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Chapter 1

General Introduction

It would be possible to describe
everything scientifically, but it
would make no sense; it would
be without meaning, as if you
described a Beethoven
symphony as a variation of wave
pressure.

Albert Einstein

1.1 Context of the present work

Today’s science is interdisciplinary. For example, mathematicians and economists
are used to collaborate together to elaborate complex micro- or macro-economical
models of the society, and to potentially anticipate the market evolution in a par-
ticular context under particular events. But the most “heterogeneous” disciplines
are certainly the life sciences. People working on biological systems include physi-
cians (with any kind of specialties), physicists, biologists, veterinarians, chemists,
pharmacists, mathematicians, kinesiologists, psychologists or even engineers! They
are used to collaborate — and to share their respective vocabulary — in order to
disentangle the complexity of living systems, from the chemical reactions involved
at the smallest molecular level, to the social and cognitive mechanisms governing
the largest ecological populations. Last but not least, they have also to understand
how these vastly different space- and time-scales are related to each other.

The engineering contribution to life sciences is basically twofold. First, the en-
gineers’ knowhow is mandatory in the development of dedicated technologies: bio-
compatible sensors, medical imaging techniques, prosthesis design, etc. . . This
encompasses both the “hardware” development, and the “software” management,
for example by elaborating dedicated signal processing algorithms. Second, the en-
gineering viewpoint is also emerging at the level of data interpretation. Indeed,

1



2 1.1. CONTEXT OF THE PRESENT WORK

engineers are used to model the systems they deal with, and to study their behavior
through the mathematical properties of those models. This is potentially relevant
in living organisms, since a tremendous number of individual “agents” interact with
each other to produce the global picture. In neuroscience, the use of such mathemat-
ical tools for modeling and analysis purposes refers to the discipline of computational

neuroscience. One of the most celebrated example of computational neuroscience
model has been proposed by two English physiologists, Hodgkin and Huxley (1952),
to describe the ionic currents through the squid giant axon that are responsible for
the propagation of action potentials through the axon membrane. Hodgkin and
Huxley received the Nobel price in Physiology or Medicine in 1963 “for their discov-
eries concerning the ionic mechanisms involved in excitation and inhibition in the
peripheral and central portions of the nerve cell membrane” (www.nobelprize.org).

In the particular field of motor control, many computational aspects are also
emerging (Jordan and Wolpert, 1999; Wolpert and Ghahramani, 2000; Scott and
Norman, 2003). The discipline of computational motor control has adapted system-
theoretic concepts and related engineering computational tools to the control of
movements, both on the basis of actual data sets, and under biologically plausible
architectures. Some examples are (see Jordan and Wolpert, 1999, for more details):

Motor planning , which refers to the elaboration of the effector trajectory, and
the related muscular command. The coordination between several joints and
several limbs is programmed through motor planning, as a consequence of the
redundancy in the motor system (Bernstein, 1967).

Optimal control , which refers to computational techniques used to discriminate an
“optimal” trajectory in motor planning, as the one that minimizes a given cost
function. Particular cost functions penalize for example the non-smoothness
(see the pioneering work of Flash and Hogan, 1985, on the minimum-jerk
control), the energy expenditure, the movement duration, etc. . . Harris and
Wolpert (1998) used the theory of optimal control to propose the minimum-
variance principle of motor planning for both eye and arm movements. They
suggested that both eye and arm movements planning is computed to minimize
the biological noise, proportional to the input command amplitude and to the
duration of the movement.

Internal models : the internal model principle postulates the existence of internal
dynamical models of the body and/or the environment dynamics in the brain
(see e.g. Miall et al., 1993; Wolpert and Miall, 1996; Wolpert et al., 1998;
Wolpert and Kawato, 1998; Kawato, 1999; Haruno et al., 2001; Mehta and
Schaal, 2002). Internal models may be either forward models — to achieve
motor or sensory prediction —, or inverse models — to compute the neural
command related to a desired behavior.

State estimation , which describes the computational techniques aiming at retriev-
ing the system state on the basis of the measured sensory inflows.
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Figure 1.1: The motor system is shown schematically along with related themes of
computational motor control. The motor system (center) has inputs — the motor
commands — which cause it to change its states and produce an output — the
sensory feedback. For clarity not all lines are shown. Reprinted from Jordan and
Wolpert (1999).

Motor learning , encompassing the techniques for learning the controlled dynam-
ics. Several machine learning algorithms have been explored as potentially
relevant for explaining the learning effects in biological data sets.

Modularity : since the behavior is rapidly adapting in changing environments,
one may suppose that several internal models of the environment are stored
in parallel. These models are recruited depending on the context, under a
modular architecture (see the MOSAIC model, in Wolpert and Kawato, 1998;
Jordan and Wolpert, 1999; Wolpert and Ghahramani, 2000; Haruno et al.,
2001).

These computational concepts, and a global picture of their relationships, are sum-
marized in Fig. 1.1.

Computational questions in human motor control often parallel questions in
robotics. Indeed, Schaal and Schweighofer (2005) pointed several fields of con-
vergence between recent research directions in computational motor control, and
well-established theories in robotics and artificial intelligence: motor control with
internal models and in the presence of noise, motor learning, coordinate transfor-
mation, movement planning with motor primitives and probabilistic inference in
sensorimotor control (the “Bayesian” brain). Consequently, the global picture we
presented as diagram of the motor control architecture (Fig. 1.1) can also be in-
terpreted as a sketch of the control architecture of skilled robots. The highest level
box is a trajectory planner, which has to program the desired movement. This



4 1.2. THESIS STATEMENT

movement is executed and closed-loop controlled, by a controller which can include
internal models of the task to increase the bandwidth. Finally, the sensory feedback
is used to estimate the system state and to close the loop both with the trajec-
tory planner and the controller (Schaal and Schweighofer, 2005). Usually, these
three “black-boxes” (planner, controller, estimator) are designed separately, since it
is basically assumed that their bandwidths differ by several orders of magnitude.

Due to their similar global architecture, analysis and design investigations cross-
fertilize between robotics and human motor control. One can say that this interac-
tion is bidirectional in the following sense: first, the complex control strategies used
in the human brain provide a source of inspiration in robotics designs. Secondly,
the computational and system-theoretic models in robotics provide useful insights
into the interpretation of the high-dimensional behavioral and neurophysiological
data sets. In particular, the computational and mathematical tools available for de-
sign purpose are relevant to understand the human control strategies, and to better
understand why and how a particular movement trajectory has been adopted in a
particular context.

1.2 Thesis statement

In this thesis, we address both the design of robotics control and the analysis of
human behavior in the particular context of rhythmic movements. Moreover, the
designed control laws have been implemented on a robot, which executed the same

task as the human subjects with the same experimental setup. The analysis of both
data sets (robot and human) led to fruitful comparisons.

Two central system-theoretic concepts, ubiquitous in control design (see e.g.
Franklin et al., 2005; Astrom and Murray, 2005), are considered throughout the
thesis: the balance between feedback and feedforward and the trade-off between
performance and robustness. Feedback and feedforward are indeed complementary:

• Feedforward control is cheap since it relaxes the need of sensor design, and
is potentially of large bandwidth since it does not have to cope with error
propagation and/or delays. The major drawback of feedforward is that both
stability and robustness depend on the open-loop properties. A classical feed-
forward control scheme is shown in Fig. 1.2(a).

• Feedback control is robust, since it exploits the measured system state to
adapt the control. Basically, feedback can then be used to achieve a design
whose both performance and robustness are close to desired levels. The major
drawback of feedback is that it rests on the sensors accuracy, and is sensitive
to the delays inherent in sensory processing. A classical feedback loop is shown
in Fig. 1.2(b).

To exploit their respective advantages, the ideal option is to combine those two
actions, as pictured in Fig. 1.2(c). The subsequent question is thus: what is the
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(a) Feedforward control.

(b) Feedback loop. ∆ is a time delay.

(c) Combined feedforward/feedback loop.

Figure 1.2: Feedforward, feedback and combined loops. CFF and CFB are the
feedforward and feedback controllers, while Gm is the controlled open-loop system.

minimum quantity of feedback which is necessary to maintain the system robust-
ness, while relaxing as much as possible the need of sensor design and sensed signals
processing? It is of central interest to investigate this question in the context of
rhythmic movements, since the rhythmicity may significantly simplify the task exe-
cution. Indeed, the control target, the actuation profile and (potentially) the sensory
feedback are repeated throughout the cycles, and the mismatch between one cycle
and the steady-state could consequently be rapidly identified.

The second trade-off concerns the robustness and the performance of any closed-
loop system. These two criteria are always traded, such that they cannot be arbitrar-
ily improved simultaneously. The robustness refers to the system ability to maintain
its stability despite changing or noisy environments, while the performance quantifies
how well it performs: how small is the static error? ; how fast is the reactiveness?
; how damped is the overshoot? ; how large is the bandwidth? ; how cheap is
the energy expenditure? ; how bounded is the variability? ; etc. . . Once again,
the thesis investigates this compromise in the framework of rhythmic movements.
Note that an appendix has been added to this thesis (Appendix A) to illustrate
the compromise between feedback and feedforward, and between performance and
robustness in a benchmark example of linear time-invariant system (a DC electrical
motor).

Another major contribution of the thesis was to build an original experimental
setup, both for the validation of the designed robotics control laws and for the
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acquisition of human data. This setup is based on a simplified juggling paradigm,
and is extensively described in Chapter 5.

1.3 Major contributions of the thesis

A central postulate of the present manuscript is that the planning of rhythmic
movements is different from the planning of individual discrete movements in mo-
tor control, and should consequently be designed as such in robotics. As a central
contribution, we show the advantage of rhythmic movements to increase the ro-
bustness of the system and to consequently relax the need for sensor design and
sensory processing. Moreover, the dynamical systems which are considered in the
present manuscript belong to the particular class of hybrid systems, resulting from
the combination of continuous and discrete dynamics. Hybrid systems are currently
a very active area of research in the control community, since the control problems
are considerably more difficult than purely continuous or purely discrete systems.

Our main contributions are listed as follows:

• We propose a new control law for controlling the simplest periodic orbit of
the bouncing ball, a prototype of rhythmic tasks where the actuator interacts
with its environment. The proposed control law is somehow reconciling the
“feedforward” approach (a sensorless actuation of the actuator) with the “feed-
back” approach (an actuation based on permanent tracking of the ball). We
design a hybrid scheme (Fig. 1.2(c)) which minimizes the sensor design and
sensory processing but maintains the closed-loop robustness. This approach
contributes to the general knowledgebase in hybrid control.

• We generalize the one-dimensional bouncing ball dynamics to a planar wedge-
billiard. The stabilization of its periodic orbits requires the actuation of two

actuators, under bimanual coordination patterns.

• We analyze the sensorless stability properties of these periodic orbits. We
demonstrate experimentally that the actual basins of attraction of some of
these orbits are much smaller than predicted by the model. Thus the sensorless
strategy is not robust enough.

• We generalize the hybrid scheme designed for the bouncing ball to the 2D
juggler to achieve the stabilization of the complex periodic orbits. To the best
of our knowledge, this constitutes the first realization of a 2D juggling robot
which is able to fluently switch between different juggling patterns.

• We study the human behavior in performing the same juggling task with the
same experimental setup. We report different strategy planning depending
on the sensing capabilities, revealing a trade-off between performance and
robustness at the level of human sensorimotor processing.
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• We provide an extended description of our juggling setup.

1.4 Scope of the thesis

The rest of the thesis is organized as follows.

In Chapter 2, we propose an overview of the literature about rhythmic move-
ments. We focus on what makes rhythmic movements particular, and why we chose
to focus on them in this thesis. Section 2.2 particularly stresses the features of
juggling as a representative rhythmic movement, both for the motor control and
the robotics communities. A state-of-the-art overview in juggling robotics is also
proposed.

In Chapter 3, we present the 1D dynamics of a ball bouncing on an actuator
(or impactor). These very simple dynamics have been proved to be both intrigu-
ingly rich in their state-space description, and illustrative for analysis and design in
underactuated systems. Consequently, both the robotics and motor control commu-
nities used bouncing ball experiments to investigate the particular mechanisms of
trajectory planning in rhythmic environments.

In Chapter 4, we present a novel strategy for controlling the bouncing ball. This
strategy was designed aiming at minimizing the need for sensory feedback (and
consequently the need for sensor design) while maintaining a control which is both
robust and rapidly converging. Convergence to time-varying reference is achieved in
one impact, while the sole measured feedback information is the impact times. The
chapter material has been published in Ronsse and Sepulchre (2006) and Ronsse
et al. (2007a), Sections II to IV.

In Chapter 5, we describe the experimental juggling setup we used both to vali-
date our control strategies in robotics experiments, and to acquire human behavioral
data on similar paradigms. The construction of this setup was an important part of
the project. The chapter material has been partly published in Ronsse et al. (2007a,
2006, 2007b).

In Chapter 6, we describe a set of periodic patterns corresponding to limit cy-
cles of our juggling model. These periodic orbits are shown to be unstable, but a
sinusoidal (i.e. open-loop) actuation of the juggler’s arms stabilizes them in broad
regions of the parameter space. Experimental results of open-loop stabilization of
juggling patterns are also reported. The chapter material has been published in
Ronsse et al. (2004, 2006).

Due to large discrepancies between the model and the actual setup, the experi-
mental results are not completely convincing for complex periodic orbits. In Chapter
7, we generalize the minimum-feedback strategy of Chapter 4 to the model of our
2D planar juggler. The proposed strategy enlarges the basins of attraction of the
open-loop control, just by requiring to measure the impact times. Illustrative ex-
perimental results are also provided. The chapter material has been published in
Ronsse et al. (2007a), Sections II and V.
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In Chapter 8, we analyze the behavior of human subjects when juggling the
simplest periodic orbit with the same setup. We study the task performance under
different experimental conditions, by changing the imposed task tempo, and by ma-
nipulating the visual feedback. The chapter reports the different control strategies
which are adopted depending on these contexts. A publication about the chapter
material is submitted (Ronsse et al., 2007c).

Finally, the thesis ends with a general discussion and raises some perspectives
(Chapter 9). Parallels between the strategy adopted by the subjects in the de-
graded conditions, and the robust closed-loop design based on limited sensing are
particularly emphasized.

Three appendices are added: Appendix A describes the trade-off between feed-
back and feedforward and between performance and robustness within a benchmark
example. Through this example, it gives relevant insights in general control the-
ory. Appendix B.1 provides the main technical details about the experimental setup
described in Chapter 5, both for the robotics configuration (B.1) and the “human”
configuration (B.2). Appendix C describes the computational technique we used to
calculate the subjects’ gaze orientation in Chapter 8. This appendix material has
been published in Ronsse et al. (2007d).



Chapter 2

Rhythmic Movements and Juggling

The trick to juggling is
determining which balls are
made of rubber and which ones
are made of glass.

anonymous

This chapter explains the specifics of rhythmic movements, in particular juggling,
and surveys important related contributions in neuroscience and robotics. Section
2.1 explains what makes rhythmic movements particular, and overviews the major
contributions of the neuroscience literature in that field. Section 2.2 particularly
stresses the advantages of juggling as a representative rhythmic movement, both for
the motor control and the robotics communities. The juggling scientific literature
is subsequently reviewed. In Section 2.2.4, we describe some connections of juggling
to other rhythmic movements, in particular to locomotion.

2.1 Rhythmic movements

The aim of this section is to describe the specifics of rhythmic movements. The
mechanisms of rhythmic movements, and the underlying coordination principles,
make them different from discrete movements — reaching, aiming or pointing — for
which a lot more computational models have been developed.

2.1.1 Rhythmic movements and the Central Pattern Gener-
ator paradigm

Rhythmic movements are phylogenetically old motor behaviors found in many or-
ganisms, ranging from insects to primates (Schaal et al., 2004). Indeed, rhythmic
movements are involved both in locomotion (walking, running, hopping) and feeding
activities (scratching, chewing), and are consequently necessary to life. Rhythmic

9
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movements are also ubiquitous in human daily-life, ranging from basic functions to
skillful abilities, like juggling or dancing.

In many species, rhythmic movements have been proved to be the output of
dedicated neural circuitries, the Central Pattern Generator(s) (CPGs1) (Marder,
2000; Marder and Bucher, 2001). More particularly in vertebrates, those CPGs are
located in the spinal cord and the brainstem (see e.g. Cohen et al., 1988; Duysens
and Van de Crommert, 1998; Swinnen, 2002). In higher vertebrates (including hu-
mans), CPGs have been more difficult to locate because the corresponding nervous
structures are more complex, and the movements are supposed to be modulated by
higher brain centers. However, evidences of CPGs structures have been proposed
for human (Duysens and Van de Crommert, 1998; Marder, 2000), initially for loco-
motion while recent insights suggest that the concept of CPG applies to the upper
limb as well (see e.g. Dietz, 2002; Zehr et al., 2004; White et al., 2007).

2.1.2 Rhythmic arm movements are not discrete

In contrast with rhythmic movements, discrete movements (such as reaching, grasp-
ing, pointing or kicking) have reached sophistication primarily in younger species,
particularly primates (Schaal et al., 2004). Discrete movements are delimited in
time, beginning and ending with pose periods. Moreover they are supposed to be
sequenced with no clear periodicity in time and/or space. Discrete movements are
programmed by a complex brain network, involving the cortex to a large extent (see
e.g. Kalaska et al., 1997; Sabes, 2000; Desmurget et al., 2001).

For about a decade, researchers have been tracking the differences between dis-
crete and rhythmic movements both at behavioral and imaging levels. Three distinct
hypotheses on their relationship may be distinguished (van Mourik and Beek, 2004):

1. rhythmic movements are concatenated discrete movements;

2. discrete movements are a limit of rhythmic movements, aborted after a half-
cycle; and

3. discrete and rhythmic movements are motor primitives that may be combined
but are irreducible to each other.

Schaal, Sternad, Osu and Kawato (2004) recently conducted an imaging study
to differentiate the brain areas involved in the production of similar rhythmic and
discrete wrist movements (flexion – extension). They reported that similar areas are
activated in the discrete movements as in complex reaching or pointing experiments.
These are basically high-level cortical planning areas (see Fig. 2.1 and Schaal et al.,
2004). In contrast, rhythmic movements show much less cortical and cerebellar
activity: mostly motor areas are activated. These results strongly contradict the

1A central pattern generator is a neural circuit that produces self-sustaining patterns of behavior
independently of any sensory input (Swinnen, 2002).
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Figure 2.1: In blue, the brain areas involved in the production of a discrete wrist
movement, but not in the production of a rhythmic wrist movement: the rostral
part of the dorsal premotor cortex (PMdr), Broca’s area (BA44), parietal cortex
(BA7 and BA40) and the area B47. Widespread activation was also reported in the
cerebellum. In green, the brain areas that were more involved in the production of
the rhythmic wrist movement than in the production of the discrete wrist movement,
i.e. the primary sensorimotor and premotor cortices (S1 and M1). Left hemisphere.
Reprinted from Schaal et al. (2004).

first hypothesis: rhythmic movements are not concatenated discrete movements,
since they do not recruit the high-level cortical areas involved in those movements
production. However, it leaves the door open for choosing among the two remaining
perspectives.

At the behavioral level, recent studies investigated to what extent discrete and
rhythmic movements are related with each other (Sternad et al., 2000; de Rugy and
Sternad, 2003; van Mourik and Beek, 2004; Buchanan et al., 2006). Sternad et al.
(2000) and de Rugy and Sternad (2003) studied the interaction between discrete and
rhythmic forearm movements in a combined experiment, requiring the production of
both movements. Their major findings were: (1) The onset of the discrete movement
was confined into a limited phase-window in the rhythmic cycle. (2) The duration
of the discrete movement was influenced by the period of the oscillation. (3) The
phase of the rhythmic oscillation was reset after a discrete stroke. They elaborated
a mathematical model of this task, where the two movements were viewed as dis-
tinct primitives (Schaal and Schweighofer, 2005), described by two stable dynamical
regimes of the model.

Differences between rhythmic and discrete arm movements exist also in their
kinematic profiles (position, velocity, acceleration). Van Mourik and Beek (2004)
compared such profiles in a reaching paradigm. Due to large differences between
the two profiles, they further confirmed that rhythmic movements cannot be under-
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Figure 2.2: The left-hand side picture represents the experimental setup, showing
the rotating handle and the targets of width W. The right-hand side panels show
two typical phase portraits (position vs. acceleration) of the handle between narrow
targets (large index of difficulty — ID = 5.91) and between wide targets (ID = 3.07).
Reprinted from Buchanan et al. (2006).

stood in terms of concatenated series of discrete movements while the two others
theories provide more plausible perspectives. More recently, Buchanan et al. (2006)
investigated a task where a transition was forced between rhythmic and repeated
discrete movements. The task consisted of repeated aiming actions between two
targets of variable width. Narrow targets (i.e. high index of difficulty) were aimed
with discrete movements, with pose intervals (zero acceleration on targets in Fig.
2.2.A). In contrast, the subjects switched back and forth in a continuous rhythmic
movement when the targets were wider (i.e. low index of difficulty — acceleration
in anti-phase with the position in Fig. 2.2.B). These data tend to support the third
hypothesis — i.e. that continuous actions may be composed from either discrete or
rhythmic units of action (or motor primitives) and that the discrete and rhythmic
units of action are irreducible to each other.

Even in the absence of consensus, all the aforementioned studies agree to reject
the first hypothesis: rhythmic movements are not concatenations of discrete strokes.
Consequently, all the computational models described in the introduction must be
handled with care in the context of rhythmic movements, since they have been
elaborated in the discrete framework, mainly for trajectory planning. Our thesis
studies the specifics of planning and controlling rhythmic movements.

2.1.3 The coordination of rhythmic movements

By definition, rhythmic movements are not sequencial and are continuous in time.
However, rhythmic tasks often require the recruitment of many degrees of freedom
in parallel, hence requiring movement coordination (Bernstein, 1967; Kelso et al.,
1979; Turvey, 1990). Coordination may be intra-limb (between several segments
of a single limb) or inter-limb (between several limbs). Coordination is obviously
mandatory in the production of some dynamical patterns: for example, locomotion



CHAPTER 2. RHYTHMIC MOVEMENTS AND JUGGLING 13

Figure 2.3: Basic coordination constraints: the egocentric and allocentric princi-
ples. The egocentric principle refers to a preference for moving according to mirror
symmetry, which involves activating similar muscle groups simultaneously (a). The
allocentric principle refers to a preference for moving the limbs or joints in the same
direction in extrinsic space (b). Reprinted from Swinnen (2002).

patterns are stabilized through particular coordinated steps.
Limbs — or the individual limb segments — cannot be controlled arbitrarily.

Coordination rules underly the possible movement patterns, and those principles
cannot be inferred from the laws of single-joint or single-limb movements (Swinnen,
2002; Swinnen and Wenderoth, 2004). At the frequency level, the default mode of
coordination is synchronization, ubiquitous in biological systems (the recent book by
Strogatz, 2003, abounds with such examples). The phase relationships between the
oscillating “agents” (joints and/or limbs) are also governed by coordination rules.
The egocentric and allocentric principles are such basic coordination constraints,
governing the preference for moving either in-phase, or in anti-phase (see Fig. 2.3
and Swinnen, 2002).

We do not aim at covering all the contributions provided in the domain of animal
or human coordination. The interested reader is referred to the aforementioned re-
views. Nevertheless, we aim at mentioning the seminal work by Kelso and coworkers
(see Kelso, 1995) in this domain. Their fundamental ideas are appealing for the next
section: the derivation of mathematical models.

The dynamic pattern theory (DPT) aims to show that “it is possible to under-
stand behavioral pattern generation at several levels of description (kinematic, elec-
tromyographic, neuronal) by means of the concepts and tools of stochastic nonlinear
dynamics” (Schoner and Kelso, 1988; Kelso, 1995). As a motivating example, Kelso
(1984) reported phase transitions in a bimanual “index tapping” task. The task
consisted of synchronized bimanual index tapping. The in-phase mode corresponds
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to synchronized impacts, while the anti-phase mode corresponds to alternated im-
pacts: one finger impacting when the other is at the apex of the trajectory. When
the subject starts the task in the anti-phase mode, increasing movement frequency
undoubtedly causes an abrupt transition toward the in-phase, mirror-symmetrical
mode, which is more stable and less attentional demanding in the egocentric frame
(see Fig. 2.3 — see also Kelso, 1995). The transition is viewed as a bifurcation in
the stability diagram of cyclical patterns. This coordination task is recognized as
a benchmark example in the motor control literature, and the related theoretical
aspects are thought to apply to other coordinated movements. Switching between
different gaits in animal behavior, as the movement frequency changes, is one of
them (see e.g. Collins and Richmond, 1994).

The production of rhythmic movements must fulfill the intra- and inter-limb
coordination rules. Since this thesis claims for an integration of rhythmic primitives
within the computational tools for trajectory planning, the coordination rules must
also be embedded into their internal representations. For robotics design, a robust
implementation of the coordination mechanisms is thought to be of high relevance
to achieve the stabilization of patterns whose stability depends on the accuracy of
the coordination (e.g. locomotion).

2.1.4 Mathematical models of (coordinated) rhythmic move-
ments

The transition between coordination modes can be described as bifurcations in the
parameter space. Using the concepts of dynamical systems theory, the coordination
patterns are stable limit cycles, whose stability is impaired as some parameters (e.g.
the movement frequency) are modified. This is the central viewpoint of the Haken-
Kelso-Bunz (HKB) model of coordination (Haken et al., 1985). This model captures
the system behavior with a potential function V , which depends on the so-called
order parameters φ (the relative phase between index fingers in the tapping task).
Their dynamics are governed by φ̇ = ∂V/∂φ, such that the system behavior can
be described by identifying φ with the coordinate of a particle which moves in an
overdamped fashion in the potential V (Haken et al., 1985). In the state space, the
stable limit cycles thus correspond to the minima of the function V .

In the HKB model, the particular potential function takes the form:

V = −a cos φ − b cos (2φ) (2.1)

where a and b are the parameters governing the transitions. The potential V/a
is depicted in Fig. 2.4. As the ratio b/a decreases, the anti-phase pattern loses
stability, and becomes unstable at b/a = 0.25 (see the black disks in Fig. 2.4).
Below that value, the behavior switches to the in-phase pattern and remains in this
coordinated mode, even if b/a increases back above 0.25. This corresponds to the
observed data in the “index tapping” task, since the fingers remained in-phase as
the frequency decreased.
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Figure 2.4: The potential V/a for the varying values of b/a, as referred by the
numbers. The bottom-left panel corresponds to the critical value, where the anti-
phase (φ = π or −π) loses stability and where the system is “forever” attracted into
the in-phase coordination mode. Reprinted from Haken et al. (1985).

One still has to establish how the potential function (2.1) could emerge from
the dynamics of the individual agents, that are the finger, muscular and neural
dynamics. The HKB model proposes a set of two non-linearly coupled non-linear
oscillators to capture the bifurcation into the potential function (2.1) (Haken et al.,
1985).

Other contributions have focused on the particular structure of the non-linear
oscillating system which causes sustained rhythmic movements. In the papers by
Sternad et al. (2000) and de Rugy and Sternad (2003), the rhythmic pattern gener-
ator is based on a half-centered oscillator model, formalized through a set of leaky
integrator equations by Matsuoka (1985, 1987).

Kuo (2002b) provided another interesting viewpoint on the generation of rhyth-
mic activities. This contribution is particularly appealing in this thesis context, since
it establishes the relative roles of feedforward and feedback in the control of rhyth-
mic movements, at the level of the neural CPG. While a purely feedforward CPG
is highly sensitive to unexpected disturbances, pure feedback control — analogous
to reflex pathways — can compensate for disturbances, but is sensitive to imperfect
sensors. The balance between both control mechanisms appears since the “opti-
mal” trade-off between robustness to noise and imperfect sensors is reached through
a proper combination of feedforward and feedback control. Moreover, with this
combined mechanism, the CPGs can still produce rhythmic trajectory through the
feedforward path when sensory output is removed, as observed biologically. Kuo’s
model is both biologically plausible, and provides behaviorally consistent simulated
data on a pendulum model of the limb.
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2.1.5 Conclusion

The control of rhythmic movements is different from the control of discrete move-
ments, for which the computational tools for optimal planning provide useful in-
sights. Both at the modeling level and through the analysis of biological data sets,
rhythmic movements are supposed to be produced by lower-level Central Pattern
Generators (CPGs). Thus, rhythmic trajectory planning is not achieved through
a segmentation of the movement, but as the asymptotically stable limit cycles of
the corresponding oscillating circuit. Nonetheless, rhythmic movements can be con-
trolled through, for example, appropriate modulation of their cycle phase and/or
amplitude. In this case, however, the movement planning does not encompass the
whole trajectory, but only the desired timing and amplitude.

This thesis perspective is to establish how these rhythmic movements are actually
controlled, in the context of a particular task; and how the available sensory feedback
involved in the loop influences the mode of control, and the related coordination
rules. This twofold perspective is our general guideline throughout the manuscript,
both when studying human behavior and robotics designs.

2.2 Juggling at the crossroad

This section introduces the particular rhythmic movement which is considered in
the present manuscript, i.e. juggling.

2.2.1 Juggling is a representative rhythmic movement

The paper by Beek and Lewbel (1995), that vulgarizes some scientific aspects of
juggling, opens with the following funny anecdote: “To complete a delivery of mu-
nition, a 148-pound man must traverse a high, creaking bridge that can support
only 150 pounds. The problem is, he has three, one-pound cannonballs and time
for only one trip across. The solution to this old riddle is that the man juggled the
cannonballs while crossing. In reality, juggling would not have helped, for catching
a tossed cannonball would exert a force on the bridge that would exceed the weight
limit. The courier would in fact end up at the bottom of the gorge.”

While not always the ultimate solution of mechanical problems, juggling has
nevertheless been recognized as a skillful art, requiring the production of rhythmic
movements in a highly coordinated manner. The earliest known depiction of toss
juggling is Egyptian, from the 15th Beni Hassan tomb of an unknown prince, dating
from the middle kingdom period of about 1994-1781 B.C. (see Fig. 2.5 and Lewbel,
2002). From that time, mainly three fields of scientific investigations have benefited
from the intriguing properties of juggling as a benchmark rhythmic movement (Beek
and Lewbel, 1995):

1. the study of human movements and coordination;
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Figure 2.5: One of the earliest representations of juggling, at the ancient Egyptian
age. The image source comes from Lewbel (2002).

2. the development of juggling machines in robotics, useful to catch the real-time
necessity of the mechanical control of such underactuated systems;

3. the mathematics, through the surprising numerical properties of juggling pat-
terns.

The two first of these fields are exactly within the scope of this thesis, in which
juggling is again recognized as a useful benchmark to investigate the role of sensory
feedback in the subsequent control strategy. The mathematical aspects of juggling
patterns are not covered in this thesis. We nevertheless mention the initial “construc-
tive” theorem of mathematical relationship in juggling patterns, since it has been
proposed by an engineer and founder of information-theory, Claude E. Shannon2

(Shannon, 1993):

Theorem 1 (Shannon, 1993) Given N the number of objects, and H the number

of hands involved in a juggling pattern, the following equation must be fulfilled during

steady-state juggling cycles:

(F + D)H = (V + D)N (2.2)

where F is the time a ball spends in the air, D is the time a ball spends in a hand

and V is the time a hand is vacant.

This theorem is illustrated in Fig. 2.6 for the three-ball cascade: a figure-eight
pattern (see Fig. 2.7). The three-balls cascade is certainly the most fundamental
juggling pattern, by which many juggling neophytes start their learning. Interest-
ingly, Shannon’s theorem is nevertheless valid for any juggling pattern in which no

2Claude Elwood Shannon (1916-2001) was extremely influent in the early development of com-
puters and digital communication. In 1990, Scientific American called his paper on information
theory, “The Magna Carta of the Information Age”, from A. Lewbel’s personal tribute to Claude
Shannon, www2.bc.edu/~lewbel/Shannon.html.
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Figure 2.6: The juggling theorem proposed by Shannon (1993) is schematically
represented for the three-ball cascade. The theorem is proved by following one
complete cycle of the juggle from the point of view of the hand and of the ball
and then equating the two. Reprinted from Beek and Lewbel (1995), adapted from
Shannon (1993).

hand holds more than one ball at any one instant of time, regardless of the sizes and
shapes of the juggled objects, the postures and limb configurations of the juggler,
and the species of the juggler (human or robot) (Beek and Turvey, 1992)!

Shannon’s theorem provides a useful clarification on the exact coordination re-
quirements in juggling patterns: not only the hands (or the limbs) have to be syn-
chronized and coordinated together, but also they have to be coordinated with the
juggled objects. Indeed, the objects dynamics during the flying phases cannot be
influenced by the juggler(s), while their flying periods influence the hand trajectory,
via Shannon’s equation (2.2). Juggling is then really a closed-loop process: the
juggled objects dynamics are obviously influenced by the hands via the catching
phases, and influence also the hands trajectory through the requested coordination
rule captured by (2.2).

Since juggling requires the stabilization of the interlimb pattern (in-phase?, anti-
phase?, others?) and the stabilization of the external environment (the juggled
objects), it legitimately serves as an illustrative framework for considering the trade-
off between efficient and robust control. The control efficiency (or performance)
is understood both in terms of (1) the expended energy and (2) the trajectory
variability (i.e. the extent to which the trajectory varies around the steady-state
cycle). The control robustness refers to the controller ability to maintain the juggling
pattern stable despite uncertainties or perturbations in the environment.

2.2.2 A dynamical systems perspective in the cascade jug-
gling

Beek and colleagues deeply investigated the learning mechanisms involved in the
cascade juggling, and formalized a so-called dynamical systems perspective for this
analysis (see e.g. Beek and van Santvoord, 1992; Beek and Turvey, 1992; van Santvo-
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Figure 2.7: The three-balls cascade juggling pattern. Reprinted from Beek and
Lewbel (1995).

ord and Beek, 1996; Post et al., 2000; Huys and Beek, 2002; Huys et al., 2003; Huys,
2004).

Given Shannon’s theorem (2.2), for a fixed number of hands H and balls N ,
one of the remaining time quantities is constrained by the other two. Moreover,
assuming that the global period of the complete cycle is fixed — and dictated for
example by a metronome or by the desired juggling height — one degree of freedom
is still remaining in the juggler’s strategy. Beek and van Santvoord (1992) proposed
consequently a three-stage model of the learning process of the metronome-paced
three-balls cascade (H = 2, N = 3):

• The first stage consists in learning to accommodate the real-time requirements
of juggling, as expressed in Shannon’s equation of juggling (2.2).

• The second stage of learning consists in discovering the primary frequency lock
of 0.75 between the shorter term dynamical regime underlying the repetitive
subtask of transporting a ball (D in (2.2)) and the longer term dynamical
regime underlying the total hand loop cycle (V + D in (2.2)).

• The third and last stage of learning consists in discovering the principles of
frequency modulation from 0.75 to lower (averaged) values of the proportion
of time that a hand carries a ball during the total hand cycle time.

From the perspective of the trade-off between performance and robustness, these
three learning stages could be stated differently. The first stage consists simply
in fulfilling the task, by adopting a coordinated behavior which is both a limit



20 2.2. JUGGLING AT THE CROSSROAD

cycle solution of the system, and stable. The second stage is definitely a matter of
robustness, since the “dwell-ratio” D/(V +D) = 0.75 has been shown to be the more
robust frequency lock for juggling the cascade with three (Beek and van Santvoord,
1992) or more than three (Beek and Turvey, 1992) balls. Finally, the third stage
relaxes the need for robustness, since the juggling pattern is assumed to be properly
mastered. The juggler adopts smaller frequency locks than D/(V + D) = 0.75,
in which the average number of airborne balls is consequently larger. This can be
viewed as a performance improvement, increasing the control flexibility.

Later, Huys and colleagues investigated how the learning and expertise in the
cascade juggling could also affect the coupling with other functional subsystems,
such as the point-of-gaze, the respiration and the body sway (Huys and Beek, 2002;
Huys et al., 2003; Huys, 2004). Their results indicated that dissimilar learning
dynamics may arise in the functional embedding of subsystems into such a task-
specific organization (Huys et al., 2003). More particularly, Huys and Beek (2002)
revealed an strong coupling between the balls trajectories and the point-of-gaze
around balls’ apex, i.e. the highest point of their trajectories (see also Amazeen
et al., 1999). In that region, the subjects made not only position but also velocity
tracking of the balls, through appropriate frequency locks between the balls and the
point-of-gaze.

In conclusion, juggling has been used for many years in a system-theoretic per-
spective to illustrate the functional organization of a complex and coordinated rhyth-
mic movement. Learning mechanisms have consequently been emphasized, as an il-
lustration of the acquisition of task-related ability and flexibility. While focusing not
primarily on learning issues, this thesis is investigating a similar trade-off between
ability (performance) and flexibility (robustness) in a simplified juggling paradigm.
Our viewpoint is to assess whether this trade-off is influential for trajectory planning.

2.2.3 Juggling robots

In the robotics community, juggling has also been an intriguing source of inspiration
for the development of skilled robots (see Fig. 2.8). The first known juggling
robot has also been manufactured by Claude E. Shannon (see Fig. 2.8(a)). He
built a machine essentially consisting of a motor attached at the center of a rod
which has two catchers mounted at each end. By driving the motor sinusoidally
and adjusting the distance of the catchers, the motor frequency and amplitude,
and the height of the setup above the floor, it is possible to find a configuration
in which the balls are juggled in a stable fashion, without need of feedback from
their current state (open-loop control). A drum was used to provide an elastic floor.
Juggling three balls requires one full oscillation during the flight of a ball (Schaal
and Atkeson, 1993). Shannon’s other contribution to juggling robotics concerns his
famous diorama (see Fig. 2.8(b)). This is obviously not really a juggling robot, but
the balls, rings, and clubs, and clowns hands all moved realistically. A movie of
Shannon’s juggling machines can be found on A. Lewbel’s homepage at www2.bc.
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(a) 1970s: Shannon’s
juggling robot, from
Shannon (1993)

(b) 1982: Shannon’s diorama, from
Shannon (1993)

(c) 1991: van Zil’s devil sticking
robot, from Schaal and Atkeson
(1993)

(d) 1992: Rizzi and
Koditschek’s juggling
robot, from Rizzi and
Koditschek (1993)

(e) 2000s: Flatland, from Lynch and
Black (2001)

(f) 2000s: Sarcos “DB” robot jug-
gling the 3-balls cascade, from
Atkeson et al. (2000)

Figure 2.8: Juggling robots.
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edu/~lewbel/Shannon.html.
A decade latter, Schaal and Atkeson (1993) reported the existence of a “devil

sticking” juggling robot. Devil sticking requires manipulating a center stick with
two hand sticks by hitting the center stick back and forth between the hand sticks.
No picture of the robot has been found, but it is sketched on Fig. 2.8(c). Pioneering
work investigating robotic tasks in rhythmic contexts has been done by Buehler,
Koditschek and Kindlmann (1988, 1990, 1994). They developed the famous mirror

law algorithms, in which tracking feedback of the juggled objects is used to robustly
synchronize the robot with the juggling pattern. The simplest version of these
algorithms is described in Section 3.3 for the 1D bouncing ball dynamics. However,
they have also been adapted to complex environments. Fig. 2.8(d) depicts a 3D
juggling robot developed by Rizzi and Koditschek (Rizzi et al., 1992; Rizzi and
Koditschek, 1992, 1993), which implemented the mirror law algorithms to vertically
bounce two ping-pong balls in 3D space.

Flatland is a planar (2D) robot built by Lynch and colleagues (see e.g. Lynch and
Black, 2001), see Fig. 2.8(e). It is also based on a vision-system to extract relevant
state feedback information from the objects dynamics. This robot architecture —
based on a tilted air-hockey table providing frictionless motion of the juggled pucks
— is appealing in this thesis context since it directly inspired the design of our own
juggling robot, presented in Chapter 5. Lynch and Black’s control strategy is based
on the real-time extraction of the puck state, in order to anticipate its trajectory,
and to produce adapted control actions in consequence.

The most developed juggling robot constructed so far is certainly the Sarcos
“DB” robot, since it can juggle fluently the three-balls cascade (see Fig. 2.8(f)). This
30 degrees-of-freedom robot has been built by the ERATO brain project in Japan
(www.cns.atr.jp) and has been widely used to reproduce and analyze complex
human behaviors in a broad set of tasks (see e.g. Atkeson et al., 2000).

2.2.4 From juggling to locomotion

Juggling served as benchmark for investigations in a broad set of other rhythmic
tasks, both in the motor control and in the robotics literature. Juggling, bipedal
locomotion, robot gymnastics, and robot air hockey are fundamentally related to the
control of redundant and underactuated systems and share indeed some interesting
common features (Spong, 1999). Locomotion is certainly of particular importance
since common to many animal species and humans, while a direct analogy can be
established with juggling:

• the locomotor limbs corresponding to the juggler hands;

• the body corresponding to a single juggled object.

With H = 2 and N = 1, Shannon’s theorem (2.2) may be consequently adapted to
bipedal locomotion, the “dwell-ratio” D/(V +D) referring now to the fraction of the
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Figure 2.9: Collins, Wisse and Ruina’s bipedal passive-walking robot. Reprinted
from Collins et al. (2001).

leg time period during which the leg is contacting the ground (the so-called stance
phase). This ratio tuning, such as the phase relationship between the coordinated
limbs, defines obviously the different gait patterns. Gait transitions are thus similar
to transitions in juggling patterns, and the switching strategies could be studied in
parallel.

Locomotion is a major field of investigation in robotics. Examples include both
multipod robots (see e.g. Saranli et al. (2001), or the recent review by Holmes
et al. (2006)) or biped walking (see e.g. the RABBIT project, as described by
Plestan et al., 2003; Westervelt et al., 2004). Historically, the first attempts to tackle
the problem of biped locomotion synthesis exploited the concept of passive walking

(McGeer, 1990; Goswami et al., 1998): passive walkers travel down a gentle slope
and walk in a stable, passive, three-dimensional gait, without any source of external
energy. Stability analysis of these orbital gaits show that they are asymptotically
stable, resulting from an optimal balance of the energies involved in the system: the
potential energy is transformed into kinetic energy, which is lost in turn at impacts.
A 3D passive-dynamic walking robot with two legs and knees has been studied by
Collins et al. (2001) (see Fig. 2.9). Later, Collins et al. (2005) studied the relevance
of passive-based architectures for the design of actively powered walking robots.
Their paper describes three robots based on passive-dynamics, with small active
power sources substituting for gravity, which can consequently walk on ground level
(see also Kuo, 2002a). Due to their passive-based architectures, these robots use less
control and less energy than other powered robots, yet walk more similarly to bipeds.
This further suggests the importance of passive-dynamics in human locomotion, and
places consequently the study of passively-based locomotion as another source of
cross-fertilization between robotics and human (or animal) behavior.

Passive-based locomotion designs — and earlier studies on hopping systems
(Raibert, 1986) — can be interestingly paralleled with a particular class of jug-
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gling, namely impact juggling. In impact juggling, the contact between the hand
and the object is supposed to be instantaneous3, such that the object energy is
potentially not completely dissipated through the impacts. An academic example
of impact (or bounce) juggling system has been widely investigated in both the
robotics and motor control literature. It refers to the 1D motion of a bouncing ball,
and the related literature is overviewed in Chapter 3. Impact juggling nicely con-
nects with passive-based locomotion since a broad set of impact juggling patterns
can be stabilized through passive control. Here, passive control is not understood
in the sense that no energy supply is provided to the system (obviously, the im-
pactor is actuated), but refers to control strategies that are sensorless stable: i.e.
no feedback is needed from the state of the juggled objects to maintain the pattern
stability. Open-loop asymptotic stability of bounce juggling patterns is obtained
through a simple sinusoidal actuation of the impactor(s). This has been studied in
1D (Holmes, 1982; Guckenheimer and Holmes, 1986) and 2D (Schaal and Atkeson,
1993) juggling movements. The present manuscript focuses also on the 2D impact
juggler and studies how to stabilize several impact juggling patterns through actu-
ation of the arms. More particularly, Chapter 6 describes sensorless (i.e. passive)
strategies which stabilize these patterns.

2.2.5 Conclusion

Juggling is a benchmark for the study of rhythmic movements, requiring both the
stabilization of a particular bimanual coordination pattern, and the stabilization of
external object(s). It has been used both for investigations in motor learning and
control, and for the design of robots performing in rhythmic environments. Juggling
is connected to other rhythmic movements, including locomotion.

2.3 Concluding remark

The planning of rhythmic movements in general, and juggling movements in partic-
ular, is different from the planning of discrete movements. This is due to (1) the
difference in the neural circuitries involved in the production of both movements;
(2) the underlying coordination principles governing rhythmic movements; and (3)
the extent to which these movements are influenced by the sensory inflows (pas-
sive / active control). We focus on juggling experiments, claiming that they are
representative of the whole class of rhythmic movements.

The guideline for the rest of this thesis is to investigate how the planning of jug-
gling movements is achieved with respect to the trade-off between performance and
robustness, and how the available sensory feedback influences the control strategy.

3In Shannon’s equation (2.2), this means that D equals 0. This juggling “strategy” consists in
trying to maximize the average number of juggled objects in the air, and is consequently often
referred as “hot potatoes juggling” by expert jugglers.



Chapter 3

The Bouncing Ball

Success is how high you bounce
when you hit the bottom.

General George S. Patton

3.1 Introduction

This thesis highlights parallels between robotics and motor control (Schaal and
Schweighofer, 2005) in the particular context of rhythmic tasks. One of such task
has been widely investigated by both communities in the two last decades and is
consequently introduced in this chapter as an illustrative benchmark. The bouncing

ball model describes the movement of a ball that periodically bounces on an actuated
impactor, e.g. a racket. This task is illustrative of situations where an effector (i.e.
either a human or a robot) interacts with an object in the environment (de Rugy
et al., 2003). The control is underactuated, since the robot degrees of freedom are
fewer than the object degrees of freedom (Lynch and Black, 2001).

The bouncing ball dynamics have been initially studied by Holmes (1982) under
a particular actuator trajectory: a simple sinusoidal motion. These dynamics turned
out to become one of the simplest example in non-linear dynamics, which exhibits
deterministic chaos in a given range of the sinusoidal amplitude. The bouncing
ball dynamics indeed produce a bifurcation route that is similar to the well-known
logistic map (see e.g. Tufillaro and Albano, 1985; Tufillaro et al., 1992). The main
features of the bouncing ball dynamics are reviewed in Section 3.2.

The most illustrative problem when considering stabilization of ball-bouncing
patterns is to stabilize its elementary periodic orbit, i.e. a succession of bounces
at a constant height (see Fig. 3.2). In Section 3.3, we briefly review the major
contribution by Buehler, Koditschek and Kindlmann in the design of the so-called
mirror law algorithms. These designs have long been recognized as pioneering in-
vestigations in the context of rhythmic robotics. The mirror law robustly stabilizes
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SINUSOIDALLY VIBRATING RACKET

the ball bouncing at a constant height. Moreover, wide basins of attraction have
been empirically observed in a broad range of experimental contexts.

The behavior of humans when “juggling” the bouncing ball has been studied by
Sternad, Schaal and coworkers (Schaal et al., 1996; Sternad, 1999; Sternad et al.,
2001a,b; Katsumata et al., 2003; de Rugy et al., 2003; Dijkstra et al., 2004; Wei
et al., 2006). Their major contributions are overviewed in Section 3.4.

Juggling has been mentioned as a relevant benchmark for rhythmic motor control
tasks (Section 2.2.1), requiring different levels of coordination. The bouncing ball
paradigm, even if unimanual, is a good example of a juggling task that shares a
lot of commonalities with “regular” juggling (Sternad, 1999): spatial and temporal
constraints, sensorimotor processing, coordination, etc. . . More generally, both
lines of research conducted theoretical analysis to address questions of movement
control, perception, and learning; while both of them have been investigated from a
dynamical systems perspective (Sternad, 1999; Sternad et al., 2001a).

This chapter objective is not to cover all the modeling and design investigations
that have been made on the bouncing ball dynamics1. Instead, we aim at reviewing
its basic properties, and the major contributions from the robotic and the motor
control communities. Many of the core results of this thesis can be understood on
this simple benchmark.

3.2 Open-loop dynamics of a ball bouncing on a si-

nusoidally vibrating racket

3.2.1 Bouncing ball model

The dynamics of a ball bouncing on an actuated racket is hybrid (Holmes, 1982;
Guckenheimer and Holmes, 1986). During the flight times, the ball follows a ballistic
parabolic flight (see Fig. 3.1). The position of impact therefore obeys the following
discrete-time flight map, derived from Newton’s law:

s(t[k + 1]) = s(t[k]) + v+(t[k])(t[k + 1] − t[k]) −
g

2
(t[k + 1] − t[k])2 (3.1)

where s(t) denotes the continuous trajectory of the racket and v(t) is the ball velocity.
The time of two successive impacts, namely the kth and (k+1)th, are denoted t[k] and
t[k + 1] and the + superscript in (3.1) denotes the post-impact velocity accordingly,
since the ball velocity is discontinuous at impact. g is the constant of gravity.
Similarly, the pre-impact velocity, v−(t[k + 1]) is equal to:

v−(t[k + 1]) = v+(t[k]) − g (t[k + 1] − t[k]). (3.2)

1On January 3, 2007, Google Scholar c© pointed out 2,620 contributions for the tag “bouncing
ball”.
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Figure 3.1: 1D bouncing ball. The racket (respectively the ball) trajectory is de-
picted with solid (respectively dash-dotted) lines over time. At time t[k] (kth im-
pact), the actuator (and ball) position is s(t[k]), the actuator velocity is ṡ(t[k]) and
the ball post-impact velocity is v[k] = v+(t[k]).

Based on Newton’s law, the relative velocity of the ball with respect to the
actuator is reversed at impact and multiplied by the coefficient of restitution 0 ≤

e ≤ 1 that models the energy dissipation:

v+(t[k + 1]) − ṡ(t[k + 1]) = −e(v−(t[k + 1]) − ṡ(t[k + 1])). (3.3)

Equation (3.3) assumes that the actuator motion is unaffected by the impacts. This
assumption is valid if the actuator is largely heavier than the ball (the inertia of the
actuator is much larger than the inertia of the ball).

The complete bouncing ball dynamics are therefore described by the discrete
Poincaré map, whose state is the impact position s[k] = s(t[k]) and post-impact
velocity v[k] = v+(t[k]), see Fig. 3.1:

s[k + 1] = s[k] + v[k](t[k + 1] − t[k]) −
g

2
(t[k + 1] − t[k])2, (3.4)

v[k + 1] = −e v[k] + e g (t[k + 1] − t[k]) + (1 + e)ṡ[k + 1] (3.5)

where ṡ[k] = ṡ(t[k]). Equation (3.4) is the flight map and (3.5) is the impact rule,
derived from (3.2) and (3.3).

The flight time, i.e. the time elapsed during two consecutive impacts, is deduced
from (3.4):

t[k + 1] − t[k] =
v[k] +

√

v[k]2 − 2g(s[k + 1] − s[k])

g
. (3.6)

3.2.2 Sinusoidal actuation

Holmes (1982) studied the bouncing ball dynamics under a special racket trajectory,
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Figure 3.2: Period-one orbit of the 1D bouncing ball under sinusoidal actuation.
The racket (respectively the ball) trajectory is depicted with solid (respectively
dash-dotted) lines over time.

i.e. a simple sinusoidal motion:

s(t) = A sin (ωt) (3.7)

where A and ω denote the movement amplitude and frequency (pulsation), respec-
tively.

The ball dynamics under this sinusoidal actuation are astonishingly rich. De-
pending on the amplitude and frequency, several periodic orbits of the model are
stable. The parametric stability regions of these periodic orbits are mutually exclu-
sive, such that the ball steady-state trajectory follows a bifurcation route of period
doubling as the amplitude (or the frequency) increases.

The simplest periodic orbit is the fixed point of (3.4) and (3.5), i.e. constant
impact position and post-impact velocity. It corresponds to a train of bounces at
constant height (see Fig. 3.2):

v⋆ =
g

2
∆t⋆, (3.8)

ṡ⋆ =
1 − e

1 + e

g

2
∆t⋆. (3.9)

It is called the period-one, and forces obviously the steady-state flight time ∆t⋆ to
be equal to a multiple n ∈ N of the racket period:

∆t⋆ = n
2π

ω
(3.10)

where n = 1 when there is one racket period between two impacts. Assuming (3.10),
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the fixed point of (3.4) and (3.5) is given by:

v⋆ =
nπg

ω
, (3.11)

ṡ⋆ = Aω cos φ⋆

=
1 − e

1 + e

nπg

ω
(3.12)

and the steady-state impact phase is equal to:

φ⋆ = arccos

(
1 − e

1 + e

nπg

Aω2

)

. (3.13)

The steady-state impact position is s⋆ = A sin φ⋆.
Local stability of this periodic motion is established through the linearization

of (3.4) and (3.5) around the steady-state (3.11) and (3.13). It gives the following
equations:

δt[k + 1] = δt[k] +
1 + e

g
δv[k], (3.14)

δv[k + 1] = e2δv[k] − (1 + e)Aω2

√

1 −

(
(1 − e)πng

(1 + e)Aω2

)2

δt[k + 1] (3.15)

where δt and δv denote the first-order small perturbations on the impact time,
and post-impact velocity, respectively. Injecting (3.14) into (3.15), one obtains the
following linearized non-dimensional matrix form:

(
ω
g
δv[k + 1]

ωδt[k + 1]

)

=

(

e2
−

(1+e)Aω2

g

r

1−

“

(1−e)πng

(1+e)Aω2

”2
−

(1+e)2Aω2

g

r

1−

“

(1−e)πng

(1+e)Aω2

”2

1 1 + e

)

︸ ︷︷ ︸

ABB

(
ω
g
δv[k]

ωδt[k]

)

.

(3.16)

It can be shown that the eigenvalues of ABB lie into the unitary circle if and only if
the following condition holds (Bapat et al., 1986):

πn
1 − e

1 + e
<

Aω2

g
<

√

π2n2

(
1 − e

1 + e

)2

+
4(1 + e2)2

(1 + e)4
. (3.17)

This corresponds to the amplitude and frequency range of stability for the period-one
motion, depending on the coefficient of restitution e.

The solution and the parametric stability region of the period-two (the bounces
alternate at two different heights) could be found from the fixed points of a double
iteration of (3.4) and (3.5), according to similar derivations (Bapat et al., 1986).
The lower limit of the parametric stability region is given by the upper bound in
(3.17), i.e. the right-hand side term. By further increasing the racket amplitude
(or frequency), the period-two loses stability for a period-four trajectory, then a
period-eight, etc... along a route of period-doubling to chaos.
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Figure 3.3: Period-one orbit of the 1D bouncing ball under mirror law control. The
racket (respectively the ball) trajectory is depicted with solid (respectively dash-
dotted) lines over time.

3.3 Robust feedback control of bouncing robots

As already mentioned in Section 2.2.3, early juggling robots were constructed to
implement one-dimensional bounce juggling. These robotic developments are due
to the seminal work of Buehler, Koditschek and Kindlmann (1988, 1990, 1994).
These authors designed the so-called mirror law algorithms that turned out to be
robust feedback control laws to stabilize sustained period-one bouncing trajectories
in 1D, 2D and even 3D environments.

For simplicity, we present only the 1D version of the mirror law, assuming there-
fore that the ball motion is restricted to one dimension. This mirror law is based
on permanent tracking of the ball trajectory β(t), since the racket trajectory is
computed to mirror the ball:

s(t) =
−(1 − e)

1 + e
β(t) − κ1

(
E⋆

ρ − E(t)
)
β(t). (3.18)

The first term of (3.18) is just mirroring the ball trajectory. The second term is a
proportional feedback that is used to isolate a particular period-one pattern, charac-
terized by its energy level: E⋆

ρ = gs⋆
ρ +0.5(v⋆

ρ)
2, through permanent comparison with

the ball energy E(t). The gain κ1 will determine the dynamics of the closed-loop
system. In steady-state, that is when E(t) = E⋆

ρ , the mirror law behavior is depicted
in Figure 3.3.

The mirror law, as defined by (3.18), sharply contrasts with the sinusoidal law
defined in (3.7) in term of feedback requirement. On the first hand, the sinusoidal
law was purely sensorless and stabilized periodic orbits thanks to their open-loop
stability properties. On the other hand, the mirror law requires permanent tracking
of the juggled objects to compute their position and energy, and consequently led
to robust implementations in various environments.



CHAPTER 3. THE BOUNCING BALL 31

Figure 3.4: The planar juggler with simultaneous juggling of two pucks. Reprinted
from Buehler et al. (1994).

Further developments of the mirror law algorithms led to the stabilization of
more complex juggling patterns. For example, simultaneous vertical juggling of two

pucks in anti-phase has been realized with a 2D planar juggling robot, depicted in
Fig. 3.4 (Buehler et al., 1994). In Section 2.2.3, we also described the 3D adaptation
of the mirror law for the juggling robot designed by Rizzi and Koditschek (1993)
(see Fig. 2.8(d)).

Related publications and an illustrative movie can be found on Martin Buehler’s
web page at www.martinbuehler.net.

An alternative feedback method to control periodic motions of the bouncing ball
has been developed by Vincent and Mees (2000). This method is based on the
sinusoidal trajectory (3.7): the controller output is the motion frequency u = ω−ω⋆

(where ω⋆ denotes the steady-state value) and is computed on the basis of the
measured quantities, i.e. the impact phase x1 = φ−φ⋆ and the post-impact velocity
x2 = v − v⋆. The resulting control system is hybrid, since the system input is a
continuous-time actuation while the measured outputs are discrete-time quantities.
Two controller designs, based on a classical LQR approach and a variant of a “greedy”
method respectively, led to good closed-loop performance for control of the period-
one orbit inside and outside the open-loop stability region (3.17), with simulated
data.

The bouncing ball served as a motivating example for further studies on control-
lability properties and feedback control design of impact systems (see e.g. Tornambe,
1999; Menini and Tornambe, 2003), with several contributions focusing directly on
juggling dynamics (Zavala-Rio and Brogliato, 1999; Brogliato and Zavala-Rio, 2000;
Lynch and Black, 2001; Zavala-Rio and Brogliato, 2001; Brogliato et al., 2006).
These authors provided a general framework for studying the controllability and
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Figure 3.5: Typical strategy of a human subject playing the 1D bouncing ball task
with a racket (paddle). Reprinted from Schaal et al. (1996).

stabilization of mechanical systems with impact, and used juggling robots as repre-
sentative examples.

3.4 Human control of the bouncing ball

The bouncing ball has also motivated several studies in the motor control commu-
nity. Most of the contributions are due to the seminal work of Sternad, Schaal and
coworkers (Schaal et al., 1996; Sternad, 1999; Sternad et al., 2001a,b; Katsumata
et al., 2003; de Rugy et al., 2003; Dijkstra et al., 2004; Wei et al., 2006). These au-
thors have investigated human behavior when playing the bouncing ball task with
a racket, being asked to stabilize the period-one pattern.

A typical plot of human behavior in this 1D bouncing ball task is depicted in
Fig. 3.5. A first observation of this figure clearly reveals that human behavior is
much more similar to the sinusoidal actuation (3.7) (see Fig. 3.2) than the mirror
law control (3.18) (see Fig. 3.3). Consequently, the central question raised by
Sternad, Schaal and their coworkers was to address whether the bouncing ball task
was performed by human subjects with or without sensory feedback processing, i.e.
in closed- or open-loop. An alternative option is that humans, when performing
ball-bouncing, exploit the stability properties of the sinusoidally actuated model
(Sternad et al., 2001a).

These authors first observed that the parametric stability region of the period-
one motion (3.17) scales either with the movement amplitude or with the square
of its frequency. It corresponds moreover to the following range of steady-state
acceleration s̈⋆ = −Aω2 sin φ⋆:

−2(1 + e2)

(1 + e)2
g < s̈⋆ < 0. (3.19)

That is, a necessary condition to produce an open-loop stable period-one motion
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Figure 3.6: Illustration of the role of the acceleration at impact for open-loop sta-
bility of the period-one bouncing ball. 25 balls started at the same position but
at different initial velocity. The racket trajectory was accelerating (a), at constant
velocity (b) or decelerating (c) at impact. Reprinted from Schaal et al. (1996).

is to impact the ball with a racket velocity given by (3.12) and when decelerating

(i.e. negative acceleration, according to (3.19)) (Schaal et al., 1996; Sternad et al.,
2001a,b).

The necessity of negative acceleration at impact for open-loop stability is illus-
trated in Fig. 3.6. Asymptotic tracking of a given period-one ball motion is only
achieved in the third case (c), with negative acceleration at impact. Since the energy
restored to the ball depends on the racket velocity at impacts, the acceleration at
impact can be interpreted as a gain between the puck energy (that is, the puck flight
time) and the racket velocity. Negative acceleration at impact provides a negative
gain, which is necessary for stability (see Section 4.2.2).

Human subjects played the bouncing ball task with negative acceleration, a
strategy which is not intuitive a priori (Schaal et al., 1996; Sternad et al., 2001a,b).
On the one hand, this strategy could be guided by the planning system. This requires
however a complete assimilation of the task dynamical properties in this trajectory
planner, in order to be able to exploit the open-loop stability. Alternatively, the ball
and racket dynamics could simply converge into the open-loop stable regime (Schaal
et al., 1996). This does not exclude the presence of closed-loop mechanisms in the
loop (see below), but the open-loop stable behavior dominates in steady-state.

Sternad et al. (2001a,b) also studied the influence of visual feedback during ball
trajectory and haptic feedback at impact. They acquired ball-bouncing data in
normal condition, by suppressing the visual feedback, and by suppressing the haptic
feedback. This last condition was realized through a mechanical decoupling between
the manipulator and the actual racket motion (see Sternad et al., 2001a,b). Fig. 3.7
displays three time series and the phase portraits of the three perceptual conditions.
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Figure 3.7: Three time series (left panels) and their respective phase portraits (right
panels) of exemplary trials performed in the three perceptual conditions: both visual
and haptic feedback available (top), no visual feedback (middle) and no haptic
feedback (bottom). The dots in the phase portraits denote the impacts. Reprinted
from Sternad et al. (2001b).

First, this figure shows that a majority of impacts occurred during the deceler-
ating phase, i.e. the upper right quadrant of the phase portraits. This confirms that
the bouncing actions were performed close to an open-loop stable regime in the three
conditions. Secondly, without visual feedback (no-VI), the acceleration at impact
was just more variable, revealing that visual information might help nevertheless
to stabilize the task. More interestingly, when deprived from the haptic percep-
tual inflow (no-KI), the subjects sometimes abandoned the open-loop stable regime.
This is directly visible in Fig. 3.7, since some impacts occurred in a quadrant cor-
responding to a positive acceleration (upper left). The haptic system may then be
relevant for the tuning into open-loop stability, even if it provides only discrete-time
inflows, while the visual system provides continuous-time ones. Interestingly, Chap-
ter 4 of this thesis proposes an hypothesis to characterize the valuable role of haptic
measurements, as a way to acquire timing feedback of the task.

The most recent contributions of Sternad and colleagues in the ball-bouncing
task studied the same experiment under large perturbations (de Rugy et al., 2003;
Dijkstra et al., 2004; Wei et al., 2006). Human subjects were asked to play the
task in a virtual environment. Periodically, the racket coefficient of restitution
was unexpectedly modified, such that the relaxation behavior, i.e. the interval
to recover the period-one motion, was investigated. The main result is that the
relaxation time is much shorter than predicted by the open-loop model, undoubtedly
revealing that closed-loop mechanisms are implemented by the subjects. Moreover,
the authors showed that the frequency of the racket movement was modulated after
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Figure 3.8: Neural-based model of a ball-bouncing controller. Reprinted from
de Rugy et al. (2003).

the perturbations, while the amplitude remained roughly constant. The modulation
was such that the impacts occurred at a negative acceleration (de Rugy et al., 2003).

de Rugy et al. (2003) also simulated the behavior of a “neural-based” model to
control the bouncing ball (see Fig. 3.8). This controller both exploited the open-loop
stability of the sinusoidal trajectory, and modulated its frequency according to the
“measured” velocity of the ball (closed-loop). This model qualitatively reproduced
the human data in order to “track” the open-loop stability with active control of the
oscillatory period.

Recently, Tlili et al. (2004) reproduced the negative acceleration criterion for
soccer juggling. They reported that human subjects, highly skilled in soccer juggling,
impacted the ball with their foot in the decelerating phase. This was observed for
a broad range of juggling heights, except for the smallest they tested (0.5m) where
the acceleration at impact was just slightly positive. This height corresponded to an
average juggling period of 435ms. The active strategy adopted in this configuration
remains an open question.

3.5 Conclusion

The bouncing ball dynamics have been widely investigated in the literature. Both
the robotics community and the motor control community recognized this very sim-
ple task as an illustrative benchmark for studying more complex rhythmic tasks.
Indeed, while sharing the main features of regular juggling (Sternad, 1999), such
simplified juggling dynamics are amenable to handy mathematical modeling.

Basically two strategies have been developed to control the bouncing ball. The
sinusoidal motion of Holmes (1982) is sensorless, while the mirror law of Buehler
et al. requires a permanent tracking of the ball to compute its energy and position.
However, these two control schemes achieve the same performance, i.e. stabilization
of the period-one motion. The mirror law has wider basins of attraction and has been
generalized to challenging experimental contexts. Schaal et al. (1996) noticed an-
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other important distinction between these two strategies: the sinusoidal law impacts
the ball in a decelerating upward movement, while the mirror law is always acceler-
ating. The acceleration of the steady-state mirror law is indeed (1−e)/(1+e) g ≥ 0.
Through local and non-local stability analysis, they showed that negative accelera-

tion at impact is a necessary condition for open-loop stability, in the range defined
in (3.19).

Studying human behavior when bouncing a ball with a racket, Sternad, Schaal
and coworkers reported that human subjects juggle the 1D bouncing ball with neg-
ative acceleration at impact (Schaal et al., 1996; Sternad et al., 2001a,b). Conse-
quently, they concluded that human subjects exploit the open-loop stability prop-
erties of the task and do not rely on complex feedback-driven mechanisms, such as
the mirror law. Sensory information may nevertheless help to stabilize the task, in
wider basin of attraction than predicted by the open-loop model (de Rugy et al.,
2003; Dijkstra et al., 2004; Wei et al., 2006).

The scientific background on the bouncing ball dynamics is of high interest for
this thesis since our original contributions are based on similar impact tasks dynam-
ics. Chapter 4 aims at reconciling the sensorless and the closed-loop approaches
within a hybrid scheme. In Chapters 5, 6, 7 and 8, we switch to a 2D version of
the bouncing ball, which is viewed as an idealization of a planar juggler. However,
the model-based derivations of the present chapter are still useful since this planar
setup is viewed as a 2D extension of the bouncing ball.


