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Thèse présentée par

Simon Balon

en vue de l’obtention du titre
de Docteur en Sciences de l’Ingénieur

Année académique 2008–2009



ii



Abstract

The Internet traffic is constantly increasing following the emergence of new
network applications like social networks, peer-to-peer, IP phone or IP televi-
sion. In addition, these new applications request better path availability and
path quality. Indeed the efficiency of these applications is strongly related to the
quality of the underlying network. In that context network operators make use
of traffic engineering techniques in order to improve the quality of the routes
inside their network, but also to reduce the network cost of increased traffic
handling with a better utilization of existing resources. This PhD thesis covers
several topics of Traffic Engineering and Fast Restoration in IP/MPLS networks.

Our first contribution is related to the definition of a well-engineered net-
work. In the literature mathematical formulation of Traffic Engineering (TE)
requirements are very diverse. We have thus performed a comparative study
of many objective functions, in order to differentiate them and choose in a ra-
tional way the one that best reflects Traffic Engineering goals. We have also
designed a method approaching optimal TE, whereby we divide the traffic ma-
trix in N sub-matrices and route them independently, based on the derivatives
of the objective function.

The second topic addressed in this work concerns link weight optimizers
(LWOs). Link weight optimization is the traffic engineering ”standard”technique
in networks running link state routing protocols (which are widely used in transit
networks). These link weight optimizers suffer from several limitations due
to the BGP (Border Gateway Protocol) Hot-Potato rule, which is basically
not considered by such optimizers. Therefore we have proposed a BGP-aware
link weight optimization method that takes problematic Hot-Potato effects into
account, and even turns them into an advantage. We have also studied how
LWOs behave in big networks which have to use BGP route reflectors. Finally
we have studied whether forwarding loops can appear or not when traffic is split
among multiple equivalent egress routers, an optional BGP feature that we did
use in our Hot-Potato aware LWO.

Our last contribution concerns network resilience. We have proposed a solu-
tion for a rapid recovery from a link or node failure in an MPLS network. Our
solution allows a decentralized deployment combined with a minimal bandwidth
usage while requiring only reduced amount of information to flood in the net-
work. This method is the first that makes possible a decentralized deployment
combined with an optimal resource consumption.

To easily simulate and test the methods proposed in this work, we have also
contributed to the development of TOTEM - a TOolbox for Traffic Engineering
Methods.
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fils Alexandre pour leur soutien et leur réconfort quoti-
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1
Introduction to Traffic Engineering (TE) in

Computer Networks

Today the Internet is used as a support for a significant part of the world-
wide communications. The development of efficient peer-to-peer systems, cheap
phone call softwares, but also the Internet television will probably increase this
phenomenon in the near future. But the Internet was first designed as a best-
effort network without any guarantee. With the development of new applica-
tions running on top of the Internet, it has to deal with increasing traffic load,
but also with users that more and more request better path quality in terms of
bandwidth and delays, and also for a better network availability. During the
past years increased quality of service was implemented by overprovisioning the
link capacities, but it will be less and less feasible for network operators in the
future, as fast as the traffic grows. In that context it is important to use Traffic
Engineering techniques to make a better use of the network resources, or more
generally to put the traffic where the network bandwidth is available, in every
possible situation.

Traffic Engineering deals with optimizing the network routes in order to
better drive the traffic through the network, avoiding overloaded links. Said in
another way, Traffic Engineering techniques have to optimally map the traffic to
the underlying topology. Optimizing the network routes first requires to under-
stand how the different routing protocols interact to determine the end-to-end
paths of traffic in the Internet. The Internet is composed of the interconnection
of thousands of autonomous systems which are independently managed.

We will describe Internet routing in section 1.1. Then section 1.2 introduces
Traffic Engineering concepts and section 1.3 describes our contributions. Finally
section 1.4 presents the publications related to this work.

1.1 Routing in the Internet

Each packet sent on the Internet follows a path which is defined by routing
protocols. The exterior gateway protocol (EGP) defines the path at the network-
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1. INTRODUCTION TO TRAFFIC ENGINEERING (TE)

level. This path is called the AS path1, which is basically composed of the
succession of every AS on the way from a source host to a destination host. The
EGP used in the Internet is BGP (Border Gateway Protocol). In each AS the
path from each ingress router to each egress router is defined by the interior
gateway protocol (IGP). There are two types of IGPs: link state versus distance
vector. The IGPs most commonly used in transit networks are OSPF ([Moy98])
and ISIS ([Cal90]), which are both link state routing protocols. Recently MPLS
has also been introduced in many ASes. The path followed by a packet is the
combination of both the IGP and the EGP. The topology of figure 1.1 will be
used to illustrate some concepts introduced in this section.

P1 P2 P3 P4

N1 N2

N3 N4

R1

R2

R3

R0

AS1
AS2

Engineered AS

Figure 1.1: Example Topology

1.1.1 Intradomain Routing Protocol: IGPs and MPLS

Routers that are part of a domain running a link state routing protocol periodi-
cally exchange link state information. Each router in the network floods it with
link state packets containing information about its directly connected links. For
example, if a router is connected to three links, it will send to every other router
of the domain information about these three links. Basically the information
about the link is the neighbor router (the router at the other end of the link) and
an administrative weight associated with the link by a network administrator.
So each router receives link state packets from every other router of the domain.
Then each router can combine all this information to build a complete view of
the AS topology.

In an AS the path between ingress and egress routers are computed by a
Shortest-Path algorithm based on the link weights. All the traffic is sent on
the shortest path (the path whose sum of link weights is minimum). If ECMP
(Equal Cost Multi-Path) is enabled, several equal minimum cost paths can be
used simultaneously to evenly split the traffic among them. In that case some
routers use a simple round-robin mechanism to equally balance the load on
multiple next-hops. But a better solution is that routers use a hash table that
maps a hash of multiple fields in the packet header to one of these paths, so that
every packet of a flow will follow the same path with limited packet reordering
(see [CWZ00] for a performance analysis of hashing based schemes for Internet
load balancing). This means that in practice it may not be a perfect even split
of traffic on every shortest path. Some recent work proposes to split traffic with

1AS stands for Autonomous System. In the work we use domain and AS interchangeably.
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1.1. ROUTING IN THE INTERNET

a finer granularity based on flowlet ([SKK04]). Figure 1.2 shows an example of
ECMP inside an AS. This figure assumes that there are two equal cost paths
from R0 to R1.

P1 P2 P3 P4

R1

R0

AS1
AS2

1/2
1/2

Engineered AS

Figure 1.2: Intradomain Equal Cost Multipath (ECMP)

More routing flexibility is provided by MPLS (Multi-Protocol Label Switch-
ing). MPLS allows the network operator to establish explicit tunnels between
routers. In the MPLS context tunnels are called Label Switched Paths (LSP).
A classical MPLS configuration inside an AS is a full-mesh, where one tunnel
is established from every ingress router to every egress router. With this con-
figuration, when an IP packet enters the MPLS network, the first MPLS router
that handles it (i.e. the ingress router) encapsulates it in an MPLS packet and
forwards it on the LSP whose end router is the egress for that packet. Inside
the MPLS network the packet is forwarded based on its MPLS header only.
The end router of the LSP decapsulates the packet which is then routed like
a classical IP packet. If multiple MPLS LSP tunnels are available between an
ingress and an egress router, it is possible to specify an arbitrary split of traffic
between these tunnels.

LSP

AS

Label

IP Packet

Encapsulation

Decapsulation

Router

Router

Egress

Ingress

A

F

M

Figure 1.3: MPLS Routing

MPLS forwarding is based on fixed-length labels which are contained in
the MPLS headers, and not on the IP destination address. The labels are
defined at LSP setup. Label Distribution Protocol (LDP) is defined in [ADF+01]
for distribution of labels inside one MPLS domain. The setup of constraint-
based LSPs using LDP is described in [JAC+02]. An extension of RSVP can
also be used to establish LSPs ([ABG+01]). Each MPLS router has a routing
table which associates with each (input interface, input label) pair an (output
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interface, output label) pair.

Note that the concept of Traffic Engineering was first introduced in MPLS
networks ([AMA+99, Awd99, XHBN00, ACE+02, AJ02]). The advantages of
MPLS for Traffic Engineering are the capacity of explicit routing and arbitrary
splitting of traffic. Each LSP tunnel can be routed independently of each other.
This is of course not the case when shortest paths are used as in that case all
the paths are dependent of the same common set of link weights.

1.1.2 Interdomain Routing Protocol: BGP

BGP allows routers to exchange reachability information between neighboring
ASes ([Ste99]). Each AS is connected to several neighboring ASes by interdo-
main links. Depending on the connectivity of the network and on the destina-
tion of the packet, one or several neighboring ASes can be chosen to forward
the packet to the destination. The choice of the BGP next-hop (i.e. the egress
router in this AS or the border router in the next AS, that will relay the packet
toward the destination) is based on the information exchanged with neighbors
and on a local configuration implementing its routing policy.

There are two types of BGP sessions that are used to exchange routes be-
tween routers. eBGP sessions are used between routers in different ASes, while
iBGP sessions are used between routers in the same AS. When a router receives
a route on a iBGP or eBGP session, this route has to pass an input filter to
be eligible in the BGP decision process. This process selects the best route
toward each destination IP prefix2. The best route selected by this process is
then forwarded on other BGP sessions after passing through an output filter.
The whole process is described on figure 1.4.

Figure 1.4: BGP route selection

The BGP route selection process (the central box of figure 1.4), implementing
routing policies, is made of several criteria ([BGP, Fou]):

1) Prefer routes with the highest local preference which reflects the routing
policies of the domain;

2An IP prefix is a block of IP addresses, i.e. a set of end host’s Internet addresses.
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2) Prefer routes with the shortest AS-level Path;

3) Prefer routes with the lowest origin number, e.g., the routes originating
from IGP are most reliable;

4) Prefer routes with the lowest MED (multiple-exit discriminator) type
which is an attribute used to compare routes with the same next AS-hop;

5) Prefer eBGP-learned routes over iBGP-learned ones (referred to as the
eBGP>iBGP criterion in this work);

6) Prefer the route with the lowest IGP distance to the egress point (i.e. the
so-called hot-potato, or early exit, criterion);

7) If supported, apply load sharing between paths. Otherwise, apply a
domain-dependent tie-breaking rule, e.g., select the one with the lowest
egress ID.

We will illustrate how BGP is running on the network of figure 1.5. P1, P2,
P3 and P4 are four IP destination prefixes. Dashed lines represent an available
BGP inter-AS route. So N1 and N2 have a path to prefix P1 and P2; N1, N2 and
N4 have a path to prefix P3, ... Now suppose that these routes pass through the
output filters of these routers and that these are forwarded on eBGP sessions
from N1 to R1, from N2 to R2, ... Then R1, R2 and R3 receive the BGP routes
that have to pass through input filters. These are then used in the BGP decision
process and are selected as best routes as these are the only available routes for
the moment. Then the selected routes are forwarded on iBGP sessions inside
the AS. A classical iBGP configuration inside an AS is an iBGP full-mesh where
every router has an iBGP session with every other BGP router in the AS. With
this configuration every BGP router receives on an iBGP session the best route
chosen by every other BGP router in the AS. If there is an iBGP full-mesh in
the network we consider, R0, R1, R2 and R3 will receive every available route.

If we now consider router R0, it has multiple available routes toward every
prefix. It will use the BGP route selection process to choose the best one among
all available ones. For example on figure 1.5 we see that R0 has to choose
between three available routes to prefix P3.

In this example we did suppose that an iBGP full-mesh was configured inside
the AS. In big networks operators use route reflectors ([BCC00]) to decrease the
number of iBGP sessions inside the AS compared to a full-mesh configuration.

P1 P2 P3 P4

N1 N2

N3 N4

R1

R2

R3

R0

AS1
AS2

?

??

Engineered AS

Figure 1.5: Three available BGP routes
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1.2 Traffic Engineering

As we have seen in section 1.1, the end-to-end paths used in the Internet result
from the combination of both Inter- and Intra-domain routing protocols. Traffic
Engineering methods tune the parameters of these protocols to optimize the
paths of traffic.

We can define Traffic Engineering as follows. Traffic engineering involves
adapting the routing of traffic to the network conditions, with the joint goals of
good user performance and efficient use of network resources.

Usually intradomain TE has different objectives than interdomain TE. In-
tradomain Traffic Engineering deals with the optimization of routes inside the
network. The goal of this kind of optimization is for example to equally balance
the load on intradomain links, to avoid bottleneck links, to minimize congestion
or to minimize path delays. On the other side Interdomain Traffic Engineering
considers the tuning of interdomain routing protocol parameters to impact the
inter-domain paths. The goal is to balance the traffic on interdomain links, by
choosing the ingress and/or the egress routers for some part of the traffic.

1.2.1 Intradomain Traffic Engineering

Consider a network running a classical link state intradomain IGP protocol (ISIS
or OSPF). The routes in the network will be computed by a Shortest Path First
(SPF) algorithm based on some link weights assigned by the network adminis-
trator. By default, the weights can either be all set to 1 (leading to a minimum
hop routing) or to the inverse of the capacity of the links (as recommended by
CISCO), for example.

We will see in chapter 5 that these simple routing configurations can be
proven to optimize some simple traffic engineering objectives. But these rout-
ing configurations do not take traffic into account and thus can lead to some
problems. Indeed, one link can be highly loaded (many flows are routed via this
link) while others are nearly not used. The high load of some links can lead to
congestion or to a high delay due to packet queuing. In this case, it is known
that the quality of the network would be improved if some flows were routed on
a somewhat longer but less loaded (i.e. with more available bandwidth) path.
One high level objective of a simple traffic engineering technique could be to
balance the load over all links by trying to decrease the load of the most loaded
link(s).

We will illustrate these concepts on the network of figure 1.6. Suppose that
each link has a weight of 1. Traffic goes from node S1 to D and from node
S2 to D. The cost of path S1 → N1 → N2 → D is equal to the cost of path
S2 → N1 → N2 → D = 3 < 4 = the cost of path S1 → N1 → N3 → N4 → D
which is equal to the cost of path S2 → N1 → N3 → N4 → D. This implies that
both flows will use the upper path which may be congested while the bottom
path is still underutilized.

A Traffic Engineering method should try to optimize the routes to balance
the load on both paths and avoid traffic congestion on the upper path. After
Traffic Engineering, the network routes should be as depicted on figure 1.7. This
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N1

N2

N3 N4

S1

S2

D

Figure 1.6: Fish topology: hop count shortest paths

routing scheme provides a better usage of network resources and also better user
performance (as congestion is avoided).

N1

N2

N3 N4

S1

S2

D

Figure 1.7: Fish topology: Split the traffic on both paths

This simple example highlights that Traffic Engineering techniques should
take traffic into account to compute the traffic routes.

Typically, off-line traffic engineering methods optimize the routes based on
aggregated traffic information: the Traffic Matrix. The Traffic Matrix (TM)
associates with each pair of (ingress, egress) routers inside the AS a traffic
value. This can for example be the mean traffic value that has been measured
during the peak hour. Optimizers can use multiple Traffic Matrices as input,
each TM being associated with one particular network state. We explain how
to obtain a Traffic Matrix in chapter 3.

1.2.1.1 Traffic Engineering in OSPF/ISIS networks

The first technique that can achieve the traffic engineering objective as defined
in the preceding section is the following. Find a set of link weights such that
when the shortest paths will be computed with respect to these weights, the
load will be balanced on the whole network and the maximum link load is
minimized. This problem of finding the set of weights that minimizes the load
of the most loaded link(s) is combinatorial and some heuristics to solve it have
been proposed in [FT00, FRT02]. We detail the different versions of LWOs in
chapter 2.
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1.2.1.2 Traffic Engineering in MPLS networks

A completely different solution to this complex problem is to factorize it into
several simpler ones. In an MPLS network, the paths (and the granularity) of
all the flow aggregates of the network can be chosen freely. With this kind of
tunnel-based technology, it is possible to route all the flows with the goal of
optimizing one specific objective function (or a combination of several ones).
If the traffic matrix changes, it is possible to reroute or reoptimize only some
of the LSPs, while avoiding classical transient loop problems. To recover from
failures, it is possible to precompute and pre-establish some backup LSPs. One
backup LSP will only be active when the corresponding primary LSP has failed
[MCSA03]. Again, the paths of these backup LSPs can be freely chosen so that
in case of any failure no congestion will occur.

MPLS routing is thus somewhat more complicated than pure IP routing,
but it allows more flexibility and more degrees of freedom than IP’s shortest
path routing. It is also possible to use hybrid solutions combining shortest
path routing for most flows and MPLS tunnels for some traffic aggregates. The
essential merit of this hybrid approach is to avoid a full mesh of LSPs, which
may be impractical for very large networks ([SBL06]).

1.2.2 Interdomain Traffic Engineering

The goal of Interdomain TE is to control incoming and/or outgoing traffic.
There are multiple motivations for interdomain traffic engineering. In [FBR03]
the authors provide three examples to motivate the need for interdomain TE :

• Congested inter-domain link. If a network operator detects that an inter-
domain link is congested, it can change the interdomain paths to divert
some traffic from that link.

• Upgraded link capacity. When the capacity of an interdomain link is
upgraded, the network operator wants to drive more traffic on that link.

• Violation of peering agreement. Some ASes have commercial agreements
that limit the amount of traffic they exchange. If the limit is exceeded
the network operator may need to reduce the traffic sent on corresponding
interdomain links, which can be done by changing the route for part of
the traffic flowing on these links.

Interdomain TE is not a trivial task for several reasons. The main reason
is that a network operator has only an indirect and incomplete control on the
interdomain paths. BGP routing policies are flexible but complex. The best
route chosen by a router depends on these policies, but also on the BGP routes
received by neighboring ASes. The system is distributed and a best route change
in one AS can result in the best route change in one of its neighboring AS. As
a result it is very difficult to predict the total effect on the global system of a
local change in one particular AS.

Interdomain TE is generally performed in a trial-and-error manner ([UQ05]).
The different techniques that can be used to control the traffic on interdomain
links are described in [QUP+03].

8
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1.3 Contributions of this work

Our first contribution is related to the definition of a well-engineered network.
In the literature mathematical formulation of Traffic Engineering (TE) require-
ments are very diverse. We have thus performed a comparative study of many
objective functions, in order to differentiate them and choose in a rational way
the one that best reflects Traffic Engineering goals. We have also designed a
method approaching optimal TE, whereby we divide the traffic matrix in N sub-
matrices and route them independently, based on the derivatives of the objective
function.

The second topic addressed in this work concerns link weight optimizers
(LWOs). Link weight optimization is the traffic engineering ”standard”technique
in networks running link state routing protocols (which are used in most transit
networks). These link weight optimizers suffer from several limitations due
to the BGP (Border Gateway Protocol) Hot-Potato rule, which is basically
not considered by such optimizers. Therefore we have proposed a BGP-aware
link weight optimization method that takes problematic Hot-Potato effects into
account, and even turns them into an advantage. We have also studied how
LWOs behave in big networks which have to use BGP route reflectors. Finally
we have studied whether forwarding loops can appear or not when traffic is split
among multiple equivalent egress routers, an optional BGP feature that we did
use in our Hot-Potato aware LWO.

Our last contribution concerns network resilience. We have proposed a solu-
tion for a rapid recovery from a link or node failure in an MPLS network. Our
solution allows a decentralized deployment combined with a minimal bandwidth
usage while requiring only reduced amount of information to flood in the net-
work. This method is the first that makes possible a decentralized deployment
combined with an optimal resource consumption.

To easily simulate and test the methods proposed in this work, we have also
contributed to the development of TOTEM - a TOolbox for Traffic Engineering
Methods.

1.3.1 Definition of a Well-Engineered Network

Basically engineering the traffic of a computer network can be seen as solving
an optimization problem: the network operator has to find the ”best” routing
scheme for current traffic and network conditions. The traffic and network con-
ditions determine constraints that must be respected while the operator can
tune routing parameters that determine the traffic routes. A fundamental but
not well understood problem in Traffic Engineering is the mathematical formu-
lation of the best routing scheme, which reflects the Traffic Engineering goals
and objectives. In the literature we can find a series of requirements that a
well-engineered network should fulfill, such as: minimize the delay, minimize
losses, avoid having some parts of the network over-utilized while other parts
are under-utilized, ... All these requirements have been published, for example
by the IETF (Internet Engineering Task Force). We have noticed that it is very
difficult to obtain a mathematical formulation of all these requirements. This is
probably why many scientific papers propose some mathematical functions to
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evaluate the quality of a solution (i.e. a network state) based on precited re-
quirements, but proposed functions never include all these requirements. In that
context it is difficult to figure out which function is the best. We have thus
performed an extensive study of several objective functions found in
the literature, in order to differentiate them and determine a rational
way to choose one function that best reflects Traffic Engineering goals
([BSL05, BSL06]).

A good TE objective function reflecting real needs of network operators is
required in every TE algorithm. Usually TE problems are combinatorial and
efficient heuristics are needed to find near-optimal solution in reasonable time.
In that context we have developed a new method to find a routing
scheme that approaches the optimum defined by the objective func-
tion ([BL06]). This method divides the traffic matrix in N sub-matrices and
routes each of these independently. By default we use the best objective func-
tion determined in previous study but we can also use another one. We outline
two possibilities to implement this method in routers.

1.3.2 Link Weight Optimizers and BGP Hot-Potato rule

We have also studied several limitations of the classical and quite
well-studied method to perform TE inside an AS running a link state
routing protocol (OSPF/ISIS). This classical method consists in using a
link weight optimizer (LWO) to try and find the optimal set of link weights for
a given intradomain traffic matrix. We have proposed several contributions and
improvements to the state of the art of LWOs.

The first limitation is the following: it has been shown that the classical
approach is inadequate because it ignores a potential impact on interdomain
routing. Indeed, the resulting set of link weights may trigger BGP to change the
BGP next hop for some destination prefixes, to enforce hot-potato routing poli-
cies. In turn, this results in changes in the intradomain traffic matrix that have
not been anticipated by the link weight optimizer, possibly leading to degraded
network performance. We have first quantified this degraded performance on a
real dataset, on which the worst case traffic matrix has led to a maximal link
utilization over 100%, while the optimizer predicted less than 30%. Then we
have proposed a new BGP-aware link weight optimization method
that takes hot-potato effects into account, and even turns them into
an advantage ([BL08]). This method uses the interdomain traffic matrix and
other available BGP data, to extend the intradomain topology with external
virtual nodes and links, on which all the well-tuned heuristics of a classical link
weights optimizer can be applied. A key innovative asset of our method
is its ability to also optimize the traffic on the interdomain peering
links. We have shown that our approach does so efficiently at almost no extra
computational cost, by testing it on a real dataset.

We have then found another limitation of LWOs. While the second gener-
ation of LWOs has been able to optimize link weights while taking hot-potato
effects into account, these tools relied on the complete visibility assumption ful-
filled by e.g. a full-mesh iBGP configuration. In iBGP configurations based on
route reflectors, which usually hide some reachability information from routers,
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this second generation of LWOs suffers from some problems, caused by the par-
tial visibility, including path deflections (i.e., the actual egress router is not the
expected one), which may in turn create forwarding loops. We have proposed
a (third generation) LWO which embeds a BGP routing solver that
can always predict the actual egress router, even when route reflec-
tors are used. It can also forbid solutions leading to path deflection.
Its efficiency has also been evaluated on a real dataset.

Finally we did study a last problem related to BGP-aware LWOs. These
LWOs can benefit from iBGP multipath load sharing to balance the traffic on
multiple inter-domain links, as do classical LWOs with Equal Cost Multipath
to balance the load on multiple paths inside the AS. But it has been said that
splitting the traffic amongst multiple available BGP-equivalent routes can lead
to forwarding loops. We have shown that under reasonable assump-
tions, forwarding loops should not appear when iBGP multipath load
sharing is used. Indeed we have shown that BGP configurations reflecting
commercial relationships ensure that no forwarding loops are created. Anyway
as it is not possible for a network operator to verify the configurations of all the
involved ASes in the Internet, we have analyzed what would happen if BGP con-
figuration would not reflect commercial relationships, even though in principle
it should be the case. We have shown that even in this case, a forwarding loop
cannot appear immediately after activating iBGP multipath. The forwarding
loop could only appear if in addition to the aforementioned conditions, some
ASes change their policies in a particular way. Moreover we have shown that
even in this case, if a forwarding loop appears, it is only transient. This leads us
to conclude that activating iBGP multipath for routes with different ASPATH
is not as dangerous as it may seem at first.

1.3.3 Resilience in MPLS networks

Finally we have studied a peripheral TE problem related to resilience
in case of network failures. Inside an AS, when a link or node fails, the
intra-domain routing protocol (OSPF or ISIS) needs some time to converge to
a new stable routing state. During this time period, all the packets that were
initially routed via this link or node are lost when multiple paths are not avail-
able. Moreover once the routing protocol has converged, it is not sure that there
is no congestion in the network. In MPLS networks it is possible to establish
in advance backup paths that will be used in case of failure. Thanks to these
preestablished paths, it is possible to reduce the duration of service unavail-
ability to the minimum. These backup paths can also be computed so that no
congestion will appear in the network after the failure. But this protection has
a cost in terms of bandwidth consumption. Indeed for an optimal protection,
bandwidth has to be reserved for backup paths. In our research unit Mélon et al.
had previously proposed a sophisticated resource aggregation technique based
on the concept of bandwidth sharing between backup paths, but also between
primary and backup paths ([MBL03]). To deploy this algorithm in a decen-
tralized environment, each node which computes a backup path needs some
information to optimise this computation. This information is the bandwidth
reserved on each link of the network for primary paths, but also for backup
paths. The computing node also needs to know when bandwidth reserved for
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backup will be used (i.e. we have to specify which link and/or node failures will
result in activating backup paths using this bandwidth). This means that a huge
amount of data may flow through the network. Indeed a naive approach is to
flood the network (i.e. one message on each link of the network) with a message
each time the information related to the reserved bandwidth on a link changes
(for example because a path has been established on this link). To solve this
problem we have proposed a solution where the nodes obtain almost
all the information they need from RSVP messages (RSVP is used to
establish paths in the network). This mechanism drastically reduces the
amount of data to flood in the network. This method is the first which
makes possible a decentralized deployment combined with an optimal
resource consumption ([BML06]).

1.3.4 The TOTEM Toolbox

We also want to note our contribution to the development of TOTEM, a
TOolbox for Traffic Engineering Methods. The goal of this toolbox was to
develop an open source software collecting a great variety of traffic engineering
(TE) algorithms. Once integrated in the toolbox, these different TE algorithms
can be combined for a particular purpose, which is one of the key advantages
of such a toolbox. The utility of the toolbox is much higher than the sum
of the utilities of the embedded algorithms. We have integrated MPLS and
pure IP Intradomain TE tools but also BGP Interdomain TE tools. We have
demonstrated the usefulness of the TOTEM toolbox by testing its
capabilities on a real dataset. In that case study we have analyzed and
compared different traffic engineering methods, which highlighted the pros and
cons of each method ([SBD+05, BLD+07]). Note also that all the methods
presented in this thesis have been implemented and tested in the
TOTEM toolbox framework.

A frequent problem for researchers that want to asses the quality of a new
method is the difficulty to access to real operational data concerning topolo-
gies and traffic matrices. It is important to simulate new traffic engineering
algorithms on real and not only on randomly generated data as this gives more
credibility to the study. It is then easier to convince reviewers of the real effi-
ciency of the new algorithm. We have also collaborated with UCL to obtain
real traffic measurements ([UQLB06]).
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2
Overview of Main Intradomain TE Systems

This chapter presents the main ideas developed in intradomain TE techniques
found in the literature. Note that the concept of Traffic Engineering and the
description of the different involved routing protocols have been introduced in
the preceding chapter.

We divide the presented techniques into two main categories: centralized ver-
sus distributed. Typically centralized techniques must be run on a server and
resulting solutions are then installed on routers. On the contrary, distributed
algorithms are directly executed by routers. This implies that distributed tech-
niques can be more reactive, but can be less precise as they are based on local
instead of global information. Distributed algorithms are also designed to use
less computational resources as these methods have to be run on routers. Traf-
fic engineering techniques can also be classified along other axes: intra-domain
versus interdomain, IP versus MPLS or on-line versus off-line.

The extensive presentation of the whole set of Traffic Engineering techniques
and algorithms that have been proposed in the literature would be far too long
for a chapter in this work. We have intentionally limited our presentation of
related works to a selection of the main representative ideas of this research
field. This selection is thus obviously subjective and non-exhaustive. We hope
we did not forget any important work in the area. We refer to survey papers like
[WHPH08, Rex06, MCSA03, YF03] for other analyses and descriptions of the
state of the art in Traffic Engineering. In [LM04] the authors specifically analyze
Traffic Engineering issues in optical networks based on WDM technology.

2.1 Centralized off-line algorithms

Multicommodity network flow (MCNF) One basic traffic engineering
method consists in formulating the routing problem as a Linear Program (LP)
([AMO93]). The routing is optimized for one traffic matrix and one topology.
One commodity is assigned to each pair of (ingress, egress) routers. The value of
this commodity is the traffic that flows between these two nodes. The algorithm
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returns one routing strategy that minimizes the given linear objective function,
while respecting the link capacity constraints. The provided objective function
can for example be the maximum link utilization.

The routing scheme found by such an algorithm can be implemented in the
network with MPLS LSPs. Note that the number of LSPs of the solution can be
quite high. This method is often used as benchmark to evaluate the optimality
gap of TE heuristic algorithms.

Link Weight Optimizers While Traffic Engineering concepts have been in-
troduced with MPLS, researchers have rapidly developed Traffic Engineering
techniques for ASes running only OSPF or IS-IS intradomain protocol. These
methods try to find the best possible set of link weights, so that computed
shortest paths based on these link weights lead to a good link utilization state.
These optimizers have been rapidly introduced in section 1.2.1.1. We will now
detail the different variants of this method. OSPF link weight optimization is
probably the most studied TE technique.

The first paper dealing with link weight optimizers is [FT00] (extended in
[FT04]). The considered problem is combinatorial and they show that opti-
mizing the link weights for a given set of traffic matrices is NP-hard. So the
complexity of a link weight optimizer resides in the efficiency of the used search
technique. They use a sophisticated heuristic based on tabu search, guiding the
search with hashing tables to avoid cycles. They show that on AT&T network
with projected traffic demands they obtain a nearly optimal routing scheme, not
far from the routing found by an optimal MCNF algorithm. They also test their
algorithm on random generated networks and traffic matrices. They conclude
that it is possible to obtain a well-engineered network with the OSPF protocol
and so MPLS is not really required to perform TE. Similar studies have been
performed in [ERP02, BRRT05].

One potential problem with this approach is that the link weights are opti-
mized for one traffic matrix. If the traffic changes, the set of link weights has
to be updated. But changing all the link weights can introduce some problems,
as the new link weights have to be flooded in the whole AS, then routing tables
have to be recomputed and in the meantime packets can be reordered or even
be trapped in transient forwarding loops and discarded. In [FT02] Fortz and
Thorup study how to limit the number of link weight changes to go from the
current routing to a better routing optimized for the current (updated) traffic
matrix. They also propose to find a single set of link weights which is optimized
for several traffic matrices (for example one representative day TM and one
representative evening TM).

In [FT03] Fortz and Thorup analyze link failure scenarios. They adapt
their heuristic to find a single set of link metrics which is robust to all single
link failures. A similar study is presented in [NSB+03], [Yua03] or [SG05]. In
[FRT02] the authors describe the global approach to traffic engineering which
includes all the contributions of preceding papers.

Hybrid IP/MPLS optimization In [SBL06] the authors propose a hy-
brid IP/MPLS approach. Most of the traffic is routed using classical short-
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est path routing. For the flows that cannot be routed optimally using short-
est path routing, MPLS Label Switched Paths are computed and established.
This approach takes advantage of both IP and MPLS technologies and pro-
vides a flexible method to traffic engineer a network on a day to day basis.
In the practical study, the establishment of a few LSPs is sufficient to obtain
a good network state. Other hybrid IP/MPLS approaches are presented in
[BALM01, Rie03, MK04b, MK04a, SS04].

Demand Oblivious Routing In [AC03], Applegate and Cohen raise some
interesting questions about Traffic Engineering. They study the interactions
between the routing and the traffic estimation. They start their work with the
assumption that traffic patterns change over time and that it is not generally
possible to obtain a good estimate of the current Traffic Matrix. From this
point they study the importance of an accurate view of the traffic to obtain
good utilizations of the network. They propose an algorithm to obtain a robust
routing with limited knowledge of the applicable traffic demands. They test
their algorithm on topologies provided by the Rocketfuel Project ([SMW02]).
They estimate link capacities with reverse engineering and they generate random
traffic matrices for these topologies.

For the tested topologies and traffic matrices, they arrive to surprisingly
not so bad demand oblivious routing schemes with no knowledge of the traffic
matrices. With limited knowledge of the traffic matrix they improve the quality
of the solutions found.

COPE An improvement to the techniques of demand-oblivious routing is pre-
sented in [WXQ+06]. They state that the problem of oblivious routing is that
the network state can be quite far from optimum under normal traffic condi-
tions. The authors of [WXQ+06] propose to optimize the routing for measured
(normal) traffic matrices, while providing a worst case guarantee in case of un-
predicted traffic peaks. These TE algorithms are called Common-case Optimiza-
tion with Penalty Envelope (COPE). They try to take the best from oblivious
routing and from prediction based TE.

Two-phase Routing Recently a new two-phase routing scheme has been
proposed ([KLOS06]). In the first phase traffic is sent from the source to inter-
mediate nodes, while in the second phase, traffic is sent from the intermediate
nodes to the destination. In the first phase the traffic is split on different paths
toward intermediate nodes in predetermined proportions. The most important
point in two-phase routing scheme is the handling of traffic variability with sta-
tistical multiplexing of traffic at intermediate nodes, so that this scheme does
not require measurements of traffic in real-time nor reconfiguration of the net-
work in response to traffic changes. This is fully interesting in network with
highly variable traffic. In [KLS06] the authors extend this routing scheme to
provide resilience, protecting against link failures.

DEFT and PEFT Let us note that routing protocols were not designed for
Traffic Engineering. The main weak point of OSPF/ISIS protocols is shortest
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path routing combined with equal split on equal cost paths. Some work have
proposed to avoid this limitation to perform better traffic engineering for current
OSPF/ISIS networks via unequal split on shortest paths ([SGD05]).

There are some recent works arguing that instead of trying to optimize
existing routing protocols that were not designed with optimization in mind,
researchers should design new routing protocols that are easier to optimize
([HRC07]). In that work the authors also illustrate the design trade-off between
network optimizability and the overhead on network resources and complexity.

A recent interesting work in that direction is presented in [XCR07, XCR08].
These works analyze how close to optimal routing a link-state routing protocol
can be. In [XCR07] and [XCR08], Xu et al. design an extension to intradomain
link state routing protocol where the routers can direct traffic on non-shortest
paths, with an exponential penalty on longer paths. These extensions are called
Distributed Exponentially-weighted Flow SpliTting (DEFT) and then Penalyz-
ing Exponential Flow SpliTting (PEFT). The proposed modification leads to
an easier-to-solve optimization problem.

DEFT keeps the simplicity and robustness of link-state routing protocols as
routers compute paths based on link weights but approaches the efficiency of
protocols that allow arbitrary traffic split on any paths. Contrary to DEFT,
PEFT is proven to achieve optimal TE, and the authors of [XCR08] have
demonstrated that link weight computation for PEFT is highly efficient in theory
and in practice, while it has not been demonstrated for DEFT.

C-BGP C-BGP1 is a BGP routing solver ([QPBU05]). The main goal of
this simulator is to compute the outcome of the BGP message exchange and
BGP decision process run on routers, without simulating unnecessary details.
As a result C-BGP is different from the other available open source simulators
[Pre, Tya02] which are not able to model networks as large as the Internet,
because the simulation becomes quickly untractable as the size of the simulated
topology increases, due to the simulated details which have no impact on the
final state of the routing tables. At the end of a simulation run, C-BGP provides
the interdomain routes selected by BGP routers in a domain.

The route computation of C-BGP relies on an accurate model of the BGP
decision process as well as several sources of input data. The model of the
decision process takes into account every decision rule present in the genuine
BGP decision process as well as the iBGP hierarchy (route-reflectors). The input
data required by C-BGP includes intradomain and interdomain information.

C-BGP can be used to test different BGP configurations to perform Inter-
domain Traffic Engineering.

1C-BGP is out-of-scope for this related works section, as we discuss main intra-domain
methods and algorithms. Anyway we need to introduce it here as we will use it in some
algorithms presented in subsequent chapters.
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2.2 On-line constraint-based routing

In this section we review several constraint-based routing (CBR) algorithms.
Typically these are TE algorithms that are designed to be deployed in an on-
line MPLS-like environment. The path selection is performed at the ingress
router, based on a traffic demand request. The request is composed of an ingress
node, an egress node and a requested bandwidth. Based on this information the
algorithm chooses one path from all the available paths respecting the bandwidth
constraints. Then this path needs to be established using for example RSVP.

As the path computation is performed at the ingress router, it needs to
obtain some information concerning the available bandwidth in the network.
Typically such information can be obtained using TE extensions to traditional
link state routing protocols (like [KKY03]).

CSPF, WSP and SWP CSPF (Constraint Shortest Path First) algorithm
computes the shortest path (i.e. the path whose sum of link weights is minimal)
that satisfies some bandwidth constraints, i.e. all links on the path must have
enough free bandwidth to route the demand. It is basically Dijkstra’s shortest
path algorithm applied on a pruned topology, where links with not enough free
bandwidth are removed. This algorithm can be used to route an LSP which
needs to reserve a certain amount of bandwidth on the path.

CSPFHopCount is the CSPF algorithm applied with unitary link weights.
As a result it computes the path with minimum number of links, or equivalently
the minimum number of hops.

WSP (widest-shortest path, introduced in [GOW97]) is an improvement of
CSPFHopCount. It tries to balance the traffic in the network. It chooses a
feasible path with minimum hop count, and if there are multiple equal minimum
hop count paths, it chooses the one with the largest available bandwidth. A
dual idea leads to the SWP algorithm (shortest-widest path) where the path
with largest residual bandwidth is chosen first, and if multiple widest paths are
available, the minimum hop count path is chosen in that set.

DAMOTE DAMOTE [BML03a] (Decentralized Agent for MPLS Online Traf-
fic Engineering) is a routing algorithm used to compute LSPs under constraint.
DAMOTE is more sophisticated than a CSPF algorithm. The difference is that
DAMOTE finds the path that minimizes a given objective function under band-
width constraints. Many different objective functions can be used like resource
utilization (DAMOTE operates as CSPFHopCount in this case), load balancing
(DAMOTE tries to balance the traffic load equally on all links of the network),
hybrid load balancing (where long detours are penalized), preemption-aware
routing (where induced reroutings are penalized).

DAMOTE is generic for several reasons. Firstly, the score function is a
parameter of the algorithm. Secondly, constraints can be combined quite freely.
For example, it is possible to define a capacity constraint for different class
types (CT) of traffic. In each CT, several preemption levels can be defined.
The admission control algorithm will accept a new LSP only if there is enough
free bandwidth on all the links of this LSP. The free bandwidth on a link is
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computed taking into account the reserved bandwidth of lower preemption level
LSPs only (these LSPs are more important). So it is possible to preempt less
important LSPs if needed. In this case, DAMOTE is able to choose the “best”
set of LSPs to preempt.

DAMOTE computes in an efficient way a near optimal solution. It is also
compatible with MAM [LL05] (Maximum Allocation Model) which has been
proposed by the IETF MPLS Diff-Serv working group.

MIRA Kar et al. presented an on-line routing algorithm (MIRA) based on the
concept of minimum interference ([KKL00]). The amount of interference on a
particular source-destination pair (s, d) due to routing a flow between some other
source-destination pair is defined as the decrease in the maxflow between s and
d. The maxflow value is an upper bound on the total amount of bandwidth that
can be routed between two edge nodes ([AMO93]). The minimum interference
path for a particular source-destination pair is the path that maximizes the
minimum maxflow between all other source-destination pairs. The idea is that
a new request must follow a path that does not “interfere excessively” with a
route that may be critical to satisfy a future demand. The problem of finding
the minimum interference path is proved to be NP-hard. Therefore, Kar et
al. proposed to determine appropriate link costs, prune links with insufficient
available bandwidth and compute the shortest path in the pruned topology. The
definition of link costs involves the notion of critical link for an ingress-egress
pair, which is a link belonging in any mincut for that source-destination pair.
For each source-destination pair, MIRA computes the maxflow and the set of
critical links.

Iliadis and Bauer [IB02] introduced a new class of minimum-interference
routing algorithms that reduces the complexity of the path computations. This
class of algorithms is called SMIRA (simple minimum-interference routing algo-
rithms).

DORA In [BSI02] Boutaba et al. introduce DORA, a Dynamic On-line Rout-
ing Algorithm for computing constrained routes in an MPLS network. The goal
of DORA is to efficiently utilize existing network resources and minimize net-
work congestions. The work of DORA is inspired by MIRA algorithm, but
performs better in terms of path-setup rejection ratio and rerouting percentage
upon link/node failure with much less computation complexity.

DORA algorithm computes paths based on link weights, each link weight
being a function of residual bandwidth and also a parameter defined as the
path potential value (PPV). The idea is to avoid links that have a low residual
bandwidth, but also links that have a high probability to be part of other paths.
This latter idea is reflected in the value of the PPV parameter.
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2.3 On-line distributed solutions

A minimum Delay Routing Algorithm Using Distributed Computa-
tion A visionary work concerning distributed on-line routing was presented in
[Gal77] by Gallager. The multipath minimum delay routing problem (of deter-
mining at each node the split of traffic that should be routed on each of the
router’s neighbor outgoing links) is presented as an optimization problem. The
author proposed to compute the routing tables in the routers with an iterative
algorithm. Nodes apply this algorithm independently of each other. At each
iteration the routing tables are updated based on information communicated
with neighboring nodes about the marginal delay to each destination. The dis-
tributed algorithm is shown to converge to a network state that minimize the
overall average cost (e.g. delay) in the network if the traffic is stationary.

MATE In [EJLW01] Elwalid et al. present a multipath adaptive traffic engi-
neering (MATE) mechanism for MPLS networks. The main goal of MATE is
to balance the load among multiple paths to avoid network congestion. They
propose an algorithm to monitor path quality and detect congestion in order to
dynamically adapt the traffic split among multiple paths. MATE does not force
intermediate nodes to perform traffic measurements.

TeXCP Another on-line solution to the Traffic Engineering problem is pro-
posed in [KKDC05]. The authors present TeXCP which is an on-line distributed
protocol that balances the load on multiple available MPLS Label Switched
Paths, that are pre-established in order to provide path diversity. The main
idea of TeXCP is similar to the main idea of MATE, but they show with sim-
ulations that TeXCP is more effective at balancing the load than MATE and
converges faster.

The complete TE solution is composed of several elements. First, multi-
ple paths are computed and established between each pair of (ingress, egress)
routers. Then with each of these pairs of routers is associated a TeXCP agent.
The TeXCP load balancer at the ingress router splits the traffic towards each
egress router on the multiple available paths. The traffic load on each path (i.e.
the utilization of the links along each path) is monitored via probes sent from
the ingress to the egress and then acked by the egress. This explicit feedback
is used to adapt the splitting ratios at regular time intervals, in order to move
some traffic from overloaded paths to underloaded paths. The granularity of the
traffic split is the flow. Each flow is forwarded on a unique path to avoid reorder-
ing of packets which could lead to decreasing the TCP throughput. The time
constants and the traffic shifts are carefully designed to avoid traffic oscillations,
using control theory.

REPLEX Another interesting work on on-line routing is presented in [FKF06].
The authors propose to use a new traffic engineering protocol. The proposed
protocol balances traffic on equal-cost paths computed using the underlying
routing architecture, such as OSPF, MPLS or BGP. The traffic split is dynam-
ically adapted and react to traffic changes. The authors use game-theoretical
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background to obtain a fast convergence property and avoid oscillations. Infor-
mation about the traffic conditions along the path can be optionally exchanged
between routers. The authors use a distance-vector-like method to obtain a
good scalability for the spreading of information. The efficiency of the proposed
solution is tested using simulations. The main difference with TeXCP is that
REPLEX is not restricted to MPLS-like environments.
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3
The TOTEM Toolbox and the Operational

Network Dataset

The first part of this chapter (section 3.1) presents the TOTEM toolbox. We
have actively contributed to the design and development of this toolbox. Then
section 3.2 presents how we have used the toolbox to generate a set of traffic
matrices of an operational network. This dataset will be used in subsequent
chapters to demonstrate and test the efficiency of new proposed algorithms.

3.1 The TOTEM toolbox

As we have seen, research in the traffic engineering field has been carried out
for some years. Solutions exist, but few of these are actually used by operators
to manage their network. One reason is that these methods are specifically
implemented for research and simulation purposes. It is considered difficult to
integrate these methods in an operational environment. One of the main ob-
jective of the TOTEM toolbox ([TOT, LAB+06]) is to reconcile the academic
and the operational worlds by providing interoperable and user-friendly inter-
faces with existing tools. This toolbox can also be used by a researcher whose
objective is to test, compare and promote his/her own research.

The design of the toolbox also allows different utilization modes. It can be
deployed either as an on-line tool in an operational network or as an off-line
traffic engineering simulator.

TOTEM is a useful tool for network operators because of the large variety
of traffic engineering methods that are integrated. Therefore it is possible to
rapidly test and evaluate several engineering solutions.

Note that the description of this chapter is quite limited. A more extensive
description of the TOTEM toolbox is available in [LAB+06]. In [BLD+07] the
TOTEM toolbox is used to engineer the traffic of an operational network.
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3.1.1 Toolbox-related work

Several commercial network optimization toolboxes already exist, e.g., MATE
(Cariden) [CAR], Netscope (AT&T) [FGL+00], TSOM (Alcatel) [dBW02], IP/
MPLSView (Wandl) [WAN] and SP Guru (Opnet) [OPN]. All these tools are
centralized and propose exact and heuristic optimization methods. Most tools
are suitable to solve“what-if”scenarios that allow a network operator to evaluate
the impact of, e.g., an IGP weight change. All these tools except Netscope also
support optimization methods for MPLS networks, including for most of them
the computation of backup paths for protection and restoration. Most tools rely
on the knowledge of link loads and the existing MPLS LSPs, but MATE also
provides a method to derive the traffic matrix from the link loads. The main
drawbacks of these commercial tools are their lack of detailed technical public
information about their algorithms and the impossibility to upgrade them by
new research proposals.

Traffic Engineering Automated Manager (TEAM) [SAC+04] provides an
on-line, adaptive approach for automated management of an Internet domain.
TEAM is composed of a Traffic Engineering Tool (TET) which adaptively man-
ages the bandwidth and routes in the network, a Measurement and Performance
Evaluation Tool (MPET) which measures important parameters in the network,
and a Simulation Tool (ST) which may be used by TET to consolidate its deci-
sion. TEAM is however only applicable to (DiffServ-based) MPLS networks.

MASCOPT [LSV04] is an open-source network optimization library. It con-
tains a generic graph model, a basic graphical interface, constraint-based routing
algorithms taking failures into account, and grooming algorithms for SDH and
WDM networks. By contrast to our approach, MASCOPT only provides a li-
brary, not a complete toolbox. In that sense, it is comparable to the generic
tools and topology manager present in TOTEM.

TOTEM is different from all other network optimization tools. To the best
of our knowledge, TOTEM is the only open-source toolbox for intradomain and
interdomain traffic engineering of IP and MPLS networks, providing stable and
robust methods for IGP metric optimization, primary and backup LSP routing,
and BGP simulations. These methods can be easily compared, combined and
extended.

3.1.2 Software architecture

The toolbox contains different modules:

• Topology module: contains the set of classes related to the network
topology which allows for example to add or remove some links, to add
or remove some LSPs, to check some properties on the network (e.g. the
connectivity), or to obtain some statistics (e.g. the network utilization);

• Traffic matrix module: contains some functionalities related to traffic
matrices like reading files, checking the consistency of the traffic matrix
with respect to the link capacities and generation of traffic matrices;

• Scenario module: contains the classes related to simulation scenarios
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providing the ability to read, execute or generate scenarios (explained
below);

• Algorithm repository: This is the central part of the toolbox. It
contains all the traffic engineering algorithms1: IGP-WO (an IGP Link
Weight Optimizer), C-BGP, DAMOTE, MIRA, different versions of CSPF,
...

• Chart module: contains some functionalities related to chart generation.
This module allows the user to automatically generate charts using various
data sources;

• Graphical User Interface (GUI): provides an easy interface to test
the toolbox methods. This interface displays a view of a network topology
and allows a user to see the effect of an action taken on the network on
the link loads, e.g. a link failure, a change of an IGP metric or a change
of the LSP routing policy.

3.1.3 Simulation scenarios

To simplify the use of the toolbox in simulation mode, we set up a kind of script-
ing language by means of XML scenario files. The content of a XML scenario
file is a sequence of events that will be executed by the toolbox. We defined a
set of basic events (”linkDown”, ”linkUp”, ”LSPCreation”, ”loadDomain”, etc.)
which allow to build complex scenarios. An example of a scenario file could be:

• load a topology and a traffic matrix;

• display the resulting link loads using a SPF algorithm;

• optimize the IGP weights using the Link Weights Optimizer;

• display the link loads with updated weights.

The language defined by the XML scenario files can be easily extended, i.e. it
is easy to write new events. These new events can be based on already integrated
algorithms or on new algorithms that are plugged in the toolbox during runtime.

3.1.4 Data flows in the toolbox

The process to engineer a network from data collection to analysis report is
described in Figure 3.1. The first step is to collect data and aggregate them to
produce a topology, one or more traffic matrices and a BGP routing table. The
second step is to create a simulation scenario (of section 3.1.3) that will control
the toolbox execution. The toolbox will simulate the scenario and produce some
reports (text files or simple graphs). With this process, it is simple to simulate
link failures, traffic matrix evolution or IGP metric optimization and to analyze
the impact on link loads. It is also possible to replace the simulation scenario
with the use of the Graphical User Interface.

1These were presented in details in chapter 2
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Figure 3.1: Traffic engineering analysis using the toolbox

3.2 Obtaining a dataset from a real network

In chapters 4 to 9 we present several new Traffic Engineering methods. When
such new methods were developed it was necessary to evaluate their compu-
tational efficiency and the quality of the solutions found. For that purpose it
would have been possible to generate random topologies and random traffic ma-
trices to simulate how the new methods would behave if they were applied in
these randomly generated networks. The problem with such simulations is that
one can always say that such simulations do not prove anything. Because ran-
dom networks and random traffic matrices are not real networks and real traffic
matrices. This is the main reason why we have decided to try to obtain real
data from an operational network. Typically traffic matrices can be computed
based on traffic measurements [FGL+01, MTS+02, ZRDG03] or may reflect ex-
plicit reservations like Service Level Agreements (SLAs) negotiated with network
users.

Thanks to a collaboration with UCL (Université Catholique de Louvain),
we have obtained the required measurements. This traffic information has been
measured on a multi-gigabit operational network that spreads over the European
continent and is composed of about 25 nodes and 40 bidirectional intradomain
links. Link capacities range from 155Mbps to 10Gbps. It is a transit network
that has two providers connected with about 10 interdomain links, has other
peer ASes connected with about 15 shared-cost links, and has more than 25
customer ASes, which are mainly single-homed. The total traffic exchanged is
about 10 Gbps on average.

We had access to about one month of traces (one month of year 2005), one
BGP dump per day and one sampled netflow file for each ingress router. With
these data we have generated 2,512 aggregated traffic matrices (each matrix is
an average over 15 minutes). Some of these induce a low load on the network
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while some induce a high load. This whole set of traffic matrices is representative
of the traffic on the studied network.

3.2.1 Building the Interdomain Traffic Matrix

We have obtained the NetFlow data collected on each router of the network.
Basically, netflow data contains information about flows passing through the
network. NetFlow data is dumped every 15 minutes. Flows are cut by NetFlow
timer (120 sec). Every flow is recorded by the ingress node, i.e. the node by
which the flow enters the network.

We have chosen to aggregate NetFlow data by source prefix and destination
prefix. As the route of a flow in an IP network is determined by longest prefix
match, we do not lose any useful information (for our usage of course). Indeed
we aggregate flows using BGP information, i.e. the advertised BGP prefixes
(we explain how to get them in the next paragraph). When aggregated, Net-
Flow data results in simple text files (one per node) containing for each pair
of source and destination prefixes a corresponding flow size in bytes (with a
sample rate of 1/1000 in our case). To build the intradomain traffic matrix
from this aggregated information, we need the ingress node and the egress node
for each source / destination prefix pair. The ingress node is simply the node
on which the flow has been recorded. To compute the egress node (which is
the BGP next-hop), it is more complicated and we need the C-BGP simulator
which has been integrated in the toolbox. At this stage, the aggregated netflow
information grouped by ingress node is called the interdomain traffic matrix.

3.2.2 Collecting BGP data

BGP has been presented in chapter 1. The iBGP configuration used in the
network we consider is an iBGP full-mesh. To collect BGP traces, a monitoring
machine has been installed inside the network. This monitoring machine is part
of the iBGP full-mesh and records all the exchanged BGP messages into BGP
traces. The BGP traces we have are daily dumps containing all the routes
received by the monitoring machine.

3.2.3 From the interdomain traffic matrix to the intrado-

main traffic matrix

Now that we know how BGP traces are recorded and how the data have been
aggregated, we need to know how to compute the egress node for each desti-
nation prefix. To this end, we need to know the (interdomain) routing table of
each router. We do not have this information in the BGP dump. We will use
the C-BGP routing solver from the TOTEM toolbox to recompute the rout-
ing tables for each router based on the BGP dumps. C-BGP is able to replay
all message exchanges and all decision processes that took place in the iBGP
full-mesh, so that each node will have a best route to each destination.

To replay all the exchanges of BGP messages, we have first to enhance the
topology of the network with iBGP and eBGP session information. We added
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an iBGP full-mesh. To add eBGP sessions, we have used the BGP dump. When
a router has sent to the monitoring machine its best route telling that it has
a route towards an external prefix received through a given external peer, we
know that this router has an eBGP session with this peer. We checked that,
using this technique, we had all the eBGP sessions present on the network.

As there are about 150000 prefixes, which is huge to replay in C-BGP, we
grouped them into clusters, i.e. we group prefixes that are announced in exactly
the same way (i.e., on the same node, from the same peer, with the same
BGP parameters2), and we only advertise one of the prefixes belonging to one
cluster. This allows us to advertise only about 400 prefixes into C-BGP. For
each prefix for which we need to know the next-hop on a given node, we find the
corresponding advertised prefix belonging to the same cluster and retrieve the
routing table of the concerned node where we find the next-hop. This next-hop
is the egress point of the network for this destination prefix.

3.2.4 Properties of the dataset

Now we will analyze the properties of the dataset.

3.2.4.1 Total traffic

First we analyze the total traffic on the network (the sum of all the traffic
crossing the network). Figure 3.2 presents the total traffic crossing the network
for the whole dataset. We can see that there is a diurnal pattern (five weekdays
followed by two weekend days). On that figure the traffic seems to be quite
”regular”, except for some ”down” spikes.

Figure 3.3 presents the total traffic on week 2. On the whole dataset, there
are five significant ”down” spikes (TM IDs: 1257, 1395, 1443, 1866 and 2127).
These spikes are probably due to some problems in the data collection process.
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Figure 3.2: Total traffic on the network: The whole dataset

2Here, by BGP parameters, we mean the local preference, the AS path, the MED, the
origin (IGP/EGP/INCOMPLETE) and the next-hop address.
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Figure 3.3: Total traffic on the network: Week 2

3.2.4.2 Source traffic fanouts

Now we analyze the source traffic fanouts. We define the source traffic fanout
for node N1 as the total traffic injected in the network by node N1 divided by
the total traffic crossing the network. Similarly the destination traffic fanout
for node N1 is the total traffic whose exit point is N1 divided by the total
traffic crossing the network. If both the source and destination traffic fanouts
are constant for all the nodes over time, it is quite good for traffic engineering.
Indeed this means that if we engineer the routing scheme for one (past) traffic
matrix and that the traffic increases at a later stage, it will probably increase
equally on all ingresses and egresses, if the traffic fanouts remain constant. If
the traffic fanouts are permanently changing it is more difficult to predict the
future traffic matrices.

We do not present all the source traffic fanouts plots as this would require
too much space. We will present some typical plots but also plots that present
some interesting patterns. Some source fanouts are quite constant (e.g. figure
3.4) while some are more changing (e.g. figure 3.5). We can observe some spikes
on the curves, but also some abrupt changes in the mean fanout values (e.g.
figure 3.6). These abrupt changes let us suppose a change of ingress point for
some traffic flows. This may be due to BGP routing changes (for example a new
BGP route announcement or a change in BGP configuration like MED or local
pref), to a link weight change in a neighboring domain leading to a hot-potato
rerouting forcing an egress point change in that neighboring domain, or to any
interdomain traffic engineering technique used in this neighboring domain. Note
that we have no information to determine which of these possible events was
the cause of each particular ingress change.

An interesting non-regularity in the source traffic fanout is the increase from
about 6% to about 11% during the period TM 182→ 555 for the node N4 (figure
3.7). This transient change is different from others because this is not linked to
a significant decrease of traffic fanout for any other node.
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Figure 3.4: Source fanout for N1
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Figure 3.5: Source fanout for N2
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Figure 3.6: Source fanout for N3
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Figure 3.7: Source fanout for N4
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Figure 3.8: Source fanout for N5
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3.2.4.3 Destination traffic fanouts

Now we analyze the destination traffic fanouts. They are roughly similar to the
source traffic fanouts. We have observed abrupt change in mean destination
traffic fanouts on figures 3.10 and 3.11.
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Figure 3.9: Destination fanout for N1
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Figure 3.10: Destination fanout for N5

The transient increase in the traffic fanout for N6 (figure 3.11) between TM
183 to 555 is not linked to a significant decrease in the fanout of another node.
We can remember that we had a similar increase in the source traffic fanout for
N4. This means that a huge amount of data has been transferred from N4 to
N6 during that time interval.
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Figure 3.11: Destination fanout for N6

3.3 Conclusion

In the first part of this chapter we have presented the TOTEM toolbox. Devel-
oping the TOTEM toolbox was the main objective of the TOTEM project which
has been funded by the Direction Générale des Technologies, de la Recherche
et de l’Energie (DGTRE) of the Walloon government. Three research teams
were involved in the TOTEM project (the Research Unit in Networking of ULg
and two teams of UCL headed by O. Bonaventure and B. Fortz). At ULg we
have developed the core of the toolbox and integrated intra-domain IP and
MPLS methods including the algorithms presented in the subsequent chapters
of this thesis. The two teams at UCL have integrated inter-domain tools and
intra-domain IP methods. I have actively contributed to the design and im-
plementation of the toolbox, together with other colleagues at ULg including
Olivier Delcourt, Jean Lepropre, Gael Monfort and Fabian Skivée.

We have also cooperated with other European research teams (Delft Uni-
versity of Technology, FTW Austria and University of Naples ”Federico II”) in
the framework of the E-NEXT Network of Excellence (funded by the European
Union). I have particularly worked with the University of Naples ”Federico II”
on the integration of their implementation of MIRA and also on the integration
of the toolbox in the management tools of their testbed.

In the second part of this chapter we have presented the dataset of the
operational network which will be used in subsequent chapters to test the quality
of new proposed methods and algorithms. We have also analysed the properties
and anomalies of the source and destination traffic fanouts, which will be later
used in chapter 6, to analyse why some simulations lead to bad TE performance.
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4
Mathematical Formulation of TE Goals and

Objectives

In this chapter we compare and evaluate how well-known and novel network-
wide objective functions for Traffic Engineering (TE) algorithms fulfill TE re-
quirements. To compare the objective functions we model the TE problem as a
linear program and solve it to optimality, thus finding for each objective func-
tion the best possible target of any heuristic TE algorithm. We show that all
the objective functions are not equivalent and some are far better than oth-
ers. Considering the preferences a network operator may have, we show which
objective functions are adequate or not.

4.1 Introduction

Here we model the traffic engineering routing problem as follows. Given the
topology of the network to be engineered and an estimate of the traffic matrix
to be routed on it, the problem (see figure 4.1) is to find a routing scheme that
optimizes the network, with the joint goal of good user performance and efficient
use of network resources. The way classical algorithms fulfill this objective is
not clear. Indeed, many algorithms try to optimize their home-made objective
functions which are said (but not proven) to reflect traffic engineering objectives.
The foundations of all these objective functions are related, but could lead to
quite different results, as we see in our simulations.

Some in-depth reflection and comparison studies of traffic engineering objec-
tive functions are needed. In many research papers, the quality of a new traffic
engineering algorithm is evaluated regarding one specific objective function. If
the algorithm obtains a good score, it is considered as good. But this is only
meaningful if the objective function really reflects the traffic engineering goals.
Furthermore, when analyzing published papers it is difficult to figure out if the
merits of a given TE method is due to its objective function or its heuristic
algorithm. To fill this gap, we provide an independent comparison of many
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Traffic

Network

TE algorithm Routing scheme

Figure 4.1: TE problem

objective functions found in the literature1.

To compare all the different objective functions, we will minimize (or max-
imize) each of these functions on the same topology and traffic matrix and
analyze if the routing scheme we obtain really reflects general Traffic Engineer-
ing goals. One important point is that we have used some real topologies and
real traffic matrices to run our tests, which is not the case of many research
papers.

Section 4.2 introduces some Traffic Engineering metrics that we will use in
our objective function comparison. Section 4.3 presents existing TE algorithms
and related objective functions. We discuss the foundation of these objective
functions and why they were introduced. In section 4.4, we construct LP (Linear
Programming) models of these objective functions. These models are used to
compare all the presented functions on different networks. Then we analyze
the results of simulations, highlighting the merits and/or shortcomings of each
objective function. Finally, section 4.5 concludes the chapter.

4.2 Traffic Engineering objectives

A network is modeled as a directed graph, G = (N,A) whose nodes and arcs
represent routers and links. Each arc has a capacity ca. Traffic on the network is
represented by a traffic matrix D that with every pair (s, t) of nodes associates
the value of the traffic demand, i.e. the traffic that flows from node s to node t.

Basically, the graph G and the traffic matrix D are the inputs of the prob-
lem. The TE algorithm has to find good paths between each pair of source and
destination nodes to route corresponding traffic flow. The definition of good
paths is related to what we want to optimize on the network. Generally, a good
set of paths will be one that optimizes a pre-defined objective function.

Once the paths are chosen, we can associate with each arc a load la, which is
the total load on the arc, i.e. the sum over all demands of the amount of traffic
sent over a. The utilization of a link a is ua = la/ca. The available bandwidth
on link a is ABWa = ca − la.

Finally, we define θst as the maximum flow that can be sent from node s to

1Note that in [Vas79] Vastola presents an early investigation of the impact of cost functions
in routing optimization. The author compares two different measures of delay in the network.
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node t in the residual network, i.e. when the whole traffic matrix is routed on
the network.

4.2.1 View of the IETF

Before presenting different objective functions of the literature, we will present
the requirements for Traffic Engineering as introduced by the IETF. In [AMA+99],
we can read that Traffic Engineering (TE) is concerned with performance op-
timization of operational networks. Awduche et al. divide Traffic Engineering
performance objectives in two categories: traffic oriented or resource oriented.

Traffic oriented performance objectives include the aspects that enhance the
QoS of traffic streams (...) including: minimization of packet loss, minimization
of delay, maximization of throughput, and enforcement of service level agree-
ments, (...) peak to peak delay variation, loss ratio, and maximum packet trans-
fer delay. Concerning resource oriented performance objectives, it is generally
desirable to ensure that subsets of network resources do not become over utilized
and congested while other subsets along alternate feasible paths remain under-
utilized. (...) a central function of Traffic Engineering is to efficiently manage
bandwidth resources.

We can also read that minimizing congestion is a primary traffic and resource
oriented performance objective. The type of congestion that can be addressed
through Traffic Engineering is when traffic streams are inefficiently mapped onto
available resources; causing subsets of network resources to become over-utilized
while others remain underutilized. This type of congestion can be reduced by
adopting load balancing policies. The objective of such strategies is (...) to
minimize maximum resource utilization. (...) When congestion is minimized
through efficient resource allocation, packet loss decreases, transit delay decrease,
and aggregate throughput increases.

We can clearly deduce from this that one objective that should be respected
by all the objective functions is to minimize maximum resource utilization. In
addition to this, some other objectives can be taken into account. These addi-
tional objectives should be related to congestion minimization.

4.2.2 Discussion on TE objectives

Typically, on-line algorithms have different objectives than off-line ones. On-
line schemes usually try to minimize the probability of blocking future requests,
while off-line ones try to minimize the load or the utilization of the links, or try to
maximize available bandwidth. To some extent, minimizing the link utilization
(which is a relative measure) tends to maximize the available bandwidth (which
is an absolute measure) on the links, thus also reducing the blocking probability
of future requests. Clearly, these objectives are closely related, but no solid
basis exists to choose one among all.

We will consider TE metrics at three different levels, which are a link, an
OD pair2 and the network. We will present and justify the foundation of the
TE metrics at each level. We will differentiate metrics whose goal is to improve

2OD stands for Origin Destination.

37



4. MATHEMATICAL FORMULATION OF TE GOALS AND OBJECTIVES

the quality of the network given the present traffic (e.g. minimize the delay)
from metrics whose goal is to maximize the acceptance of future traffic on the
residual network (e.g. maximize residual max-flow).

At the link level, we should minimize delay and utilization. We should also
maximize the available bandwidth on this link (which corresponds to the no-
tion of residual max-flow for a link). The delay of a link is composed of three
components: the propagation delay (delayp) which is a constant value, the
transmission delay (inversely proportional to the link capacity) and the queuing
delay which increases with the link load. If we take the delay to be the average
delay of an M/M/1 queue, the mean queuing + transmission delay (delayq+t)

of link a is given by Delaya = mean packet size
ca−la

. For a M/M/1 queue, all the per-
centiles/quantiles are also proportional to this value. On high capacity links,
this delay is significant only if the link load is approaching the link capacity.
Figure 4.2 summarizes the relations between link parameters.

u

l

c

ABW

delayp

delayq+t
delay

packet size

Figure 4.2: Link parameters

At the level of an OD pair of nodes, we should minimize the path delay, i.e.
the sum of the delays of all the links on the path. Minimizing this delay can
increase the quality of service perceived by the users of the network. We should
also minimize the maximal link utilization on the corresponding path. Indeed,
the maximal link utilization has a particular meaning. For example a maximal
link utilization (umax) of 50% means that we can double all the traffic before
having a link fully loaded (if we keep the same routing scheme), while a value of
20% means that we can multiply all the traffic by 5. In fact this value ( 1

umax
) is

a lower bound because a change in the routing scheme may allow increasing this
value. Finally, the residual max-flow between an OD pair of nodes should be
maximized. Indeed, this value represents the maximal size of a future request
that can be routed on the network between these nodes.

We have now some ideas of TE metrics to be optimized for a link or for
an OD pair. But to be really useful in TE algorithms we have to generalize
these concepts to the whole network. There are many ways to proceed. For
example, considering link utilizations, one can minimize the maximal link uti-
lization (umax) as for the OD level3. But the minimization of the maximal link
utilization works poorly in some cases. Indeed if there is a real bottleneck in
the network, i.e. a link whose utilization cannot be decreased by changing the
routing scheme, it is important to minimize also the utilization of other links.
One way to proceed can be to minimize the mean link utilization. Considering
the delay to be minimized on the whole network, we can compute the mean link
delay (each link being weighted by its load or not) or the mean path delay (each
path being weighted by its corresponding traffic). The unweighted mean path

3We can prove that the routing scheme that achieves the minimal value of maximum link
utilization also provides the optimal value concerning the factor by which it is possible to
multiply the current traffic matrix. In this case, this factor can be computed as 1

umax
.
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Metric characterizing Metric characterizing
good current state likely good future

Link(a) Delaya ua, ABWa

Path(s,t)

∑

a∈P(s,t) Delaya θst, maxa∈P(s,t)ua

Network
P

a∈A Delaya

|A| , min(s,t)θst, maxa∈Aua
P

a∈A la×Delaya

AllTr

∑

(s,t) θst

Table 4.1: TE metrics summary

delay seems less relevant to us. The following demonstration shows that the
weighted mean path delay is equivalent to the weighted mean link delay. This
demonstration highlights that it is possible to compute the mean path delay
without path information. This is an important result from a computational
point of view. Indeed it is less complex to compute a sum over all links than a
sum over all paths of all possible OD pairs of nodes.

MeanDelay = 1
P

(s,t) D(s,t)

∑

(s,t) D(s, t)
∑

a∈P(s,t) delaya

= 1
AllTr

∑

(s,t) D(s, t)
∑

a∈P(s,t) delaya

= 1
AllTr

∑

(s,t) D(s, t)
∑

a∈A δa∈P(s,t)delaya

= 1
AllTr

∑

a∈A delaya(
∑

(s,t) D(s, t)δa∈P(s,t))

= 1
AllTr

∑

a∈A la × delaya

P(s, t) denotes the path from s to t4, δa∈P(s,t) is equal to one if link a belongs
to P(s, t) and 0 otherwise. AllTr denotes the sum of all traffics of the network
(
∑

(s,t) D(s, t)). It is a constant for a given problem.

Considering max-flows (θ), it is possible to maximize the minimal residual
max-flow. But as for the maximal link utilization, the minimal max-flow can
be blocked by a set of bottleneck links. So we should also maximize the sum
of all max flows (instead of the min value). We could also associate with each
max-flow a weight related to its corresponding traffic demand.

As it could be interesting to maximize the sum of residual max-flows, it could
be interesting to maximize the sum of the available bandwidths over all the links
of the network. However, we can notice that it is equivalent to minimizing the
sum of the loads over all the links of the network. Indeed, max

∑

a∈A ABWa =
max

∑

a∈A(ca − la) = max(
∑

a∈A ca −
∑

a∈A la) ≡ min
∑

a∈A la, as the sum of
all the capacities of the network is invariant.

Table 4.1 presents a summary of TE metrics introduced in this section.

4.2.3 How to measure the quality of a solution?

Table 4.2 presents the TE metrics we will use to evaluate the quality of the
routing solutions in the simulation section. As presented in the preceding sub-
section, it is clear that the maximum link utilization (umax) is a good TE metric.

4Here, we assume that there is only one path used from s to t, but the demonstration can
be easily generalized if there are multiple paths.
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umax maxa∈Aua

umean
1
|A|

∑

a∈A ua

uper90 Nb{a ∈ A|ua > uper90} = |A|.90%
ABWmin mina∈A(ca − la)

lmean
1
|A|

∑

a∈A la

delaymean
1

AllTraffic

∑

a∈A la × packet size
ca−la

θmin Min(s,t)θst

θtot

∑

(s,t) θst

Table 4.2: Definition of TE metrics

In addition, the mean link utilization (umean), the 90th percentile (uper90), the
minimal available bandwidth (ABWmin) and the mean load (lmean) will be
used. uper90 is defined so that 90% of the links have a utilization under uper90.
We think that the weighted mean queuing + transmission delay of the network
(delaymean = 1

AllTraffic

∑

a∈A la× packet size
ca−la

) is also an important variable. We

will also consider the minimum max flow (θmin = Min(s,t)θst) and total max
flow (θtot =

∑

(s,t) θst) of the residual topology. The total max flow gives an idea
of the throughput, i.e. which amount of traffic can be accepted on the residual
network. This is not exactly the amount of bandwidth that can be routed on
the residual network because all max-flows are computed independently of each
other and thus all the flows are not in competition for the residual bandwidth.
But this can still give a good idea of the residual throughput5.

4.3 Presentation of different objective functions

4.3.1 Fortz

In [FT00], B. Fortz et al. introduce the concept of link weight optimizers, which
has been presented in chapter 2. A cost is associated with each link of the
network. This cost (φa) is a function of the link load (see figure 4.3) where for
all a ∈ A, φa(0) = 0 and

φ′
a(x) =































1 for 0 ≤ x/ca < 1/3
3 for 1/3 ≤ x/ca < 2/3

10 for 2/3 ≤ x/ca < 9/10
70 for 9/10 ≤ x/ca < 1

500 for 1 ≤ x/ca < 11/10
5000 for 11/10 ≤ x/ca < ∞

The objective function they try to minimize is the sum over all links of this
cost (φ =

∑

a∈A φa). We will later refer to this objective function as Fortz.

5The amount of traffic that can be routed on the residual network is in fact the sum over
all links of the available bandwidth. Indeed one obvious (and degenerated) solution to the
max throughput problem is to associate traffic only with the pairs of nodes that are located
at the extremities of a link. We can associate with these pairs the available bandwidth on the
corresponding link.
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4.3. PRESENTATION OF DIFFERENT OBJECTIVE FUNCTIONS

The idea behind φa is that it is cheap to send flow over an arc with a small
utilization. As the utilization approaches 100%, it becomes more expensive, for
example because we get more sensitive to bursts. (...) when the utilization goes
above 100% the penalty gets so high that this should never happen. This function
clearly tries to minimize maximum resource utilization. They prefer to minimize
the sum over all links instead of the maximum over all links because even if there
is a bottleneck link that is forced to be heavily loaded, this objective function still
cares about minimizing the loads in the rest of the network. We have noticed
that this function, though empirical, could be seen as a linear approximation of

la
1−ua

(also drawn on figure 4.3). At low link utilization, 1−ua ≈ 1 and Fortz ≈
min

∑

a∈A la, while at high utilizations, 1
1−ua

becomes significant, leading to
a load balancing policy (avoiding links with high utilization). To summarize
Fortz can be seen a a function trying to minimize the max link utilization, the
size of the paths and the mean queuing + transmission link delay, thus mixing
metrics characterizing good current state with metrics characterizing likely good
future. There is no OD pair consideration in this objective function.

Many papers (as [WYXN05] for example) have reused this objective function.
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Figure 4.3: φa = cost of a link a for which ca = 1000.

4.3.2 MIRA

In [KL00], Kodialam et al. introduce the concept of minimum interference rout-
ing. They propose an objective function which is a weighted sum of the maxflows
over all possible source-destination pairs on the residual topology. Their online
algorithm is a heuristic that tries to maximize this objective function. For-
mally, the objective function to maximize is

∑

(s,t) αstθst, where αst is a weight

associated with the ingress-egress pair (s, t) (recall that θst represents the max-
imum flow that can be sent from node s to node t in the residual network).
The weights associated with ingress-egress pairs are administrative weights that
determine the relative importance of the ingress-egress pairs to the network ad-
ministrator. If these are not given, we can take all ingress-egress pairs to have
the same weight. Behind this objective function, the goal is to minimize the
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4. MATHEMATICAL FORMULATION OF TE GOALS AND OBJECTIVES

blocking probability of a future new request, without information about it. The
idea is that if the maxflow between one source and one destination decreases,
this means that the maximum request that can be accepted between these two
nodes decreases as well.

To summarize, the MIRA objective function is characterizing likely good
future. There is no embedded metric characterizing good current state. We will
see later in the simulations the implications of this fact.

In [SWBW03], some improvements are proposed to the on-line heuristic
algorithm of MIRA. But the high level goal is the same as MIRA, i.e. to minimize
the blocking probability. We thus consider that this algorithm tries to optimize
the same kind of objective function. They evaluate their algorithm by way
of simulation scenarios, comparing their algorithm to other ones in terms of
blocking probabilities.

4.3.3 Blanchy

In [BML03b], Blanchy et al. present an online traffic engineering algorithm to
optimize a load balancing objective function. The algorithm is a heuristic that
gives very good solutions in a short time. The pure load balancing objective
function is

∑

a∈A(u(a) − umean)2 with umean = 1
|A|

∑

a∈A u(a), the mean link

utilization in the network. This function is the variance on the link utilization
(the relative link load) and, as such, represents the deviation from the optimal
load balancing situation. (...) The main problem with this load balancing func-
tion is that the only thing it tries to do is to flatten the relative load throughout
the network. It will not matter if some of the paths go a long way around in
order to achieve a better load-balancing. (...) We must then try to limit the
length of the paths by adding a kind of ”shortest path length” term to the objec-
tive function. To limit the length of the paths of a pure load balancing function,
they add a “shortest path” term and arrive at the following objective function:
∑

a∈A(u(a)−umean)2 +α
∑

a∈A(u(a))2. It is interesting because the (weighted)
combination of both terms will give more importance to the load-balancing term
if the deviation is high enough to justify the detour, else it will let the “shortest
path” term minimize the resources used. The weighted factor α allows to give
more importance to one aspect or to the other.

In [BML03b], we can also read that Load balancing the network should ideally
produce a network with a homogeneous blocking probability by source-destination
pair. Hopefully, it could also lower the overall blocking probability in comparison
with a classical shortest path (in terms of number of hops). On the other hand,
using such traffic engineering techniques sometimes favours detours and might
logically increase further the load inside the network (again compared with a min-
imum hop routing). Clearly, there must be a compromise between load-balancing
and traffic minimization.

This objective function does not directly include TE metrics we introduced
in section 4.2.2. It does not include a delay contribution and there is no con-
sideration about OD pairs. The traffic minimization term tries to minimize the
size of the paths. To some extent, as the utilization is squared, this function
also tries to minimize the maximal link utilization, because the non-linearity
gives more penalty to loaded links.
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4.3. PRESENTATION OF DIFFERENT OBJECTIVE FUNCTIONS

4.3.4 Delay

In [EJLW01], Elwalid et al. associate a cost with each link. They try to minimize
the total cost which is the sum over all links of the link cost. The cost of a link is
a function of the link load. They assume that this function is convex. They say
that a natural choice for the link cost is the delay so that their network-wide cost
function is defined as MeanDelay =

∑

a∈A
1

ca−la
. In section 4.2.2 we called this

function the (unweighted) mean link delay, if we do not take the propagation
delay into account. We introduce a new delay objective function (referred to as
WMeanDelay) which is

∑

a∈A
la

ca−la
, the weighted mean delay. Note that this

objective function can also be formulated using only ua as WMeanDelay =
∑

a∈A
ua

1−ua
. These objective functions are metrics characterizing good current

state. On figure 4.4, we can see the delay objective function for one link and
also its piecewise linear approximation.
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Figure 4.4: Delay of a link a for which ca = 1000.

4.3.5 Degrande

In [DHdLVPdB03], Degrande et al. propose to maximize an objective function
which is composed of four terms: CF .F +CT .T +CB .B−CU .U with F (airness),
T (hroughput), B(alance) and (network) U(tilisation) the four performance pa-
rameters to be optimized and CF , CT , CB and CU the objective coefficients.
They say that these coefficients can be defined such that C = C′

X0
with X0 the

value of the corresponding objective for shortest path routing and C ′ a value
that prioritizes the different objectives (109, 106, ...). The choice of them de-
pends on the type of traffic in the network and optimization strategy. Fairness
and Throughput are traffic oriented objectives while Balance and Utilization
are resource oriented objectives. Balance is defined as: B = 1 − umax. Net-
work utilization is defined as U =

∑

a∈A ua. We will not consider Fairness and
Throughput in our formulation because it is not possible to express these in
our LP formulation. The balance is a metric characterizing likely good future.
The utilization term will minimize the size of the paths. There is no OD pair
consideration and no delay contribution in this objective function.
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4. MATHEMATICAL FORMULATION OF TE GOALS AND OBJECTIVES

Score Function (to be minimized)

Fortz
∑

a∈A φa

MIRA −
∑

(s,t) θst

Blanchy
∑

a∈A(ua − umean)2 + α
∑

a∈A(ua)2

MeanDelay
∑

a∈A
1

ca−la

WMeanDelay
∑

a∈A
la

ca−la

InvCap
∑

a∈A ua

umax umax

Degrande CB .umax + CU .
∑

a∈A ua

MinHop
∑

a∈A la

Table 4.3: Summary of objective functions

Some papers (like [MU03] for example) only try to minimize the maximum
link utilization. This is equivalent to Degrande objective function where CB = 1
and CU = 0. We will refer to this objective function as umax.

Degrande objective function where CB = 0 and CU = 1 is a function which
minimize U =

∑

a∈A ua. This objective is also minimized by a classical SPF
routing considering link weights equal to the inverse of their capacities. In fact,
inverse capacity routing (recommended by CISCO) gives the optimal value of
U . We will thus refer to this objective function as InvCap. We prove this in
chapter 5.

4.3.6 Summary

Clearly, all the presented objective functions are related, while quite different.
A first difference is that some of them use only absolute values of the load l
(like MIRA), some only relative values u (like Blanchy, WMeanDelay, or
Degrande) and finally some use both (like Fortz, or MeanDelay).

Table 4.3 presents a summary of all the presented objective functions. MIRA’s
function is used with αst = 1,∀(s, t). For Blanchy, we have to fix the α param-
eter. For Degrande, we have to fix C ′

B and C ′
U . In the table, we have added

the cost function called MinHop. This function simply minimizes the total load
over all the links of the networks (

∑

a∈A la). This function is minimized by a
SPF routing considering a weight of 1 for each link (what we call a min hop
routing). See chapter 5 for details.

We can point out that at low load, 1 − u ≈ 1 and c − l ≈ c and thus
Fortz ≈MinHop while WMeanDelay ≈ InvCap.

4.4 Simulations

In order to compare all the objective functions, we will model the traffic engi-
neering routing problem as a linear program (LP) and solve it to optimality for
all the presented objective functions. In this formulation, all the flows can be
arbitrarily split. Obviously, this cannot be really implemented in a network, but
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4.4. SIMULATIONS

can be approached with MPLS routing and to some extent with ECMP. This
assumption allows us to formulate the problem as a linear program (which is
easy to solve to optimality) instead of a mixed integer program (which cannot
be solved to optimality in a reasonable time). The LP formulation will be used
to solve the routing problem to optimality and compare the solutions obtained
for every objective function. We have used an LP node-link formulation :

Variables :
xst

a ≥ 0
loada

utilizationa

Constraints :

∑

a∈In(n) xst
a −

∑

a∈Out(n) xst
a =







Dst

−Dst

0

if n = t
if n = s

otherwise
s, t, n ∈ N

loada =
∑

(s,t) xst
a a ∈ A

utilizationa = loada

capacitya
a ∈ A

loada ≤ capacitya a ∈ A

where xst
a is the part of traffic from node s to node t that flows on arc a,

loada is the load of arc a, In(n) is the set of incoming arcs of node n, Out(n) is
the set of outgoing arcs of node n. The first constraint expresses that for each
commodity (s, t), the outgoing traffic of a node is equal to the incoming traffic of
this node, except if the node is the source or the destination of this commodity.
In this case, it is equal to the traffic associated with this commodity. The second
constraint expresses that the load of a link is equal to the sum of all the traffic
using this link. The third constraint expresses that the utilization of a link is its
load divided by its capacity. The last constraint expresses that the load cannot
exceed the capacity of the link.

We will not write the formulation of all the objective functions, because
this would take too much space. Instead, we explain clearly how they can
be reproduced. Fortz linear formulation is expressed in [FT00]. For MIRA,
we use a classical max flow formulation for each pair of nodes. For Blanchy,
the square function is approximated by a piecewise linear approximation in
the range [−1, 1], as shown in figure 4.5 (for 8 linear pieces). MeanDelay and
WMeanDelay are approximated by convex piecewise linear functions. Degrande
and MinHop are linear so they can be expressed easily, without modifica-
tion. We will not present MeanDelay in our result tables because we have
noticed similar results than for WMeanDelay (noted Delay in the tables). For
Degrande function, we use C ′

B = 103 and C ′
U = 1 (as in [DHdLVPdB03]) and

for Blanchy, α = 3 (which seems to provide good results).

4.4.1 Simulation description

We made our simulations on three different networks. The first topology was
generated in the TOTEM toolbox [LAB+06] using Waxman’s method [Wax88].
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Figure 4.5: Piecewise Linear approximation of the square function between -1
and 1 that we use in Blanchy objective function.

This topology is composed of 25 nodes and 50 full-duplex links. We set the
value for parameters α and β to 0.15 and 0.2. We have generated a random
traffic matrix for this topology. The second topology is the operational network
whose dataset was presented in chapter 3. From the whole dataset we have
selected one representative TM to run the simulations of this chapter. The last
topology is the US research network (Abilene). This American research network
is illustrated on figure 4.6. It is composed of 11 nodes and 14 bidirectional links
of 10 Gbps each. We have used netflow data measured on the network to build
a realistic traffic matrix. We have run our simulation on two traffic matrices
per topology: the actual one (TM) and the double of it (2TM) (where each OD
component has been multiplied by 2, trying to obtain an estimate of a potential
increased future traffic matrix).

Figure 4.6: Abilene network
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4.4.2 Results

We have to keep in mind that we made some linear approximation of some
objective functions. The original function could give slightly different results
in some cases. Also, some (non-linear) objective functions give different results
depending on the load of the links. So, the particular traffic matrices and
networks on which we made the tests can have its influence as well. Notice
that InvCap and MinHop objective functions do not provide exactly the same
routing scheme as classical shortest path first algorithm with inverse capacity
or unitary metrics. Indeed, our LP model of these objective functions allows
extensive and non-equal flow splitting (which is not the case in classical OSPF
or ISIS implementations). So our results may present better solutions than
the ones obtained by shortest path first algorithms. We have also noticed a
negative point for some objective functions: multiple routing schemes achieve
the optimal objective function value (especially for umax objective function). By
default, the LP solver returns one of these solutions, at random. As we did not
want random values in our tables, we have added a small delay contribution to
these objective functions (MIRA, InvCap, umax, Degrande and MinHop) so
that the LP solver returns a “good” solution from the set of possible equivalent
routing schemes. So we should keep in mind that these objective functions could
lead to worse results than the ones presented in this section if we do not add
this delay contribution and if we do not allow arbitrary flow splitting.

Tables 4.4, 4.5 and 4.6 give the values of the TE metrics at the optimum
for each objective function on Waxman, the operational and Abilene networks.
We have removed the θmin metric from the tables because all the objective
functions obtained the optimal value. We have also removed the delaymean

metric because corresponding values were either very small or infinite (when
ABWmin = 0). Indeed, we do not take the propagation delay into account and
the link capacities are huge. This implies that all the delay values are almost
equivalent, because negligible when compared to the propagation delays. But
although all the delay values (except infinite values, of course) are tiny, we
can point out that the Delay objective function gives good results for all the
TE metrics on all the topologies. This is because the delay objective embeds
most TE concerns (load, utilization, available bandwidth) and even though the
queuing delays are most often negligible, they become non-linearly sufficiently
high when the load approaches the capacity to enforce load balancing. uper90

is not present in table 4.6 because there are few links in Abilene network and
thus this metric is not very significant.
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Objective umax uper90 umean ABWmin lmean θtot

function % % % Mbps Mbps Mbps
TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM

Fortz (1.14) (1.14) (1.28) (1.33) (1.26) (1.21) (0.67) (0.55) (1.03) (1.05) (0.97) (0.95)

MIRA 100 100 (1.40) (1.48) (1.17) (1.16) 0.0 0.0 (1.15) (1.10) 6504 5012

Blanchy (1.22) (1.23) 26.0 50.0 (1.13) (1.12) (0.88) 531 (1.12) (1.11) (0.96) (0.94)

Delay (1.20) (1.08) (1.17) (1.20) (1.04) (1.11) 882.0 (0.95) (1.16) (1.11) (0.97) (0.95)

InvCap (2.07) 100 (1.55) (1.61) 15.7 31.5 882.0 0.0 (1.21) (1.20) (0.98) (0.96)

umax 34.9 69.7 (1.15) (1.20) (1.07) (1.12) (0.74) (0.57) (1.17) (1.11) (0.97) (0.95)

Degrande 34.9 69.7 (1.35) (1.39) (1.05) (1.05) (0.74) (0.57) (1.19) (1.18) (0.97) (0.95)

MinHop 100 100 (1.29) (1.43) (1.27) (1.25) 0.0 0.0 781 1578 (0.97) (0.95)

Table 4.4: Results on network of 25 nodes (Waxman topology). The table contains absolute optimal values (in bold, green, without
parentheses), or relative non-optimal values (between parentheses) with respect to the optimal one. The values that are less than 10%
from the optimal value are bold. Finally the values that are 2 times worse than the optimal one are in italic and red. For each metric, we
present the values for the actual traffic matrix (TM) and for the doubled traffic matrix (2TM).

Objective umax uper90 umean ABWmin lmean θtot

function % % % Mbps Mbps Gbps
TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM

Fortz (1.18) (1.13) (1.63) (1.17) (1.17) (1.14) (0.89) (0.56) (1.00) (1.04) (0.99) (0.98)

MIRA (1.41) 100 (1.63) (1.65) (1.07) (1.09) (0.75) 0.0 (1.03) (1.05) 4331 4027

Blanchy (1.16) (1.15) 14.2 28.5 (1.07) (1.11) (0.90) (0.50) (1.24) (1.23) (0.99) (0.97)

Delay (1.04) (1.02) (1.32) (1.21) (1.01) (1.02) (0.97) (0.92) (1.15) (1.17) (0.99) (0.99)

InvCap (1.18) (1.09) (1.51) (1.49) 6.9 13.8 (0.89) (0.69) (1.19) (1.19) (0.99) (0.98)

umax 38.4 76.9 (1.56) (1.21) 6.9 (1.01) 95.7 36.0 (1.20) (1.15) (0.99) (0.99)

Degrande 38.4 76.9 (1.51) (1.49) 6.9 13.8 95.7 36.0 (1.19) (1.19) (0.99) (0.98)

MinHop (1.36) 100 (1.76) (1.60) (1.16) (1.20) (0.78) 0.0 262 525 (0.99) (0.98)

Table 4.5: Results on the operational network. See the legend of table 4.4 to understand these values.
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Objective function umax umean ABWmin lmean θtot

% % Gbps Gbps Tbps
TM 2TM TM 2TM TM 2TM TM 2TM TM 2TM

Fortz (1.07) (1.07) (1.11) (1.08) (0.96) (0.83) (1.11) (1.08) (0.98) (0.96)

MIRA (1.75) 100 10.2 21.2 (0.60) 0.00 1.02 2.12 2.05 1.58

Blanchy (1.34) (1.41) (1.07) (1.06) (0.82) 0.03 (1.07) (1.06) (0.99) (0.98)

Delay (1.43) (1.07) (1.04) (1.08) (0.77) (0.84) (1.04) (1.08) (0.99) (0.96)

InvCap (1.73) 100 10.2 21.1 (0.60) 0.00 1.02 2.11 2.05 (0.99)

umax 35.0 70.1 (1.13) (1.11) 6.50 2.99 (1.13) (1.11) (0.98) (0.95)

Degrande 35.0 70.1 (1.13) (1.09) 6.50 2.99 (1.13) (1.09) (0.98) (0.96)

MinHop (1.73) 100 10.2 21.1 (0.60) 0.00 1.02 2.11 2.05 (0.99)

Table 4.6: Results on the Abilene network. See the legend of table 4.4 to understand these values.
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We start our analysis with table 4.4, which presents results for the topology
generated using Waxman’s model. We can see that all the objective functions
are not equivalent. MinHop is given for comparison purposes (it gives the
lowest achievable value for lmean) but is clearly not a good objective function
on its own. Indeed, it leads to a high value of umax which is a very important
concern. The lowest achievable value for umax is given by the umax function
which only optimizes this variable. The lowest achievable value of the umean

variable is given by InvCap. This function is not very good on its own because
it leads in this case to a high umax value. The combined Degrande is a very
good objective function on this topology. Indeed, it gives nearly optimal values
for all the metrics. Blanchy, Fortz and Delay are quite good. We notice also
that MIRA is good except for umax which is 100% (and thus ABWmin = 0
and delaymean is infinite). We analyze this fact as follows. MIRA is based on
max-flows (and only on max-flows). Suppose that we have two routes in the
network for a particular OD pair of nodes. The value of the residual max-flow
will be the same if we route all the traffic on one route or if we route half of it
on each route. This is the cause of the bad load balancing policy and the high
value of umax given by MIRA.

To better discriminate the Degrande, Delay and Blanchy functions we can
analyze the results corresponding to the doubled traffic matrix. In this case,
Blanchy has a quite high value of umax, while InvCap leads to a fully loaded
link (umax = 100%). Degrande and Delay are in this case the best objective
functions. Fortz is also quite good in this situation.

On table 4.5 we can see the results for the operational topology. Blanchy
obtains good values for all the metrics and the best value of uper90. MIRA
logically gives the optimum for the θtot variable, which is its objective function.
We remark that many other objective functions give values close to this optimal
θtot value. On the operational network, we consider that the best compromise
is Degrande because it gives almost optimal values for all the variables except
uper90. Both Delay and Blanchy are quite good and give better results for
uper90. Fortz improves lmean at the expense of all the other variables. MIRA
and MinHop give high values regarding umax.

We have noticed on the Abilene network that there is less variation between
the values of our metrics. But we have still pointed out the performance of Delay
and Degrande which are the best objective functions of these simulations.

One last important point is the fact that at low load, we can see that Fortz is
approaching the optimal value of lmean, the objective of MinHop, while Delay is
approaching the optimal value of umean, the objective of InvCap. This confirms
the approximation we made in section 4.3.6.

To conclude this section, we analyze table 4.7 which presents the good (
√

)
and bad (•) metrics for each objective function at low and high load6. On this
table, we see that Degrande, Delay and Fortz are the best because these have
no red point.

6In this table,
√√

is used to denote the optimal value and ± to denote a value which is
not bad, but which is not as good as

√
values.
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Objective umax uper90 umean ABWmin lmean θtot

Function LL HL LL HL LL HL LL HL LL HL LL HL

Fortz
√ √ √ √ √ √

± ±
√ √ √ √

MIRA • • • •
√ √

• •
√ √ √√ √√

Blanchy
√

•
√ √ √ √ √

•
√ √ √ √

Delay
√ √ √ √ √ √ √ √ √ √ √ √

InvCap • •
√

±
√√ √√

± •
√ √ √ √

Degrande
√√ √√ √ √ √ √ √ √ √ √ √ √

Table 4.7: Metrics At Low Load (LL) and High Load (HL)

4.5 Conclusion

In this chapter, we have shown how well-known network-wide objective functions
reflect requirements for Traffic Engineering. As our results reflect, they are not
equivalent. We have shown the power of some functions and the weaknesses of
others. We have outlined that, although the transmission + queuing delay is
often negligible, choosing this delay as objective function gives good results for
almost all TE metrics. It is not that surprising considering that almost all TE
link metrics feed into the delay (see figure 4.2).

The best objective functions are Delay and Degrande on the tested topolo-
gies. We have a preference for Delay because it does not need any configuration
or parameter. Fortz is quite good also in all the situations, while having per-
formance somewhat under Delay and Degrande. Blanchy has good results
also, except for highly loaded networks. MIRA gives good solutions concerning
the total residual max flow, but this function gives bad results concerning the
maximal link utilization.

This study provides an objective basis to select an objective function when
designing a new Traffic Engineering routing algorithm. It may also be useful to
revisit existing TE algorithms to make them work with the objective functions
that best match the various TE concerns we have studied.
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5
Approaching Optimal Intradomain TE?

In this chapter we propose a new method to approach optimal Intradomain
Traffic Engineering routing. The method consists in dividing the traffic matrix
into N sub-matrices, called strata, and route each of them independently. We
propose two different implementations of our method in routers. Our method
can also be used to compute a very precise approximation of the optimal value
of a given objective function for comparison to heuristic Traffic Engineering al-
gorithms. For this application, our algorithm is very efficient on large topologies
compared to an LP formulation.

5.1 Introduction

We consider the traffic engineering routing problem as defined in preceding
chapter.

We propose to divide the traffic matrix into N equal sub-matrices, called
strata, for which the routing scheme can be independently chosen. The sum
of the N strata is obviously equal to the original traffic matrix. In section
5.2, we present the objective functions we consider in this chapter, while our
method can be used with other objective functions. Section 5.3 presents the
first derivative of the objective functions we consider. In section 5.4, we propose
an algorithm to compute one routing scheme per strata using the derivatives
computed in section 5.3. Section 5.5 presents the execution of our new algorithm
on a simple example. Section 5.6 shows that the total resulting routing scheme
is close to the optimum for large N . We have also noticed that in practice, a
low value of N is sufficient to obtain a routing scheme very close to the optimal
one. In section 5.7 we evaluate the efficiency of our algorithm compared to LP
formulation. Finally, in section 5.8 we propose two methods to implement our
routing scheme in routers. The first one is to establish N MPLS full-meshes in
the network. The second one is to use the IGP Multi-Topology functionality
([PSS08, PMR+07]). Our algorithm provides the paths of all the LSPs for
the MPLS solution and the N sets of metrics for the Multi-Topology Routing
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solution.

5.2 Objective functions

5.2.1 Presented objective functions

We consider the objective functions presented in table 5.1. We reuse the notation
of chapter 4. These functions must be minimized by TE algorithms. All these
objective functions can be written under the form of

∑

a∈A fa(la) and fa(x)
are convex. MinHop is the objective function minimized by a minimum hop
routing. A minimum hop route is a route with minimal number of links. InvCap
objective function is minimized by a shortest path routing considering a metric
of 1

ca
for each link a1. WMeanDelay minimizes the weighted mean delay and

is a good TE objective function, as we have seen in chapter 4. MeanDelay is
the (unweighted) mean delay. Finally, NonLinearFortz is a non linear function
whose linear approximation is introduced in [FT00] by Fortz and Thorup2.

Objective Function

MinHop
∑

a∈A la

InvCap
∑

a∈A ua

WMeanDelay
∑

a∈A
la

ca−la
=

∑

a∈A
ua

1−ua

MeanDelay
∑

a∈A
1

ca−la

NonLinearFortz
∑

a∈A
la

1−ua

Table 5.1: Objective functions

5.3 The first derivative of objective functions

The goal of the TE algorithm is to find good paths between each pair of nodes.
The idea of our algorithm is that a good path minimizes the increase of the
score function due to the routing of some traffic on this path. The increment
of the cost function of using one particular link on the path of an OD pair is
∑

a∈A fa(l′a)−
∑

a∈A fa(la), if la and l′a are the loads of link a before and after
routing some traffic on it. Let x be the load of the link a∗ we consider and
dx the increment of traffic on this link. The increment is 0 for all other links.
Thus

∑

a∈A fa(l′a)−
∑

a∈A fa(la) = fa∗(x+dx)−fa∗(x). The increment is thus
fa∗ (x+dx)−fa∗ (x)

dx per unit of traffic flowing on this link a∗. If we suppose that
the traffic increment on this link is sufficiently small, we can assume that the in-

crement of the cost function is limdx→0
fa∗ (x+dx)−fa∗ (x)

dx =
∂fa∗(x)

∂x
. Hereunder

we compute this first derivative for all the presented objective functions.

1This is proven in section 5.4.
2We have already presented this objective function in chapter 4
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MinHop
∂fa(x)

∂x
=

∂x

∂x
= 1

InvCap
∂fa(x)

∂x
=

1

ca

WMeanDelay
∂fa(x)

∂x
=

ca

(ca − x)2

MeanDelay
∂fa(x)

∂x
=

1

(ca − x)2

NonLinearFortz
∂fa(x)

∂x
=

c2
a

(ca − x)2

We notice that for MinHop and InvCap objective functions, the first deriva-
tive does not depend on x, while it is the case for all the other functions.

5.4 Algorithm

We claim that for MinHop and InvCap objective functions, if we use Dijkstra’s
Shortest Path First (SPF) algorithm taking as link metric the first derivative of
the objective function then we obtain the optimal routing scheme, i.e. we find
for this routing the minimal value of the objective function.

Theorem 5.1. A SPF algorithm where link metrics are equal to 1
ca

(resp. 1)
leads to the minimal value of the InvCap objective =

∑

a∈A ua (resp. MinHop
objective =

∑

a∈A la) independently of the traffic matrix.

Proof. We want to minimize the InvCap objective function:
∑

a∈A ua. We have

∑

a∈A

ua =
∑

a∈A

∑

(s,t) δa∈Pst
D(s,t)

ca

=
∑

(s,t)

D(s,t)

∑

a∈Pst

1

ca

if Pst is the path from node s to node t and δa∈Pst
= 1 if link a is on the path from

s to t and 0 otherwise3.
∑

(s,t) D(s,t) is constant and so to minimize
∑

a∈A ua, we

have to minimize
∑

a∈Pst

1
ca
∀s, t which is minimized by SPF algorithm taking

1
ca

as link metrics.

For the InvCap objective function, we thus find the CISCO recommendation
for IGP metric setting ( 1

ca
). The proof can be easily adapted for the MinHop

function. In this case 1
ca

is replaced by 1, which justifies its name. We see that
the MinHop routing thus minimizes the total load of the network, as expressed
by the MinHop objective function.

Theorem 5.1 cannot be applied directly with the last three objective func-
tions of table 5.1 because they are non linear with respect to the link loads.

3If we consider ECMP, δa∈Pst
is the fraction of traffic sent on a.
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5.4.1 Dividing the traffic matrix

To approximate infinitesimal increments of traffic for the last three objective
functions, we propose to divide the traffic matrix into N equal traffic sub-
matrices called strata. The algorithm first computes the paths of the first
stratum. Then the algorithm takes into account the link loads induced by the
routing of this first stratum to compute the paths of the second stratum, and
so on, until the N th stratum. Let OBJn be the value of the objective function
at step n and OBJN its value at the end of the process.

Lemma 5.1. For large N ,

OBJn −OBJn−1 ≈
∑

(s,t)

D(s,t)

N

∑

a∈Pn
(s,t)

f ′
a(ln−1

a )

Proof.

OBJn = OBJn−1 +
∑

a∈A

[

fa(lna )− fa(ln−1
a )

]

= OBJn−1

+
P

a∈A

"

fa(ln−1
a +

P

(s,t) D(s,t)δa∈Pn
(s,t)

N
) − fa(ln−1

a )

#

As
limǫ→0fa(ln−1

a + ǫ) = fa(ln−1
a ) + ǫ× f ′

a(ln−1
a )

we have for large N :

OBJn ≈ OBJn−1 +
∑

a∈A

∑

(s,t)

D(s,t)

N
δa∈Pn

(s,t)
f ′

a(ln−1
a )

Theorem 5.2. For large N , the routing paths of the nth stratum that minimize
OBJn −OBJn−1 are the shortest paths according to the following link metrics:
wn

a = f ′
a(ln−1

a ).

Proof. This result is derived directly from Lemma 5.1 with Pn
(s,t) being the

shortest paths with wn
a as link metrics.

From this theorem we can conclude that if the traffic matrix is split into
a large number of strata, each new stratum can be routed so as to minimize
the increase of the objective function, simply by routing the nth stratum along
the shortest paths with link metrics wn

a . The succession of n such steps, all
minimizing the increase of OBJ , is thus expected not to depart too much from
the optimum.

The algorithm we propose to implement this method is thus the following
(see Algorithm 5.1). First compute the paths using SPF algorithm with metrics

56



5.5. SIMPLE EXAMPLE

Algorithm 5.1: Divide TM into N sub-matrices

l0a ← 0 ∀a ∈ A;1

n← 1;2

while n ≤ N do3

wn
a ←

∂fa(x)

∂x

∣

∣

∣

∣

x=ln−1
a

∀a ∈ A;
4

lna ← ln−1
a +

∑

(s,t) δa∈SPF n
(s,t)

D(s,t)

N ∀a ∈ A;5

n← n + 1;6

end7

la ← lNa ∀a ∈ A;8

equal to w1
a =

∂fa(x)

∂x

∣

∣

∣

∣

x=0

. Route the first stratum using these paths and

recompute the new metrics considering the load introduced by this routing.
Compute the paths for the second stratum using these updated metrics, and so
on, until the N th partial traffic matrix. δa∈SPF n

(s,t)
is equal to 1 if a belongs to

the shortest path from s to t considering the set of metrics wn
a and 0 otherwise4.

5.5 Simple example

In this section, we present an example of our algorithm running on a simple
topology and its limit when N → ∞. We highlight why it is not optimal
and when this non-optimality occurs. In this example we use the MeanDelay
objective function but the other functions would lead to the same kind of results.

S1 S2

D1 D2

l2

l4

l5

l6

l1 l3 l7

Figure 5.1: Simple Example Topology

Consider the topology of figure 5.1. cl1 = 11 Mbps, cl3 = 10 Mbps and
cl7 = 9 Mbps. cl2 = ∞, cl4 = ∞, cl5 = ∞, cl6 = ∞5. D(S1,D1) = 10 Mbps
and D(S2,D2) = 1 Mbps. The traffic matrix is empty for all other (source,

4If we consider ECMP, δa∈SPF n
(s,t)

is the fraction of traffic sent on a considering wn
a as

link metrics.
5Instead of infinite capacities, we can also use capacities ≫ {cl1 , cl3 , cl7}
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destination) pairs of nodes. There are two possible paths for traffic from node
S1 to node D1, the left-hand path l1 and the right-hand path l2l3l4. For the
traffic from node S2 to node D2, the two possible paths are the left-hand path
l5l3l6 and the right-hand path l7. We can easily compute that the optimal
routing scheme occurs if S1 sends 5.5 Mbps of traffic on its left-hand path and
4.5 Mbps of traffic on its right-hand path while S2 sends all its traffic on its
right-hand path. In this case the value of the objective function is equal to

1
cl1

−ll1
+ 1

cl3
−ll3

+ 1
cl7

−ll7
= 1

5.5 + 1
5.5 + 1

8 ≈ 0.489.

If we apply our algorithm with N = 1, both S1 and S2 will send the whole
traffic on their left-hand path, because 1

112 < 1
102 and 1

102 < 1
92 (as we consider

the MeanDelay objective function, link metrics are f ′
a(la) = 1

(ca−la)2 ). Thus

OBJN=1 = 1
1 + 1

9 + 1
9 ≈ 1.222. If N = 2, the first stratum will be routed on

the left-hand path for both commodities and the second one on the left-hand
path for (S1,D1) and on the right-hand path for (S2,D2), because 1

62 > 1
9.52

and 1
9.52 < 1

92 . Thus OBJN=2 = 1
6 + 1

4 + 1
9 ≈ 0.528, which is already far better

than OBJN=1.

When N becomes sufficiently large the strata become infinitesimal. Thus the
traffic is routed on the left-hand path for both commodities until the portion of
traffic routed for both commodities (α) is such that the left-hand path and the
right-hand path for (S1, D1) have the same cost, i.e. 1

(11−10α)2 = 1
(10−α)2 . This

occurs when α = 1
9 . It is already clear that this routing is not optimal because

the optimal routing requires S2 to send all its traffic on the right-hand path.
Now the loads on all the links are such that cl1−ll1 = 9.889, cl3−ll3 = 9.889 and
cl7−ll7 = 9. If we continue this reasoning until the whole traffic matrix is routed,
we can compute that limN→∞OBJN = OBJ∞ ≈ 1

5.364 + 1
5.364 + 1

8.273 ≈ 0.494
which is at 1% from the optimum.

From this example, we can see why our method is not asymptotically op-
timal. Our method would be asymptotically optimal (i.e. limN→∞OBJN =
OBJopt in this case) if there were only one commodity in the network. This is
not the case if there are multiple commodities in the network, as we have seen
in our example. The non-optimality is due to the non-reevaluation of the paths
that were computed in previous steps of the algorithm and whose costs have
been increased due to other commodities. Indeed, in our example, if we could
change the paths of the first α portion of traffic from S2 to D2 when we realize
that it is not optimal anymore, we could reach the optimum. Anyway, as we see
in our simulations, our algorithm behaves very well in practice.

5.6 Simulations

We have tried our algorithm on two real networks: the operational network of
chapter 3 but also Abilene network. We have run our simulation on two traffic
matrices per topology: one “low” traffic matrix measured during the night and
one “high” traffic matrix measured during peak hours.

Figures 5.2 to 5.5 present the values of the objective functions when N goes
from 1 to 20. The values are relative to the optimal value of the objective
function computed with an LP solver ( OBJN

OBJOP T
). Be aware that the vertical
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scale is not the same for all the graphs. MinHop and InvCap are not on the
figures because obviously these have a value of 1 ∀N . Results are presented
on figures 5.2 and 5.3 for Abilene network and on figures 5.4 and 5.5 for the
operational network. We see that in many cases, we do not have to divide the
traffic matrix into many strata to obtain a routing scheme close to the optimum.

Please note that the optimal routing for each objective function is different.
So it is impossible to compare two points of two different objective functions
on the figures presented in this section. Only two points of the same objective
function can be compared.
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Figure 5.2: Abilene Topology (“low” TM)
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Figure 5.3: Abilene Topology (“high” TM)

If we agree to have a precision ǫ of 1.8%, we can use only N = 1 for both
networks for low loads (low TMs). For high loads (high TMs), we have to
use N = 5 to achieve this precision on Abilene network, or N = 3 on the
other operational network. Depending on the chosen objective function, desired
precision can be obtained with lower N value.
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On Abilene Topology, WMeanDelay and NonLinearFortz provide ex-
actly the same relative values because all the links of this topology have the
same capacities. Thus NonLinearFortz =

∑

a∈A
la

1− la
ca

=
∑

a∈A
ca.la
ca−la

=

c×
∑

a∈A
la

c−la
= c×WMeanDelay
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Figure 5.4: Operational network Topology (“low” TM)

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0  5  10  15  20

R
el

at
iv

e 
ob

je
ct

iv
e 

fu
nc

tio
n 

va
lu

e

Number of Topologies (N)

Mean Delay
WMeanDelay

NonLinearFortz

Figure 5.5: Operational network Topology (“high” TM)

On figures 5.2 and 5.3 (Abilene network), we can see that there is a gap
of about 1% between our solution and the optimum value for WMeanDelay
and NonLinearFortz6, while there is almost no gap for MeanDelay objective
function. On figures 5.4 and 5.5 (operational network), there is almost no gap
for any objective function. This highlights that the gap that may be observed
depends on the topology and the traffic matrix. For information, the gap is also

6This means that in this case our algorithm converges to a solution which is at about 1 %
of the optimum.
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Size of the network Computation time (in sec)
Nb Nodes Nb Links Our method LP method

11 14 0.549 0.248
∼ 20 ∼ 40 6.563 23.251
30 60 15.475 634.64
35 70 27.410 1322.586

Table 5.2: Computation time of our method compared to LP formulation

at most 1% on the other topologies of section 5.7. We think this is a quite low
value.

5.7 Efficiency

We have used an LP formulation of the routing problem (as in chapter 4) to find
the optimal routing scheme so that it was possible to measure the gap between
our algorithm and the optimum in preceding section. In this LP formulation,
we had to linearize our non-linear objective functions7. We have to choose the
number of linear pieces of the approximation. Increasing the number of linear
pieces in the approximation will increase the quality of the solution found, but
it will also increase the running time. Figure 5.6 shows the precision of LP for-
mulation when we increase the number of lines in the piecewise approximation.
We present on this figure relative values to the minimum observed over all tests
(in this case the minimum occurs when 51 linear pieces are used). We can see
that when more than 30 pieces are used the error is at most 0.02%, which is
considered as very good. On figure 5.7 we can see the computation time when
the number of pieces increase. We can notice that the computation time does
not increase that much when we increase the number of linear pieces in the
approximation. In fact the big problem of LP formulations is the size of the
network. Table 5.2 shows the computation time of the LP solver compared to
our method on Abilene and the operational network, but also on two other gen-
erated networks. The two additional networks are generated using the BRITE
topology generator ([MLMB01]) and the traffic matrix using the TOTEM tool-
box ([TOT]). The results are presented for 20 linear pieces in the approximation
for the LP method and when dividing the Traffic Matrix in 20 strata for our
method. All the simulation times of this chapter are measured on an IBM com-
puter eServer 325 with 2 AMD opteron 2GHz 64 bits processors and 2GB of
memory. As LP solver, we have used CPLEX 9.1 (64 bits version). We can see
on the table that our algorithm could also be used as benchmark instead of LP
for large topologies where LP is not usable due to the high running time. Note
that CPLEX is the most powerful solver among those we have tested.

7As explained in chapter 4.
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Figure 5.6: Precision of LP routing scheme
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Figure 5.7: Computation time of LP routing scheme

5.8 Implementation on routers

The routing scheme which is found by our method can be implemented on
routers using either Multiple Topology Routing ([PSS08, PMR+07]) or multiple
MPLS LSP full-meshes8.

5.8.1 Multiple Topology Routing

In this case, there are two sub-problems. The first problem is to divide the
traffic matrix into N sub-matrices. Each router of the network has to map

8In [MM05] Menth and Martin propose to use Multiple Topology Routing to provide net-
work resilience, while in [KGST07] Kwong et al. propose to use Multiple Topology Routing
to improve service differentiation.
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each packet to one of the N topologies. Usually, load balancing is done using a
hash function which is based on an identifier of the flow so that all the packets
of a flow are forwarded along the same path, thus avoiding packet reordering.
The flow id is usually composed of five fields: source and destination addresses,
source and destination ports and protocol number.

In our case, the hash function has to be the same in all the routers of the
network to avoid cycles. Indeed cycles could appear if one node associates one
packet with one topology and the following node associates this same packet
with another one. The hash function can be mod(flow id,N), for example.

The second problem is to find the N sets of metrics. In our case it is simple.
The N sets of metrics are the values of the first derivatives at each step of our
algorithm.

5.8.2 MPLS full-mesh

It is simpler with MPLS. The paths of the multiple full-mesh are the paths
computed at each step when running SPF algorithm on updated metrics. We
also have to use a hash function to associate a packet with one of the multiple
LSPs available, but in this case, the hash function can be different in each
(ingress) router.

With a triple full-mesh, large backbones with 200-300 egress points would
require 600-900 LSP heads at an ingress router. Core routers may need an order
of magnitude more transit LSPs. These numbers are far below the thousands
of LSP heads and tens-of-thousands transit LSPs that equipment vendors can
support today.

5.9 Conclusion

Our algorithm provides a good way to approach the optimal routing scheme for
an objective function which is of the form of

∑

a∈A fa(la) and for which fa(x)
is convex. To approach the optimal routing scheme, we divide the traffic matrix
into N equal strata. For any chosen N , we have proposed two methods to im-
plement corresponding routing scheme in the routers: Multi-Topology Routing
or MPLS multiple full-mesh. We have highlighted the trade-off between low N
and good precision. Furthermore, our algorithm can be used on large topologies
to compute a near-optimal benchmark solution where LP solvers are inefficient.
For these topologies, the near-optimal value found by our algorithm can be used
to estimate the quality of a heuristic routing scheme. Moreover, the source code
of this algorithm is freely available in the TOTEM Toolbox[TOT], so using it
does not require any expensive license as it is the case for professional LP solvers
like CPLEX.
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6
Combined Intra- and Inter-domain Traffic
Engineering using Hot-Potato Aware Link

Weight Optimization

As presented in chapter 2 the classical approach to intradomain traffic engi-
neering in OSPF/ISIS networks consists in finding the set of link weights that
minimizes a network-wide objective function for a given intradomain traffic ma-
trix. We will see that this approach is inadequate because it ignores a poten-
tial impact on interdomain routing. Indeed, the resulting set of link weights
may trigger BGP to change the BGP next hop for some destination prefixes,
to enforce hot-potato routing policies. In turn, this results in changes in the
intradomain traffic matrix that have not been anticipated by the link weight
optimizer, possibly leading to degraded network performance.

In this chapter we propose a BGP-aware link weight optimization method
that takes these effects into account, and even turns them into an advantage.
This method uses the interdomain traffic matrix and other available BGP data,
to extend the intradomain topology with external virtual nodes and links, on
which all the well-tuned heuristics of a classical link weights optimizer can be
applied. A key innovative asset of our method is its ability to also optimize
the traffic on the interdomain peering links. We show, using our operational
network dataset as a case study, that our approach does so efficiently at almost
no extra computational cost.

6.1 Introduction & Motivation

In OSPF/ISIS networks, the only way to optimize the traffic is by finding an
appropriate set of link weights that minimizes a given domain-wide objective
function. In its simplest form the resolution of this optimization problem needs
to take as inputs (1) the network topology with unknown link weights, (2) the
chosen network-wide objective function, and (3) an intradomain traffic matrix,
which specifies the amount of traffic between every pair of ingress/egress nodes.
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USING HOT-POTATO AWARE LINK WEIGHT OPTIMIZATION

However this approach is unaware of the interdependence between intrado-
main and interdomain routings. Actually the real traffic demand is an interdo-
main traffic matrix (from IP prefix to IP prefix), while the intradomain traffic
matrix (from ingress to egress nodes) is only the result of applying BGP routing
decisions on the interdomain traffic matrix (TM). Even if we consider that the
interdomain TM and the interdomain (BGP) routes are invariant, the intrado-
main TM may still vary if some link weights are changed inside the domain.
This is due to the so-called hot-potato (or early exit) decision rule implemented
by BGP.

Figure 6.1: Toy Example

The toy example depicted in figure 6.1 suffices to illustrate the problem1.
This figure shows a domain with three nodes: an ingress node R1 possibly
sending traffic to egress nodes R2 and R3, and three intradomain links of weights
w1, w2 and w3. Suppose this AS has two peering links (respectively R2-N1

and R3-N2) with a neighboring AS providing connectivity to the IP prefix P1.
Further suppose that no BGP rule of higher precedence than the hot-potato rule
has been able to make a selection between R2 and R3. If the link weights are
inversely proportional to the link capacities shown on the figure, then ingress
node R1 will choose to reach this prefix through egress node R2 according to
the hot-potato rule (because w1 = 1/10 < w2 = 1/8). If R1 has 5 units of traffic
to send to P1, then the intradomain TM is just 5 units from R1 to R2 and no
traffic elsewhere.

Now suppose that we run a link weight optimizer that tries to minimize the
maximum link utilization, while allowing equal cost multipath (ECMP)[Moy98].
A possible optimal link weights setting is w1 = 2, w2 = w3 = 1, leading to two
IGP equal cost paths from R1 to R2 and to a maximum link utilization of 2.5/8
on link R1-R3. However, if the weights are set as proposed, the hot-potato
rule will now select R3 as egress node to reach P1 (because w2 < w1), and the

1This example network is similar to the one used in [CEDFQ06]
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resulting intradomain TM is actually 5 units of traffic from R1 to R3, with a
maximum utilization of 5/8 on link R1-R3. Clearly, the outcome is much worse
than expected, and even worse than keeping the initial weights setting!

This toy example illustrates that we cannot rely on the intradomain TM to
solve the optimization problem, because it is not invariant under link weights
changes, possibly leading to degraded network performance.

Even though this toy example is not representative of real networks with real
traffic, we will show in section 6.5, by using our operational network dataset as
a case study, that this phenomenon can really happen with bad consequences,
because a substantial amount of prefixes/traffic may be subject to hot-potato
(re)routing. For the case study in section 6.5 we show that 97.2% of the prefixes
have multiple possible egress points, which amounts to 35.6% of the traffic on
average. Without taking hot-potato effects into account, we will show that the
link weights proposed by a classical LWO may result in link utilizations close to
and even above 100%, while the tool expected maximal link utilizations of only
about 35%.

We propose a link weight optimization method that takes these hot-potato
effects into account, and even turns them into an advantage. To this end we use
as inputs the (hot-potato invariant) interdomain TM and some BGP data, both
collected inside the domain, to infer the set of IP prefixes that can be reached
by at least two egress nodes and for which no BGP rule of higher precedence
than the hot-potato rule has been able to make a selection, i.e. for which the
hot-potato rule can potentially be the tie-breaker. We call this subset the hot-
potato prefixes, and from now on in this introduction we will only consider these
prefixes.

Figure 6.2: Toy Example - Simplified Version

Our method is based on an extension of the intradomain topology with
external virtual nodes and links. A first naive and unscalable way to solve
the problem would consist in adding a virtual node per hot-potato prefix and
attach this node to all possible BGP next-hops for this prefix. This is depicted
on figure 6.2 for the toy example of figure 6.1. If we now run LWO on this
virtual topology, while still allowing equal cost multipaths, including multiple
BGP next-hops, an optimal weights setting is w1 = w2 = w3 = 1, which will
split the 5 units of traffic evenly on the two paths R1-R2-N1 and R1-R3-N2.

However, the number of hot-potato prefixes can be very large and we would
like to keep the number of virtual nodes roughly similar to the number of or-
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dinary nodes. To this end we propose to aggregate all virtual nodes attached
to exactly the same sets of BGP next-hops. They are indeed indistinguishable
with respect to intradomain routing. On the operational network that we have
considered, the number of such nodes boils down from 160,000 to only 26. We
further show by considering the amount of traffic sent to these aggregates, that
we can reduce this set to only 5 virtual nodes without neglecting more than
0.06% of the total ”hot-potato” traffic.

An asset of our method lies in reusing the well-tuned LWO heuristics on this
extended topology. Moreover, we have also extended this intradomain traffic
engineering problem to the peering links, by taking these links into account in
the objective function. In our simulations this method allowed us to reduce the
maximal interdomain link utilization from 70.1% to 36.5%.

In section 6.2 we review related works. In section 6.3 we present iBGP
multipath load sharing, an optional feature of BGP that we use in this chapter.
In section 6.4 we formulate the problem and propose our BGP-aware LWO. In
section 6.5 we show an application of the method using an operational network.
In section 6.6, we discuss future work concerning possible control of incoming
interdomain traffic and also potential oscillations. Finally, section 6.7 concludes
this work.

6.2 Related Work

The first LWO algorithm proposed by Fortz et al. in [FT00] is based on a
tabu-search metaheuristic and finds a nearly-optimal set of link weights that
minimizes a particular objective function, namely the sum over all links of a
convex function of the link loads and/or utilizations. This problem has later
been generalized to take several traffic matrices [FT02] and some link failures
[FT03] into account. In our LWO we reuse the heuristic detailed in [FT00],
but we have adapted this algorithm to consider the effect of hot-potato routing.
All the later improvements to this algorithm (i.e. multiple traffic matrices, link
failures) could be integrated in our new LWO in a similar way.

The fact that the intradomain TM is not the correct input for many Traffic
Engineering problems had already been pointed out in [FGL+01, FGL+00] by
Feldmann et al., who suggested to consider the set of possible egress links in
the traffic matrix. In [Rex06] several extensions to the classical LWO problem
are briefly described by Rexford, including a sketch of a method that resembles
ours. Our work is in line with this recommendation, as we connect several equiv-
alent egress nodes to a single virtual node representing the destination, but we
propose a complete method to solve the link weight optimization problem, appli-
cable to intradomain and peering links, and we demonstrate its efficiency on an
operational network. In [ANB05] Agarwal et al. study how hot-potato routing
influences the selection of IGP link weights and how traffic to neighboring ASes
shifts due to changes in the local AS’s link weights. In their measurement study
they find that weights resulting from ignoring hot-potato interactions can be
sub-optimal by as much as 20% of link utilization. We show in this paper that
the sub-optimality can be much larger. They also find that as much as 25% of
traffic to a neighboring AS can shift the exit point due to a local AS IGP link
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weight optimization. They have developed a patch to their link weight optimizer
which recomputes the intradomain traffic matrix from the interdomain one at
each step of the optimization. Their optimizer does not consider directly the
interdomain traffic matrix. Also, their link weight optimizer does not engineer
interdomain links and they have tested their algorithm on only 80% of the total
traffic of their private ISP while we have tested it on 99% of traffic of an oper-
ational network. Finally their source code is not available, while our algorithm
is available in open-source in the TOTEM toolbox.

Cerav-Erbas et al. have already shown in [CEDFQ06] that the link weights
found by a LWO may change the intradomain TM considered as input. In
that paper they also show that applying LWO recursively on the resulting in-
tradomain TM may not converge. They propose a method that keeps track of
the series of resulting TMs and at each iteration they optimize the weights for
all the previous resulting intradomain TMs simultaneously. However, they do
not consider the general problem with multiple exit points for each destination
prefix, let alone taking advantage of it.

In [WXQ+06] Wang et al. propose to take the interdomain routing into
account by splitting the problem into two subproblems. The first one consists
in optimizing the mapping of every (hot-potato) destination prefix to a single
egress point. This can then be implemented in BGP by assigning a higher
local preference to the route received by the chosen egress node. The second
subproblem is then the classical link weight optimization for the resulting (and
now invariant) intradomain TM. In our approach we solve both subproblems in
one step with the usual LWO and we do not need to assign local preference values
to pin down every destination prefix to a unique BGP next-hop. By keeping all
the potential next-hops we have more flexibility to engineer the network.

Several studies have shown that the proportion of IP prefixes whose next hop
is selected by the hot-potato criterion can be very large in ISP networks. Based
on measurements of one ISP network (AT&T’s tier-1 backbone network) Teix-
eira et al. show in [TSGR04] that hot-potato routing changes are responsible
for a big part of BGP routing changes. While this is not the main goal of that
paper they have measured that more than 60% of the prefixes can be affected
by the hot-potato routing changes and that these hot-potato prefixes account for
5-35% of the traffic in the network. It is also explained in [TDRR05] that Since
large ISPs typically peer with each other in multiple locations, the hot-potato
tie-breaking step almost always drives the final routing decision for destinations
learned from peers, although this is much less common for destinations adver-
tised by customers. The authors show that although most routing changes do
not cause important traffic shifts, routing is a major contributor to large traffic
variations. This demonstrates that it is very important to take BGP routing
considerations into account when running traffic engineering algorithms.

In [RTZ03] Roughan et al. analyze the effects of imprecision in the traffic
matrix due to estimation techniques on traffic engineering algorithms. While the
effects of these imprecisions seem to be quite limited, we show in this work that
the effects due to hot-potato routing can be very large. This is an important
result as this highlights that not taking hot-potato effects into account cannot
be simply seen as resulting in little (harmless) imprecision in the traffic matrix.
Hot-potato errors in the TM can really be a big problem for intradomain TM-
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based TE algorithms optimizing the link weights.

To the best of our knowledge this work is the first algorithm to find the
best possible set of link weights to engineer intra- and inter-domain links while
taking hot-potato effects into account.

6.3 Splitting the traffic among multiple paths

In this chapter we are particularly interested in routes that are selected using the
6th criterion of the BGP decision process presented in section 1.1.2, which refers
to the link weights of the domain to select the best route toward a destination
(i.e. Hot-Potato criterion).

P1 P2 P3 P4

N1 N2

N3 N4

R1

R2

R3

R0

AS1
AS2

Engineered AS

Figure 6.3: Example Topology

Consider the network of figure 6.3. Suppose that routes to P1 are announced
by N1 to R1 and N2 to R2 on eBGP sessions. Suppose that the routes announced
by these two routers have the same attributes (i.e. local-preference, AS-path,
origin number and MED) after passing the input filters of routers R1 and R2

(this is very frequent in practice for routes that are received from the same
neighboring AS). Suppose also that these two routes are forwarded by R1 and R2

to R0 on iBGP sessions. Usually the attributes are not changed when forwarding
routes on iBGP sessions. So R0 has two routes to reach P1 and these two routes
are equivalent w.r.t. criteria 1 to 4. Both are received on iBGP sessions so are
also equivalent w.r.t. the 5th criterion. In this case R0 will use its IGP distance
to R1 and R2 to select the best route toward P1. We say that this route is
chosen using the hot-potato criterion by router R0. Note that R1 and R2 will
directly forward traffic toward this prefix on their interdomain link using the
eBGP>iBGP criterion (the 5th criterion of the BGP decision process presented
in section 1.1.2). So we see that prefixes that are routed via the hot-potato
criterion by some routers will be routed according to the eBGP>iBGP criterion
by some others and vice-versa.

Now if R1 and R2 are at the same distance from R0, the 7th criterion will
be used. By default only one next hop can be chosen and a tie-break selects
the best route. But it is also possible to enable iBGP multipath load sharing
([BGP, Fou]) to balance the load on both paths. As for intradomain ECMP, a
hash table is used to select the particular route of a packet. Figure 6.4 supposes
that iBGP multipath is activated and that R1 and R2 are at the same distance
from R0. In this case the traffic going from R0 to P1 will be split evenly on both
paths.
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Figure 6.4: iBGP multipath

If both ECMP and iBGP multipath are activated, we have to clarify how
the traffic is split between multiple paths. Consider figure 6.5. Suppose that
R1 and R2 are at equal distance from R0. Two equal cost paths are available
from R0 to R1 and only one from R0 to R2. The load sharing implementations
in routers we are aware of will send 1/3 of the traffic on each of the 3 available
paths at router R0.

P1 P2 P3 P4

R1 R2

R0

AS1
AS2

1/3

1/3

1/3
1/3

2/3

Engineered AS

Figure 6.5: ECMP + iBGP multipath

6.4 A BGP-aware link weight optimizer

In this section we present our model of the general traffic engineering problem.
We will use the network of figure 6.3 to illustrate all the presented concepts.

6.4.1 Formulation of the extended traffic engineering prob-

lem

A network is modeled as a directed graph, G = (N,L) whose vertices and edges
represent nodes and links. The basic intradomain topology is composed of all
the nodes and links that belong to the AS. We consider two disjoint categories
of destination prefixes. The single-egress prefixes are those prefixes for which
the BGP next-hop is chosen by one of the first 4 BGP criteria. The hot-potato
prefixes are all the other prefixes. For each of them there is at least one router in
the domain that has used the hot-potato criterion, or a following one, to select
the next-hop. For each of these hot-potato prefixes however, there are also at

71



6. COMBINED INTRA- AND INTER-DOMAIN TRAFFIC ENGINEERING
USING HOT-POTATO AWARE LINK WEIGHT OPTIMIZATION

least two other routers that forward traffic according to the 5th BGP criterion
(eBGP>iBGP), that has precedence over the hot-potato criterion (as shown in
the example of section 6.3). The traffic forwarded to the single-egress prefixes
constitutes a (hot-potato invariant) intradomain TM, called TMinvar. We also
include in that TMinvar the traffic forwarded to the hot-potato prefixes origi-
nated from the particular nodes that uses the 5th BGP criterion (eBGP>iBGP)
to choose their best route. The remaining traffic forwarded to hot-potato prefixes
constitutes TMhp.

For every hot-potato prefix we conceptually add a virtual node representing
it. Then for every peering link on which equivalent BGP routes (up to criterion
4) have been announced for that prefix, we extend the intradomain topology
with a link+node pair representing this peering link and the neighboring router
on the other side of this link. Finally we attach all these neighboring routers to
the virtual node (representing the hot-potato prefix) by adding virtual links.

Therefore we have three disjoint sets of edges in the topology: Lintra is the
set of intradomain links, Linter is the set of interdomain links, and Lvirtual is
the set of virtual links. Similarly we split the nodes in the topology into three
disjoint sets: Nintra is the set of routers from the local AS, Nneigh is the set of
border routers in neighboring ASes, and Nvirtual is the set of virtual nodes.

Figure 6.6 shows such a topology. It is the same as figure 6.3 where prefixes
are replaced by virtual nodes and possible paths to prefixes are replaced by
virtual links. P1, P2, P3 and P4 are HP prefixes that compose Nvirtual. The
BGP-equivalent routes (up to rule 4) are announced by N1 and N2 for P1 and P2,
by N1, N2 and N4 for P3, and by N2, N3 and N4 for P4. Linter = {R1−N1, R2−
N2, R3 −N3, R3 −N4} and Lvirtual = {N1 − P1, N1 − P2, ...}. Nintra = {R∗},
Nneigh = {N∗}, and Nvirtual = {P∗}.

P1 P2 P3 P4

N1 N2

N3 N4
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R3

R0

AS1
AS2
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Figure 6.6: More Complex Topology with virtual nodes

Each virtual link (l ∈ Lvirtual) has infinite capacity cl = ∞ and a fixed
weight wl = 0. Every other link (l ∈ Lintra ∪ Linter) has a capacity cl and a
weight wl. Let us note that interdomain and virtual links are directed (toward
the destination prefix) as no transit via a virtual node is allowed.

The traffic will follow the shortest path(s) based on the link weights. If there
are multiple equal cost paths, traffic is considered to be evenly split among them,
as shown on figures 6.4 and 6.5.

Once the paths are chosen, we can associate with each link l a load ll,
which is the proportion of traffic that traverses link l summed over all pairs of
source/destination nodes. The utilization of a link l is ul = ll/cl.
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The goal of the LWO is then to find the set of link weights that minimizes
our network-wide objective function based on the loads and/or utilizations of
intradomain and interdomain links.

6.4.2 Aggregating prefixes

The problem as formulated in the preceding section is not solvable in practice.
Indeed the number of prefixes in the BGP routing table of an internet router is
about 160,0002 and so in the worst case all the prefixes are hot-potato prefixes
and about 160,000 nodes would be added to the intradomain topology (see sec-
tion 6.5 for the actual number of hot-potato prefixes in the operational network
we have studied). However all prefixes that are reachable through exactly the
same set of possible nodes ∈ Nneigh can be aggregated (e.g., nodes P1 and P2

in figure 6.6 can be merged) as they are indistinguishable from an intradomain
routing perspective. This will drastically reduce the number of virtual nodes.
Note that if n is the number of peering links of the AS, there can still be 2n vir-
tual nodes in the worst case. In practice however it is much lower, as explained
in [FBR03]. Indeed routes are often announced with the same parameters on
peering links with the same neighbor AS. For the operational network we have
used as a case study, the number of peering links traversed by hot-potato traffic
is 18. Out of 218 possible different combinations of peering links, only 26 are
actually observed.

We can still go one step further by taking the traffic destined for each aggre-
gated virtual node into account. For example, in our case study we have noticed
that no traffic is sent to 8 of them, and only a very small volume of traffic is
sent to 13 others, thus leading to 5 nodes receiving 99.94% of the hot-potato
traffic (TMhp). So we can basically extend the intradomain topology with these
5 virtual nodes without really losing accuracy. This is really significant for the
practical efficiency of the LWO. More precisely, using 5 nodes instead of 18 re-
duced the average computation time of the algorithm from 582 to 140 seconds3

without decreasing the quality of the provided solutions. Stated otherwise, the
same computational budget would allow us to find a better solution (using more
iterations) on the smaller topology.

Figure 6.7 depicts the structure of the aggregated interdomain traffic matrix,
with one row per edge node in Nintra and one column per edge node in Nintra

or in Nvirtual.

To build this aggregated interdomain traffic matrix we proceed as follows.
Let (s, p) be the traffic volume from an ingress node (s ∈ Nintra) to a destination
prefix (p). If p is not a hot-potato prefix (i.e., there is only one possible egress
node t ∈ Nintra), we add this traffic volume to the pair (s, t) in TMinvar. If
the prefix p is a hot-potato prefix, we distinguish two subcases. If node s is a
possible egress node for this prefix, we add this traffic volume to the pair (s, s)

2It was about 160,000 when we did collect the dataset. At the time of writing (June 2008)
it is more than 255,000 and it continues to increase (source: RIPE routing table report).

3This is the average computation time over 14 runs on different TMs with 50 iterations per
run. We have used 50 iterations because we have noticed that increasing this number did not
significantly improve the quality of the solution found on this data. These simulation times
are measured on an IBM computer eServer 325 with 2 AMD opteron 2GHz 64 bits processors
and 2GB of memory.
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Figure 6.7: The Aggregated Interdomain Traffic Matrix

in TMinvar (indeed this traffic will be routed using the eBGP>iBGP criterion).
On the other hand, if s is not one of the possible egress nodes for p, we add
this amount of traffic to the pair (s, Pi) in TMhp, where Pi ∈ Nvirtual is the
virtual node associated with the prefix aggregate comprising p. Now we have
our aggregated interdomain traffic matrix, which is composed of TMinvar and
TMhp.

6.4.3 Engineering intra- and interdomain links

In this work we reuse fortz objective function which has been presented in chap-
ter 4. It is a piecewise linear convex function of the link utilization and capacity
(φl for link l): φ =

∑

l∈Lintra
φl, where Lintra is the set of intradomain links.

Others objective functions could also be used in the optimizer. As interdomain
links are now part of the topology, we can include these links in the objective
function. We are flexible with respect to the inclusion of these interdomain links
in the objective function by adding a parameter α which determines the relative
importance of interdomain links with respect to intradomain ones. The new
function is φ =

∑

l∈Lintra
φl + α

∑

l∈Linter
φl. In section 6.5 we will compare

cases where α = 0 and α = 1. Values of α in between have not been tested
as α = 1 seemed to be the good compromise in our case. Indeed as shown in
section 6.5.2 it was possible to engineer interdomain links without decreasing
the efficiency of the intradomain load balance. Note that it could be different
in other networks and in this case it would be interesting to test other values of
α.

The inclusion of interdomain links in the objective function is a key advan-
tage of our method as it allows the LWO to engineer these interdomain links
in addition to intradomain ones. With a classical LWO there is no point in
including interdomain links in the topology and engineer them, because the in-
tradomain TM used as input pins down the egress node anyway, thus assigning
the same load on the interdomain links irrespective of the link weights. As we
relax the constraints on the egress nodes, it seems natural to take advantage of
it to also engineer the traffic on interdomain links. With our method it suffices
to include these links in the objective function.
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6.4.4 Collecting input data for the optimizer

Our LWO needs as input some information about the traffic and also some
BGP data. The required traffic information is the traffic volume from every
ingress router to every destination prefix. For the BGP information we have
to discriminate the hot-potato prefixes from the other ones. For hot-potato
prefixes, we need the set of possible BGP next-hops. For other prefixes, we just
need the unique BGP next-hop.

We will mainly describe the method we have used in our case study. We
had access to daily dumps containing all the routes received by the monitoring
station. In other words, the traces contain for each day all the best routes used
by all the routers of the network toward every possible destination prefixes.

We distinguish two categories of prefixes:

• The prefixes for which the same route is selected by all the routers as the
best route (they will correspond to our earlier definition of single-egress
prefixes);

• The prefixes for which at least two routers in the AS have selected different
best routes (they will correspond to our earlier definition of hot-potato
prefixes).

The first category of prefixes contains all the prefixes for which the best route
is selected by one of the first 4 criteria of the BGP process (local preference, AS
path, origin number and MED), and the second category contains all the prefixes
for which the best route is selected at a later stage (i.e. by the eBGP>iBGP,
hot-potato, or tie-break or load-balancing criteria). Indeed suppose that several
routes for the same prefix are received on different eBGP sessions. If one router
selects its best route by one of the first four criteria, all the other routers will
select exactly the same route by the same criterion, because eBGP data are
exchanged ”as is” on all iBGP sessions and all the routers are part of the iBGP
full mesh. On the other hand if there are at least two equivalent routes after
the 4th criterion, then each of these routes will be chosen by at least one router
according to the 5th criterion (eBGP>iBGP), namely the border router that
has received that route on its eBGP session.

So we can deduce that if we see only one route for one prefix in the BGP trace,
this means that this prefix is not a hot-potato prefix. If this prefix appears at
least twice this means that this prefix is routed by the 5th, 6th or 7th criterion
depending on the router. This prefix is anyway a hot-potato prefix, because
even though some routers have chosen their best route by the 5th criterion,
other routers must have used the 6th or 7th criterion in this case.

6.4.5 Incorporating changes in a classical LWO

We have modified the classical LWO to include BGP considerations. Three types
of links (intradomain, interdomain and virtual) are now present in the model.
Intradomain links are unchanged. Interdomain links have a finite capacity and
a weight. These are considered in the objective function, weighted by the α
parameter. Finally virtual links have infinite capacities, are not considered in
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the objective function, and have a null weight. After these modifications a
classical LWO, equipped with all its heuristics, can be applied on our extended
model.

Notice that the classical LWO considers implicitly that it is possible to split
the traffic evenly along several equal cost paths. Therefore it will be necessary
to enable ECMP in the network to really get the expected performance. This is
anyway a very reasonable choice. Moreover, it was shown (in [ICBD04] for the
Sprint network) that ECMP improves robustness. In [SMD03] the authors claim
that having multiple shortest paths between pairs of routers provides the ability
to switch over to another path in case of link failure without overlapping with the
previous path of another node, which could have lead to a transient forwarding
loop. It is also said that this is useful to reduce the latency for forwarding-plane
convergence for IGP routing changes. Similarly to ECMP, we have considered
that it is possible to split the traffic evenly along multiple equal shortest-paths
up to the virtual node. So to get the expected performance the network ad-
ministrator will have to enable iBGP multipath load sharing. Enabling iBGP
multipath load sharing is again a natural choice for traffic engineering4.

6.4.6 Respecting the eBGP>iBGP criterion

If next-hop-self5 is not activated in the network, it is possible to let the optimizer
choose weights on interdomain links. This gives more knobs to tune to the LWO,
in addition to the intradomain links weights. The pros is that the LWO may
potentially find a better solution, and the cons is the larger search space that
increases the computation time to performance ratio. In large networks it may
become too costly to assign link weights to interdomain links.

Moreover, assigning weights to interdomain links may contradict the eBGP>
iBGP criterion. We explain this point on the simplified network of figure 6.8.
Suppose that the LWO has found the link weights indicated on the figure. We
can easily compute that the shortest path tree toward destination prefix P1 is
R1 - R3 - R2 - P1. And that is exactly what the LWO has considered during its
optimization. However traffic sent by R1 to P1 will actually follow another path,
namely R1 - R3 - P1, because according to the eBGP>iBGP rule, which has
precedence over the hot-potato rule, R3 prefers to forward this traffic directly on
its peering link, although the path via R2 has a lower cost (in terms of weights).

In our simulations we force interdomain link weights to 0, while all intrado-
main links are constraint to have integer weights ≥ 1, so that this problem is
avoided. Indeed for example in the simplified network of figure 6.8 the shortest
path from R3 to P1 will always be R3 - P1 (weight = 0) and never R3 - R2

- P1 (weight ≥ 1). Note that setting all the weights of interdomain links to 0

4Notice that a network operator which still does not want to activate iBGP multipath load
sharing can use the LWO presented in next chapter (chapter 7). Indeed that LWO can be
configured to consider iBGP multipath load sharing or not, contrary to the LWO presented
in this chapter, which always consider that iBGP multipath load sharing is activated.

5Next-Hop-Self is a configuration of BGP in which a BGP border router set its address
as Next Hop before transmitting on iBGP sessions a route received on an eBGP session. If
Next-Hop-Self is activated, an ingress router will compute the path cost from itself to the
egress while it will compute the path cost from itself to the router in the neighboring AS if it
is not the case. In the first case it will not consider the cost of the interdomain link while in
the latter case it will consider it.
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Figure 6.8: Toy Example - with link weights

still allows us to engineer interdomain links by including them in the objective
function as explained in section 6.4.3. So this is not a shortcoming and this is
confirmed by the good results of the simulation study.

6.4.7 Simplifying the model

When using the LWO without optimizing interdomain links (i.e. only intrado-
main links are in the objective function), a simplification of the model is possible.
Indeed we can remove all the interdomain links (Linter) and all the neighbor
nodes (Nneigh) from our model. Figure 6.6 would result in this case in figure 6.9
(where P1 and P2 have already been aggregated). Indeed in this case the model
has just to include all the possible egress nodes for each traffic. This simplifica-
tion decreases the number of links and nodes of the model and so improves the
efficiency of the optimizer.

P1P2 P3 P4

R1

R2

R3

R0Engineered AS

Figure 6.9: Simplified Model

6.5 Simulations on an operational network

We have tested our algorithm on the whole dataset (2,512 aggregated interdo-
main traffic matrices) presented in chapter 3. For this study it is important to
note that it is a transit network that has two providers connected with about
10 interdomain links, has other peer ASes connected with about 15 shared-cost
links, and has more than 25 customer ASes, which are mainly single-homed.
The total traffic exchanged is about 10 Gbps on average.
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In this network there is an iBGP full mesh, MEDs are currently not used,
and there are three different local preference values: the lowest value is used
for routes learned from provider links, the intermediate value is used for routes
learned from shared-cost peering links, and the highest value is used for routes
learned from customer links. Route parameters are exchanged unmodified on
all iBGP sessions. We have used the technique exposed in section 6.4.4 to build
our model.

The average number of prefixes is 160,973 of which 97.2% (156,407) are hot-
potato prefixes. If we now take traffic into account, we have measured that these
97.2% amount to 35.6% of the traffic on average. This is still enough to have
a significant impact on the link loads of the network. Over all recorded TMs,
the peak value is 51.7% of the traffic and the minimal value is 24.6%. Another
interesting fact is that on average 99.94% of hot-potato traffic is destined for
the 5 biggest clusters of prefixes. The sets of interdomain links giving access to
each of these 5 clusters of prefixes are either all peering links to a neighboring
AS (for 3 clusters), or a mix of peering links from two such ASes (for 2 clusters).

We have run different versions of the LWO on a large number of traffic
matrices. Section 6.5.1 presents some simulation results demonstrating the in-
tradomain traffic engineering capabilities of our algorithm while section 6.5.2
demonstrates that interdomain traffic engineering is also possible. All the sim-
ulations consider that ECMP and iBGP multipath are enabled.

6.5.1 Intradomain TE

We first compare a classical LWO (denoted IntraLWO) with our BGP-aware
optimizer (denoted BGP-awareLWO). To execute IntraLWO we had to generate
for each interdomain TM the corresponding intradomain TM where the hot-
potato traffic is routed considering the present (i.e., non engineered) link weights.
So these intradomain TMs are those that would be measured in the network.
For the comparison we have run both optimizers on all the 2,512 aggregated
interdomain TM. Optimizers consider weights in a range from 1 to 150. Figure
6.10 shows the maximal intradomain link utilization (Umax) for some worst-case
TMs.

We have run IntraLWO on every intradomain TM, and computed the re-
sulting maximal link utilization, assuming that the intradomain TM remains
invariant (thus ignoring hot-potato effects). In the sequel these values are de-
noted IntraLWO-Predicted. For this link weights setting, if hot-potato effects
are taken into account, we get the resulting maximal intradomain link utilization
denoted IntraLWO-Resulting. These are the real values that would be observed
if the optimized link weights were installed in the network. These values are
very different, and sometimes the resulting maximal utilization is even worse
than the routing without link weight optimization (not present in the figure).
Finally we have run our BGP-awareLWO and we can see that the maximal
link utilizations are very good. Figure 6.10 shows a selection of TMs providing
the worst-case values for IntraLWO-Resulting6. The average reduction of Umax

from IntraLWO-Resulting to BGP-awareLWO over all TMs is 4.5%, but let us

6 In this case we define worst case values as values of traffic matrices providing the highest
intradomain maximal link utilizations.
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Figure 6.10: Umax values for some worst case TMs

outline that the worst-case TMs do matter much more, because the main goal
of our LWO is to filter out the unexpectedly bad link weights settings proposed
by a classical LWO. In all cases the real minimal value of Umax achievable in
practice are the values of BGP-awareLWO, since the IntraLWO-Predicted are
disqualified in the comparison.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160  180

Pe
rc

en
ta

ge
 o

f 
T

M
s

Maximal Link Utilisation

BGP-aware LWO
Intra LWO Resulting

Figure 6.11: CDFs of Umax over all TMs for BGP-awareLWO and IntraLWO-
Resulting

Figure 6.11 shows the CDFs (cumulative distribution functions) of the max-
imal link utilization over the 2,512 TMs for BGP-awareLWO and IntraLWO-
Resulting. IntraLWO-Predicted is not depicted on the figure because it would
be almost mixed up with BGP-awareLWO. We can clearly see that BGP-
awareLWO is better than IntraLWO-Resulting. Figure 6.12 gives the propor-
tions of TMs per range of maximal link utilizations. In this figure we can see
that BGP-awareLWO takes advantage of the freedom of choice of the egress
point(s) for hot-potato traffic. Indeed BGP-awareLWO is slightly better than
IntraLWO-Predicted. For example there are 3.4% less TMs in the [30, 40) range.
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This indicates that our optimizer can change the egress point of some hot-potato
traffic to better engineer the network.

Concerning the computational efficiency of the LWO, adding the virtual links
and nodes has roughly doubled the computation time. We consider that this is
not a high cost given the improved quality of the solutions found.

One may wonder why BGP-awareLWO does not always find a better solution
than IntraLWO-Predicted (figure 6.10). It is because the objective function does
not strictly minimize the maximal link utilization (i.e., it minimizes the sum over
all links of a convex function of the link utilization). Therefore even when the
solution is slightly better with respect to the objective function, it can still be
a little bit worse with respect to the maximal link utilization.
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Figure 6.12: Proportions of TMs in each Umax interval

6.5.1.1 In-depth analysis of the worst case traffic matrix

In this section we would like to analyze the worst case traffic matrix concerning
the maximal link utilization of IntraLWO-Resulting.

With the worst case traffic matrix, the maximal link utilization is 160% with
the weights optimized with IntraLWO. The traffic shifts that happen in this case
are depicted on figure 6.13. If P2 < P1

7, traffic on the flow from S to D1 will
be routed on link L, and this will be expected by IntraLWO. But if P4 < P3

while before optimization P4 > P3, the hot-potato traffic from S to V irtualD4

will be routed on L and this will NOT be expected by IntraLWO. This situation
happens four times on the same low capacity link8 for the worst case traffic
matrix, and for quite big hot-potato traffic flows compared to the link capacity.

Before optimization the maximal link utilization is 34.8%. The utilization
of the problematic link is only 0.4%. There are only four intradomain shortest
paths that use this link and the total traffic on these four flows is 0.6 Mbps.

7By P2 < P1 we mean that the sum of the weights of the links of P2 is smaller than the
sum of the weights of the links of P1.

8This link has a capacity of 155 Mbps.
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Figure 6.13: Traffic shifts from one shortest path to another

After optimization the problematic link is used in 20 shortest paths instead
of 4. This is expected by IntraLWO which predicts that these 20 flows will
afford 29 Mbps, leading to a utilization of only 18.9% (< 34.1%, IntraLWO does
not predict that this link is the most utilized link). What is not expected by
IntraLWO is that 4 of these shortest paths will also attract hot-potato traffic.
The hot-potato traffic which is shifted on one of these shortest paths comes
from one of the 19 remaining shortest paths using this link. So this shift has no
effect on the load of this link. But the hot-potato traffic attracted on the three
remaining shortest paths comes from other flows whose shortest path does not
include the problematic link. These three flows attract a total amount of 220
Mbps of hot-potato traffic, which is more than the capacity of the link.

6.5.1.2 Increasing the bottleneck links capacities and the traffic ma-
trices

To analyze whether the presence of low capacity links has any impact on our
results, we did also run our algorithm on a modified version of the topology,
where all the 155Mbps links have been replaced by 622Mbps links. We have
also doubled all the elements of the traffic matrices in order to reflect a possible
increase in the traffic demand in the future. With this version of the topology
and traffic matrices, we have noticed that the impact of hot-potato reroutings on
Umax after a LWO optimization is larger than with the initial topology and load.
Indeed the mean reduction of Umax over all TMs from IntraLWO-Resulting to
BGP-awareLWO is now 21.8% instead of 4.5%. This can be observed on the
CDF of figure 6.14 for the updated topology and traffic matrices, which should
be compared to figure 6.11 for the initial data. We can also observe that for
more than 45% of the traffic matrices, IntraLWO-Resulting leads to a Umax

greater than 67.8% which is the Umax reached on the worst case TM by BGP-
awareLWO.

Over all TMs Umax have been observed on at least 10 different links. There
are 7.5% of the traffic matrices for which Umax is greater than 100% for IntraLWO-
Resulting, and these high Umax values can be observed on 6 different links, out
of which only 2 are 622 Mbps links. The worst case traffic matrix concerning
Umax for IntraLWO-Resulting induces a utilization of 189.1% on a link whose
capacity is 2.5 Gbps. These results demonstrate that it is not always the same
lowest capacity link that induces the highest utilization in the network.

We have also analyzed CDF curves for the second, third, fourth and fifth
most utilized links. For the second most utilized link, results are similar to
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those shown on figure , with a peak maximal utilization for IntraLWO-Resulting
reaching 175.9%, and a maximal utilization being above 100% for 2% of the
traffic matrices. Concerning the third most utilized links, hot-potato reroutings
have less disastrous consequences, while still significant in the worst case as the
maximal utilization peaks at 95.3% for IntraLWO-Resulting while it peaks at
62.3% for BGP-awareLWO.
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Figure 6.14: CDFs of Umax over all TMs for BGP-awareLWO and IntraLWO-
Resulting for the updated topology

6.5.2 Interdomain TE

One of the most innovative feature of our LWO is its ability to engineer traffic
on the interdomain links. We first analyze the maximal link utilizations of the
interdomain links with the present link weights. The average value of Interdo-
main Umax over all TMs is 36.8%. This value can peak at 73.7%. We have
selected the worst TMs in this respect9 and run BGP-aware LWO on them with
interdomain links in the objective function. The results are shown in figure 6.15
for the peak TM. The maximal interdomain link utilization is reduced from
73.7% to 36.8% when using BGP-aware LWO. It shows that the LWO can take
advantage of hot-potato routing to also engineer traffic on interdomain links.

We now show that the optimization of interdomain links is not done at the
expense of intradomain links. To this end we have run BGP-aware LWO with
and without interdomain links in the objective function (α = 1 or α = 0, see
section 6.4.3) on the 50 TMs leading currently to the maximal interdomain
link utilization. Figure 6.16 presents the average intradomain and interdomain
Umax values for these matrices. It shows that BGP-aware LWO with all links
in its objective function can optimize interdomain links almost without impact-
ing intradomain links. The average intradomain Umax value is indeed almost
equivalent in both cases.

9 Here worst case TMs means TMs providing the highest interdomain link utilization with
present link weights.

82



6.5. SIMULATIONS ON AN OPERATIONAL NETWORK

 0

 10

 20

 30

 40

 50

 60

 70

 80

L1 L2 L3 L4 L5 L6 L7 L8 L9

U
til

iz
at

io
n 

of
 th

e 
lin

k 
(%

)

Link ID

Non optimized
Optimized by BGP-aware LWO

Figure 6.15: Interdomain link utilizations
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6.5.3 Analysis in a Dynamic Environment

Now we want to analyze the performance of our BGP-aware LWO in a dy-
namic environment where the future traffic matrices are obviously not known.
Previous analyses did assume that we were able to measure a traffic matrix
that was representative of the future traffic matrices. We will now analyze how
optimizations based on past traffic measurements do behave when applied on
subsequent traffic matrices. We will test different methods to aggregate multiple
past matrices into one single traffic matrix which can be used by optimizers. We
analyze the efficiency of the global system which is composed of the optimizer, a
reoptimization strategy, and an aggregation technique for past traffic matrices.

We will analyze the maximal link utilization (Umax), the 90th percentile of
link utilizations (Uper90

10) and the mean link utilization (Umean). BGP-aware
LWO is configured to optimize both intradomain and interdomain links.

6.5.3.1 Routing based on the traffic matrix: with oracle

Figure 6.17 presents the application of BGP-aware LWO on the whole dataset.
In this simulation we assume that we are able to predict the actual traffic matrix
for the next 15 minutes and that we reoptimize the routes every 15 minutes as
well. It is not possible to implement this solution in practice as first we cannot
exactly predict the traffic matrix for the next 15 minutes, and also it is not a good
idea to reoptimize the routes too often, for stability reasons. This simulation
gives us the best routing scheme available with a link weight optimizer on this
dataset. We will later see how the routing performance deteriorates when these
optimal conditions are not met.
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Figure 6.17: BGP-aware LWO based on an oracle

6.5.3.2 Dynamic TE

Now we analyze different proposals to optimize the routing scheme based on
past traffic matrices.

10By definition, 90% of the links in the network have a link utilization under Uper90.
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First we will continue to consider that we are able to change the link weights
every 15 minutes (we will call this the reoptimization period).

The simplest technique that can be used to estimate the next traffic matrix is
probably to use the last traffic matrix. The corresponding simulation is depicted
on figure 6.18. We now see a peak in the maximal link utilization (78.47%) at
TM 1444.

We try to figure out the cause of that spike by looking at the traffic and
fanout graphs of chapter 3. We can see on figure 3.2 that during TM 1443, the
total traffic was going down while on the fanout graphs we have observed that
the traffic fanouts were keeping regular values. We do not know the cause of
that traffic anomaly. The interesting point is that a link weight optimization
based on this non-regular TM has led to a spike in Umax when the resulting link
weights were applied on the next traffic matrix. This means that using only the
information of the last TM to optimize the routes is probably not a good idea.
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Figure 6.18: BGP-aware LWO based on previous TM (the TM computed based
on traffic of last 15 minutes)

So we will test another reoptimization technique to keep more information
than the last traffic matrix to estimate the next one. We simulate a link weight
reoptimization still every 15 minutes, but now each optimization is based on the
maximal traffic matrix computed on the last 4 traffic matrices (four 15-minute-
TMs = one hour). We call this amount of time (i.e. one hour) the memory
horizon: the optimizer has only access to the corresponding TMs information.

Note that the maximal traffic matrix is defined so that each (i,j) component
is the maximal (i,j) component for all the traffic matrices within the memory
interval11. Later, we will also test another method to aggregate multiple TMs
into one. These are defined so that each (i,j) component of the traffic matrix is
set to a value so that X% of the traffic matrices within the memory interval have
the (i,j) element below this value (and 100-X% are above of course). We will call
corresponding TMs the Xth percentile TMs. This aggregation technique should
have the advantage to filter out absurdly high values which may be present due
to measurements errors and which could lead to erroneous optimization.

11The memory interval is defined as: [now-horizon, now].
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The resulting simulation (memory horizon of one hour, maximal traffic ma-
trix) is presented in figure 6.19. We can observe that increasing the horizon from
15 minutes to one hour has deteriorated the performance of the system. There
are now two peak intervals: between TM 1237 and TM 1258, and between TM
1325 and TM 1327.

In the traffic fanout graphs of chapter 3, we have observed that during period
TM 1233 to TM 1257 we have a down period for router R5 in the source and
destination fanouts (figures 3.8 and 3.10). This period matches the first peak
period for Umax, and so it is probably the cause of that problem. During period
TM 1325 to TM 1327 we had observed the starting point (at TM 1325) of
multiple abrupt source traffic fanout changes, which is probably due to a source
traffic shift from some ingress nodes to others. So this traffic shift was not
anticipated by the LWO, which did result in a Umax peak until the optimizer is
rerun considering this traffic shift.
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Figure 6.19: Routing scheme reoptimized every 15 min, based on the maximal
TM computed over the last hour

Several other configurations that we have also tested are presented in table
6.1. We do not present individual graphs like those presented in figure 6.18
and 6.19 for every analyzed configuration as this will not be very informative.
Instead the table presents the following aggregated performance metrics: the
peak Umax, Uper90 and Umean, but also the mean Umax, Uper90 and Umean.
We have also included the mean interdomain Umax.

We have observed on the utilization graphs (not shown in this work) when
they were placed next to the traffic and fanout graphs that only a subset of
bad TE performance are related to some traffic changes that can be simply
monitored by a network operator (i.e. the source and destination fanouts).

Now we analyze the table. We can observe that some configurations result
in very high peak Umax values. We can also observe that it is not interesting to
have a too short reoptimization period. Indeed many simulations with a short
reoptimization period (15 minutes, one hour or even one day) did result in very
high peak Umax. Moreover short reoptimization periods could create instability
in the network, which is not shown in the table.
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We can also observe that it is not possible to provide a rule such: ”the 90th
percentile TM method is always better than the maximal TM technique”, or ”the
longer the memory horizon, the better the performance”. Indeed we can easily
find counter examples in our table.

We have highlighted in italic the two lines that seem to be the best config-
urations for this dataset. The last line of the table shows that we can achieve
a good traffic engineering state with one route reoptimization per week. This
is probably the best LWO dynamic TE scheme and this is the one we would
recommend to use on this network for this particular dataset. Of course we
cannot deduce general rules for every network from this particular case study,
and the trade-off which is good for this network may not be the best on another
network. However, on a case-by-case basis, every network could be analysed in
a similar way, and particular trade-off, possibly different from this one, could
be inferred.
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Reopt. Memory Reopt. TM PEAK MEAN MEAN

period Horizon method Umax Uper90 Umean Umax Uper90 Umean Umax

15 Min oracle 63.60 30.89 9.43 35.97 19.38 5.53 35.58

15 Min 78.47 32.82 9.43 36.37 19.40 5.54 35.60

1 Hour Max 115.99 30.11 10.32 35.93 19.12 5.47 35.43

1 Hour 1 Hour Max 112.97 30.89 10.32 36.07 19.17 5.47 35.61

1 Hour 75th Perc. 112.97 33.39 10.32 36.83 19.30 5.52 35.49

1 Day Max 61.54 27.61 9.49 33.60 17.25 5.24 36.95

1 Day 90th Perc. 64.95 29.53 9.44 35.00 17.89 5.30 36.43

1 Day 80th Perc. 83.55 29.47 9.87 35.06 18.22 5.33 35.98

1 Week Max 97.75 27.84 9.60 36.70 16.73 5.24 39.86

1 Week 90th Perc. 67.32 29.05 9.72 35.69 17.49 5.33 38.34

1 Week 80th Perc. 62.91 28.41 8.48 34.36 17.59 5.26 37.59

1 Day 1 Day Max 63.41 27.59 8.41 34.09 17.24 5.17 36.83

1 Day 90th Perc. 64.95 29.53 8.80 35.28 17.62 5.28 35.94

1 Day 80th Perc. 69.42 29.16 8.83 35.18 17.92 5.26 38.09

1 Week Max 97.75 27.64 8.69 38.10 16.61 5.21 41.21

1 Week 90th Perc. 72.69 30.94 9.91 36.26 17.27 5.29 38.03

1 Week 80th Perc. 62.91 28.48 9.33 34.09 17.42 5.22 39.15

1 Week 1 Week Max. 62.91 28.26 8.65 39.18 16.77 5.13 40.47

1 Week 90th Perc. 63.41 27.77 9.10 36.21 16.89 5.15 38.68

1 Week 80th Perc. 62.91 28.33 9.00 35.07 17.01 5.14 36.97

Table 6.1: Peak and mean values of Umax, Umean and Uper90 for various TE routing schemes
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6.6 Future Work

6.6.1 Choosing the ingress point for selected traffic

So far we have implicitly assumed that we have no control on the incoming traf-
fic. This is not exactly true. The techniques we could use are for example MEDs,
ASPATH prepending or selective prefix advertising. We refer to [QUP+03] for
details on these techniques. These techniques can be used to perform INterdo-
main Ingress Traffic Engineering (INITE) as defined in [GDZ05].

Suppose that we have one client and one provider, and that we learn a route
from our client that we announce to our provider. Suppose that we are connected
to this provider by two interdomain links. By default we will announce the same
route on both peering links. So probably that provider will route traffic toward
this prefix according to the hot-potato criterion12. Indeed the two routes it has
received have exactly the same attributes. We could instead choose the ingress
point for traffic coming from this AS for this destination prefix using MEDs
or ASPATH prepending. Using MED values require an agreement with our
providers.

If we want our LWO to play on ingress points as it plays on egress points,
we could extend our model by adding a virtual incoming node attached to our
two possible ingress nodes with virtual links of infinite capacity. In this case the
incoming virtual node models our ability to choose the ingress point for that
traffic. There would be one such virtual incoming node per pair of upstream AS
and destination prefix.

If we associate link weights with the incoming virtual links, we can let the
optimizer tune them. Then, if MED attributes are used, the route announced on
the eBGP sessions associated with a virtual incoming link will be given a MED
value computed as the cost of the path from the incoming virtual node to its
associated destination node (i.e. in Nintra or Nvirtual). If ASPATH prepending
is used, we could prepend every route sent by a potential ingress router for which
no traffic is desired.

6.6.2 Potential Oscillation

A known potential issue with LWOs is route instability. As there is no mutual
agreement on the egress/ingress points between ASes, it is not guaranteed that
two neighboring ASes (say ASx and ASy) running their LWO will not oscillate,
one reoptimizing its link weights after the other. Indeed each link weights opti-
mization in ASx can lead to a change of some egress points, changing the traffic
matrix in ASy which may trigger the reoptimization of the link weights in this
AS, and so on, leading to route and traffic oscillations.

Such instability may already happen with classical BGP-blind LWOs and,
as our BGP-aware LWO does not address this issue, some instability may also
potentially exist with our proposition.

In [MWA05] the authors propose a method to negotiate the BGP egress point

12This is the case except if this provider has some different input filters for these two routes
received at two different points of its network.
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between neighboring ASes. This technique should remove oscillations provided
that it is possible to fix the egress point, which is not easy in OSPF/ISIS net-
works. In [MWA05] the authors consider MPLS networks instead.

In [QB05] the authors present another negotiation-based technique to control
incoming interdomain traffic of stub ASes. They propose to tunnel the traffic
between source and destination cooperating ASes.

The related problem of BGP route oscillations when interdomain traffic en-
gineering techniques are used is considered in [YXW+05], where sufficient con-
ditions are elaborated to guarantee BGP route stability. Unfortunately, these
conditions are not fulfilled in presence of LWOs (be they BGP-aware or not), be-
cause all LWOs take input traffic into account to choose links weights, which in
turn determine egress points for hot-potato prefixes, and thus the corresponding
BGP routes.

This problem of potential oscillations is still an open research topic, and was
not the primary goal of this work.

6.7 Conclusion

We proposed a BGP-aware Link Weight Optimizer (LWO) that extends the
classical (intradomain) LWO to take into account BGP’s hot-potato routing
principle. The optimized link weights, if deployed, will actually give rise to
the link loads expected by the optimizer, contrary to a classical (intradomain)
LWO that may lead to unexpectedly high loads on some links when changing
weights impacts the intradomain traffic matrix. In practice the method only
requires to extend the intradomain topology with a limited number of virtual
nodes and links, which preserves scalability, as shown on an operational network
used as a case study. The aggregated interdomain traffic matrix associated with
this extended topology replaces advantageously the classical intradomain traffic
matrix as input to the LWO. On this basis, a classical LWO requires only small
modifications to be reused on the extended topology, and this allows us to reuse
all its well-tuned heuristics.

The most innovative key asset of the method is its ability to optimize traffic
on interdomain peering links as well. We have shown on a case study that it does
so very efficiently at almost no extra computational cost, while preserving the
5th BGP routing criterion stating that eBGP-learned routes should be preferred
to iBGP-learned ones.

As for a classical LWO, our method can be extended to more general scenar-
ios including several traffic matrices as input and/or possible link failures. Note
however that an interdomain traffic matrix used as input is likely to be already
more stable (and thus representative) than intradomain matrices. Indeed the
interdomain matrix is invariant under all local hot-potato fluctuations, e.g. due
to failures. This better stability of the interdomain matrix would allow us to
use a smaller set of representative matrices as input, which in turn would give
unique link weights settings that are better optimized for each of them.

Even though our method requires additional inputs to build the interdomain
traffic matrix and some more computation power, this pays off, because our
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BGP-aware LWO clearly outperforms classical (intradomain) LWO.

Then we have analyzed different dynamic routing scenarios. We have shown
that it is possible to find a good strategy which does not require too frequent
reoptimizations (e.g. once a week).

We have also analyzed the bad performance of some strategies and linked this
information with our traffic analysis of chapter 3. We have shown that some
bad TE performance are related to some traffic changes that can be simply
monitored by a network operator (i.e. the source and destination fanouts).
Future works could study how to monitor such simple traffic variables in order to
improve the global TE system. We could for example trigger a new optimization
when some anomalies are observed. It could also be interesting to give this
monitored information to optimizers (e.g. information about a traffic ingress
change) which could take this information into account during the optimization,
to provide better and more stable routing solutions. We could also imagine to
discard measured data that contain anomalies to avoid an optimization based
on unreliable data, which could lead to bad TE performance.
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7
The case of BGP-aware Link Weight Optimizers

in ASes using Route Reflectors

The first generation of IGP Link Weight Optimizers (LWOs) was based on
presumably invariant intra-domain traffic matrices only, ignoring the fact that
updating link weights had a side effect on these traffic matrices due to hot-potato
routing, thus resulting in suboptimal link weight settings, and sometimes to very
bad performance.

The second generation of IGP LWOs (presented in chapter 6), referred to
as BGP-aware LWOs, has been able to optimize link weights while taking hot-
potato effects into account. However, these tools relied on the complete visibility
assumption fulfilled by e.g. a full-mesh iBGP configuration.

This chapter presents a third generation LWO, still BGP-aware, but also
able to work with iBGP configurations based on route reflectors, which usually
hide some reachability information from routers. This partial visibility may
cause various problems, including path deflections (i.e., the actual egress router
is not the expected one), which may in turn create forwarding loops.

Our LWO embeds a BGP routing solver which can always predict the actual
egress router, even when route reflectors are used. It can also forbid solutions
leading to path deflection. Its efficiency is evaluated on a real dataset, and
compared to other LWOs.

7.1 Introduction & Motivation

In chapter 6 we have proposed to integrate the BGP hot-potato rule in a link
weight optimizer. But we will see that this method implicitly assumes that every
router in the AS is aware of every route announced toward every destination.
This is always correct when the iBGP configuration is a full-mesh, but not when
route reflectors are used.

Indeed in iBGP full-mesh configurations, each route announcement received
by any router on an eBGP session is retransmitted on iBGP sessions to every
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other BGP router in the AS. So every router is aware of all the available routes
for every destination and it can choose its global best route in the whole set of
available routes.

The problem of the iBGP full-mesh is that it requires n.(n−1)
2 iBGP sessions

in an AS composed of n BGP routers. This may be prohibitive in large ASes. To
solve this scalability problem, network operators usually install route reflectors,
which reduces the number of iBGP sessions ([BCC00]). But it is known that
route reflectors can introduce anomalies that are due to partial route visibility.
This happens because clients receive only the best route from their route reflec-
tor. So route reflector clients do not have access to the whole set of available
routes. Moreover the route reflector’s best route may differ from the client global
best route (i.e. the route that it would have chosen, had it seen every available
route). This can lead to non-optimal hot-potato egress choice. Another anomaly
that can be created by route reflectors is the forwarding deflection. This hap-
pens when a router selects its best route and on the forwarding path to the
egress point corresponding to this best route, there is a router that selects an-
other best route and thus another egress point. In this case we say that the
traffic is deflected. We will see an example of network configuration inducing a
path deflection in section 7.3.

The biggest problem with deflections is that they can introduce forwarding
loops ([GW02]):

• Intra-AS loops due to the combination of multiple deflections in a partic-
ular way.

• Inter-AS loops which can appear when incorrect ASPATH information is
transmitted by routers for which the traffic has been deflected. As the
ASPATH information is not correct, the BGP loop detection mechanism
may not work properly.

In this chapter we first want to study the impact of partial visibility on LWOs
that make a wrong assumption of complete visibility. This impact can range
from a non-optimal traffic engineering solution found by the optimizer to the
more dangerous introduction of path deflections in the AS or even forwarding
loops. This motivated us to develop a BGP-aware LWO able to take account
of partial visibility in presence of Route Reflectors, which allows to detect and
forbid path deflections possibly leading to forwarding loops.

The chapter is structured as follows. Section 7.2 presents related works. Sec-
tion 7.3 analyses in detail the different iBGP configurations that are conflicting
with traditional LWOs. Section 7.4 uses simulations to evaluate the impact of
partial visibility on LWOs. To this end we run a LWO that wrongly considers
complete visibility on a network whose iBGP configuration contains a route re-
flector. Then section 7.5 presents a new LWO embedding a BGP simulator to
predict the actual egress points and detect path deflections. We evaluate the
performance of this new LWO in section 7.6 with simulations based on a real
dataset. Finally section 7.7 concludes this work.
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7.2 Related Work

Section 7.2.1 presents related works on BGP Route Reflector while section 7.2.2
presents related works on LWOs.

7.2.1 Route Reflection

BGP suffers from several problems ([FBR04]). In particular, route reflectors
can introduce anomalies that include path deflection or forwarding loops. These
problems have been quite extensively studied (in [GW02] for example). In this
paper we analyze the impact of these route reflector problems on Link Weight
Optimizers. We will see that the partial visibility introduced by route reflectors
can have a big impact on the performance of LWOs. But a bigger issue is that
LWOs can also introduce path deflections and forwarding loops in a network
containing route reflectors. One first simple way to solve these problems would
be to ensure complete visibility, but this is really not a trivial task. In [GW02]
they show that determination of iBGP configuration correctness is NP-hard1.
However they provide sufficient conditions on network configurations that guar-
antee correctness. These sufficient conditions can help but do not solve all
problems. First the sufficient conditions only guarantee correctness for one set
of link weights. So if an LWO is run on an AS for which the sufficient conditions
hold, it may not be the case anymore after the optimization. Furthermore, in
[FBR04] we can read that ”First, these sufficient conditions are very strong:
they imply that every edge that is on a shortest path to an exit point must have
a corresponding iBGP session. Second, the conditions require that redundant
route reflectors must be located close to the primary to have a similar view of
the best routes, introducing undesirable fate sharing. Finally, we have recently
discovered IGP topologies for which this constraint is not satisfiable”. Another
interesting recent work is [BUM08] where the authors propose a new algorithm
to design correct iBGP route-reflection topologies. The remaining problem with
that method is that it supposes that the set of link weights is known and stable.
If the link weights are reoptimized by an LWO for traffic engineering, it is re-
quired to re-design the iBGP route-reflector topology from scratch for this new
set of link weights, which is really not desirable.

In [VVKB06] they propose a new method to build an iBGP topology made
of route reflectors which can guarantee the complete visibility property2. The
complete visibility property is defined in [VVKB06] as: The dissemination of
information amongst the routers should be ”complete” in the sense that, for
every external destination, each router picks the same route that it would have
picked had it seen the best route from every other BGP router in the AS. This
technique is a great work and good step toward good route reflector configuration
in networks. If that technique is used to design the hierarchy of route reflectors,
there is no problem with previously proposed LWOs, as they guarantee that
the egress point used by any router is the egress that would be chosen in the
iBGP full-mesh case, and this remains true for any set of link weights. But

1In that paper they define a correct iBGP configuration to be one that is anomaly-free for
every possible set of routes sent by neighboring ASes. They focus on anomalies that can cause
the protocol to diverge, and those that can cause path deflections.

2The proposed method also guarantees loop-free forwarding and robustness to IGP failures.
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it is not clear whether the technique of [VVKB06] can be used in practice to
design all the route reflector configurations. Indeed the algorithm is really not
flexible: it proposes one and only one solution which is correct but absolutely
not tunable. What happens if the proposed solution still contains too many
iBGP sessions? The number of iBGP sessions is reduced by a factor between
2.5 and 5 depending on the network compared to an iBGP full-mesh. But it is
not clear that it is sufficient for every network. Another potential problem is
the number of route reflectors and the number of levels in the route reflector
hierarchy which seems quite high in the generated configurations. This may be
considered too complex by some network operators.

In addition iBGP configurations that are currently deployed in the inter-
net contain errors. For example in [FB05] they have analyzed the real-world,
deployed BGP configuration of 17 different ASes. They have detected more
than 1000 BGP configuration faults that had previously gone undetected by
operators.

7.2.2 LWOs

Some methods have been proposed to integrate the BGP hot-potato rule in the
optimizer. For example in [ANB05], they recompute the intradomain traffic
matrix from the interdomain traffic matrix at each step of the optimizer, choos-
ing for each ingress node the nearest next-hop for each destination prefix. This
solution is not correct when the complete visibility property is not respected, as
in this case it is not always the nearest next-hop which is used, but the nearest
available next-hop, which may be very different.

In [BL08] (the proposition of chapter 6) and [Rex06] the proposed method
consists in adding some virtual nodes to the intradomain topology to model the
reachability of prefixes via multiple egress points. These solutions are based on
the fact that the traffic will follow the shortest path based on the link weights
from an ingress node to the virtual node modeling the destination prefix, which
respect both the IGP based on shortest paths and BGP’s hot-potato rule. In
this case it is possible to reuse existing Link Weight Optimizers with efficient
heuristics on the extended topology. But again this method requires the com-
plete visibility property. If that property is not respected, the chosen next-hop
may not be the one which is on the shortest path between the ingress node and
the virtual node modeling the destination prefix, as this next-hop may not be
available at this ingress node. This means that from an algorithmic point of
view it is not sufficient to compute a shortest path to infer the egress node cho-
sen by BGP. A more complex model of the BGP decision process and exchange
of BGP messages is required.

7.3 The problem of link weight optimizers and

route-reflectors

We will illustrate the problems of link weight optimizers and route-reflectors on
the topology of figure 7.1. Suppose that R1, R2, R3 and R4 are part of the AS
we want to engineer, N1 and N2 are part of a neighboring AS and can both
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reach IP prefix P1, N1 has an eBGP session with R3 and N2 with R4. Suppose
also that a BGP route advertisement message concerning prefix P1 is sent on
both eBGP sessions (N1 → R3 and N2 → R4) with the same BGP attributes.
We will mainly consider the following two configurations of iBGP session:

• There is a full-mesh of iBGP sessions;

• R2 is the route reflector for R1, R3 and R4.

Neighbor

AS

AS

Prefix P1 (X.X.X.X/Y)

N1 N2

R1

R2

R3
R4

w1
w2

w3

w4

w5

Route
Reflector

Engineered

Announcement of
route to prefix P1

Physical link

iBGP Session

Figure 7.1: Toy Example

First, consider the full-mesh iBGP configuration with the link weight setting
of figure 7.2a. R1, R2, R3 and R4 receive the two available routes on their
{e,i}BGP sessions. R3 chooses the route with N1 as next-hop while R4 chooses
the route with N2 as next-hop, both respecting the rule that enforces routers
to prefer eBGP-learned routes to iBGP-learned ones. R1 and R2 have received
these two routes on iBGP sessions, so these routers use the hot-potato rule
to choose their best route. R2 chooses the route with N1 or N2 as next-hop
depending on the IGP distance between R2 and respectively R3 and R4. For
the same reason R1 chooses between the two available routes depending on the
IGP distance from R1 to R3 and R4. For the particular link weights setting of
figure 7.2a, R2 chooses the route with N1 as next-hop while R4 chooses the route
with N2 as next-hop. We clearly see that adding a virtual node corresponding
to prefix P1 and two virtual links from N1 to P1 and from N2 to P1 allows
an algorithm to consider that the next-hop chosen by R2 (resp. R1) is on the
shortest path from R2 (resp. R1) to P1, provided that these two virtual links
and the two interdomain links have a weight of 0. This is the idea elaborated
in [BL08] (presented in chapter 6).

Now we will analyze the same network where R2 is the route reflector for
R1, R3 and R4. Figures 7.2b, 7.2c and 7.2d do all use these iBGP sessions. The
only differences are on the link weights setting. According to the BGP protocol
the best routes will be determined as follows. R3 and R4 will send their routes
to the route reflector R2 which will run its BGP decision process and thus select
one of these depending on the IGP distance from R2 to R3 and R4 respecting
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Figure 7.2: Different iBGP configurations and link weights setting
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the hot-potato rule. Now R2 will forward this (and only this) best route to R1

which will choose the same route as only this one is available at this ingress
router. We clearly see that R1 will use the same egress point as R2 even though
it is not necessarily the nearest egress point for R1. In that case we say that R1

has a partial visibility if its globally best egress is not visible to it.

Consider the link weights setting of figure 7.2b. In that case R2 chooses
R3 as egress node, and so does R1 as only this route is available. In this case,
R1 chooses its globally best route as the distance from R1 to R3 is 2 while the
distance from R1 to R4 is 3. This means that with these link weights we have
complete visibility as defined in section 7.2 (i.e. each router selects the route
which is its globally best route).

Now consider the link weights setting of figure 7.2c. In that case R2 still
chooses R3 as egress node, and so does R1 as only this route is available, although
its globally best route is via R4 as the distance from R1 to R3 is 2 while the
distance from R1 to R4 is 1. Anyway in this case there is no path deflection as
the shortest path from R1 to R3 is R1 → R2 → R3, which does not cross R4.

Finally consider the link weights setting of figure 7.2d. In that case R2 still
chooses R3 as egress node, and so does R1 as only this route is available. It
is still not its globally best route as the distance from R1 to R3 is 2 while the
distance from R1 to R4 is 1. But now there is a path deflection. Indeed the
shortest path from R1 to R3 is R1 → R4 → R3. So R1 forwards traffic to R4

thinking that R4 will forward it to R3 while R4 will actually send it directly to
N2. In that case we say that the traffic is deflected by R4. So the real path of
the traffic will be R1 → R4 → N2 and not R1 → R4 → R3 → N1.

Note that the combination of multiple path deflections can lead to forwarding
loops inside the AS. We refer to [GW02] for an example of such situation.

The consequences of the presence of route reflectors on the performance of
LWOs are the following:

• LWOs that consider complete visibility may lead to non-optimal traffic
engineering solutions, as the link utilizations that are predicted by the
optimizers do not reflect the ones that will be observed in the network,
due to errors in the egress prediction. For example, in case of figure 7.2c,
the optimizer will consider the routes of figure 7.2a;

• LWOs that consider complete visibility may introduce path deflections.
Indeed one deflection-free configuration (e.g. figure 7.2b) can be trans-
formed into a BGP configuration containing deflection (e.g. figure 7.2d)
simply by changing the set of link weights.

To summarize, we have to consider different cases of route reflector configu-
rations, from the safer to the most dangerous:

1 The configurations with complete visibility for every possible link weights
setting. For example configurations generated using the technique de-
scribed in [VVKB06] or simple iBGP full-mesh configurations.

2 The configurations with complete visibility for the present link weights
setting, without guarantee that all possible link weights settings will keep
the complete visibility property (e.g. figure 7.2b).
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3 The configurations without complete visibility for the present link weights
setting, but for which no deflection occurs (e.g. figure 7.2c).

4 The configurations without complete visibility for the present link weights
setting, for which simple deflections occur between egresses toward the
same neighbor AS3 (e.g. figure 7.2d).

5 The configurations without complete visibility for the present link weights
setting, for which simple deflections occur between egresses toward differ-
ent neighbor ASes (e.g. figure 7.2d, but with N1 and N2 in two different
ASes).

6 The configurations without complete visibility for the present link weights
setting, for which multiple deflections occur and form a forwarding loop
inside the AS (see [GW02] for such an example).

It can be noted that we make a difference between cases 4 and 5 because
simple deflections between two egress routers that connect to the same neighbor
AS (and which have the same corresponding ASPATHs) are not potentially the
cause of inter-AS loops. Indeed in that case there is no erroneous ASPATH
information transmitted to neighboring ASes. We think that this kind of deflec-
tion could be allowed by a network operator, as it is not dangerous. Moreover we
will see in section 7.6 that allowing this kind of deflection may let the optimizer
find a better TE solution in the extended search space.

Case 1 happens when the algorithm of [VVKB06] is used. If run on the
topology of figure 7.1, it would probably produce the following iBGP configu-
ration: R2 and R4 are both route reflectors for R1 and R3. It is not possible to
find a topology with only one route reflector that would produce the complete
visibility property for every possible link weights setting.

In case 1 we are sure to avoid the problems due to partial visibility and so
BGP-aware LWOs (like [ANB05, BL08, Rex06]) can be used. In all the other
cases, these optimizers can fail because of potential partial visibility and path
deflections. This can be simply explained by the fact that changing the link
weights setting can drive from any configuration in the set {2,3,4,5,6} to any
other configuration in the set {2,3,4,5,6}. So even if we start a link weight
optimization on a configuration of type 2, the resulting link weights can lead to
a configuration from type 2 to 6 in the worst case.

The important point is that if the iBGP configuration of a network is not
of type 1, it is safer to run a LWO that can deal with partial visibility and
avoid (or at least minimize the number of) deflections in the network. The
iBGP configuration with optimized link weights setting should ideally be of type
{1,2,3,4}, while type {5,6} should be avoided. Indeed type {1,2,3,4} guarantee
that no forwarding loops will be created.

3In fact we should say for which the corresponding ASPATH is the same in both routes,
which is generally the case when both routes are received from the same neighbor AS.

100



7.4. EVALUATING THE IMPACT OF PARTIAL VISIBILITY ON LINK
WEIGHT OPTIMIZERS

7.4 Evaluating the impact of partial visibility on

link weight optimizers

In this section we evaluate the impact of partial visibility on the traffic engi-
neering quality of solutions found by LWOs that make a wrong assumption of
complete visibility.

To this end we will test a LWO which considers complete visibility on a
topology which contains a route reflector giving partial visibility only. We use
the LWO presented in chapter 6. We will refer to this LWO as BGP-CV-LWO
as it correctly takes the BGP hot-potato rule into account when the complete
visibility (CV) property is respected. The results should be similar for the tool
developed in [ANB05], while we were not able to test it because that tool is
not publicly available. In the simulations of this section we use our dataset
presented in chapter 3. We have used the technique exposed in chapter 6 to
build our model from BGP dumps and netflow data.

7.4.1 Simulation description

The actual iBGP configuration of the network we have studied is an iBGP full-
mesh. We have designed an hypothetical simple BGP route reflector hierarchy
to simulate what happens with partial visibility. The route reflector hierarchy
we consider is the following: (this hierarchy is inspired from [Van05]): one router
which has a central position in the topology is chosen as the route reflector and
all the other routers of the network are clients of this route reflector4.

For each traffic matrix, we have run BGP-CV-LWO which considers hot-
potato traffic, but with complete visibility. Values labeled ”predicted”denote the
link loads predicted by this algorithm which assumes optimal hot-potato egress
selection. Values labeled ”resulting” represent the actual link loads resulting
from the BGP behavior with possible non-optimal egress selection due partial
visibility causing non best route choice for some routers. We have used the
C-BGP simulator ([QU05]) to compute the actual outcome of the BGP decision
process in this situation.

7.4.2 Simulation results

Figure 7.3 presents the CDFs (cumulative distribution functions) of the maximal
link utilization for all the traffic matrices (TMs). We can see that the optimizer
predicted that about 75% of the TMs will lead to a maximal utilization below
40% while it is in practice only true for about 45% of the TMs. Note that a
maximal link utilization over 100% means that one link is overloaded in the net-
work. The mean error of the optimizer concerning the maximal link utilization
is about 7.8%. In the worst case, the maximal utilization is greater than 140%
while the optimizer predicted less than 65%. The BGP-CV-LWO that was very
efficient and precise with complete visibility provides very poor results in this
route reflector configuration. If we compare these results with the results of

4By choosing the router which has the “central” position we mean that we have chosen the
router whose sum of its distance (in terms of number of hops) to all other routers is minimal.
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chapter 6 (figure 6.11) we can say that with this route reflector configuration
the BGP-CV-LWO behaves as badly as a completely BGP-blind LWO. These
results show that a more precise model of the BGP decision process is really
needed in the link weight optimizer.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100  120  140  160  180

Pe
rc

en
ta

ge
 o

f 
T

M
s 

un
de

r 
th

is
 U

m
ax

 V
al

ue
 (

1 
=

 1
00

%
)

Maximal Link Utilization (%)

Predicted
Resulting

Figure 7.3: CDFs of ”predicted” versus ”resulting” Umax over all TMs for BGP-
CV-LWO on the topology which contains a route reflector

Note that we have not just analysed the CDFs of the maximal link uti-
lization. We will summarize our observations concerning the other links. The
CDFs concerning the mean link utilization are almost identical, which means
that partial visibility has almost no impact concerning the mean link utiliza-
tion. Concerning the link just after the highest loaded link (which we call the
second maximal link utilization), partial visibility has an impact, but which is
significantly lower than for the maximal link utilization. Then for the third
and the fourth link utilization, the impact is very reduced (almost no impact).
This is the reason why we will only consider the maximal link utilization in our
subsequent simulations. Because partial visibility has a big impact on maximal
link utilization. So that this is the maximal link utilization that we can reduce
with a correct model of route reflectors.

7.5 A generic BGP-aware link weight optimizer

We now present BGP-LWO a new LWO which can consider any iBGP config-
uration. As a result it can correctly predict the actual egress node for each
prefix. To our knowledge, this is the first link weight computation algorithm
that correctly models hot-potato reroutings in the presence of Route-Reflectors
(leading to partial visibility) and that detects path deflections.

7.5.1 Description of the algorithm

The algorithm is based on the simulated annealing metaheuristic. It is presented
on algorithm 7.1. Here is a brief description of this metaheuristic. Note that T
is the current temperature while T0 is the initial temperature. We start with an
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initial solution (line 7→ 10). Then we enter the main loop. At each iteration of
the main loop we do the following actions: propose a move, decide to accept the
move or not, and record the solution if it is the best solution found so far (lines
14→ 30). If the proposed move does improve the objective function, the move is
accepted (lines 18→ 22). If the proposed move does not improve it, the move is
accepted with a given probability (lines 24→ 28). As the simulation goes on, the
probability of accepting a non-improving move decreases (via the temperature).
The higher the temperature T , the higher the probability to accept the move.
Every L iterations (one plateau), the temperature is decreased by multiplying it
by a cooling factor α < 1. At some point, when the number of accepted moves
goes under a determined threshold (less than ǫ accepted moves during the last
K plateau), the simulation is stopped.

The steps that need to be configured are the following:

• What is a solution?

In our case a solution is a set of link weights (one for each link).

• How to find/create the initial solution?

We decided to start from a random link weights setting.

• How to find a move?

We decided that a move is one random change to one link weight (the link
is chosen randomly).

• Which score to associate with a solution?

We use a modified version the Fortz objective function. We just add a
penalty for each deflection that happens in the network5. This penalty
should drive the optimizer to solutions that minimize the number of path
deflections. The objective function is now the sum of two separate objec-
tives :

– The Fortz Traffic Engineering (TE) objective function;

– The penalty that is directly proportional to the number of path de-
flections.

Both functions should be minimized. The value of the penalty associated
with each deflection can be tuned to trade-off between both objectives.
The network operator should test different values for the penalty and
choose one of the resulting solutions. If the network operator absolutely
wants to avoid path deflections, the optimizer should return a deflection-
free solution if the penalty is set high enough (if such a solution exists,
of course). When multiple deflections are combined to form a forwarding
loop, the value of the objective function is set to ∞. This will lead the
optimizer to discard all these solutions.

Then the value of some parameters of the simulated annealing heuristic
(plateau size, initial temperature, cooling factor, stopping conditions) have to

5We count one penalty for each deflection from one node to one aggregated prefix. We
explain in section 7.5.3 how deflections are detected.
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Algorithm 7.1: A Generic BGP-aware LWO based on Simulated Anneal-
ing Meta-Heuristic

/* x0, x∗ and x are the initial,1

the best and the current set of weights */2

/* l0, l∗ and l are the corresponding3

link loads */4

/* F (l) is the objective function */5

/* move(x) return a neighbor of x */6

x∗ ← x0; x← x0; T ← T0;7

tm← computeIntraTrafficMatrix(x);8

l← computeLinkLoads(x, tm);9

l0 ← l; l∗ ← l;10

while not stopCondition do11

nbIter ← 0;12

while nbIter < L do13

x
′ ← move(x) ;14

tm← computeIntraTrafficMatrix(x′) ;15

l
′ ← computeLinkLoads(x

′

, tm);16

if F (l
′

) < F (l) then17

x← x
′

;18

l← l
′

;19

if F (l
′

) < F (l∗) then20

x∗ ← x
′

; l∗ ← l
′

;21

end22

else23

∆F ← F (l
′

)− F (l) ;24

pk ← e−
∆F
T ;25

if random() < pk then26

x← x
′

; l← l
′

;27

end28

end29

nbIter ← nbIter + 1;30

end31

T ← αT ;32

end33
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be fixed. During our simulations, we have observed that it can be quite dif-
ficult to tune all these parameters. But empirical rules (plateau size: same
order of magnitude than the number of neighbors, initial temperature: such
that about 50-90% of the moves are accepted during the first plateau, cooling
factor: around 0.9) are generally a good help and good starting point. Then the
parameters have to be tuned to match the particular instance of the problem
that we consider (i.e. the topology and the traffic load).

7.5.2 Obtaining the required data

The optimizer requires some BGP and traffic data which is the same as described
in section 6.4.4.

7.5.3 Computing the egress node using C-BGP

Our algorithm uses the C-BGP simulator ([QU05]) to compute the egress node
for each aggregate of hot-potato prefixes. The algorithm gives to C-BGP the
topology of figure 7.4 corresponding to the situation of figure 7.1. C-BGP needs
as input the physical topology, the link weights and the iBGP configuration.
We also configure static routes for interdomain links as this is required by C-
BGP. Then the aggregated prefixes are added on the multiple possible next-hop
nodes and the C-BGP simulation is run. Finally our algorithm asks C-BGP
the Routing Information Base (RIB) of each ingress router concerning each
aggregated destination prefix. From this RIB our algorithm can read which
route is the best available route. This is the route that would result from
applying the specified link weights in the network with this iBGP configuration.

At this step we know the best route from every router inside the AS toward
every cluster of hot-potato prefix. Thus we are able to check whether path
deflections occur by combining the shortest path information with these best
routes. We also check whether forwarding loops have been introduced due to
multiple path deflections.

Let us note that the problem is computationally tractable because we do not
run the simulator with all the prefixes, but with aggregated hot-potato prefixes.

7.6 Evaluation of the proposed optimizer

In this section we will run the new LWO presented in section 7.5 on our dataset6.
We will refer to our new optimizer which embeds the C-BGP simulator as BGP-
LWO as it can correctly model the BGP behavior in every iBGP configuration,
which is different from BGP-CV-LWO, which had been designed with complete
visibility in mind.

We first want to evaluate the quality of the solutions found by the new
algorithm BGP-LWO. To this end in section 7.6.1 we compare it to a state of
the art LWO. This comparison is performed in an iBGP full-mesh configuration

6The values of the different parameters of the simulated annealing heuristic used in these
simulations are the following: T0 = 100000, L = 50, α = 0.9, ǫ = 2, K = 3.
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Figure 7.4: Toy Example - in C-BGP

which does not favor one LWO over the other. In section 7.6.2 we compare
both algorithms on a configuration with one route reflector. This will allow us
to evaluate the TE performance gain of BGP-LWO over BGP-CV-LWO which
wrongly assumes complete visibility. Note that for a fair comparison we have not
included a path deflection penalty in BGP-LWO in the simulations of sections
7.6.1 and 7.6.2 as of course BGP-CV-LWO does not consider path deflections
either. Then in section 7.6.3 we include a penalty for path deflections in the
objective function. These simulations test the ability of BGP-LWO to avoid path
deflections. Finally section 7.6.4 evaluates the TE performance gain that can
be realized when the network operator allows non-dangerous path deflections.

7.6.1 Quality of the new optimizer

First we would like to evaluate the quality of the solutions found by our new
LWO. This point is examined by running our new LWO (BGP-LWO) and BGP-
CV-LWO on the whole dataset considering an iBGP full-mesh. BGP-CV-LWO
is based on the heuristics of [FT04] which we consider as the state of the art.
Both algorithms should provide good results on this dataset with this iBGP
configuration. Figure 7.5 presents this comparison. Values are sorted according
to BGP-CV-LWO. Note that values of maximal link utilization under 33.3% are
not very important in this comparison as the objective function used is linear
under 33.3%. This means that there is no significant penalty associated with
links used less than this value and so the optimizer will not really try to reduce
a maximal link utilization under this value. We can see on the figure that both
optimizers provide solutions of similar quality. This means that the solutions
found by BGP-LWO are quite good, at least on that dataset.
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Figure 7.5: Evaluation of the quality of the solutions found by BGP-LWO com-
pared to BGP-CV-LWO in an iBGP full-mesh configuration

7.6.2 Actual prediction of the egress point

Now we evaluate the quality of our new LWO (BGP-LWO) for what it has been
designed for, which is when the iBGP topology is not a full-mesh. In that situ-
ation it should perform better than other LWOs which have not been designed
to work in these situations. We have run our BGP-LWO on the full dataset
supposing that there is a route reflector in the AS (the iBGP configuration
presented in section 7.4). We compare these results with the results of BGP-
CV-LWO (the optimizer of chapter 6). Figure 7.6 presents the CDF of maximal
link utilizations. We can see that BGP-LWO solves the problems presented in
section 7.4 and performs quite well. This means that it correctly predicts the
egress points that will be chosen by the routers. This is quite logical as it was
designed for, but these simulations confirm our expectations.

The mean reduction of maximal link utilization obtained by BGP-LWO is
about 7.6% but can be as high as reducing the maximal link utilization from
more than 140% to about 90%.

7.6.3 Minimizing the number of path deflections

As explained in section 7.5, BGP-LWO detects and forbid solutions that lead to
intra-AS forwarding loops due to the combination of multiple path deflections.
A network operator should also avoid (or at least minimize) simple deflections7

inside its network as these could lead to inter-AS forwarding loops in the worst
case.

To this end the methodology that we have adopted is the following. The
optimizer is allowed to consider solutions with simple deflection during the exe-
cution of the algorithm. So it is easy to find an initial solution and to propose a
move. But we have included in the objective function a penalty for each deflec-

7Here we define simple deflections as deflections that are not part of an Intra-AS forwarding
loop.
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Figure 7.6: CDFs of Umax over all TMs for BGP-CV-LWO and the BGP-LWO
on the topology which contains a route reflector

tion. So during the execution of the algorithm the number of path deflections
should decrease. If the penalty for each deflection is high enough the optimizer
will first try to minimize the number of path deflections. If the number of path
deflections is 0 at the end of such a simulation we know that a solution without
path deflection exists. If it is not the case, we know the lower bound concerning
the number of path deflections8. And if the solution which completely avoids
path deflections is too bad concerning TE objectives, the network operator can
choose (at his/her own risks) to allow some path deflections to improve the so-
lution with respect to TE objectives, by tuning the value of the path deflection
penalty.

We will see that on this dataset we are able to completely avoid path deflec-
tions while keeping good TE performance.

An execution of BGP-LWO without penalty associated with path deflections
is shown on the left column of figure 7.7. These graphs present the evolution of
different components of the objective function during the execution of the algo-
rithm (from the first iteration -the leftmost point- to the last one -the rightmost
point-) for the best solution found so far. We see that the simulation stops after
2500 iterations. The first graph shows the value of the TE part of the objec-
tive function, which is supposed to reflect the quality of the load balance (the
lower the value the lower the link utilizations). This is quite abstract as this
value has no direct physical meaning. This is why we also present the maximal
link utilization (the second graph), while this is not directly minimized by the
optimizer. This value gives a physical idea of the TE quality of the solution.
The third and last graph presents the number of path deflections. We see that
the algorithm stops on a solution which induces 43 path deflections. We can
conclude from this simulation that the best solution for TE induces a quite high
number of path deflections.

8This is not absolutely true as the simulated annealing heuristic does not guarantee to find
the best solution but only a good solution. So it may be possible that this execution gives
a value which is not the global lower bound.
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Figure 7.7: Evolution of the Best Solution during the execution of the algorithm
for one traffic matrix (part 1)

109



7. THE CASE OF BGP-AWARE LINK WEIGHT OPTIMIZERS IN ASES
USING ROUTE REFLECTORS

High penalty for path deflections

between different neighbor ASes

 1.8

 2

 2.2

 2.4

 2.6

 0  500  1000  1500  2000  2500

T
E

 c
om

po
ne

nt
 o

f 
th

e 
O

bj
ec

tiv
e 

Fu
nc

tio
n 

(*
10

7 )

Iteration number

Best Solution Found

 0

 20

 40

 60

 80

 100

 0  500  1000  1500  2000  2500

M
ax

im
al

 L
in

k 
U

til
iz

at
io

n 
(%

)

Iteration number

Best Solution Found

 0

 10

 20

 30

 40

 50

 0  500  1000  1500  2000  2500

N
um

be
r 

of
 d

el
fe

ct
io

ns
 b

et
w

ee
n 

di
ff

er
en

t n
ei

gh
bo

r 
A

S

Iteration number

Best Solution Found

Figure 7.8: Evolution of the Best Solution during the execution of the algorithm
for one traffic matrix (part 2)
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TE Objective Maximal Nb
Function (∗107) Utilization Deflections

No penalty 1.76 45.24% 43
1.91 45.53% 9
1.98 45.54% 3

High penalty 2.41 55.05% 0

Table 7.1: Trade-off between load balance and number of deflections

We have also run BGP-LWO on the same traffic matrix while giving a very
high penalty to each path deflection. The results of this execution should let
us know if it is possible to find a solution (i.e. a set of link weights) inducing
no deflection at all. Indeed the number of path deflections at the end of this
simulation will give the lower bound concerning path deflections. The execution
of the algorithm with these parameters is presented on the right column of
figure 7.7. The good news is that the algorithm rapidly finds a solution with no
deflection (after about 200 iterations). During these first 200 iterations, the TE
component of the objective function was not considered by the optimizer (second
order of magnitude in the objective function) and the value of this component
has been increased from about 2.2 ∗ 107 to 2.65 ∗ 107. After the 200th iteration,
as it is not possible anymore to decrease the number of path deflection (0 is
obviously a lowest bound), the algorithm tries to minimize the TE component
of the objective function while keeping the number of deflections to 0, which
is less easy than when there were no constraint on the number of deflections.
As a result, at the end of the simulation, the number of deflections for the best
solution found is 0, but the corresponding values of TE component and maximal
link utilization are quite significantly higher than in the case with no penalty
for path deflections. This is quite logical as requiring no deflection limits the
search space of the optimizer. It has to find the best TE solution from the set of
solutions inducing no deflection while the preceding execution of the algorithm
could find the best TE solution from the complete set of solutions, no matter
how many deflections would be induced.

Varying the value of the penalty associated with each deflection provides us
trade-off solutions between a good TE state and a minimum number of path
deflections. These solutions are found in table 7.1. The first line (No penalty) is
the solution found at the end of the execution of BGP-LWO for the left column
of figure 7.7 while the last line (High penalty) is the solution found at the end of
the execution of the BGP-LWO for the right column of figure 7.7. We see that
allowing a low number of deflections (3) allows the optimizer to improve the TE
quality of the solution (from 2.41∗107 to 1.98∗107 for the TE component of the
objective function or from 55.05% to 45.54% for the maximal link utilization).

7.6.4 Allowing deflections between two routes having the

same ASPATH

As we have seen in section 7.3, simple deflections between egress routers toward
the same neighbor AS (if the two corresponding routes have the same ASPATH)
is not a problem as this cannot potentially lead to forwarding loops. So we could
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take advantage of this point and avoid only path deflections between different
ASes. This will put less constraints on the optimizer, which could allow it
to find a better solution for TE. This is confirmed by the execution of the
algorithm which is presented on figure 7.8. We can see that the optimizer finds
in less iterations (2450 instead of 3750) a better solution (1.91 ∗ 107 instead of
2.41 ∗ 107 for the TE component of the objective function and 45.52% instead
of 55.05% for the maximal link utilization) while inducing no dangerous path
deflections. This means that in some cases it may be interesting to be flexible
with non-dangerous path deflections. Avoiding all path deflections may be too
restrictive.

7.7 Conclusion

Link Weight Optimizers try and minimize a traffic engineering objective func-
tion based on link utilizations. Therefore, for a precise optimization they need
accurate estimations of all link utilizations resulting from the application of the
optimized weights in the AS.

The first generation of LWOs was imprecise because these algorithms were
based on the assumption that the intradomain traffic matrix was invariant when
link weights were changed. This optimization thus neglected the effect of BGP’s
hot-potato rule, which may modify the intradomain traffic matrix, resulting in
wrong estimations of actual link utilizations.

The second generation of LWOs did take BGP’s hot-potato rule into account,
but did not consider cases where routers have only partial BGP visibility due to
route reflectors. The consequence is that these LWOs may wrongly predict the
egress node for some traffic, and they do not take path deflection into account.
The consequence is again an incorrect estimation of link utilizations.

Considering that complete visibility cannot always be affordable in every
AS, we have studied in detail the impact of partial visibility on LWOs. We
have shown that if route reflectors are present in the AS and lead to partial
visibility, previously proposed BGP-aware LWO methods may behave poorly.
Furthermore, these LWOs may also introduce path deflections, which in turn
may lead to forwarding loops.

The main contribution of this chapter is a new LWO algorithm, embedding
the C-BGP simulator in its routing model, that always computes the correct
link utilizations in any possible iBGP configuration. An additional asset of our
proposed LWO is its ability to avoid path deflections when possible, or otherwise
to minimize their number. In any case our LWO always avoids the creation of
intra-AS forwarding loops due to multiple path deflections. The efficiency of
our LWO with respect to other LWOs has been assessed on a real dataset from
an operational network.
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8
Can Forwarding Loops Appear when Activating

iBGP Multipath Load Sharing ?

In this chapter we analyze the possible consequences of activating iBGP multi-
path load sharing in a given domain (or AS), which can be valuable for BGP-
aware LWOs. Indeed iBGP multipath load sharing allows for load balancing
over multiple exit routers. It has been stated that interdomain routing loops
may appear when activating this feature. We show that under reasonable as-
sumptions (which reflect commercial relationships between ASes) such routing
loops cannot appear. Furthermore we show that even if theses assumptions are
not met, routing loops can only be transient.

8.1 Introduction

Typically link weight optimizers use ECMP (Equal Cost Multi-Path) to split the
traffic on multiple paths between one ingress node and one egress node. Using
ECMP has multiple advantages. For example ECMP can be used to improve
IP restoration ([ICBD04]). It is also a flexible routing technique as with ECMP
it is possible to split a big flow on multiple paths instead of routing it entirely
on a unique path. Usually ECMP allows a good engineering of the network.

While it is considered valuable to split traffic on multiple paths inside a do-
main, splitting traffic on multiple interdomain paths is rarely envisaged. How-
ever this would make the Internet more efficient and robust, improving security,
reacting to failures, and balancing load ([HR08]).

In practice BGP typically chooses one (and only one) path among its multiple
available ones. Although in an AS some destination prefixes are reachable via
only one egress point, it is frequent that most of the prefixes (typically provider
prefixes) are reachable via multiple BGP-equivalent routes (for example if the
AS has multiple links connecting its providers). Using classical BGP one of
these routes is chosen via the Hot-Potato criterion or a tie-break at a later stage
of the BGP decision process. But it is also possible to configure BGP to allow
the network operator to split traffic amongst multiple BGP-equivalent routes
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(as we have seen in chapter 6).

But the situation is not as beautiful as it seems. Indeed splitting traffic
amongst multiple available BGP-equivalent routes which may have a different
AS-level paths can cause problems as explained in [HBJ06]. In that paper the
authors state that forwarding loops could appear and they propose a solution.
In this chapter we show that contrary to what may be expected and under
reasonable assumptions, forwarding loops should not appear in any case. These
assumptions are based on the BGP router configurations that typically reflect
commercial relationships.

The chapter is organized as follows. In section 8.2 we briefly describe why
forwarding loops could appear with iBGP multipath load sharing. Section 8.3
presents the BGP configuration we assume in this chapter. These are natural
BGP configurations that should be respected in all ASes. We show in section
8.4 that if these assumptions hold, no forwarding loops can appear. In sections
8.5 and 8.6 we analyze what happens if the assumptions we made about BGP
are not respected. Indeed even if they should be respected in all ASes it is
impossible to be sure of that. We show in section 8.5 that even in this case
no forwarding loops can appear when activating iBGP multipath load sharing.
These can only appear at a later stage if the BGP configuration of an AS is
changed. We show in section 8.6 that even in this case forwarding loops are
only transient. Section 8.7 concludes the work.

8.2 Forwarding Loops?

iBGP multipath load sharing has been presented in chapter 6. We will not
present it again here, but we want to recall that iBGP multipath load sharing
is the ability to balance the load on multiple egress points if the corresponding
multiple BGP routes are equivalent and that the egress points are at the same
IGP distance.

We have also to note that BGP ([Ste99]) includes the following loop preven-
tion mechanism. When an AS receives a route whose ASPATH contains its AS
number, it discards the route. This assumes that the ASPATH contains a full
list of all the ASes along the path used to forward traffic toward this destina-
tion. If part of the ASPATH information is lost, this mechanism does not work
anymore.

In [HBJ06] we can read that Most of the current BGP implementations
upon receiving multiple equal cost BGP routes from different peers can insert
all of them (or a subset depending upon the local policies) in their forwarding
table. This can be done to locally split the traffic across several paths. However,
because BGP in its current state can only advertise one path to its peers, an
implementation MUST choose from one of the best paths that it is using for
the advertisement. This has implications for the BGP peers that receive such
advertisements from ECMP capable BGP speakers. In the worst case it can lead
to potential loops if the entire path information is not advertised to the peers.

In [HBJ06] the authors present a first method to avoid forwarding loops using
BGP AS SET and AS SEQUENCE. In next sections we analyze what happens
if this method is not used and only one ASPATH is announced to other ASes.
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Contrary to what may be expected, we show that forwarding loops should not
appear when using iBGP multipath on different ASPATH routes.

Definition 1. A packet is trapped in a forwarding loop if there is a cycle of
routers such that each router on the cycle forwards the packet to the next router
on the cycle, leading the packet to be infinitely forwarded on the cycle.

Of course forwarding loops should be avoided in practice. Note also that in
IP networks, the time to live (TTL) field of the IP header will force routers to
drop a packet which is trapped in a forwarding loop.

Definition 2. A provider loop (for a particular destination prefix) is a cycle of
ASes such that each AS on the cycle is the provider of the next AS.

Note that a provider loop is also a customer loop if the cycle is analysed in
the opposite direction.

8.3 BGP Model Used

In this chapter we consider the following common BGP configurations.

Assumption 1. We consider import/export rules which state that ([Sob05],
[GR01], [Ala96]) :

• an AS does not export to a provider or peer routes that it learnt from other
providers and other peers;

• an AS can export to its customers any routes it knows of.

This assumption (1) reflects that an AS does not want to provide transit
services between its providers and peers.

Assumption 2. We consider that routes learnt from customers should be pre-
ferred to routes learnt from either providers or peers, leaving ASes latitude to
assign relative preferences among customer routes, and among peer and provider
routes.

This assumption (2) is the preference rule suggested in Guideline A of Gao
and Rexford [GR01]. This is a logical assumption for commercial relationships.
Indeed an AS earns money for the traffic it sends on its customer links while it
does not earn money for the traffic it sends on its peer links and it pays for the
traffic it sends on its provider links. So it should always prefer to send traffic to
its customers than to its providers or peers when it has the choice.

Our last assumption is the following (this is also assumed in [GR01]).

Assumption 3. We assume that there is a hierarchical customer-provider re-
lationship among ASes.

This is equivalent to saying that there is no provider loop in the AS-level
topology.
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8.4 When Do Routers Use the BGP Loop Pre-

vention Mechanism?

The BGP loop prevention mechanism implemented in a BGP router consists
of discarding routes whose ASPATH contains the AS number of the router1

([Ste99]). When and how does this situation happen?

For this situation to happen, we have to be in the case of figure 8.1. ASX

receives a route for a destination prefix from AS1. It announces this route
to AS2. Later ASX receives back this route from AS3 and discards the route
because its AS number appears in the ASPATH.

Destination

Cycle A

ASX

AS1

AS2

AS3

Figure 8.1: AS topology

We will demonstrate that this situation never happens if Assumptions 1, 2
and 3 are respected. We divide the problem into different cases, depending on
the commercial relationship between ASX and its neighbouring ASes for the
particular destination prefix we consider. Note that applying this reasoning to
each prefix known by ASX allows us to generalize our result.

8.4.1 AS1 is a provider or a peer of ASX

ASX has received the route from a provider or peer. So ASX will export this
route to AS2 only if AS2 is one of its customers (applying Assumption 1). Fol-
lowing the same reasoning the route is announced from AS2 hop by hop to AS3

and finally back to ASX if all these links are provider to customer links. If it
is not the case the route is stopped before coming back to ASX . So AS3 is a
provider of ASX and cycle A is a provider loop. This situation should not hap-
pen as we assumed in section 8.3 that there is a hierarchical customer-provider
relationship among ASes (Assumption 3).

1Note that this loop detection can also be performed on the sender-side. In this case a BGP
router will not announce a route to a neighboring router if its AS number is in the ASPATH
of this route.
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Now if cycle A is a provider loop (meaning that Assumption 3 is not re-
spected), a forwarding loop could appear if AS3 is preferred to AS1 which are
both providers. In this case BGP loop prevention mechanism will discard the
route from AS3 which could be chosen if this mechanism were not present.

8.4.2 AS1 is a customer of ASX

As AS1 is a customer, ASX can announce the route on all its BGP sessions
(Assumption 1). So AS2 can be a customer, a peer or a provider of ASX . We
consider all these cases.

8.4.2.1 AS2 is a customer of ASX

In this case, following the same kind of reasoning as in section 8.4.1, the route
will come back to ASX only if all the links from AS2 to AS3 and back to ASX

are provider to customer links. So this implies that cycle A is a provider loop
(meaning that Assumption 3 is not respected).

The situation is a little bit different than in section 8.4.1, because anyway,
if this situation happens, ASX will always prefer the route from AS1 which is a
customer when compared to the route from AS3 which is a provider (Assumption
2). In this case Assumptions 1 and 2 are sufficient to guarantee the absence of
forwarding loops.

8.4.2.2 AS2 is a provider of ASX

In this case AS2 has received the route from ASX which is one of its customers
and so it can announce it on all its BGP sessions (Assumption 1). Thus AS3

can be a customer, a peer or a provider of ASX . We consider all these cases.

a) AS3 is a provider or a peer of ASX In this case, ASX will prefer the
route coming from AS1 (which is one of its customer) to the new route coming
from AS3 (which is a provider or a peer) (Assumption 2).

In this case Assumptions 1 and 2 are sufficient to guarantee the absence of
forwarding loops. Note also that this (non-problematic) situation may happen
without provider loop.

b) AS3 is a customer of ASX For AS3 to announce the route to ASX

(which is its provider), it must have received this route from one of its customers
(applying Assumption 1). By extending this reasoning we can deduce that the
route has been propagated hop-by-hop on customer to provider links from AS2

to AS3. Otherwise the route would have been stopped between AS2 and AS3. In
this case cycle A is also a provider loop and this should not happen (Assumption
3).

Note that if this situation happens (meaning that Assumption 3 is not re-
spected), a forwarding loop could appear if AS3 is preferred to AS1 which are
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Line AS1 AS2 AS3 Provider Potential Forwarding
loop loop

1 Provider Customer Provider YES No if BGP prevention
2 Peer Customer Provider YES NO2

3 Customer Customer Provider YES NO
4 Provider Provider NO NO

or Peer
5 Customer YES No if BGP prevention
6 Peer Provider NO NO

Table 8.1: All possible configurations (referring to fig. 8.1) leading ASX to
receive a route advertisement whose ASPATH contains its own AS number.

both customers (which respect Assumption 2). In this case BGP loop preven-
tion mechanism will discard the route which could be chosen if this mechanism
were not present.

8.4.2.3 AS2 is a peer of ASX

In this case AS2 will announce this route only to its customers (Assumption
1). So the route will be announced hop-by-hop on provider to customer links
to AS3 and then to ASX (Assumption 1). AS3 is a provider of ASX and thus
ASX will prefer the route from AS1 which is one of its customer to the route
from AS3 which is one of its provider (Assumption 2).

The conclusion is the same as in preceding paragraph labeled a).

8.4.3 Summary

Table 8.1 presents all the possible router configurations that result in ASX

receiving a route whose ASPATH contains its AS number. In all other router
configurations it is not possible for ASX to receive such a route.

Note that only two of these configurations could result in forwarding loops if
BGP prevention mechanisms were not enabled. These two configurations are the
lines marked with the label ”No if BGP prevention” in the ”Potential Forwarding
loop” column (lines 1 and 5). Note that these two configurations imply that a
provider loop is present in the network, which was supposed not to happen
as stated in Assumption 3. Thus we can say that the BGP loop prevention
mechanism is a kind of watchdog avoiding forwarding loops in misconfigured
networks (i.e. networks which do not respect our Assumptions).

Anyway we cannot be 100 % sure that our assumptions are respected in the
whole Internet. This is why the BGP loop detection check is still useful in today
networks. In the next sections, we will analyze what happens if our assumptions
are not respected and what is the impact of this point on the activation of iBGP
multipath load sharing.

2This is due to the fact that usually routes received from peers are preferred to routes
received from providers even if this is not included in our assumptions. If we do not assume
this preference rule, line 2 should just be merged with line 1.
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MyAS

ASx1

ASxn

ASy1

ASyn

ASyi

Destination

ASz

Figure 8.2: iBGP mutipath AS topology

8.5 No Forwarding Loop When Activating iBGP

Multipath Load Sharing

In this section we would like to analyse whether activating iBGP multipath
load sharing can result in a forwarding loop or not. Indeed a BGP router which
activates iBGP multipath on multiple routes will announce only one of these
routes to its neighboring ASes. If later on, one AS on one route that has not
been announced receives back this route, its BGP loop detection mechanism
will be unable to detect the loop3. For such a situation to appear we have to
be in the case of figure 8.1 in which one of the routers between AS2 and AS3

on cycle A enables iBGP multipath on at least two routes, one going to the
destination via ASX and another route in which ASX is not present. Such a
general topology is depicted on figure 8.2, where ASyi

is the ASX of figure 8.1,
ASy(i+1)

is AS1, cycle A is ASyi
... ASy1

MyAS ASz ... ASyi
and MyAS is the

AS on cycle A which enables iBGP multipath load sharing on multiple available
routes : ASy1

... ASyn
and ASx1

... ASxn
which does not contain ASyi

. We
will show that even with such a topology no permanent forwarding loop can be
installed. As this topology is built to reflect all the possible topologies that can
lead to a permanent forwarding loop, this will imply that no forwarding loops
can be created when using iBGP multipath load sharing. Note that optionally
ASyi

could be merged with ASy1
and/or ASz. Our reasoning can also be applied

if iBGP multipath load sharing is used on more than one additional path to the
destination in which ASX is not present.

Suppose that at time t = t0 iBGP multipath load sharing is not activated

3Of course this can only happen if at least one of our assumptions is not respected, as it
has been shown in section 8.4.
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in the network and that MyAS has two BGP-equivalent routes w.r.t. criteria
1 to 6 whose ASPATH are ASx1

... ASxn
and ASy1

... ASyn
. One of the two

available routes is chosen with some tie-break and this route is announced to
ASz. Suppose now that at time t1 > t0 we do activate iBGP multipath load
sharing on these two routes and that we continue to announce the same route
to ASz. We will show that in this case no forwarding loop is created at time t1.
Indeed the route that was announced at time t0 was either the route received
from ASy1

or the route received from ASx1
. If it was the route received from

ASy1
no forwarding loop can be created because ASyi

will see its AS number
in the ASPATH received from ASz. If it was the route received from ASx1

, a
forwarding loop cannot be created at time t1. Indeed the route announced to
ASz is the same at time t1 than at time t0. So if ASyi

prefers the route coming
back from MyAS via ASz to the route received from ASy(i+1)

, it would already
have chosen this route at time t0 and the route with ASPATH ASy1

... ASyn

would not have been available at MyAS.

8.6 Forwarding Loops Can Only Be Transient

Now suppose that in the preceding example, at time t2 > t1, the route selected
by BGP at router ASyi

changes. There are two possibilities. Either both routes
are used by activating iBGP multipath load sharing at router ASyi

or the route
selected by BGP is now the route received back from MyAS via ASz instead of
the route received from ASy(i+1)

. We will analyse both cases separately.

8.6.1 Both routes are selected and used

We will see that this situation is impossible. Indeed this implies that at time t2,
ASyi

activates iBGP multipath load sharing and splits its traffic on its two avail-
able routes (the route received back from MyAS via ASz and the route received
from ASy(i+1)

). But iBGP multipath load sharing cannot select these two avail-
able routes as these do not have the same ASPATH length (|ASyi

... ASyn
| ≤

|ASy1
... ASyn

| = |ASx1
... ASxn

| < |ASyi
... ASz MyAS ASx1

... ASxn
|4).

Indeed one condition for iBGP multipath load sharing to be activated on mul-
tiple routes is that these routes are equivalent w.r.t. BGP criteria 1 to 6, which
implies equality of ASPATH lengths (via criterion 2).

8.6.2 The route received back from MyAS via ASz is now

the best route

ASyi
has to change its BGP policies (i.e. its local pref values) for BGP to select

the route received back from MyAS via ASz as best route instead of the route
received from ASy(i+1)

. Indeed the local prefs are the only way to force BGP to
select a route whose ASPATH is longer (see BGP decision process). In this case
a forwarding loop is created. But as ASyi

now has changed its route, it must
withdraw the old route and advertise the new one to ASy(i−1)

and so hop by hop
to MyAS. When MyAS receives the new route, it can detect the loop because its

4|ASPath| denotes the number of ASes of ASPath.
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AS number appears in the ASPATH. So MyAS will stop using the route received
from ASy1

and the forwarding loop is stopped. Note that at this time the router
of MyAS which detects and stops the forwarding loop should alert the network
operator that at least one of our assumptions is not respected somewhere. With
such an alert the network operator could analyze the situation and look for the
cause of the problem. Indeed this means that one of our 3 assumptions is not
respected.

8.7 Conclusion

We have analyzed how forwarding loops can appear in current BGP networks.
We have shown that forwarding loops should not appear even if part of the AS-
PATH information is discarded, which can be the case when using iBGP mul-
tipath load sharing for routes with different ASPATH. Indeed we have shown
that BGP configurations reflecting commercial relationships ensure that no for-
warding loops will appear. Anyway as it is not possible for a network operator
to verify the good configuration of all the involved ASes, we have analyzed what
would happen in this case (i.e. if BGP configuration would not reflect commer-
cial relationships). We have shown that even in this case, a forwarding loop
cannot appear immediately after activating iBGP multipath load sharing. The
forwarding loop could only appear if in addition to the aforementioned condi-
tions, some ASes change their policies in a particular way. Moreover we have
shown that even in this case, if a forwarding loop appears, it is only transient.

This leads us to conclude that activating iBGP multipath load sharing for
routes with different ASPATH is not as dangerous as it may seem at first glance.
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9
MPLS Traffic Protection

We now consider a problem which is quite different from the preceding chap-
ters. This chapter focuses on the protection of virtual circuits (Label Switched
Paths, LSPs) in a (G)MPLS (Generalized Multi-Protocol Label Switching) net-
work. The proposed algorithm is designed to protect traffic with strong delay
requirements such as EF (Expedited Forwarding) ordered aggregates in a Diff-
Serv domain. Indeed, for this type of application, we need fast restoration in
case of failure. The duplication of all the packets in a 1+1 end-to-end restora-
tion scheme consumes a large amount of bandwidth. Furthermore, end-to-end
recovery with bandwidth sharing schemes are usually considered to be far too
slow. Local fast-rerouting is a solution which can compete with restoration times
and bandwidth consumption offered by SONET self-healing rings. Our scheme
includes a sophisticated resource sharing mechanism based on the concepts of
“backup-backup sharing” and “backup-primary sharing”. The path selection al-
gorithm is also designed to efficiently reduce the resource usage. Moreover,
when considering LSPs at different preemption levels, our algorithm is able to
correctly calculate the amount of bandwidth that can be preempted despite the
sharing of resource. We show that our approach, though local, can compete with
the state-of-the-art end-to-end recovery schemes in terms of resource consump-
tion. The major contribution of our scheme, the “backup-primary sharing”, was
then also used in the context of end-to-end recovery and improved its perfor-
mance substantially. To be able to save a maximum amount of bandwidth in
a decentralized implementation, the nodes that compute backup LSPs need to
obtain a certain amount of link-state information. We propose a solution where
the nodes learn almost all the information they need with RSVP messages. This
drastically reduces the information that needs to be flooded in the whole net-
work and is the first scalable decentralized solution capable of sharing a large
amount of bandwidth.
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9.1 Introduction

Today, link and node failures are frequent [MIB+04]. When an element of the
network fails, all the traffic passing through this element is lost (at least during
the recovery procedure), which can really decrease the Quality of Service (QoS)
perceived by all the users of the network. For this reason, there is a real need to
develop algorithms and protocols that will allow the network to quickly recover
from any failure it may encounter. Such algorithms were studied since virtual
circuits exist, but they were mainly solved off-line with the use of optimization
theory (Linear Programming/Integer Programming problems). For distributed
on-line traffic engineering, the network must be able to compute and establish
a path from an ingress router to an egress one and to protect it against failures,
based on a request defining the bandwidth and QoS requirement of the traffic.

9.1.1 Related works

A classical way to achieve reliability is to use schemes referred to as 1+1 and 1:1
protection (in [SMH03], V. Sharma et al. introduce these concepts in the con-
text of MPLS). For each LSP we want to establish, we compute two completely
disjoint paths from the ingress to the egress. The best of the two is the primary
path, the other is the backup path. In the 1+1 scheme both paths are used si-
multaneously: all packets are duplicated at the ingress and sent on both paths.
The egress node continuously monitors both inputs and selects the “best” one.
This way of ensuring protection has the advantage of fast receiver-driven recov-
ery upon failure but is of course very costly in terms of bandwidth. An approach
to limit the cost of the 1+1 protection is presented in [KKL02]. Since sharing
cannot be used, the goal is to achieve efficiency by improving path selection. In
order to fulfill this objective, the authors transpose the minimum interference
criteria (used in MIRA [KL00]) by replacing the concept of maximum flow by
maximum 2-route flow. Following this criteria, they try to route demands such
that the reduction of the maximum 2-route flow for the different ingress-egress
pairs is as small as possible. Doing so, they hope that it will be possible to
accept more demands in the future. This is confirmed by the simulations that
show a low rejection ratio for this solution.

In the 1:1 scheme, only the primary path is used to forward packets while
the backup path is in “standby”mode. If a failure occurs (on the primary path),
a message is sent to the ingress which swaps the backup and the primary path.
Obviously the 1:1 protection induces far more delay than the 1+1. Failure has
to be detected, a message must propagate to the ingress node which must then
swap active and standby paths. For this reason other approaches have also been
envisaged. In fact restoration strategies can be divided into two classes: end-
to-end recovery and local recovery (often called “fast re-routing”). In a local
scheme re-routing is handled by the node directly preceding the failure on the
primary path or more generally by a node “close” to the failure. The idea is to
establish a set of backup LSPs each one protecting the primary path against
the failure of one particular node (or link). Experimental results demonstrate
that GMPLS with RSVP can be applied to optical/electrical mesh networks
to yield ultra-fast provisioning and restoration times competitive with SONET
rings [LYDW01].
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The advantage of the 1:1 solution is that significant bandwidth saving can
be realized. Indeed if we assume that only a single failure may happen in the
network at any given time, not all backup paths can be activated simultane-
ously. Resources that must be reserved for independent backup paths can thus
be shared. Some information must be made available to the device that com-
putes primary and backup paths if we want to achieve the best possible sharing
of resources [KL01, LWKD02, QX02]. The authors of [LWKD02] present an
algorithm able to protect the network against link failures with a relatively
small amount of data. The extra bandwidth consumption is limited to 63-68%,
which is a significant improvement compared to previous methods. M. Kodi-
alam and T.V. Lakshman show in [KL01] that a partial information scenario
which uses only aggregated and not per-path information can achieve efficient
dynamic routing of locally restorable bandwidth guaranteed path. The partial
information flooded in the whole network specifies the part of each reserved link
bandwidth which is reserved by primary paths and the part reserved by backup
paths. The same kind of reasoning as [KL01] in an end-to-end instead of a lo-
cal protection scheme is applied in [KL03]. Our work is related to [KL01] and
presents some similarities. One of the main advantages of our solution compared
to the solution in [KL01] is that we can achieve the efficiency of the complete
information scheme with nearly the cost of the partial information scheme.

Paper [BBO+03] integrates QoS constraints in the computation of backup
paths. Y. Bejerano et al. consider both bottleneck QoS constraints such as
bandwidth, and additive QoS constraints such as delay and jitter. In that
paper, the authors provide algorithms that find a primary path satisfying QoS
requirements combined with a restoration topology. A restoration topology is
a set of bridges, each of which circumvents a (different) part of the primary
path. The proposed solution may violate the delay constraint for restoration
paths, while the primary paths always satisfy the QoS constraints. One of the
key contribution of this paper is the concept of adjusted delays, which allows
existing path computation algorithms to be adapted in order to identify suitable
restoration topologies.

In [GS98], W.D. Grover and D. Stamatelakis present the concept of p-cycle.
In p-cycles, spare links are connected into cycles, but the method is differ-
ent from self-healing rings because each preconfigured cycle contributes to the
restoration of more failure scenarios than a ring can. One p-cycle can be used for
the restoration of one span on the cycle (like self-healing rings), but also for the
restoration of one span off the cycle if both ends of this span are located on the
cycle. This reduces the amount of bandwidth that is consumed for restoration
purpose, comparing to self-healing rings, so that the authors claim that p-cycles
provide ring-like restoration speed with mesh-like capacity usage. The concept
of p-cycles can be applied in IP networks [SG00].

9.1.2 Structure of the chapter

We provide a solution for the problem of precomputed local rerouting paths
where bandwidth is reserved for backup paths. One backup LSP protects one
primary LSP against one specific failure (node or link). This scheme can protect
important traffic aggregates that require rapid restoration in case of failure and
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cannot wait for a global restoration. Typically, traffic with strong QoS require-
ments need this kind of guarantee. Local restoration requires the establishment
of many protection LSPs for which the bandwidth has to be reserved. This
can lead to a big waste of bandwidth if not done properly. The best way to
reduce the bandwidth waste is to make the assumption that two resources (link
or node) cannot fail at the same time. When a failure occurs in the network,
we suppose that the preceding failure has been recovered1. This assumption
allow us to share bandwidth between two backup LSPs that will never be active
together because they protect different resources.

A first contribution (from Mélon et al. in [MBL03]) is an improved band-
width sharing scheme. When a failure occurs in the network, the traffic that
makes a detour frees some bandwidth on some part of the primary path. In some
cases, this bandwidth can be used without additional cost by another backup
LSP protecting the failed resource, as it is explained in detail in section 9.2.
This can decrease the bandwidth cost of both local and end-to-end protection.
In section 9.3, we present an in-depth description of our algorithm. Section 9.4
explains how the available bandwidth is computed on a link when preemption
levels are used.

Then our second contribution is a method to compute the local backup
paths in a decentralized manner. Indeed, to be able to share efficiently the
bandwidth and so reduce the bandwidth cost of the protection, the entity which
computes the backup paths has to know a certain amount of information, as we
explain in section 9.5. The first (naive) idea is to flood all the information in
the whole network using the TE (Traffic Engineering) extensions of the intra-
domain routing protocol. As this approach is obviously not scalable, we propose
an original method that is capable of sharing a large amount of bandwidth while
being scalable. In section 9.6, we justify our design choice of section 9.5.

Simulation results in section 9.7 give numerical values of the bandwidth gain
which can be achieved using our technique. Finally, we conclude in section 9.9.

9.2 Algorithm overview

Our algorithm offers improvements in two main areas compared to previously
presented solutions: (1) reduction of the bandwidth consumed by both local
and end-to-end protection schemes by improving bandwidth sharing and (2)
a method to handle preemption levels when bandwidth sharing is used in the
network. Moreover, we provide an efficient and scalable way for the computing
nodes to obtain the essential information to optimize bandwidth sharing.

1This assumption is implicit in all the 1+1 or 1:1 protection schemes. Indeed, if we want to
protect traffic against double failures in the network, we have to protect backup paths against
failures as well.
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9.2.1 Bandwidth sharing

9.2.1.1 Backup-Backup bandwidth sharing

As already explained, resource sharing is possible under the assumption that,
at any given time, at most a single failure will occur in the network. If this
assumption holds, two backup LSPs protecting two distinct nodes will never
be activated together. If these backup LSPs use some common links, we can
reserve on these links only the maximum bandwidth requirement of both LSPs
instead of their sum. Figure 9.1 presents this scenario. This type of bandwidth
sharing can greatly decrease the bandwidth that need to be reserved for backup
paths and is used in all classical 1:1 protection schemes.

LSP1 LSP2

Backup1 Backup2

N1

N2 N3

N4

N5

N6

Figure 9.1: Backup1 protects LSP1 from failure of node N2. Backup2 protects
LSP2 from failure of node N3. Since Backup1 and Backup2 will never be used
simultaneously, they can share bandwidth on link N1 −N5.

9.2.1.2 Primary-Backup bandwidth sharing

It is possible to improve further the scheme if we consider that when a backup
path is activated because of a failure, some bandwidth is not used any more on
the primary path ([MBL03]). Indeed as soon as the failure is detected, the node
responsible for the local backup will swap service and recovery paths. Very
rapidly the circumvented links of the primary path will see their bandwidth
consumption reduced. This bandwidth can thus be used by other backup LSPs
protecting the same failed resource. Figure 9.2 details the situation.

9.2.1.3 Path computation

In our approach, path computation is completely decentralized and real-time.
The LSP requests are received sequentially by the ingress nodes that compute
and establish the LSPs one after the other. Consequently our scheme can com-
bine easily with TE (Traffic Engineering) algorithms following the same decen-
tralized philosophy. Of course, it can also combine with a centralized scheme.
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LSP1

LSP2

Backup2

N1 N2

N3

N4

N5

Figure 9.2: The two primary LSPs (LSP1 and LSP2) will fail together when
N2 fails. Backup2, protecting LSP2, can share bandwidth with LSP1 on link
N4−N5. Backup1, protecting LSP1, is not shown on the figure.

In this work we will always assume without loss of generality that the primary
LSP follows the shortest path according to a certain metric (usually a hop
count). Other online constraint-based routing algorithms presented in section
2.2 could also be used. When the primary path is known, we compute the set
of backup LSPs required to prevent any possible node failure along this path. If
a backup path cannot be found under the node-failure assumption2, we assume
that only a link failure will occur and compute a new backup path. If it fails
again, the request is rejected.

To use bandwidth efficiently, the path computation algorithm has to choose
paths where the resource sharing is high. To compute the backup path we asso-
ciate with each link a cost corresponding to the increment of bandwidth required
if the backup LSP goes through the considered link. Dijkstra’s algorithm is then
used to compute the shortest path starting at the node preceding the protected
node of the primary path towards the egress node. We stop the algorithm when
it reaches a node that belongs to the primary path after the protected node.

9.2.2 Preemption levels

Preemption levels (see [BML03a]) are used to define some LSPs as being “more
important” than others. When establishing an LSP, it can preempt the band-
width reserved by LSPs having a lower preemption level. In case of failure, LSPs
with a higher preemption level will also be restored first.

Handling preemption levels has no impact on the bandwidth sharing effi-
ciency. However combining resource sharing and preemption levels in the same
scheme requires some special care. This problem will be explained more exten-
sively in section 9.4.

2Obviously it is impossible to protect the path against the failure of the egress node.
However it is possible to protect the link between the penultimate node and the egress. The
backup computed for this purpose only needs to be link-disjoint with the primary path.
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9.3 In-depth description

For the clarity of the rest of this chapter we will first define a few terms and
functions. In figure 9.3, we can see the differences between the link and the
node protection.

Link Protection:

POR PMLprotected link

Primary LSP

Backup LSP

Node Protection:

POR PMLprotected node

Primary LSP

Backup LSP

Figure 9.3: Link or Node protection

The following two notations come from [SMH03].

Definition 1. The Point Of Repair (POR) is the LSR (Label Switching Router)
where the switching is done between the primary and the backup path at the
moment of the failure.

Definition 2. The Path Merge LSR (PML) is the LSR where the backup path
merges with the primary path.

A network is represented by a multi-valued graph G = (X ,U) where X is
a set of nodes and U a set of directed links between these nodes. Each link
Lij ∈ U between nodes Ni ∈ X and Nj ∈ X is associated with a set of values3:

• Cij : the capacity of the link.

• Rij : the total bandwidth reserved on the link.

• Rij [p] : the total bandwidth reserved at preemption level p4.

• Pij [p] : the total bandwidth reserved at preemption level p for primary
LSPs.

3Note that each node does not keep track of and store all of the presented information, as
presented later on figure 9.9.

4In section 9.4 we explain how to compute Rij [p] such that Rij =
PP−1

p=0
Rij [p]. Note that

we do not need Rij [p], ∀p to compute Rij (see equation 9.3).

129



9. MPLS TRAFFIC PROTECTION

• Pij =
∑P−1

p=0 Pij [p].

• Bij(Lkn)[p] : the total bandwidth used by backup LSPs at preemption
level p in case of failure of link Lkn.

• Bij(Lkn) =
∑P−1

p=0 Bij(Lkn)[p].

• Bij(Nk)[p] : the total bandwidth used by backup LSPs at preemption level
p in case of failure of node Nk.

• Bij(Nk) =
∑P−1

p=0 Bij(Nk)[p].

• Fij(Lkn)[p] : the total bandwidth freed by primary LSPs at preemption
level p in case of failure of link Lkn.

• Fij(Lkn) =
∑P−1

p=0 Fij(Lkn)[p].

• Fij(Nk)[p] : the total bandwidth freed by primary LSPs at preemption
level p in case of failure of node Nk.

• Fij(Nk) =
∑P−1

p=0 Fij(Nk)[p].

P is the number of preemption levels. In a practical implementation the source
node of each link is responsible for maintaining this set of values up-to-date.
Now, let us have a look at figure 9.4. This figure represents the bandwidth
utilization of a fixed link Lij . We can see that the reserved bandwidth for the
primary LSPs (Pij) is the sum of the reserved bandwidth for each of the primary
LSPs using this link. On the figure, we can see that there are four primary LSPs
that pass on link Lij (b1, b2, b3 and b4 are the values of the bandwidth reserved
for the four primary LSPs). The bandwidth reserved for the primary LSPs
is thus not shared at all. On the other hand, the bandwidth reserved for the
different backup LSPs (Rij − Pij) is not the sum of the reserved bandwidth
for each of the backup LSPs that pass on the considered link. Indeed, the
bandwidth is shared between the backup LSPs that protect different resources.
X1, X2, X3 and X4 are four resources (link or node) that are supposed not to
fail at the same time. The total reserved bandwidth on link Lij is Rij . The free
bandwidth on link Lij is Cij −Rij .

Bandwidth

Cij

Rij

Pij

0

Free bandwidth

Backup shared

Primary LSP

Bij(X1) − Fij(X1)

Bij(X2) − Fij(X2)

Bij(X3) − Fij(X3)

Bij(X4) − Fij(X4)

b1

b2

b3

b4

Primary LSP 1

Primary LSP 2

Primary LSP 3

Primary LSP 4

Figure 9.4: Repartition of the bandwidth on the link Lij
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From figure 9.4 and above definitions, we have:

Bij(Nk)[p] =
∑

∀m:Lmk∈U

Bij(Lmk)[p] (9.1)

Fij(Nk)[p] =
∑

∀m:Lmk∈U

Fij(Lmk)[p] (9.2)

Rij = Pij + max

(

0, max
Lkn∈U

(Bij(Lkn)− Fij(Lkn)) , max
Nk∈X

(Bij(Nk)− Fij(Nk))

)

(9.3)

Equations 9.1 and 9.2 express that a node failure is equivalent to the failure
of all its incoming links. We consider incoming links because it is the same
upstream nodes that will activate the same backup paths in case of a node
failure or in case of the failure of all its incoming links. Note that in equation
9.3 we have to consider the maximum over all possible link failure scenarios
even if we are protecting against node failure because it is not mathematically
guaranteed that the worst case bandwidth consumption will be obtained when
faced with a node failure. Indeed consider the failure of link “N3-N2” on figure
9.2. In this scenario, both Backup2 and LSP1 will be used simultaneously while
it is not the case if node “N2” goes down. Of course, in most practical situations
the worst case will be a node failure.

An LSP request is composed of:

• the source or ingress node: src ;

• the destination or egress node: dst ;

• the required bandwidth5: bw ;

• the priority: p.

9.3.1 Link state management

Each node Ni has to maintain and update the link state information for all
the links that originate at node Ni. This section will explain how the values
of Pij , Bij and Fij have to be updated for all links Lij when a primary or
backup LSP is established. Let Ppr be a primary LSP of preemption level
p and required bandwidth bw. The path of this LSP is the ordered set Ppr =
{Ny0

, Ny1
, . . . , Nyn

}, as shown on figure 9.5. Let Pbu be a backup LSP protecting
the previously presented primary LSP. The path of this backup LSP is the
ordered set Pbu = {Nx0

, Nx1
, . . . , Nxn

}. Let s be the index for which Nys
= Nx0

(= POR), and e be the index for which Nye
= Nxn

(= PML) i.e. the node where

5In this work we assume that a single value defines the bandwidth required by each LSP.
In a DiffServ context this corresponds to using L-LSPs or E-LSPs with a single OA (Ordered
Aggregate). Extensions of the presented algorithms to handle E-LSPs with multiple OAs is
straightforward. Interested readers are invited to read [Fa02] for further information on how
to combine DiffServ and (G)MPLS and for a definition of L-LSPs and E-LSPs.
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primary and backup paths merge. The backup path protects node Nys+1
and

link Lysys+1
.

When the primary LSP is established, links Lij ∈ Ppr
6 must be updated

according to:

Pij [p]← Pij [p] + bw (9.4)

When the backup LSP Pbu is established, all links Lij ∈ Ppr ∪ Pbu must be
updated according to:

Bij(Lysys+1
)[p]← Bij(Lysys+1

)[p] + bw if Lij ∈ Pbu (9.5)

Fij(Lysys+1
)[p]← Fij(Lysys+1

)[p] + bw if (Lij ∈ Ppr) ∧ i < e ∧ j > s
(9.6)

The purpose of equation 9.6 is to free bandwidth on the primary path be-
tween the POR and the PML in case of failure. To apply equation 9.6, a backup
LSP must also be signalled on part of the primary path (between the POR and
the PML) in case of decentralized deployment. When Pij [p], Bij(L)[p] and
Fij(L)[p] have been updated according to equations 9.4 to 9.6, Rij [p] can then
be recomputed by means of a procedure described in section 9.4.

POR PML

Ny0 Ny1 Nys

Nys+1

Nye Nym

Nx1

Nx2

Update Pij

Update Fij

Update Bij

Figure 9.5: Primary and backup paths

9.3.2 Path computation

In this section we will explain the primary and backup paths computations.
We will also highlight what kind of information is required to perform these
computations. For the moment we assume that a centralized entity has access
to all the link state information in the whole network. In section 9.5 we will
explain how it is possible to distribute these computations.

6The notation Lij ∈ Ppr denotes ∃t : Nyt = Ni ∧ Nyt+1 = Nj .

132



9.3. IN-DEPTH DESCRIPTION

9.3.2.1 Primary path computation

We assume that local protection will be required for important flows that are
sensitive to delay and do not accept the delay of end-to-end protection in case
of failure. For these flows we assume that the primary path has to be optimized
on its own because it can have some strict delay constraints (the backup paths
will be computed next). For example, we can use a Dijkstra’s algorithm [W.59]
to find the constraint shortest path from src to dst, considering a cost of one
for all the links of the network (leading to a min hop path). Note that we can
also rely on any other more suitable technique to compute the primary LSPs
(e.g. those presented in section 2.2). We are aware that optimizing primary
and backup paths together, instead of sequentially, could lead to a better global
resource sharing. Indeed, our choice to take the primary path as a constraint for
the backup paths computations limits our search to a subset of the whole state
space. On the other hand, this combined method would lead to less optimized
primary LSPs, which is a more severe shortcoming given that primary LSPs are
used almost all the time.

The computed primary path can be described by an ordered set P = {Nx0
,

Nx1
, . . . , Nxn

} with Nx0
= src and Nxn

= dst.

9.3.2.2 Backup paths computation

Given the primary path P and the node we try to protect Nxk+1
∈ P, we

introduce Incij(Nxk+1
, bw) (resp. Incij(LNxk

Nxk+1
, bw)) which represents the

increase of Rij when a backup LSP requiring bw units of bandwidth and pro-
tecting node Nxk+1

(resp. link LNxk
Nxk+1

) uses link Lij . We have Incij(∗, bw) =

R
′

ij −Rij where R
′

ij is the new reserved bandwidth obtained after the new LSP

establishment. If R
′

ij > Cij then Incij(∗, bw) = ∞ (capacity constraint). Rij

and R
′

ij can be calculated using equations 9.1, 9.2 and 9.3.

Each link Lij is assigned a cost Kij given by

• if we protect against failure of node Nxk+1

if (i = Nxk+1
∨ j = Nxk+1

)
Kij =∞

else if (Incij(Nxk+1
, bw) = 0)

Kij = ε
else

Kij = Incij(Nxk+1
, bw)

• if we protect against failure of link LNxk
Nxk+1

if (i = Nxk
∧ j = Nxk+1

)
Kij =∞

else if (Incij(LNxk
Nxk+1

, bw) = 0)

Kij = ε
else

Kij = Incij(LNxk
Nxk+1

, bw)
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Dijkstra’s algorithm is run from root Nxk
until the next marked node by

the procedure is N∗ with N∗ ∈ {Nx(k+1)
, ..., Nxn

}7. If no valid node-disjoint
path is found, then select link failure protection. If it fails once again, reject the
request. We have introduced the small number ε which is used instead of zero,
to favour the selection of the minimum hop path if all Incij are null.

Needed information To compute the cost Kij for all the links of the network,
we need some information. We claim that Rij , Pij , Bij(X) and Fij(X) are
sufficient to compute Kij , if X is the resource we want to protect (link or node).
Indeed, to compute the increment of bandwidth which would result from the
establishment of the backup path on link Lij , we must check whether the new
value of Bij(X)− Fij(X) is greater than the old value of Rij − Pij .

About optimality It is worth noting that our procedure is not optimal for
two reasons. First of all, it is not a network-wide optimum. It is quite obvious
because requests are treated one after the other. This means that choices made
for any particular LSP will never be re-evaluated in the future. But this proce-
dure is also not optimal at the LSP level, i.e. does not lead to find the set of
LSPs minimizing the increase of bandwidth reservation. Indeed, all the backup
LSPs (one for each node of the primary path) are calculated one after the other.
Once again the sequentiality prevents the algorithm to find an optimal solution.

Despite being sub-optimal, our simulations have shown that this algorithm
was a good heuristic. We also tested an enhanced version of the algorithm.
In this version, once all the backup paths of one primary path are computed,
we try to improve the sharing of each of them (by changing their path) with
the knowledge of all the other backup paths until no more bandwidth gain is
observed. In very rare cases it leads to a global improvement on the total
bandwidth consumed at the network level. In all other cases it leads to no
improvement at all or even to an increase in the bandwidth consumption.

Moreover the type of solution we propose is designed to be used in a dynamic
environment where relatively small LSPs (compared to the links capacity) are
added and removed permanently, following users needs. In this context, a form
of statistical multiplexing makes the ordering of establishment less relevant.

9.4 Preemption levels aggregation

When combining both preemption levels and resource sharing we must be care-
ful that Rij [p] must correctly reflect the amount of bandwidth which can effec-
tively be preempted (if required) at each preemption level. Indeed, the amount
of bandwidth assigned to each preemption level has to reflect the fact that by
removing all LSPs at a given level a certain amount of bandwidth will be freed.
For primary paths, we have to reserve at level p the sum of the bandwidth re-
quired by all LSPs at level p. The introduction of backup LSPs and bandwidth
sharing makes things a bit more complex. Indeed when using protection, re-
moving an LSP does not necessarily free any resource : if we recall equation 9.3,

7In case of node protection, the end of the backup tunnel cannot be Nxk+1 because all its
connected links have an infinite weight.
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we see that a decrease of Bij(N) only has an impact on Rij if node N is the
one that maximizes the difference. The consequence is that the preemption of a
given quantity of bandwidth will sometimes require that we tear down a set of
LSPs whose total bandwidth is bigger than the required bandwidth. To do so
the LSPs we try to establish must have a preemption level higher than all the
LSPs in this set.

Important remark : In this work, preemption levels are numbered in
decreasing order of priority. Level 1 is thus more important than level 2.

An example is given in tables 9.1 and 9.2. The bandwidth that must be re-
served for backup LSP1 and LSP2 can be limited to max(BW (LSP1), BW (LSP2)) =
10 Mbps because they protect two distinct nodes. A new LSP with preemption
level 1 would only be able to preempt bandwidth from LSP1. But despite the
fact that LSP1 requested 10 Mbps of bandwidth, removing it will only free 5
Mbps because of sharing.

LSP Failure Bandwidth Preemption Level

1 Nx 10 Mbps 2
2 Ny 5 Mbps 1

Table 9.1: Sharing with preemption levels: LSPs

Preemption level Bandwidth

Rij [1] 5 Mbps
Rij [2] 5 Mbps

Rij 10 Mbps

Table 9.2: Sharing with preemption levels: Rij [p]

As explained earlier preemption levels are used to give priority to certain
LSP requests. If a link is completely filled then it is still possible to establish a
new LSP through this link by preempting resources belonging to less important
LSPs. But the bandwidth reserved on a link is the result of three terms (cf.
equation 9.3) which are composed in different proportions for each preemption
level.

The algorithm computing Rij [p] is composed of two phases. The first one
consists of computing an intermediate result Gij(L)[p] and Gij(N)[p]. The
second phase computes Rij [p] using this result.

9.4.1 Phase 1

The value Gij(L)[p] (resp. Gij(N)[p]) represents, up to preemption level p, the
bandwidth that must be reserved on link Lij to be able to forward traffic in
case of failure of link L (resp. node N), in addition to the bandwidth that is
reserved for primary LSPs.
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Gij(L)[p]← max (0,
∑p

k=0 Bij(L)[k]−
∑p

k=0 Fij(L)[k])
∀p, L : 0 ≤ p < P,L ∈ U

Gij(N)[p]← max (0,
∑p

k=0 Bij(N)[k]−
∑p

k=0 Fij(N)[k])
∀p,N : 0 ≤ p < P,N ∈ X

The algorithm is based on the following idea: we do not need to reserve
extra bandwidth at level p if, up to that level, a sufficient amount of bandwidth
will be freed by the failure we consider. However we should note that Gij(X)[p]
(X being either a node or a link) can never be negative even if

∑

Fij(X)[p] >
∑

Bij(X)[p] because it would mean we have to “unreserve” bandwidth that is
used by active primary paths (recall that Fij(X)[p] is already reserved).

Figure 9.6 shows the situation. Up to level 1, a failure will free more
bandwidth than needed by the backup LSPs. For this reason Gij(X)[0] =
Gij(X)[1] = 0. For p ≥ 2,

∑p
k=0 Bij(X)[k] −

∑p
k=0 Fij(X)[k] > 0. The values

of Gij(X)[2], Gij(X)[3] and Gij(X)[4] are represented graphically on the figure.

Gij(X)[p] is the balance up to level p between the required backup bandwidth
and the freed primary bandwidth. If Gij(X)[p0] > 0 for a particular p0, this
means that we must add a new reservation of bandwidth at level p0 to correct
the difference. If we assume that the correction has already been done for all
p < p0, the new reservation at level p0 must consist of Gij(X)[p0]−Gij(X)[p0−1]
units of bandwidth.

This reasoning is only for a particular failure. As any node in the network can
fail, we have to define a new vector Mij [p] accounting for the maximum difference
between the total bandwidth required and freed considering all possible failures.
This is the purpose of phase 2.

Bij(X)[1]

Bij(X)[2]

Bij(X)[3]

Bij(X)[4]

Bij(X)[p]

Fij(X)[0]

Fij(X)[1]

Fij(X)[4]

Fij(X)[p]

Gij(X)[2]

Gij(X)[3]

Gij(X)[4]

Gij(X)[p]

Figure 9.6: Preemption level selection

9.4.2 Phase 2

We introduce the vector Mij [p] given by :
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Mij [p]← max

(

max
L∈U

(Gij(L)[p]) , max
N∈X

(Gij(N)[p])

)

∀p : 0 ≤ p < P

This vector plays the same role as Gij(X)[p] but at the network-wide level.
Now that we have such a failure independent value we can compute :







Rij [0]← Pij [0] + Mij [0]
Rij [p]← Pij [p] + Mij [p]−Mij [p− 1]

∀p : 0 < p < P

This formula reflects the computations we made in the example of tables 9.1
and 9.2. It should be pointed out that the difference Mij [p] −Mij [p − 1] can
be negative which looks a bit surprising at first. Indeed it means we have to
reserve less bandwidth at level p than the sum of the bandwidth requirements
of all primary LSPs. In fact this just means that a certain amount of bandwidth
initially reserved at level p has been upgraded to level p0 < p to be aggregated
with backup LSPs.

9.5 The signalling problem

We will now study how the nodes can obtain the information they need to
compute all the paths in a decentralized scheme. In sections 9.3.2.1 and 9.3.2.2,
we saw which information is needed to compute primary paths, backup paths
and the reserved bandwidth on a link. In this section, we will understand where
this information is needed and the solution we propose to achieve our objective,
i.e. to stay scalable while achieving optimal bandwidth sharing.

9.5.1 Where must the information be available?

First, we can say that the information is needed where the computations are
made. If all the computations are made by a centralized server, the solution is
simple: it computes all the (primary and backup) paths and thus it knows all
the LSPs of the network. The objective of this section is to discuss how our
proposal can be decentralized.

The computation of the primary path is made by the ingress node.
Indeed, this node is the most appropriate because it receives the request for the
creation of the LSP.

The computation of the reserved bandwidth on a link (Rij [p],∀p) is
made by the node (Ni) immediately upstream of the link. This computation
influences the admission control of a new LSP (primary or backup) on that link.

For the computation of the backup path, different solutions are possible.
This computation can be made by:

• The ingress of the primary LSP. In this case, the ingress computes all the
backup paths that protect all the links and nodes we want to protect on
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the primary path. After all the computations, it forwards these backup
paths to the nodes on the primary path which will establish them.

• The POR. In this case, this is the node immediately upstream of the link
or node we want to protect (the POR) that computes the backup path. It
is also this node that establishes the backup path.

• The node to be protected or the node immediately downstream of the link
to be protected. This node computes the backup path and sends it to the
POR which establishes it.

In section 9.6, we compare these three solutions. We have chosen to use the
third one which appears to be excellent. Indeed, as we see in that section, the
bandwidth cost is minimum and we can extend RSVP to support this solution
without requiring any additional signalling protocol.

9.5.2 Establishment of the LSPs

In this paragraph, we present a preview of our signalling solution. The compu-
tation of the backup paths is distributed between all the nodes of the primary
path. They are computed when the RESV message8 of the primary path is
sent by the egress back to the ingress node. At this time, each node, one after
the other, will compute one backup path protecting itself or its upstream link9.
It will send the computed backup path to the upstream node. This node will
establish this backup path, compute a new backup path protecting itself or its
upstream link and send it to its upstream node. This operation is repeated
until the ingress node of the primary path is reached. In addition to the backup
path, each node must send to its upstream node the union of the links already
used by previously computed backup paths, as this information will be used by
upstream nodes to compute other backup paths.

Each node keeps in memory some fields of the RSVP messages it transmits.
Since RSVP is a soft state protocol, the path is refreshed regularly. If the path
is not refreshed, the LSP (and its associated information) disappears.

Each node which computes a backup path keeps this knowledge in memory.
Besides, only a very limited amount of information needs to be flooded in the
link-state routing protocol, e.g. OSPF(-TE).

9.5.2.1 Establishment of a primary LSP

Each node on the path of the LSP decides whether to accept or reject the LSP.
This decision is made considering the reserved bandwidth of the downstream
link (capacity check). Obviously, to decide whether to accept or reject the LSP
on a downstream link, the RSVP message must contain a flag specifying that
it is a primary LSP. Once it is accepted, the node stores the value of the LSP’s
bandwidth (which updates the value of Pij [p]).

8This is a message of the RSVP protocol ([AHX01]), which is used to establish LSPs in
MPLS networks.

9We compare our technique to other possible solutions in section 9.6.
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9.5.2.2 Establishment of a backup LSP

The same kind of admission control is also needed at the establishment of a
backup LSP. As with primary paths, a flag of the RSVP message must specify
the type of the LSP (i.e. backup in this case). Each node Ni has in memory the
present value of Pij [p], Bij(X)[p], ∀j ,X, p. Indeed, Ni can compute these values
thanks to the primary and backup RSVP messages seen at the establishment
of the LSPs. To take primary-backup sharing into account, Ni also needs to
know Fij(X)[p]. For this purpose, we propose to forward a specific message on
all the nodes of the primary path between the POR and the PML. We will call
this message the Fij message. This message must specify the primary LSP to
which it is related and the resource (X) which is protected.

9.5.3 Computation of the LSPs

If we follow the procedure described in section 9.5.2, each node Ni is able to
compute the primary reserved bandwidth (Pij [p],∀p) and the total reserved
bandwidth (Rij [p],∀p) on all the links that originate at Ni. We propose that
each node Ni floods Pij [p] and Rij [p],∀p in the LSAs10 of OSPF-TE together
with the capacity (Cij)

11. Thanks to this flooding, every node in the network
knows Cmn, Rmn[p] and Pmn[p] ∀p and ∀mn | Lmn ∈ U , i.e. for all the links of
the network. Notice that we flood in the network the same amount of informa-
tion than the partial information scheme of [KL01].

9.5.3.1 Computation of the primary LSPs

All the nodes know the free bandwidth of all the links. So all the nodes, including
the ingress node, are able to compute primary LSPs.

9.5.3.2 Computation of the backup LSPs

As we have seen in section 9.3.2.2, a node which computes a backup path has
to know some information about other LSPs protecting the same resource. Our
idea is the following: “If it is always the same node that computes all the backup
paths protecting a certain resource, this node knows almost all he has to know to
compute them!” So, we propose to associate with each resource a dedicated node
which computes the backup LSPs protecting it. The information obtained by the
backup path computations will be used for future backup path computations.

In our proposal, for a node N , the dedicated node is N itself, and for a
link Lij , the dedicated node is Nj . We can see on figure 9.7 how the POR
can ask for the computation of a path. Arrow 1 means: “Compute for me a
path protecting you, or similarly, protecting this link between me and you.” The
protected node computes a backup path and sends it back to the POR (arrow
2), which establishes it. We propose to include this message exchange in the
RSVP protocol (it is theoretically possible). The arrow 1 message is included

10LSA stands for Link State Advertisement.
11OSPF-TE already floods the capacity Cij and the free bandwidth Cij − Rij ([KKY03]).
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Information Obtained by Exported

Pij [p] RSVP-TE of primary LSPs Flooded with OSPF-TE

Pmn[p], ∀m 6= i OSPF-TE Kept locally

Bij(Lmn)[p], ∀n 6= i RSVP-TE of backup LSPs Kept locally to compute Rij [p]

Fij(Lmn)[p], ∀n 6= i Fij message Kept locally to compute Rij [p]

Rij [p] Computation using Pij [p], Flooded with OSPF-TE

Bij(Lmn)[p], Fij(Lmn)[p]

Rmn[p], ∀m 6= i OSPF-TE Kept locally

Bmn(Lki)[p] Computation of backup paths Kept locally

Fmn(Lki)[p] Computation of backup paths Kept locally

Bmn(Lkj)[p], ∀j 6= i, ∀m 6= i Not needed

Fmn(Lkj)[p], ∀j 6= i, ∀m 6= i Not needed

Table 9.3: Database details at node Ni

as an object in the PATH message of the primary LSP and the arrow 2 message
is included in the RESV message (see example in section 9.5.5).

2

1

POR Protected

Node

Figure 9.7: Example of message exchange

With this scheme, each node Ni knows all the backup paths of the network
protecting itself and its incoming links because it has computed these backup
paths. More formally, each node Ni knows: Bmn(Lji)[p] and Fmn(Lji)[p], ∀p,
∀m,n,j | Lji ∈ U and Lmn ∈ U ; and thus Bmn(Ni)[p] and Fmn(Ni)[p], ∀p
∀mn | Lmn ∈ U (see equations 9.1 and 9.2).

9.5.3.3 Data flow summary

Table 9.3 presents the structure of the information database at node Ni, ∀j |
Lij ∈ U , ∀k | Lki ∈ U , ∀mn | Lmn ∈ U , ∀p. This table shows how Ni obtains
information and how it is exported. Figure 9.8 shows the same information, but
in a more convenient way. Figure 9.9 shows the part of the whole Bxx(Lxx)[p]
table which is kept at each node. If M is the number of links in the network
and K is the number of neighbours of node Ni then the size of the whole table
would be M2. Out of this table, only K(2M −K) values are stored locally and
(M −K)2 are not used at all. Besides, none are flooded.

9.5.4 Simplification of signalling

The transmission of the Fij messages can be a problem. Indeed, they require
an additional protocol on the primary path between the POR and the PML.
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Pij [p]

Pmn[p]

Rmn[p]

Cmn

Rij [p]

Cij

Bij(Lmn)[p]

Fij(Lmn)[p]

Bmn(Lki)[p]

Fmn(Lki)[p]

RSVP-TE (Primary)

RSVP-TE (Backup)

Fijmessage

Backup Path Computation

OSPF-TE

OSPF-TE

Figure 9.8: Data flow at node Ni
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Figure 9.9: Information size
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But in fact, we can see that we do not actually need them. Indeed, we can
put them in primary RSVP refresh PATH messages. The only drawback of this
method is that this introduces an additional delay (we must wait for the next
PATH refresh message).

Doing so, all the nodes between the POR and the PML regularly send pri-
mary PATH refresh messages which contain Fij objects. When a backup path
is closed, these nodes stop sending the Fij objects in the primary PATH refresh
messages. Doing so, these nodes (including the protected node) can update their
database.

9.5.5 A simple example

In this section, we will show an example to clarify the explanations. We consider
the topology of figure 9.10. In order to avoid complex notation, we will not
mention preemption levels in this example. This does not remove any generality
to our proposal. Implicitly, all the mentioned values are specified for the specific
preemption level of the requested LSP.

5

1

6

2

3

4

EGRESS

INGRESS

Figure 9.10: Topology of the example

Node 1 receives a request for the establishment of an LSP of b units of
bandwidth from node 1 to node 6. Node 1 computes a primary LSP. Node 1
knows the free bandwidth on all the links because they have been flooded by
the extended routing protocol (e.g. OSPF-TE). The computed path is N1 →
N2 → N5 → N6. Once the primary path is computed, node 1 establishes it. It
sends a PATH message to node 2 (see figure 9.11a). In this PATH message, an
RSVP object asking for a local restoration is added. Node 2 accepts the request
and forwards the PATH message to node 5 (figure 9.11b). Node 5 accepts the
request and forwards the PATH message to node 6 (figure 9.11c). Each node
on the primary path has seen the PATH message so it knows that a protection
LSP must be computed.
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Node 6 computes a backup path that protects itself. As it is not possible, it
computes a path protecting link L56: N5 → N4 → N6. Node 6 sends this path to
node 5 as an object in the RESV message (figure 9.11d). Node 5 also computes
a backup path that protects itself: N2 → N4 → N6. It sends this path to node
2 with the RESV message. At the same time, it can establish the backup LSP
which protects link L56 (figure 9.11e)12. Now, it is node 2 that receives the
RESV message. This node computes a backup path that protects itself: N1 →
N3 → N4 → N6. Node 2 sends this path to node 1 with the RESV message.
At the same time, node 2 establishes the backup path protecting node 5 (figure
9.11f). In this case, as the protected part of the primary LSP is greater than 2
links, node 2 has to send an Fij message to node 5. This message indicates that
the failure of link L12 will free the primary bandwidth between node 1 and node
6. We can remark that although there are three backup paths, there is only
one Fij message that must propagate in the network. Now, node 1 receives
the RESV message from node 2 meaning that the primary LSP is established.
Finally, node 1 establishes the backup path protecting node 2 (figure 9.11g).

We will now study in more detail when nodes store information in their
memory. We can follow in table 9.4 which information is known at which mo-
ment by which nodes. For example, the first three lines show that when the
PATH message of a primary path is forwarded by a node, this node stores this
information. The fourth line shows that when a node computes a backup path,
this node will keep a piece of information about this backup path. The fifth and
sixth lines show that the nodes on the path of a backup LSP also store some
information.

Step Node Updated information Obtained from

a 1 P12 RSVP (primary)

b 2 P25 RSVP (primary)

c 5 P56 RSVP (primary)

d 6 B54(L56) B46(L56) F56(L56) Local BP computation

e 5 F56(L56) B54(L56) RSVP (backup)

4 B46(L56) RSVP (backup)

5 B24(L25) B46(L25) F25(L25) F56(L25) Local BP computation

f 2 F25(L25) B24(L25) RSVP (backup)

4 B46(L25) RSVP (backup)

2 B13(L12) B34(L12) B46(L12) F12(L12)

F25(L12) F56(L12) Local BP computation

g 5 F56(L12) Fij message

1 F12(L12) B13(L12) RSVP (backup)

3 B34(L12) RSVP (backup)

4 B46(L12) RSVP (backup)

Table 9.4: Evolution of the information transmission

In table 9.5, we can see which information is known by each node at the end
of the process. It is the same information as in table 9.4, but sorted by node and
type. We can see that this information is in agreement with the information of
table 9.3 and figure 9.8.

12For reason of clarity, we do not show the PATH and RESV messages used for the estab-
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Figure 9.11: Example details

144



9.6. COMPARISON TO OTHER POSSIBLE SIGNALLING SCHEMES

Node Type Information
1 Pij P12

Bij(L) B13(L12)
Fij(L) F12(L12)

2 Pij P25

Bij(L) B24(L25)
Fij(L) F25(L25)

Bmn(Lki) B34(L12) B46(L12) B13(L12)
Fmn(Lki) F12(L12) F25(L12) F56(L12)

3 Bij(L) B34(L12)
4 Bij(L) B46(L56) B46(L25) B46(L12)
5 Pij P56

Bij(L) B54(L56)
Fij(L) F56(L56) F56(L12) F56(L25)

Bmn(Lki) B24(L25) B46(L25)
Fmn(Lki) F25(L25)

6 Bmn(Lki) B54(L56) B46(L56)
Fmn(Lki) F56(L56)

Table 9.5: State of the tables of the nodes

9.6 Comparison to other possible signalling schemes

We will study in detail the three different solutions of section 9.5.1 and justify
our choice. They differ in the node that computes the backup LSPs.

9.6.1 Presentation of the three possible locations for backup

path computation

9.6.1.1 Computation by the ingress of the primary LSP

It is the ingress of the primary LSP that computes the backup paths protecting
the links and nodes of the primary path. We consider two propositions to achieve
this goal. The first proposition is that each node floods all the information
(B..(L..) and F..(L..)) in the whole network. Doing so, every node of the network
(including the ingress node) can compute the backup paths. But this proposition
is really not scalable.

The second proposition is that each node keeps the information concerning
itself and sends it to the ingress node. Thus, firstly, the ingress node computes
the primary LSP and establishes it. Secondly, each node on the primary path
sends the information it owns to the ingress to allow it to compute the backup
paths. When the backup paths are computed, the ingress sends each POR the
backup path it has to establish. Furthermore, the POR forwards the backup
path to the protected node so that it can keep this information in memory. The
protected node has to be aware of this information because it will send it to the
ingress of the future primary LSPs passing on it.

lishment of the backup LSPs.
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With this scheme, each node Ni knows all the backup paths protecting itself,
all the backup paths protecting the incoming links and all the backup paths using
itself. Formally, this information is: Bmn(Lji) and Fmn(Lji), ∀mn | Lmn ∈
U ,∀j | Lji ∈ U and thus Bmn(Ni) and Fmn(Ni), ∀mn | Lmn ∈ U (see equations
9.2 and 9.1).

9.6.1.2 Computation by the POR

It is the POR which computes the backup path. The POR is the node imme-
diately upstream of the resource to protect. In case of link protection, there is
only one node per protected link that can be the POR for the backup LSP. On
the other hand, in case of node protection, there are multiple nodes that can
potentially be a POR for a backup LSP protecting a particular node. Indeed,
each neighbour of the node can be the POR. So, every potential POR must
store the information about the node. Thus, after having established a backup
LSP (see figure 9.12), the POR sends the new information to the protected node
(arrow 1) which forwards it to all its neighbours except the POR (arrows 2).

Node

2

2

2

2

1

Protected

POR

Figure 9.12: Example of exchange of messages in the case 9.6.1.2

With this scheme, each node i knows (∀k which is i or a neighbour of node
i): Bmn(Ljk) and Fmn(Ljk), ∀mn | Lmn ∈ U ,∀j | Lji ∈ U and thus Bmn(Nk)
and Fmn(Nk), ∀mn | Lmn ∈ U (see equations 9.2 and 9.1).

9.6.1.3 Computation by the node to protect

It is the solution we have chosen. This has already been explained in section
9.5.3.2.

9.6.2 Evaluation of the performance of the three solutions

In this section, we will estimate the cost of the three solutions. For these esti-
mations, we need to introduce some new notations:

• l is the number of nodes on the primary path

• x =| X | i.e. the number of nodes in the network

• u =| U | i.e. the number of links in the network
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• s is the mean size of the backup paths

• t is the mean degree of the nodes, i.e. the number of neighbours of the
node

• C1 and C2 are constant values representing the size in bytes of the repre-
sentation of (respectively) one record in the database and the identifier of
one node.

The bandwidth cost of a message is computed this way:

size of the message * number of links crossed by the message.

9.6.2.1 First solution

In the first solution, the ingress must get the information from all the nodes of

the primary path. The information for one node Ni is

{

Bmn(Ni)− Fmn(Ni)
Bmn(Lji)− Fmn(Lji)

,

∀m,n. Nj is supposed to be the node preceding Ni on the primary path. Thus,
the size of the information to transmit to the ingress node13 for each node on the
primary path is 2∗u∗C1. The information of the egress node has to cross (l−1)
links to reach the ingress, but the information of the node just downstream the
ingress node has to cross just one link to reach it. The total number of links

crossed by the information of one node is: 1+2+...+(l−1) =
∑l−1

k=1 k = (l−1)∗l
2 .

The total cost is 2∗u∗C1∗(l−1)∗l
2 for all the messages that go from each node of

the primary path to the ingress node.

When the ingress node has computed all the backup paths, it has to send
them to the PORs because it is the PORs that will establish them. The cost
of one path message is s ∗ C2. So, with similar arguments like above, the total

cost of these messages is s∗C2∗(l−1)∗l
2 .

In conclusion, the total bandwidth cost of this first solution is (s∗C2+2∗u∗C1)∗(l−1)∗l
2 .

Furthermore, this solution requires an additional signalling for every node to
send its information to the ingress and for the ingress to send the computed
backup path to the nodes on the primary path.

9.6.2.2 Second solution

The POR can compute the backup path. After having established the backup
path, it has to transmit the computed path to the downstream node. This
node will in turn transmit this information to its neighbours (see figure 9.12).
The bandwidth cost of this operation is s ∗ t ∗ C1. This operation requires an
additional signalling.

9.6.2.3 Third solution

The POR asks to the downstream node to compute the backup path protecting
it. After the computation, the protected node sends the path to the POR which

13Here, we do not take into account the fact that in case of lightly loaded networks, a high
number of B and F components may be equal to zero.
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establishes it. The bandwidth cost of this operation is s ∗ C2. This operation
may require an additional signalling protocol. But as we have seen, we can
extend RSVP to support this scenario.

9.7 Simulation results

This simulation section is composed of two parts. The first part contains a deep
analysis of the results of the simulation of our algorithm on a first topology.
In the second part, we briefly present some results obtained on three other
topologies.

9.7.1 Detailed results

For this part of the simulation, we have used a randomly generated topology
which was composed of 50 nodes and 102 full-duplex links. Among the 50 nodes,
30 were chosen to act as border routers. We assigned to each ingress-egress pair
a probability. The topology used has been “perfectly engineered” thanks to a
Generalized maximum concurrent flow algorithm. By “perfectly engineered”, we
mean that a load of 100% is reachable throughout the network if the ingress-
egress probabilities are respected and the LSP-bandwidth are infinitesimal. This
has been done because we realized it was useless to engineer the traffic on
a network with engineering inconsistencies such as huge links following very
small ones (they can only reach a very small relative load). And indeed, the
Generalized maximum concurrent flow approximation we used is close to the
behaviour used by some network engineers we have met (e.g. “double up the
link capacity when it reaches 50% of load”). Network engineering in the context
of fault protection is still a very active domain of research (cf. [LTS01, LT01]).

The most important value when designing a restoration scheme is the “cost”
of such a protection in terms of additional bandwidth reserved for backup LSPs.
We will call it “network oversubscription” and represent it by γ. It is given by:

γ =

∑

Lij∈U Rij −
∑

Lij∈U Pij
∑

Lij∈U Pij

γ measures the network-wide bandwidth reservation increase caused by the
backup LSPs compared to the unprotected case.

Four algorithms for node-failure protection are presented in the following
results. The first one (labelled “LOCAL”) is as the name suggests a local recov-
ery scheme using only the basic “backup-backup” bandwidth sharing scheme.
The second one, “LOCAL with FBW14”, is an enhanced version taking into ac-
count the concept of “primary-backup sharing” (using the vector Fij(F )). The
same difference exists between the two algorithms labelled respectively “END-
TO-END” and “END-TO-END with FBW”. It should be noted that the “END-
TO-END” algorithm is similar in its behaviour to the algorithm presented in
[LWKD02] which we consider to be the state-of-the-art in end-to-end resource
sharing.

14FBW is an acronym for Freed Bandwidth.
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9.7.1.1 Results

Figure 9.13 presents the evolution of γ when we progressively add LSPs to the
network. The vertical position of each algorithm is not surprising. However it
should be noted how the introduction of vector F improves the performance of
the recovery. In terms of resource consumption, local restoration with FBW is
as good as end-to-end recovery without FBW. On this topology, the “distance”
between the best local approach and the best end-to-end scheme is less than
10%, a price we consider quite cheap to benefit from very short restoration
delays.

The decrease of γ that occurs after the establishment of 2000 primary LSPs
should be pointed out. This behaviour is due to the method to choose the path
of the primary LSP. Indeed, as the primary always follows the minimum hop
path, many primary LSPs will tend to overlap while enough bandwidth remains
available on this minimum hop path. This tends to create regions where links
are used to protect only a small number of nodes. This situation does not
create a lot of opportunities to aggregate bandwidth. If we take a look at figure
9.14, we will see that when 2000 primary LSPs and corresponding backups are
established in the network, the mean reserved bandwidth is close to 45%. This
mean load suggests that some links are completely filled. The following requests
thus have to make a detour to avoid the saturated links. Because of this, backup
LSPs are now established in other parts of the network where a more important
sharing can be realized.

This is confirmed by figure 9.15 which shows the mean number of non-
null elements in vector Fij(F ), i.e. the evolution of 1

|X |

∑

F∈X sign(Fij(F ))15.

Despite not being shown in this work the same kind of behaviour is observed
for the density of vector Bij(F ). The slope of the curve increases shortly after
2000 primary LSP establishments indicating that backup LSPs are now using
links where no bandwidth has been reserved for protecting the same node. This
suggests that choosing our primary paths in a smarter way could have a big
impact on the amount of sharing.

This simulation proves the interest of including restoration mechanism in the
MPLS layer. Indeed lower layer recovery schemes such as SONET self healing
rings impose a high level of oversubscription (> 100 %, see [Gro03] for details).

9.7.2 Results on other kinds of topologies

We have used three other topologies. The first two topologies were generated
using the BRITE topology generation tool [MLMB01]: one using Waxman’s
method [Wax88] and the other one using Barabasi-Albert’s [BA99]. The third
one is the topology of an operational network. The Waxman topology is com-
posed of 50 nodes and 100 full-duplex links. We set the value for parameters α
and β to 0.15 and 0.2. The Barabasi-Albert topology is composed of 50 nodes
and 97 full-duplex links. The operational network is composed of about 20 nodes
and 40 full-duplex links. For the Waxman (WAXMAN) and the Barabasi-Albert
(BA) topologies, we have generated an LSP between each pair of nodes. The
size of an LSP is chosen according to a uniform random distribution between

15sign(x) is equal to 1 if x is positive, to −1 if x is negative and to 0 if x is equal to 0.
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Figure 9.13: Evolution of network oversubscription
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Figure 9.14: Evolution of mean load

5 and 10 units of bandwidth (for comparison, all the links of both topologies
have a bandwidth of 1000 units). For the operational network, we have used
real traffic measurements (represented in a traffic matrix) to fix the size of the
LSP requests. The procedure to obtain the traffic matrix of the operational
network is similar to the one described in [BLD+07]. The primary paths were
computed with the DAMOTE algorithm [BML03b], which is a good primary
path computation algorithm according to simulations in [BLD+07, SBD+05].

Table 9.6 shows the oversubscription values for the three topologies. These
values are given after the establishment of all the LSPs leading to a mean reserva-
tion of about 40% for WAXMAN and BA topologies and 20% for the operational
network topology. We can notice that absolute values for the oversubscription
on the WAXMAN and BA topologies are close to the values found in the pre-
vious section. On the smaller operational network topology, we notice that the
oversubscription level is higher. But even in this case, compared to SONET
restoration for which the oversubscription is over 100% in all cases and does not
protect against node failures, these results are competitive. Finally, the relative
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Figure 9.15: Evolution of the number of non-null elements in vector Fij , aver-
aged over all node failures F

WAXMAN BA Operational Network
LOCAL 52.7 65.8 111.4
LOCAL with FBW 50.0 63.2 108.5
E2E 48.6 62.3 93.7
E2E with FBW 43.8 57.4 83.4

Table 9.6: Oversubscription

reduction of bandwidth when primary-backup sharing is used (i.e. with FBW)
can go up to 10.3% in the case of end-to-end protection. This means that this
kind of sharing is not limited to local restoration and provides good results for
end-to-end protection as well.

9.8 Extentions to RSVP-TE and OSPF-TE pro-

tocols

We have pointed out that it is possible to extend OSPF-TE and RSVP-TE to
support our solution. In this section, we summarize what kind of extensions are
needed.

In OSPF-TE, it is necessary to add the primary LSPs reserved bandwidth
(Pij).

In RSVP-TE, we have to add:

• In the PATH messages, we have to say if it is a primary or a backup LSP.

– If it is a primary LSP, we have to add the codepoint which specifies
the backup LSP establishment solution. In some cases, we also have
to add the Fij objects.
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– If it is a backup LSP, we have to add the protected link.

• In the RESV messages, we have to add an object containing the computed
backup path to be established by the upstream node. Depending on the
chosen solution, we can also add an object containing the union of the
links used by already computed backup LSPs related to the same primary
LSP.

9.9 Conclusion

The contribution of this chapter is threefold. First of all we improved the best
known bandwidth sharing scheme without sacrificing simplicity. This new shar-
ing technique is able to provide a substantial decrease of the network oversub-
scription of both local and end-to-end protection schemes. The second interest
of this chapter is to explain the modification required to handle correctly the
notion of “preemption levels”. The third contribution is to provide a scalable
way to implement our efficient bandwidth sharing solution in a distributed way.

Our results show that fast-rerouting is a viable approach to protect traffic
that can only accommodate very short interruptions. They also suggest that
routing the primary path in a smarter way could help reduce the resource usage
further.
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Conclusions & Perspectives

The Traffic Engineering (TE) research community has been active for several
years. Numerous papers have been published on this topic, both from univer-
sities and industrial labs, which reflects the huge activity and common interest
for this research area.

To solve TE problems researchers use a wide range of mathematical theories
and tools, like for example the optimization theory, the control theory, statistics,
the art of modeling, distributed systems or game theory. This wide range of
potential mathematical theory support contributes to make this research area
exciting and interesting. In this work we did use some of these theories while
we have improved the way some others are used. We have identified and then
solved different TE problems that required innovative solutions.

First we have noted that the mathematical goals of optimization techniques
(exact or heuristics) used in TE algorithms were not well defined. The founda-
tion and justification of the choice of the mathematical objective function are
often missing or weak, while the quality of that choice is predominant in the
overall efficiency of the resulting TE system. From this observation we have
performed a deep analysis of the requirements TE algorithms should fulfill and
how proposed objective functions reflect such requirements. The results of this
study are that all the proposed objective functions are not equivalent, some be-
ing far better than others. The delay-based objective functions seem to embed
most important TE concerns. This work could be used in future works to revisit
main TE algorithms and evaluate the gain that could be obtained by replacing
their objective function by a more efficient one. For example we think that all
the methods that use the maximal link utilization as only objective and then try
to use resulting routing on another traffic matrix1 are deeply biased. Using a
delay-based objective function in this case would greatly improve the obtained
results, as this objective function will lead the algorithm to not only reduce
the maximal link utilization, but also the utilization of lower loaded links, in
addition to improving other TE metrics.

1Like for example the model of prediction-based TE which is used in [WXQ+06] to compare
to their algorithm.
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Then we did tackle a main problem of Link Weight Optimizers (LWO) whose
routing models are unaware of the BGP Hot-Potato rule. We have observed that
this simplification could lead in the worst case to dramatically bad resulting per-
formance, as shown by simulations based on real data collected on an operational
transit network. To solve this problem we have proposed to include interdomain
links in the classical LWO problem to be able to model BGP Hot-Potato rerout-
ings as well and to avoid significant errors. The proposed method includes an
efficient aggregation technique to keep the problem computationally tractable.
We have implemented the proposed LWO, and also tested it on our dataset.
Note that including interdomain links in the optimization allowed us to extend
the scope of the optimizer to interdomain links in addition to intradomain links.
Results were more than satisfactory on this point. An interesting future work
could be to extend our work as it was done for non-BGP-aware LWOs to use
multiple traffic matrices and also to guarantee good network state in case of
network element (link or node) failures. It would also be interesting to develop
more specialized objective functions for interdomain links. Typically the cost
of using interdomain links is different from the cost of using intradomain links.
For example, this cost can be constant until a given load, and proportional to
the utilization above that given load. The objective function of such links could
reflect this monetary cost to decrease network utilization expenditure. Another
interesting future work area is the still open question of optimization oscillations
involving neighboring ASes.

The previous study assumed that a particular BGP configuration —an iBGP
full-mesh— was used in the network. While this configuration is the BGP default
configuration, big networks usually install route reflectors in their topologies,
which reduces the number of iBGP sessions to set up in the network, in order
to preserve scalability. We have shown that when LWOs are used in a network
whose BGP configuration is based on route reflectors, additional problems, like
deflections or forwarding loops, could appear due to the LWO, even if these
problems were avoided by design before the optimization. We have proposed to
use a BGP routing solver (C-BGP) inside the LWO to avoid deflections, even in
the presence of route reflectors. Again we implemented such LWO and tested it
on our real dataset to demonstrate its ability to solve presented problems, but
also its efficiency. Note that some recent work presented how to design iBGP
topologies based on route reflectors which are not subject to path deflections.
One problem of such tools is that the ”deflection-free property” is generally only
guaranteed for a given set of link weights. If the link weights are changed by
a LWO, the property does not hold anymore. We think it would be interesting
to combine both approaches, and for example to develop an algorithm able
to design an iBGP topology based on route reflectors on which some special
LWO can be used without the risk of introducing path deflection. Or we could
design an LWO that computes a set of link weights that both balances the load
on links and allows an optimal iBGP configuration with a minimal number of
iBGP sessions.

A last problem we studied related to LWOs is concerning iBGP multipath
load sharing, an optional BGP feature that allows routers to split traffic on mul-
tiple equivalent egress routers, like ECMP inside the network. It has been said
that this could introduce forwarding loops. We have shown that some general
BGP configurations reflecting commercial relationships ensure that forwarding
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loops won’t be created.

Finally we did study how efficient resilience can be achieved in an MPLS
network, in a distributed environment. We focused on fast recovery protection
with local backup LSPs. The difficulty of this work was the big amount of in-
formation required by computing nodes to perform efficient path computation
at reduced bandwidth cost. The simplest solution to flood all the required in-
formation in the whole network would not scale. Thus we have proposed a more
sophisticated distribution/computation scheme, which allows efficient compu-
tation at very reduced bandwidth cost, and which scales in a fully-distributed
system.

As a conclusion we have found several innovative solutions to different TE
problems. We hope this work has contributed to improve the performance and
quality of state of the art Traffic Engineering techniques.
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Acronyms

ABR — Area Border Router

AS — Autonomous System

BGP — Border Gateway Protocol

CBR — Constraint Based Routing

CSPF — Constrained Shortest Path First

EF — Expedited Forwarding

IGP — Interior Gateway Protocol

IP Prefix — Block of IP Addresses

ISIS — Intermediate System - Intermediate System

ISIS-TE — Traffic Engineering extensions to ISIS

LP — Linear Program

LSA — Link State Advertisement

LSP — Label Switched Path

LSR — Label Switch Router

LWO — Link Weight Optimizer

MPLS — Multi-Protocol Label Switching

OSPF — Open Shortest Path First

OSPF-TE — Traffic Engineering extensions to OSPF

POR — Point Of Repair

PML — Path Merge LSR

QoS — Quality of Service

RSVP — Resource reSerVation Protocol

SLA — Service Level Agreement

SONET — Synchronous Optical NETworking
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TE — Traffic Engineering
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[MBL03] Laurent Mélon, François Blanchy, and Guy Leduc. Decen-
tralized local backup LSP calculation with efficient bandwidth
sharing. In Proc. of 10th International Conference on Telecom-
munications (ICT’2003), pages 929–937, Papeete, Tahiti, 23-28
Feb. 2003. IEEE Press. (Cited on pages 11, 126, and 127.)

[MCSA03] Jose L. Marzo, Eusebi Calle, Caterina Scoglio, and Tricha An-
jali. QoS Online Routing and MPLS Multilevel Protection:
A Survey. Communications Magazine, IEEE, 41(10):126–132,
Oct 2003. (Cited on pages 8 and 15.)

[MIB+04] Athina Markopoulou, Gianluca Iannaccone, Supratik Bhat-
tacharyya, Chen-Nee Chuah, and Christophe Diot. Charac-
terization of Failures in an IP Backbone Network. In Proc.
of IEEE INFOCOM 2004, volume 23, pages 2307–2317, Hong
Kong, March 2004. (Cited on page 124.)

[MK04a] E. Mulyana and U. Killat. Impact of partial demand increase
on the performance of IP networks and re-optimization ap-
proaches. In Proceedings of the 3rd Polish-German Teletraffic
Symposium PGTS, pages 275–284, Dresden Germany, Septem-
ber 2004. (Cited on page 17.)

[MK04b] E. Mulyana and U. Killat. Optimization of IP networks in var-
ious hybrid IGP/MPLS routing schemes. In Proceedings of the
3rd Polish-German Teletraffic Symposium PGTS, pages 295–
304, Dresden Germany, September 2004. (Cited on page 17.)

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John
Byers. BRITE: An approach to universal topology generation.
In In Proceedings of the International Workshop on Model-
ing, Analysis and Simulation of Computer and Telecommunica-
tions Systems - MASCOTS ’01, Cincinnati, Ohio, Août 2001.
(Cited on pages 61 and 149.)

[MM05] M. Menth and R. Martin. Network resilience through multi-
topology routing. Design of Reliable Communication Networks,
2005. (DRCN 2005). Proceedings.5th International Workshop
on, pages 271–277, Oct. 2005. (Cited on page 62.)

[Moy98] J. Moy. OSPF Version 2. RFC 2328. April 1998.
(Cited on pages 2 and 66.)

[MTS+02] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and
C. Diot. Traffic matrix estimation: existing techniques and
new directions. In SIGCOMM ’02: Proceedings of the 2002 con-
ference on Applications, technologies, architectures, and proto-
cols for computer communications, pages 161–174. ACM, 2002.
(Cited on page 26.)

[MU03] E. Mulyana and Killat. U. An offline hybrid IGP/MPLS traffic
engineering approach under LSP constraints. In Proceedings of
the 1st International Network Optimization Conference INOC
2003, Evry/Paris France, oct 2003. (Cited on page 44.)

167



BIBLIOGRAPHY

[MWA05] Ratul Mahajan, David Wetherall, and Thomas Anderson.
Negotiation-Based Routing Between Neighboring ISPs. In
NSDI’05: Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation, pages 29–42.
USENIX Association, 2005. (Cited on pages 89 and 90.)

[NSB+03] A. Nucci, B. Schroeder, S. Bhattacharyya, N. Taft, and C. Diot.
IGP Link Weight Assignment for Transient Link Failures. In
Proceedings of 18th International Teletraffic Congress (ITC),
September 2003. (Cited on page 16.)

[OPN] Opnet products. http://www.opnet.com. (Cited on page 24.)

[PMR+07] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and
P. Pillay-Esnault. Multi-Topology (MT) Routing in OSPF.
RFC 4915, Internet Engineering Task Force, June 2007.
(Cited on pages 53 and 62.)

[Pre] B. J. Premore. SSF Implementations of BGP-4.
(Cited on page 18.)

[PSS08] Tony Przygienda, Naiming Shen, and Nischal Sheth. M-ISIS:
Multi Topology (MT) Routing in Intermediate System to In-
termediate Systems (IS-ISs). RFC 5120, Internet Engineering
Task Force, February 2008. (Cited on pages 53 and 62.)

[QB05] B. Quoitin and O. Bonaventure. A Cooperative Approach
to Interdomain Traffic Engineering. In 1st Conference on
Next Generation Internet Networks Traffic Engineering (NGI
2005), pages 450–457, Rome, Italy, April 18-20th 2005.
(Cited on page 90.)

[QPBU05] B. Quoitin, C. Pelsser, O. Bonaventure, and S. Uhlig. A per-
formance evaluation of BGP-based traffic engineering. Interna-
tional Journal of Network Management, 15(3):177–191, 2005.
(Cited on page 18.)

[QU05] B. Quoitin and S. Uhlig. Modeling the routing of an Au-
tonomous System with C-BGP. IEEE Network, 19(6):12–19,
November 2005. (Cited on pages 101 and 105.)

[QUP+03] B. Quoitin, S. Uhlig, C. Pelsser, L. Swinnen, and O. Bonaven-
ture. Interdomain traffic engineering with BGP. Com-
munications Magazine, IEEE, 41(5):122–128, May 2003.
(Cited on pages 8 and 89.)

[QX02] Chunming Qiao and Dahai Xu. Distributed Partial Information
Management (DPIM) Schemes for Survivable Networks - Part
I. In Proc. of IEEE INFOCOM 2002, volume 21, pages 302 –
311, June 2002. (Cited on page 125.)

[Rex06] Jennifer Rexford. Handbook of Optimization in Telecom-
munications, chapter Route optimization in IP networks.
Springer Science + Business Media, February 2006.
(Cited on pages 15, 68, 96, and 100.)

168



BIBLIOGRAPHY

[Rie03] A. Riedl. Optimized routing adaptation in IP networks utilizing
OSPF and MPLS. In Proceedings of IEEE ICC, volume 3,
pages 1754–1758, May 2003. (Cited on page 17.)

[RTZ03] Matthew Roughan, Mikkel Thorup, and Yin Zhang. Traffic En-
gineering with Estimated Traffic Matrices. In IMC ’03: Pro-
ceedings of the 3rd ACM SIGCOMM conference on Internet
measurement, pages 248–258. ACM, 2003. (Cited on page 69.)

[SAC+04] C. Scoglio, T. Anjali, J. Cavalcante, I. Akyildiz, and
G. Uhl. TEAM: A Traffic Engineering Automated Manager
for DiffServ-Based MPLS Networks. IEEE Communications
Magazine, 42(10):134–145, 2004. (Cited on page 24.)

[SBD+05] Fabian Skivée, Simon Balon, Olivier Delcourt, Jean Lepropre,
and Guy Leduc. Architecture d’une bôıte à outils d’algorithmes
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