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Abstract

The rapid progress of data acquisition technologies, and in particular the
improvements in measurement resolution, allows to observe a stochastic
process through the simultaneous monitoring of thousands to millions of
random variables. Multimedia, bioinformatics and industrial processes are a
few domains where sets of variables of this size are increasingly encountered.
Processing such a large quantity of observations can benefit from the use
of automatic procedures, in order to create a predictive model or to obtain
valuable information about the process.

A widely used strategy to derive a model from observational data is
the estimation of a multivariate probability density over the variables of the
problem. Such a density can then be used to study the underlying stochastic
phenomenon. When the number of variables to model is large, probabilistic
graphical models can reduce the number of parameters necessary to encode
a joint probability distribution by exploiting independence relationships be-
tween variables. However, when there are thousands of variables or more,
the use of those models faces two problems. First, both learning these
models from a set of observations and exploiting them is computationally
problematic. Second, the number of recorded occurrences of the problem
may be quite low with respect to the number of variables. This lack of
observations might be a source of error when learning a model, because the
model constructed may be influenced by the particular sampling of the re-
alisations of the problem, and generalize badly on new, unseen realisations.
This source of error is called the variance of the learning algorithm.

Within this context, the problem considered in the present thesis is to
study and improve the scaling of probabilistic graphical models on high-
dimensional problems, in terms of the number of variables. The approach
selected is to use mixtures of Markov trees. Markov trees are a class of prob-
abilistic graphical models that are constrained in terms of the independence
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relationships they can encode. Therefore, they are limited in the probability
distributions they can model, but both learning and answering queries with
such a model is considered to be computationally tractable. A mixture or
an ensemble model is a weighted average of models. Such a mixture can be
constructed to reduce the variance of a learning algorithm. In particular,
the present thesis explores the possibility to build mixtures of Markov trees
by using the perturb and combine framework. This approach has been quite
successful in some areas of machine learning, and consists in randomizing
a learning algorithm and combining the outputs resulting from a repeated
application of the randomized algorithm on a given learning set.

There are three main parts in this thesis. In each part, algorithms are
first developed and then tested on a set of problems. In the first one, I re-
view existing algorithms for learning a single Markov tree and develop two
new randomized algorithms for this task. In the second part, learning algo-
rithms for mixtures of Markov trees are developed. Two different classes of
algorithms are constructed. Algorithms of the first class construct a mixture
of independent Markov trees. The best algorithm of this first class in terms
of accuracy generates Markov trees by applying the Chow-Liu algorithm
on bootstrap replicates of the original set of observations. Algorithms of
the second class generate a sequence of trees, in the sense that each new
Markov tree generated depends on previous models. These algorithms have
been developed to approximate the best method of the first class, with the
goal of reducing the computational complexity of learning without sacrific-
ing accuracy. The third step of this thesis combines two types of mixtures
of Markov trees: mixtures reducing the variance, and mixtures reducing the
bias. The bias is another source of error, that originates from the inability
of the learning algorithm to select, on average, the best possible model, e.g.
because the class of models considered (here Markov trees) cannot encode
the true model. In this third part, each tree of a bias-reducing mixture is
replaced by a variance-reducing mixture of Markov trees. The objective is
to reduce the variance of each term of the bias-reducing mixture, and hence
of the bias-reducing mixture itself.

Finally, the ideas developed in this thesis are applied to another class
of probabilistic graphical models, called tree-structured conditional random
fields. Those models encode a conditional probability distribution rather
than a joint probability distribution. A meta-algorithm to learn a mixture
of these models is proposed, with the goal of reducing the variance.



Résumé

Le progrès rapide des technologies d’acquisition de données, en particulier
l’amélioration de la résolution, permet l’étude d’un système stochastique via
l’observation simultanée de miliers voir millions de variables aléatoires. La
bioinformatique, le multimédia ou les processus industriels sont quelques-
uns des domaines où se rencontrent des problèmes de cet ordre de grandeur.
Leur analyse peut être facilitée par des procédures automatiques, permet-
tant l’obtention d’un modèle prédictif ou d’informations sur le système.

Une stratégie répandue pour construire un modèle à partir de données
observées est l’estimation d’une densité de probabilité multivariée sur les
variables du problème. Celle-ci peut ensuite servir à l’étude du phénomène
stochastique sous-jacent. Quand le nombre de variables est élevé, les mod-
èles probabilistes graphiques permettent de réduire le nombre de paramètres
nécessaires pour encoder une distribution de probabilité conjointe. Cepen-
dant, quand il y a des milliers de variables ou d’avantage, l’utilisation de
ces modèles rencontre deux problèmes. Premièrement, tant leur appren-
tissage que leur utilisation posent des problèmes de complexité de calcul.
Deuxièmement, le nombre d’observations du problème peut être faible par
rapport au nombre de variables. Ce manque d’observations peut être source
d’erreur lors de l’apprentissage : le modèle construit peut être influencé par
l’échantillonnage des réalisations du problème, et mal se comporter sur de
nouvelles réalisations. Cette source d’erreur est appelée la variance.

Dans ce contexte, le problème considéré dans cette thèse est l’étude et
l’amélioration du passage à l’échelle des modèles probabilistes graphiques
pour un grand nombre de variables. L’approche choisie est l’utilisation des
mélanges d’arbres de Markov. Les arbres de Markov sont une classe de
modèles probabilistes graphiques fortement contraints en terme des rela-
tions d’indépendence qu’ils peuvent encoder. Ils sont donc limités dans les
distributions de probabilité qu’ils peuvent modéliser, mais l’apprentissage et
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l’exploitation de ces modèles sont considérés comme faisables algorithmique-
ment. Un mélange ou un ensemble de modèles est une moyenne pondérée
de modèles. Un mélange peut être construit pour réduire la variance d’un
algorithme d’apprentissage. En particulier, la présente thèse explore la pos-
sibilité de construire des mélanges d’arbres de Markov selon la technique du
perturb and combine. Cette approche a eu quelques succès dans certains do-
maines de l’apprentissage automatique. Elle consiste à rendre un algorithme
en partie aléatoire, et à combiner plusieurs résultats obtenus en appliquant
plusieurs fois cet algorithme aléatoire sur un ensemble de données fixé.

Cette thèse comporte trois parties principales. Dans chacune, de nou-
veaux algorithmes sont développés et évalués empiriquement. Dans la pre-
mière partie, je passe en revue les algorithmes de la littérature construisant
un arbre de Markov, et puis j’en développe deux versions randomisées. Dans
la seconde partie, des algorithmes pour apprendre un mélange d’arbres de
Markov sont développés. Deux types d’algorithmes sont mis au point. Les
algorithmes du premier type construisent un mélange d’arbres de Markov
indépendants. Le meilleur algorithme de cette classe (en terme de précision)
construit des arbres en appliquant l’algorithme de Chow-Liu sur des répli-
cats bootstrap de l’ensemble de données. Les algorithmes du second type
construisent une séquences d’arbres, dans le sens où chaque nouvel arbre
construit dépend des modèles précédemment obtenus. Ces algorithmes ont
été développés pour approximer la meilleure méthode du premier type, dans
le but de réduire le temps de calcul sans sacrifier la précision. La troisième
partie de la thèse combine deux types de mélanges d’arbres de Markov :
des mélanges réduisant la variance et des mélanges réduisant le biais. Le bi-
ais est une autre source d’erreur, causée par une incapacité de l’algorithme
d’apprentissage à produire, en moyenne, le meilleur modèle, par exemple
parce que la classe de modèles considérés (ici les arbres de Markov) ne peut
encoder le vrai modèle. Dans cette troisième partie, chaque arbre d’un
mélange réduisant le bias est remplacé par un mélange d’arbres de Markov
réduisant la variance. Le but est de réduire la variance de chaque terme du
mélange réduisant le biais, et donc la variance du mélange lui-même.

Enfin, les idées développées dans cette thèse sont appliquées à une autre
classe de modèles probabilistes graphiques, les champs de Markov condition-
nels en forme d’arbre. Ces mélanges encodent une distribution de probabil-
ité conditionnelle au lieu d’une distribution conjointe. Un méta-algorithme
pour apprendre des mélanges de ces modèles est proposé, avec l’objectif
d’une réduction de variance.
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Chapter 1

Introduction

The main preoccupation of this thesis is discrete probability density es-
timation. More precisely, the research presented in this document is the
application of the perturb and combine principle to automatic learning of
probabilistic graphical models, an encoding for a probability distribution.
Bound together, those two frameworks lead to the construction of mixtures
of simple probabilistic models. Both topics are introduced in Section 1.1,
where this research is also motivated. The objectives of the thesis are pre-
sented in Section 1.2. The organisation of the present manuscript is detailed
in Section 1.3. This introduction is closed by spelling out the main contri-
butions of the present thesis, in Section 1.4.

1.1 Context and Motivation

1.1.1 Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on the au-
tomatic (i.e. by computers and algorithms) exploitation of empirical data,
whether they come from databases or from sensors. Machine learning pro-
cedures can replace or assist experts in the study of the problem of concern,
which can be overly complex for a human or a team of humans to tackle
alone.

Applying machine learning algorithms to a data set can serve various
purposes, e.g. to unveil the underlying structure, behavior or properties

1
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Microarray technology

A DNA microarray can measure the expression
level of thousands of genes in a single experi-
ment. It is composed of thousands of micro-
scopic DNA dots attached to a substrate. Each
dot is made of a small quantity of a known and
specific DNA sequence.
To measure gene expression levels in a medium, a copy of interesting
genetic material it contains is made, using building blocks attached to a
fluorescent molecule. These copies are then applied on the microarray,
and each molecule binds onto a complementary sequence if it composes
one dot of the microarray. Once the solution is washed away, the fluo-
rescence of the dots can be measured to quantify gene expression level.
Two different mediums (such as healthy and sick) can be compared by
coloring each one with a different color. The result is illustrated in the
above figure.

of a given system, or to build a black box capable of predicting valuable
information in any new (unseen) situation.

Consider as an example the study of a complex genetic disease. With the
developments of the microarray and sequencing technology, it is increasingly
easy to identify hundreds of thousands of genetic variations in the DNA
code of a human being and to associate them to his medical condition
in a database, or to measure the expression level of thousands of genes
simultaneously. However dealing with this massive amount of information
is hardly possible without the assistance of automatic learning procedures.

Machine learning algorithms could exploit such a database containing
the genetic variations from several individuals to achieve several objectives.
It could be used to extract knowledge. Can the data be expressed as a
function of a smaller number of elements? What are the genes involved in
the disease? Can it be partitioned into different pathologies? But the same
information can also be processed to build a predictive model. Based on
his genetic variations, what is the probability that a new individual is or
will be affected by the disease? What treatment is the most likely to be
successful on him?
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In a machine learning framework, a data set is often characterised in
terms of its number of samples or observations, i.e. the number of prob-
lem instances that were measured, and in terms of its number of variables
(dimension), i.e. the values measured in each sample. In the example, the
number of samples would be the number of individuals and the variables
would be the genetic variations.

One way to perform inductive reasoning is through the use of one or
several joint probability distribution(s). Indeed, such a distribution can
be used for inference, e.g. to obtain the most probable configuration of
variables or to compute the conditional probability distribution of some
unobserved variables given known values for others. Therefore constructing
a distribution from a set of samples has received considerable attention
in the machine learning community, crossing with the field of statistical
estimation. In this case a distribution is typically defined on all the problem
variables and encodes the distribution of said variables as observed in the
samples available.

For example, one approach to predicting a binary variable (the target)
based on the values taken by the others (then called the features) is to learn
two joint distributions on all the features, i.e. one distribution for each
value of the target variable. Each distribution is learned conditionally on
the associated value of the target variable. This distribution is constructed
using only the observations in which the target variables take the value
considered. When a prediction must be made, one possibility is then to
output the target value associated to the distribution giving the highest
probability to the new values observed for the features.

1.1.2 Probabilistic Graphical Models

Probabilistic graphical models (PGM) can efficiently encode a joint proba-
bility distribution over a large set of variables. For this reason, they have
seen an increasing use in machine learning, where the number of variables
can be challenging. A PGM is composed of a graphical structure and a set
of parameters. The graph defines a compact representation of the distribu-
tion based on the relationships between the variables, and the parameters
quantify it [Pea88, NWL+07, Dar09, KF09].

In this work, I will use such models extensively, and in particular Bayesian
networks (BN). In this class of PGMs, the nodes of the graph G are labeled
by the variables X of the problem and provide information about the struc-
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Alarm RadioNews

Burglary Earthquake

NeighborCall

Figure 1.1: The burglary network is a Bayesian network modelling a home
alarm system.

ture (in terms of probabilistic independencies) of the problem, and the pa-
rameters quantify the conditional probability distribution of each variable
Xi conditioned on its parents PaXi

G in the graph. Hence, a Bayesian network
encodes a factorization of the joint probability distribution by a product of
conditional distributions:

PG(X ) =

p∏
i=1

PG(Xi|PaXi
G ) . (1.1)

Consider as an illustration the burglary network, due to [Pea88] and
displayed in Figure 1.1. It is composed of 5 binary variables and models a
sensitive home alarm system that can be triggered by either a burglary or an
earthquake, however minor. When the alarm rings, a neighbor may call the
home owner at work, and an earthquake may lead to a radio announcement.

Due to this encoding, a visual inspection of the graph of the BN can
provide insight into the inner structure of the distribution. In the burglary
example, the network reveals that the variables “Alarm” and “RadioNews”
are independent given the variable “Earthquake”, because the latter is the
parent of the two former and there is only one path between them. The
probability that the neighbor calls when the alarm rings is also not influ-
enced by the occurrence of an earthquake or of a burglary.
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Since the numeric encoding of the distribution exploits its structure, the
number of parameters needed is smaller than in a contingency table, a table
containing the probability of every joint configuration of the variables. The
example contains five binary variables. Therefore a contigency table for the
joint probability distribution would contain 25 = 16 parameters, minus one
since they must sum to one. However the Bayesian network stores only 10
independent probability values.

In practice, exploiting the structure of the distribution to facilitate its
encoding is necessary for large sets of variables. Storing a probability value
on a computer as a floating point number typically uses 4 bytes of memory.
If the variables considered are limited to binary values and assuming it can
be completely used, a RAM memory with a capacity of 1 GB can store 228

probability values, and can therefore store a contingency table for up to 28
binary variables. Under similar hypotheses, a hard drive of 1TB can hold
the contingency table of 38 variables. Finally, today’s worldwide hard drive
capacity can be estimated at 1ZB (270B)1. Assuming it could all be used
to store a single contigency table, it could not be defined on more than
68 variables. These numbers are rather small, so more efficient encoding
schemes such as Bayesian networks are required.

A BN can encode any joint distribution, ranging from a set of indepen-
dent variables (by a structure without edges) to the opposite case where
all variables directly influence each other (completely connected graph). As
with any probability distribution, it is possible to compute from a Bayesian
network marginal probabilities (the probability distribution of a subset of
variables) or conditional probabilities (i.e. the probability distribution of
a subset of variables given the values of another subset of variables). In
the framework of PGMs, these and similar operations are designated by the
generic term of inference.

A BN can be specified by an expert, but also automatically constructed
from a set of observations by a machine learning algorithm. When the
latter method is chosen, performing inference on a problem can be seen as
a two-step process: learning the network based on the observations, and
performing inference. A BN can also be used to extract the independence
relationships between the variables in the problem, but this thesis only
focuses on learning probabilistic models for inference.

1This estimation is based on the methodology of [HL11]. The cumulated hard drive
capacity produced in last five years is 1.2ZB (based on estimations made in 2006).
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Synchronous grid of Continental Europe

The synchronous grid of Continental Europe is
the interconnected electrical grid of 24 European
countries. The whole network is synchronized at
50Hz. Connecting national grids is a mean to
share production, more easily balance load and consumption (and thus
maintain frequency) and to better exploit available energy resources.
When a country lacks power generation capacity, it can easily import
power from its neighbours.

However, applying these techniques is challenging on problems where
the number of variables is large (a few thousands). For example, one may
wish to model a probability density over the voltages at the nodes of a power
network (at the extra-high voltage level, there are about 16 000 transmis-
sion nodes in the synchronous grid of Continental Europe) or to model a
probability density over the expression level of genes or proteins (there are
approximately 21 000 genes and 1 000 000 proteins in a human being).

Learning and inference, which will both be presented with more details
in Chapter 3, are computationally very expensive to perform in general
for large problems (actually they belong to the class of non-deterministic
polynomial-time hard problems). In practice, they are not applicable on
problems of more than a thousand variables [Auv02, EG08]. Constraining
graphical structures of BN can improve algorithmic complexity, but de-
creases modelling power. However, this decrease may be beneficial in terms
of accuracy of the estimated distribution with respect to the original dis-
tribution. A constrained model is likely to be less sensitive to noise in the
observations.

1.1.3 Bias and Variance

In the context of learning, a problem is the usually extremely low number of
observations with respect to the number of variables. Intuitively one would
wish to have an infinite number of observations. However, obtaining at
least one occurrence of every possible configuration implies that the number
of observations would possibly increase exponentially with the number of
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(b) The learned model is a polynomial
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Figure 1.2: The overfitting problem is illustrated on a regression problem.
A polynomial of degree 3 is sampled to generate a learning set of 12 noisy
observations. Two models of different complexity are learned on each of
these learning sets by minimizing the mean square error to the observations.
The first model is too simple, whereas the second is too complex and suffers
from overfitting.

variables. However, the larger the number of variables the more expensive
it is to acquire and store observations, and in very high dimensional settings
the number of observations is typically smaller than the number of variables.
This is called “the curse of dimensionality”. As a consequence of the lack of
observations, selecting the best model can be very difficult. Discriminating
between different alternatives is not easy, and special care must be taken
that the one selected does not overfit the data. Overfitting means that the
model does not generalize well, and will behave worse during inference on
new, unobserved observations than a simpler model. This phenomenon is
illustrated in Figure 1.2, where a polynomial is approximated by a line (left)
and a polynomial of degree 7 (right). In the latter case, the model used is
too complex and fits the observations too closely, leading to a large error,
e.g. in the middle of the figure.

To limit the negative impact of the lack of samples, a classical solution
is to impose constraints on the model structure, to lower the number of
parameters. Constraining the model is a balance between its capacity to



8 CHAPTER 1. INTRODUCTION

model information and the risk it fits the observations too much. This is
referred to as the bias-variance trade-off.

Bias refers to the difference between the average model learned (over
all possible sets of observations of a given size) and the true model. This
results from the inability of the learning algorithm to recover this true model
because

1. the models considered by the algorithm do not contain the true model,

2. the learning algorithm does not identify the best model among those
considered, and instead returns a worse model.

Variance is related to the phenomenon of overfitting that was men-
tioned above. When the model considered has many degrees of freedom,
and when few observations are available, it is possible to construct a model
that perfectly fits these observations. Applying the same algorithm on an-
other set of observations of the same problem would also fit them perfectly.
The two models, however, are likely to be quite different. This is the vari-
ance. Such models do not generalize well on unseen instances because they
tend to model sampling noise in the observations. They are said to be
overfitting.

Bias appears when the models considered are not adaptable enough,
variance when they are overly adaptable. Selecting the adaptability of the
model is therefore a trade-off between both sources of errors, with an in-
termediate adaptability giving the best result. If it is increased, variance
grows more than the bias decreases and the overall error gets bigger, and
vice versa. This is illustrated in Figure 1.3. On the regression problems al-
ready considered, several models belonging to the classes of polynomials of
degrees respectively 1 and 7 are constructed on different learning sets. Both
the averaged model learned and the variability of the models are displayed.
When the models are simple (degree 1), the variance is small but the bias
large, and when the models are complex (degree 7), it it the opposite.

1.1.4 Mixture Models and Perturb and Combine

The bias-variance trade-off applies to the learning of probabilistic graphi-
cal models. An additional consideration relevant to the complexity of the
class of models considered is algorithmic complexity of both learning and
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(a) The learned model is a line. The
bias is large.
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(b) The learned model is a polynomial
of degree 7. The variance is important.

Figure 1.3: The bias variance trade-off is illustrated on the regression prob-
lem already studied in Figure 1.2. 1000 learning sets are generated by
repeatedly sampling the polynomial on 12 given abscissa.
Two models of different complexity are learned on each of these learning
sets by minimizing the mean square error to the observations. The first
model (a) is too simple, whereas the second one (b) is too complex. The
mean and the standard deviation of the set of 1000 models are illustrated,
for both complexities. The distance between the red lines equals twice the
standard deviation.

inference. As mentioned above, reducing the set of candidate structures can
make learning algorithmically easier, and the search can also be limited to
structures for which inference can be performed under a given time budget.

In this thesis a further step is taken and mixtures of simple PGMs are
considered. Instead of using one potentially complex structure, the problem
is represented by a combination of simple PGMs (typically Markov trees),
each modelling a joint probability density on all variables. To each one of
those m terms is associated a (positive) weight, here denoted by w. The
probability density defined by the mixture is the weighted average of the
different densities encoded by each term:

P(X ) =
m∑
i=1

wiPi(X ), (1.2)
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m∑
i=1

wi = 1 and ∀i : wi ≥ 0. (1.3)

This approach reduces the shortcoming of both simple and complex
graph structures: the structures are simple, therefore the algorithms may
remain simple as well. However, combining several simple models allows in
principle to represent richer classes of densities.

Such mixtures can be constructed to either reduce the bias or the vari-
ance. Each individual model can be viewed as an alternative distribution
and averaging them as considering either different mechanisms of the prob-
lem, a way to deal with a complex problem, or different possibilities between
which the lack of samples does not allow to discriminate. In the first set-
ting, the mixture is an attempt to bridge the gap between the class of simple
models and the complex structure they cannot represent, i.e. to reduce the
bias. In the second, the mixture is trying to decrease the error introduced
by the lack of samples, the variance. This thesis focuses on mixtures for
reducing the variance, and in particular on mixtures constructed based on
the perturb and combine method.

Perturb and combine is a generic framework for building mixture mod-
els based on that second principle. Its main idea is to, on the one hand,
randomize the learning algorithm used to construct a model from a learning
set and, on the other hand, to combine in some appropriate fashion an en-
semble of models obtained by multiple iterations of the perturbed algorithm
over the given set of observations.

Figure 1.4 illustrates the intuition behind the model averaging approach
on the regression problem already considered. While the 10 different poly-
nomials of degree 7 all suffer from a larger variance, averaging them results
in a closer approximation of the original function.

1.2 Objectives of the Thesis

The research presented in this thesis concerns learning mixtures of simple
PGMs for inference. The two main objectives of this research were to ex-
tend this framework by developing new learning algorithms, especially by
approaches related to the perturb and combine framework, and to assess
the interest of both the existing and new methods in realistic problems.
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(a) The learned model is a polynomial
of degree 7, as in Figure 1.3b.
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Figure 1.4: The reduction of variance due to a mixture model is illustrated
on the regression problem already studied in Figure 1.3. 1000 polynomials
of degree 7 are learned, each based on a different set of 12 observations (with
fixed abscissa). The standard deviation of these 1000 models is contrasted
against the standard deviation of 1000 mixtures, constructed by averaging
10 of these polynomials. The distance between the red lines equals twice
the standard deviation.

1.2.1 Improvements in Mixtures of Simple PGMs

In order to develop new mixtures of simple PGMs for high-dimensional
learning, several points are addressed in this thesis. Scalability of the al-
gorithms, both for inference and learning, and accuracy of the distribution
estimated are the main focus of the research.

Perhaps the most fundamental question to address is the selection of the
class of models composing the mixtures. What is the most suitable class of
models, and what are the alternatives, given the focus on high-dimensional
applications? Because of the complexity of the algorithms associated to
these models, Markov trees, a class of BNs where each variable has at most
one parent, are very appealing models, and have already received much at-
tention. Indeed, algorithms for learning such a model are roughly quadratic
in the number of variables, while inference is of linear complexity. The
present thesis will therefore focus on these models. More details about that
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will be given in Chapter 4.
As a consequence, the quest for new learning methods starts by a review

of existing methods for building such mixtures, for methods targeting either
the bias, the variance or both.

Based on the strength and weaknesses of other methods uncovered in
the aforementioned analysis, three main targets are identified for the per-
turb and combine procedure: the single tree learning algorithm, the tree
learning algorithm in the context of a variance reduction mixture and the
mixture learning algorithm. The randomization of each of these three levels
is investigated in respectively Chapters 5, 6 and 7 of this manuscript.

1. Learning the structure of a single Markov tree is an essential building
block of most algorithms for learning a mixture of Markov trees. The
algorithmic complexity of this operation is roughly quadratic in the
number of variables and is driven by the number of pairs of variables
considered. In the context of mixtures, this algorithm will be applied
multiple times. As a consequence, the resulting complexity can be
problematic when the number of variables increases. Therefore ran-
domizations were carefully designed to decrease the complexity while
retaining as much accuracy as possible. The key idea is to guess which
pairs of variables are interesting for the tree. The resulting algorithm
is compared to the original one, both for learning a single tree and a
mixture. While in both situations the new algorithm does not match
the precision of the unmodified version, it outperforms a random se-
lection of candidate edges both in accuracy and in complexity.

2. Considering the generation of the mixture as a whole rather than the
repetitive learning of a tree opens up the possibility to transfer in-
formation from the trees already generated to the learning procedure
creating an additional tree. By transposing in this context the con-
cept of selecting interesting pairs of variables, several randomized al-
gorithms are developed. A comparison to other randomized methods
shows an accuracy close to the state of the art for a much lower learn-
ing cost, and a far better accuracy than other randomized methods
with a similar complexity.

3. The methods studied in the two previous steps focus on improving
over a single Markov tree, and in particular on reducing the variance.
However, it is possible to go one step further and to consider improving
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the other class of mixtures of Markov trees, i.e. those targeting the
bias of Markov trees. In those mixtures, each tree can be viewed as
a distinct mechanism of the problem. The variance of each of these
Markov trees may increase the error of the model. To attempt to
decrease the variance of each tree of the model, the two classes of
mixtures can be combined by replacing each tree of the bias reducing
mixture by a variance-reducing mixture, leading to a two-level mixture
of Markov trees.

1.2.2 Empirical Evaluation of Algorithms

The proposed algorithms must be evaluated, both from the point of view
of computational complexity and from the point of view of modeling accu-
racy. In this work, this evaluation is done mostly in an empirical way, by
applying the proposed learning algorithms on both synthetic and realistic
datasets, and by comparing the resulting models with those obtained by
other methods.

There exist measures of similarity between distributions to evaluate the
fit of a model to a given probability density. They are used in this thesis to
quantify the quality of the models learned by the algorithms developed, and
of the alternative approaches. The scores obtained for both are compared
to establish the merits of both methods. These alternative methods are
existing algorithms for learning mixtures of Markov trees, but also regular-
ization of a single Markov tree, another method for reducing the variance.
This latter method attempts to reduce the complexity of a single model to
lower its variance.

1.2.3 Application to Multitarget Classification

Applying the algorithms developed to solve realistic problems could give an
additional insight into the interest of the approaches studied as a tool for
machine learning. Therefore, this thesis proposes to apply the techniques
developed to multitarget classification.

Multitarget classification is a class of machine learning problems where
the value of a set of several output variables must be predicted based on
the known values of a set of input variables. Taking into account the rela-
tionships between output variables is mandatory to obtain good predictive
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performance. To do so it is possible to model a joint probability distri-
bution on those output variables, conditioned on the inputs. Conditional
random fields are a specialized class of probabilistic graphical models that
encode a conditional joint distribution. They can thus be used for multi-
target classification. However, learning such a model is even more complex
than learning a BN.

As a last contribution of this thesis, I propose in Chapter 8 to adapt the
concepts developed in the present thesis, in order to build mixtures of tree-
structured conditional random fields. The implementation and evaluation
of this approach is left for future work.

1.3 Organization

This manuscript is divided in three parts, plus some appendices. The first
part is mostly a background section, introducing general notions of machine
learning, PGMs and mixture models. The second part focuses on the devel-
opment of new methods for learning mixtures of Markov trees and on their
empirical evaluation. The third part proposes an approach to apply those
methods to multitarget prediction. Finally the conclusion gives a synthetic
overview of the main scientific advancements contained in the thesis and
presents some possible ways to further expand this research. The contents
of the three main parts and the appendices are described below.

1.3.1 Part I: Background

Chapter 2 presents several machine learning problems. The evaluation of
machine learning algorithms is also discussed. Important notions such as
bias and variance are introduced more formally. Mixtures of models are also
introduced. After these models are defined, two frameworks for building
them are distinguished based on the component of the error they target,
i.e. either bias or variance. Those notions are then illustrated by a few
machine learning examples. This chapter ends by relating the topic of this
thesis with respect to the information provided.

Chapter 3 provides an overview of probabilistic graphical models. Dif-
ferent general classes of models are first reviewed and their capacity of
representation discussed. Then, both learning and inference are discussed:
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problem statement, complexity and typical approaches. Finally, the content
of this thesis is positioned with respect to existing work on PGMs.

Chapter 4 is concerned with the application of mixtures to Bayesian
networks. This chapter provides a closer look at mixtures of simple proba-
bilistic graphical models, and in particular mixtures of Markov trees, making
the transition to part II.

1.3.2 Part II: New Algorithms for Learning Mixtures
of Markov Trees

This part of the thesis first explores three different applications of the per-
turb and combine principle to build mixtures of Markov trees, before briefly
considering other models. Note that the problems on which the algorithms
are evaluated are precisely described in the appendices.

In Chapter 5, this randomization focuses on the construction of a sin-
gle tree. The chapter starts by a review of existing algorithms for learning
Markov trees and assesses their strengths and interest in the context of
high-dimensional density estimation. First, regularization of the Chow-Liu
algorithm is considered, as it is an alternative to mixtures for reducing
the variance. Standard methods based on regularization are developed to
compete against mixtures during the evaluation. Two new randomized al-
gorithms are then presented. Their accuracy and algorithmic complexity
are evaluated against the original algorithm for learning a tree.

Going one level higher, Chapter 6 contains algorithms for learning mix-
tures of Markov trees for variance reduction. After a general meta-algorithm
is described, this chapter is divided into two parts. The first part focuses
on mixtures of independent trees, while the second studies randomization
schemes where the construction of each new tree exploits the computations
performed for building the previous trees. Existing randomization schemes
are studied, and based on that analysis new algorithms are developed. These
algorithms are then compared against existing methods and against the reg-
ularization standard developed in the previous chapter, on both synthetic
and more realistic problems.

Chapter 7 still focuses on mixtures of Markov trees, but merges the two
frameworks for building them defined in Chapter 4. Rather than replacing
one Markov tree by a mixture of such trees, as in previous chapters, 2-level
mixtures of Markov trees are now constructed: the first level reduces the bias
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while the second reduces the variance. This meta-heuristic is first motivated
and discussed before this concept is instantiated, tested on synthetic and
realistic problems and compared to traditional mixtures.

1.3.3 Part III: Perspectives for Multitarget Prediction

This part of the thesis is composed of a single chapter providing a proposal
for applying the proposed algorithms of Part II to multitarget prediction.

Chapter 8 considers conditional random fields (CRF) and proposes a
meta-algorithm for building mixtures of tree-structured CRFs. The CRF
models, specialized for the joint prediction of several output variables, are
first described. Then, the different strategies for learning them are pre-
sented, and the interest of tree-structured CRFs is discussed. Next, a meta-
algorithm for learning mixtures of such models is proposed and its main
ingredients are discussed, in particular the question of aggregation. The
implementation and validation of these ideas is however left for future work.

1.3.4 Appendices

The appendices provide the following information apart from the core con-
tent to avoid disrupting reading.

Appendix A characterizes the different problem instances used to evalu-
ate the algorithms studied in this thesis. The generation process of synthetic
problems is described, and the origin of realistic problems specified.

Appendix B provides elements of graph theory and related terminology.
Different types of graphs and algorithms used in this text are described,
and this chapter can be used as a reference.

Appendix C provides a short introduction to the theoretical notion of
computational complexity, and reports on the main results from the lit-
erature concerning the computational complexity of various problems of
learning and inference with probabilistic graphical models.

1.4 Contributions

In this section the main contributions of the thesis are stated precisely.
While a full discussion about these points is of course present in the main
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body of this manuscript, a quick comparison with existing work is already
given here to clearly highlight the novelty of the developments presented.

• In Section 2.4, I provide a detailed analysis of the bias-variance com-
promise in the context of density estimation. Our analysis, based on
the comparison of two different decompositions of the Kullback-Leibler
divergence, provides a theoretical motivation for arithmetic (rather
than geometric) averaging of probability density models, when the
objective is to reduce their variance. These ideas are still unpublished
at the moment of submitting this thesis.

• Two algorithms for learning a randomized maximum likelihood tree
are detailed in Chapter 5. While the original Chow-Liu algorithm
[CL68] has already been accelerated for sparse samples [Mei99] and
approximated for learning sets containing many samples using prob-
abilistic bounds [PM06], this is to the best of my knowledge the first
time a heuristic has been developed to approximate the Chow-Liu al-
gorithm by discarding edges either randomly or based on previously
considered edges. Note that random edge sampling was also proposed
in [ALW10b] and generation of random tree structures has been con-
sidered in [ALDW08].

• These algorithms are used to construct mixtures of Markov Trees
based on the perturb and combine framework. This led to one publi-
cation [SLW10] and is described in Chapter 6.

• Several approximations of the mixture of bagged Markov trees are
proposed in Chapter 6. The algorithm approximated can be found
in [ALDW09b]. Other approximations have also been developed in
[ALW10b], but the experiments presented in the chapter show the
interest of my new methods in terms of accuracy, although their run-
time is for some of them slightly more difficult to control. Those
results were published in [SAL+11].

• The algorithms mentioned above are extensively evaluated. To the
best of my knowledge, I was the first to:

– analyze the effect of the number of samples (for a fixed number
of variables) on the performance of variance-reducing mixtures of
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Markov trees. This analysis has been performed e.g. in [SLW10,
ALSW10, SAL+11].

– evaluate them on realistic data sets, whereas previous works fo-
cused only on synthetic data sets [ALW10b, ALDW09b].

– compare them to a regularized Markov tree, a single tree penal-
ized for its complexity during learning, so that the complexity of
the model is tuned to the number of observations available.

• The two frameworks are combined in Chapter 7, resulting in a 2-
level mixtures. The two types of mixtures had already been combined
in [KS07], but their approach is of cubic complexity whereas mine
is quadratic. The approach is different as well: here a maximum-
likelihood mixture is generalized by replacing each term by a variance
reducing mixture while in [KS07], they generate a variance reducing
mixture of a bias reducing mixtures. An early version of this work
was presented in [SW11], and a paper has been recently submitted
to the Sixth European Workshop on Probabilistic Graphical Models
(PGM 2012).

• The meta-algorithm for learning mixtures of Markov trees is adapted
to tree-structured conditional random fields (CRF) in Chapter 8. Mix-
tures of tree-structured CRFs have already been discussed in [CG10,
POB09] in the context of multitarget classification. However, [CG10]
actually conditions the structure of the tree to the features and thus
performs inference on one tree only, and [POB09] builds those trees
as an approximate method for inference in a more complex CRF. The
novelty of my approach is that a mixture of tree-structured CRFs will
be learned from a set of observations, that inference will be carried on
on all CRFs constructed, and that the results will be aggregated.
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Chapter 2

Machine Learning

The goal of this chapter is not to give a complete overview of machine
learning, but rather to provide a sufficient understanding of the notions
relevant for this thesis.

Machine learning is first presented generally (Section 2.1). Then, differ-
ent categories of machine learning algorithms are discussed in order to define
the scope of this thesis (Section 2.2). Next I discuss the desirable properties
of these algorithms, how they can be compared against each other and how
their respective usefulness can be evaluated (Section 2.3).

Afterwards, the error or the difference between the output of an algo-
rithm and the true solution is discussed. In particular, the bias and the
variance, two components of this error, are defined and discussed in Section
2.4. Mixtures, the aggregation of different models, are then presented and
motivated based on the bias and variance trade-off (Section 2.6).

Finally, the content of this thesis is positioned with respect to machine
learning, and validation procedures for the developed algorithms are dis-
cussed.

2.1 General Machine Learning Framework

Machine learning is the scientific discipline concerned with the development
and the study of algorithms to process a learning set D, generally obtained
by the observation of a phenomenon, in order to derive and/or exploit a
useful model of the phenomenon (or its part of interest). This field is also
called statistical learning or automatic learning.

21
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In this section, the notions of ‘learning set’ and ‘useful model’ are for-
mally described.

2.1.1 Learning Set

In this context, a learning set is a collection of observations. Each observa-
tion results from the monitoring of the problem studied, usually at a very
low-level, without refined processing.

More formally, the phenomenon is observed through a set of p random
variables taken in some order:

X = {X1, . . . ,Xp} , (2.1)

whose joint probability density is denoted by P(X ). Each of those variables
can be either categorical or numerical, continuous or discrete.

An observation or sample x corresponds to a tuple containing the values
of those variables when the sample is acquired and the variables measured:

V al(X ) 3 xD = x = (X1 = x1, . . . ,Xp = xp) ∼ P(X ) . (2.2)

V al(X ) is the set of all values X can take. I will also use X to denote
this set when no confusion is possible. The values of some variables can
be unknown. In that case, the sample is said to contain missing values.
However, this case will not be considered in this thesis.

A data set, observation set or sample set D is a sequence of N samples:

D = xD1 , . . . ,xDN
. (2.3)

A core hypothesis made in this thesis is that these observations are all
generated by the same density and that this density does not change in
time. Moreover, these samples are considered to be independent from each
other.

In that case, these observations are denoted iid, for independent and
identically distributed, and the probability of a data set D is

P(D) =
N∏
i=1

P(X = xDi
) . (2.4)

In this context, the order of the observations is irrelevant: D is a (multi)set.
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2.1.2 Learning Algorithm

A learning algorithm takes as input a data set, called in this context the
training or learning set, and outputs a model, capable to answer queries
about the problem of interest. This process is illustrated in Figure 2.1.
Two important features of a learning algorithm are the search space and
the search strategy.

Learning set

Model
Learning
algorithm

Figure 2.1: A learning algorithm takes as input a learning set and outputs
a model.

The search space is the set of all the models the algorithm can possibly
output.

The search strategy describes how the algorithm selects its output in
the search space, given a learning set. This process can be deterministic or
stochastic. In the first case the algorithm always produces the same model
when provided with a given learning set. In the second case, the model varies
from one application of the algorithm to another on an identical learning
set. Possible strategies include: an exhaustive enumeration of all possible
models and the selection of the best one; a stochastic walk in the search
space, either random, based on the quality or on another characteristic
of the models, and the output of the best model encountered; a gradient
descent from an initial point to optimize a function of the model and of the
learning set, so as to reach a model corresponding to a local minimum of
this function; the elimination of models not satisfying constraints derived
from the learning set until a single model remain etc.

The model can be either informative, predictive or both. Informative
models provide information about the problem, e.g. which variables are
influencing each other, whether different subgroups of observations can be
identified etc. Predictive models on the other hand provide information
about new realizations of the problem. A typical example is the following
question: based on the values of only a subset of the variables (e.g. a set of
products previously bought by an individual) in a new sample of the target
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density of probability, what is the most likely configuration of another,
unobserved variable (e.g. the sale of another product to this individual)?
Some additional examples will be given in Section 2.2.

2.2 Subdivisions of Machine Learning
Problems

Machine learning algorithms and models can be used to solve or contribute
to the answer of a wide range of questions. Algorithms and models are
generally specialized for only a few of these tasks.

In this section, a few machine learning problems are presented. Each
class of problems is illustrated by an example and a simple algorithm. The
first division is between supervised and unsupervised learning problems, the
latter set being the one (mostly) considered in this thesis.

2.2.1 Supervised Learning

In supervised learning, the set of variables is composed of two separate
user-defined sets X , the features or inputs, and C the output, label or
class variables. This distinction is made because only some variables, the
outputs, are interesting in the problem context. Typically, the goal of the
machine learning procedure is to predict the values of the outputs based
on the values of the inputs (predictive setting), or to identify the input
variables influencing the outputs (informative setting). The resulting model
is a function

MD : V al(X )→ V al(C) , (2.5)

where V al(X ) denotes the set of all possible configurations of X .
In the classic setting, the output comprises only one variable. In a

predictive setting, a further distinction is usually made based on the type
of the output variable. When the variable is categorical, the supervised
learning problem is called classification. When its type is numerical, the
problem is called regression.

Consider as a first example the problem of handwritten digit recognition.
The problem is to identify the correct digit based on an image composed
of a certain number of pixels. A learning set for this problem is typically
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(a) 2 (b) 4 (c) 9

Figure 2.2: The problem of handwritten digit recognition consists in cor-
rectly associating a digit handwritten representation to the correct digit in
[0-9]. These examples are composed of 20x20 pixels, and are taken from the
MNIST data base [LBBH98].

composed of different such images (see Figure 2.2), each associated to the
correct digit. In that case, the features are the different pixels intensities
and the label of the image is the output. Since it is categorical, this is a
classification problem.

A simple algorithm providing an answer to this problem is the Nearest
Neighbour algorithm [CH67]. The model corresponds to the learning set,
hence there is no real learning. A new problem instance is classified by
computing the distance of this instance to each learning observation, and
associating to the new input the label of the closest learning observation.
Hence the algorithm implicitly computes a decision boundary, as illustrated
in Figure 2.3 for a binary target variable. This algorithm can be extended
to associate to a new instance the label most frequently associated to the k
nearest neighbors of the observation.

Regression is illustrated in Figure 2.4. In this example, a polynomial
Ĉ = f̂(X ) of degree 7 is learned by minimizing the mean square error
to a learning set D =

{
(xDj

, cDj
)
}12
j=1

containing 12 observations. These
observations are noisy samples of the original model, a polynomial f(X ) of
degree 3:

C ∼ f(X ) +N (0, 0.5) , (2.6)

where N (0, 0.5) is a normal density of mean 0 and standard deviation 0.5.
The mean square distance to minimize is here

12∑
j=1

|f̂(xDj
)− cDj

|2 . (2.7)
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by crosses. A new sample “above” the
blue continuous line will be labeled as
class A.

Figure 2.3: The nearest neighbor algorithm assigns to any new observation
the class of the learning observation that is the closest to that new obser-
vation. The space partition induced by this method is therefore based on
Voronoi cells. In this example, there are two features, and the output is a
binary class.
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Figure 2.4: In this regression problem, a polynomial of degree 7 is learned
by minimizing its mean square error to 12 observations.
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This problem was already presented in the introduction of the thesis.

2.2.2 Unsupervised Learning

In unsupervised learning, all variables have a priori the same status. The
focus is on the global structure of the problem rather than only on the
prediction of a selected subset of variables based on the values taken by
another selected subset, as in supervised learning. It is however possible
to exploit an unsupervised model to solve a supervised problem: from a
model specifying the interactions between all variables, it is e.g. possible
to obtain the variables influencing a specific output variables. However this
specialization of the model can be done when needed, meaning it could
be adapted to a changing problem. This latter approach to a prediction
task is referred to as generative learning, since it could be used to generate
observations similar to the input. Discriminative learning, on the other
hand, refers to the direct modelling of the input → output mapping.

Many different unsupervised learning problems exist. In this work the
goal is the modeling of a probability density P(X ) for inference. Neverthe-
less, a few different unsupervised learning problems are described next.

Clustering

Clustering or cluster analysis targets the identification of different subgroups
in the learning set. Their number might be fixed by the user, or automat-
ically adjusted by the algorithm. A cluster can be a group of observations
or of variables, and the goal of the learning procedure is to associate each
observation or each variable to a group, so that two elements belonging to
the same group are more similar than two elements belonging to different
groups.

The key notion here is the definition of a measure of similarity between
subsets of samples or of variables. Figure 2.5 contains an example of hi-
erarchical clustering applied to observations of a single numerical variable.
The variant illustrated here builds a hierarchy of clusters. It starts with one
cluster per observation, and iteratively merges the two closest clusters.
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Figure 2.5: 6 observations (black star) of a single variable are analyzed by
hierarchical clustering. The distance between two clusters is the minimum
distance between two elements belonging each to one cluster. Each blue
vertical line represents a merge between two clusters.

Density Estimation and Probabilistic Inference

Density estimation was originally studied in statistics. Its aim is to obtain
from a set D of observations an estimate MD = P̂(X ) of the probability
density that generated the samples.

Such an estimate can be used to answer various queries about the original
probability density, a process called probabilistic inference, e.g. to compute

• a conditional density P̂(C|X ′) and to use it for predicting the values
of the output C based on some inputs X ′;

• the most likely configuration xML = arg maxx P̂(x);

• the likelihood of observing a problem instance x.

Density estimation is widely used as a subroutine to tackle machine
learning problems, and therefore it has been extensively studied in machine
learning. Note that further example of the possibilities of probabilistic
inference will be developed in Section 3.4.

In addition to using it, machine learning can also play a role in per-
forming density estimation. As will be discussed in Chapter 3, machine
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learning can infer the structure of a density from a learning set, and ex-
ploiting this structure, the relationships between variables, can radically
reduce the number of parameters quantifying the probability density, hence
making the resulting density more tractable (in terms of storage), and more
accurate.

Obtaining a density is also useful to generate new observations, e.g. in
the context of simulations.

2.3 Validation of Machine Learning
Approaches

An important aspect of machine learning is to estimate the quality of a
solution, to assess the confidence one can have in the information provided.
Two validation problems can be distinguished: the validation of an algo-
rithm in general and the validation of a model for a given problem. They
are discussed in turn below.

Other important features such as interpretability of the resulting model
and algorithmic complexity are not discussed here.

2.3.1 Validation of an Algorithm

Section 2.3.2 will discuss how a model provided by an algorithm can be
evaluated on a given problem. Suppose such a measure is available. A
machine learning scientist may also be concerned by the evaluation of an
algorithm, especially a new one, against other algorithms or for a generic
purpose.

There are two means to evaluate an algorithm with respect to others.
The first is theoretical analysis. Bounds can be provided on the accuracy

or the run time of an algorithm, either on a finite set of observations or
asymptotically, as the number of observations grows to infinity.

The second is empirical analysis. The algorithms are applied on a se-
lection of representative problems and the results are evaluated. To reduce
the noise and the variance in the analysis, the more problems the better.
Several problems and learning sets are therefore considered. Moreover, to
limit the variance of the measurements, it is better to use the same learning
sets for all algorithms, and to use the same test sets as well.
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2.3.2 Validation of a Model

The second problem considered is the validation of a given model on a
particular problem instance. A common practice to build an application
is to select a set of different algorithms suited to the task considered, to
apply them all on the learning set and to compare the corresponding models
against each other. The best model is then chosen. This section discusses
how to quantify the quality of a model.

Only models suited for classification, regression and density estimation
problems will be discussed here. These are chosen either because they are
related to this thesis (density estimation) or because they facilitate the
explanation of some concepts. Note that evaluating the result of some other
machine learning algorithms, such as clustering or informative models, can
indeed be much more difficult and subjective. I will also limit the discussion
to a finite and discrete variable space, which makes both notations and
discussions easier. The elements presented here can however be carried over
to continuous variables.

The quality of a predictive model MD is often evaluated in terms of its
error. The true error of such a model is the average error on all possible
configurations of the variables:

Err(MD) =
∑
x

Err(MD,x)P(x) , (2.8)

where Err(MD,x) is the error of the model for a given variable configuration
x. This quantity must be chosen in accordance with the problem considered.

For example, a standard choice for classification problem is the loss
function

L(MD,x, c) =

{
0 if MD(x) = c,

1 otherwise,
(2.9)

where, in this case, x and c are respectively the values of the input or
output variables. The error is null if the output is correctly predicted, and
the model is penalized for an incorrect prediction.

For a regression problem, the mean square error is often used:

MSE(MD,x, c) = (MD(x)− c)2 . (2.10)

In density estimation problems, the focus of this thesis, a suitable error is
the likelihood ratio of a given variable configuration x according to the true
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density and the one encoded by the model. Hence the inadequacy between
the two densities is measured by the well-known Kullback-Leibler (KL)
divergence [KL51], also called information divergence or relative entropy:

Err(MD) = DKL(P||MD) (2.11)

=
∑
x

P(x) log
P(x)

MD(x)
. (2.12)

This divergence can be interpreted as the expected number of extra bits
required to encode samples from the original density by a code based on
MD, rather than one based on P. When the two densities are equal, the
divergence is null, otherwise it is positive.

The negative log-likelihood according to the model is also used to quan-
tify an error:

nlogll(MD,x) = − logMD(x) , (2.13)

making the model error the cross entropy:

H(P,MD) =
∑
x

−P(x) logMD(x) . (2.14)

The relationship between the two quantities is as follow:

DKL(P||MD) =
∑
x

P(x) log
P(x)

MD(x)
(2.15)

=
∑
x

P(x) [logP(x)− logMD(x)] (2.16)

= −H(X ) +H(P,MD) . (2.17)

The difference between the two, the entropy H(X ), is constant for a given
problem. Therefore the difference between the respective scores of two mod-
els on a given problem would be identical if the KL divergence or the neg-
ative log-likelihood are used.

However, in practice, those quantities can usually not be computed ex-
actly. The first reason is that machine learning is applied precisely on
problems where the true density P(X ) is unknown. The second reason is
that the variable set is usually large, so that computing the sum over all
configurations x might be infeasible in a reasonable time.
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Therefore those measures are estimated based on a set D’ of N ′ obser-
vations, called the test set, using a Monte-Carlo like procedure:

ÊrrD′(MD) =
1

N ′

N ′∑
i=1

Err(MD,xD′i) . (2.18)

The error used to quantify the accuracy of a model is not necessarily di-
rectly related to the score explicitly or implicitly maximized by the learning
algorithm, as presented in Section 2.1.2. However both are related to the
quality of a model in terms of accuracy, and typically, when the score of a
model increases, its error decreases on the learning set.

Overfitting and Cross-validation

If the error of a model is evaluated on the same observations that were used
to learn it, this error is likely to be underestimated. Indeed, this does not
penalize the model for being overly complex and modelling sampling noise,
which may lead to bad results on unseen configurations of the variables.
This is particularly important, because the model will be applied on new,
unseen samples, and the essence of a good machine learning model is that
it generalizes well.

The complexity of a model refers to its adaptivity, its capacity to fit the
learning set, its number of degrees of freedom. The way this complexity is
quantified depends on the model type. For the few models described above,
complexity can be defined as follows.

• For the k nearest neighbor algorithm, complexity increases when fewer
neighbors are considered.

• For regression by least-square fitting of a polynomial, complexity in-
creases with the degree of the polynomial.

• For clustering, complexity increases with the number of clusters.

• For density estimation, complexity increases with the number of in-
dependent parameters used to represent a model.

When the complexity of a model increases, it can generally fit the learn-
ing set increasingly better, and the error measured on the learning set de-
creases. However this is not always beneficial, because the error on unseen
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Figure 2.6: The concept of overfitting is illustrated. Usually, the error of a
model is a decreasing function of model complexity when measured on the
learning set. However when it is measured on a test set independent from
the learning set, it can start increasing when complexity grows too large.

samples can increase and more than counterbalance the gain in accuracy
on the learning set. This is called overfitting, and is illustrated in Figure
2.6. The figure represents a typical evolution of two measures of the error of
a model of increasing complexity. These measures are either based on the
learning set or of an independent set of observations, the test set. While
the error measured on the learning set is a decreasing function of complex-
ity, the test set error first decreases but starts increasing when complexity
reaches a threshold.

A method to detect overfitting follows naturally: the observations used
to evaluate the quality of the model must be different from the ones used
for learning. This can also be used to select the complexity of the model.
Note that overfitting is directly related to the bias-variance trade-off, which
will be discussed in Section 2.4.

A machine learning practitioner is usually not provided with a learning
set and a test set but only with a set of observations. Cross-validation
denotes the process of splitting that original set to obtain distinct learning
and validation sets. However, a measure obtained from two such sets is
dependant on the split, and vary from one split to another. In order to
reduce the variance of that estimated measure of performance, different
values can be computed from several different splits and averaged, leading
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to a more robust estimation.
K-fold cross-validation is a procedure where the original sample set is

partitioned into K subsets. Each of these subsets is used as test set for
evaluating the model learned on the K − 1 remaining subsets. Leave-one-
out cross-validation denotes the special case where K = N .

2.4 Bias-variance Compromise
Both in the introduction and in the previous section the necessity to select a
model of an appropriate complexity was mentioned. In the present section
this is discussed in more length, and the important notions of bias and
variance are introduced in the process. These concepts are first derived for
regression problems, and then extended to the context of density estimation.

For any learning set, it is possible to select a class of models sufficiently
complex so that at least one of them can match the observations perfectly,
a model producing a minimal error. This error may not be zero, e.g. in a
classification problem where the same configuration of the input variables
is associated to two different configurations of the output variables because
of noise.

However, perfectly matching the learning set is not necessarily desirable,
even without taking algorithm complexity into account. Indeed, the model
should not only be good on that learning set, but also on new, unseen prob-
lem instances. This is called the generalisation of the model. As mentioned
above, overfitting happens when a model is too specialized on the learning
set (see Figure 2.6).

In order to express these notions mathematically, the error resulting from
a model learning on a random sample set can be studied. This error is a ran-
dom variable, function of the learning set that has been obtained/generated,
as described in Section 2.1.1.

2.4.1 Bias and Variance in Regression Problems

The error

Err(MD) = EX ,C (MD(x)− c)2 (2.19)

of the model MD learned from a given sample set D is a random variable
that depends on that sample set. The expected value of that error (with
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respect to the different learning sets) can be decomposed as:

EDErr(MD) = EDEX ,C (MD(x)− c)2 (2.20)

= EXEDEC|x (MD(x)− c)2 . (2.21)

EDEC|x (MD(x)− c)2 is the average error made when predicting a value
for a given input, on all sample sets and for all possible outputs. This
expression can be simplified by introducing the Bayes model Mb that asso-
ciates to any input x the expectation of the output EC|xc. Mb is known to
be optimal with respect to the square error.

Therefore,

EDEC|x (MD(x)− c)2 = EDEC|x (MD(x)−Mb(x) +Mb(x)− c)2 (2.22)

= EDEC|x (MD(x)−Mb(x))2 + EDEC|x (Mb(x)− c)2

+ EDEC|x [2(MD(x)−Mb(x))(Mb(x)− c)]

(2.23)

= ED (MD(x)−Mb(x))2 + EC|x (Mb(x)− c)2

+ 2ED
[
(MD(x)−Mb(x))EC|x(Mb(x)− c)

]
(2.24)

where that last term is equal to zero, since Mb(x) = EC|xc.
Moreover, the first term can be further developed by the introduction

of the expected predicted value over the different models, averaged over all
possible learning sets M̄(x) , ED(MD(x)):

ED (MD(x)−Mb(x))2 = ED
(
MD(x)− M̄(x) + M̄(x)−Mb(x)

)2 (2.25)

= ED
(
MD(x)− M̄(x)

)2
+ ED

(
M̄(x)−Mb(x)

)2
+ ED

[
2(MD(x)− M̄(x))(M̄(x)−Mb(x))

]
(2.26)

= ED
(
MD(x)− M̄(x)

)2
+
(
M̄(x)−Mb(x)

)2
+ 2(M̄(x)−Mb(x))ED

(
MD(x)− M̄(x)

)
.

(2.27)

Once again, the last term vanishes.
Therefore, the expected value of the error for a given input x is a sum

of three terms:

EDEC|x (MD(x)− c)2 = σ2(x) + bias2(x) + var(x) , (2.28)
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with

σ2(x) = EC|x (Mb(x)− c)2 (2.29)

bias2(x) =
(
M̄(x)−Mb(x)

)2 (2.30)

var(x) = ED
(
MD(x)− M̄(x)

)2
. (2.31)

σ2(x) is called the residual error, and is the lower bound of the error of
any model. It is caused by a residual uncertainty in the value of the output
even when both the inputs and the relationships between input and output
are known.

The algorithm and the associated class of models selected influence the
other two components of the error.

The term bias2(x) is the mismatch between the average model obtained
from a learning set and the optimal Bayes model. This mismatch is due to a
combination of a search space too simple to contain the true model (model
bias) and an incapacity of the search strategy to identify in this space the
model best matching the observations (estimation bias).

The variance var(x) originates from the variability in the learning set.
As the number of samples increases, it usually shrinks. It is related to
overfitting.

These errors are schematically depicted in Figure 2.7. The true model
is outside the search space, and the search strategy only covers part of this
space, leading respectively to a model and estimation bias. Moreover, the
learning set used as input for the learning algorithm can vary, which is a
source of variance.

This decomposition is also illustrated in Figure 2.8 on the regression
problem presented in Section 2.2.1. 1000 sets of 12 noisy observations of
a polynomial are generated, and each set is used to learn polynomials of
increased degree. The variance, bias and error of these models are dis-
played as a function of this degree. The error is minimal when this degree
is identical to the degree (=3) of the target. The bias and the variance
are respectively the main component of the error when the degree of the
estimations is respectively smaller and higher than 3. σ2(x) is constant.

So far, the learning algorithm has been considered deterministic. The
analysis performed above can be extended to include stochastic algorithms.
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True model Realisation of a learning set

Model bias

Search space

Estimation variance

Search space restricted by
the search strategy

Estimation bias

Figure 2.7: This schematic representation illustrates the concept of bias and
variance. It was greatly inspired by figure 7.2 from [HTF01].
If the true model was known, the best possible choice among the search
space would be the green dot linked to the true model. However the search
strategy may not consider all models in the search space, or may on average
output another model and so the algorithm would output the model corre-
sponding to the red dot linked to the green one mentioned above. The model
bias corresponds to the difference between the true and the best model in
the search space, the estimation bias to the difference between this best
model and the average estimate output by the algorithm. Together, they
constitute the bias.
In practice however, information about the true model is available only
through a learning set, a noisy picture of the true model. This noise is rep-
resented by the blue disk. There is one model in the search space (second
green dot) and in the restricted space (second red dot) that best corre-
spond to this noisy picture. Since the learning set vary, this leads to a
second source of error, the variance (green and red circles). By selecting an
appropriate search strategy, the estimation bias may be smaller than the
reduction in variance, leading to a smaller average error.
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(c) The degree of the polynomial is 7.
The variability of the model learned
(the variance) is large.

Figure 2.8: The bias-variance decomposition is illustrated on a regression
problem. The true model is a polynomial of degree 3 and a sampling noise.
A learning set contains 12 observations, with fixed abscissae. 1000 inde-
pendent learning sets are generated, and these learning sets are used in a
Monte-Carlo approximation of ED in the error, the variance and the bias,
computed for different degrees of the estimated polynomials. These quan-
tities are measured on the smallest x interval containing the observations.
In this problem, Mb = f and σ2(x) = 0.52.
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One possibility to do so is to add in the variable set a variable S that
accounts for the stochasticity of the algorithm.

2.4.2 Density Estimation

In statistical estimation, different errors can be considered. The first kind
of error is at the parameter level. For a given model, how well are its
parameters estimated? The second kind of error is based on the comparison
of the densities directly, whatever the evaluated model is.

Both are relevant in the context of Bayesian network learning. The first
one is used for studying parameter learning for a given probabilistic model
structure, and the second is at the core of this thesis.

Parameter Estimation

One possibility to compare two models, one estimated and one original
model, is to compare the values of a common parameter between these two
models.

In the case where the two models are similar and for a parameter whose
true value is denoted by θ, the mean square error of an estimate θ̂D is
composed of the bias and variance:

bias(θ̂D) = ED(θ̂D)− θ, (2.32)

var(θ̂D) = ED
(
θ̂D − ED′ θ̂D′

)2
. (2.33)

Consider as an example the problem of estimating the mean µ of a
univariate normal density P(X|µ) = N (µ, σ), with σ > 0 the standard
deviation of the density, supposed to be known. Two estimators are consid-
ered, first the maximum likelihood (ML) estimator and then a maximum a
posteriori (MAP) estimator.

A usual estimator for µ is the maximum likelihood estimator, which
corresponds to the mean of the observations {xDj

}Nj=1:

µ̂ML
D = arg max

µ̂

N∑
j=1

logP(xDj
|µ̂) (2.34)

=
1

N

N∑
j=1

xDj
. (2.35)
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This estimator of the mean µ is unbiased since

EDµ̂ML
D = ED

1

N

N∑
j=1

xDj
(2.36)

=
1

N

N∑
j=1

EDxDj
(2.37)

=
1

N

N∑
j=1

µ , (2.38)

and its variance is equal to

var(µ̂ML
D ) = ED

(
µ̂ML
D − ED′µ̂ML

D′

)2 (2.39)

= ED
(
µ̂ML
D − µ

)2 (2.40)
= ED(µ̂ML

D )2 − 2 ∗ µEDµ̂ML
D + µ2 (2.41)

=
1

N2
ED

(
N∑
j=1

xDj

)2

− µ2 (2.42)

=
1

N2
ED

(
N∑
j=1

(xDj
− µ)

)2

(2.43)

=
σ2

N
. (2.44)

Another estimator for the mean µ is the maximum a posteriori estimator.
A prior density over µ is specified as P0(µ) = N (µ0, σ0). The MAP estimate
for µ is the value

µ̂MAP
D = arg max

µ̂
P0(µ̂)

N∏
j=1

P(xDj
|µ̂) (2.45)

=

σ2

N
µ0 + σ2

0µ̂
ML
D

σ2

N
+ σ2

0

. (2.46)
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The bias of this estimator is not zero if µ0 6= µ:

EDµ̂MAP
D =

σ2

N
µ0 + σ2

0EDµ̂ML
D

σ2

N
+ σ2

0

(2.47)

=

σ2

N
µ0 + σ2

0µ

σ2

N
+ σ2

0

(2.48)

bias(µ̂MAP
D ) = EDµ̂MAP

D − µ (2.49)

=

σ2

N
(µ0 − µ)

σ2

N
+ σ2

0

. (2.50)

The variance of the MAP estimator is:

var(µ̂MAP
D ) = ED

(
µ̂MAP
D − ED′µ̂MAP

D′

)2 (2.51)

= ED

 σ2

N
µ0 + σ2

0µ̂
ML
D

σ2

N
+ σ2

0

−

σ2

N
µ0 + σ2

0µ

σ2

N
+ σ2

0


2

(2.52)

=

 1

σ2

N
+ σ2

0


2

ED
(
σ2
0µ̂

ML
D − σ2

0µ
)2 (2.53)

=

 σ2
0

σ2

N
+ σ2

0


2

ED
(
µ̂ML
D − µ

)2 (2.54)

=

 σ2
0

σ2

N
+ σ2

0


2

σ2

N
. (2.55)

To summarize, bias(µ̂MAP
D ) ≥ bias(µ̂ML

D ) and var(µ̂MAP
D ) < var(µ̂ML

D ). The
MAP estimation may therefore be more interesting than the ML one. Even
though the former is biased (when µ0 6= µ), its lower variance may result in
a lower total error than the ML estimator.
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Density Estimation

The problem of statistical estimation amounts to a regression problem on
the function

P : X → [0, 1] :
∑
x∈X

P(x) = 1 (2.56)

when the variables are discrete, and on the probability density function
for continuous variables. Hence the mean square error decomposition from
Section 2.4.1 is also valid. The function of interest is here not noisy, Mb =
EC|xc = P(x) and the residual error is null. Thus the mean square error
decomposes into bias and variance only:

EXED (MD(x)− P(x))2

= EX
(
M̄(x)− P(x)

)2
+ EXED

(
MD(x)− M̄(x)

)2
. (2.57)

A more classical choice to evaluate the quality of a density estimate is
the Kullback-Leibler divergence (see Section 2.3.2). A similar decomposition
can be performed for this divergence, see e.g. [Hal87]. Such a decomposi-
tion has also been made in [WS97] in the context of classification, where
the quantity decomposed is the log of the conditional probability density
of a target variable, given a configuration of the input variables. As in
Section 2.3.2, I consider discrete and finite variables for simplicity, but the
developments can be extended to continuous variables:

EDDKL(P||MD) = ED
∑
x∈X

P(x) log
P(x)

MD(x)
(2.58)

= ED
∑
x

P(x) log
P(x)M̄(x)

MD(x)M̄(x)
(2.59)

= ED
∑
x

P(x)

[
log

P(x)

M̄(x)
+ log

M̄(x)

MD(x)

]
(2.60)

= DKL(P||M̄) + ED[H(P,MD)]−H(P, M̄) . (2.61)

The first term DKL(P||M̄) can be interpreted as a bias, as the mismatch
of the average model with respect to the true model. To conform to the
bias plus variance decomposition, ED[H(P,MD)] − H(P, M̄) is defined as
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the variance of the model. Moreover, this variance is positive. Indeed, it
can be rewritten as

ED
∑
x

P(x) log
M̄(x)

MD(x)
=
∑
x

P(x)ED
[
log M̄(x)− logMD(x)

]
(2.62)

=
∑
x

P(x)
[
log M̄(x)− ED logMD(x)

]
(2.63)

=
∑
x

P(x) [log (EDMD(x))− ED logMD(x)]

(2.64)

which is positive since since log (EDMD(x))−ED logMD(x) ≥ 0 by Jensen’s
inequality: for any concave function φ,

φ(Ess) ≥ Esφ(s) . (2.65)

An alternative decomposition was proposed by [Hes98] and is based on
the geometric mean

M̄G(x) =
1

Z
exp(ED logMD(x)) , (2.66)

where Z is a normalization constant. This geometric mean is motivated by
the desire to minimize the variance of the models in the decomposition, i.e.
to find the model M minimizing the mean KL divergence of a learned model
to M [Hes98]:

M̄G = arg min
M :

∑
M(x)=1

EDDKL(M ||MD) . (2.67)

Solving this constrained optimization problem can be done by the method
of Lagrange multipliers.

The quantity EDDKL(M̄G||MD) is therefore defined as the variance of
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the learning problem. It is related to the normalization constant Z:

logZ = log

[
exp(ED logMD(x))

M̄G(x)

]
∀x : M̄G(x) > 0 (2.68)

= ED(logMD(x))− log M̄G(x) (2.69)

= ED
[
log

MD(x)

M̄G(x)

][∑
x

M̄G(x)

]
(2.70)

= ED

[∑
x

M̄G(x) log
MD(x)

M̄G(x)

]
(2.71)

= ED
[
−DKL(M̄G||MD)

]
(2.72)

= −variance . (2.73)

The bias is then DKL(P||M̄G), the mean KL divergence of a learned
model to the true density, minus the variance:

bias , EDDKL(P||MD)− variance (2.74)

= ED
∑
x

P(x) log
P(x)

MD(x)
+ logZ (2.75)

=
∑
x

P(x) [logP(x)− ED logMD(x)] + logZ (2.76)

=
∑
x

P(x) [logP(x)− log(exp(ED logMD(x)))] + logZ (2.77)

=
∑
x

P(x)
[
logP(x)− log M̄G(x)

]
(2.78)

= DKL(P||M̄G) . (2.79)

To summarize, the mean KL divergence equals:

EDDKL(P||MD) = DKL(P||M̄G) + EDDKL(M̄G||MD) (2.80)

= DKL(P||M̄G) + ED
∑
x

M̄G(x) log
M̄G(x)

MD(x)
. (2.81)

It is interesting to note that a decomposition similar to what was done
for the arithmetic mean leads to

EDDKL(P||MD) = DKL(P||M̄G) + ED
∑
x

P(x) log
M̄G(x)

MD(x)
. (2.82)
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There is no contradiction however: any density can be substituted to the
first M̄G(x) in Equation 2.70. Substituting P(x) leads to Equation 2.82.

For both averaging scheme, the error of the mean model can be expressed
as the mean error of a model minus the variance, based on respectively
Equations 2.60 and 2.80:

DKL(P||M̄) = EDDKL(P||MD)− ED
∑
x

P(x) log
M̄(x)

MD(x)
(2.83)

DKL(P||M̄G) = EDDKL(P||MD)− EDDKL(M̄G||MD) . (2.84)

Because the two variances (the rightmost term) are positive, the error of
any of the two mean models is smaller than the average error of a single
model. If such a mean model could be generated, it would have on average
a better accuracy than a model learned on a single learning set, because
there would be no variance term in its error.

In order to identify whether one averaged model has a smaller error
than the other, their respective variances must be compared. The difference
between these two variances is

∆ = ED
∑
x

P(x) log
M̄(x)

MD(x)
− ED

∑
x

P(x) log
M̄G(x)

MD(x)
(2.85)

= ED
∑
x

P(x) log
M̄(x)

M̄G(x)
(2.86)

= ED
∑
x

P(x) log
ED′MD′(x)

1
Z

exp(ED′ logMD′(x))
(2.87)

= ED
∑
x

P(x) log
ED′MD′(x)

exp(ED′ logMD′(x))︸ ︷︷ ︸
≥0

+ logZ︸ ︷︷ ︸
≤0

. (2.88)

The first term is positive because the geometric mean is lower or equal to
the algebraic mean, the second is negative because Z is positive and smaller
or equal to one. It is therefore unclear whether one variance is smaller
than the other. Although M̄G is the probability density M minimizing
EDDKL(M ||MD), it may not minimize ED

∑
x P(x) log [M(x)/MD(x)].

However, if the models MD are good estimators of the real probabil-
ity density P, a combination of those estimators can be expected to be
close to P: P(x) ≈ M̄(x). In this case, ED

∑
x P(x) log

[
M̄(x)/MD(x)

]
≈
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EDDKL(M̄ ||MD). Therefore, the variance associated to M̄G is likely to
be smaller than the one associated to the arithmetic mean, because M̄G

minimizes EDDKL(M ||MD).
This would also imply that the bias obtained in the decomposition based

on this arithmetic mean model is lower:

DKL(P||M̄G) ≥ DKL(P||M̄) . (2.89)

Therefore, combining all models (assuming they can be generated) using
the arithmetic mean could lead to a lower error than combining them using
the geometric mean.

These two bias-variance decompositions are illustrated in Figure 2.9. A
Bernouilli density is estimated based on 60 observations and for different
values of its parameter. The different quantities involved in the decomposi-
tions are computed analytically, but the expectations on D are truncated to
remove “extreme” learning set containing all 0 or all 1, because those learn-
ing sets would lead to an infinite error. The parameters of the different
estimations are inferred by the maximum likelihood principle, introduced
in Section 3.3.3. This example shows that the arithmetic mean indeed leads
to a smaller bias and a larger variance than the geometric mean.

2.5 High Dimensional Learning

Machine learning problems encountered in practice are continuously increas-
ing in size, both in the number of samples and in the number of variables:
high-throughput techniques enables the measurement of hundreds of thou-
sands of genes or protein levels at the same time, hundreds of millions
of smartphones collect data, multimedia content available on the web ex-
plodes...

Since the improvement in computational power is surpassed by the in-
crease in data, this leads to computational complexity problems. And since
the number of variables is often increasing faster than the number of sam-
ples, handling those problems becomes more challenging even without con-
sidering computational complexity.

In this section these two aspects will be briefly presented, with a focus on
a high number of variables since this thesis aims at developing new methods
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Figure 2.9: Two bias variance decompositions for the Kullback-Leibler di-
vergence are illustrated through the estimation of a Bernouilli density. Sets
of 60 observations and maximum-likelihood estimation are considered. The
different quantities involved are computed analytically. However, ED does
not average over all possible learning sets: sets containing only 0 or 1 are
discarded, because they would lead to an infinite value of the average error
EDDKL(P||MD). For each value of the parameter of the Bernouilli density,
the first column is this average error, and the last four a bias (bottom) plus
a variance term (top) in a decomposition.
The 2nd column is based on the arithmetic mean (Equation 2.60), the 4th

and 5th (Equations 2.80 and 2.82) on the geometric mean. In the 3rd,
EDDKL(M̄ ||MD) is not part of any decomposition, but is provided here for
comparison with EDDKL(M̄G||MD) = ED

∑
x P(x) log(M̄G(x)/MD(x)), the

variance of the decomposition based on the geometric mean. The density
used to average on x is irrelevant for this mean. The variance based on the
arithmetic mean is ED

∑
x P(x) log(M̄(x)/MD(x)).

Notice how the bias is larger and the variance smaller for the geometric
mean than for the arithmetic mean.
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for density estimation for inference on high-dimensional problems (in the
number of variables).

2.5.1 Large Number of Samples N , Small p

A larger learning set means a lower variance (see Section 2.4) and hence
more accurate results. However it also increases learning time, since more
samples have to be processed.

Special care should thus be taken when programming the algorithms.
Techniques used to reduce the load include optimizing memory access, pre-
processing the data to compress it or learning on a subset of samples only.

2.5.2 High Number of Variables p, Small N

A high number of variables leads to similar algorithmic complexity prob-
lems, although generally in different parts of the algorithms.

However another possible issue in such a problem stems from the learning
set. There are in this context too few observations. As an example, recent
developments in data acquisition technology such as microarrays have dras-
tically increased the amount of variables that can be measured at once for
a given problem. The number of observations collected has however not
increased by the same order of magnitude, and it is common to work with
N in the order of p, or smaller (often denoted as p >> N).

This low number of observations is called “the curse of dimensionality”.
In high-dimensional spaces, with thousands or more variables, the observa-
tions become “sparse”. This lack of data makes it difficult to assess statistical
significance, and selecting the best model can be very difficult, since many
can fit the learning set. The variance in these situations also increases.
This is illustrated in Figure 2.10 for a binary classification problem with
two continuous features and one observation from each class. An infinite
number of linear separators between the two classes perfectly classifying the
learning set can be constructed. The partition of the plane induced by these
separators vary a lot, and it is possible to construct two separators (2 lines
arbitrarily close to each observation, but on opposite sides) leading to two
opposite classifications of nearly every point of the plane.

Special techniques therefore have to be developed to constrain model
complexity and limit overfitting. One such technique is regularization,



2.6. MIXTURE MODELS 49

X
2

X1

Figure 2.10: Learning a linear boundary for binary classification based on
two feature variables is difficult when only p = N = 2 observations are
available, one for each class. Indeed, the set of all possible boundaries
perfectly classifying the learning set covers (almost) the whole plane. This
is called the “curse of dimensionality”.

which modifies a score to include a new term penalizing complexity. An-
other is the use of mixtures, i.e. averaging several different models to reduce
the variance. A first hint about this technique has been given in Section
2.4, and it is described in the next section more thoroughly.

Both methods will be studied in this thesis for graphical models (mostly
for Markov trees): mixtures because they constitute the main topic of this
thesis, regularization as a competing method. These notions will be covered
in the following order: mixtures in the next section, probabilistic graphical
models in the next chapter. Then, in Chapter 4, mixtures of probabilis-
tic graphical models, and in of particular Markov trees, will be presented.
Regularization of these Markov trees will be discussed in Section 5.1.1.

2.6 Mixture Models

A mixture model (also called ensemble model) is composed of a set of mod-
els, each of them capable to provide on its own an answer for the problem
at hand, and an averaging scheme for combining the predictions of the dif-
ferent models into one common answer, usually a convex combination. In
particular, probability densities are commonly averaged. In that case the
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probability of a set of variables X is

P(X ) =
m∑
i=1

λiPi(X ) , (2.90)

where Pi(X ) is the probability density encoded by the ith term of the
mixture and

∑m
i=1 λi = 1, λi > 0 ∀i.

A well known example is the mixture of normal densities, a convex
combination of m such densities N (µi, σi), each weighted by λi and charac-
terized by a mean µi and a variance σ2

i :

m∑
i=1

λiN (µi, σi) . (2.91)

An illustration of a mixture of two univariate normal densities is displayed
in Figure 2.11. Combining the two densities creates a more complex density
function, whose shape is controlled by the weights of the mixture (and the
parameters of the terms).

0

0.4

0.8

-4 -2 0 2 4

X

P1

P2

(a) The two terms of the mixture are
P1 = N (0, 1) and P2 = N (−2, 0.5).

0

0.4

0.8

-4 -2 0 2 4

X

P1 and P2
0.3P1 + 0.7P2
0.7P1 + 0.1P2

(b) The weights of the mixture control
its shape.

Figure 2.11: Two normal densities are combined in a mixture, according to
Equation 2.90.

Aggregating models in a mixture can be performed to reduce either the
bias or the variance. As a short reminder, the error of a model with respect
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to the best possible model is a function of both the number of samples and
the complexity of the class of candidate models. This decomposition of the
error was illustrated in Figure 2.7 and contains two terms, the bias and the
variance. Learning in a more complex class of models tends to increase the
variance, learning in less complex one to increase the bias.

A mixture model can be built to either decrease the bias or the vari-
ance. The term mixture model tends to be used when referring to a model
decreasing the bias, and the term ensemble model when referring to a model
decreasing the variance. However, there are exceptions (such as boosting
often being referred to as an ensemble method). In this thesis, all these
models will be denoted by the term mixture.

These two types of mixtures will be discussed in respectively Sections
2.6.1 and 2.6.2. Finally, selected applications of mixtures in machine learn-
ing (but not for density estimation) will next be presented in Section 2.6.3.
Mixtures of probabilistic models and in particular mixtures of Markov trees
will be covered in Chapter 4.

Mixtures decreasing both have also been developed, e.g. [Bre99, Web00],
but will not be discussed here.

New search space

Search space restricted by
the new search strategy

Figure 2.12: Optimizing the mixture as a global model reduces the bias. The
mixture has more degrees of freedom, and the search space is expanded: the
model bias decreases. Note that the new points representing the model in
the new search spaces are not represented. See Figure 2.7 for the original
learning problem.



52 CHAPTER 2. MACHINE LEARNING

2.6.1 Mixtures as a Mean to Reduce the Bias

In the first framework, learning the mixture is viewed as a global optimiza-
tion problem aiming at modelling the set of observations as well as possible.
Building a mixture extends the modelling capacity of an original model
while allowing easier interpretation and manipulation of the resulting com-
plex model, since it is constituted by combining simpler entities. Rather
than a potentially complex model, the problem is represented by a combi-
nation of simple models, usually chosen for their tractability. As illustrated
in Figure 2.12, the mixture is in this case considered as a single model, a
model more complex than one of its term. The search space is expanded.
Therefore, the model bias is reduced. The variance however may increase.

This combination can also be motivated by a problem which by itself
presents different subgroups, or different phenomena. In that setting, each
model is a different alternative solution, a different mechanism of the prob-
lem. In this case, each observation is supposed to have been generated by
one term of the mixture. The weight of each term corresponds to the proba-
bility that the particular problem is the one active. The weights can also be
seen as the different probabilities of a categorical hidden variable condition-
ing the different models, as illustrated in Figure 2.13. In this example, the
height of a human is supposed to depend on the gender and to be normally
distributed conditionally on the gender:

P(height) = P(woman)P(height|woman) + P(man)P(height|man) (2.92)
= 0.49 N (162.5, 7) + 0.51 N (178, 7.5) . (2.93)

Modelling P(height) with a single normal density would result in a bias.
The mixture expands the modelling capacity of the model.

In the context of statistical estimation, another reason to use mixture
models comes from their flexibility: a mixture can approximate any den-
sity arbitrarily well, provided the number of terms is large enough [MP99,
MP00]. In that case the terms of the mixture are not interpreted as alter-
native problem mechanisms, but they attempt to locally approximate the
probability density, e.g. by using one term per mode of the density.

No matter what the motivation for building this mixture is, increasing
the number of terms of the mixture means increasing its flexibility, the
complexity of the model space where the best fit for the learning sample is
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Gender
P(woman) = .51
P(man) = .49

P(height|woman) P(height|man)
N (162.5, 7) N (178, 7.5)

(a) The mixture can be represented as a
model with a hidden variable (gender),
whose probabilities are the weights of
the mixture.

0

0.02

0.04

140 160 180 200
Height

(b) The resulting probability density
has 2 maximums.

Figure 2.13: An (artificial) density of human height based on a mixture of
normal distributions, is viewed as a model with a latent variable Z selecting
among the male or female densities. Male heights are supposed to be of
mean 178 and variance 7.5, female heights of mean 162.5 and variance 7.

searched. Hence this number of terms controls the complexity of the model:
a larger number of terms may decrease the model bias.

An excellent reference on that type of mixture is [MP00]. Learning of
such a mixture based on a set of observations is now considered.

Learning a Finite Mixture of Densities

A popular method to learn a finite mixture of densities is by maximizing the
likelihood of the learning set through an iterative process: the Expectation-
Maximization (EM) algorithm [DLR77, MK08]. This algorithm selects the
parameters ψ of a statistical model where only some variables X are ob-
served, and Z denotes those that are unobserved.

If all variables X ,Z were observed in the learning set D, the parameters
ψ could be found by maximizing the complete log likelihood:

logLc(ψ) =
N∑
j=1

logP(X = xDj
,Z = zDj

|ψ) , (2.94)
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i.e. by setting ψ so that

∇ψ logLc(ψ) = 0 . (2.95)

However since only X is observed, the quantity to be maximized is the
likelihood

logL(ψ) =
N∑
j=1

logP(xDj
|ψ) (2.96)

=
N∑
j=1

log

∫
Z
P(X ,Z|ψ)d(Z) . (2.97)

The EM algorithm attempts to solve that problem by maximizing the
complete log likelihood. Since computing it requires the values zDj

, the
algorithm alternates between constructing estimates of the unobserved value
zDj

based on both the observations and the current value of the parameters
(E step), and optimizing ψ on the complete log-likelihood based on the
observations and these estimated values for Z (M step).

More formally, the E step consists in computing the expectation (over
Z) of logLc(ψ), using the current value of the parameters ψt:

Q(ψ;ψt) = EZ|ψt {logLc(ψ)} ; (2.98)

and in the M step a new value ψt+1 of the parameters is obtained by maxi-
mizing this quantity:

ψt+1 = arg max
ψ

Q(ψ;ψt) . (2.99)

Applying those two steps can only increase L(ψ), and so they are re-
peated until the likelihood increase is small enough:

L(ψt+1)− L(ψt) ≤ ε , (2.100)

with ε ∈ R+ a user specified tolerance.
This algorithm can be applied to the estimation of a mixture ofmmodels

by considering one hidden variable Z conditioning the different terms of the
mixture. In that case, the mixture density is rewritten as:

P(X ) =
m∑
i=1

P(Z = i)P(X |Z = i) , (2.101)



2.6. MIXTURE MODELS 55

where P(Z = i) = λi is the weight of the ith term of the mixture and
P(X |Z = i) is the probability density encoded by this term. The value of
Z can be understood as the label of the term that generated a given sample.

The parameters ψ can be divided into two categories: the weights λ1,. . .,
λm and the parameters of the different terms θ1, . . . , θm. The complete
likelihood of the learning set augmented by the unknown variable is

logLc(ψ) =
N∑
j=1

logP(xDj
, zDj
|ψ) (2.102)

=
N∑
j=1

log
[
P(zDj

|ψ)P(xDj
|zDj

, ψ)
]

(2.103)

=
N∑
j=1

[
logP(zDj

|ψ) + logP(xDj
|zDj

, ψ)
]

(2.104)

=
N∑
j=1

m∑
i=1

δ(zDj
= i)

(
log λi + logPi(xDj

|θi)
)
. (2.105)

Hence,

Q(ψ;ψt) = EZ|ψt {logLc(ψ)} (2.106)

=
N∑
j=1

m∑
i=1

EZ|ψt

{
δ(zDj

= i)
} (

log λi + logPi(xDj
|θi)
)
. (2.107)

By denoting EZ|ψt

{
δ(zDj

= i)
}
as τ ti (j), the two steps of the EM algo-

rithms are:

E-step:

τ ti (j) =
λtiPi(xDj

|θti)∑m
k=1 λ

t
kPk(xDj

|θtk)
(2.108)

This corresponds to a soft assignment of each sample to the different
terms of the mixture.
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M-step: λt+1
i is obtained ∀i by

λt+1
i = arg max

λi

N∑
j=1

τ ti (j) log λi ,with
m∑
i=1

λi = 1 (2.109)

=
1

N

N∑
j=1

τ ti (j) , (2.110)

and θt+1
i is defined as

θt+1
i = arg max

θ

N∑
j=1

τ ti (j) logPi(xDj
|θi) , (2.111)

i.e. the values of the parameters θi maximizing the likelihood of a learn-
ing set Dt

i composed of the original samples, each weighted by τ ti (j). Dt
i

corresponds to the samples assigned to that particular term of the mixture
in the E step. Depending on the class of densities considered, this may be
computable in closed form.

While the EM algorithm converges towards a local maximum of the
likelihood function, there is no guarantee that this local maximum is unique.
Therefore it is common to run the algorithm from several different random
initialization points and to keep only the best value.

Number of components: The EM algorithm optimizes a mixture for a
given number of components m, but choosing this number is non-trivial,
since it controls the complexity of the model. When m = 1, where there
is no mixture but a single term. When m = N , the number of samples,
the EM algorithm may attribute one and only one sample to each term of
the mixture. In that case and depending on the learning algorithm for each
term, the mixture may be equivalent to a kernel estimate of the density,
where each term of the mixture is one density (the kernel), positioned on
each sample.

Several techniques have been developed to select that number. A general
method to fit the complexity of the model is to penalize the optimization
criterion, here the likelihood function, by adding a term depending on the
number of parameters in the model. Another class of methods use the
likelihood as a test statistic to perform a hypothesis test. Bootstrapping
and cross-validation can be used to refine those analysis [MP00].
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On a sidenote, a Bayesian approach to the selection of the number of
components is also possible. A prior density is defined on the number of
components. Mixtures of different sizes can be considered together. Note
that this approach is akin to defining a new mixture of the variance reduc-
tion type (as discussed in Section 2.6.2) on top of the ML mixture.

2.6.2 Mixtures as a Mean to Reduce the Variance

Mixtures have been shown to be capable of reducing the bias. In this section,
they are used to reduce the other component of the error, the variance. The
variance was defined (see Section 2.4) as the expected difference between a
model learned on a learning set and the average of that model.

From this definition, one can get the intuition that averaging models
leads to a reduction in variance. Indeed, should we be able to average over
all possible leaning sets, ∫

MD(.)P(D)dD , (2.112)

the variance would be zero. This was expressed more formally in Equations
2.83 and 2.84 for bias-variance decomposition based respectively on the
arithmetic mean and on the geometric mean. The KL divergence of the
average model to the target distribution is the bias, and is equal to the mean
KL divergence of a model learned on a given learning set minus the positive
variance. The KL divergence of the average model is therefore smaller than
the mean KL divergence of a model learned on a given learning set.

This has long been observed in practice: asking a question to several
individuals and averaging their answers usually leads to a better answer
than a single expert would provide. This phenomenon is called the “wisdom
of the crowd”. A well-known and perhaps the first illustration is reported in
[Gal07]: participants at an annual West of England Fat Stock and Poultry
Exhibition were given for a fee the possibility to guess how much a live
ox would weight after being slaughtered and “dressed”. The most accurate
estimates were granted rewards. The error of the mean value of the guesses
was only 1% of the real weight, while the mean error was 3.1%.

The former example can be seen as a practical illustration of the property
mentioned just above. Each individual participating in the contest uses a
different (internal) model of the problem, and averaging the predictions of
those models yields a result closer to the true value than the mean error.
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Obtaining the probability density over the learning set (or over the mod-
els), or sampling models directly, as in that particular example, is usually
not possible in machine problem. The density on the models or the learning
set is unavailable, since only a single set of observations is available.

In the remaining part of this section two methods for approximating the
ideal mixture described above are discussed: the Bayesian and the perturb
and combine framework, the latter being the focus of this thesis. Boostrap
aggregation, a method belonging to the perturb and combine framework, is
also described.

Bayesian Approach to Mixtures

As opposed to the traditional approach of using the best model, this tech-
nique consists in averaging all possible models, weighted by their respective
probability according to the learning set D:∫

M(.)P(M |D)dM , (2.113)

where P(M |D) is the probability of the model according to the learning set
D and is provided by the Bayes theorem:

P(M |D) =
P(D|M)P(M)

P(D)
. (2.114)

P(M) is called the prior probability of a model and can be used to incorpo-
rate some extra information about the problem (such as expert knowledge)
into the learning process, or to regularize (by assigning a lower prior prob-
ability to complex models). The probability of the learning set P(D) is a
normalization constant computed by averaging over all possible models:

P(D) =

∫
P(D|M)P(M)dM . (2.115)

Depending on the prior and posterior density, the resulting expression
may be closed-form.

Perturb and Combine

A pure Bayesian approach may be impractical: the integral of the poste-
rior density may be intractable or sampling from it may be too expensive.
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In this section, a different way of generating several models from a given
learning set is described: the perturb and combine framework. It has led
to many successful algorithms in supervised learning (e.g. [Fre95, Bre96,
Bre01, EGWL05, GEW06]).

Suppose a stochastic algorithm is available to generate a model depend-
ing on its input learning set. Because the algorithm is stochastic, this model
will differ (with high probability) from the output of a new run of the al-
gorithm on the same input. This algorithm could be repeatedly applied to
generate an ensemble of distinct models, which could be aggregated in a
mixture.

Some machine learning algorithms are inherently stochastic, e.g. algo-
rithms starting from a random initialization of their parameters and per-
forming a gradient descent on an optimization criterion containing multiple
local maxima. Those algorithms can be used to generate an ensemble of
models. Not all machine learning algorithms are inherently stochastic.

The perturb and combine framework randomize the algorithms so that
they become stochastic and can be used to generate mixtures. It consists
in:

• introducing randomization in the algorithm, which can be determin-
istic or a stochastic one where more randomization is desired,

• applying this perturbed algorithm several times on the learning set,

• combining in some way the predictions of the resulting ensemble of
models.

This procedure results in the construction of a mixture model and is il-
lustrated in Figure 2.14, along with its effect on the error. Modifying the
search strategy may increase both the variance and the estimation bias of
a single model (black dot). Combining several models however reduces the
variance. This reduction increases with the number of terms generated, and
may outweigh the increased error of a single model.

Randomizing the algorithm can be achieved through changes to the al-
gorithm itself, e.g. replacing a deterministic choice by a stochastic one, or
through modifications to the data set. As for any mixture, the combination
of the models can be an arithmetic mean, a majority vote etc.

The challenge of this framework is to select appropriate randomization
and averaging schemes in order to obtain a reduction in variance without
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Learning set

Randomness
Learning
algorithm

Model 1 Model 2 Model 3 Model 4

Combination

Aggregated model

λ1 λ2 λ3 λ4

(a) The perturb and combine frame-
work perturbs an algorithm to make it
stochastic, repeatedly applies it on the
learning set to generate several models,
and combines them.

One model Aggregated model

zoom

Search space of the
randomized algorithm

Reduced variance
of the aggregated

model

P(MD)

(b) Perturbing the search strategy of
the learning algorithm can modify the
search space. In addition, several differ-
ent models may be output for a single
learning set. Several models are gener-
ated, and then aggregated. The vari-
ance of the result is usually smaller (blue
ellipse).

Figure 2.14: The concept of the perturb and combine framework, and its
effect on the error are illustrated.

deteriorating the bias too much. An increase in the bias is tolerable provided
the gain in variance surpasses it.

To illustrate the perturb and combine framework, bootstrap aggregation
will now be described.

Bootstrap Aggregation

Bootstrap aggregation or bagging [Bre96] is a meta-algorithm belonging
to the perturb and combine framework described in the previous section
(2.6.2). The randomness introduced in the learning algorithm consists in
a modification of the learning set. Bagging compensates for a lack of data
by applying the learning algorithm on several bootstrap replicates of the
original learning set and averaging the predictions of the resulting models.
A bootstrap replicate D′ of size N ′ is obtained from an original data set D
of N samples by uniformly and independently drawing N ′ natural numbers
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ri ∈ [1, N ], and by compiling D′ by

xD′i = xDri
∀i ∈ [1, N ′] , (2.116)

where xDj
(resp. xD′k) refers to jth (resp. kth) observation of D (resp. D′),

and where typically N = N ′. This process is illustrated in Figure 2.15 for
N = 5.

When N = N ′, the expected proportion of samples from D present once
or more in D′ asymptotically converges to 63.2% as N increases.

Learning set D Replicate D′

Figure 2.15: To construct a bootstrap replicate, observations are randomly
selected from the original (with replacement). In this illustration, the se-
quence of observations selected is 2,4,1,2,4.

Number of components: In bagging, the bootstrap replicate used for
learning each term of the models is independent from other replicates con-
ditionally on the original learning set. Therefore each term of the mixture
has the same expected model and therefore the same estimation and model
bias. These biases may be larger than those of a model learned on the
original learning set. However, averaging these terms does not modify this
bias.

Learning a model on a bootstrap replicate rather than on the original
learning set increases the variance. However, aggregating several of these
terms decreases the variance.

Actually, the more terms m in the mixture the greater the variance
reduction effect of the method (O(1/m)). An infinite number of terms would
minimize the variance of the aggregated model. However, the aggregated
model usually converges when the number of terms is high enough (i.e. a
few hundreds, a problem dependent number). The generation of more terms
can also be stopped because of a practical constraint, such as memory usage
or learning/exploitation time of the model.
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2.6.3 Mixture Models in Automatic Learning

This section contains illustrations of the previous discussions. A selection
of mixture models used in machine learning are presented, and the links
with the different techniques for building mixtures are established.

Random Forests

A random forest [Bre01] is a mixture of decision trees used for classification
or regression. These trees are constructed independently from each other by
a randomized version of the algorithm for learning a decision tree minimizing
the classification error of the learning set. A decision tree, illustrated in
Figure 2.16, is a model used for classification. It is a directed tree graph
(although not a Bayesian network), where each leaf (node without outgoing
edge) is labeled by a class, and each other node has two children and is
labeled by a condition on a variable, e.g. “Is X > 0.3?”.

The class of an observation is predicted as follows. Start at the root of
the tree (the node without any incoming edge). For every non-leaf node , go
down to the left child node if the condition of the current node is true, and
to the right child otherwise. When a leaf is reached, the class associated to
this leaf is attributed to the observation.

X2 < 1.7

X1 < 3.2

(a) Decision tree model

0

1

2

3

4

5

0 1 2 3 4 5
(b) The decision tree induces a partition
of the input variable space.

Figure 2.16: A decision tree perfectly classifies the learning set of the binary
classification problem of Figure 2.3.
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The standard algorithm for learning such a model starts by a single
node, and recursively splits nodes until the resulting tree perfectly classifies
the learning set. A node is split by testing every possible condition on
the elements of the learning set reaching this node, and selecting the one
maximizing the entropy reduction in the classification variable associated
to this split.

The randomization is introduced at the construction of each node, by
considering only a subset of K possible conditions. The combination of
several randomized decision trees usually leads to much better results than
the optimal tree.

Clustering

Mixtures of both types have been used in clustering.
Mixtures used to reduce the bias, such as those learned by the EM al-

gorithm, can be viewed as a combination of different mechanisms of the
problem. Moreover, Section 2.6.1 explained how the EM algorithm con-
structs a partition1 of the observations and how each term of the model is
learned based on a different subset of observations resulting from this par-
tition. Observations associated to the same term of the mixture are more
similar among themselves than to observations associated to another term
of the mixture. Therefore the observations can be clustered by creating one
cluster corresponding to each term.

Mixtures are also used as a mean to reduce the variance of a clustering
algorithm. Several different clusterings are created, and then aggregated to
produce a more robust clustering [SG03, TJP04].

2.7 Outlook

This thesis focuses on learning mixtures of probabilistic graphical models for
density estimation in high-dimensional settings. The present chapter cov-
ered machine learning and mixtures of models, while probabilistic graphical
models will be presented in a dedicated chapter (Chapter 3). The following
relevant elements were in particular presented in the current chapter.

1Although the partition is soft, each observation can be associated to the most likely
term for this observation, randomly breaking ties.
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Section 2.3 has established how the quality of a model and of an al-
gorithm can be quantified. This information will be used to establish a
validation protocol for our algorithms, presented in Section 2.7.1. More-
over, the analysis of an error of a model led to a decomposition in the sum
of two positive terms, the bias and the variance, in Section 2.4.

Section 2.5.2 established that the variance, one component of the error,
typically increases with the number of variables of the problem, for a con-
stant number of observations and model type. This thesis will therefore
focus on mixtures for reducing the variance.

Another challenge in high-dimensional problems is algorithmic complex-
ity. A particular attention will therefore be given to the complexity of the
algorithms considered, both in single models and in mixtures.

This motivated the topic of this thesis: to explore the possibility of mix-
tures of simple probabilistic graphical models, in particular for the reduction
of variance. What constitutes a simple (in terms of algorithmic complex-
ity) model will be discussed in the next chapter, in particular in Sections
3.3.2 and 3.4.1. These discussions will lead in Section 4.1 to the selection
of the models used to construct mixtures in this thesis. Alternative works
with other models will nevertheless be briefly presented in Chapter 4, where
mixtures and PGM are combined.

2.7.1 Experimental Validation

Section 2.3 outlined how machine learning algorithms can be compared.
The algorithms developed in this thesis will be tested on different target
densities and learning sets.

• Different target densities are used, both synthetic and inspired by real
problems.

– Synthetic densities have the advantage to be easily controllable.
Control over the generation process makes it possible to modify
a characteristic of the problems, such as e.g. the number of vari-
ables, while leaving other characteristics of the problem more or
less unchanged. This is important, because the behavior of algo-
rithms may change based on these parameters. As an example,
variance may take over bias as the main components of the er-
ror when the number of variables increases. These changes may
favor different learning algorithms.
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Another advantage of synthetic densities is that for any given
problem setting, several densities can be generated, reducing the
variance of the experiments.

– Realistic densities derived from real problems are also consid-
ered. The conclusions drawn from experiments carried on on
such densities are more likely to apply on real problems.

• Different number of observations are considered. Again, this parame-
ter of the problem may influence the relative accuracy of the learning
algorithms with respect to one another. Testing the sensitivity of the
results to a modification of the number of observations is thus neces-
sary. However, the number of observations considered here will most
of the time be small with respect to the number of variables, because
high dimensional problems usually have few observations.

The different learning sets used in this thesis to evaluate the different
algorithms are described in Appendix A. In particular, the origin and/or
the generation mechanism used to construct them are provided.





Chapter 3

Probabilistic Graphical Models

This chapter provides background information about probabilistic graphi-
cal models and covers more in depth a few notions related to this thesis.
In particular, a special attention is given to Markov trees, since they are
the main model on which this thesis is based. On the other hand, mix-
tures of graphical models will be discussed in Chapter 4. Four excellent
references covering the exciting field of probabilistic graphical models are
[Pea88, NWL+07, Dar09, KF09], on which most of the information provided
here is based. The first three are slightly more accessible while the latter is
a more exhaustive reference covering many very technical points. A reader
already familiar with probabilistic graphical models might want to skip di-
rectly to Section 3.5 where I precise the context of this thesis with respect
to the framework presented in this chapter.

The present chapter is organized as follows. Probabilistic graphical mod-
els and several classes of such models are first introduced intuitively and
different classes of probabilistic graphical models are formally defined in
Section 3.1. The usefulness of those models is then illustrated in Section
3.2 where some applications of those models are discussed. Sections 3.3 and
3.4 take a deeper look into respectively learning those models from a data
set and performing inference on them. The complexity of those operations is
first discussed, since they motivate my focus on simple graphical models. A
few well-known algorithms are also presented to give a better understanding
of those two processes.

67
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3.1 Definition and General Presentation

Probabilistic graphical models combine graph theory with probability the-
ory to efficiently encode a joint probability distribution over a set X of p
variables {X1,X2, ...,Xp}. Their development was motivated by the need
for a compact and interpretable representation of a joint probability distri-
bution exploiting the problem structure.

Consider as an example the discrete random variable X1, defined as
the outcome of the toss of a coin. X1 can take either of the values heads
or tails (its cardinality |V al(X1)| is 2) and its probability distribution is
completely defined by two numbers, P(X1 = heads) and P(X1 = tails). Since
these numbers must sum to one, the probability distribution can actually
be completely defined by |V al(X1)| − 1 = 1 parameter ρ:

P(X1 = heads) = ρ (3.1)
P(X1 = tails) = 1− ρ . (3.2)

If k coins are tossed into the air rather than one, the result of the experiment
can be modelled as a set X of k random variables, one for each coin. There
are now |V al(X )| = |V al(Xi)|k = 2k possible outcome to the experiments,
so 2k − 1 probabilities must be specified, a tedious work if k is large.

The independence relationships between the variables can however be
exploited to reduce that number. In the coin tossing problem, a reasonable
assumption is that the result of one coin does not influence the other coins.
Under such a hypothesis, only k parameters must be specified, one ρi for
each Xi, defined similarly to the previous example. The probability of any
possible result can then be computed by

P(X1 = x1, . . . ,Xp = xp) =

p∏
i=1

P(Xi = xi) . (3.3)

Exploiting the independence relationships in the latter example is easy
by hand or on a computer due to the symmetry of the problem. When
the number of variables increases, when those variables are diverse and are
connected asymmetrically, a human or a computer working on the joint
probability distribution over those variables must have a representation of
these relationships to manipulate them. This is precisely what the field of
probabilistic graphical models is about.
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This section contains a formal definition of probabilistic graphical mod-
els and of several classes of such models. Each class will be described in
terms of the independence relationships it can encode, and of the actual
encoding of the distribution.

3.1.1 Probabilistic Graphical Models

A probabilistic graphical model is composed of a set of parameters θ and
a graphical structure G = (V,E), with V the nodes or vertices of the graph
and E ⊂ V × V the edges. G encodes a set of independence relationships
between variables. Typically, there is a bijection between the nodes of the
networks and X , and the edges between nodes encode these relationships,
which can usually be visually inferred from the graph. The parameters θ
quantify the probability distribution. Note that X can be composed of
discrete or continuous variables, or a mixture of both types. Unless stated
otherwise, I will however consider discrete variables only.

Both the exact encoding of the independence relationships and the para-
metrization of the distribution depend on the class of probabilistic graph-
ical models considered. A probabilistic graphical model usually encodes a
probability distribution by a product of k functions, where each function
depends on a subset of variables only. These functions are called factors
and typically:

φi : V al(Si)→ R+ ∀i . (3.4)

Using φi(Si) to denote these factors, with si the number of variables in Si,
the argument of factor φi, the probability distribution is:

P(X ) =
1

Z

k∏
i=1

φi(Si) (3.5)

Si = {X i
1, . . . ,X i

si
} (3.6)

Z =
∑

V al(X )

k∏
i=1

φi(Si) . (3.7)

Z is a normalizing constant, also called the partition function. Note that
Si ∩ Sj doesn’t have to be empty for i 6= j.

In the example of the multiple coin toss, Z = 1 and there are p factors
φi(Si) = P(Xi) ∀i = 1, . . . , p.
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X1 X2 X3 X4

(a) Representation as a hypergraph

X1 X2 X3 X4

φ1 φ2

(b) Representation as a bipartite graph

Figure 3.1: The factor graph for P(X ) = φ1(X1,X2)φ2(X2,X3,X4)/Z can
be represented by two different methods.

A generic encoding of a PGM is a factor graph. A factor graph is
a bipartite graph encoding the structure of a set of factors. There is a
bijection between the first set of vertices of this graph and the set of factors
Φ, and another bijection between the second set of vertices and the set X of
variables. An edge links a variable Xq to a factor φi if and only if Xq ∈ Si.
Note that this bipartite graph is equivalent to a hypergraph whose nodes are
the variables and with k hyperedges such that hyperedge i links variables
Si. The parameters θ encode the values of the different factors for any
configuration of their input variables, either explicitely or by parameterized
functions used to compute these values. An illustration of both graphical
representations of a factor graph is given in Figure 3.1.

Different probabilistic graphical models encode different sets of indepen-
dence relationships. Different classes of PGMs can be defined based on the
relationships they can graphically represent. The relationships between all
the classes mentioned in this section are graphically represented in the Venn
diagram of Figure 3.2. All of them will be defined below. Of particular in-
terest for this thesis are Bayesian networks, because they will be used as
the target distribution, and Markov trees, because aggregating such models
is the topic of this thesis. Other models are mentioned for the interested
reader.

Among these classes, Markov random fields (MRF), Bayesian networks
(BN) and chordal graphs can encode any probability distribution by using
a factorization that encodes no independence relationship. Both Bayesian
networks and MRF can encode independence relationships that the other
is not able to represent.
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Markov random fields (section 3.1.3)

Bayesian networks (section 3.1.2)

Chordal graphs (section 3.1.4)
Markov forests (section 3.1.4)

Markov chains (section 3.1.4)

Markov trees (section 3.1.4) Polytrees
(section 3.1.2)

Figure 3.2: Different PGMs can encode different sets of conditional inde-
pendence relationships. This figure shows how different classes of PGMs
(described in this chapter) relate to each other with respect to these rela-
tionships.
Chordal graphs lie at the intersection of Bayesian networks and Markov
random fields. Moreover, Markov chains ⊂ Markov trees ⊂ Markov forests
⊂ chordal graphs, and Markov trees = (Markov forests ∩ polytrees).

3.1.2 Bayesian Networks

ABayesian network uses as graphical structure a Directed Acyclic Graph,
whose nodes are in a bijection with X . It encodes a joint probability dis-
tribution as the product of the marginal distribution of each variable Xi,
conditionally to its parents PaXi

G in the graph:

PG(X ) =

p∏
i=1

PG(Xi|PaXi
G , θ) . (3.8)

The network therefore encodes a factorization of the joint probability distri-
bution P(X ). Note that a probability distribution can always be factorized
as

P(X ) =

p∏
i=1

P(Xi|X1, . . . ,Xi−1) . (3.9)

A Bayesian network exploits the relationships between the variables to re-
duce the number of variables on which the marginal probability distributions
are conditioned. A fully connected BN corresponds to the factorization of
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Equation 3.9. It does not encode any independence relationship, and can
therefore encode any probability distribution.

The parameter set θ of a BN is the union of the parameters of the
marginal probability distributions, and I will use the following notation to
refer to individual parameters:

θi,x|a = PG(Xi = x|PaXi
G = a, θ) . (3.10)

Each factor is normalized, because it is a (marginal) probability distribution.
The partition function is therefore always equal to one. In the future, θ may
be omitted from Equation 3.8 when its value is easily deducible from the
context.

In the remaining part of this thesis, I will concentrate on BN both to ma-
nipulate distributions and to construct Markov trees, because the absence
of partition function makes these tasks easier.

Reading Independence Relationships in a Bayesian Network

In a Bayesian network, two sets of variables A, B are independent condi-
tionally to C, A ⊥ B|C, if C is said to d-seperate A and B. This property
is true if and only if every path1 between any A ∈ A and B ∈ B contains
at least one of the following patterns:

• Xi → C → Xj with C ∈ C,
• Xi ← C → Xj with C ∈ C,
• Xi ← C ← Xj with C ∈ C,
• Xi → Xk ← Xj with Xk (and none of its descendants) /∈ C

The pattern Xi → Xk ← Xj is called a v-structure.
On a side note, an arrow in the network does not necessarily indicate

a cause → effect relationship. Indeed, the three networks represented in
Figure 3.1 encode the same independence relationships and can be used to
encode the same set of distributions, though their parameters have to be
adapted. As a matter of fact, those networks are said to be equivalent.
When the arrows in a Bayesian network do represent causal relationships,
the model is called a causal Bayesian network.

1A path is a sequence of vertices of the graph, such that an edge of the graph links
each variable of the sequence to the next variable in the sequence.
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X1 X2 X3 X1 X2 X3 X1 X2 X3

Figure 3.3: These 3 Bayesian networks encode the same set of independence
relationships. Only the graphical structure is represented.

X1

X3

X2

(a) This graph cannot
define a Bayesian net-
work: it contains a di-
rected cycle.

X1

X3

X2

(b) This graph can de-
fine a BN but not a poly-
tree: it contains a cycle
(not directed).

X1

X3

X2

(c) This graph can define
a polytree: it does not
contain any cycle.

Figure 3.4: A Bayesian network does not contain any directed cycle, a
polytree does not contain any cycle at all.

Polytrees

Polytrees are a subclass of Bayesian networks. The difference between poly-
trees and other BN is illustrated in Figure 3.4. Polytrees are characterized
by a graph without any cycle, directed or not. By contrast, the class of BNs
only prohibits directed cycles.

In addition, polytrees are connected structures. Because of these restric-
tions, polytrees defined over p variables can only have p−1 edges. Therefore,
and unlike BNs, polytrees cannot encode any possible distribution.

The class of polytrees contain the class of Markov trees, defined in Sec-
tion 3.1.4. A Markov tree is a polytree where each variable (except one, the
root) has only one parent.

3.1.3 Markov Random Fields

AMarkov random field (MRF) or undirected graphical model is a probabilis-
tic graphical model whose graphical structure is an undirected graph. There
is a bijection between the nodes of this graph and X . The parametrization
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X1 X2

X3

X4

Figure 3.5: This graph can be used as the graphical component of a MRF

encoding the distribution P(X ) =
1

Z
φ1(X1,X2)φ2(X2,X3,X4).

of a MRF is similar to the one of a factor graph, i.e.

P(X ) =
1

Z

k∏
i=1

φi(Si) (3.11)

Si = {X i
1, . . . ,X i

si
} . (3.12)

However the factors are not defined over arbitrary sets of variables, but
over maximal cliques (completely connected components) of the undirected
graph. There is an edge in the graph between each pair of variables (Xq,Xl)
∈ Si for any i.

Therefore, MRFs cannot exploit as many independence relationships as
factor graphs. They can however still encode any probability distribution,
but may have to use more parameters than a factor graph to do so.

A particular variant of those probabilistic graphical models is the class
of conditional random fields. They directly encode a conditional proba-
bility distribution on a subset of (output) variables C given another (input)
subset X , where C ∩ X = ∅. These models are described more precisely
in Section 8.1. They are useful when the observed variables X on which
inference will be conditioned is known beforehand and never changes. In-
deed, the distribution of those observed variables and their relationships are
irrelevant for inference. Conditional random fields therefore do not model
nor encode them, saving memory and time.

Reading Independence Relationships in a Markov Random Field

In a MRF, two sets of variables A, B are independent conditionally to C
(A ⊥ B|C) if every path between any A ∈ A and any B ∈ B contains at
least one variable C ∈ C.
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A MRF can therefore not graphically encode sets of independence re-
lationships where one independence disappears when conditioning on an
additional variable, such as e.g. A ⊥ B and A 6⊥ B|C. Differences between
BNs and MRFs are described in the next section.

3.1.4 Chordal Graphs

A Chordal graph is a MRF where each each cycle of G with a length higher
than 3 has a chord. This class constitutes the intersection of Bayesian
networks and Markov random fields. The sets of independence relationships
a chordal graph can encode in its graphical structure can be represented by
both BNs or MRFs. Apart from the structural constraint, chordal graphs
also differ from BNs because any BN corresponding to a chordal graph has
no v-structures (Equation 3.1.2). To obtain a BN structure corresponding
to a chordal graph, the edges of this graph can be oriented randomly, but
without introducing any v-structure or any directed cycle.

Figure 3.6 displays three graphs illustrating the difference between BNs,
MRFs and chordal graphs in terms of independence relationships. The first
contains a v-structure, and can therefore only be encoded as a BN. The
second contains no v-structure but a 4 variables loop without a chord, and
can therefore only be encoded as a MRF. The last one is a chordal graph,
containing no v-structure and no chordless loop of more than 3 variables.

X1

X3

X2

(a) X1 ⊥ X2 and X1 6⊥
X2|X3 can only be en-
coded by a BN, not a
MRF.

X2 X3

X1

X4

(b) X1 ⊥ X4|X2,X3 and
X2 ⊥ X3|X1,X4 can only
be encoded by a MRF,
not a BN.

X1

X3

X2

(c) Chordal graphs are at
the intersection of BNs
and MRFs.

Figure 3.6: Chordal graphs, BNs and MRFs cannot encode any set of inde-
pendence relationships.

Independence relationships can be read visually in chordal graphs as in
MRFs. This is also equivalent to reading them as on BNs, because there is
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no v-structure in the corresponding BNs.
The encoding of the distribution of a chordal graph can be formatted as

in Bayesian networks or as in MRFs. The encoding can also be transformed
from one of these two formats to the other. A chordal graph can encode
any distribution, because a complete graph is also chordal.

Markov Forests

A Markov forest is a chordal graphs whose graphical structure contains no
cycle. The graph of a Markov forest can be disconnected, but can contain
at most p − 1 edges. Alternatively, a Markov forest is a Bayesian network
where each variable has at most one parent.

Therefore the associated factors take at most two variables (associated
to an edge) as input. Due to these restrictions, a forest cannot model all
possible distributions.

Markov Trees

A Markov tree is a Markov forest where the graphical structure is a con-
nected tree (i.e. a graph without cycle) spanning all variables. It has
therefore exactly p − 1 edges. Markov trees constitute the intersection of
Markov forests and polytrees.

The graph of a Markov tree encoded as a MRF can be transformed into
the graph of a corresponding Bayesian network by arbitrarily choosing a
node as root of the tree and orienting all edges so that they do not point
towards the root.

Markov Chains

A Markov chain is a subclass of Markov trees where each variable is con-
nected to at most two variables. The resulting structure is therefore a chain.

3.2 Uses

Such graphical models can be used for several applications, and in this
section a few are illustrated. Consider a probabilistic graphical network
defining a probability distribution over a human body functioning properly
or suffering from different diseases. A few possible nodes, focusing on liver
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GenderAge Weight Alcohol

Liver disease

Tiredness Cholesterol Bilirubin levelGGTP level

Anti-mitochondrial antibodies Triglycerides Jaundice

Iron level

Figure 3.7: This Bayesian network models diseases of the liver (in particular
primary biliary cirrhosis and hepatic steatosis), and several related vari-
ables. It may be used to diagnose a disease based on a set of observations,
or to select the best observation to perform in order to obtain information
about the disease. This example is inspired by [ODW99], and consists in a
subgraph of the network developed in this latter article.

diseases, are represented in Figure 3.7. The central variable is the variable
associated to the diseases. Variables above it are factors influencing the
probability of the disease (e.g. women are 10 times more likely to contract
a particular disease than men), while variables below it are consequences
of a disease (e.g. anti-mitochondrial antibodies are present in the blood of
most people suffering from a certain disease).

3.2.1 Probabilistic Inference

The probability distribution P encoded by a probabilistic graphical model
can be used to answer queries about the underlying problem, a process
called inference. Possible queries include the following examples:

• compute the probability of a problem instance, P(X = x);

• compute the conditional probability density of a set of variables C
given the observed values x′ of another (possibly empty) set of vari-
ables X ′, P(C|X ′ = x′);
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• provide the maximum-a-posteriori configuration (MAP) for a set of
variables C, or the set of the K most probable configurations, given
observed values for another subset of variables X ′, a process that can
be used for classification;

• provide the most probable explanation configuration (MPE), a MAP
inference where C = X\X ′.

On the medical PGM described above, such queries could be used to
estimate the number of sick people in a population, the probability that a
given patient requires hospitalization in the future, or to compute the most
likely disease given available observations (diagnosis).

3.2.2 Feature Selection

The graphical structure of a model encodes the independence relationships
between variables. This structure can therefore be exploited to select the
best subset of variables that can be observed to predict another set of vari-
ables C, a process called feature selection. More formally, the goal of feature
selection is to determine a minimal subset of variable X ′ such that

C ⊥ X\{X ′,C}|X ′ . (3.13)

In the example of Figure 3.7, a feature selection could be performed e.g.
to select the observations necessary for a diagnosis.

3.3 Learning
A probabilistic graphical network can be constructed by an expert who
specifies the whole network, learned automatically from a set of observations
of the problem, or a combination of both, e.g. an expert-defined structure
where the parameters are optimized on a learning set. In this thesis I will
only consider automatic learning of the whole model, and this section gives
a brief introduction to the subject. Common assumptions and techniques
for learning Bayesian networks are presented. In addition, the complexity
of learning a Bayesian network is discussed.

A bit more formally, I will consider learning a Bayesian network from a
set of observations as the following optimization problem. Given a learn-
ing set D = {xD1 , . . . ,xDN

} containing N realizations from a probability
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distribution P over a set of p variables X , which is, among a given class of
models, the one (G,θ) that minimizes (or maximizes) a given score.

If the goal of the learning procedure is to learn a joint probability distri-
bution over all variables, i.e. generative learning, a usual score to minimize is
the Kullback-Leibler divergence of the model learned to the probability dis-
tribution defined by the learning set, PD, or equivalently the log-likelihood
of the learning set. Other cost functions may be considered depending on
the application, e.g. the expected conditional likelihood for a prediction
task or the number of edges recovered for knowledge discovery, if the dis-
tribution is encoded by a probabilistic graphical model and if the graph is
known.

I will first discuss common assumptions, then the complexity of learn-
ing and finally learning techniques. The problem of learning a Bayesian
network is usually divided in learning the structure alone and learning the
parameters for a given structure. I will thus describe those two steps sepa-
rately, starting by the parameters, followed by Markov trees structure, with
general BN structures coming last.

3.3.1 Hypotheses

Algorithms for learning Bayesian networks usually make various assump-
tions. They are presented here, and later discussed in the context of this
thesis, in Section 3.5.1.

The observations of the learning set are considered to be independent
and identically distributed (iid). Each observation can be considered as
a different random variable, and this hypothesis means the realizations of
those different variables are independent from each other, and drawn from
the same probability distribution P.

Observability relates to the fact that the values of some variables in
X might be missing in the learning set. Some variables, usually qualified as
“latent", might not be measured at all or some values, said to be “missing”
might not have been acquired in some observations. Full observability means
none of this happens.

Faithfulness signifies that there exists at least one model in the class
of candidate models that encodes exactly the conditional independence re-
lationships existing in the data generating probability distribution P.

This last assumption is mostly relevant for learning a Bayesian network
structure based on the independence relationships inferred from the learning
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set. It means that at least one considered model encodes all the indepen-
dence relationships in P and no additional relationship. Asymptotically in
the number of sample, a true structure can be recovered. On the other
hand, in the context of density estimation, any probability distribution can
be encoded by a complete Bayesian network, even if this BN is does not
exactly encode the independence relationships verified by the distribution.

3.3.2 Complexity of Learning

The number of possible DAGs grows superexponentially with the number
of variables p [Rob77]. Learning the structure of a Bayesian network is
therefore a complex task, that is usually exponential in the number of vari-
ables, even when imposing strong restrictions on the structure. Detailed
results regarding the complexity of learning probabilistic graphical models
in general and Bayesian networks in particular are provided in Section C.2.

Because of these hardness results, learning algorithms usually rely on
heuristics and/or limitations of the space of candidate structures to learn
a model, by restricting the resolution of the search space [AW08] or by
limiting its range (e.g. by constraining the number of candidate parents or
the global structures searched [EG08]). In practice, learning is considered
not to be possible over a few thousand variables [Auv02, EG08].

However, Markov trees are one class of models for which structure learn-
ing is easy. Indeed, it can be performed by the algorithm proposed by Chow
and Liu [CL68], described in Section 3.3.4 and of complexity O(p2 log p).

3.3.3 Estimation of the Parameters of a Bayesian
Network

Once a structure G has been selected based on a learning procedure and/or
by an expert, the parameters θ associated to that structure can also be
learned automatically from a set of observations D. As a reminder, these
parameters correspond to the values of the conditional probabilities defined
by the edges of the graph

θi,xi|a = PG(Xi = xi|PaXi
G = a) . (3.14)

The two main methods for computing θ from a fully observable learning set
are maximum likelihood and Bayesian parameter estimation.
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Maximum Likelihood Estimation

Maximum likelihood estimation (MLE) of the parameter aims to select the
value of the parameters maximizing the likelihood of the observed samples:

θML = arg max
θ

P(D|G, θ) . (3.15)

The values of the parameters are obtained by

θi,xi|a =
ND(a, xi)∑

xi∈V al(Xi)
ND(a, xi)

, PD(xi|a) , (3.16)

the frequency of occurrence of the event xi|a in the learning set, where
ND(a, xi) denotes the number of samples of D where PaXi

G = a and Xi = xi.
This can be proven by decomposing the likelihood of the observations

P(D|G, θ) =
N∏
j=1

P(xDj
|G, θ) (3.17)

=
N∏
j=1

p∏
i=1

PG(Xi = xiDj
|PaXi

G = aDj
, θ) (3.18)

=
N∏
j=1

p∏
i=1

θi,xiDj
|aDj

(3.19)

=

p∏
i=1

∏
a∈V al(PaXiG )

∏
xi∈V al(Xi)

(θi,xi|a)ND(a,xi) , (3.20)

and maximizing the logarithm of this quantity. xiDj
represents the value of

variable Xi in the jth observation of the set D.

Bayesian Parameter Estimation

Bayesian estimation consists in defining a prior distribution over the param-
eters of interest and computing a posterior distribution through Bayes rule.
From that distribution is it common to select the maximum a posteriori
value of the parameters, i.e.

θMP = arg max
θ

P(D|G, θ)P(θ|G) , (3.21)
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or the expected value of the parameters,

θE = E [P(D|G, θ)P(θ|G)] . (3.22)

If the prior distribution is a product of Dirichlet distributions, one for each
variable and per configuration of the parent variables,

P(θ|G) =

p∏
i=1

∏
a∈V al(PaXiG )

Dirichlet(αi,x1i |a, . . . , αi,x|Xi|i |a) (3.23)

∝
p∏
i=1

∏
a∈V al(PaXiG )

∏
xji∈V al(Xi)

(θi,xji |a
)
α
i,x

j
i
|a
−1

, (3.24)

it satisfies global

P(θ|G) =

p∏
i=1

P(θ
i,Xi|Pa

Xi
G
|G) , (3.25)

and local parameter independence

P(θ
i,Xi|Pa

Xi
G
|G) =

∏
a∈V al(PaXiG )

P(θi,Xi|a|G) . (3.26)

In that case the MAP assignment of the parameters is given by

θi,xi|a =
αi,xi|a − 1 +ND(a, xi)∑

xji∈V al(Xi)

[
αi,xji |a

− 1 +ND(a, xji )
] , (3.27)

and their expected value by

θi,xi|a =
αi,xi|a +ND(a, xi)∑

xji∈V al(Xi)

[
αi,xji |a

+ND(a, xji )
] . (3.28)

This can be directly verified by incorporating Equations 3.20 and 3.24
into Bayes rule:

P(D|G, θ)P(θ|G) ∝
p∏
i=1

∏
a∈V al(PaXiG )

∏
xji∈V al(Xi)

(θi,xji |a
)
α
i,x

j
i
|a
−1+ND(a,xji )

, (3.29)
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which is similar to Equation 3.20.
The hyperparameters α of the prior can be viewed in Equation 3.28

as supplementary observations, that stir the estimation of the parameters
towards the prior. The more observations available, the lesser the influence
of the prior on the estimated values of the parameters.

The Dirichlet prior is uniform when αi,xi|a = 1 ∀i, xi, a. The expectation
of the parameters computed based on such a prior is sometimes called the
“Laplace approximation”:

θi,xi|a =
1 +ND(a, xi)

|V al(Xi)|+
∑

xji∈V al(Xi)
ND(a, xji )

. (3.30)

3.3.4 Learning a Tree Structure: the Chow-Liu
Algorithm

Mixtures of Markov trees (formally defined in Section 4.2) considered in this
thesis are an extension of Markov trees. The problem of finding the best
Markov tree structure given a set of observations, solved by the Chow-Liu
algorithm, plays a central role in this thesis, since it is used as a building
block in most algorithms building mixtures. Therefore this algorithm is pre-
sented in this dedicated section rather than as a subcase of Bayesian network
learning. I will relate many novel ideas presented in this manuscript to this
algorithm, and this section will serve as reference regarding its structure
learning part.

The algorithm for learning a Markov tree structure TCL(D) maximizing
the likelihood of a training set D was introduced by Chow and Liu [CL68].
Maximizing the log-likelihood is equivalent to minimizing the Kullback-
Leibler divergence of the model to the empirically observed distribution

PD(x) ,
ND(x)

N
. This is easily shown using a decomposition similar to

Equation 2.17, with MD = PT and P = PD:

DKL(PD,PT ) =
∑
x

PD(x) log
PD(x)

PT (x)
(3.31)

=
∑
x

PD(x) logPD(x)︸ ︷︷ ︸
no dependence on T

−
∑
x

PD(x) logPT (x)︸ ︷︷ ︸
logllD(T )

. (3.32)
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The structure of interest is the structure of the Markov tree that can
maximize the likelihood of the observations using the best parametrization,
i.e.

TCL(D) = arg max
T

max
θ

logP(D|T , θ) (3.33)

= arg max
T

logP(D|T , θML(T , D)) , (3.34)

since the parameters θML(T , D) are the maximum likelihood parameters as
defined in Equation 3.15,

= arg max
T

∑
x

PD(x) logPT (x|θML(T , D)) , (3.35)

using the formulation of Equation 3.32. The distribution encoded by a tree
structure and the corresponding maximum likelihood parameters can be
decomposed into

PT (x|θML(T , D)) = PT (xr|θML(T , D))∏
(Xj ,Xi)∈E(T )

PT (xi|xj, θML(T , D)) (3.36)

= PD(xr)
∏

(Xj ,Xi)∈E(T )

PD(xi|xj) (3.37)

where Xr is the root of the tree. The last equation is a consequence of the
fact that the maximum likelihood parameters of a given structure are equal
to the observed frequency in the learning set (see Equation 3.16).

Therefore, the optimal Markov tree structure is therefore the solution
to the following optimization problem:

TCL(D) = arg max
T

∑
(Xj ,Xi)∈E(T )

ID(Xi;Xj) , (3.38)

where E(T ) is the set of edges in T , constrained to be a tree, and where
ID(Xi;Xj) (resp. HD(Xi), used in the proof) is the maximum likelihood es-
timate of the mutual information among variables Xi and Xj (resp. entropy
of Xi) computed from the dataset D.
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Proof.

TCL(D) = arg max
T

P(D|T , θML(T , D)) (3.39)

= arg max
T

∑
x

PD(x) log

PD(xr)
∏

(Xj ,Xi)∈E(T )

PD(xi|xj)

 (3.40)

= arg max
T

∑
x

PD(x) log

PD(xr)
∏

(Xj ,Xi)∈E(T )

PD(xi, xj)

PD(xj)

PD(xi)

PD(xi)


(3.41)

= arg max
T

∑
x

PD(x) log

 p∏
i=1

PD(xi)
∏

(Xj ,Xi)∈E(T )

PD(xi, xj)

PD(xj)PD(xi)


(3.42)

= arg max
T

[∑
x

PD(x)

p∑
i=1

logPD(xi)

+
∑
x

PD(x)
∑

(Xj ,Xi)∈E(T )

log
PD(xi, xj)

PD(xj)PD(xi)

 (3.43)

= arg max
T

[
p∑
i=1

∑
x

PD(x) logPD(xi)

+
∑

(Xj ,Xi)∈E(T )

∑
x

PD(x) log
PD(xi, xj)

PD(xj)PD(xi)

 (3.44)

= arg max
T

 p∑
i=1

∑
xi∈V al(Xi)

PD(xi) logPD(xi)

+
∑

(Xj ,Xi)∈E(T )

∑
xi∈V al(Xi)
xj∈V al(Xj)

PD(xi, xj) log
PD(xi, xj)

PD(xj)PD(xi)

 (3.45)

= arg max
T

− p∑
i=1

HD(Xi) +
∑

(Xj ,Xi)∈E(T )

ID(Xi;Xj)
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Finding one solution to Equation 3.38 decomposes into two steps:

1. the computation of the p × p (symmetric) matrix of pairwise mutual
informations (MI) between variables, which requires O(p2N) compu-
tations;

2. the use of the MI matrix as an edge-weight matrix to build a maximum
weight spanning tree (MWST). Possible algorithms include [Kru56],
used here and of O(p2 log p) algorithmic complexity, or the faster
[Cha00] whose execution times are nearly linear2 in the number of
edges of non zero weight, i.e. in our context O(p2α(p2, p)).

The Chow-Liu algorithm thus has essentially a time and space complexity
of O(p2 log p) in terms of the number p of variables.

Algorithm 3.1 Chow-Liu (CL) tree [CL68]
Input: X ; D
MI = [0]p×p
for i1 = 1→ p− 1 and i2 = i1 + 1→ p do
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)

end for
TCL = MWST(MI) {MWST computation, done here by Algorithm 3.2}
return TCL.

2α(m,n) is the inverse Ackermann function and grows very slowly. It is defined for
any m,n > 0 as

α(m,n) = min {i ≥ 1 : A(i, 4dm/ne) > log n} ,

where A(i, j) is an Ackermann’s function defined for any i, j ∈ N+ as
A(0, j) = 2j, ∀j ≥ 0

A(i, 0) = 0, and A(i, 1) = 2 ∀i ≥ 1

A(i, j) = A(i− 1, A(i, j − 1)), ∀i ≥ 1, j ≥ 2 .
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Kruskal Algorithm

A popular algorithm to solve the maximum weight spanning tree problem in
the Chow-Liu algorithm is the Kruskal algorithm [Kru56]. This procedure
is described in Algorithm 3.2 and illustrated in Figure 3.8 for 6 nodes.

Algorithm 3.2 Kruskal MWST algorithm [Kru56]
Input: symmetric matrix M of positive weights
T = empty graph of size row(M)
repeat
i, j = indices of max (non-diagonal) element in M
if nodes i and j are not connected in T then
T = T ∪ (i, j)

end if
M [i, j] = 0

until all (non-diagonal) elements of M are 0
return T .

The Kruskal algorithm receives as input a matrix of the weights of can-
didate edges. It first constructs an empty graph (Figure 3.8a). Then it
iteratively considers the addition of edges to this graph, one edge at a time.
These edges are considered by decreasing weight (Figures 3.8b,3.8c,3.8d).
However an edge is included in the graph only if it does not create a cycle
with edges already present in the graph (Figure 3.8d). When the resulting
model is a connected tree (p − 1 edges for p nodes), or when all candidate
edges have been considered, the procedure stops (Figure 3.8e).

3.3.5 Learning General Bayesian Network Structures

Learning the good structure(s) among the class of candidate models can be
done using three main approaches.

• The constraint-based approach consists in extracting from the obser-
vational data a set of conditional independence relationships (state-
ments Si ⊥ Sj|Sk, where Si,Sj,Sk are disjoint subsets of variables),
and searching for a structure that best matches those constraints.
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X1

X3

X2

X4

X5 X6

X1 X2 X3 X4 X5 X6

X1 21 25 14 3 15
X2 23 17 5 8
X3 11 13 18
X4 7 19
X5 4

(a) Initial situation: empty graph and symmetric matrix of edge-weights.

X1

X3

X2

X4

X5 X6

X1 X2 X3 X4 X5 X6

X1 21 25 14 3 15
X2 23 17 5 8
X3 11 13 18
X4 7 19
X5 4

(b) The edge associated to the highest value in the matrix is added.

X1

X3

X2

X4

X5 X6

X1 X2 X3 X4 X5 X6

X1 21 25 14 3 15
X2 23 17 5 8
X3 11 13 18
X4 7 19
X5 4

(c) Edges are considered by decreasing order of the associated values.

X1

X3

X2

X4

X5 X6

X1 X2 X3 X4 X5 X6

X1 21 25 14 3 15
X2 23 17 5 8
X3 11 13 18
X4 7 19
X5 4

(d) However, edges that would create cycles are discarded.

X1

X3

X2

X4

X5 X6

X1 X2 X3 X4 X5 X6

X1 21 25 14 3 15
X2 23 17 5 8
X3 11 13 18
X4 7 19
X5 4

(e) When the graph is connected, the procedure stops.

Figure 3.8: The Kruskal algorithm for computing a maximum-weight span-
ning tree.
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• In the score-based approach, a numerical criterion (maximum likeli-
hood, BIC, AIC...) is defined over the set of candidate structures,
and learning amounts to selecting, among them, the one that maxi-
mizes this score with respect to the data set.

• The model averaging approach considers the set of all possible struc-
tures rather than identifying a single best one, and averages predic-
tions from those structures in accordance with the goal of the learning
procedure. Taking into account all possible structures is rarely possi-
ble, and approximations must thus be employed.

These three classes of methods are briefly reviewed here, although the
latter will only be discussed here as a tool for working on a single graphical
structure. Approaches where several structures are involved are the main
topic of this thesis and will be further described in Chapter 4. Hybrid
methods combining several approaches have also been developed, such as
[TBA06]. These hybrid methods are not described here.

Constraint-based Approach

This approach consists in searching for the graph G that best matches the
conditional independence relationships inferred from the learning set, called
the constraints. The algorithms of this class must answer two problems:
inferring those relationships from the learning set, and selecting a network
based on them.

Evaluating conditional independence relationships based on observa-
tional data D has been largely studied in statistics through hypothesis
testing. As a brief reminder of on that topic, H0, the null hypothesis,
here independence, is evaluated based on a chosen risk of false rejection ρ
and stat(D), a statistics chosen in accordance with the hypothesis. H0 is
rejected if

stat(D) > tρ (3.46)

tρ , argt P(stat(D) > t|H0 is true) = ρ . (3.47)

tρ is a threshold function of ρ and stat(D). ρ is the probability to incorrectly
reject H0 if it is true. A typical value is 0.05.

For evaluating an independence relationship H0 = A ⊥ B|C over dis-
crete variables, the χ2 statistics or the maximum likelihood estimation of
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the mutual information are usual choices for stat(D). These two statistics
are respectively computed as follows [NWL+07]:

χ2 =
∑
a,b,c

[
ND(a,b, c)− ND(a, c)ND(b, c)

ND(c)

]2
ND(a, c)ND(b, c)

ND(c)

(3.48)

ID(A;B|C) =
1

N

∑
a,b,c

ND(a,b, c) log2

ND(c)ND(a,b, c)

ND(a, c)ND(b, c)
. (3.49)

For the maximum likelihood estimate of the mutual information, the
quantity 2N(ln 2)ID(A;B|C) is asymptotically χ-square distributed under
independence, with a degree of freedom equal to (|V al(A)|− 1)(|V al(B)|−
1)|V al(C)|.

The SGS algorithm [SGS93], described in Algorithm 3.3 is one of the
early algorithms exploiting the results of those hypothesis tests to construct
a Bayesian network structure from a set of observations, and its description
will serve as an illustration of this class of methods.

Like most constraint-based algorithms, it assumes the existence of an or-
acle capable of assessing any conditional independence relationships on the
set of input variables X . It first constructs an undirected graph, the skele-
ton, based on the independence relationships, then detects the v-structures
of the network and finally propagates the orientation of the edges. The al-
gorithm outputs a graph with both directed and undirected edges, but the
edges that remain undirected can be oriented arbitrarily, provided they do
not create v-structures or a directed cycle.

This algorithm requires the evaluation of a large number of independence
relationships between variables. More recent algorithms try to limit the
assessment of independence relationships, by using clever search strategies
or by limiting the cardinality of the subsets of variables inspected and the
in-degree of each node in the candidate structure [KF09].

Score-based Approaches

In the score-based approach, a numerical criterion is defined over the set
of candidate structures, and learning can be defined as selecting, among
all DAGs, the one that maximizes this score with respect to the learning
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Algorithm 3.3 SGS algorithm [SGS93]
Input: X ; an oracle for conditional independence relationships
S = ∅ {The skeleton}
for Xi,Xj ∈ X , j > i do
if @ Z ∈ X\{Xi,Xj} : Xi ⊥ Xj|Z then
S = S ∪ {(Xi,Xj), (Xj,Xi)} {Add undirected edge Xi −Xj}

end if
end for
for Xi,Xj,Xk ∈ X : (Xi −Xj −Xk and Xi = Xj) in S do
if @ Z ∈ X\{Xi,Xj,Xk} : Xi 6⊥ Xk|Xj ∪Z then
S = S\{(Xj,Xi), (Xj,Xk)} {Create v-structure Xi → Xj ← Xk}

end if
end for
repeat {Propagate edge orientation}
if S : Xi → Xj −Xk and S : Xi = Xk then
S = S\(Xk,Xj) {orient Xk ← Xj}

end if
if S : (Xi −Xj and there is a directed path from Xi to Xj) then
S = S\(Xj,Xi) {orient Xj ← Xi}

end if
until No more edges can be oriented
return G = (X , S)

set. Since there are a superexponential number of possible structures, con-
sidering them all explicitely is not feasible. A good search strategy must
also be chosen in addition to the score. A few general remarks about those
heuristics and scores will be given, and two scores (out of many) will be
presented.

Such heuristics are usually standard optimization procedures such as
greedy hill-climbing, simulated annealing or tabu search. In this context,
they typically modify the current structure iteratively by applying modifica-
tion operators such as edge addition, reversal or removal to create structures
in a neighborhood of the original. These new structures are then compared
to the current one through their scores, and a new one is selected according
to the optimization procedure used.

Such a procedure requires evaluating the scores of numerous structures
at each iteration. To limit the complexity of computing them, decomposable
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scores are usually used. These are scores that can be written as

score(G, D) =

p∑
i=1

f(Xi,PaXi
G ) . (3.50)

In a decomposable score, a modification to G only changes the values of the
terms of the sum that are related to the affected variables. When only one
edge is affected (as with the operators listed above), at most two terms are
modified, and all others are left unchanged. This property can be exploited
by the heuristic to speed-up the computation of the scores of the structures
close to the current structure. Moreover, once a new structure is selected
and another iteration of the optimization algorithm begins, the score gain
provided by any operator applied to variables unconcerned by the accepted
change need not be computed again. In other words, only the terms related
to the change must be recomputed. Both points lead to significant gains in
computational time.

The likelihood score of the set of observations is such a decomposable
score. The likelihood is computed for a given structure based on the values
of the parameters maximizing this likelihood. Using a decomposition similar
to the one leading to the Chow-Liu algorithm (Section 3.3.4, replace xj by
PaXi
G ), the log-likelihood score can be shown to equal

logllD(G) = max
θ

N∑
j=1

logP(xDj
|G, θ) (3.51)

= N

p∑
i=1

[
ID(Xi;PaXi

G )−HD(Xi)
]
. (3.52)

This score will always favor the addition of edges to the model structure,
and will cause overfitting. Therefore the likelihood score is often modified
to include a penalty on the size (number of edges or number of parameters)
of the model. This principle is called regularization, and its application to
Markov trees is discussed in Section 5.1.1.

Another possibility to limit overfitting is the Bayesian Dirichlet (BD)
score [CH92]. As opposed to the likelihood score, the BD score averages
over all possible values of the parameters for the structure considered. The
Bayesian score requires the definition of a prior distribution P(G) on the
structures and P(θ|G) of the parameters given the structure. Given these
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priors, the Bayes rule states that the posterior probability of a structure
conditionally on a given learning set is

P(G|D) =
P(D|G)P(G)

P(D)
. (3.53)

The constant denominator is discarded and the BDscore is the logarithm of
the remaining quantity:

BD(G, D) = logP(D|G) + P(G) . (3.54)

P(D|G) is computed by averaging over all possible parameters:

P(D|G) =

∫
θ

P(D|G, θ)P(θ|G)dθ . (3.55)

For categorical variables, the Dirichlet distribution is the conjugate prior.
Using

{
αi,xi|a

}
xi∈V al(Xi)

to denote the hyperparameter of the prior associated
to X = x|Pa(X ) = a, the probability of the learning set given a structure
can be computed by

P(D|G) =

p∏
i=1

∏
a∈V al(PaXiG )

Γ(αXi|a)

Γ(αXi|a +ND(a))

∏
xi∈V al(Xi)

Γ(αi,xi|a +ND(a, xi))

Γ(αi,xi|a)

(3.56)

αXi|a =
∑

xi∈V al(Xi)

αi,xi|a , (3.57)

on the condition that the prior distribution satisfies global and local param-
eter independence. Γ(x) is the gamma function

∫∞
0
tx−1e−tdt, for x ∈ R+.

Model Averaging Approaches

The two classes of mixtures presented in Section 2.6 have been exploited
to build mixtures of probabilistic graphical models, but the discussion of
those models (averages of probability densities) is postponed to Section 4.1.
This section only covers methods that combine several models to construct
a single output structure.

Rather than identifying a single best structure, mixtures are used to
identify the probability that any graphical feature (such as e.g. an edge
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X → Y) is present in the real structure. This allows uncertainty in the
model selection procedure. The probability of a feature f can be established
through a Bayesian approach:

P(f) =
∑
G

δ(f ∈ G)P(G|D) , (3.58)

where δ(f ∈ G) is equal to 1 if the feature f is present in the structure
G and 0 otherwise. This can be done for all possible structures with a
complexity exponential in p [KS04]. More efficient algorithms exist when
the topological ordering3 of the variables is known [Bun91].

When taking into account all possible structures is not possible, approx-
imations can be employed.

One of these strategies is the bootstrap aggregation approach (section
2.6.2), and has been used for structure learning of graphical models, e.g.
by considering the frequency of occurrence of interesting graphical features
among the structures derived from bootstrap replicas [FGW99], and also
to improve score-based structure learning by incorporating the bootstrap
procedure in the computation of the score [Eli11].

Another approach consists in constructing a Markov Chain Monte Carlo
over the structure search space, then to use this chain to sample good struc-
tures. The sequence S of structures generated by the chain is then used as
an approximation of Equation 3.58.

P(f) =
∑
G∈S

δ(f ∈ G) . (3.59)

[MYA95] was the first to develop such an approach. One refinement, pro-
posed in [FK03], is to perform a MCMC chain only over the topological
ordering of the variables, and to use the result of [Bun91] to average over
all networks for a given ordering.

Alternative stochastic methods have also been considered, such as in
[MR94].

3A topological ordering of the variables is an ordering such that, for every pair of
variables Xi,Xj (i 6= j), an edge Xi → Xj can be present in G if and only if Xi precedes
Xj in the ordering. It therefore reduces the number of possible DAG structures, and
facilitates the development of an efficient search strategy.
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3.4 Inference

Once a Bayesian network has been specified or constructed, it can be ex-
ploited to answer queries about the distribution, a process generically called
inference. While the contributions contained in this thesis are mostly re-
lated to learning PGMs that can be used for inference, but not on performing
inference, a basic knowledge of inference may in my opinion help to under-
stand the motivation of this work and appreciate its interest. Moreover,
inference is often necessary in subroutines of the learning procedure. The
purpose of this section is to provide the required background about these
algorithms.

The complexity of inference is first discussed in Section 3.4.1. Remem-
ber the complexity of inference is one of the motivations of using simple
graphical models. Belief propagation in Markov trees is then explained in
Section 3.4.2. This algorithm computes inferences of the form PG(O|I = i),
the probability distribution of a subset of variables O conditionally on ob-
served values i of a distinct subset of variables I. Finally, key ideas behind a
few methods for inference on any Bayesian network are presented in Section
3.4.3.

3.4.1 Complexity of Inference

This section gives a brief summary about the complexity of inference. The
different inference operations defined in Section 3.2.1 are in most cases a
hard problem, and scale badly with the size of the problem. Without go-
ing into the details, answering an inference query is generally a problem
requiring a worse than polynomial time in the number of variables. Note
that more detailed theoretical results about the complexity of inference in
probabilistic graphical models are reported in Appendix C.3.

As regards inference complexity in probabilistic graphical models, an
important quantity is the maximum tree-width of the structure. The max-
imum tree-width of a graph is defined as the number of nodes in the
largest clique of the moralized4 and triangularized5 graph, minus 1. A clique
is a completely connected subgraph. Algorithms such as the junction tree
algorithm scales as p exp(k) for inference on Bayesian networks of bounded

4The parents of any node are married, i.e. linked by an edge.
5Edges are added to make the graph chordal.



96 CHAPTER 3. PROBABILISTIC GRAPHICAL MODELS

tree-width6 k, see e.g. [LS98], and inference in Markov trees (tree-width=1)
is of linear complexity in the number of variables [KP83].

Today, inference in PGMs remains an active research topic. Contests
are regularly held to evaluate the best algorithms available. To the best of
my knowledge, the last contest of this kind is the Probabilistic Inference
Challenge (PIC2011)7. Many learning methods also specifically target low
tree-width structures in order to limit inference complexity, see e.g. [BJ01,
EG08, FNP99, SCG09].

3.4.2 Inference in Polytrees

Belief propagation is the algorithm used to perform probabilistic infer-
ence on Markov trees and on polytrees. It was proposed in [KP83] and
computes all marginals P(Xi|i) for an evidence i. The description of this
algorithm proposed here is inspired by [NWL+07]. As pointed out in the
previous section, the complexity of this inference operation is linear in p for
Markov trees. Although I will mostly consider Markov trees in this thesis,
the algorithm is described for the more general class of polytrees. It easily
simplifies to the case of Markov trees.

The algorithm relies on the transmission of information between nodes
of the graph and along the edges. This information is encoded in messages
sent from one node to another. Inference is complete when two messages
have been transmitted (and processed) along every edge of the network: one
upwards and one downwards.

I will first discuss the case of an unobserved variable X that is neither
a leaf nor a root of the polytree. The variables can be partitioned into
three subsets with respect to X : X , AX (the ancestors of X ) and DX (the
descendants of X ). Figure 3.9 represents all quantities mentioned in this
section on a polytree structure. The evidence (here denoted as i) can be
divided in correspondance with the partition of the variables:

i = iAX ∪ iDX . (3.60)

6This tree-width is actually the maximal tree-width of the moralized and chordalized
graph of the Bayesian network.

7http://www.cs.huji.ac.il/project/PASCAL/

http://www.cs.huji.ac.il/project/PASCAL/
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|CX | messages, one from each neigh-
bor (parent or child). It also sends a
message to each of these variables. Be-
fore a message can be computed or sent,
the messages from the other neighbors
must be received.

Figure 3.9: Variables and messages involved in belief propagation in a poly-
tree.

P(X|i) can be factorized according to Bayes rule as follows, where the
normalization constant is omitted (normalization is usually carried out at
the end of all computations):

P(X|i) ∝ P(X|iAX )P(iDX |X , iAX ) (3.61)
= P(X|iAX )︸ ︷︷ ︸

π(X )

P(iDX |X )︸ ︷︷ ︸
λ(X )

(3.62)

since iDX ⊥ iAX |X due to the tree structure: any path between iDX and
iAX must contain X . In this latter equation, P(X|iAX ) = π(X ) plays the
role of a prior distribution while P(iDX |X ) = λ(X ) is a likelihood. I now
focus on those two terms, one at a time, starting with λ(X ).
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iDX can be written as

iDX =
⋃
C∈CX

iC,DX , (3.63)

where CX denotes the children of X and iC,DX the observations related to
variables from which the path to X contains C. Therefore, λ(X ) decomposes
into a product of terms, where each term is related to a different child of
X :

λ(X ) = P(iDX |X ) (3.64)

= P(
⋃
C∈CX

iC,DX |X ) (3.65)

=

|CX |∏
q=1

P(iCq ,DX |iC1,DX , . . . iCq−1,DX ,X ) (3.66)

=

|CX |∏
q=1

P(iCq ,DX |X ) , (3.67)

because iCq ,DX ⊥ iCr,DX |X ∀q 6= r. P(iC,DX |X ) will be denoted by λC(X )
from now on. λC(X ) can be seen as a message going up from C to X .

iC,DX can be decomposed with respect to C as i was with respect to X
in Equation 3.60:

iC,DX = iAC\X ∪ iDC , (3.68)

where the notation iAC\X stresses that evidences related to variables in
AC but whose path to C contains X are not considered. Based on this
decomposition,

λC(X ) = P(iC,DX |X ) (3.69)
= P(iAC\X , iDC |X ) (3.70)

=
∑

c∈V al(C)
e∈V al(PC\X )

P(iAC\X , iDC |c, e,X )P(c, e|X ) . (3.71)

This equation can be simplified by exploiting the independence relationships
encoded by the tree structure:

λC(X ) =
∑
c,e

P(iDC |c)P(iAC\X |e)P(c, e|X ) , (3.72)
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and by the application of Bayes rule:

=
∑
c,e

P(iDC |c)
P(e|iAC\X )P(iAC\X )

P(e)
P(c|X , e)P(e|X ) . (3.73)

Moreover, P(e|X ) = P(e) (independence) and P(iAC\X ) is a constant. Con-
sequently,

λC(X ) ∝
∑
c

P(iDC |c)
∑
e

P(e|iAC\X )P(c|X , e) (3.74)

=
∑
c

P(iDC |c)︸ ︷︷ ︸
λ(c)

∑
e

P(c|X , e)
∏

r=1,...,|PC\X |

P(er|iPCr ,AC) , (3.75)

where iPCr ,AC are the evidences related to variables of AC whose path to C
contains PCr .

λC(X ) is therefore a function of the local parameters of the model,
P(c|X , e), of P(iDC |c) = λ(c), and of P(e|iAC\X ), which is close to π(C)
(see Equation 3.62), and actually follows a decomposition similar to π(C).

The corresponding decomposition of π(X ) can be obtained by a rea-
soning similar to the one used for λ(X ). Going faster than for λ(X ), this
decomposition yields:

π(X ) = P(X|iAX ) (3.76)

=
∑

p∈V al(PX )

P(X|p)P(p|
⋃
P∈PX

iP,AX ) (3.77)

=
∑

p∈V al(PX )

P(X|p)
∏

s=1,...,|PX |

P(ps|iPs,AX ) . (3.78)

P(p|iP,AX ) can be viewed as a message, as information about the evidences
i reaching X through its parent P , and will be denoted by πX (p).

πX (p) = P(p|iP,AX ) (3.79)
= P(p|iAP ∪ iDP\X ) (3.80)

∝ P(iDP\X |p)P(p|iAP ) (3.81)

P(iDP\X |p) =
∏

F∈CP\X

P(iF ,DP |p) . (3.82)
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Regrouping all equations developed in this section results in the following
summary:

P(X|i) ∝ P(X|iAX )P(iDX |X ) (3.83)
= π(X )λ(X ) (3.84)

λ(X ) ∝
∏
C∈CX

λC(X ) (3.85)

π(X ) ∝
∑

p∈V al(PX )

P(X|p)
∏

s=1,...,|PX |

πX (ps) (3.86)

λC(X ) ∝
∑

c∈V al(C)

λ(c)
∑

e∈V al(PC\X)

P(c|X , e)
∏

r=1,...,|PC\X |

πC(er) (3.87)

πX (p) ∝ π(P)
∏

F∈CP\X

λF(p) ∀p ∈ V al(P) . (3.88)

A few observations can be made about these equations.

• Each λC(X ) and {πX (p)}p∈V al(P) is a message to X from one of its
neighbor. The latter are following the orientation of an edge, the
former are going in the opposite direction. For X , incomming and
outgoing messages are represented in Figure 3.9b.

• To compute the message to one neighbour Y , X needs the messages
from all its neighbours, except Y . Therefore, it is always possible to
propagate these messages in a polytree until convergence (shown by
recurrence: a polytree has at least one node with only one neighbour).

• A variable X must receive the message of all its neighbours in order
to compute P(X ).

The propagation of all the messages can be done by only considering each
variable at most twice: the first time when all its neighbours but one have
sent their messages to it, to compute the message for the last neighbour;
the second time when this neighbour sends his message, to compute and
send the messages for all the other neighbours.

The last point to discuss is the case of observed variables. An easy way
to include them in the model is the addition of a fictive child to any observed
variable Y , such that the λ message from that new variable equals δ(y; iY),
i.e. 1 for Y = iY , the evidence value for the variable Y and 0 otherwise.
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3.4.3 Inference on Bayesian Networks

Inference over unconstrained Bayesian networks is unfortunately not as ef-
ficient as on a polytree structure. However, since polytree models are often
too restrictive to properly model a distribution, many algorithms have been
developed for exact or approximate inference on Bayesian networks. Pre-
senting them all and even specifying some of them is outside the scope of
this chapter, but the key ideas behind some of them will be described in a
few lines to give a glimpse on this field.

Exact Inference

Variable elimination and the junction tree algorithm are two main algo-
rithms for performing probabilistic inference exactly on Bayesian networks.

Variable elimination iteratively removes variables from the network
until there remain only variables of interest to the inference query. When
a variable is eliminated, parameters of other variables are modified so that
the probability distribution does not change. In fact, eliminating a variable
implies a marginalization of the joint probability distribution. Consider as
an illustration the probability distribution defined on 3 binary variables and
encoded by the Markov chain

P(X ) = P(A)P(B|A)P(C|B) . (3.89)

Computing P(C) means marginalizing out B and C:

P(C) =
∑

a∈V al(A)
b∈V al(B)

P(a)P(b|a)P(C|b) (3.90)

=
∑

b∈V al(B)

P(C|b)
∑

a∈V al(A)

P(a)P(b|a) .

︸ ︷︷ ︸
P(b)

(3.91)

Marginalizing both variables at the same time (first equation) necessitates
3 summations and 8 multiplications, while eliminating one variable at a
time to define a new network (second equation) requires only 3 summations
and 6 multiplications. The improvement is more significant when there are
more than 3 variables. Selecting a good order of elimination can however
be challenging, and the complexity of this algorithm heavily depends on a
good elimination order.
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The junction tree algorithm is a two-step process. In the first, the
Bayesian network is transformed into a junction or clique tree, and in the
second step inference is carried out on this tree structure, using an algorithm
similar to the one developed for inference in polytrees (Section 3.4.2). A
clique tree decomposition (see also Figure 3.10) of a Bayesian network is a
tree structured graphical model where

• each node is associated to a subset Si of X ,

•
⋃
iSi = X ,

• for every edge X ,Y in the moralised (the parents of a node are “mar-
ried”, i.e. joined by an edge) and chordalized (edges are added so
that each cycle of at least 4 nodes has a chord), there is at least one
Si 3 X ,Y ,

• if X ∈ Si,Sj, then X also belongs to every Sk on the (unique) path
between Si and Sj (running intersection property).

Approximate Inference

Many different approximate algorithms for inference have been developed
over the years. I will present two important classes of such algorithms:
stochastic sampling and loopy belief propagation.

Stochastic sampling algorithms perform inference by generating sam-
ples (or instances) from the network, and estimating the quantity of interest
by its frequency of occurrence in these observations. Many different gener-
ating mechanisms are possible. Complete instances over all variables can be
considered, but instances restricted to subsets of variables are also possible.
Many generation mechanisms exist: the observations can be generated ran-
domly, sampled from the probability encoded by the network, constructed
deterministically etc [Dar09].

Loopy belief propagation is, in a nutshell, the application of the belief
propagation algorithm (described in Section 3.4.2) to a general Bayesian
network. Similar algorithms were found to produce good approximations
on several networks. This led to the development of many methods inspired
by this algorithm. Since the structure is no longer a polytree, convergence is
not guaranteed. Indeed, the variables in a loop cannot receive the message
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(d) Clique tree decomposition

Figure 3.10: A Bayesian network is transformed into a clique tree by moral-
izing and triangularizing its graph. The colored lines highlight the running
intersection property (original image from wikipedia by David Eppstein).

of all their neighboring variables but one. Therefore, messages are computed
iteratively by initializing them all and propagated until convergence. Many
different strategies have been developed around the idea of propagating
messages, such as approximated messages or propagation on approximated
structures (such as e.g. a tree).

3.5 Outlook
This chapter so far has provided the background about the probabilistic
graphical models framework necessary to understand the models manipu-
lated in this thesis and its main contributions. Different models have first
been defined and their utility illustrated. Learning and inference with those
models have then been introduced, with a particular emphasis on algorith-
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mic complexity and on Markov trees. The latter was discussed in depth
because it is the main model used in this thesis, and the former because it
is the main motivation of our focus on simple PGMs and on Markov trees
in particular.

The main topic of this thesis is the construction of mixtures of PGMs
(described in detail in Chapter 4) for learning and inference on many vari-
ables. This principle relies on the generation of several models, and the
aggregation of the answer provided by each model to a given query. In
order for this process to be tractable, both learning and answering a query
must also be tractable on a term of the mixture. The complexity of an
operation on a mixture of m models is the sum of the complexity of this
operation on each term of the model, plus an eventual overhead. Since
learning and inference is mostly driven by the treewidth of the model and
is intractable (NP-hard) even for polytrees (though not for all inference op-
erations) but respectively of logquadratic and linear complexity for Markov
trees, these models seem to be the most sensible choice to use in a mixture.
This subject is further discussed in Section 4.1, once mixtures have been
introduced.

Apart from this important point, this section discusses common PGM
learning hypothesis with respect to this research and specifies which method
is used in the algorithm developed for learning the parameters of the models.

3.5.1 Learning Hypotheses

This thesis focuses on learning mixtures of Markov trees for reducing the
variance, a source of error defined in Section 2.4. Therefore the hypothesies
underlying the algorithms developed in this manuscript differ slightly from
the standard ones presented in Section 3.3.1.

First, the hypothesis that the observations are iid and fully observable
are considered valid.

More importantly, I do not assume that the target distribution can be
exactly encoded by the class of candidate models. As mentioned in Section
3.1, Markov trees are rather restrictive models and cannot encode all distri-
butions exactly, they simply do not have enough parameters. However this
assumption is mostly used to establish asymptotic results when the number
of available observations tends to infinity. So, it is not particularly relevant
for situations with many variables and few samples, the focus of this thesis.
Moreover, it is particularly interesting to evaluate the methods developed
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here on distributions encoded by a Bayesian network whose structure is not
a tree, since those distributions are closer to real situations.

Constraining the model is also a way to limit overfitting (see Section
2.4 for an introduction to the bias-variance trade-off in machine learning),
and one of the reasons to select simple models, the other being tractable
algorithmic complexity.

3.5.2 Parameter Learning

Section 3.3.3 presented two methods for learning the parameters of a Baye-
sian network for a given structure. In this thesis and unless otherwise stated
the parameters of the models are estimated by the Bayesian method, and in
particular the Laplace approximation. As a short reminder, it is based on a
uniform Dirichlet prior, which is tantamount to adding one sample for each
possible configuration of the subset of variables related to those parameters:

θi,x|a =
1 +ND(a, x)

|V al(Xi)|+
∑

x∈V al(Xi)
ND(a, x)

. (3.92)

Using such a prior ensures that probabilities encoded by the resulting
Bayesian network are all non-zero. Therefore the two measures of accuracy
used to evaluate this model, the Kullback-Leibler divergence and the log-
likelihood (presented in Section 2.3.2) are always finite.





Chapter 4

Mixtures of Markov Trees

The goal of this chapter is to give a first introduction to the learning algo-
rithms that will be developed in the second part of this thesis.

I build on the material presented in the two previous chapters, namely:
(i) mixture models, and in particular the perturb and combine frame-
work (Chapter 2), and (ii) probabilistic graphical models, and in particular
Markov trees, a class of Bayesian networks (Chapter 3).

The learning algorithms developed will apply the perturb and combine
principle in order to construct mixtures of Markov trees, with the goal of
reducing the variance with respect to a single Markov tree constructed by
the Chow-Liu algorithm. Even though a Markov tree is a simple model with
respect to the class of Bayesian networks, it may still suffer from a large
variance in a high-dimensional setting, as will be shown in later experiments,
and as noted e.g. in [LXHG+11, TAW11].

Markov trees obtained by a randomized algorithm will be aggregated
using an arithmetic mean (a choice discussed in Section 4.3.1). The mixtures
considered in this thesis are therefore of the form

PT (X ) =
m∑
j=1

λjPTj(X ) (4.1)

m∑
j=1

λj = 1 (4.2)

λj ∈ [0, 1] ∀j , (4.3)

where m is the number of Markov trees in the mixture, Tj denotes a Markov
tree of the mixture, and λj is the weight associated to this tree. The prob-

107
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ability density encoded by the model is thus a convex combination of the
densities encoded by the individual Markov trees (the weights are positive
and sum to 1).

I have chosen to work with Markov trees, because inference can be per-
formed efficiently in this class of models. Indeed, to exploit a mixture model,
an inference operation must be performed on every tree of the mixture. The
high number of variables p makes algorithmic complexity a key design el-
ement, both for the learning and the inference part. In addition, I target
algorithms that behave well on small learning sets, because those are the
norm for high-dimensional problems. On the other hand, in this work I put
far less emphasis on good asymptotic (large sample) properties.

The rest of this chapter is organized as follows. Section 4.1 provides a
brief overview of the literature on mixture models based on different sub-
classes of probabilistic graphical models, while Section 4.2 provides a survey
of already published work in the context of mixtures of Markov trees. Sec-
tion 4.3 aims at presenting my approach: I first explain why geometric
averaging was not considered as an alternative or in replacement of arith-
metic averaging, and then describe the general meta-algorithm used in the
second part of this thesis to construct mixtures of Markov trees. Finally, I
provide an overview of the subsequent chapters of the thesis.

4.1 An Overview of Mixtures of PGMs

It is possible to use other models than Markov trees to construct mixtures,
although inference might not be tractable. This section discusses those
alternative classes of models.

In a general setting, the models used should be able to represent any
distribution while allowing learning and inference to be algorithmically
tractable. In high-dimensional learning however, simple models are likely
to be more useful than complex ones:

• the number of parameters (edges and local distributions) should be
limited, to keep models simple and avoid overfitting;

• the tree-width of the models considered should be small, or other
constrains enforced, to allow learning and inference algorithms to be
tractable (see Section 3.4.2).
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The first requirement might not be necessary in a perturb and combine
setting. Although learning an overly complex model may translate into a
high variance, this variance is likely to be reduced by model averaging.

In the second point, the complexity of inference may be more impor-
tant than the complexity of learning. Indeed, the perturb and combine
framework introduces randomization in learning algorithms, and this ran-
domization can be selected so as to lower the complexity of the algorithm.
Exact inference, on the other hand, depends on the structural constraint.
However there exist approximate inference algorithms, and they could be
applied for inference on a mixture of unconstrained terms.

The complexity of learning and inference for a mixture is O(mf(p)) if
each term is learned only once and independently from the others, where
f(p) is the complexity of learning or performing inference on one term of
the mixture.

Different classes of models that could be used to construct mixtures will
be discussed by increasing inference complexity: models of tree-width 0,
acyclic models, and other models.

Tree-width 0: Naive Bayes

A Bayesian network of tree-width zero contains no edge and defines the
following factorization of the joint probability distribution:

P(X ) =

p∏
i=1

P(Xi) . (4.4)

Learning the structure of such a distribution is of course immediate and
learning its parameters is trivial and of O(Np) complexity. Inference in
such a model is very efficient too and only depends on the queried variables,
not on the variables observed.

A mixture of models of tree-width zero can be represented in two differ-
ent ways. As any other mixture model presented so far, the weights of the
mixture can be viewed as the parameters of a categorical hidden variable Z,
and each term of the model encodes a joint probability distribution (here of
tree-width 0) defined over the full set of variables, as represented in Figure
4.1a. The second representation is possible because the graphical structure
is identical for all terms. Therefore the mixture model can be represented
as that unique graphical structure (in the case of the naive Bayes, an edge-
less model) where the weight variable conditions every other variable. This
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structure, represented in Figure 4.1b, is a more classical depiction of a naive
Bayes model.

X1 Xp· · · X1 Xp· · ·

Z
λ1 λm

· · ·

(a) The first representation emphasises
the mixture decomposition and makes
explicit the number of terms m.

X1 X2 Xp

Z

· · ·

(b) This more classical representation of
the naive Bayes model stresses the inde-
pendence of the variables conditionally
on Z.

Figure 4.1: A mixture of 0 tree-width Bayesian networks has two possible
graphical representations.

The naive Bayes model is mostly exploited in classification and clustering
[CS96, DP97]. In that case the hidden variable Z is the class (or the cluster)
variable, the probability P(Z|x) encodes the probability that a given sample
x belongs to the different classes or clusters.

Nevertheless, a few algorithms have been proposed to build naive Bayes
model for density estimation.

[KMT96] constructs a mixture of independent variables as a generative
model for classification. This model is a mixture model as considered in
this thesis and not a naive Bayes classifier: the root of the tree is not one
of the observed variables. The number of terms is selected empirically in
[KMT96].

[LD05] uses a variant of the EM algorithm. It is adapted to address
the problem of selecting the number of terms and the problem of local
maxima. Starting from an initial number m of terms, those characterised
by a low weight are periodically removed from the mixture. In addition, once
a mixture has converged, new random terms (based on randomly assigned
samples) are generated and added to the mixture. The iterative EM update
is then restarted on the modified mixture. New terms are added according
to this procedure until the resulting mixture does not improve (in terms of
data fit) over the previous one.
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When a naive Bayes model is built for density estimation over the vari-
ables X , the complexity of inference is linear in the number of variables
considered, both as queried and observed variables.

Acyclic Models of Tree-width 1: Markov Forests

These models are characterized by a graph without cycle where each variable
has at most one parent. This class of models contain Markov trees.

For Markov forests, inference of a marginal conditional probability dis-
tribution is of linear complexity in the number of variables (see Section 3.4.1
for details). Fully connected models of this type can be partitioned into two
categories, based on the shape of their graphical structure, as illustrated in
Figure 4.2:

• a chain is a structure where each variable has at most one parent and
one child;

• a tree is a structure where each variable has at most one parent.

Due to the absence of any v-structure, chains and trees can also be con-
sidered as undirected models. Considering unconnected structures does
not increase the upper bound on the complexity of inference: inference is
performed separately on each connected component, because the variables
of each component are independent from the variables of any other com-
ponent. However, learning unconnected models may make learning more
difficult and usually involves regularization. Regularization of Markov trees
is discussed in more details in Section 5.1.1.

X1 X2 X3 X4

(a) A chain

X1 X2 X3

X4

(b) A tree

Figure 4.2: There are 2 categories of graphical models whose undirected
graph is acyclic and connected.
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Constructing a chain or a tree G in order to encode a distribution PG
minimizing the Kullback-Leibler divergence with respect to a target distri-
bution P amounts to maximizing (see Section 3.3.4 for details):

G = arg max
G′

∑
(X ,Y)∈E(G′)

IP(X ;Y) , (4.5)

while G ′ is constrained to be either a chain or a tree. In the case of chains,
this problem reduces to the traveling salesman problem. It is therefore NP-
hard [Mee01]. For trees, this problem is a maximum-weight spanning tree
problem in a complete graph, solvable by O(p2 log p) or faster algorithms,
and is explained in details in Section 3.3.4.

Since chains cannot be learned optimally, they can not easily be used
to build a bias reducing mixture by using the EM algorithm introduced in
Section 2.6.1.

Both can be used in a variance reduction scheme. However, my pre-
liminary experiments (not reported in this thesis) to construct mixtures of
chains by using the heuristic proposed in [DBIV96] led to results clearly
worse than with mixtures of trees. Learning and inference algorithmic com-
plexity are similar (because of the heuristic), but the accuracy was much
worse for mixtures of chains. I conjecture this is due to a higher bias of
chains with respect to trees. This area of research was not pursued further.

In addition, working in the class of tree structures one can easily con-
struct an optimal model of the class, by using the Chow-Liu algorithm. The
absence of an algorithm to obtain such an optimal model is not problematic
in the perturb and combine framework, since it will be randomized. How-
ever the evaluation of the algorithms greatly benefits of the reference score
provided by this optimal solution inside the class.

Acyclic Models of Tree-width >1: Polytrees

These models are characterized by a graph without any cycle. As opposed
to Markov forests, there is no restriction on the number of parents. In that
case, inference of a marginal conditional probability distribution is more
complex, and depends on the exact tree-width of the model, i.e. here the
maximum number of parents of any variable minus 1 (see Section 3.4.1 for
details).

Constructing a polytree G to minimize the Kullback-Leibler divergence
with respect to a target distribution P is NP-hard [Das99]. However, if
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the target distribution P is known to be a polytree, it can be recovered
asymptotically in the number of samples [RP87, OOM04]. [Das99] also
shows that the result of the Chow-Liu tree is a good approximation of the
best polytree, in the sense that:

nlogllD(Tchow-liu) ≤

nlogllD(Gbest polytree)

(
1 +O

(
log

maxiHD(Xi)
miniHD(Xi)

))
, (4.6)

where nlogllD(.) and HD(.) are respectively the negative log-likelihood and
the entropy functions, according to the empirical distribution observed in
the learning set D. In addition, an experimental evaluation of the interest
of learning a polytree from data has been carried out by [AdC95] when
the original distribution is not a polytree. Moreover, [GKL+11] recently
proposed an algorithm to learn an optimal k-branching, i.e. a polytree that
can be transformed into a tree (or more precisely in a forest) by removing
at most k edges from its structure. The complexity of this algorithm is
O(n3k+4).

Polytrees therefore suffer from the same disadvantage than chains, na-
mely a NP-hard complexity for learning them optimally, a drawback for
using them in both types of mixtures. Unlike chains however, inference on
polytrees is not of linear complexity in p.

In addition, a comparison between mixtures of uniformly sampled tree
structures and mixtures of uniformly sampled polytree structures showed
no advantage of the latter over the former [ALDW08].

Other Models of Tree-width 2 or Higher

The complexity of inference increases with the tree-width of the model in
the absence of any other constraint, as explained in Section 3.4.

Many learning methods for PGMs specifically target low tree-width
structures [BJ01, CG07, EG08, FNP99, SCG09] in order to ensure tractable
inference complexity. Those methods are all heuristic, because learning
a graphical structure of tree-width higher than 1 is NP-complete [KS01,
Sre03].

To the best of my knowledge, no mixture of bounded tree-width Bayesian
networks has ever been considered, although inference could still be tracta-
ble for a reasonable number of variables. Both types of mixtures could
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be interesting for those models. In the maximum-likelihood setting, the
tree-width bound on the models considered in the mixture is an additional
parameter that can be tuned to achieve the desired trade-off between al-
gorithmic complexity and accuracy. In a variance reduction framework,
making a mixture would logically be even more beneficial for bounded tree-
width models than for Markov trees, since the formers have more parameters
then the latters and are therefore more prone to overfitting.

Mixtures of unbounded Bayesian networks have already been consid-
ered, for small numbers of variables. In the context of high-dimensional
problems, they are not really attractive, because of the associated algorith-
mic complexity.

[TMCH98] optimizes such a model by a 3-step iterative process1:

1. an EM algorithm to optimize the weights and parameters of the mix-
ture while keeping the structure fixed for each term;

2. an optimization of the structure of each term, through the maximiza-
tion of a modified (to make it decomposable) Cheeseman-Stutz score
[CS96, CH97], an approximation for the maximum likelihood score of
a data set with missing variables, here constructed around the param-
eters and weights estimated in the first step;

3. one M-step of an EM algorithm to optimize the weights and parame-
ters of the new mixture structure.

The key point of this approach is that the EM algorithm is not involved in
the structure optimization of each term.

[CH92] suggests performing inference on all possible graphical model
structures, and weighting the results by the probability of the structure
given the data set and the observations. While [CH92] notes that this
is intractable for more than a few variables, they point out alternatives
such as searching for a set of good models and combining their predictions,
or estimating the average using standard stochastic simulation techniques.
[MR94] and several other works developed alternative techniques to sample
a set of good structures. These approaches can also be used to predict the
probability of a structural feature in the real network. See Section 3.3.5 for
details and additional methods.

1The algorithm is developed to deal with a learning set with missing values.
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[RS02] constructs a mixture of Bayesian networks by considering them
as weak learners in a boosting algorithm [FS95]. Boosting is a model averag-
ing meta-algorithm that iteratively expands a mixture by applying a given
learning algorithm on a reweighted data set. The weights are modified for
learning each new model so that the observations that are not modelled
accurately by the previous models have a larger weight.

4.2 Literature on Mixtures of Markov Trees

Several learning algorithms for mixtures of Markov trees have already been
proposed. While most algorithms could be described as methods learning
tree structures on reweighted data sets, the different reweighting schemes
used lead to a partition of those methods into three categories, based on
the bias-variance trade-off.

This section is meant as a state of the art review of existing algorithms
for learning such mixtures, and therefore each method is only briefly de-
scribed. However, some algorithms mentioned here will be further discussed
in the core of this thesis, when they inspire and/or are compared to the al-
gorithms developed. Relevant information about all existing methods are
summarized in Table 4.1.

target references complexity sections
bias [MP99, MJ01] mp2 log p 2.6.1,7.1.1
only [KK09] m2 +mp2 log p
variance [ALW08, ALDW08, Amm10] p 5.4.1,6.1
only [ALDW09b, ALDW09a, Amm10] mp2 log p 2.6.2,6.1

[ALW10b, ALW10a, Amm10] mK logK 6.2.1
both [KK06, KS07] mtp

3 (iteration t)

Table 4.1: Existing algorithms for mixtures of Markov trees can be divided
into 3 categories. K is a parameter, and corresponds to a number of edges.
Therefore, 0 ≤ K ≤ p(p− 1)/2.
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4.2.1 Bias Reduction

In the first two approaches, the targeted component of the error is the
bias. The mixture of trees is primarily used as a mean to exploit the good
algorithmic properties of trees while improving their modeling capabilities.

The first method uses the EM algorithm to simultaneously partition
the learning set between a given number of terms [MJ01, MP99], which
minimizes the negative log-likelihood of the learning set.

The second method [KK09] builds a mixture of increasing size by using
for each new tree a clever reweighting scheme on the whole data set based
on fractional covering. This identifies the highest mode of the density not
covered yet and minimizes the ∞-divergence:

D∞(P||PT ) = max
x∈V al(X )

log
P(x)

PT (x)
. (4.7)

The first method has e.g. been used in computer vision for human
tracking [IF01a] and object recognition [IF01b], or in optimization through
estimation of distribution algorithms [SORS01].

4.2.2 Variance Reduction

More recently, mixtures of Markov trees have been constructed to reduce the
variance of a Markov tree. In these methods, a set of tree models are gen-
erated using a more or less strongly randomized procedure, that can range
from completely random structures based on Prüfer lists to bagged Mix-
tures of trees. The weights associated to these trees can be either uniform
or proportional to the score of the structure based on the data set. A good
selection of theses approaches can be found in [ALSW10]. The present work
builds on this strategy and these methods are further described in Chapter
6.

In addition, it is possible to perform true Bayesian inference over Markov
trees, by considering all structures and weighting them by their posterior
probability according to the learning set. Both the prior and the poste-
rior distributions of tree structures are decomposable: they can both be
expressed as a product of a set of terms, where one term is associated to
each edge of a tree structure. The prior and posterior distributions over the
parameters are also decomposable. It is therefore possible to compute the
posterior distribution of any tree structure in closed-form for the class of
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Markov trees [MJ06] by an application of Kirchhoff’s matrix-tree theorem.
However, the resulting model suffers from two drawbacks. Since it requires
the inversion of a matrix of size p × p, the complexity of this approach is
cubic in the number p of variables and therefore not appealing for high-
dimensional problems. Moreover, inference is intractable on the resulting
model: marginalizing is not possible, only the probability of a value x = X
of the full set of variables can be computed.

4.2.3 Bias and Variance Reduction

Finally, the third category is a combination of the first two categories. Tak-
ing a Bayesian approach to mixtures of Markov trees, [KK06] has developed
a Markov chain Monte-Carlo procedure over the space of possible partitions
of a learning set into k (a fixed, user specified number) distinct subsets of ob-
servations. On each subset of the partition, they construct a Bayesian pos-
terior distribution over Markov trees (see below). [KS07] has proposed an
alternative MCMC exploration scheme of the space of mixtures of Markov
trees. This scheme is defined using a Dirichlet process and a suitable prior
on tree structures [MJ06]. By using the Dirichlet process, they allow the
number of trees in the mixture to vary during the MCMC iterations (k must
not be specified and is modified by the algorithm).

4.3 Perturb and Combine of Markov Trees

This section describes the general meta-algorithm for building mixtures of
Markov trees. Those trees are constructed iteratively by applying the per-
turb and combine framework, described in Section 2.6.2, to the Chow-Liu
algorithm, presented in Section 3.3.4.

As a short reminder, the perturb and combine framework consists in
randomizing an “optimal” algorithm (here the Chow-Liu algorithm), and
in combining, or averaging, several suboptimal models produced by this
perturbed learning algorithm. The first step makes the algorithm stochastic.
This reduces the dependence of the model on the training data, and may
help to improve the algorithmic complexity of learning. The second step
leads to a reduction in overfitting, thanks to a reduction of the variance
of the model learned. This method may therefore lead to an increase in
performance.
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4.3.1 Why Geometric Averaging is not Used

Both an arithmetic and a geometric average of the distributions can be
considered to build a mixture to reduce the variance, each based on a specific
bias-variance decomposition of the learning error, as discussed in Section
2.4.2. A mixture using either aggregating scheme on a set of m PGMs can
be viewed as an attempt to approximate the mean model underlying the
decomposition:

M̄G(X ) =
1

Z
exp(ED logMD(X )) (4.8)

≈ 1

Z ′
exp(

m∑
j=1

logPTj(X )) (4.9)

for the geometric mean and

M̄ = EDMD(X )) (4.10)

≈ 1

m

m∑
j=1

PTj(X ) (4.11)

for the arithmetic one. In both cases PTj denotes the probability distribution
defined by the the jth Markov tree of the mixture, Tj.

Of those two mixtures, the arithmetic mean is the most interesting one.
From an algorithmic point of view, the geometric mean contains a nor-

malization constant Z ′. Computing it would mean integrating over all pos-
sible configurations of variables. This is infeasible for a large number p of
variables, because the number of configurations is exponential in p. On
the other hand, there is no such problem with the arithmetic mean. By
using a set of weights defining a convex combination, the probability den-
sity encoded by the model is automatically normalized (provided each term
encodes a normalized density).

From a theoretical point of view, it was shown in Section 2.4.2 that the
variance of the decomposition of the error based on the geometric mean may
be smaller than the variance of the decomposition based on the arithmetic
mean. If the variance associated to the geometric mean is smaller, the error
of a geometric aggregation scheme is greater than the error of the arithmetic
scheme. Indeed, the error of the geometric or arithmetic averaged model
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(if it is computed exactly, i.e. by using an infinite number of leaning sets)
equal the bias of the corresponding bias-variance decomposition.

In addition to being more tractable, an arithmetic averaging scheme may
therefore also be more accurate than a geometric averaging scheme.

4.3.2 Meta-algorithm for Learning a Mixture of
Markov Trees

The meta-algorithm for learning a mixture of Markov trees for statistical
estimation and inference is stated in Algorithm 4.1. It takes as input a set
of variables, a learning set of observations and an integer m (the number of
terms). It applies m times the three subroutines that

i generate a tree structure labeled by the variables (SampleTreeStruc-
ture),

ii learn a set of parameters (LearnParameters),

iii and determine a weight for this structure (LearnWeight).

When the m trees have been learned, the weights are normalized (assuming
they were not already summing to 1). Note that for clarity, potential config-
uration arguments of SampleTreeStructure or modifications on the learning
set supplied to each method are not displayed and are left implicit.

Algorithm 4.1 Meta-algorithm for learning a mixture [ALDW08, Amm10]
Input: set of variables X ; learning set D; number of trees m
T = ∅; λ = ∅; θ = ∅
for j = 1→ m do
T [j] =SampleTreeStructure(X ,D [,T ])
θ[j]=LearnParameters(T [j],D)
λ[j] =LearnWeight(T [j],D)

end for
Normalize(λ)
return (T ,θ,λ)

This meta-algorithm is later instantiated into many different algorithms
for learning mixtures of Markov trees, based on the different variants of
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its three subroutines. These different variants will be described later in
the thesis (and more specifically in Chapter 6), when the algorithms based
on this meta-algorithm are instantiated and tested. Nevertheless, a few
comments based solely on the structure of the meta-algorithm can already
be made here.

LearnParameters and LearnWeight each take a single tree structure as
input, so the parameters and weight of any tree are learned independently
from the other tree structures. Other strategies may be possible, e.g. forcing
the parameters of a tree to be different from the others, so as to increase
the diversity of the models generated. These strategies are however not
considered in this thesis.

SampleTreeStructure is the subroutine that will receive the most atten-
tion in this thesis. It has a large influence on the resulting mixture: both
LearnParameters and LearnWeight takes as argument the tree structure
generated by SampleTreeStructure.

I will distinguish between two classes of SampleTreeStructure subrou-
tines, depending whether the tree structures generated by SampleTreeStruc-
ture subroutine are independent from each other, or not. This is highlighted
by the optional argument [,T ] of the subroutine. When this argument is
absent, each tree structure is independent from the others (conditionally on
the learning set). It will therefore be denoted as the independent Markov
trees category. In the second category, this argument is provided to the sub-
routine, and each tree structure is influenced by all or some of the previous
structures computed.

4.4 Organization of Part II

Some of the main contributions of this thesis are the development and the
evaluation of new algorithms for learning mixtures of Markov trees, based
on this meta-algorithm and using existing or new variants of the three sub-
routines. These contributions will be presented in the following chapters,
organized as follow.

• Chapter 5 focuses on the construction of a single Markov tree based on
a learning set. This analysis is important, because SampleTreeStruc-
ture is the subroutine for which the most variants will be constructed
in this thesis. Chapter 5 will discuss existing approaches to construct
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a Markov tree structure, and propose two new randomization schemes
of the Chow-Liu algorithm. These schemes are evaluated against the
Chow-Liu algorithm in the context of the construction of a single tree
structure. In addition, that chapter also discusses the regularization
of the Chow-Liu algorithm. Regularization is another approach to
reduce the variance of an algorithm. Based on this discussion, a gold
standard method is constructed for regularization. It will be used to
assess the accuracy of mixtures of Markov trees (built later) against
regularization.

• Chapter 6 revolves around the specialization of meta-algorithm 4.1.
For the three subroutines, different variants are discussed (in addi-
tion to the variants of SampleTreeStructure developed in Chapter 5).
These subroutines are then combined to generate mixtures of Markov
trees. There are two main parts in this chapter: one part per category
of SampleTreeStructure subroutines. The first part deals with mix-
tures of independent Markov trees, the second part with mixtures of
sequential Markov trees. In each part, new algorithms are developed
and evaluated.

• Chapter 7 combines bias and variance reducing mixtures. More specif-
ically, this chapter evaluates the interest of replacing each term of a
bias reducing mixture, originally a single Markov tree, by a variance
reducing mixture such as those developed in Chapter 6.
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New algorithms for learning
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Chapter 5

Learning a Single Markov Tree

This chapter takes a closer look at the construction of one Markov tree
structure based on a set of observations. The algorithm for learning the
maximum likelihood structure is first recalled. Then different methods for
regularizing this algorithm are discussed. Finally, several algorithms for
accelerating the Chow-Liu algorithm are presented. In particular, two ap-
proximate methods trading accuracy for computational speed are proposed,
and evaluated empirically.

The Chow-Liu (CL) algorithm [CL68] optimizes the likelihood of the
learning set over the set of connected tree structures. It was already de-
veloped in Section 3.3.4, and it is first briefly recalled here, in Section 5.1.
However when the number of learning samples is small, it might me neces-
sary to further constrain the structure so that it generalizes better. Section
5.1.1 discusses the introduction of a regularization penalty inside the Chow-
Liu algorithm, and Section 5.1.2 presents a “gold standard” method used to
measure the accuracy achievable by regularizing the Chow-Liu algorithm.
This “gold standard” will be compared to the mixtures of Markov trees
developed in this thesis, in Chapter 6.

Good algorithmic scaling, in particular for inference, has made Markov
trees a model of choice to tackle large problems. Despite its quadratic com-
plexity, the Chow-Liu algorithm may take a long time to run on very large
problems, and a few specialized versions of this algorithm have been devel-
oped for specific situations. This area of research is of particular importance
to this thesis, because learning a tree structure must be performed many
times to learn an ensemble model, and is a core subroutine of the algorithms
developed in the present work.
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In the context of high-dimensional learning, the critical component of
the complexity is the dependency in p. Lowering the influence of p on the
run time of the CL algorithm is the main goal of this chapter. Unfortunately,
existing specialized versions of the CL algorithm were not oriented towards
that objective: one develops a compression scheme for sparse learning sets
(Section 5.2), another is an approximation motivated by large number of
samples N (Section 5.3). However, there exists an efficient algorithm to
generate tree structures uniformly (Section 5.4).

Therefore I have developed two randomization of the Chow-Liu algo-
rithm based on edge subsampling, which effectively lowers the complexity
in p. These approximations are described in Sections 5.4, and empirically
evaluated in Section 5.5.

Note that constructing mixtures based on these algorithms is studied
in Chapter 6. Moreover, the present chapter will only discuss learning an
undirected Markov tree structure. Constructing a Markov tree from a given
undirected tree structure is easy, and described in Algorithm 5.1. The tree
must first de directed, by randomly choosing a root and orienting the tree
downwards from this root. For forest structures, one root must be chosen in
each connected subtree of the forest. The model can then be parametrized,
using any parameter estimation method (see Section 3.5.2 for details).

Algorithm 5.1 Markov tree construction meta-algorithm
Input: learning set D; undirected tree T labeled by a variable set X .
r = RandInteger(1, p)
OrientDownwardsFromRoot(T , r)
θ = LearnParameters(T ,D)
return (T , θ).

5.1 The Chow-Liu Algorithm

The Chow Liu algorithm, introduced by Chow and Liu [CL68], computes
a Markov tree maximizing the likelihood of a training set D. A detailed
presentation of this algorithm is available in Section 3.3.4, but the structure
learning part of the algorithm is recalled here for convenience before its
specialized versions and approximations are discussed.
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The Chow-Liu algorithm computes an optimal Markov tree structure1

TCL(D) = arg max
T

∑
(Xi,Xj)∈E(T )

ID(Xi;Xj) (5.1)

in two steps (see also Algorithm 5.2):

1. computation of p× (p− 1)/2 pairwise mutual information values be-
tween variables;

2. use of the these values as an edge-weight matrix to build a maximum
weight spanning tree (MWST), e.g. using [Kru56].

Therefore it has essentially a time and space complexity ofO(p2N+p2 log p),
assuming the Kruskal algorithm is used in the second step (slightly faster
algorithms exist [Cha00]).

Algorithm 5.2 Chow-Liu (CL) tree [CL68]
Input: X ;D
MI = [0]p×p
for i− 1 = 1→ p− 1 and i2 = i1 + 1→ p do
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)

end for
TCL = MWST(MI) {MWST computation e.g. using [Kru56] as here}
return TCL.

5.1.1 Regularization

The CL algorithm always outputs a connected tree structure. However, a
model associated to this structure may still suffer from overfitting, see e.g.
[LXHG+11, TAW11]. Regularization is one approach to countering this
phenomenon, and it is the focus of this section.

Adding an edge to any Bayesian network never decreases the likelihood
of a learning set. The Chow-Liu algorithm therefore always outputs the
maximum number of edges, but this can lead to an overfit of the learning
set. A Markov forest could lead to a better accuracy than a Markov tree.
Such a situation can appear for at least the two following reasons.

1If there is a tie between several structures, one is chosen randomly.
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• If the structure of the target distribution is a set of disconnected com-
ponents, an edge between two variables belonging to different subcom-
ponents is not necessary. Such an edge will not decrease the accuracy
of the model if its parameters are estimated based on a perfect knowl-
edge of the target distribution. However, estimating them from a set of
observations is likely to introduce some noise in the model, especially
since the Chow-Liu algorithm will link two components (assuming it
first construct a forest spanning each component) by the edge where
the noise is the strongest.

• If the number of samples is small, estimating the parameters by the
maximum likelihood principle will model sampling noise in addition
to significant information. The model may therefore not generalize
well on unseen instances and may have poor performance in practice.
It may therefore be better to limit the number of edges, even if the
target distribution has a connected structure.

Constructing a forest rather than a tree is able to address these problems.
Algorithms for learning a Markov forest were recently studied in two

papers published almost at the same time: [TAW11] and [LXHG+11]. Al-
though they center their theoretical analysis around the recovery of a Mar-
kov forest, they also consider approximating a distribution whose underlying
graph is connected (and not a tree). They are therefore rather interesting
in the context of this section, and are briefly summarized here.

[TAW11] considers learning a forest over categorical variables as a thre-
sholding problem. The Chow-Liu algorithm is regularized by modifying its
optimization criterion so as to penalize model complexity in terms of its
number of edges |F|,

F(D) = arg max
F

∑
(X ,Y)∈E(F)

ID(X ;Y)− λN |F| , (5.2)

where λN ≥ 0 is the threshold. The optimal solution to this problem can
be obtained by modifying the Chow-Liu algorithm, to return the maximum
weight “forest model” spanning the graph containing the edges for which
ID(X ;Y) is greater than λN . Higher values of λN lead to sparser forests, in
the limit to an empty graph.
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[TAW11] makes this threshold dependent on N , and demonstrates how
defining λN such that

lim
N→∞

λN = 0 lim
N→∞

NλN
logN

=∞ , (5.3)

if a sufficient condition to ensure that the estimation is consistent for the
structure and the density estimation when the true distribution is indeed
a Markov forest, or consistent with respect to the best projection on a
Markov forest when the true distribution is not such a model. The key idea
is that λN must converge to 0 so that all mutual information values above
0 in the true distribution are eventually considered, but the convergence
must be slower than the expected value of a mutual information equal to 0
estimated on a finite learning set.

They suggest using λN of the form N−β, β ∈]0, 1[, but offer no practical
way to select β.

As for supervised decision tree growing [Weh93], penalizing in this way
the tree complexity is tantamount to using a hypothesis test for checking
independence of the next pair of variables to be included. Such a test can
therefore be performed by comparing the quantity of interest to a threshold
depending on a postulated p-value, say ρ = 0.05 or smaller (see Section
3.3.5). This allows the definition of a more interpretable parameter, but
also naturally adapts the threshold to the cardinality of the variables, an
approach I suspect to be more appropriate to reduce overfitting.

[LXHG+11] focuses on continuous variables, and therefore devotes a
lot of time to the problem of estimating mutual information using kernels.
Other parts of the paper are nevertheless relevant for categorical variables
too. Two problems are investigated: estimating an optimal forest based
on a learning set and estimating a maximally connected forest, where each
subtree can contain at most k (a parameter) variables. The latter problem is
NP-hard, hence not interesting in the context of this thesis, and will not be
discussed here. Two methods are proposed to solve the first problem, both
based on a bipartition of the learning set, and their asymptotic consistency
is established.

M1. The weights are computed on the first set of samples, and the Kruskal
algorithm is used to generate a sequence of forests. The algorithm first
outputs an empty structure, and then outputs the structure obtained
after each edge addition. This sequence contains all the structures
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(provided there is no tie) that could be generated by a penalized
Chow-Liu algorithm (Equation 5.2), where λN can take any value in
[0,∞]. The optimal forest is then chosen based on their score on
the second set of samples. This amounts to evaluating all possible
threshold on the first set of observations, and selecting the best one
based on the second set.

M2. Mutual information estimates are based on probabilities estimated on
the two partitions D1 and D2:

ID1,D2(X ;Y) =
∑
x,y

PD1(x, y) log
PD2(x, y)

PD2(x)PD2(y)
. (5.4)

5.1.2 “Gold” Standard for Regularization

Most algorithms proposed within this thesis attempt to improve over a
single Chow-Liu tree by reducing the variance. Because a regularization of
the Chow-Liu algorithm has the same objective, it is of interest to provide a
regularized method to be compared against the approaches developed here.
This section describes this very method, that will be denoted by rCL.

The regularization methods described so far depend either on a partition
of the learning set, a threshold on mutual information or a p-value for an
independence test. The choice of any particular regularization method as a
standard to compare against the algorithms developed here would be open to
criticism. Therefore I decided on using an optimistic regularization method
that would provide an upper bound on the accuracy (a lower bound on
the KL divergence or the negative log-likelihood) of any regularized method
based on a threshold. This optimistic method uses the test set to optimize
the number K of edges in the structure rather than the learning set. Edges
of the Chow-Liu trees are added one by one, by decreasing weight, in an
empty graph, as in the Kruskal algorithm. The structure is recorded and
evaluated after each edge addition, producing a sequence of decreasingly
regularized models P̂K , whereK is the number of edges in the Markov forest.
Each model is evaluated on the test set, and the score of the best model is
considered the best possible result achievable through regularization. The
score of the regularization method on a given learning set D is therefore:

min
K

score(P, P̂K |D) , (5.5)
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assuming that the better the model, the lower the score.
Figure 5.1 offers an illustration of this process on the Gene problem and

on a learning set of N = 200 samples. The negative log-likelihood of an
independent test set tends to decrease for the first edges, until a minimum
is reached. From that point and as the last edges are included in the model,
the log-likelihood increases.
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Figure 5.1: An illustration of the regularization of the Chow-Liu algorithm,
on the Gene distribution and for 200 samples. The number of edges is
progressively increased from 0 to p− 1.

The optimal structure can still be a forest, even if the number of edges
is optimized on the real distribution and this distribution is encoded by a
connected structure. The parameters of the tree are still estimated based on
the learning set. Adding an edge can decrease the accuracy of the resulting
model if the parameters associated to this edge are badly estimated due to
a lack of samples.

In practice, choosing the optimal model is slightly more complicated,
because several learning sets D and several target distributions P are usu-
ally used to evaluate the algorithms in a given problem setting (number
of variables p, number of samples N , maximum number of parents etc),
in order to decrease the variance of the estimates (see also Section 2.3.1).
The combination of the estimates obtained on these learning sets leads to
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a global score for the algorithm:∑
P

∑
D|P

score(P, P̂|D) . (5.6)

Three different global scores could be generated, based on three different
methods to select the best number of edges:

scorereg1 = min
K

∑
P

∑
D|P

score(P, P̂K |D) (5.7)

scorereg2 =
∑
P

min
K|P

∑
D|P

score(P, P̂K|P|D) (5.8)

scorereg3 =
∑
P

∑
D|P

min
K|D,P

score(P, P̂K|D,P|D) . (5.9)

In the first score, K is optimized for a given problem configuration. In
the second, K|P is optimized for every problem configuration and target
distribution. In the third, K|D,P is different for every learning set. The
finer K can be optimized for each target distribution and learning set, the
better the score:

scorereg1 ≥ scorereg2 ≥ scorereg3 . (5.10)

I have considered the second score as the golden score of a regularization
method. This second score can be viewed as the score of a regularization
method that knows the optimal number of edges for a given distribution
and for a set of learning sets of a given size N . This seemed like a reason-
able assumption: such an optimal number of edges could be provided by
an expert with a good knowledge of the problem at hand. Knowing the
behavior of a particular realization of the sampling process generating the
learning set (the third score) is however less likely. Nevertheless, in the
settings considered here, selecting the third score rather than the second
did not seem to improve it much (see e.g. Figure 5.2)

The optimal results achieved by this gold standard are summarized in
Table 5.1 for both realistic and synthetic distributions. In addition, the
three aggregated scores discussed are illustrated for one synthetic distribu-
tion in Figure 5.2. Notice that, in synthetic distributions, the score is an
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Figure 5.2: The three possible scores for the optimally regularized method
are illustrated on 5 DAG-200-5 distributions times 6 learning sets. x markers
signal the first score (Equation 5.7), + markers the second (Equation 5.8),
dot markers the third (Equation 5.9).



134 CHAPTER 5. LEARNING A SINGLE MARKOV TREE

Distribution N Chow-Liu Gold standard
score edges score edges

DAG-200-5 200 14.9 199 13.5 70.8
600 11.6 199 11.4 153
1000 11.1 199 11.0 169.6

DAG-1000-5 200 79.7 999 67.2 302.8
600 57.2 999 55.6 711.6
1000 54 999 53.4 805

Alarm10 200 166.65 369 166.65 369
500 136.37 369 136.28 336
2500 129.99 269 129.96 349

Child10 200 135.29 199 135.08 173
500 131.71 199 131.71 196
2500 130.17 199 130.11 192

Gene 200 485.21 800 483.6 752
500 477.48 800 476.75 756
2500 472.85 800 472.69 757

Hailfinder10 200 550.85 559 547.64 420
500 523.81 559 523.26 519
2500 511.03 559 511.03 557

Insurance10 200 210.1 269 210.1 269
500 198.87 269 198.87 269
2500 180.49 269 178.96 198

Link 200 618.09 723 618.09 723
500 535.75 723 535.75 723
2500 534.47 723 543.77 472

LungCancer 200 435.72 799 435.46 766
500 424.69 799 424.44 783
2500 420.47 799 420.42 784

Munin 200 42.614 188 36.987 5
500 37.66 188 35.414 4
2500 35.925 188 33.225 21

Pigs 200 390.75 440 390.75 440
500 385.59 440 385.59 440
2500 382.36 440 382.36 440

Table 5.1: Gold standard for regularization
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estimation of the Kullback-Leibler divergence computed by using 50 000
observations, in realistic distribution, it is the negative log-likelihood of 5
000 observations.

5.2 Acceleration for Sparse Observations
A sparse learning set is characterised by a large proportion of observed val-
ues equal to 0 (or another constant value), for each variable. The Chow-Liu
algorithm has been specialised for sparse learning set, providing a signifi-
cant reduction of the time and memory required [Mei99]. The motivation
for this particular algorithm was text mining, where a sample corresponds
to a document and each variable X corresponds to a word of vocabulary
that is (X=1) or is not present (X=0) in the document. While both N and
p may in such a setting be rather large, each document typically contains
only a fraction of the words, hence the sparsity.

The main points of the improved algorithms consists in the following
points, for binary variables.

• ID(X ;Y) is a function of ND(X = 1,Y = 1), ND(Y = 1) and ND(X =
1).

• The learning set can hence be compressed by storing only the occur-
rence of those values, speeding up the computation of the observed
statistics mentioned in the previous point.

• If ND(X = 1,Y = 1) = 0, ID(X ;Y) increases monotonically with
ND(Y = 1). Therefore, it is possible to order the set of all variables
{Yi ∈ X} : ND(X = 1,Yi = 1) = 0 by their pairwise mutual informa-
tion to X without computing those values. This set is large since the
learning set is sparse.

This is exploited in [Mei99] to build an efficient algorithm minimizing the
number of mutual information values computed.

5.3 Approximation for Large N
[PM06] proposed an approximate Chow-Liu algorithm targeted at problems
with a high number of samples. Mutual information weights are no longer
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estimated based on the whole learning set but only on a fraction of all avail-
able samples. Confidence intervals are maintained for these estimations, and
when two weights have to be relatively ordered, the algorithm exploits more
samples (if needed) until the two confidence intervals no longer overlap and
the query can be answered.

In order to limit the number of comparisons, they develop a special
MWST algorithm (MIST), based on the fact that a MWST cannot contain
any loop. MIST is described in Algorithm 5.3. The MWST of a complete
weighted graph is computed by selecting an initial candidate tree, and con-
sidering all the other edges one by one. For each edge considered, a loop
can be formed by using this edge and the unique path of the tree linking
the extremities of this edge. The considered edge is discarded if its weight
is weaker than any edge in this path; and otherwise replace in the tree the
weakest edge of this path.

Algorithm 5.3 MIST algorithm [PM06]
Input: graph G with edge weights we
T = random tree
E = E(G)\E(T )
repeat {Discard an edge}
e = SelectEdge(E)
C = FindCycle(T ∪ e)
e′ = WeakestEdge(C\e)
if we > we′ then
T = T ∪ e\e′
e = e’

end if
E = E\e

until E = ∅
return T .

The first tree structure is the output of the Chow-Liu algorithm com-
puted on a restricted set of samples. This computation also initializes the
confidence intervals for the mutual information values. Different heuristics
are proposed to select the next edge to be compared to the current tree.
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5.4 Approximation for Large p

In the context of high-dimensional learning (large p and low N) no heuristic
described so far is very appealing, since the bottleneck is the number of
variables and the quadratic complexity of the Chow-Liu algorithm. In this
section I therefore consider randomized versions of the Chow-Liu algorithm,
with the aim of reducing the computational complexity in p. This can only
be achieved by reducing the number of edges considered for inclusion in the
model in the first stage of the algorithm.

Three strategies are considered here, by increasing sophistication: purely
random structure, random edge sampling and finally cluster-based edge
sampling. The last two methods were developed during this thesis.

5.4.1 Random Structure

This algorithm generates a tree structure totally at random, which may
be done in O(n) operations [Qui89] through the use of Prüfer sequences
[Prü18]. While the output structure will therefore not depend on D, re-
member that its parameters will still be estimated based on D. This algo-
rithm was used to generate mixtures of Markov trees for variance reduction
in [ALDW09b], see Section 6.1.5.

A Prüfer sequence is a sequence of p− 2 integers ∈ [1, p]. For any given
p, the set of Prüfer sequences is in bijection with the set of undirected trees
of p nodes labeled by the integers ∈ [1, p]. This property was used by Prüfer
to build a proof of Cayley’s formula: the number of labeled trees on p nodes
is pp−2 [Cay89].

These sequences can therefore be used to generate a random undirected
tree, a process detailed in Algorithm 5.4. From a Prüfer sequence A ran-
domly generated, the tree is iteratively constructed from an empty graph.
To do so, denote by B the set of all p integer labels. Until A is empty, add
an edge between its first element and the smallest element b in B that is
not present in A, before removing these elements from respectively A and
B.

This algorithm is of O(p log p) complexity in the number of variables
p, where log p comes from the complexity of the operations associated to a
simple priority queue. It may be decreased by using more efficient priority
queue.
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Algorithm 5.4 Random tree algorithm (RT) [Qui89]
Input: variable set X of size p
T = ∅; b=0
for i = 1→ p− 2 do {Generate Prüfer sequence}
A[i] ∼ RandInteger(1, p)

end for
B = [1, 2, . . . , p]
repeat {Construct corresponding tree}
b =min(B\Unique(A))
T = T ∪ {Xb,XA[1]} ∪ {XA[1],Xb}
B = B\b
PopFront(A)

until A = ∅
T = T ∪ {B[1],B[2]}
return T .

5.4.2 Random Edge Sampling

The random edge sampling algorithm reduces the complexity of the Chow-
Liu algorithm in a naive way: by only inspecting a subset of a priori fixed
size K of randomly selected pairs of variables. The weights associated to
these edges are used to partially fill the matrix MI used as input to the
MWST algorithm. Algorithm 5.5 describes this procedure. This Chow-
Liu-like algorithm therefore operates on an incomplete matrix of mutual
information values.

Algorithm 5.5 Random Edge sampling (RES) [SLW10]
Input: X ; D; integer K ≤ p(p− 1)/2
MI = [0]p×p
for k = 1→ K do

(i1, i2) = drawNewRandomEdge
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)

end for
F = MWST(MI) {MWST computation by using e.g. [Kru56] as here}
return F .

The complexity of Algorithm 5.5 is loglinear in the number K of edges
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drawn. The graphical structure that it infers may be disconnected, and its
dependence on the learning set D is increasing with the value of K.

5.4.3 Cluster-based Approach

In this section, I explore a less naive idea so as to sample the potentially
interesting (i.e. of large weight) edges. The resulting two-step algorithm
first builds a local structure of the problem, and then focuses on pairs of
variables located close to each other in that structure. It is detailed in
Algorithm 5.6 and illustrated in Figure 5.4.

The first step consists in an approximate online clustering of the vari-
ables based on their mutual information. This algorithm was inspired both
by leader clustering (a cluster Cp is represented by its leader Lp) and by the
analogy of the MWST problem with questions such as the nearest neighbor
query or the shortest path problem defined over metric spaces. In metric
spaces, such queries can sometimes be solved by sub-quadratic algorithms
[IM98] exploiting the triangular inequality satisfied by distance measures:
when point A is close to point B, which is far away from C, A is also likely
to be far from C.

A

B C

Figure 5.3: Triangle inequality

In our context, the mutual information is used to measure the “closeness”
between variables, though it is not a distance measure in the mathematical
sense. Still, if two pairs of variables {A,B} and {A, C} both have a high
mutual information, then B and C may be expected to be close in this sense
too. More formally, one may derive the following bound:

I(B; C) > I(A;B) + I(A; C)−H(A) . (5.11)
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Proof.

H(B, C,A) > H(B, C) (5.12)
H(A,B) +H(C|AB) > H(B, C) (5.13)
H(A,B) +H(C|A) > H(B, C) (5.14)

H(A) +H(B) +H(C)
+H(A,B) +H(C|A) > H(B, C)

+H(A) +H(B) +H(C)
(5.15)

H(B) +H(C)
+H(A,B) +H(C,A) > H(B, C)

+H(A) +H(B) +H(C)
(5.16)

H(B) +H(C)−H(B, C) > H(B) +H(A)−H(A,B)

+H(C) +H(A)−H(C,A)

−H(A)

(5.17)

I(B; C) > I(A;B) + I(A; C)−H(A) (5.18)

Mutual information is commonly used to cluster variables [KSAG05],
although generally by computing the full mutual information matrix before
any clustering is done. The goal of the algorithm considered here is however
to avoid the computation of the complete set of mutual information values.
To this end, it builds an online clustering of the variables based on the
mutual information of only on a subset of all pairs of variables. iteratively
and one at a time, until all variables belong to a cluster. This process is
illustrated in Figures 5.4a to 5.4d, for 13 variables, represented by a set of
points in the Euclidian plane. The distance between two points is supposed
to be proportional to the mutual information of the associated variables.

A new cluster Ck is constructed around a leader (or center) variable Lk,
chosen first at random (X5 is chosen in Figure 5.4a), then among unclustered
variables as

Lk = arg min
L∈X\

⋃k−1
l=1 Cl

k−1∑
l=1

ID(L;Ll) ∀k > 1 . (5.19)

In Figure 5.4c, the second cluster center is X13, because it is the variable
the further away from (with the lowest mutual information to) X5.



5.4. APPROXIMATION FOR LARGE P 141

The construction of a cluster (Algorithm 5.7) depends on two “thresh-
olds” on the mutual information value: one cluster-threshold (IC) and one
neighborhood-threshold (IN). The cluster is built by comparing the mutual
information of each remaining unclustered variable (X\

⋃k−1
l=1 Cl) to Lk. An

unclustered variable X is categorized as:

1. member of Ck (X ∈ Ck), if ID(X ,Lk) > IC ,
2. neighbor of Ck (X ∈ neighbors(Ck)), if IC > ID(X ,Lk) > IN ,
3. not related to Ck, otherwise.

The center Lk of a cluster always belongs to its associated cluster Ck.
As for regularizing the Chow-Liu algorithm (Section 5.1.1), setting those

thresholds over edges can be seen as excluding from the set of candidate
edges pairs of potentially independent variables. Rather than a threshold,
I therefore prefer to select the probability of a type 1 error associated to
an hypothesis check to evaluate this independence. When independence is
accepted, the mutual information is considered to be below the threshold.
The hypothesis tests are based on a χ2 distribution, and two user-specified
p-values, one per threshold. These values will be respectively denoted by
ρC (associated to IC) and ρN (associated to IN). Unless otherwise stated,
these parameters are the percentile 0.005 (respectively 0.05) for IC (IN).
These values were chosen because they are classical values used in hypothesis
testing.

In the second step of the algorithm, the mutual information of all po-
tentially interesting pairs (Xi,Xj) are evaluated and used as edge-weights
for the MWST algorithm. Interesting pairs

(a) are in the same cluster (Figure 5.4e),
(b) or span two neighboring clusters, i.e one variable of one cluster is a

neighbor of the other cluster (Figure 5.4f).

In addition, all edges evaluated during the clustering process are used as
candidate edges.

The complexity of this algorithm is between linear and quadratic in the
number of variables, depending on the numerical values of ρC and ρN and
the problem structure.
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(a) The first cluster center (X5) is randomly chosen and compared to the other
12 variables.

(b) C1 is constructed: it contains 5 variables and has one neighbour.

(c) C2 is constructed around X13, the variable furthest from X5. The new center
is compared to 7 variables only.

Figure 5.4: Illustration of the Cluster-based edge sampling algorithm. On
the left is a set of vertices, represented as points in an Euclidian plane, on the
right the matrix of mutual information. A dot-line (and a dark blue square)
between two points signals the computation of a mutual information value,
a full (respectively dashed) arrow that the source variable was assigned to
(respectively is a neighbor of) the cluster whose center is the target of the
arrow.
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(d) After 4 iterations, all variables belong to a cluster.

(e) Computation of mutual information between variables of the same cluster.

(f) Computation of mutual information between variables of neighbouring clus-
ters.

Figure 5.4: (continued) Illustration of the Cluster-based edge sampling algo-
rithm. On the left is a set of vertices, represented as points in an Euclidian
plane, on the right the matrix of mutual information.
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Algorithm 5.6 Cluster-based edge sampling (CES) [SLW10]
Input: X ; D; percentiles ρC ,ρN
C = ∅; MI = [0]n×n; k = 1
repeat {First step: create the clusters (Figures 5.4a to 5.4d)}
Lk = arg minL∈X\C

∑k−1
l=1 ID(L;Ll)

Ck = MakeCluster(Lk,X\C, ρC , ρN) {Algorithm 5.7}
C = C ∪ Ck
k = k + 1

until X = C
for k = 1→ size(C) do {Second step: focus interesting edges}
for i1, i2 : Xi1 ,Xi2 ∈ Ck do {Intra-cluster (Figure 5.4e)}
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)

end for
for l = 1→ k − 1 do {Neighboring clusters (Figure 5.4f)}
if ∃X ∈ Ck : X ∈ Neighbors(Cl) then
for i1, i2 : Xi1 ∈ Ck,Xi2 ∈ Cl do
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)

end for
end if

end for
end for
T = MWST(MI)
return T

Algorithm 5.7 MakeCluster
Input: Xi1 ≡ Lk, V , ρC , ρN
Ck = Lk
for Xi2 ∈ V\Lk do
MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)
if ID(Xi1 ;Xi2) > CDF−1χ2(|val(Xi1

)−1||val(Xi2
)−1|)(1− ρC)/(2N ln 2) then

Ck = Ck ∪ X
else if ID(Xi1 ;Xi2) > CDF−1χ2(|val(Xi1

)−1||val(Xi2
)−1|)(1 − ρN)/(2N ln 2)

then
X ∈ neighbors(Ck)

end if
end for
return Ck
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5.5 Empirical Evaluation of the Proposed
Approaches

The approximations of the Chow-Liu algorithms proposed in this chapter
(Section 5.4) are compared against the Chow-Liu algorithm. These two
algorithms are the random edge sampling (RES) and the cluster-based edge
sampling (CES) algorithms. These methods respectively take as input a
number of sampled edges K for RES and two percentiles ρC and ρN for
CES.

The behavior of these algorithms is first compared in terms of the num-
ber of edges considered, number of edges in common with the Chow-Liu
tree, and the sum of the mutual information associated to each edge of the
generated tree.

These experiments were performed on 10 DAG-200-10 distributions, i.e.
a Bayesian network whose underlying graph is a DAG with maximum 10
parents for each one of the 200 binary variables (see Appendix A.1 for
details). A Markov tree defined over those variables has therefore p−1 = 199
edges, and there are 19 900 possibles edges.

The gain in computational complexity will be measured by the run-time
of the algorithms, the loss in accuracy by the number of edges common with
the Chow-Liu tree and by the sum of the mutual information associated to
the edges.

The comparison between those algorithms will be carried out in a con-
figuration where they sample roughly the same number K of edges. Since
this is the main determinant of the complexity (O(KN + K logK)) and
directly relates to the quality of the approximation, both algorithms can be
expected to behave similarly.

The influence of the parameters will then be discussed.

5.5.1 General Comparison

RES and CES are compared against the Chow-Liu algorithm on 10 DAG-
200-10 problems times 10 learning sets.

To have a fair comparison between RES and CES, they are configured
to sample approximately the same number of edges. In CES, the number
of edges considered is not controlled directly. To obtain the experimental
setup described above, two values are selected for ρC and ρN , respectively
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CL CES RES RT
Run time 1 0.35 0.38 0.01

Table 5.2: Relative learning time (with respect to CL) of RES, CES and
RT, on 10 DAG-200-10 problems, averaged on on 4 learning sets times 100
trees. A run time of 1 corresponds to approximately 1.7 seconds.

0.005 and 0.05, the mean number of edges sampled over several runs of
CES is measured, and used as the parameter K for RES. The values of
the parameters of CES are “arbitrary”, in the sense that they were chosen
based on typical values used for independence testing and not based on e.g.
cross-validation.

The results are respectively displayed in Figures 5.5 (number of edges
similar to TCL(D)) and 5.6 (sum of the mutual information values associated
to the edges of the tree) for each of the 10 target distributions, and show the
superiority of the models provided by CES over those generated by RES,
for an equal number of edges: CES is consistently closer to the CL tree.
Moreover, the run time of the algorithms (Table 5.2) indicates that CES
is slightly faster than RES. This is plausible, since CES is a deterministic
algorithm (except for the initial cluster center) while RES must perform
many random draws and account for edges already used. A more clever
implementation of this algorithm might however shrink the difference.

5.5.2 Effect of the Parameters

For both the random and the cluster-based edge sampling, the parameter(s)
have a direct influence on the precision and the run time.

Random edge sampling

For random edge sampling, the effect of the parameter is straightforward.
Run time, accuracy (with respect to the learning set) and number of edges
similar to a Chow-Liu tree increase with the number of edges sampled.
Run time is directly controllable through the number of edges sampled.
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Figure 5.5: Number of common edges of RES and CES with the Chow-Liu
tree (on top), on 10 DAG-200-10 target distributions, based on 4 learning
sets times 10 trees for each distribution.

For a given number of edges and number of observations, the run time is
independent from the learning set.

Cluster-based Edge Sampling

The two parameters of the cluster-based method have a more complicated
influence on the number of edges sampled. The run time of the method is
dictated by the number of edges sampled, and the precision of the resulting
model also tends to increase with this number of edges.

The edges sampled by this method are composed of two subsets: the
edges considered during the construction of the clusters and those consid-
ered during the exploitation of the clusters. The latter subset can be further
divided into the edges located inside a cluster and the edges between neigh-
boring clusters. The size of all subsets depends on the parameters of the
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Figure 5.6: Sum of N*the mutual information (computed on the learning
set) associated to the edges of the trees produced by RES, CES and CL, on
10 DAG-200-10 target distributions, based on 4 learning sets times 10 trees
for each distribution.

algorithm and on the learning set.
The first parameter, ρC , can vary between 0 or 1. It is the only pa-

rameter influencing the first two subsets of edges mentioned in the previous
paragraph.

The number of edges sampled during construction increases with the
number of clusters: when a new cluster is constructed, p′ − 1 mutual infor-
mation are computed, where p′ is the number of yet unclustered variables.
The number of clusters monotonically decreases when ρC increases. When
ρC = 0, independence is always accepted, there are p clusters of 1 vari-
able and all mutual information values are computed to build the sequence
of clusters. When ρC = 1, independence is always rejected, there is only
one cluster and only p− 1 mutual information values are computed during
construction.
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On the other hand, the number of edges computed inside all clusters
decreases with the number of variables in each cluster. This number of
edges tends to evolve in a direction opposite to the number of edges sampled
during construction. When ρC = 1, there are p clusters and there is no edge
to compute in any cluster. When ρC = 0, there is only one cluster, all
possible edges are inside this single cluster and will be considered, either
during construction (p−1 edges) or exploitation of the edges inside clusters
((p− 1)(p− 2)/2 edges).

To summarize, at the extreme values 0 or 1 of the parameter ρC , all
edges are considered. The value of ρC should therefore lie between these two
extremes, so that only a subset of mutual information values are computed.

The second parameter ρN can vary between 0 and ρC : a value greater
than ρC is equivalent to the same value as ρC (no independence is accepted,
except if the variable is inside the cluster). The last subset of edges, those
considered during exploitation and between neighboring clusters, is influ-
enced by both parameters of the method.

ρN influences the number of clusters and the number of variables inside
each cluster whereas ρC influences the number of neighborhood relationships
between these clusters. The number of edges considered tends to increase
with the size of each cluster: the more variables there are in two clusters,
the more mutual information values will be computed if these clusters are
neighbors. The number of relationships increases when ρC decreases (for a
given ρN). If ρC = ρN , there are no neighbors, because the two independence
tests select the same pairs of variables. If ρC = 0, any cluster generated is
a neighbor of any other cluster. In this case, all mutual information values
will be computed.

To better visualise the influence of these two parameters, the algorithm
was applied on a set of 6 DAG-1000-5 target distribution times 5 learning
sets (see appendix A.1), for a varying number N of observations (200, 600
and 1000). The two parameters take any possible combination of values
in {0.1, 0.05, 0.01, 0.005, 0.001}. Table 5.3 lists the mean number of edges
considered by CES during construction and exploitation, Table 5.4 the av-
erage number of common edges with a Chow-Liu tree, Table 5.5 the average
divergence to the target distribution, and Table 5.6 the average run time of
the algorithm.

The evolution of the total number of edges sampled with ρC and ρN is
visible in Table 5.3. In particular, the following can be observed:
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Table 5.3: Mean number of edges considered by the CES algorithm for
varying ρC and ρN , in the same conditions as for Table 5.4. The three
numbers in each cell are the number of edges considered during construction,
during exploitation, and the sum of those two numbers.

ρN
0.1 0.05 0.01 0.005 0.001
9220

0.1 26831
36052
17474 17483

0.05 279874 13153
297349 30636
61496 61496 61494

ρC 0.01 179881 96452 2934
241378 157948 64429
94459 94452 94437 94491

0.005 133422 72928 11059 1641
227881 167381 105496 96132
179423 179479 179387 179514 179427

0.001 72109 39139 8773 4574 549
251533 218618 188160 184089 179976

• the number of edges sampled during construction is constant with ρC
(the first number of any cell is approximately constant in a row);

• the number of edges sampled during construction decreases when ρC
increases (the first number of any cell decreases when going down );

• the number of edges exploited inside the clusters decreases with ρC
(on the diagonal, ρC = ρN , so all edges considered during exploitation
[second number of any cell] are inside the clusters);

• the number of edges exploited between clusters increases with ρN (on
any row, the second number increases when going left).
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(a) The number of edges similar to the Chow-Liu tree tends to increase with the
number of edges considered.
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(b) The KL divergence (evaulated using a test set) to the target distribution tends
to decrease with the number of edges considered.
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(c) The run time tends to increase with the number of edges considered.

Figure 5.7: Results of the CES algorithm for various parameter values, in
the same conditions as for Table 5.4. Each point displayed in a graph is a
value of the corresponding table.
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Table 5.4: Mean number of edges similar to the Chow-Liu tree of the result
of the CES algorithm for varying ρC and ρN . These numbers are an average
over 5 target distribution of 1000 variables times 6 learning sets of N = 600
samples times 200 Markov trees. Similar results were observed for N = 200
or 1000.

ρN
0.1 0.05 0.01 0.005 0.001

0.1 100.6
0.05 615.0 91.9

ρC 0.01 547.9 376.4 160.3
0.005 530.6 408.0 252.1 218.9
0.001 635.4 567.6 474.4 449.0 416.2

Table 5.5: Mean KL divergence to the target distribution of the result of
the CES algorithm for varying ρC and ρN , in the same conditions as for
Table 5.4.

ρN
0.1 0.05 0.01 0.005 0.001

0.1 85.5
0.05 68.1 85.8

ρC 0.01 68.2 74.4 84.3
0.005 68.6 73.3 80.6 82.5
0.001 65.6 68.1 72.1 73.4 75.3

The results contained in the other three tables mostly depends on the
number of edges considered by the algorithm. To visualise this dependency,
these values are displayed in Figure 5.7 as a function of the corresponding
total number of edges considered by the algorithm. Figure 5.7a corresponds
to Table 5.4, Figure 5.7b to Table 5.5 and Figure 5.7c to Table 5.6. From
these figures it is clear that, for the trees generated by CES:

• the number of edges similar to TCL tends to increase with the number
of edges considered,

• the divergence KL to the target distribution decreases with the num-
ber of edges considered,
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Table 5.6: Indicative run time (in seconds) of the CES algorithm for varying
ρC and ρN , in the same conditions as for Table 5.4. Because the experiments
were run in a shared environment, the time reported corresponds to the
average over all target distributions of the minimum run time for learning
200 trees on a learning set of a given size. The environment of the test
differs from the one used in Table 5.2.

ρN
0.1 0.05 0.01 0.005 0.001

0.1 125.1
0.05 411.6 112.7

ρC 0.01 335.9 288.4 134.8
0.005 373.9 275.2 179.1 169.3
0.001 297.4 349.5 265.2 285.8 189.8

• the run time of the algorithm increases with the number of edges
considered.

5.6 Conclusion
This chapter has discussed several modifications of the Chow-Liu algorithm,
that resulted either in a regularized or an accelerated variant.

Regularization is a direct competitor to the methods developed in this
thesis. Therefore a golden standard has been developed to allow a compar-
ison of the two approaches. It is based on a regularization of the number of
edges in the Chow-Liu algorithm, and selects the optimal number of edges
K using the test set. The score of this method is used as a bound over
the score of any regularization method. It corresponds to a regularization
by an oracle. The score of this method are computed and reported for the
problems used as benchmarks in this thesis.

The complexity of the Chow-Liu algorithm was also analyzed: the log-
quadratic term corresponds to the number of edges considered by the algo-
rithm as building blocks for the trees. Two algorithms were developed and
presented in this chapter to accelerate the Chow-Liu algorithm by consid-
ering only a subset of possible edges, trading-off accuracy for speed. The
first method proposed samples a given number of edges at random while
the other clusterizes the variables and then exploits this structure to target
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interesting edges. The former method allows a finer control of the running
time of the algorithm, since it directly depends on the parameter of this
method, while the second method yields more accurate models for a given
number of edges. Controlling this number is however more difficult in the
second method.

These results highlight the importance of the set of edges considered to
build a Markov tree. The number of edges influences the complexity of the
method and the precision of the resulting model on the learning and on
the test set. The quality of the edges also influences the precision of the
resulting model, for a given number of edges.

These two observations, and the overal understanding of the Chow-Liu
algorithm and its variants brought by the present chapter, will guide the
new algorithms for learning mixtures of Markov trees, discussed in the next
chapter.



Chapter 6

Variance Reducing Mixtures of
Markov Trees

This chapter describes algorithms for building mixtures of Markov trees
iteratively by specializing the meta-algorithm introduced in Chapter 4, and
reproduced in Algorithm 6.1 for convenience. This meta-algorithm result
from the application of the perturb and combine framework, described in
Section 2.6.2, to the Chow-Liu algorithm, presented in Section 3.3.4. In
the present chapter, algorithms for learning mixtures of Markov trees are
constructed by specializing this meta-algorithm.

Algorithm 6.1 Meta-algorithm for learning a mixture [ALDW08, Amm10]
Input: X ; D; m
T = ∅; λ = ∅; θ = ∅
for j = 1→ m do
T [j] =SampleTreeStructure(X ,D [,T ])
θ[j]=LearnParameters(T [j],D)
λ[j] =LearnWeight(T [j],D)

end for
Normalize(λ)
return (T ,θ,λ)

These algorithms are developed to reduce the variance with respect to
a single optimal tree learned by the Chow-Liu algorithm. They are there-
fore compared to the original Chow-Liu algorithm and to a gold standard

155
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regularized algorithm, another method to reduce the variance, described in
Section 5.1.1.

The methods presented in this chapter are divided into two categories,
based on whether the Markov tree structures are constructed independently
from each other or not. This is highlighted by the optional argument [,T ]
of the subroutine. In the first category, this argument is absent, each tree
structure is independent from the others. It will therefore be denoted as the
independent Markov trees category. In the second category, this argument
is provided to the subroutine, and each tree structure is influenced by all
or some of the previous structures computed. By extension, I will also
include in this category algorithms exploiting information produced during
the computation of previous structures rather than or in addition to the
structures themselves. Since trees depend on each other, this method will
be called sequence of Markov trees. Both categories are illustrated in Figure
6.1.

λ1 λ2 λ3

A CB D
0 01 1
1 01 1
0 10 1
1 11 0

(a) Independent structures

λ1 λ2 λ3

A CB D
0 01 1
1 01 1
0 10 1
1 11 0

(b) Sequence of structures

Figure 6.1: The two meta-algorithms for learning mixtures of Markov trees
are differentiated based on the generation of tree structures. The Markov
tree highlighted in green is being constructed.

An alternative interpretation of these two categories can be given by
considering that the trees generated constitute Monte Carlo samples from a
probability distribution over the space of tree structures. This probability
distribution is a function of the learning set and of the subroutine Sam-
pleTreeStructure chosen. The first category of methods would sample the
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structures independently from each other, while the second would modify
the distribution based on the previous structures.

The category of a method directly influences its possibility to be par-
allelized. Methods of the first category can easily be parallelized at a very
high level. Since each tree structure is independent from the others, each
Markov tree can be learned by a different core. For algorithms of the second
category, parallelization is more difficult and depends on the dependencies
between the tree structures.

Different variants of the algorithm are created by combining different
versions of the three subroutines. These versions can either be the orginal
or perturbations of different steps of the Chow-Liu algorithm, and different
weighting strategies. Of course, a combination of methods is also possible.
The perturbations will be described independently, and a list of all the
methods constructed by combining them will be given before each set of
experiments.

Each category is then (mostly) discussed independently from the other,
in respectively Sections 6.1 and 6.2. Each section contains a description
of the different algorithms used to build a Markov tree structure, and an
experimental study of the resulting mixture models.

6.1 Mixtures of Independent Markov Trees

This section will cover new and existing variations of the construction of
tree structures, and in particular of the chow-Liu algorithm, for mixtures of
independent Markov trees. These methods are also evaluated empirically
(Section 6.1.6).

All the randomizations schemes described here are meant to be used in-
side meta-algorithm 6.1, described in the previous section. An overview of
all the methods constructed will be given before the experimental analysis.
To ease the identification of the contribution of the present work, the meth-
ods that were originally developed and/or considered by me will be marked
by a star *.

The Chow-Liu algorithm can be perturbed by modifying the learning
set at different stages of the algorithm, the procedure learning the tree
structure or the method for estimating the parameters. The vast majority of
modifications were considered for the structure learning part of the method.
In addition to randomizing the Chow-Liu algorithm, the selection of the
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weights associated to each Markov tree can also modified to yield different
mixture. These four points are now discussed.

6.1.1 Perturbation of the Learning Set

Perturbing the learning set is a popular method to introduce randomiza-
tion in an algorithm. The modifications considered here are all based on
bootstrap aggregation, a well-known method to reduce the variance. It was
already described in Section 2.6.2, and has been applied to Markov trees
in [ALDW09b]. It consists in the application of an algorithm on a boot-
strap replicate D’, i.e. a learning set of N ′ samples drawn from the original
set D. I will consider here the typical value N ′ = N . The complexity of
constructing a replicate is therefore O(N ′).

Three variants are considered at this step of the meta-algorithm:

• both the structure and the parameters are computed based on the
original learning set;

• both the structure and the parameters are computed based on a boot-
strap replicate;

• the structure is computed based on a bootstrap replicate, the param-
eters using the original learning set.

The latter method is slightly less randomized then the second. It only
randomizes the structure and uses for any structure the best parameters
possible, based on the learning set.

6.1.2 Generating a Tree Structure

The algorithms considered are those presented in Chapter 5. Here is a short
summary of these algorithms:

• CL (Algorithm 5.2): The original Chow-Liu algorithm, constructs the
structure of a Markov tree minimizing the negative log-likelihood of
the learning set;

• CES (Algorithm 5.6): cluster-based edge sampling, approximates CL
by considering only some edges, sampled by constructing and then
exploiting a clustering of the variables to target edges of strong weight;
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• RES (Algorithm 5.5): random edge sampling, approximates CL by
considering only a subset of edges, uniformly selected in the set of all
p(p− 1)/2 possible edges;

• RT (Algorithm 5.4): random tree, a tree structure randomly gener-
ated.

6.1.3 Estimation of the Parameters

Parameters learning for a Bayesian network is straightforward, and several
methods were discussed in Section 3.3.3. The Laplace approximation was
selected for this thesis, a choice discussed in Section 3.5.1.

While only one algorithm is used, it may take as input two different
learning sets, either the full learning set, or a bootstrap replicate.

6.1.4 Weighting Scheme

Two main strategies have been considered to weight the trees in a mixture
generated in the perturb and combine framework for variance reduction:
uniform and “Bayesian” weights [Amm10]. As their name suggests, the
uniform weighting schemes assigns the weight 1/m to every model while
the Bayesian weight of each tree is proportional to the probability of this
tree structure given the learning set:

λ
Bayesian
j ∝ P(Tj|D) . (6.1)

Computing P(Tj|D) exactly is not necessary, since the weights will be nor-
malized. In practice, the BD score, proportional to this probability and
easier to compute, is used. This score was discussed in Section 3.3.5, and
introduced for mixtures of Markov trees in [ALDW08].

In practice, the uniform weighting strategy is reported to usually result
in a better accuracy [ALDW09b, Amm10] for a low number of samples. In
my own experiments, the uniform weighting scheme resulted to a superior
accuracy than Bayesian weights as well. Therefore, uniform weights will
be the only strategy presented in this work. To be more accurate about
the merit of each weighting scheme, tree generation strategies close to ran-
dom structure seems to favor Bayesian weighting schemes whereas mixtures
based on algorithms targeting good structures have a better accuracy when
the weights are uniform.
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A possible explanation might be that the best weighting strategy for
a given tree sampling subroutine is the weighting strategy that makes the
mixture the best approximation of Bayesian inference. Performing exact
Bayesian inference is possible with weighting strategies, but for distinct
tree sampling subroutine. Consider the following two mixtures.

• In the first mixture, the structures are sampled directly from the pos-
terior distribution P(T |D) and weighted uniformly.

• in the second mixture, the structures are sampled uniformly and
weighted by the posterior probability.

As m tends to infinity both mixtures converge to Bayesian learning.
If the tree sampling distribution is close to Bayesian structure sam-

pling, but the trees are weighted by their posterior probability, the resulting
mixture is further away from Bayesian learning than if uniform weighting
scheme is used. Using Bayesian weights if the distribution is already close
to the Bayesian posterior distribution makes the peak(s) of this distribution
sharper. This seems to agree with the accuracy observed in practice.

However the methods targeting structures of high posterior probability
(i.e. close to Bayesian structure sampling) are usually much better than
random structure sampling for finite m. There are many (pp−2) tree struc-
tures over p labeled vertices [Cay89], and few have a significant posterior
probability. The probability of sampling a good structure with a uniform
sampling strategy is therefore very low. As a result, using a Bayesian weight-
ing scheme most often puts a weight close to 1 on a single structure. In
addition, this structure is not necessarily good, by comparison with struc-
tures generated by a subroutine that constructs with a high probability a
structure close to a tree generated by the Chow-Liu algorithm.

6.1.5 Overview of Methods Considered

These different subroutines are combined to instantiate Algorithm 6.1. Each
method is denoted by a different code. This code is constructed as follow:

1. “M” , for mixture;

2. a code for “CL”, “CES”, “RES” or “RT”, depending on the base algo-
rithm used to construct a tree structure (see Section 6.1.2);
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CL the Chow-Liu algorithm (Algorithm 5.2)

CES Cluster-based Edge Sampling (Algorithm 5.6)

RES Random Edge Sampling (Algorithm 5.5)

RT Random Tree (Algorithm 5.4)

3. “-O”, “-B” or “-B2”, depending on the randomization scheme applied
on the learning set (see Section 6.1.1):

-O no bootstrap

-B bootstrap for the structure only

-B2 bootstrap for structure and parameters.

For example, MCL-B denotes an algorithm that constructs a mixture (M) by
applying the Chow-Liu algorithm (CL) on a bootstrap replicate, but learns
the parameters on the original learning set (-B). This is further explained by
Algorithm 6.2, which describes each algorithm corresponding to any code
described above. The code is an input of the algorithm (argument “method”)
and configures the algorithm.

In addition, the different algorithms to construct a mixture of Markov
trees evaluated in this chapter are presented together in Table 6.1. In this
table, each code is related to the algorithm used to construct the structures,
and to the perturbation scheme on the learning set. Moreover, each method
I developed during this thesis is marked by a *.

Learning set Tree structure
CL CES* RES* RT

Original CL MCES-O* MRES-O* MRT-O
Bootstrap replicate MCL-B2 MRES-B2 MRT-B2

Mixed* MCL-B* MRES-B* MRT-O

Table 6.1: Possible variations for the construction of one tree (both the
structure and the parameters) in Algorithm 4.1 are composed of a tree
structure learning algorithm and a randomization scheme of the learning
set. A star indicates the contributions of this thesis.
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Algorithm 6.2 Algorithms for learning a mixture of independent Markov
trees
Input: X ; D; m; method
T = ∅; λ = ∅; θ = ∅
for j = 1→ m do

{Section 6.1.1}
if method = . . .−B or . . .−B2 then
D′ =bootstrap(D)
Dstruct = D′

end if
{SampleTreeStructure (Section 6.1.2)}

if method = MCL− . . . then
T [j] =CL(X ,Dstruct) {Algorithm 5.2}

else if method = MCES − . . . then
T [j] =CES(X ,Dstruct) {Algorithm 5.6}

else if method = MRES − . . . then
T [j] =RES(X ,Dstruct) {Algorithm 5.5}

else if method = RT − . . . then
T [j] =RT(X ,Dstruct) {Algorithm 5.4}

end if
{LearnParameters (Section 6.1.3)}

if method = . . .−O or . . .−B then
θ[j]=LearnParameters(T [j],D)

else if method = . . .−B2 then
θ[j]=LearnParameters(T [j],D′)

end if
{LearnWeight (Section 6.1.4)}

λ[j] = 1/m
end for
return (T ,θ,λ)
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A few remarks must be made about these methods. Since the Chow-
Liu algorithm always produces the same structure1, MCL-O would produce
a mixture where each tree is an identical Chow-Liu tree. This method is
therefore not considered, and denoted by CL. Furthermore, MRT constructs
structures independently from the learning set, so MRT-O and MRT-B are
identical and denoted by MRT-O.

Existing methods were respectively proposed in [ALDW08] (MRT-O), in
[ALDW09b] (MCL-B2, MRT-B2) and in [ALW10b] (MRES-B2). MRT-B2

was the most accurate of these three methods, and was found to be more
accurate than CL. The new methods described were already published in
[SLW10] (MCT-B*, MCES-B*, MRES-O*), although MRES-O* was also
considered in [ALW10b], and in [ALSW10] (MRES-B*).

6.1.6 Experiments

The algorithms described in the previous section were applied to synthetic
problems of the class DAG-1000-152 for settings corresponding to growing
m and different number of samples ranging from 100 to 1000. The values
reported here are an average of the results obtained on 10 learning sets
times 10 target distributions, for each setting.

The results and conclusions of this round of experiments are presented in
two parts. The interest of learning the parameters of the Markov trees on the
original learning set rather than on bootstrap replicate is established in the
first part. In the second part, the parameters θj of the models (the marginal
probability distribution of each variable conditionally to its parents) are
then always estimated on the original learning set. The influence of the
configuration parameters on the different algorithms for constructing a tree
structure are also evaluated.

1To be more precise, this is only true if there is no tie between the mutual information
values of the edges considered. Moreover, the distribution defined on a given (undirected
tree) may differ based on the root selected if Bayesian parameter estimation is used.
The prior (see Section 3.3.3) is equivalent to additional samples, so the choice of the
root and the orientation of the edges may modify the number of additional samples used
to estimate the marginal conditional probability of each variable. However the slight
differences caused by the choice of the root and the prior are usually negligible.

2I use the notation DAG-xxx-yyy to denote synthetic, randomly generated target
probability distributions. DAG stands for “Directed acyclic graph”, xxx corresponds the
number of variables and yy is the maximum number of parents of each variables. The
sampling process of these distributions is described in Appendix A.1.
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In the method based on the cluster-based edge sampling (CES), this
algorithm was applied by using for ρC (respectively ρN) the percentile asso-
ciated to 0.005 (respectively 0.05) of the χ2 distribution. As in Section 5.5,
and to assess the interest of mixtures based on CES versus those based on
the random edge sampling (RES) algorithm, this latter method was con-
strained to sample the same percentage (35% here on average) of all possible
edges as CES, except in Section 6.1.6 where the number of edges sampled
is varied. The baseline is a single Markov tree built using the Chow-Liu
algorithm (CL).

The accuracy of the resulting distributions PT is quantified using a
Monte-Carlo approximation of the Kullback-Leibler divergence with respect
to the target distribution P:

D̂KL(P,PT ) =
∑
x∼P

log
P(x)

PT (x)
,

see Section 2.3.2 for details. Two evaluations are performed, each with a
different set of 60,000 samples, so that convergence of the estimator can be
evaluated.

Estimation of the Parameters of the Models
(MCL-B2 vs MCL-B)

This section compares two bootstrap approaches of the Chow-Liu algorithm:
the original approach where both structures and parameters of the aggre-
gated models are learned based on bootstrap replicates (MCL-B2) and a
variant where only the structures are learned on replicates while the pa-
rameters are learned from the full learning set (MCL-B). Figures 6.2a and
6.2b illustrates the accuracy of these two methods for respectively N = 300
and an increasing m; and m = 100 and an increasing N . The Chow-Liu
algorithm is provided as a reference. In both figures MCL-B appears closer
to the target distribution than both CL and MCL-B2.

MCL-B2 is initially (m = 1, Figure 6.2a) less accurate than CL. My
interpretation in terms of bias and variance is that learning a tree on a
bootstrap replicate increases both the bias and the variance. However,
MCL-B has a better accuracy than CL at the beginning of the curve. This
may be due to a lower variance of single trees produced by the methods.
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Figure 6.2: MCL-B2 is more accurate than MCL-B (averages over 10 target
distributions and 10 datasets). Learning the structures based on bootstrap
replicates and the parameters from the original learning set is a better
strategy than bootstrapping the entire Chow-Liu algorithm.
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I believe this improvement to be related to regularization. In Section
5.1.1, I explained how [LXHG+11] combines density estimates based on
two independent sets of samples to compute edge scores and regularize the
tree structures. The two sets of samples used in MCL-B to construct each
Markov tree are not independent, but still different from each other: a
bootstrap replicate only contains approximately 66% of the original samples.
However,estimating mutual information on a bootstrap replicate is likely to
perturb the relative ordering of the edges whose weights are very noisy. The
MWST algorithm is therefore less likely to select for inclusion in the tree
the edges with the highest noise over the full learning set.

For a fixed N , the accuracy of both mixtures improves with m, meaning
that combining models reduces the variance. However, This decrease in the
KL divergence of MCL-B2 is however not fast enough to overtake MCL-B.
Even with m = 100 trees, MCL-B stays ahead.

Figure 6.2b shows that this situation does not change with N . From
N = 100 to N = 1000, where both methods are close to to the accuracy of
the Chow-Liu algorithm, MCL-B is better than MCL-B2.

Learning the parameters based on the original learning set is therefore
better, and this approach will be followed for all subsequently reported
experiments.

Methods Comparison
(CL vs MCES-O vs MRT-O vs MRES-O vs MCL-B)

The next experiments show that the accuracy loss is in line with the gain
in complexity in the algorithms: the two novel methods based on edge
subsampling, cluster based edge subsampling (MCES) and random edge
subsampling (MRES) are better than the less complex random structure
sampling but worse than the more complex bagging of the Chow-Liu algo-
rithm. Stronger randomization is productive when the number of samples
N is much smaller than the number n of variables, which is the rule in very
high-dimensional problems.

Figures 6.3 display the D̂KL values of models built with all algorithms
for growing mixture sizes m (6.3a), sample sizes N (6.3b) and degree of
randomization. From Figure 6.3a it can be observed that the more sophis-
ticated methods tend to converge slower. From Figure 6.3b, one can see that
bagging yields the best performances except for N < 50, and that MRES-O



6.1. MIXTURES OF INDEPENDENT MARKOV TREES 167

0 10050
number of Markov trees m

155

175

165

D̂
K
L
(P
||
P T

)

CL

MRT-O
MCES-O

MCL-B
MRES-O

(a) For N = 300 and growing m.

210

150
0 1000500

190

170

D̂
K
L
(P
||
P T

)

number of samples N

CL

MRT-O
MCES-O

MCL-B
MRES-O

(b) For growing N and m = 100.

Figure 6.3: Performances (averages over 10 target distributions with 1000
variables and 10 datasets), for random edge sampling (♦, light blue), cluster-
based edge sampling (5, green), tree structure bagging (dark blue), random
tree structures (�, maroon), and a single Chow-Liu tree (dashed, red).
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(respectively, MCES-O) outperforms the single Chow-Liu tree for N < 200
(respectively, N < 400).

From both figures it appears clearly that the more clever detection of the
problem structure (the edges whose associated mutual information is larger)
by the vertex clustering method (green 5) yields in all cases a worthy im-
provement over the naive random edge sampling strategy (light blue ♦), for
a similar number of edges. While the improvement is small, it is significant
and it even comes with a slightly reduced computational cost, see run time
in Table 6.2. Note however that tuning the parameters of MCES-O so that
it will terminate within a given computational budget is much more difficult
than for MRES-O, so this latter method is still interesting.

MRT-O MRES-O MCES-O MCL-B
2,063 s 64,569 s 59,687 s 168,703 s

Table 6.2: Indicative CPU times for training the 10×10 mixtures of size
m = 100, cumulated on 100 data sets of 1000 samples (MacOS X; Intel
dual 2 GHz; 4GB DDR3; GCC 4.0.1)

Influence of the parameters of the algorithms Figure 6.4 displays
the effect of a modification of the number of edges used by the random
edge sampling algorithm (MRES-O). Without surprise, when more edges
are considered by MRES-O, the curve of the mixture is closer to the curve
of the Chow-Liu method (CL).

At a low number of observations, MRES-O (with m = 100) is better
than CL, and the fewer edges the better the mixture. For larger sample size,
the opposite holds. The limit between these two distinct behaviors seems
to be around N = 250 observations. Below that point, more diversity
in the structure generated is preferable whereas with more observations
considering many edges lead to a more accurate mixture.

Around this point, the MRES-O methods (with different parameters)
also start achieving a worse accuracy than CL. The number of samples
where a MRES-O method (for a given number of edges sampled) becomes
worse than CL seems to increase with the number of edges sampled.
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Figure 6.4: KL divergences estimated by Monte-Carlo (average values over
10 target distributions with 1000 variables and 10 datasets). Effect of the
%age of randomly selected edges: 60, 35, 20, 5 (., ♦, 4, �) (m=100).

Significance of the results To check the soundness of the conclusions
drawn previously, Figure 6.5 indicates the variability of our accuracy assess-
ments. For the 10 target probability distributions (arranged horizontally)
and each method, I show a box plot of 20 D̂KL values obtained using 10
learning samples of size 300 times 2 different test sets of 60000 observa-
tions. The distributions are ordered by the averaged accuracy of CL for
each distribution.

This figure highlights that the accuracy of the different methods can
be discriminated for each distribution. The relative ordering of the meth-
ods observed previously on the averaged values remain generally unchanged.
The Chow-Liu algorithm has however the worst accuracy on 8 out of 10 tar-
get distributions, while on the averaged results CL is not the worst method.
This is because these results are highly influenced by the target problem
with the largest gap between the accuracies of the different methods, and
because in this target problem (the 5th from the left in Figure 6.5, and to a
lesser extent the 3rd one) CL is not the worse method. This however does
not invalidate the analysis performed before on the averaged results of the
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10 distributions: the analysis would be similar if it was carried out on any
single distribution out of those 10. However, the values of N where two
accuracy curves cross would vary for each distribution. In particular, as N
increases from 100 to 1000, the relative ordering of the methods evolve as
illustrated by Figure 6.3b.
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Figure 6.5: KL divergences estimated by Monte-Carlo (boxplots values over
10 learning sets times 2 test sets, for 10 target distributions with 1000 vari-
ables). Variabilities of accuracies by target distribution (m=100, N=300).

6.2 Mixtures as a Sequence of Markov Trees
In this section the tree structures are no longer constructed independently
from each other, but as a sequence, sharing information across trees. As in
Section 6.1, these structures are combined in a mixture by the procedure
described by meta-Algorithm 6.1.

In the previous section, it was shown that a mixture of Markov trees can
be better than a single Chow-Liu tree (CL), that selecting good edges is im-
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portant, and that the best performing mixture was the mixture of bagged
Chow-Liu trees (MCL-B). However, this method requires the computation
of m Markov trees by the Chow-Liu algorithm. The extra computational
cost with respect to learning one single Chow-Liu tree may prove prob-
lematic on very large problems, so attempts were made to decrease the
complexity by considering only a subset of edges in each instance of the
chow-Liu algorithm. Although this successfully sped up the algorithms, the
accuracy was also decreased. Exploring all (or at least most) good edges
therefore seems necessary to reach a good accuracy.

In this section are discussed methods that try to speed up the computa-
tion of the current tree structure by exploiting the computation of previous
trees of the mixtures. In order to retain a good accuracy, these methods
try to share information between trees to target good edges. In particular,
these methods focus on approximating the bootstrap procedure MCL-B,
that considers all edges and was the best mixture so far. Therefore, the
methods developed here will mostly be compared against MCL-B (and not
against other mixtures of independent Markov trees) since it tends to be
the best performing method in the experiments of Section 6.1.6.

Moreover, I will only consider learning the structures of Markov trees on
a bootstrap replicate and their parameters on the full learning set (M. . . -B
methods). Indeed, [ALW10b] and complementary experiments reported in
[ALSW10] showed that bootstrapping the structure (M. . . -B methods) is
usually better than applying a randomized structure learning algorithm on
the full learning set (M. . . -O methods).

The present section will first cover one existing method based on the con-
cept of sharing information between trees [ALW10b], called inertial search
heuristic, and abbreviated here by ISH. It extends the random edge sub-
sampling algorithm (MRES-O) presented in Section 6.1 by considering the
edges of the previous tree structure in addition to a set of edges randomly
sampled.

Next, I will describe two alternative methods I developed. These two
approaches exploit the first application of the Chow-Liu algorithm to gather
information about the interesting edges. The two methods developed are
respectively based on subsampling the set of candidate edges (as in MRES-
O), or on a statistical test to detect irrelevant edges, and both methods
avoid considering all candidate edges in the subsequent runs of the Chow-
Liu algorithm on subsequent bootstrap replicates. These two methods are
respectively presented in Sections 6.2.2 and 6.2.3, and were introduced in
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[SAL+11]. The second approach can be seen as applying a structural regu-
larization to identify a skeleton comprising only potentially relevant edges,
and then restricting the search of optimal Markov trees on subsequent boot-
strap replicates within that smaller envelope instead of the complete set of
all possible edges. It may hence also be beneficial in terms of accuracy in
very small sample size conditions.

Finally, these methods are empirically evaluated on synthetic and well-
known learning sets, and the results are analyzed in Section 6.2.5.

6.2.1 Inertial Search of Mixtures of Markov Trees
(MISH-B)

This algorithm [ALW10b] was designed to improve the computational com-
plexity of the bagging of Chow-Liu trees method (MCL-B), i.e. O(p2 log p).
This improvement is achieved by limiting to a specified number K the num-
ber of variable pairs and mutual information computed and considered for
each MWST construction, as does MRES-B. Unlike in MRES-B however,
constructing T is done in MISH-B by a sequential procedure (see Algorithm
6.3 for a specification):

• for the first tree, a random subset of K edges is considered,

• and then for each subsequent tree Ti, the considered subset is initial-
ized by the edges of the previous tree, S = E(Ti−1), and completed
with an additional random subset of K − |E(Ti−1)| edges.

The sequence of tree structures generated by this approach is thus a
Markov Chain: each structure depends on the edges of the previous tree.
The parameter K controls the computational complexity of the method,
which is O(mK logK). I will consider for this parameter values of the
form K = Cp ln p as suggested in [ALW10b] (with C = 1 in most of our
simulations) leading to a complexity approximately of O(mp log(log p)). It
is therefore almost loglinear in the number of variables.
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Algorithm 6.3 Inertial search heuristic for Markov trees (MISH-B)
[ALW10b]

Input: X ; D; m; K
2: T = ∅; λ = {1/m}mi=1; θ = ∅

for j = 1→ m do
4: D′ =bootstrap(D)

S = ∅
6: MI = [0]n×n

if T 6= ∅ then
8: S = E(T [j − 1])

end if
10: for k = 1→ |S| do

(i1, i2) = GetIndices(S[k])
12: MI[i1, i2] = MI[i2, i1] = ID′(Xi1 ;Xi2)

end for
14: for k = |S|+ 1→ K do

(i1, i2) = drawNewRandomEdgeUniformly()
16: MI[i1, i2] = MI[i2, i1] = ID′(Xi1 ;Xi2)

end for
18: T [j] = MWST(MI)

θ[j]=LearnParameters(T [j],D)
20: end for

return (T ,θ,λ)

6.2.2 Warm-start Inertial Search Heuristic
(MWISH-B)

While Algorithm 6.3 is of log-linear complexity in p and gradually improves
as new trees are added to the model, it consists essentially in an exploration
of the matrix MI of mutual information. Without bagging (i.e. by using
D′ = D at all iterations), this algorithm would eventually converge to the
Chow-Liu tree, since Tarjan’s red rule [Tar83] implies that the lightest edge
of any cycle is not part of the MWST. However, the number of iterations
needed to fully explore the matrix essentially increases with p, since

lim
p→∞

Edges considered at each iteration
Total edges

=
O(p log p)

O(p2)
= 0 , (6.2)
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and hence the algorithm will take longer and longer to converge as p in-
creases (see also the experimental results of Section 6.2.5).

Therefore I modified this method, by changing the first iteration so as
to compute the Chow-Liu algorithm. This directly explores the full matrix
of mutual information values, and starts the sequence with a very good set
of edges (E(TCL)); see Algorithm 6.4).

Algorithm 6.4 Warm start inertial research procedure (MWISH-B)
[SAL+11]
Input: X ; D; m; K
T = ∅; λ = {1/m}mi=1; θ = ∅
for j = 1→ m do
D′ =bootstrap(D)
if j = 1 then
return Chow-Liu(X ,D′) {equivalent to K = p(p− 1)/2}

else
lines 6 to 18 of Algorithm 6.3.

end if
θ[j]=LearnParameters(T [j],D)

end for
return (T ,θ,λ)

The complexity of this method is O(p2 log(p) + mK log(K)) where K
is the number of edges considered at each iteration after the first one. As
in Algorithm 6.3, K = p ln p by default. In practice the gain in conver-
gence speed strongly compensates for the increased complexity needed for
computing the first term (see experimental results of Figure 6.8 and Table
6.5).

Alternatively, both methods could be viewed as a stochastic walk in the
space of Markov tree structures that at convergence will attain the set of
good structures. Algorithm 6.3 however starts very far from this set while
the variant I proposed in Algorithm 6.4 starts from a more sensible initial
guess, losing the loglinear complexity. This method therefore lies between
bagging and the inertial approach: the method is quadratic as the former,
but only a loglinear term in p is multiplied by the number of terms.

Another possible variant of this method is obtained by always combining
randomly sampled edges with the edges of the first tree, rather than with
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those of the previous one. This particular variant will be denoted by MWSI’.

6.2.3 Skeleton-based Mixtures of Markov Trees
(Mskl-B)

This algorithm constitutes an alternative approximation to the mixture of
bagged Chow-Liu trees (MCL-B). Mskl-B was also developed with the aim
of speeding up learning without sacrificing accuracy. As in the previous
approximation methods considered so far, this new method considers only
a subset of edges. Unlike those previous method, the set S of edges consid-
ered by Mskl-B in constructed deterministically. More specifically, this new
method

• uses a filtering step obtained as a by-product of computing a first
Markov tree (using the full learning set D) to construct a set S of
strong edges (i.e. with a high associated mutual information),

• and only considers this set S of edges for subsequently generated trees,
so as to avoid considering poor candidate edges. Because S is deter-
mined once and for all, the set of candidates edges is identical for all
trees. Therefore, subsequent trees can only be built using bootstrap
replicates and not the full learning set.

This process is detailed in Algorithm 6.5.
S contains strong edges rather than weak edges. Indeed, strong edges

are more interesting to consider, because the Chow-Liu algorithms will build
a maximum-weight spanning tree, and as shown in Section 5.5 and 6.1.6,
consider strong edges lead to better Markov trees. Moreover, if the difference
between two edges is big, the relative ordering of those edges with respect
to their weight will probably stay the same, even when those weights are
perturbed by computing them on a bootstrap replicate. Therefore, the
strongest edges have a higher probability to be in a Markov tree constructed
by considering all edges than a weak edges.

Since the Chow-Liu algorithm computes the mutual information value
of all edges, S can be constructed as a byproduct of this algorithm. The
computations performed for building the first tree on the full data set are
used to identify the pairs of variables whose mutual information is high,
that is above a threshold. S contains those latter pairs of variables. Only
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Algorithm 6.5 Skeleton-based approximation of bagged Chow-Liu trees
(Mskl-B) [SAL+11]
Input: X ; D; m; ρ
T = ∅; λ = {1/m}mi=1; θ = ∅
S = ∅

{1st tree}
MI = [0]p×p
for i1 = 1→ p− 1 and i2 = i1 + 1→ p do
if ID(Xi1 ;Xi2) > CDF−1χ2(|val(Xi1

)−1||val(Xi2
)−1|)(1− ρ)/(2N ln 2) then

MI[i1, i2] = MI[i2, i1] = ID(Xi1 ;Xi2)
S = S ∪ (i1, i2)

end if
end for
T [1] = MWST(MI)
θ[1]=LearnParameters(T [1],D)

{subsequent trees}
for j = 2→ m do
D′ =bootstrap(D)
for k = 1→ |S| do

(i1, i2) = GetIndices(S[k])
MI[i1, i2] = MI[i2, i1] = ID′(Xi1 ;Xi2)

end for
T [j] = MWST(MI)
θ[j]=LearnParameters(T [j],D)

end for
return (T ,θ,λ)

structures spanning the graph composed of the edges in S will be considered,
and these models, including the first one, can thus be Markov forests rather
than trees.

Considering edges whose mutual information is above a threshold is
equivalent to a structural regularization of the Chow-Liu method, so as to
penalize model complexity in terms of its number of edges by modifying
its optimization criterion, a process already discussed in Section 5.1.1. So,
and as in the cluster-based edge sampling (CES) algorithm (Section 5.4.3),
the comparison to a threshold is replaced by a hypothesis test to check the
independence of each pair of variables. Only the edges where independence
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is rejected are included in S. This test is performed by comparing the
quantity 2p(ln 2)ID(Xi;Xj) (χ-square distributed under independence, with
a degree of freedom of (|V al(Xi)| − 1)(|V al(Xj)| − 1) ito a critical value
depending on a postulated p-value, say ρ = 0.05 or smaller.

If the quantity 2N(ln 2)ID(Xi;Xj), estimated from the full set of ob-
servations considered by the method, is smaller than the χ-square statistic
threshold computed for ρ, an arc between Xi and Xj will not be in S and
will never be included in the forest by the modified algorithm. The size
of S and thus the run-time of the algorithm depends on both ρ and this
first data set, and is thus not directly controllable, unlike in the inertial
methods (MISH-B and MWISH-B). It is however straightforward to modify
the skeleton approach (Mskl-B) so that it takes as input a given number of
edges K and select the best K edges. To identify the best K edges, com-
pute the matrix of mutual information values (or the associated p− value),
then make S the set of the edges associated to the K largest element of the
matrix MI.

The complexity of Algorithm 6.5 is O(p2+mK(ρ) log(K(ρ)), i.e. similar
to that of Algorithm 6.4 (where K = p ln p): its first term is also indepen-
dent of the mixture size m and its second term now depends on the effect of
the chosen value of ρ on the number of candidate edges K(ρ) ≡ |S| retained
in the skeleton (the smaller ρ, the smaller K(ρ), in a learning set dependent
fashion).

6.2.4 Overview of the Methods Considered

The algorithms evaluated in the upcoming experiments (Section 6.2.5) are
listed in Table 6.3.

The convention for the names of the methods is similar to what was used
for mixtures of independent trees (see Table 6.1). In particular, a * identifies
each contribution of this thesis. MCL-B* is the best method of independent
trees, the one the approximations are trying to speed-up. It is therefore in-
cluded here for comparison. MISH-B is a competing method. The two main
methods presented here (MWISH-B* and Mskel-B*) led to two publications
[SAL+11, SAL+12]. Slight modifications into a few methods led to the last
3 methods. The goal of these three methods is to highlight a specific point
regarding the main algorithms during the experiments. These methods will
be described in the experiments.
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method name section
CL Chow-Liu algorithm 5.1
rCL “Gold standard” for regularization 5.1.2
MCL-B* bagging of Markov trees 6.1.1
MISH-B inertial search heuristic 6.2.1
MWISH-B* warm-start inertial search heuristic 6.2.1
Mskl-B* skeleton-based approximation 6.2.3
MWISH’-B* variant of MWISH 6.2.5
MWISH”-B* variant of MWISH 6.2.5
MCL”-B* variant of bagging of Markov trees 6.2.5

Table 6.3: These algorithms construct mixtures of Markov trees or forests
(or a single model, for the first two reference methods) They are evaluated
in experiments described in the following subsections.

The algorithms for generating a sequence of Markov trees presented in
the previous sections are used as subroutine in the meta-algorithm 4.1. Since
the goal of these methods is to approximate MCL-B, they are associated
to weighting scheme and the perturbation of the learning set that worked
best with bagging, namely uniform weights and the mixed bootstrap scheme
where the structure is learned on a bootstrap replicate while the parameters
are estimated based on the original learning set.

In addition to MCL-B*, these approaches will also be compared to the
Chow-Liu algorithm (CL, Algorithm 3.1) and to the “gold” standard for
regularization (rCL, Section 5.1.1).

6.2.5 Evaluation on Synthetic Problems

The mixtures of sequences of Markov trees are first evaluated on synthetic
DAG-200-5 or five DAG-1000-5 problems (see Appendix A.1 for details)
and 200, 600 and 1000 samples. For each number p of variables and each
number N of samples, 6 learning sets times 5 target distributions (the same
distributions for any N) were considered, and the values reported correspond
for any learning algorithm corresponds to an average of these 30 values.
50000 independent observations were used to estimate the Kullback-Leibler
divergence of the models constructed to the target probability distribution.
The same set was used for all evaluation based on a given target distribution.
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Results in Terms of Accuracies

Let us start by an evaluation of the relative accuracy performances of the
different algorithms in the case of p = 1000 variables and N = 200 obser-
vations, the configuration with the highest ratio p/N considered. Figure
6.6 displays the accuracy of the different mixtures of trees learning algo-
rithm as a function of the mixture size m (horizontal axis). It also displays
the accuracy of a single model for the Chow-Liu algorithm (CL) and the
“gold standard" for regularization (rCL). The skeleton-based approxima-
tion (Mskl-B, Algorithm 6.5) is tested here with 4 values of its parameter
ρ: 1E−1, 5E−2, 5E−3, 5E−4.

Looking first at m = 1 (initial values of all curves), we observe that all
but two mixtures start at the same point as the CL tree: the inertial search
heuristic (MISH-B) is significantly worse, while the first tree of the strongly
regularized skeleton approximation (Mskl-B) at ρ = 5E−4 is significantly
better3.

For larger values of m, all mixtures considered monotonically improve,
some more quickly than others, and for sufficiently high values of m they
are all quite superior to a single CL tree. For the differently parameterized
Mskl-B methods, the smaller ρ, the lesser the improvement rate. Actually,
for the mixture corresponding to ρ = 5E−4, the improvement rate of the
accuracy is so small that it this mixture quickly overtaken by the mixture of
Bagged Chow-Liu trees (MCL-B) (at m = 30) and later on by Mskl-B with
ρ = 5E−2 (at m = 60). On the other hand, the warm-start inertial search
heuristic (MWISH-B) and Mskl-B for ρ sufficiently large display comparable
performances and the same convergence rate as MCL-B.

These results confirm the superiority of the model averaging approach
with respect to Chow-Liu. They also suggest the interest of trying to limit
the complexities of the individual trees in the skeleton-based approximation
method (Mskl-B) and to correctly initialize the inertial approach, given
their computational complexity advantage with respect to raw bagging (see
Section 6.2.5).

The different mixtures however still fall short from the accuracy of the
regularized model in this particular configuration. My interpretation in
terms of bias/variance is that variance is in this problem setting an impor-

3Standard deviations of KL divergences, not reported for the sake of legibility, are
about 10 times smaller than the average differences commented on.
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Figure 6.6: A comparison between all methods presented in this section
shows the good quality of the approximation of the new model averaging
methods (with p = 1000 and N = 200). Horizontal axis: ensemble size m;
vertical axisKL divergence to the target density estimated by Monte-Carlo.

tant component of the error, because of the low number of samples. Reg-
ularization is performed optimally in rCL, and thus reduces this variance
very well, at a level that mixtures cannot match quickly (because, unlike
rCL, the parameters of the mixtures learning algorithm are not optimized
on the test set). However a decrease of the accuracies of all mixtures with
m is still noticeable on the graph. So for a much larger m, mixtures may
achieve the same level of accuracy as rCL. Regularizing each tree in MCL-
B may however be a faster method to reach or even surpass the accuracy
of an optimally regularized model. In most other problem configurations
considered in these experiments however, the regularized model is quickly
outperformed by the mixtures, as will be seen in Sections 6.2.5 and 6.2.6.
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Table 6.4: Impact of the parameter ρ on the number of edges in Mskl-B,
averaged on 5 densities times 6 data sets for p = 1000 variables and N = 200
samples

Numbers (% of the total) for ρ =
1E−1 5E−2 5E−3 5E−4

Edges in T1 998 997.9 993.2 626.8
Edges in S 52278(10.5%) 26821(5.36%) 3311(0.66%) 683 (0.13%)

Effect of the Parameter ρ of Mskl-B

In order to allow a better understanding of the influence of ρ on the behavior
of Mskl-B, Table 6.4 lists the average number of edges in the skeleton S
(absolute value and % with respect to the maximum p(p− 1)/2 = 499500)
and in the first tree T1 of any mixture for different values of ρ. It comes
as no surprise that those numbers are decreasing with ρ. Note how the
number of edges in T1 is almost at the maximum (p − 1 = 999) for ρ ∈
{1E−1, 5E−2, 5E−3}, whose curves start at the same performance as the CL
tree, while the smallest ρ (5E−4) leads to a much smaller tree.

For any value of ρ, including additional models in the mixture increases
accuracy. However, this variance reduction effect diminishes with ρ. For
ρ = 4E−4, the skeleton has only a few edges more than the first tree. All
tree structures of the mixture are really similar to each other, resulting in a
very fast convergence in accuracy. The accuracy of the mixture is therefore
very close to the accuracy of the initial forest. Reducing ρ also leads to an
increase in the bias of the mixture: at m = 200 the accuracy is better for
higher ρ.

My interpretation in terms of bias and variance is that the apparently
atypical behavior of the curve for ρ = 4E−4 is caused by the low size of
S, that strongly constrains the structure and the number of parameters of
each term. The initially better accuracy is due to the large reduction in
variance, larger than the increase in bias. For mixtures where each term
has more freedom (larger ρ), the bias is initially smaller and the variance
larger. Increasing the size of the mixture lowers this variance, and they
overtake the mixture based on a smaller ρ.
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Effect of the Learning Set Size N .

To further analyze the relative behavior of the different methods, I increased
the number N of observations to 600 and 1000. The most noticeable change
in the results, reported in Figures 6.7(d,e), is that the different methods
now start from more diverse initial points: the CL tree becomes initially
better than a tree learned on a bootstrap replicate. The advantage of the
first Mskl-B tree with the smallest value ρ is decreasing. I deem that both
observations are a consequence of the improved precision of the mutual
information estimate derived from a larger data set.

Now that the estimations of the “good” edges are better, reducing ρ
seems to have an opposite effect on the improvement rate of Mskl-B. No-
tice that, while at m = 100, the lowest ρ still seems better on average,
confidence intervals (one standard deviation) on the values reported (and
not displayed) overlap for the different methods. This suggests the mix-
tures resulting from the different values of the parameters cannot really be
distinguished.

MWISH-B is now doing far worse than the MCL-B. I conjecture that
the larger sample size leads to less variation in the mutual information
computed from bootstrap replicates, leading to slower moves in the space
of tree structures for this method.

Also affected by the improved estimation of the mutual information val-
ues, the accuracy of the rCL is closer to the accuracy of CL, and is no longer
better than the mixtures. In particular, the accuracy of this forest is similar
to the accuracy of MCL-B and Mskl-B (for different ρ) when N = 600, and
worse than the mixtures when N = 1000.

Effect of the Problem Dimensionality p.

Modifying the number of variables has mostly an effect on the inertial search
heuristic (MISH-B) methods, since it impacts the relative number of edges
considered at each iteration, and thus the exploration speed of the MI
matrix. Smaller numbers of variables therefore should accelerate the con-
vergence of this method. Figures 6.7(a,b,c), provide a global picture of the
relative performances of the considered methods, with p = 200 and over a
longer horizon m = 500 of averaging.
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(a) 200 variables, 200 samples.

Figure 6.7: Overview of accuracy performances of the different algorithms
listed in Table 6.4, with p = 200 or p = 1000 variables (left vs right),
and for increasing sample sizes N (200, 600 and 1000, from top to bottom).
Vertical axis: KL divergence to the target density estimated by Monte Carlo.
Horizontal axis: number m of mixture terms used by the different methods
(except for the CL and rCL method, using a single model)
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(b) 200 variables, 600 samples.
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(c) 200 variables, 1000 samples.

Figure 6.7: (continued) Overview of accuracy performances of the different
algorithms listed in Table 6.4, with p = 200 or p = 1000 variables (left
vs right), and for increasing sample sizes N (200, 600 and 1000, from top
to bottom). Vertical axis: KL divergence to the target density estimated
by Monte Carlo. Horizontal axis: number m of mixture terms used by the
different methods (except for the CL and rCL method, using a single model)
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(d) 1000 variables, 600 samples.
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(e) 1000 variables, 1000 samples.

Figure 6.7: (continued) Overview of accuracy performances of the different
algorithms listed in Table 6.4, with p = 200 or p = 1000 variables (left
vs right), and for increasing sample sizes N (200, 600 and 1000, from top
to bottom). Vertical axis: KL divergence to the target density estimated
by Monte Carlo. Horizontal axis: number m of mixture terms used by the
different methods (except for the CL and rCL method, using a single model)
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In these simulations, the regularized model is always worse than the best
mixtures models, namely the mixtures of bagged Markov trees (MCL-B) and
the skeleton approximation (Mskl-B). The warm-start inertial search heuris-
tic (MWISH-B) is sometimes better than the regularized model, sometimes
at the same accuracy.

Another observation is that both inertial methods converge to the same
point. Therefore, and despite a better improvement rate at the beginning,
sampling structures far from the optimal one (in MISH-B) does not improve
the accuracy of the mixture over sampling them directly from the space of
good structures (in MWISH-B). Based on this observation, one might ac-
tually be tempted to discard the first structures output by MISH-B, hoping
for an improved convergence speed. I believe that considering all edges
in the first step of the method (MWISH-B) is more productive, since the
method is directly initialized in the neighborhood of good structures, with-
out computing the weight of any edge more than once. Nevertheless, if the
computational resources to compute a CL tree are not available, MISH-B
remains a strong method.

General Accuracy With Respect to the Two References

The accuracy of the different mixtures of Markov trees was already com-
pared to the accuracy of a single Chow-Liu tree (CL) and of a single “gold
standard" for regularization (rCL) in the previous paragraphs. However
these observations are important to assess the interest of mixtures of Markov
trees to reduce the variance, and they constitute therefore one of the main
contributions of the thesis. Therefore, they are sum up in the present sec-
tion.

In the six problem settings considered in the present round of exper-
iments (p =200 or 1000 variables times and either 200, 600 or 1000 sam-
ples), the bagged mixtures of Markov trees (MCL-B) and the skeleton based
approximations (Mskl-B, with a sufficiently large ρ) always outperformed
a single Chow-Liu tree. The inertial search heuristics, both the original
method (MISH-B) and the warm-start variant (MWISH-B), also outper-
forms the accuracy of CL most of times, i.e. in five out of six problem
configurations. Therefore, mixtures of Markov trees can indeed reduce the
variance of a single Chow-Liu tree.

Moreover, in five out of six problem settings, Mskl-B and MCL-B also
achieves the same accuracy of even outperform the “gold standard” for reg-
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Figure 6.8: Modifying the number of edges considered at each step only af-
fects MISH-B when all edges are not considered in the first iteration (shown
here for p = 1000, N = 1000).

ularization (rCL), a forest where the threshold on the mutual information
values is optimized on the test set. This is particularly important : the
mixtures studied in this thesis may perform as well or even better in terms
of accuracy than a regularization performed by an oracle.

Inertial Search Heuristics and the Effect of C

Modifying the number of edges considered at each iteration in both MISH-B
and MWISH-B, as depicted in Figure 6.8, mostly affects the former method.
Indeed, doubling (C = 2) or dividing by two (C = 0.5) the number of
edges explored has a huge impact on its convergence, while it hardly affects
MWISH-B.

This is a consequence of the modification of the speed of the exploration
of the MI matrix. Since it is necessary to discover strong edges to obtain
a good mixture, the rate of discovery of these edges strongly affects the
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Figure 6.9: In the warm-start ISH method, using S = E(T1), the MWSI’-B
variant, rather than S = E(Ti−1) (for tree Ti) leads to a worse accuracy
(with p = 1000 and N = 200). Horizontal axis: ensemble size m; vertical
axis KL divergence to the target density estimated by Monte-Carlo and
averaged over 5 target densities and 6 training sets.

convergence of this method.

Influence of the Edges Retained in MWISH-B

This section studies the accuracy of a possible variant of MWISH-B. Because
of the importance of considering good edges, it may be tempting to always
use the edges of the Chow-Liu tree rather than the edges of the previous
tree. MWSI’-B is a variant of MWISH-B that does precisely that. In both
cases, these edges are completed by random edges to reach the required
number K of edges.

Figure 6.9 displays the accuracy of both variants of MWISH-B along
with some other methods presented in this section. Both methods start at
the same accuracy for the first tree, because both first compute the Chow-
Liu tree. However, the original method quickly reaches a better accuracy.
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This may be explained in terms of bias and variance. The search space of
both methods are identical. The model biases are therefore equivalent. Only
the search strategy varies: MWSI’-B will sample structures closer to the
model output by the Chow-Liu algorithm than MWISH-B. The estimation
bias may therefore differ slightly. If they differ, this bias is likely to be
better for MWSI’-B. On the other hand, MWISH-B will sample more diverse
structures, which may lead to a better reduction in the variance of the
model.

Since MWISH-B has a better accuracy, the difference in the reduction
in variance must be greater than the difference in the estimation bias, if it
exists.

Effect of the Initial Tree

The influence of the distribution encoded by the first Markov tree of any
mixture on its accuracy vanishes over time. Moreover, because information
is transmitted from one tree structure to another, the first tree structure
also influences the following distributions. In some methods considered so
far, the first tree is computed on the original learning set (e.g. MWISH-
B), and in some other methods, it is computed on a bootstrap replicate
(e.g. MCL-B). This introduces a disparity between the method for a small
number of terms m. This section highlights this difference in accuracy and
studies it.

To allow a comparison between the two learning sets that can be used
to construct the first tree, a variant of each method cited in the above
paragraph is developed. If the first tree is built on the original learning set
in the original method, it is built on a bootstrap replicate in the variant,
and reciprocally. These new variants are respectively denoted by MWSI”-B
and MCL”-B. Figure 6.10 displays the performance of these 4 methods in
terms of the average KL divergence with the target models for p = 200 and
N = 600.

At first there is a significant difference. The Chow-Liu tree is more accu-
rate than a tree whose structure is learned on a bootstrap replicate. There-
fore, the methods where the first tree = Chow-Liu (MCL”-B and MWISH-B)
originally have a better accuracy. This difference can be either because of a
larger bias (the model is an average further away from the optimal Markov
tree when it is built on a bootstrap replicate) or a larger variance (the model
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Figure 6.10: Whether the first tree of any method is constructed on the
original learning set or on a bootstrap replicate only influences the pre-
cision of the mixture for a low number of trees. This is illustrated here
for two methods, MWISH-B and MCL-B. The first tree of these methods
are respectively built on the original learning set and a bootstrap replicate.
MWSI”-B and MCL”-B are therefore introduced: these methods are similar
to MWISH-B and MCL-B, but respectively construct the first tree on a
bootstrap replicate and on the original learning set.

varies more when built on a replicate), or both. However, because the pa-
rameters of the model are not learned on a bootstrap replicate but on the
original learning set, the first tree can be better than Chow-Liu when its
structure is learned on a bootstrap replicate (see Section 6.1.6), although
this is not the case here.

As the number of trees increases, the difference between the accuracies of
the pair of mixtures built by two variants of the same methods disappears.
The convergence between these two mixtures is faster for MCL-B (10 terms)
than for MWISH-B (100 terms). This is because the first tree of MWISH-
B influences the following structures, since its edges are reused, while all
trees are independent in MCL-B. The coupling between the models in the
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sequential mixtures makes the influence of the first tree more important
than in mixtures where the trees are independent, so the convergence takes
longer. However in both cases, I am considering a sufficiently large number
m of Markov trees to ensure the first tree does not impact the asymptotic
(in m) comparison of the methods.

Computing Times

Our experiments were performed on a grid running ClusterVisionOS and
composed of pairs of Intel L5420 2.50Ghz processors with either 16 or 32
GB of RAM. Due to the environment, run time for a method can vary a lot,
and I therefore decided to report relative minimum running time for every
method. Those results are displayed in Tables 6.5 and 6.6 for respectively
200 and 1000 variables / 500 and 100 trees. Results for Mskl-B are reported
for ρ = 0.005.

Table 6.5: Serial minimum computing times, given for p = 200 variables
and m = 500 trees - except for the Chow-Liu algorithm

Method Complexity running time
N =

200 600 1000
CL p2 log(p) 1 3.07 5.3

MCL-B mp2 log(p) 532 1531 2674
MISH-B mp log(p) 45 186 432
Mskl-B p2 +mK(ρ) log(K(ρ)) 21 82 191

MWISH-B p2 log(p) +mp log(p) 45 192 406

Those numbers show that the proposed methods (lower part of the table)
are roughly an order of magnitude faster than the standard MCL-B method,
and this relative speed-up is stronger in the higher dimensional case. Also,
as we saw from the accuracy results, these methods converge as quickly as
MCL-B.

If one is considering parallelizing those methods at a high level, namely
by computing trees individually on different cores, MCL-B and Mskl-B are
the best candidates, since the trees in these methods are independent in the
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Table 6.6: Serial minimum computing times, given for n = 1000 variables
and m = 100 trees, except for the Chow-Liu algorithm

Method Complexity running time
N =

200 600 1000
CL p2 log(p) 37 98 174

MCL-B mp2 log(p) 5037 11662 19431
MISH-B mp log(p) 181 800 1433
Mskl-B p2 +mK(ρ) log(K(ρ)) 139 612 1005

MWISH-B p2 log(p) +mp log(p) 218 766 1359

former method and independent conditionally on the first tree in the latter.
In the two ISH methods, each tree depends on the previous one in a Markov
chain-like dependency, and parallelizing is hence more difficult. But, at a
lower level, all algorithms could take advantage of the parallelization of the
computation of a MWST.

Overall, the Mskl-B method appears as the most appealing method; it
always combines fast convergence (as fast as MCL-B) when the number
of terms of the mixture is increased and, from the computational point of
view, it is also the most efficient one among those that we investigated,
about 20-30 times faster than MCL-B in realistic conditions; furthermore
it is easy to parallelize. Neverteless, the inertial heuristic with warm start
(MWISH-B) is competitive as well.

Note that convergence speed may vary between methods, and some
might require fewer iterations before performance (almost) stabilizes.

6.2.6 Evaluation on Realistic Problems

The algorithms presented here were also applied on a set of more realistic
problems described in Appendix A.3. These experiments evaluate the inter-
est of these mixtures on problems closer to reality, and in various conditions.
The quality of the model is here evaluated by the negative loglikelihood of
an independent test set of 5000 observations. Only results for a selection of
the most accurate methods (MWISH-B, MCL-B and Mskl-B) are reported
here.
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An overview of the results obtained on these networks is presented in
Table 6.7, where the best result of each configuration is displayed in bold.
The values obtained by the perfectly regularized forest (rCL) developed in
Section 5.1.2 are copied in this table to allow an easy comparison. Mskl-B
is only tested with the non-optimized value ρ = 0.05. In addition, Figure
6.11 displays the evolution of the accuracy of the mixtures with respect to
the number of terms m for a few selected target distributions.

Table 6.7: Negative log-likelihood achieved by the different learning algo-
rithms on the realistic problems described in appendix . These values are
averaged on 5 learning sets of observations.

Distribution p N CL rCL MCL-B MWISH-B Mskl-B
Alarm10 370 200 166.65 166.65 163.59 206.34 166.80
Alarm10 370 500 136.37 136.28 135.31 181.82 135.61
Child10 200 200 135.29 135.08 133.94 159.74 134
Child10 200 500 131.71 131.71 131.01 156.11 131.02
Gene 801 200 485.21 483.6 482.80 585.79 482.66
Gene 801 500 477.48 476.75 473.75 572.13 473.79
Hailfinder10 560 200 550.85 547.64 551.75 651.75 549.89
Hailfinder10 560 500 523.81 523.26 523.61 628.45 523.31
Insurance10 270 200 210.1 210.1 206.77 243.57 215.23
Insurance10 270 500 198.87 198.87 195.47 234.98 202.01
LungCancer 800 200 435.72 435.46 437.41 497.96 436.01
LungCancer 800 500 424.69 424.44 418.31 493.42 418.30
Munin 189 200 42.614 36.987 41.799 41.749 35.566
Munin 189 500 37.66 35.414 37.656 38.131 35.140
Pigs 441 200 390.75 390.75 387.19 428.55 387.24
Pigs 441 500 385.59 385.59 382.22 423.71 382.26

Once again, rCL rarely yields the best accuracy, showing the advantages
of mixtures of Markov trees.

Focusing on mixtures only, the accuracy of MISH-B is weaker and reg-
ularly clearly worse than the accuracy of the other two mixtures. Mskl-B
on the contrary is often close to MCL-B in terms of accuracy (9 out of 16
configurations, illustrated by Figures 6.11a and 6.11b). Differences never-
theless appear in a few configurations: Mskl-B is sometimes worse (3 out
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of 16 configurations: Alarm10 for N = 200 and Insurance10, illustrated
by Figure 6.11c) and sometimes clearly better (4 out of 16 configurations:
Munin and Hailfinder10, illustrated by Figure 6.11d).

When Mskl-B is worse than MCL-B, regularization is not necessary (val-
ues for rCL and CL are equal). The difference on the first term of the mix-
ture may be explained by the fact that Mskl-B removes some edges that
are necessary, although of poor weight. On the other hand, rCL knowns
these edges must be included in the structure thanks to its knowledge of
the test set. The first term of Mskl-B thus suffers from a larger bias, and the
reduction in variance brought by the regularization cannot compensate it.
As the number of trees is increased, the variance is reduced, but it cannot
compensate for the bias. However, the fact that regularization is not needed
does not necessarily indicates that Mskl-B will have poor accuracy. Indeed,
Mskl-B improves upon rCL e.g. on the distributions Pigs or Child10 for
N = 500.

Similarly, the superior accuracy for Mskl-B over MCL-B seems to be
concomitant with a large difference between CL and rCL, i.e. when regu-
larizing the Chow-Liu tree improves it by a large margin. In this case, the
better accuracy of Mskl-B is likely mostly related to the reduction of the
variance of each term due to the regularization rather than to the reduc-
tion in variance due to model averaging. Nevertheless, these two reduction
can be combined, and model averaging can further improve the accuracy.
Indeed, Mskl-B is the best method in 4 out of 16 configurations.

Mskl-B has therefore two advantages with respect to MCL-B. The first
is the speed-up in the construction of the mixture, the second the regular-
ization itself, that allows to increase the accuracy of the model. Note that
this regularization is sometimes counterproductive as mentioned above.

Therefore it should be interesting to select ρ based on each different
problem, despite the use of an hypothesis test. Cross-validation could be
used for this purpose.

6.3 Conclusion

In this chapter, several new algorithms for learning mixtures of Markov trees
in a variance reduction setting have been presented. All these algorithms
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Figure 6.11: Illustration of the behavior of the mixtures on realistic distri-
butions for increasing m.
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are instantiations of the common meta-algorithm for learning mixtures of
Markov trees based on the perturb and combine framework, but they can
be divided into two categories, based on the algorithm used to construct the
tree structures underlying each term of the mixture. In the first category,
each tree is independent from any other structure, while in the second each
tree depends on previous structures generated.

In the first category, new algorithms were developed based on the new
randomization of the Chow-Liu algorithms presented in the previous chap-
ter, and by modifying the bootstrapped Chow-Liu algorithm so as to esti-
mate the parameters of each Markov tree on the original learning set rather
than on the bootstrap replicate. This latter variant produced the most ac-
curate mixture, while others have a lower run-time. In general, the better
the edges considered to construct each tree, the better the structure. A
trade-off between accuracy and complexity is therefore possible by varying
this number of edges.

In the second category, approximations of the bagging algorithm were
developed with the goal of decreasing complexity without sacrificing ac-
curacy. The most interesting method consists in filtering the edges based
on an independence test during the computation of the first model of the
mixture. Only pairs of variables for which independence was rejected are
considered in subsequent run of the Chow-Liu algorithm on bootstrap repli-
cates. In our experimental study, this method leads to a speed-up of one
order of magnitude while closely matching the performance of the original
bootstrap algorithm.

Both existing and new methods were evaluated on synthetic and real-
istic learning sets for varying p and N . One of the main observation is
that mixtures are increasingly better than a single Chow-Liu tree when the
number of samples shrink and/or when the number of terms in the mixture
increases. With respect to regularization however, the mixtures could not
always achieve the same accuracy as the forest regularized by an oracle, al-
though in most situations mixtures were better. It remains to be seen how
close to this optimal model a forest can be regularized without an oracle.
Moreover, it would be interesting to tune the parameter ρ of the mixture
method to the learning set, and to contrast this with regularization. A
possible method for both tasks would be cross-validation.

Many other mixtures could be developed. For example, it could be
interesting to progressively increase the number of candidates edges as the
number of terms in the mixture grow. The first terms of the mixture would
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be centered around good structures and have a lower bias, whereas terms
coming later in the mixture would be allowed more freedom, and could
therefore reduce the variance, at the cost of a higher bias and a larger
computing time.

The mixtures considered so far has proved effective at reducing the vari-
ance of a single Chow-Liu tree. The next chapter investigates whether these
models can be used to improve upon a bias-reducing mixture of Markov
trees, where each term of the mixture can be viewed as a mode of the
distribution.



Chapter 7

2-level Mixtures of Markov Trees

This chapter combines the two frameworks for building mixtures of Markov
trees. As explained in Chapter 4, learning a mixture of Markov trees from a
set of observations can be performed to reduce either the bias or the variance
of a single Chow-Liu tree. This thesis has so far focused on the latter,
starting on trees in Chapter 5 and upgrading to mixtures in Chapter 6. In
this chapter, a new two-level algorithm is proposed, where the upper level
seeks to reduce the bias while the lower level seeks to reduce the variance.
This algorithm is evaluated empirically on learning sets generated from a
mixture of Markov trees and from the synthetic and realistic probability
densities already used.

The two frameworks to build mixtures of Markov trees were already
combined in the literature. [KK06] define a Markov-Chain Monte Carlo
method over the space of k-clusterings of the observations and construct
one term of the mixture on each cluster, by exact Bayesian averaging over
the space of Markov trees [MJ06]. [KS07] use a similar approach to [KK06]
but allow k to vary and sample one tree from the Bayesian posterior. In both
cases, the MCMC procedure is used to sample a set of mixtures, and these
mixtures are then averaged. While both papers report an improvement over
the original mixture of [MJ01], these methods are of cubic complexity in the
number of variables, thus deteriorating the scalability of Markov trees.

This chapter studies a more scalable (quadratic) alternative to combine
these two frameworks, by replacing Markov trees in the first framework
(maximum likelihood estimation of the mixture based on the EM algorithm)
by a mixture of trees generated by the second framework (model averaging).
Rather than learning a single Markov tree by the Chow-Liu algorithm for

199
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each term of the upper mixture or using a Bayesian averaging, randomized
procedures developed in the previous chapter are used to replace each term
by a lower level mixture. The combination order is thus the opposite of
[KK06, KS07], a choice essentially motivated by computational considera-
tions.

This chapter starts by a brief recall of the two frameworks for building
mixtures of Markov trees in Section 7.1. The proposed approach is described
in Section 7.2, its interest and variance reduction capacity are experimen-
tally studied in Section 7.3. In addition, these results are used to compare
the two frameworks, showing their complementarity.

7.1 Two Types of Mixtures of Markov Trees
Working in the class of Markov trees is algorithmically efficient, but can be
either too restrictive, i.e. have a large bias, when samples are plentiful, or
lead to overfitting, i.e. have a large variance, when only few samples are
available, see Section 2.4 for further discussion.

Those two frameworks are briefly recalled below, each with an exem-
plative algorithm. Both algorithms are also used as building blocks in the
combination proposed in Section 7.2.

7.1.1 Mixture for Reducing the Bias

Constraining a Bayesian network to be a Markov tree when the target distri-
bution is more complex than such a tree and for a sufficiently large number
of samples will cause some relationships between variables to be missed and
the distribution won’t be perfectly estimated, an error called the bias. Using
a mixture rather than a single Markov tree results in an improved modeling
power [MJ01] and a higher achievable likelihood.

This optimization can be done e.g. by the EM algorithm [DLR77, MK08]
as detailed in Section 2.6.1, or by an adaptation of fractional covering
[KK09]. The weights are considered as the marginal probabilities µk =
P(Z = k) of Z, a hidden variable selecting one distribution PTk(X ) =
P(X |Z = k):

PT (X ) =
m∑
k=1

P(Z = k)P(X |Z = k) . (7.1)
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Algorithm 7.1 MT-EM: ML mixture of Markov trees
Input: data D, mixture size m
Initialize (T ,θ,µ)
repeat
for k = 1→ m and i = 1→ N do
γk(i) =

µkPT [k](xDi
)∑m

k=1 µkPT [k](xDi
)

end for
for k = 1→ m do
D′k = (xDi

, γk(i))
N
i=1

T [k] = Chow-Liu(D′k)
θ[k]=LearnParameters(T [k],D′k)

µk =

∑N
i=1 γk(i)

N
end for

until convergence
return (T ,θ,µ)

This estimate of P(X , Z) is optimized by alternating between estimat-
ing a distribution of the hidden variable Z for each observation D[i] and
optimizing both P(Z = k) and P(X |Z = k). This process is described in
Algorithm 7.1, where γk(i) can be seen as the probability that Z = k for
observation D[i] and according to the current estimate of P(X , Z). The
vectors (γ1(i), . . . , γm(i))Ni=1 define a soft partition of D into m weighted
learning samples D′k, where each D′k is constructed by associating a weight
γk(i) to each D[i]. By comparison, all observations in D have a weight of
one. In the second step of the iteration, the Chow-Liu algorithm is applied
to each D′k to obtain Tk and µk is estimated based on the γk(i).

7.1.2 Mixture for Reducing the Variance

Chapter 6 has shown how a possible lack of data can be compensated by
applying the “perturb and combine" framework to Markov trees. In this
approach, m different plausible models are generated and their predictions
averaged. A generic meta-algorithm (Algorithm 4.1) was presented and spe-
cialized into many different methods for learning such a mixture of Markov
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Algorithm 7.2 MT-Bag: bagging of Markov trees (≡ MCL-B)
Input: data D, mixture size m
T = ∅; θ = ∅
λ = {1/m, · · · , 1/m}
for k = 1→ m do
D′= bootstrap(D)
T [k] = Chow-Liu(D′k)
θ[k]=LearnParameters(T [k],D)

end for
return (T ,θ,λ)

tree. Bootstrap aggregation of the structure-learning part of the Chow-Liu
algorithm was one of the most accurate methods. It will therefore be used
in the construction of the 2-level mixture. The corresponding algorithm for
the generation of a set of Markov trees is recalled in Algorithm 7.2.

The resulting set T is associated to parameters learned on the full learn-
ing set and uniform weights to constitute a mixture.

7.2 Two-level Mixtures of Markov Trees

In this section a new algorithm is constructed by combining the methods
presented in the previous section. Combining a bias and a variance reducing
framework has also been considered in supervised learning, see e.g. [Bre99].

The EM algorithm builds a soft partition of sizem of the learning set and
one maximum-likelihood tree on each downweighted data set D′k. Therefore
each tree is built using a smaller effective number of samples than in the
original data set. On the other hand, algorithms of the second category
build mixtures that are increasingly better than a single tree when the
number of samples shrinks.

I therefore propose to replace the Chow-Liu algorithm in Algorithm
7.1 by an algorithm constructing a mixtures of Markov trees reducing the
variance. Therefore, each term of the ML mixture is a mixture of Markov
trees rather than a single Chow-Liu tree. This allows each algorithm to
operate in the configuration it excels in. The bias reduction of the ML
algorithm operates on the whole set of observations at the upper level, and
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partitions in into subsets of observations. Each variance reduction algorithm
works on one of those smaller subsets, at the lower level. The resulting
model is thus a two-level mixture of Markov trees of the following form:

PT (X ) =

m1∑
k=1

µkPT k
(X ) (7.2)

PT k
(X ) =

m2∑
j=1

λk,jPTk,j(X ) ∀k = 1, . . . ,m1 , (7.3)

where m1 and m2 are respectively the number of terms in the upper level
EM optimization of the mixture and in the lower level mixtures T k learned
on each D′k; Tk,j is the jth Markov tree in T k and λk,j denotes its weight.

Using algorithms for reducing the variance rather than the Chow-Liu al-
gorithm during the iterative process of the EM algorithm substantially slows
down each step and seems to alter the convergence, impeding or stopping
it early (based on observations performed on early simulations). Hence, I
perform the proposed adaptation of the lower level models only after a first
run until convergence of the basic EM algorithm using single trees. The
resulting method is specified by Algorithm 7.3.

Note that bagging is now performed on a weighted data set. The sam-
pling procedure to construct the replicates in MT-Bag must be adapted.
Observations are thus no longer drawn uniformly, but based on a multino-
mial distribution where the probability to sample the ith observation equals
γk(i)/

∑N
i=1 γk(i).

∑N
i=1 γk(i) (truncated to the closest integer) observations

are drawn (and associated to a weight of 1) to form each replicate.

7.3 Experiments
A first set of experiments is performed by considering two different strategies
for building the second level mixture. In addition to bagging of Markov trees
(Algorithm 7.2, MT-EM-Bag), I also consider augmenting each original term
(a Chow-Liu tree) by m2−1 trees learned on bootstrap replicates, i.e. a mix
of the first two methods (MT-EM-BagCl). In a second set of experiments,
reported in Section 7.3.3, additional second-level mixtures are considered.
The additional mixtures tested are the best performing mixtures of Chapter
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Algorithm 7.3 MT-EM-Bag: two-level mixture
Input: data D, first & second mixture sizes m1, m2

{T ,θ, µ} = MT-EM(D,m1)
for i = 1, k = 1→ N , m1 do {Recover observation weights of MT-EM}

γk(i) =
µkPTk(xDi

)∑m
k=1 µkPTk(xDi

)
end for
for k = 1→ m1 do
D′k = (xDi

, γk(i))
N
i=1

{T k,θk, λk} = MT-Bag(D′k,m2)
end for
return ((T k,θk,λk),µ)

6: the warm-start inertial search heuristic (MWISH-B) and the skeleton-
based approximation (Mskl-B).

I evaluate the interest of these combinations against the baseline Algo-
rithm 7.1 (MT-EM) described in Section 7.1. Since the EM algorithm may
converge to local maxima and in order to remove the influence of its random
initialization, every comparison between the methods is performed based on
mixtures built on similar convergence points of the EM algorithm. In other
words, for every run of the EM algorithm, I use its final soft partition of the
learning set (γk(i)) to build two different two-level mixtures, one based on
each algorithm considered, and I also use the weights µk returned by this
algorithm to formulate the resulting model.

The evaluation is performed using three different target distribution set-
tings:

1. 1 mixture model of three randomly generated Markov trees defined
on 100 variables (appendix A.2);

2. 5 synthetic DAG-200-5 (appendix A.1);

3. 9 realistic Bayesian networks (appendix A.3).

The accuracy of any model PT constructed in the first two settings is
quantified using a Monte Carlo estimate of the Kullback-Leibler divergence,
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with respect to the target distribution P:

D̂KL(P || PT ) =
1

N ′

N ′∑
x∼P

log2

(
P(x)

PT (x)

)
, (7.4)

where N ′ the number of observations x for the estimate equals 10000 in the
first case and 50000 in the second. The same samples are used for every
evaluation related to a given target distribution. For the third setting, the
accuracy is measured by the negative log-likelihood of an independent test
set of 5000 samples.

In the first setting, the similarity of any learned mixture to the target
mixture structure was also assessed in terms of the mean number of common
edges. Because the ordering of the terms of the original mixture cannot be
recovered during learning, this score is the weight of the maximum weighted
bipartite matching between the terms in the estimated mixture and those of
the target model, solved by the Hungarian algorithm [Kuh55]. The weight
of a matching between a tree of the target model and a tree of a mixture
learned by MT-EM is their number of common edges. The weight of a
matching between a tree of the target model and a lower level mixture of a
2-level mixture is defined as the average number of common edges between
the tree and the elements of that mixture. In both cases, an edge comparison
does not take the orientation into account.

Unless stated otherwise, m2 is always set to 10 for the lower level mix-
tures. Increasing this number should further reduce the variance without
effect on the bias, and so is liable to further increase the accuracy of the
two-level mixtures.

The EM algorithm is initialized by a uniform mixture of randomly gen-
erated Markov trees.

7.3.1 The Target is a Mixture of 3 Trees

This first set of experiments is performed on a target distribution that
belongs to the class of models considered by the EM learning algorithm,
here the set of mixtures of 3 Markov tree structures.

Learning sample sizes from 100 to 20000 were considered, and several
initializations (905 to 50 runs, see Figure 7.3) were performed for each
sample size.
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The number of upper-level terms m1 is always fixed to 3 (the size of the
target mixture); the number m2 of lower level terms is fixed to 10 to limit
execution time.

Figure 7.1 displays the decrease of the KL divergence to zero as N in-
creases, as expected since the target distribution is a mixture of 3 Markov
trees. We observe that the two-level mixtures are better than the baseline,
showing the interest of their variance reduction. Actually, MT-EM-Bag and
MT-EM-BagCl achieve with N samples roughly the same accuracy as the
baseline MT-EM method with 2N samples.
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Figure 7.1: Setting 1: The Average KL divergence with respect to the target
mixture of 3 trees converges to zero for all methods when the number of
samples increases.

The advantage of the two-level mixtures over MT-EM is significant, as
can be seen from the difference between the KL divergence of each method
and the KL divergence of the corresponding EM method. This is illustrated
in Figure 7.2, where each box-plot shows the distribution of KL values
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obtained over 400 runs of MT-EM on one learning set of size N = 400.
Similar results are obtained for other sample sizes.
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Figure 7.2: Setting 1: For each method, a box-plot showing the distribution
of the KL divergences of the models it produces over 400 runs on a dataset
of N = 400 samples.

In order to determine which one of the two-level methods is better,
Figure 7.3 displays for each learning sample size the relative number of runs
(and associated data soft partition) where each method achieves a lower
KL divergence than the two others. No definite winner among the two
proposed methods can be selected based on those results, but we observe
that MT-EM is never better than both (actually, any) of them. However,
the interest of using the original learning set to build the first tree of the
mixture (MT-EM-BagCl) rather than a bootstrap replicate (MT-EM-Bag)
increases with the number of samples.

The numbers of recovered edges displayed in Figure 7.4 reveal an ex-
pected increase with the number of samples, but also that the EM algorithm
is here the best method. The two-level mixtures are thus not as effective to
infer the structure of a mixture of Markov trees. However, this also indi-
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Figure 7.3: Setting 1: Relative number of runs where each method is the
best, displayed by number of samples. MT-EM is never the best method.

0

50

100

150

200

250

300

102 103 104
Number of samples (N)

MT-EM
MT-EM-Bag
MT-EM-BagCL

M
ea
n
nu

m
be

r
of

ed
ge
s
si
m
ila

r
to

th
e

in
it
ia
lm

od
el

Figure 7.4: Setting 1: The average structure similarity increases with the
learning sample size. Notice that MT-EM is better for structure recovery.
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cates that the better accuracy of the proposed models is indeed due to the
diversity introduced in the evaluation of each term by the mixtures.

7.3.2 The Target is a Bayesian Network

The previous section showed that the proposed algorithms perform well
when the target model belongs to the class of mixtures of Markov trees.
The present section shows that they are also interesting when the target
distribution is encoded by a Bayesian network. Results are reported first
for distributions encoded by synthetic Bayesian networks (appendix A.1)
to study the influence of m1, and then on benchmark problems from the
literature (appendix A.3)

Synthetic BN Target Distributions

The number of terms m1 in the EM method is a parameter of the method
whose optimal value is problem dependent and could e.g. determined by
cross-validation. In particular, this optimal value tends to increase with N ,
with the Chow-Liu algorithm (m1 = 1) being better than EM (m1 > 1) for
very small N . In this section I investigate how varying N and m1 impact
the difference between the three methods and the underlying bias/variance
trade-off.

Figure 7.5 displays for growing values of N the mean KL divergence of
MT-EM and MT-EM-Bag as a function of m1 and with m2 = 10. Note
that when m1 = 1, MT-EM and MT-EM-Bag are respectively equivalent
to the Chow-Liu algorithm and MT-Bag (with m = m2 = 10). The results
of those methods are outlined by two constant lines on the figures. Those
results were obtained on 5 networks times 6 data sets for each N .

At 120 samples the Chow-Liu algorithm is better than MT-EM: because
of the low number of samples, the negative impact of an increased variance
is not compensated by the gain in bias when increasing m1. Using MT-
EM-Bag rather than MT-EM (with m1 = 2) leads to a better accuracy
than Chow-Liu, but is worse than MT-Bag alone. The two-level mixtures
cannot completely compensate for the increased variance brought by the
partionning of the learning set at the first level of the mixture.

As the number of samples increases, the variance of all models decreases,
and the smaller bias of larger mixtures progressively gives them the advan-
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Figure 7.5: Setting 2: On 1 run times 5 distributions times 6 sets, increasing
m1 (m2 = 10) reduces the bias and increases the variance. While a mixture
is advantageous only for N large enough, MT-EM-Bag is always better than
MT-EM.
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tage over Chow-Liu. Constructing an optimal mixture of size 2 is more
interesting than a Chow-Liu tree for N = 2000 samples. At this point
however, reducing the variance of Chow-Liu is still more interesting since
MT-Bag is better than MT-EM for all m1.

As more and more samples are available, the variance becomes even lower
(MT-Bag is closer to Chow-Liu), and reducing the bias becomes preferable
to lowering the variance. At 8000 samples, MT-EM is definitely better than
MT-Bag and the KL divergence decreases when m1 increases. Nevertheless,
MT-EM-Bag is still better than MT-EM, showing that reducing the variance
of each term is still interesting.

Moreover, we observe that the gap between MT-EM and MT-EM-Bag
is widening as m1 increases. This is logical, since increasing m1 means
building each second-level mixture on fewer samples, increasing the variance,
a situation increasingly favoring it over a single Chow-Liu tree.

Realistic BN Target Distributions

I repeated the experiments performed with the mixture of trees on more
complex and realistic target problems, i.e. 9 reference high-dimensional
networks originating from various domains. For each problem, I used 5
datasets times 5 random initializations for sample sizes of 200, 500 and 5
random initializations for one set of 2500 samples (constructed by combining
the 5 sets of 500 samples).

I report in Table 7.1 the main characteristics of the data sets (data set
name, number of variables p, and range of cardinalities |Xi| of the variables),
together with the number of runs where each method constructed a more
precise mixture than the two others, for the three learning sample sizes of
respectively N = 200, N = 500 and N = 2500. In these experiments,
m1 = 2 and m2 = 10 unless other values are explicitly specified.

The first observation about these results is that the accuracies for N =
200 samples seem to paint a different picture than what was observed in
the previous sections: on 4 distributions (Gene, Hailfinder10, Lung Cancer
and Pigs) MT-EM is indeed almost always more precise than both two-level
variants (MT-EM-Bag and MT-EM-BagCl) based on m2 = 10 terms at the
lower level. There are two possible explanations for this behavior: either
the sample size is so small (the Chow-Liu algorithm is better than MT-EM)
that the bias increase due to the subsampling of the bagging procedure
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Table 7.1: Setting 3: Best methods on realistic data sets on 5 runs times
5 sets (respectively 10 runs times 1 set) of 200 or 500 (respectively 2500)
samples, with m1 = 2 and m2 = 10. M1 ≡ MT-EM, M2 ≡ MT-EM-Bag,
M3 ≡ MT-EM-BagCl.

P p |Xi| N = 200 N = 500 N = 2500
M1 M2 M3 M1 M2 M3 M1 M2 M3

Alarm10 370 2-4 3 5 17 - 6 19 - 8 2
Child10 200 2-6 - 1 24 - 4 21 - 4 6
Gene 801 3-5 25 - - - 9 16 - 8 2
Hailfinder10 560 2-11 25 - - 25 - - - 1 9
Insurance10 270 2-5 2 1 22 1 9 15 - 7 3
Link 724 2-4 3 7 15 - 13 12 - 8 2
Lung Cancer 800 2-3 25 - - 8 - 17 - 8 2
Munin 189 1-21 1 15 9 6 5 14 - 5 5
Pigs 441 3-3 21 1 3 - 16 9 - 9 1
ALL 105 30 90 40 62 123 0 58 32

becomes strongly detrimental, and/or the small sample size combined with
the high dimension p of the problems leads to a much higher variance of the
lower level mixtures, given their relatively small size of m2 = 10.

In order to rule out this latter hypothesis, a few additional runs of the
three methods were performed on some target distributions for other values
of m2. In some complementary tests, the value of m2 was gradually in-
creasing up to 350. These results confirm that the accuracy of the two level
mixtures keeps increasing with m2. In particular, I found that at m2 = 350,
it has not yet converged to its minimum value, but in several cases outper-
forms then the MT-EM baseline, including on problems for which this does
not happen for m2 = 10 (e.g. on Lung Cancer and Hailfinder10).

As an illustration, Figure 7.6 reports the negative log-likelihood gain of
the two-level mixtures with respect to MT-EM and for increasing m2. Even
though all two-level mixtures are worse than MT-EM for m2 = 10, their
accuracy improves with m2. At m2 = 350, 3 two-level mixtures are better
than MT-EM, and the accuracy has not converged yet. Similar observations
were made on Hailfinder10, Insurance10, Child10, for m2 increasing up to
100. On Munin, the two-level mixture is still improving with m2 but only
marginally. Based on these observations, the high variance, rather than the
bias, seem to have the main reason why MT-EM was better than than the
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two-level mixtures in a few experimental settings.
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Figure 7.6: Setting 3: The accuracy of the two level mixture keeps decreas-
ing as m2 increases, on the LungCancer distribution. The mixture has not
converged yet, and form2 = 350 and N = 200, 3/8 are better than MT-EM,
an improvement over the number (0/25) observable when N = 200 (Table
7.1).

The second observation we make from the results of Table 7.1 is that
as the learning sample size N increases to 500 and then 2500, the two-level
mixtures become systematically better than the baseline MT-EM method.
For the intermediate sample size of N = 500, MT-EM-BagCl is clearly
better, while for N = 2500 MT-EM-Bag is more often the best method.

7.3.3 Variations of the Second Level Mixture

The experiments described so far show the advantage in terms of accuracy of
the two-level mixtures over MT-EM, when the best variance reducing mix-
ture (bagging) is used at the second level. Now, the best two alternative
methods developed in the previous chapter will be tested in place of bag-
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ging: the warm start inertial heuristic (MWISH-B) and the skeleton-based
approximation method (Mskl-B).

The objective is both to see how well these two methods fare in the
context of two-level mixtures and to compare them to bagging in a different
setting, to check the conclusions of the previous chapter.

As with MT-Bag, two variants of each method will be tested, depending
on the learning algorithm used to learn the first model, either the original
learning set or a bootstrap replicate. Table 7.2 contains a synthetic list of
the different methods compared in the upcoming experiments.

Table 7.2: Overview of the different variants of the two-level mixtures eval-
uated.

D for first structure base algorithm for second level
MCL-B Mskl-B MWSI-B

bagging MT-EM-Bag MT-EM-skl MT-EM-MWSI
original MT-EM-BagCl MT-EM-sklCl MT-EM-MWSICl

These methods will be evaluated both on the mixture of three Markov
trees and on the realistic distributions already used.

The Target is a Mixture of 3 Trees

Figure 7.7 contains an illustration of the same results as those presented for
3 methods only (Section 7.3.1), but now with 4 additional methods.

• Figure 7.7a displays the average Kullback-Leibler divergence to the
target model for an increasing number of samples.

• Figure 7.7b shows how the distribution of this same measure of accu-
racy varies from one run to the other on 400 observations.

• Figure 7.7c summarizes how often each method achieved the best ac-
curacy, for an increasing number of samples.

• Figure 7.7d contains the average number of edges similar to the orig-
inal model, for an increasing number of samples.
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a learning set with N = 400

Figure 7.7: Setting 1: On 1 run times 5 distributions times 6 sets, 2-level
mixtures based on Mskel-B and MCL-B (both with or without a first CL
tree) perform similarly in terms of accuracy.
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(d) Mean number of edges recovered with respect to the target mixture of 3
trees. MT-EM is the best method, followed by MT-EM-WISHCl. The other 5
methods are indistinguishable, and achieve a smaller score.

Figure 7.7: (continued) Setting 1: On 1 run times 5 distributions times 6
sets, 2-level mixtures based on Mskel-B and MCL-B (both with or without
a first CL tree) perform similarly in terms of accuracy.
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Based on these results, the seven methods considered can be separated
into three subsets. The first category contains only MT-EM, the initial
method. This method still achieves the worse accuracy of the seven meth-
ods, but the best edge structure similarity to the initial model. MT-EM-
Bag, MT-EMskl and their variants form the second category. Finally, the
two variants of MT-EM-WISH constitutes the last category.

In the second category, MT-EM-Bag and MT-EM-skl cannot be distin-
guished, and neither can MT-EM-BagCl and MT-EM-sklCl. The methods
inside each of these pairs behave similarly. This is particularly visible in
the accuracy plots (Figures 7.7a,b), where all four methods have the same
accuracy, and in the plot displaying the best methods (Figure 7.7c). In this
latter figure, the first pair of methods seems for a low number of samples
superior to the second one, but this advantage first disappears, and then is
inverted when the number of observations increases, exactly as what was
observed for three methods only. The similar behavior of the two regular
bagging methods (MT-EM-Bag and MT-EM-BagCl) and the two skeleton-
based methods (MT-EM-skl and MT-EM-sklCl) means the latter is a good
approximation of the former method.

Methods of the second category seems to lie in between. Their accuracy
is worse than the third category, but better than MT-EM, although MT-
EM-WISHCl is for a very few number of runs sometimes the best method
(Figure 7.7c). The behavior of this category is however different for the
edge similarity. MT-EM-WISH score is as bad as the score achieved by the
second category of methods, but MT-EM-WISHCl is actually closer to MT-
EM than the second category. This is likely due to the initialization of the
method by the Chow-Liu tree, and to the reuse of these edges in subsequent
trees. For a larger number of terms in the second-level mixture, the score
of this method can be expected to converge to the score of MT-EM-WISH,
at the same level than the second category.

Realistic Distributions

Table 7.3 lists the best performing methods in respectively 25, 25 and 5
runs, i.e. 5 runs times respectively 5, 5 and 1 learning set(s), for all target
distributions and for respectively 200, 500 and 2500 learning samples. The
number of runs on the learning sets of 2500 samples is therefore half the
number used for the analysis of the first three methods considered. The con-
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vergence points of the EM algorithm are identical to those used in Section
7.3.2.

If the six two-level mixtures are grouped by their first tree (CL or not),
the results are quite similar to those displayed in Table 7.1. The number of
runs where MT-EM is the best method very slightly decreases, because it is
compared to more methods. If anything, this status quo conforts the belief
that the two categories of second level mixtures, defined in the previous
section, each contain methods behaving similarly.

The methods based on WISH once again exhibit a poorer accuracy than
methods of the second category. However, they achieve honorable results
on the Link distribution, for 200 observations.

7.4 Conclusion
This chapter proposes a new method to combine the two frameworks for
building mixtures. The research conducted in this thesis was motivated by
the bias-variance decomposition of the error, and the capacity of mixtures
of models to decrease the variance of a single model. New algorithms were
presented in the previous chapter. Mixtures of Markov trees have however
also been used to decrease the bias.

In this chapter, the two frameworks are combined, resulting in a two-
level mixture model that can effectively reduce the error on both small and
larger numbers of observations. Indeed, the experiments reported in this
chapter show how reducing the variance leads to an increase in accuracy at
low sample size and how mixtures targeting the bias worsen the model at
low sample size but increase it when the number of samples increases.

The combined method proposed here combines the advantages of both
methods, allowing a better accuracy than any mixture alone at certain
number of samples. In particular, it improves the bias reducing mixture
most of the time, and the improvement increases with the number of terms
in this mixture.

Moreover, two-level mixtures based on either bagging or the skeleton
approximation have a very similar behavior
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Table 7.3: Best methods on realistic data sets on 5 runs times 5 sets of 200
(up) or 500 (down) samples, m1 = 2,m2 = 10.

N Data set MT-EM -Bag -skl -WISH -BagCl -sklCl -WISHCl
Alarm10 2 2 6 - 8 7 -
Child10 - 1 - - 12 12 -
Gene 24 - - - - - 1
Hailfinder10 24 - - - - 1 -

200 Insurance10 2 - 4 - 10 9 -
Link 3 3 - 3 3 5 8
Lung Cancer 25 - - - - - -
Munin - 3 8 - 2 12 -
Pigs 21 1 - - - 3 -
Alarm10 - 3 6 - 3 13 -
Child10 - 1 2 - 12 10 -
Gene - 6 3 - 9 7 -
Hailfinder10 25 - - - - - -

500 Insurance10 1 4 6 - 5 9 -
Link - 5 7 - 6 6 1
Lung Cancer 7 - - - 10 8 -
Munin 3 3 4 1 4 10 -
Pigs - 8 9 - 3 5 -
Alarm10 - 3 2 - - - -
Child10 - - 3 - 1 1 -
Gene - 1 3 - 1 - -
Hailfinder10 - - 1 - 1 3 -

2500 Insurance10 - 4 - - - 1 -
Link - 2 2 - - 1 -
Lung Cancer - 2 2 - 1 - -
Munin - - 2 - 1 2 -
Pigs - 2 3 - - - -





Part III

Perspectives for multitarget
prediction
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Chapter 8

A Proposal for Mixtures of
Tree-structured CRFs

The goal of standard supervised classification is to predict a single class or
target variable C based on the known values of a set of observation or input
variables X . However, in some practical applications, there are more than
one variable to predict. This constitutes a multitarget prediction problem,
also called multivariate classification. In this setting, the output of the
learning procedure is a function associating to each configuration of X a
value for each variable of the variable set C, the class variables.

For example, one may want to associate to any pixel of an image a
value 1 if the pixel belongs to an object of interest (a face, a car. . . ) or
0 otherwise. In the biomedical domain, one may wish to predict, for any
molecule, whether it will or will not be active on different types of cancer
cells.

When C is a set of discrete variables, the multivariate problem can be
reformulated as a standard classification problem by defining a new class
variable C taking a different value for each configuration of C. However
the cardinality of C is exponential in the size of C, making this approach
unsuitable when |C| is large.

Another simple way to construct a multivariate classifier is to decompose
the learning problem into |C| standard classification problems, the ith one
predicting the value of Ci ∈ C based on X . However, this latter approach
does not take into account the relationships between the class variables,
which may be necessary to reach a sufficient accuracy.

A Conditional Random Field (CRF) is a probabilistic graphical model

223
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that encodes a joint conditional probability density P(C|X ) [LMP01]. This
type of model is thus particularly suited for multitarget prediction: to each
input x is associated the most probable configuration c, obtained by MAP
inference on the distribution P(C|X = x).

As it is the case for other classes of probabilistic graphical models, con-
straining the structure of the CRF to a tree yields some advantages both
for learning and for inference (also called prediction in this context), and
recent research has tried to develop algorithms for learning such models, see
e.g. [SCG09, BG10].

In this chapter, I report preliminary investigations about using a mix-
ture approach to enhance those tree-structured CRFs. This new research
direction is motivated both by the origin of this work, which was inspired
by the success of perturb and combine framework in standard classification,
and by the desire to construct mixtures of densities in a setting where the
evaluation is more interpretable. Indeed, a percentage of misclassifications
is easier to understand than a Kullback-Leibler divergence.

The first step (Section 8.1) consists in the formal definition of Condi-
tional Random Fields and an introduction to the problem of learning them
from a dataset. Then (Section 8.2), I focus on tree-structured CRFs and
their interesting properties. Next, I discuss mixtures of Conditional Random
Fields, and presents the state-of-the-art (Section 8.3). Finally, I propose a
new meta-algorithm for learning mixtures of CRFs (Section 8.4), inspired
by the approaches developed for mixtures of Markov trees, and discusses
its subroutines. This meta-algorithm is neither instantiated nor empirically
evaluated.

8.1 Conditional Random Fields

In contrast with Bayesian networks that encode a joint probability distri-
bution over the variables, a conditional random field directly encodes a
conditional probability distribution P(C|X ) [LMP01]. This model is thus
well suited to the prediction of C based on X .

Other classes of probabilistic graphical models encoding a joint distri-
bution P(C,X ) can also answer a multivariate classification problem by
performing inference to compute P(C|X ). The main advantage of CRF
over those latter models is that no resource is wasted on the modelling of
the distribution of the input variables X . In some instances, e.g. in image
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processing, when these variablesX are complex, modelling their joint distri-
bution is very challenging. This motivated the development of conditional
models [LMP01].

8.1.1 Definition

[SM07a] defines a CRF as follows. “Let G be a factor graph over C. Then
P(C|X ) is a conditional random field if for any fixed X = x, the distribution
P(C|X = x) factorizes according to G.”

A Conditional Random Field can therefore be represented by a hyper-
graph {{X ,C}; {Si}ki=1} defined on a set of nodes labeled by C ∪X . Each
hyperedge i of the CRF connects a set of variables that will be denoted by
Si, with Si ⊂ (C ∪ X ). Each hyperedge must contain at least one class
variable: CSi

≡ Si ∩ C 6= ∅. Following a similar notation, XSi
≡ Si ∩X .

A Conditional Random Field encodes a conditional probability distri-
butions (one joint probability distribution over C per configuration of X )
P(C|X ) by a normalized product of factors φ1, . . . , φk defined on its k hy-
peredges:

P(C|X ) =
1

Z(X )

k∏
i=1

φi(Si) (8.1)

Z(X ) =
∑
V al(C)

k∏
i=1

φi(Si) . (8.2)

Each factor is a function φi(.) : Si → R+. They are discussed in Section
8.1.1.

Each instance x of X specializes the CRF into a different Markov Ran-
dom Field defined over the classes C, whose structure G is the subhypergraph
of the CRF induced by C:

{
C; {CSi

}ki=1

}
and whose parameters depend on

x. The normalization constant Z(X ) also depends on x. To assign a value
to the classes based on the observations, inference must be performed in
the specialised Markov Random Field. This first requires the computation
of the partition function for the corresponding x.

Because inference is performed only on the derived MRF mentionned
in the previous paragraph, the CRF hyperedges are often divided in two
components. In this work, the structure designates the hyperedges of the
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C1 C2 C3 C4

X1 X2 X3 X4

φ1 φ2 φ3

(a) One factor is associated to each pair
of class variables linked by an edge. This
factor depends on these output variables
and on any input variable linked to any
of these two class variables.

C1 C2 C3 C4

X1 X2 X3 X4

φ1 φ2 φ3

(b) The same CRF as in Figure 8.1a,
in a more traditional factor graph rep-
resentation.

C1 C2 C3 C4

φ1 φ2 φ3

(c) Once the values of the four observa-
tions are known, the model becomes a
classical Markov random field.

C1 C2 C3 C4

φ1 φ2 φ3

(d) The same MRF as in Figure 8.1c,
in a more traditional factor graph rep-
resentation.

Figure 8.1: This pairwise CRF encodes a set of conditional probability
distributions
P(C|X ) =

1

Z(X )
φ1(C1, C2,X1,X2)φ1(C2, C3,X2,X3)φ1(C3, C4,X3,X4).

Markov Random Field
{
C; {CSi

}ki=1

}
, and the feature mapping the associ-

ation between input and output variables, i.e. the XSi
associated to each

CSi
.

When the structure of the MRF is a graph, i.e. when the potentials
are defined on at most two output variables, the conditional random field
is called a pairwise CRF.

To illustrate these notions, a CRF defined over four class variables and
four input variables is represented in Figure 8.1.



8.1. CONDITIONAL RANDOM FIELDS 227

A Closer Look at the Factors

Each factor is a function φi(.) : Si → R+. A factor is often defined in terms
of its energy function εi(Si):

φi(Si) = exp(−εi(Si)) (8.3)
εi(Si) = wT

i f i(Si) , (8.4)

with wi,f i(Si) ∈ Rqi . In that case, the probability distribution P(C|X ) of
equation 8.1 can be written as a log-linear model

P(C|X ) =
1

Z(X )
exp

(
−

k∑
i=1

wT
i f i(Si)

)
, (8.5)

where w = {wi}ki=1 are called the weights or the parameters of the model
and {f i(Si)}ki=1 the features.

Those features f i(.) : S → Rqi can be simple, e.g. correspond to the
value of the variables X , or much more complicated, e.g. properties of a set
of pixels in an image such as the shape, the texture etc.

8.1.2 Learning

Learning a CRF from a set of samples D = {xDs , cDs}
N
s=1 can be decom-

posed into three non-trivial steps [BG10]:

a constructing a feature mapping, i.e. an ensemble of candidate features
f i(CSi

,XSi
) (and an associated subset of input variables XSi

) for every
prospective hyperedge CSi

of the underlying MRF,

b learning the structure (selecting a subset of features {f i(.)}ki=1 defined in
step a, to keep in the final model; and thus selecting a subset of hyper-
edges)

c and learning the parameters {wi}ki=1 given a specified structure and fea-
tures {f i(.)}ki=1.

The second step is sometimes trivial when the hyperedges associated
to the features considered already define an acceptable structure, e.g. it
is common in part of speech tagging (identify nouns, verbs adverbs etc in
a written sentence) to use a chain CRF. As this structure arises naturally
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based on the problem, only pairwise features defined on neighboring words
may be selected in the first step, directly resulting in a chain structure.
When the hyperedges associated to the features do not define an accept-
able structures, some of the hyperedges (and the related features) must be
discarded.

The last two steps are sometimes performed together, e.g. the param-
eters of a model containing all candidate features are optimized based on
a regularized score penalizing model complexity. The features whose corre-
sponding weights are null are removed from the model.

Nevertheless, I will briefly present those three steps, with a focus on
structure learning.

Feature Mapping

Determining the features f i(CSi
,XSi

) means associated a subset of input
variables XSi

to every subset of output variables CSi
that will be considered

as a (candidate) hyperedge in the structure learning phase.
Expert knowledge is often used to extract relevant subsets of variables

and/or relevant features. As an example, when the problem considered is
pixel labeling in an image, the features may be the average color, shape etc
of the associated and neighboring pixels (the relevant subset of inputs).

When expert knowledge is unavailable, some automatic procedure can
be used [BG10, MVC12].

Learning the Parameters

The problem of learning the parameters can be stated as finding the optimal
values for the weights w based on a training set of instances D. However,
solving this problem is a difficult task, because it requires many inference
operations on the network [CG10, BG10], and because inference might be
difficult, depending on the tree-width of the model (see Section 3.4.1 or
[Dar09, KF09]).

For more details about parameter learning, see e.g. [LMP01, SM05,
SM07b, DL10].

Learning the Structure

The structure of the CRF consists in the relationships between the class
variables C. Given the relevant XSi

for each candidate hyperedge CSi
and
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the sample set, learning the structure means selecting the hyperedges to be
included in the CRF.

As for the features, constructing the structure of a CRF is usually based
on expert knowledge, and both the relationships between variables and/or
the features are specified [BG10]. In natural language processing, chain
CRFs or an extension of those models are often used, a grid structure is
common in image labeling etc.

Learning the structure automatically is a difficult task, because it usually
requires the evaluation of the parameters of several structures, a procedure
that in itself is already difficult (see previous section) [SCG09, CG10, BG10].

Nevertheless, a few algorithms have been proposed to learn CRF struc-
tures. Two of these algorithms are presented here. Specific algorithms for
learning tree-structured CRF are described in Section 8.2 and additional
randomized procedures are described in Section 8.3.

Both algorithms jointly optimize the structure and the parameters by
maximizing a regularised score (see Section 8.1.2) of the form:

score(D,G,wG)− λ||w||, (8.6)

where the first term measures the quality of the model and the second
penalizes model complexity. The subscript of wG emphasis that the weights
not present in G are null.

[SMFR08] considers a complete graph and couples the optimization of
the parameters with a L1 block regularizer, i.e. ||w|| is the L1-norm. The
set of all parameters associated to an hyperedge forms a block, and a block
where all the parameters are null translates into a removal of the edge from
the graph.

[ZLX10] uses a L1-norm as well, but progressively increases the number
of features used to compute the score. This is motivated by concerns for
the quality of the results of the approximate inference algorithms used for
parameter learning when they have to run on dense graphs, even if most
feature weights will be null. Therefore they start with an empty set of
features, and alternatively apply one step of a gradient descent algorithm
and the addition in the model of the “best” K (a user defined parameter)
features whose subgradients are the largest.
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Figure 8.2: This pairwise tree-structured CRF is defined over 4 class vari-
ables C.

8.2 Tree-structured CRFs

A tree-structured CRF is a pairwise CRF whose structure is a tree. With re-
spect to more general structures, tree-structured CRFs have the advantage
that exact inference is tractable, as for Bayesian networks. Indeed, exact
inference in a tree-CRF can lead to more accurate results than approxi-
mate inference on a model learned in a wider class of candidate structures
[SCG09].

Tractability of inference in tree-structured CRFs motivated the recent
development of algorithms to learn such models [SCG09, BG10]. The main
ideas of those algorithms will be briefly presented below. Both algorithms
output the graph (C, {CSi

}ki=1) based on a learning set {xDs , cDs}
N
s=1. They

both assume that the feature mapping is known, and that only pairwise
or univariate potentials are considered. Potentials with more than 2 class
variables are incompatible with the tree structure.

8.2.1 Learning a Tree-structured CRF via Graph Cuts

The algorithm proposed in [SCG09] is actually more general, since it pro-
duces a pairwise CRF of arbitrary tree-width k. When k = 1, it outputs
a tree-structured CRF. It takes as input a weighted graph G and removes
weak edges until the model has the required tree-width. It selects the edges
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C1

S2

S1

C2S

Figure 8.3: S is the separator of the cut (C1,C2|S). Dashed lines are the
cut edges.

to remove by using a minimum-weight cut algorithm. A cut (C1,C2|S) is a
partition of C into three disjoints subsets C1,C2 6= ∅ and S (illustrated in
Figure 8.3). The weight of the cut is defined as

∑
Oj∈C1,Ok∈C2

wOj ,Ok
, (8.7)

where wOj ,Ok
is the weight of the corresponding edge in G, called the cut

edges. The algorithm alternates between constructing a minimum-weight
cut and removing the associated cut edges, until the model has reached the
required tree-width.

When applying their methods to CRF, [SCG09] uses the conditional
mutual information as edge-weight:

wOj ,Ok
= I(Oj, Ok|X ) (8.8)

=
∑
x∈X

P(x)I(Oj, Ok|x) (8.9)

=
∑
x∈X

P(x)
∑
cj∈Cj

∑
ck∈Ck

P(cj, ck|x)
P(cj, ck|x)

P(cj|x)P(ck|x)
. (8.10)

Similarly to the optimization criterion of the Chow-Liu algorithm, using
this weight optimizes the expected conditional log-likelihood of the learning
set.
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8.2.2 Alternatives to Conditional Mutual Information

[BG10] focuses on learning tree-structured conditional random fields based
on the Chow-Liu algorithm [CL68]. Their main contribution is the develop-
ment of alternatives to I(Oj, Ok|X ) for scoring a prospective edge Oj, Ok.
They are motivated by the fact that estimating I(Oj, Ok|X ) based on a
finite learning set is not scalable as the number of inputs increases, both
from a computational and an accuracy point of view.

Instead, they propose two scores based on local inputs, i.e. X j, X k and
X jk, the inputs respectively mapped to the prospective factors defined on
Cj, Ck and Cj ∪ Ck. Those two scores are called Local Conditional Mutual
Information (CMI) and Decomposable Conditional Influence (DCI).

The former score is the mutual information conditioned to the local
relevant feature variables:

CMI(j, k) = I(Cj, Ck|X jk) (8.11)
= E(logP(Cj, Ck|X jk))

− E(logP(Cj|X jk))− E(logP(Ck|X jk)).
(8.12)

The latter score differs by the (conditioned) marginal probability distribu-
tion of Oj and Ok , which are only conditioned on the relevant inputs for
each variable:

DCI(j, k) = E(logP(Cj, Ck|X jk))

− E(logP(Cj|X j))− E(logP(Ck|X k)).
(8.13)

Based on the analysis of some problematic target models and on their ex-
periments, they conclude that the second score is preferable.

8.3 Mixtures of CRFs: State-of-the-art
Conditional random fields lie at the intersection between classification and
density estimation. Mixture models and perturb and combine have success-
fully improved those two fields, but have only been slightly exploited for
conditional random fields structure learning. In this chapter the concept of
mixture of conditional random fields is investigated.

The perturb and combine framework has already been exploited for con-
ditional random fields learning from a sample set, but mostly to learn a sin-
gle model without constraint, i.e. a model that will not necessarily permit
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exact inference. For example, [PT10] uses random forests to perform infer-
ence on a CRF. More precisely, this article develops a Metropolis-Hastings
algorithm for inference, and this algorithm relies on random forests to esti-
mate the probability to accept a transition.

Mixtures of tree-structured CRFs have also been proposed. [CG10]
builds a different tree-structured CRF for every possible input x. To do so,
they select, based on x, one tree structure spanning a superstructure (con-
taining at most pairwise relationships between class variables), and force
all features associated to edges not belonging to the selected tree to zero.
However, since inference is performed on only one CRF, it could arguably
not be considered a mixture of CRFs.

[POB09] starts with a given feature mapping and structure for the CRF.
In order to perform inference, it uniformly samples m tree-structured CRFs
Tk spanning the given CRF, and learns their parameters by optimizing the
sum of conditional likelihood of the sample sets according to each tree, i.e.

logllD,C|X (w|T ) =
m∑
j=1

N∑
s=1

lnPTj(cDs|xDs ,w). (8.14)

As in [CG10], the parameters associated to an edge are identical in all tree
structured-CRFs that have this edge.

Prediction is either performed by

• estimating the parameters of the full CRF by reweighting the param-
eters estimated for the set of tree-structured CRFs, and performing
inference on the full CRF,

• by performing inference on each tree-structured CRF Tk and applying
a voting strategy on this set of m predictions.

[MVC12] generates a mixture of tree-structured CRFs to label images.
Each label (e.g. tree, boring, big group) is a variable to predict, and such
a variable can take two values: yes or no. In addition to tree-structured
CRFs, they also assign a group of labels rather than a single label to each
node of the CRF. The model is then no longer a tree-structured CRF, but
a more general CRF with bounded tree-width.

A bayesian framework for learning CRF has also been developed in
[QSM05, WP06, PW06]. They use an approximation of the posterior prob-
ability distribution of the parameters for a given structure through the use
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of power Expectation Propagation [QSM05] or the Laplace approximation
[WP06] for logZ(X ,C,w). While they both derive an analytic expression
for the posterior probability of a configuration c, exploiting it for performing
MAP inference is not possible. Thus they respectively develop an iterative
process to obtain an estimate of c, or use this approximated distribution
to sample a set of models and average their predictions. In addition, the
Laplace approximation result was exploited to derive a bayesian score for a
given structure [PW06].

8.4 Mixtures of Tree-structured CRFs:
Proposed Meta-algorithm

This section is a first step towards developing perturb and combine learn-
ing algorithms for mixtures of tree-structured CRFs. A meta-algorithm
for learning mixtures of CRFs for variance reduction is proposed. It uses
as a building block the algorithm proposed in [BG10] for learning a tree-
structured CRF.

A mixture of tree-structured CRFs encodes a conditional probability
density of the form

PT (C|X ) =
m∑
j=1

λjPTj(C|X ) , (8.15)

where PTj is the conditional probability density encoded by the jth tree-
structured CRF. As for mixtures of Markov trees, PT (C|X ) is a well-defined
probability distribution if all weights λj are positive and sum to 1. The class
variables can be predicted for a given input x by arg maxC PT (C|X = x).

Performing this MAP inference operation on a mixture is however not
easy [POB09]. Computing PT (C = c|x) is easy for a particular configura-
tion c of the class variables, but the configuration maximizing this average
density is the result of the interaction of the densities encoded by the dif-
ferent terms in the model, and cannot be computed by averaging the distri-
butions. In particular, the MAP configuration may not maximize any term
of the mixture.

The problem of aggregating the terms of the mixture is discussed in
Section 8.4.2. Section 8.4.1 proposes a meta algorithm for learning mixtures
of CRFs, based on the perturb and combine principle.
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8.4.1 Learning

The meta-algorithm used in Chapter 6 to learn mixtures of Markov trees can
be modified to generate a mixture of tree-structured CRFs. The resulting
algorithm (Algorithm 8.1) differs from the original on two accounts. First,
the set of variables is partitioned into two sets, the class and the input
variables. Second, learning the graphical part of the model is divided into
two steps, one for the features and one for the structure.

Algorithm 8.1 Learning a mixture of tree-structured CRFs
Input: C; X ; D; m
T = ∅; λ = ∅; w = ∅
for j = 1→ m do
F [j] =SamplePairwiseFeatures(C,X ,D)
T [j] =SampleTreeStructure(C,X ,F [j],D [,T ])
w[j]=LearnParameters(T [j],D)
λ[j] =LearnWeight(T [j],D)

end for
Normalize(λ)
return (T ,w,λ)

Randomization can be introduced into each of the four steps of the
algorithms: SamplePairwiseFeatures, SampleTreeStructure, LearnParame-
ters and LearnWeight.

• SamplePairwiseFeatures is the procedure responsible for generating a
set of candidate features to be used inside the factors. As it essentially
consists in generating good candidate features to predict one or several
class variables, randomization introduced in this step can be inspired
by the approaches employed in feature selection and classification.
For example, one set of features considered by [MVC12] is the output
of a set of |C| SVM classifiers (each classifier is trained to predict the
output of a different variable Ci). For each candidate pairwise factor φi
defined on Ci1 , Ci2 , one possible approach may be to construct features
on the smallest subset of input variables whose mutual information to
Ci1 , Ci2 is the highest:

XSi
= arg min

|X ′Si
|

max
X ′Si

∈X
I(Ci1 , Ci2 ;X ′Si

) . (8.16)
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• SampleTreeStructure is the subroutine that is probably the most in-
teresting to randomize. It consists in selecting the edges between class
variables to be included in the model, so as to improve the estimation
of the probability density defined on the classes. It is thus closely
related to the Chow-Liu algorithm and to the methods developed in
this thesis, although the mutual information is replaced by the con-
ditional mutual information or another related quantity (see Section
8.2.2). The different randomization schemes introduced in this thesis
could be adapted to CRFs. However, new possibilities for random-
ization can also be considered. For example, it may be interesting
to randomize the input variables conditioning each estimate of the
conditional mutual information. A CRF could be constructed by con-
ditioning all conditional mutual information estimates on the same set
of randomly selected input variables, or by using a different set of ran-
domly selected input variables for each mutual information. Exploring
possible coupling between SampleTreeStructure and SampleFeatures
might also be interesting.

• LearnParameters can also be randomized. A randomization similar
to the one tested in this thesis, i.e. using a bagged replicate of the
learning set, can be used. However, as opposed to mixtures of Markov
trees, this step is not trivial for tree-structured CRF and is performed
by gradient ascent. Therefore, some extra-randomization might be
considered to reduce the computational complexity of this step.

• LearnWeight computes a weight associated to a given tree-structured
CRF. As for Markov trees, uniform or Bayesian weights can be con-
sidered. I suspect uniform weights will work better if the structures
are generated by methods similar to those developed in this thesis.

8.4.2 Aggregation

To predict the values of the class variables for a new set of observations,
several strategies are possible to avoid a brute force approach. For problems
with many class variables and/or a large cardinality, considering all solutions
may be intractable.

In the context of uniformly weighted tree-structured CRFs, [POB09]
proposed to perform a majority voting, for each variable, based on the MAP
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configuration cMAP,j of each term j of the mixture. Each class variable Ck
is assigned the value (adapted for a weighted mixture)

ck = arg max
cki

m∑
j=1

λjδ(c
MAP,j
k = cki) (8.17)

cMAP,j = arg max
c

PTj(c|x) , (8.18)

where δ(cMAP,j
k = cki) = 1 if Ck takes the value cki in the MAP configuration

cMAP,j
k for the jth CRF of the mixture.

They also proposed to perform a majority vote based on the marginals,
without expliciting it, and report the accuracy was similar. I assume this
voting strategy corresponds to

ck = arg max
cki

m∑
j=1

λjPTj(Ck = cki|x) . (8.19)

I suspect both strategies can lead to forbidden configurations. Indeed,
each strategy selects the value of each variable without considering the
values actually selected for other class variables. To avoid such a case, I
suggest to perform a majority over all configurations of the class variables
that are the MAP configuration for at least a tree of the mixture:

c = arg max
c∈{cMAP,j}

m∑
j=1

λjδ(c
MAP,j = c) (8.20)

or

c = arg max
c∈{cMAP,j}

m∑
j=1

λjPTj(C = c|x) . (8.21)

Considering a small subset of candidate solutions is easy. The set of can-
didate solutions {cMAP,j} can therefore be extended by the configurations
computed by the voting strategies proposed by [POB09]. It may also be pos-
sible to test all solutions within a given Hamming distance1 of any solution
in {cMAP,j}, or to use other heuristics to search for additional solutions.

1The Hamming distance between two configurations is the number of variables whose
values differ in the two configurations.
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8.5 Conclusion
This chapter has investigated the possibility to construct mixtures of con-
ditional random fields for multivariate classification. Conditional random
fields have first been defined and characterized. Then, learning these mod-
els have been discussed. Next, existing approaches to learning and infer-
ence with conditional random fields, based on mixture models, have been
described. In particular, a few algorithms relying and mixtures of tree-
structured conditional random fields have been examined. Finally, the ap-
plication of the perturb and combine to conditional random fields, in order
to construct a variance reducing mixture of tree-structured conditional ran-
dom fields, has been investigated.

A meta-algorithm for learning these mixtures has been constructed, by
adapting the meta-algorithm for learning mixtures of Markov trees. The
different subroutine of the new meta-algorithm have been discussed, in par-
ticular with respect to the different randomization schemes possible. Most
schemes developed in this thesis seem to be transposable to this new meta-
algorithm. Several new randomization schemes have also been proposed,
based on the elements specific to the class of conditional random fields.

In addition, a major difference between mixtures of CRFs and mixtures
of Markov trees has been identified. The aggregation mechanism, trivial
when inferring a marginal probability in a mixture of Markov trees, deserves
much more attention when performing MAP inference on a mixture of CRFs.
While inferring the MAP configuration of each term is easy, computing
the MAP configuration of the mixture is not. Therefore, new aggregation
strategies have been proposed.



Chapter 9

Final Words

9.1 Overview

This thesis has explored new learning algorithms for mixtures of Markov
trees, a model particularly interesting for density estimation in high di-
mensional problems. The methods developed in this thesis result from the
application of the perturb and combine framework to probabilistic graphical
models. They try to reduce the variance of a single Markov tree by random-
izing the Chow-Liu algorithm, and by averaging several models produced
by this randomized version.

The first step of this thesis was the analysis of existing Markov tree
learning algorithms, and in particular of the Chow-Liu algorithm. Reg-
ularization, another method to reduce the variance, was discussed in the
context of Markov trees, and a reference method was derived from this dis-
cussion. The Chow-Liu algorithm was also randomized, both to speed up
its execution and to make the result stochastic. The only way to reduce its
O(p2 log p) computational complexity is to subsample the number of edges
considered. The experimental evaluation of the two algorithms developed
(random subsampling or cluster-based subsampling) showed that sampling
good edges was important to achieve accuracy.

In the second step, mixtures of Markov trees were constructed. Two
classes of methods were considered. Algorithms of the first class construct
a mixture by repeatedly applying a given Markov tree learning procedure.
Therefore, the trees of the mixtures are independent from each other, condi-
tionally on the learning set and on the Markov tree learning algorithm used.

239
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Algorithms of the second class construct a mixture sequentially: each new
Markov tree is related to the structures of the previous trees in the sequence.
The Markov trees are therefore not independent anymore conditionally on
the learning set.

The first category of mixtures consisted of structures constructed by a
repeated application of the algorithms studied in the first part of the thesis,
either on the learning set or on a bootstrap replicate. Bagged mixtures of
Markov trees had already been shown to achieve a better accuracy than a
Chow-Liu tree. However, I tried a mixed method where only the structure,
as opposed to the parameters, are learned on a bootstrap replicate. This
new mixed variant, coupled to the Chow-Liu algorithm, proved superior to
any other method within the considered panel of methods. In addition, the
effect of the number of samples on these mixtures was studied: the fewer
samples, the stronger the improvement in terms of accuracy with respect
to a Chow-Liu tree. Finally, and as for single Markov trees, the more and
the stronger the edges considered by the algorithm, the better the mixture
tends to be. Since the randomized algorithms for tree structure learning
developed in the first step allow some control over the overall number of
edges considered by an algorithm without sacrificing too much strength,
these methods naturally offer an accuracy/complexity trade-off.

Because the strength of the edges considered influences the quality of the
mixture and because the number of edges considered influences the run time
of the learning algorithm, the second category tries to prevent the struc-
ture learning algorithms to waste time on weak edges once they have been
identified. This requires sharing information between the different succes-
sive applications of the base learning algorithms. Therefore, the structures
are constructed in a sequence, and each structure depends on the computa-
tion performed to construct the previous structures. Two algorithms using
a different mechanism to transfer information were developed. They both
consider all possibles edges for the first tree. The first mechanism, already
used by an existing method, considers for each tree the edges of the pre-
vious structure, to which it adds a random subset of edges. The second
mechanism selects a subset of edges by an independence test performed on
the edges during the computation of the first tree, and considers only this
subset of edges for any subsequent tree. This sharing of information yielded
significant improvements. The second mechanism in particular was able to
achieve an accuracy similar to the mixture of (mixed) bagged Markov trees
with a learning time reduced by one order of magnitude. These methods
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were also compared to and found to be most of the time more accurate
than the regularization reference, thus confirming the interest of the ensem-
ble models.

The third step of the thesis was the combination of mixtures reducing
the bias and mixtures reducing the variance. Replacing each term of an
expection-maximization [EM] mixture (reducing the bias rather than the
variance) by a bagged mixture of Markov trees significantly improves the
accuracy by reducing the variance of each term. Moreover, the improvement
in accuracy was observed to increase with the number of trees in the first
level. Since the optimal value of this number tends to rise with the number of
samples, marrying the two types of mixtures may improve the EM mixture
for any sample size, thus expanding the range of problems where the variance
reducing mixtures are useful.

Finally, another domain where the techniques designed in this thesis
could be applied was investigated: multi-target classification with condi-
tional random fields. This research domain lies in-between supervised learn-
ing, where perturb and combine was rather successful, and density estima-
tion with probabilistic graphical models, the focus of this thesis. A review
of the state-of-the-art showed that learning tree-structured conditional ran-
dom fields is an active research topic, and that mixtures of tree-structured
conditional random fields for variance reduction have been used recently, but
not investigated in details. Based on available results, a meta-algorithm was
proposed to apply the ideas developed in this thesis to these models.

9.2 Short Term Perspectives

Some additional experiments could be performed to refine the analysis of
the contributions of this thesis.

First, it would be interesting to compare the mixtures of Markov trees
constructed by perturbing and combining the Chow-Liu algorithm with
complete Bayesian posterior averaging of Markov trees. Computing this
posterior distribution has a cubic complexity in the number of variables,
and it does not permit inference directly. Quantifying the accuracy of this
distribution with respect to the target distribution would however be possi-
ble, and would constitute another interesting reference method, along with
the Chow-Liu tree and the regularized forest. This distribution could also
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be used to sample Markov trees, and to generate a mixture where inference
would be possible.

In addition, one could investigate why and on which type of problems
the mixtures reduce the variance better than a regularized model or the
Chow-Liu tree, and when the sequential mixtures are able to approximate
bagging well. Understanding what determines the quality of a mixture
could lead to the development of other learning algorithms, or to procedures
for automatically selecting the parameters such as the number of edges
considered by each tree learning algorithm. Potential informative quantities
are the distribution over the score of the trees generated, over the edges they
use (i.e. structure diversity), or over the mutual information values of these
edges.

On the other hand, the 2-level mixture could be compared to other
existing approaches designed to reduce the variance of an EM mixture, such
as a Markov chain Monte Carlo over the partitions of the learning set. New
methods can also be created by applying the perturb and combine principle
directly at the mixture level, rather than on each term of a mixture. This
could lead to more important reduction of the variance, but I suspect that
optimizing each mixture by the EM algorithm will be cumbersome from the
computational point of view.

Finally, the proposed mixtures of conditional random fields should be
further developed and tested on both synthetic and realistic datasets. In
particular, different aggregation strategies must be developed. Because
there is a possibly large set of variables to predict rather than a single
one, it might not possible to directly adapt aggregation strategies used in
classical ensemble methods for classification. For example, the different
models in the ensemble might each output a different MAP configuration.

9.3 Long Term Perspectives

The results of this thesis also generate new avenues of research, listed in
this section.

Other target distributions could be considered. In all the experiments
conducted, any target probability density generating the learning sets be-
longs to the class of Bayesian networks. It would be interesting to evaluate
the accuracy of mixtures of Markov trees on learning sets generated by tar-
get distributions belonging to the class of Markov random fields. Because
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the independence relationships in a Markov random field can be encoded
in the structure of a (non-trivial) ensemble of Markov trees, those mixture
models might work better with Markov random fields than with Bayesian
networks.

Another interesting question is whether this approach may be applied
to other types of variables, continuous and normally distributed variables,
or other types of numerical variables.

I believe some of the ideas developed in this thesis could be applied to
normal distributions. A mixture of normal probability densities could be
build in order to reduce the variance with respect to a single model. It would
be worth investigating whether learning a mixture of normal probability
densities, and then aggregating them, leads to a more accurate model than
estimating a single structure directly by averaging approaches. Indeed, a
few randomized procedures have already been developed to learn Gaussian
graphical models, e.g. [CR06, SS05]. Several other approaches have also
been developed for this task, in particular based on l1 norm regularization
[FHT08]. So the competition against existing methods is likely to be stiffer
than for Markov trees over discrete variables. In addition, perturb and
combine methods have also been used to improve the accuracy of the result
of l1 norm regularization [Bac08, MB10, WNRZ11]. The ideas developed
in this thesis to accelerate perturb and combine algorithms could also be
applied to improving these approaches.

The methods developed in this thesis can be directly used to learn a
probability density over a set of numerical variables, by discretizing these
variables and considering them as categorical variables. It would however
also be interesting to see whether specific graphical models exist for numer-
ical variables, and how they are related to Markov trees.

Other models than Markov trees may also be considered to build a mix-
ture. The class of Markov trees was selected because inference is linear in
the number of variables for this class of models. For some problems with
an intermediate number of variables, it may however be acceptable to per-
form inference on models of bounded tree-width. The larger the bound, the
larger the set of densities the models can encode. The reasoning behind the
different learning algorithms developed in this thesis can be applied to mod-
els of bounded tree-width, allowing more freedom to adapt the modelling
capacity of the output mixture.

The relationships between regularization and independence test based
methods should be explored further. Different points can be investigated.



244 CHAPTER 9. FINAL WORDS

• Various algorithms use one or more parameters linked to a thresh-
old on mutual information values. These parameters are for now not
selected based on a learning set. Automatic procedures could there-
fore be developed to select the values of the parameters of several
algorithms, based on the learning set.

– This would increase the accuracy of the algorithms developed.
Several algorithms for learning a single Markov tree or a mix-
ture of Markov trees have one or more parameters corresponding
to the risk of type I error in an independence test. This makes
the selection of the parameters easier than a threshold on mu-
tual information and allows a seamless adaptation to the number
of variables, but my experiments suggest that optimizing these
parameters on a learning set can still lead to an increase in ac-
curacy.

– This would decrease the accuracy of the regularization reference.
The reference algorithm developed and considered in this the-
sis provides an upper bound on the accuracy achievable by a
regularization of the Chow-Liu algorithm by a fixed threshold.
Comparing the accuracy of mixtures to a regularized tree whose
threshold (or number of edges) is optimized based on the learn-
ing set alone (and not on the sample size) may provide a more
realistic picture of the respective interest of regularization and of
the ensemble methods.

• Regularization could also be considered for each term of the mixture,
even though both reduce the variance. Indeed, in some of my ex-
periments, bagging the Chow-Liu algorithm led to a worse accuracy
than the original algorithm while a regularization of this original al-
gorithm resulted in a better accuracy. The two methods therefore do
not seem completely exchangeable. Rather they are, at least slightly,
complementary. However, in the methods developed in this thesis,
restraining the number of edges considered has been used to reduce
algorithm complexity rather than to reduce the variance. Jointly reg-
ularizing and randomizing the Chow-Liu algorithm may combine the
variance reduction capacity of both methods, and lead to learning
algorithms more accurate than any of these methods taken alone.
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• Making the parameters of the algorithms, in particular those assim-
ilated to a risk of type 1 error, evolve with the size of the mixture
might be another direction for improvement. Those parameters con-
strain each model inside the mixture. Ideally, the first model of the
mixture should be regularized to maximize the accuracy of this sin-
gle model. In this case, the mixture of size 1 is optimal with respect
to any other regularization used on a mixture of the same size and
constructed with the same learning algorithm. However, the experi-
ments performed showed that fewer constraints on the terms of the
mixture may lead to a better accuracy for larger mixture. Therefore it
is tempting to adapt the level of constraint to the number of terms in
the mixture, so that the mixture is optimal for any size, with respect
to any level of constraint.

9.4 Application Perspectives

In the long term, the methods developed in this thesis to estimate a proba-
bility density based on a set of observations can have potential applications
in electrical engineering or bioinformatics.

In electricity, an interesting application would be the modelling of the
probability distribution of the consumption at the different nodes of a power
distribution network. Depending on external factors, the network can be
in different modes of consumption. A model of the probability distribution
could be used e.g. to extract those consumption modes from a learning set,
or to identify a small number of nodes that can be monitored to determine
the current mode of the system.

A model could also be constructed to encode the probability distribution
of the evolution of those consumptions between two points in time. Based
on this model, it could be possible to construct a Markov chain for longer
term time prediction, e.g. forecasting the consumption at different points
in time, based on current and/or past measures of the consumption.

To model time series, it may also be interesting to see whether mixtures
could be combined with dynamic Bayesian networks. A dynamic Bayesian
network is a Bayesian network that encodes a probability distribution over a
sequence of variables. Could a mixture of tree-structured dynamic Bayesian
networks be constructed? Where should the edges be allocated: to model
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the time transition, or to model the interactions between the variables of a
given time point?

In bioinformatics, it would be interesting to learn a probability density
over gene expression levels or other similar biological quantities related to
the functioning of a cell. However biological networks usually have feedback
loops, and Markov trees are likely to have trouble in modelling such loopy
dependencies. This may in turn lead to a poor estimation of the probability
density. However, most of those loops involve at least one gene coding for
a transcription factor, i.e. a gene regulating the expression level of other
genes. Therefore, an approach to modelling gene expression level might
be to decompose the learning problem into a cyclical and a non-cyclical
component, and later on to combine them to learn tree-structured models.



Appendix A

Experimental Problems

This appendix contains the description of the different target distributions
used to generate the learning sets on which the algorithms presented in this
thesis are evaluated.

All distributions are encoded by Bayesian networks, because these mod-
els are easier to manipulate. As opposed to other classes of PGMs such as
Markov random fields, Bayesian networks don’t require the computation of
a partition function because they are naturally normalized (see Section 3.1
for details).

Generating an observation from a BN is carried out as follows. At first,
the values of all variables are unknown. Let S denote the set of all the
variables X such that a value has already been assigned to all the parent
variables PaXG of X (initially this set is thus composed of the subset of vari-
ables which have no parents in the considered BN). Until S is empty, take
out one of its elements (the selection criterion doesn’t matter), randomly
generate a value for the corresponding variable using its conditional distri-
bution with the already chosen values of its parent variables, and update
S by adding those variables not yet considered and for which the parent
variables have all already been settled. Because the underlying graph is
a directed acyclic graph, S will remain non-empty until all variables have
been assigned a value, and the procedure is guaranteed to terminate.

The experiments were carried out on three different types of target dis-
tributions. Randomly generated Bayesian networks are described in Section
A.1 and randomly generated mixtures of Markov trees in Section A.2. Fi-
nally, a set of more realistic distributions, available from the literature, is
presented in Section A.3.
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A.1 Randomly Generated Bayesian Networks
A Bayesian network is composed of a graph and a set of parameters. In
this section, both are randomly generated to specify a Bayesian network.
Therefore, these distributions are sometimes denoted by the term “synthetic
distributions” in the core of this manuscript.

The generation of the parameters is first described, followed by the de-
scription of tree-structured models and then by the generation of more gen-
eral Bayesian networks.

A.1.1 Parameters

The parameters θ of any Bayesian network generated are divided into sets,
one set

θi,Xi|a =
{
θi,xji |a

}|Xi|

j=1
(A.1)

for each variable Xi and each value a of the parents PaXi
G of Xi variables.

Any set θi,Xi|a defines a (marginal) conditional probability density. The sum
of the elements of this set must therefore equal to one.

The parameters of any Bayesian network generated are sampled from
a product of uniform Dirichlet distributions, one for each variable and per
configuration of the parent variables:

P(θ|G) =

p∏
i=1

∏
a∈V al(PaXiG )

Dirichlet(
1

|Xi|
, . . . ,

1

|Xi|
) . (A.2)

This generation process makes no assumption about a set of parameters,
any configuration is equally likely. Moreover, each set of parameters is gen-
erated independently from the others. However, in a problematic situation,
e.g.

θi,Xi|a = θi,Xi|b ∀a,b ∈ V al(PaXi
G ) , (A.3)

removing some or all of the edges incoming to Xi does not modify the prob-
ability distribution encoded by the Bayesian network, making learning the
structure difficult. The probability to generate sets of parameters verify-
ing Equation A.3 is null1. However, values of the parameters only slightly

1This is not true for the degenerate case where |X | = 1, but a variable X whose value
is certain can be removed from the network.
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different can also be problematic for learning. This could be avoided by
enforcing sufficient diversity in the parameter values.

A.1.2 Markov Trees

Structures of Markov trees were uniformly generated through the use of
Prüfer lists. The procedure is described in Section 5.4.1.

A.1.3 DAG Structures

The constraint on the maximum number of parents was relaxed to generate
other Bayesian networks, but it remained upper bounded. Without such a
limit, the number of parameters would grow so much that storing them in
memory would not be possible. Indeed, the number of parameters grows
exponentially in the number of parents of a variable.

The structures of bounded in-degree k were generated by first arbitrarily
ordering the p variables, and then by successively randomly drawing, for any
i, first the number of parents of Xi in [0,min(i−1, k)], and then selecting at
random these parents in {X1, . . . ,Xi−1} (without replacement). Considering
only these variables obviously enforces the directed acyclicity constraint on
the structure. Notice that the mean number of edges of such a structure
converges to pk/2 as p tends to infinity.

These models are denoted by DAG-p-k. DAG-200-10 corresponds to a
network of 200 variables, where the number of parents was bounded to 10.

A.2 Randomly generated mixtures of Markov
trees

The weights and the terms of the mixtures were generated independently.
In addition, each term was generated independently from the others.

The weights of a mixture of m terms were always set to a constant value
1/m. This ensures that no weight is equal or close to zero. The estimation
of such a mixture is easier, by avoiding (near) degenerate cases. However,
the information about the weights was not provided to the algorithms esti-
mating the weights.

The different terms of the mixtures were generated by the method of
Section A.1.2.
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Name p |Xi| |E(G)| |θ| reference
Alarm10 370 2-4 570 5468 [BSCC89]
Child10 200 2-6 257 2323 [SDLC93]
Gene 801 3-5 977 8348 [TBA06]
Hailfinder10 560 2-11 1017 97448 [ABE+96]
Insurance10 270 2-5 556 14613 [BKRK97]
Link 724 2-4 1125 14211 [JK99]
Lung Cancer 800 2-3 1476 8452 [AST+10]
Munin 189 1-21 282 15622 [AJA+89]
Pigs 441 3-3 592 3675 [Jen97]

Table A.1: Distributions from the literature and their characteristics. |θ|
corresponds to the number of independent parameters.

A.3 Reference Distributions

The distributions described in the previous sections are generated accord-
ing to procedures I designed myself (except the Markov trees). This may
have unconsciously influenced the design of the algorithms presented here.
Therefore I also tested these algorithms on reference distribution taken from
the literature and regularly used to evaluate algorithms for learning proba-
bilistic graphical models.

These distributions (and associated learning and test sets) were down-
loaded from the online supplement of [AST+10]. Table A.1 lists their main
characteristics: name, number and range of cardinality of variables, number
of edges and of independent parameters, and reference.

Any distribution whose name ends by a number is an extended version
of a smaller, reference model. The original model was extended because
it had too few variables. The extension process is called “tiling” and was
proposed in [TSBA06]. It consists in copying the network several times (the
number at the end of the name corresponds to the number of copies), and
joining the copies together with additional edges.

Alarm was originally a network for patient monitoring in a hospital.
Child was meant as a decision system for medical diagnosis, to be used
by telephone operators answering calls for a ’blue baby’ problem. Gene is
a network constructed based on gene expression data in yeast. Hailfinder
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predicts extreme weather conditions in Northeastern Colorado. Insurance
is a network for risk assessment in the context of car insurance. Link is
a pedigree network in human, used to compute the distance between two
genes. Lung Cancer is a network constructed based on human lung cancer
gene expression data. Munin is an expert system for the analysis of elec-
tromyography (EMG) measurements. Pigs is a genetic linkage network over
a population of pigs.





Appendix B

Terminology of Graph Theory

Probabilistic graphical models rely on graph theory. Therefore, many con-
cepts used to qualify graphs are also applied to PGMs. The goal of this
appendix is to centralize the definitions of a few terms of graph theory used
in this thesis.

A graph is a pair (V,E). V denotes a set of elements called the nodes
or vertices. E is a subset of elements of V × V . The elements of E are
called the edges of the graph, and are said to link or join the nodes. In the
present thesis, the two vertices of an edge will always be different.

A graph is called directed (respectively undirected) when it contains
only directed (undirected) edges. A directed edge is an edge (i, j) such
that there is no edge (j, i) in the graph, with i, j ∈ V . When (i, j) ∈ E and
(j, i) ∈ E, the graph contains an undirected edge between i and j (or the
opposite). In other words, the ordering of the two nodes is important for a
directed edge but not for an undirected one. A directed edge therefore has
an origin and a target, and is often represented by an arrow.

A hypergraph is a pair (V,E) where the elements of E are allowed to
contain any number of vertices. These elements are called hyperedges.

A bipartite graph is a graph where the nodes can be partitioned into
two disjoint sets V1 and V2 and where an edge can only link a node of V1
and a node of V2.

A path is a sequence of vertices i1, . . . , ik of the graph (V,E), such that
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(iq, i(q+1)) ∈ E ∀q ∈ [1, k−1]. A directed edge links the source to the target,
but not the other way around.

A cycle is a path whose first and last vertices are identical.

An acyclic graph is a graph without cycle.

A chord is an edge between two non-successive vertices of a loop.

A chordal graph is a graph where every loop of more than three vertices
has at least one chord.

A subgraph from a graph (V,E), induced by a subset of vertices V ′ ∈ V ,
is a graph (V ′, E ′), where E ′ is the subset of E containing all the edges of
E that link only vertices in V ′.

A completely connected graph is a graph where there is an edge
between every pair of variable.

A clique of an undirected graph is a completely connected subgraph
of this graph. The size of a clique is its number of vertices. A maximal
clique of a graph is a clique such that there is no greater clique in the
graph that contains this clique. The tree-width of a graph is the size of
its maximal cliques, minus 1.

In a directed graph, the parents of a node Vi are the subset of all the
nodes Vj such that E contains an edge from Vj to Vi, i.e. all the nodes from
which there is a path of length 1 ending at Vi. The ancestors of Vi are the
nodes from which there is a path of any length to Vi. Likewise, the children
(respectively descendants) of a node Vi are all the nodes for which there
exist a path of length 1 (of any length) to Vi.

The moral graph of a directed graph (V,E) is an undirected graph
(V,E ′), constructed from (V,E) by

• for every vertex V, marrying, i.e. linking by an undirected edge, the
parents of this variable in the graph;

• transforming each directed edge in an undirected edge.

A topological ordering of the vertices is an ordering such that, for
every pair of vertices Vi,Vj (i 6= j), an edge Vi → Vj can be present in the
graph if and only if Vi precedes Vj in the ordering.



Appendix C

Complexity Theory and
Probabilistic Graphical Models

This appendix is a compilation of different computational complexity results
from the literature. A brief introduction to complexity theory is first given,
before these results are presented for learning and then for inference in
Bayesian networks and other probabilistic graphical models.

C.1 Complexity Theory

The goal of complexity theory is to classify different types of problems
(a question to be solved) according to the computational complexity (and
memory requirements) of the best algorithms that can be used to solve each
type of problems. This complexity is studied as a function of the input of
the problem, because it can be reasonably expected that an algorithm will
take longer to complete on a larger problem. Inside a given complexity
class, the algorithms scale more or less (depending on the class) similarly
with the input size of the problem.

The goal of the current section is to intuitively present some notions of
complexity theory. This introduction will hopefully help a reader unfamiliar
with complexity theory to understand the results listed later in the present
appendix. A formal definition of these notions is outside the scope of this
appendix.

Two important complexity classes are P and NP (Non-deterministic
polynomial time). Those two classes contain only decision problems, i.e.
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problems where the answer is either “yes” or “no”. The class P contains all
decision problems that can be solved (by a deterministic algorithm) in a
time that is polynomial in the size n of the input. NP contains all decision
problems for which a solution can be verified in a time polynomial in the
input. The class NP contains the class P, and the two classes are believed
to be different. Establishing whether or not they are indeed different is one
important question in computer science.

As an example, the subset-sum problem is a decision problem that be-
longs to NP but is (thought to be) not in P. The problem asks whether, in
a set of integers (the input), a non-empty subset of them sum to zero. The
associated function problem is to find such a non-empty subset. Verifying a
solution to this function problem is easy (summing the subset and checking
whether the result is indeed zero), but finding a solution is difficult and is
(believed to be) impossible in a time that can be expressed as a polynomial
function of the number of input integers. Solving the decision problem, i.e.
determining whether the set of solutions of the associated function problem
is empty or not, is also (believed to be) difficult.

The class NP contains easy or tractable problems (i.e. problems in P,
that can be solved by an algorithmic of polynomial complexity in the in-
put), but also problems that are thought to be untractable (i.e. problems
that (if indeed P 6= NP) would be unsolvable by an algorithm of polyno-
mial complexity). To distinguish between tractable and (potentially) harder
problems, the hardest problems in NP are said to be NP-complete. To
establish that a given problem is NP-complete, it is sufficient to show that a
(known) NP-complete problem can be transformed into the given problem
by a polynomial algorithm. Expressed differently, it is sufficient to show
that, if an algorithm can solve the given problem in polynomial time, than
it can also solve a NP-complete problem (and any other problem in the
class) in polynomial time.

There are problems that are even more complicated than NP-complete.
The class NP-hard contains all problems that are at least as hard as NP-
complete problems, because NP-hard problems can be used to solve NP-
complete problems. NP-hard problems do not have to be decision problems.
The class NP-complete is the intersection of NP and NP-hard.

#P contains problems that output a numerical value. #P problems
correspond to a “counting” version of a decision problem that is in NP: rather
than asking whether there is a solution, the #P problems asks how many
solutions there are. As an illustration, the counting version of the subset-
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sum problem is “how many different non-null subsets of a given set of integers
sum to zero?” Such a problem is at least as hard as the corresponding NP
problem. An algorithm solving this counting problem can be used to solve
the associated decision problem: if the number of solutions to the function
problem is known, it is trivial to know whether there is at least one solution.

The two classes RP and PP are slightly different from the other classes
considered so far. These classes classify decision problems based on the
complexity of algorithms that are allowed to make random guesses. RP
contains problems for which there exist a polynomial time algorithm that

• always outputs “no” where the true answer to the problem is “no”

• and that has at probability of 0.5 or greater to output “yes” when the
true answer is “yes”.

PP contains problems for which there exist a polynomial time algorithm
that

• outputs “no” with a probability equal to or greater than 0.5 if the true
answer is “no”,

• and that output “yes” with a probability greater than 0.5 if the true
answer is “yes”.

In addition, complexity theory also construct complexity classes based
on the notion of oracle. An oracle is a subroutine that is considered capable
to answer a class of problems with a cost of 0. Calling the subroutine has
a cost of 1. The notion of oracle allows the study of different sources of
complexity in a given problem. For example, the class PPP is a class of
decision problems that can be solved by a polynomial time algorithm that
have access to an oracle for problems in PP.

C.2 Complexity of Learning in Probabilistic
Graphical Models

The number of possible DAGs grows superexponentially with the number
of variables p [Rob77]. Learning the structure of such a model is therefore
a complex task, even when imposing strong restrictions on the structure.
This section contains various results regarding the complexity of learning
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probabilistic graphical models in general and Bayesian networks in partic-
ular.

Markov trees are one of the classes of models for which structure learning
is easy. Indeed, it can be performed by the algorithm proposed by Chow
and Liu [CL68], described in Section 3.3.4 and of complexity O(p2 log p).

Another positive result is that the structure of a Bayesian network can
be recovered by a polynomial number of calls to an independence oracle (i.e.
using an infinite amount of observations), provided the number of parents of
any variable is bounded by a known constant. The SGS algorithm described
in Section 3.3.5 can be used to do so.

For the structure of most other classes of probabilistic graphical models,
the complexity of learning is much less scalable, and usually belongs to the
NP-hard class of problems.

[Bou95] proved that exploiting an independence oracle to construct a
Bayesian Network is NP-hard for binary variables.

[CGH94, Chi96] demonstrated that learning a Bayesian network struc-
ture from a finite learning set of observations based on a Bayesian score,
such as BDe or BD, is NP-hard when each node is constrained to have at
most 2 parents. This result also holds if the limit on the number of parents
is higher.

[CHM04] extended the two previous results. They proved the conjecture
of [Bou95] that exploiting an independence oracle to construct a Bayesian
Network is NP-hard for variables of cardinality higher than 2. They also
consider learning a structure based on a consistant score computed from
an infinite (or very large) number of observations, and show this problem is
NP-hard for structures in which each node has at most 3 parents. Again,this
result also holds for a higher limit on the number of parents.

Structures close to trees are also difficult to learn: finding the opti-
mal polytree [Das99], unless the target distribution factorises according to
a polytree model, finding the optimal path (or chain model) [Mee01], or
finding the best component-restricted forest (a forest where the number of
nodes in each connected component is bounded) [LXHG+11] are all NP-hard
problems.

Hardness results have also been uncovered for other PGM. [KS01, Sre03]
considered the problem of finding the maximum likelihood Markov random
field structure of bounded tree-width t with respect to a set of observations,
and found it to be NP-hard as well for t ≥ 2 (t = 1 corresponds to the case
of Markov trees).
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Some Probably Approximately Correct learning (PAC learning [Val84])
procedures have also been developed for learning Markov Random fields.
These algorithms do not always provide the best structure, but are guaran-
teed to construct a structure close to the optimal most of the time. [NB04]
developed a polynomial time algorithm in p for PAC learning bounded tree-
widths MRF structures. [AKN06] proposed an algorithm of similar com-
plexity for PAC learning MRF structures of bounded connectivity (i.e. the
number of neighboring variables of each factor is bounded). [CG07] designed
another algorithm for PAC learning bounded tree-widths MRF structures
in polynomial complexity in p. All three algorithms are exponential in the
bound. Finally, [EG08] devised a PAC learning procedure for learning such
structures in a time polynomial in p and k, the bound on the tree-width.

Because of these hardness results, learning algorithms usually rely on
heuristics and/or limitations of the space of candidate structures to learn a
model, by restricting the resolution of the search space [AW08] or by limit-
ing its range (e.g. by constraining the number of candidate parents or the
global structures searched [EG08]). In practice, learning of a probabilis-
tic graphical model structure is considered not to be possible over a few
thousands variables [Auv02, EG08].

C.3 Complexity of Inference in Probabilistic
Graphical Models

This section reports theoretical results about the complexity of the infer-
ence operations defined in Section 3.2.1. These different queries belong to
[widely believed] distinct complexity classes. The complexity on inference
has also been investigated for approximate answers and/or under differ-
ent constraints on the class of Bayesian networks. Complexity results are
presented in the following order: unconstrained model, approximated in-
ference, bounded probabilities and finally structural constraints (bounded
tree-width or (poly)tree structures).

On general networks, computing P(X ), the probability of a single vari-
able, has been found to be NP-hard [Coo90] and later to be #P-complete
[Rot96]. Note that computing P(X = x), the probability of an instantiation
of all variables is however polynomial in the number of variables. [Shi94]
proved that MEP inference is NP-hard. [PD04] studied the complexity of
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MAP inference and demonstrated it to be NP PP -complete.
Motivated by these early results for algorithmic complexity of inference,

algorithms for approximated inference were developed. However, [DL93]
showed that approximating probability inference is Np-hard as well: unless
NP ⊆ RP, there is no polynomial-time approximation algorithm for prob-
abilistic inference, even with a probability of failure. [Rot96] achieves a
similar result. [AH98] considered approximation algorithms for MEP, and
found the problem to be NP-hard as well. In addition, they found out that
computing the second (or lth) best explanation given the best (the (l − 1)
best) explanation(s) is NP-hard too. So is approximating MAP according
to [PD04].

Some of these results however can be weakened when the probabilities
of the network or the probabilities of interest are bounded away from 0
and 1, i.e. 1 > P(Xi = xi|PaXi = a) > 0. [DL97] provided a quasi-
polynomial (O(2(logn)d), with d an integer depending on the longest path
in the structure) time approximation of probabilistic inference. Computing
MEP or MAP however remains respectively NP-hard [AHH00] and NP PP -
complete [PD04], even with bounded probabilities.

Constraining the structure of the underlying graph of the Bayesian
network also simplifies the problem. Computing P(X ) is feasible with
polynomial-time algorithms on Markov trees [KP83], and algorithms such
as the junction tree algorithm scales as p exp(k) for inference on Bayesian
networks of bounded tree-width k, see e.g. [LS98]. Moreover, bounded tree-
width is necessary to obtain tractable inference. For Markov Random Field
(with pairwise potentials), [CSH08] showed that, if a series of hypothesis
about complexity theory are true (see the reference for details), inference
is superpolynomial in the tree-width k. [KBvdG10] derived a similar result
for Bayesian networks: bounded tree-width is necessary for inference to be
polynomial in n, based on a conjecture about complexity theory. MAP infer-
ence however remains NP-hard for polytrees (shown for polytrees with the
maximum number of parents bounded by 2 and therefore of tree-width= 2)
[PD04].

Today, inference in PGMs remains an active research topic. Contests are
regularly held to evaluate the best algorithms available. To the best of my
knowledge, the last contest about this topic is the Probabilistic Inference
Challenge (PIC2011)1. Many learning methods also specifically target low

1http://www.cs.huji.ac.il/project/PASCAL/

http://www.cs.huji.ac.il/project/PASCAL/
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tree-width structures in order to limit inference complexity, see e.g. [BJ01,
EG08, FNP99, SCG09].
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