduced in the finite element mesh due to the presence 
of interface elements does not influence the results before damage occurs. It has been 
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shown that this condition is respected for ks = kn = 100 000 MPa/mm and that these 
values lead to good convergence properties.  

It has been demonstrated through simulations with a mesh representing real 
grains that it is possible to follow the initiation and propagation of cracks with the 
approach developed. Generally, displacements driven simulations give better stability in 
terms of convergence and crack propagation than forces driven simulations. Finally, the 
necessity to introduce a transition zone for the transfer of data between the macroscopic 
and mesoscopic models has been highlighted. 
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Chapter 4 

4 Identification of the material parameters

4.1 DESCRIPTION OF THE PARAMETERS IDENTIFICATION METHOD  

The elaboration of the model and the definition of the material parameters 
require microscopic, macroscopic and damage experiments. The experimental program 
is summarized in Figure 4.1, which also defines the relations between the experimental 
analyses and the numerical developments. 
 

NUMERICAL MODELS 

Mesoscopic cell 
Grains and grain 

boundaries 
represented by 

specific FE with 
adapted 

constitutive laws 

Macroscopic 
model 

The thermo-
mechanical state is 

extracted from a 
macroscopic model 

and is applied to 
the mesoscopic cell 

Microscopic study 
• Visualization of the cracks 
• Microstructure identification 

Macroscopic study 
• Compression tests to identify 

the parameters of the elastic-
viscous-plastic law 

Damage study 
• Tensile tests on cylindrical and 

notched specimens 
• Compression tests with acoustic 

emission analysis 

EXPERIMENTAL TESTS 

 
Figure 4.1. Links between the experimental and numerical studies. 
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The microscopic study comprises metallographical analyses which are used to 
visualize existing cracks on a rejected industrial product and to establish the 
microstructure of the material to be modelled. The determination of the actual size and 
shape of the grains is an essential step towards the definition of the mesoscopic 
numerical model as it defines the geometrical characteristics of the mesoscopic cell.  

The macroscopic study consists in compression tests which are used to identify 
the elastic-viscous-plastic constitutive law of the studied steel. This material law is 
introduced within the macroscopic and mesoscopic numerical models for both the 
simulations of the damage tests and the continuous casting applications. 

The damage study comprises tensile tests on cylindrical and notched specimens 
that are used to check the low ductility zone for the studied steel and acoustic tests that 
allow the determination of the moment of initiation of the first crack in the specimen 
using an acoustic emission technique. The finite element simulations of the acoustic 
tests give the macroscopic data to be applied on the mesoscopic cell for the 
identification of the damage law parameters.  

After a brief description of the characteristics of the material provided for the 
analysis, the three parts of the experimental study are presented successively in the next 
sections together with the information that can be extracted from the analyses. Finally, 
the identification of the parameters specific to the interface law for the studied material 
is carried out in the last section using the data gathered throughout this chapter.  

4.2 THE STUDIED MATERIAL 

The study concerns micro-alloyed steels with carbon content inferior to 0.1 wt% 
(weight percentage). Two different steel grades have been provided successively by the 
industrial partner. The chemical composition of the two variants is given in Table 4.1.  
 

Table 4.1. Chemical composition in wt%1. 

Steel grade C Mn N Al Nb V S 

A 0.06-0.09 0.32-0.47 0.009-0.013 0.02-0.06 ≅ 0 0.04-0.06 0-0.012 
B 0.07-0.1 0.5-0.65 0-0.008 0.02-0.06 0.03-0.045 ≅ 0 0-0.009 

1Values for some elements have been hidden in the published version for proprietary reasons. 

Initially, two blocks of material cut from a rejected slab, whose composition 
corresponds to steel grade A, have been provided. The critical element responsible for 

 - 100 - 



Chapter 4 - Identification of the material parameters 

transverse cracking present in this alloy is the vanadium. The dimensions of the two 
blocks are the following: 200 mm wide (along the width of the slab cross section), 220 
mm high (along the height of the slab cross section) and 100 mm thick (along the 
casting direction). They were localized on each side of the original slab and they include 
the corner and the lateral surface of the slab which are the critical zones for transverse 
crack initiation (see Figure 4.2). Cracks were visible to the unaided eye on the block 
extracted from the left hand side of slab. Therefore, the first microscopic observations 
have been made using a cut out of this particular block. 
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200 mm  
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ex
ez

Figure 4.2. Position of the first two blocks extracted from the slab of steel grade A. 

Later on, a second steel, whose composition corresponds to steel grade B, has 
been chosen in consultation with the industrial partner to pursue the analysis. The 
reason invocated to use another alloy is that it is a more representative material with 
regard to crack appearance (presence of niobium) within the company; indeed among 
the various steel grades produced by the industrial partner at the beginning of the 
project, steels containing niobium were more numerous. The use of this second steel 
grade is also relevant due to the higher availability of the material.  It has been provided 
in the form of a 100 mm thick slice of slab. The slice has been cut into several blocks of 
roughly 200 mm width to facilitate the transport. The height of the blocks is 220 mm 
corresponding to the height of the slab itself.  

The analysis of the chemical composition of the material informs on the nature 
of the precipitates which could be present at the grain boundaries and influence the 
fracture behaviour of the material as mentioned in section 2.2.1. As the effects of the 
vanadium and niobium constituents on transverse cracking are similar, i.e. the formation 
of precipitates at the grain boundaries that constitute initiation sites for cracks, it is 
supposed that the cracks observed on the first steel grade (A) can be used as a reference 
for the study, the way of propagation should be the same for the two variants.  
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4.3 MICROSCOPIC STUDY 

The experimental analyses at the microscopic level aim at visualizing transverse 
cracks on actual continuous casting specimens and at observing the grain microstructure 
for the definition of the mesoscopic finite element model. They have been carried out in 
the laboratory of Metallurgy at the University of Liège using two types of microscopes: 
an optical microscope (stereo microscope) for initial visualization and definition of the 
grains size and shape; and a scanning electron microscope (S.E.M.) for further analysis 
of the crack content.   

4.3.1 OPTICAL MICROSCOPY 

4.3.1.1 Crack observations 

Observations have been made by optical microscopy in order to analyze more 
precisely the cracks that were detected on the surface of the left hand side block 
extracted from the slab of steel grade A.  
 
 

 

2 mm 

ex 

ez

Figure 4.3. Transverse crack.  
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Figure 4.4. Star crack. 

Two types of cracks have been visualized: a star crack and a transverse crack as 
shown in Figure 4.3 and Figure 4.4, respectively. They were localized on the upper 
surface, close to the corner of the slab, within a distance of 30 mm from the edge. The 
photos confirm that the cracks propagate along the grain boundaries; indeed the cracks 
path is constituted of broken lines which reflect a grain boundaries pattern. A complete 
grain contour is also distinguishable in Figure 4.3. As creep cracks in continuous casting 
arise at high temperature when the steel is in the austenite phase, the grain boundaries 
observed through the crack path are austenitic grain boundaries. These observations 
give a first estimation of the austenitic grain size of the order of magnitude of the 
millimetre. This is surprisingly high for an austenitic grain whose diameter is usually 
closer to 50 microns according to metallurgy experts, although the existence of very 
coarse grains may be explained by the particularity of the solidification process in 
continuous casting. 

4.3.1.2 Determination of the austenite grain size and microscopic structure 

Metallographic analyses have been carried out to establish the microstructure of 
the material and to deduce a suitable representative mesh for the finite element 
simulations. These analyses have been performed using the second batch of specimens 
(steel grade B). 
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The objective of the microscopic observations is also to determine the austenitic 
grain size along different orientations in the slab; therefore various sections of the slab 
need to be observed. The different surfaces analysed by optical microscopy are 
represented in Figure 4.5. Sections A and B are localized in the critical zone for crack 
initiation, i.e. on the lateral face or close to the corner on the upper surface of the slab. 
Sections C and D are localized further towards the middle of the slab. The combination 
of the different observations will inform on the three-dimensional aspect of the grains 
microstructure. 

In order to reveal the austenitic grain boundaries, each of the surfaces defined in 
Figure 4.5 have been etched using picric acid. This particular chemical treatment has 
been realized following the modified Bechet-Beaujard instructions as described in 
Appendix B. Initially, the chemical treatment has been applied for 3 minutes on each of 
the specimens. After the picric acid etching, the four surfaces have been analysed using 
an optical microscope at low magnification with a view to observing the austenitic 
grains. 
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Figure 4.5. Observed surfaces. 

For surfaces B and D, the boundaries of the austenitic grains are clearly marked; 
but this is not the case for surface A and C although the experiment has been exactly 
done in the same conditions as for surfaces B and D. As the micrographs obtained for 
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surfaces A and C did not reveal the austenitic microstructure after the initial chemical 
etching, the treatment with picric acid has been prolonged up to 12 minutes but the 
austenitic grains structure still did not appear after the prolonged treatment and surfaces 
A and C had to be excluded from the analysis. 

The micrographs obtained by optical microscopy after the successful chemical 
treatment on surfaces B and D are presented in Appendix B. A total of 44 images have 
been taken to scan the two surfaces B and D; Figure 4.6 and Figure 4.7 indicate the 
position of these images for sample B and D, respectively. 
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Figure 4.6. Division of the sample and numbering of the images for surface B. 
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Figure 4.7. Division of the sample and  numbering of the images for surface D. 

Considering surface B, the whole slab is scanned through its height, from top to 
bottom, close to the lateral surface. Actually, the images are taken at a few millimetres 
under the surface as the specimen has been machined to obtain flat surfaces before 
being polished and prepared for the chemical treatment. The 2D model will be built 
using the images taken from surface B, which corresponds to the plan  of the slab, 

i.e. to the type 3 section of Figure 3.31. Using the complete set of images for surface B 
(

y z−

Figure 4.6), it is possible to analyse the grain size gradient along the height of the 
lateral surface of the slab. The images corresponding to the two zones close to the upper 
surface of the slab (Bh1 and Bb1) are particularly useful for the creation of a realistic 
representative mesh for the simulation. Indeed, these images correspond to a zone that is 
close to both the lateral and upper surfaces of the slab. 

The analysis of surface D gives the grain size in the centre of the slab in an 
x y−  plan, which is useful for the estimation of a 3D grain size. 
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Analysis of the images 

Standard used 

The ASTM E112-63 standard published by the American Society for Testing 
and Materials has been followed to measure the grain size. Three different methods are 
proposed in this standard: the method by comparison, the method by intercepts and the 
planimetric method. 

The comparison method consists in comparing the images with a data base of 
images, each of those images corresponding to a predefined grain size.  

The intercept procedure consists in counting the number of grains intercepted by 
one ore more straight lines, sufficiently long to yield at least 50 intercepts. By averaging 
on several lines and accounting for the appropriate scale used to plot the images, it is 
possible to obtain an average grain size for the particular location analysed in the 
sample. For non-equiaxed structures, it is possible to measure the grain size using lines 
oriented along the three principal directions of the sample.  

The planimetric method consists in counting the number of grains inside a circle 
or rectangle whose area equals 5000 mm2, this area being the actual area on the plotted 
image and being independent of the scale at which the image has been plotted. The 
grains that cut the boundary are counted as half a grain. Knowing the scale used to plot 
the images, it is possible to calculate the equivalent number of grains by square 
millimetre of material and consequently the average grain diameter.  

Observation of the grain boundaries and determination of the austenite grain size  

The planimetric technique has been used for the analyses of the grain size and its 
gradient as it appears to be the most precise of the three methods. In the one hand, it 
includes a much larger number of grains in the count compared to the intercept method, 
which leads to a better average; and on the other hand it is more reliable than a 
comparison method where expert judgement is necessary.  

After having drawn circles of area 5000 mm2 on each image, the grains contours 
have been highlighted using black ink before counting them. Generally, the grain 
boundaries were immediately visible on the images from the centre of the slab while it 
was more difficult to see them on some of the images corresponding to area close to the 
upper or lower surface of the slab. The contrasts on the images were better perceived 
using additional light. In this case, finer contours appeared on all the images and all the 
actual austenitic grains were highlighted. To calculate the gradient, it is necessary to 
measure the size along the whole height of the sample but for the purpose of the 

 - 106 - 



Chapter 4 - Identification of the material parameters 

modelling, it is also essential to have a measure close to the upper and lower surfaces, 
which are the most critical zones for crack initiation.  

Results of the measurements 

Table 4.2 and Table 4.3 comprise the number of grains observed for each zone 
as well as the calculated grain diameters. The image numbers have been defined in 
Figure 4.6 and Figure 4.7. 
 

Table 4.2. Measurement of the grain size for surface B 
(on the lateral face, from the upper to the lower face of the slab).  

Position for the 
measure [mm] Image number Number of 

grains 
Average number 

of grains 
Average grain 
diameter [mm] 

Bh1 135 7.69 
(Top) Bb1 133.5 

134.25 1.06 

Bh2 116.5 
23.08 

Bb2 90.5 
103.5 1.21 

Bh3 108.5 
38.46 

Bb3 106 
107.25 1.19 

Bh4 123.5 
53.85 

Bb4 100.5 
112 1.16 

Bh5 67 
69.23 

Bb5 71.5 
69.25 1.48 

Bh6 77.5 
84.62 

Bb6 87 
82.25 1.35 

Bh7 57.5 100.00 
(Middle) Bb7 75.5 

66.5 1.51 

Bh8 58.5 
115.38 

Bb8 81 
69.75 1.47 

Bh9 75.5 
130.77 

Bb9 111 
93.25 1.27 

Bh10 82 
146.15 

Bb10 173.5 
127.75 1.09 

Bh11 92.5 
161.54 

Bb11 139.5 
116 1.14 

Bh12 120.5 
176.92 

Bb12 168.5 
144.5 1.02 

Bh13 150 192.31 
(Bottom) Bb13 172 

161 0.97 
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Table 4.3. Measurement of the grain size for surface D 
(at a constant height in the middle of the slab, variation along the x-axis). 

Position for the 
measure [mm] Image number Number of 

grains 
Average number 

of grains 
Average grain 
diameter [mm] 

Dh1 71.5 
7.23 

Db1 128 
99.75 1.23 

Dh2 95.5 
20.77 

Db2 150 
122.75 1.11 

Dh3 94 
34.62 

Db3 148.5 
121.25 1.11 

Dh4 94.5 
50.00 

Db4 157 
125.75 1.09 

Dh5 73.5 
66.15 

Db5 163 
118.25 1.13 

Dh6 78 
82.31 

Db6 131 
104.5 1.20 

Dh7 110 
97.69 

Db7 128.5 
119.25 1.12 

Dh8 106 
110.77 

Db8 123.5 
114.75 1.15 

 

Two micrographs were available for each location and the grain size has been 
calculated as an average between the two images. The position of the measure 
corresponds to the distance from the side of the specimen as defined in Figure 4.5 to the 
centre of the image, going from top to bottom for specimen B and from left to right for 
specimen D. 
 

Conclusions 
The measurement of the grain size is not a straightforward task. In the particular 

example of the austenitic microstructure, it is also affected by the quality of the images 
after the etching process and by the capacity of the observer to perceive the contrasts on 
the images. 

From the measurements on surface B, it emerges that the grain size presents a 
gradient along the height of the slab (Table 4.2). For the surface D, the grain size 
observed is almost constant (Table 4.3), which is logical as the measures are taken in 
the middle of the slab, far from the lateral surface and at a constant depth. This 
tendencies are illustrated in Figure 4.8 where the points corresponding to the surface B 
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show large variations, with a maximum at mid-height, and those measured on surface D 
are localized around 1.1 mm. 
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Figure 4.8. Average grain diameter measured on surface B and D. 

Finally, it can be concluded that the observed grain size is approximately 1 mm 
for the zone close to the surface analysed in this study, which confirms the rough 
estimate of section 4.3.1.1. 

4.3.2 S.E.M. ANALYSIS 

The analyses of the surface of steel A with the optical microscope have revealed 
that the cracks were filled in with an unknown interstitial substance in certain areas (see 
Figure 4.3). It has been necessary to determine the composition of this substance by 
S.E.M. analysis because its presence was not expected in these specimens. Indeed, if 
this substance comes from the slag that could contradict the assumption that the cracks 
appear in the unbending zone of the continuous casting machine. 

An X-ray spectral analysis has been carried out on the specimen (Lecomte-
Beckers and Tchoufang 2000). A couple of points have been analysed in the first 
instance to define qualitatively the global composition of the steel. In a second phase, 
the focus has been on several points inside the cracks to check if their content was 
different from the elements found in the first observations.  
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The results of the spectral analysis show that the substance inside the crack is 
composed in the majority of calcium, sodium, potassium, chlorine and titanium. These 
elements are present mostly in the interstitial substance and are quasi absent from the 
original alloy. 

After discussion with continuous casting process experts, it appears that those 
elements could come from all the environment of the continuous casting machine and 
especially from the cooling water which streams on the slab surface during the whole 
process. So the assumption that the cracks appear during the unbending phase is not 
contradicted. 

4.4 MACROSCOPIC STUDY 

The objective of the macroscopic analysis is to provide experimental results to 
be used for the calibration of the modified Norton-Hoff law presented in section 3.3.2. 
To obtain representative characteristic curves of the material for this study, experiments 
have been carried out at various temperatures and strain rates which have to cover the 
ranges encountered in continuous casting and especially in the unbending zone of the 
machine. 

The macroscopic study consists in compression tests of cylindrical specimens 
during which force-displacement curves are recorded and post-processed to provide 
stress-strain curves. Various strain rates (ε&  = 10-2, 10-3 and 10-4 s-1) and  temperatures 
(T = 700, 800, 900, 1000, 1100 and 1200 °C) have been tested and compared with 
analytical computations in order to identify the parameters p1 to p4 of equation (3.1). A 
thermal treatment that aimed at reproducing the thermal cycle of continuous casting had 
been applied on each test sample before compression. 

4.4.1 PREPARATION OF THE SPECIMENS 

The macroscopic compression experiments have been carried out on steel grade 
B (see Table 4.1). The specimens for testing have been machined out of the blocks 
provided by the industrial partner as shown in Figure 4.9. As the cracks appear on the 
surface of the slab, only the upper and lower surfaces of the block were used for 
sampling to assure that the surface material chemical composition was recovered for the 
experimental testing. Only two of the blocks containing part of the lateral surface of the 
slab were available, so it has been decided to use only the upper and lower surfaces of 
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the middle blocks for reproducibility, one of the lateral block having already been used 
for the microscopic analysis. 
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Figure 4.9. Sampling of test specimens. 

Before testing, the specimens have been heated up to a temperature above the 
testing temperature. This step is necessary to dissolve the precipitates which are present 
in the ferritic phase of the steel at room temperature and to recover an austenitic 
microstructure close to the one existing in the continuous casting. The objective is to be 
in as-cast conditions for the mechanical testing (Bernard et al. 1978, Revaux et al. 
1994, Mintz 1999). Figure 4.10 shows an example of heating cycle used during the 
study, where typical heating rates are proposed. The particular conditions applied before 
each specific experiment are specified hereafter when discussing the tests themselves as 
the same cycle could not be used for all the experiments due to the various 
characteristics of the different equipments available in each laboratory. 

 
 
  OA : 25 °C/min 
 AB : 10 °C/min 
 BC : 1 min 
 CD : ≅ 50 °C/min
 
 A = 1100 °C 
      B = 1375 °C 
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Figure 4.10. Thermal cycle applied before the experiments to simulate as-cast conditions. 

- 111 - 



FE mesoscopic analysis of damage in microalloyed CC steels at high temperature 

4.4.2 DESCRIPTION OF THE COMPRESSION TESTS 

Two sets of uniaxial compression tests have been performed: the first one has 
been carried out at the Institute for Metal Forming (IBF) – RWTH Aachen – as a 
prelude to the acoustic tests that are described in section 4.5.2; and the second one in 
house at the laboratory of Materials and Structures of the University of Liège in order to 
complete the data set. Throughout this section, the letter A refers to the tests realised in 
Aachen, whereas the letter L refers to those realised in Liège.  

Cylindrical specimens have been machined in the respective laboratories in 
accordance with the standard size used for this type of tests. The specimen size is of the 
same order of magnitude in both laboratories although slightly different: diameter ×  
height = 14 mm ×  21 mm for A specimens and 13 mm ×  20 mm for L specimens. 

The A tests have been carried out in an compression machine equipped with an 
induction furnace. The thermal cycle shown in Figure 4.10 has been respected for these 
specimens, which were maintained at a temperature of 1375 °C for 1 minute before 
cooling down to the test temperature.  

The L tests have been carried out in an compression machine equipped with a 
radiation furnace. Due to the characteristics of the furnace available in Liège, L 
specimens could only be heated up to a temperature of 1150 °C before the compression 
tests. A thermal history similar to the one defined in Figure 4.10 has been applied but 
with the plateau BC at 1150 °C. In practice, the reproduction of the temperature cycle is 
well respected. This affirmation has been checked by recording the temperature in the 
specimen during the tests using thermocouples. For example, it has been verified that 
the variations in the temperature level during the compression test at 800 °C and ε&  = 
10-3 s-1 were inferior to 0.5 °C (Moureaux 2001), which indicates that the temperature 
regulation is very precise. 

All compression tests have been carried out on vertical upsetting machines 
equipped with a regulation system allowing the application of a constant strain rate. The 
vertical displacement of the upsetting plates is controlled in order to impose the given 
strain rate. During the tests, the variation of the load is recorded as a function of the 
time. Each laboratory has its own evaluation piece of software which allows converting 
the load – displacement curves recorded during the tests into true stress – true strain 
curves. These conversion programs incorporate corrections to account for the barrel 
effect on the cylindrical specimens due to both the deformation and thermal expansion 
and allow the definition of the physical stresses and strains in the material. 
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Table 4.4 summarizes the experimental conditions for all the compression tests 
carried out as well as the number of specimens tested for each parameters combination. 
The observation of the specimens of type A after compression indicates that the 
composition of the material after the thermal cycle of Figure 4.10 may have been 
inhomogeneous for some of the specimens. Indeed, due to inhomogeneities in the 
material microstructure, no homogeneous deformation was realizable during the 
compression tests for several of the specimens and the flow curves recorded had to be 
considered critically. This affirmation is confirmed by the observation of the deformed 
specimens which show an asymmetric geometry. In particular, the A test at 1100 °C and 
ε&  = 10-3 s-1 had to be rejected due to an irregular behaviour at the beginning of the 
curve probably due to a strong inhomogeneity within the sample (Tschirnich 2000); the 
A test at 1100 °C and ε&  = 10-2 s-1 was also rejected because the level of the curve was 
incoherent with the other data collected (see Figure 4.11). Some of the A tests at the 
lowest strain rates and highest temperatures failed (Tschirnich 2000) and no results 
were provided for these tests. It is assumed that the limitation of the machine is reached 
at ε&  = 10-4 s-1 and therefore all the A tests at this strain rate have been excluded from 
the analysis except for the test at 700 °C which presents a coherent behaviour when 
compared with the tests at the other strain rates (see Figure 4.13). 
 

Table 4.4.  Summary of the experimental tests carried out. 

T [°C] &ε = 10-2 s-1 &ε = 10-3 s-1 &ε = 10-4 s-1

700 1 ×  A 1 ×  A 1 ×  A 
1 ×  A 1 ×  A 1 ×  A (failed) 

800 
- 2 ×  L 2 ×  L 

1 ×  A 1 ×  A 1 ×  A (rejected) 
900 

- 2 ×  L 2 ×  L 
1 ×  A 1 ×  A 1 ×  A (failed) 

1000 
- - 2 ×  L 

1 ×  A (rejected) 1 ×  A (rejected) - 
1100 

2 ×  L 2 ×  L 2 ×  L 
1200 1 ×  A (failed) 1 ×  A (failed) 1 ×  A (failed) 

 

The choice of the combination parameters for the L tests has been initially 
dictated by the missing data. The L tests at ε&  = 10-3 s-1 (800 °C and 900 °C) have been 
added to the experimental program in order to analyse the sensibility of the stress-strain 
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curves to the strain rate and temperature for the specific testing conditions available in 
Liège. The L tests at ε&  = 10-2 s-1 and 10-3 s-1 have been carried out on a compression 
machine whose maximum load is 40 tons; whereas the L tests at ε&  = 10-4 s-1  have been 
carried on another compression machine, whose maximum load is 10 tons, allowing a 
better regulation of the velocity at very low strain rates. The analysis of the deformation 
curves as a function of the time shows that the recorded strain rates are constant and 
correspond to the imposed values within a 10% error band (Moureaux 2001). Two tests 
have been carried out for each of the combinations tested.  

4.4.3 ANALYSIS OF THE FLOW CURVES 

The results of the compression tests have been provided directly in terms of flow 
curves, i.e. stress – strain curves (Tschirnich 2000, Moureaux 2001). Figure 4.11 to 
Figure 4.13 show the complete set of experimental data available for the analysis, each 
figure corresponding to one strain rate. The curves that were finally rejected from the 
analysis, as mentioned in Table 4.4, are also presented on these graphs.  

A first comment on the results is that the testing conditions were not the same in 
the two laboratories and therefore it is not surprising to get differences in the curves 
obtained. In particular, the annealing at 1375 °C for the A tests must be sufficient to 
dissolve the carbonitrides present in the original alloy whereas they are probably not 
dissolved for the L tests where the maximum temperature reached before testing is only 
1150 °C and this could lead to different rigidities of the specimens. Discussions with 
experts have confirmed that dispersion of the results between different laboratories is 
frequent and that tests at very low strain rates are always challenging. They also agree 
that the rigidity at low strains for the A tests seems unusual and that the L tests are in 
better correspondence with the behaviours normally observed for this type of curves.  

The analysis of the results confirms that globally, the rigidity of the material 
decreases with the temperature, apart from the L tests at T = 800 °C for ε&  = 10-3 s-1 and 
10-4 s-1 where a different behaviour is observed. At ε&  = 10-3 s-1, the L tests at 800 °C 
present a lower rigidity than those at 900 °C for the larger strains as illustrated in Figure 
4.12. At ε&  = 10-4 s-1, the L tests at 800 °C present a rigidity similar to those at 1000 °C 
for the entire range of strains, as shown in Figure 4.13. The austenite – ferrite 
transformation that occurs around 800 °C may explain this type of behaviour, the two 
microstructures leading to different rigidities of the material. 

Some of the L tests present a profile that is characteristic of the recrystallisation 
process. In particular, the oscillations observed at T = 1000 and 1100 °C in Figure 4.13 
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(ε&  = 10-4 s-1) are typical of a recrystallisation behaviour. This phenomenon is also 
observed for the maximum equivalent stress at the beginning of the curve for the L tests 
at T = 1100 °C in Figure 4.11 (ε&  = 10-2 s-1) and for the L tests at T = 1100 °C in Figure 
4.12 (ε&  = 10-3 s-1 ). Such recrystallisation patterns are not observed for the A tests in the 
austenitic phase (i.e. when T = 900, 1000 and 1100 °C).  
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Figure 4.11. Experimental flow curves at ε& = 10-2 s-1. 
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Figure 4.12. Experimental flow curves at ε& = 10-3 s-1. 
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A softening effect is observed for the experiments at T = 700 and 800 °C for the 
A tests. At these temperatures, the material comprises a mixture of austenite and ferrite 
and the decreasing of the curves at the higher strains suggests a recrystallisation 
process. For the other temperatures, the equivalent stress continues to increase slightly 
with the equivalent strain for the whole range of strain tested. For the L tests, all the 
curves present at least a small softening effect or a plateau. 
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Figure 4.13. Experimental flow curves at ε& = 10-4 s-1. 

As highlighted here before, lots of physical phenomena come into play when 
carrying out compression experiments within the range of temperatures and strain rates 
necessary for this analysis. It is admitted that it is not possible to define with certitude 
which results are the closest to the actual continuous casting behaviour but it is also 
acknowledged that the experimental curves are in a whole representative of the material 
to be modelled and, in this respect, suitable for the definition of a typical constitutive 
law to be used for the modelling of the material analysed in this study. 

4.4.4 IDENTIFICATION OF THE PARAMETERS OF MODIFIED NORTON-HOFF LAW 

The parameters identification has been done using a least squares method for 
each temperature to determine the parameters p1 to p4 of the modified Norton-Hoff law 
given by equation (3.1) (Remy 2002a). R2 is the variable that is minimized in the 
problem. It is a measure of the difference between the experimental data and the 
simulated curves. R2 is given by the normalized sum of the quadratic differences 
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between the experimental data and equation (3.1) for all the experimental curves 
available at each temperature. The normalization is carried out by dividing the sum of 
the quadratic differences by the number of data point minus the number of parameters 
to be fitted (i.e. 4 in the present case). To avoid privileging the L tests in comparison 
with the A tests, a weight factor of 0.5 is used when accounting for the L tests as two 
experiments of type L where carried out for each combination of temperatures and 
strain rates tested whereas only one of type A was realised for each combination. 

The results of the identification can be found in Table 4.5. R is also given in this 
table; it is a different value for each temperature which gives an idea of the quality of 
the identification. R becomes zero when the difference between the data points and the 
fitted curve is zero.  
 

Table 4.5.  Parameters of the modified Norton-Hoff law (Pecquet 2003); units consistent with 
an equivalent stress eσ  measured in MPa. 

T [°C] p1 p2 p3 p4 R 

700 0.2476 156.107 0.115 0.067 9.737 
800 0.7749 303.085 0.231 0.203 19.762 
900 0.0465 125.001 0.155 0.210 15.119 

1000 0.0014 53.692 0.099 0.193 5.612 
1100 0.8429 65.402 0.148 0.193 3.585 

 

 The softening parameter p1 should not influence the results of the macroscopic 
continuous casting model as it has principally an effect in the large strains that will not 
appear in this process. Nevertheless, it is important to have an accurate model at larger 
strains for the acoustic tests simulations used to identify the damage parameters and in 
case of localised higher strains due to the grain configuration in the mesoscopic cell. 
The parameter p2 influences the maximum value of the stress but the global effect on 
the curve level is also strongly linked to the hardening and softening parameters. The 
viscosity parameter p3 and the hardening parameter p4 lie almost in the interval 0.1 – 
0.2, which fits with usual values found for steel. p3 does not increase monotonously as 
could have been expected for the majority of steel grades.  This type of behaviour has 
also been found in the literature for several low carbon steel grades (Altan et al. 1983), 
which is the type of steel used in this study.  
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Figure 4.14. Variation of the four parameters given in Table 4.5 with the temperature; units 
consistent with an equivalent stress eσ  measured in MPa. 

The four parameters of the modified Norton-Hoff constitutive law are plotted in 
Figure 4.14 as a function of the temperature. The linear interpolation, which is 
automatically carried out within the finite element code to calculate these parameters at 
temperatures between the data points, are also shown on the graphs. The non-
monotonous variations of the parameters with the temperature is not surprising. Indeed, 
phase transformations occur during the cooling of steel between 1100 and 700 °C and 
the data points defined by the compression experiments may correspond to different 
phases of the material. 

Figure 4.15 to Figure 4.19 show the results of the calibration per temperature for 
the three strain rates. The oscillating (coloured) lines correspond to the experimental 
results presented before and the smooth (black) lines to the modified Norton-Hoff 
curves (equation (3.1)) using the parameters of Table 4.5. 

The fitted curves approach the experimental results quite well, taking into 
account the dispersion of the later. Even if the curves shape suggests that some 
recrystallisation occurs, this phenomena is not represented explicitly in the model. 
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Nevertheless, softening is clearly modelled at 700 °C (Figure 4.15), 800 °C (Figure 
4.16) and 1100 °C (Figure 4.19) as can be visualised on the figures; the decrease of the 
stress for the higher strains matches the indications given by the evolution of the 
parameter p1.  
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Figure 4.15. Experiments (colour) and modified Norton-Hoff (black) curves at T = 700 ºC. 

 

 

0

30

60

90

120

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
ε e

σ e
 [M

Pa
]

0.01 /s (A) 0.001 /s (L) 0.0001 /s (L)
0.001 /s (A) 0.001 /s (L) 0.0001 /s (L)

 

0.01 /s (A) 

0.001 /s (A) 

0.001 /s (L) 

0.0001 /s (L) 

Figure 4.16. Experiments (colour) and modified Norton-Hoff (black) curves at T = 800 ºC. 
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Figure 4.17. Experiments (colour) and Norton-Hoff (black) curves at T = 900 ºC. 
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Figure 4.18. Experiments (colour) and modified Norton-Hoff (black) curves at T = 1000 ºC. 
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Figure 4.19. Experiments (colour) and modified Norton-Hoff (black) curves at T = 1100 ºC. 

4.5 DAMAGE STUDY 

The damage study comprises two types of experiments: tensile tests, which are 
carried out to analyse the effect of a notch on the ductility of the material at elevated 
temperatures; and acoustic compression tests, which will be used for the determination 
of the parameters of the interface damage law.   

4.5.1 TENSILE TESTS AND DUCTILITY ANALYSIS 

At elevated temperature, tensile tests can be used to define the ductility curve of 
the material. The ductility characterizes the capacity of a material to withstand large 
deformations without fracture. 

For this study, tests have been carried out on a thermo-mechanical machine 
using plain cylindrical specimens (see Figure 4.20(a)) and notched cylindrical 
specimens (also referred to as the notched specimens, Figure 4.20(b)). The notched 
specimen is designed to analyze the effect of an oscillation mark in the context of the 
continuous casting process. Therefore, the characteristics of the notch are the following: 

• V shaped notch 
• width = 0.75 mm  
• notch radius = 0.08 mm  
• angle = 40° 
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These dimensions are representative of an oscillation mark apart from the angle, 
which in actual slabs is closer to 120°. This angle has been chosen according to the 
machining possibilities and the global dimensions of the notch are representative 
enough to provide a comparison between the two cases (with and without notch). 

 

 (a) (b)  

Figure 4.20. a) Plain cylindrical specimen, b) notched specimen. 

Contrarily to the compression tests, where the displacement can be automatically 
adjusted to maintain a constant strain rate in the direction of the loading of the 
specimen, the experimental set up for the tensile tests is not designed to control directly 
the strain rate but only the speed at which the heads of the specimen are pulled away 
from one another. During the first series of tests, the specimens where pulled apart up to 
fracture at a constant head speed of 0.1 cm/min, which corresponds to an initial strain 
rate of 5.55 10-4 s-1. Due to the elongation of the specimen and to the necking effect, the 
strain rate during the experiment becomes non uniform and can not be directly 
predicted.  

   The results of the first series of tests are summarized in Table 4.6 for three 
temperatures. In this table, the tensile strength is the maximum tensile stress reached 
before necking, the elongation is the maximum deformation reached at rupture and the 
reduction of area (RA) is a measure of the necking effect which is calculated as follows: 
 

 0

0

fS S
RA

S
−

=  (4.1) 

where S0 is the initial cross section in the middle plane of the specimen and Sf the final 
cross section at this same location after fracture. The results show that the tensile 
strength decreases with the temperature whereas the elongation increases, both for 
notched and plain specimens. This observation is expected as the material naturally 
loses stiffness when the temperature increases. By comparing the case with and without 
notch, it can be seen that for each temperature, the tensile strength and elongation are 
lower for notched samples. This fact is due to the geometry that induces a higher 
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triaxiality of the stress tensor applied on the material, which implies that notched 
specimens break earlier. Indeed, it is well known that higher damage is related to higher 
triaxiality (Brocks et al. 1995, Gologanu et al. 2001). 
 

Table 4.6. Results of tensile tests at a constant head speed of 0.1 cm/min. 

Specimen 
type T [°C] Tensile strength 

[MPa] 
Elongation 

[%] 
RA 
[%] 

800 93 23.5 31.0 
900 64 22.7 27.7 Without 

notch 
1000 38 42.6 40.9 
800 75 8.1 31.3 
900 51 13.0 30.1 With 

notch 
1000 32 19.5 45.0 

 

No significant differences were found regarding the reduction of area for 
notched and plain specimens; the necking effect is analysed in more details hereafter in 
relation with the ductility at elevated temperatures. 

A typical ductility curve comprises three distinct zones as illustrated in Figure 
4.21 (Mintz et al. 1991).  
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Figure 4.21. Typical hot ductility curve showing the three characteristic ductility regions. 

The ductility trough is characterized by an embrittlement due to grain boundary 
sliding and to strain concentration and microvoid coalescence at the grain boundaries 
where soft thin ferrite films and/or precipitate free zones usually form. In the lower 
temperature region, recovery in ductility occurs because the fraction of ferrite present 
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increases which reduces the embrittlement due to strain concentration at grain 
boundaries. At higher temperatures, the ductility improves when grain boundary 
migration takes place during the process of dynamic recrystallisation, leaving the micro-
cracks isolated inside the grains. The absence of thin ferrite film around the austenite 
grains and the lower precipitation level at these higher temperatures also reduce the 
embrittling mechanisms. 

To define the ductility trough experimentally, additional tests have been 
performed at intermediate temperatures and for another head speed. The complete set of 
results in term of reduction of area (RA) is presented in Figure 4.22 at head speeds of 
0.1 cm/min and 0.01 cm/min and for temperatures going from 800 °C to 1050 °C with 
an increment of 50 °C. Although the experimental results do not include data 
corresponding to the high ductility – low temperature region, the experience confirms 
that there is a gap of ductility localized between 800 °C and 1000 °C for the studied 
material. This range corresponds to the temperature of the slab surface during the 
unbending phase in continuous casting, so that in the continuous casting process the 
unbending zone corresponds actually to the more critical condition as far as ductility is 
concerned. Although, the damage effect due to the notch clearly influences the tensile 
strength and elongation, there is no major effect of the notch on the reduction of area 
itself. Nevertheless, the notch produces stress concentrations, which implies that 
notched specimens reach the plasticity domain and break earlier during the test.    
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Figure 4.22. Ductility curves. 
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Figure 4.22 also shows that the trough is slightly deeper at the lower loading 
speed, which indicates that the ductility is reduced at smaller strain rates. Although this 
is in accordance with the literature (Mintz et al. 1991), it is not possible to raise a formal 
conclusion linking continuous casting speed and ductility on the basis on these 
experimental results as only two loading speeds were tested. 

4.5.2 ACOUSTIC TESTS 

The Institute for Metal Forming (IBF) – RWTH Aachen – has developed a 
technique for the analysis and prediction of material failure based on the detection of 
acoustic emissions occurring during cracking. The experimental set up was initially 
designed to predict metal formability at room temperature according to basic tests; it has 
then been adapted to the conditions prevalent during hot forming (Kopp and Bernrath 
1999). The methodology consists in using finite element simulations of the basic tests in 
parallel with the experiments to plot formability limit curves for the material. Once 
determined, these curves are used for the forecasting of material failure associated with 
practical production processes.  

4.5.2.1 Goal of the acoustic tests in the context of this thesis 

In this study, the acoustic tests are carried out in order to provide a set of 
experimental data for the determination of the damage parameters of the interface law. 
The goal is to correlate the instant of initiation of the first crack, determined through 
acoustic emission during the compression of steel specimens, and the damage 
parameters of the interface law via finite element simulations of the compression tests. 
The full description of the method and its application to the identification of the damage 
parameters are presented in the following sections. 

4.5.2.2 Description of the acoustic tests 

Acoustic emissions: origin and capture 
If the internal stresses in a crystal are exceeding locally a critical threshold 

during forming, a sudden change appears (the initiation of a micro-crack), which allows 
the material to return to an equilibrium state with a lower potential energy. The energy 
emitted is dissipated in the form of elastic waves that can be detected in the surrounding 
area as sound pulses. Piezoelectric sensors are used to record the sound signals. These 
signals, that have a very low intensity, are pre-amplified, filtered to separate the sound 
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associated with the damage process from the interferences and amplified again before 
being introduced in the data acquisition system. 

Experimental set up 
As for the other mechanical experiments, a thermal cycle is applied to the 

specimens before testing in order to simulate the continuous casting conditions and to 
recover, as closely as possible, the austenitic microstructure of the steel pertaining 
during this process. The specimens are first heated up to 1375 °C in an external 
radiation furnace and maintained at this temperature for ten minutes before cooling 
down to test temperature as described in Figure 4.10. To protect the sample material 
against surface oxidation, the furnace is rinsed with argon inert gas. Afterwards, the 
samples are manually placed in the upsetting machine; the surrounding furnace having 
been heated up to test temperature within the argon atmosphere. Finally the samples are 
compressed up to crack initiation with a constant strain rate while upcoming acoustic 
emission events caused by material failure are recorded. 

 

 
Figure 4.23. Geometry of the specimens for the acoustic tests. 

Several sets of acoustic tests have been done with different sample geometries as 
shown in Figure 4.23 (two cylindrical: flat and slim and two non-cylindrical: flange and 
concave shapes) to generate different stress-strain histories at the critical point of the 
samples. The critical point is the point where the crack is supposed to appear due to the 
mechanical loading, i.e. where the stresses and strains are the most severe during the 
deformation of the specimen (on the outer edge at mid-height for the flat, slim and 

 - 126 - 



Chapter 4 - Identification of the material parameters 

concave samples and at the intersection of the outer edge of the cylindrical part with the 
ring for the flange sample). Figure 4.24 shows the critical point location for each 
specimen; the critical point is represented in the first quadrant only for illustration 
purpose in this 2D view. The location of the critical point has been determined 
experimentally for various samples at the time of the development of the technique at 
IBF. It is well defined for each geometry and corresponds to the point where the crack 
usually initiates as it can be visualized on the specimens after testing. Abnormalities of 
the results are often linked to the fact that the specimen already contained defects before 
the test, in this case the initiation site can not be defined properly and the test has to be 
rejected. 

 

 
Figure 4.24. Critical point for crack initiation for each geometry. 

To cover the range of loading and temperature conditions corresponding to crack 
initiation during the continuous casting process, compression tests have been carried out 
at three temperatures (800, 900 and 1000 °C) and two strain rates (1 10-3 and 5 10-4 s-1); 
with at least three samples for each combination and for each geometry to ensure 
statistically relevant results.  

The experiments have been carried out at the IBF following the experimental 
schedule and the specifications defined as part of this work. More details regarding the 
experimental set-up can be found in the report provided by the IBF together with a first 
discussion of the results and an analysis of the reproducibility of the tests (Wolske 
2001). The finite element simulations relative to these tests have been done as part of 
this thesis and are presented hereafter.  

4.5.2.3 Numerical simulations 

The finite element simulations of the acoustic tests allow the determination of 
the formability curves for the material but they also predict the stress, strain and 
temperature fields in the whole specimen and in particular in the region where the crack 
is expected to appear. The stresses, strains and temperatures histories at the critical point 
can then be collected during the simulations to be used as macroscopic data for the 
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mesoscopic simulations to be carried out for the identification of the damage law 
parameters. 

The material law used for these simulations is the elastic-viscous-plastic law that 
is also used to model the grains behaviour of the mesoscopic model (see equation (3.1)). 
The temperature is fixed at the corresponding test temperature for each simulation. The 
compression load is modelled using a tool whose displacement produces a vertical 
logarithmic strain in the sample corresponding to the required constant strain rate. A 
contact law with friction is used between the sample and the tool.  

Description of the simulations 
Due to the revolution symmetry of the problem, axisymmetric models can be 

created to limit the size of the simulations. There is also a horizontal plane of symmetry 
in the middle of the specimen which allows reducing the model to only half the height 
of the specimen. The meshes are realised using standard 8-node thermo-mechanical 
elements with four integration points. The upper right element of each mesh is divided 
into two 6-node compatible triangular elements with three integration points; this 
refinement was necessary to avoid a complete crushing of the quadrangular element 
when the side of the specimen comes in contact with the foundation during the 
simulation. A mesh sensitivity analysis is carried out for each geometry, focusing on the 
accurate modelling of the critical zone as presented in the next section.  

 For each analysis, the temperature of the nodes is fixed to the test temperature 
and kept constant during the whole simulation. The movement of the horizontal tool, i.e. 
the foundation, drives the simulation. It is imposed via the definition of its vertical 
position which is calculated so that the logarithmic strain rate is constant and 
corresponds to the specifications of the experiment for each particular test. Classical 
contact finite elements associated with a Coulomb’s contact law are placed on the top 
and side of the specimen to assure a proper modelling of the contact between the solid 
and the foundation during the compression. The boundary conditions and contact 
elements are presented in a generic way in Figure 4.25, they are similar for the four 
specimens studied. 

Initial simulations have shown that the results are strongly function of the 
friction coefficient between the tool and the sample. Therefore, further experiments 
performed at IBF using the same procedure as for the acoustic tests have been necessary 
to determine the actual friction coefficient. The chosen tests were ring tests at 800 °C 
and with a constant displacement rate of the tool of 8 10-3 mm s-1. The friction 
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coefficient found is 0.2 (Volles 2003). This value is supposed to be independent of the 
temperature in the range corresponding to the acoustic tests. 

The modified Norton-Hoff law is used to model the material behaviour. The 
parameters used are those defined in Table 4.5. 
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Figure 4.25. Boundary conditions and contact elements for the compression tests. 

Mesh sensitivity 
Analysing the sensitivity of the results to the mesh is a recommended step of any 

finite element simulation but it is particularly important in the context of this study as 
reliable local results are required for the parameters identification phase.  

At least two meshes have been created for each of the geometry of Figure 4.23. 
The characteristics of these meshes are summarized in Table 4.7. The meshes have been 
realised using an automatic mesh generator which can use two different meshing 
strategies. The meshing type is given to differentiate between the different cases tested. 
The frontal meshing technique starts by dividing the contours of the zone to be meshed 
and then progress towards the inside of the zone by defining the elements along an 
advancing front according to the density of elements required. The structured mesh 
creates a regular arrangement of the elements which can be defined through number of 
elements on the contours and/or densities. The technique, which only works if the zone 

rθ 
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to be meshed has an even number of sides, is particularly appropriate for rectangular 
surfaces. Therefore, the best results are achieved by dividing the zone to be meshed into 
rectangles before running the structured mesh generator.   

Other data in Table 4.7 are the number of nodes and elements, which give an 
insight into the size of the problem whereas the area of the critical element is used to 
compare the refinement of the different meshes in the critical zone. The last column of 
the table indicates the representative element length ratio between the critical elements 
of the different meshes, the coarser critical element for each geometry being taken as a 
reference. This ratio is given by the square root of the ratio between the areas of the 
critical elements for the two meshes compared. It is a simple way to visualise the ratio 
between the elements sizes as it represents the ratio of the length of these critical 
elements if they where perfectly square.  
 

Table 4.7. Characteristics of the different meshes1. 

Specimen 
type 

Meshing 
type 

Number of 
elements 

Number 
of nodes 

Area of critical 
element [mm2] 

Length 
ratio 

Frontal 603 1760 5.292 10-3 1 
Structured 1 698 2032 2.996 10-3 0.75 Flat 
Structured 2 1723 5071 1.129 10-3 0.46 

Frontal 716 2103 6.601 10-3 0.21 
Slim 

Structured 1071 3144 1.500 10-1 1 
Frontal 698 2049 5.775 10-3 0.38 

Concave 
Structured 630 1817 4.048 10-2 1 

Frontal 715 2136 6.782 10-3 1 
Flange 

Structured 1028 3071 3.616 10-3 0.73 
1Data in bold characters indicate the meshes that have been retained after the mesh sensitivity analysis. 

 

The criteria to establish the quality of the mesh is based on the analysis of the 
stress field in the critical zone. The reproducibility of the results for various elements 
sizes ensures that the mesh is refined enough in the critical zone to give an accurate 
solution. Comparing the reaction forces on the tool for the different meshes is a 
technique that is often used to validate a mesh but it is not appropriate here as it does 
not imply that the solution is locally accurate. 

The created meshes and the stress fields in the critical zone are reported 
hereafter for each specimen’s geometry. The figures also show the location of the 
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critical element, which is highlighted in red for each mesh after zooming on the critical 
zone. The scale used is consistent between all the figures presented in this section so 
that the size of the elements can be visually compared. Although the same standard 
procedure is used in each case to validate the quality of the mesh, i.e. the comparison of 
the stresses in the critical element, the tested models are progressively improved based 
on the lessons learned throughout the previous analyses and additional verifications are 
presented individually to clarify some of the results.  

For the mesh sensitivity analysis, only one temperature and one strain rate have 
been used (T = 900 °C and ε& = 5 10-4 s-1). 

Flat specimen 

The frontal mesh and the two structured meshes created for the flat geometry are 
shown in Figure 4.26. 

 

Flat frontal mesh

Flat structured mesh 1

Flat structured mesh 2  
Figure 4.26. Frontal and structured meshes for the flat specimen. 

In order to accurately conclude on the convergence of the results relative to the 
mesh size, it is recommended to divide the elements side length at least by two when 
refining the meshes. For the flat example, the critical element length ratio between the 
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first structured mesh and the frontal mesh is 0.75 (see Table 4.7); i.e. a reduction of 
25% only of the length of the elements side between the two meshes. Therefore, a 
second structured mesh for which the length ratio is less than 0.5 has been created. 

The stress history in the critical element is represented in Figure 4.27 for the 
three meshes (frontal (fr), structured 1 (str1) and structured 2 (str2)). The stresses 
recorded are calculated by averaging the values obtained for the four integration points 
of the element. For all the graphs of this chapter, r refers to the radial direction, z to the 
axial direction and c to the circumferential direction (also referred to as θ ). It is verified 
that rσ  is close to zero as the critical point is localized on the surface of the specimen; 
that θσ  is positive as the specimen is in tension in the circumferential direction around 
the critical point; and that zσ  is negative as the specimen sustains an axial compression 

load.  The shear stresses are not represented as they are close to zero and will not be 
modelled in the parameters identification simulations 

Although small jumps in the curves occur after t = 750 s, Figure 4.27 shows that 
the stress histories obtained with the different meshes are almost identical. The jumps 
are correlated with the progressive contact interaction between the foundation and the 
contact element of the side of the specimen during the crushing of the specimen, which 
explains why they do not appear simultaneously for all the meshes. These jumps do not 
represent any physical behaviour and will be smoothed before using the results as input 
data for the damage parameters identification phase.  
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Figure 4.27. Mesh sensitivity analysis for the flat specimen: stresses in the radial (r), axial (z) 
and circumferential (c) directions in the critical element for the three meshes of Figure 4.26. 

 - 132 - 



Chapter 4 - Identification of the material parameters 

The sensitivity analysis has proved that the three meshes were converging to the 
same results, which is an indication that the mesh quality in each case is appropriate for 
the problem. In order to limit the computation time, the subsequent simulations will be 
carried out using the structured mesh 1 because it contains a relatively small number of 
elements and nodes compared to the structured mesh 2 and provides a slightly finer 
discretization of the contact surface of the specimen compared to the frontal mesh. 

Slim specimen 

Figure 4.28 represents the frontal (fr) and structured (str) meshes created for the 
modelling of the slim specimen. The structured mesh has been created using rectangular 
elements of size 0.2 mm ×  0.75 mm. The objective of this configuration is to analyse 
the impact of starting with elongated elements on the deformed mesh after crushing. 
The length ratio between the meshes as defined in Table 4.7 is 0.21, i.e. that the area of 
the critical element of the structured mesh is about 25 times higher than the area of the 
critical element of the frontal mesh. 
 
 

Slim frontal mesh Slim structured mesh  
Figure 4.28. Frontal and structured meshes for the slim specimen. 

Figure 4.29 shows the stress fields in the critical element for both meshes. Apart 
from the oscillations due to the contact behaviour between the foundation and the side 
of the specimen, the two curves are consistent. It can be concluded that both meshes are 
suitable for the simulations. The choice is then to use the frontal mesh for this specimen 
geometry as it contains less elements and nodes. Moreover, the deformed mesh obtained 
at the end of the simulation is acceptable with regards to the shape of the elements as 
can be seen in Figure 4.30(a). The distortion of the structured mesh at the end of 
simulation presents a similar pattern although elongated elements have been used to 
model the initial configuration.  
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Figure 4.29. Mesh sensitivity analysis for the slim specimen: stresses in the radial (r), axial (z) 
and circumferential (c) directions in the critical element for the two meshes of Figure 4.28. 
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Figure 4.30. Analysis of the slim specimen after compression (t = 2563 s). a) Deformation of 

the frontal mesh, b) von Mises equivalent stress in the whole specimen, c) von Mises equivalent 
stress after zooming on the critical zone.  

Figure 4.30(b) also shows the von Mises equivalent stress in the whole specimen 
after compression. A zoom on the critical area confirms that the stress gradients in this 
zone are not important and that the data obtained with different element sizes can be 
relied on for the parameters identification simulations. In particular, the variation of the 
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von Mises equivalent stress along the radial axis is less than 1% over at least three 
elements when progressing from the external surface to the inside of the specimen 
(Figure 4.30(c)). 

Concave specimen 

Figure 4.31 shows the frontal and structured mesh for the concave geometry 
specimen. The structured mesh has been created by dividing the meshing area in four 
zones. The objective is to keep coarse elements in the zones that are not so much 
affected by the deformation and to put refined elements close to the critical point and on 
the side of the specimen so that the progressive contact between this part of the 
specimen and the foundation is accurately modelled. 

 

Concave frontal mesh Concave structured mesh  
Figure 4.31. Frontal and structured meshes for the concave specimen. 

 

An additional layer of contact and foundation elements has been introduced on 
the side of concave frontal mesh (see Figure 4.32) as it appeared that the some elements 
of this part of the specimen came in contact with each other during the simulation.  

 

 

First foundation 

Second foundation  Second contact elements layer 

First contact elements layer 

Figure 4.32. Concave model with additional layer of contact and foundation elements. 
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The stress field histories for the first frontal mesh (fr), the frontal mesh with the 
additional layer of contact and foundation element (frc) and the structured mesh (str) are 
presented in Figure 4.33. Up to t = 2300 s, the three meshes give almost identical results 
and it can be concluded that the three of them are acceptable based on the mesh 
sensitivity criterion. As in Figure 4.27 and Figure 4.29, the different curves 
corresponding to the radial stresses are superimposed along the x-axis. The 
circumferential stress θσ  and the axial stress zσ  present a smooth behaviour with the 

structured mesh but jumps are observed with the two frontal meshes after t = 2300 s.  

 

-75

-50

-25

0

25

50

75

0 500 1000 1500 2000 2500 3000 3500

Time [s]

St
re

ss
 [M

Pa
]

r - fr
z - fr
c - fr
r - str
z - str
c - str
r - frc
z - frc
c - frc

 

c - fr(c) 

c - str 

z - fr(c) r 

z - str 

Figure 4.33. Mesh sensitivity analysis for the concave specimen: stresses in the radial (r), axial 
(z) and circumferential (c) directions in the critical element for the two meshes of Figure 4.31. 

Figure 4.34 shows the deformed frontal and structured meshes at the end of the 
simulation. Globally, it is observed that the elements of the structured mesh have 
deformed shapes less distorted than those of the elements at the same location in the 
frontal mesh. A detailed analysis of the deformed meshes leads to the conclusion that 
the jumps appearing in the stress fields do not represent the physical behaviour of the 
material but are linked to numerical problems. This is illustrated in Figure 4.35 where a 
zoom close to the foundation is shown at t = 2980 s; i.e. when the jumps are observed. 
For the first frontal mesh, it is clearly shown that the elements of the side of the 
specimen penetrate in each other (Figure 4.35(a)). 
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Concave frontal mesh Concave structured mesh  
Figure 4.34. Deformation of the frontal and structured meshes for the concave specimen at the 

end of the simulation (t = 3294 s) and location of the zoom area for Figure 4.35. 

(a)

(c)

(b)  
Figure 4.35. Zoom on the deformed mesh next to the foundation for the concave specimen 

at t = 2980 s. a) Frontal mesh with one layer of contact and foundation elements, b) frontal mesh 
with two layers of contact and foundation elements, c) structured mesh. 

With an additional layer of contact and foundation elements, the behaviour of 
the mesh is slightly better although a small penetration is still observed due the 
penalisation method used to model the contact behaviour. Nevertheless, the numerical 
inconstancies are not resolved as three nodes belonging to the same element side 
collapse in a single point after coming in contact with the foundation (Figure 4.35(b)). 
By comparison, the deformation of the structured mesh as shown in Figure 4.35(c) is 
smooth and the final shape of the elements is correct; i.e. close to a square shape. 
Finally, as accurate results are obtained with the structured mesh only, it is obvious that 
this mesh has to be used for the other simulations. 
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Flange specimen 

Figure 4.36 shows the frontal and structured mesh for the flange geometry 
specimen.  
 

Flange frontal mesh Flange structured mesh  
Figure 4.36. Frontal and structured meshes for the flange specimen. 

Higher element densities are imposed close to the critical zone to create the 
pattern of the mesh for both the frontal and structured mesh. As the form of the 
specimen is not rectangular, the structured mesh created by the mesh generator is an 
hybrid form which uses both the structured and frontal algorithms. The two meshes 
produced are different and can be used to test the mesh sensibility.   
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Figure 4.37. Mesh sensitivity analysis for the flange specimen: stresses in the radial (r), axial 
(z) and circumferential (c) directions in the critical element for the two meshes of Figure 4.36. 
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The stress fields in the critical element are shown in Figure 4.37 for the frontal 
(fr) and structured (str) meshes. For the flange specimen, it observed that the stress 
histories do not match for the two meshes although the critical element is localised in 
the same area and the element size is similar in both cases for this particular example. 

Like for the other specimens shapes, the results represented in Figure 4.37 are 
the average values of the respective stresses at the four integration points of the critical 
element. In order to confirm the sensitivity to the mesh, results have been plotted using 
a second set of integration points. The three integration points used for the second 
analysis are shown in Figure 4.38. They are represented by black crosses and 
correspond to the closest integration points that surround the critical area; i.e. the 
connection between the cylindrical part of the specimen and its flange.   

 

Flange frontal mesh Flange structured mesh

x
x x

x
x x

 
Figure 4.38. Zoom around the critical zone for the flange specimen. Crosses symbolize 

integration points; black crosses indicate the second set of integration points used. 
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Figure 4.39. Mesh sensitivity analysis for the flange specimen: average stresses in the radial (r), 
axial (z) and circumferential (c) directions at the three integrations points closest to the critical 

point for the two meshes of Figure 4.36 using the integration points defined in Figure 4.38. 
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The stress fields histories are shown in Figure 4.39 using an average on the three 
integration points defined in Figure 4.38. It is observed that the differences between the 
two meshes are even bigger than with the initial method. 

For the flange specimen, the high stress concentration level in the critical zone is 
responsible for the sensitivity of the results to the mesh. This conclusion is confirmed in 
Figure 4.40 where the von Mises equivalent stress in the critical zone is represented for 
each of the meshes; a steep equivalent stress gradient is observed in the figure. The 
stress concentration is due to the presence of a sharp angle at the connection between 
the flange and the cylindrical part of the specimen. When the experiments are used to 
define formability curves, it is possible to specify a representative mesh density in this 
area and to use the results of the acoustic tests simulations for the formability analysis 
of parts presenting a similar geometry by using a mesh of equal density. For the 
application foreseen here, i.e. the definition of the damage parameters of the interface 
law, the stresses and strains histories have to be precisely defined. Therefore, due to the 
outcomes of the mesh sensitivity study, it has been decided to exclude the flange 
specimen from the analysis as no local results can be uniquely defined with this specific 
geometry. 
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Summary 

Different element sizes have been tested in the critical zone and the stress and 
strain fields have been compared in order to analyse the mesh dependence of the results. 
For the slim, flat and concave samples, the analysis has identified meshes for which the 
results of the simulations in terms of stress and strain distributions have converged; 
these meshes are highlighted in bold characters in Table 4.7. For the flange sample, the 
stress concentration is so high in the critical zone that it was not possible to find a mesh 
with a reasonable number of elements for which the results converged with a 
sufficiently high accuracy. Therefore, it has been decided to keep only the three first 
samples, which give reliable results, for the identification stage. 

Results of the acoustic simulations 
The standard technique for the determination of the formability consists in 

presenting the results of the acoustic tests using 1 , e
e

σ ε
σ

⎛ ⎞
⎜
⎝ ⎠

⎟  curves defined by finite 

element simulations, where 1σ  is the maximal principal stress, eσ  the von Mises 
equivalent stress and eε  the equivalent strain at the critical point of the specimen (Kopp 

and Bernrath 1999). That way, the results are represented in a normalized form that can 
then be used to assess the formability of the material for other processes.  

For each of the tests, the height (hcrack) of the specimen at the instant of acoustic 
emission (i.e. the first crack initiation) was given in the IBF report (Wolske 2001). The 
corresponding time (tcrack) can be calculated using equation (4.1) when the strain rate ε&  
is known: 

 ( )0 expth h tε= ⋅ − &  (4.1) 

where h0 is the initial height of the specimen, ht its height at time t and ε&  the 
logarithmic vertical strain rate for the experiments; i.e. ε& =10-3 s-1 and ε& =5 10-4 s-1 in 
this study. The finite element simulations are driven by the displacement of the 
foundation which is also calculated using equation (4.1). 

The specimen height (hcrack) at crack initiation and the corresponding time (tcrack) 
for the two strain rates and three temperatures tested are indicated in Table 4.8 for the 
concave geometry, Table 4.9 for the slim geometry and Table 4.10 for the flat 
geometry. The results corresponding to the flange geometry are not presented as they 
are not used for the parameters identification. 

For most of the tests, visible cracks were found on the specimen after 
compression, these results are presented using regular fonts. Data presented in italic in 

- 141 - 



FE mesoscopic analysis of damage in microalloyed CC steels at high temperature 

the results tables correspond to experiments for which no visible cracks were found 
after compression although acoustic emissions had been recorded; whereas data which 
are underlined correspond to cases where it was impossible to define with certitude if a 
crack was present at the critical point or not after compression with acoustic emission. 
Failed tests are referred to as “no data recorded” in the results tables. 

 

Table 4.8. Instant of crack initiation for the concave specimen. 

&ε = 10-3 s-1 &ε = 5 10-4 s-1

T [°C] 
hcrack [mm] tcrack [s] hcrack [mm] tcrack [s] 

17.79 522.56 15.62 1305.29 
16.71 585.19 13.46 1602.95 800 
15.83 639.29 13.01 1670.96 
14.81 705.89 6.76 2980.35 
14.29 741.64 6.57 3037.37 900 
14.14 752.19 5.78 3293.59 
8.79 1227.58 10.97 2012.07 
7.5 1386.29 10.73 2056.31 1000 

No data recorded 8.5 2522.26 

 

 

Table 4.9. Instant of crack initiation for the slim specimen. 

&ε = 10-3 s-1 &ε = 5 10-4 s-1

T [°C] 
hcrack [mm] tcrack [s] hcrack [mm] tcrack [s] 

13.85 772.91 18.31 987.50 
13.54 795.55 16.92 1145.40 800 

No data recorded 13.49 1598.50 
15.18 681.22 9.63 2272.63 
14.66 716.07 9.07 2392.45 900 
10.35 1064.21 8.33 2562.67 
12.5 875.47 14.62 1437.61 
11.08 996.06 11.23 1965.22 1000 

No data recorded No data recorded 
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Table 4.10. Instant of crack initiation for the flat specimen. 

&ε = 10-3 s-1 &ε = 5 10-4 s-1

T [°C] 
hcrack [mm] tcrack [s] hcrack [mm] tcrack [s] 

4.63 770.03 7.38 607.62
3.95 928.87 6.59 834.06 800 
2.81 1269.40 5.43 1221.29
5.13 667.48 6.53 852.36 
4.74 746.55 6.28 930.43 
4.41 818.71 5.29 1273.53 

900 

4.27 850.97   
5.62 576.25 5.88 1062.06 
5.18 657.78 5.85 1072.29 1000 
4.74 746.55 No data recorded 

 

Generally, tcrack for the cases without visible cracks are smaller than for the 
regular cases with visible cracks and this could indicate that the first cracks have 
initiated inside the specimen, at a location were a flaw was initially present. This 
behaviour is observed for the concave specimen at ε& =10-3 s-1 and T = 1000 °C or at 
ε& =5 10-4 s-1 and T = 800 °C (Table 4.8), or for the flat specimen at ε& =10-3 s-1 and T = 
900 °C (Table 4.10). Therefore, these data have to be considered critically when 
defining the interface law damage parameters.  

The curves 1 , e
e

σ ε
σ

⎛ ⎞
⎜
⎝ ⎠

⎟  for the critical point of each specimen are presented in 

Figure 4.41 to Figure 4.43, they have been compiled from the results of finite elements 
simulations using the meshes defined in the previous section. On these curves, symbols 
indicate the instant of first crack initiation for each of the specimens tested, keeping in 
mind that at least three tests were carried out for each combination of parameters 
(geometry, temperature and strain rate). A colour code is used to indicate the data points 
for which no visible cracks could be observed on the surface of the compressed 
specimens and those for which it could not be defined with certainty whether or not a 
crack was present; the former being represented in red and the later in orange. 

The presentation of the results in terms of normalized stress eliminates the 
possibility to observe the viscosity effect included in the formulation of the modified 
Norton-Hoff law (equation (3.1)). No general conclusion can be made regarding the 
effect of the strain rate on the stress or strain level at crack initiation either. For 
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example, the cracks in the flat specimens always initiate at a lower equivalent strain for 
the slowest strain rate compared to the highest strain rate but it is the other way round 
for the concave specimens at T = 800 and 900 °C. It is to be noted that the ratio between 
the two strain rates tested is only ½ and that it was not possible to use strain rates below 
ε& =5 10-4 s-1 due to the limitations of the machine. If they had been carried out, tests at 
lower strain rates could have led to a different conclusion. 
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Figure 4.41. Instant of first crack initiation determined by acoustic emission at T = 800 °C. 
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Figure 4.42. Instant of first crack initiation determined by acoustic emission at T = 900 °C. 
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Figure 4.43. Instant of first crack initiation determined by acoustic emission at T = 1000 °C. 

The experiments at 800 °C present the biggest dispersion pattern in terms of first 
crack initiation (Figure 4.41); this case is also the one for which most of the data points 
have to be considered critically. For the other temperatures, the crack initiation moment 
is more reproducible as shown in Figure 4.42 at 900 °C and Figure 4.43 at 1000 °C. 

The presentation of the finite element data under the form proposed by IBF is 
used here to visualize the repartition of the experimental results in terms of crack 
initiation but the definition of formability limit curves is not here considered as a 
deliverable of the research. 

4.6 PARAMETERS OF THE INTERFACE LAW 

A table summarizing the parameters to be defined for the interface damage law 
has been presented in Chapter 3 before describing the first simulations carried out 
during the development phase of the model (see Table 3.3).  These parameters can be 
categorized in three different groups with regard to the identification methodology. 
Firstly, several parameters are defined using the data gathered trough the microscopic 
and macroscopic experiments of sections 4.3 and 4.4. The details of the procedures 
applied are presented in section 4.6.1. Then a second batch of parameters is directly 
issued from a literature survey as shown in section 4.6.2. Finally, the remaining 
parameters are defined using the results of the acoustic tests which were part of the 
damage analysis of section 4.5. The identification method for the definition of those 
parameters is detailed in section 4.6.3.   
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4.6.1 PARAMETERS DEFINED EXPERIMENTALLY 

4.6.1.1 Grain size 

The first parameter that has been experimentally defined is the grain size. Its 
value is based on the observation of the austenitic microstructure of the material. The 
details of the analysis are presented in section 4.3.1.2. The average grain size obtained 
is 1 mm.  

The grain size is indirectly introduced in the model through the geometric 
definition of the representative mesh for the material but it also directly appears in the 
equations modelling the grain boundary sliding as detailed in section 3.4.3.1. 

4.6.1.2 Creep parameters 

The creep parameters B and n that appear in the classical creep law can be 
extracted from the modified Norton-Hoff law. These two laws have been defined in 
Chapter 3 by equations (3.25) and (3.1) respectively. The classical creep law is not 
directly used to model the macroscopic material behaviour as the more detailed 
modified Norton-Hoff law is available for this purpose. Nevertheless, the parameters of 
the classical creep law are directly used in the damage law for the modelling of the 
grain boundary sliding (section 3.4.3.1) and void growth (3.4.3.2). 

The formulation of the modified Norton-Hoff law is not identical to the classical 
creep law but it is possible to make the link between the two equations using several 
simplification hypotheses. 

 Eq. (3.1)  → ( ) ( ) 3
4

pp
e e 1 e 2 e.exp p .p . 3. 3.σ ε ε ε= − &   

 Eq. (3.25) → ( )n
e B eε σ=&   

The modified Norton-Hoff law links the equivalent stress to the equivalent strain 
and strain rate and takes the hardening and softening effects into account whereas the 
classical Norton creep law only links the equivalent stress to the equivalent strain rate. 
Therefore, if the softening and hardening effects are neglected, i.e. if , 

equation (3.1) becomes:  
1 4 0p p= =

 ( ) 33

3

1
p 1p

pe 2 e e e
2

1 1p . 3. 3.
3 p 3

σ ε ε
⎛ ⎞

= ⇒ = ⎜ ⎟
⎝ ⎠

& & σ  (4.2) 

Comparing equations (3.1) and (4.2), it possible to extract the values of B and n:  
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In practical cases,  and the value of B is a function of 1 4 0p p≠ ≠ eε  which 

implies that only the creep exponent can be uniquely defined by equation (4.4). 

For the present application, the creep coefficient B is determined for a chosen 
value of eε  which is representative of the equivalent strain in the simulated process. 

During the continuous casting process, the deformations of the slab are very small and 
the simulations indicate that they are generally close to 7%. The Norton-Hoff curves for 
the material represented in Figure 4.15 to Figure 4.19 show that after the elastic domain, 
the stress for a given strain rate and temperature reaches a representative level and stays 
almost constant afterwards apart from the hardening and softening effects that can be 
present. This means that if the strain reaches a higher value locally in the model, the 
approximation made on using a specific value of eε  to calculate B is still valid as the 

variations of the stress level are small. Therefore, calculating B at an equivalent strain 
7%eε =  is a realistic compromise, which corresponds to a representative stress level for 

the material during the deformation process. 

Table 4.11 indicates the values of B and n as a function of the temperature T. 
The units are consistent with a stress measured in [MPa].  
 

Table 4.11. Values of the creep parameters as a function of the temperature. 

T [°C] n B (7%) 

700 8.696 2.263 10-21

800 4.329 1.270 10-11

900 6.452 1.821 10-14

1000 10.081 1.461 10-18

1100 6.757 3.642 10-13

 

As for the modified Norton-Hoff law, the parameters are given at several 
discrete temperatures and a linear interpolation is realized within the code to calculate 
the values at the temperature of the interface as show in Figure 4.44 and Figure 4.45. 
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Figure 4.44. Variation of the creep parameters n with the temperature. 
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Figure 4.45. Variation of the creep coefficient B (7%) with the temperature. 

4.6.1.3 Normalization stress 

The normalization stress is used in the interface damage model when defining 
the nucleation behaviour (section 3.4.3.2). It is defined using the same conditions than 
for the definition of the creep parameters, i.e. for an equivalent strain rate 7%eε = . As 

the objective is to define a value that is representative of the stress in the material during 
the continuous casting simulation, an intermediate equivalent strain rate equal to 10-3 s-1 
as been imposed. Table 4.12 indicates the value of Σ0 for five different temperatures.   
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Table 4.12. Normalization stress Σ0  as a function of the temperature. 

T [°C] Σ0 [MPa]   

700 106.955 
800 66.683 
900 46.202 

1000 29.625 
1100 24.941 

 

During the numerical simulation, the program interpolates between those values 
according to the temperature of the interface as shown in Figure 4.46. The 
normalization stress decreases with the temperature, which is a consistent behaviour as 
the material becomes less rigid when the temperature increases.  
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Figure 4.46. Evolution of the normalization stress Σ0 with the temperature. 

4.6.2 PARAMETERS BASED ON LITERATURE 

4.6.2.1 Diffusion parameter 

The diffusion parameter D is one of the most important driving parameters of the 
grain boundary diffusion model. Its expression was given by equation (3.37) which is 
retranscribed here below. 

 Eq. (3.37) → b0 b bDD exp
kT RT
δ Ω ⎛= ⋅ −⎜

⎝ ⎠

Q ⎞
⎟   
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For the initial simulations of Chapter 3, a single value of D was introduced in the 
data file because the temperature was uniform and constant during the calculation. For 
practical examples, it is useful to use the full definition of D, given by equation (3.37) 
as the temperature varies spatially and with time. For austenitic steel, the particular 
values of the parameters of equation (3.37) that have to be introduced in the input file 
are the following: the grain boundary diffusion coefficient 0b bD δ = 7.5 10-14 m3 s-1, the 

atomic volume Ω = 1.21 10-29 m3 and the activation energy Qb = 159 kJ mol-1 
(Needleman et al. 1980). The temperature T has to be defined in Kelvin to be consistent 
with the definition of the Boltzmann’s constant k = 1.3807 10-23 J K-1 and of the 
universal gas constant R = 8.3145 J mol-1 K-1. 
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Figure 4.47. Diffusion parameter D as a function of the temperature. 

Figure 4.47 shows the evolution of the diffusion parameter as a function of the 
temperature for the austenitic steel, the diffusion is enhanced when the temperature 
increases. During the simulation, the diffusion parameter is calculated according to 
equation (3.37) for the particular temperature of the interface.   

4.6.2.2 Cavity angle 

The cavity angle influences the void growth (section 3.4.3.2). This parameter is 
chosen on the basis of the value found in literature for a similar void growth law (Onck 
and van der Giessen 1998). It is fixed at 75ψ = ° . 
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4.6.2.3 Grain viscosity parameter 

The grain viscosity parameter e Bε ε& &  defined by the ratio between the grain 
deformation rate eε&  and the boundary deformation rate Bε&  and which characterizes the 
intergranular sliding (section 3.4.3.1), is chosen equal to an intermediate value of 10 
(Onck et al. 1999). The grains can slide along each others but not without a certain 
resistance.    

4.6.3 PARAMETERS BASED ON THE ACOUSTIC EXPERIMENTS SIMULATIONS 

The remaining parameters, i.e. those which have not been fixed by the literature 
or by the initial set of experiments, are defined in this section following a calibration 
method that uses the results of the acoustic experiments presented in section 4.5.2 and 
finite element simulations.  

The simulation of the acoustic test experiments is used to retrieve the stress-
strain history at the critical point for each specimen type and strain rate and temperature 
combination. These loads have to be applied on the representative mesoscopic cell to 
analyse the effect of the different parameters of the damage law and to compare the 
damage level with the experimental results. The objective is to define a set of 
parameters that is compatible with the experimental results. 

4.6.3.1 Link between the macroscopic simulations and the mesoscopic cell 

The transfer of the stress, strain and temperature fields from the macroscopic 
model to the mesoscopic cell is not straightforward. This section starts by a description 
of how the macroscopic and mesoscopic model are related to each other from a 
geometric point of view. Then, the technique for the data collection and transfer 
between the two models is presented. 

Orientation of the mesoscopic representative cell 
The mesoscopic cell is bi-dimensional and is orientated along a plane 

perpendicular to the axis of the specimens. From a mechanical point of view, the cell is 
defined in generalized plane state in order to account for the tri-dimensional loading 
state that has to be transferred from the macroscopic simulations. This formulation 
allows applying non null stresses and strains simultaneously in the out-of-plane 
direction (see section 3.3.1.3). The mesoscopic cell is oriented so that its axes system 
corresponds to the one defined for a type 2 section of the macroscopic continuous 
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casting model (see Figure 3.31). The correspondence of the axis between the 
axisymmetric macroscopic model and the mesoscopic cell is illustrated in Figure 4.48.   
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Figure 4.48. Orientation of the mesoscopic cell with regard to the macroscopic models. 

Cracks are known to initiate on grain boundaries that are perpendicular to the 
maximum principal stress. Therefore, the maximum tensile stress that is recorded during 
the simulation of the acoustic experiments is responsible for the crack initiation and 
propagation and has to be reproduced accurately. During the compression of the 
cylinders, this stress corresponds to the circumferential stress θσ . At the critical point, 
i.e. close to the surface of the specimen, the radial stress rσ  is equal to zero. At that 

point, the shear stresses are also close to zero and are not taken into account during the 
data transfer. The axial compression stress zσ  is not negligible and has to be 

transferred, which confirms the necessity to use the generalized plane state to model the 
reduction of the cell thickness during compression. 
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Figure 4.49. Left: mesoscopic cell surrounded by a transition zone (50 mm  50 mm). ×
Right: zoom on the grains zone (5.45 mm ×  5.45 mm). 

A surrounding transition zone is used to transfer the data from the macroscopic 
model to the mesoscopic model (Figure 4.49). The history of stresses and strains are 
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determined by running macroscopic simulations and are converted into forces and 
displacements to be used as boundary conditions imposed on each node of the periphery 
of the transition zone. As an elastic-viscous-plastic constitutive law is used in the grains 
and as the damage variables at the interfaces grow during the loading, it is important to 
follow the whole forming process. During the damage law parameters identification 
phase, the objective is to analyse and define the initiation of the crack and not its 
propagation. Therefore, it is not necessary to leave a free surface as required for the 
continuous casting simulations. The surrounding zone can be defined all around the 
mesoscopic cell, which implies a more precise reproduction of the loads inside the cell 
itself. 

For the acoustic tests simulations, the temperature is fixed and is constant in the 
specimen. Nevertheless, the method could be used for simulations with variable 
temperatures; the temperature of each node of the mesoscopic cell should be fixed at 
each time step according to the results of the parent macroscopic simulation. No thermal 
exchange is computed at the mesoscopic scale as the thermal problem has already been 
solved by the macroscopic model. 

Data collection and transfer 
The stress and strain fields at the critical element are recorded for each of the 

macroscopic simulations. They are then directly converted into loads or boundary 
conditions. They are then transferred to the representative cell using two external files, 
the first one containing imposed forces and the second one imposed displacements as a 
function of the time. 

During the data transfer, the objective is to reproduce in the mesoscopic cell the 
stress and strain tensors histories recorded at the critical point of the parent macroscopic 
simulation. These mechanical fields are assumed to be uniform on the cell with small 
variations in the grains zone due the grains pattern and to the damage initiating at the 
grain boundaries. The loads can be applied using forces or displacements or a 
combination of the two. The stress-strain fields are three-dimensional in the 
macroscopic simulations, with compression in the axial direction and tension in both 
radial and circumferential directions. In the critical element, the radial stress vanishes as 
the edge of the sample is reached but the strain field remains three-dimensional. 

The compression stress is reproduced on the mesoscopic cell in the direction 
normal to the plane (y-direction) using the properties of the generalised plane strain 
state. The tensile stress, which is responsible for the apparition of the crack, is applied 
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in the z-direction of the mesoscopic cell. The stress in the x-direction and the shear 
stresses have to be equal to zero. 

Extraction of the data from the macroscopic parent simulation  

The process of data transfer is presented in detail using the simulation of the 
compression test for the concave specimen at T = 900 °C and ε& =5 10-4 s-1 (structured 
mesh) as an example. The results in terms of stresses have been presented in Figure 4.33 
in the section relative to the mesh sensitivity analysis.  

As large deformations are involved, it also is necessary to record the history of 
deformation in the critical element for the radial, circumferential and axial directions in 
order to have all the information required for the data transfer between the macroscopic 
and mesoscopic models. The deformations are calculated from the displacements of the 
nodes of the element, using the logarithmic or natural formulation of the strain given by 
equation (4.5), where L0 and L are the lengths of the element in the direction for which 
the strain is calculated, for the initial and deformed state, respectively. 
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Figure 4.50 shows the evolution of the strain in the critical element for the three 
directions (r – radial, z – axial and c – circumferential).  
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Figure 4.50. Calculated strains using the displacements of the middle nodes (mid) or corner 
nodes (cor); concave specimen at T = 900 °C and ε& =5 10-4 s-1.  
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Two approaches have been compared to calculate the strains. The first one 
considers the coordinates of corner nodes of the element (cor) to calculate the variables 
L0 and L of equation (4.5) and the second one uses the middle nodes (mid). They both 
give the same results as confirmed by Figure 4.50. 

Calculation of the boundary condition to be applied on the mesoscopic cell 

For the first trial, displacements were imposed in the three directions as the 
simulations usually have a better convergence when the loadings are imposed through 
displacements only. Although the correct equivalent stress was computed in the 
mesoscopic cell, it appeared that the stress components distribution was not correct. 
This is due to the formulation of the elastic-viscous-plastic law, which is given in terms 
of equivalent stress and strain. Indeed, different stresses distributions may correspond to 
the same equivalent stress. By testing the different possible combinations, it has been 
found that the correct stress and strain tensors can be reproduced if a displacement is 
imposed in the x-direction of the mesoscopic cell and forces in the y and z-directions. 

As already mentioned before, it is necessary to take the deformation of the cell 
into account to reproduce the accurate stress field. Equations (4.6), (4.7) and (4.8) 
calculate the deformed dimensions of the cell based on the strain. θε , rε  and zε  are the 

strains calculated for the three directions of the macroscopic model and which have to 
be transferred to the mesoscopic cell. 

0i
L  and  with i = z, x, y are the initial and 

deformed length of the mesoscopic cell in the three corresponding directions as defined 
by 

iL

Figure 4.48.  

 ( )0
0

z
z z

z

Lln L L exp
Lθ θε ε

⎛ ⎞
= ⇒ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.6)  

 ( )0
0

x
r x x

x

Lln L L exp
L rε ε

⎛ ⎞
= ⇒ = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.7)  

 ( )0
0

y
z y y

y

L
ln L L exp

L zε ε
⎛ ⎞

= ⇒ = ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

 (4.8)  

Knowing the deformed sizes of the cell, equation (4.9) calculates the 
displacement xΔ  along the x-direction, while equations  (4.10) and (4.11) calculate the 
forces yF   and  to apply in the y and z-directions of the cell respectively, zF zσ  and θσ  

being the stresses issued from the macroscopic simulation in the corresponding 
directions. Only discrete points from the curves issued from the macroscopic simulation 
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(Figure 4.33 and Figure 4.50) are used for the data transfer; this results in smoothing 
these curves, especially with regards to the stresses where non-physical oscillations 
were observed (see Figure 4.33). 

 

 
0x x x 0L L x xΔ = − ⇒ = + xΔ

z

(4.9)  

 
y x zF L L σ= ⋅ ⋅  (4.10)  

  z x yF L L θσ= ⋅ ⋅  (4.11)  

Figure 4.51 shows how the displacements and forces defined by equations (4.9)
to (4.11) are applied on the mesoscopic cell. The coordinates of the side AB of the cell 
are fixed in the x-direction and imposed displacements applied on the side CD. The total 
force in Fy the y-direction (i.e. in the thickness direction) is applied on the node defining 
the degree of freedom specific to the generalized plane state (see section 3.3.1.3). The 
force Fz in the z-direction has to be uniformly distributed on the elements of sides BC 
and DA. 
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Figure 4.51. Boundary conditions on the mesoscopic cell. 

The actualised coordinate x as defined by equation (4.9) is shown in Figure 4.52 
for the treated case; in this example, the origin of the axes system is localised in the 
centre of the cell. The maximum situated around t = 2250 s can be directly correlated to 
the maximum shown in Figure 4.50 for rε . 

xy 
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Figure 4.52. Imposed coordinate along the x-axis (side CD); 

concave specimen at T = 900 °C and ε& =5 10-4 s-1. 

The evolution of the forces Fy and Fz are represented in Figure 4.53 and Figure 
4.54, respectively. It can be verified that a compression force is applied along the 
thickness of the cell and a tensile force along the z-direction, the latter being responsible 
for the crack initiation in the cell. 
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Figure 4.53. Imposed force along the y-axis (thickness); 

concave specimen at T = 900 °C and ε& =5 10-4 s-1. 
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Figure 4.54. Imposed force along the z-axis (side DA, -Fz on side BC); 

concave specimen at T = 900 °C and ε& =5 10-4 s-1. 

Verification of the data transfer 

Comparisons of the stresses and strains in the two models are done to verify that 
the data transfer between the macroscopic and mesoscopic models is correct. As the 
fields inside the grains zone are not uniform by nature due to the presence of a non-
homogenous structure, the verification is done by comparing the average results of four 
elements chosen around the grains zone in the homogeneous surrounding area. These 
elements have been highlighted in Figure 4.51.  

In Figure 4.55, the imposed stresses issued from Figure 4.33 are compared with 
the ones recorded during the mesoscopic simulation. Although some oscillations are 
present, it can be verified that the stresses are well reproduced for the three directions. 
Even the stress xσ , which is equal to zero in the macroscopic case, is transferred 

correctly although it is the deformation that has been applied along that direction. 

Regarding the strains, the state variables directly available from the simulation 
are the equivalent strain and the cell thickness. Those values are represented in Figure 
4.56 for both the macroscopic and mesoscopic simulations. It can be checked that the 
values issued from the mesoscopic simulation after the data transfer match perfectly 
those given by the parent macroscopic simulation. The displacement in the x-direction 
consists in a direct transfer from the macroscopic to the mesoscopic model which does 
not involve the calculation of stresses. Comparing the thickness and the equivalent 
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strain assures that the data in terms of strains for the three individual directions are 
correctly transferred. 
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Figure 4.55. Verification of the data transfer for stresses; 
concave specimen at T = 900 °C and ε& = 5 10-4 s-1. 
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Figure 4.56. Verification of the data transfer for strains; 
concave specimen at T = 900 °C and ε& = 5 10-4 s-1. 

Maps of the stresses and strains inside the grains zone and surrounding area have 
also been plotted to verify the distribution of these fields in the homogeneous and non-
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homogeneous areas. In particular, the results have been plotted for t = 2980 s. Figure 
4.57 represents the stress distribution for xσ  (a),  zσ  (b), xzτ  (c) and yσ  (d). The 

stress level in the surrounding area matches the data represented in Figure 4.55 at the 
given time, which confirms that the data used to plot Figure 4.55 have been correctly 
extracted.  
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Figure 4.57. Stress distribution in the mesoscopic cell and in the transition zone at t = 2980 s; 
concave specimen at T = 900 °C and ε& = 5 10-4 s-1. 
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Figure 4.58. Strain distribution in the mesoscopic cell and in the transition zone at t = 2980 s; 
concave specimen at T = 900 °C and ε& = 5 10-4 s-1. 

Stresses variations are present within the grains zone, especially at the junction 
between grains. Although it is not possible to certify that the amplitude of these 
variations are in accordance with the physics of the problem, it is acknowledged that 
due to the grains pattern, the model at the grain scale can not be considered as a 
continuum any longer. Therefore, the non-homogeneity of the stresses is representative 
of the physical reality. Moreover, for each direction, the average of the stresses on the 
grains zone correspond to the respective macroscopic stress, which confirms that the 
grains zone is a representation at the mesoscopic scale of the behaviour represented by 
the continuum at the macroscopic scale. The shear stress xzτ  has been represented to 

xε  zε  

yε  xzε  
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prove that the level of shear in the model is negligible; the values obtained are generally 
less than 0.1 MPa as shown in Figure 4.57(c). 

Figure 4.58 represents the strain distribution in the grains zone and surrounding 
area at the same instant t = 2980 s. Maps relative to strains do not present the same 
variations patterns as those relative to stresses and are usually homogeneous within both 
the grains zone and surrounding area. This is due to the fact that the variations of the 
deformation, which may appear during the loading of the specimen, are concentrated in 
the grain boundaries according to the model developed here. The grain boundaries are 
represented by one-dimensional interface elements associated with a penalty method 
and for these elements it is not possible to visualize the deformations directly through 
strains maps like for the solid elements. Regarding the shear behaviour, Figure 4.58(c) 
confirms that the level of deformations in shear is much smaller that the other strain 
components and very close to zero. 

According to the results presented in Figure 4.57 and Figure 4.58, a surrounding 
zone made of only three layers of elements is large enough to serve as a transition 
between the grains zone and the applied boundary conditions for the identification 
simulations. For the continuous casting simulations, one surface has to be left free to 
allow crack initiation and propagation, so a larger transition has still to be use to assure 
a proper modelling of the displacements in the x-direction. 

4.6.3.2 Damage parameters identification 

Sensitivity analysis 
Before starting the identification process, it is necessary to remind the 

parameters of the interface law that still need to be defined and to analyse their effect on 
the damage evolution. This first analysis is done by interpreting the equations presented 
in section 3.4.3 for the damage evolution law. The detailed calibration method and 
results are discussed afterwards 

Figure 4.59 represents a typical damage evolution. Three phases can be defined. 
First the damage increases very slowly due the diffusion and growth of the voids that 
are already present (A-B). Then the nucleation threshold is reached, new voids are 
created and the damage increases more rapidly (B-C). Finally, the saturation state is 
reached, no more cavities can be created and the growth of the damage slows down 
until final rupture (C-D). 
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 Figure 4.59. Typical damage evolution. 

The damage parameter is the ratio between the voids diameter 2a and the 
average spacing between voids 2b. The initial damage value depends on the initial 
values a0 and b0. The initial density of cavities for nucleation by unit length NI and the 
nucleation activity parameter Fn determine the position of point B; increasing NI and/or 
reducing Fn delays the onset of damage progression and moves point B towards the 
right. The slope of the curve between B and C partially depends on the value of Fn; 
reducing Fn slows down the nucleation process and consequently the damage increase, 
leading to a smaller slope for the portion BC of the curve. The maximum density of 
cavities Nmax influences strongly the position of point C; increasing Nmax allows to 
prolong the nucleation process and therefore to move point C towards the left. 

These five parameters (a0, b0, NI, Fn and Nmax), which appear in the void 
evolution equations of section 3.4.3.2, have not been fixed yet. Together with the 
damage threshold for crack appearance dlim, which is defined at point D on the damage 
curve, they can be used for the calibration of the model. 

Calibration method 
The damage tests with acoustic emission at T = 900 °C and ε& = 5 10-4 s-1 have 

been chosen as a reference at the start of the identification process because they 
correspond to an intermediate temperature value. Moreover, at this temperature and 
strain rate, the reproducibility of the results is very good and all the data points are 
associated to the visualization of an actual crack on the specimens (see Figure 4.42). 

The identification process is carried out in three steps. First, a series of 
simulations is realized at T = 900 °C and ε& = 5 10-4 s-1 for the three specimens types 
(flat, slim and concave) taking a reference set of values for the unknown damage law 
parameters. Then, these values are manually adapted, taking into account their influence 
on the sensitivity of the results as described here before, with a view to approaching a 
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set of parameters that is consistent with results of the acoustic tests in terms of damage 
evolution in the mesoscopic cell. Finally, when a set of parameters is established for the 
reference strain rate and temperature, the other combinations of strain rates and 
temperatures are simulated as a validation exercise; at this stage, the damage parameters 
can be fine tuned if necessary.  

The choice to perform the identification process manually has been driven by 
three considerations: 

• the automatic optimiser OPTIM associated with the finite element code 
LAGAMINE was only at the early stage of its development phase when 
the present work started; therefore, no reliable optimisation tools was 
available at the beginning of this project, 

• experience with automatic optimisers has proved that the choice of the 
initial set of parameters has a great influence on the results and that some 
of the parameters have to be manually restrained to ensure a correct 
physical meaning of the data set; moreover, the number of parameters to 
be optimised and the number of experimental cases tested are quite high 
in the present application (6 parameters and 18 different experiments), 
which would lead to a tremendous computation time for the optimiser, 

• automatic optimisers require extremely robust direct finite element 
computations to allow a smooth automatic optimisation process; this 
condition is not easily fulfilled with non-linear model such as the damage 
and crack propagation model used in this study. 

The main drawback of the manual optimisation method is that only a limited set  
of parameters are tested. Nevertheless, this technique leads to a solution that respects 
the physics of the problem and which is representative of the material behaviour.    

Details of the analysis and results 
In practice, it has been decided to start the analysis by combining three possible 

values for each parameter, the reference set of data constituting the intermediary level.  

 

Table 4.13. Initial values used for the damage law parameters 

a0 [mm] b0 [mm] Fn [mm-1] NI [mm-1] Nmax [mm-1] 

2.75 10-3 2.75 10-1 4.21 103 84.2 40 ×  NI

2.75 10-4 2.75 10-2 4.21 104 168.4 100 ×  NI

2.75 10-5 2.75 10-3 4.21 105 336.8  
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Only two values have been used for Nmax as the results with these inputs were 
satisfactory. Table 4.13 summarizes the values that have been used for the initial 
simulations at T = 900 °C and ε& = 5 10-4 s-1. The reference values are indicated in italic 
in the table; their order of magnitude has been defined using normalized data found in 
literature (Onck et al. 1999) and a grain size equal to 1 mm. 

Numerous combinations of these parameters have been tested, taking into 
account the results obtain from the simulations already carried out to decide which 
combination to test next. A method of trial and error has been applied to converge 
towards a solution for which the first crack appears at approximately the expected time 
for each geometry for the case at T = 900 °C and ε& = 5 10-4 s-1. The damage threshold 
dlim is not imposed during the parameters identification simulations but the value of the 
damage variable d reached at the cracking instants predicted by the experiments is 
observed for each combination of parameters. The set of parameters retained after this 
first step is the following: a0 = 2.75 10-3 mm, b0 = 2.75 10-2 mm, NI = 336.8 mm-2, Fn = 
4.21 105 mm-2, Nmax = 40 NI and dlim = 0.7.  

As this stage, the other combinations of temperatures and strain rates have been 
simulated. During this phase, the parameters have been further manually optimized in 
order to match as best as possible the whole set of experimental results.  
 

Table 4.14. Parameters determined by acoustic analysis. 

Parameter Description Value 

a0 Initial void size (radius) 2.75 10-3 mm 
b0 Initial void spacing 2.75 10-2 mm 
NI Cavity density for nucleation 380 mm-2

Fn Nucleation parameter 1.5 105 mm-2

Nmax Maximum cavity density 40 NI

dlim Damage threshold 0.7 

 

Even if the numerical model allows a temperature dependence of these 
parameters, a unique set of parameters could be established; the temperature 
dependence being already modelled through the diffusion and creep parameters. Finally, 
the parameters determined by the acoustic analysis are given in Table 4.14. Other values 
of dlim did not permit to find a better set of parameters that could reproduce the different 
cases tested experimentally. 
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Figure 4.60 to Figure 4.62 present the time for crack initiation measured during 
the damage experiments with acoustic emission analysis together with the time for 
crack initiation predicted by the finite element simulations using the final set of damage 
parameters identified. 
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Figure 4.60. Instant of crack appearance: comparison model (green symbols) and experiments 

(other symbols) for T = 800 °C. 
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Figure 4.61. Instant of crack appearance: comparison model (green symbols) and experiments 

(other symbols) for T = 900 °C. 
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Figure 4.62. Instant of crack appearance: comparison model (green symbols) and experiments 

(other symbols) for T = 1000 °C. 

For the experimental results, the same colour code as defined in section 4.5.2.3 
is used (blue and black when a crack is visible after the compression test, red when no 
crack is visible and orange for indeterminate results). The crack initiation instants 
predicted by the model are represented by green symbols. Although a single set of 
parameters has been defined for all the temperatures, one figure has been plotted for 
each temperature in order to simplify the visualization of the results. 

With this set of parameters, the model predictions match the experiments quite 
well. The largest differences are for the concave and slim samples at T = 900 °C and ε&  
= 5 10-4 s-1 for which the model predicts the crack too early (see Figure 4.61). For the 
other combinations of parameters, the simulations results correspond to the data points 
except for the flat sample at ε&  = 5 10-4 s-1 for which the model predicts the crack a little 
bit later than what has been experimentally observed. The variations appearing at T = 
900 °C and ε&  = 5 10-4 s-1 come from the fact that, although this case has been privileged 
during the first phase of identification process, it was no longer focused on during the 
last optimization steps. In global, the set of parameters is considered to be representative 
of the experiments and the chronology of cracks appearance for the different 
combinations of specimen type, strain rate and temperature is well respected. 
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4.6.4 COMPLETE SET OF PARAMETERS FOR THE DAMAGE LAW 

Table 4.15 summarizes the list of parameters to be introduced in the model to 
define the grain boundary damage law for the interface element. The penalty 
coefficients kn and ks used in equation (3.21) have also been reminded in this table; they 
had been defined in Chapter 3 as part of the first development examples and have been 
kept constant in all the simulations of this chapter. 

 

Table 4.15. Parameters for the grain boundary damage law. 

Parameter Description Value 

d Grain size (diameter) 1 mm 
n Creep exponent Function of T (see Table 4.11) 
B Creep coefficient Function of T (see Table 4.11) 

e Bε ε& &  Grain viscosity parameter 10 
Fn Nucleation parameter 1.5 105 mm-2

NI Cavity density for nucleation 380 mm-2

Nmax Maximum cavity density 15200 mm-2

Σ0 Normalization stress Function of T (see Table 4.12) 
D Diffusion parameter Function of T (see section 4.6.2.1) 
ψ Cavity angle 75° 
a0 Initial void size (radius) 2.75 10-3 mm 
b0 Initial void spacing 2.75 10-2 mm 
dlim Damage threshold 0.7 
kn Normal penalty coefficient 100 000 MPa/mm 
ks Shear penalty coefficient 100 000 MPa/mm 

4.7 SUMMARY AND OUTCOMES OF THE EXPERIMENTAL PROGRAM 

The parameters of the constitutive laws to be used for the modelling of the 
continuous casting process at the mesoscopic scale have been identified on the basis of 
experiments results and literature data. The experiments have been realised on 
specimens extracted from rejected material provided by the industrial partner. 

Metallographic analyses combining optical microscopy and picric acid etching at 
room temperature have been performed on steel specimens to determine the original 
austenitic grain size and morphology. 
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As part of the macroscopic study, compressions of cylindrical specimens have 
been carried out and the corresponding stress-strain curves recorded. Several strain rates 
and temperatures have been tested in order to identify the parameters of the modified 
Norton-Hoff law representative of the thermo-mechanical behaviour of the material.  

Finally, a damage study has been used to complete the set of data extracted from 
the literature review, the microscopic analyses and the compression tests. The damage 
study consists in the definition of the ductility curve and in compression tests with 
acoustic emission analysis realised on steel specimens in order to determine the 
apparition of the first crack during compression. Finite element simulations of the 
acoustic tests have been used to define the remaining parameters of the damage law 
using an inverse method. 

The full set of parameters defined for the studied material is summarized in 
Table 4.5 and Table 4.15. 
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Chapter 5 

5 Application to continuous casting

5.1 INDUSTRIAL CONTEXT 

As highlighted in section 2.2, the formation of transverse cracks remains a major 
problem in steel continuous casting. In particular, the oscillation marks which are 
caused by the vertical oscillations of the mould, constitute an important factor 
responsible for cracks initiation. The macroscopic model developed in a previous study 
to analyse the thermo-mechanical behaviour of the strand during the cooling of 
continuous casting proposes indicators that predict the risk of transverse cracking 
(Pascon et al. 2006). Nevertheless, the influence of the oscillations marks is not directly 
included in this model, therefore the capacity to account for the presence of oscillation 
marks is one of the interests of the mesoscopic modelling. Other benefits of the 
mesoscopic simulations are the possibility to analyse the effects of various mesoscopic 
factors such as the grain size and its gradient or the precipitation state. 

Before analysing the continuous casting process at the mesoscopic scale, it is 
important to briefly describe the macroscopic model which provides the data to be 
transferred to the mesoscopic cell. The localisation, size and shape of the oscillation 
marks encountered on industrial products also need to be defined. These two points are 
discussed in the following sections. 

- 171 - 



FE mesoscopic analysis of damage in microalloyed CC steels at high temperature 

5.1.1 MACROSCOPIC MODELING OF THE CONTINUOUS CASTING PROCESS 

The data required for the mesoscopic analysis are extracted from the 
macroscopic thermo-mechanical continuous casting model developed by Pascon et al. 
(2006). This model has been used to study the risk of transverse cracking during 
bending and straightening of steel slabs. It is a bi-dimensional finite element slice model 
which accounts for the thermal and mechanical behaviour of the steel solidifying shell 
moving down through the caster at the casting speed (Figure 5.1). Heat transfer 
equations model the temperature evolution and solidification process, while an elastic-
viscous-plastic constitutive law predicts the stresses and strains occurring in the strand 
due to the solidification, cooling and applied forces. A ferrostatic pressure is applied on 
the solidified shell as long as the liquid core is present. The contact between the slab 
and the tool (i.e. the rolls) is represented by thermo-mechanical contact elements 
associated with a penalty method and a friction Coulomb’s law. The thermal boundary 
conditions are based on a thermal resistance approach to model conduction when 
contact occurs; when no contact occurs, convection and radiation are taken into account. 
The model also takes advantage of the generalized plane strain formulation to apply the 
extraction force on the slice of material and to account for its deformation in the casting 
direction. Another feature of the model is the specific bulging control methodology 
introduced in the analysis using springs.   

 

 
Figure 5.1. Schematic representation of a slice of slab moving through the caster.  

The major outputs of the macroscopic model are the temperature, stress, strain 
and strain rate fields during the whole continuous casting process. Two transverse 

Slice of slab 
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cracking indicators, whose value increases when the risk of crack appearance increases, 
are also proposed:  
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The first indicators I1 is based on the longitudinal stress (equation (5.1)) and the 
second indicators I2 on the longitudinal strain rate (equation (5.2)). They also account 
for the existence of a low ductility trough for the material (see Figure 4.21), T1 and T2 
being the temperatures delimiting this zone. 

5.1.2 CHARACTERISATION OF THE OSCILLATION MARKS 

The localisation, size and shape of the oscillations marks to be modelled have 
been defined by observation of the pieces of slab provided for the experimental 
analysis. The following characteristics could be determined (see also Figure 5.2):  

• inter-distance between two oscillation marks = 12 to 15 mm, 
• depth of the oscillation marks < 1 mm, 
• width of the oscillation marks = 2 to 3 mm. 

 

Inter-distance
between oscillation marks

Width of the
oscillation mark

Depth of the
oscillation mark

 
Figure 5.2. Schematic representation of the characteristics of the oscillation marks.  

These values are in agreement with measurements carried out by the industrial 
partner (Condamin et al. 2000). By analysing ten samples issued from five different 
continuous casting batches, they found average values for the inter-distances between 
two oscillation marks varying from 7.7 to 10.2 mm and average values for the depth of 
the oscillation marks varying from 0.3 to 0.6 with maximum values up to 1.4 mm for 
some extreme but rare cases. The steel grades tested have a carbon content 
approximately equal to 0.1 wt%, which is similar to the material used in this study. 
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Mathematical models can also be used to calculate the characteristics of the 
oscillation marks based on the deformations of the solidified shell within the mould and 
on parameters such as the amplitude and frequency of the mould oscillations and the 
casting speed. Generally, the depth of the oscillation marks decreases for higher 
oscillations frequencies because the marks have less time to form. For known 
continuous casting conditions, a theoretical inter-distance can be calculated by dividing 
the casting speed by the oscillations frequency of the mould. In particular, a mechanical 
model proposed Schwerdtfeger and Sha (2000) predicts oscillation marks depths 
varying between 0.05 and 0.45 mm; these results are also compared to experimental 
data which confirm the observations made on the slab used for the present analysis. 

5.2 CHOICE OF THE CELL SIZE WITH REGARD TO OSCILLATION MARKS 

The last step before applying the actual continuous casting loads as boundary 
conditions on the mesoscopic model is to define the size required for the representative 
cell. The main objective is to check if the oscillation marks interact with each others 
from a mechanical point of view and to decide whether or not it is necessary to model 
several oscillation marks.  

5.2.1 DEFINITION OF THE MODEL  

A large grains zone (10.9 mm ×  21.8 mm) has been built on the basis of the 
initial cell (5.45 mm ×  5.45 mm) already used in sections 3.7.3.2 and 4.6.3.1. 
Practically, the process was the following: 

• the grains zone of the initial mesoscopic cell (see Figure 3.39 or 4.49) has 
first been duplicated eight times and translated appropriately, 

• the junctions between the individual meshes have been checked and 
properly fixed, 

• all the nodes have been translated randomly so that all the grains are 
slightly different, 

• a transition zone has been added, the final mesh dimension is 21.8 mm ×  
65.4 mm, 

• the final mesh has been checked to detect and correct distorted elements. 

The final mesh is presented in Figure 5.3(a); it constitutes the reference case for 
comparison purpose when introducing oscillation marks. This mesh contains 
approximately 5000 nodes and 4000 elements, 1050 of which are interface elements that 
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describe the grain boundaries. Figure 5.3(b) is a zoom in the upper half of the cell; it 
shows the localisation of the elements that are used to compare the stress level between 
the cases with different types of oscillation marks.  

 

3 mm

3 mm

3 mm

3 mm 3 mm

24 mm

12 mm

65.4 mm

21.8 mm
(a) (b)  

Figure 5.3. a) Mesh for the analysis of the oscillation marks influence: reference case, 
b) zoom on the upper half of the mesh and localisation of the elements used for comparison. 

The cell is bended by a non-uniform tensile field applied in the vertical direction 
(z-direction). Displacements that are representative of the continuous casting process are 
imposed on the cell upper and lower boundaries to recover a maximum strain rate of 
approximately 10-3 s-1. These displacements have a triangular shape as illustrated on 
Figure 5.4(a). No loads are applied along the x-direction or along the thickness. The 
loading state has been chosen to simulate the bending process occurring during the 
continuous casting process and to enforce a higher stress level on the right edge of the 
cell where the crack is known to initiate. This choice produces a conservative model for 
the analysis of the oscillation marks spacing.  

To test the effect of the oscillation marks, two types of analysis are made: first, 
the stress distributions with two different geometries of oscillation marks are compared 

ez 

ex
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and then, the number of oscillation marks are increased. The shape and size of the 
oscillation marks have been chosen using observations made on the slab provided for 
the analysis, experimental data collected by the industrial partner and information 
available in the literature as summarized in section 5.1.2.  
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Figure 5.4. a) Dimensions of the cell and applied boundary conditions; geometry and position 

of the oscillation marks: b) one circular oscillation mark, c) one sharp oscillation mark, 
d) two sharp oscillation marks, e) three sharp oscillation marks.     

The two geometries tested are a circular (Figure 5.4(b)) and a sharp (Figure 
5.4(c)) oscillation mark. In both cases, the oscillation mark is localised at mid-height of 
the cell and its depth is 1 mm. Figure 5.4(d) and Figure 5.4(e) show the localisation of 
the oscillation marks for the cases with two and three sharp oscillation marks, 
respectively. The distance between the oscillation marks, which is equal to 9.8 mm, has 
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been chosen so that at least three of them could be represented in the existing mesh. As 
this distance is smaller than the distance experimentally observed (i.e. from 12 to 15 
mm), the model is conservative. The combination of parameters presented in Figure 5.4 
regarding the localisation, size and shape of the oscillation marks allows to cover the 
range of cases experimentally encountered. 

The material law representing the grains and the surrounding zone is the 
modified Norton-Hoff law with the parameters defined in Table 4.5. For the damage 
interface law modelling the grain boundaries, the parameters used are those identified 
by the acoustic tests simulations and summarized in Table 4.15. A uniform temperature 
of 900 °C is fixed and kept constant during the simulations.  
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Figure 5.5. zσ  at time t = 60 s (before initial crack appears) for the reference case. 
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5.2.2 RESULTS FOR THE REFRENCE CASE 

Maps of the stress zσ (vertical direction) before the initiation of the first crack 

are plotted for the different cases illustrated in Figure 5.4 and used for comparison 
purpose. The choice of zσ  as the comparison variable is justified by the fact that it is 

the stress that is directly imposed to the cell through the boundary conditions and that 
this stress is mainly responsible for crack initiation and opening. 

Figure 5.5 shows the stress distribution zσ  in the deformed cell for the reference 

case without oscillation mark at t = 60 s. The pattern observed is regular in both the 
surrounding and grains zones with a maximum tensile stress on the right side of the cell 
where the oscillation marks are localised for the other cases. This stress distribution 
pattern is correlated to the bending loads imposed.   

5.2.3 INFLUENCE OF THE GEOMETRY OF THE OSCILLATION MARKS 

Figure 5.6 presents the results with the two types of oscillation marks at the 
instant t = 60 s for the circular (a) and sharp (b) geometries. The same legend is used for 
all the stress maps presented in this chapter so that the plots can directly be compared. A 
first observation is that the regular stress pattern is recovered in the grains zone at a 
vertical distance from the notch approximately equal to 9 mm as highlighted by the 
horizontal line in Figure 5.5 and Figure 5.6. 

A stress concentration is observed at the tip of the oscillation mark for both 
geometries. For the sharp oscillation mark, the stress concentration is more localized, 
the circular oscillation mark producing a smoother variation. Compared to the reference 
case, the general stress distribution is mostly disturbed in an circle of radius 
approximately equal to 6 mm around the tip of the oscillation mark (see Figure 5.6). 
Nevertheless, when comparing the two cases presented in Figure 5.6, it can be seen that 
the geometry of the oscillation mark itself only influences the stress pattern in the close 
vicinity of the notch tip. Therefore, there is no need to analyse the effect of introducing 
several oscillations marks using the two geometries. 
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Figure 5.6. zσ  at time t = 60 s (before initial crack appears) for a circular (a) and a sharp (b) 

oscillation mark (depth of the oscillation mark = 1 mm). 

Table 5.1 presents more detailed results in terms of the stress zσ  at specific 

locations in the cell for the reference case, circular oscillation mark and sharp 
oscillation mark. A sketch showing the localisation of the elements used for the 
comparison has been presented in Figure 5.3(b). The first element (location 1) is 
localised at the position of the tip of the oscillation mark. Locations 2 to 12 form a grid 
of regular interval equal to 3 mm on the upper half of the cell; although the model is not 
perfectly symmetric due to the grains pattern, the general behaviour in the upper and 
lower half of the mesh is similar and there is no need to study both. The last line in the 
table (location 13) corresponds to an element localised completely outside the disturbed 
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zone and which is used as a reference. The percentage of variation of zσ  between the 

case with one oscillation mark (circular or sharp) and the reference case is also indicated 
in Table 5.1. 
 

Table 5.1. Comparison of the stress zσ  for the three cases of Figure 5.5 and Figure 5.6. 

Reference 
case 

One circular oscillation 
mark 

One sharp oscillation 
Position of 

the element
mark 1

zσ zσ zσ [MPa]  [MPa]  [MPa] Variation Variation 

75.82 85.41 43.26 75.25% 97.41% 1 

2 39.25 44.09 12.35% 4.49% 41.01 

39.48 40.14 1.68% 39.81 0.86% 3 

4 44.53 35.12 -21.14% -10.83% 39.71 

42.73 44.16 3.34% 43.47 1.73% 5 

39.57 41.58 5.08% 40.79 3.08% 6 

45.67 44.06 -3.54% 44.73 -2.07% 7 

42.70 40.88 -4.28% 41.64 -2.50% 8 

40.16 40.56 1.00% 40.36 0.51% 9 

45.76 45.11 -1.43% 45.37 -0.85% 10 

42.84 41.98 -2.01% 42.34 -1.17% 11 

40.46 39.82 -1.57% 40.09 -0.92% 12 

36.20 35.91 -0.80% 36.03 -0.46% 13 
1Localisation of the elements defined on Figure 5.3(b). 
 

The detailed results confirm the observation already made by global 
vizualisation of the stress maps. The stress concentration at the crack tip is more 
important for the sharp geometry with a maximum stress 85 MPazσ =  compared to 

75 MPazσ =  for the circular geometry; but the disturbed zone spreads further for the 

circular geometry, the stress variation compared to the reference case being 12% for the 
circular case and only 4.5% for the sharp case at point 2. There is a stress relaxation 
along the lips of the oscillation marks as shown by the data highlighted at point 4. For 
the circular geometry, this effect starts and extends further due to the shape of the notch. 
Points 10, 11 and 12 are localised on the horizontal line drawn at a distance of 9 mm 
from the centre of the oscillation mark as illustrated in Figure 5.5 and Figure 5.6. For 
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these locations, the variations of zσ  compared to the reference case are less or equal to 

2%. This low value allows to consider that the original stress pattern is recovered. For 
comparison, the variations at point 13, which is outside the disturbed zone and not 
strongly affected by the perturbation, lie between 0.5 and 0.8%.  

As it has been established that the global stress pattern is fully recovered at a 
distance equal to 9 mm from the centre of the oscillation mark, it is necessary to check 
if 18 mm (2 ×  9 mm) is the minimum distance required between two oscillation marks 
in order to prevent any interaction concerning the initiation of cracks; this point is 
investigated in the next section. 

5.2.4 ANALYSIS OF THE INTERACTIONS BETWEEN THE OSCILLATION MARKS 

Figure 5.7 is used to check in which zone the oscillation marks will interact and 
to decide whether or not it is necessary to model a few of them. The distance between 
the oscillation marks (9.8 mm) has been chosen so that at least three of them can be 
represented in the existing mesh and is therefore smaller that 18 mm but conservative.  

Looking at the stress patterns in Figure 5.6 and Figure 5.7, it can be seen that the 
stress distribution for zσ  has the same shape and size, corresponding to two lobes or 

‘wings’, in the zones around the oscillations marks for all the cases, i.e. with one, two or 
three oscillation marks. This is a first indication that the presence of several oscillation 
marks does not strongly influence the local stress distribution around each oscillation 
mark. This conclusion is reinforced by the fact that in reality the inter-distance between 
the oscillation marks for practical cases is greater than the 9.8 mm modelled in these 
examples. 

The calculated stress field corresponds to the characteristic pattern predicted by 
the standard equations of fracture mechanics for the stress distribution around the crack 
tip. The differences observed in the shape and size of the lobes in Figure 5.7 when the 
transition zone is reached, occur because the mesh becomes more rigid in this zone. 
Indeed, in the transition zone, the elements size increases and there is no boundary 
elements that release the degrees of freedom of the displacement field. 
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(a)  

zσFigure 5.7.  at time t = 60 s (before initial crack appears) for two (a) or  three (b) sharp 
oscillation marks (distance between the oscillation marks = 9.8 mm). 

Table 5.2 indicates the instant of first crack initiation around each oscillation 
mark for all the cases tested. All the simulations have been carried out up to t = 100 s 
except for the reference case simulation which has been extended up to t = 200 s. 

Looking at the results in Table 5.2, it is important to underline the fact that the 
first crack initiation appears almost simultaneously for the cases with one (t = 65 s), two 
(t = 64 s) or three (t = 67 s) sharp oscillation marks. It can then be concluded that, even 
if the oscillation marks influence each other, there is no need to model more than one of 
them in the final simulations. Indeed, for each defined oscillation mark geometry, the 
perturbation is only concentrated in between the oscillations marks and has no real 
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effect near the notch tip where it is essential to model the stresses correctly to detect 
crack appearance. The last calculations will then be done using the smaller cell as 
defined in Figure 3.39. This choice will induce major computation time savings. 
 

Table 5.2. Time at crack initiation for the different meshes1. 

Localisation Time at crack 
initiation Mesh type 

of the crack 

No OM (reference) Right side, centre 154 s 

One circular OM Tip of circular OM 72 s 

One sharp OM Tip of sharp OM 65 s 

Tip of lower sharp OM 86 s 
Two sharp OMs 

Tip of upper sharp OM 64 s 

no crack at t = 100 s Tip of lower sharp OM 

Three sharp OMs Tip of middle sharp OM 67 s 

Tip of upper sharp OM 85 s 
 1OM stands for oscillation mark. 

  

Of course as sharp and circular geometries strongly modify the stress and strain 
fields at the tip of the oscillation mark, the cracks do not start to propagate at the same 
time when the geometry changes. Not surprisingly the sharp oscillation mark induces 
early crack propagation. For the reference mesh, there is no stress concentration induced 
by an oscillation mark; stress variations in the mesh are only due to the grains patterns 
and the crack initiate later on a grain boundary element perpendicular to the loading 
direction. The crack is localised on the free edge of the cell, where the stress level in the 
vertical direction is globally higher.  

When the cracks propagate, the comparison between the different meshes is no 
longer possible as each crack evolves differently, depending on the grains pattern. 
Moreover, when a crack initiates, the global stiffness of the cell is reduced and therefore 
the opening of the second crack is delayed. This behaviour is linked to the fact that 
during crack propagation, although there is a stress concentration at the crack tip, there 
is also an important unloading effect along the lips of the crack and a lower, but 
existing, unloading effect in the surrounding area of the crack. It can also be noticed in 
Table 5.2 that the initiation of the second crack for the cases with two or three 
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oscillation marks also appears simultaneously around t = 85 s. This effect has not been 
investigated further. 

5.3 DESCRIPTION OF THE MACROSCOPIC SIMULATIONS 

The major features of the macroscopic continuous casting finite element model 
have been presented in section 5.1.1. The objective of the present section is to describe 
the application of this model to the specific continuous casting process analysed in this 
study with a view to collect the macroscopic results required for the modelling at the 
mesoscopic scale. 

5.3.1 GEOMETRY OF THE PROBLEM AND MATERIAL PARAMETERS 

The product used for the analysis is a slab of cross section 1200 mm ×  220 mm 
which is cast at a casting speed equal to 1.2 m/min. The problem being symmetric along 
the y-axis, only half of the slab is modelled for the macroscopic analysis (Figure 5.8). 

 

600 mm

220 mm

ey 

ex
 

 

 
Figure 5.8. Half slab cross-section used for the macroscopic modelling. 

The modelling conditions, geometry of the caster, material parameters and heat 
transfer coefficients are identical to those used by Pascon (2003); the detailed inputs are 
not published here as they are industrial proprietary data but they are considered to be 
representative of the behaviour of a low carbon steel similar to the one modelled 
throughout this thesis. An exception is for the modified Norton-Hoff law in the 
temperature range between 700 and 1100 °C, where the parameters summarized in 
Table 4.5, which have been specifically identified for the steel grade provided by the 
industrial partner, are substituted to Pascon’s data. 

The caster is a vertical-curve machine which presents five successive zones: a 
vertical zone under the mould, a bending zone, a curved zone of constant radius, a 
straightening zone and an horizontal zone.   
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5.3.2 DESCRIPTION OF THE LOCAL DEFECT 

The mesoscopic model is tested using a reference configuration where the 
continuous casting process takes place without a hitch and a configuration presenting a 
local defect. The modelled defect is a misalignment of one pair of rolls localised just 
before the beginning of the straightening zone of the continuous casting machine. The 
amplitude of the misalignment is 2 mm perpendicularly to the casting axis towards the 
centre of curvature of the caster (Figure 5.9). Although the amplitude of the defect 
seems small compared to the dimension of the caster, whose radius of curvature is 8 m, 
it introduces large local bending and straightening effects which are damageable to the 
final product. In practice, the position of the rolls are controlled at a precision of the 
order of the millimetre.  

49 49

Reference case Case with defect:
misalignment of one pair of rolls

intrados 
2 mm displacement 

towards centre 
face 

  
Figure 5.9. Illustration of the local defect relative to the reference case. 

5.4 METHODOLOGY FOR THE DATA TRANSFER 

The technique applied to transfer data from the macroscopic to the mesoscopic 
model has already been described when modelling the acoustic experiments in section 
4.6.3.1. Basically, the stresses, strains and temperatures in the critical zone are recorded 
all along the simulation and transformed into boundary conditions to be applied to the 
mesoscopic cell. The adaptation of the method to the continuous casting slice model is 
presented hereafter.  

5.4.1 EXTRACTION OF THE DATA 

The results of the macroscopic model have identified the corner of the slab as 
the critical zone for crack initiation and propagation, the intrados side being the more 
exposed (Pascon 2003). These results are in agreement with on-site observations, which 
also show that the cracks more often initiate on the lateral face of the slab. Based on 

extrados slab 

face 
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these findings, two critical areas are chosen for the mesoscopic analysis, they are 
positioned close to the corner of the slab, either for the intrados or the extrados. These 
locations have been circled in Figure 5.10. To analyse a crck initiating on the lateral 
face of the slab, a section of type 2 has to be used. 

Contrarily to the acoustic experiments, the temperature in the critical zone varies 
during the simulation of the continuous casting problem. Therefore, the temperature 
evolution has also to be transferred to the mesoscopic cell; this is done by imposing the 
temperature of each node of the mesoscopic cell at every time step following the data 
recorded from the macroscopic model. Similarly to the stress and strain fields, the 
temperature varies with time but is considered uniform on the cell, the objective being 
to reproduce the characteristic thermo-mechanical behaviour recorded macroscopically 
and not the spatial gradients. 

 
 Intrados face 

 
 
Figure 5.10. Mesh used for the macroscopic simulations, identification of the critical zones on 

the intrados and extrados faces and localisation of a section of type 2. 

As the temperature is defined at the nodes and not at the integration points, it has 
been decided to focus on one node for the data collection and to use the results from the 
integration points surrounding it to calculate representative stresses at that node.  

The localisation of the interesting nodes and integration points is illustrated in 
Figure 5.11 for the particular case of the intrados. The node where the stress, strain and 
temperature fields are recorded is node 1, which is common to the two elements in the 
corner (black dot). The displacements of the nodes labelled 2 to 5 (grey dots) are used to 
define the logarithmic strain along the x and y-axes in this zone. The strain along the z-
axis is calculated directly using the information relative to the thickness of the slice of 
material modelled in generalized plane state. 
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Figure 5.11. Zoom on the critical zone (intrados face) and identification of the nodes used in 

the calculations, nodes are represented by dots and integration points by crosses. 

The stresses at node 1 are calculated by interpolation of the stresses recorded at 
the four integration points that surround the central node as highlighted in Figure 5.11 
(black crosses). An interpolation in 2

1
R  is used. It consists in calculating a weighted 

average of the stresses attaching more weight to the integration points that are closer to 
the central node where the interpolation is made. The exact formulation for the stresses 
interpolation is given by equation (5.3): 
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where iR  is the distance between the central node and the integration point i in the 

initial configuration and ( ), ,x y z i
σ  the stress xσ , yσ  or zσ  at the integration point i. 

For illustration purpose, Figure 5.12 to Figure 5.14 show the stresses, strains and 
temperatures collected in the critical zone of the intrados face before being applied to 
the mesoscopic cell. The results for the reference case and for the case with defect are 
presented. These data have been extracted from the macroscopic simulations using the 
data collected at and around node 1 as explained before.   

Globally, the stresses, strains an temperature curves present large oscillations all 
along the process due to the succession of rolls and water sprays in the caster. For the 
intrados face, apart from the variations at the beginning of the curve, i.e. just under the 
mould, the stress zσ  in the casting direction has a negative value during the first two 

thirds of the process; the upper face of the slab stays in compression until the 
straightening phase where it is in tension. The stresses xσ  and yσ  are close to zero 

4 mm
4

4 mm 

2 31
6 mm 

5
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except at the end of the simulation after the straightening phase where compression 
occurs in the y-direction. The strains evolution plotted in Figure 5.13 can be easily 
correlated with the bending and straightening zones of the caster. In particular, it can be 
noted that for the intrados face, zε  decreases sharply during the bending phase, then 

presents a smooth variation when the slab cools down in the zone of constant curvature 
of the caster, and finally increases sharply during the straightening phase. 

The misalignment of one pair of rolls introduces large variations in the stress zσ  
compared to the reference case. The evolution of zσ  in case of defect indicates a 

succession of local bending/straightening/bending behaviours as shown in Figure 5.12. 
The effect of the misalignment is also directly observed on the strains (see Figure 5.13). 
Nevertheless, the mechanical defect has almost no influence on the stresses xσ  and yσ ; 

the same comment can be done regarding the temperature but this is expected as the 
cooling conditions are not dramatically affected by the displacement of the pair of rolls. 
Moreover, all the variables plotted in Figure 5.12 to Figure 5.14 go back to values 
almost identical to the ones recorded for the reference case when the zone with defect is 
passed. 
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Figure 5.12. Stresses in the critical zone of the intrados side for the reference case and case with 

defect (misalignment of one pair of rolls). 
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Figure 5.13. Strains in the critical zone of the intrados side for the reference case and case with 

defect (misalignment of one pair of rolls). 
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Figure 5.14. Temperatures in the critical zone of the intrados side for the reference case and 

case with defect (misalignment of one pair of rolls). 

 

zσSimilar curves can be drawn for the extrados. On the extrados side, the stress  

in the casting direction is in tension in the bending zone and in compression in the 
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constant curvature and straightening zones. The effect of the bending and straightening 
phases on the strains are inverted compared to the intrados face.  

5.4.2 DEFINITION OF THE MESOSCOPIC CELL BOUNDARY CONDITIONS 

The stresses and strains extracted from the macroscopic continuous casting 
simulations are used to define the forces and displacements to be applied as boundary 
conditions on the mesoscopic cell. The details of the conversion method have been 
described in section 4.6.3.1. The same equations are used in the present case after 
having been adapted to the proper the axes systems used for the continuous casting slice 
model and for the corresponding mesoscopic model.  

It has been shown in Chapter 4 that it is possible to reproduce the correct 
macroscopic stress-strain behaviour on the mesoscopic cell when forces Fy and Fz are 
imposed in the y-direction (thickness) and z-direction (vertical) and displacements Δx in 
the x-direction (horizontal) as shown on Figure 5.15.  
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Figure 5.15. Boundary conditions on the mesoscopic cell. 

The displacements along the x-direction are equal to zero on side AB. A free 
edge is kept along the grains zone to allow crack initiation and propagation. For the 
calculation of the forces based on the stresses, the actualised section has to be taken into 
account; the latter being known via the strains. The axes system of the mesoscopic cell 
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has been chosen to be directly transposable to the macroscopic model as defined in 
Figure 3.31. In the example presented in Figure 5.15, the section studied is a section of 
type 2 which means that the cracks initiate on the lateral face of the slab.  To study a 
section of type 3 where the cracks initiate on the upper or lower face of the slab, the 
axes x and y of the mesoscopic cell have to be switched but the z-axis remains 
unchanged. 

5.5 RESULTS OF THE MESOSCOPIC SIMULATIONS 

5.5.1 VERIFICATION OF THE DATA TRANSFER 

Before analysing the results in terms of damage progression and crack initiation 
for various continuous casting conditions, a verification that the correct stresses 
distribution is reproduced on the mesoscopic cell has been carried out. To perform the 
verification, the average of the stresses for the three elements highlighted in Figure 5.15 
have been recorded and compared with the imposed data. In Figure 5.16, which 
corresponds to the reference case for the critical zone of the intrados side, it can be seen 
that the data are correctly reproduced for each stress all along the simulation. 
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Figure 5.16. Verification of the stresses transfer between the macroscopic and mesoscopic 

models for critical point on the intrados side. 
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The detailed calculation has not been made here regarding the verification of the 
transfer for the strains, but it has been proved in Chapter 4 that the transfer method was 
reliable. As the deformations are directly imposed along the x-axis and as it has been 
checked that the stresses are correctly reproduced, the strains along the y and z-axes will 
be correct as they are fixed by the constitutive law. 

The transfer of the temperature field is straightforward and does not required any 
verification as it is directly imposed to the nodes of the mesoscopic cell. 

5.5.2 ANALYSIS OF THE DAMAGE 

The level of damage in the cell has been analysed for the different cases studied. 
The conditions that have been tested are the following: 

• internal (intrados) and external (extrados) surface of the slab, 
• cases with and without oscillation marks, 
• reference case and case with defect (misaligned rolls).  

The combinations of these conditions leads to the realisation and analysis of 
eight different simulations. 

Figure 5.17 shows the meshes defined for the case with and without oscillation 
mark. The cell without oscillation mark is the one that has been previously used for the 
initial simulations and whose dimensions are 5.45 mm ×  5.45 mm for the grains zone 
and 10.9 mm  16.35 mm when the surrounding zone is included. ×

 

Cell without oscillation mark Cell with oscillation mark

Localisation of 
the first crack

Zoom around the 
oscillation mark 

 
Figure 5.17. Meshes used for the final simulations, the red circle indicates the localisation of 

the critical element for crack initiation. 
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For the case without oscillation mark, as the loads are applied uniformly on the 
cell, the maximum damage value does not automatically appear on the edge of the 
grains zone. Therefore, the critical locations for crack initiation have been identified 
during the mesoscopic simulations and are represented in  Figure 5.17: inside the grains 
zone, on a grain boundary perpendicular to the direction of the maximal principal stress, 
for the case without oscillation mark, and at the tip of the oscillation mark for the case 
with oscillation mark. 

The initial mesh has been modified for the case with oscillation mark to allow a 
suitable modelling of the geometry of the oscillation mark. For this example, the 
oscillation mark corresponds to a V-shape indentation of depth equal to 0.75 mm as 
described in Figure 5.18, which indicates the exact geometry of the oscillation mark 
inserted in the mesh of Figure 5.17. 

 

r = 0.08 mm

angle = 40°

depth = 0.75 mm  
Figure 5.18. Geometry of the oscillation mark. 

Table 5.3 indicates the results in terms of damage and the instant of the first 
crack initiation for the different cases analysed. With the mesoscopic damage law, the 
damage accumulates all along the simulation until it reaches the damage threshold 
indicating crack initiation. Such a criterion is different that the one proposed with the 
macroscopic model, where the risk indicators as defined by equations (5.1) and (5.2) 
correspond to instantaneous values. 

For the mesh without oscillation mark, the maximal damage values dmax reached 
at the end of the simulations are indicated in Table 5.3. These values are around 0.2 
which is much smaller than the critical threshold of 0.7 identified for crack initiation 
with the acoustic experiments simulations. Without oscillation mark, the spatial stresses 
variations inside the grains zone are only due to the shape, localisation and movements 
of the grains. There is no stress concentration effect that triggers the damage increase 
like for the case with oscillation mark. Nevertheless, it can be noted that for the case 
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without oscillation mark, the damage is slightly more important on the extrados face. 
This observation is due to the fact that the damage increases more when the cell is in 
tension and that the extrados face is in tension during most of the simulation whereas 
the intrados face is only in tension during the straightening phase. For both faces, the 
introduction of the defect induces a larger increase of the damage level. 
 

Table 5.3. Maximum damage values for the eight cases studied. 

Simulation Mesh type Intrados Extrados 

d dWithout oscillation mark max = 0.18 max = 0.23 

ddReference 
With oscillation mark 

max = 0.5 (crack) max = 0.23 

t tcrack = 783 s crack =  no crack 

With defect d dWithout oscillation mark max = 0.22 max = 0.25 
(misalignment 
of one pair of 

rolls) 

d d
With oscillation mark 

max = 0.5 (crack) max = 0.47 

tcrack = 756 s tcrack = no crack 

 

For the mesh with oscillation mark, a maximum damage threshold of 0.5 has 
been imposed to allow a comparison between the different cases. This choice is slightly 
smaller than the threshold of 0.7 identified with the simulations of the acoustic 
experiments but it is representative of the experimental results observed on the slabs. 
When the damage threshold is reached, a crack initiates. The corresponding time tcrack is 
indicated in Table 5.3. 

The difficulty to accurately define the damage threshold using the results of the 
acoustic experiments can be explained by the fact that during these tests, the critical 
points in the different specimens are always in tension, whereas in the continuous 
casting process, the critical points undergo compression and tension loads alternatively. 
Although the correct strain rates are reproduced, the global loading histories are quite 
different. At the origin, the acoustic tests have been developed to define forming limit 
curves (Kopp and Berneath 1999) which have to be used to predict the formability of 
processes whose loading histories can be correlated with one of the basic tests used for 
production of these curves. Based on this consideration, it would be interesting to define 
specific acoustic tests configurations that reproduce cycles similar to those encountered 
in continuous casting in order to define more quantitative damage thresholds.     
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In the present case, the results of Table 5.3 for the mesh with oscillation mark 
indicate that a crack initiate on the intrados side and that the misalignment of one pair of 
rolls induces earlier cracking than the reference case with a maximal damage threshold 
of 0.5. Without defect, the damage remains low for the extrados side even with an 
oscillation mark but it almost reaches the maximal damage threshold on the intrados 
side, which is experimentally known to be more exposed to cracking problems.  

A general conclusion drawn from the analysis is that the mesoscopic model 
predicts a more important damage level for the cases that are known to be more critical 
and that the model can be used to rank the different cases with regard to the sensibility 
to transverse cracking. The final results presented are compatible with the experimental 
observations and with the results given by the macroscopic model.  

5.6 CONCLUSIONS OF THE PRACTICAL APPLICATION 

In the context of the application of the mesoscopic damage model to the 
simulation of the industrial process of continuous casting, it has been shown that the 
modelling of a single oscillation mark was sufficient to analyse the influence of 
oscillation marks on transverse cracking. Indeed, no interaction between oscillation 
marks was observed for the different representative cases tested.  

The final application, where various continuous casting conditions were 
simulated, has proved that the model could rank the different factors tested with regard 
to the sensitivity to transverse cracking. It has also been highlighted that it was difficult 
to define a precise damage threshold for crack initiation. To address this problem, 
specific acoustic test configurations could be developed to identify damage thresholds 
for the particular loading cases encountered in continuous casting. This approach would 
help in defining as set of parameters for which the model could be used as a quantitative 
rather than as a qualitative predictive tool.  

Finally, the model has been validated by showing that with a maximum damage 
threshold of 0.5, the predictions were coherent with the results obtained with the 
macroscopic model and with the information collected from the industrial partner. 
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Chapter 6 

6 Conclusions and perspectives

The objective of this research work was to develop a model capable of studying 
the damage process at elevated temperature and of addressing the problem of transverse 
cracking in steel continuous casting. To achieve this goal, a mesoscopic finite element 
model with damage has been developed, implemented and tested before being applied 
to the modelling of the industrial process of steel continuous casting. 

6.1 KEY FINDINGS AND ACHIEVEMENTS 

Based on the outcomes of the literature review, it is acknowledge that transverse 
cracks occurring in steel continuous casting are intergranular. These cracks develop by 
cavitation at the grain boundaries and by grain boundary sliding. The phenomenon of 
voids nucleation, growth and coalescence is established, the cavities evolving mainly 
under diffusion and creep deformations at elevated temperature. Strains concentration in 
the thin ferrite films formed along the grain boundaries during cooling also enhances the 
cracking process. 

Due to the nature of the cracks to be represented, a mesosocopic approach which 
comprises solid elements for the grains and interface elements for the grain boundaries 
appeared to be an appropriate choice for the modelling. Therefore, a 2D grain model 
was developed and introduced in the finite element code LAGAMINE. In particular, a 
new interface element and its associated damage law were implemented.  
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The identification of the parameters of the constitutive laws specific to the 
studied material was realised using data collected from the literature and from 
microscopic and macroscopic experiments carried out especially as part of this project. 
To complete the parameters identification process, an inverse method that uses results 
from acoustic tests, i.e. compression tests during which crack initiation is detected by 
acoustic emission, was proposed. Used in parallel with finite element simulations 
modelling the performed experiments, these tests allowed the calibration of the 
parameters of the interface damage law that had not been directly defined by the 
macroscopic and microscopic experiments or by the literature review. 

As the location of the critical zone for crack initiation was known for both the 
acoustic tests and the steel continuous casting applications, it was possible to model 
these processes at the mesoscopic scale by transferring stress, strain and temperature 
histories from the macroscopic to the mesoscopic level. Finally, it was shown that the 
mesoscopic damage model accurately simulated crack initiation for realistic continuous 
casting cases. When compared with the extrados face, it was verified that the model 
predicted a higher damage level in the critical zone for the intrados face. The 
introduction of an oscillation mark in the mesoscopic cell and the simulation of a 
process defect (misalignment of one pair of rolls) gave rise to earlier crack initiation. 
These results were correlated with crack risk indicators predicted by the macroscopic 
continuous casting model and with in-situ observations.  

6.2 FUTURE WORK 

The new mesoscopic damage model implemented in the LAGAMINE finite 
element code has been validated by simulating different continuous casting conditions. 
The model being now available, it is exploitable to test additional practical cases. For 
example, it is possible to use the model to analyse the effect on transverse cracking of: 

• the oscillation marks geometry, by changing the depth and shape of the 
modelled oscillation mark,   

• the grain size and/or its gradient, by defining various grains patterns,  
• the precipitation state, by varying the parameters linked to nucleation or 

to the initial voids characteristics, 
• the steel grade, by using appropriate grain and interface constitutive 

laws, a first comparative analysis could be provided by modifying only 
the grain law, 
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• other process defects such as blocked rolls or nozzles, by imposing on 
the mesoscopic cell the macroscopic stress, strain and temperature fields 
corresponding to these defects. 

The model can also be exploited by defining spatial random variations of the 
damage parameters in the mesoscopic cell and analysing the results statistically. 
Likewise, statistically representative simulations can be carried out by modelling and 
analysing various grain patterns.  

As already mentioned during the development phase, additional features can be 
added to the model. In particular, it is possible to extend the damage evolution law to 
account for characteristic phenomena linked to fatigue problems and/or to model 
specifically the austenite-ferrite transformation. 

The difficulty to define accurately the damage parameters at elevated 
temperature by direct measurements imposes to rely on non-direct method. This 
statement is particularly true for materials cooling down under continuous casting 
conditions. Therefore, another research stream associated to the mesoscopic damage 
modelling is the definition of reliable non-direct parameters identification methods. In 
particular, specific acoustic tests configurations which lead to stress-strain histories that 
are closer to the loads sustained by the material during the macroscopic industrial 
process of continuous casting should be investigated to allow the definition of a set of 
parameters that assures a quantitative prediction of crack initiation. 

Finally, the interface element and the damage law developed in this thesis are 
already applied in the scope of other research projects. More precisely, the complete 
model is exploited in a research project that aims at widening the developments carried 
out for microalloyed steels to peritectic and stainless steels (Schwartz et al. 2007). In 
another research project, the interface element is extended to be used in conjunction 
with a damage cohesive law for the modelling of fatigue crack in welded beam-to-
column connection in buildings submitted to earthquake (Lequesne et al. 2005). 
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Appendix A 

A Derivation of the generalized plane state for 
the mixed 4-node element

A.1 INTRODUCTION 

 The developments leading to the definition of the classical rigidity matrix for 
the mixed 4-node element have been presented by Zhu in his thesis (Zhu 1992a). The 
additional terms that have to be introduced in the rigidity matrix for the modelling of the 
generalized plane state are calculated hereafter. 

A.2 MATHEMATICAL DERIVATIONS   

A.2.1 NODAL FORCES AND RIGIDITY MATRIX 

The generalized plane state allows the modelling of a thin slice of material, 
whose two surfaces are forced to stay plane but can move closer or apart from one 
another and/or rotate around any axis to be defined in the plane the section. 

In practice, an additional node is associated to the element. This node has three 
degrees of freedom that are linked to the relative movement of the two surfaces of the 
slice (one displacement and two rotations). For the mixed 4-node element, a fifth node 
has to be defined. This node is common to all the elements and is then linked to all the 
nodes of the studied section through the rigidity matrix.  
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ex

ey

η

ξ

uxI

uyI

 
Figure A.1. Representation of the 4-node element. 

The displacements (A.1) and the thickness of the slice (A.2) are given by: 

 
x I x I

I

y I I
I

u N u

u N u

=

= y

∑

∑
 (A.1) 

 1 2 3e x yα α α= + +  (A.2) 

where [ ]1 2 3 4x x x x xu u ,u ,u ,u=  and 1 2 3 4y y y y yu u ,u ,u ,u⎡ ⎤= ⎣ ⎦  are the vectors representing the 

nodal displacements in the plane of the studied section, along xe  and ye  as shown on 

Figure A.1; and e the thickness of the slice. The IN  are the interpolation functions in 

the plane; α1, α2  and α3 are the coordinates of the additional node, α1 is associated to 
the translation of the centre of the element, α2 and α3 are associated to the rotation 
around the x and y axes, respectively. 

For the mixed 4-node element, the vector representing the interpolation 
functions in the plane is given by: 

 1 1 1 1
4 4 4 4

N( , ) s hξ η ξξ ηη= + + + ξη  (A.3) 

with [ ]1 1 1 1, , ,ξ = − − , [ ]1 1 1 1, , ,η = − − , [ ]1 1 1 1s , , ,=  and [ ]1 1 1 1h , , ,= − − , ξ and η being 

the reference coordinates in the plane.  

The Jacobien matrix for the transformation in the plane is: 

 

x x

J
y y
ξ η

ξ η

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥=
∂ ∂⎢ ⎥

⎢ ⎥∂ ∂⎣ ⎦

 (A.4) 
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Its inverse is given by: 

 1 1
y x

x y
J

y xJ
x y

ξ ξ
η η

η η
ξ ξ

−

∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥= =
∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎣ ⎦

 (A.5) 

where J  is the Jacobien determinant: 

 x y x yJ
ξ η η ξ
∂ ∂ ∂ ∂

= −
∂ ∂ ∂ ∂

 (A.6) 

The expression for the velocity gradient is: 

 { } [ ]{ }d B du, dε α=  (A.7) 

with 

 { } y yx x zdu dudu du dud , , , ,
x y x y e

ε
∂ ∂⎧ ⎫∂ ∂

= ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭
 (A.8) 

 { } { }1 1 2 2 3 3 4 4
1 2 3x y x y x y x y , ,du,d du ,du ,du ,du ,du ,du ,du ,du ,d d dα α α α=  (A.9) 

 

[ ] [ ]
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

10 0 0 0 0 0 0 0

u

x x x x

y y y y

x x x x

y y y y

B B B

B B B B
B B B B

B B B B
B B B B

0
0
0
0

x y
e e e

α=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

M

M

M

M

M

M

 (A.10) 

The notation { }  is used to indicate that the vector has to be considered as a column.  

To derive the terms of the matrix B relative to the coordinates αI, the following 

relation has to be considered: ( ) ( 1 2 3
1z d edu d d x d y

e e e
α α α= = + + ) . The variations of x 

and y, which are second order effects, are not taken into account. The detailed 
calculation of the terms I

xB  and I
yB  can be found in Zhu’s thesis (Zhu 1992a) and are 

not retranscribed here. 

The rigidity matrix is obtained by differentiation of the nodal forces. For the 
degrees of freedom in the plane of the section, the nodal forces are given by: 
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 { } { }T

u uV
F B σ⎡ ⎤= ⎣ ⎦∫ dV  (A.11) 

and for the degrees of freedom relative to the additional node:  

 { } { }T

V
F Bα α σ⎡ ⎤= ⎣ ⎦∫ dV  (A.12) 

where the stress field vector is given by: 

 { }

x

xy

yx

y

z

σ
σ

σ σ
σ
σ

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (A.13) 

The tangent matrix K has to link the nodal forces increments to the 
displacements increments: 

 u uu u

u

dF K K du
dF K K d

α

α α αα α
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (A.14) 

The differentiation of (A.11) gives the upper part of the matrix, i.e. Kuu and Kuα,  
while the differentiation of (A.12) gives the lower part, i.e. Kαu and Kαα. 

To simplify the presentation, all the matrices that are developed in this chapter 
comprise only the mechanical degrees of freedom. The coupling thermomechanical 
terms are identical to those of the strain plane state and are already implemented in the 
element. 

A.2.1.1 Computation of the upper part of the matrix K 

To perform the numerical integration, equation (A.11) is written: 

 { } [ ] { }T
u uF B Jσ= e w  (A.15) 

where J  is the transformation Jacobian in the plane x-y and w the integration weight. 

The mixed 4-node element developed here has one single integration, otherwise a sum 
over the integrations points should be introduced in equation (A.15). 

The differentiation of (A.15) comprises four terms: 
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{ } [ ] { }
[ ]( ){ }

[ ] { } ( )
[ ] { }

(1)

(2)

(3)

(4)

T
u u

T
u

T
u

T
u

dF B d J e w

d B J e w

B d J e w

B J de w

σ

σ

σ

σ

=

+

+

+

 (A.16) 

Computation of the first term 

 { } [ ] { }(1) T
u udF B d J e wσ=  (A.17) 

Knowing that { } [ ]{ }d C dσ ε=  and { } [ ]{ }d B du, dε α=  where [  is the 

constitutive matrix, equation 

]C

(A.17) becomes:  

 { } [ ] [ ][ ] { }(1) T
u udF B C B J e w du, dα=  (A.18) 

The part of the tangent matrix due to term (1) is then given by: 

 [ ] [ ] [ ][ ] [ ] [ ][ ](1) T T
u u u uK B C B J e w B C B B J eα= = M w  (A.19) 

which is composed by the classical tangent matrix (A.20) plus the part to add due to the 
modelling of the generalized plane state (A.21): 

 [ ] [ ] [ ][ ](1) T
uu u uK B C B J e= w  (A.20) 

 [ ] [ ] [ ][ ](1) T
u uK B C B J eα α= w  (A.21) 

The terms of the tangent matrix that couple two nodes I and J can now be 
calculated. The term of the matrix [ ]uB  corresponding to node I are: 

 [ ]

0
0

0
0
0 0

I
x
I
y

I
u xI

I
y

B
B

B B
B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.22) 

and the matrix [  can be written:  ]C
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  (A.23) [ ]

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

C C C C C
C C C C C

C C C C C C
C C C C C
C C C C C

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎥

Finally, using   (A.20), (A.22) and (A.23), the matrix coupling nodes I and J can 
be computed as follows: 

 [ ]

11 12 13 14

21 22 23 24
(1)

31 32 33 34

41 42 43 44

I J J I J J
x x y x x y

I J J I J J
y x y y x y

uu I ,J
I J J I J J
x x y x x y

I J J I J J
y x y y x y

B ( C B C B ) B ( C B C B )

B ( C B C B ) B ( C B C B )
K J

B ( C B C B ) B ( C B C B )

B ( C B C B ) B ( C B C B )

⎡ ⎤+ +
⎢ ⎥

+ + + +⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥+ + + +⎣ ⎦

e w  (A.24) 

The matrix [ ]Bα  has to be taken into account to calculate the terms associated 

with the degrees of freedom of the additional node: 

 [ ]

0 0 0
0 0 0

1 0 0 0
0 0 0
1

B
e

x y

α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (A.25) 

The terms of the matrix K that couple a node I with the additional node, 
associated with the generalized plane state, are defined using (A.21), (A.22), (A.23) and 
(A.25):  

 [ ]
( ) ( )
( ) ( )

15 25 15 25 15 25(1)

35 45 35 45 35 45

I I I I I I
x y x y x y

u I I I I I I I
x y x y x y

B C B C B C B C x B C B C y
K J

B C B C B C B C x B C B C y
α

⎡ ⎤+ + +
⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

e w  (A.26) 

Computation of the second term 
The second term of equation (A.16) is given by: 

 { } [ ]( ){ }(2) T
u udF d B J e wσ=  (A.27) 

with 
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 [ ] [ ] { }
T

T u
u

B
d B du

u
∂

=
∂

 (A.28) 

The nodal forces corresponding to the degrees of freedom x and y are computed 
by detailing expression (A.15) by using (A.13) and (A.22):  

 
{ } ( )

{ } ( )

I I I I
u x x y xy x xyxI

I I I I
u x xy y y xy yyI

N NF B B J e w J e
x y

N NF B B J e w J e
x y

σ σ σ σ

σ σ σ σ

⎛ ⎞∂ ∂
= + = +⎜ ⎟∂ ∂⎝

⎛ ⎞∂ ∂
= + = +⎜ ⎟∂ ∂⎝ ⎠

w

w

⎠  (A.29) 

The derivation of the extrapolation functions NI is given by: 

 

1

1

I I I I I

I I I I I

N N N N y N y
x x x J

N N N N x N x
y y y J

ξ η
ξ η ξ η η ξ

ξ η
ξ η ξ η

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠η ξ

 (A.30) 

Introducing relations (A.30) in (A.29) leads to the simplification of the term J . 

Due to this simplification it is no longer necessary to calculate the third term of equation 
(A.16) independently. 

The components of equation (A.16) relative to the second and third term are 
given by: 

 
{ }

{ }

(2)(3)

(2)(3)

I I
u xxI

I I
u xyyI

N NdF d J d J e
x y

N NdF d J d J e w
x y

σ σ

σ σ

⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝
⎛ ⎞⎛ ⎞∂ ∂⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

xy

y

w
⎠  (A.31) 

with 

 

J JI I I I I
J

IJ

J JI I I I I
J

IJ JI

N NN N y N y N Nd J d d y
x

S

N NN N x N x N Nd J d d
y

S S

ξ η η ξ ξ η η ξ

ξ η η ξ ξ η η ξ

⎛ ⎞ ⎛ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ = − = −⎜ ⎟ ⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎛ ⎞ ⎛ ⎞ ⎛ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂
= − + = − +⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝⎝ ⎠

− =

14444244443

14444244443

x

⎞
⎟
⎠

⎞
⎟
⎠

 (A.32) 

Finally the terms of the matrix K that couple nodes I and J are written: 
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 [ ](2)(3) IJ xy IJ x
uu IJ

IJ y IJ xy

S S
K

S S
σ σ
σ σ

−
e w

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 (A.33) 

The matrix (A.33) is called the stress matrix. This matrix appears due the large 
deformations.   

There are no terms [ ](2)(3)
u I

K α . 

Computation of the fourth term 
The fourth term of equation (A.16) is given by: 

 { } [ ] { }(4) T
u udF B J de wσ=  (A.34) 

The variation of the slice thickness de (A.36) is computed using expression 
(A.2) and the coordinates transformation relations (A.35):   

 andI I I I
I I

x N x y N y= =∑ ∑  (A.35)  

 ( )

( )

1 2 3 2 3

1 2 3 2 3

1 2 3 2 3

J J J J
J

J J J
J

de d d x d y dx dy
d N d x d y dx dy

d d x d y N dx dy

J

α α α α α
α α α α α

α α α α α

= + + + +
= + + + +

= + + + +

∑
∑

 (A.36) 

The three first terms contribute to the part Kuα while the last terms contribute to 
the part Kuu of the stiffness matrix K: 

 { } [ ] { } [ ] { }(4) (4) (4)
u uu uI I ,J J I

J
dF K du K dα α= +∑  (A.37) 

The nodal forces corresponding to the degrees of freedom x and y are computed 
by detailing expression (A.34) by using (A.13) and (A.22):  

 
{ } ( )
{ } ( )

(4)

(4)

I I
u x x y xyxI

I I
u x xy y yyI

dF B B J de w

dF B B J de w

σ σ

σ σ

= +

= +
 (A.38) 

Finally, linking equations (A.36), (A.37) and (A.38) gives the expression of Kuu 
and Kuα relative the fourth term of equation (A.16): 

 [ ]
( ) ( )
( ) ( )

2 3(4)

2 3

I I I I
x x y xy x x y xy

uu JI ,J I I I I
x xy y y x xy y y

B B B B
K N J

B B B B

α σ σ α σ σ

α σ σ α σ σ

⎡ ⎤+ +
⎢ ⎥=
⎢ ⎥+ +⎣ ⎦

w  (A.39) 
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 [ ]
( ) ( )
( ) ( )

(4)
I I I I I I
x x y xy x x y xy x x y xy

u I I I I I I I
x xy y y x xy y y x xy y y

B B B B x B B y
K J

B B B B x B B y
α

σ σ σ σ σ σ

σ σ σ σ σ σ

⎡ ⎤+ + +
⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

w  (A.40) 

A.2.1.2 Computation of the lower part of the matrix K 

To perform the numerical integration, equation (A.12) is written: 

 { } [ ] { }TF B Jα α σ= e w  (A.41) 

The differentiation of (A.41) comprises four terms: 

 

{ } [ ] { }
[ ]( ){ }

[ ] { } ( )
[ ] { }

(1)

(2)

(3)

(4)

T

T

T

T

dF B d J e w

d B J e w

B d J e w

B J de w

α α

α

α

α

σ

σ

σ

σ

=

+

+

+

 (A.42) 

Computation of the first term 
The first term of equation (A.42) is given by: 

 { } [ ] { }(1) TdF B d J e wα α σ=  (A.43) 

Knowing that { } [ ]{ }d C dσ ε=  and { } [ ]{ }d B du, dε α= , (A.43) becomes:  

 { } [ ] [ ][ ] { }(1) TdF B C B J e w du, dα α α=  (A.44) 

The part of the tangent matrix due to the first term of equation (A.42) is: 

 [ ] [ ] [ ][ ] [ ] [ ][ ](1) T T
uK B C B J e w B C B B J eα α α α= = M w  (A.45) 

which comprises the two terms of Kα:  

 [ ] [ ] [ ][ ](1) T
u uK B C B J eα α= w  (A.46) 

 [ ] [ ] [ ][ ](1) TK B C B J eαα α α= w  (A.47) 

The terms of the matrix K that couple a node J with the additional node, 
associated with the generalized plane state, are defined using (A.22), (A.23), (A.25) and 
(A.46): 
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 [ ] ( ) ( )
( ) ( )

51 52 53 54
(1)

51 52 53 54

51 52 53 54

J J J J
x y x y

J J J J
u x y x yJ

J J J J
x y x y

B C B C B C B C

K B C B C x B C B C x

B C B C y B C B C y

α

⎡ ⎤+ +⎢ ⎥
⎢ ⎥= + +
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

J w  (A.48) 

The components of the matrix K that couple the degrees of freedom of the 
additional node are calculated using equation (A.47) associated with equations (A.23) 
and (A.25): 

 [ ](1) 2
55

2

1
1

x y
K C x x xy

e
y xy y

αα

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

J w⎥
⎥  (A.49) 

Computation of the second term 
The second term of equation (A.42) is given by: 

 { } [ ]( ){ }(2) TdF d B J e wα α σ=  (A.50) 

where 

 [ ]( ) [ ]( ) [ ]( )T T

T
B B

d B dx dy
x y
α α

α

∂ ∂
= +

∂ ∂
 (A.51) 

and 

 [ ]
0 0 0 0 1 0 0 0 0 1

1 10 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0

T
J J

J

J J
J

B x N
e e

y
N y

α x

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

∑
∑

 (A.52) 

The partial derivation can be decomposed as follows: 

 and J
I

I I I

xdx dx
x x x IJδ∂∂ ∂

=
∂ ∂ ∂∑ =  (A.53) 

Introducing expressions (A.53) in (A.51) and (A.52) gives the following result: 
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 [ ]( )
0 0 0 0 1 0 0 0 0 1

1 10 0 0 0 0 0 0 0
0 0 0 0

0 0 0 0

T J
J I J

I I
J

J J
J

J I
I I

xd B N dx N dx
e x e

N dy
yN dy
y

α

⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎢ ⎥∂ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥∂⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

∑

∑

 (A.54) 

To avoid too heavy calculations, the term 1
e

, which would lead to second order 

effects, is not derived. This induces a small imprecision in the tangent matrix but does 
not introduce any errors in the results of the finite element calculations. 

The component of the matrix K that couples the additional node to a node J is 
given by equation (A.55): 

 [ ](2)
0 0

0
0

u z JJ

J

K N
N

α σ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J w  (A.55) 

They are no terms [ ](2)Kαα . 

Computation of the third term 
The third term of equation (A.42) is given by: 

 { } [ ] { } ( )(3) TdF B d J e wα α σ=  (A.56) 

The product [ ] { }TBα σ  is calculated using equations (A.13) and (A.25): 

 [ ] { } 1 z
T

z

z

B
e

y
α

σ
xσ σ
σ

⎧ ⎫
⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎩ ⎭

 (A.57) 

The variation of the Jacobian determinant is calculated using equations (A.6) 
and (A.35): 
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J J J J

J J

J J J JI I I I
J I

JI

x y x yd J d

dx y x dy dx y x dy

N N N Ny y x xdx dy

N N N NN N N Ndx y

S

ξ η η ξ

ξ η ξ η η ξ η ξ

ξ η η ξ ξ η η ξ

ξ η η ξ ξ η η ξ

⎛ ⎞∂ ∂ ∂ ∂
= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= + − −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂∂ ∂ ∂ ∂

= − + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠14444244443
J I

IJ JI

dy x

S S

⎛ ⎞
⎜ ⎟
⎝ ⎠

=−
14444244443

 (A.58) 

Finally, the component of the matrix K that couples the additional node to a node 
J is calculated using equations (A.56), (A.57) and (A.58): 

 [ ] ( ) ( )
( ) ( )

(3)
JI I JI I

u z JI I JI IJ

JI I JI I

S y S x
K S y x S x

S y y S x y
α σ x w

⎡ ⎤−
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 (A.59) 

The matrix (A.59) is the equivalent of the stress matrix (A.33) but for the 
degrees of freedom α. 

There are no terms [ ](3)Kαα . 

Computation of the fourth term 
The fourth term of equation (A.42) is given by: 

 { } [ ] { }(4) TdF B J de wα α σ=  (A.60) 

Using equations (A.36) and (A.57), (A.60) can be written as follows: 

 { } [ ] { } [ ] { }(4) (4) (4)
u J J

J
dF K du K dα α αα α= +∑  (A.61) 

where the components of the matrix K are given by: 

 [ ]
2 3

(4)
2 3

2 3

1
u z JJ

K N x x
e

y y
α

α α
σ α α

α α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

J w  (A.62) 

 [ ](4) 2

2

1
1

z

x y
K x x xy

e
y xy y

αα σ
⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

J w⎥
⎥  (A.63) 
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Appendix A - Derivation of the generalized plane state for the mixed 4-node element 

A.2.1.3 Summary 

The nodal forces are calculated using equations (A.15) and (A.41) for the 
degrees of freedom uI and αI respectively. 

The components of the stiffness matrix are given  by the sum of the matrices  
(A.24), (A.33) and (A.39) for Kuu; by the sum of the matrices  (A.26) and (A.40) for 
Kuα;  by the sum of the matrices (A.48), (A.55), (A.59) and (A.62) for Kαu; and finally 
by the sum of the matrices (A.49) and (A.63) for Kαα.  

A.3 IMPLEMENTATION IN THE LAGAMINE CODE 

A.3.1 ADAPTATION OF THE MIXED 4-NODE ELEMENT 

The advantage of the mixed 4-node element is that it is an element that has been 
developed to be used in case of reduced integration, i.e. with one integration point only. 
As it would make no sense to use this particular element with more than one integration 
point in the context of this study, it has been decided to implement the new 
developments, which permit calculations in generalized plane state, for this case only. 

It is then automatically assumed in the code that the generalized plane state is 
associated with a mixed 4-node element with one single integration point and no 
modifications have been done to the part of the code that concerns mixed 4-node 
elements with several integration points.  

Similarly, no modifications have been introduced with regard to the anti-
hourglass stresses. For the mixed 4-node element, the hourglass modes are modes that 
appear in the plane of the element; therefore, it is not necessary to introduce the third 
dimension linked to the generalized plane state for the calculation of these stresses and 
of the components of the tangent matrix and nodal forces that are associated to them. 

In the routine initially implemented by Zhu, the stress matrix has been replaced 
by the constitutive matrix (A.64):  

 [ ]

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

xy x x

xy x

y yx

y yx

z z

C C C C C
C C C C C

C* C C C C C
C C C C C
C C C C C

xy

yx

y

σ σ σ
σ σ σ

σ σ σ
σ σ σ
σ σ

− +⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥= − +
⎢ ⎥+ −⎢ ⎥
⎢ ⎥+ +⎣ ⎦

+
+
+
+

 (A.64) 
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Using matrix [ ]C*  instead of matrix [ ]C  in equation (A.24) is equivalent to 
doing the sum equation (A.24) calculated using matrix [ ]C  and  equation (A.33). 
Similarly, equation (A.48) calculated using matrix [ ]C*  is equivalent to equation 
(A.48) calculated using matrix [ ]C  to which equation (A.59) is added; and equation 
(A.26) calculated using matrix [ ]C*  is equivalent to equation (A.26) calculated using 
matrix [ ]C  to which equation (A.40) is added. 

To implement the modifications relative to the generalized plane state for an 
existing element, attention must be paid to the following points:  

• introduction of an additional parameter that indicates the actual number 
of nodes of the element, i.e. number of traditional nodes plus one;  

• identification of the degrees of freedom αI of the additional node;  
• calculation of the thickness of the slice, which appears in the calculation 

of the tangent matrix; 
• calculation of the velocity for the variation of thickness of the slice and 

for the coordinates x and y of the integration point of the element as well 
as the velocities at the integration point;   

• calculation of the nodal forces associated to the additional node; 
• introduction of the matrices not included in the traditional element; i.e. 

for the mixed 4-node element, knowing that [ ]C  is replaced by [ ]C* : 
for Kuu matrix (A.39), which introduce α2 and α3, is added; for Kuα 
matrix (A.26) is added; for Kαu matrices (A.48), (A.55) and (A.62) are 
added; and finally for Kαα matrices (A.49) and (A.63) are added. 

A.3.2 INFLUENCES ON OTHER PARTS OF THE CODE 

The pre-processor routines that read the elements data have to be modified to 
account for the additional node in case of generalized plane state. As this additional 
node is common to all the elements, the pre-processor reads this node, which in the 
LAGAMINE program is always, by convention, the last node appearing in the nodes 
list, and attaches it to each element used in the discretization of the problem, i.e. to 
every solid or contact element.  

The material laws have also to be adapted for the generalized plane state to be 
taken into account in the finite element calculations. This work has already been done 
for the majority of the laws in the LAGAMINE code and in particular, for the modified 
Norton-Hoff law used in this thesis. 

 - A.14 - 



 

Appendix B 

B Metallographic analysis of the austenitic grain 
structure

B.1 DESCRIPTION OF THE CHEMICAL ETCHING 

The modified Bechet-Beaujard chemical etching is applied to the ferritic steel 
specimen in order to reveal the grain boundaries of the initial austenitic phase before 
analysing the sample under the optical microscope. The operation mode for this 
operation is detailed in Figure B.1.   

B.2 MACROGRAPHS 

The position of the surfaces to be observed as well as the division of the sample 
for the metallographic analysis have been defined in section 4.3.1.2: Determination of 
the austenite grain size and microscopic structure. 

Figures B.2 to B.45 result from the microscopic observations of the two surfaces 
of interest after the Bechet-Beaujard etching. These micrographs have been used for the 
determination of the grain size (see Tables 4.2 and 4.3) and for the definition of the 
grains pattern. They are oriented and labelled as defined by Figure 4.6 and Figure 4.7. 
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Figure B.1. Operation mode for the modified Bechet-Beaujard chemical etching 

(source Arcelor – IORC (formerly IRSID)). 
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Figure B.2. Image Bh1 (used to define mesh). 

 
  
 

 
Figure B.3. Image Bh2. 
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Figure B.4. Image Bh3. 

 
 
 

 
Figure B.5. Image Bh4. 
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Figure B.6. Image Bh5. 

 
 
 

 
Figure B.7. Image Bh6. 
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Figure B.8. Image Bh7. 

 
 
 

 
Figure B.9. Image Bh8. 
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Figure B.10. Image Bh9. 

 
 
 

 
Figure B.11. Image Bh10. 
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Figure B.12. Image Bh11. 

 
 
 

 
Figure B.13. Image Bh12. 
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Figure B.14. Image Bh13. 

 
 
 

 
Figure B.15. Image Bh14. 
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Figure B.16. Image Bb1. 

 
 
 

 
Figure B.17. Image Bb2. 
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Figure B.18. Image Bb3. 

 
 
 

 
Figure B.19. Image Bb4. 
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Figure B.20. Image Bb5. 

 
 
 

 
Figure B.21. Image Bb6. 
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Figure B.22. Image Bb7. 

 
 
 

 
Figure B.23. Image Bb8. 
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Figure B.24. Image Bb9. 

 
 
 

 
Figure B.25. Image Bb10. 
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Figure B.26. Image Bb11. 

 
 
 

 
Figure B.27. Image Bb12. 
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Figure B.28. Image Bb13. 

 
 
 

 
Figure B.29. Image Bb14. 
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Figure B.30. Image Dh1. 

 
 
 

 
Figure B.31. Image Dh2. 
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Figure B.32. Image Dh3. 

 
 
 

 
Figure B.33. Image Dh4. 
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Figure B.34. Image Dh5. 

 
 
 

 
Figure B.35. Image Dh6. 
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Figure B.36. Image Dh7. 

 
 
 

 
Figure B.37. Image Dh8. 
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Figure B.38. Image Db1. 

 
 
 

 
Figure B.39. Image Db2. 
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Figure B.40. Image Db3. 

 
 
 

 
Figure B.41. Image Db4. 
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Figure B.42. Image Db5. 

 
 
 

 
Figure B.43. Image Db6. 
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Figure B.44. Image Db7. 

 
 
 

 
Figure B.45. Image Db8.
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