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Abstract

The research reported in this thesis addresses the problem of component analysis, which aims

at reducing large data to lower dimensions, to reveal the essential structure of the data. This

problem is encountered in almost all areas of science – from physics and biology to finance,

economics and psychometrics – where large data sets need to be analyzed.

Several paradigms for component analysis are considered, e.g., principal component anal-

ysis, independent component analysis and sparse principal component analysis, which are

naturally formulated as an optimization problem subject to constraints that endow the prob-

lem with a well-characterized matrix manifold structure. Component analysis is so cast in

the realm of optimization on matrix manifolds. Algorithms for component analysis are sub-

sequently derived that take advantage of the geometrical structure of the problem.

When formalizing component analysis into an optimization framework, three main classes

of problems are encountered, for which methods are proposed. We first consider the prob-

lem of optimizing a smooth function on the set of n-by-p real matrices with orthonormal

columns. Then, a method is proposed to maximize a convex function on a compact manifold,

which generalizes to this context the well-known power method that computes the dominant

eigenvector of a matrix. Finally, we address the issue of solving problems defined in terms

of large positive semidefinite matrices in a numerically efficient manner by using low-rank

approximations of such matrices.

The efficiency of the proposed algorithms for component analysis is evaluated on the anal-

ysis of gene expression data related to breast cancer, which encode the expression levels of

thousands of genes gained from experiments on hundreds of cancerous cells. Such data provide

a snapshot of the biological processes that occur in tumor cells and offer huge opportunities

for an improved understanding of cancer. Thanks to an original framework to evaluate the

biological significance of a set of components, well-known but also novel knowledge is inferred

about the biological processes that underlie breast cancer.

Hence, to summarize the thesis in one sentence: We adopt a geometric point of view to

propose optimization algorithms performing component analysis, which, applied on large gene

expression data, enable to reveal novel biological knowledge.
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Chapter 1

Introduction

Today’s society lives in an era of data overload. With the advent of information technolo-

gies, data have been digitized and their amount started to grow at an ever-spiraling rate.

This revolution arises in any sector. In cancer research, an overwhelming amount of data is

collected from high-throughput experiments on genetic material. These data offer unprece-

dented opportunities for the discovery of novel knowledge on the biological processes behind

cancer. Unfolding the biological information withheld by the raw data could pave the way

for improved diagnosis, treatments and drugs.

In this thesis, we analyze data that result from microarray experiments, which quantify,

in a single assay, the extend of transcription of a large portion of all genes in a cell. The

transcription is the synthesis of RNA molecules from the DNA, i.e., it is a process that makes

static genetic information functional. Microarray experiments provide thus a snapshot of the

biological events that occur in the analyzed cell. This technology is enabling genetic diseases

like cancer to be studied in unprecedented detail, both at transcriptomic and genomic levels.

A significant challenge that needs to be overcome is to unravel the complex mechanism that

gives rise to the measured expression levels of the genes. This would drastically improve our

understanding of the close relation between the quantitative transcriptome of a cell and its

phenotype, i.e., the external traits of the cell.

Throughout the thesis, we investigate strategies to infer knowledge about these biological

mechanisms from large gene expression data. Our analysis focuses on data resulting from

microarray experiments in the context of breast cancer. The data are structured in a matrix

A ∈ Rm×n, which stores the expression levels of n genes gained from the analysis of m

cancerous cells. The number of genes considered in a single study (n) is typically around ten

thousand and several hundreds of experiments (m) are usually conducted.

The tools discussed in the thesis perform an approximate factorization of the data matrix

into the product of two matrices Y ∈ Rm×p and Z ∈ Rn×p,

A = Y ZT + E, (1.1)

with the rank p ≪ min(m,n). The matrix E ∈ Rm×n is an error term that has to be made

as small as possible. The columns of both A and Y can be interpreted as samples of random

variables, in which case A and Y are seen as random row vectors. In this probabilistic view,

1



2 Chapter 1. Introduction

the factorization model (1.1) derives p linear combinations of the n original variables, called

the components or the factors. The rank p is usually chosen substantially smaller than n

such that the information stored in n variables is concentrated in p components. Model (1.1)

performs then a component analysis of the data A. The methods for component analysis in

this thesis are all non-parametric in the sense that no assumption is made on the probability

distributions of the components.

Component analysis is a highly appreciated tool for the analysis of data containing a

large number of interrelated variables. The components are expected to capture the essential

structure of the data and to highlight information that is otherwise hidden in the large

database. In the case of gene expression data, the components are expected to characterize

distinct biological functions. The expression level in a cell is in fact determined by a whole

range of biological processes, some of which act to reduce this number, while others act to

increase it. It is therefore natural to model gene expression levels as the net sum of a complex

superposition of cooperating and counteracting biological processes.

Many methods can be found in the literature that perform an approximate matrix factor-

ization in the sense of (1.1). Minimizing a particular matrix norm of the approximation error

E cast the factorization model (1.1) as a matrix optimization problem,

min
Y,Z
‖A− Y ZT‖.

Extra a priori information on the data can be incorporated either as constraints (i.e., a

restriction of the search space) or as penalties (i.e., additional terms in the objective function).

Mathematical optimization per se gives great flexibility in the problem formulation.

The optimization problems considered throughout the thesis feature geometric constraints,

which are dictated by biologically motivated assumptions on Y and Z. These constraints en-

force the solutions to lie on a matrix manifold. A differentiable manifold is a mathematical

space that is locally Euclidean but with a global structure that may be more complex. In-

tuitively, a manifold can be seen as a smoothly curved space. Importantly, the geometry of

a manifold is entirely determined intrinsically, without the need of an “external Euclidean

world”. If the elements of that space have a natural representation in the form of a matrix, we

have a matrix manifold. This property is essential to provide practical algorithms in matrix

algebra formulation (i.e., that can be run on a computer).

The optimization methods discussed in the thesis deal with these geometric constraints in

a natural manner by locally treating the manifold as a Euclidean space, which evolves at each

iteration. Because of this local similarity to a Euclidean space, most classical unconstrained

optimization methods can be adapted to manifolds while their convergence properties are

preserved. Hence, instead of traditional methods for constrained optimization on a flat space,

we favor approaches that perform an unconstrained optimization on particular curved spaces.

The idea of treating problems naturally defined on manifolds in a differential-geometric

framework goes back to Luenberger [Lue72] but raised significant interest first in the con-

trol systems community, essentially with the work of Brockett (e.g., [Bro72, Bro93]). The

issue was to describe differential equations whose solutions evolve on a manifold. Interest in
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differential geometry for numerically efficient algorithms was further sparked in a book by

Helmke and Moore [HM94]. In recent years, several algorithms have been proposed that rest

on a conversion from differential-geometric computations into matrix computations. Notable

results have been obtained on fundamental problems of linear algebra, such as eigenvalue

computation or invariant subspace computation [Abs03]. The general problem of optimizing

any smooth function on a manifold is addressed in the monograph [AMS08].

The main objective of this thesis is to demonstrate that differential-geometric methods

are natural and effective in the context of component analysis of large data sets. Specifically,

this geometric reasoning leads to numerically efficient algorithms for component analysis of

low (usually linear) complexity with the number n of variables in the data. This property

is essential to analyze gene expression data, for which the number n of genes is much larger

than the number m of samples. Furthermore, in view of the prompt development of high

throughput technologies, the number of analyzed variables is expected to grow in the future

more rapidly than the number of conducted experiments.

1.1 Contributions of the thesis

This thesis is motivated by the analysis of large gene expression data and is devoted to

the development of algorithms for component analysis that inherently exploit the geometric

structure of the problem.

The contributions of the thesis are threefold.

First, methods for component analysis are turned into an optimization problem on a ma-

trix manifold. We first reformulate principal component analysis, probably the most popular

method in this context, and extend these formulations to more refined approaches, such as

independent component analysis and sparse principal component analysis.

Second, the resulting optimization problems are cast in three main classes, for which

existing optimization methods are reviewed and novel ones are proposed. This leads to new

algorithms for component analysis, which are numerically efficient, and thus suitable for large

data.

Third, the efficiency of these algorithms for component analysis is illustrated on large gene

expression data related to breast cancer. Interestingly, these algorithms enable to infer new

knowledge of the biology underlying cancer.

Specific contributions of the thesis are listed below.

• We review formulations and provide novel algorithms for independent component anal-

ysis (ICA), which is an important method for component analysis. ICA imposes the

p components described by the matrix Y in (1.1) to be as statistically independent as

possible. ICA algorithms optimize a contrast function that estimates the degree of

statistical independence of these components. This optimization has typically to be

performed on the set of matrices with orthonormal columns, which is a non Euclidean

matrix space endowed with a well-characterized manifold structure. Combining the con-
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trasts discussed in this thesis with the proposed optimization methods provide known

as well as novel algorithms for ICA. Related papers are [JTAS07, JAS07, JTA+08].

• We address the problem of sparse principal component analysis (sparse PCA) that

imposes the columns of the matrix Z in (1.1) to contain many zeros (i.e., to be sparse)

by simultaneously maximizing the variance captured by the components in the matrix

Y . Sparsity is enforced for the sake of interpretability: components that are linear

combinations of a small number of the original variables are easier to interpret. It

is furthermore expected that a given cellular process involves only a small fraction of

genes. We propose several formulations of this problem in the form of the maximization

of convex functions on compact manifolds. Our formulation deals with single-unit as

well as block versions of sparse PCA. The former and the latter are aimed at extracting

a single component of the data or more components at once, respectively. To the best of

our knowledge, block formulations of the sparse PCA problem have not been previously

proposed in the literature. An original gradient-based optimization approach is derived

that generalizes to this context the well-known power method for computing the largest

eigenvalue of a matrix. This generalized power method provides new practical algorithms

for sparse PCA. This work has been submitted for publication in the Journal of Machine

Learning Research [JNRS08].

• Sparse PCA is essentially the problem of finding an optimal pattern of zero and nonzero

entries in the matrix Z and is thus a problem of combinatorial nature. The new general-

ized power method provides patterns of sparsity that are only locally optimal. Convex

relaxations have been suggested in recent years in order to near the global solution.

These relaxations need to solve optimization problems defined on a set of positive

semidefinite matrices of potentially large dimension and are therefore intractable for

practical problems. However, because these relaxations are tight (i.e., exact) for rank-

one matrices, low-rank solutions are expected (and observed in practice). In this context,

we propose an approach that rests on low-rank positive semidefinite matrices to reduce

the computational complexity of solving the convex relaxations. It turns out that the

resulting optimization problem lies on a manifold endowed with a quotient geometry.

The corresponding material has been submitted for publication in the SIAM Journal

on Optimization [JBAS08].

• Besides these contributions of algorithmic nature, we suggest an original strategy to

gain biological information from a set of components extracted from breast cancer gene

expression data. This strategy is intended to compare the proposed algorithms for

component analysis in terms of biological significance. But first and foremost, it enables

to infer novel and valued knowledge on the biological mechanisms behind breast cancer.

This biological analysis of breast cancer data has been published in PLoS Computational

Biology [TJA+07].
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1.2 Outline of the thesis

This thesis is organized as follows.

In Chapter 2, we introduce three methods for component analysis, principal component

analysis, independent component analysis, and sparse principal component analysis, and cast

them as a constrained optimization problem. Emphasis is placed on the geometric nature of

the constraints involved by these problems.

In Chapter 3, we provide some extensive details on the challenge that motivates this thesis,

i.e., the analysis of gene expression data, and propose a framework to evaluate the biological

significance of components extracted from these data.

Each of the Chapters 4, 5, 6 is devoted to a specific class of optimization problems.

Existing optimization methods are reviewed and new ones are proposed, which specialize

to new algorithms for component analysis. These algorithms are systematically applied on

the same breast cancer data and compared in terms of biological significance through the

framework developed in Chapter 3.

Specifically, in Chapter 4, we address the problem of optimizing a smooth function on the

Stiefel manifold, which is the set of matrices with orthonormal columns. The discussed

optimization methods provide algorithms for principal component analysis (PCA) and inde-

pendent component analysis (ICA).

In Chapter 5, we derive and analyze the generalized power method to maximize convex func-

tions on compact sets. New algorithms for sparse principal component analysis (sparse PCA)

are subsequently obtained.

In Chapter 6, we propose a method to perform computations with low-rank positive semidef-

inite matrices and which enables to solve convex relaxations of the sparse PCA problem in

an efficient manner.

The objectives and the achievements of the thesis are summarized in the concluding

Chapter 7, which also raises some perspectives and future research directions.
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1.3 Abbreviations and notations

The following conventions and notations are used throughout the thesis.

Rn the space of all n-dimensional real column vectors.

Rn×p the space of all n-by-p real matrices.

Rn×p
∗ the noncompact Stiefel manifold, i.e., the set of full-rank matrices of Rn×p.

Sn the space of all n-by-n real symmetric matrices.

Sn−1 the unit Euclidean sphere in Rn, i.e., the set of unit-norm vectors of Rn.

[Sn−1]p the product of p unit Euclidean sphere of Rn, i.e., the set of matrices of Rn×p

with unit-norm columns.

St(p, n) the Stiefel manifold, i.e., the set of matrices of Rn×p with orthonormal columns.

O(n) the orthogonal group, i.e., the set of orthogonal matrices of Rn×n.

SO(n) the special orthogonal group, i.e., the set of orthogonal matrices of Rn×n with

positive determinant.

SP the spectahedron, i.e., the set of positive semidefinite matrices of Sn with unit

trace.

E the elliptope, i.e., the set of positive semidefinite matrices of Sn with unit diagonal

elements.

Conv(Q) convex hull of the set Q, i.e., the smallest convex set that contains Q.

{0, 1}n×p the set of all binary matrices of dimension n-by-p.

ei ith canonical basis vector of Rn.

1n constant vector of all ones of dimension n.

In identity matrix of dimension n.

sign(t) sign of the scalar t ∈ R.

t+ the “positive part” function t+ = max{0, t} for t ∈ R.

〈η, ζ〉 metric, i.e., the inner product of η and ζ.

E[x] expectation of the random variable x.

Var[x] variance of the random variable x.

Given a vector x ∈ Rn and a matrix X ∈ Rn×p, we define the notations,

xi (for a vector x) ith coordinate of the vector x.

xi (for a matrix X) ith column of the matrix X.

xij element at position (i, j) of the matrix X .

‖x‖1 ℓ1 norm of x, i.e., ‖x‖1 =
∑

i |xi|.
‖x‖0 cardinality or ℓ0 “norm” of x, i.e., the number of nonzero coefficients

of x.

Tr(X) trace of the square matrix X ∈ Rn×n, i.e., the sum of its diagonal

elements, Tr(X) =
∑n

i=1 xii.

Tr[X]+ the sum of the positive eigenvalues of the matrix X ∈ Sn.
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‖X‖F Frobenius norm of X, i.e., the square root of the sum of the absolute squares of

its elements, ‖X‖F =
√

∑n
i=1

∑p
j=1 |xij|2 =

√

Tr(XXT ).

‖X‖0 the number of nonzero entries in the matrix X.

X � 0 semidefinite positivity, i.e., the eigenvalues of the (symmetric) matrix X are all

nonnegative.

diag(X) vector that equals the diagonal of X.

Diag(X) diagonal matrix with the same diagonal elements as X.

Off(X) matrix with entries identical to those of X except on the diagonal, which contains

only zero-valued elements, i.e., Off(X) = X −Diag(X).

qf(X) Q factor of the QR decomposition of X as X = QR, where Q ∈ Rn×p has

orthonormal columns and R ∈ Rp×p is an upper triangular matrix.

uf(X) U factor of the polar decomposition of X as X = US, where U ∈ Rn×p has

orthonormal columns and S ∈ Rp×p is a symmetric positive semidefinite matrix.

Given a function f : Rn×p → R : X 7→ f(X), we use the following notations:

DXf(X0)[η] directional derivative of f at X0 in a direction η with respect to the variable

X, i.e., DXf(X0)[η] = lim
t→0

f(X0+tη)−f(X0)
t

.

∇Xf(X0) Euclidean gradient of f at X0 with respect to the variable X, i.e.,

[∇Xf(X0)]i,j = ∂f
∂Xi,j

∣
∣
∣
X0

.

gradXf(X0) differential-geometric gradient of f at X0 with respect to the variable X, i.e.,

generalization of the Euclidean gradient ∇Xf(X0) to a manifold.

The subscript X is useful for functions of several variables. It is omitted if no confusion

is possible (e.g. gradf(X0)). Depending on the context, the symbol ∇ can also denote a

Riemannian connection. It is then used with Greek letters, e.g., ∇ηζ.

The following acronyms are also used in the thesis.

CR cancer-related (pathway)

EMT epithelial-mesenchymal transition (pathway)

ER estrogen receptor status

EVD eigenvalue decomposition

ICA independent component analysis

PCA principal component analysis

PEI pathway enrichment index

PSD positive semidefinite

SVD singular value decomposition.
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Chapter 2

A geometric framework to

component analysis

The purpose of component analysis is to make sense of high-dimensional data by reducing it

to a few number of components expected to extract the essential characteristics of the data.

This analysis tool allows us to glimpse into the hidden and simplified structure that underlies

the data. Component analysis has applications in virtually all areas of science, both exact and

human, where large data sets are encountered, e.g., physics, meteorology, image processing,

genetics, finance, psychometrics.

In this chapter we address the problem of component analysis from a geometrical perspec-

tive. We first turn the problem into an optimization problem (Section 2.1). We then highlight

the rich geometrical structure that underlies these formulations (Section 2.2). Specifically,

component analysis is cast as an optimization on a matrix manifold. This class of problems

has been intensively studied in recent years and a whole bunch of methods are available.

2.1 Component analysis as constrained optimization

Three different approaches for component analysis are investigated in the thesis, which are

reviewed in this section: principal component analysis, independent component analysis and

sparse principal component analysis. Emphasis is placed on the formulation of these methods

as an optimization problem.

These methods analyze a data matrix A ∈ Rm×n that encodes m samples of n variables.

Without loss of generality, the data A is assumed to be centered, i.e., the mean of the columns

is set to zero. For such data, the Gram matrix AT A equals the sample covariance matrix

between the n variables, up to multiplication by a positive scalar factor. For the sake of

clarity, this factor is omitted in the sequel and we consider the covariance matrix to “equal”

the Gram matrix. Finally, given a matrix X, the notation xi refers to the ith column of X,

and xij denotes the element of X at position (i, j).

9
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2.1.1 Principal component analysis

Principal component analysis (PCA) is probably the most widespread method for data anal-

ysis. It was originally discussed by Pearson in 1901 as a method to compute the line (or the

plane) of “closest fit” to a cloud of data points in a high-dimensional space [Pea01]. Interest

in PCA was raised by Hotelling in the 1930s, who adopted a statistical perspective and con-

sidered the data matrix A ∈ Rm×n to result from m samples of a random vector of dimension

n. Hotelling proposed a method to identify “a fundamental set of independent variables” that

underlie the observed ones, which he called the principal components [Hot33].

In Hotelling’s conception, PCA aims at changing the basis in which the data is repre-

sented to obtain interesting statistical properties. The first component of the random vector

describing the data should capture maximum variance and the succeeding components should

account for as much as possible of the variation in the data, while being uncorrelated with

the first components. In other words, the data viewed from the new basis should have a

covariance matrix that is diagonal (i.e., the principal components are uncorrelated) and with

decreasing diagonal elements (i.e., the first principal components capture maximum variance).

In this context, changing the basis of a vector means to multiply that vector with an orthog-

onal matrix,1 whose columns are the coordinates of the new basis vectors. Hence, the matrix

Ȳ ∈ Rm×n that contains m samples of the n principal components is obtained by multiplying

the data matrix A with an orthogonal matrix Z̄ ∈ Rn×n (i.e., Z̄T Z̄ = In),

Ȳ = AZ̄, or A = Ȳ Z̄T , (2.1)

because the inverse of an orthogonal matrix is simply the transpose of that matrix.

For the purpose of component analysis, one is rarely interested in all the n components,

but rather in the first few ones, which account for maximum variation in the data. Let

us therefore truncate the component matrix Ȳ ∈ Rm×n and store its p first columns in

a matrix Y ∈ Rm×p, where p < n is the desired number of components. Similarly, the

orthogonal matrix Z̄ ∈ Rn×n is truncated into a matrix Z ∈ Rn×p. PCA consists thus to

view the n-dimensional data “as well as possible” from an orthonormal basis of dimension p.

Equation (2.1) then becomes

A = Y ZT + E, (2.2)

where the error term E ∈ Rm×n compensates the approximation made by reducing the data

to p components. For the components to be uncorrelated, the Gram matrix Y T Y should be

diagonal, i.e., the columns of Y should be mutually orthogonal.

The forthcoming theorems point out the close relationship between the matrix factoriza-

tion model (2.2) and the singular value decomposition (SVD) of the matrix A.

Theorem 2.1.1 Given a real matrix A ∈ Rm×n, there exists a factorization of the form

A = UΣV T ,

1An orthogonal matrix is a square matrix with orthonormal columns, i.e., columns of unit-norm that are

mutually orthogonal.
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where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, i.e., UT U = Im and V T V = In,

and Σ ∈ Rm×n is a nonnegative diagonal matrix. Such a factorization is a singular value

decomposition (SVD) of A.

Proof. See, e.g., Golub and Van Loan [GVL89], Theorem 2.5.1. �

The singular values σi, i.e., the diagonal elements of Σ, are usually ordered in a decreasing

manner,

σ1 ≥ σ2 ≥ . . . σr ≥ 0,

where r = min(m,n). This makes the SVD of A unique, provided that all nonzero singular

values are distinct. This decomposition is a powerful tool to characterize low-rank approxima-

tions of a matrix. Consider the SVD of the matrix A as an expansion in rank-one matrices,2

A =

r∑

i=1

σiuiv
T
i ,

where the vectors ui and vi are the ith column of matrices U and V , respectively. The number

of rank-one matrices in this expansion, i.e., the number of nonzero singular values, defines

the rank of the matrix A, denoted rank(A). A rank-p singular value decomposition of A with

p ≤ rank(A) is so naturally defined by the truncated sum

Ap
def
=

p
∑

i=1

σiuiv
T
i

or, in matrix terms,

Ap = UpΣpV
T
p ,

where Up (resp. Vp) is formed by the p first columns of U (resp. V ) and Σp is the p-by-p

upper-left diagonal submatrix of Σ.

The following theorem provides an interesting characterization of the first singular value

in the form of an optimization problem.

Theorem 2.1.2 Given a real matrix A ∈ Rm×n, the first singular value verifies

σ1 = max
x∈Rn

∗

‖Ax‖2
‖x‖2

,

where Rn
∗ is the vector space Rn with the origin removed.

Proof. See, e.g., Golub and Van Loan [GVL89], Theorem 8.3.1 with k = 1. �

This property can be rewritten as the maximization of the Rayleigh quotient of the matrix

AT A,

σ2
1 = max

x∈Rn
∗

xT AT Ax

xT x
. (2.3)

Since the Rayleigh quotient is invariant by multiplication of the vector x by a scalar, the

optimization can be restrained to the unit-norm vectors without loss of generality,

σ2
1 = max

x∈R
n

xT x=1

xT AT Ax. (2.4)

2A rank-one matrix is the matrix product of a column vector with a row vector.
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The following theorem indicates that the Rayleigh quotient also characterizes the right sin-

gular vector v1.

Theorem 2.1.3 The maximizer of the optimization problem (2.4) is the dominant right sin-

gular vector v1. It is unique if the two largest singular values are distinct, i.e., σ1 > σ2.

Proof. Write the first- and second-order optimality conditions of (2.4). �

A similar characterization can be derived for the other singular values and singular vectors.

Corollary 2.1.4 Given a real matrix A ∈ Rm×n, the ith singular value verifies

σi = max
x∈Rn

∗

‖(A−Ai−1)x‖2
‖x‖2

.

Proof. The ith singular value of A =
∑r

j=1 σjujv
T
j is the first singular value of the truncated

sum
∑r

j=i σjujv
T
j = A−Ai−1. �

These properties allow us to relate the SVD of a data matrix A to its principal components.

Theorem 2.1.5 Let UpΣpV
T
p be the rank-p SVD of the data matrix A ∈ Rm×n encoding m

samples of n variables. A number p of principal components is obtained by posing

Z = Vp and thus, Y
def
= AZ = UpΣp,

in the model (2.2).

Proof. First, the covariance matrix of the components is given by Y T Y = Σ2
p, which is

diagonal and has decreasing diagonal elements. Then, the components successively capture

maximum variance in the data. In fact, the first column z1 of Z is chosen such that the first

component y1 = Az1 has maximum variance, i.e.,

Var[y1] = σ2
1 = argmax

z∈R
n

zT z=1

zT AT Az = argmax
z∈R

n

zT z=1

Var[Az],

by virtue of Theorem 2.1.3. Similarly, the other components yi = Azi capture maximum

variance from the residual data matrix

A−Ai−1 =
r∑

j=i

σjujv
T
j .

The components described by the matrix Y satisfy thus the properties to be principal com-

ponents. �

As an interesting “side product” of PCA, the Frobenius norm of the error E
def
= A − Y ZT

in the PCA model (2.2) is minimal. In fact, the Frobenius norm of a matrix, defined as the

square root of the sum of the squares of its elements, is characterized by the singular values

as follows

‖A‖2F
def
=

m∑

i=1

n∑

j=1

a2
ij = Tr(AT A) = Tr(Σ2) =

rank(A)
∑

i=1

σ2
i .

The rank-p SVD of a matrix A is therefore the best rank-p approximation of A in term of

minimization of the Frobenius norm of the error.
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Theorem 2.1.6 Any solution of

min
X∈R(m,n)
rank(X)≤p

‖A−X‖F ,

is provided by a rank-p singular value decomposition of A.

Proof. See, e.g., Golub and Van Loan [GVL89], Theorem 2.5.2. �

2.1.2 Independent component analysis

PCA aims at finding a new orthogonal basis, in which the data is represented at best. One

can go one step further and search an arbitrary basis, i.e., not necessarily an orthogonal

one, in which the structure of the data is expected to be even more apparent. Relaxing the

orthogonality condition on the matrix Z in the PCA setting (2.2) releases a significant degree

of freedom, which can be used to enforce further properties on the components. Consider the

couple

(Y,Z)
def
= (UQΣ̄, V ΣQΣ̄−1),

where UΣV T is the rank-p SVD of A (i.e., U ∈ Rm×p and V ∈ Rn×p have orthonormal

columns, Σ ∈ Rp×p is positive and diagonal), the matrix Q ∈ Rp×p is orthogonal (i.e.,

QT Q = Ip) and Σ̄ ∈ Rp×p is a positive diagonal matrix that normalizes the columns of Z to

unit norm,

Σ̄
def
=

√

Diag(QT Σ2Q).

The matrix Z defines a non-orthogonal basis of p unit-norm vectors in Rn. The particular

case where Q is set to the identity matrix recovers PCA.

The so-obtained components present several interesting properties. First, the product

Y ZT is invariant with respect to the rotation matrix Q and so, by virtue of Theorem 2.1.6,

the Frobenius norm of the error E
def
= A−Y ZT is minimal. Furthermore, because the matrix

Y has orthogonal columns, the corresponding components are uncorrelated. They, however,

do not individually and sequentially capture maximum variance in the data. For instance, the

variance explained by the first component can be smaller than σ2
1 . They nonetheless mutually

explain the same variance as the principal components.3

The released degree of freedom Q can be used to provide a better representation of the

data A by enforcing new properties on the components described by the matrix Y . Typically,

the components are assumed to be statistically independent. Statistical independence is a

much stronger property than uncorrelatedness. Independent component analysis (ICA) aims

3The variance explained by the p uncorrelated components described by the matrix Y is the sum of the

variance individually explained by each of them, i.e.,

Var[Y ]
def
=

p
∑

i=1

Var[yi] = Tr(Y T
Y ) = Tr(Σ̄2) = Tr(QT Σ2

Q) = Tr(Σ2).

The variance mutually explained by the p components is hence unaffected by the rotation Q and equals the

variance explained by the p principal components.
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at finding an orthogonal matrix Q ∈ Rp×p to maximize a contrast function that estimates

the statistical independence of the components Y = UQΣ̄, i.e., ICA solves the problem

max
Q∈Rp×p

QT Q=Ip

f(Q), (2.5)

for a contrast function f . Many contrasts are proposed in the literature. Some of them are

reviewed in Chapter 4.

2.1.3 Sparse principal component analysis

Definite physical meanings are often associated to the n axes of the space in which the m

data points described by the matrix A ∈ Rm×n are originally represented. For instance, when

dealing with gene expression data, each axis stands for a specific gene. Usual methods for

component analysis, such as PCA and ICA, represent the data in a new basis to facilitate

its analysis. The new basis vectors are linear combinations of, usually, all the original ones

and the simple physical interpretation of the axes is therefore lost. Hence, it seems natural

to seek a trade-off between the conflicting goals of representing the data at best and having

a readily interpretable basis. This trade-off is typically obtained with basis vectors that are

linear combinations of only a small number of the original variables. Such basis vectors are

naturally easier to interpret. In the mathematical model (2.2), this means that the matrix Z,

whose columns define the coordinates of the new basis vectors, should contain many zeros,

i.e., the matrix Z should be sparse. The associated sparse components involve thus as few of

the n original variables as possible.

The objective of sparse principal component analysis (sparse PCA) is to find a reasonable

trade-off between principal components (which explains as much variability in the data as

possible) and sparse components (which are readily interpretable). Sparse PCA inevitably

sacrifices some of the variance explained by the principal components for the sake of inter-

pretability.

Mathematical formulations of sparse PCA are generally derived from PCA as an optimiza-

tion problem (e.g., problem (2.4)) by adding a penalty term, which enforces sparsity in the

matrix Z. For instance, the vector z1 associated to the dominant sparse principal component

is computed as the solution of the optimization problem

z1 = arg max
z∈R

n

zT z=1

zT AT Az − γ‖z‖0, with γ ≥ 0, (2.6)

that corresponds to (2.4) in the case γ = 0. The additional term penalizes the number of

nonzero components in z (i.e., the ℓ0-norm or cardinality of z). Another common way to

enforce sparsity is to penalize the ℓ1-norm of the unit-norm vector z, i.e.,

z1 = arg max
z∈R

n

zT z=1

zT AT Az − γ‖z‖1, with γ ≥ 0, (2.7)

where ‖z‖1 =
∑n

i=1 |zi|. Unit-norm vectors with minimum ℓ1-norm are in fact the canonical

basis vectors ei, i.e., unit-norm vectors of maximum sparsity.
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Interestingly, these problems can be reformulated as the maximization of a convex function

on the set of unit-norm vectors. A function f is convex if any straight line segment joining

two points on the graph of f always lies above this graph, i.e.,

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2),

for any feasible points x1 and x2 (i.e., points that satisfy the constraints) and 0 ≤ θ ≤ 1. This

valued property allows for the design of fast optimization methods, as discussed in Chapter 5.

2.1.4 Convex relaxations

Sparse PCA essentially consists in finding the optimal pattern of zero and nonzero elements in

a vector z, which is a problem of combinatorial complexity. Computing the optimal solution

of (2.6) is therefore intractable for large dimension n.

When dealing with hard combinatorial optimization problems, one usually tries to re-

lax the constraints to obtain convex optimization problems.4 Convexity is a very desirable

property, because any locally optimal solution is automatically a global one.5 Solutions of

the convex relaxation are expected to provide “good” approximations of the solution of the

original combinatorial problem.

Several convex relaxations of sparse PCA have been proposed in recent years. For illus-

tration, the sparse PCA problem (2.6) is turned into a convex problem in two steps. First,

the sphere is made convex by lifting the unit-norm vector z into a matrix Z = zzT that is

rank-one. This rank-one constraint has however to be dropped for the sake of convexity.

The relaxation consists then to admit any element (even with a rank larger than one) of the

spectahedron

SP = {Z ∈ Rn×n | ZT = Z, Z � 0, Tr(Z) = 1},

i.e., the convex set of symmetric positive semidefinite matrices with unit trace. A relaxation

of the optimization problem (2.6) is thus provided by

max
Z∈SP

Tr(AT AZ)− γ‖Z‖0, (2.8)

which is tight (i.e., exact) for rank-one matrices: given any rank-one solution Z = zzT of

(2.8), the unit-norm vector z yields a solution to (2.6). To make problem (2.8) convex, the

cardinality penalty is replaced by a convex ℓ1-penalty term,

max
Z∈SP

Tr(AT AZ)− γ
∑

i,j

|zij |. (2.9)

Even if convexity significantly reduces the complexity of the original combinatorial problem,

the convex optimization problem (2.9) requires to search a space of dimension O(n2), which

4An optimization problem is convex if a convex objective function is minimized on a convex set of points.

A set of points is convex if it contains all the straight line segments between any two of its points. Note that

maximizing a concave function, i.e., the negative of a convex function, on a convex set also provides a convex

problem. We refer to Boyd and Vanderberghe [BV04] for more details on convex problems.
5A local solution optimizes the objective function among the points that are near it, whereas the global

solution is the optimal one among all possible points.
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is practically intractable for large n. Because this solution is eventually rounded to a rank-

one matrix to reconstruct a unit-norm vector solving (2.6), an approximate low-rank solution

of (2.9) is often sufficient. Furthermore, because the relaxation (2.8) is tight for rank-one

matrices, one can reasonably expect the solution of (2.9) to be low-rank. Hence, to reduce

computational complexity, the positive semidefinite matrix is factored as Z = WW T with

W ∈ Rn×l and the rank l that is much smaller than n. The problem to solve becomes

max
W∈Rn×l

Tr(W T W )=1

Tr(W T AT AW )− γ
∑

i,j

|(WW T )ij |, (2.10)

which searches a space of dimension nl. Although the convexity is lost, the number of local

solutions of (2.10) decreases as l increases. The rank-one case (i.e., l = 1) is very close from

the original combinatorial problem, whereas the full-rank case (i.e., l = n) recovers the convex

relaxation (2.9). The parameter l enables to “interpolate” between these two limit cases.

A fundamental issue with problem (2.10) is that its solutions are not isolated. For any

solution W and any orthogonal matrix Q ∈ Rl×l, i.e., QT Q = Il, the matrix WQ is also

a solution. In other words, problem (2.10) is invariant by right multiplication of the search

variable by an orthogonal matrix. As explained in the sequel, this inherent symmetry of the

problem has an important impact on the optimization method used for solving (2.10).

2.2 Optimization on matrix manifolds

In the previous section, approaches for component analysis are turned into optimization prob-

lems involving constraints, i.e., restrictions of the search space. In this section we take a closer

look on these constraints and highlight the geometry that underlies them.

Specifically, these constraints endow the search space with the structure of a matrix man-

ifold, which casts the problem of component analysis in the realm of optimization on matrix

manifolds. Several efficient algorithms have been proposed in recent years to solve this class

of problems. We refer to the monograph [AMS08] for the state-of-the-art in this area.

Although all the encountered constraints induce a manifold structure on the search space,

the resulting geometry can be rather different. We therefore separate them in three classes:

spherical, orthonormality and invariance constraints. A spherical constraint enforces a vector

to be of unit-norm. It is faced for instance by PCA for maximizing the Rayleigh quotient of

the covariance matrix of the data (i.e., problem (2.4)). The sparse PCA formulations (2.6)

and (2.7) also involve spherical constraints. Orthonormality constraints enforce a matrix to

have mutually orthonormal columns and arise, e.g., to perform ICA (problem (2.5)). Finally,

invariance constraints are introduced whenever the optimization problem presents symmetries.

The Rayleigh quotient (2.3), for instance, is invariant by multiplication of the vector x by a

scalar. Another symmetry is encountered for solving convex relaxations of sparse PCA by

means of low-rank arguments, e.g., problem (2.10) is invariant by right multiplication of W

with an orthogonal matrix.
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2.2.1 Spherical constraints

Spherical constraints express that an optimization has to be performed on the unit Euclidean

sphere,

Sn−1 = {x ∈ Rn | xT x = 1}.

i.e., the set of unit-norm vectors in Rn. Examples include the one-unit sparse PCA problems

(2.6) and (2.7).

Constraint optimization is often tackled by, somehow, converting the optimization problem

into a more familiar unconstrained setting, for which well-known algorithms can be used

(e.g., steepest-descent/ascent, Newton’s, conjugate-gradient or trust-region methods). This is

exactly the way the common penalty, log-barrier and augmented Lagrangian methods proceed:

they solve a sequence of unconstrained problems. These methods handle any constraint,

without however taking advantage of their possibly interesting structure. Details on classical

methods for unconstrained as well as constrained optimization can be found, e.g., in [NW06].

In the particular case of spherical constraints, the most efficient approach is probably to use

well-known tools for unconstrained optimization while simultaneously exploiting the geometry

of the sphere to enforce the constraint.

Algorithms for unconstrained optimization are iterative, i.e., they compute a sequence

of points (the iterates) that converges towards the solution of the problem. To adapt these

algorithms to optimization problems on the sphere, let us define the tangent space to the

sphere at an iterate x ∈ Sn−1 as the set of vectors that are orthogonal to x,

TxSn−1 = {η ∈ Rn | ηT x = 0}, (2.11)

which is a Euclidean space (i.e., a vector space) of dimension n− 1. To obtain a new iterate

x+ ∈ Sn−1 that is closer to the solution, let us move away from the point x in a “good”

direction η ∈ TxSn−1, i.e., x+ is given by the unit-norm vector

x+
def
=

x + η

‖x + η‖ .

At each iteration, an update direction η of the tangent space at the current iterate has to be

found, i.e., the problem amounts to search an element η in a vector space. Classical iterations

for unconstrained optimization can hence be used. For instance, to perform steepest-ascent

optimization, the vector η is chosen as an element of the tangent space that points as well as

possible in the direction of the gradient of the objective function.

To sum up, the constrained optimization problem is lifted at each iterate to a vector space,

where methods for unconstrained optimization can be used. This trick is possible because

the sphere can be locally assimilated to a Euclidean space, i.e., the sphere is a differentiable

manifold. Intuitively, a differentiable manifold is a space that is locally Euclidean, but which

can have a much richer global structure. We refer to do Carmo [Car92] for a formal definition

of the concept. Interestingly, the geometry of a manifold is intrinsic, i.e., all geometrical

properties can be defined without “leaving” the manifold. An “external Euclidean world” is

thus not needed.
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Although an intrinsic characterization of the tangent space to the sphere exists, the def-

inition (2.11) refers to the embedding space Rn. This embedding space enables to perform

computations with abstract geometrical objects in numerical algebra terms. Manifolds for

which this transfer from geometry to numerics is possible are termed matrix manifolds. There

are essentially two main categories of matrix manifolds: the embedded submanifolds of a Eu-

clidean space, such as the sphere which is embedded in Rn and the quotient manifolds, which

are discussed in the sequel.

For completeness, the dimension of a manifold is defined as the dimension of the tangent

space. Hence, the sphere Sn−1 is a manifold of dimension n− 1.

2.2.2 Orthonormality constraints and embedded geometries

Orthonormality constraints pose the optimization problem on the Stiefel manifold,

St(p, n) = {x ∈ Rn×p|xT x = Ip},

which is the set of n-by-p matrices with orthonormal columns. Examples include the ICA

problem (2.5). The Stiefel manifold has dimension np− 1
2p(p + 1) and is embedded in Rn×p.

In the particular case p = 1, it specializes to the sphere.

The optimization strategy discussed in the case of the sphere, i.e., to lift the problem to

the tangent space at each iterate, is valid for any embedded matrix manifold. It can thus be

used in the present case.

For orthogonal matrices, i.e., for the square case p = n, a further structure is available.

The Stiefel manifold is then equipped with a Lie group structure, and is therefore renamed

the orthogonal group

O(n)
def
= St(n, n) = {x ∈ Rn×n|xT x = In}.

The main property of Lie groups is that the product of two elements of the group remains in

the group, i.e., the product of two orthogonal matrices is an orthogonal matrix. This provides

new simple ways to move on the orthogonal group and thus to satisfy the orthonormality

constraints at each iteration. As a furthermore important property of Lie groups, the whole

manifold can be mapped to the tangent space at the identity (i.e, the identity matrix In

in the case of the orthogonal group).6 The initial problem can hence be rewritten as an

unconstrained optimization on a vector space.

These considerations suggest a large diversity of optimization methods to handle orthonor-

mality constraints.

2.2.3 Invariance constraints and quotient geometries

Invariance constraints are introduced to deal with objective functions that have symmetries.

Optimizing functions with symmetries entails difficulties of theoretical and practical nature.

6More precisely, this property holds for compact and connected Lie groups. Since the orthogonal group

is not connected, one usually restricts the search space to the special orthogonal group, which is the set of

orthogonal matrices with positive determinant.
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For instance, the Newton method for solving the unconstrained problem

max
x∈Rn

∗

xT AT Ax

xT x
, (2.3)

yields the iteration x → 2x, which does not increase the objective function (see Proposition

2.1.2 in [AMS08]). This lack of convergence is due to the invariance of the Rayleigh quotient

by multiplication of the vector x with a scalar. This symmetry in fact prevents the Hessian,

i.e., the “curvature matrix”, of the objective function from being positive definite at the

solution, which is required for the well-posedness of the Newton method and most second-

order methods7 [NW06].

The concept of quotient manifold enables to circumvent this issue. A few definitions are

first required. We consider that two vectors x, y ∈ Rn
∗ are equivalent if they point in the same

directions, i.e., y = tx for a certain t ∈ R∗. The equivalence class of x, denoted [x], is defined

as the set of elements of Rn
∗ that are equivalent to x, i.e.,

[x]
def
= {y ∈ Rn

∗ | y = tx, t ∈ R∗}.

Such an equivalence class is thus a straight line of Rn passing though the origin, i.e., a

direction in Rn. The set of all these equivalence classes is a quotient of the total space Rn
∗ .

This quotient is furthermore endowed with a manifold structure, i.e., it is a quotient manifold.

Considering the Rayleigh quotient from this manifold removes the inherent invariance by

scalar multiplication. The subspace of symmetry of the Rayleigh quotient is in fact reduced

to a single point of the quotient. It seems thus natural to optimize that function over the

quotient manifold instead of the total space Rn
∗ .

In case of problem (2.10), the objective function is invariant by right multiplication of

the search variable W by an orthogonal matrix. The equivalence class of W ∈ Rn×l
∗ is thus

defined by the set

[W ]
def
= {WQ|Q ∈ Rl×l, QT Q = Il}.

The set of all these equivalence classes is the quotient manifold of the total space Rn×l
∗ by

the orthogonal group O(l), denoted Rn×l
∗ /O(l).8 Each point of this quotient manifold is thus

a set of matrices. The minimizers of problem (2.10) are isolated on this new search space.

Equivalence classes are abstract objects that cannot be “defined ” on a computer. There-

fore, for numerical computations, any point [x] of a quotient manifold is parameterized by

a particular element x of the Euclidean total space, i.e., the total space provides a matrix

representation to the elements of the quotient. By solving problems defined on a quotient

manifold, attention should however be paid to have successive iterates xi in the total space

that map to distinct points [xi] in the quotient manifold. Ways to satisfy this requisite are

discussed in Chapter 6.

7Second-order optimization methods exploit both first- and second-order derivative information on the

objective function and converge usually faster than simpler first-order optimization methods.
8
R

n×l
∗ is the noncompact Stiefel manifold of full-rank matrices in R

n×l. The nondegeneracy condition is

required to deal with differentiable manifolds.
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Let us finally mention that, to get around the invariance of the Rayleigh quotient (2.3),

one can also constrain the vector x to unit-norm, as previously suggested with problem (2.4).

Getting rid of the symmetry of problem (2.10) by adding a suitable constraint is however

cumbersome. Quotient manifolds provide in this sense a much more natural approach.

2.3 Summary

Component analysis is the problem of reducing large data to lower dimension in order to

highlight the essential information hidden in the raw data. In this chapter we review several

approaches for component analysis, i.e., principal component analysis (PCA), independent

component analysis (ICA) and sparse principal component analysis (sparse PCA), and cast

them as a constrained optimization problem. The constraints involved by these problems are

of three kinds: spherical, orthonormality and invariance constraints. Each of them endow the

problem with an interesting manifold structure. Exploiting this geometry is expected to lead

to efficient algorithms for component analysis.



Chapter 3

Motivating problem: analysis of

gene expression data

The algorithms for component analysis proposed in the thesis are evaluated on the analysis

of gene expression data related to breast cancer. In this chapter, important details on gene

expression data are first provided (Section 3.1). We then address the challenges and oppor-

tunities posed by these data and sketch how component analysis allows to progress towards

meeting these goals (Section 3.2). Specifically, we suggest leads to evaluate the biological

significance of the components and show how novel knowledge on the biology of breast cancer

could emerge (Section 3.3).

3.1 What are gene expression data?

The transcriptome is the set of all messenger RNA (mRNA) molecules in a given cell. Unlike

the genome, which is roughly similar for all the cells of an organism, the transcriptome

may vary from one cell to another according to the biological role of the cell as well as to

the external stimuli. In this sense, it reflects the events that occur within the cell. The

quantity of a given mRNA is determined by a complex interaction between cooperative and

counteracting biological processes. Understanding this intricate mechanism is an important

step in elucidating the relation between the transcriptome of a cell and its phenotype.

Microarrays provide a quantitative measure of the amount of the mRNA molecules in a

cell, called the expression level of the genes. This technology is revolutionary for life science

research because, instead of looking at a very small part of the genome, it provides an overall

view of it in a single assay.

In the last decade, several microarray technologies have been developed. In order to

grasp the main concepts used by these technologies, let us consider the standard case of

complementary DNA (cDNA) microarrays. A cDNA microarray is a small chip on which

strands of DNA are attached at fixed spots. Each spot contains a huge number of identical

DNA sequences to mark a specific gene of the genome. There can be several thousands of

such spots on a single chip. Gene expression can be measured by comparing two mRNA

samples, e.g., a test sample and a control sample. Both samples are first reverse-transcribed
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into complementary DNA (cDNA) and labeled using fluorescent dyes (e.g., red for the test

sample and green for the control sample). The labeled cDNA molecules are mixed and washed

over the chip so that they can hybridize to their complementary sequences in the spots. The

color and intensity of fluorescence of each spot reflects the amount of hybridization of both

samples to the corresponding probe. If the test sample mRNA is in abundance, the spot will

be red. Conversely, it will be green if the control sample mRNA is in abundance. If both

are equal, the spot will be yellow. While if neither are present, it will appear black. Relative

intensity of the dyes enables to quantify the up-regulation or down-regulation of the genes in

the test sample with respect to the control sample. We refer to Riva et al. [RCTH05] and

references therein for more details on microarrays.

A gene expression database stores the results related to a couple of experiments, which

compare a set of test samples against a control sample on distinct microarray chips. The test

samples are usually drawn from cells with a common feature, e.g., cancerous cells of several

unhealthy tissues or patients. The control sample, on the other hand, is collected from normal

(i.e., healthy) cells. The same control sample is usually poured on all the arrays. Sometimes,

however, to better compare tumor against normal tissue, control and test samples are taken

from the same individual. For the sake of completeness, let us mention that some microarray

technologies (e.g., oligonucleotide microarrays) estimate the absolute levels of gene expression.

Two separate chips are thus required when the differential expression of a sample against a

control is of interest.

Gene expression data typically contain the expression levels of several thousand genes

over hundred experiments and are stored in a matrix A ∈ Rm×n, where n is the number

of analyzed genes and m is the number of experiments. The element (i, j) of the matrix A

depicts thus to the expression level of gene j during the ith experiment.

In this thesis, we analyze gene expression data sets related to breast cancer and which

are briefly detailed on Table 3.1. We focus on breast cancer for two reasons. First, for

this type of cancer many large patient cohorts that have been profiled with microarrays are

available. Second, breast cancer is a highly heterogeneous disease and hence it provides

a more challenging (and hence suitable) arena in which to compare and evaluate different

methodologies.

Study Genes (n) Samples (m) Reference

Vijver 13319 295 [VHV+02]

Wang 14913 285 [WKZ+05]

Naderi 8278 135 [NTBM+07]

JRH-2 14223 101 [SWL+06]

Table 3.1: Breast cancer data sets.
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3.2 Component analysis of gene expression data

The challenge to take up with gene expression data is to unravel the mechanisms that give rise

to the measured mRNA levels. At the early beginning of bioinformatics, people though that

each gene was responsible for a particular biological function. But Nature is not so simple:

genes interact. The cell is a huge network between genes, proteins and further biomolecules.

With the advent of high-throughput technologies, such as microarrays, researchers started to

unveil little parts of this network. Although the biological mechanisms behind gene expression

are extremely complex, it is hoped that some “simple” structures, which involve a few genes

only, can explain the most of specific biological processes.

Our main objective in the analysis of gene expression data is to identify genes that are

systematically coexpressed under similar experimental conditions. The inferred sets of genes

are presumably responsible for some specific biological functions that underlie the observed

data.

The methods for component analysis reviewed in Chapter 2 perform an approximate ma-

trix factorization of the gene expression matrix A into the product of two matrices Y ∈ Rm×p

and Z ∈ Rn×p,

A = Y ZT + E, (3.1)

with the rank p that is much smaller than n, and the error term E ∈ Rm×n. The matrix Y

contains the “expression levels” of the p components for the m experiments. The columns

of the matrix Z provide an interpretation to these components as linear combinations of the

n original variables, i.e., the columns of Z depict the “activation pattern” over genes of the

components.

Under “good” mathematical assumptions on the components, one expects each of them

to reflect important biological functions encoded in the data. Thus, the main modeling

hypothesis that underlies the factorization (3.1) is that the expression level of a gene is

determined by a linear superposition of biological processes, some of which try to express it,

while other contending processes try to suppress it. The genes that are the most differentially

activated in the columns of Z characterize the biological functions caught by the associated

component.

We expect the three methods for component analysis discussed the thesis (i.e., PCA, ICA

and sparse PCA) to be useful in this context. First, PCA has been shown in several studies

to be a relevant tool for modeling and analysis of gene expression data (see, e.g., [ABB00,

HMM+00, ABB03]). Second, the assumption of statistically independent components seems

very natural to express that the main biological functions behind gene expression data take

place independently, from a biological point of view. The value of ICA has also been illustrated

by several studies (see, e.g., [Lie02, MMSM02, LB03, KM03, SHK+03, DMB04, ZYW+05,

FVLH06, HZ06, CXW+08, LUG+08, KVG+08, SLK+08, KML+09]). Sparse PCA, finally, is

expected to highlight “simple” structures in the genome that involve a few genes only, but

explain a significant amount of specific biological processes encoded in the gene expression

data. It is in fact reasonable to assume that most of these biological processes correspond

to activation or inhibition of small sets of genes. Biological pathways, for instance, which are
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well-known series of biochemical reactions in and around a cell that ensure a certain biological

function, involve usually a few genes only.

Estimating the rank p of the factorization to provide the most informative components

is a hard outstanding problem. While some approaches to estimating p exist [CG07], for

example, the Bayesian information criterion [HLK01], we decide to infer the same number

of components for each method. There are two reasons for this. First, because of the still

relatively small sample sizes of microarray experiments, estimating the correct number of com-

ponents is difficult. It has therefore been conventional to use a fixed number of components

(e.g., [LB03, CRT+04]). Second, using the same number of components for each algorithm

facilitates their comparison. In the thesis, we arbitrarily chose to infer ten components for

each data set and each method.

3.3 Biological significance of the components

An important issue that is posed by component analysis is how biological knowledge could

emerge from the inferred components. In order to evaluate the biological significance of the

components, the methods we use in the sequel aim at “correlating” the components with

established biological knowledge.

A first performance criterion is to estimate how well the inferred components map to

known biological pathways. As previously mentioned, pathways define groups of genes that

interact when a certain biological function is required. They are thought to provide a “good”

validation framework because breast cancer is caused by aberrations in the activation of spe-

cific pathways that upset the delicate balance between expression and repression in otherwise

healthy tissue.

A second performance criterion is to investigate how well the components relate to regu-

latory motifs and transcription factors.1 Genes tagged with a common regulatory motif are

controlled by the same transcription factor and are thus likely to be coexpressed [XLK+05].

As a consequence, they are expected to appear in the same component.

Finally, gene expression datasets are usually provided with clinical data about each sample

(i.e., patient). This information can be used to check whether the inferred components are

associated with breast cancer phenotypes.

It should be mentioned that it is customary to evaluate components against the Gene

Ontology (GO) [Con00] rather than against the biological pathways or the regulatory motifs.

We however consider that GO does not provide the best framework to evaluate the components

since many genes with the same GO term annotation may not be part of the same biological

pathway or may not be under the control of the same regulatory motif, and vice versa.

Furthermore, evaluating methods for component analysis in the explicit context of biological

pathways and regulatory motifs is a new idea, proposed by our biologist collaborator Andrew

1A transcription factor is a protein that binds to the DNA to control the transcription of the genetic

information. A given transcription factor can bind only at a specific sequence of nucleotides, the regulatory

motif. Regulatory motifs are either located in the promoter region of the gene or in three prime untranslated

region (3’ UTR).
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Teschendorff.

In the following sections, we derive quantitative statistical estimators for the overlap

between components and pathways/regulatory motifs (Section 3.3.1) as well as for the as-

sociation between components and clinical data (Section 3.3.2). These estimators, when

used together, enable to infer meaningful information on the biology of breast cancer (Sec-

tion 3.3.3).

3.3.1 Pathway enrichment index

The pathway enrichment index (PEI) evaluates how well the components map to known path-

ways and regulatory motifs. The enrichment of a component in a pathway or a regulatory

motif is the statistical significance of the overlap between genes derived from established bi-

ology (i.e., the pathway or the regulatory motif) and genes that underlie the component.

Components scoring a high PEI are more clearly related to important known biological func-

tions.

While research in cancer biology is still at the stage of trying to elucidate all the path-

ways that may be involved, several efforts are underway in building up pathway databases.

To compile a comprehensive list of pathways known to be directly or indirectly involved in

cancer biology, we use the Molecular Signatures Database (MSigDB) [STM+05], which in-

clude 522 distinct pathways curated from the literature and from other databases such as

KEGG2 and CGAP.3 We augment this list with known oncogenic pathways provided by Bild

et al. [BYC+05], and cancer signalling pathways from NETPATH,4 yielding a total of 536

pathways. The latter pathways are frequently altered in cancer and hence expected to be

captured by the inferred components. Each of the pathways is described by small sets of

genes known to participate together when a certain biological function is required.

A list of 173 regulatory motifs is provided by Xie et al. [XLK+05]. For each such motif,

the associated regulatory gene module is defined as the set of genes having this motif in their

promoters or 3’ UTR, as provided in MSigDB [STM+05]. Testing the inferred components

for enrichment of regulatory modules provides putative links between components and the

transcription factors that bind to these motifs.

In the component analysis model (2.2), the columns of Y contain the expression level of

the component for the m experiments, while the columns of Z reflect the activation pattern

over genes of the corresponding component. The most differentially activated genes in the

columns of Z are considered to underlie the biological functions mapped by the components.

These genes are conventionally identified by setting a threshold, typically two or three stan-

dard deviations from the mean, and selecting those genes whose absolute weights exceed this

threshold. To focus on the pathways/regulatory modules that dominate a component, we use

the more stringent threshold of three standard deviations on either side from the zero mean,

which picks out the 0.2% of genes in the tails of the signed weight distributions.

2http://www.genome.jp/kegg/
3http://cgap.nci.nih.gov/
4http://www.netpath.org
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The significance of enrichment of genes from a pathway/regulatory module in a compo-

nent is evaluated by using the hypergeometric test. Let n denote the total number of genes

in the database, n1 the number of genes selected from the component, n2 the number of

genes in the pathway and t12 the number of genes that are present in both sets. Under

the null-hypothesis, where the selected genes are chosen randomly, the number t12 follows a

hypergeometric distribution [BS04]. Specifically, the probability distribution is

P (t) =

(
n1

t

) t−1∏

k=0

n2 − k

n− k

n1−t−1∏

k=0

n− n2 − k

n− t− k
=

(
n2

t

)(
n−n2

n1−t

)

(
n
n1

) ,

where the binomial coefficient
(
n
k

)
denotes the number of combinations of k elements in a

set of n elements. For each component-pathway pair, this yields a p-value P (t > t12), which

estimates how enriched the component is in terms of genes from that particular pathway.

Correction for multiple testing is done using the Benjamini-Hochberg procedure to obtain an

estimate for the false discovery rate (FDR) [BH95]. A component is then declared enriched

for a certain pathway if the Benjamini-Hochberg corrected p-value is less than 0.05. Hence,

we would expect approximately 5% of significant tests to be false positives. Finally, we

count the number of pathways enriched in at least one component and defined the PEI as

the corresponding fraction of enriched pathways. More details on the PEI can be found in

Teschendorff at al. [TJA+07].

3.3.2 Association with clinical data

The four breast cancer data set of Table 3.1 are provided with three categorical phenotypes:

estrogen receptor status, histological grade, and clinical outcome.

The estrogen receptor status (ER) is either positive or negative, the positive case meaning

that a significant number of cancer cells have estrogen receptors. Such cells are more likely to

grow and multiply in a high-estrogen environment. ER-positive cancers can thus be treated

by hormonal therapy, the goal of which is to starve the breast cancer cells of estrogen. The

histological grade is an indicator of prognosis in breast cancer. It is a score given on a three-

tier scale that estimates how much the tumor cells resemble or differ from the normal cells

of the same tissue type. A low grade cancerous cell looks almost like a normal tissue and

grows thus slowly. On the other hand, high grade cells grow rapidly and are very aggressive.

Clinical outcome is either dead or alive.

To evaluate statistical significance of an association between a component and a phe-

notype, we separate the weights in the corresponding column of the matrix Y across the

different categories and test these groups of weights to assess whether they are drawn from

equal probability distributions. The component and the phenotype are considered to be re-

lated if this null-hypothesis is rejected. The distribution of all weights of the component is

otherwise independent of the phenotype. The Wilcoxon rank-sum test is used for the two

binary phenotypes and the Kruskal-Wallis test is used for histological grade. Both tests are

based upon the null-hypothesis that the groups come from distributions with equal medians.
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3.3.3 Inference of novel biological knowledge

Biological knowledge could emerge from the combination of the two estimators of biological

significance of the preceding sections. The PEI characterizes each component by the dif-

ferential activation pattern of cancer-related pathways and regulatory modules. For those

components associated with a phenotype, it is hence possible to link the corresponding path-

ways and regulatory modules with the phenotype. In other words, the components are used

as an intermediary to link pathways/regulatory modules with phenotypes. Such relationships

are valuable biological information. In the forthcoming chapters, we show that this approach

for evaluating the biological significance of components leads to well-known biological rela-

tionships but also to novel ones.

3.4 Summary

The present chapter details the problem of analyzing gene expression data, which motivates

the research presented in this thesis. Gene expression data are large databases that store the

expression level of thousands of genes for a couple of cells. They open new perspectives in

the understanding of genetic diseases, such as cancer.

Gene expression data provide a challenging framework to evaluate the algorithms for

component analysis of the thesis. Specifically, we propose strategies to evaluate the biological

relevance of components extracted from breast cancer gene expression data and show how

new knowledge on the biology of cancer could emerge from this study.

The idea of using components as computational tools to link pathways or motifs to phe-

notypes in presented in [TJA+07].
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Chapter 4

Optimization on the Stiefel

manifold and its application to ICA

The Stiefel manifold, denoted St(p, n) with p ≤ n, is defined as the space of p-dimensional

orthonormal bases in an n-dimensional Euclidean space, i.e., the set of matrices of Rn×p with

orthonormal columns,

St(p, n) = {x ∈ Rn×p | xT x = Ip}.

It is an embedded submanifold of Rn×p of dimension np− 1
2p(p+1) [AMS08]. In the particular

case p = 1, the Stiefel manifold corresponds to the unit Euclidean sphere,

Sn−1 = {x ∈ Rn | xT x = 1}.

The square case p = n provides the orthogonal group,

O(n) = {x ∈ Rn×n | xT x = In}.

In the present chapter, we focus on optimization problems of the form

min
x∈St(p,n)

f(x), (P1)

for a smooth objective function f : St(p, n) → R. Aside differentiability, no assumption

is imposed on the function f . This class of optimization problems encloses formulations

of principal component analysis (PCA) and independent component analysis (ICA). The

optimization methods discussed in this chapter compute a local solution of problem (P1), i.e.,

a solution that is optimal with respect to the neighboring points rather than with respect to

all the points of St(p, n).

This chapter is organized as follows. PCA and ICA are first cast into optimization prob-

lems on the Stiefel manifold (Sections 4.1 and 4.2). Optimization methods for solving problem

(P1) are then discussed (Section 4.3). For the particular case of the orthogonal group (p = n),

further optimization strategies are conceivable due to additional geometrical properties (Sec-

tion 4.4). All these optimization methods provide algorithms for ICA (Section 4.5), which are

evaluated on the analysis of gene expression data (Section 4.7). Some numerical experiments

are also proposed, which compare the convergence of the discussed optimization methods

(Section 4.6).
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4.1 Principal component analysis

If A ∈ Rm×n is a matrix encoding m samples of n variables, with n being large, PCA

aims at finding linear combinations of these variables, the principal components, which are

uncorrelated and explain as much of the variance in the data as possible. Although it goes

back to the beginning of the 20th century with the seminal article of Pearson [Pea01] and,

somewhat latter, the contribution of Hotelling [Hot33], PCA is still an active topic of research,

with many papers and several books devoted to it. The problem has been investigated

independently by different fields of research, leading to a large variety of algorithms and

names. From an algorithmic viewpoint, the proper orthogonal decomposition [Lum67], the

Karhunen-Loève transform [Ger81], the singular value decomposition [GVL89] and principal

component analysis [Jol04] are essentially the same.

The objective in this thesis is not to compete with state-of-the-art methods for PCA. Nev-

ertheless, discussing PCA from an optimization perspective is useful to formulate extensions,

such as ICA or sparse PCA.

When introducing PCA in Chapter 2, we started from the approximate factorization model

A = Y ZT + E, (2.2)

where the matrix Z ∈ Rn×p defines the new orthonormal basis in which to view the data

and the matrix Y ∈ Rm×p contains m samples of the p principal components. As stated

in Theorem 2.1.5, the matrices Y and Z are obtained through the rank-p singular value

decomposition UpΣpV
T
p of the data matrix A, i.e.,

Z = Vp and Y = UpΣp.

Since the singular value decomposition minimizes the Frobenius norm of the approximation

error E (Theorem 2.1.6), PCA can be cast as the optimization problem

min
Y,Z

‖A− Y ZT ‖F
s.t. Y ∈ Rm×p,

Off(Y T Y ) = 0,

Z ∈ St(p, n),

(4.1)

which constrains the columns of Y to be orthogonal and those of Z to be orthonormal. In

the hypothetic case where one extracts only one principal component, problem (4.1) consists

in maximizing the Rayleigh quotient of the covariance matrix AT A,1 i.e.,

min
y∈Rm

z∈Sn−1

‖A− yzT ‖2F = min
y∈Rm

z∈Sn−1

Tr(AT A)− 2yT Az + yT y (4.2)

= Tr(AT A)− max
z∈Sn−1

zT AT Az, (4.3)

1Because the columns of A are assumed to be centered, the Gram matrix AT A equals the sample covariance

matrix of the data up to a scalar multiplier, which is simply omitted for the sake of clarity.
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where y = Az is the optimizer of (4.2) at any z ∈ Sn−1. Instead of optimizing with respect

to y first and then to z, the alternative gives the “dual” formulation

min
y∈R

m

z∈Sn−1

‖A− yzT ‖2F = Tr(AT A)− max
ȳ∈Sm−1

ȳT AAT ȳ, (4.4)

with y = (ȳT AAT ȳ)
1
2 ȳ and the solution z = AT y

‖AT y‖ of (4.2) at any y ∈ Rm. Extracting

one principal component amounts to computing the dominant eigenvector of either AT A or

AAT . In the case of gene expression data where the number m of samples in much smaller

than the number n of variables, it is naturally recommended to solve (4.4) instead of (4.3).

Further components are obtained by computing the first principal component of the residual

data matrix A − yzT . Such a sequential evaluation of the components is termed a deflation

process.

Block algorithms for PCA, which extract several components at once, solve for instance

the optimization problem

max
Z∈St(p,n)

Tr(ZT AT AZN) (4.5)

which has the same solution Z as (4.1) provided that the diagonal parameter matrix N has

distinct diagonal elements [Bro91, AMS08]. The solution Y of (4.1) is then given by Y = AZ.

4.2 Independent component analysis

Independent component analysis (ICA) provides a linear representation of the data in terms

of components that are statistically independent. In the approximate matrix factorization

model

A = Y ZT + E, (2.2)

the columns of Y are assumed to contain samples drawn from statistically independent ran-

dom variables. Random variables are, per definition, statistically independent if their condi-

tional probabilities are equal to the “unconditional” (i.e., marginal) probabilities. In other

words, random variables are independent if the value of any one variable does not carry

any information on the value of any other variable. ICA was originally dedicated to the

blind source separation problem, which recovers independent sources from linear mixtures of

them [Com94].

The approximation error E is usually minimized in the least square sense and the com-

ponents are enforced to be uncorrelated, which is a necessary condition for statistical inde-

pendence. As discussed in Chapter 2, ICA amounts then to finding the orthonormal trans-

formation of the principal components to maximize statistical independence. Let Ȳ ∈ Rm×p

contain m samples of the p principal components (described by a random row vector ȳ of

dimension p). Since the independent nature of random variables is not altered by a scaling of

these variables, the random variables in ȳ are assumed, without lost of generality, to be white,

i.e., they all have a unit variance. The orthogonal columns of Ȳ are thus also of unit-norm,

i.e., they are orthonormal.
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In practice, statistical independence has to be appraised by means of finite sets of samples.

ICA maximizes thus a contrast function

f : O(p)→ R : Q 7→ f(Q)

that provides a quantitative estimate of independence between the p components ȳQ. We

refer to Comon [Com94] for the definition of this concept. The only requirement on the

contrast function is that it approaches, with probability one, to a prescribed extremum (say

zero) if and only if the random variables are statistically independent and as the number of

samples m goes to infinity. This leaves many possibilities for the contrast function, leading

to a variety of ICA algorithms, which may also differ in their numerical implementation.

In this square ICA setting, dimension reduction is exclusively achieved during the pre-

processing by PCA. This task can however be shared by both PCA and ICA steps by com-

puting the best rank-p̄ factorization of the data A with p̄ > p and identifying then a matrix

Q ∈ St(p, p̄) to maximize statistical independence, i.e.,

max
Q∈St(p,p̄)

f(Q), (4.6)

where the contrast function f : St(p, p̄) → R estimates the statistical independence of the

p components ȳQ and the random vector ȳ of the principal components is of dimension p̄.

The components obtained with this approach are still uncorrelated and they potentially reach

a better statistical independence. The error E
def
= A − Y ZT is however not minimal. This

soft dimension reduction approach is for instance considered by Theis at al. [TCA09] for the

analysis of biomedical imaging data.

We review below some standard contrast functions. These functions rest on various con-

cepts of probability and information theory, which are explained, e.g., in [Mac02, CT06].

Our intention here is simply to highlight the essence of these contrasts as well as the main

differences among them, without going into the details.

Mutual information

Statistical independence is typically characterized by the mutual information I(x), defined

as the Kullback-Leibler divergence between the joint distribution and the product of the

marginal distributions of the multivariate random variable x = (x1 . . . , xp),

I(x)
def
=

∫

p(x) log
p(x)

p(x1) . . . p(xp)
dx1 . . . dxp,

where p(x) denotes the probability density function of x. The mutual information is non-

negative and equals zero if and only if the random variables xi are all mutually statistically

independent.

Practical formulations of the mutual information rest on the expansions

I(x) =

p
∑

i=1

S(xi)− S(x) and I(x) = J(x)−
p

∑

i=1

J(xi), (4.7)
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with the differential entropy S(x) and negentropy J(x) that are defined by

S(x)
def
=

∫

p(x) log(p(x))dx, and J(x)
def
= S(g)− S(x),

respectively, where g is a Gaussian variable with same mean and variance as x. In the second

expansions in (4.7), i.e., the expansion of the mutual information in terms of negentropies,

the random vector x is assumed to have a zero mean and to be white, i.e., its covariance

matrix is the identity. As previously mentioned, this assumption can always be enforced in

the context of ICA. Contrast functions are obtained from (4.7) by posing x = ȳQ,

fS(Q) =

p
∑

i=1

S(ȳQei)− S(ȳ) and fJ(Q) = J(ȳ)−
p

∑

i=1

J(ȳQei), (4.8)

where ei is the ith canonical basis vector. More details on the derivation of these expressions

can be found in [LF03] for fS and in [Com94] for fJ .

Both contrasts fS and fJ require to estimate unidimensional entropies and negentropies.

This is for instance achieved by means of cumulants.2 Let x be a standardized one-dimensional

random variable x, i.e., x has zero mean and unit variance. A truncated Edgeworth expansion

of the probability distribution of x provides the following fourth-order approximation of the

negentropy,

J(x) ≈ 1

12
κ2

3(x) +
1

48
κ2

4(x) +
7

48
κ4

3(x)− 1

8
κ2

3(x)κ4(x),

where κi denotes the ith cumulant [Com04]. Order statistics also provide efficient estimators

of the entropy/negentropy. Given m samples of x, the order statistic is the set of samples

{x1, . . . , xm} rearranged in non-decreasing order, i.e., x1 ≤ . . . ≤ xm. The differential entropy

of x is estimated by the formula,

S(x) ≈ 1

m− k

m−k∑

j=1

log

(
m + 1

k
(x(j+k) − x(j))

)

,

where k is usually set to
√

m. This expression is derived from a statistical estimator proposed

by Vasicek [Vas76].

2Given a unidimensional random variable x, let gx(t) be the cumulant-generating function defined as

gx(t)
def
= E[etx].

Cumulants are defined by the derivatives κn(x)
def
= dngx(t)

dtn

∣
∣
∣
t=0

. Cumulants up to order 4 are given by

κ1(x) = E[x],

κ2(x) = E[x2] − κ
2
1(x),

κ3(x) = E[x3] − 3κ2(x)κ1(x) − 4κ
3
1(x),

κ4(x) = E[x4] − 4κ3(x)κ1(x) − 3κ
2
2(x) − 6κ2(x)κ2

1(x) − κ
4
1(x).

The cumulant κ1(x) is the mean and the cumulant κ2(x) is the variance.
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Nongaussianity

The central limit theorem states that a sum of independent random variables of any distri-

bution converges (in distribution) to a Gaussian variable as the number of terms tends to

infinity. Each linear combination of random variables is thus expected to be more Gaussian

than the original ones. Independent components should therefore be as non-Gaussian as pos-

sible. A whole range of contrast functions are derived from estimators of nongaussianity of

random variables. The following estimator, for instance, measures the “distance” between the

probability distributions of a random variable x and a Gaussian variable g with same mean

and variance as x,

η(x) = (E[G(x)] − E[G(g)])2, (4.9)

where E[·] is the expectation operator and G is a smooth even function [HKO01]. The choice

G(x) = 1
4x4 recovers the cumulant κ4(x),

η(x) = κ4(x)2,

which, in case of a standardized random variable, is the kurtosis, a well-known estimator of

nongaussianity. In this particular case, the intuitive relationship between nongaussianity and

statistical independence is corroborated by the following result.

Theorem 4.2.1 The kurtosis of the sum of two independent variables x1 and x2 presents a

smaller absolute value than the largest absolute value of the kurtosis among these variables,

i.e.,

|κ4(x1 + x2)| ≤ max(|κ4(x1)|, |κ4(x2)|).

Proof. See [Mat01]. �

Further possibilities for the function G in (4.9) are suggested by Hyvärinen et al. [HKO01].

Contrast functions are obtained by measuring the nongaussianity of the components ȳQ,

f(Q) =

p
∑

i=1

(E[G(ȳQei)]− E[G(g)])2, (4.10)

with g a Gaussian random variable of zero mean and unit variance. These contrasts are used

by the FastICA algorithm [HKO01], which is probably the most popular algorithm for ICA.

Joint diagonalization of cumulant matrices

The Nth-order cumulant tensor C(N)
x of a p-dimensional random vector x = (x1, . . . , xp)

T is

defined in an element-wise manner as

(C(N)
x )i1...iN

def
= κ(xi1 , . . . , xiN ), i1, . . . , iN ∈ [1, p],
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where κ(xi1 , . . . , xiN ) is the joint cumulant of the N random variables xi1 , . . . xiN .3 In case

of a zero-mean random vector x, the second-order cumulant is the covariance matrix. If the

random vector x has mutually independent components, the cumulant tensors of order N ≥ 2

are all diagonal. ICA is thus performed by computing the rotation that diagonalizes as well

as possible the cumulant tensors of the components. In practice, one cannot consider cumu-

lants of any order. Because the second-order cumulant tensor of the principal components is

already diagonal and the cumulant of order three is identically zero for symmetric probability

distributions, one diagonalizes as well as possible the fourth-order cumulant tensor. Perform-

ing numerical computations with tensors can, however, be very tricky. An alternative consists

in deriving a set of matrices from C(N)
x , e.g., the cumulant matrices, that are diagonal in case

of statistical independence. Cumulant matrices are symmetric matrices defined element-wise

by

(Cx(M))i1i2
def
=

∑

i3,i4

(C4
x)i1i2i3i4Mi3i4 .

They are diagonal for any M ∈ Rp×p if the tensor C4
x is diagonal. Furthermore, these matrices

are efficiently evaluated without the computation of the whole tensor C4
x,

Cx(M) =E[(xT Mx)xxT ]− E[xxT ] Tr(ME[xxT ])− E[xxT ](M + MT )E[xxT ],

where the random vector x is assumed to have a zero mean [CS93]. A set of cumulant

matrices is constructed by picking some matrices M . This set of matrices contains the same

information as the whole cumulant tensor if the selected M form an orthogonal basis for the

Euclidean space of the symmetric matrices of Rp×p [Car99].

As a further property, an orthogonal transform x = ȳQ with Q ∈ O(p) results in the

similarity transform

Cx(M) = QT Cȳ(M)Q,

whatever the matrix M . ICA is thus performed by maximizing the contrast function

f(Q) =
∑

i

‖Diag(QT Cȳ(Mi)Q)‖2F , (4.11)

proposed in [CS93], or by minimizing

f(Q) =
∑

i

‖Off(QT Cȳ(Mi)Q)‖2F , (4.12)

where Off(x) = x−Diag(x) extracts the non-diagonal elements of the matrix x [Car99, PS00,

WSC05, AG06]. These two problems either maximize the diagonal elements or minimize the

off-diagonal elements of the cumulant matrices Cx(M), which is consistent with the objective

of diagonalizing these matrices as well as possible.

3Let x1, x2, x3 and x4 be zero mean random variables. The second and fourth order joint cumulants are

given by

κ(x1, x2) = E[x1x2],

κ(x1, x2, x3, x4) = E[x1x2x3x4] − E[x1x2]E[x3x4] − E[x1x3]E[x2x4] − E[x1x4]E[x2x3].
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Nonlinear correlation

Pearson’s correlation coefficient is a typical measure of correlation between random variables.

Given two random variables x1 and x2, it is defined as the covariance between these variables

divided by the product of their standard deviations,

corr(x1, x2) =
E[(x1 − µ1)(x2 − µ2)]

√

E[(x1 − µ1)2]E[(x2 − µ2)2]
,

where µ1 and µ2 are the means of x1 and x2, respectively. Estimators of statistical inde-

pendence are derived by extending this measure to higher-order statistics. The F-correlation

between two random variables x1 and x2, for instance, is defined by

ρF (x1, x2) = max
f1,f2∈F

corr(f1(x1)f2(x2)), (4.13)

where F is a vector space of functions from R to R. It can be proven that two random

variables x1 and x2 are statistically independent if and only if the F-correlation ρF is zero,

up to some conditions on the function space F [BJ03]. In particular, F should have infinite

dimension.

Although this measure of independence provides a contrast to compute two indepen-

dent components, it can be extended in a heuristic manner to a larger number of compo-

nents [BJ03]. The maximization over the infinite dimensional space of functions F is ap-

proximated by means of kernel methods,4 which transform the problem into a generalized

eigenvalue problem of dimension pm, where p and m are the number of components and the

number of samples, respectively. Further kernel-based estimators of statistical independence

have been recently proposed (see, e.g., [GHS+05, AS08]).

4.3 Optimization methods on the Stiefel manifold

Consider the optimization problem

min
x∈St(p,n)

f(x), (P1)

where the objective f : St(p, n) → R is a smooth function and the search variable x is

constrained onto the Stiefel manifold.

Unconstrained optimization problems on Rn can be solved by line-search methods that

repeatedly shift the iterate x ∈ Rn in a direction η ∈ Rn with a certain step size t ≥ 0,

x+ = x + tη, (4.14)

such that the objective function decreases from x to the new iterate x+. Also very common,

the trust-region method approximates at each iteration the objective by a (usually quadratic)

model function and optimizes this model on a restricted domain, the trust region.

Methods for unconstrained optimization are usually well-understood and efficient. One

would of course like to use them, as much as possible, once the search variable has to satisfy

4See, e.g., [Sai88, SS01] for more details on kernel methods.



4.3. Optimization methods on the Stiefel manifold 37

some constraints. A basic method to enforce a constraint is to construct a penalty function

ϕ : Rn → R, which is zero when the constraint holds and positive elsewhere and to minimize

the penalized objective f(x) + γϕ(x), where the positive weight γ is steadily increased. This

approach is however often computationally inefficient and the constraint is, after all, only

approximately satisfied, which is not sufficient in most problems.

Another method is to project each iterate onto the constraint surface, i.e., the sets of

points of Rn that satisfy the constraint. For instance, in the case of the spherical constraint

x ∈ Sn−1, each iterate is normalized to unit-norm. This approach can be successful in special

cases (see Chapter 5) but can also totally fail. In fact, the iterate is first moved, sometimes

far away from the constraint surface, to minimize the objective, and has then to be projected

back to satisfy the constraint. Big movements are operated in the embedding Euclidean space,

whereas the resulting update on the constraint surface can be rather small.

More efficient methods for constrained optimization can however be obtained by taking

advantage of the rich geometry that sometimes underlie the constraints. As briefly explained

in Section 2.2, the manifold structure of problem (P1) enables to adapt methods for uncon-

strained optimization in the context of orthonormality constraints. Intuitively, enforcing the

search direction to be tangent to the constraint surface should reduce the tendency to move

away from it. In recent years, several classical tools for unconstrained optimization have been

tailored to tackle manifold constraints. In the next sections, we review the major concepts

and achievements. Most of the following material is extracted from the monograph [AMS08].

Let us beforehand mention that methods for unconstrained optimization typically work

on Rn, but can be readily extended to matrix search spaces (i.e., Rn×p): either the search

variable is vectorized (the columns are stacked on top of each other) or better, the methods

are rewritten with matrix variables. For instance, iteration (4.14) remains valid for an iterate

x ∈ Rn×p and a search direction η ∈ Rn×p.

4.3.1 Line-search on a manifold

The notion of tangent vector to a manifold is essential in this context. This concept is

somewhat intuitive for embedded manifolds. In the case of the sphere, for instance, a tangent

vector at a point x ∈ Sn−1 is an element η ∈ Rn that is orthogonal to x, i.e., ηT x = 0. The

tangent vector η is so defined as an element of the embedding space Rn. The purpose of

differential geometry, however, is to define any property of a manifold in an intrinsic manner,

i.e., without referring to an “external world”. This is essential to treat manifolds without

the need of embedding them in a larger space (e.g., for quotient manifolds, that are also

encountered in this thesis).

Consider a manifold M, a point x ∈ M, a smooth function f : M → R and a smooth

curve γ : R → M : t 7→ γ(t) such that γ(0) = x. Let γ̇(0) be a mapping that takes the

function f and returns the directional derivative

Df(x)[γ̇(0)]
def
=

d(f(γ(t)))

dt

∣
∣
∣
∣
t=0

.

This mapping defines a tangent vector to the curve γ at x. Since γ is included in M, the
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mapping γ̇(0) is also a tangent vector to the manifold M. The set of all tangent vectors to

M at a point x ∈ M is the tangent space to M at x, denoted TxM. Because its elements

are derivative operators, it is a vector space.

A line-search on a manifoldM consists of selecting a tangent vector η ∈ TxM and moving

from the current iterate x ∈ M with a certain step size along a curve γ(t) ∈M that verifies

γ(0) = x and γ̇(0) = η. This generalizes the classical line-search iteration (4.14) to

x+ = Rx(tη), (4.15)

with the step size t ≥ 0 and the retraction Rx(η). The retraction Rx(η) is a mapping from

the tangent space to the manifold such that the curve γ : R→M : t 7→ γ(t) = Rx(tη) passes

through x at t = 0 and its tangent vector at t = 0 is η.

Both cases of the sphere and the Stiefel manifold are discussed below.

Example 4.3.1 (Line-search on the sphere) Let t 7→ γ(t) be a curve on Sn−1, i.e., γ(t) ∈ Rn

such that

γ(t)T γ(t) = 1. (4.16)

at any t. Let f be a differentiable function defined in the neighborhood of γ(0). The directional

derivative of f along the curve γ at t = 0 is

df(γ(t))

dt

∣
∣
∣
∣
t=0

=

n∑

i=1

∂f

∂γi

∣
∣
∣
∣
γ(0)

dγi(t)

dt

∣
∣
∣
∣
t=0

=

[
dγ1(t)

dt

∣
∣
∣
∣
t=0

, . . . ,
dγn(t)

dt

∣
∣
∣
∣
t=0

]

︸ ︷︷ ︸

γ̇(0)T

[

∂f

∂γ1

∣
∣
∣
∣
γ(0)

, . . . ,
∂f

∂γn

∣
∣
∣
∣
γ(0)

]T

︸ ︷︷ ︸

∇f(γ(0))

,

where γi(t) denotes the ith component of the vector γ(t). The mapping f → γ̇(0)T∇f(γ(0))

is thus a tangent vector at γ(0). In the basis { ∂·
∂γ1

∣
∣
∣
γ(0)

, . . . , ∂·
∂γn

∣
∣
∣
γ(0)
}, the coordinates of this

vector are provided by γ̇(0).

The differentiation of (4.16) with respect to t yields

γ̇(t)T γ(t) + γ(t)T γ̇(t) = 0.

The tangent space at a point x is hence the set of vectors of Rn, which are orthogonal to x,

i.e.,

TxSn−1 = {η ∈ Rn | ηT x = 0}.

This is consistent with intuition. Since any elements x ∈ Sn−1 and η ∈ TxSn−1 are both

represented by vectors in Rn, they can be added. A possible retraction is given by

Rx(η) =
x + η

‖x + η‖2
,

which projects the sum x + η back onto the sphere.
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Example 4.3.2 (Line-search on the Stiefel manifold) Let γ(t) be a curve on St(p, n),

i.e., γ(t) ∈ Rn×p and

γ(t)T γ(t) = Ip. (4.17)

for any t. The tangent vector γ̇(t) to the curve γ is represented by a matrix of Rn×p, which

can be decomposed as

γ̇(t) = γ(t)Ω(t) + γ⊥(t)K(t),

where Ω(t) ∈ Rp×p, K(t) ∈ R(n−p)×p and γ⊥(t) ∈ Rn×(n−p) spans the orthogonal complement

of the subspace spanned by γ(t). The differentiation of (4.17) yields

γ̇(t)T γ(t) + γ(t)T γ̇(t) = 0.

Hence, Ω(t)T + Ω(t) = 0, i.e., Ω(t) is skew-symmetric. The tangent space corresponds thus

to the set

TxSt(p, n) = {xΩ + x⊥K | Ω = −ΩT ,K ∈ R(n−p)×p}.

Possible retractions are provided by

Rx(η) = qf(x + η) or Rx(η) = uf(x + η),

where qf(x) denotes the Q factor of the QR decomposition of the matrix x (i.e., x = QR,

where Q ∈ St(p, n) and R ∈ Rp×p is an upper triangular matrix) and uf(x) denotes the U

factor of the polar decomposition of x (i.e., x = US, where U ∈ St(p, n) and S ∈ Sp is a

positive semidefinite matrix.).

4.3.2 First-order differential-geometric methods

In the line-search iteration (4.14), the search direction η has to be a descent direction, i.e.,

a small shift in that direction decreases the objective. Steepest-descent methods perform a

search in the direction opposite to the gradient of the objective at the current iterate. The

notion of “gradient of a function on a manifold” needs to be defined. For that purpose, we

endow the manifold M with a Riemannian metric to obtain a Riemannian manifold. A

Riemannian metric 〈·, ·〉x is an inner product on the tangent space TxM. This metric induces

a norm

‖η‖x def
=

√

〈η, η〉x,

on TxM. The gradient is derived from the previously defined notion of directional deriva-

tive. Given a smooth function f : M → R, the gradient of f at x ∈ M is the element

gradf(x) ∈ TxM that satisfies

〈gradf(x), η〉x = Df(x)[η], ∀η ∈ TxM. (4.18)

The gradient points in the direction of maximum ascent of objective function,

gradf(x)

‖gradf(x)‖x
= arg max

η∈TxM
‖η‖x=1

Df(x)[η].
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In case of the Euclidean space Rn×p, the definition (4.18) corresponds to the classical element-

wise construction

[gradf(x)]ij =
∂f

∂xij

∣
∣
∣
∣
x

, (4.19)

at the point x ∈ Rn×p and for the metric 〈η, ζ〉x = Tr(ηT ζ).

In the case of a manifold M embedded in Rn×p, it should first be noted that, at a point

x ∈M, the Euclidean space Rn×p is uniquely decomposed into the two subspaces,

Rn×p = TxM⊕NxM,

where the normal space NxM is the set of elements in Rn×p that are orthogonal to all the

elements of TxM according to the metric 〈·, ·〉x. Any element η ∈ Rn×p is so decomposed

into the sum

η = Pxη + P⊥
x η,

where Pxη ∈ TxM and P⊥
x η ∈ NxM. Let ∇f(x) denote the Euclidean gradient of f at x,

i.e., the gradient of f computed in the embedding space according to (4.19). The gradient of

f on the manifold M corresponds then to

gradf(x) = Px∇f(x), (4.20)

which satisfies the definition (4.18) since

〈gradf(x), η〉x = 〈∇f(x), η〉x = Df(x)[η],

for any η ∈ TxM.

The following two examples provide detailed insight into both projections Px and P⊥
x in

the specific cases of the sphere and the Stiefel manifolds.

Example 4.3.3 (Projections for the sphere) Consider the metric 〈η, ζ〉x
def
= ηT ζ on the

tangent space TxSn−1 = {η ∈ Rn | ηT x = 0}. The normal space corresponds then to

NxSn−1 = {αx | α ∈ R}. Given an element η ∈ Rn, projections onto the tangent space

and the normal space are respectively given by

Pxη = (In − xxT )η and P⊥
x η = xxT η.

Example 4.3.4 (Projections for the Stiefel manifold) Consider the metric 〈η, ζ〉x
def
= Tr(ηT ζ)

on the tangent space

TxSt(p, n) = {xΩ + x⊥K | Ω = −ΩT ,K ∈ R(n−p)×p}.

By considering the identity Tr(SΩ) = 0 for any symmetric matrix S and skew-symmetric

matrix Ω, the normal space corresponds to

NxSt(p, n) = {xS | S = ST },

and the projections are given by

Pxη = (In − xxT )η + x skew(xT η) and P⊥
x η = x sym(xT η),

where sym(M)
def
= 1

2(M + MT ) and skew(M)
def
= 1

2 (M −MT ) extract, respectively, the sym-

metric and the skew-symmetric part of the square matrix M .
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Finally, to complete the description of the steepest-descent method, the step size t in the

iteration (4.15) can be chosen by classical backtracking methods. It is customarily chosen to

satisfy the Armijo condition

f(Rx(tη)) ≤ f(x) + σ〈gradf(x), tη〉x,

where x ∈M is the current iterate, σ ∈ (0, 1) and Rx(η) is a retraction. Accumulation points

of the steepest-descent method are proved to be stationary points of the objective function

(i.e., a point for which gradf(x) ∈ TxM is zero), provided that the step size t satisfies

the Armijo condition at each iteration. Furthermore, since the iteration performs a descent

mapping, the local minimizers are the only stable accumulation points of the algorithm.

4.3.3 Second-order differential-geometric methods

Many optimization methods exploit both first- and second-order derivative information on the

objective function. Such methods usually converge faster than the simple steepest-gradient

method, i.e., they often converge superlinearly whereas the steepest-gradient method con-

verges only linearly.

On a vector space, second-order derivative information on a smooth function is provided

by the Hessian. The Hessian at a point x ∈ Rn of a function f : Rn → R : x 7→ f(x) is a

matrix H(x) ∈ Rn×n such that

[H(x)]ij
def
=

∂2f

∂xi∂xj

∣
∣
∣
∣
x

.

Most methods do not require an explicit evaluation of the Hessian but only its application on

a particular direction η ∈ Rn, i.e., the product H(x)η. This corresponds to the derivative of

the gradient in the direction η. The notion of “directional derivative of a vector field” is gen-

eralized to manifolds thanks to the concept of Riemannian connection. The discussion below

provides some intuition about this concept as well as practical guidelines for its numerical

evaluation. We refer to Absil et al. [AMS08] for a rigorous definition.

Let ζ be a vector field on a manifold M, i.e., a map that assigns to each point x ∈ M a

tangent vector ζx ∈ TxM. The gradient of a function is a typical example of vector field. Let

∇ηζx ∈ TxM denote the directional derivative of the vector field ζ at x ∈ M in a direction

η ∈ TxM. Consider the following examples.

Example 4.3.5 (Riemannian connection on the sphere) Let ζ̄ be a vector field on Rn.

Let ζ be the associated vector field on Sn−1 that assigns to any point x ∈ Sn−1 the tangent

vector

ζx
def
= Pxζ̄x = (In − xxT )ζ̄x.

The directional derivative of ζ̄ at x in a direction η ∈ TxSn−1 is

Dζ̄x[η] = lim
t→0

ζ̄x+tη − ζ̄x

t
.
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The “classical” directional derivative of ζ (i.e., computed in the Euclidean sense in Rn) at x

in the direction η is given by

lim
t→0

ζx+tη − ζx

t
= (In − xxT )Dζ̄x[η]− (xηT + ηxT )ζ̄x,

which is, in general, not an element of the tangent plane TxSn−1. The Riemannian connection

is simply the projection of this derivative onto TxSn−1,

∇ηζx
def
= Px

(

lim
t→0

ζx+tη − ζx

t

)

= (In − xxT )Dζ̄x[η]− ηxT ζ̄x.

Example 4.3.6 (Riemannian connection on the Stiefel manifold) Let ζ̄ be a vector

field on Rn×p. Let ζ be the associated vector field on St(p, n) that assigns to any point

x ∈ St(p, n) the tangent vector

ζx
def
= Pxζ̄x

= (In − xxT )ζ̄x + x skew(xT ζ̄x).

The directional derivative of ζ̄ at x in a direction η ∈ TxSt(p, n) is

Dζ̄x[η] = lim
t→0

ζ̄x+tη − ζ̄x

t
.

Again, the Euclidean directional derivative of ζ (i.e., computed in the embedding space Rn×p)

at x in the direction η,

lim
t→0

ζx+tη − ζx

t
= PxDζ̄x[η]− η sym(xT ζ̄x)− x sym(ηT ζ̄x),

is, in general, not an element of the tangent space. The Riemannian connection is the pro-

jection of this derivative onto TxSt(p, n),

∇ηζx
def
= Px

(

lim
t→0

ζx+tη − ζx

t

)

= PxDζ̄x[η] − Pxη sym(xT ζ̄x).

Given a Riemannian connection, the Hessian of a function f at a point x ∈M is naturally

defined by

Hessf(x)[η] = ∇ηgradf(x),

for any tangent vector η ∈ TxM and represents the derivative of the gradient in the direc-

tion η. This definition enables to generalize standard second-order optimization methods to

manifolds. For instance, Newton’s method consists in solving the equation

Hessf(x)[η] = −gradf(x)
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with respect to η at each iterate x. The update is then performed according to x+ = Rx(η).

The trust-region method minimizes at each iteration a quadratic model of the objective on a

trust region of radius ∆,

max
η∈TxM

f(x) + 〈gradf(x), η〉x +
1

2
〈Hessf(x)[η], η〉x (4.21)

subject to 〈η, η〉x ≤ ∆2.

Again, the next iterate is computed according to x+ = Rx(η). Since problem (4.21) is

defined on a vector space, classical optimization strategies can be directly used. The conjugate

gradient method has also been generalized to manifolds.

All these optimization methods are supported by a convergence theory whose results

are similar to the ones related to classical unconstrained optimization. In particular, trust-

region methods on manifolds converge globally to stationary points of the objective function

if the inner iteration (i.e., the iteration used to solve (4.21) at a given x ∈ M.) produces a

model decrease that is better than a fixed fraction of the Cauchy decrease [ABG07]. Since the

iteration is moreover a descent method, convergence to saddle points or local maximizers is not

observed in practice. For appropriate choices of the inner iteration stopping criterion, trust-

region methods converge locally superlinearly towards the non-degenerate local minimizers of

the objective function.

We refer to Absil et al. [AMS08] for the complete description and convergence analysis of

these differential-geometric optimization methods. The trust-region algorithm is also detailed

in [ABG07].

4.4 Optimization methods on the orthogonal group

In the particular case p = n, the Stiefel manifold inherits the properties of a Lie group.

Definition 4.4.1 (Group) A group is a set G endowed with a product called the group

operation such that

1. Given x, y ∈ G, x · y is also in G;

2. Given x, y, z ∈ G, (x · y) · z = x · (y · z);

3. There is an identity element 1, such that x · 1 = 1 · x = x for any x ∈ G;

4. For each element x ∈ G, there is any inverse x−1 ∈ G such that x · x−1 = x−1 · x = 1.

Definition 4.4.2 (Lie group) A Lie group is a differentiable manifold M and a differen-

tiable group operation that satisfy the four group properties.

The orthogonal group O(n) = {x ∈ Rn×n | xT x = In} is a Lie group for the matrix

multiplication. In fact, the product of two orthogonal matrices is an orthogonal matrix.

The matrix multiplication is associative. The identity matrix is the identity element. The
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inverse of an orthogonal matrix, finally, is an orthogonal matrix. In view of these geometrical

properties, further methods can be considered for solving the optimization problem

min
x∈O(n)

f(x), (4.22)

with a smooth function f : O(n)→ R. The first group property in Definition 4.4.1 suggests

the iterations

x+ = xy or x+ = yx, (4.23)

where the orthogonal update y ∈ O(n) is constructed such that the objective decreases from

x to x+. Thanks to the Lie group structure of O(n), the orthonormality constraint can be

maintained at each iterate in a very natural manner.

Note that the iteration x+ = yx with y ∈ O(n) could also be used for optimization on

the Stiefel manifold, i.e., x ∈ St(p, n) with p < n. Left matrix multiplication of an element

of St(p, n) with an element of O(n) remains in St(p, n). Formally, the orthogonal group acts

transitively on the Stiefel manifold.

4.4.1 Jacobi rotations

A common choice for the update y in (4.23) is provided by the Jacobi rotation [GVL89,

Com94, Car99]. A Jacobi rotation yk,l(t) ∈ O(n) is defined element-wise by

[yk,l(t)]ij
def
=







cos(t) if i = k and j = k,

sin(t) if i = k and j = l,

− sin(t) if i = l and j = k,

cos(t) if i = l and j = l,

1 if i = j and i 6= k, l,

0 otherwise,

(4.24)

and performs a planar rotation of angle t in the subspace of Rn spanned by the two canonical

basis vectors ek and el.

A Jacobi algorithm consists in selecting two directions {ek, el} at each iteration and to

compute the rotation t that maximizes the objective function on the subspace spanned by

these vectors. At each iteration, a “line-search” for the best angle t needs to be performed.

The Jacobi algorithm was initially proposed to diagonalize a symmetric matrix and to compute

its eigenvalue decomposition, but it can be extended to any optimization problem on the

orthogonal group (see e.g., [HH97]). Overall, it is a very efficient algorithm once the “line-

search” inner problems have closed-form solutions. This is definitely the case for the eigenvalue

decomposition [GVL89]. Some ICA contrasts are also endowed with this interesting property,

e.g., the ICA contrast (4.11) to approximately joint diagonalize a set of matrices [CS93]. An

alternative, otherwise, is to perform an exhaustive search on the interval t ∈ [0, 2π]. This

approach is used by the RADICAL algorithm [LF03] to maximize an order-statistics based

estimator of the mutual information. Interestingly, exhaustive search can be restrained to

the interval t ∈ [0, π
2 ] for ICA contrasts, because the sign and the order of the components is

insignificant.
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A Jacobi algorithm usually sweeps until convergence through all possible pairs of basis

vectors in a sequential and ordered fashion. Such an algorithm is known as the sequential cyclic

Jacobi algorithm. The Jacobi algorithm arouses also much interest because it is appropriate

for parallel computations (see, e.g., [GVL89, EP90] and references therein).

4.4.2 Geodesic flows

For any compact and connected Lie group M, there exists an exponential map

Exp : T1M→M,

from the tangent space at the identity T1M to the manifoldM that is smooth and surjective,

i.e., for any point in x ∈ M, there exists an element η ∈ T1M such that Exp(η) = x. This

exponential map enables to lift a problem defined on a Lie group into a problem defined on

a vector space, where traditional methods for unconstrained optimization could be used.

The orthogonal group is compact but not connected. It consists of two connected com-

ponents: the matrices with positive determinant (dextrorsum orthonormal frames) and the

matrices with negative determinant (senestrorsum orthonormal frames). A compact and con-

nected Lie group is obtained by considering the matrices with positive determinant only. This

defines the special orthogonal group SO(n). In the case of ICA, since the sign of the compo-

nents is unimportant, the search space can be restricted to SO(n) instead of O(n) without

loss of generality. As discussed previously in the Example 4.3.2, the tangent space at the

identity to x ∈ SO(n) is given by the set of skew-symmetric matrices,

so(n)
def
= T1SO(n) = {Ω | ΩT = −Ω}.

The vector space so(n) satisfies the properties to be a Lie algebra and is therefore called the

Lie algebra of SO(n).5 An exponential map for SO(n) is provided by the matrix exponential

Exp(η) = eη def
= In + η +

η2

2!
+ . . . +

ηk

k!
+ . . . ,

which, given a skew-symmetric matrix η, provides an orthogonal matrix. The optimization

problem (4.22) is thus naturally lifted into

min
η∈so(n)

f̄(η). (4.25)

where f̄ : so(n)→ R : f̄(η) = f(Exp(η)).

Classical optimization methods can be used for solving (4.25). For illustration, consider

the simplest case of the steepest-descent method, i.e., the iteration is

η+ = η − tgradf̄(η) (4.26)

5A Lie algebra g is a vector space with a Lie bracket [·, ·] : [g, g] → g that satisfies

[x, x] = 0,

[x + y, z] = [x, z] + [y, z],

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

for any elements x, y, z ∈ g. The vector space so(n) is a Lie algebra for the Lie bracket [x, y] = xy − yx.
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with the step size t ≥ 0. To any iterate η corresponds an orthogonal matrix x = Exp(η). The

gradient gradf̄(η) is the vector of so(n) that satisfies

〈gradf̄(η), ζ〉 = Df̄(η)[ζ],

for any direction ζ ∈ so(n). If one endows the vector space so(n) with the metric 〈η1, η2〉 def
= Tr(ηT

1 η2),

the following holds

Df̄(η)[ζ] = lim
t→0

f̄(η + tζ)− f̄(η)

t

= lim
t→0

f(Exp(η + tζ))− f(Exp(η))

t

= Tr(∇f(Exp(η))T DExp(η)[ζ]),

where ∇f(x) is the Euclidean gradient of f at x and

DExp(η)[ζ] = ζ +
1

2!
(ηζ + ζη) +

1

3!
(ηηζ + ηζη + ζηη) + . . . .

This series is however difficult to evaluate, excepted at the point η = 0. The usual trick

consists in shifting the computation of the gradient to the origin of so(n). Let us consider

the mapping so(n) → SO(n) : η 7→ xExp(η) that maps the origin of so(n) onto the current

iterate x ∈ SO(n). The steepest-descent iteration (4.26) is then rewritten in the form

η+ = −tgradf̄x(0)

x+ = xExp(η+),
(4.27)

with the function f̄x : so(n) → R : f̄x(η) = f(xExp(η)) and where the gradient is evaluated

at the origin. The following closed-form expression is now available,

gradf̄x(0) = skew(xT∇f(x)). (4.28)

The exponential map between the Lie algebra and the Lie group provides very elegant

methods for optimization. Specifically, straight lines of so(n) are mapped onto geodesics of

SO(n), i.e., curves of minimum distance between two points. The iteration (4.27) performs

therefore a geodesic search on SO(n). The numerical evaluation of the matrix exponential is,

however, a usually very costly operation. Interestingly, if the skew-symmetric η has only one

non-zero element at position (k, l), i.e.,

η(k, l) = 1 and η(k, l) = −1 with k < l, (4.29)

the matrix exponential etη is provided by the Jacobi rotation (4.24). The Jacobi algorithm,

described in Section 4.4.1, performs hence a search along geodesics that are computationally

cheap, but which do not point in directions of steepest-descent.

As previously mentioned, the Jacobi algorithm usually sweeps through the matrices η

satisfying (4.29) in an ordered fashion. An alternative would be to choose at each iteration

the matrix η that is the closest to the gradient (4.28). This would achieve a trade-off be-

tween finding a steepest-descent direction and minimizing the computational expense. Let us
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finally mention that such an approach is also conceivable for rotations on three-dimensional

subspaces, for which a closed-form expression of the matrix exponential is also available.6

4.5 Algorithms for independent component analysis

Algorithms for ICA are obtained by combining a contrast function with an optimization

method. Applying the optimization methods of Sections 4.3 and 4.4 on the contrasts of

Section 4.2 recovers some well-known algorithms, that we now briefly review.

The following list of algorithms for ICA is not exhaustive. This research topic is very

active and the related literature is vast. We only review a couple of algorithms that match

within the geometric framework discussed in this chapter.

The Jacobi algorithm is widely used for optimizing ICA contrasts. In his seminal paper on

ICA, Comon proposes a Jacobi algorithm to optimize the estimator of the mutual information

based on cumulants [Com94]. The JADE algorithm [CS93, Car99] uses Jacobi rotations to

diagonalize as well as possible a set of cumulant matrices. These two methods are provided

with closed-form expressions for the best rotation angle t at each iteration. RADICAL [LF03]

is another Jacobi algorithm that maximizes an order-statistics based estimator of the mutual

information. But in contrast to the previous algorithms, the geodesic search is performed in

an exhaustive manner. As a further example, SOBI [BAMCM97] is a Jacobi algorithm that

approximately joint diagonalizes covariance matrices extracted from time-series data (i.e.,

data for which the order of the samples is meaningful).

A gradient optimization on the orthogonal group of the contrast used by the RADICAL

algorithm is discussed in [JTAS07, JAS07]. The KernelICA algorithm [BJ03] maximizes

a kernel approximation of the F-correlation (4.13) by gradient-descent on the orthogonal

group. The main contributions on Lie group methods for ICA are due to Nishimori [Nis99]

and Plumbley [Plu03, Plu05].

FastICA [HH00], probably the most popular algorithm for ICA, maximizes measures of

non-gaussianity on the sphere. A rather heuristic optimization method is used in the origi-

nal formulation, which has been later improved by exploiting the manifold structure of the

problem [WRZ+06, SKH08].

For completeness, let us mention that the algorithms for ICA discussed in this thesis

post-process the principal components by computing a suitable rotation, and are therefore

commonly qualified as orthogonal algorithms for ICA. Some further approaches do, however,

not compute principal components and manage to identify from scratch a non-orthogonal

6Consider a skew-symmetric matrix η that is zero, excepted at the 3-by-3 skew-symmetric submatrix ω

formed by the intersection of the rows and columns i, j, and k of η. Assume that ‖ω‖2 = 1, i.e., the largest

singular value of ω is one. The matrix exponential etη is an identity matrix, excepted at the submatrix formed

by the intersection of the rows and columns i, j, and k that equals

I3 + ω sin(t) + ω
2(1 − cos(t)).

This last equation is known as the Rodriguez formula [MSZ94]. The orthogonal matrix etη corresponds to a

rotation on the three-dimensional subspace spanned by the canonical basis vectors ei, ej and ek.
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p-dimensional basis Z of Rn in which the data is represented at best. Optimization is then

performed on the noncompact Stiefel manifold Rn×p
∗ , i.e., the set of n-by-p full-rank matrices,

or the general linear group GLn in the square case p = n. The well-known Infomax algorithm

belongs to this category of methods [BS95, LGS99]. A whole bunch of non-orthogonal algo-

rithms for ICA are also based on the joint approximate diagonalization of a set of matrices

(see, e.g., [Pha01, AG06, Afs06, WLZ07] and references therein).

4.6 Numerical experiments

In this section, some of the discussed optimization methods are compared on the minimization

of a same contrast, e.g., the objective function

f : O(p)→ R : x 7→ f(x) =
∑

i

‖Off(xT Cix)‖2F . (4.30)

whose minimization performs the joint approximate diagonalization of the matrices Ci.

Considered are manifold-based optimization methods, Jacobi algorithms as well as ap-

proaches based on the exponential mapping. A couple of objects need to be specified to use

these algorithms. First, the Euclidean gradient of the function f , used in the equations (4.20)

and (4.28), is given by

∇f(x) = 4
∑

i

CxOff(xT Cix).

Similarly, the Euclidean directional derivative of this gradient in a direction η, required to

evaluate the Riemannian connection (see Example 4.3.6), is given by

D∇f(x)[η] = 4
∑

i

Cη Off(xT Cix) + Cη Off(ηT Cix) + Cη Off(xT Ciη).

The retraction used by the manifold-based methods is done by QR factorization (see Exam-

ple 4.3.2). Concerning the Jacobi algorithm, we refer to Cardoso and Souloumiac [CS93] for

a closed-from expression of the best angle t that optimizes the contrast at each iteration.

In our experiments, the matrices Ci are cumulant matrices drawn from a data matrix

A that is artificially constructed as the product A = SH, where S ∈ Rm×p contains m

samples of p statistically independent random variables (the sources) and H ∈ Rp×n is a

mixing matrix. Each column of S contains the pixel values of a black-and-white image of

dimension 256-by-512. Ten images are considered, which are expected to have independent

pixels distributions.7 The matrix H ∈ R10×10 is chosen randomly according to a Gaussian

distribution.

Numerical results obtained with MATLAB are presented in Figure 4.1. The two methods

“Gradient” and “Trust-region” are adaptations of the classical gradient-descent and trust-

region methods on manifolds. For the trust-region approach, the parameter θ in equation (10)

of [ABG07] is set to one to ensure a quadratic convergence. “Jacobi (cyclic)” denotes the

sequential cyclic Jacobi algorithm which computes Jacobi rotations in an ordered fashion,

7These images are available at the URL http://www.cis.hut.fi/projects/ica/data/images/
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whereas “Jacobi (gradient)” is the algorithm proposed at the end of Section 4.4.2, which

computes at each iteration the Jacobi rotation that is the closest to the gradient. “Exp. map-

ping”, finally, performs a gradient-descent along geodesics of the orthogonal group according

to (4.27). In both algorithms “Gradient” and “Exp. mapping”, the step size t is computed by

backtracking search. Specifically, we use the Armijo step size (see Definition 4.2.2 in [AMS08]

with parameters ᾱ = 2, β = 0.5 and σ = 0.01).

Figure 4.1 shows that the trust-region approach achieves quadratic convergence, whereas

the other methods converge only linearly. Although the cyclic Jacobi algorithm is the slowest

to converge in terms of number of iterations, it is the fastest in terms of computational time

for low accuracies. Computing a Jacobi rotation is in fact very cheap. When comparing

the two gradient methods “Gradient” and ”Exp. mapping”, it turns out that these methods

have identical rates of convergence. The “Gradient” algorithm is however somewhat faster in

time, probably because a QR factorization is numerically cheaper to evaluate than a matrix

exponential. Finally, “Jacobi (gradient)” has a better convergence than “Jacobi (cyclic)”. In a

close neighborhood of the solution, the convergence of “Jacobi (gradient)” is even comparable

to the one of the steepest-descent algorithms. Nevertheless, because evaluating a gradient at

each iteration is somewhat costly, the common cyclic Jacobi algorithm is still the fastest in

time.
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Figure 4.1: Convergence of several optimization methods for minimizing the function (4.30).

All methods are initialized from the same initial point and converge towards the same local

minimizer x∗. The vertical axis is the distance log (f(x) − f(x∗)).

4.7 Analysis of gene expression data

In this section, we use PCA and ICA to analyze the four breast cancer cohorts described

in Table 3.1. PCA has been intensively applied in the context of gene expression data (see,

e.g., [ABB00, HMM+00, ABB03]). Several studies have also shown the value of ICA, notably

Liebermeister [Lie02], who was the first to apply ICA to gene expression data. Important re-

sults on some bacterial and human databases are also detailed in [MMSM02, LB03, SHK+03].
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PCA is performed by computing the singular value decomposition of the data and four dif-

ferent implementations of the ICA paradigm are considered: FastICA [HH00], JADE [Car99],

KernelICA [BJ03] and RADICAL [LF03]. Ten components are inferred for each data set

and method, i.e., p = 10. Importantly, in the context of gene expression analysis, statistical

independence is typically imposed in the space of the genes rather than in the space of the

experiments, i.e., the columns of Z in the factorization (2.2) are seen as samples of statisti-

cally independent random variables,. This provides activation patterns over genes that are as

independent as possible. Going back to Section 2.1.2, ICA then amounts to computing a ro-

tation matrix Q that maximizes the statistical independence of the columns of Z = V ΣQΣ̄−1.

Statistical quantities are so estimated from a much larger number of measurements.

This study has been published in PLoS Computational Biology [TJA+07]. The most

significant results are summarized below.

Pathway enrichment analysis

Because of the statistical independence assumption inherent in ICA, one expects the com-

ponents to map more closely to known pathways than an alternative linear decomposition

method, like PCA, that does not use the statistical independence criterion. In Figure 4.2

(plots (A) and (B)), the pathway enrichment index (PEI), that we have defined in Section

3.3.1, is shown for two lists of pathways, for each of the methods and the four breast cancer

sets. Figure 4.2 shows that across the four cohorts the PEI is higher for ICA algorithms when

compared with PCA. It is also noteworthy that when comparing the various ICA algorithms

with each other we do not observe any appreciable difference in their respective PEI, although

these algorithms significantly differ in the contrast and the optimization method they use.
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Figure 4.2: Pathway enrichment index (PEI) based on 536 biological pathways (A), 14 cancer-

signalling and oncogenic pathways (B) and 173 motif-regulatory gene sets (C).
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As a further validation that ICA outperforms PCA, let us investigate the relation of

the derived components with regulatory modules. Figure 4.2 in plot (C) shows that PCA

performs worst out of all algorithms. In two cohorts (“Wang” and “Naderi”), none of the PCA

components is associated with any of the 173 distinct regulatory modules. In contrast, the

components derived by ICA algorithms are consistently associated with regulatory modules.

These results show that ICA provides a more biologically meaningful decomposition of breast

cancer expression data than PCA.

Figure 4.3 lists the pathways that are most frequently and consistently differentially acti-

vated by the four ICA algorithms across all four breast cancer cohorts. Among these pathways

are those related to estrogen signalling as well as to other important breast cancer signalling

pathways such as the EGFR1 and TGF-β pathways. We also find cell-adhesion, immune-

response, cell-cycle, and metabolic pathways to be commonly differentially activated across

the cohorts. While breast cancer studies have found study-specific gene clusters associated

with cell-cycle, estrogen-response, cell-adhesion, and immune-response functions, our results

show that expression variation across breast tumors can be understood in terms of single

pathways (i.e., a fixed common set of genes for all studies) that relate to these biological

functions.

0 1 2 3 4

cell_growth_and_or_maintenance

CR_CELL_CYCLE

KRAS_TOP100_KNOCKDOWN

tcapoptosisPathway

cskPathway

CR_IMMUNE_FUNCTION

surface_receptor_signal_transduction

blymphocytePathway

MAP00350_Tyrosine_metabolism

slrpPathway

Wnt−pathway

compPathway

TNF−alpha−NF−kB

Matrix_Metalloproteinases

Androgen−Receptor

EMT_UP

NFKB_INDUCED

EGFR1−pathway

breast_cancer_estrogen_signalling

TGF−beta−receptor

Figure 4.3: Twenty of the most frequently mapped pathways by ICA. The scores give the

average number of ICA components in which the pathway is mapped.
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Correlation with clinical data

Statistical testing between inferred components and clinical data reveals a complex pattern

of significant associations with several components differentiating breast tumors according

to estrogen receptor (ER) status and histological grade (Figure 4.4). It is notable that in

all cohorts ICA components associating with clinical outcome are also found, while PCA

generally does not. Another feature is the fact that more and stronger phenotype associations

are uncovered by using ICA as compared with PCA.
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Figure 4.4: Heatmaps of association between components and breast cancer phenotypes. For

each data set and each method, ten p-values are represented that assess the strength of

association between each component and a phenotype. Color-code: p-value < 10−10 (dark

red), p-value < 0.001 (red), p-value < 0.01 (orange), p-value < 0.05 (pink) and p-value > 0.05

(white). For Wang’s cohort, grade information is unavailable

Since we characterize each component in terms of the differential activation pattern of

cancer-related pathways and regulatory modules, for those components associated with a

phenotype we are able to link the corresponding pathways and regulatory modules with the

phenotype. This leads to several well-known but also novel observations. Let us briefly review

a few of them.

First, as expected, ICA components that are strongly associated with ER status are fre-

quently mapped to the estrogen signalling pathway. Second, ICA components that map to

the CR (cancer related) cell-cycle pathway [BCC+03] are frequently associated with either

grade or outcome. The association between cell-cycle genes and grade or outcome is well-

known [SNM+03, SWL+06, TNBM+06]. Third, we observe that pathways relating to immune

response functions and the classical complement pathway are frequently correlated with ER
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status. For example, we find in each of the four major breast cancer cohorts an ICA com-

ponent that maps to the CR immune response pathway [BCC+03], and which is consistently

overactivated in ER- relative to ER+ tumors. Fourth, in all studies where grade informa-

tion is available, an ICA component mapping to epithelial-mesenchymal transition (EMT)

signalling pathway [JGT+03] is found to be associated with histological grade. Specifically,

ICA reveals a component driving upregulation of genes involved in EMT in poorly differen-

tiated tumors relative to low-grade tumors across the three studies where grade information

is available. The latter associations linking immune response and EMT pathways with ER

status and histological grade, respectively, are novel.

The parallel analysis for regulatory motifs and breast cancer phenotypes also provides

direct links between the associated transcription factors and clinical variables. We refer to

Teschendorff et al. [TJA+07] for the details.

Importantly, ICA facilitates the identification of many of the biological associations in

comparison with PCA. Significant associations revealed by any one of the four ICA algorithms

in all cohorts are, in fact, not consistently found by PCA. Some particular associations are

even not identified by PCA in any cohort.

From statistical independence to sparsity

Statistical independence can be viewed as a “weak manner” to impose sparsity in the loading

vectors, i.e., to enforce the columns of the matrix Z to contain many zeros. In fact, the ICA-

inferred activation patterns over genes are as super-Gaussian as possible, which means that

most of the entries are close to zero, excepted a few ones which might be large. It appears

thus in this study that components involving a few genes only by still explaining a great part

of the variability in the data explain more of the hidden biology than the regular principal

components. This motivates the forthcoming investigations on sparse principal component

analysis, which imposes sparsity in a “strong manner”, i.e., by clearly setting the entries of

the matrix Z to zero.

4.8 Summary

The present chapter is devoted to smooth optimization problems defined on the Stiefel man-

ifold, i.e., the set of n-by-p matrices with orthonormal columns. The discussed applications

concern principal component analysis (PCA) and especially independent component analy-

sis (ICA). Typical objective functions for ICA are first reviewed, which relate to statistical

estimators of independence between random variables. Various optimization methods are

then discussed, that inherently exploits the rich geometry of the Stiefel manifold. Further

optimization methods are also suggested for the limit case of the orthogonal group. Overall,

these methods rest on classical tool for unconstrained optimization, but take advantage of the

manifold structure to enforce orthonormality constraints. The numerical efficiency of these

methods is compared on simple test problems. PCA and ICA are then applied on the four

breast cancer cohorts. It turns out that ICA identifies important biological relationships, so
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far unseen by PCA.

The results of this chapter have been published in [TJA+07, JTAS07, JAS07, JTA+08].



Chapter 5

Generalized power method and its

application to sparse PCA

In the present chapter, we focus on optimization problems of the form

max
x∈Q

f(x), (P2)

where Q is a compact subset of a Euclidean space E and the function f : E→ R is convex1

but not necessarily smooth. The applications discussed in the sequel consider sets Q that are

compact embedded manifolds, such as the sphere and the Stiefel manifold are. Due to the

convexity of the objective function, we are able to propose a simple gradient-type scheme,

the generalized power method, which appears to be well suited for problems of the class (P2).

In the particular case when Q is the unit Euclidean ball in Rn and f(x) = xT Cx for some

symmetric positive definite matrix C ∈ Rn×n, this gradient scheme specializes to the power

method, which aims at maximizing the Rayleigh quotient R(x) = xT Cx
xT x

and thus at computing

the largest eigenvalue and the corresponding eigenvector of C. By letting the matrix C be

the Gram matrix AT A, the (generalized) power method solves the problem

max
z∈Rn

zT z=1

zT AT Az, (5.1)

which computes the first principal component of the column-centered data matrix A ∈ Rm×n

encoding m samples of n variables. Variations of PCA are obtained by adding a suitable

penalty term to (5.1) that preserves the convexity of the objective function. In the specific

case of penalties that enforce sparsity, the generalized power method performs sparse principal

component analysis (sparse PCA).

This chapter is organized as follows. First, formulations for sparse PCA in the form of

(P2) are derived (Section 5.1). The generalized power method is then proposed and analyzed

1A function f : E → R is convex if for all x1, x2 ∈ E and θ with 0 ≤ θ ≤ 1, we have

f(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 − θ)f(x2),

i.e., the chord between x1 and x2 is above or on the graph of the function f . We refer to Boyd and Vanden-

berghe [BV04] for further the properties of convex functions.

55
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(Section 5.2). New algorithms for sparse PCA are subsequently obtained (Section 5.3). These

algorithms are first evaluated on random test problems (Section 5.4) and then on the analysis

of breast cancer gene expression data (Section 5.5).

5.1 Sparse principal component analysis

Principal and independent components are, in general, combinations of all the input variables.

For instance, the vector z ∈ Rn that solves the PCA problem (5.1) is not expected to have

many zero coefficients. In most applications, however, the original variables have concrete

physical meaning and the extracted components appear especially interpretable if they are

composed only from a small number of the original variables. In the case of gene expression

data, one would like to find “simple” structures in the genome, expected to involve a few

genes only, that explain a significant amount of the specific biological processes underlying

the data. Sparse principal component analysis (sparse PCA) has the objective to explain as

much variability in the data as possible, using components constructed from as few variables

as possible. A reasonable trade-off between statistical fidelity and interpretability has thus to

be found.

For about a decade, sparse PCA has been a topic of active research. Historically, the

first suggested approaches were based on ad-hoc methods involving post-processing of the

components obtained from classical PCA. For example, Jolliffe et al. [Jol95] consider using

various rotation techniques to find sparse loading vectors in the subspace identified by PCA.

Cadima et al. [CJ95] propose to simply set to zero the PCA loadings which are in absolute

value smaller than some threshold constant.

In recent years, more involved approaches have been put forward, which consider the con-

flicting goals of explaining variability and achieving representation sparsity simultaneously.

These methods usually cast the sparse PCA problem in the form of an optimization problem,

aiming at maximizing explained variance penalized for the number of non-zero loadings. For

instance, the SCoTLASS algorithm proposed by Jolliffe et al. [JTU03] aims at maximizing

the Rayleigh quotient of the covariance matrix of the data under the ℓ1-norm based Lasso

penalty [Tib96]. Zou et al. [ZHT06] formulate sparse PCA as a regression-type optimiza-

tion problem and impose the Lasso penalty on the regression coefficients. d’Aspremont et

al. [AEJL07] in their DSPCA algorithm exploit convex optimization tools to solve a convex

relaxation of the sparse PCA problem. Shen and Huang [SH08] adapt the singular value

decomposition (SVD) to compute low-rank matrix approximations of the data matrix un-

der various sparsity-inducing penalties. Greedy methods, which are typical for combinatorial

problems, have been investigated by Moghaddam et al. [MWA06]. Finally, d’Aspremont et

al. [ABE08] propose a greedy heuristic accompanied with a certificate of optimality.

Let us mention that sparse PCA has a wide range of applications. Besides the problem

of component analysis discussed in this thesis, some examples are proposed by d’Aspremont

et al. [ABE07]. Compressed sensing, for instance, is the problem of finding a vector x ∈ Rn

from measurements y = Ax + e where A ∈ Rm×n is a known matrix and the unknown vector

of error e ∈ Rm has a low cardinality [CT05]. This NP hard problem can be solved by linear
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programming provided that the restricted isometry condition is satisfied. One way to check

this condition is to solve a sparse PCA problem [ABE07].

In the following sections, we consider several formulations of the sparse principal com-

ponent analysis of a data matrix A ∈ Rm×n as the maximization of a convex function on

a compact set. These formulations aim at extracting either one dominant sparse principal

component (“single-unit sparse PCA”) or p components at once (“block sparse PCA”). While

the basic formulations involve maximization of a nonconvex function on a space of dimension

involving n, reformulations are derived that cast the problem into the form of maximization

of a convex function on the unit Euclidean sphere in Rm (in the p = 1 case) or the Stiefel

manifold in Rm×p (in the p > 1 case). The advantage of the reformulation becomes apparent

when trying to solve problems with many variables (n ≫ m) since this manages to avoid

searching a space of large dimension. By applying the general gradient scheme to the pro-

posed sparse PCA reformulations of the form (P2), algorithms are obtained with per-iteration

computational cost O(nmp). These algorithms can also address the case of starting out with

the sole knowledge of the covariance matrix between the n variables, i.e, without access to the

data matrix. One simply needs to identify a factorization of this positive semidefinite matrix

as the product AT A, e.g., by eigenvalue decomposition or by Cholesky decomposition.

5.1.1 Sparse PCA as a maximization with spherical constraints

The “single-unit” formulations of sparse PCA come in two variants, depending on the type

of penalty that is used to enforce sparsity: either ℓ1 or ℓ0 (cardinality).2

Single-unit sparse PCA via ℓ1-penalty

Consider the optimization problem

φℓ1(γ)
def
= max

z∈Bn

√
zT AT Az − γ‖z‖1, (5.2)

with sparsity-controlling parameter γ ≥ 0, sample covariance matrix AT A, and the unit

Euclidean ball Bn = {x ∈ Rn | xT x ≤ 1}.
The solution z∗(γ) of problem (5.2) in the case γ = 0 equals the dominant right singular

vector of A and provides thus the first principal component of the data matrix A. The optimal

value of the problem is given by

φℓ1(0) = (λ1(A
T A))

1
2 = σ1(A),

where λ1 and σ1 denote the largest eigenvalue and the largest singular value, respectively.

There is no reason to expect the vector z∗(0) to be sparse. On the other hand, for large

enough γ, one necessarily has z∗(γ) = 0, obtaining maximum sparsity. Indeed, since

max
z 6=0

‖Az‖2
‖z‖1

= max
z 6=0

‖
∑

i ziai‖2
‖z‖1

≤ max
z 6=0

∑

i |zi|‖ai‖2
∑

i |zi|
= max

i
‖ai‖2 = ‖ai∗‖2,

2Our single-unit cardinality-penalized formulation is identical to that of d’Aspremont et al. [ABE08].
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one has ‖Az‖2−γ‖z‖1 < 0 for all nonzero vectors z whenever γ is chosen to be strictly bigger

than ‖ai∗‖2. From now on we assume that

γ < ‖ai∗‖2. (5.3)

A trade-off can be found between the value ‖Az∗(γ)‖2 and the sparsity of the solution

z∗(γ). The penalty parameter γ is introduced to “continuously” interpolate between the two

extreme cases described above, with values in the interval [0, ‖ai∗‖2). It depends on the par-

ticular application whether sparsity is valued more than the explained variance, or vice versa,

and to what extent. Due to these considerations, we consider the solution of (5.2) to provide

a sparse principal component of A.

Reformulation. The objective function in (5.2) is not convex, nor concave. The feasible

set is furthermore of a high dimension for large n. These shortcomings are overcome by

considering the following reformulation,

φℓ1(γ) = max
z∈Bn

‖Az‖2 − γ‖z‖1

= max
z∈Bn

max
x∈Bm

xT Az − γ‖z‖1 (5.4)

= max
x∈Bm

max
z∈Bn

n∑

i=1

zi(a
T
i x)− γ|zi|

= max
x∈Bm

max
z̄∈Bn

n∑

i=1

|z̄i|(|aT
i x| − γ), (5.5)

where zi = sign(aT
i x)z̄i. In view of (5.3), there is some x ∈ Bn for which aT

i x > γ. Fixing such

x, solving the inner maximization problem for z̄ and then translating back to z, we obtain

the closed-form solution

z∗i = z∗i (γ) =
sign(aT

i x)[|aT
i x| − γ]+

√
∑n

k=1[|aT
k x| − γ]2+

, i = 1, . . . , n. (5.6)

Problem (5.5) can therefore be written in the form

φ2
ℓ1

(γ) = max
x∈Sm−1

n∑

i=1

[|aT
i x| − γ]2+. (5.7)

The objective function in (5.7) is differentiable and convex, and hence all local and global

maxima must lie on the boundary, i.e., on the unit Euclidean sphere Sm−1. Also, in the case

when m ≪ n, formulation (5.7) requires to search a space of a much lower dimension than

the initial problem (5.2).

Sparsity. In view of (5.6), an optimal solution x∗ of (5.7) defines a sparsity pattern of the

vector z∗. In fact, the coefficients of z∗ indexed by

I = {i | |aT
i x∗| > γ} (5.8)
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are active while all others must be zero. Geometrically, active indices correspond to the

defining hyperplanes of the polytope

D = {x ∈ Rm | |aT
i x| ≤ 1}

that are (strictly) crossed by the line joining the origin and the point x∗

γ
. It is even possible

to say something about the sparsity of the solution without the knowledge of x∗: for any

i = 1, . . . , n such that γ ≥ ‖ai‖2, it holds that

z∗i (γ) = 0. (5.9)

Single-unit sparse PCA via cardinality penalty

Instead of the ℓ1-penalization, the authors of [ABE08] consider the formulation

φℓ0(γ)
def
= max

z∈Bn
zT AT Az − γ ‖z‖0, (5.10)

which directly penalizes the number of nonzero components (cardinality) of the vector z.

Reformulation. The reasoning of the previous section suggests the reformulation

φℓ0(γ) = max
x∈Bm

max
z∈Bn

(xT Az)2 − γ‖z‖0, (5.11)

where the maximization with respect to z ∈ Bn for a fixed x ∈ Bm has the closed-form

solution

z∗i = z∗i (γ) =
[sign((aT

i x)2 − γ)]+aT
i x

√
∑n

k=1[sign((aT
k x)2 − γ)]+(aT

k x)2
, i = 1, . . . , n. (5.12)

In analogy with the ℓ1 case, this derivation assumes that

γ < ‖ai∗‖22,

so that there is x ∈ Bn such that (aT
i x)2−γ > 0. Otherwise z∗ = 0 is optimal. Formula (5.12)

is easily obtained by analyzing (5.11) separately for fixed cardinality values of z. Hence,

problem (5.10) is cast in the following form,

φℓ0(γ) = max
x∈Sm−1

n∑

i=1

[(aT
i x)2 − γ]+. (5.13)

Again, the objective function is convex, albeit non-smooth, and the new search space is of

particular interest if m≪ n. A different derivation of (5.13) for the n = m case can be found

in [ABE08].

Sparsity. Given a solution x∗ of (5.13), the set of active indices of z∗ is given by

I = {i | (aT
i x∗)2 > γ}.

Geometrically, active indices correspond to the defining hyperplanes of the polytope

D = {x ∈ Rm | |aT
i x| ≤ 1}
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that are (strictly) crossed by the line joining the origin and the point x∗√
γ
. As in the ℓ1 case,

we have

z∗i (γ) = 0, (5.14)

for any i = 1, . . . , n such that γ ≥ ‖ai‖22.

5.1.2 Sparse PCA as a maximization with orthonormality constraints

In many applications, several components need to be identified. The traditional approach

consists in incorporating an existing single-unit algorithm in a deflation scheme and to com-

pute the desired number of components sequentially (see, e.g., d’Aspremont et al. [AEJL07]).

In the case of Rayleigh quotient maximization it is well-known that computing several com-

ponents at once instead of computing them one-by-one by deflation with the classical power

method might present better convergence whenever the largest eigenvalues of the underlying

matrix are close to each other (see, e.g., Parlett [Par80]). Therefore, block approaches for

sparse PCA are expected to be more efficient on ill-posed problems. Block formulations of

sparse PCA come also in two variants, with either an ℓ1 or an ℓ0 (cardinality) penalty to

enforce sparsity.

Block sparse PCA via ℓ1-penalty

Consider the following block generalization of (5.4),

φℓ1,m(γ)
def
= max

X∈St(p,m)
Z∈[Sn−1]p

Tr(XT AZN)− γ

p
∑

j=1

n∑

i=1

|zij |, (5.15)

where γ ≥ 0 is a sparsity-controlling parameter and N = Diag(µ1, . . . , µp), with positive

entries on the diagonal and

[Sn−1]p = {X ∈ Rn×p | Diag(XT X) = Ip},

is the space of n-by-p matrices with unit-norm columns (i.e., the product of p spheres Sn−1).

The dimension p corresponds to the number of extracted components and is assumed to

be smaller or equal to the rank of the data matrix, i.e., p ≤ Rank(A). It will be shown

below that under some conditions on the parameters µi, the case γ = 0 recovers PCA. In

that particular instance, any solution Z∗ of (5.15) has orthonormal columns, although this

is not explicitly enforced. For positive γ, the columns of Z∗ are not expected to be orthogo-

nal anymore. Most existing algorithms for computing a set of sparse principal components,

e.g., [ZHT06, AEJL07, SH08], also do not impose orthogonal loading directions. Simultane-

ously enforcing sparsity and orthogonality seems to be a hard (and perhaps questionable) task.

Reformulation. Since problem (5.15) is completely decoupled in the columns of Z, i.e.,

φℓ1,m(γ) = max
X∈St(p,m)

p
∑

j=1

max
zj∈Sn−1

µjx
T
j Azj − γ‖zj‖1,
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the closed-form solution (5.6) of (5.4) is easily adapted to the block formulation (5.15),

z∗ij = z∗ij(γ) =
sign(aT

i xj)[µj|aT
i xj| − γ]+

√
∑n

k=1[µj |aT
k xj| − γ]2+

. (5.16)

This leads to the reformulation

φ2
ℓ1,m(γ) = max

X∈St(p,m)

p
∑

j=1

n∑

i=1

[µj|aT
i xj| − γ]2+, (5.17)

which maximizes a convex function f : Rm×p → R on the Stiefel manifold St(p,m).

Sparsity. A solution X∗ of (5.17) again defines the sparsity pattern of the matrix Z∗: the

entry z∗ij is active if

µj|aT
i x∗

j | > γ,

and equal to zero otherwise. For γ > maxi,j µj‖ai‖2, the trivial solution Z∗ = 0 is optimal.

Block PCA. For γ = 0, problem (5.17) is equivalently written in the form

φ2
ℓ1,m(0) = max

X∈St(p,m)
Tr(XT AAT XN2), (5.18)

which has been well studied (see, e.g., Brockett [Bro91] and Absil et al. [AMS08]). The

solutions of (5.18) span the dominant p-dimensional invariant subspace of the matrix AAT .

Furthermore, if the parameters µi are all distinct, the columns of X∗ are the p dominant

eigenvectors of AAT , i.e., the p dominant left-eigenvectors of the data matrix A. The columns

of the solution Z∗ of (5.15) are thus the p dominant right singular vectors of A, i.e., the PCA

loading vectors. Such a matrix N with distinct diagonal elements enforces the objective

function in (5.18) to have isolated maximizers. In fact, if N = Ip, any point X∗Q with X∗ a

solution of (5.18) and Q ∈ O(p) is also a solution of (5.18). In the case of sparse PCA, i.e.,

γ > 0, the penalty term enforces isolated maximizers. The technical parameter N is therefore

set to the identity matrix in what follows.

Block sparse PCA via cardinality penalty

The single-unit cardinality-penalized case can also be naturally extended to the block case,

φℓ0,m(γ)
def
= max

X∈St(p,m)
Z∈[Sn−1]p

Tr(Diag(XT AZN)2)− γ‖Z‖0, (5.19)

where γ ≥ 0 is the sparsity-inducing parameter and N = Diag(µ1, . . . , µp) with positive en-

tries on the diagonal. In the case γ = 0, problem (5.21) is equivalent to (5.18) and therefore

corresponds to PCA, provided that all µi are distinct.

Reformulation. Again, this block formulation is completely decoupled in the columns of Z,

φℓ0,m(γ) = max
X∈St(p,m)

p
∑

j=1

max
zj∈Sn−1

(µjx
T
j Azj)

2 − γ‖zj‖0,
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so that the solution (5.12) of the single unit case provides the optimal columns zi,

z∗ij = z∗ij(γ) =
[sign((µja

T
i xj)

2 − γ)]+µja
T
i xj

√
∑n

k=1[sign((µja
T
k xj)2 − γ)]+µ2

j(a
T
k xj)2

. (5.20)

The reformulation of problem (5.19) is thus

φℓ0,m(γ) = max
X∈St(p,m)

p
∑

j=1

n∑

i=1

[(µja
T
i xj)

2 − γ]+, (5.21)

which maximizes a convex function f : Rm×p → R on the Stiefel manifold St(p,m).

Sparsity. For a solution X∗ of (5.21), the active entries z∗ij of Z∗ are given by the condition

(µja
T
i x∗

j)
2 > γ.

Hence for γ > max
i,j

µj‖ai‖22, the optimal solution of (5.19) is Z∗ = 0.

5.2 Maximization of convex functions on compact sets

In this section, we propose and analyze a simple gradient-type method for maximizing a

convex function f : E→ R on a compact set Q,

f∗ = max
x∈Q

f(x), (P2)

where E an arbitrary vector space. Unless explicitly stated otherwise, the function f is not

assumed to be differentiable.

Let E∗ be the conjugate space of E, i.e., the space of all linear functionals on E. By 〈s, x〉
we denote the action of s ∈ E∗ on x ∈ E. For a self-adjoint positive definite linear operator

G : E→ E∗ we define a pair of norms on E and E∗ as follows

‖x‖ def
= 〈Gx, x〉 12 , x ∈ E,

‖s‖∗ def
= 〈s,G−1s〉 12 , s ∈ E∗.

(5.22)

Although the forthcoming theory is developed in this general setting, the sparse PCA formu-

lations of Section 5.1 require either the choice E = E∗ = Rm or E = E∗ = Rm×p. In both

cases, G is the corresponding identity operator for which we obtain

〈s, x〉 = sTx, ‖x‖ = 〈x, x〉 12 = ‖x‖2, x, s ∈ Rm, and

〈s, x〉 = Tr(sT x), ‖x‖ = 〈x, x〉 12 = ‖x‖F , x, s ∈ Rm×p.

In this chapter, the notation ∇f(x) refers to any subgradient of function f at x. By ∂f(x) we

denote its subdifferential.3 At any point x ∈ Q we introduce some measure for the first-order

3The subgradient generalizes the notion of gradient to convex but non-smooth functions. The subgradient

of a convex function f at a point x ∈ E is an element ∇f(x) ∈ E
∗ such that

f(y) − f(x) ≥ 〈∇f(x), y − x〉

for any y ∈ E. The subdifferential ∂f(x) is the set of all subgradients of f at x.
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optimality conditions,

∆(x)
def
= max

y∈Q
〈∇f(x), y − x〉.

Clearly, ∆(x) ≥ 0 and it vanishes only at the points where the gradient ∇f(x) belongs to

the normal cone4 to the convex hull5 of the set Q, denoted Conv(Q), at x. The optimality

conditions are hence satisfied once ∆(x) = 0.6

5.2.1 A gradient algorithm

Consider the following simple algorithmic scheme, which maximizes at each iteration the best

linear approximation of the objective function f . By virtue of its convexity, a lower bound to

the objective is repeatedly maximized.

Algorithm 1: Gradient scheme

input : Initial iterate x0 ∈ E.

output: xk, approximate solution of (P2)

begin
k ←− 0

repeat
xk+1 ∈ Arg max{f(xk) + 〈∇f(xk), y − xk〉 | y ∈ Q}
k ←− k + 1

until a stopping criterion is satisfied

end

Depending on the nature of the set Q, the inner problem, i.e., the maximization of a linear

function on Q, can sometimes be very simple. For instance, in the special cases of the sphere

and the ball of radius r > 0, i.e.,

Q = {x ∈ E | ‖x‖ = r} and Q = {x ∈ E | ‖x‖ ≤ r},

the main step of Algorithm 1 can be written in an explicit form,

xk+1 = r
G−1∇f(xk)

‖∇f(xk)‖∗
. (5.23)

5.2.2 Convergence analysis

The following theorems indicate that the proposed gradient method has best theoretical

convergence properties when either f or Q are strongly convex. Such a situation can always

be enforced by adding a strongly convex regularizing term to the objective function, constant

on the feasible set. We do not, however, prove any results concerning the quality of the

obtained solution. Even the goal of obtaining a local maximizer is in general unattainable,

and we must be content with convergence to a stationary point. Our first convergence result

is straightforward.

4The normal cone to a compact and convex set Q at a point x ∈ Q is the set {s ∈ E
∗ | 〈s, y − x〉 ≥

0, for all y ∈ Q}.
5The convex hull of a set Q is the smallest convex set that contains Q.
6The normal cone to the set Conv(Q) at x ∈ Q is smaller than the normal cone to the set Q. Therefore,

the optimality condition ∆(x) = 0 is stronger than the standard one.
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Theorem 5.2.1 Let sequence {xk}∞k=0 be generated by Algorithm 1 as applied to a convex

function f . Then the sequence {f(xk)}∞k=0 is monotonically increasing and lim
k→∞

∆(xk) = 0.

Moreover,

∆k
def
= min

0≤i≤k
∆(xi) ≤

f∗ − f(x0)

k + 1
. (5.24)

Proof. From convexity of f , it holds that

f(xk+1) ≥ f(xk) + 〈∇f(xk), xk+1 − xk〉 = f(xk) + ∆(xk),

and therefore, f(xk+1) ≥ f(xk) for all k. By summing up these inequalities for k = 0, 1, . . . , N − 1,

we obtain

f∗ − f(x0) ≥ f(xk)− f(x0) ≥
k∑

i=0

∆(xi),

and the result follows. �

For a sharper analysis, we need some technical assumptions on f and Q.

Assumption 5.2.2 The norms of the subgradients of f are bounded from below on Q by a

positive constant, i.e.,

δf
def
= min

x∈Q
∇f(x)∈∂f(x)

‖∇f(x)‖∗ > 0. (5.25)

This assumption is not too binding because of the following result.

Proposition 5.2.3 Assume that there exists a point x̄ 6∈ Q such that f(x̄) < f(x) for all

x ∈ Q. Then

δf ≥
min
x∈Q

f(x)− f(x̄)

max
x∈Q
‖x− x̄‖ > 0.

Proof. Because f is convex, for any x ∈ Q it holds that

0 < f(x)− f(x̄) ≤ 〈∇f(x), x− x̄〉 ≤ ‖∇f(x)‖∗ ‖x− x̄‖.

�

For our next convergence result we need to assume either strong convexity of f or strong

convexity of the set Conv(Q).

Assumption 5.2.4 Function f is strongly convex, i.e., there exists a constant σf > 0 such

that for any x, y ∈ E

f(y) ≥ f(x) + 〈∇f(x), y − x〉+ σf

2
‖y − x‖2. (5.26)

Convex functions satisfy this inequality for convexity parameter σf = 0.

Assumption 5.2.5 The set Conv(Q) is strongly convex, i.e., there exists a constant σQ > 0

such that for any x, y ∈ Conv(Q) and α ∈ [0, 1] the following inclusion holds,

{αx + (1− α)y +
σQ
2

α(1 − α)‖x− y‖2z | z ∈ E, ‖z‖ = 1} ⊂ Conv(Q). (5.27)
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Convex sets satisfy this inclusion for convexity parameter σQ = 0.

As indicated in the forthcoming Theorem 5.2.8, a better analysis of Algorithm 1 is possible

if Conv(Q), the convex hull of the feasible set of problem (P2), is strongly convex. Note that

in the case of the two formulations (5.7) and (5.13) of the sparse PCA problem, the feasible

set Q is the unit Euclidean sphere. Since the convex hull of the unit sphere is the unit

ball, which is a strongly convex set, the feasible set of our sparse PCA formulations satisfies

Assumption 5.2.5.

Example 5.2.6 (Strong convexity of the ball) In the special case of the sphere

Q = {x ∈ E | ‖x‖ = r},

for some r > 0, there is a simple proof that Assumption 5.2.5 holds with σQ = 1
r
. Indeed, for

any x, y ∈ E and α ∈ [0, 1], we have

‖αx + (1− α)y‖2 = α2‖x‖2 + (1− α)2‖y‖2 + 2α(1 − α)〈Gx, y〉

= α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

Thus, for x, y ∈ Q we obtain,

‖αx + (1− α)y‖ =
[
r2 − α(1 − α)‖x− y‖2

] 1
2 ≤ r − 1

2r
α(1 − α)‖x − y‖2.

Hence, we can take σQ = 1
r
.

The relevance of Assumption 5.2.5 is justified by the following technical observation.

Proposition 5.2.7 Let Assumption 5.2.5 be satisfied. Then for any x ∈ Q, the following

holds,

∆(x) ≥ σQ
2
‖∇f(x)‖∗ ‖y(x)− x‖2, (5.28)

where y(x)
def
∈ arg maxy∈Q 〈∇f(x), y − x〉.

Proof. At an arbitrary x ∈ Q, it holds that

〈∇f(x), y(x)− y〉 ≥ 0, y ∈ Conv(Q).

We use this inequality for

y = yα
def
= x + α(y(x) − x) +

σQ
2

α(1− α)‖y(x) − x‖2 G−1∇f(x)

‖∇f(x)‖∗
, α ∈ [0, 1].

In view of Assumption 5.2.5, yα ∈ Conv(Q). Therefore,

0 ≥ 〈∇f(x), yα − y(x)〉 = (1− α)〈∇f(x), x − y(x)〉+ σQ
2

α(1 − α)‖y(x) − x‖2 ‖∇f(x)‖∗.

Since α is an arbitrary value from [0, 1], the result follows. �

We are now ready to refine our analysis of Algorithm 1.
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Theorem 5.2.8 (Convergence) Let f be convex and let Assumption 5.2.2 and at least one

of Assumptions 5.2.4 and 5.2.5 be satisfied. If {xk} is the sequence of points generated by

Algorithm 1, then
N∑

k=0

‖xk+1 − xk‖2 ≤
2(f∗ − f(x0))

σQδf + σf

. (5.29)

Proof. Indeed, in view of our assumptions and Proposition 5.2.7, it holds that

f(xk+1)− f(xk) ≥ ∆(xk) +
σf

2
‖xk+1 − xk‖2 ≥

1

2
(σQδf + σf )‖xk+1 − xk‖2.

�

We cannot in general guarantee that the algorithm converges to a unique local maximizer. In

particular, if started from a local minimizer, the method does not move away from this point.

However, the above statement guarantees that all of its limit points satisfy the first-order

optimality condition.

5.2.3 Maximization with spherical constraints

Consider E = E∗ = Rm with G = Im and 〈x, y〉 = xT y, and let Q be a sphere of radius r,

Q = r · Sm−1 = {x ∈ Rm | ‖x‖2 = r}.

Problem (P2) takes on the form

f∗ = max
x∈r·Sm−1

f(x). (5.30)

Since Conv(Q) is strongly convex (σQ = 1
r
), Theorem 5.2.8 is meaningful for any convex

function f (σf ≥ 0). It has already be mentioned (see (5.23)) that the main step of Algorithm 1

can be written down explicitly,

xk+1 = r
∇f(xk)

‖∇f(xk)‖2
.

Note that the single-unit sparse PCA formulations (5.7) and (5.13) conform to the setting

(5.30). The following examples illustrate the connection to classical algorithms.

Example 5.2.9 (Power method) In the special case of a quadratic objective function

f(x) = 1
2xT Cx

for some positive definite matrix C ∈ Sm on the unit sphere (r = 1), it holds that

f∗ = 1
2λ1(C),

and Algorithm 1 is equivalent to the power iteration method for computing the largest eigen-

value of C (see, e.g., Golub and Van Loan [GVL89]). Hence for Q = Sm−1, we can think

of our scheme as a generalization of the power method. Indeed, our algorithm performs the

following iteration,

xk+1 =
Cxk

‖Cxk‖2
, k ≥ 0.
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Both δf and σf are equal to the smallest eigenvalue of C, and hence the right-hand side of

(5.29) is equal to
λ1(C)− xT

0 Cx0

2λmin(C)
. (5.31)

Example 5.2.10 (Shifted power method) If C is not positive semidefinite in the previ-

ous example, the objective function is not convex and our results are not applicable. However,

this complication is circumvented by instead running the algorithm with the shifted quadratic

function

f̄(x) =
1

2
xT (C + ωIm)x,

where ω > 0 is chosen for C̄ = ωIm + C ∈ Sm to be positive definite. On the feasible set, this

change only adds a constant term to the objective function. The method, however, produces

different sequence of iterates. The constants δf and σf are also affected and, correspondingly,

the estimate (5.31).

5.2.4 Maximization with orthonormality constraints

Consider E = E∗ = Rm×p, the space of m-by-p real matrices, with p ≤ m. Note that

the case p = 1 recovers the setting of the previous section. This space is assumed to be

equipped with the trace inner product, 〈X,Y 〉 = Tr(XT Y ). The induced norm, denoted by

‖X‖F def
= 〈X,X〉 12 , is the Frobenius norm (we let G be the identity operator). We can now

consider various feasible sets, the simplest being a sphere or a ball, i.e.,

Q = {X ∈ Rm×p | ‖X‖F = r} or Q = {X ∈ Rm×p | ‖X‖F ≤ r}.

Due to the nature of applications in this chapter, let us concentrate on the situation when Q
is a special subset of the sphere of radius r =

√
p, the Stiefel manifold St(p,m),

Q = St(p,m) = {X ∈ Rm×p | XT X = Ip}.

Problem (P2) then takes on the following form

f∗ = max
X∈St(p,m)

f(X). (5.32)

The set Conv(Q) is not strongly convex (σQ = 0), and hence Theorem 5.2.8 is meaningful

only if f is strongly convex (σf > 0). At every iteration, the algorithm needs to maximize a

linear function over the Stiefel manifold. The following standard result shows how this can

be done.

Proposition 5.2.11 Let C ∈ Rm×p, with p ≤ m, and denote by σi(C), i = 1, . . . , p, the

singular values of C. Then

max
X∈St(p,m)

〈C,X〉 = Tr[(CT C)
1
2 ] =

p
∑

i=1

σi(C), (5.33)

and a maximizer X∗ is given by the U factor in the polar decomposition of C,

C = US, U ∈ St(p,m), S ∈ Sp, S � 0.

If C is of full rank, then we can take X∗ = C(CTC)−
1
2 .
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Proof. Existence of the polar factorization in the nonsquare case is covered by Theorem

7.3.2 in [HJ85]. Let C = V ΣW T be the singular value decomposition of A, i.e., V is m-by-

m orthogonal, W is p-by-p orthogonal, and Σ is m-by-p diagonal with values σi(A) on the

diagonal. Then

max
X∈St(p,m)

〈C,X〉 = max
X∈St(p,m)

〈V ΣW T ,X〉

= max
X∈St(p,m)

Tr(Σ(W TXT V ))

= max
Z∈St(p,m)

Tr(ΣZT ) = max
Z∈St(p,m)

p
∑

i=1

σi(C)zii ≤
p

∑

i

σi(C).

The third equality follows since the function X 7→ V T XW maps St(p,m) onto itself. It

remains to note that

〈C,U〉 = Tr(S) =
∑

i

λi(S) =
∑

i

σi(S) = Tr[(ST S)
1
2 ] = Tr[(CT C)

1
2 ] =

∑

i

σi(C),

Finally, in the full rank case we have 〈C,X∗〉 = Tr[CT C(CTC)−
1
2 ] = Tr[(CT C)

1
2 ]. �

Let the symbol uf(C) denote the U factor of the polar decomposition of matrix C ∈ Rm×p,

or equivalently, uf(C) = C(CT C)−
1
2 if C is of full rank. In view of the above result, the main

step of Algorithm 1 can be written in the form

xk+1 = uf(∇f(xk)). (5.34)

The block sparse PCA formulations (5.17) and (5.21) conform to the setting (5.32). Here

is one more example.

Example 5.2.12 (Rectangular Procrustes problem) Let C,X ∈ Rm×p and D ∈ Rp×p

and consider the following problem,

min{‖C −DX‖2F | XT X = Ip}. (5.35)

Since ‖C − DX‖2F = ‖C‖2F + 〈DX,DX〉 − 2〈CD,X〉, by a similar shifting technique as in

the previous example we can cast problem (5.35) in the following form

max{ω‖X‖2F − 〈DX,DX〉+ 2〈CD,X〉 | XT X = Ip}.

For ω > 0 large enough, the new objective function is strongly convex. In this case our algo-

rithm becomes similar to the gradient method proposed by [FND08]. The standard Procrustes

problem in the literature is a special case of (5.35) with p = m.

5.3 Algorithms for sparse principal component analysis

The solutions of the sparse PCA formulations of Section 5.1 provide locally optimal patterns

of zero and nonzero entries for the vector z ∈ Sn−1 (in the single-unit case) or the matrix

Z ∈ [Sn−1]p (in the block case). The sparsity-inducing penalty term used in these formulations
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biases however the values assigned to the nonzero entries, which should be readjusted by

considering the sole objective of maximum variance. An algorithm for sparse PCA combines

thus a method that identifies a “good” pattern of sparsity with a method that fills the active

entries. In the sequel, we discuss the general block sparse PCA problem. The single-unit case

is recovered in the particular case p = 1.

Methods for pattern-finding

The application of the general method (Algorithm 1) to the four sparse PCA formula-

tions (5.7), (5.13), (5.17) and (5.21) leads to Algorithms 2, 3, 4 and 5 below, that provide a

locally optimal pattern of sparsity for a matrix Z ∈ [Sn−1]p. This pattern is defined as a bi-

nary matrix P ∈ {0, 1}n×p such that pij = 1 if the loading zij is active and pij = 0 otherwise.

So, P is an indicator of the coefficients of Z that are zeroed by our method. The computa-

tional complexity of the single-unit algorithms (Algorithms 2 and 3) is O(nm) operations per

iteration. The block algorithms (Algorithms 4 and 5) have complexity O(nmp) per iteration.

Algorithm 2: Single-unit sparse PCA method based on the ℓ1-penalty (5.7)

input : Data matrix A ∈ Rm×n

Sparsity-controlling parameter γ ≥ 0

Initial iterate x ∈ Sm−1

output: A locally optimal sparsity pattern P ∈ {0, 1}n
begin

repeat

x←−∑n
i=1[|aT

i x| − γ]+ sign(aT
i x)ai

x←− x
‖x‖2

until a stopping criterion is satisfied

Construct a binary vector P ∈ {0, 1}n such that

{

pi = 1 if |aT
i x| > γ

pi = 0 otherwise.

end

Post-processing

Once a “good” sparsity pattern P is identified, the active entries of Z still have to be filled.

To this end, we consider the optimization problem

(X∗, Z∗)
def
= arg max

X∈St(p,m)
Z∈[Sn−1]p

ZP̄ =0

Tr(XT AZN), (5.36)

where P̄ ∈ {0, 1}n×p is the complement of P , ZP̄ denotes the entries of Z that are constrained

to zero and N = Diag(µ1, . . . , µp) with strictly positive µi. Problem (5.36) assigns the ac-

tive part of the matrix Z to maximize the variance explained by the resulting components.

Without loss of generality, each column of P is assumed to contain active elements.
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Algorithm 3: Single-unit sparse PCA algorithm based on the ℓ0-penalty (5.13)

input : Data matrix A ∈ Rm×n

Sparsity-controlling parameter γ ≥ 0

Initial iterate x ∈ Sm−1

output: A locally optimal sparsity pattern P ∈ {0, 1}n
begin

repeat

x←−∑n
i=1[sign((aT

i x)2 − γ)]+ aT
i x ai

x←− x
‖x‖2

until a stopping criterion is satisfied

Construct a binary vector P ∈ {0, 1}n such that

{

pi = 1 if (aT
i x)2 > γ

pi = 0 otherwise.

end

In the single-unit case p = 1, an explicit solution of (5.36) is available,

X∗ = u,

Z∗
P = v and Z∗

barP = 0,
(5.37)

where σuvT with σ > 0, u ∈ Sm−1 and v ∈ S‖P‖0−1 is a rank-one singular value decomposition

of the matrix AP , that corresponds to the submatrix of A containing the columns related to

the active entries.

Although an exact solution of (5.36) is hard to compute in the block case p > 1, a local

maximizer can be efficiently computed by optimizing alternatively with respect to one variable

while keeping the other one fixed. The following two lemmas provide an explicit solution to

each of these subproblems.

Lemma 5.3.1 For a fixed Z ∈ [Sn−1]p, a solution X∗ of

max
X∈St(p,m)

Tr(XT AZN)

is provided by the U factor of the polar decomposition of the product AZN .

Proof. See Proposition 5.2.11. �

Lemma 5.3.2 The solution

Z∗ def
= arg max

Z∈[Sn−1]p

ZP̄ =0

Tr(XT AZN), (5.38)

is at any point X ∈ St(p,m) defined by the two conditions Z∗
P = (AT XN)P D and Z∗

P̄
= 0,

where D is a positive diagonal matrix that normalizes the columns of Z∗ to unit norm, i.e.,

D = Diag((AT XN)TP (AT XN)P )−
1
2 .
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Algorithm 4: Block Sparse PCA algorithm based on the ℓ1-penalty (5.17)

input : Data matrix A ∈ Rm×n

Sparsity-controlling parameter γ ≥ 0

Initial iterate X ∈ St(p,m)

output: A locally optimal sparsity pattern P ∈ {0, 1}n×p

begin

repeat

for j = 1, . . . ,m do

xj ←−
∑n

i=1[|aT
i xj| − γ]+ sign(aT

i x)ai

X ←− uf(X)

until a stopping criterion is satisfied

Construct a binary matrix P ∈ {0, 1}n×p such that

{

pij = 1 if |aT
i xj| > γ

pij = 0 otherwise.

end

Proof. The Lagrangian of the optimization problem (5.38) is

L(Z,Λ1,Λ2) = Tr(XT AZN)− Tr(Λ1(Z
T Z − Im))− Tr(ΛT

2 Z),

where the Lagrangian multipliers Λ1 ∈ Rp×p and Λ2 ∈ Rn×p have the following properties:

Λ1 is an invertible diagonal matrix and (Λ2)P = 0. The first-order optimality conditions of

(5.38) are thus

AT XN − 2ZΛ1 − Λ2 = 0

Diag(ZT Z) = Ip

ZP̄ = 0.

Hence, any stationary point Z∗ of (5.38) satisfies Z∗
P = (AT XN)P D and Z∗

P̄
= 0, where

D is a diagonal matrix that normalizes the columns of Z∗ to unit norm. The second-order

optimality condition imposes the diagonal matrix D to be positive. Such a D is unique and

given by D = Diag((AT XN)TP (AT XN)P )−
1
2 . �

The alternating optimization scheme is summarized in Algorithm 6, which computes a local

solution of (5.36). It should be noted that Algorithm 6 is a post-processing heuristic that,

strictly speaking, is required only for the ℓ1 block formulation (Algorithm 4). In fact, since

the cardinality penalty only depends on the sparsity pattern P and not on the actual values

assigned to ZP , a solution (X∗, Z∗) of Algorithms 3 or 5 is also a local maximizer of (5.36)

for the resulting pattern P . This explicit solution provides a good alternative to Algorithm 6.

In the single unit case with ℓ1 penalty (Algorithm 2), the solution (5.37) is available.

Sparse PCA algorithms

To sum up, we propose four sparse PCA algorithms, each combining a method to identify a

“good” sparsity pattern with a method to fill the active entries of the p loading vectors. They
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Algorithm 5: Block Sparse PCA algorithm based on the ℓ0-penalty (5.21)

input : Data matrix A ∈ Rm×n

Sparsity-controlling parameter γ ≥ 0

Initial iterate X ∈ St(p,m)

output: A locally optimal sparsity pattern P ∈ {0, 1}n×p

begin

repeat

for j = 1, . . . ,m do

xj ←−
∑n

i=1[sign((aT
i xj)

2 − γ)]+ aT
i xj ai

X ←− uf(X)

until a stopping criterion is satisfied

Construct a binary matrix P ∈ {0, 1}n×p such that

{

pij = 1 if (aT
i xj)

2 > γ

pij = 0 otherwise.

end

are summarized in Table 5.1.7

Deflation scheme.

For the sake of completeness, we recall a classical deflation process for computing p sparse

principal components with a single-unit algorithm (d’Aspremont et al. [AEJL07]). Let z ∈ Rn

be a unit-norm sparse loading vector of the data A. Subsequent directions are sequentially

obtained by computing a dominant sparse component of the residual matrix A− yzT , where

y = Az is the vector that solves

min
y∈Rm

‖A− yzT ‖F .

Further deflation techniques for sparse PCA have been proposed in [Mac08].

5.4 Numerical experiments

In this section, we evaluate the proposed power algorithms against existing sparse PCA meth-

ods. Three competing methods are considered in this study: a greedy scheme aimed at com-

puting a local maximizer of (5.10) (approximate greedy search algorithm in d’Aspremont et

al. [ABE08]), the SPCA algorithm (Zou et al. [ZHT06]) and the sPCA-rSVD algorithm (Shen

and Huang [SH08]). We do not include the DSPCA algorithm (d’Aspremont et al. [AEJL07])

in our numerical study. This method solves a convex relaxation of the sparse PCA problem

and has a large computational complexity of O(n4
√

log(n)) compared to the other methods.

Table 5.2 lists the considered algorithms.

7Our algorithms are named GPower where the “G” stands for generalized or gradient.
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Algorithm 6: Alternating optimization scheme for solving (5.36)

input : Data matrix A ∈ Rm×n

Sparsity pattern P ∈ {0, 1}n×p

Matrix N = Diag(µ1, . . . , µp)

Initial iterate X ∈ St(p,m)

output: A local minimizer (X,Z) of (5.36)

begin

repeat

Z ←− AT XN

ZP̄ ←− 0

Z ←− Z Diag(ZT Z)−
1
2

X ←− uf(AZN)

until a stopping criterion is satisfied

end

Computation of P Computation of ZP

GPowerℓ1 Algorithm 2 Equation (5.37)

GPowerℓ0 Algorithm 3 Equation (5.12)

GPowerℓ1,p Algorithm 4 Algorithm 6

GPowerℓ0,p Algorithm 5 Equation (5.20)

Table 5.1: New algorithms for sparse PCA.

GPowerℓ1 Single-unit sparse PCA via ℓ1-penalty

GPowerℓ0 Single-unit sparse PCA via ℓ0-penalty

GPowerℓ1,p Block sparse PCA via ℓ1-penalty

GPowerℓ0,p Block sparse PCA via ℓ0-penalty

Greedy Greedy method

SPCA SPCA algorithm

rSVDℓ1 sPCA-rSVD algorithm with an ℓ1-penalty (“soft thresholding”)

rSVDℓ0 sPCA-rSVD algorithm with an ℓ0-penalty (“hard thresholding”)

Table 5.2: Sparse PCA algorithms we compare in this section.

5.4.1 Implementation

All numerical experiments are performed in MATLAB. Our implementations of the GPower

algorithms are initialized at a point for which the associated sparsity pattern has at least

one active element. In case of the single-unit algorithms, such an initial iterate x ∈ Sm−1 is

chosen parallel to the column of A with the largest norm, i.e.,

x =
ai∗

‖ai∗‖2
, where i∗ = arg max

i
‖ai‖2. (5.39)
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For the block GPower algorithms, a suitable initial iterate X ∈ St(p,m) is constructed in a

block-wise manner as X = [x|X⊥], where x is the unit-norm vector (5.39) and X⊥ ∈ St(p,m− 1)

is orthogonal to x, i.e., xT X⊥ = 0. We stop the GPower algorithms once the relative change

of the objective function is small,

f(xk+1)− f(xk)

f(xk)
≤ ǫ = 10−4.

MATLAB implementations of the SPCA algorithm and the greedy algorithm have been ren-

dered available by Zou et al. [ZHT06] and d’Aspremont et al. [ABE08]. We have, however,

implemented the sPCA-rSVD algorithm on our own (Algorithm 1 in [SH08]), and use it with

the same stopping criterion as for the GPower algorithms. This algorithm initializes with

the best rank-one approximation of the data matrix. This is done with the svds function in

MATLAB.

Given a data matrix A ∈ Rm×n, the considered sparse PCA algorithms provide p unit-

norm sparse loading vectors stored in the matrix Z ∈ [Sn−1]p. The samples of the associated

components are provided by the p columns of the product AZ. The variance explained by

these p components is an important comparison criterion of the algorithms. In the simple

case p = 1, the variance explained by the component y = Az is

Var[y] = zT AT Az.

When z corresponds to the first principal loading vector, the variance is Var[y] = σ2
1 , with σ1

the largest singular value of A. In the case p > 1, the derived components are likely to be

correlated. Hence, summing up the variance explained individually by each of the components

overestimates the variance explained simultaneously by all the components. This motivates

the notion of adjusted variance proposed by Zou et al. [ZHT06]. The adjusted variance of the

p components Y = AZ is defined as

AdjVar[Y ] = Tr(R2),

where Y = QR is the QR decomposition of the component matrix Y , i.e., Q ∈ St(p,m) and

R is an p-by-p upper triangular matrix.

5.4.2 Results on random test problems

The sparse PCA algorithms are compared on random data matrices A ∈ Rm×n generated

according to a Gaussian distribution, with zero mean and unit variance.

Trade-off curves

Let us first compare the single-unit algorithms, which provide a unit-norm sparse loading

vector z ∈ Rn. We first plot the variance explained by the extracted component against the

cardinality of the resulting loading vector z. For each algorithm, the sparsity-inducing param-

eter is incrementally increased to obtain loading vectors z with a cardinality that decreases

from n to 1. The results displayed in Figure 5.1 are averages of computations on 100 random
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matrices with dimensions m = 100 and n = 300. The considered sparse PCA methods ag-

gregate in two groups: GPowerℓ1, GPowerℓ0 , Greedy and rSVDℓ0 outperform the SPCA and

the rSVDℓ1 approaches. It seems that these latter methods perform worse because of the ℓ1

penalty term used in them. If one, however, post-processes the active part of z according to

(5.37), as we do in GPowerℓ1 , all sparse PCA methods reach the same performance.
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Figure 5.1: Trade-off curves between explained variance and cardinality. The vertical axis is

the ratio Var[ysPCA]
Var[yPCA] , where ysPCA is a components obtained by sparse PCA and yPCA is the

first principal component. The considered algorithms aggregate in two groups: GPowerℓ1 ,

GPowerℓ0, Greedy and rSVDℓ0 (top curve), and SPCA and rSVDℓ1 (bottom curve). For a

fixed cardinality value, the methods of the first group explain more variance. Post-processing

algorithms SPCA and rSVDℓ1 with equation (5.37), results, however, in the same performance

as the other algorithms.

Controlling sparsity with γ

Among the considered methods, the greedy approach is the only one to directly control the

cardinality of the solution, i.e., the desired cardinality is an input of the algorithm. The

other methods require a parameter controlling the trade-off between variance and cardinality.

Increasing this parameter leads to solutions with smaller cardinality, but the resulting num-

ber of nonzero elements can not be precisely predicted. In Figure 5.2, we plot the average

relationship between the parameter γ and the resulting cardinality of the loading vector z

for the two algorithms GPowerℓ1 and GPowerℓ0 . In view of (5.9) (resp. (5.14)), the entries i

of the loading vector z obtained by the GPowerℓ1 algorithm (resp. the GPowerℓ0 algorithm)

satisfying

‖ai‖2 ≤ γ (resp. ‖ai‖22 ≤ γ) (5.40)

have to be zero. Taking into account the distribution of the norms of the columns of A, this

provides for every γ a theoretical upper bound on the expected cardinality of the resulting

vector z.
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Figure 5.2: Dependence of cardinality on the value of the sparsity-inducing parameter γ. In

case of the GPowerℓ1 algorithm, the horizontal axis shows γ
‖ai∗‖2

, whereas for the GPowerℓ0

algorithm, we use
√

γ

‖ai∗‖2
. The theoretical upper bound is therefore identical for both methods.

The plots are averages based on 100 test problems of size m = 100 and n = 300.

“Greedy” versus the rest

The considered sparse PCA methods feature different empirical computational complexities.

In Figure 5.3, we display the average time required by the sparse PCA algorithms to extract

one sparse component from Gaussian matrices of dimensions m = 100 and n = 300. One

immediately notices that the greedy method slows down significantly as cardinality increases,

whereas the speed of the other considered algorithms does not depend on cardinality. Since

on average “Greedy” is much slower than the other methods, even for low cardinalities, we

discard it from all following numerical experiments.

Computational time

In Tables 5.3 and 5.4 we compare the speed of the remaining algorithms. Table 5.3 deals

with problems with a fixed aspect ratio n
m

= 10, whereas in Table 5.4, m is fixed at 500, and

exponentially increasing values of n are considered. For the GPowerℓ1 method, the sparsity-

inducing parameter γ was set to 10% of the upper bound γmax = ‖ai∗‖2. For the GPowerℓ0

method, γ was set to 1% of γmax = ‖ai∗‖22 in order to aim for solutions of comparable

cardinalities (see (5.40)). These two parameters have also been used for the rSVDℓ1 and the

rSVDℓ0 methods, respectively. Concerning SPCA, the sparsity parameter has been chosen

by trial and error to get, on average, solutions with similar cardinalities as obtained by the

other methods. The values displayed in Tables 5.3 and 5.4 correspond to the average running

times of the algorithms on 100 test instances for each problem size. In both tables, the new

methods GPowerℓ1 and GPowerℓ0 are the fastest. The difference in speed between GPowerℓ1

and GPowerℓ0 results from different approaches to fill the active part of z: GPowerℓ1 requires
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Figure 5.3: The computational complexity of “Greedy” grows significantly if it is set out to

output a loading vector of increasing cardinality. The speed of the other methods is unaffected

by the cardinality target.

to compute a rank-one approximation of a submatrix of A (see equation (5.37)), whereas the

explicit solution (5.12) is available to GPowerℓ0 . The linear complexity of the algorithms in

the problem size n is clearly visible in Table 5.4.

m× n 100× 1000 250× 2500 500× 5000 750 × 7500 1000 × 10000

GPowerℓ1 0.10 0.86 2.45 4.28 5.86

GPowerℓ0 0.03 0.42 1.21 2.07 2.85

SPCA 0.24 2.92 14.5 40.7 82.2

rSVDℓ1 0.21 1.45 6.70 17.9 39.7

rSVDℓ0 0.20 1.33 6.06 15.7 35.2

Table 5.3: Average computational time for the extraction of one component (in seconds).

m× n 500 × 1000 500 × 2000 500 × 4000 500 × 8000 500 × 16000

GPowerℓ1 0.42 0.92 2.00 4.00 8.54

GPowerℓ0 0.18 0.42 0.96 2.14 4.55

SPCA 5.20 7.20 12.0 22.6 44.7

rSVDℓ1 1.20 2.53 5.33 11.3 26.7

rSVDℓ0 1.09 2.26 4.85 10.5 24.6

Table 5.4: Average computational time for the extraction of one component (in seconds).

Different convergence mechanisms

Figure 5.4 illustrates how the trade-off between explained variance and sparsity evolves in

the time of computation for the two methods GPowerℓ1 and rSVDℓ1. In case of the GPowerℓ1
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algorithm, the initialization point (5.39) provides a good approximation of the final cardinal-

ity. This method then works on maximizing the variance while keeping the sparsity at a low

level throughout. The rSVDℓ1 algorithm, in contrast, works in two steps. First, it maximizes

the variance, without enforcing sparsity. This corresponds to computing the first principal

component and requires thus a first run of the algorithm with random initialization and a

sparsity-inducing parameter set at zero. In the second run, this parameter is set to a positive

value and the method works to rapidly decrease cardinality at the expense of only a modest

decrease in explained variance. So, the new algorithm GPowerℓ1 performs faster primarily

because it combines the two phases into one, simultaneously optimizing the trade-off between

variance and sparsity.
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Figure 5.4: Evolution of the variance (solid lines and left axis) and cardinality (dashed lines

and right axis) in time of computation for the methods GPowerℓ1 and rSVDℓ1 on a test

problem with m = 250 and n = 2500. The vertical axis is the ratio Var[ysPCA]
Var[yPCA] , where the

component ysPCA is obtained by sparse PCA and yPCA is the first principal component. The

rSVDℓ1 algorithm first solves unconstrained PCA, whereas GPowerℓ1 immediately optimizes

the trade-off between variance and sparsity.

Extracting a couple of components

Similar numerical experiments, which include the methods GPowerℓ1,p and GPowerℓ0,p, have

been conducted for the extraction of more than one component. A deflation scheme is used by

the non-block methods to sequentially compute p components. These experiments lead to sim-

ilar conclusions as in the single-unit case, i.e., the methods GPowerℓ1 , GPowerℓ0 , GPowerℓ1,p,

GPowerℓ0,p and rSVDℓ0 outperform the SPCA and rSVDℓ1 approaches in terms of variance

explained at a fixed cardinality. Again, these last two methods can be improved by post-

processing the resulting loading vectors with Algorithm 6, as it is done for GPowerℓ1,p. The

average running times for problems of various sizes are listed in Table 5.5. The new power-like

methods are significantly faster on all instances.
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m× n 50× 500 100 × 1000 250 × 2500 500 × 5000 750× 7500

GPowerℓ1 0.22 0.56 4.62 12.6 20.4

GPowerℓ0 0.06 0.17 2.15 6.16 10.3

GPowerℓ1,p 0.09 0.28 3.50 12.4 23.0

GPowerℓ0,p 0.05 0.14 2.39 7.7 12.4

SPCA 0.61 1.47 13.4 48.3 113.3

rSVDℓ1 0.30 1.15 7.92 37.4 97.4

rSVDℓ0 0.28 1.10 7.54 34.7 85.7

Table 5.5: Average computational time for the extraction of p = 5 components (in seconds).

5.5 Analysis of gene expression data

In this section, the discussed algorithms for sparse PCA are used to analyze the four breast

cancer cohorts described in Table 3.1. For consistency of comparison with PCA and ICA,

we follow the methodology proposed in Section 3.3 and used in Section 4.7 to evaluate ICA

against PCA. Ten components are thus inferred by the algorithms from each data set. Let

us however first validate the observations made in the previous Section 5.4 on random test

problems.

Trade-off curves

Figure 5.5 plots the proportion of adjusted variance versus the cardinality for the “Vijver”

data set. The other data sets have similar plots. As for the random test problems, this

performance criterion does not discriminate among the different algorithms. All methods

have in fact the same performance, provided that the SPCA and rSVDℓ1 approaches are used

with post-processing by Algorithm 6.

Computational time

The average computational time required by the sparse PCA algorithms on each data set is

displayed in Table 5.6. The indicated times are averages on all the computations performed

to obtain cardinality ranging from n down to 1.

Biological significance

Although most papers on sparse PCA validate their results on gene expression data (e.g., [ZHT06,

AEJL07, SH08]), they essentially provide trade-off curves between variance and cardinality,

without deeply analyzing the obtained components from a biological perspective. In this

thesis, we also evaluate the sparse PCA methodology in terms of biological significance.
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Figure 5.5: Trade-off curves between explained variance and cardinality (case of the “Vijver”

data). The vertical axis is the ratio AdjVar[YsPCA]
AdjVar[YPCA] , where the components YsPCA are obtained

by sparse PCA and YPCA are the dominant principal components.

Vijver Wang Naderi JRH-2

GPowerℓ1 7.72 6.96 2.15 2.69

GPowerℓ0 3.80 4.07 1.33 1.73

GPowerℓ1,p 5.40 4.37 1.77 1.14

GPowerℓ0,p 5.61 7.21 2.25 1.47

SPCA 77.7 82.1 26.7 11.2

rSVDℓ1 46.4 49.3 13.8 15.7

rSVDℓ0 46.8 48.4 13.7 16.5

Table 5.6: Average computational time (in seconds).

First, Table 5.7 displays the pathway enrichment index (PEI) based on the set of 536

pathways related to cancer, while Table 5.8 is based on the set of 173 regulatory modules. The

values in both tables correspond to the largest PEI obtained among all possible cardinalities.

The results for PCA and ICA are given for comparison.8 This analysis clearly indicates that

the sparse PCA methods perform better than PCA and ICA in this context. Furthermore,

the new GPower algorithms, and especially the block formulations, provide largest PEI for

both types of biological information.

Among the pathways that are the most frequently found in the components are important

estrogen signalling and breast cancer signalling pathways such as the EGFR1 and TGF-β

pathways, as well as the immune-response, cell-cycle pathways (Figure 5.6). When compared

to ICA (Figure 4.3), the average number of components in which these pathways are found

is somewhat larger with sparse PCA.

8ICA is represented by the JADE algorithm. The analysis of Section 4.7 showed, in fact, that all the

considered ICA algorithms reach almost the same performance in terms of PEI (Figure 4.2).
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Vijver Wang Naderi JRH-2

PCA 0.0728 0.0466 0.0149 0.0690

ICA (JADE) 0.1007 0.1157 0.0597 0.0728

GPowerℓ1 0.1493 0.1026 0.0728 0.1250

GPowerℓ0 0.1250 0.1250 0.0672 0.1026

GPowerℓ1,p 0.1418 0.1250 0.1026 0.1381

GPowerℓ0,p 0.1362 0.1287 0.1007 0.1250

SPCA 0.1362 0.1007 0.0840 0.1007

rSVDℓ1 0.1213 0.1175 0.0914 0.0914

rSVDℓ0 0.1175 0.0970 0.0634 0.1063

Table 5.7: PEI based on a set of 536 cancer-related pathways.

Vijver Wang Naderi JRH-2

PCA 0.0347 0 0.0289 0.0405

ICA (JADE) 0.1040 0.0925 0.0405 0.1040

GPowerℓ1 0.1850 0.0867 0.0983 0.1792

GPowerℓ0 0.1676 0.0809 0.0925 0.1908

GPowerℓ1,p 0.1908 0.1156 0.1329 0.1850

GPowerℓ0,p 0.1850 0.1098 0.1329 0.1734

SPCA 0.1734 0.0925 0.0809 0.1214

rSVDℓ1 0.1387 0.0809 0.1214 0.1503

rSVDℓ0 0.1445 0.0867 0.0867 0.1850

Table 5.8: PEI based on a set of 173 motif-regulatory gene sets.

Finally, Figure 5.7 displays the association of the components with clinical data. Consid-

ered are the components obtained with the sparsity parameter γ that led to the PEI reported

in Table 5.7, which is the largest among all possible cardinalities. Overall, when compared

with Figure 4.4, it turns out that sparse PCA provides slightly less components to be corre-

lated with these phenotypes than ICA. The associations found by sparse PCA are however

very strong, statistically speaking. Specific relationships between pathways and phenotypes

previously identified by ICA (in Section 4.7) are again revealed by sparse PCA. For instance,

components strongly correlated with the ER status often map to CR immune response path-

way in all breast cancer cohorts. The association found by ICA between the EMT pathway

and the grade is also identified by sparse PCA in the three studies where grade information

is available.

To summarize, the components inferred by sparse PCA map to a large number of path-

ways. They are furthermore strongly associated with phenotypes. Hence, sparse PCA seems

very promising for analyzing gene expression data. In a deeper study, we expect sparse PCA

to identify novel associations between pathways and phenotypes, so far unseen by PCA and

ICA.
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Figure 5.6: Twenty of the most frequently mapped pathways by sparse PCA. The scores give

the average number of components in which the pathway is mapped.

5.6 Summary

This chapter is devoted to the maximization of convex (and not necessarily smooth) functions

on compact sets. The considered problems deal with single-unit and block formulations of

sparse PCA, aimed at extracting a single sparse dominant principal component of a data

matrix, or more components at once, respectively. While the initial formulations involve

nonconvex functions, and are therefore computationally intractable, they are rewritten into

the form of an optimization problem involving maximization of a convex function on a compact

set, being either a unit Euclidean sphere or the Stiefel manifold. This structure allows for

the design and iteration complexity analysis of a simple gradient scheme which applied to our

sparse PCA setting results in four new algorithms for computing sparse principal components

of a matrix A ∈ Rm×n. The proposed algorithms compute a locally optimal solution of

the sparse PCA problem, which inherently is of combinatorial nature. They appear to be

faster if either the objective function or the feasible set are strongly convex, which holds in

the single-unit case and can be enforced in the block case. Furthermore, the dimension of

the feasible sets does not depend on n but on m and on the number p of components to be

extracted. This is a highly desirable property if m ≪ n. Applied on gene expression data,

these algorithms provide components that deliver a rich biological interpretation.

The results of this chapter have been submitted for publication in the Journal of Machine
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Figure 5.7: Heatmaps of association between components and breast cancer phenotypes. For

each data set and each method, ten p-values are represented that assess the strength of

association between each component and a phenotype. Color-code: p-value < 10−10 (dark

red), p-value < 0.001 (red), p-value < 0.01 (orange), p-value < 0.05 (pink) and p-value > 0.05

(white). For Wang’s cohort, grade information is unavailable

Learning Research [JNRS08].
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Chapter 6

Optimization over low-rank positive

semidefinite matrices and its

application to sparse PCA

In the present chapter, we focus on the optimization problem

min
X∈Sn

f(X)

s.t. Tr(CiX) = bi, Ci ∈ Sn, bi ∈ R, i = 1, . . . , k,

X � 0,

(P3)

where f is a smooth function and Sn is the set of the symmetric matrices of Rn×n. Prob-

lem (P3) is convex provided that the objective function f is convex. This assumption is

however not required by the forthcoming optimization method, which computes then a local

solution.

Under certain circumstances, problem (P3) presents a low-rank solution, i.e., a solution

X∗ such that

rank(X∗) = r ≪ n.

This situation is often observed for convex relaxations of combinatorial optimization problems

– such as the convex relaxations of the sparse PCA problem derived in the sequel – , which

expand the dimension of the search space to optimize over the set of symmetric positive

semidefinite matrices of the size of the original problem. To a combinatorial problem of

dimension n corresponds then a convex relaxation of dimension O(n2). Interestingly, these

relaxations are usually tight, i.e., exact, for rank-one matrices and one can reasonably expect

the existence of low-rank solutions.

Even when convexity significantly reduces the complexity of the problem, searching the

relaxed solution in a space of dimension O(n2) is still an infeasible task for large-scale prob-

lems. Convex relaxations are therefore mainly introduced as a tool to obtain lower and upper

bounds on the problem of interest. Solving the relaxed problem would however provide a

close approximation to the solution of the original problem.

85
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The optimization method discussed in this chapter imposes a low-rank constraint on the

solution in order to make a direct computation of a relaxed solution tractable even for large

problems. More precisely, the positive semidefinite matrix X is parameterized as the product

X = WW T where the number of independent columns of W ∈ Rn×l
∗ fixes the rank of X.

Problem (P3) is then solved in terms of the new variable W and a space of dimension O(nl)

has to be searched. In the case of problems with low-rank solutions, the dimension l at which

the problem should be solved remains much smaller than n.

The new optimization problem, defined in terms of the variable W , is invariant by right

multiplication of W with an orthogonal matrix. This symmetry suggests to introduce a

quotient manifold structure in the optimization problem.

This chapter is organized as follows. Convex relaxations for sparse PCA are first derived

(Section 6.1). We then propose a method for solving (P3) based on low-rank matrices (Sec-

tion 6.2). The efficiency of the method is evaluated on the resolution of convex relaxations of

sparse PCA as well as of the maximal cut of a graph, which is also a problem of combinatorial

nature (Section 6.3). The resulting algorithms for sparse PCA are finally applied on breast

cancer gene expression data (Section 6.4).

6.1 Convex relaxations of sparse PCA

Consider the sparse PCA formulation

max
z∈Sn−1

zT AT Az − γ‖z‖0, (6.1)

that we have encountered in Section 5.1.1 and where the sparsity-inducing parameter is non-

negative, γ ≥ 0. Finding the optimal pattern of nonzero elements in a loading vector z ∈ Rn

is a problem of combinatorial complexity. Recently, two convex relaxations have been derived

that require to minimize nonlinear convex functions on the spectahedron, the convex set of

symmetric positive semidefinite matrices with unit trace, i.e.,

SP = {X ∈ Sn|X � 0,Tr(X) = 1}.

6.1.1 First convex relaxation

The authors of [AEJL07] relax problem (6.1) in two steps. First, a convex feasible set is

obtained by lifting the unit-norm vector variable z into a matrix variable Z that belongs to

the spectahedron,

max
Z∈Sn

Tr(AT AZ)− γ‖Z‖0
s.t. Tr(Z) = 1,

Z � 0.

(6.2)

The relaxation (6.2) is tight for rank-one matrices. In such cases, the vector variable z

in (6.1) is related to the matrix variable Z according to Z = zzT . Then, for problem (6.2) to



6.1. Convex relaxations of sparse PCA 87

be convex, the cardinality penalty is replaced by a convex l1 penalty,

max
Z∈Sn

Tr(AT AZ)− γ
∑

i,j |Zij |
s.t. Tr(Z) = 1,

Z � 0.

(6.3)

Finally, a smooth approximation to (6.3) is obtained by replacing the absolute value function

by a close differentiable approximation. For instance, the function hκ(x) =
√

x2 + κ2 with

x, κ ∈ R is smooth and approaches the absolute value of x as κ decreases. A too small value

for the smoothing parameter κ might however lead to ill-conditioned Hessians and thus to

numerical problems.

The problem

max
Z∈Sn

Tr(AT AZ)− γ
∑

i,j hκ(Zij)

s.t. Tr(Z) = 1,

Z � 0,

(6.4)

which maximizes a concave function on a convex set, is convex and fits within the frame-

work (P3).

6.1.2 Second convex relaxation

As illustrated in Section 5.1.1, problem (6.1) is equivalently rewritten in the form

max
x∈Sm−1

n∑

i=1

[(aT
i x)2 − γ]+. (6.5)

Again, the vector x is lifted into a matrix X of the spectahedron, which leads to the problem

max
X∈Sm

∑n
i=1[a

T
i Xai − γ]+

s. t. Tr(X) = 1,

X � 0,

(6.6)

that is equivalent to (6.5) in case of rank-one matrices X = xxT . Problem (6.6) maxi-

mizes a convex function and is thus nonconvex. Nevertheless, as shown by d’Aspremont et

al. [ABE07], whenever restricted to the subset of rank-one matrices, the convex objective in

(6.6) equals the concave function

f(X) =

n∑

i=1

Tr[X
1
2 (aT

i ai − γIm)X
1
2 ]+, (6.7)

where the function Tr[X]+ denotes the sum of the positive eigenvalues of X. A convex

relaxation of (6.1) is thus provided by

max
X∈Sm

∑n
i=1 Tr[X

1
2 (aT

i ai − γIm)X
1
2 ]+

s. t. Tr(X) = 1,

X � 0,

(6.8)
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that is tight in case of rank-one solutions. We are not aware of any smoothing method

that would preserve the convexity of the only piecewise smooth objective function in (6.8).

Although this might be abusive, we will apply the forthcoming smooth optimization method

in this non-smooth context. Interestingly, the objective in (6.8) is a spectral function, i.e., a

function of a symmetric matrix X that depends only on the eigenvalues of X.

6.2 Optimization over low-rank positive semidefinite matrices

We propose in this section an approach for solving the problem

min
X∈Sn

f(X)

s.t. Tr(CiX) = bi, Ci ∈ Sn, bi ∈ R, i = 1, . . . , k,

X � 0,

(P3)

that is able to deal with a large dimension n once the following assumptions hold.

Assumption 6.2.1 Problem (P3) presents a low-rank solution X∗, i.e.,

rank(X∗) = r ≪ n.

Assumption 6.2.2 The symmetric matrices Ci satisfy

CiCj = 0,

for any i, j ∈ {1, . . . , k} such that i 6= j.

Assumption 6.2.2 is fulfilled, e.g., by the spectahedron

SP = {X ∈ Sn|X � 0,Tr(X) = 1},

and the elliptope1

E = {X ∈ Sn|X � 0,diag(X) = 1n}, (6.9)

where 1n is the vector of all ones. Although the function f is often convex in the considered

applications – in which case (P3) is a convex problem –, this assumption is not required by

the proposed optimization method, which identifies then a local solution of (P3).

Assumption 6.2.1 suggests to factor the optimization variable X as

X = WW T , (6.10)

with W ∈ Rn×l and l≪ n, and to consider the nonconvex problem

min
W∈Rn×l

f(WW T )

s.t. Tr(W T CiW ) = bi, Ci ∈ Sn, bi ∈ R, i = 1, . . . , k,
(6.11)

1The elliptope is also known as the set of correlation matrices.
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which searches a space of dimension O(nl). The parameter l should ideally equal the rank r,

which is usually unknown. The proposed algorithm for solving (P3) combines thus a method

that finds a local minimizer W of (6.11) with an approach that increments l until a sufficient

condition is satisfied for W to provide the solution WW T of (P3).

A further potential difficulty of problem (6.11) is that the solutions are not isolated. For

any solution W and any orthogonal matrix Q ∈ O(l), the matrix WQ also provides a solution.

In other words, problem (6.11) is invariant by right multiplication of the search variable with

an orthogonal matrix. This issue is not harmful for simple gradient schemes but it greatly

affects the convergence of second-order methods (see, e.g., [AMS08] and [AILH09]). In order

to take into account the inherent symmetry of the solution, the algorithm developed in this

chapter does not optimize over the Euclidean space Rn×l. Instead, one considers a search

space, whose points are the equivalence classes {WQ|Q ∈ Rl×l, QT Q = Il}. The minimizers

of (6.11) can be isolated in that quotient space.

The idea of reformulating a convex problem into a nonconvex one by factorization of

the matrix unknown is not new and was investigated by Burer and Monteiro [BM03] for

solving semidefinite programs (SDP). While the setup considered in [BM03] is general but

restricted to gradient methods, we further exploit the particular structure of the equality

constraints (Assumption 6.2.2) and propose second-order methods that lead to a descent

algorithm with guaranteed superlinear convergence. The authors of [GP07] also exploit the

factorization (6.10) to efficiently solve optimization problems that are defined on the elliptope

(6.9). Whereas the algorithms in [GP07] evolve on the Cholesky manifold – a submanifold

of Rn×l whose intersection with almost all equivalence classes is a singleton– the methods

proposed here work conceptually on the entire quotient space and numerically in Rn×l, using

the machinery of Riemannian submersions.

In the following sections, we derive conditions for an optimizer of (6.11) to represent

a solution of the original problem (P3) (Section 6.2.1). A meta-algorithm for solving (P3)

based on the factorization (6.10) is built upon these theoretical results (Section 6.2.2). We

then describe the geometry of the underlying quotient manifold and propose an algorithm for

solving (6.11) based on second-order derivative information (Section 6.2.3).

6.2.1 Optimality conditions

Optimality conditions of both problems (P3) and (6.11) are now derived and analyzed. They

provide theoretical insight about the rank l at which (6.11) should be solved as well as

conditions for an optimizer of (6.11) to represent a solution of the original problem (P3).
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First-order optimality conditions

Lemma 6.2.3 A symmetric matrix X ∈ Sn solves (P3) if and only if there exist a vector

σ ∈ Rk and a symmetric matrix S ∈ Sn such that the following holds,

Tr(CiX) = bi,

X � 0,

S � 0,

SX = 0,

S = ∇f(X)−∑k
i=1 σiCi.

(6.12)

Proof. These are the first-order optimality conditions of (P3). �

The first-order optimality conditions (6.12) are necessary and sufficient in case of convex

optimization problems [BV04]. In the case of a nonconvex objective function f , we consider

any point that satisfies these optimality conditions as a solution of (P3). Only the (local)

minimizers are actually stable for the optimization method proposed in the sequel, which is

a descent algorithm for f .

Lemma 6.2.4 If W is a local optimum of (6.11), then there exists a vector λ ∈ Rk such that

Tr(W T CiW ) = bi,

(∇f(WW T )−∑k
i=1 λiCi)W = 0.

(6.13)

If the {CiW}i=1,...,k are linearly independent, the vector λ is unique.

Proof. These are the first-order optimality conditions of (6.11). �

Given a local minimizer W of (6.11), one readily notices that all but one condition of

Lemma 6.2.3 hold for the symmetric positive semidefinite matrix WW T . Comparison of

Lemma 6.2.3 and Lemma 6.2.4 provides thus the following relationship between the prob-

lems (6.11) and (P3).

Theorem 6.2.5 A local minimizer W of problem (6.11) provides the solution WW T of prob-

lem (P3) if the matrix

SW
def
= ∇f(WW T )−

k∑

i=1

λiCi (6.14)

is positive semidefinite for the Lagrangian multipliers λi that satisfy (6.13).

Proof. Check the conditions of Lemma 6.2.3 for the tuple {X,S, σ} = {WW T , SW , λ}. �

Under Assumption 6.2.2, the Lagrangian multipliers in (6.13) have the closed-form expression

λi =
Tr(W TCi∇f(WW T )W )

Tr(W T C2
i W )

. (6.15)

Hence, a closed-form expression is available for the dual matrix SW in (6.14) at an optimizer

W of (6.11).
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Second-order optimality conditions

Let L(W,λ) denote the Lagrangian of the nonconvex problem (6.11),

L(W,λ)
def
= f(WW T )−

k∑

i=1

λi(Tr(W T CiW )− bi).

The optimality conditions (6.13) can be rewritten in the form

∇λL(W,λ) = 0 and ∇WL(W,λ) = 0.

In the following, we consider the Lagrangian multipliers λi to be given by (6.15).

Lemma 6.2.6 For a local minimizer W ∈ Rn×l of (6.11), it holds that

Tr(ηT DW∇WL(W,λ)[η]) ≥ 0

for any matrix η ∈ Rn×l that satisfies

Tr(ηT CiW ) = 0, i = 1, . . . , k. (6.16)

Proof. These are the second-order optimality conditions of (6.11). �

Lemma 6.2.7 For any matrix η ∈ Rn×l such that WηT = 0, the following equality holds

1

2
Tr(ηT DW∇WL(W,λ)[η]) = Tr(ηT SW η).

Proof. By noting that ∇WL(W,λ) = 2SW W , one has

1

2
Tr(ηT DW∇WL(W,λ)[η]) =

Tr(ηT SW η) + Tr(ηT DW (∇f(WW T ))[η]W ) −
k∑

i=1

DW λi[η] Tr(ηT CiW ),

where the two last terms cancel out by virtue of the condition WηT = 0. �

Theorem 6.2.8 A local minimizer W of problem (6.11) provides the solution X = WW T of

problem (P3) if it is rank deficient.

Proof. For the minimizer W ∈ Rn×l to span an r-dimensional subspace in Rn (with l > r),

the following factorization has to hold,

W = W̄MT ,

with the full-rank matrices W̄ ∈ Rn×r
∗ and M ∈ Rl×r

∗ . Let M⊥ ∈ Rl×(l−r) be an orthog-

onal basis for the orthogonal complement of the column space of M , i.e., MT M⊥ = 0 and

MT
⊥M⊥ = Il−r. For any matrix η̄ ∈ Rn×(l−r), the matrix η = η̄MT

⊥ satisfies

WηT = 0,



92 Optimization over low-rank PSD matrices and its application to sparse PCA

and the conditions (6.16) hold. By virtue of Lemmas 6.2.6 and 6.2.7,

Tr(ηT SW η) ≥ 0,

for all the matrices η = η̄MT
⊥ , i.e., the matrix SW is positive semidefinite and X = WW T is

a solution of problem (P3). �

Corollary 6.2.9 In the case l = n, any local minimizer W ∈ Rn×n of problem (6.11) pro-

vides the solution X = WW T of problem (P3).

Proof. If W is rank deficient, the matrix X = WW T is optimal for (P3) by virtue of Theo-

rem 6.2.8. Otherwise, the matrix SW is zero because of the second condition in (6.13) and X

is also optimal for (P3). �

6.2.2 A meta-algorithm for solving the initial problem

The algorithm we propose for solving (P3) consists in solving a sequence of nonconvex prob-

lems (6.11) of increasing dimension until the resulting local minimizer W represents a solution

of the initial problem (P3). Both Theorems 6.2.5 and 6.2.8 provide conditions to check this

fact. When problem (6.11) is solved in a dimension l smaller than the unknown rank r, none

of these conditions can be fulfilled. The dimension l is thus incremented after each resolution

of (6.11). In order to ensure a monotone decrease of the objective function through the itera-

tions, the optimization algorithm that solves (6.11) is initialized with a matrix corresponding

to W with an additional zero column appended, i.e.,

W0
def
= [W |0n×1],

where 0n×1 denotes an n-by-1 vector full of zeros. Since this initialization occurs when the

local minimizer W ∈ Rn×l of (6.11) does not represent the solution of (P3), W0 is a saddle

point of the nonconvex problem for the dimension l + 1. This can be a critical issue for many

optimization algorithms. Fortunately, in the present case, a descent direction from W0 can

be explicitly evaluated. The matrix

η
def
= [0n×l | v],

where 0n×l is a zero matrix of the size of W and v is the eigenvector of SW related to the

smallest algebraic eigenvalue verifies W0η
T = 0 and hence, by virtue of Lemma 6.2.7,

1

2
Tr(ηT DW∇WL(W0, λ)[η]) = vT SW v ≤ 0,

for the Lagrangian multipliers λ given in (6.15). All these elements lead to the meta-algorithm

displayed in Algorithm 7. The parameter ε sets a threshold on the eigenvalues of SW to decide

about the nonnegativity of this matrix. ε is chosen to be 10−12 in our implementation.
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Algorithm 7: Meta-algorithm for solving problem (P3)
2

input : Initial rank l0, initial iterate W (0) ∈ Rn×l0 and parameter ε.

output: Solution X of problem (P3).

begin
l←− l0

Wl ←−W (0)

stop←− 0

while stop 6= 1 do
Initialize an optimization scheme with Wl to find a local minimum W ∗

l of (6.11)

by exploiting a descent direction ηl if available.

if l = l0 and rank(W ∗
l ) < l then

stop = 1

else
Find the smallest eigenvalue λmin and the related eigenvector Vmin of the

matrix SW (6.14).

if λmin ≥ −ε then
stop = 1

else
l←− l + 1

Wl ←− [W ∗
l |0]

A descent direction from the saddle point Wl is given by ηl = [0|Vmin].

X ←−W ∗
l W ∗T

l

end

It should be mentioned that, to check the optimality for the initial problem (P3) of a local

minimizer W ∗
l , the rank condition of Theorem 6.2.8 is computationally cheaper to evaluate

than the nonnegativity condition of Theorem 6.2.5. Nevertheless, the rank condition does

not provide a descent direction to escape saddle points. It furthermore requires to solve

problem (6.11) at a dimension that is strictly greater than r, the rank of the solution of (P3).

Hence, this condition is only used at the initial rank l0 and holds in general if l0 is chosen

larger than the unknown r. Numerically, the rank of W ∗
l0

is computed as the number of

singular values that are greater than a threshold fixed at 10−6. The algorithm proposed by

Burer and Monteiro [BM03] exploits exclusively the rank condition of Theorem 6.2.8. Each

optimization of (6.11) is therefore initialized in a random manner and the algorithm in [BM03]

is not a descent algorithm.

By virtue of Corollary 6.2.9, Algorithm 7 stops at the latest once l = n. The numerical

experiments reported in the forthcoming Section 6.3 indicate that in practice, however, the

algorithm stops at a rank l that is much lower than the dimension n. If l0 < r, then the

algorithm stops once l equals the rank r of the solution of (P3). These applications also

illustrate that the magnitude of the smallest eigenvalue λmin of the matrix SW can be used

2A MATLAB implementation of Algorithm 7 with the manifold-based optimization method of Section 6.2.3

can be downloaded from http://www.montefiore.ulg.ac.be/∼journee.
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to monitor convergence. The value |λmin| indicates in fact whether the current iterate is

close to satisfying the optimality conditions (6.12). This feature is of great interest once an

approximate solution to (P3) is sufficient. The threshold ε set on λmin controls then the

accuracy of the result.

A trust-region scheme based on second-order derivative information is proposed next for

computing a local minimum of (6.11). This method is provided with a convergence theory

that ensures the iterates converge towards a local minimizer.

Hence, the proposed algorithm presents the following notable features. First, it converges

toward the solution of problem (P3) by ensuring a monotone decrease of the objective function.

Then, the magnitude of the smallest eigenvalue of SW provides a means to monitor the

convergence. Finally, the inner problem (6.11) is solved by second-order methods featuring

superlinear local convergence.

6.2.3 Inner iteration as an optimization on a quotient manifold

We now derive an optimization scheme that locally solves the nonconvex and nonlinear prob-

lem
min

W∈Rn×l
f̄(W )

s.t. Tr(W T CiW ) = bi, Ci ∈ Sn, bi ∈ R, i = 1, . . . , k,
(6.17)

where f̄(W ) = f(WW T ) for some f : Sn → R.

As previously mentioned, problem (6.17) is invariant by right-multiplication of the variable

W by orthogonal matrices. The critical points of (6.17) are thus non isolated. To get rid of

this symmetry, let M define the set of all the equivalence classes of the form

[W ]
def
= {WQ | Q ∈ Rl×l, QT Q = Il}, (6.18)

where W ∈ Rn×l
∗ satisfies the quadratic equality constraints in (6.17), i.e., W belongs to the

manifold

M̄ def
= {W ∈ Rn×l

∗ | Tr(W T CiW ) = bi, i = 1, . . . , k},

which is embedded in Rn×l
∗ .3 The setM is the quotient of the manifold M̄ by the orthogonal

group O(l),

M = M̄/O(l).

It can be furthermore proven that the quotient M is a differentiable manifold, i.e., it is a

quotient manifold.

Let us turn problem (6.17) onto the quotient manifoldM, i.e.,

min
[W ]∈M

φ([W ]), (6.19)

with the function φ :M→ R : [W ] 7→ φ([W ]) = f̄(W ). The minimizers of (6.19) are isolated

on the search space M. As discussed in Section 4.3, several methods for unconstrained

3
R

n×l
∗ is the noncompact Stiefel manifold of full-rank matrices in R

n×l. The nondegeneracy condition is

required to deal with differentiable manifolds.
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optimization have been generalized to search spaces that are manifolds (see, e.g., [AMS08]).

Let us now discuss the practical implementation of these algorithms in the context of quotient

manifolds.

A quotient manifold is an abstract mathematical space that cannot be directly “repre-

sented” on a computer. However, any point of the quotient M, i.e, an equivalence class [W ]

is completely characterized by any one of its element, i.e., a matrix W of the total space

M̄, which is embedded in Rn×l
∗ . Hence, the quotient M is neatly parameterized by n-by-l

matrices, which is suitable for numerical computations.

Let us now characterize another important concept: the tangent space to a quotient

manifold. In Section 4.3, a tangent vector to a manifold has been defined by considering a

smooth curve γ : R → M : t 7→ γ(t) on the manifold. The tangent vector γ̇(0) is then the

mapping that, given a function f , returns the derivative of f along that curve at γ(0). These

concepts are immediately transposed to the total space M̄ by considering that to any smooth

curve

γ : R→M : t 7→ γ(t) = [W (t)]

on the quotient manifold corresponds a smooth curve

γ̄ : R→ M̄ : t 7→ γ̄(t) = W (t).

on the total space. Since the derivative of the function f along γ at γ(0) is identical to the

derivative along γ̄ at γ̄(0) of the function f̄ defined by f̄(W ) = f([W ]), one can relate the

tangent vectors of the quotient manifold M to the tangent vectors of M̄. The latter have a

well-defined matrix representation,

TWM̄ = {η ∈ Rn×l | Tr(W T Ciη) = 0, i = 1, . . . , k}.

To any smooth curve on the quotient M correspond however infinitely many smooth

curves on the total spaceM, e.g., some curves are almost parallel to the equivalence classes,

and some other are rather orthogonal to them. A small shift of a point W ∈ M̄ along its

equivalence class does not modify the point [W ] on the quotient M, and is thus useless for

our goal of solving the optimization problem (6.19). For the sake of numerical efficiency,

it appears natural to move the iterates along curves that are orthogonal to the equivalence

classes. In other words, to a smooth curve on M passing through [W ], one would like to

associate a curve on M̄ passing through W and that is orthogonal to the equivalence class

[W ]. This induces a decomposition of the tangent space TWM̄ in two orthogonal subspaces,

the vertical space VWM and the horizontal space HWM. The vertical space VWM is the

tangent space to the equivalence classes,

VWM = {WΩ | Ω ∈ Rl×l, ΩT = −Ω}.

The horizontal space HWM, on the other hand, is the orthogonal complement of VWM in

TWM̄. In case of the Euclidean metric 〈η1, η2〉W def
= Tr(ηT

1 η2) for any η1, η2 ∈ TWM̄, the

horizontal space corresponds to

HWM = {η ∈ TWM̄ | ηT W = W T η}. (6.20)
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Expression (6.20) results from the equality Tr(SΩ) = 0 that holds for any symmetric matrix

S and skew-symmetric matrix Ω of compatible dimension. A unique matrix representation of

the tangent space to the quotient manifoldM is so provided by the elements of the horizontal

space HWM.

By extending the discussion of Section 4.3.2 to quotient manifolds, the gradient of a func-

tion φ is obtained by projecting the Euclidean gradient of the function f̄ onto the horizontal

space, i.e.,

gradφ([W ]) = PW (∇f̄(W )),

where PW : Rn×l →HWM is a projection.

In order to specify precisely the projection, let NWM̄ be the normal space to M̄ at W ,

i.e., the orthogonal complement of TWM̄ in Rn×l with respect to the chosen Euclidean metric,

NWM̄ = {
k∑

i=1

αiCiW | α ∈ Rk}.

The Euclidean space Rn×l is so uniquely divided into three mutually orthogonal subspaces,

Rn×l = HWM⊕VWM⊕NWM̄.

We are now ready to derive a closed-form expression for the projection PW .

Theorem 6.2.10 Let W be a point on M̄. For a matrix η ∈ Rn×l, the projection

PW : Rn×l →HWM

is given by

PW (η) = η −WΩ−
k∑

i=1

αiCiW,

where Ω is the skew-symmetric matrix that solves the Sylvester equation

ΩW TW + W TWΩ = W Tη − ηT W,

and with the coefficients

αi =
Tr(ηT CiW )

Tr(W T C2
i W )

.

Proof. Any vector η ∈ Rn×l presents a unique decomposition

η = ηVW M + ηHW M + ηNW M̄,

where each element ηX belongs to the Euclidean space X . The orthogonal projection PW

extracts the component that lies in the horizontal space,

PW (η) = η −WΩ−
k∑

i=1

αiCiW,
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where Ω is a skew-symmetric matrix. The parameters Ω and α are determined from the linear

equations

W TPW (η) = PW (η)T W,

Tr(W T CiPW (η)) = 0, i = 1 . . . k,

which are satisfied by any element of the horizontal space. �

The projection PW provides simple formulas to compute derivatives of the function φ (defined

on the quotient manifold) from derivatives of the function f̄ (defined in the Euclidean space).

As previously mentioned, the gradient of the function φ defined on the manifold corresponds

to

gradφ([W ]) = PW (∇f̄(W )).

Similarly, the Hessian of φ in a direction η ∈ HWM is given by

Hessφ([W ])[η]
def
= ∇ηgradφ([W ]) = PW (D(gradφ([W ]))[η]),

where ∇ is a Riemannian connection and the directional derivative D(·)[·] is performed in the

Euclidean sense in Rn×l.4

Finally, a last ingredient required for optimizing on manifolds is a retraction

RW : HWM→ M̄,

that moves the current iterate W ∈ M̄ in a direction η (an element of the horizontal space at

W ) to obtain a matrix representing a new point on the manifold M. Such a mapping is for

example obtained by projecting the matrix W̄ = W + η along the Euclidean space NWM̄,

RW (η) = W̄ +
k∑

i=1

αiCiW̄ , (6.21)

4Let ζ̄ be a vector field on R
n×l
∗ , e.g., the Euclidean gradient ∇f̄(W ). Let ζ be the associated vector

field on the quotient manifold M, which assigns to any point [W ] ∈ M the horizontal vector ζ = PW ζ̄. The

Riemannian connection of ζ in a direction η ∈ HWM corresponds to the projection of the Euclidean directional

derivative of ζ in the direction η,

∇ηζ([W ])
def
= PW D(ζ)[η] = PW D(PW ζ̄)[η].

The directional derivative D(PW ζ̄)[η] is computed as follows,

D(PW (ζ̄))[η] = Dζ̄[η] − ηΩ − WDΩ[η] −

k∑

i=1

αiCiη −

k∑

i=1

Dαi[η]CiW,

where DΩ[η] is the solution of the Sylvester equation

DΩ[η]W T
W + W

T
WDΩ[η] = η

T
ζ̄ − ζ̄

T
η + W

T Dζ̄[η] − Dζ̄[η]T W − Ω(ηT
W + W

T
η) − (ηT

W + W
T
η)Ω,

and

Dαi[η] =
1

Tr(W T C2
i W )

(Dζ̄[η]CiW + ζ̄
T
Ciη) −

Tr(ηT CiW )

Tr(W T C2
i W )2

(ηT
C

2
i W + W

T
C

2
i η).



98 Optimization over low-rank PSD matrices and its application to sparse PCA

until the quadratic equality constraints in (6.17) are satisfied. Under Assumption 6.2.2, the

coefficients αi are easily computed as the solution of the quadratic polynomial

α2
i Tr(W̄ T C3

i W̄ ) + 2αi Tr(W̄ T C2
i W̄ ) + Tr(W̄ T CiW̄ ) = bi, i = 1, . . . , k.

In case of the elliptope E , equation (6.21) becomes

RW (η) = Diag((W + η)(W + η)T )−
1
2 (W + η),

For the spectahedron SP , the retraction (6.21) is given by

RW (η) =
W + η

√

Tr((W + η)T (W + η))
.

In our implementation of Algorithm 7, we use the trust-region method described in [ABG07,

AMS08] for solving the inner problem (6.17). As previously mentioned, this optimization

method is provided with a convergence theory whose results are similar to the ones related

to classical unconstrained optimization. We set the parameter θ in equation (10) of [ABG07]

to one to ensure a quadratic convergence.

The complexity of this manifold-based optimization algorithm for solving problem (6.17)

is dominated by the computational cost required to evaluate the objective f̄(W ), the gra-

dient ∇f̄(W ) and the directional derivative D(∇f̄(W ))[η]. Hence, the costly operations are

performed in the Euclidean space Rn×l, whereas all manifold-related operations, such as eval-

uating a metric, a projection and a retraction, are of linear complexity with the dimension n.

6.3 Numerical experiments

In this section, we evaluate the new optimization method on several tests problems. First,

a common benchmark setup is provided by the SDP relaxation of the maximal cut of a

graph. Then, the two convex relaxations of sparse PCA are considered. We finally address

the problem of finding a “good” rank-one approximation to a positive semidefinite matrix of

larger rank. This is essential to reconstruct a loading vector z ∈ Rn from a matrix solution

of a convex relaxation of sparse PCA.

6.3.1 The max-cut SDP relaxation

The maximal cut of an undirected and weighted graph corresponds to the partition of the

vertices in two sets such that the sum of the weights associated to the edges crossing be-

tween these two sets is the largest. Computing the maximal cut of a graph is NP-complete,

i.e., “hard”. Several convex relaxations to that problem have been proposed. The most

studied one, which is the basis of a 0.878-approximation algorithm [GW95], is the following

semidefinite program (SDP),

min
X∈Sn

Tr(AX)

s.t. diag(X) = 1n,

X � 0,

(6.22)
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where n is the number of vertices in the graph, A = −1
4L with L the Laplacian matrix5 of the

graph and 1n is the vector of all ones. This relaxation is tight in case of a rank-one solution.

As previously mentioned, the elliptope,

E = {X ∈ Sn|X � 0,diag(X) = 1n},

satisfies Assumption 6.2.2. Hence, problem (6.22) is a good candidate for the proposed

framework. Using the rank-l factorization X = WW T turns the problem on the quotient

manifold ME = M̄E/O(l), where

M̄E = {W ∈ Rn×l
∗ | diag(WW T ) = 1n}.

The Euclidean gradient and Hessian of the objective function f̄(W ) = Tr(W T AW ) are re-

spectively given by

∇f̄(W ) = 2AW and D∇f̄(W )[η] = 2Aη, (6.23)

for any direction η ∈ Rn×l.

The per-iteration complexity of Algorithm 7 in the present context is of order O(n2l).

This complexity is dominated by both the manifold-based optimization (i.e., computation of

the gradient and the Hessian (6.23)) and the eigenvalue decomposition of the dual variable

SW , that are O(n2l). The computational cost related to the manifold-based optimization is

however reduced if the matrix A is sparse, which is often the case for Laplacian matrices.

In Table 6.1, we present computational results obtained with Algorithm 7 for computing

the maximal cut of a set of graphs. The parameter n denotes the number of vertices of these

graphs and corresponds thus to the size of the variable X in (6.22). More details on these

graphs can be found in [BM03] and references therein. The proposed low-rank optimization

method is compared to the SDPLR algorithm proposed by Burer and Monteiro [BM03], which

also rests on the low rank factorization X = WW T to solve semidefinite programs (SDP). The

rank of the optimizer W ∗ indicates that low-rank methods are highly relevant in this context.

They in fact search the solution in a space of significantly reduced dimension. Concerning

computational time, it is important to realize that Algorithm 7 is implemented in MATLAB,

whereas a C implementation of the SDPLR algorithm is provided by the authors of [BM03].

Although this renders a rigorous comparison of the computational load difficult, Table 6.1

suggests that both methods perform similarly.

In Figure 6.1, we illustrate the monotone convergence of the Algorithm 7 in the particular

case of the graph “toruspm3-15-50”. The number of iterations is displayed on the bottom

abscissa, whereas the top abscissa stands for the rank l. As indicated in Figure 6.2, the

smallest eigenvalue λmin of the dual matrix SW monotonically increases to zero and provides

so some insight on the accuracy of the current iterate.

6.3.2 The sparse PCA problem

The new optimization method is used to solve the two convex relaxations (6.4) and (6.8).

5Let the adjacency matrix W ∈ S
n be a symmetric matrix such that the entry wij is the weight on the

edge between the vertices i and j, or zero if there is no edge between these two vertices. The Laplacian matrix

is defined by L = Diag(W1n) − W .
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Objective values CPU time (sec)

Graph n Rank(W ∗) Algo. 7 SDPLR Algo. 7 SDPLR

toruspm3-8-50 512 8 -527.81 -527.81 17 3

toruspm3-15-50 3375 15 -3474.79 -3474.76 1051 181

torusg3-8 3375 7 -3187.61 -3188.09 375 228

G1 800 13 -12083.2 -12083.1 57 35

G11 800 5 -629.16 -629.15 53 15

G14 800 13 -3191.57 -3191.53 82 13

G22 2000 18 -14136.0 -14135.9 358 101

G32 2000 5 -1567.58 -1567.57 158 69

G35 2000 14 -8014.57 -8014.33 525 68

G36 2000 13 -8005.60 -8005.80 459 115

G58 5000 8 -20111.3 -20135.4 1881 1119

Table 6.1: Computational results of Algorithm 7 (implemented in MATLAB) and the SDPLR

algorithm (implemented in C) on various graphs.
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Figure 6.1: Monotone decrease of the objective function in (6.22), i.e., f̄(W ) = Tr(W T AW ),

through the iterations (bottom abscissa) and with the rank l (top abscissa) in the case of the

graph “toruspm3-15-50”.

First convex relaxation

Let us factor the variable Z in problem (6.4) into the product WW T and apply the proposed

optimization method on the quotient manifoldMSP = M̄SP/O(l) where

M̄SP = {W ∈ Rn×l
∗ | Tr(W T W ) = 1}.

The function to maximize is

f̄(W ) = Tr(W T AT AW )− γ
∑

i,j

hκ((WW T )ij) (6.24)
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Figure 6.2: Evolution of the smallest eigenvalue of SW with the rank l (case of the graph

“toruspm3-15-50”). The matrix SW tends to be positive semidefinite as l increases, in which

case the product WW T provides a solution to the convex relaxation (6.22).

with hκ(x) =
√

x2 + κ2 for x, κ ∈ R. Details on the derivation of the first- and second-

order derivatives of f̄ can be found in the Appendix. The computational complexity of

Algorithm 7 in this context is O(n2l). It should be mentioned that the DSPCA algorithm

derived in [AEJL07] and that is tuned to solve (6.3) features a per-iteration complexity of

order O(n3).

In Figure 6.3, we illustrate the monotone convergence of Algorithm 7 on a random Gaus-

sian matrix A of size 50-by-50. For comparison, the optimal value of the non-smooth prob-

lem (6.3) is computed with the DSPCA algorithm [AEJL07]. The sparsity weight factor γ is

chosen to 5 and the smoothing parameter κ equals 10−4.

First, although the smooth objective in (6.4) provides an underestimate to the non-smooth

objective in (6.3), the maximizers of both problems (6.3) and (6.4) are still very close. Then,

we should mention that all numerical experiments performed with the DSPCA algorithm

resulted in a rank-one matrix. A similar observation holds for the smooth problem (6.4),

since the objective function remains almost constant for ranks larger than one. Hence, to

speed up the computations one could compute a rank-one approximate solution of (6.4), i.e.,

to stop, quite heuristically, Algorithm 7 after the iteration l = 1. On the right hand plot

of Figure 6.3, the smallest eigenvalue λmin of the matrix SW appears as a way to monitor

convergence.

In Figure 6.4, we provide some insight on the computational time required by a MATLAB

implementation of Algorithm 7 for solving the sparse PCA problem (6.4). Square Gaussian

matrices A are considered, i.e., m = n. On the left hand plot, Algorithm 7 is compared

with the DSPCA algorithm and the above mentioned heuristic (i.e., computing a rank-one

approximate solution of the problem). The right hand plot highlights the quadratic complexity

of Algorithm 7 with the size n of the problem.
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Figure 6.3: Left: monotone increase of the smooth objective function in problem (6.4), i.e.,

f̄(W ) = Tr(W T AT AW )−γ
∑

i,j hκ((WW T )ij), through the iterations (bottom abscissa) and

with the rank l (top abscissa). The dashed horizontal line represents the maximum of the non-

smooth objective function in (6.3), computed with the DSPCA algorithm. Right: evolution

of the smallest eigenvalue of SW with the rank l.
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Figure 6.4: Left: Computational time for solving (6.4) versus the problem size in the case

m = n. Right: Quadratic complexity with n of Algorithm 7.

Second convex relaxation

To solve problem (6.8), we consider the factorization X = WW T and perform an optimization

on the quotient manifold MSP . As shown by d’Aspremont et al. [ABE07], the spectral

function (6.7) equals the function

f̄(W ) =
n∑

i=1

Tr[W T (aT
i ai − γIm)W ]+, (6.25)

for X = WW T . The gradient and Hessian of f̄ are evaluated on the basis of explicit formulae

derived in the papers [Lew96, LS01] for computing the first- and second-order derivatives
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of a spectral function. Details on these derivations can be found in the Appendix. As

previously mentioned, Algorithm 7 is used to maximize the function (6.25), although it is only

piecewise smooth. All the performed numerical simulations converged however successfully

to the solution of (6.8). The computational complexity of Algorithm 7 for solving (6.8) is

of order O(nm2l), i.e., linear in the dimension n. The convex relaxation (6.8) of the sparse

PCA problem (6.1) is thus adapted for data with more variables than samples, such as gene

expression data.

In Figure 6.5, we illustrate the convergence of Algorithm 7 for solving the sparse PCA

problem (6.8) for a random Gaussian matrix A of size m = 100 and n = 500. The sparsity

parameter γ is chosen at 5 percent of the upper bound γ̄ = max
i
‖ai‖22, as discussed in Chap-

ter 5, equation (5.14). The smallest eigenvalue λmin of the matrix SW presents a monotone

decrease once it gets sufficiently close to zero.
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Figure 6.5: Left: monotone increase of the objective function through the iterations (bottom

abscissa) and with the rank l (top abscissa). Right: evolution of the smallest eigenvalue of

SW with the rank l.

In Figure 6.6, we plot the CPU time required by a MATLAB implementation of Algo-

rithm 7 for the sparse PCA problem (6.8) versus the dimension n of the matrix A. The

dimensions m and l are fixed at 100 and 50, respectively. The data matrix A is generated

according to a Gaussian distribution. Figure 6.6 depicts the linear complexity of the method

with the dimension n.

6.3.3 Rounding to a rank-one matrix

Both convex relaxations (6.4) and (6.8) result from the reformulation of a problem on unit-

norm vectors into a problem on the matrices of the spectahedron. These reformulations are

exact if the matrix solution is rank-one. This rank-condition had however to be drop to end

up with a convex problem. As a consequence, the solutions of both relaxations (6.4) and

(6.8) have in general a rank larger than one. This matrix solution needs to be rounded to

a rank-one matrix of the spectahedron, from which a unit-norm vector can be reconstructed
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Figure 6.6: Computational time for solving problem (6.8) at the rank l = 50 versus the

problem size n. The dimension m is fixed at 100.

that is expected to provide a good approximation to the original problem.

As previously mentioned, all numerical experiments performed with the DSPCA algo-

rithm [AEJL07], which solves the non-smooth convex problem (6.3), led to a rank-one solu-

tion. The solution of the smooth convex relaxation (6.4) is thus expected to tend to a rank-one

matrix for a smoothing parameter κ that gets sufficiently close to zero. This fact is illustrated

in Figure 6.7. It should be mentioned that a matrix X of the spectahedron has nonnegative

eigenvalues whose sum is one. Hence, X is rank one if and only if its largest eigenvalue equals

one. In order to deal with potential numerical problems in the case of a very small smoothing

parameter κ, we solve a sequence of problems of the class (6.4) with a parameter κ that is

monotonically decreased, and initialize each new problem with the solution of the previous

one.

Concerning the convex relaxation (6.8), solutions with a rank larger than one are usually

obtained. The solution matrix X has thus to be projected onto the subset of rank-one

matrices of the spectahedron to recover a vector variable x that approximately solve the

original problem (6.5). A convenient heuristic is to consider the dominant eigenvector of

the matrix X. A better solution is probably obtained with the following homotopy method.

Consider the optimization problem

max
X∈Sm

µfcvx(X) + (1− µ)fccv(X)

s. t. Tr(X) = 1,

X � 0,

(6.26)

with the concave function,

fccv(X) =

n∑

i=1

Tr[X
1
2 (aT

i ai − γIm)X
1
2 ]+,
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Figure 6.7: Left: evolution of the maximum objective in (6.4) with the smoothing parameter

κ. The dashed horizontal line represents the maximum of the non-smooth objective function

in (6.3). Right: evolution of the largest eigenvalue of the solution of (6.4). A value of one

reflects a rank-one matrix.

the convex function,

fcvx(X) =

n∑

i=1

[aT
i Xai − γ]+,

and the parameter 0 ≤ µ ≤ 1. As previously mentioned, the functions fccv and fcvx are

identical for rank-one matrices and equal the objective of the original problem (6.5). For

µ = 0, problem (6.26) corresponds to the convex relaxation (6.8) and has solutions with a

rank typically larger than one. On the other hand, if µ = 1, the solutions of (6.26) are

extreme points of the spectahedron, i.e., rank-one matrices. The parameter µ is so introduced

to continuously interpolate these two extreme situations. By solving a sequence of problems

(6.26) with an increasing parameter µ, the solution of (6.8) is projected onto the rank-one

matrices of the spectahedron. Problem (6.26) is however no longer convex once µ > 0. The

proposed optimization method converges then towards a local maximizer of (6.26). Details

on the derivation of the first- and second-order derivatives of f̄ccv(W )
def
= fccv(WW T ) and

f̄ccv(W )
def
= fcvx(WW T ) can be found in the Appendix.

Computational results obtained on a random Gaussian matrix A ∈ R150×50 are presented

in Figure 6.8. The homotopy method is compared with the usual approach, which projects

the symmetric positive semidefinite matrix X onto the rank-one matrix xxT where x is the

dominant eigenvector of X normalized to unit-norm. Let fEV D denote the objective function

evaluated at this rank-one matrix,

fEV D(X)
def
= fccv(xxT ) = fcvx(xxT ).

As previously, the maximum eigenvalue is used in Figure 6.8 to monitor the rank of a matrix

X of the spectahedron. The continuous plots display the evolution of the functions fccv and

fEV D during the resolution of the convex problem (6.8), i.e., µ = 0 in (6.26). The point A

represents the solution obtained with Algorithm 7 by solving (6.8) at the rank l = 1, whereas
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the points B and B′ stand for the exact solution of (6.8), which is of rank larger than one.

The dashed plots illustrate the effect of the parameter µ, that is linearly increased by steps

of 0.05 between the points B and C. For a sufficiently large parameter µ, problem (6.26)

presents a rank-one solution (point C). One clearly notices that the objective function of the

original problem (6.5), which equals fEV D, is larger at C than at B′. Hence, the rounding

method based on (6.26) provides a better rank-one solution than the usual approach based

on the eigenvalue decomposition of X.
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Figure 6.8: Evolution of the functions fccv (black plots) and fEV D (red plots) in two situations:

(1) resolution of the convex problem (6.8), i.e., µ = 0 in (6.26) (continuous plots).

(2) rounding of the solution of (6.8) to a rank-one matrix by gradual increase of µ in (6.26)

(dashed plots).

6.4 Analysis of gene expression data

We discuss in this section the value of solving convex relaxations of sparse PCA for the

analysis of gene expression data.

First, the sparse PCA algorithm that results from the first relaxation (6.4) has a numerical

complexity that is quadratic with the dimension n of the data. The computational time

required for analyzing random data with up to 850 variables is illustrated in Figure 6.4. This

algorithm seems thus impractical in the context of gene expression data, where the number

of variables is around ten thousand.

The numerical complexity of the algorithm related to the second relaxation (6.8) of sparse

PCA, however, is linear with the number of variables in the data. Nevertheless, in view of

Figure 6.6 where data matrices up to the dimension 850-by-100 are considered, analyzing

gene expression data by solving this relaxation is probably inconvenient.

Computational results are reported in Table 6.2, which compares two algorithms for com-

puting an approximate solution of the sparse PCA problem (6.5) in the context of the breast
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cancer gene expression data of Table 3.1. First, we consider an algorithm that computes an

approximate solution of rank l = 10 of the convex relaxation (6.8). This solution is rounded

afterwards to a rank-one matrix by retaining its dominant eigenvector. We do not use the

above discussed homotopy method, which is too expensive in this large scale context. Fur-

thermore, for the sake of computational efficiency, the rank is automatically set at l = 10,

without using the incremental strategy of Algorithm 7. On the other hand, we use the al-

gorithm GPowerℓ0 proposed in Chapter 5, which rests on the generalized power method to

compute a local solution of (6.5). Both algorithms are initialized identically, i.e., if the al-

gorithm GPowerℓ0 is initialized with a vector x, Algorithm 7 is initialized with the rank-one

matrix xxT . Given a breast cancer cohort, the sparsity-inducing parameter γ is set to a

constant value for both algorithms: the value that led to the largest PEI in Table 5.7 for

the GPowerℓ0 method. Ten components are systematically computed by using the deflation

scheme described in Section 5.3.

As a first observation, the algorithm based on the convex relaxation (6.5) requires a

significant amount of computational effort (Table 6.2A), although it has been reduced to

its simplest form, i.e., the rank is fixed to ten instead of being gradually increased, and the

rounding of the solution to a rank-one matrix is done by eigenvalue decomposition. This excess

in computational effort is furthermore not rewarded by a significant improvement in terms of

objective value (Table 6.2B), and the PEI is not necessarily increased (Table 6.2C). Better

results could possibly be obtained for rank larger than ten or by using the homotopy method

for the rounding, but at the expense of computational time. If one furthermore reminds that

in practice the sparsity-inducing parameter γ is tuned by trial-and-error, solving the convex

relaxation (6.5) is virtually intractable for a practical component analysis of large data.

6.5 Summary

This chapter is devoted to optimization problems defined in terms of a positive semidefinite

matrix X of potentially large dimension, but whose solutions are expected to be of low

rank. The proposed optimization method rests on the factorization X = WW T , where the

number of columns of W fixes the rank of X. This factorization suggests a reformulation of

the original problem as an optimization on a particular quotient manifold. A second-order

optimization method is derived and conditions are provided for the rank of the factorization

to ensure equivalence with the original problem. The resulting algorithm solves a sequence of

nonconvex optimization problems of much lower dimension than the original one and presents

a monotone convergence towards the sought solution.

The proposed algorithm seems particularly well adapted to solve convex relaxations of

combinatorial problems, which usually have low-rank solutions. A low-rank approximate

solution is furthermore often sufficient for such problems since the obtained solution is usually

rounded to a rank-one matrix to provide an approximate solution of the initial problem. The

number of columns in the matrix W thus provides a tuning parameter to explore this trade-off

between the complexity of the problem (i.e., combinatorial problem versus convex problem)

and computational efficiency. For sparse PCA, specifically, the low-rank approach reduces
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(A) Computational time (in seconds)

Vijver Wang Naderi JRH-2

Convex relaxation (Algorithm 7) 24040 21690 8600 8080

Combinatorial problem (GPowerℓ0) 4.2 4.8 1.9 3.1

(B) Objective value of (6.5) reached by the first component (to maximize)

Vijver Wang Naderi JRH-2

Convex relaxation (Algorithm 7) 58376.9 116939.9 19342.2 9757

Combinatorial problem (GPowerℓ0) 58376.7 116939.1 19339.3 9757

Gap between the two methods 0.23 0.82 2.92 10−4

(C) PEI based on a set of 536 cancer-related pathways.

Vijver Wang Naderi JRH-2

Convex relaxation (Algorithm 7) 0.1194 0.1287 0.0560 0.1175

Combinatorial problem (GPowerℓ0) 0.1250 0.1250 0.0672 0.1026

Table 6.2: Comparison of two algorithms for computing ten components by the resolution of

the sparse PCA problem (6.5) in the context of breast cancer gene expression data.

the per-iteration numerical complexity from O(n3) to O(n2) to solve the convex relaxation

(6.4) and from O(n2) to O(n) in the case of problem (6.8). These sparse PCA algorithms

are, however, still numerically expensive for a practical analysis of gene expression data.

Although a locally optimal solution of sparse PCA might probably be sufficient in the

context of component analysis, finding the best solution can very important for further appli-

cations, such as compressed sensing [ABE08]. Finally, besides sparse PCA, the proposed opti-

mization algorithm is also well-suited for a rather large diversity of problems, e.g., the maximal

cut of a graph, the best low-rank approximation of a correlation matrix [BX05, GP07], as

well as convex problems in the context of clustering and embedding [KSJ07].

The results of this chapter have been submitted for publication in the SIAM Journal on

Optimization [JBAS08].



Chapter 7

Conclusion and perspectives

In this thesis, a differential-geometric point of view is adopted to study the problem of compo-

nent analysis, aimed at reducing large data to lower dimensions and revealing so the essential

underlying structure. This problem is encountered in almost all areas of science – from

physics, chemistry and biology to finance, economics and psychometrics – where large data

sets need to be analyzed.

Our investigations on this topic are motivated by the analysis of breast cancer data,

which store the expression levels of ten thousand genes gained from experiments on hundreds

of cancerous cells. Such data provide a snapshot of the biological processes that occur in

tumor cells and offer novel opportunities for an improved understanding of the biology of

breast cancer and progress in diagnosis, treatments as well as drugs. The main challenge in

analyzing these data is to unravel the complex biological mechanisms that give rise to the

measured expression levels.

New algorithms for component analysis

The main contribution of the thesis is the proposal of several new algorithms for component

analysis. These algorithms concern principal component analysis (PCA), which explains the

raw data in terms of uncorrelated components, as well as two extensions of PCA: independent

component analysis (ICA) and sparse principal component analysis (sparse PCA). The former

infers components that are as statistically independent as possible, and the latter manages to

preserve the interpretability of the components.

The algorithms of the thesis result from a formulation of component analysis as a con-

strained optimization problem. It turns out that the constraints involved in these settings

endow the problem with a simple but rich manifold structure. Component analysis is so cast

in the realm of optimization on matrix manifolds. The resulting algorithms rest on efficient

and well-understood strategies from unconstrained optimization, while simultaneously tak-

ing advantage of the geometric structure of the problem to enforce the constraints. Some

well-known algorithms for component analysis are recovered in this way, but also new ones

have been obtained. The efficiency of these algorithms has been systematically illustrated on

random test problems and on the analysis of breast cancer data. Importantly, their numerical

109
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complexity is low (most often linear) with the number of variables in the data, which is a

valued property to analyze large gene expression data sets.

Efficient optimization methods for important classes of problems

When formalizing component analysis into an optimization framework, three main classes of

problems have been encountered, for which methods have been proposed.

First, in Chapter 4, we considered the optimization of a smooth function on the set of

n-by-p real matrices with orthonormal columns. This set is endowed with a manifold struc-

ture, i.e., it is the Stiefel manifold, which specializes in the extreme cases p = 1 and p = n

to the unit Euclidean sphere and to the orthogonal group, respectively. We explained how

classical methods for unconstrained optimization (e.g., steepest-descent, Newton’s or trust-

region methods) are typically adapted to handle these types of constraints. Specifically, the

underlying manifold structure enables to view the problem around each iterate of the opti-

mization process from the Euclidean tangent space, where it appears like an unconstrained

optimization problem. The iterates are then successively computed along curves of the man-

ifold. The orthonormality constraint is so maintained at each iteration in the most natural

manner. In the particular case of the orthogonal group, the manifold is equipped with a Lie

group structure, which enables to consider further optimization methods.

Then, in Chapter 5, we proposed the generalized power method, a simple gradient-type

method to maximize convex and not necessarily smooth functions on compact sets. When

applied to maximize the Rayleigh quotient of a square matrix on the sphere, this algorithm

specializes to the well-known power method, which computes the dominant eigenvector and

eigenvalue of that matrix. Due to the convexity of the objective, the generalized power method

converges rapidly to a local maximizer of the problem, and constraints such as spherical

constraints or orthonormality constraints (which relate to compact manifolds) are tackled

with ease.

Finally, in Chapter 6, we addressed the issue of solving problems defined in terms of large

positive semidefinite matrices in a numerically efficient manner by using low-rank arguments.

Given a symmetric positive semidefinite matrix variable X of Rn×n, the proposed method

rests on the factorization X = WW T with W ∈ Rn×l that enforces a rank at most equal to l

to the matrix X. The dimension l enables to find a trade-off between computational efficiency

(i.e., l ≪ n) and fidelity in the original problem (i.e., l = n). This setup appears especially

appropriate whenever the original problem has a low-rank solution, as it is often expected for

convex relaxations of combinatorial problems.

Novel knowledge on breast cancer biology

Applied on breast cancer gene expression data, the proposed algorithms for component analy-

sis enabled to infer novel biological knowledge. Specifically, we proposed an original framework

to evaluate the biological significance of obtained components. Components are simultane-

ously tested for statistical association with pathways and regulatory modules on the one hand,

and with clinical data (i.e., phenotypes) on the other hand. In this way, components are used
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as an intermediate object to link pathways/regulatory modules with phenotypes. Some of the

relationships that were unravelled are well-known, but novel ones have also been identified.

For instance, the cancer-related immune response pathway is consistently correlated with es-

trogen receptor status. Similarly, the epithelial-mesenchymal transition signalling pathway is

found to be associated with histological grade. Some of these associations could be inferred

from principal components. Some other ones, so far unseen by PCA, have been identified

by ICA and confirmed latter by sparse PCA. The analysis performed with sparse PCA in

Chapter 5 was only preliminary, but already very promising. There is a good chance that a

deeper study of our sparse PCA results would reveal novel associations.

Perspectives for future research

First, the next step towards an improved component analysis of gene expression data is prob-

ably to incorporate a priori information on the data in a more refined way. The methods

covered in this thesis enforce properties such as orthogonality, sparsity or statistical inde-

pendence on the components. Although strongly biologically motivated, these assumptions

provide a very crude model of the complex structure of gene expression data. A priori bi-

ological knowledge is probably better modeled in the form of a graph. Certain genes have

in fact well-known affinities, while others almost never interact. This information can be

readily transposed into a graph, the vertices of which denote the genes. Edges would then

link genes that are likely to be coexpressed, e.g., genes tagged by a common regulatory motif.

Consequently, it seems natural to develop methods for component analysis that take a priori

information in the form of a graph into account. A first attempt could be to “bias” the

computation of the principal components with this graph information, for instance by solving

the problem

max
z∈R

n

zT z=1

zT AT Az + ϕ(z),

which maximizes the Rayleigh quotient of the covariance matrix AT A subject to a penalty

ϕ(z) that enforces the graph structure on the vector z, i.e., genes that are connected in

the graph should be coexpressed in z. Interestingly, if the penalty ϕ(z) is convex, the new

generalized power method can be used.

Another limitation of the present work is that we exclusively applied the generalized power

method to solve problems defined either on the sphere or on the Stiefel manifold, which are

compact embedded submanifolds of Euclidean spaces. One can naturally wonder whether an

adaptation to compact quotient manifolds of Euclidean spaces is possible and meaningful.

One could for instance want to optimize a function, which is convex in the total space Rn×p,

on the set of p-dimensional subspaces of Rn, i.e., the Grassmann manifold, which is a quotient

manifold.

Finally, several parameterizations are conceivable for the set of fixed-rank symmetric pos-

itive semidefinite matrices. Besides the product X = WW T with W ∈ Rn×l, which leads

to the quotient manifold Rn×l
∗ /O(l) discussed in this thesis, the symmetric positive semidef-

inite matrix X of rank l is, for instance, also described by the product X = URUT , where
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U ∈ St(l, n) is an n-by-l matrix with orthonormal columns and R ∈ Sl is a symmetric positive

definite matrix (i.e., a full-rank matrix). This factorization also encounters symmetries since

for any l-by-l orthogonal matrix Q, the product UQ is an element of St(l, n) and QT RQ is

symmetric positive definite. This suggests the quotient manifold (St(l, n) × Pl)/O(l), where

Pl is the set of l-by-l symmetric positive definite matrices, i.e., the positive symmetric cone

of dimension l [BS08]. It could be interesting to investigate which parameterizations provide

the most efficient algorithms for solving the optimization problems mentioned in Chapter 6.

Concluding words

In the last decade, many algorithms based on geometric arguments have appeared that solve

a large diversity of problems. This thesis is highly inspired by this current of research and

a geometric point of view is adopted to tackle problems arising in the context of component

analysis of large data. Exploiting the geometric structure of a problem is not only neat,

elegant and natural. It also provides an inspiring framework to solve the problem. But first

and foremost, the most efficient algorithms often lie at the interface of geometry and linear

algebra.



Appendix

In this Appendix, we provide some details on the computation of the first- and second-order

derivatives of three objectives functions related to the convex relaxations of the sparse PCA

problem discussed in Chapter 6.

1. Derivatives of the function (6.24)

Consider the function

f̄(W ) = Tr(W T AT AW )− γ
∑

i,j

hκ((WW T )ij)

with hκ(x) =
√

x2 + κ2 for x, κ ∈ R.

The Euclidean gradient and Hessian of f̄ at W are respectively

∇f̄(W ) = 2AT AW − 2γMW,

and

D∇f̄(W )[η] = 2AT Aη − 2γ(Mη + M ′W ),

where the matrices M and M ′ are constructed in an element-wise manner as follows,

mij =
dhκ(x)

dx

∣
∣
∣
∣
(WW T )ij

and

m′
ij = (ηW T + WηT )ij

d2hκ(x)

dx2

∣
∣
∣
∣
(WW )T

ij

.

The first- and second-order derivatives of the smooth function hκ are

dhκ(x)

dx
=

x√
x2 + κ2

and
d2hκ(x)

dx2
=

1√
x2 + κ2

− x2

(x2 + κ2)
3
2

.

2. Derivatives of the function (6.25)

Consider the function

f̄(W ) =

n∑

i=1

Tr[W T (aT
i ai − γIm)W ]+,

which is piecewise differentiable. The variable W is an m-by-l matrix.
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The Euclidean gradient and Hessian of f̄ are evaluated on the basis of explicit formulae

derived in the papers [Lew96, LS01] for computing the first- and second-order derivatives of

a spectral function. For the sake of clarity, we denote Bi = aT
i ai − γIm. Let

W TCiW = V DV T

be an eigenvalue decomposition of the symmetric matrix W TBiW , i.e., the l-by-l matrices V

and D are orthogonal and diagonal, respectively. The gradient of f̄ at a point of differentia-

bility W is given by

∇f̄(W ) = 2

n∑

i=1

BiWV D′V T ,

where D′ is a diagonal matrix such that

d′ii
def
= max(0, sign(dii)).

The Hessian of f̄ at W is given by

D∇f̄(W )[η] = 2

n∑

i=1

Bi(ηV D′V T + WV D′′V T ),

where the symmetric matrix D′′ is constructed in an element-wise manner as follows

d′′ij
def
=

{

0 if i = j
d′jj−d′ii
djj−dii

Hij otherwise
,

with H = V T (ηT BiW + W T Biη)V .

3. Derivatives of the function fcvx

Consider the function

f̄cvx(W )
def
= fcvx(WW T ) =

n∑

i=1

[aT
i WW Tai − γ]+,

which is piecewise differentiable. The variable W is an m-by-l matrix.

At a point of differentiability W , the Euclidean gradient and Hessian of f̄cvx are respec-

tively given by

∇f̄cvx(W ) = 2

n∑

i=1

max(0, sign(aT
i WW Tai − γ))aia

T
i W,

and

D∇f̄cvx(W )[η] = 2

n∑

i=1

max(0, sign(aT
i WW Tai − γ))aia

T
i η.
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