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Abstract

This dissertation deals with dynamics of engineering structures and principally
discusses the identification of the modal parameters (i.e., natural frequencies,
damping ratios and vibration modes) using output-only information, the excitation
sources being considered as unknown and unmeasurable.

To solve these kind of problems, a quite large selection of techniques is available
in the scientific literature, each of them possessing its own features, advantages
and limitations. One common limitation of most of the methods concerns the
post-processing procedures that have proved to be delicate and time consuming
in some cases, and usually require good user’s expertise. The constant concern of
this work is thus the simplification of the result interpretation in order to minimize
the influence of this ungovernable parameter.

A new modal parameter estimation approach is developed in this work. The
proposed methodology is based on the so-called Blind Source Separation tech-
niques, that aim at reducing large data set to reveal its essential structure. The
theoretical developments demonstrate a one-to-one relationship between the so-
called mixing matrix and the vibration modes.

Two separation algorithms, namely the Independent Component Analysis and
the Second-Order Blind Identification, are considered. Their performances are
compared, and, due to intrinsic features, one of them is finally identified as more
suitable for modal identification problems.

For the purpose of comparison, numerous academic case studies are consid-
ered to evaluate the influence of parameters such as damping, noise and non-
deterministic excitations. Finally, realistic examples dealing with a large number
of active modes, typical impact hammer modal testing and operational testing
conditions, are studied to demonstrate the applicability of the proposed method-
ology for practical applications.
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Introduction

Be it for economic concerns, safety matters or merely enhancement of the
products, structural dynamics analysis is of prior importance for engineers. Vi-
brations are inherent phenomenon of elastic structures, and can cause unpleasant
repercussions, including the reach of serviceability limit states, high damages and
structural failures, if they are not severely controlled.

Technology developments, emergence of new materials and modern architec-
ture trends have increased the complexity of structures. Current challenging engi-
neering projects commonly demand lighter and more impressive structures leading,
in parallel, to much more complex operational loading conditions. Of course, dur-
ing the last few decades, the development of powerful predictive tools, such as
finite element softwares, have facilitated the task of predicting the dynamical be-
havior of such structures. Nevertheless, although it can be expansive and time
consuming, experimental testing is still required to reassure the confidence in the
numerical models before to be used for advanced calculations.

Damage detection, health monitoring, design and safety of aeronautical com-
ponents, evaluation of damping capacity for existing structures are some of the
domains where modal analysis proved to be useful. This work, involved in this
context, mainly deals with the experimental part of dynamical studies consisting
of modal testing and modal parameter estimation.

The major cause for concern throughout the thesis is to simplify the data post-
processing in order to shorten the design phase and to minimize the subjective
part of the result interpretation. The present document is divided into five parts
describing the reference methods and their implications, the new methodology
developed in the frame of this research, its application for comparison purpose
with another well-established method and one last important part addressing the
problem of interpretation of the results.

It should be noted that this research was made possible by the financial support
of the Walloon Government and Techspace Aero company, as part of the FIRST
DEI project (num. 516108) dealing with the validation of structural models in
presence of nonlinear phenomena [Pon09].

Most of the developments and applications contained in this thesis have also
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been presented in international conferences and then published in reviewed papers.
The interested reader can refer to [KPG07, PKGV07, PKGM07].

Outline of the Thesis

As previously mentioned, this dissertation principally focuses on modal param-
eter estimation using experimental measurements. In this context, the fundamen-
tals of modal testing are discussed in Chapter 1. Because the accuracy of the
results is highly related to the quality of the information contained in the dynamic
signals, vibration testing techniques, including setup basics and measurement pre-
cautions, are first reviewed. This first stage is referred to as data acquisition in
the present study. Second, these data have to be processed to estimate the modal
parameters. Numerous techniques were developed and some of them, based on
output-only information, are surveyed. Finally, the covariance-driven stochastic
subspace identification method, that is used as a reference method throughout
the work, is detailed.

The main objective of the thesis is to use the so-called blind source separation
techniques to estimate the modal parameters using output-only signals. Chap-
ter 2 introduces the theoretical foundations of blind source separation, leading
to the concepts of sources, mixtures, mixing matrix and statistical independence.
Numerous reference techniques are available in the literature for source separation,
and they are briefly surveyed. Two of them, namely the independent component
analysis and the second-order blind identification, are considered for modal identi-
fication, and are described in more details. Similarities between source separation
and other empirical and statistical approaches are also investigated.

In Chapter 3, both modal identification and blind source separation are com-
bined, and a new methodology is developed to estimate the modal parameters
from free and random forced responses. The theoretical developments demon-
strate a one-to-one relationship between the so-called mixing matrix and the vibra-
tion modes, and an automated procedure is proposed to identify and automatically
select the genuine results.

Next, in order to validate the proposed methodology for free and random re-
sponses, discrete and distributed-parameter systems, for which exact solutions
exist, are considered in Chapter 4. Both ICA and SOBI algorithms are com-
pared and their performance is evaluated with respect to noise, damping and
non-deterministic excitation. The proposed automated mode selection is also il-
lustrated when the number of active modes is lower than the number of identified
sources.

Finally, Chapter 5 demonstrates the utility of SOBI for output-only modal
analysis in practical applications. Three structures are considered dealing with
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Chapter 1
Modal Identification

?Structural dynamics models
?Fundamentals of modal testing
?Output-only modal identification

Chapter 2
Blind Source Separation

?Theoretical foundations of BSS
?Independent component analysis
?Second-order blind identification

Chapter 3
Modal Identification

using BSS

?Virtual source concept
?Free responses
?Random forced responses
?Automated mode selection

Chapter 4
Validation

Comparison of BSS algorithms

?Free responses
?Random forced responses
?Influence of noise
?Influence of damping

Chapter 5
Experimental Demonstration

?Large-scale structure
?Impact hammer modal testing
?Operational testing conditions
?SSI-COV comparisons

Figure 1: Outline of the thesis. SSI-COV: Covariance-driven stochastic subspace
identification. BSS: Blind source separation.
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a large number of active modes, typical impact hammer modal testing, and op-
erational testing conditions, respectively. The identified modal parameters are
compared to those obtained using the well-established stochastic subspace iden-
tification method.



Chapter 1

Experimental Modal Analysis in
Structural Dynamics

Abstract

This chapter introduces the fundamentals of modal testing. Two spe-
cific aspects are underlined, dealing with data acquisition and processing
respectively. The main features and limitations of commonly-used tech-
niques are reviewed.

First, three models used to describe the mechanical system dynamics are
presented (Sec. 1.1).

Section 1.2 gives an overview of vibration testing techniques (i.e., data
acquisition). These techniques are classified according to the testing ob-
jectives, and several important aspects of the setup preparation are em-
phasized.

The next section presents the modal parameter estimation techniques
(i.e., data processing) used to obtain dynamic models from experimental
measurements. A general classification is proposed for the identification
methods (Sec. 1.3).

Section 1.4 briefly reviews the existing output-only based methods, which
are the focus of this work.

Finally, the covariance-driven stochastic subspace identification is de-
scribed in more details in Sec. 1.5 since this well-established modal pa-
rameter estimation method is used as a reference method for comparison
throughout this work.

5



CHAPTER 1. EXP. MODAL ANALYSIS IN STRUCTURAL DYNAMICS 6

1.1 Structural Dynamics Models

The modeling of mechanical system dynamics can take different forms. Nu-
merical models, based on computer-aided design (CAD), are usually considered
during the design phase. They require a complete description of the system includ-
ing geometrical and material characterization. Reduced models, only comprising
few parameters, facilitate the comprehension of the system dynamics. They also
enable the numerical predictions to be compared to experimental results. Besides
numerical and reduced models, models using the transfer function concept can
evaluate the structural dynamic response to given excitations.

In the scientific literature, those models are referred to as spatial, modal and
response models, respectively. Figure 1.1 presents the relations that exist between
the three models for an undamped system, and the next sections describe them.

1.1.1 Spatial Model

Mechanical engineers usually model structures using finite element (FE) mod-
els. The continuous systems are then discretized into multi-degree-of-freedom
(MDOF) systems.

In the case of linear-dynamics assumption, the response of the undamped
system is governed by the equation of motion

Mÿ(t) + Ky(t) = f(t), (1.1)

where y(t) and f(t) are the time-varying displacement response and applied force,
respectively. The structural matrices M and K are referred to as the mass and
stiffness matrices respectively. A velocity term appears for the viscously-damped
system

Mÿ(t) + Cẏ(t) + Ky(t) = f(t). (1.2)

where C is the damping matrix.
Structural hysteretic damping can also be considered by introducing the imag-

inary term iDy(t) in the left-hand member of Eqn. (1.1).
The three matrices M, K and C represent the spatial distribution of the system

mechanical properties and form the so-called Spatial Model.
Although this modeling approach contains most of the interesting information

about the system, the dynamic properties are buried within complex structures
(i.e., the structural matrices) which can quickly become obscure for large MDOF
systems. For daily engineering practice, these properties are thus extracted, lead-
ing to the modal parameters and, therefore, the modal model.
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Spatial Model Modal Model Response Model

K    M

Natural frequencies
Vibration modes

FRFs
Mass matrix

Stiffness matrix

f     = [ ]ii   N n H = [ ]jka(w)

Eigenvalue problem

Modal parameter
estimation techniques

Eq. 1.11

Eq. 1.4

Figure 1.1: Dynamic models interrelation for the undamped system. The
spatial and response models are linked together with the modal model.

1.1.2 Modal Model

The so-called Modal Model is a synthesized model that summarizes the dy-
namical information in a few parameters, called modal parameters. This term en-
compasses the natural frequencies f = [· · · fi · · · ]T or pulsations ω = [· · ·ωi · · · ]T ,
the vibration modes N = [· · ·ni · · · ] and the damping ratios ξ = [· · · ξi · · · ]T .

Thanks to its simplified form, the triplets (ωi ,ni , ξi), evaluated from different
sources (i.e., experimentally or theoretically), can be compared easily making the
modal model really powerful for structural dynamic analysis.

Spatial and modal models can be related to each other, as illustrated in Fig.
1.1. For example, in the case of undamped systems, the modal parameters can
be computed from the structural matrices by solving the eigenvalue problem

Kni = ω2
i Mni . (1.3)

Recovering the spatial model from the modal parameters is also possible.
Thanks to the orthogonal properties of the modal matrix, the relation between
the structural matrices and the modal parameters is provided by

M = N−TN−1 and K = N−T
[rω2

rr
]

N−1, (1.4)

where
[
rω2

rr
]
is a diagonal matrix containing the squared pulsations ω2

r . If con-
ceivable, this process can quickly become complicated for damped or large-scaled
structures. Note also that in case of nonlinear systems, the modal model, as such,
is no longer applicable.
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1.1.3 Response Model

Analyzing the dynamic response of a system subjected to a given excitation is of
great interest during a structural dynamic analysis. This can be either theoretically
or experimentally based.

The dynamic response mainly depends on two factors: the system dynamic
characteristics and the imposed excitation. Consequently, the system is completely
characterized by computing its response for a standard excitation. The standard
signal commonly used for this purpose is the unit impulse function δ(t), also
referred to as Dirac’s delta. The resulting time response is called the Impulse
Response Function (IRF) and denoted h(t). The IRF function relates the given
input excitation to the time response signals using a convolution product through

y(t) = h(t)⊗ f(t). (1.5)

In the frequency domain this leads to the concept of Frequency Response
Function (FRF), denoted H(ω). The FRF is the transfer function of the system
for dynamics, and it comes

Y(ω) = H(ω)F(ω) (1.6)

where Y(ω) and F(ω) are the Fourier transforms of the time response and exci-
tation signals, respectively.

Thus, knowing the IRF or the FRF, the dynamic response y(t) can be com-
puted for any particular given excitation.

The Response Model usually comprises a set of FRFs defined over the fre-
quency range of interest. Those FRFs can be directly computed from the exper-
imental results, if both response Y(ω) and excitation F(ω) signals are recorded
during the vibration testing. But noise often perturbs the measured responses and
input forces, as illustrated in Fig. 1.2 and such that

x(t) = y(t) + σnoise (1.7)

f̃(t) = f(t) + σnoise (1.8)

where σnoise is the noise signal. Thus, the transfer function H(ω) cannot be
computed directly from Eqn. 1.6 and it is necessary to use one of the following
estimators

H1(ω) =
Sf̃x(ω)

Sf̃ f̃(ω)
(1.9)

H2(ω) =
Sxx(ω)

Sx̃f(ω)
(1.10)
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noise

measured signal

Force input

F(w)F(w)

f(t)

F(w)

System

h(t)

H(w)

f(t)

Response

Y(w)

y(t)

~

~

noise noise

measured signal

X(w)

x(t)

noise

Figure 1.2: Traditional measurement system model. During data acquisition,
the signals are perturbed by noise. The measured signals slightly differ from the
real input and output signals.

where Sxx and Sf̃ f̃ are the auto-spectral densities of the response and excitation
signals, respectively, and Sx̃f is the cross-spectral densities between both signals
[Ewi00, MS97].

To obtain the response model from the modal parameters, a unit-amplitude
sinusoidal force f(t) = Fe iωt is introduced in the equation of motion (1.1). For
the undamped MDOF system, the FRF is directly linked to the modal parameters
using

H(ω) = α(ω) = N
[r(ω2

r − ω2)r
]−1

N−1. (1.11)

The modal model can be deduced from the response model using modal analysis
techniques such as explained in Sec. 1.3. Those techniques are usually used to
extract the modal parameters from experimental data.

Unfortunately, some structures are subjected to unknown and unmeasurable
excitations. This is the case for civil engineering structures subjected to wind
or traffic loads or mechanical engines under operational conditions. In this case,
the response model cannot be evaluated and the modal parameters need to be
estimated without FRF data. The modal parameters are directly estimated from
the time response signals ; this process is referred to as Operational Modal
Analysis in the literature.
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1.2 Data Acquisition

The last decades witnessed significant progress regarding computational ca-
pacity. Nowadays, advanced virtual prototyping, using CAD and other numerical
techniques such as the FE method, is commonly used to predict the system dy-
namics.

CAD techniques have been developed to make the design phase shorter and
consequently to reduce the cost of the prototyping phase. Unfortunately some
features (damping for example) cannot be accurately predicted. Furthermore,
uncertainties related to material behavior, boundary conditions or joint modeling
reduce the predictive capability of the numerical results. A thorough design and
prototyping phase should include an experimental step, such as vibration testing.
The experimental results can be compared to the numerical predictions and used
to update and validate the model [FM95]. This experimental validation reassures
the confidence in the model before using it for advanced calculations, such as the
evaluation of the response levels to complex excitations.

Both theoretical and experimental approaches are closely related and provide
complementary information. The comparison is usually achieved using modal mod-
els. Figure 1.3 presents these two routes to vibration analysis.

The experimental phase aiming at establishing the modal model is referred to
as Modal Testing. According to Ewins [Ewi00], modal testing approach "en-
compasses the processes involved in testing components or structures with the
objective of obtaining a mathematical description of their dynamic or vibration
behaviour".

1.2.1 Classification of the Testing Procedures

The vibration testing procedures can be classified in three categories, according
to the testing objectives:

Modal testing. The modal testing approach aims at determining the modal model
of the structure subjected to a monitored excitation. Both dynamic re-
sponses and input excitations are measured, and the experimental conditions
are such that any undesired and unmeasurable excitation is avoided. The
post-processing is usually based on the acquired sets of FRFs.

Operational testing. If the tested structure cannot be extracted from its opera-
tional environment, the only signals that can be measured are the responses
to an unknown and unquantifiable excitation. In the case of operational
testing, the extraction of the modal parameters is based on output-only
methods (i.e., operational modal analysis).
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Figure 1.3: Comparison of the two routes to vibration analysis. The theoretical
route starts from the geometrical and physical description of the structure and
uses numerical techniques to estimate the modal parameters. The experimental
route starts from experimental measurements and uses modal analysis techniques
in order to determine the modal model. Both set of modal parameters can be
compared and the theoretical model can thus be updated.
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Environmental testing. Another outcome of vibration testing is the qualifica-
tion of assemblies for their future operational vibratory environment. Dur-
ing these environmental tests, the structure is subjected to vibration of a
specified form and amplitude for a certain period of time in order to assess
its operational integrity.

The present work focuses on the extraction of modal parameters directly from
the measured responses ; the excitation is then assumed to be unknown. The
corresponding testing conditions are then those of the operational testing.

1.2.2 Setup Basics and Measurement Precautions

A particular attention has to be paid to the testing phase to ensure the acqui-
sition of high-quality data. Precautions should be taken regarding several aspects
of the procedure from the supporting conditions to the signal processing including
the transduction of the measured quantities. The experimental process is schema-
tized in Fig. 1.4. Some of these aspects are briefly summarized hereafter but the
interested reader can refer to Refs. [McC95, Ewi00, HLS02, MS97] for further
information.

Supporting conditions

Depending on how the resulting information will be used, the supporting con-
ditions can be of different kinds. Free conditions are achieved by suspending the
structure by means of very soft springs or by simply laying it on a piece of soft
foam. This option is foreground in the case of correlations with FE predictions
since free boundary conditions are much easier to simulate.

Another classical way of mounting an experimental setup is to rigidly clamp the
testpiece at given locations. This can be a good approximation of the operational
conditions and might facilitate the measurements.

Finally, some testpieces cannot be extracted from their operational environ-
ment and have to be tested in situ. This is the case for mechanical pieces of
running machines for instance. The connection of such samples to some other
structures or components presents a semi-rigid behavior that is, however, more
complex to assess and model. These supporting conditions are closely related to
the aforementioned operational testing procedure.

Applied excitation

The quality of the information contained in the measured responses is directly
related to the way of applying the input force. Thus the mechanics of the ex-
citation is an important parameter of vibrating tests. Many configurations are
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Figure 1.4: Generic test item for vibration testing. Three mechanisms are
identified for a vibration test: the excitation mechanism, the sensing mechanism
and finally the data acquisition and processing mechanism.
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possible, and a thorough study should be completed for each particular case be-
fore testing. But, basically, three ways of applying the force are available: the
impact hammer, the shakers or vibration generators and finally the operational
environment.

The impulse response corresponds to the free vibrations occurring after a small
perturbation. This can, for instance, be achieved using a small force-transducer
hammer blow. This technique is cheaper, easier and quicker than any others but,
because the input energy is very localized in space and in time (the excitation
approximates the Dirac delta function), the amount of energy contained in the
impact pulse is low. Thus, this approach is particularly appreciated for modal
parameter identification of lightly damped structures. For large and highly damped
structures, the excitation energy can be quickly dissipated before propagating far
within the structure and is consequently useless.

In order to obtain a recording time long enough for post-processing, the highly
damped structures can be excited during the measurement window using vibration
generators (or shakers). These devices permit the application of different kinds of
input signals in a specific range of frequency (such as random, chirp or harmonic
excitation to cite a few).

Using several shakers on the same structure, a multi-point testing is also possi-
ble. In this particular case, the energy can be fed in the structure more uniformly.
It is possible to perform phase-resonance testing using several shakers. A single
mode of vibration is then excited at a time. This kind of tests, even if quite
heavy to implement, is popular for very large structures such as aircraft struc-
tures, because it makes possible the measurement of real normal modes for direct
comparison with FE results [VDAOLB91, BCLF95, BGFG06, PCdD+08].

Finally, in case of operational testing, the input force is, totally or partially,
introduced in the system through the operational environment preventing the
recording of the input force.

Transduction of the signals

Besides the previous considerations, other parameters such as the sampling
frequency or the frequency range of interest must be carefully chosen. Those
parameters also influence the choice of the transducers on which the accuracy of
the measurements depends. Moreover, the modification of the tested structure
due to the instrumentation should be as limited as possible.

Transducers are commonly made of piezoelectric elements directly connected
to the structure and aim at detecting forces and acceleration signals. But accord-
ing to the weight of the testpiece, non-contact measurement tools (such as laser
vibrometers) could profitably be used in some cases.

The force and motion transducers generate analog time signals, and they have
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to be converted into digital data for computer processing. Some acquisition sys-
tems also automatically convert the time signals into the frequency domain using
analyzers based on the Fast Fourier Transform (FFT) [CT65]. If both response
and excitation signals are measured, the FRFs are then directly provided for post-
processing.

Note that the number and placement of sensors on the structure highly in-
fluence the quality of the measurements. An inappropriate location can lead to
data containing few information on the system dynamics. Some techniques have
been developed and should be used for complex structures in order to optimize
the sensor placement [Kam91].

The accuracy of the measured data is of great interest, because they are sub-
jected to many analysis procedures to extract the underlying information (i.e., data
processing). The numerical techniques providing this information are addressed in
the next sections.

1.3 Data Processing

1.3.1 Modal Parameter Extraction

Mechanical engineers started to use modal analysis in the 40’s for better un-
derstanding the dynamic behavior of aircrafts. Over the years, modal analysis
became more powerful and popular for structural dynamic studies. The real ad-
vent of experimental dynamic techniques came out forty years ago thanks to the
introduction of new signal processing methods such as the FFT algorithm, pub-
lished in 1965 by Cooley et al. in [CT65]. Since then, its fundamental role in
structural dynamics has never lessened, and modal analysis became more and
more popular following the development of instrumentation, spectrum analyzers
and computational capacities.

Nowadays, the so-called Modal Analysis is a more generic term covering a
large range of engineering areas, from modal testing to structural modification
including, among others, correlation and model updating techniques, and one can
count numerous publications on this topic.

The present work focuses on the part of modal analysis referred to as Modal
Parameter Estimation, performed by post-processing the measured experimental
data. Many methods are available to deal with large-scale and industrial struc-
tures. They proved to be useful for complex systems such as civil engineering
structures [MCC08, WLL+07], complete aircraft or ship structures [AGB+99,
BGFG06, BG08, RS08], other motorized vehicles [SSAC08, BCG+09] or launch
vehicles [CMPC08].

All the systems considered in this work for modal analysis are assumed to
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be linear. Nonlinear system modal analysis is not discussed herein. Additional
information on this topic can be found in Refs. [KWVG06, WT01].

1.3.2 Classification of Methods

A large selection of techniques is available for the extraction of modal param-
eters from experimental measurements. Every single method possesses its own
characteristics, and a thorough inspection should be considered in order to adopt
the most appropriate technique for each specific case. A classification of the
existing methods is proposed hereafter in order to help the user identifying their
essential features.

Basically, modal parameter extraction aims at identifying theoretical model
parameters such that they match the experimental measurements. Curve-fitting
methods can either be applied in the frequency domain or in the time domain. A
first level of distinction is based on the application domain:

• Frequency domain: The modal parameter extraction techniques are based
on the experimental FRFs signals. These methods permit the identification
on a limited frequency range and are generally used for a relatively small
number of modes;

• Time domain: Either the IRFs (directly deduced from the FRFs using the
Inverse Fast Fourier Transform, i.e., IFFT) or the time response histories
are used to determine the modal parameters. This tends to provide the best
results when a large number of modes are active within the frequency range.

A second classification emerges when focusing on the kind of parameters used
for the fitting:

• Indirect: The term ’indirect’ signifies that the identification is based on the
modal model. This means that the natural frequencies, the damping ratios
and the modal constants are used as fitting parameters;

• Direct: The fitting techniques can also rest on the spatial model and thus
on the matrix equations of dynamic equilibrium.

One can also consider the frequency range over which each individual analysis
is performed. This creates two new categories, according to the number of modes
that can be analyzed:

• SDOF: In single degree of freedom (SDOF) analysis, each mode is studied
separately. SDOF techniques are available neither for time domain nor direct
methods, but only for indirect frequency-domain based methods.
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• MDOF: For larger frequency ranges, several modes are extracted at a time,
and this corresponds to MDOF methods.

Section 1.2 showed different possibilities for the testing procedures. The mea-
sured signals can be recorded simultaneously or not; several, or only one, responses
can be recorded at a time; and the excitation can be strictly controlled or simply
due to the operational conditions. These options also introduce a new catego-
rization, according to the number of signals that can be treated at the same
time:

• SISO: Some of the modal analysis methods, that can only be applied to
a single FRF at a time, are called single FRF or single-input-single-output
(SISO) methods;

• SIMO: Based on the assumption that the natural frequencies and the damp-
ing ratios do not vary from one FRF to another FRF, global or single-input-
multi-output (SIMO) methods are conceivable. They process several FRFs
at a time. The FRFs are obtained using a single excitation point but corre-
spond to different response locations on the structure;

• MIMO: Finally, more complex methodologies have been implemented in
order to simultaneously deal with all the available FRFs (from various ex-
citation and response locations). They are called polyreference or multi-
input-multi-output (MIMO) methods.

To summarize, Figure 1.5 summarizes all the possible combinations.

Because this work uses IRFs or time responses, the identification techniques
considered herein are then time domain and MDOF methods. Both direct and
indirect methodologies are considered for modal analysis. For instance, the blind
source separation based techniques, developed in this work, are direct methods
while the well-established stochastic subspace identification method, used as a
reference technique, is an indirect one.

1.4 Output-Only Based Techniques

Besides the previous classification, modal parameter estimation methods can
be divided into two other large classes: Operational Modal Analysis (OMA) and
Experimental Modal Analysis (EMA). OMA is an output-only based modal pa-
rameter estimation technique and is used in case of operational testing conditions
(cf. Sec. 1.2.1). It does not require the input load to be recorded in contrast with
EMA for which both excitation and response signals are necessary.
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Figure 1.5: Classification of modal parameter extraction methods. Various
classification can be applied to these methods according to the application domain,
the kind of parameters used for the fitting, the number of degrees of freedom or
the number of considered input and output signals.
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Many methods have been proposed to solve the so-called OMA problem. Some
of the most used techniques are presented hereafter, focusing on time-domain
techniques. A complete description of the methods is beyond the scope of this
work, nevertheless the identification techniques are listed according to their prin-
cipal features.

In case of OMA, the excitation process being unknown, the response signals
must be recorded simultaneously to assure the same testing conditions. The
deterministic knowledge of the input is usually replaced by the assumption that
the input is a realization of a stochastic process (i.e., a white noise uniformly
exciting the structure over the complete frequency range). The related methods
are referred to as stochastic system identification methods.

Last, the measurements considered herein are the time-dependent dynamic re-
sponses that can be either displacement, velocity or acceleration responses.If the
identification method requires a pre-processing phase to remove the redundant
information from the signals, the time data are then transformed to covariances
or to a frequency-domain representation, provided by the power spectrum. The
power spectrum is defined as the discrete-time Fourier transform of the covari-
ance sequence. Those concepts are defined by Peeters in Refs. [Pee00, PDR01].
Therefore, the output-only identification methods can be either spectrum-driven
or covariance-driven according to the data pre-processing that has to be performed
or simply data-driven if no pre-processing is required.

1.4.1 Spectrum-Driven Methods

Single-DOF Peak Picking method (PP)

One of the first procedure used to estimate modal parameters is the so-called
SDOF Peak Picking method (PP). The method is originally based on FRFs curves
and consists in identifying the eigenfrequencies as the peaks of the curves. A
damping estimate is obtained using the half-power bandwidth method, and the
FRFs amplitude at the peak can be considered as an estimate of the mode shape.

The method is probably the easiest and the most widely-used technique for fast
modal parameter estimation and has been successfully applied to civil engineering
structures, for instance [CCCD99]. Unfortunately, PP method is only effective for
low damping and well separated frequencies, and leads to erroneous results in case
of violation of these basic requirements. Furthermore, the improvement of the
estimation results requires a large amount of interactions with the operator which
tends to offset the simplicity of the implementation. These drawbacks exclude
the PP method for commercial or industrial purposes.

The method is detailed in most of scientific publications addressing structural
dynamics, such as Refs. [MS97, Ewi00]. The PP method is extended to OMA by
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using output response power spectra instead of FRFs as proposed in Refs. [BP93,
Fel93].

Complex Mode Indicator Function (CMIF)

The Complex Mode Indicator Function (CMIF) is a popular spatial-domain
modal parameter estimation technique. It utilizes the eigenvalue or Singular Value
Decomposition (SVD) of the FRF matrix in order to evaluate the proper number
of normal modes that are included in the measurement data ; the idea is developed
in [STAB88, PAF98, AB06]. The CMIF method can be considered as the multi-
input extension of the PP method and is commonly followed by the enhanced
Mode Indicator Function (eMIF) to obtain a more accurate estimate of the modal
frequencies as well as the corresponding damping ratios, which are not provided
by CMIF.

The corresponding extensions of these methods for OMA are the so-called
Frequency Domain Decomposition (FDD) and enhanced Frequency Domain De-
composition (eFDD) methods where output response power spectra simply replace
the FRF matrix [BZA00, LFPB98].

Maximum Likelihood identification (ML)

Classical optimization techniques have also been used for modal parameter
estimation. The idea is to identify the modal information by minimizing the er-
ror norm between a parametric frequency-domain model and the measured data.
The methods vary with the objective functions and the optimization algorithms.
The use of Maximum Likelihood (ML) estimators for this purpose is discussed in
Refs. [PGR+94, SP91].

As the aforementioned techniques, the ML method was originally intended for
application to FRFs but was extended for output-only cases using power spectra
[HGVDA98, GHVDA99]).

If resting on solid mathematical background, the method requires an iterative
procedure leading to a high computational load and furthermore needs good ini-
tial guesses to avoid local minima, usually obtained by a least squares approach
[Ver02]. Its use for large-scale industrial applications might not be advised.

1.4.2 Covariance-Driven Methods

Random decrement (RD)

The Random Decrement technique (RD) was introduced in the late 60’s by
Cole [Col68] and already applied to aerospace structures for failure detection in
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the 70’s by the American Space Agency [Col71, Col73]. Many civil engineering
applications have also been studied using RD [Asm97]. This algorithm is not a
modal parameter estimation technique but preprocesses the data in order to feed
traditional IRF-based time-domain techniques.

The idea is to average a large number of signal segments, all of them having the
same initial displacement, and to assume that both random and impulse responses
due to the initial velocity average out. The obtained RD functions are related to
output covariances and traditional covariance-driven identification methods can
then be applied [Asm97]. For the implementation, the interested reader can refer
to [Ibr77].

Natural excitation technique (NExT)

One of the earliest OMA technique, the so-called Natural Excitation Technique
(NExT), was proposed by James et al. in the 90’s for modal testing of vertical-
axis wind turbines [JCL93, JCL95]. The objective of NExT is the same as the
RD technique, i.e., to convert forced responses due to unknown stationary input
to free decays, and is consequently not a proper modal parameter identification
technique.

Similarities exist between the mathematical expression of impulse responses
and output covariances resulting from a white noise excitation. Indeed, both
signals can be expressed as the sum of decaying sinusoids possessing the same
modal information [BP93]. Thus, the NExT algorithm uses the auto and cross-
correlation functions to produce free decaying responses of the system.

A successful application of NExT requires first that all the modes be suffi-
ciently excited by the unknown input, and second that the acquisition time be
long enough. NExT is still used today, as proved by some recent publications
[GSDC09, MBCH07, CHT09], and a detailed description of the algorithm is pro-
posed in Chapter 3.

Instrumental variable method (IV)

The Instrumental Variable method (IV) is derived from the AutoRegressive
Moving Average models (ARMA, see [MS97] for some details). The method is
closely related to a well-known EMA technique, the so-called Polyreference Time
Domain (PTD) technique, where the impulse responses are substituted by the
output covariances [VKRR82].

The PTD method is one of the most widely used output-input based tech-
niques, and contains the Least Squares Complex Exponential (LSCE) [BAZM79]
and the Ibrahim Time Domain (ITD) methods as particular cases [IM77].
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Unfortunately, the fitting technique used for the PTD identification (and so
for the IV method as well) introduces some spurious modes in addition to the
genuine ones. A post-processing tool is then required to eliminate these modes
before any advanced analysis is done.

Covariance-driven stochastic subspace identification methods (SSI-COV)

The Stochastic Subspace Identification methods (SSI) address the so-called
stochastic realization problem by identifying a stochastic state-space model from
output-only data. These methods identify the modal parameters in an indirect
way: a state-space model is characterized, and the modal parameters are derived
from the identified system matrices.

Several variants of SSI have been proposed in the literature differing from each
other by data pre-processing. For details on the state-space models and their use
in modal analysis, the interested reader may refer to [VODM96].

The Covariance-driven Stochastic Subspace Identification method (SSI-COV)
is one of the most powerful identification techniques using output-only data.
Thanks to its remarkable sensitivity and good performance regarding the noise
problem, the SSI-COV has been used for many industrial applications, as illus-
trated in [HVDA99, PDR01, HVDAAG98, GQ04]. The SSI-COV is then used
as the reference method in this work in order to evaluate the efficiency of the
proposed method. The methodology is described in more details in Sec. 1.5.

It is worth pointing that, as for the IV method, all SSI methods require a
post-processing phase to eliminate the numerically-generated spurious modes.

1.4.3 Data-Driven Methods

Data-driven stochastic subspace identification methods (SSI-DATA)

The Data-driven Stochastic Subspace Identification method (SSI-DATA) is
also a state-space model-based method for output-only modal parameter estima-
tion. As opposed to SSI-COV, SSI-DATA does not require the computation of
covariances as data pre-processing. It identifies the model directly from the raw
output response time histories. However, a data reduction is obtained by project-
ing the row space of the future outputs into the row space of the past outputs,
which finally makes the SSI-COV much faster than SSI-DATA [PDR01].

The SSI-DATA algorithm was proposed during the early 90’s by Van Overschee
and De Moor in [VODM93]. Additional information can be found in [VODM96,
PDR99, ZBA05, PDR01, Pee00].

The method can be applied to large-scale systems for which the dimension of
the matrices is reduced by introducing the idea of the reference sensors [PDR99,
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Pee00]. A spectrum-driven variant of SSI was also proposed [VODMD97].

Other time-driven methods

Traditional time-domain algorithms such as the Least Square Complex Ex-
ponential (LSCE) [BAZM79]), the Ibrahim Time Domain (ITD) [Ibr77]), the
Polyreference Time Domain (PTD) [VKRR82], and the Eigensystem Realization
Algorithm (ERA) [JP85, LJ89] can also be used for OMA. In this case, pre-
processing methods transforming the forced responses under random excitation
into free decays (i.e., NExT or RD techniques for example) have to be considered.

1.4.4 Drawbacks

Most of the widely-used OMA techniques are based on overspecified models
in order to fit the data. This overspecification usually leads to better modal
parameter estimation, but it also introduces spurious computational modes. A
tool is then required to eliminate these spurious modes from the genuine ones.

The stabilization diagram, commonly used in commercial softwares, is a tradi-
tional way of picking out the genuine modes. The basic idea is to perform several
identifications for different model orders. For each considered order, the identified
eigenfrequencies are plotted in the diagram in which they can be compared to the
poles of the lower-order models. If the variations of the eigenfrequencies, the
damping ratios and the mode shapes are lower than preset values, the poles are
said to be ’stable’. Finally a pole is identified as genuine if it is stable for several
consecutive system orders [MS97, Ewi00].

Even though it is widely used, the stabilization diagram possesses important
drawbacks. First, it requires several modal identifications, the number of com-
puted orders being directly related to the number of active modes in the frequency
range. Second, the selection of the stabilized modes is time consuming and re-
quires good user’s expertise. Therefore the results might vary according to the
user interpretation. Figure 1.6 presents an example of a confusing stabilization
diagram. As illustrated in recent publications such as [PLLVDA08], finding an au-
tomatic procedure for the selection of the modal parameters remains a challenging
issue for dynamics operators.

In the last few years, a new frequency-domain-based method has been proposed
for OMA purpose. Frequency-domain algorithms are usually not dedicated to
OMA, however an output-only variant of the LSCE algorithm, termed the Polyref-
erence Least Square Complex Frequency-domain method (PolyMAX), emerged.

The method, originally implemented for experimental modal analysis, was ap-
plied to traditional FRF-based experimental data [GVV+03, PVDAG04] and then
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Figure 1.6: Example of a stabilization diagram [PLLVDA08]. The stabilization
diagram is a post-processing tool for modal analysis. It makes the distinction
between genuine and spurious computational modes possible but becomes unclear
for high orders and/or systems containing numerous natural frequencies.
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extended to OMA [PVDA05]. The objective is to clarify the stabilization diagrams
by improving numerical conditioning facilitating their interpretation. Consequently,
the method is certainly the most powerful commercial frequency-domain modal
analysis algorithm, which is available today.

1.5 Covariance-Driven Stochastic Subspace Identi-
fication Method

As already underlined in Sec. 1.4, the SSI-COV method is well-established
and is used herein as a reference method in order to evaluate the quality of the
results provided by other innovative identification techniques. This section aims
at describing the method in more details.

The only information required for the use of SSI-COV method is the recorded
time response histories which can be either free or random forced response. The
latter simply assumes that the unknown and unmeasurable external forces are un-
correlated random signals. The discrete-time output is provided as ny -dimensional
vector series yk where ny is the number of measured response signals (or sensors),
and yk = y(tk) is the system response measured at the time tk .

A detailed description of the method can be found in [VODM96, HVDAAG98,
HVDA99, AVVODM98, KG05].

1.5.1 State-Space Model

The dynamic behavior of a structure can be described by a stochastic state-
space formulation of the form:

rk+1 = Ark + wk

yk = Brk + vk (1.12)

where rk represents the state vector and wk and vk are the process and measure-
ment noises (assumed to be zero-mean white Gaussian noise). Matrices A and B

are the state-space and output matrices, respectively, and completely characterize
the system dynamics.

Assuming the knowledge of the matrix A, its eigendecomposition provides the
two matrices Λ and Φ:

• The diagonal matrix Λ contains the discrete eigenvalues λr = eµr∆t from
which the system poles µr can be extracted;

• The matrix Φ contains the system eigenvectors φr .
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The modal parameters are directly related to these two matrices. The natural
frequencies ωr and the damping ratios ξr can be computed directly from the
system poles µr using

µr =
1

∆t
lnλr = σr + iωr (1.13)

ξr =
−σr√
ω2
r + σ2

r

(1.14)

where σr is the damping factor. The shape vector nr of the r -th structural mode
is deduced from the system eigenvector φr

nr = Bφr (1.15)

using matrix B of the state-space model (1.12).

1.5.2 SSI-COV Implementation

The identification problem consists in estimating the two matrices A and B

only using the output measurements yk .
The success of SSI-COV depends first on the quality of the covariance ma-

trices estimation. Since, in practice, the true correlation functions are unknown,
empirical values need to be used. A finite set of data samples yk at the discrete
time instants k = 1, ..., nts (where nts represents the number of considered time
samples) is used to estimate these matrices. The proposed estimation of the
ny × ny correlation matrix Rk is given by

Rk =
1

nts − k

nts−k∑
m=1

yk+myT
m. (1.16)

Once the correlation matrices Rk are computed, the model order has to be
chosen. This order equals the number of frequencies that should be computed
in the considered frequency range and depends on the number of blocks of the
Hankel matrix.

Indeed, the following block-Hankel matrix

Hpq =


R1 R2 · · · Rq

R2 R3 . . . Rq+1

. . . · · · . . . ...
Rp Rp+1 · · · Rp+q−1

 (1.17)

is filled up with p block rows and q block columns (with p > q) of the correlation
matrices Rk . The numerical system order is given by (p · ny).
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In [HVDA99], it is shown that the observability matrix Op is directly related
to the matrices resulting from the SVD of this Hankel matrix, namely U and S

Hpq = U S VT (1.18)

and
Op = U S1/2. (1.19)

Finally, the definition of the observability matrix

Op = U S1/2 =
[

B BA · · · BAp−1
]T

(1.20)

permits the evaluation of the two state-space matrices A and B and the relations
between the state-space and the modal models (Sec. 1.5.1) provide the modal
parameters.

1.6 Concluding Remarks

The objective of vibration testing is usually twofold. On the one hand, en-
vironmental testing encompasses the experimental processes through which an
engineering structure is qualified for its future operational environment. On the
other hand, modal or operational testing aims at developing a reliable model of
the structure matching the experimental measurements for advanced calculations.

While modal testing meets ideal experimental conditions where both output
responses and input excitation are measurable, operational conditions assume an
unknown and unmeasurable excitation. Numerous techniques have been proposed
in the scientific literature since the 40’s, each of them including interesting fea-
tures as well as limitations. The modal parameter estimation techniques based
on output-only data, namely operational modal analysis (OMA) are the meth-
ods on which this work focuses and some of the most used or well-known OMA
techniques have been presented in this chapter. Unfortunately, most of them are
based on overspecified system orders to assure a good correlation with the ex-
perimental measurements, introducing numerical spurious modes. Therefore, the
methods require an interactive post-processing of the results that complicates the
identification.

The most generalized post-processing technique, that is commonly used in
commercial softwares, is the stabilization diagram. This approach helps the op-
erator to separate the genuine modes from the spurious ones. Nevertheless, the
stabilization diagram possesses three main drawbacks:

• First, the modal parameters are computed and identified as many times as
considered system orders. This iterative process may lead to high computa-
tional load.
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• Second, the stabilization diagram analysis can quickly become fastidious in
case of complex industrial structures containing numerous natural frequen-
cies.

• Finally, because the user’s interpretation is required to extract the genuine
modes, an inconsistency between estimates of different operators according
their expertise may appear.

In view of the intrinsic limitations of the stabilization diagram approach, the
main objective of this doctoral dissertation is to develop a new technique facili-
tating modal parameter estimation. The proposed methodology is based on blind
source separation techniques, detailed in the next chapter.



Chapter 2

Blind Source Separation

Abstract

This chapter introduces the concept of blind source separation. Source
separation techniques are based on statistical concepts and aim at reveal-
ing the independent components hidden within a set of measured signal
mixtures. The theoretical foundations are presented, and two of the al-
gorithms utilized in the next chapters are discussed.

First, Section 2.1 describes the blind source separation problem. The
theoretical model is presented and illustrated using simple examples. The
related assumptions are then detailed.

Blind source separation techniques have been applied to numerous applica-
tions, and many algorithms have been proposed. This is briefly presented
in Sec. 2.2.

The following two sections describe two specific techniques, namely the
independent component analysis (Sec. 2.3) and the second order blind
identification (Sec. 2.4). These methods are used in the following chap-
ters in order to develop new modal parameter estimation methodologies.

Finally, Section 2.5 presents the similarities between blind source sep-
aration and proper orthogonal decomposition, that has been previously
applied to structural dynamics in the scientific literature.

29
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2.1 Theoretical Background

2.1.1 Concept and Notations

Blind Source Separation (BSS) techniques were initially developed in the early
80’s for signal processing in the context of neural network modeling. During the
last two decades, numerous studies were achieved on this topic diversifying the
application fields. This success certainly comes from two of the BSS intrinsic
features:

• First, the ambition of any BSS technique is to reveal the underlying structure
of a set of observed phenomena (e.g., random variables, measurements or
signals). Recovering initial (and unobservable) signals from measured data
is a generic problem in many domains.

• Secondly, a small number of assumptions is required about the signals. The
term ’blind’ means that the source signals are extracted from the rough
data even though very little, if anything, is known about the nature of those
initial components. The methods are said to be versatile in the sense that
the analyzed data can originate from various domains, and that no a priori
knowledge is required about the physical phenomenon of interest.

The desired signals, denoted s, are named sources or components of the sys-
tem. They are of primary interest because they concentrate the valuable informa-
tion of the system. Unfortunately, this information is diluted within the measured
signals, denoted x, that are essentially mixtures of the sources.

The simplest BSS model assumes the existence of ns sources {s1(t)...sns (t)}
and the observation of as many mixtures {x1(t)...xnx (t)}, where nx = ns . This is
illustrated in Fig. 2.1.

The next paragraph presents the theoretical BSS model but the interested
reader could find a nice introduction to BSS and ICA techniques in [Sto04]. Some
additional information is also provided in Refs. [HKO01, HO00, CDLD05].

2.1.2 The BSS Model

Although convolutive and nonlinear mixtures can be considered, this work fo-
cuses on linear and static mixtures for which BSS is well established. Mathemat-
ically, a generative model can be defined as follows

x(t) = As(t), (2.1)

where the observed data x(t) are assumed to be linear combinations of unknown
sources s(t). The matrix A is referred to as the mixing matrix. Using the subscript
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Figure 2.1: Illustration of a generic BSS process. Independent sources are mixed
through unknown physical process. The resulting mixtures are the observable
information. BSS techniques tempt to recover the initial signals using very few
information about the sources and the mixing process.
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notation, (2.1) can be written as

xi(t) =

ns∑
j=1

ai jsj(t). (2.2)

Knowing the signals x(t), the BSS problem then consists in estimating the
sources. Because both mixing coefficients ai j and sources si are unknown, the
estimation problem is considerably more difficult.

Noise may also corrupt the data and, in this case, the noisy model can be
expressed as

xi(t) =

ns∑
j=1

ai jsj(t) + σnoise,i(t) i = 1, ..., nx , (2.3)

or, in matrix form,

x(t) = y(t) + σnoise(t) = A s(t) + σnoise(t), (2.4)

where σnoise is the noise vector corrupting the data.
By way of generalization, note that BSS techniques are not restricted to time

variables, any random distribution can be considered. Nevertheless, all the vari-
ables of interest in this dissertation are time-dependent.

2.1.3 Illustration of the BSS Objective

The objective of the BSS techniques can be adequately illustrated with the so-
called cocktail party example. The problem is illustrated in Fig. 2.2 and consists
in several people speaking at the same time in a room where microphones are
installed. Every single microphone records a mixture of the speech signals (i.e., a
mixture of independent physical sources).

Discerning a specific sound in a noisy environment is a practical example of the
BSS concept and is a common task that humans naturally apply all along the day.
The BSS-algorithm job is then to imitate the human ear’s capability of isolating
a specific voice from the others.

It is physically realistic to assume that if different signals originate from dif-
ferent physical processes, they are unrelated. Mathematically, the property of
’unrelatedness’ can be captured in terms of statistical independence. Two ran-
dom variables x1 and x2 are said to be independent if the value of any one of them
cannot be inferred from the value of the other one. In other terms, their joint
density function factorizes into the product of their marginal densities such as

px,y(x, y) = px(x)py(y). (2.5)

The key strategy for separating the signal mixtures is based on the fact that:
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Figure 2.2: BSS applied to the cocktail party problem. Three people speaking
at the same time in a room are recorded using three microphones. The recorded
signals are mixtures of the individual voices. BSS techniques are able to separate
the initial signals from the recorded mixtures.
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fi Ai φi
[Hz] [-] [s]

Sine 1 1.000 5 · 10−6 1.88

Sine 2 2.300 5 · 100 0.58

Sine 3 4.100 5 · 100 0.75

Sine 4 4.105 5 · 100 0.23

Sine 5 15.000 5 · 100 1.93

Table 2.1: Parameters of the five sine curves used as sources for the BSS problem
illustration.

if different physical sources lead to statistically-independent signals
then the signals extracted from the mixtures that verify the statis-
tical independence property should be issued from different physical
processes.

In other words, using the microphone records, if an algorithm is able to extract
statistically-independent signals, they should be the speech signals emitted by
different speakers.

This new assumption, which sets the foundation of all BSS methods, is not
mathematically demonstrated and is consequently unwarranted, but nevertheless
works in practice.

By way of clarification, BSS techniques aim at separating signal mixtures into
statistically independent signals, and each of them is a desired interpretable signal
because it is generated by a different physical process.

Numerical example

For illustration, a BSS algorithm, namely the Second-Order Blind Identifica-
tion, is applied to a simple numerical example: a signal that is a mixture of five
sine curves expressed as

si = Ai · sin(2πfit + φi). (2.6)

The sine parameters are provided in Table 2.1 and were chosen to emphasize some
interesting features of the methodology.
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First, in order to prove the accuracy of the method even in the presence of
similar signals, some of the sine frequencies fi are chosen to be very close to each
other (e.g., the relative distance between f3 and f4 is lower than 0.13%).

Second, one of the considered sources (sine 1) has an amplitude A1 much
lower than the other signals. The participation of this source is then very low
(i.e., 106 times less than the others). This should underline the high sensitivity of
BSS methods for weakly-participating signals.

Figure 2.3 presents both mixtures and identified sources where it can be no-
ticed that all the sources are accurately separated. However, neither the source
order nor the source amplitude is correctly identified. These indeterminacies are
addressed in the next paragraphs.

2.1.4 Assumptions and Restrictions

According to the previous considerations, the separation processes considered
in this work are restricted to the following assumptions:

• The sources are assumed as statistically independent. The mathematical
definition of statistical independence, based on the joint probability density
functions, is recalled in Eqn. (2.5).

• The unknown mixing matrix is usually assumed to be square. The number
nx of sensors is then assumed to be equal to the number ns of sources. Note
that this assumption could be relaxed [DLDMVC03, JML00].

2.1.5 Indeterminacies

Because both sources s and mixing matrix A are unknown, the following two
indeterminacies remain after applying a separation algorithm.

• The effect of any scalar multiplier αj applied to one of the sources sj(t) can
always be canceled by scaling the corresponding column aj of the mixing
matrix using the inverse parameter 1/αj . Mathematically, this means that
Eqn. (2.2) can be identically transformed as

xi(t) =

ns∑
j=1

(
1

αj
· ai j
)

(αj · sj(t)) . (2.7)

Therefore, the variance of the sources cannot be determined and is usually
normalized assuming unit-variance sources (i.e., E [s2

i (t)] = 1, i = 1, ..., n).
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Figure 2.3: BSS example using the Second-Order Blind Identification algorithm.
The five sources are sines with the following frequencies: 1, 2.3, 4.1, 4.105 and
15 Hz.
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• Similarly, any permutation P of the columns of the mixing matrix can be
balanced by a permutation of the source order

x = As ⇐⇒ x = AP−1Ps. (2.8)

The order of the sources is then also undetermined.

2.2 Literature Survey

2.2.1 Application Fields

Due to its general formulation, BSS has been applied to diverse kinds of prob-
lems. According to Hyvärinen et al. [HKO01] and Jutten [Jut00], the problem
first came out in 1982 in a neurophysiological environment. Since then, many
signals issued from medical applications were analyzed using BSS. For instance,
brain imaging applications, in which many sources in the brain emit signals that are
mixed up in the sensors outside the head, are studied by Jung et al. in [JMM+01]
(for hemodynamic recordings from the human brain) and by Vigãrio et al. in
[VSJ+00] (for electroencephalography and magnetoencephalography signal sepa-
ration).

BSS techniques also performed well for the analysis of multivariate data sets
such as financial time series (in order to minimize the risk in the investment strat-
egy [BW97]), astrophysical data sets (helping the detection of Cosmic Microwave
Background fluctuations [PDC04]), telecommunication signals [FK99] and digi-
tized natural images [HO00].

Of course, BSS similarly benefits to mechanical engineering, where the issue
of determining the nature of unknown sources from exogenous measurements has
always been a major concern. A special issue dealing with BSS was published
in ’Mechanical Systems and Signal Processing’ in 2005 where several applica-
tions of BSS are presented [AB05]. Rotating machines and bearing diagnostics
[ERFGD05, PBZ05], non-destructive control [SVIG05], online monitoring [PSL05]
or noise analysis of diesel engine [EBDGS05] are some of these interesting appli-
cations.

Even though BSS techniques proved useful in numerous application domains,
they were quite underused for many years in structural dynamics. If it is promising,
the application of BSS in structural dynamics still remains a challenge, as pointed
out by Antoni in Ref. [Ant05]. The reason is that the time response of mechanical
systems is related to the physical excitation through a convolutive mixture, con-
trary to the static mixtures usually studied, cf. Eqn. (2.1). This particular case
of source separation is much more difficult to treat than the usual static mixture
and is addressed, among others, in Refs. [TJ95, BAK05, BAK04].
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Some applications were naturally carried out such as damage detection [ZFI04],
condition monitoring [RES02, SF04] and discrimination between pure tones and
sharp-pointed resonances [AGMS04]. Nevertheless, the modal parameter estima-
tion remained quite marginal in these studies.

2.2.2 Algorithms

A complete overview of the existing BSS techniques is beyond the scope of
this work. A brief survey of the subject is only proposed in this section, but the
interested reader may consult Refs. [CCPL05, RE01, Sto04] for more details.

The few number of assumptions over the recorded channels and the sources
makes the methodology very attractive, and several approaches have been pro-
posed. They differ from each other, on the one hand, by the objective function,
the so-called ’contrast’ function, representing the independence of the identified
sources and, on the other hand, by the algorithm used to optimize this function.
However, as it is the case of tensorial methods, the algorithm and the estimation
function may be difficult to separate.

A fundamental approach to BSS is given by the principle of non-Gaussianity,
providing a representation of the signals independence as explained in [HKO01].
Statistical concepts such as kurtosis and negentropy (or any approximate of them)
can estimate the non-Gaussianity [DL95, Hyv99] ; gradient methods or fixed-
point algorithms can thus profitably be used to maximize the latter. For instance,
algorithms such as Independent Component Analysis (ICA) or FastICA can be
based on these notions [HO97, CDLD05, LKL07].

Maximum likelihood estimation, that is a fundamental method of statistical
estimation, is a popular approach for estimating the BSS model. Maximization
techniques such as the Bell-Sejnowski or the natural gradient algorithms can be
used for the separation [HKO01] but FastICA could also be considered. Algorithms
using this approach are detailed and explained notably in [Car97, OD98, PP97,
PG97].

Mutual information is a natural information-theoretic measure of dependence
and its minimization leads to estimate the independent components. The variant
of ICA used in this work is based on the mutual information minimization (see
Sec. 2.3). The concept has first been proposed by Common in Ref. [Com94], but
originally comes from neural network studies, and was then developed in [YA97,
OD98].

BSS models may also be obtained by making zero the higher-order cumulants.
Cumulant tensors used in this case can be considered as generalizations of the
covariance matrix and then leads to higher-order decorrelation of the signals. The
Fourth-Order Blind Identification (FOBI) is probably the simplest method for per-
forming blind source separation and is very efficient, but it suffers some limitations
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[Car89, CM96]. The Joint Approximate Diagonalization of Eigenmatrices (JADE)
partially fixes them [CS93].

Finally, as it is the case for the Second-Order Blind Identification (SOBI), the
BSS problem may be simplified by taking into account the time structure of the
data. SOBI is based on a joint diagonalization of time-lagged covariance matrices.
The AMUSE algorithm is a simplified version of SOBI where only one time-lag is
considered [TLSH91, MS94].

Extended methodologies dealing with over-completed bases (i.e., the number
of mixtures is smaller than the number of independent sources), noisy data or
convolutive mixtures have also been developed in the scientific literature. More
information on these subjects can be found in [HKO01, RE01].

In order to test the BSS techniques in the field of modal analysis, two specific
algorithms are considered herein: ICA and SOBI.

• Most BSS approaches are based on a model in which the sources are indepen-
dent and identically distributed variables. Independent Component Analysis
(ICA) algorithm detailed by Comon in [Com94], is one of them. One of its
characteristics is that the sample order has no importance in the method.

• The objective of the Second-Order Blind Identification (SOBI) method is to
take advantage, whenever possible, of the temporal structure of the sources
for facilitating their separation. The SOBI algorithm consists in constructing
several time-lagged covariance matrices from the measured data and to find
a matrix which jointly diagonalizes them.

2.3 Independent Component Analysis (ICA)

2.3.1 Concept and Notations

ICA was first introduced by Jutten and Herault in 1991 [JH91]. The method is
arguably the most popular in the scientific literature for performing source separa-
tion. To alleviate the lack of a priori knowledge about the mixtures, ICA assumes
that the observed data are linear combinations of statistically independent (or as
independent as possible) sources.

The method uses high-order statistical concepts to separate the independent
components and estimate the ICA model. Because higher-order cumulants are
known to be zero for Gaussian distributions, ICA-based separation is mostly im-
possible if the observed variables have such a statistical distribution. Thus, the
sources must have non-Gaussian distributions to be able to separate the signals.
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If some of the components are Gaussian, they are simply not separated from the
others.

The sources s are termed Independent Components (ICs), and the ICA basis
vectors (i.e., the columns of the mixing matrix A) are referred to as ICA modes
in the present study. ICA modes are linearly independent, but their orthogonality
is not enforced. This contrasts with other well-known separation methods in
structural dynamics such as the Proper Orthogonal Decomposition [HLB96]. A
comparison between both methodologies is proposed in Sec. 2.5.

Note that various algorithms have been developed for ICA in the literature.
They differ mainly by the contrast function. This contrast function can be based
on kurtosis, negentropy, likelihood or mutual information to cite a few [Com94,
PGJ92, BS95, DLDMV96, HKO01].

The interested reader may consult Refs. [HKO01, HO00, Sto04, Com94,
Car98] for the implementation of ICA and the practical estimation of the ICs.

2.3.2 Maximization of non-Gaussianity

Non-Gaussianity and statistical independence are closely related to each other.
This is the reason why the maximization of non-Gaussianity is one of the way of
estimating ICA models. The motivation of this idea comes from the central limit
theorem:

"Under certain conditions, the distribution of a sum of independent
random variables tends toward a gaussian distribution"

The ICA principle can be explained as follows. Considering a linear combination
of the observed data

α = wTx, (2.9)

if these observed data are assumed to respect the BSS formulation (2.1), they
can be expressed as

α = wTAs = zT s, (2.10)

where z = ATw, and the combination w is to be determined.
According to the central limit theorem, a sum of two independent random

variables is more Gaussian than any of the two original random variables. It
follows that zT s is more Gaussian than any of the sources, except when z has only
one nonzero element. Consequently, by maximizing the non-Gaussianity of zT s,
or equivalently of wTx, the convergence toward one of the ICs is guaranteed.

Subsequently, the use of the previous principle to separate the ICs requires a
quantitative measure of the non-Gaussianity. The traditional fourth-order cumu-
lant, namely the kurtosis, is one of the simplest statistical instruments indicating
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the non-Gaussianity of a random variable. The value of the kurtosis is zero for a
Gaussian distribution and nonzero for non-Gaussian random variables.

The kurtosis of a random variable y is simply a normalized version of the fourth
moment E{y 4}, and is denoted kurt(y):

kurt(y) = E{y 4} − 3
(
E{y 2}

)2
(2.11)

Unfortunately, the kurtosis is not a robust measure of non-Gaussianity, because
it is very sensitive to outlier values and to erroneous or irrelevant observations.
Furthermore, its evaluation requires a high computation load preventing it to be
used within an iterative process.

2.3.3 Minimization of Mutual Information

The ICA algorithm used in the present study is based on the mutual information
minimization philosophy. It can be shown that mutual information is a natural
measure of the dependence between random variables. It takes into account the
whole dependence structure of the variables.

Hyvärinen et al. demonstrate in Ref. [HKO01] that the minimization of mutual
information is equivalent to maximizing the sum of non-Gaussianities of the ICs
estimates. However, the estimates s̃i are constrained to be uncorrelated. The
mutual information is usually easier to compute than kurtosis and its minimization
provides accurate results.

A complete description of the "information theory" is not the goal of this work
but additional information can be found in Ref. [CDLD05].

2.4 Second Order Blind Identification (SOBI)

2.4.1 Formulation of the Problem

Most BSS approaches are based (explicitly or not) on a model in which the
sources are independent and identically-distributed variables. Therefore, the sam-
ple order has no importance. Shuffling them does have effect neither on the
estimation method nor on the accuracy of the model. The problem is quite dif-
ferent if the sources are time-dependent signals, because they may contain much
more structure than simple random variables.

If the time structure is considered, a different approach is then possible. The
objective of SOBI algorithm is to take advantage, whenever possible, of this struc-
ture to facilitate the signal separation. SOBI is therefore an interesting alternative
to ICA for sources with different spectral contents, and this is usually the case in
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structural dynamics. As suggested by its name, the method is based on second-
order statistical data that are the covariances. As opposed to the case of pure
random variables, the autocovariance properties are well-defined for time signals.

Considering a set of observed signals x(t), the covariances between two dif-
ferent signals xi(t) and xj(t)

cov (xi(t + τ) xj(t)) where i 6= j (2.12)

and the autocovariances, which are the covariances between the values of the
same signal xi(t) at different time steps,

cov (xi(t + τ) xi(t)) (2.13)

are two basic information about the time structure, where τ is the time-lag or
delay.

The so-called time-lagged covariance matrix combines all these quantities for
a given time-lag τ and is defined as

Cx
τ = E {x(t + τ) x?(t)} (2.14)

where the superscript ? denotes the conjugate transpose of the vector x.
Since SOBI is based on the diagonalization of time-lagged covariance matri-

ces, it relies entirely on second-order statistics. This is an advantage compared to
ICA techniques, because higher-order statistics computation is known to be time
consuming and even misleading in the case of scarce data. Moreover, the intro-
duction of the time structure by means of the autocovariance properties relaxes
the assumption of non-Gaussian distribution for the ICs, meaning that autocovari-
ances are a simple option replacing non-Gaussianity [HKO01]. Of course, some
alternative assumptions (differing from non-Gaussianity and based on the time
structure of the ICs) are required for the estimation. In the case of SOBI, each
source must have different and nonzero autocovariances.

A complete description of the method is proposed by Belouchrani et al. in
Ref. [BAMCM97].

A simple decorrelation of the observed signals x(t) can be assured simply by
imposing the instantaneous covariances (i.e., covariances where τ = 0) to be zero.
The resulting signals are then such that

Cx
τ = 0 for τ = 0 (2.15)

Nevertheless, just the correlation matrix Cx
τ=0 (i.e., a zero-lagged covariance

matrix) does not contain enough information for the separation. In fact, due to
the independence property of the ICs, all their lagged covariances, and not only
one, should be zero according to

Cx
τ = 0 ∀τ (2.16)
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The SOBI problem is then to find a matrix B which can be applied to the
observed measurements x(t) in such a way that

z(t) = Bx(t) (2.17)

so that all the lagged covariances are zero as well. That means:

E {zi(t + τ) zj(t)} = 0 for all i , j and τ. (2.18)

2.4.2 Algorithm Description

The starting point of the method is still Eqn. (2.4) which is recalled hereafter:

x(t) = y(t) + σnoise(t) = A s(t) + σnoise(t). (2.19)

When the sources are stationary, mutually uncorrelated and scaled to have unit
variance, their covariance matrix is provided by

Cs
0 = E{s(t)s?(t)} = I. (2.20)

The covariance matrix of the observed mixtures is then provided by

Cx
0 = E {x(t)x?(t)} (2.21)

= ACs
0AH + E {σnoise(t)σ?noise(t)}

= AAH + σ2
noiseI

where the superscript H denotes the complex conjugate transpose of the matrix
A. The additive noise σnoise is assumed to be a stationary, temporally and spatially
white random process independent of the source signals.

Thus, there must be two steps in the SOBI algorithm [BAMCM97]:

• The whitening preprocesses the observed data in such a way that whitened
data are uncorrelated and have a unit variance;

• The estimation of the mixing matrix A allows the sources s(t) to be iden-
tified.

Whitening

Traditionally the data are likewise preprocessed for all source separation al-
gorithms. This phase is strongly recommended because reducing the number of
free parameters and increasing the performance of the methods, especially for
high-dimensional data.
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Whiteness is a slightly stronger property than uncorrelatedness. The whitening
transformation consists in transforming a data vector q by linearly multiplying it
with a matrix W such that a new vector qw is obtained

qw = Wq. (2.22)

The random vector qw is white if its components are uncorrelated and their
variance equal to unity, mathematically

E {qw q?w} = I (2.23)

Thus, if the linear transformation W is applied to the observed data y(t)

where noise is assumed to be nonexistent, the resulting whitened data yw(t) are
uncorrelated and have unit variance. They verify

Cyw
0 = E{ywy?w} (2.24)

= E
{

Wy(t)y∗(t)WH
}

= I.

Whitened data facilitates the mixing matrix identification. Indeed, thanks to
Eqns. (2.4) and (2.20), it comes

Cyw
0 = E

{
Wy(t)y∗(t)WH

}
(2.25)

= WAE {s(t)s∗(t)}AHWH

= WACs
0AHWH

= WAAHWH

If yw(t) are whitened, Eqn. (2.24) is verified, and it follows that

WAAHWH = I (2.26)

Because an identity matrix I can always be expressed in terms of a unitary matrix
U such as I = UUH, it comes

WAAHWH = UUH. (2.27)

Finally, it can be concluded that, for any whitening matrix W, there exists a
unitary matrix U such that

U = WA. (2.28)

Two straightforward solutions for whitening are the Principal Component Anal-
ysis (PCA) expansion [Jol86] and the Eigenvalue Decomposition (EVD). Starting
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from the matrix Cy
0 (i.e., the instantaneous covariance matrix of the observed

data y(t)), the EVD provides the matrix V whose columns are the unit-norm
eigenvectors and the diagonal matrix D of the eigenvalues according to

Cy
0 = E {y y?} = VDVH. (2.29)

The whitening matrix is then provided by

W = D−1/2VH. (2.30)

The matrix W applied to y(t) creates a set of whitened data yw(t). This can
be proved as follows

E {ywy?w} = WE {yy?}WH (2.31)

= WVDVHWH

= D−1/2VHVDVHVD−1/2

= I.

When noise is present, i.e. when x(t) 6= y(t), and is such that Eqn. (2.21) is
valid, the whitening process xw(t) = Wx(t) is such that

E {xw(t)x?w(t)} = Cz
0 = E

{
Wx(t)x?(t)WH

}
(2.32)

= WAAHWH + Wσ2
noiseW

H

= W
(
Cx

0 − σ2
noiseI

)
WH + Wσ2

noiseW
H

= WCx
0WH

This shows that a whitening matrix W can be determined from the covariance
matrix Cx

0 under the assumption that the noise is spatially white. As explained in
[BAMCM97], this assumption is not crucial and the determination of a whitening
matrix is still possible even in the case of an unknown noise covariance matrix.

Mixing matrix estimation

The goal of the second step is the estimation of the unitary matrix U, and
consequently the mixing matrix A, thanks to the relation (2.28). To this end,
time-lagged covariance matrices based on the whitened data are considered

Cxw
τ = E {xw(t + τ)x?w(t)} (2.33)

= WE {x(t + τ)x?(t)}WH

= WAE {s(t + τ)s?(t)}AHWH ∀τ 6= 0

leading to
Cxw
τ = UCs

τUH ∀τ 6= 0 (2.34)
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where Cs
τ = E {s(t + τ)s?(t)} is the time-lagged covariance matrix of the sources

s(t).
Because U is a unitary matrix and Cs

τ is diagonal, the relation (2.34) shows
that any whitened covariance matrix Cxw

τ is diagonalized by the unitary transform
U [BAMCM97]. It turns out that the matrix U can be determined through an
eigenvalue decomposition of the time-lagged whitened covariance matrix.

The mixing matrix A is easily computed, since U = WA, and so are the
sources, since x(t) = As(t).

The diagonal elements of Cs
τ must be different in order that Cxw

τ have distinct
eigenvalues and uniquely defined eigenvectors. Therefore, the time lag τ must
be chosen carefully. Cardoso et al. have shown that robustness of the method is
significantly increased when several time lags τ are considered [BAMCM97]. On
the one hand, an unfortunate choice of the time lag is less probable. On the other
hand, the matrix U is inferred from a larger set of statistics.

As a result, during the second step of the SOBI algorithm, several time-lagged
covariance matrices Cxw

τ are jointly diagonalized. For information, the simulta-
neous diagonalization is carried out using an extension of the Jacobi technique
[CS96].

For further details about the mathematical development of the SOBI method,
the reader can refer to Ref. [BAMCM97]. If only one time lag τ is considered,
the SOBI method reduces to the AMUSE method, introduced by Tong et al. in
Ref. [TLSH91].

2.5 BSS and Other Statistical Approaches

Besides BSS techniques, empirical statistical approaches have been used over
the last years in the field of structural dynamics. The Proper Orthogonal De-
composition technique (POD), that is a variant of PCA for dynamical systems
[KGVB05], is one of them and can be closely related to the BSS approach.

In fact, POD and BSS are two different ways of solving the same basic problem

x = As (2.35)

but both techniques are simply based on different assumptions. POD could be
considered as a blind technique assuming that the original sources s are uncorre-
lated whereas BSS assumes their statistical independence.

The basic idea of POD is to reduce the large number of the observed in-
terdependent variables x(t) to a more readable and eventually smaller number
of uncorrelated variables, while retaining as much as possible of the information
present in the original variables.
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The transformation is performed using an orthogonal transformation to the
basis of the eigenvectors of the sample covariance matrix. The data are projected
onto the subspace spanned by the eigenvectors corresponding to the largest eigen-
values.

The main property of the POD is its optimality in the sense that it minimizes
the average squared distance between the original signal and its reduced linear
representation. As opposed to ICA separation, the method is suitable for variables
with Gaussian distribution. In this case, the contours of the joint probability
density function consist of ellipsoids, and the Proper Orthogonal Modes (POM)
are the principal axes of these ellipsoids.

Considering two variables x1 and x2 with Gaussian distribution, Figure 2.4
represents the distribution in the 2D space. The figure shows clearly that the
POMs align the two principal axes of the distribution.

However, in the presence of non-Gaussian data, the uncorrelated variables
computed through POD are not statistically independent, which may represent
a limitation in some cases. For instance, when considering two variables with
uniform distribution, Figure 2.5 clearly shows that POD is unable to recover the
underlying structure in the data unlike ICA. POD assumption is too weak to get
a good separation in practical problem.

2.6 Concluding Remarks

Blind source separation (BSS) problems first emerged in the context of neu-
ral network but share concerns with many other research fields. During the last
decades, BSS techniques became more and more mature, and important appli-
cations have been considered in various domains, from medical applications to
telecommunication including structural dynamics. However, dynamicists restricted
the use of BSS to specific applications (such as damage detection or condition
monitoring). This certainly comes from the fact that time response and excitation
signals are linked together by convolutive mixtures.

The objective of the chapter was to introduce BSS concepts and techniques,
allowing us to point out some of the BSS main interesting features:

• Only fairly general assumptions about the sources are necessary to consider
source separation which makes the methodology usable for many applica-
tions.

• No a priori knowledge is required about the physical phenomenon of interest
or even about the system excitation.

• Separation methods for static mixture described by (2.1) are well established
and have proved success in various domains.
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Figure 2.4: Proper Orthogonal Decomposition (POD) applied to two vari-
ables with Gaussian distribution. The Proper Orthogonal Modes (POMs) ac-
curately align with the two principal axes of the distribution.
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Figure 2.5: Proper Orthogonal Decomposition (POD) and Independent Com-
ponent Analysis applied to two variables with uniform distribution. POD is
unable to recover the two principal axes of the distribution whereas ICA performs
accurately.
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• Methods such as SOBI provide very accurate results even in case of weakly-
participating or close-frequency signals.

Considering the previous features and the success of BSS in other domains,
it appears that BSS is a promising methodology. This prompts us to carry on in
the dynamics field, and especially for modal parameter estimation. Two of the
well-known BSS algorithms are considered for this purpose in this dissertation.

The ICA algorithm, firstly used in this work, is based on the mutual information
approach. The original components are assumed to be statistically independent
and must have non-Gaussian distribution.

The second technique, named SOBI, takes advantage of the temporal struc-
ture of the sources for separating them. This approach is a second-order based
technique, which facilitates its implementation. The sources are assumed to have
different spectral contents.

Despite these advantages, ICA and SOBI possess some weaknesses that might
become problematic in some cases:

• First, even though this hypothesis can be relaxed, the basic BSS model
assumes that the number of mixture equals the number of sources.

• Second, some statistical distributions might not be accurately separated.
This is the case for Gaussian signals (using ICA) and for signals with over-
lapping spectral contents (using SOBI).

• Finally, because both sources and mixing matrix are unknown, BSS methods
possess two indeterminacies related to the amplitude and the order of the
sources.

These aspects are addressed in the following chapters where both ICA and
SOBI techniques are considered to identify modal parameters using only the struc-
tural time-response data, such as acceleration, velocity or displacement histories.



Chapter 3

Modal Parameter Estimation using
Blind Source Separation Techniques

Abstract

This chapter proposes to use BSS techniques to estimate the modal pa-
rameters of mechanical systems using output dynamic time histories only.

First, Section 3.1 presents the specific features of the proposed methodol-
ogy compared to classical output-only modal parameter estimation tech-
niques. The utility of statistical techniques for modal identification is also
demonstrated.

Section 3.2 introduces the concept of virtual sources for BSS when applied
to dynamics. A one-to-one relationship between the BSS modes contained
in the identified mixing matrix and the vibration modes is developed.

The following two sections propose a procedure for modal analysis based
on BSS using structural dynamic responses. Modal parameter estimation
based on the free responses (Sec. 3.3) is first detailed. A specific proce-
dure is then proposed to deal with random forced responses (Sec. 3.4).

Finally, an automated post-processing is introduced for the separation
of genuine and spurious modes appearing when the number of sensors is
larger than the number of active modes in the frequency range (Sec. 3.5).

50
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3.1 Motivation

Beside the fact that new techniques are always welcome, the motivation for
the use of BSS techniques for modal analysis basically comes from the following
two ideas. First, statistical and empirical techniques have been extensively used
during the last years in dynamics, and the extension to BSS seems to be well-
advised. Second, despite of the high number existing techniques, few of them, if
none, are able to perform modal parameters estimation without the assistance of
an operator.

BSS-based identification possesses some of these interesting features. This
dissertation does not pretend to provide a generic solution for all practical appli-
cations, but it proposes an additional method in the set of existing methods. The
most suitable technique is then left to the user’s expertise and preference.

3.1.1 Statistical and Empirical Techniques for Modal Analysis

In Chapter 1, it has been shown that linear system identification is a discipline
that has evolved considerably for the last thirty years. Over the past few years,
a special attention has been paid to statistical signal processing techniques. As is
the case for BSS, they can be applied to various kinds of signals and, by force,
to simple dynamic responses, providing the underlying information based on few
assumptions.

As it has been shown in Sec. 2.5, BSS is closely related to other statistical
techniques. POD is one of them, and it has been proved useful for modal analysis
in the past. The relation between the normal modes and the POMs (i.e., the
modes extracted using POD) was demonstrated in [FK98, KG02]. Therefore,
POD was proposed as the tool for computing the normal modes directly from the
measured data [HF02, IMD06]. Some additional information related to the use
of POD can be found in Refs. [KG02, CZ06, Fee02].

One intrinsic limitation of POD is that the knowledge of the mass matrix is
required. To address this issue, Chelidze and Zhou introduced a new multivari-
ate data analysis method called Smooth Orthogonal Decomposition (SOD) in
Ref. [CZ06].

In Ref. [HSL+98], another statistical technique, namely the Hilbert-Huang
transform (HHT), has been shown to be effective for characterizing a wide range
of non-stationary signals in terms of elemental components through what has been
called the empirical mode decomposition. Since then, HHT has been widely used,
as it provides a concise basis for the analysis of non-linear systems [KVL+08].
As demonstrated in Refs. [YLPH03a, YLPH03b], this technique is also useful for
linear system identification.
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3.1.2 Automated post-processing

Many numerical techniques have been proposed for modal parameter extraction
from experimental vibration measurements. Some of them are listed in Sec. 1.4
for operational modal analysis. The user can find in this set of methods the one
that best fulfills the assumptions corresponding to his experimental conditions.

However, the lack of a priori knowledge about the number of active modes
within the studied frequency range may lead to problematic situations. This num-
ber is a parameter of prior importance because it is directly related to the complex-
ity of the dynamic model. This uncertainty usually prevents the classical modal
analysis methods from being used for automated modal parameter estimation.

As mentioned in Chapter 1, the order of theoretical models is commonly overes-
timated in modern techniques so as to accurately match the experimental signals.
This generates unexpected fictitious modes that have to be separated from the
genuine modes.

One of the most widely-used tools performing mode selection is the afore-
mentioned stabilization diagram. Unfortunately, the tool requires a great deal
of expertise because an interaction with the experimenter is required. Moreover,
in the absence of automated signal processing, discrepancies may appear in the
results ensuing from different operators.

Even though numerous modal analysis methods exist, the development of a
method combining an automated selection process and a physical interpretation
of this choice remains a challenging task as proved by recent developments, such
as Ref. [PLLVDA08].

3.2 Interpretation of the BSS Sources in Structural
Dynamics

The objective of this section is twofold. First, BSS techniques are proved to
be useful for modal identification, even in the absence of external forces, which
might, at first, appear paradoxical. Second, it is shown how time responses of
mechanical systems can be interpreted as a static mixture of sources.

3.2.1 Physical Excitation Loads as Sources of the BSS Prob-
lem

BSS techniques are able to separate the different excitation sources of a sys-
tem. But the question is now to investigate how those techniques could be ex-
ploited for structural modal analysis.
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The dynamic response of a linear undamped mechanical system is described
by Eqn. (1.1), i.e.,

Mÿ(t) + Ky(t) = f(t), (3.1)

where M and K are the mass and stiffness matrices, respectively. The physical
excitations that are applied on the structure are represented by the vector f(t)

and the system responses y(t) are the measured output data.
Looking for statistical independence to apply the BSS problem to dynamic

systems, a natural way is to consider the applied forces, which are physically
independent, as the sources of the system. As already developed in Eqn. (1.5),
the system response y(t) can be written as a convolution product between the
IRF h(t) and the external force vector f(t)

y(t) = h(t)⊗ f(t), (3.2)

where ⊗ denotes the convolution product.
In contrast to the basic equation of BSS (2.1), this relationship involves a

dynamic mixture of sources. Unfortunately, as stated in Ref. [AB05] and already
explained in Sec. 2.2.1, the separation of sources mixed through a convolution
product is not yet completely well-established and raises several problems. More-
over, the solution of this problem does not lead directly to the desired modal
parameters.

3.2.2 Virtual Sources Concept

An interesting alternative for expressing the response of a mechanical system
is based on the modal expansion. By definition of the normal modes, a nDOF
mechanical system possesses nDOF normal mode vectors, denoted n

(ny×1)
i , where

ny represents the number of observed signals. Because normal modes are linearly
independent they provide a complete set for the expansion of an arbitrary vector
q(ny×1).

Then the (ny × 1) system response vector y(t) defined in Eqn. (3.1) may be
written as a modal expansion (i.e., a modal superposition), according to

y(t) =

nDOF∑
i=1

niηi(t)

= N η(t) (3.3)

where the coefficients ηi(t) are the so-called normal coordinates and represent
the amplitude modulation of the corresponding normal modes ni .
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Expression (3.3) shows that

when expanding the system response in terms of the vibration modes,
the normal coordinates act as virtual sources regardless of the number
and type of the physical excitation forces.

Furthermore, the time response can be interpreted as a static mixture of these
virtual sources, which renders the application of the BSS techniques conceivable.

3.2.3 Normal Coordinates: the Good BSS-source Candidates?

Thanks to Eqn (3.3), the structural dynamics problem can be stated in such
a way that it corresponds to the BSS formulation. In order to consider BSS for
modal identification, the experimental conditions for which the methodology is
applicable have to be defined.

If a necessary condition, the formulation of a problem under the form x(t) =

As(t) is not sufficient to use BSS techniques. The sources s(t) are also required to
be statistically independent, as detailed in Sec. 2.1.4. It should then be determined
under what assumptions the normal coordinates ηi(t) are statistically independent
sources.

The statistical independence has to be verified for all experimental cases. In
the following, it is demonstrated that the normal coordinates ensuing from free
and random forced responses can be considered as independent for undamped and
moderately damped systems.

3.3 Modal Identification using Free Responses

3.3.1 Modal Coordinates and Statistical Independence

Let us first consider the free response of the undamped system (3.1), where
the input forces are set to zero (i.e., f(t) = 0). In this case, according to Geradin
and Rixen in Ref. [GR94], the normal coordinates are

ηi(t) = αi cosωit + βi sinωit, (3.4)

i.e., simple harmonic functions with different spectral contents where ωi represents
the i-th natural pulsation of the system, and αi and βi are constant parameters
depending on the initial conditions.

The harmonic functions are independent as long as their frequencies are in-
commensurable. This is illustrated in Fig. 3.1 depicting two sinusoidal functions,
s1(t) = sin t and s2(t) = sinπt. The knowledge of the value of s1 does not help
in predicting the value of s2.
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Figure 3.1: Two sinusoidal functions with irrational ratio of their frequencies.
Both signals are independent and the value of one signal does not provides any
information about the value of the second one.
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Figure 3.2: Two sinusoidal functions with rational ratio of their frequencies.
Both signals are not independent as their values are linked. The value of s1 entirely
determines the value of s2.
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In this case, the sources identified using BSS algorithm provide the statistically
independent normal coordinates, and, according to Eqn. (3.3), each column of the
mixing matrix corresponds to one of the structural vibration modes:

A = N = [n1n2 · · ·nns ] and s(t) = η(t). (3.5)

These relations easily lead to a direct modal parameter identification from a
BSS signal separation.

It should be noted that the normal coordinates are no longer independent in
case the ratio of their frequencies is an integer, as depicted in Fig. 3.2. In this par-
ticular case, there may be a mismatch between the vibration modes and the BSS
modes. Fortunately, this possibility is rarely encountered in practice. Neverthe-
less, it might become problematic for numerical examples containing geometrical
symmetries.

Moving to the damped analog of system (3.1), the equations of motion become

Mÿ(t) + Cẏ(t) + Ky(t) = f(t) (3.6)

where C is the damping matrix. If the right-hand member of the equation is
still set to zero (f(t) = 0) and if only proportional damping is considered, the
corresponding normal coordinates are exponentially damped harmonic functions:

ηi(t) = Yi · exp (−ξiωit) · cos

(√
1− ξ2

i ωit + αi

)
(3.7)

where ωi and ξi are the natural frequency and damping ratio of the i-th mode,
respectively. The amplitude Yi and the phase αi are constant parameters depend-
ing on the initial conditions. The modal coordinates are still monochromatic with
different spectral contents.

One may run into difficulty applying the above ideas in case of high damping
because the virtual sources are active only during a limited time window. However,
if the damping ratios are low enough, several cycles of vibration may be observed,
and we speculate that BSS techniques are able to identify the normal coordinates
as the identified sources.

3.3.2 Modal Parameter Estimation

The goal of modal identification is to determine the three modal parameters,
namely the normal modes ni , the natural frequencies, fi and the damping ratios
ξi .

As detailed in the previous section, the BSS output data are the mixing matrix
A = N = [n1n2 · · ·nns ] and the normal coordinates s(t) = η(t). The mode
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shapes are thus directly provided by the columns of the mixing matrix but a post-
processing is required for the identified sources in order to evaluate the other
modal parameters.

In case of free vibrations, the theoretical expression of the normal coordinates
is well-known and given by . This signal is monochromatic, and a simple way for
identifying the frequency would be to apply the FFT algorithm. An estimate of
the damping ratio can also be provided using the half power method, for instance.
Nevertheless, these values are only approximates of the modal parameters and
should be refined.

Realizing that Equation (3.7) only depends on four parameters (i.e., the ampli-
tude Yi , the pulsation ωi , the damping ratio ξi and the phase αi), it is straightfor-
ward to identify the natural frequencies and damping ratios, one by one for each
normal coordinate. Starting from initial guesses close to the solution thanks to
the FFT process, this is carried out by fitting the time series of the sources si(t)
with exponentially damped harmonic functions using classical optimization codes.

3.3.3 Proposed Methodology

The key idea is to interpret the normal coordinates of a dynamic system as
virtually independent sources. This assumption is valid when the free or random
responses of weakly damped systems is considered, and, in this case, there is a
one-to-one mapping between the mixing matrix and the vibration modes of the
structure. This idea forms the basis of a truly simple modal analysis procedure,
detailed in the flowchart of Fig. 3.3. The procedure is as follows:

1. Perform experimental measurements (i.e., a modal testing, cf. Sec. 1.2) to
obtain the time series y(t) at different sensing locations.

2. Apply BSS (ICA or SOBI) directly to the measured time series y(t) to
estimate the mixing matrix A and the sources s(t).

3. The mode shapes ni are simply contained in the columns of the mixing matrix
A.

4. A first approximation of the frequencies and damping ratios is obtained
using FFT and half power method for example. Afterwards, these values
are refined by fitting the time series of the identified sources si(t) with the
theoretical expression of the normal coordinates ηi of Eqn. (3.7).
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Figure 3.3: Flowchart for modal identification from free responses of struc-
tures using BSS techniques
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3.4 Modal Identification using Forced Responses

3.4.1 Virtual Sources for Forced Systems

In the case of a random excitation, an exact deterministic analytic system
response cannot be computed. However, the undamped system, governed by
Eqn. (3.1), mainly responds at frequencies equal to its natural frequencies and
the system response can still be expressed as a sum of monochromatic functions,
to a first approximation.

According to Ref. [GR94], the approximation of the random forced response
of an undamped system is provided by the mathematical expression

y(t) ≈
ns∑
i=1

ni · [ei(t)(αi cosωit + βi sinωit)] , (3.8)

showing that the normal coordinates can be approximated by harmonic functions
modulated by a slowly-varying envelope, denoted ei(t), depending on the input
force amplitude variation.

As is the case for the free response, if the natural frequencies are distinct and
incommensurable, the modes extracted from the BSS algorithm and contained in
the mixing matrix should therefore provide a good and direct approximation of the
natural vibration modes.

In case of damped systems (3.6), the approximation (3.8) holds if light or mod-
erate damping is considered. Indeed, if the damping ratios are still low enough
(i.e., there is minimum spectral overlap between the virtual sources) the normal
coordinates mostly remain monochromatic. Note that the sustained random ex-
citation prevents the fast evanishment of the sources that should subsequently
contains enough information to be separated.

Moving to the case of harmonic forcing of system (3.1) (i.e., where f(t) =

p cos(ωt)), the expression of the forced responses, in terms of normal modes, is
the following

y(t) =

(
m∑
i=1

nin
T
i

(ω2
i − ω2)µi

)
· p cosωt (3.9)

where µi is the generalized mass of the i-th mode. In this case, the BSS techniques
are of limited use because the mixing matrix is a combination of all the modes of
the structure

A =

ns∑
i=1

nin
T
i

(ω2
i − ω2)µi

(3.10)

and the generalized masses of the modes are a priori unknown in practice.
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3.4.2 Modal Parameter Estimation

Compared to the previous case, the estimation of the modal parameters from
the forced responses requires an additional step. The mode shapes are still di-
rectly provided by the mixing matrix, according to Eqn. (3.8), but the theoretical
expression of the identified sources corresponding to the normal coordinates is
provided by

ηi(t) = ei(t)(αi cosωit + βi sinωit), (3.11)

where the slowly-varying envelope function ei(t) is related to the unmeasured
input force. The shape of this function is thus completely unknown and fitting
the time series with (3.11) is not conceivable.

To overcome these difficulties, the idea is simply to transform the identified
normal coordinates into free decaying signals by applying the Natural Excitation
Technique (NExT). The NExT algorithm (introduced in Sec. 1.4) was proposed
in 1993 to recover the free decaying response of structures subjected to unknown,
weakly stationary, broad-band and uncorrelated random excitations [JCL93].

If NExT is applied to the random normal coordinates, the resulting signals
are similar to exponentially damped harmonic functions and can be considered as
the normal coordinates of the system free response. As is the case for the free
response, curve-fitting algorithms are applied for every single signal to extract the
natural frequency and the damping ratio. For illustration, the algorithm is applied
to a 1DOF system. The initial random response and the free response resulting
from NExT are presented in Figs. 3.4(a) and 3.4(b).

The free decaying system response is conventionally obtained by applying the
inverse Fourier transform to the FRFs signals. But, because the input excitation is
unknown in the case of operational testing, FRFs signals are not computable. The
methodology of NExT uses the auto- and cross-correlation functions to recover
the free decaying functions.

The correlation functions, that are commonly used to analyze randomly excited
systems, are obtained from standard techniques using the time histories. The
cross-correlation function, denoted Rxy(τ), is defined as the expected value of the
product of two responses x(t) and y(t) evaluated at different time steps t and
t + τ as follows

Rxy(τ) = E [x(t + τ)y(t))] . (3.12)

Let consider the nDOF mechanical system (3.6), assumed to be time-invariant,
linear and subjected to random excitations f(t). It can be proved that the cor-
relation functions are solutions of the corresponding homogeneous system, i.e.,
solution of the equation of motions (3.6) where f(t) is set to zero. Consequently,
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Figure 3.4: Illustration of NExT. The NExT algorithm is applied to the random
forced response of a 1DOF system. The resulting signal approximate the free
response of the system.
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they correspond to the free response of the system and can be expressed as sum-
mations of decaying harmonic functions.

This can be demonstrated as follows. The equation of motion (3.6) can be
post-multiplied by a so-called reference signal, denoted yi(t − τ), and correlation
matrices appear if the expected value of the whole expression is computed:

MRÿyi (τ) + CRẏyi (τ) + KRyyi (τ) = Rfyi (τ) (3.13)

According to Ref. [BP93] where the following relations

Ṙyyi (τ) = Rẏyi (τ) = −Ryẏi (τ) (3.14)

between the correlation functions and their derivatives are demonstrated for weakly
stationary processes, Equation (3.13) can easily be modified assuming that the
displacement, velocity and acceleration processes are uncorrelated with future
disturbances (i.e., Rfyi (τ) = 0).

Finally, introducing the relations (3.14) in the fourth derivative of (3.13) leads
to

MR̈ẍẍi (τ) + CṘẍẍi (τ) + KRẍẍi (τ) = 0 (3.15)

showing that the cross-correlation function between the structural responses ẍ

and a reference signal ẍi satisfies the homogeneous equation of motion and can
be treated as free response data.

In the present case, where the signals are monochromatic, the separated signals
ensuing from the BSS process can be interpreted as a one-degree-of-freedom
system response, and the computation of NExT is highly simplified.

3.4.3 Proposed Methodology

To summarize, the modal parameter estimation process is identical to the free
response case but an additional step is introduced between the source separation
and the curve fitting. The modal analysis procedure for forced responses of ran-
domly excited structures is detailed in the flowchart of Fig. 3.5 and the procedure
is as follows:

1. Perform experimental measurements (i.e., a modal testing, cf. Sec. 1.2) to
obtain time series y(t) at different sensing locations.

2. Apply BSS directly to the measured time series y(t) to estimate the mixing
matrix A and the sources s(t).

3. The mode shapes ni are simply contained in the columns of the mixing matrix
A.
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4. The identified monochromatic (random) sources are transformed using NExT
algorithm (Sec. 3.4.2) into free decaying harmonic functions that can be in-
terpreted as the normal coordinates of the homogeneous system.

5. A first approximation of the frequencies and damping ratios is obtained using
FFT and half power method for example. The values are then refined by fit-
ting the time series resulting from the NExT application with the theoretical
expression of the normal coordinates ηi of Eq. (3.7).

3.5 Mode Selection Criteria

It has been shown in Sec. 3.1 that modern structural identification methods
may introduce some fictitious or computational modes during the data/model
matching process. The differentiation between genuine and fictitious modes re-
mains a critical task for many modal tests and usually requires an interaction with
the experimenter, as is the case if stabilization diagrams are used.

A similar problem may appear with BSS-based methodology in the case of
overdetermined systems. This means that the number of sensors (i.e., the num-
ber of observed signals) is larger than the number of active modes in the fre-
quency range of interest and, consequently, larger than the number of independent
sources.

The use of BSS techniques in this work is restricted to the following assumption
(cf. Sec. 2.1.4): it is assumed that the number of identified sources equals the
number of observed signals (ns = nx). If this number is lower than the number
of active modes (e.g., the number of normal coordinates), the algorithm tries to
identify and separate the sources making them as independent as possible. Some
of them are the normal coordinates, and the others are made up of noise and
perturbation signals.

Fortunately, BSS methodologies provide us two natural ways to evaluate the
reliability of the identified sources:

• First, the quality of the identified sources can be estimated by comparing
their shapes with theoretical expressions. This step does not lead to ad-
ditional computational cost because the source fitting is performed in any
case to refine the values of the natural frequencies and damping ratios. It is
direct to compute the fitting error ef it using the Normalized Mean-Square
Error (NMSE) between the identified sources si(t) and the fitted curves
s f iti (t):

ef it = NMSE =
E
[
‖s f iti (t)− si(t)‖2

]
E
[
‖s f iti (t)− E

[
s f iti (t)

]
‖2
] . (3.16)
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The sources can then be considered as genuine if their corresponding fitting
errors are low, typically lower than 10 %. The case studies carried out during
the research work tend to support this conclusion.

• Second, the observed signals are assumed to be linear mixtures of the
sources, it is thus easy to compute an indicator for each identified source,
providing a measure of the contribution of the source in the total response
signal. This factor can be interpreted as a participation factor (PF ). Every
single source si(t) corresponds to a single mode ni , the relative contribution
of which the observed signals x(t) can be evaluated using the expression

PFi =
‖ni · si(t)‖∑m

k=1 (‖nk · sk(t)‖)
·

100

maxk (PFk)
(3.17)

where ‖ . . . ‖ denotes the Frobenius norm. All the factors are normalized by
the highest PF .

This indicator does not properly help during the mode selection but con-
firm the selection based on the fitting errors. Furthermore, the sum of the
selected-mode factors provides information over the quality of the modal
analysis process. A high cumulative PF assure that most of the information
contained in the initial data has been extracted.

3.6 Concluding Remarks

Over the past few years, statistical and empirical techniques have been exten-
sively used for structural dynamic problems. One major difficulty of using BSS
techniques to study the dynamics of mechanical systems concerns the separation
of convolutive mixtures. Indeed, the dynamic responses can be related to the
physical excitations (i.e., the physical sources of the system) through the IRF
using a convolution product. Unfortunately, source separation problem is not yet
completely solved for convolutive mixtures.

The proposed methodology overcomes this difficulty by using the concept of
virtual sources. When expanding the system response in terms of vibration modes,
the normal coordinates, that have been proved to be statistically independent, act
as virtual sources of the system regardless of the physical excitations. They can
be considered as the sources of a BSS problem in which the normal mode matrix
replaces the mixing matrix. This provides a new simple way of identifying the
modal parameters using output response data.

The estimation of modal parameters using BSS techniques possesses interest-
ing features:
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• The method does not require the measurement of the applied forces and
can therefore perform output-only modal analysis.

• BSS can be applied to free as well as random forced responses. In addition,
the knowledge of the statistical distribution of the applied forces is not
necessary.

• The method is quite simple to implement compared to classical stochastic
subspace methodologies, for instance. Because BSS is not based on complex
mathematical concepts, the outputs have a physical meaning and are easy
to interpret (i.e., the sources are the normal coordinates and the mixing
matrix contains the vibration modes).

• The source separation does not require an iterative procedure and has a low
computational load. It is thus conceivable to consider large-scaled systems.

• A natural way is provided to determine the accuracy of the results and the
relative importance of the sources within the response. When the number
of sensors exceed the number of active modes, and so the number of inde-
pendent sources, an automatic procedure is proposed to extract the genuine
modes.

The proposed methodology has also some drawbacks that should be underlined.
First, the source separation does not provide a direct access to natural frequencies
and damping ratios. Even though it is simple, their evaluation requires a post-
processing consisting in fitting the sources with a four-parameter mathematical
expression. Second, for random forced responses, the method has to be followed
by another signal processing technique (namely NExT) in order to recover the free-
decaying normal coordinates. Finally, the number of active sources is assumed to
be lower than the number of sensors ; this hypothesis might become problematic
in some practical applications.

The methodology therefore needs to be validated against numerical and ex-
perimental examples. This is addressed in the following two chapters.



Chapter 4

Validation and Performance of the
BSS-based Identification

Abstract

To support the theoretical findings of Chapter 3, the proposed modal
parameter estimation method, based on BSS techniques, is applied to
simple numerical examples. The objective is twofold. First, free and
random forced responses are analyzed in order to validate the method,
and second both ICA and SOBI approaches are compared with respect to
noise and damping.

First, Section 4.1 describes the considered case studies and presents the
indicators used to evaluate the accuracy of the results.

In Sec. 4.2, the proposed methodology is applied to free responses of
a discrete system. The influence of the number and the values of the
delays considered in SOBI for the separation is also thoroughly studied.
Next, modal identification based on random forced responses is investi-
gated (Sec. 4.3). A distributed-parameter system is used to evaluate the
robustness of ICA and SOBI with respect to the non-deterministic random
excitation.

Section 4.4 illustrates the principle of automated mode selection in case
the number of active modes is lower than the number of identified sources.

Finally, Sections 4.5 and 4.6 compare the two BSS algorithms regarding
their performance. The robustness with respect to noise and damping is
studied in order to identify the more appropriate technique for BSS-based
output-only modal analysis.

67
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4.1 Case Studies and Accuracy Indicators

This section describes the discrete and distributed-parameter systems that are
used to validate and compare the proposed methodologies. All the case studies
considered herein are summarized in Table 4.1, and the indicators used to evaluate
the accuracy of the results are defined.

4.1.1 Discrete system

The discrete system considered herein is a three degree-of-freedom (3DOF)
system composed of three masses connected in series through linear springs and
placed between two rigid walls. The topology of the system is illustrated in Fig. 4.1
and the corresponding equations of motion are m1 0 0

0 m2 0

0 0 m3

 ẍ1(t)

ẍ2(t)

ẍ3(t)

+ α ·

 c1 0 0

0 c2 0

0 0 c3

 ẋ1(t)

ẋ2(t)

ẋ3(t)



+

 k1 + k12 −k12 0

−k12 k12 + k23 −k23

0 −k23 k23 + k3

 x1(t)

x2(t)

x3(t)

 =

 f1(t)

f2(t)

f3(t)

 ,
(4.1)

where the mass mi and the spring stiffness ki have constant values throughout this
work. The masses are set to m1 = 2, m2 = 1 and m3 = 3, and the springs have a
unit stiffness (k1 = k12 = k23 = k3 = 1). Proportional damping is also introduced
by means of the three parameters c1 = m1, c2 = m2 and c3 = m3. The damping
properties can then be modified by tuning the α coefficient in Eqn. 4.1.

The system response x(t) is computed using Newmark’s algorithm [GR94].
In order to minimize the computational errors, the sampling frequency must be
much higher than the highest natural frequency of the system (0.28522Hz). A
sampling frequency of 100 Hz is thus used for the response computation but the
signal is then resampled to 10 Hz to mimic experimental conditions.

Unless otherwise informed, and to get closer to realistic conditions, signals are
corrupted with white Gaussian noise (5% of the signal RMS value) and the damp-
ing coefficient is set to α = 0.01. The natural frequencies and the corresponding
damping ratios of the system are provided in Table 4.2.

4.1.2 Distributed-parameter system

The second application considered herein consists of a cantilever steel beam
modeled using the finite element method. The beam is 0.7 meter length, and its
cross section is squared (0.014 meter width). Figure 4.2 illustrates the system.
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k1
m1 m2 m3

k12 k23 k3

Figure 4.1: 3DOF mass-spring model. Three masses are connected in series
through linear springs and are placed between two rigid walls. Proportional damp-
ing is also considered.

x1 x2 x3 x4 x5 x6 x7

0.7 m

Figure 4.2: Distributed-parameter system. The system is a cantilever steel
beam. The cross section is a 0.014 meter square and seven locations are consid-
ered for the response computation.
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Frequency Damping Ratio
[Hz] [%]

Mode 1 0.0895 0.89
Mode 2 0.1458 0.55
Mode 3 0.2522 0.32

Table 4.2: Theoretical modal parameters of the 3DOF system corresponding to
a damping coefficient α = 0.01.

.

The system response is computed using Newmark’s algorithm with a sampling
frequency of 100 kHz (the highest considered natural frequency of the system is
lower than 3000 Hz). The data used for identification are the vertical accelerations
at seven locations that are uniformly distributed along the beam. The signals are
then resampled so that the sampling frequency is 2000 Hz or 7500 Hz, according
to the frequency range of interest. Proportional damping may also be introduced
in the system by means of the coefficients α and β. The ensuing damping matrix
used for the simulation is provided by

C = α ·M + β ·K. (4.2)

As for the 3DOF system, the response signals are corrupted with white Gaus-
sian noise (5% of the signal RMS value) and the damping coefficients are set
to α = 2 and β = 0.2e − 5, respectively. The first natural frequencies and the
corresponding damping ratios of the system are provided in Table 4.3.

4.1.3 Accuracy indicators

Assuming that the structural matrices (M, K and C) are known, the theoretical
modal parameters are calculated by solving an eigenvalue problem. The theoretical
natural frequencies and the damping ratios (ωth and ξth) can be compared to the
identified parameters (ωid and ξid) using the normalized ratios

rω =
ωid
ωth

and rξ =
ξid
ξth

(4.3)

tending to unity in case of perfect correspondence. The accuracy of the identifi-
cation is also assessed using the Modal Assurance Criterion (MAC)

MAC =

∣∣nTidnth
∣∣2∣∣nTidnid

∣∣ · ∣∣nTthnth∣∣ , (4.4)
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Frequency Damping Ratio
[Hz] [%]

Mode 1 23.59 0.69
Mode 2 147.83 0.20
Mode 3 414.30 0.29
Mode 4 814.02 0.53
Mode 5 1353.12 0.86
Mode 6 2038.21 1.29
Mode 7 2845.50 1.79

Table 4.3: Theoretical modal parameters of the distributed-parameter system
for the first seven modes corresponding to the damping coefficients α = 2 and
β = 0.2e − 5.

comparing the identified nid and theoretical nth mode shapes. MAC values range
from 0 in case of no correlation to 1 for a complete coincidence.

Besides the classical modal parameters (ωi , ξi and ni), the exact normal coor-
dinates can also be determined by inverting the modal expansion expression (3.3)
or, in other words, by projecting the simulated response x(t) onto each eigenmode
as follows

η(t) = N−1x(t). (4.5)

These signals can be used to evaluate the accuracy of the source separation
by comparison with the identified normal coordinates. The NMSE, defined in
Eqn. (3.16), is then applied between the identified si(t) and the theoretical ηi(t)
according to

eη =
E [‖ηi(t)− si(t)‖2]

E [‖ηi(t)− E [ηi(t)] ‖2]
. (4.6)
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4.2 Modal Identification using Free Responses

Before considering randomly forced systems, the proposed modal parameter
estimation technique is validated for free response signals. Both ICA and SOBI
algorithms are tested on the 3DOF system (Eq. (4.1)). The initial conditions are
set to zero except for ẋ3 = 1 and the excitations fi(t) are assumed to be zero for
any time.

The BSS methodology is applied to the first 1500 samples of the three dis-
placement signals. The observed signals xi(t) and their Power Spectral Densities
(PSD) are presented in Fig. 4.3. The relative participation of each natural fre-
quency in the response signals is represented by the amplitude of the corresponding
PSD peak. It can be observed that the first mode is clearly the most important
whereas the contribution of the third mode is quite low, providing few information
for the separation.

Because the considered BSS problem assumes that the number of sources
equals the number of observed signals, the blind separation identifies three sources,
that are expected to be monochromatic and to correspond to the normal coor-
dinates of the system. The resulting exponentially damped harmonic signals are
presented in Fig. 4.4. The PSDs confirm that a single frequency is active for
each identified signal. The dominant frequencies correspond to the three natural
frequencies of the 3DOF system, presented in Table 4.2.

The previously-defined accuracy indicators are provided in Table 4.4 for both
methods. The low values of the errors indicate the success of the identifications.
Both algorithms accurately separate the independent sources si(t) providing reli-
able modal parameters.

As detailed in Sec. 2.4, SOBI is based on the joint diagonalization of several
time-lagged covariance matrices and the number of time lags (or delays), as well
as their values, have to be fixed before computing the covariance matrices. The
selection of the delays τ is a decisive phase in the SOBI-based identification
procedure that can impact the accuracy of the results. This selection might be
interpreted as a tuning parameter requiring a great deal of expertise from the user,
leading to an important drawback.

In order to clarify this point, an extensive study of the robustness of SOBI with
respect to the number and the values of the delays is achieved hereafter. For that
purpose, several numerical case studies are carried out on the 3DOF system with
α = 0.05 and with noise corrupting the signals (5 % of the signal RMS value).

The simplest systematic way of selecting the delays is to choose a set of nτ
time step multiples such as τ1 = ∆t, τ2 = 2∆t, ...τnτ = nτ∆t. However, if the
sampling frequency has been defined much higher than the frequency range of
interest, the identification is poor quality. This phenomenon is highlighted in the
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Figure 4.3: Response signals in terms of displacements on the left and the cor-
responding PSDs on the right. The contribution of the modes in the dynamic re-
sponse is represented by the amplitude of the PSD peaks. The third mode (0.2522
Hz) has a low participation. (3DOF, Free response, α = 0.01, 5% RMS noise)
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Figure 4.4: Exponentially damped harmonic signals resulting from ICA
and SOBI. The signals correspond to the system normal coordinates and are
monochromatic as highlighted by the PSDs. From the left to the right:
sources identified using ICA; sources identified using SOBI; PSDs of the sources.
(3DOF, Free response, α = 0.01, 5% RMS noise)
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rω rξ MAC eη
[-] [-] [-] [%]

Mode 1 ICA 1.0000 1.0034 1.000 0.114
SOBI 1.0000 1.0035 1.000 0.015

Mode 2 ICA 1.0000 0.9999 1.000 0.011
SOBI 1.0000 0.9999 1.000 0.015

Mode 3 ICA 1.0000 0.9993 0.999 0.026
SOBI 1.0000 0.9994 1.000 0.006

Table 4.4: Accuracy of the identifications performed using ICA and SOBI. From
left to right: identified to theoretical frequencies ratio; ratio of identified to the-
oretical damping ratios; MAC between mode shapes; NMSE between the fitted
and the theoretical sources. (3DOF, Free response, α = 0.01, 5% RMS noise)

following examples in which SOBI is applied twice to the same response signals
that are first sampled at 10 Hz and next at 100 Hz. In this example, 20 delays
are used and the recording time is 150 seconds for both identifications.

Table 4.5 presents the difference between the identifications of both sets of
signals. In the case of the 10Hz-sampled signals, (i.e., when the sampling fre-
quency is chosen in accordance with the physics of the problem), the identified
modal parameters are extremely good. As for the source separation based on the
100Hz-sampled signals, the accuracy of the results is relatively low. If the identi-
fied frequencies and the damping ratios are still very satisfactory, the mode shapes
are quite disappointing (less than 0.95 for the MAC) for numerical applications.
This comes from the fact that the delays are chosen out of the frequency range
containing the natural frequencies.

Consequently, the selection of the delays should be closely related to the
physics of the problem, that is represented by the expected natural frequencies.
In this dissertation, the delays are uniformly distributed over the time interval
[1/fmax ; 1/fmin], in which fmin and fmax are the smallest and largest eigenfrequen-
cies of the system, respectively. This option prevents the sampling frequency to
impacts the results.

The number of delays considered for the identification is another important
parameter and its influence is studied in Fig. 4.5 in which the benefit of choosing
several time lags is clearly highlighted. However, it can be observed that if the
number of time lags increases beyond a certain limit, the accuracy of the iden-
tification slightly decreases. Indeed, the number of delays is directly related to
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Sampling Frequency rω rξ MAC eη
[Hz] [-] [-] [-] [%]

Mode 1 10 1.0000 0.9951 1.000 0.093
100 0.9990 1.0257 0.998 1.430

Mode 2 10 1.0000 0.9973 0.998 0.258
100 1.0008 0.9976 0.941 1.085

Mode 3 10 1.0000 1.0054 0.992 0.198
100 1.0001 0.9999 0.945 0.529

Table 4.5: Comparison of the SOBI-based identification accuracy for the same
signal sampled at 10 and 100 Hz, respectively. From left to right: identified
to theoretical frequencies ratio; ratio of identified to theoretical damping ratios;
MAC between mode shapes; NMSE between the fitted and the theoretical sources.
(3DOF, Free response, α = 0.05, 5% RMS noise)

the number of time-lagged covariance matrices that have to be simultaneously
diagonalized. Increasing this number leads to computational difficulties and worse
results.

In this particular example, the diagonalization of around 10 covariance matrices
gives the best results. For practical applications, we recommend to use of 10 to 20
time lags. The case studies carried out during the research work tend to support
this conclusion.

It is possible, though not desirable, to carry out source separation with SOBI
using a single (and carefully chosen) delay τ . In this case, as previously mentioned,
SOBI reduces to the AMUSE method, introduced by Tong et al. in [TLSH91].
Figure 4.6 presents the discrepancy between the results, observed if a single delay
is used for the identifications. In this example, 1000 simulations have been per-
formed using a single delay which is randomly chosen within the frequency range
of interest. Even though the first mode is most of the time accurately estimated,
a large number of identifications fails to recover the second and third theoretical
modes. This phenomenon is emphasized in Fig. 4.7 presenting the cumulative
probability of obtaining a MAC value lower than a given value, when a single
randomly-chosen delay is considered for SOBI. For example, more than 50% of
the test-cases provides a MAC value lower than 0.95 for the second and third
modes.

In the present study, 20 delays are used throughout the work. They are chosen
to be uniformly distributed in the time interval [1/fmax ; 1/fmin].
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4.3 Modal Identification using Random Responses

The case of random forced responses is now considered for modal parameter
estimation. To this end, both discrete and distributed-parameter systems are
studied first to illustrate the proposed methodology and second to evaluate the
robustness of the separation process with respect to random excitations.

BSS identification is then first performed on the forced response of the 3DOF
system using ICA and SOBI. A random excitation is applied to the system at the
first mass (f1 6= 0).

As previously mentioned, in case of forced response signals, the identified
sources must be transformed into free decaying signals by means of the NExT
algorithm before identifying the damping ratios (cf. Sec. 3.3.3). This procedure
requires more samples than in the free response case to provide accurate results.
Fortunately, because energy is continuously introduced in the system, a long ac-
quisition time is possible even if high damping is considered. The 75000 samples
which are considered for the identifications, are presented in Fig. 4.8. The corre-
sponding PSD functions highlight the very low participation of the third mode.

The separation results are given in Fig. 4.9. In the left column the identified
sources are presented. They are expected to match harmonic functions modulated
by slowly varying envelopes. Both ICA and SOBI provide very similar results. In
the middle, PSDs confirm that the sources are mainly monochromatic. Finally,
the sources are transformed into free decaying functions using NExT from which
the natural frequencies and the damping ratios can be estimated.

The success of the identifications is evaluated using the accuracy indicators,
provided in Table 4.6. These results confirm the high accuracy of the identifica-
tion of the natural frequencies and the mode shapes. It can be observed that the
damping ratio evaluation is less efficient. The damping parameter is estimated
from the free decaying signals resulting from NExT, and not directly from the
normal coordinates of the system. These functions approximate the normal co-
ordinates of the associated free system but deviations can appear in the results.
Nevertheless, the relative error remains quite acceptable for damping prediction.

Numerical experiments are then performed using the cantilever beam system
subjected to random excitations. The objective is to evaluate the robustness of
the method with respect to the excitation and to compare the performances of
both ICA and SOBI approaches. The random excitation, f7(t), is characterized by
a uniform random distribution in the interval [-50 N ; 50 N]. The force is applied
vertically at the free end of the beam (cf. Fig. 4.2). The theoretical natural
frequencies and damping ratios are provided in Table 4.3.

Because of the non-deterministic characteristic of the random excitation, 50
separate identifications resulting from 50 different samples of f7(t) are carried
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rω rξ MAC eη
[-] [-] [-] [%]

Mode 1 ICA 1.0054 0.9136 0.999 0.521
SOBI 1.0054 0.9082 1.000 0.007

Mode 2 ICA 1.0008 0.9531 1.000 0.018
SOBI 1.0008 0.9535 1.000 0.007

Mode 3 ICA 0.9982 0.8857 0.972 0.705
SOBI 0.9982 0.8936 1.000 0.001

Table 4.6: Accuracy of the identifications performed using SOBI and com-
pared to theoretical results. From left to right: identified to theoreti-
cal frequencies ratio; ratio of identified to theoretical damping ratios; MAC
between mode shapes; NMSE between the fitted and the NExT signals.
(3DOF, Forced response, α = 0.01, 5% RMS noise)

out. In order to enlarge the frequency range of interest and to encompass the
seven vibration modes of the beam, the sampling frequency is chosen to be equal
to 7500 Hz, and 10000 samples are taken into account for the identification after
the transient response damps out. As in the previous cases, noise (5% of the
signal RMS value) also corrupts the response signals.

The results are provided in Table 4.7. The identification of a mode is consid-
ered successful when its MAC value is higher than 0.98. Table 4.7 presents the
number of successful identifications for each mode and the means {µ(rω), µ(rξ),

µ(MAC), µ(eη)} as well as the standard deviations {σ(rω), σ(rξ), σ(MAC), σ(eη)}
are computed for each of the four accuracy indicators, taking into account only
the successful identifications.

For ICA, more than half of the identifications fails indicating that the ICA-
based modal analysis is not suitable for moderately or highly damped systems.
This conclusion is further discussed hereafter. Conversely, SOBI provides accurate
results, and, except for the first mode, all the identifications are successful. The
accuracy of other parameters such as the frequency and the damping ratio is very
good and the variation around the mean, represented by the standard deviation,
is very acceptable and much better than the ICA-based one.

As in the free response case, the estimation of the natural frequencies and
the mode shapes is straightforward. The estimation of the modal damping ratios
requires the prior use of NExT explaining the lower quality of the results when
compared to the accuracy of the frequencies or mode shapes.
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Success µ(rω) µ(rξ) µ(MAC) µ(eη)

(σ(rω)) (σ(rξ)) (σ(MAC)) (σ(eη))

[-] [-] [-] [-] [%]

Mode 1 ICA 0/50 - - - -
(-) (-) (-) (-)

SOBI 0/50 - - - -
(-) (-) (-) (-)

Mode 2 ICA 39/50 0.8812 48.0828 0.999 4.6008
(0.5800) (95.7768) (0.0013) (3.5049)

SOBI 50/50 1.0011 1.1132 0.999 3.2393
(0.0049) (1.6843) (0.0022) (1.8042)

Mode 3 ICA 23/50 0.7505 15.3353 0.994 2.0322
(0.3577) (47.9780) (0.0060) (1.0839)

SOBI 50/50 0.9998 1.0713 0.999 2.2458
(0.0019) (0.5553) (0.0006) (1.1940)

Mode 4 ICA 19/50 0.8709 0.8989 0.994 6.6552
(0.2223) (0.4094) (0.0064) (16.7641)

SOBI 50/50 0.9998 0.9848 1.000 0.5824
(0.0017) (0.4133) (0.0003) (0.2733)

Mode 5 ICA 23/50 0.8910 0.9166 0.993 2.8131
(0.2293) (0.2513) (0.0058) (2.3382)

SOBI 50/50 0.9989 0.9503 1.000 0.6103
(0.0026) (0.2636) (0.0001) (0.2328)

Mode 6 ICA 3/50 0.9982 1.0677 0.989 0.3695
(0.0005) (0.1704) (0.0072) (0.1664)

SOBI 50/50 0.9980 0.9624 0.994 0.1423
(0.0021) (0.1955) (0.0030) (0.0838)

Mode 7 ICA 31/50 0.9789 0.9711 0.996 5.5303
(0.0710) (0.1858) (0.0038) (7.6432)

SOBI 50/50 0.9969 0.9674 1.000 0.2395
(0.0034) (0.1760) (0.0001) (0.2643)

Table 4.7: Accuracy of the identifications performed using ICA and SOBI.
From left to right: identified to theoretical frequencies ratio; ratio of iden-
tified to theoretical damping ratios; MAC between mode shapes; NMSE
between the fitted and the theoretical sources. The means µ and the
standard deviations σ are computed for the only successful identification.
(Cantilever beam, Forced response, α = 2, β = 0.2e − 5, 5% RMS noise)
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4.4 Validation of the Automated Mode Selection

The objective of this section is to prove the applicability of the methodology
for overdetermined system (i.e., when the number of observed signals is larger
than the number of active modes). Chapter 3 proposed to use the fitting error
parameter to automatically identify the genuine and meaningful sources. This
suggestion is tested hereafter.

The dynamic response of the cantilever beam subjected to a vertical static
load (100 N), applied at the free end and suddenly released at time t = 0, is com-
puted. Both ICA and SOBI methods are applied to the seven vertical accelerations
measured along the beam. The first 1500 samples of the response are considered
for the identification, and the corresponding sampling frequency is 2000 Hz. The
corresponding frequency range only encompasses four active modes.

The number of separated components is assumed to equal the number of
observed signals, and the seven identified sources resulting from the ICA and
SOBI are depicted in Fig. 4.10. For illustration, Figure 4.11 depicts the identified
and the fitted signals for sources sSOBI1 and s ICA4 .

PSDs provide a visual way of distinguishing the genuine modal coordinates
because they are supposed to be monochromatic. Indeed, only the first four
sources are purely monochromatic and the respective columns of the mixing matrix
should then correspond to physical modes.

Nevertheless the selection is greatly facilitated using the errors that are com-
puted when fitting the source time series with exponentially damped harmonic
functions. An automatic selection is then achieved by means of these errors ef it
and can be confirmed by the value of the corresponding participation factors PFi .
Both criteria are defined in Sec. 3.5.

The two parameters PFi and ef it are presented in Figs. 4.12(a) and 4.12(b)
for the ICA and the SOBI sources, respectively. These figures demonstrate that
the sources s1 to s4 combine high PF and low fitting error. As is the case for
the previous studies, SOBI provides more accurate results than ICA by avoiding
ambiguities for the genuine source selection. The accuracy indicators are provided
in Table 4.8. The values of the indicators prove the success of the identification
using SOBI while ICA has difficulty to properly separate the four active modes.

The SOBI and ICA mode shapes are also graphically compared to the theo-
retical modes in Fig. 4.13. SOBI modes perfectly match the theoretical shapes
while the third and fourth ICA modes show less accurate results. It is necessary
to remind that most of BSS approaches (such as ICA) were developed to deal
with identically-distributed variables (i.e., the sample order has no importance).
In case of dynamic responses, the signals are time-dependent and contain tem-
poral structure. This additional information is considered in the SOBI approach
to facilitate the source separation (cf. 2.4). This may explain the more accurate
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Figure 4.10: Identified sources resulting from ICA and SOBI.
From the left to the right: sources identified using ICA; sources
identified using SOBI; power spectral density of the SOBI sources.
(Cantilever beam, Free response, α = 2, β = 0.2e − 5, 5% RMS noise)
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rω rξ MAC eη
[-] [-] [-] [%]

Mode 1 ICA 1.0002 1.1295 0.999 3.519
SOBI 1.0000 1.0014 1.000 0.024

Mode 2 ICA 1.0000 0.9670 0.999 7.193
SOBI 1.0000 0.9996 1.000 0.026

Mode 3 ICA 0.9999 1.0882 0.893 29.633
SOBI 0.9999 0.9989 1.000 0.102

Mode 4 ICA 0.9998 1.0388 0.696 22.567
SOBI 0.9997 1.0032 1.000 0.044

Table 4.8: Accuracy of the identifications performed using ICA and SOBI. From
left to right: relative error on the frequency; relative error on the damping ratio;
MAC between mode shapes; NMSE between the fitted and the theoretical sources.
(Cantilever beam, Free response, α = 2, β = 0.2e − 5, 5% RMS noise)

results.

4.5 Influence of Noise

It has been shown that both ICA and SOBI techniques successfully perform
when applied to dynamic responses of weakly damped systems with a low level of
noise. To investigate the robustness of the proposed procedure with respect to
noise, the displacement signals of the 3DOF system are corrupted by non-Gaussian
random white noise (i.e., uniformly distributed). The noise RMS amplitude is
gradually increased from 0 % to 35 % of the signal RMS value.

The identifications are carried out on the lightly-damped system considering
ICA and SOBI approaches. The first 1500 samples of the signals, corresponding
to the first 150 seconds, are used for the analyzes.

Because of the non-deterministic characteristic of noise, 50 separate identifica-
tions are performed for each of the 36 levels of noise that are studied. Thus, 1800
identifications have been accomplished for both methods (ICA and SOBI) and, for
each of them, a set of four accuracy indicators {rω, rξ,MAC, eη} is computed.

In order to facilitate the comparison, the mean values {µ(rω), µ(rξ), µ(MAC),

µ(eη)} and the standard deviations {σ(rω), σ(rξ), σ(MAC), σ(eη)} are estimated
for each of the 36 sets of data. An identification is considered successful as soon
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Frequency 0, 99 < rω < 1.01

Damping ratio 0.8 < rξ < 1.2

Mode shape MAC > 0.98

Normal coordinate eη < 5%

Table 4.9: Criteria used to evaluate the success of the identifications.
(3DOF, Free response, α = 0.01, 0% → 35% RMS noise)

as the previous parameters verify the criteria of Table 4.9. Even though very
strict conditions are considered for the success of the identifications, both ICA
and SOBI methods appropriately identify 100% of the modes, for all of the 1800
identifications.

Figure 4.14 presents the evolution of the mean values regarding the percentage
of noise for both identification methods. Since the standard deviations are very
low for any level of noise (cf. Table 4.10), the mean values are representative of
the general behavior.

It is clear that the mean values of the identified modal parameters are barely
affected by the presence of noise. The two ratios µ(rω) and µ(rξ) are very close
to unity (i.e., their relative deviations are than 0.1 %� and lower than 1 %,
respectively), indicating that the frequencies and the damping ratios are accurately
evaluated whatever the level of noise. The MAC values are highly satisfying (much
higher than 0.99), and the NMSE µ(eη) are extremely low (around 0.1 %). These
observations are valid for both ICA and SOBI approaches demonstrating very
accurate identifications.

As a result, the identification process seems fairly insensitive to the noise in
the data, at least under the assumptions considered in the present work. Even
though it is not highly significant considering the low level of the errors, it should
be noted that SOBI provides slightly better results for each of the four accuracy
indicators.

Note that this study was also performed considering white Gaussian noise and
led to the same conclusions. Similar results were obtained considering the random
forced responses, but, for conciseness, they are not presented here.
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σ(rω) σ(rξ) σ(MAC) σ(eη)

ICA 0.0001 0.05 0.003 0.08
SOBI 0.0001 0.05 0.001 0.02

Table 4.10: Maximum standard deviations corresponding to Fig. 4.14 for the
accuracy indicators, for any level of noise and any mode. From left to right:
standard deviations of the relative error on the frequency; standard deviation of the
relative error on the damping ratio; standard deviation of the MAC between mode
shapes; standard deviation of the NMSE between the fitted and the theoretical
sources (3DOF, Free response, α = 0.01, 0% → 35% RMS noise)
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ratios; MAC between mode shapes; NMSE between the separated signals and the
theoretical modal coordinates. –•– : mode 1, –×– : mode 2, –◦– : mode 3.
(3DOF, Free response, α = 0.01, 0% → 35% RMS noise)
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4.6 Influence of Damping

The robustness of both methods with respect to the amount of damping in-
troduced in the system is investigated in this section. Damping has mainly two
effects on the system response. First, in case of free responses, high damping
causes the evanishment of the response signals after a short time reducing the
amount of available information for the separation. Second, damping may induce
overlapping of the frequency spectra ensuing from different natural frequencies.
This could be problematic, especially in case the natural frequencies are close to
each other.

The free response of the 3DOF damped system is considered herein for values
of α ranging from 0 to 0.15. This latter value corresponds to a highly damped
system; the damping ratios of the three modes are ξ1 = 13.33 %, ξ2 = 8.18 % and
ξ3 = 4.73 %, respectively. As is the case for the reference case study described
in Sec. 4.1, Gaussian noise corrupts the signals; the noise RMS amplitude is 5 %
of the signal RMS value.

Only the first 1500 samples of the displacements are retained for the identi-
fications. For illustration, the displacement signals corresponding to the highest
damping value are presented in Fig. 4.15. The figure shows that the damping
reduces the signals to zero after only four or five cycles of the principal natu-
ral frequency and the PSD signals present a not insignificant overlap of spectra.
These signals have to be compared to those of Fig. 4.3.

ICA and SOBI are then applied to the damped signals, and Figure 4.16 presents
the quality of the results in terms of frequencies (rω), damping ratios (rξ), modes
(MAC) and normal coordinates (eη). The results are depicted with respect to
the theoretical damping ratios for each of the three modes, and thus, every single
damping parameter α corresponds to three different values of damping ratios ξ1,
ξ2 and ξ3 in the graphs.

The first observation is that, as expected, both algorithms perform well for the
weakly damped system (i.e., for damping ratios lower than 1 %) but the behaviors
differ from one algorithm to the other when damping increases.

Over 1 %, the correspondence between the ICA modes and the vibration modes
is no longer assured. Only the first mode, which is dominant if referring to Fig. 4.3,
is satisfactorily identified, but ICA clearly fails to separate the sources. Substantial
errors appear when looking at the normal coordinates and the mode shapes. For
the third mode, MAC values are even close to zero. In addition, ICA presents an
erratic behavior regarding the damping, as proved by the presence of gaps in the
curves of Fig. 4.16. It is therefore concluded that if ICA is used, high damping
causes bad repercussions on the modal parameter estimation.

Contrarily, the SOBI-based method appears more reliable. Whatever the damp-
ing ratios, the source separation provides accurate results, as illustrated by the
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rω rξ MAC eη
[-] [-] [-] [%]

Mode 1 ICA 0.9992 1.1729 0.977 74.739
SOBI 1.0000 0.9975 1.000 0.090

Mode 2 ICA 1.0085 1.4935 0.116 282.512
SOBI 1.0000 1.0002 0.998 0.197

Mode 3 ICA 0.5761 0.9993 0.014 73.507
SOBI 1.0000 0.9990 0.995 0.082

Table 4.11: Accuracy of the identifications (ICA and SOBI) for a damping param-
eter α = 0.05 (corresponding to the damping ratios ξ1 = 13.33%, ξ2 = 8.18%

and ξ3 = 4.73%) compared to theoretical results. From left to right: identified
to theoretical frequencies ratio; ratio of identified to theoretical damping ratios;
MAC between mode shapes; NMSE between the fitted and the theoretical sources.
(3DOF, Free response, α = 0.05, 5% RMS noise)

low value of eη (lower than 5 %). The mixing matrix is also successfully identified,
and so are the mode shapes, even in the case of the low-participating third mode
(beyond 0.95 for the MAC). It should also be noted that, in contrast with ICA,
SOBI has a monotonic behavior regarding damping.

The results are listed in Table 4.11 for a specific value of the damping param-
eter (α = 0.05) and for each of the three modes. These results, representative
of the whole system behavior, confirm the efficiency of SOBI in the case of high
proportional damping.

Two additional observations, relativizing these conclusions, should be under-
lined. First, the most important parameter for the accuracy of the SOBI sepa-
ration is the level of overlap of the frequency spectra. The damping ratio values
and the distance between the natural frequencies are thus highly interrelated. For
instance, two systems characterized by the same damping ratios can be differ-
ently separated according the closeness of their natural frequencies. Second, the
damping considered in this work is proportional (i.e., diagonal, cf. 2.4). However,
in real applications, high damping is usually non proportional, and this could limit
the applicability of the method.
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Figure 4.15: Displacement response for a high damping parameter α = 0.15

on the left and the corresponding PSDs on the right. The correspond-
ing damping ratios of the three modes are 13.33 %, 8.18 % and 4.73 %.
(3DOF, Free response, α = 0.15, 5% RMS noise)
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4.7 Concluding Remarks

BSS techniques such as ICA and SOBI have been theoretically proved to be
useful for output-only modal parameter estimation in Chapter 3 and were applied
to numerical applications in the present chapter. Besides the numerical validation
of these theoretical findings, the objective was to compare the performances of
both algorithms in order to identify the most appropriate one for practical ap-
plications. For this purpose, several numerical case studies dealing with free or
random forced responses, slightly or highly damped systems and noisy data were
considered. The proposed automated mode selection, avoiding the use of com-
plex tools such as the stabilization diagram, has also been successfully applied to
several examples.

Even though both approaches are BSS techniques, ICA and SOBI behavior
differ from each other and the following observations can be highlighted:

• ICA and SOBI have similar performances for slightly damped systems either
for free or random forced responses. Modal parameters are very accurately
identified.

• No substantial discrepancies can be emphasized between the methods re-
garding the robustness with respect to noise. Both algorithms are fairly
insensitive to temporally and spatially white noise in the data.

• SOBI clearly outclasses ICA in case of non-deterministic random excitation.
ICA fails identifying more than half of the considered test-cases and is less
robust for practical use.

• In contrast with ICA, the quality of the separation performed using SOBI
facilitates the selection of the genuine modes when the number of sources
exceeds the number of active modes, by clarifying the accuracy indicators
used during the automated mode selection.

• The study of the robustness with respect to damping is clearly in favor of
SOBI. Separations based on SOBI provide accurate results, even in case of
high damping ratios, whereas ICA behavior is much more erratic.

Besides these considerations, it should be underlined that the quality of the
damping ratio estimations slightly decreases in case of random forced responses,
though still very satisfactory. It has been shown that this parameter is not directly
estimated from the normal coordinates of the system but from the free decay-
ing signals resulting from NExT. This necessary intermediate stage involuntarily
deteriorates the damping estimates.
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Considering these observations, the proposed methodology based on BSS tech-
niques can be considered as validated for output-only modal analysis. However,
SOBI intelligently takes advantage of the temporal structures inherent to dynam-
ical signals and its superiority is clearly established when compared to ICA. Con-
sequently, the only SOBI algorithm is retained in the following chapter. It is also
worth pointing that a systematic methodology has been proposed to choose the
delays for SOBI. SOBI jointly diagonalizes several time-lagged covariance matrices
instead of a single one, and the corresponding delays must be chosen accordingly
to the physics of the problem.



Chapter 5

Numerical and Experimental
Demonstrations

Abstract

To demonstrate the utility of SOBI for output-only modal analysis in
practical applications, the method is applied to the responses of large-
scale and real-life structures. Both free and random forced responses are
considered and the identified modal parameters are compared to those
obtained using the stochastic subspace identification method (SSI-COV),
detailed in Chapter 1.

First, a numerical system consisting of a large truss satellite and modeled
using the finite element method, is considered (Sec. 5.1). The objective
is to validate the proposed methodology for larger systems and for large
number of active modes within a small frequency range.

Second, Section 5.2 examines the free response of a real structure. The
system is a stator blade extracted from an aeroengine, that is a typical
application for modal analysis techniques.

Finally, SOBI is used to identify the modal parameters of a truss struc-
ture, modeling a two-story building (Sec.5.3). Free and forced responses
are analyzed. For the forced response, the truss is excited through the
basement by means of an electrodynamic shaker.

99
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.5.1 Truss Satellite

5.1.1 System Description

The structure considered in this section is a large-scale truss satellite. The
topology used for the modeling is inspired by the one presented by Salehian et al. in
[SCI06]. The central part is a six-meter long cylinder that is stiffened by means
of several internal shear panels. Two truss structures (made of tubular longerons,
battens and diagonals) are symmetrically placed on both sides of the cylinder. The
longerons are parallel to the axial direction of the cylinder (X-axis). Their cross
section is tubular, and the corresponding internal and external radiuses equal 37
and 38 mm, respectively. The battens are the triangular structures that link the
longerons together, and the diagonal structures prevent the torsion mechanisms.
Both have a tubular cross section where the internal radius equals 12.5 with a 0.5
mm thickness.

Reference aluminum elastic material properties are used for all parts. Table
5.1 lists all the material properties and dimensions used for the modeling, and
Figure 5.1 illustrates the satellite topology.

5.1.2 Modeling and Simulations

A finite element approach is used to model the structure and simulate the
free and forced dynamic responses. Shell elements are used for the shear panels
contained in the cylinder whereas beam elements (with tubular cross-section)
model the truss.

In order to avoid zero-frequency rigid-body modes which may cause problems
during the computation of the dynamic response, eighteen (6 x 3) very soft
ground-springs are added along the three principal directions (X, Y and Z) at
the three vertices of the sections B and G (see Fig. 5.1). The spring stiffness is
chosen such that the six rigid body modes do not interfere with the elastic modes.
The corresponding frequencies are around 0.3 Hz, thus much lower than the first
non-rigid-body natural frequency that equals 6.55 Hz.

The present analysis focuses on the 20 first elastic modes and this corresponds
to the frequency range [0-23Hz]. The corresponding natural frequencies are listed
in Table 5.2 and it can be observed that they are very close to each other. The
damping ratios are all set to 0.1%.

By way of clarification, the modes are divided into three categories:

• Modes 1V to 8V: bending within the vertical plane (OXZ);

• Modes 1H to 8H: bending within the horizontal plane (OXY0);
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Young’s modulus 69000 MPa
Poisson’s ratio 0.33
Total length 54 m
Internal radius of longerons 37 mm
External radius of longerons 38 mm
Internal radius of diagonals and battens 12.5 mm
External radius of diagonals and battens 13 mm

Table 5.1: Material and geometrical properties of the truss satellite.
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Figure 5.1: Topology of the considered truss satellite system. Three locations
(•) are defined for each vertical section A to H for the measurement along the
two directions Y and Z. The two locations (1) and (2) are the position of the
initial non-zero condition (in the case of the free response computation) and
of the applied random force (in the case of the forced response computation),
respectively.
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• Modes 1T to 4T: torsion around the axial direction (OX).

For illustration, one mode shape representative of each category (modes 6H, 3T
and 7V) is depicted in Fig. 5.2.

The dynamic responses are computed using the modal superposition principle
[GR94]. The first 60 modes are considered for the computation. The generic
properties, which are used for all the simulations presented herein, are summa-
rized in Table 5.3. For each simulation, 48 sensor responses are computed; they
correspond to the vertical (Z-axis) and horizontal (Y-axis) accelerations at the
three vertices of each vertical section A to H (see Fig. 5.1).

The free response is computed by imposing a non-zero velocity initial condition
(0.1 m/s). This impulse is applied vertically (along Z-axis) at one extremity of the
truss, precisely at the vertex (1) in the section H. For illustration, the response
signal at the top vertex of section B is presented in Fig. 5.3.

The forced response is generated by applying a structural loading during all
the simulation time. Three different excitations are simultaneously applied to
the vertex (2) (cf. Fig. 5.1): a vertical random force along Z-axis, an horizontal
random force along Y-axis and finally a random torque around the X-axis. To
approximate the experimental conditions, the random Gaussian input is filtered to
cover the frequency range from 5 to 30 Hz encompassing the 60 computed FE
modes (used for the modal superposition). This should excite all the 20 modes
(the vertical and the horizontal bending modes, from 1V to 8V and from 1H to 8H,
as well as the torsion modes, from 1T to 4T). For illustration, one representative
acceleration signal is presented in Fig. 5.4.

This first test-case is a real challenge for the SOBI-based identification because
it combines several major difficulties. First, as indicated in Table 5.2, the number
of natural frequencies is relatively high regarding the frequency range of interest.
Numerous frequencies are very close to each other and the introduced damping
inevitably leads to overlapping of the frequency spectra. Second, due to the
single point excitation, some modes might be weakly excited, introducing few
information in the responses for the source separation. Finally, due to the spatial
resolution, several mode shapes corresponding to different natural frequencies are
similar. This phenomenon corresponds to identical columns in the mixing matrix
and computational difficulties, and so inaccuracy during the separation.

5.1.3 Modal Parameter Identification using Free Responses

The free response is first considered to estimate the modal parameters. The
identification is performed using SSI-COV and then using SOBI. Only the first
6000 samples, corresponding to the 40 first seconds before the signal is damped
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Modes 1-5 Mode identifier 1H 1V 1T 2T 2H
Natural frequency [Hz] 6.55 6.56 7.69 7.78 9.39
Damping ratio [%] 0.1 0.1 0.1 0.1 0.1

Modes 6-10 Mode identifier 2V 3H 3V 4H 4V
Natural frequency [Hz] 9.39 12.20 12.21 12.45 12.46
Damping ratio [%] 0.1 0.1 0.1 0.1 0.1

Modes 11-15 Mode identifier 5H 5V 6H 6V 3T
Natural frequency [Hz] 16.93 16.94 17.04 17.04 20.93
Damping ratio [%] 0.1 0.1 0.1 0.1 0.1

Modes 16-20 Mode identifier 4T 7H 7V 8H 8V
Natural frequency [Hz] 20.95 22.65 22.65 22.67 22.68
Damping ratio [%] 0.1 0.1 0.1 0.1 0.1

Table 5.2: Natural frequencies and damping ratios for the first 20 vibration modes
of the truss satellite structure.

Modal damping 0.1 %
Sampling frequency 153.6 Hz
Number of samples 18432
Simulation time 120 sec
Number of simulated sensor 48

Table 5.3: Properties used for the simulation of the dynamic responses.



CHAPTER 5. NUMERICAL AND EXPERIMENTAL DEMONSTRATIONS 104

(a) Mode 6H - 17.04 Hz

(b) Mode 3T - 20.93 Hz

(c) Mode 7V - 22.65 Hz

Figure 5.2: Mode shape of the truss satellite. Mode 6H is the sixth bending
mode in the horizontal plane (OXY), mode 3T is the third torsion mode around
the axial direction (OX) and mode 7V is the seventh bending mode in the vertical
plane (OXZ).
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Figure 5.3: Simulated free response of the truss satellite system. This signal
represents the evolution of the acceleration along Z-axis at the top vertex of
section B.

Time [s]

A
cc

e
le

ra
tio

n
 [
m

/s
²]

0 20 40 60 80 100 120
1000

800

600

400

200

0

200

400

600

800

1000

Figure 5.4: Simulated forced response of the truss satellite system. This
signal represents the evolution of the acceleration along Z-axis at the top vertex
of section B. The system is subjected to random loading along Y- and Z-axes as
well as a random torque around X-axis.
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out, are taken into account. The results computed using both approaches are
compared using MAC indicator, defined in Sec. 4.1.3.

It is important to note that the input loading does not provide a sufficient
excitation for the horizontal bending modes (from 1H to 8H) to be activated.
Consequently, only the vertical bending and torsion FE modes (from 1V to 8V
and from 1T to 4T) are retained for the comparison with the identified modes.

SSI-COV Identification

As detailed in Sec. 1.5, the use of SSI-COV method necessitates to choose
a model order, that is directly related to the number of expected active modes.
Because of the large number of natural frequencies contained in the response
signal (more than 60 modes between 0 and 30 Hz), a high system order has to be
considered.

The subspace identification is based on the computation of a stabilization
diagram helping the user to separate the genuine from the spurious vibration
modes and frequencies. This tool requires a gradual increase of the model order
and a problem resolution for each of the considered orders. Presently, orders from
5 to 100 are computed.

For every single computed order (i), the identified frequencies, damping ratios
and mode shapes are compared to those of the previously computed order (i −
1) and only the stabilized frequencies are represented. A particular attention is
brought to the combined stabilization of all the modal parameters (frequency,
damping and mode shape). The criteria used to evaluate the stabilization of the
three parameters are listed in Table 5.4.

The resulting diagram is presented in Fig. 5.5. The diagram shows the sta-
bilization of 12 natural frequencies within the frequency range [0-23Hz]. After a
visual inspection, the order 82 is chosen for modeling the system because it com-
bines a stabilization of all the expected frequencies over several orders. However,
it can be observed that the stabilization lines are not perfectly continuous. Some
frequencies suddenly disappear for several orders before stabilizing again.

The MAC matrix is computed to compare the identified modes to the FE
modes. Figure 5.6 graphically present the results. This figure proves the very
good correlation between SSI and FE modes. Note that the 3V mode is not
properly excited using the considered initial condition. This may explain the lower
accuracy of the results for this mode (MAC = 0.84).

Figure 5.7(a) provides the identified damping ratios, previously set to 0.1 %,
for all the SSI-COV modes. This parameter is clearly accurately identified by
SSI-COV.
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Figure 5.5: Stabilization diagram obtained with the SSI-COV method.
The identification is computed for the system orders from 5 to 100. Only
the stabilized frequencies are represented. A stabilized frequency is labeled as
(·) whereas (◦) is a stabilized mode and (+) is a stabilized damping ratio.
(Truss satellite - Free response).

Frequency fi−fi−1

fi
< 0.05%

Damping ratio ξi−ξi−1

ξi
< 2%

Mode shape MAC > 0.99

Table 5.4: Criteria used to evaluate the stabilization of the modal parameters
between two successive orders.
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Figure 5.7: Values of the damping ratios for both identification methods.
The expected value is 0.1% for all modes. (Truss satellite - Free response)
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SOBI-based Identification

The same first 6000 samples are now used to estimate the modal parameters
using the SOBI algorithm. As proposed in Sec. 4.2, 20 delays are chosen uniformly
distributed between 1/23Hz and 1/5Hz in order to built the time-lagged covariance
matrices. This time range corresponds to the frequency range of interest [5-23Hz].

Because SOBI identifies as many sources (or modes) as the number of input
signals, 48 independent (or as independent as possible) sources are separated by
the algorithm. Then, it is necessary to separate the genuine vibration modes from
the spurious ones. The procedure has been detailed in Sec. 3.4.

The proposed selection procedure relies on the fitting error which is computed
for each source. Knowing the theoretical form of the sources (i.e., the modal
coordinates), it is straightforward to optimize the theoretical parameters in order
to match the identified signals. A fitting error ef it is then easily computed using
NMSE criteria, defined in Eqn. (3.16).

On the one hand, the dominant frequency of the selected sources must belong
to the frequency range of interest. On the other hand, the parameter ef it must
remain under a certain limit. The automated mode selection is then based on the
following criteria:

• Only the natural frequencies included in the considered frequency range [0-
23Hz] are retained;

• The fitting error ef it (in gray in the figures) has to be lower than 10%, as
suggested in Chapter 3.

Another interesting parameter is the participation factor PF (in black in the fig-
ures) evaluating the importance of each source in the total response signal and so
the confidence that can be placed in this source. A good-quality testing procedure
should lead to a high cumulative PF . This assures that most of the information
contained in the initial data has been extracted.

Before this automated post-processing, 48 modes and natural frequencies were
identified but only 17 of them belong to the frequency range [0-23Hz]. The fitting
errors ef it combined with the participation factors PF (both defined in Sec. 3.5)
are presented for these 17 identified sources in Fig. 5.8(a). The corresponding
modes are graphically compared to the FE modes by means of the MAC matrix
in Fig. 5.9(a).

A careful observation of Fig. 5.8(a) leads to the conclusion that 5 sources
(namely s45, s42, s31, s36 and s44) have to be removed. These identified sources
combine a high value of the fitting error ef it (in gray) with a moderately low value
of the participation factor PF (in black). For illustration, Figure 5.10 presents
one of these sources, at the top, and one of the reliable sources, at the bottom.
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Figure 5.8: Automatic selection of the genuine modes identified using the
SOBI-based methodology. All the sources identified between 0 and 23 Hz are
presented before and after the automated selection. The participation factor is in
black and the fitting error is in gray. (Truss satellite - Free response)
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Figure 5.9: Correlation between the FE modes and the SOBI modes using
MAC matrix. All the SOBI modes are considered between 0 and 23 Hz before
and after the automated selection. The white numbers indicate the numerical
values of the MAC for the diagonal terms. (Truss satellite - Free response)
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After the selection, 12 modes are retained for the comparison with the FE
results. The resulting fitting errors are presented in Fig. 5.8(b) while the MAC
matrix between the selected SOBI modes and FE results is presented in Fig. 5.9(b).
The corresponding identified damping ratios are also graphically presented in
Fig. 5.7(b).

The results of the SOBI-based identification are satisfactory even though they
are not as accurate as the SSI-COV ones. The four modes denoted 3T, 4T,
7V and 8V are better estimated by the subspace methodology, as highlighted by
the comparison between Figs. 5.9(b) and 5.6. It is also seen that the identified
damping ratios resulting from SOBI (Fig. 5.7(b)) are underestimated. This inac-
curacy is not surprising regarding the previously mentioned difficulties inherent in
the test-case (i.e., close natural frequencies and/or mode shapes and low mode
participation in the response).

Nevertheless, an interesting feature of the SOBI-based methodology is that a
quality indicator, namely the fitting error parameter, is directly provided. It can
be observed in Fig. 5.8(b) that the value of the fitting error corresponding to
these four modes is around 5% whereas it is below 0.5% for the others. Dur-
ing experimental testings, exact solutions are unknown, and a special attention
should thus be brought to this parameter in order to evaluate the reliability of the
corresponding results.

5.1.4 Modal Identification using Random Forced Responses

For the forced response case, three random excitations are applied simultane-
ously at the location (2) during the simulation time (cf. Fig.5.1). The quality of
the information contained in the response signals is thus improved and all the 20
modes (the vertical and horizontal bending modes as well as the torsion ones) are
properly excited. Then, in this section, the 20 FE modes belonging to the range
[5-23Hz] are considered for comparison.

The simulation generates a dynamic response for the first 180 seconds, and
the sampling frequency still equals 153.6 Hz. The 18000 samples, computed after
the evanishment of the transient response, are used for the identification.

SSI-COV Identification

Identically to the free response case, the SSI-COV technique is first used.
Because the number of active modes is larger than in the free response case, the
maximum considered system order has to be increased as well. The identifications
are performed for system orders gradually increasing from 5 to 300, and the results
are then postprocessed within the frequency range [5-23Hz].
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The stabilization diagram is presented in Fig 5.11(a). Since some natural
frequencies are very close to each other, close-up diagrams are also presented in
Fig. 5.11(b). All the frequencies predicted by the FE model are detected by the
SSI-COV algorithm, as indicated by the 20 stabilization vertical lines.

According to these results, a model order is selected such that all expected
frequencies are stabilized. The order 178 seems to be a good candidate since
it combines a stabilization over several orders for the frequencies, the damping
ratios as well as for the mode shapes. However, this observation is valid for 27
modes within the frequency range [5-23] Hz. These 27 modes are compared to
the FE predictions and the corresponding MAC matrix is presented in Fig. 5.12.
The figure clearly shows that the subspace method fails to accurately identify all
the physical modes.

Since this test-case is a numerical one, the exact solution is perfectly known
and then the selection of the genuine modes can be facilitated by means of the
MAC matrix between the the FE and the SSI-COV results for each system order.
For this specific study, the identification is considered as successful if the MAC
value is greater than 0.8. For every single computed system order, the number of
the successful identifications is recorded and carried forward in Fig. 5.13.

Figure 5.13 clearly shows that the subspace method does not succeed in iden-
tifying more than 13 modes (over the 20 FE modes) at once even for high orders.
Nevertheless, the successful identifications do not correspond to the same modes
for all system orders, and it is possible to search for the best identification all
over the orders for every single FE mode. This task, obviously totally unfeasible
for practical application, is made possible thanks to the knowledge of the exact
solution and leads to the MAC matrix presented in Fig. 5.14. Each considered
SSI-COV mode is then computed using a different model order.

To conclude, the SSI-COV method accurately succeeded in identifying each
of the structural modes, at least once over the 300 computed orders. The major
difficulty for practical applications is the choice of the order that identifies the
most accurately the mode, for each expected natural frequency.

SOBI-based Identification

The same 18000 samples are used for the SOBI-based identification. Similarly
to the free response case, 20 time lags are chosen uniformly distributed between
1/23 Hz and 1/5 Hz for the identification. In the case of the random forced
response, the identified sources do not match the theoretical expression (3.4)
and then the post-processing (that remains totally automatic without any user
interaction) requires the use of the NExT procedure for each of the separated
source.

Because 48 sensors are used for the identification, 48 sources are separated
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Figure 5.11: Stabilization diagram (top) and close-ups around the natural
frequencies (bottom) resulting from the SSI-COV method. The identification
is computed for the system orders from 5 to 300. Only the stabilized frequencies
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Figure 5.14: Correlation between the FE modes and the SSI-COV modes best
identified over all the computed orders. The white numbers indicate the numer-
ical values of the MAC for the diagonal terms. (Truss satellite - Forced response)
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and the NExT post-processing is directly applied. After the mode selection which
is performed using the previously mentioned criteria (i.e., a frequency belonging
to [0-23Hz] and a fitting error below 10%), 20 modes are automatically selected.
The fitting errors and the participation factors are presented in Fig. 5.15. It should
be noted that the fitting errors are extremely low for all the selected sources (below
0.2 %).

The correlation between these genuine modes and the FE results is performed
using the MAC matrix as presented in Fig. 5.16. This figure proves the excellent
agreement between the SOBI and FE results. The performance of the identifi-
cation is quite good and even very satisfactory if compared with the SSI-COV
results presented in Fig. 5.12. Even though the test-case is chalenging, all modes
are automatically extracted, and most of them are very accurate.

The damping ratios are not as well identified than in the free response case but
remains acceptable for most of the modes. The values are graphically presented
in Fig. 5.17(b) and can be compared to those identified using SSI-COV. Note that
the SSI-COV damping ratios corresponds to the best identified SSI-COV modes
from Fig. 5.14.

To conclude, it should be noted that the use of NExT causes two inconve-
niences. First, as previously mentioned, NExT slightly degrades the accuracy of
the damping ratios. Second, although NExT simplifies the choice of the genuine
sources by clarifying the fitting error indicator, the algorithm appears to clean
the signals by removing most of the perturbing frequencies. The resulting signals
then artificially become monochromatic, leading to the low fitting errors. Unfor-
tunately, this error parameter provides no more information about the reliability
of the initial results, contrary to the free response case. In fact, NExT acts as a
sort of filter around the dominant frequency. Figure 5.18 illustrates this effect for
one identified source. This is the reason why badly identified sources, such as S9
(MAC 0.48), correspond to extremely low fitting errors.
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Figure 5.16: Correlation between the FE modes and the SOBI modes using
MAC matrix. All the SOBI modes are considered between 0 and 23 Hz. The
white numbers indicate the numerical values of the MAC for the diagonal terms.
(Truss satellite - Forced response)
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5.2 Aeroengine Stator Blade

5.2.1 Description of the experimental setup

The real-life structure considered herein is a blade extracted from the first
stage of an aeroengine stator. The blade is made of titanium and is separated
from other engine components such as the inner shroud. Modal testing process
has been performed for the clamped-free configuration where the blade root is
caught in a vice, as depicted in Fig. 5.19.

Fifteen measurement locations are uniformly distributed on the lower face of
the blade. Because the blade is a light-weight structure, non-contact vibration
measurements were realized using a laser vibrometer. The structural excitation is
applied using a small force-transducer hammer blow such as described in Sec. 1.2.

The receptance FRFs are recorded in the range [0-5000Hz]; some of them are
presented in Fig. 5.20. This figure reveals the presence of six natural frequencies
around 170, 780, 1080, 2220, 2950 and 3880 Hz, respectively.

In order to apply the output-only modal analysis techniques, a set of 15 impulse
response functions is obtained by applying the inverse Fourier transform to the
measured FRFs. The modal parameters are then identified within the frequency
range [0-5000Hz] using both SOBI and SSI-COV.

A FE model of the structure is realized using the SAMCEF software1 and
Figure 5.21 presents the FE mesh. This model also confirmed the presence of six
natural frequencies in the considered frequency range as shown in Table 5.5.

5.2.2 SSI-COV Identification

The SSI-COV modal analysis technique is first applied to the impulse responses.
4000 samples are taken into account and the sampling frequency equals 10 kHz.
The resulting stabilization diagram is presented in Fig. 5.22 and close-ups are
proposed around the expected natural frequencies.

The diagram detects the presence of the six expected natural frequencies. The
first, second and third ones (170.1, 775.3 and 1081.1 Hz) stabilize clearly from the
lowest orders, if splitting beyond the order 30. The fourth and sixth frequencies
(2216.7 and 3881.4 Hz) directly split in several stabilization lines corresponding
to an unique physical mode. And finally, the fifth mode (around 2950 Hz) is more
difficult to identify because its corresponding FRF amplitude is much lower than
the others (cf. Fig. 5.20).

However, this example emphasizes one difficulty of the stabilization diagrams
dealing with the choice of the genuine modes. Indeed, besides these six expected

1 c©SAMTECH Headquarters - LIEGE science park - Rue des Chasseurs Ardennais, 8 - B4031
LIEGE (Angleur) BELGIUM (http://www.samtech.be/)
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Figure 5.19: Experimental setup consisting of the stator blade caught in a
vice. The bullets (•) refer to the measurement locations on the lower blade
surface.
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Figure 5.20: Receptance FRFs of the stator blade. Six peaks corresponding to
the natural frequencies exist around 70, 780, 1080, 2220, 2950 and 3880 Hz.
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Figure 5.21: Finite element model of the stator blade.

Mode Frequency Identifier
[Hz] [-]

1-FE 171.9 1B

2-FE 774.0 1T

3-FE 1071.9 2B

4-FE 2202.1 2T

5-FE 3089.6 3BT

6-FE 3878.5 3T

Table 5.5: FE prediction of the natural frequencies for the stator blade. The
identifiers B and T refer to ’Bending’ and ’Torsion’.
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natural frequencies, some other modes could also be considered as stabilized.
These modes might be induced by the non-rigid boundary conditions, perturbing
the signals or simply introduced by the computational process. The selection or
rejection of these modes is a subjective decision depending on the user’s expertise.
For instance, it can be observed that two modes start to stabilize at high orders
around 900 Hz and 2260 Hz and that a set of points also perturbs the interpreta-
tion around 3500 Hz but, thanks to the FE model and a visual inspection of the
mode shapes, they are not considered as genuine.

A careful inspection of the FRFs reveals that there is a slight frequency shift
between the FRFs. This frequency shift equals the frequency resolution of the
measurements and probably takes its origin in the fact that the FRFs were not
acquired simultaneously, but recomputed using IFFT process. The modes in closer
correspondence with the expected modal form, obtained using the FE model, are
therefore retained, and the others are discarded.

Note that, similarly to the satellite case study, none of the studied system
order (up to 75), succeed in identifying all of the six modes at a time. A different
system order is then chosen for each mode. The identified results are listed in
Table 5.6.

These best-identified results are then compared to the FE predictions using
the MAC matrix. The graphical representation of this MAC matrix is provided
in Fig. 5.23. It can be observed that the four modes (denoted 1B, 1T, 2B and
3BT) are accurately identified. The quality of the results regarding the modes
2T and 3T, if acceptable for an experimental setup, is not satisfying. Two facts
may explain this. First, the FE modal displacements are measured along the line
perfectly perpendicular to the blade surface while the placement of the vibrometer
cannot be so precise. Second, the experimental position of the measurement
points does not perfectly correspond to the considered FE mesh nodes. Because
both 2T and 3T mode shapes possess several vibration nodal lines, the nodal
displacement varies a lot along the blade and a small positioning error may cause
large discrepancies in the results.

5.2.3 SOBI-based Identification

The SOBI-based modal analysis method is now applied to the blade experi-
ment. The same signal is used for the identification and 20 delays are uniformly
distributed between 1/4000Hz and 1/200Hz, covering the frequency range of
interest.

Because 15 measurement locations are considered, a total of 15 virtual sources
are separated. The sources are fitted to match the theoretical form of the modal
coordinates. Figure 5.24 depicts the fitting errors and the participation factors.
The sources are sorted in ascending fitting errors.
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Figure 5.22: Stabilization diagram (top) and close-ups around the natural
frequencies (bottom) resulting from the SSI-COV method. Only the stabilized
frequencies are represented. A stabilized frequency is labeled as (·) whereas (◦) is
a stabilized mode and (+) is a stabilized damping ratio. (Stator blade)
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Figure 5.23: Correlation between the FE modes and the best identified SSI-
COV modes over all the computed orders. The white numbers indicate the
numerical values of the MAC for the diagonal terms.(Stator blade)

Mode Frequency Damping ratio Identifier
[Hz] [%] [-]

1-SSI 170.1 0.52 1B

2-SSI 775.3 0.12 1T

3-SSI 1081.1 0.18 2B

4-SSI 2216.7 0.10 2T

5-SSI 2950.5 0.32 3BT

6-SSI 3881.4 0.05 3T

Table 5.6: Natural frequencies and damping ratios for the stator blade identified
using the SSI-COV method. The identifiers B and T refer to ’Bending’ and
’Torsion’.
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The number of identified sources being higher than the number of structural
modes, the genuine sources have to be selected. The automated selection would
obviously retain the five first sources (denotes s1, s2, s3, s4 and s6) because
they combine a small error with a high participation factor. These five sources
correspond to the natural frequencies 170.2 Hz, 775.5 Hz, 1080.8 Hz, 2216.4 Hz
and 3881.0 Hz.

It has been noted that the last mode (2949.8 Hz) has a lower participation,
as indicated in the FRF diagram 5.20. The corresponding source, denoted s9

in Fig. 5.24, is then logically less well fitted. It is important to underline that
the automatic procedure would have neglected this source (its fitting error being
higher than 10 %). Consequently, even though the fitting error indicator highly
simplifies the mode selection, a particular attention must be brought to the less-
participating modes.

Identically to the SSI-COV case, the several identified sources could correspond
to a unique natural frequency. For instance, the source denoted s5 has a dominant
frequency equalling 2216 Hz and corresponds to a split of the genuine source
s4. Fortunately the fitting errors provide an easy way of separating the genuine
modes from the others and it is not necessary to refer to the FE mode shape
predictions. Nevertheless, the high value of the corresponding PF indicates that
signal information has been lost during the separation process.

All the identification results are summarized in Table 5.7. A complete cor-
respondence can be observed with the SSI-COV results previously presented in
Table 5.6.

The correspondence between the SOBI-based identified modes and the FE
mode shape prediction is presented in Fig. 5.25. The SOBI methodology even
succeeds a slightly better correspondence (higher MAC values) with the FE pre-
diction than the SSI-COV method, particularly for both 2T and 3T modes.

The MAC matrix between the modes identified using SSI-COV and SOBI is
shown in Fig 5.26. All these results confirm that an accurate and consistent
identification is carried out using SOBI.
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Figure 5.24: Fitting errors and participation factors for all identified sources.
The participation factor is in black and the fitting error is in gray. (Stator blade)

Source Frequency Damping ratio Identifier
[Hz] [%] [-]

s1 170.2 0.46 1B

s2 175.5 0.10 1T

s3 1080. 0.17 2B

s6 2216.4 0.07 2T

s4 2949.8 0.24 3BT

s9 3881.0 0.06 3T

Table 5.7: Natural frequencies and damping ratios for the stator blade identified
using the SOBI-based method. The identifiers B and T refer to ’Bending’ and
’Torsion’.
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Figure 5.25: Correlation between the FE modes and the selected SOBI-based
modes. The white numbers indicate the numerical values of the MAC for the
diagonal terms. (Stator blade)
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5.3 Two-story Truss

5.3.1 Description of the experimental setup

In this section, the proposed OMA technique is applied to the response of a
real metallic truss. This structure is a reduced model of a two-story building which
is composed of two parallelepipedal cells (38 x 24 x 40 cm) made of rectangular-
cross-section bars. As illustrated in Fig. 5.27, the system is clamped at the base.

For the modal parameter identification, 16 sensors (i.e., classical 3-gramme-
weight accelerometers) are distributed on the truss on both storys (two at each
corner) and the response is measured in a horizontal plane along the two principal
perpendicular directions. The SOBI-based identification is performed on both
free and forced responses, and the modal parameters are compared to SSI-COV
results.

For the free response case, the structural excitation is provided by a short
hammer blow simulating a Dirac impulse. This small shock is applied horizontally
at the middle of the top bar. The experimental sampling frequency equals 5120
Hz and 15000 samples are recorded, corresponding approximately to the 3 seconds
following the impact.

For the random forced response, the structure is mounted on a 26kN electro-
dynamic shaker, as shown in Fig. 5.27. In this case, the sampling frequency is still
set to 5120 Hz and the recording time is increased because totally independent
of the damping parameters. The frequency range of interest for the identification
is between 0 and 400 Hz. The response signals are then preprocessed using a
low-pass filter in order to prevent perturbation form the higher modes.

Contrary to the previous test-cases, the response signals are simultaneously ac-
quired and not recomputed from the FRFs, as required in the proposed SOBI-based
methodology. Consequently, it nicely reflects the interest of SOBI for practical
applications.

5.3.2 Modal parameter identification based on the free re-
sponse

The SOBI-based and SSI-COV methods are first applied to the free response
of the truss structure. The first 6000 samples of the recorded time series are
taken into account for the identification; this corresponds approximately to the
first second following the excitation. For illustration, Fig. 5.28 presents one of
these signals.

The SSI-COV method is first applied using 20 block rows and columns in the
Hankel matrix. The resulting stabilization diagram is presented in Fig. 5.29. This
figure illustrates how difficult it can be to select the stabilized modes and the
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Figure 5.27: Experimental setup consisting of a truss structure clamped at
the basement. Sixteen sensors are located at the four corners of the first and
second level. Measurements are considered in the horizontal planes.
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corresponding order. For instance, a mode could be considered around 200 Hz,
but it is seen to be stable and disappears beyond the order 230. Finally, 11 natural
frequencies are retained within the frequency range [0-400 Hz]. The results are
listed in Table 5.8. An interval rather than a well-definite value is provided for the
damping ratios because their values, if stabilized from one order to the following,
slowly vary with the selected model order within the presented specific ranges. It
can be noted that some of the modes are closely spaced in frequency.

The SOBI-based identification is performed using 20 time lags as recom-
mended in the previous sections. The time lags are uniformly distributed between
1/400Hz and 1/10Hz in order to cover the frequency range. Because 16 mea-
surement locations are considered, a total of 16 virtual sources are provided by
the method. The identification of reliable virtual sources is facilitated by com-
puting the error realized during the fitting of the time series of the sources with
exponentially damped harmonic functions. For illustration, Figure 5.30 depicts
the measured and fitted signals for two different sources. Clearly, the measured
source in the top plot of Fig. 5.30 can be considered as a genuine source (the
fitting error is below 1%), whereas this is obviously not the case for the source in
the bottom plot (the fitting error is above 100%).

The result of the fitting process applied to all identified sources is presented in
Figs. 5.31(a) and 5.31(b), before and after the automated selection, respectively.
Five sources are rejected due to their high level of fitting errors. The sum of the
participation of the 11 selected sources in the system response is above 97.7%,
indicating that most of the information contained in the initial signals has been
fruitfully extracted. Note that because the participation factors PFi are normalized
as defined in Eqn. 3.17, this value is not directly deduced from the figures.

All the results ensuing from SSI-COV and SOBI are listed and compared in
Table 5.8. The correspondence between the frequencies is very good, and the
SOBI-based identified damping ratio is very close to, if not within, the SSI-COV
interval for all modes. The correlation between the mode shapes identified using
SSI-COV and SOBI is computed using the MAC matrix and graphically presented
in Fig. 5.32. An extremely good correspondence of the results obtained with
both methods can be observed, confirming that an accurate and consistent iden-
tification is carried out using SOBI. However, the correlation of the fifth mode
(256.3Hz) is less accurate (MAC 0.68). Note that the stabilization built for
SSI-COV was also more delicate and the mode selection was certainly erroneous
during the stabilization diagram processing. In order to confirm this assumption,
the SOBI mode s12 has been compared to the corresponding SSI mode identi-
fied using the forced response and the correlation provides a MAC value of 0.97.
The complete identification using the random forced response is detailed in what
follows.
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Figure 5.28: Illustration of the free response for one sensor aligned with the
excitation. (Truss structure - Free response)
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SSI-COV SOBI
Mode Frequency Damping ratio Frequency Damping ratio

[Hz] [%] [Hz] [%]

1 75.8 [0.20-0.25] 75.9 0.21
2 111.1 [0.38-0.48] 111.4 0.36
3 130.7 [0.19-0.24] 130.8 0.21
4 181.0 [0.18-0.22] 181.1 0.18
5 256.5 [0.18-0.25] 256.3 0.18
6 334.3 [0.04-0.06] 334.2 0.05
7 345.7 [0.03-0.05] 345.8 0.05
8 365.8 [0.04-0.06] 365.8 0.05
9 374.4 [0.14-0.16] 374.3 0.15
10 380.5 [0.15-0.18] 380.5 0.16
11 396.8 [0.08-0.09] 396.9 0.09

Table 5.8: Results of the identifications performed using SSI-COV and SOBI-
based methods. (Truss structure - Free response)
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Figure 5.31: Automatic selection of the genuine sources based on the fit-
ting error. The participation factor is in black and the fitting error is in gray.
(Truss structure - Free response)
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5.3.3 Modal parameter identification based on the forced re-
sponse

SOBI and SSI-COV are now applied to the random forced response of the truss
structure. The random force imparted to the truss structure by the electrodynamic
shaker is not measured but all 16 response signals are simultaneously recorded.
A number of 100000 samples of the measured time series is taken into account
after the transient response, the sampling frequency being set to 5120 Hz.

As in the free response case, 20 block rows and columns are selected in the
Hankel matrix for the SSI-COV method and system orders from 5 to 300 are con-
sidered for the identification. The corresponding stabilization diagram is presented
in Fig. 5.33 where 14 modes appear to stabilize regarding the mode shapes and
damping ratios.

Here again, the diagram 5.33 clearly shows how difficult it can be to post-
process the data resulting from a SSI-COV analysis. The selection/non-selection
of the modes depends on the expertise and the feeling of the operator. For
example, the frequencies 190 and 205 Hz stabilize but not in terms of mode
shapes and damping ratios; they are thus not retained. Conversely, the frequency
75Hz is retained while not stabilized for all system orders. Between 350 and 400
Hz, 6 frequencies are considered as genuine even if modes stabilized (from the
system order 150) before disappearing for higher system orders. The numerical
results of the manually selected modes are listed in Table 5.9.

For SOBI, 20 time lags were uniformly distributed between 1/400Hz and
1/10Hz. For illustration, the 16 identified sources are presented in Figs. 5.34
and 5.35. The sources correspond to the modal coordinates of the system and
should be approximated by harmonic functions modulated by slowly varying en-
velope. In order to automatically select the genuine sources, the free-response
modal coordinates are recomputed using NExT algorithm. The resulting signals
are presented in the second column of Figs. 5.34 and 5.35. The third column
presents the spectral contents of the signals, which should be monochromatic for
genuine sources.

Apart from sources s13 and s15, it turns out that SOBI is able to decom-
pose the measured responses in terms of elemental components which are mostly
monochromatic.

Figures 5.36(a) and 5.36(b) provides the fitting errors combined with the
participation factor. Two of the 16 sources have an fitting error above 100%.
They correspond to the non-monochromatic sources (i.e., sources s13 and s15).
The selection is therefore trivial and 14 modes are then retained and listed in Table
5.9 for the comparison with SSI-COV.

The correspondence between the frequencies is very good and, such as in the
free response case, the SOBI-based identified damping ratio is very close to, if
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Figure 5.33: Stabilization diagram obtained with the SSI-COV method.
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Figure 5.34: Identified sources obtained using the SOBI algorithm (part
1). Sixteen sources are separated and sorted by increasing major frequency.
The first column presents the SOBI sources, the second presents the recom-
puted free response modal coordinates obtained using the NExT algorithm and
the third one presents the power spectral densities for each identified signal.
(Truss structure - Forced response)
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Figure 5.35: Identified sources obtained using the SOBI algorithm (part
2). Sixteen sources are separated and sorted by increasing major frequency.
The first column presents the SOBI sources, the second presents the recom-
puted free response modal coordinates obtained using the NExT algorithm
and the third one presents the power spectral densities for each identified
signal.(Truss structure - Forced response)



CHAPTER 5. NUMERICAL AND EXPERIMENTAL DEMONSTRATIONS 145

not within, the SSI-COV interval for all modes.
The correlation between mode shapes is again assessed using the MAC (Fig.

5.37). There is an excellent agreement between the results obtained with both
methods. Nevertheless three modes (at 75, 245 and 397 Hz) are not as accurately
correlated. The cause is certainly that the corresponding structural deformation
takes place in a plane orthogonal to the excitation direction. The modes have
therefore a lower participation in the system response, and the identification is
consequently more delicate.

Finally, the first three damping ratios identified from the random forced re-
sponse are larger than those identified using the free response (cf. Tables 5.8
and 5.9). Although we have no precise explanation for this observation, we note
that, for the free response experiment, the truss structure was not clamped on
the electrodynamic shaker but rather on a vibration-isolating table.

5.4 Concluding Remarks

After studying the performance and robustness of BSS algorithms regarding
several parameters such as noise, damping or random excitations, the applicability
of SOBI for output-only modal analysis had to be demonstrated using large-scale
systems. Three practical and realistic problems were considered for this pur-
pose in this chapter. In addition, this chapter allowed the proposed methodology
to be faced with a well-known modal parameter estimation method, namely the
covariance-driven stochastic subspace identification (SSI-COV).

The first application (i.e., a numerical FE model of a truss satellite) combined
several difficulties including numerous and closely-spaced frequencies and a large
number of sensors, nevertheless SOBI performed well when compared to SSI-COV.
Indeed, SSI-COV provided slightly better results than SOBI but clearly showed
limitations during the post-processing (based on the stabilization diagram) for
the selection of the genuine modes. None of the considered SSI-COV model
order succeeded in identifying all structural modes at once. A manual selection of
the appropriate order for each stabilized mode is therefore necessary for practical
application, in which exact solution is not known. As for SOBI, the automated
mode selection facilitated the post-processing, and all modes, if less accurate,
were directly identified.

The second experiment was a real structure (a stator blade extracted from an
aeroengine), representative of usual modal testings using force-transducer ham-
mer. A precise FE model of the structure was used to correlate the results, and
SOBI accurately performed the identification, even slightly better than SSI-COV.
Nevertheless, one of the accurately identified mode was rejected by the automated
mode selection indicating that, in some cases, the procedure is too restrictive and
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SSI-COV SOBI
Mode Frequency Damping ratio Frequency Damping ratio

[Hz] [%] [Hz] [%]

1 75.3 [0.10-1.80] 75.0 1.14
2 110.4 [1.85-2.35] 110.5 2.33
3 133.6 [0.70-0.95] 133.6 0.86
4 180.9 [0.20-0.30] 180.8 0.31
5 245.4 [0.05-0.10] 245.4 0.06
6 257.5 [0.10-0.12] 257.5 0.12
7 333.4 [0.05-0.11] 333.5 0.16
8 345.5 [0.07-0.15] 345.5 0.11
9 365.6 [0.07-0.10] 365.6 0.11
10 369.4 [0.17-0.21] 369.1 0.23
11 374.3 [0.25-0.28] 374.6 0.27
12 378.0 [0.36-0.43] 379.1 0.54
13 392.1 [0.35-0.50] 391.0 0.39
14 397.4 [0.12-0.14] 397.1 0.17

Table 5.9: Results of the identifications performed using SSI-COV and SOBI-
based methods. (Truss structure - Forced response)
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(b) After the automated selection

Figure 5.36: Automatic selection of the genuine sources based on the fit-
ting error. The participation factor is in black and the fitting error is in gray.
(Truss structure - Forced response)
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Figure 5.37: Correlation between the SSI-COV modes and the selected SOBI-
based modes for the truss structure. The white numbers indicate the numerical
values of the MAC for the diagonal terms. (Truss structure - Forced response)
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that the limit value of the fitting error could be revised according to the measure-
ment quality.

Finally, the last experiment typically represents the applications for which SOBI
has been proposed. It combines numerous simultaneous response signals, unknown
and unmeasurable excitation and numerous modes. The results obtained with
SOBI were extremely similar to those resulting from SSI-COV. Once again, the
main difference lies in the easiness of the post-processing.

According to these observations, the output-only modal analysis method based
on SOBI can be considered as validated and reliable for numerical and experimental
applications.



Conclusions

This thesis discussed modal identification using output-only information. The
research developed modal parameter estimation approaches based on the so-called
Blind Source Separation (BSS) techniques. Two separation algorithms, namely
the Independent Component Analysis (ICA) and the Second-Order Blind Identifi-
cation (SOBI), were considered.

During the design phase, engineers are usually faced with experimental valida-
tion, especially in the field of structural dynamics. Modal testing is traditionally
used to update the numerical models and confirm their predictions.

Numerous well-established methods are available to process with the signals
resulting from modal testing. However, for most of the existing methods, the
order of the theoretical model is overestimated to accurately match the exper-
imental signals. This approach provides better mode estimation but introduces
fictitious modes that have to be rejected. In commercial softwares, picking out the
genuine modes is traditionally performed using the so-called stabilization diagram.
Nevertheless, the applications presented in this manuscript showed how delicate
and time consuming it can be to obtain reliable results. Indeed, the decision be-
tween stability and instability mostly depends on the expertise and the feeling of
the operator. Consequently, inconsistency between estimates of different experts
may appear.

One of the main objectives that was kept in mind throughout this research was
to simplify the data post-processing in order to assist the operator tasked with
separating the genuine modes from the spurious ones. The proposed approach for
solving this problem is based on simple criteria, such as fitting errors and modal
participations, and several examples corroborated its credibility.

The proposed modal identification methodology is based on BSS techniques.
First, free and random forced responses were analyzed using numerical and aca-
demic examples, and the performances of both ICA- and SOBI-based procedures
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were compared regarding several parameters, leading to the rejection of ICA for
the rest of the work. Second, large-scale and experimental structures were con-
sidered in order to demonstrate the utility of SOBI in practical applications. They
consisted of a satellite truss, a stator blade and a metallic truss modeling a two-
story building, respectively. The results showed promise and their accuracy were
estimated using the well-established Covariance-driven Stochastic Subspace Iden-
tification (SSI-COV) method.

Main Contributions

The main achievements of this research work are the followings:

• The concept of virtual sources was introduced for BSS problem when ap-
plied to dynamic signals. A one-to-one relationship between the BSS modes,
contained in the identified mixing matrix, and the vibration modes was then
established; as for the identified sources, they correspond to the normal
coordinates of the system. These theoretical findings were validated using
many numerical and experimental case studies, demonstrating the applica-
bility of the source separation algorithms for output-only modal parameter
estimation. This principle and some of its ensuing applications were pub-
lished in [KPG07, PKGV07, PKGM07] and also applied by other researchers
in [ZC07, CAMB07, CHT09, MZ08].

• Two source separation algorithms, ICA and SOBI, were implemented and
applied to the modal parameter estimation problem. They were compared
to each other with respect to damping, noise and non-deterministic random
excitations. Because it takes advantage of the temporal structure of the
sources, SOBI proved to be more suitable for the modal identification. Three
realistic applications demonstrated the applicability of SOBI for practical
applications. They deal with a large number of active modes, typical impact
hammer modal testing, and operational testing conditions, respectively.

• SSI-COV was used as a reference to evaluate the performances of the pro-
posed method but advanced studies showed limitations during the post-
processing using the stabilization diagram. For instance, several applications
developed in this research highlighted that none of the considered SSI-COV
model order succeeded in identifying all the structural modes at once. A
manual and unreliable selection of the appropriate order is therefore neces-
sary for each stabilized mode. Therefore, a systematic post-processing pro-
cedure was proposed for the BSS-based identification. The approach, based
on simple parameters such as fitting errors and modal participation, was
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successfully tested on various examples making way for automated modal
identification.

Perspectives and Future Works

We believe that this thesis contains useful contribution to the development of
automatic modal analysis methodologies. Nevertheless, there is still much work
to be done to obtain a robust and generally-applicable method, effective for large-
scale industrial structures.

Non-proportional damping. The proposed modal identification method assumes
a purely proportional damping. Non-proportional damping is problematic
because the mode shape estimates resulting from SOBI are necessarily real-
valued. Unfortunately, some structural and testing conditions such as gen-
eral damping, gyroscopic effects or asynchronous sampling introduce phase
shifts in each response DOF, leading to complex-valued mode shapes. Re-
stricting the mixing matrix, and so the mode shapes, to real values limits
the applicability of the method. Recent publications promisingly address the
question in [MZ08, MZ10].

Under-determined system. All the test-cases considered in this work assume a
number of measured signals at least equal to the number of independent
sources. In practical applications, the number of acquisition channels is a
hardware limitation while the number of active modes is unknown. Conse-
quently, extending the scope of the method to under-determined systems
would be advised. Filtering, virtual sensors or iterative procedures are some
of the trails that should be investigated.

Operational testing conditions. Validation of the proposed methodology was
performed using numerical test-cases and experimental structures. How-
ever, the considered testings were meeting ideal experimental conditions
and advanced study concerning real operational conditions and perturbing
excitation such as harmonic signals, should be addressed.

Health monitoring. Structural health monitoring and damage detection are im-
portant fields of structural dynamics. The modal identification technique
presented in the work is an output-only method. It could then be used for
continuous monitoring of structures under operational conditions, for which
the excitation is not measured. Because it provides the frequencies and
mode shapes at once, the source separation approach could be very efficient
if proved to be sensitive to local damage influence.
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Automated mode selection. This thesis developed mode selection criteria based
on the fitting of the identified normal coordinates. Compared to the sta-
bilization diagram tool, this approach proved to provide results that can be
easily interpreted. But normal coordinates could easily be deduced by ap-
plying the inverted mode shape matrix (estimated using other identification
methods) to the measured signals. This could facilitate the mode selection
for other high-performance methods such as, for instance, SSI-COV.

Nonlinear systems. Finally, this dissertation focuses on linear and time-invariant
systems. Further researches are then required to address the problem of
nonlinear structures.
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