
Chapter 4

Robust Closed-Loop Control of the

Bouncing Ball

If the facts don’t fit the theory,

change the facts.

Albert Einstein

4.1 Introduction

As illustrated in Chapter 3, open-loop stabilization of the bouncing ball requires
negative acceleration of the actuator at impact (eq. (3.19), see Schaal et al., 1996).
In contrast, the mirror law algorithms have been designed in closed-loop and can
consequently afford positive acceleration at impact. The aim of this chapter is to
discuss the role of acceleration tuning for robust closed-loop design of the bouncing
ball dynamics with limited feedback, i.e. when the complete ball trajectory cannot
be sensed as in the mirror law implementation. We focus on the measurement of
the impact times as sole discrete output. This information provides a source of
“rhythmic” feedback, directly available through auditive or haptic inflows for human
subjects. Such a design is also cheap and efficient in robotics, since the times
of impact can be measured by cheap sensors, like accelerometers (recording the
vibrations on the actuator), microphones, etc. . .

In human juggling experiments, it has long been recognized that the control of
timing is ubiquitous, either for throwing and catching time in the three-balls cascade
(Amazeen et al., 1999) or for 1D ball bouncing (see Section 3.4 and Sternad et al.,
2001b). This has been further emphasized recently in a robotic experiment by Hirai
and Miyazaki (2006). They studied a juggling-like ball-passing task in the horizon-
tal plane (i.e. no effect of gravity) whose stabilization is based only on feedback
measurement of the impact times between the balls and the robot. The objective of
the present chapter is to emphasize the role of impact times as a central information
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38 4.2. FEEDBACK CONTROL OF THE BOUNCING BALL

for the model-based feedback control of the bouncing ball and to demonstrate the
existence of robust control schemes based on this sole discrete information. The
measurement of the occurrences of timed events, like the impacts in this task, could
obviously be generalized as an exclusive source of feedback for most rhythmic sys-
tems. For example, in locomotion, the initiation and/or termination of the stance
phase are marked periodic events in the cycle that could be useful for feedback.

The 1D bouncing ball dynamics (Holmes, 1982; Guckenheimer and Holmes, 1986)
have been reviewed in Section 3.2 of this thesis. The actuation is the continuous-
time motion s(t). The ball dynamics are governed by the gravitational field g and
the impacts with the actuator. The complete bouncing ball dynamics are described
by the discrete Poincaré map (3.4) (flight map) and (3.5) (impact rule), whose state
is the impact position s[k] and post- velocity v[k]. Given a reference trajectory
(sρ[•], vρ[•]) for the system (3.4), (3.5), we study the design of a continuous-time
motion s(t) that achieves asymptotic tracking of this discrete reference.

We first derive a controller that achieves deadbeat tracking of an arbitrary ref-
erence trajectory (Sections 4.2.3 and 4.2.4). This controller is a state feedback
controller, which is then turned into an output feedback controller (Section 4.2.5):
the state of the ball is reconstructed from the sole impact times by means of a dead-
beat observer. The output feedback controller assigns the impact position and the
impact velocity of the actuator but the stability of the closed-loop system puts no
constraints on the impact acceleration. In contrast, this parameter turns to be a
crucial design parameter in the robustness analysis of the closed-loop system (Sec-
tion 4.3). We focus the robustness analysis on the model uncertainty arising from
the impact model. The design is based on the simple Newton’s impact model and
we model the uncertainty by treating the variations of the coefficient of restitution
as an external disturbance. By a proper tuning of the acceleration at impact, simu-
lation results illustrate that the uncertainty on the coefficient of restitution can be
efficiently rejected.

4.2 Feedback Control of the Bouncing Ball

4.2.1 The sinusoidal actuation vs. the mirror law

In Chapter 3, we introduced two actuation laws to stabilize the period-one motion
of the bouncing ball. First, the sinusoidal actuation (3.7) is purely open-loop and
stabilizes the period-one motion if the amplitude and frequency are tuned according
to (3.17) (Holmes, 1982; Guckenheimer and Holmes, 1986; Bapat et al., 1986). The
stability of the orbit implies that the actuator acceleration at impact is negative
(Schaal et al., 1996) in the range given by (3.19). This is illustrated in Fig. 4.1, top.

In contrast with the sensorless sinusoidal law, the mirror law is a feedback strat-
egy based upon permanent tracking of the ball (Buehler, Koditschek and Kindl-
mann, 1988, 1990, 1994). Its simplest version has been derived in Section 3.3. In
steady-state, the mirror law behavior is reproduced in Fig. 4.1, bottom.
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The two control strategies that stabilize the same pattern are clearly distinct in
term of feedback requirement. The first one is sensorless while the second requires a
permanent tracking of the ball. Comparing the sinusoidal law and the mirror law in
Fig. 4.1, we see that both of them stabilize the bouncing ball period-one at the same
steady-state (s⋆, v⋆), but with significant differences in the underlying continuous-
time control law. We observe that the sinusoidal trajectory is decelerating at impact
while the mirror law is accelerating. It suggests that the acceleration at impact
possibly influences the feedback requirements of the control law.

4.2.2 Stabilization with sensorless sinusoidal actuation

Even if there is no control loop with the sensorless sinusoidal actuation s(t) =
A sin (ωt), it is of interest to interpret its stabilizing feedback mechanism in the
system dynamics.

The linearized state-space equations (3.14) and (3.15) can be written under the
following matrix form:
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ÃBB

+

(

−(1+e)Aω2

g

r

1−
“

(1−e)πng

(1+e)Aω2

”2

0

)

︸ ︷︷ ︸

B̃BB

(
1 1 + e

)

︸ ︷︷ ︸

C̃BB









(
ω
g
δv[k]

ωδt[k]

)

which is obviously equivalent to (3.16), with ABB = ÃBB + B̃BBC̃BB.
Eq. (4.1) admits the following state-space representation:

x[k + 1] = ÃBBx[k] + B̃BB(A,ω)u[k] (4.2)

y[k] = t[k + 1]

= C̃BBx[k] (4.3)

where the “controller input" equals the “output": u[k] = y[k], i.e. the impact time
t[k + 1]. This state-space representation is both controllable and observable.

In this representation, the sinusoidal actuation is interpreted as a proportional
feedback of the output t[k + 1], emphasizing the importance of estimating the next
impact time for stabilization. The first element of the matrix B̃BB is a feedback
gain equal to the actuator acceleration at impact. Negative feedback thus requires
a negative acceleration.
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Figure 4.1: Comparison of the sinusoidal trajectory (top) and the mirror law (bot-
tom) to stabilize the period-one pattern. The actuator (respectively the ball) non-
dimensional position is depicted with solid (respectively dash-dotted) lines over non-
dimensional time. The gray dots denote the piecewise quadratic trajectory that
match the actuator position, velocity and acceleration at impact, see Section 4.2.3.

4.2.3 State feedback control

This section describes a more general class of controllers aiming at tracking a time-
varying referenced trajectory, impact after impact. Given the flight time equation
(3.6), exact matching between the real and the referenced next impact position, i.e.

s[k + 1] = sρ[k + 1] (4.4)

is provided if the next impact occurs at time

tu[k + 1] = t[k] +
v[k] +

√

v[k]2 − 2g(sρ[k + 1] − s[k])

g
. (4.5)

Given (3.5) and (4.5), the impactor velocity at impact must be equal to

ṡu[k + 1] =
vρ[k + 1] − e

√

v[k]2 − 2g(sρ[k + 1] − s[k])

1 + e
(4.6)

in order to provide v[k + 1] = vρ[k + 1].
As illustrated in Fig. 4.1, the two control laws described in Section 4.2.1 achieve

the same stabilization objective, but differ in the impact acceleration. In order to
illustrate how the actuator acceleration at impact influences the robustness of the
feedback system, we consider at first a mathematically convenient family of control
laws in the form of a piecewise quadratic function of time, re-initialized after each
impact:

s(t) = su[k + 1] + ṡu[k + 1](t − tu[k + 1]) +
γ

2
(t − tu[k + 1])2 (4.7)
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Figure 4.2: Local position (left) and velocity (right) profiles of the actuator trajec-
tory. The position profile is given by (4.7) while the velocity is its first derivative.
γ is the acceleration.

for t[k] < t ≤ t[k + 1], γ denoting the actuator acceleration. At time t = tu[k + 1],
the actuator position (velocity, resp.) is equal to su[k + 1] (ṡu[k + 1], resp.), see Fig.
4.2. The gray dots on Fig. 4.1 illustrate the steady-state behavior of this control law
when the parameters are tuned to match the ball position, velocity and acceleration
at impact with the two control laws presented in Section 4.2.1.

The quadratic parameterization of the control (4.7) is convenient to obtain an
explicit expression of the impact times: t[k + 1] is indeed the solution of (3.4) and
(4.7) at time t = t[k+1], which defines a second order polynomial in t. The controller
inputs are tu[k + 1] (4.5), su[k + 1] = sρ[k + 1] and ṡu[k + 1] (4.6) and are functions
of the state (s[k], v[k]) and impact time t[k]. Deadbeat convergence of this tracking
control law, that is, convergence of the solution to the reference trajectory after a
finite number of time steps, is established in the next section.

4.2.4 Deadbeat convergence

Substituting (4.4), (4.5) and (4.6) into (4.7) at time t = t[k + 1], we find:

s[k + 1] = sρ[k + 1]

+
vρ[k+1]−e

√
v[k]2−2g(sρ[k+1]−s[k])

1+e

(

t[k + 1] − t[k] − v[k]+
√

v[k]2−2g(sρ[k+1]−s[k])

g

)

+
γ

2

(

t[k + 1] − t[k] − v[k] +
√

v[k]2 − 2g(sρ[k + 1] − s[k])

g

)2

. (4.8)

Substituting (3.6) into (4.8), we obtain a second order polynomial in t[k +1], whose
positive root is:

t[k + 1] = t[k] +
v[k] +

√

v[k]2 − 2g(sρ[k + 1] − s[k])

g
. (4.9)
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Comparing this with (3.6) yields:

s[k + 1] = sρ[k + 1] (4.10)

and therefore also:

v[k + 1] = vρ[k + 1] (4.11)

t[k + 1] = tu[k + 1] (4.12)

reflecting then that the positive solution of (3.4), (3.5) and (4.7) is the exact match-
ing between the reference and the real impact state.

To summarize, the continuous-time control law determined by the quadratic
expression (4.7) and the discrete control (4.4), (4.5) and (4.6), ensures deadbeat
convergence of the impact state after one time step. So far, the acceleration γ in
(4.7) is a free parameter and does not influence the convergence. The control law
is a tracking controller, that is, the reference trajectory (sρ[•], vρ[•]) is arbitrary, as
long as it corresponds to a solution of the dynamical system (3.4) and (3.5).

4.2.5 Output feedback deadbeat control

The piecewise quadratic control proposed in Section 4.2.3 uses the full state (s[k],
v[k]) of the system (3.4) and (3.5). To reduce the sensing requirements of the
controller, we now assume that only the continuous-time actuator motion s(t) is
measured, together with the impact times t[k]: they provide the impact position s[k]
and velocity ṡ[k]. In this section, we derive a deadbeat observer that reconstructs
the post-impact ball velocity v[k] from the measured impact times t[k] and actuator
motion s(t).

Post-impact velocity is estimated by an observer that is a copy of the velocity
dynamics (3.5):

v̂[k] = −e v[k − 1] + e g (t[k] − t[k − 1]) + (1 + e)ṡ[k] (4.13)

while v[k − 1] is obtained from (3.4):

v̂[k] = −e
(

s[k]−s[k−1]
t[k]−t[k−1]

+ g
2
(t[k] − t[k − 1])

)

+ e g (t[k] − t[k − 1]) + (1 + e)ṡ[k]

= e
g

2
(t[k] − t[k − 1]) − e

s[k] − s[k − 1]

t[k] − t[k − 1]
+ (1 + e)ṡ[k]. (4.14)

Equation (4.14) defines a deadbeat velocity observer using the impact times as sole
input in addition to the actuator motion. Deadbeat convergence is ensured in one
time-step since v̂[k] = v[k], ∀k > 1.

The output feedback controller, whose the only measured signals are the impact
times, is then obtained by replacing the actual state variable v[k] by the estimated
variable v̂[k] in (4.4), (4.5) and (4.6). Its deadbeat convergence is established in the
following proposition:
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Figure 4.3: Output feedback control of the bouncing ball with the control law (4.15).
The actuator (respectively the ball) position is depicted with solid (respectively
dash-dotted) lines over time. Actual impacts position (apex position, resp.) are
represented with black circles (black diamonds, resp.). Reference positions are ac-
cordingly represented with gray markers. e = 0.7, γ < 0.

Proposition 1 (Deadbeat convergence of the piecewise quadratic output feedback
controller) Consider the bouncing ball dynamics (3.4) and (3.5) and a reference
trajectory (sρ[k], vρ[k]), k ≥ 0. The output feedback control

s(t) = sρ[k + 1] + ṡu[k + 1](t − tu[k + 1]) +
γ

2
(t − tu[k + 1])2

for t[k] < t ≤ t[k + 1]

tu[k + 1] = t[k] +
v̂[k] +

√

v̂[k]2 − 2g(sρ[k + 1] − s[k])

g

ṡu[k + 1] =
vρ[k + 1] − e

√

v̂[k]2 − 2g(sρ[k + 1] − s[k])

1 + e

v̂[k] = e
g

2
(t[k] − t[k − 1]) − e

s[k] − s[k − 1]

t[k] − t[k − 1]
+ (1 + e)ṡ[k] (4.15)

ensures deadbeat convergence of the 1D bouncing ball state toward the reference
(sρ[k], vρ[k]) after two impacts (i.e. k > 2).

Proof The first impact is required to ensure convergence of the observer, since
v̂[k] = v[k], ∀k > 1. As soon as v̂[k] = v[k], a second impact is required to achieve
deadbeat convergence of the controller, as shown in Section 4.2.4. �

The deadbeat convergence is illustrated in Fig. 4.3. At the third impact, both
the reference impact position and the reference apex (which is an image of the
reference post-impact velocity) are reached. The same figure illustrates the proper
tracking of time-varying references since both the position and velocity references
change at the seventh impact.
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4.2.6 A blind mirror law based on output feedback

Assuming a ballistic flight between two impacts, the mirror law (3.18) can also be
adapted to an output feedback control, with the impact times as measured output:

s(t) =

(−(1 − e)

1 + e
− κ1

(

E⋆
ρ − Ê(t)

))

β̂(t) (4.16)

since both the ball position and energy can be estimated from impact state:

β̂(t) = s[k] + v̂[k](t − t[k]) − g

2
(t − t[k])2

Ê(t) = Ê[k]

= gs[k] +
1

2
v̂[k]2

for t[k] ≤ t < t[k +1]. The tracking mirror law (3.18) requires a permanent tracking
of the ball as sensory input. In contrast, the blind mirror law (4.16) based on output
feedback only uses impact times and reconstructs the post-impact velocity v[k] via
the observer described in Section 4.2.5.

Since both the piecewise quadratic law (4.15) and the blind mirror law (4.16)
require the same sensing capabilities, their robustness will be compared in the next
section.

4.3 Robustness to Model Uncertainties

The acceleration parameter γ appearing in (4.15) played no role in the stability
and convergence analysis. This section stresses the importance of this parameter
for robustness purposes. We show that particular negative accelerations efficiently
optimize either static or dynamical perturbations induced by a poor estimate of the
coefficient of restitution e.

4.3.1 Uncertainty of the impact model

Among the several sources of uncertainty of the model (3.4) and (3.5), the im-
pact model (3.3) is probably central. While the Newton impact law models e as a
constant, this parameter is varying in experimental conditions. Furthermore, the
linear relationship between the pre- and post-impact velocities (3.3) is certainly not
respected outside a narrow range of impact velocities.

We model the uncertainty on the coefficient of restitution e by considering the
following perturbed impact rule:

v[k + 1] − ṡ[k + 1] = −(e + ∆e[k + 1])(v−[k + 1] − ṡ[k + 1]) (4.17)
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where ∆e[k +1] models the variation of the coefficient of restitution at time t[k +1],
w.r.t. the estimated value e. For the sake of simplicity, we study the robustness of
the linearized feedback system, as derived in Appendix 4.A of this chapter.

From the linear state-space representation (4.28), we find the following closed-
loop input-to-state transfer functions:

S(z) = Sρ(z) +
2(1 − e)

1 + e

1

z
E(z) (4.18)

V (z) = Vρ(z) +
2

1 + e

z +
(

e2 + γ
g
(1 + e)2

)

z
E(z) (4.19)

where S(z), V (z), Sρ(z), Vρ(z) and E(z) refer to the z-transforms of gδs[k]/(v⋆
ρ)

2,
δv[k]/v⋆

ρ, gδsρ[k]/(v⋆
ρ)

2, δvρ[k]/v⋆
ρ and ∆e[k], respectively. In (4.18) and (4.19), the

absence of dynamics in the transfer from references to states is due to the dead-
beat convergence established in Section 4.2.5. The next section details the role of
acceleration to reject the perturbations due to ∆e[k].

4.3.2 Robustness requires negative acceleration

From (4.19), we see that the acceleration γ can be designed to place the zero of the
transfer function from E(z) to V (z). That design parameter will be discussed to
optimize either the static or the dynamic performance.

Static error

To let the post-impact velocity converge toward the reference vρ[k], assuming a
constant perturbation ∆e[k] = ∆e, one has to cancel the static gain of the transfer
function from E(z) to V (z). This amounts to place the zero of (4.19) at z = −1,
which requires the following acceleration:

γstat. = − 1 + e2

(1 + e)2
g. (4.20)

Interestingly, this optimal acceleration depends only on e, that is, the estimated
coefficient of restitution. Fig. 4.4 illustrates the behavior of the feedback system
when the coefficient of restitution is estimated at e = 0.7 while the real one is only
e + ∆e = 0.5. The desired post-impact velocity is reached because the difference
between impact and apex positions is the same for the reference as for the actual
trajectory. It should be noticed, however, that a static error persists on the reference
position: the static gain from E(z) to S(z) is indeed independent of γ (see (4.18)).
This static error does not appear to be detrimental to the robustness of the feedback
system.

The optimal acceleration for static performance, as identified in (4.20), has also
been derived from the original nonlinear equations, see Ronsse and Sepulchre (2006).
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Figure 4.4: Output feedback control of the bouncing ball with piecewise quadratic
trajectory. The actuator (ball, resp.) position is depicted with solid (dash-dotted,
resp.) lines over time. Actual impacts position (apex position, resp.) are denoted
with black circles (black diamonds, resp.). Reference positions are accordingly de-
noted with gray markers. e + ∆e = 0.5, e = 0.7, γ is given by (4.20).

It is of interest to relate this particular acceleration to the sinusoidal control
discussed in Section 4.2.1: the optimal acceleration (4.20) is exactly the middle
point of the acceleration range where the period-one motion is stable (3.19).

Dynamic performance

Robustness to a static error on e is not the primary issue in real experiments because
the average value of e is easy to determine. In contrast, robustness is required against
the sustained variability of e. By placing the zero of (4.19) at z = 0, the dynamics
from E(z) to V (z) are exactly canceled :

γdyn. = − e2

(1 + e)2
g (4.21)

resulting in a static transfer function. Interestingly, this optimal value closely
matches the value that minimizes the numerically computed variability of the si-
nusoidally actuated bouncing ball in Sternad et al. (2001a,b).

We summarize the robustness analysis of the piecewise quadratic law (4.15) with
the following proposition:

Proposition 2 Consider the bouncing ball dynamics (3.4) and (3.5) with a time-
varying coefficient of restitution e + ∆e[k + 1]. Using the output feedback control
(4.15), the transfer function from ∆e[k] to δv[k]/v⋆

ρ is given by

V (z)

E(z)
=

2

1 + e

z +
(

e2 + γ
g
(1 + e)2

)

z
. (4.22)
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The choice γstat. = −(1 + e2)/(1 + e)2 g (see (4.20)) ensures zero steady state error
while the choice γdyn. = −e2/(1 + e)2 g (see (4.21)) cancels the transfer function
dynamics. Both choices result in negative acceleration at impact, with

γstat. < γdyn. ≤ 0. (4.23)

Simulation results

To illustrate the role of the impact acceleration for robustness in the nonlinear dy-
namics, we now compare the output piecewise quadratic controller (with the optimal
negative accelerations previously identified) with the output controller mirror law
(4.16). We have tested that κ1 ≈ 0.025 achieves the best trade-off between perfor-
mance (rate of convergence) and robustness (noise sensitivity) in that blind mirror
law.

Both the parabolic flight assumption and the Newton impact rule are perturbed
by noise in an experimental setup. We simulated these perturbations by adding
some noise to the reconstructed velocity v̂[k], whose dynamics use both the flight
map and the impact rule. Equation (4.14) is thus replaced by:

v̂[k] =

(

e
g

2
(t[k] − t[k − 1]) − e

s[k] − s[k − 1]

t[k] − t[k − 1]
+ (1 + e)ṡ[k]

)

(1 + ν[k]ǫnl) (4.24)

where ν[k] is a random number between −1 and 1, and ǫnl is the noise level. For the
sake of illustration, we focus on stabilization of a period-one motion, characterized
by (s⋆

ρ, v
⋆
ρ) = (0, g/2), i.e. one impact per second.

Fig. 4.5 depicts the standard deviation of the normalized post-impact velocity
v[k]/v⋆ over 100 impacts, for increasing noise level. The standard deviation of
the impact position does not vary significantly depending on the control law, as
suggested by (4.18). However, the piecewise quadratic law with the acceleration
tuned to cancel the dynamics in (4.22) (γ defined by (4.21)) achieves quasi-zero
variance in post-impact velocity, see the dashed line. For the tested noise levels, the
standard deviation is intermediate with γ = 0. In contrast, both the blind mirror
law and the piecewise quadratic law with γ defined by (4.20) generate twice as much
variability. The excellent noise rejection obtained with γdyn. (4.21), even considering
the nonlinear dynamics, illustrates the robustness of the piecewise quadratic control
law with a suitable negative acceleration. The range of negative acceleration that
produces good noise rejection is obviously limited, since the more negative value
γstat. already results in poor dynamical performance.

4.3.3 Integral feedback control

The control objective considered in the previous sections was to track the position
and velocity references (s⋆

ρ, v
⋆
ρ). However, as illustrated in Section 4.3.2, it is tedious

to exactly cancel the static error of the post-impact velocity in the presence of model
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Figure 4.5: Simulations of the nonlinear noisy bouncing ball dynamics with different
control laws: the blind mirror law (4.16) (κ1 = 0.025, black dash-dotted), the zero-
acceleration piecewise quadratic law (4.15) (γ = 0, black dotted), the piecewise
quadratic law (4.15) with the optimal static acceleration (4.20) (gray plain) and the
piecewise quadratic law (4.15) with the optimal dynamic acceleration (4.21) (gray
dashed). The figure represents the standard deviation of the normalized post-impact
velocity v[k]/v⋆, calculated over 100 impacts. Noise level is defined in (4.24).

uncertainties. Given (3.8), the post-impact velocity static error will result in flight
time static error (i.e. pattern frequency). This static error causes a linearly growing
phase shift between the reference and the actual impact times, with detrimental
consequences for pattern stabilization.

The velocity static error can be eliminated by integral feedback: the reference
trajectory is now the position sρ[•] and the impact time tρ[•] (i.e. impact phase).
The corresponding velocity input vρ[k + 1] in ṡu[k + 1] (4.15) is computed as the
solution of (3.6):

vρ[k + 1] =
sρ[k + 2] − sρ[k + 1]

tρ[k + 2] − tu[k + 1]
+

g

2
(tρ[k + 2] − tu[k + 1]). (4.25)

The difference between the reference impact time tρ[k+2] and the estimated impact
time tu[k + 1] must be then constant in steady-state:

(tρ[k + 1] − tu[k])⋆ =
2v⋆

ρ

g
. (4.26)

Since the difference between the estimated and the actual impact times is also a
constant in steady-state, the delay between the reference and the actual impact
times will remain constant through impacts, resulting in no static error between the
desired and actual post-impact velocity, and therefore in the pattern frequency.

Deadbeat convergence in three impacts of the integral controller is straightfor-
wardly established by adapting the derivations of Section 4.2.3. Note that this
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controller requires reference signals two steps ahead since both sρ[k+2] and tρ[k+2]
are used in (4.25).

4.4 Conclusion

This chapter presented the design, analysis and simulations of robust closed-loop
control of the period-one motion in the bouncing ball. The control law only uses the
impact times as feedback information, relaxing thereby the need for complex sensor
design. The parameter γ, i.e. the acceleration at impact, plays no role in the stability
analysis; in contrast, proper tuning of this parameter was shown to have a dramatic
effect on robustness. The design is based on the simple Newton’s impact model and
we model the uncertainty by treating the variations of the coefficient of restitution
as an external disturbance. Analyzing the transfer function from this disturbance
to the impact velocity, we showed that the dynamics can be exactly canceled by a
proper choice of the impact acceleration. This particular tuning requires negative
impact acceleration, in accordance with sensorless control strategies (Holmes, 1982;
Schaal et al., 1996; Ronsse et al., 2006) and with observed human strategies (Schaal
et al., 1996; Sternad et al., 2001a,b). This contrasts with the mirror law algorithm
proposed earlier in the literature (Buehler et al., 1988, 1990, 1994) and possibly
explains why such control schemes — that have been shown to perform robustly in
1D, 2D and even 3D environments with a continuous-time sensing of the juggled
object — may perform poorly in implementations with limited sensing capabilities
(Gerard, 2005).

The chapter illustrated that measurement of impact times is both a cheap and
relevant feedback source in juggling experiments. It may therefore supplement the
continuous-time sensing required in more complicated juggling implementations, e.g.
in 3D environments. The piecewise quadratic control introduced in the present
chapter will be generalized to a smoother closed-loop trajectory in Chapter 7. This
will permit to validate this strategy on a real experimental setup.

The results of the present chapter have been published in Ronsse et al. (2007a),
Sections II to IV.

4.A Linearized Equations of the 1D Noisy Bouncing

Ball with Piecewise Quadratic Control

The linearized dynamics of the perturbed 1D bouncing ball dynamics (3.4) and
(4.17), and the piecewise quadratic law (4.15) are given by the following set of
equations:
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WITH PIECEWISE QUADRATIC CONTROL

δs[k + 1] = δs[k] +
2πn

ω
δv[k] − πng

ω
(δt[k + 1] − δt[k]), (4.27)

δv[k + 1] = −eδv[k] + eg(δt[k + 1] − δt[k]) + (1 + e)δṡ[k + 1]

+
2

1 + e

πng

ω
δe[k + 1],

δs[k + 1] =
2e

1 + e
δsρ[k + 1] +

1 − e

1 + e
δs[k]

+
1 − e

1 + e

πng

ω
(δt[k + 1] − δt[k]) − 1 − e

1 + e

2πn

ω
δv̂[k],

δṡ[k + 1] =
1

1 + e
δvρ[k + 1] −

(
e

1 + e
+

2γ

g

)

δv̂[k]

+

(
e

1 + e
+

γ

g

)
ω

πn
(δsρ[k + 1] − δs[k]) + γ(δt[k + 1] − δt[k]),

δv̂[k + 1] = e
g

2
(δt[k + 1] − δt[k]) − e

ω

2πn
(δs[k + 1] − δs[k]) + (1 + e)δṡ[k + 1].

In (4.27), δe[k + 1] is the small perturbation on the coefficient of restitution and is
considered as an additional input.

Using non-dimensional state variables, one obtains the following state-space
model:









gδs[k+1]
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︸ ︷︷ ︸

B′






gδsρ[k+1]

(v⋆
ρ)2

δvρ[k+1]

v⋆
ρ

δe[k + 1]




 . (4.28)

The state variables are small perturbations of the ball impact position gδs[k +
1]/(v⋆

ρ)
2 and velocity δv[k + 1]/v⋆

ρ; the impact time gδt[k + 1]/v⋆
ρ and the observed

velocity δv̂[k + 1]/v⋆
ρ.

The matrix A′ is singular. This is a consequence of deadbeat convergence of the
1D bouncing ball, controlled with the piecewise quadratic law (4.15).



Chapter 5

Experimental Setup: the Wiper

Robot

To be intelligent is to be

open-minded, active, memoried,

and persistently experimental.

Leopold Stein

5.1 Introduction

At the center of the thesis, this chapter describes the experimental setup we designed
to conduct robotics and motor control experiments on impact juggling. One major
contribution of the present work was to design this experimental setup, amenable to
test both the theoretical predictions in robotics and to explore the human behavior.
This setup is based on a simplified juggling paradigm, both capturing the main
features of regular juggling, and amenable to simple mathematical modeling. This
setup is described in Section 5.2, such as a crude model which is shown to be
reducible to the bouncing ball model described in Chapter 3.

More technical details on the setup are given in Appendix B.

5.2 Wiper: an experimental setup amenable to math-

ematical modeling

One of the most popular juggling patterns is called the shower, and is depicted in
Fig. 5.1(a): the balls follow a cyclic trajectory along two distinct parabolas produced
by a low and a high toss. We study this steady-state pattern in an experiment
that drastically simplifies the hardware: a planar motion of the puck between two
impacting edges that idealize the juggler’s arms. Fig. 5.1(b) depicts the so-called
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MATHEMATICAL MODELING

(a) the shower (b) period-two (c) period-one

Figure 5.1: The shower pattern (Fig. 5.1(a)) is one of the simplest juggling pattern.
It corresponds to a limit cycle of Wiper that is called the period-two (Fig. 5.1(b)),
since the balls cycle between the edges along two parabolas. A degenerate (and
simpler) case of the period-two, where both parabolas are similar, is called the
period-one (Fig. 5.1(c)).

period-two orbit of this impact juggler, and the particular period-one orbit (both
tosses are equal) is depicted in Fig. 5.1(c).

Laboratory implementation of this impact juggling experiment has been realized
on the Wiper robot, pictured in Fig. 5.2. The motion plane is a tilted air-hockey
table. Air-hockey is a popular game which is based on tight goal-shots of plastic
pucks on an horizontal table. The puck trajectories are almost frictionless since the
table is pierced with a lattice of little holes blowing air constantly. This frictionless
table has been tilted with respect to the ground, such that gravity influences the
puck motion, like in regular juggling. The gravity field g can be adjusted by proper
inclination of the table. The two metallic “arms” have a single (rotational) degree
of freedom. The pucks have been manufactured from hertalon, a nylon derivative
that is both light and elastic.

Wiper is tunable to different configurations (angle of inclination, sensors design,
actuation level) and easy to instrument. The edges can indeed be directly actuated
by two DC motors, as depicted in Fig. 5.2. The setup has been used to study the
stabilization of simple periodic orbits in impact juggling, such as the period-one and
the period-two depicted in Fig. 5.1.

Wiper can also be rapidly adapted to study human juggling. Replacing the mo-
tors by free rotational joints, human subjects can indeed actuate the edges through
direct catching (see Fig. 5.3). The stabilization of the period-one juggling task (Fig.
5.1(c)) is easy and fast to learn. Wiper allows to test this stabilization task at dif-
ferent tempi, since the flight time between two impacts depends on the steady-state
angle between the two edges. If the angle is large, the tempo will be slow, and vice-
versa. In principle, this setup is also suitable to study more complex patterns, e.g.
the period-two (Fig. 5.1(b)). This would permit to focus on learning issues and/or
feedback selection issues, since the subjects would not be able to keep several pucks
in visual tracking at the same time.
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Figure 5.2: Picture of Wiper.

Figure 5.3: Wiper can be actuated by human subjects.
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MATHEMATICAL MODELING

Wiper is also amenable to simple mathematical modeling. Similarly to the bounc-
ing ball dynamics (see Section 3.2), the dynamical model consists of planar flight
phases separated by impacts:

(a) during flight phases, the juggled puck trajectories are ballistic flights along a
parabola, solution of the Newton’s equation d2~p/dt2 = −~g:

p⊥(t) = p⊥[k] + v⊥[k] t, (5.1)

p//(t) = p//[k] + v//[k] t − 0.5g t2

with (p⊥[k], p//[k]) and (v⊥[k], v//[k]) denoting the impact position and velocity
at impact k, orthogonal and parallel to the gravity field, respectively;

(b) at impact, there is a sharp discontinuity in the velocity profile. We model the
impact with the simplest Newton’s law:

v+
n − ṡn = −e

(
v−

n − ṡn

)
, (5.2)

v+
t − ṡt = v−

t − ṡt

where (v−
n , v−

t ) and (v+
n , v+

t ) are the normal and tangential components of the
velocity, with respect to the impacting surface, before and after the impact,
respectively; and (ṡn, ṡt) are the impactor velocity at impact, in the normal
and tangential directions w.r.t. the impacting surface. In (5.2), the normal
equation is obviously exactly equivalent to (3.3).

The coefficient of restitution 0 ≤ e ≤ 1 still models the dissipated energy at impact.
The impact model is only a crude approximate of real impact dynamics, since for
example it does not capture spin effects of the puck at impact (Spong, 2001). The
complete dynamics of Wiper under these simplifying assumptions has been derived
in previous papers (Sepulchre and Gerard, 2003; Gerard and Sepulchre, 2005; Ronsse
et al., 2007a, 2006) and is derived in the next chapter of this thesis.

A further simplification of Wiper’s dynamics is of interest to connect the model
with the popular 1D bouncing ball model, studied in Section 3.2 (Holmes, 1982;
Guckenheimer and Holmes, 1986; Bapat et al., 1986). Assuming an orthogonal
wedge angle and parallel actuations of the edges (that is, the two edges are assumed
to remain aligned with the two orthogonal axes of Fig. 5.4), the 2D motion of
the juggled objects projects on each axis to a 1D motion that is unaffected by the
bounces on the other axis (Sepulchre and Gerard, 2003; Ronsse et al., 2007a), see
Fig. 5.4. In this special configuration, a period-two pattern in Wiper corresponds
to two frequency-locked period-one bouncing ball patterns (i.e. constant bounce
height, see Fig. 3.2) along the axes. The phase relationship between those two
patterns determines biunivocally the shape of the periodic orbit. The period-one
orbit corresponds to two balls bouncing exactly in anti-phase (i.e. one is at the apex
when the other bounces). The period-two patterns correspond to any other phase
relationship.
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Figure 5.4: A special configuration of the wedge planar juggler that decouples the
2D ball motion (left) into two independent 1D bouncing ball motions (right). The
right frame represents the ball trajectories over time along the x and y axes.

5.3 Conclusion

The Wiper has been designed from a simplified juggling experiment, aiming at
mimicking one of the most popular juggling patterns — i.e. the shower — through
its periodic orbits.

A further simplified model of Wiper’s dynamics reduces to the bouncing ball
dynamics. Its stability properties can consequently be directly inherited from the
bouncing ball ones, that are described in Section 3.2. The simplified model is useful
to capture in a simple way the main properties of Wiper’s periodic orbits. It has
been instrumental to develop modeling and design investigations discussed in the
next chapters.

This chapter material has been partly published in Ronsse et al. (2007a, 2006,
2007b).
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Chapter 6

Sensorless Stabilization of 2D

Patterns of the Wiper Robot

Remember that there is nothing

stable in human affairs;

therefore avoid undue elation in

prosperity, or undue depression

in adversity.

Socrates

6.1 Introduction

The goal of the present chapter is to characterize a general model of Wiper’s dy-
namics, their periodic orbits, and their open-loop stability properties. Indeed, since
a crude approximation of Wiper’s dynamics reduces to the bouncing ball model (see
Section 5.2), it is sounded to investigate whether the mere sinusoidal actuation (3.7)
also stabilizes some periodic pattern in our 2D juggling setup.

The control studied in this chapter is then a sinusoidal actuation of the edges,
perhaps the simplest imitation of the fundamental cyclic motion of the hands of
a juggler. Sinusoidal motion is also the simplest output of the oscillating circuits
that have been used so far for modeling rhythmic movements (see Section 2.1.4).
The vibration frequency of the edges is the key parameter since the stabilization
mechanism rests on a synchronization (or frequency-locking) between the controller
and the tempo of the juggling pattern. The vibration amplitude is a critical control
parameter since the periodic orbits of Wiper are stable for a restricted amplitude
range, as it was previously illustrated for the bouncing ball (3.17).

In this chapter, we describe the dynamics of a wedge-billiard, as a mathematical
model of the Wiper planar juggler. This model is valid at any wedge angle, while
the simplified version derived in Section 5.2 was restricted to the square configu-
ration (θ = 45◦). We analyze the existence and stability of periodic orbits of the
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wedge-billiard. The chapter main result is to show that some exponentially unstable
periodic orbits of the elastic model are stabilized in the non-elastic model with the
sinusoidal control that uses no feedback measurement, hence the name sensorless
stabilization, and to provide an experimental validation of this result. The result
somewhat contradicts the intuition that the stabilization of unstable steady-states
normally involves feedback. For the period-one orbit also discussed in this chapter,
the result has been previously observed by Schaal and Atkeson (1993), at least nu-
merically, who reported the planar juggler as one example of rhythmic system that
can be stabilized without feedback.

Section 6.2 presents the wedge-billiard model and outlines some limitations of
this model with respect to the expected real Wiper dynamics. In Section 6.3, the
steady-state solutions of this model are derived. They correspond to fixed points
of the iteration map, and therefore to periodic orbits of the wedge-billiard. In the
unactuated, elastic (e = 1) wedge-billiard, none of these periodic orbits are stable.

These periodic orbits can nevertheless be stabilized through sinusoidal actuation.
First this is demonstrated in Section 6.4 by considering parallel actuations of the
edges. As mentioned in Section 5.2, this problem reduces to the analysis of bouncing
ball dynamics in the square configuration (θ = 45◦). Then the stability properties
are straightforwardly inherited. In Section 6.5, the model is further generalized to
account for the rotational actuation of the edges. The expected parametric stability
region of Wiper are derived. Stability of the periodic orbits depends on the actuation
amplitude A, the coefficient of restitution e, and — less intuitively — on the angle
of impact θ. In particular, the periodic orbits that were all instable for θ > 45◦

in the unactuated and elastic wedge-billiard, can be stabilized with the sensorless
sinusoidal actuation.

Finally, Section 6.6 describes experimental validations of open-loop stabilization
of Wiper’s periodic orbits. The experimental parametric stability regions obtained
with the setup described in Section 5.2 are compared with the theoretical parametric
stability regions, derived in Section 6.5.

6.2 A bounce juggler model

The aim of the present section is to derive a crude mathematical model of the Wiper
robot, presented in Chapter 5. This robot is an idealization of a human juggler. We
consider a motion restricted to a plane under a constant gravitational field g (with
|g| = g). The juggled ball undergoes collisions with two edges, which act as the
juggler arms (see Fig. 6.1). In contrast with human juggler, the impacts between
Wiper’s edges and the ball are supposed to be instantaneous, hence the name impact
(or bounce) juggling.

Our model is a control version of the model introduced by Lehtihet and Miller
(1986) and was first presented by Sepulchre and Gerard (2003) in order to study
several closed-loop control laws to stabilize impact juggling patterns. The four-
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Figure 6.1: The wedge-billiard.

dimensional wedge-billiard dynamics are studied via the three-dimensional discrete
Poincaré map relating the state from one impact to the next one, the ball motion
between two impacts being parabolic (a ballistic flight in a constant gravitational
field g). Let (er,en) be an orthonormal frame attached to the fixed point O with er

aligned with the ball position vector r = rer. The ball is assumed to be a unit mass
point, let v = vrer + vnen denote its velocity. Therefore the discrete state vector
denotes the state of the ball at impacts. This state being discontinuous at impacts,
we choose the post-impact values to make up the state vector as a convention1:

x[k] ≡





Vr[k]
|Vn|[k]
R[k]



 =





V +
r (t[k])

|V +
n |(t[k])

R+(t[k])





where Vr = vr/ cos θ, Vn = vn/ sin θ and R = r/ cos θ denote the state of the ball and
the •+[k] notations denote the post-impact values, evaluated at impact time t[k].
The corresponding pre-impact values are denoted •−[k]. We consider the absolute
value of the normal velocity, the wedge-billiard being symmetric with respect to its
bisecting line.

According to this state vector, the impact law of the wedge-billiard I derives
from (5.2):

Vr[k] = V −
r [k], (6.1)

Vn[k] = −eV −
n [k] + (1 + e)Ṡ[k]

where Ṡ[k] = Ṡ(t[k]) = ṡ(t[k])/ sin θ and ṡ(t[k]) denotes the edge velocity at the
impact time t[k] and is consequently the system control input.

Assuming that the change in the edges position can be neglected to compute
the ball flight map (this assumption rests basically on a small amplitude actuation

1A similar choice has been made for the bouncing ball state vector, see Section 3.2.
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of the edges, see the discussion in Section 6.5), the flight map is the velocity and
position update of the ball integrated through a flight between two impacts on the
unactuated wedge-billiard, i.e. (5.1). Two different flight maps must be considered
whether these impacts occur on the same edge or not. These flight maps have been
derived by Sepulchre and Gerard (2003). The rest of this thesis focusing only on
solutions, and stability properties, where the ball hits the edges alternately, the
wedge-billiard map B is therefore the composition of the impact rule I (6.1) and
the second flight map (Lehtihet and Miller, 1986; Sepulchre and Gerard, 2003):

V −
r [k + 1] = |Vn|[k] − Vr[k] − |V −

n |[k + 1], (6.2)

|V −
n |[k + 1] =

√
(

2Vr[k] + (α2 − 1)|Vn|[k]

1 + α2

)2

+
4g

1 + α2
R[k]

with
α = tan θ.

One obtains the discrete billiard map B:

Vr[k + 1] = |Vn|[k] − Vr[k] − |V −
n |[k + 1], (6.3)

Vn[k + 1] = −e |V −
n |[k + 1] sign(Vn[k]) + (1 + e)Ṡ[k + 1],

R[k + 1] = R[k] − 1

2g
(V 2

r [k + 1] − V 2
r [k]) − α2

2g
(|V −

n |2[k + 1] − V 2
n [k]).

The position update of (6.3) derives from the energy expression:

E[k] =
1

1 + α2

(
1

2
V 2

r [k] +
α2

2
V 2

n [k] + gR[k]

)

(6.4)

and the conservation of energy through the flight implies: E−[k + 1] = E[k].
For later reference, one also notes the flight time, i.e. the time between two

consecutive impacts, given by:

∆t[k] ≡ t[k + 1] − t[k] (6.5)

=
1

g

(

|V −
n |[k + 1] +

(α2 − 1)|Vn|[k] + 2Vr[k]

1 + α2

)

.

The wedge-billiard model B (6.3) differs clearly from the actual Wiper dynamics.
These differences are covered by the following mechanical assumptions:

1. The edges are not affected by the impacts, so that their velocity is continuous
at impact times.

2. The impacts are localized in space around the fixed wedge (“small angle” as-
sumption).

3. The contact is frictionless.
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(a) Period-one solution. (b) Period-two solution.

Figure 6.2: Two periodic orbits of the wedge-billiard. These periodic orbits are
equivalent to Wiper’s periodic orbits, depicted in Fig. 5.1.

Assumption 1 relies on the fact that the edges are largely heavier than the puck. If
the edges motors track a smooth reference signal, the perturbation caused at one
impact time is rejected by the next impact time. Note that a finite mass ratio
between the actuator and the object can be captured by a modified coefficient of
restitution: Vincent and Mees (2000) studied a 1D bouncing ball model capturing
this effect. The effect of assumption 2 is more tedious to analyse. Relaxing the “small
angle” assumption leads to an implicit billiard map that is much more complicated
to solve. Assumption 3 is reasonable. Friction at impacts induces the puck to spin.
This leads to a more complicated model that will have topologically similar steady-
sate orbits. See the discussion in Section 6.6.2. The impact controllability of an air
hockey puck has been studied by Spong (2001).

6.3 Energy balance of the steady-state solutions

One of the most common juggling patterns is called the shower. It involves a circle-
shaped trip of several balls between the juggler hands (Fig. 5.1(a)). This section
will describe and analyze a periodic solution of the model (6.3) which is very close
to the shower pattern, i.e. the period-two orbit described in Chapter 5.

The first part of this section describes a degenerate case of the period-two orbits
where both flight times are equal, i.e. the period-one orbit. The general period-
two solution of the wedge-billiard will be investigated in Section 6.3.2. Stability
properties of these solutions in the unactuated elastic wedge will be also investigated.

6.3.1 Period-one orbit

The period-one orbit is a round trip of the ball between the edges, both trajectories
being exactly the same (Fig. 6.2(a)). Due to its symmetry, this periodic motion is
characterized by a unique energy level E⋆. The radial velocity Vr and the position
R being conserved at impacts, the conservation of energy implies the conservation



62 6.3. ENERGY BALANCE OF THE STEADY-STATE SOLUTIONS

of the square normal velocity:

(Vn
⋆)2 =

(
V −

n
⋆)2

. (6.6)

Using (6.6), we obtain in the steady-state solution of (6.3):

Vr
⋆ = |Vn

⋆| − Vr
⋆ − |V −

n
⋆|, (6.7)

|Vn
⋆| = e |V −

n
⋆| + (1 + e)|Ṡ⋆| (6.8)

which implies Vr
⋆ = 0. These results have a direct geometrical interpretation on Fig.

6.2(a): at the impacts, the radial velocity must be zero, and the normal velocity must
be exactly reversed, for this steady-state motion. The steady-state edges velocity
derives from (6.8):

|Ṡ⋆| =
1 − e

1 + e
|Vn

⋆|. (6.9)

Using (6.4), (6.5) and (6.2), the fixed point of (6.3) is conveniently parametrized
by the energy E⋆:

|Vn
⋆| =

1 + α2

α

√

2E⋆

3 + α2
, (6.10)

R⋆ =
2(1 + α2)

g(3 + α2)
E⋆, (6.11)

∆t⋆ =
2α

g

√

2E⋆

3 + α2
. (6.12)

If the edges are elastic (e = 1), no energy supply is needed to sustain the period-
one motion (see (6.9): |Ṡ⋆| = 0). This could be also simulated from a non-elastic
wedge-billiard if the edges compensate for the energy dissipation at each impact:
|Ṡ|[k + 1] = (1 − e)/(1 + e)|V −

n |[k + 1].

Proposition 3 (see Lehtihet and Miller (1986)) For every θ ∈ (0◦, 90◦) and
for every energy level E⋆, the wedge-billiard possesses a unique period-one orbit,
determined by the fixed point (6.10), (6.11), (6.12) of the model (6.3). This orbit is
marginally stable if θ < 45◦ (α < 1), unstable if θ = 45◦ (α = 1) and exponentially
unstable if θ > 45◦ (α > 1).

Proof Stability of the period-one orbits is investigated via the Jacobian lineariza-
tion of (6.3) at the fixed point (6.10), (6.11), (6.12) which gives:





δVr[k + 1]
δ|Vn|[k + 1]
g

|Vn
⋆|δR[k + 1]



 =






1−4α2−α4

(1+α2)2
4α2

(1+α2)2
−2

1+α2

2(α2−1)
(1+α2)2

(α2−1)2

(1+α2)2
2

1+α2

2α2(1−α2)
(1+α2)2

4α4

(1+α2)2
1−α2

1+α2










δVr[k]
δ|Vn|[k]
g

|Vn
⋆|δR[k]



 . (6.13)
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The eigenvalues of this Jacobian matrix are:

λ1,2,3 = 1,
1 − 4α2 − α4 ± 2α

√

(α2 − 1)(α2 + 3)

(1 + α2)2
. (6.14)

One unitary eigenvalue (λ1 = 1) is associated with the conservation of energy. The
remaining two eigenvalues (λ2 and λ3) lie on the unitary circle for α < 1, and it can
be shown that the period-one solution is marginally stable in this case: in the state
space plane of the elastic wedge-billiard, the period-one fixed point is surrounded by
a continuum of closed orbits that correspond to quasi-periodic solutions (Lehtihet
and Miller, 1986). When the wedge is a right angle (α = 1), λ2 = λ3 = −1: the
map B has therefore an eigenvalue of algebraic multiplicity 2 on the unit circle. The
unactuated wedge-billiard dynamics becoming linear in that case (see Sepulchre and
Gerard, 2003), the period-one orbits are unstable. For α > 1, the two eigenvalues
are real, one of them being outside the unitary circle, the period-one solution is
therefore exponentially unstable. �

6.3.2 Period-two orbit

Period-two orbits model the shower juggling pattern presented in Fig. 5.1(a). The
round trip of the ball between the edges is now characterized by two different tra-
jectories depending on the direction of the ball. Fig. 6.2(b) is an example of a
period-two solution. This solution will be characterized by two parameters Er⋆

and El⋆ , associated to the ball energy on each trajectory, assuming arbitrarily that
•r⋆ characterizes the right-edge impacts and •l⋆ the left-edge impacts. A positive
edge velocity corresponds to a counterclockwise motion. The period-one orbit is a
degenerate case of the period-two orbits for which Er⋆ = El⋆ .

A period-two solution is characterized by two points in the state space, say xr⋆

and xl⋆ : these points ought to be fixed points of B2 = B ◦ B. The position and the
radial velocity being conserved at impact, the global energy balance of the period-
two solution requires this time:

(Vn
r⋆)2 − (V −

n
r⋆)2 = −

(

(Vn
l⋆)2 − (V −

n
l⋆)2
)

. (6.15)

A possible loss of energy on one edge has to be compensated on the other one.
Eliminating the radial velocities Vr

r⋆ and Vr
l⋆ from their update equations:

Vr
l⋆ = |Vn

r⋆| − Vr
r⋆ − |V −

n
l⋆|, (6.16)

Vr
r⋆ = |Vn

l⋆| − Vr
l⋆ − |V −

n
r⋆|, (6.17)

we find another relation between the normal velocities:

|Vn
r⋆| − |V −

n
l⋆| = |Vn

l⋆| − |V −
n

r⋆|. (6.18)
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Equations (6.15) and (6.18) yield:

|Vn
r⋆| + |V −

n
l⋆| = −(|Vn

l⋆| + |V −
n

r⋆|). (6.19)

Thanks to (6.18) and (6.19), one finds |V −
n

l⋆| = −|Vn
l⋆| and |V −

n
r⋆| = −|Vn

r⋆|. These
four variables being non-negative, (6.18) must be equal to zero to be satisfied, such
as (6.15):

|V −
n

l⋆| = |Vn
r⋆|, (6.20)

|V −
n

r⋆| = |Vn
l⋆|.

The radial velocity and the impact position should then satisfy (see (6.16) and (6.3)):

Vr
l⋆ = −Vr

r⋆ , (6.21)

Rr⋆ = Rl⋆ = R⋆. (6.22)

Geometrically, the period-two solutions are therefore characterized by two symmet-
rical parabolas: these parabolas reach their highest point (zenith) on the bisecting
line of the wedge.

Introducing the normal velocity conservation (6.20) in (6.3), we obtain the steady-
state relations:

|Vn
l⋆| = e|Vn

r⋆| − (1 + e)Ṡl⋆ , (6.23)

|Vn
r⋆| = e|Vn

l⋆| + (1 + e)Ṡr⋆ .

Equations (6.23) provide the steady-state edges velocities:

Ṡr⋆ =
|Vn

r⋆| − e|Vn
l⋆|

1 + e
, (6.24)

Ṡl⋆ =
e|Vn

r⋆| − |Vn
l⋆|

1 + e
.

Injecting (6.20) in the definitions of |V −
n |, we find:

(Vn
r⋆)2 =

(
2Vr

r⋆ + (α2 − 1)|Vn
r⋆|

1 + α2

)2

+
4g

1 + α2
R⋆, (6.25)

(Vn
l⋆)2 =

(
2Vr

l⋆ + (α2 − 1)|Vn
l⋆|

1 + α2

)2

+
4g

1 + α2
R⋆ (6.26)

which implies, taking (6.21) into account:

Vr
r⋆ =

α2

α2 − 1
(|Vn

r⋆| − |Vn
l⋆|) = −Vr

l⋆ . (6.27)
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The impact position and the energy levels are derived from (6.25), (6.27), (6.4)
and (6.28):

R⋆ =
α2
(

(1 + α2)2|Vn
r⋆||Vn

l⋆| − α2
(
|Vn

r⋆| + |Vn
l⋆|
)2
)

g(1 + α2)(α2 − 1)2
, (6.28)

Er⋆ =
α2
(
(α4 + α2 − 1)(Vn

r⋆)2 + α2(Vn
l⋆)2 − 2|Vn

r⋆||Vn
l⋆|
)

2(α2 − 1)(1 + α2)2
,

El⋆ =
α2
(
(α4 + α2 − 1)(Vn

l⋆)2 + α2(Vn
r⋆)2 − 2|Vn

r⋆||Vn
l⋆|
)

2(α2 − 1)(1 + α2)2
. (6.29)

If the energy levels denote the two parameters of the period-two solution, (6.29)
must be inversed to find the normal velocities that can be replaced in the solution
equations.

The flight times are derived from (6.5):

∆tr⋆ =
2α2

(
α2|Vn

r⋆| − |Vn
l⋆|
)

g(α4 − 1)
, (6.30)

∆tl⋆ =
2α2

(
α2|Vn

l⋆| − |Vn
r⋆|
)

g(α4 − 1)
.

These relationships correspond to the period-one solution ((6.10), (6.11) and
(6.12)) if Er⋆ = El⋆ (|Vn

r⋆| = |Vn
l⋆|).

An elastic wedge can be simulated from non-elastic edges by adding (1− e)/(1+
e)|V −

n |[k + 1] to the edges velocity.

Proposition 4 Period-two orbits exist in the unactuated elastic wedge-billiard only
for θ = 45◦. They are uniquely defined by their energy level E⋆ and their impact
radial velocity Vr and are unstable. For every θ ∈ (0◦, 90◦) and for every pair
(Er⋆,El⋆), the actuated elastic wedge-billiard possesses a unique period-two orbit
determined by the fixed point of B2 = B ◦ B (6.3). If θ < 45◦, this orbit is either
marginally stable or exponentially unstable, depending on the energy difference Er⋆−
El⋆. It is unstable if θ = 45◦ and exponentially unstable if θ > 45◦.

Proof First, we derive the period-two orbits in the square wedge-billiard (θ = 45◦,
α = 1) because several equations previously derived become singular. In this case,
(6.21), (6.25) and (6.26) force the normal velocities to be equal:

|Vn
r⋆| = |Vn

l⋆| = |Vn
⋆| = |V −

n
r⋆| = |V −

n
l⋆| (6.31)

so that each trajectory has the same energy: Er⋆ = El⋆ = E⋆. The second parameter
of the period-two orbit is the radial velocity Vr

⋆ since (6.27) is undetermined when
α = 1.
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The period-two solution of the square wedge-billiard is then derived from (6.4),
(6.2) and (6.5) with α = 1:

|Vn
⋆| =

√
2E⋆, (6.32)

R⋆ =
1

2g

(
2E⋆ − (Vr

⋆)2
)
, (6.33)

∆tr⋆ , ∆tl⋆ =

√
2E⋆ ± |Vr

⋆|
g

. (6.34)

From (6.24), we have:

Ṡr⋆ = −Ṡl⋆ =
|Vn

r⋆| − |Vn
l⋆|

2
. (6.35)

The steady-state edges velocities Ṡr⋆ and Ṡl⋆ are therefore equal to zero only if
|Vn

r⋆| = |Vn
l⋆|, i.e. in the square configuration. Period-two orbits exist in the

unactuated elastic wedge-billiard only in that configuration. Period-two orbits exist
with any other wedge angle but require an actuation of the edges, according to
(6.35).

Stability of these orbits is studied via the linearization of B2 = B ◦ B (with B
given in(6.3)) around its fixed point. We find the following jacobian matrix:






δVr[k + 2]
δ|Vn|[k + 2]
g√

|Vn
r⋆ ||Vn

l⋆ |
δR[k + 2]




 = M2






δVr[k + 1]
δ|Vn|[k + 1]
g√

|Vn
r⋆ ||Vn

l⋆ |
δR[k + 1]




 (6.36)

= M2M1






δVr[k]
δ|Vn|[k]
g√

|Vn
r⋆ ||Vn

l⋆ |
δR[k]






with

Mi =








1−4α2−α4+4α2χi

(1+α2)2
2α2(1+τi)
(1+α2)2

−2
√

τi

1+α2

2
α4+1

τi
−2α2

(α2−1)(1+α2)2

α4+1
τi

−2α2

(1+α2)2
2

(1+α2)
√

τi

2α2(1−α2+(1+α2)χi+2α2χ2
i )

(1+α2)2
√

τi

2α4(1+τi)(1+χi)
(1+α2)2

√
τi

1−α2−2α2χi

1+α2








and χi = (1 − τi)/(1 − α2) for i = 1, 2. The parameter τ1 = |Vn
r⋆|/|Vn

l⋆| = 1/τ2

denotes the normal velocity ratio. These parameters capture the energy difference
between both parabolas and have been defined as such only for computational con-
venience.

The eigenvalues of (6.36) were numerically computed, depending on α and τ1.
Fig. 6.3 depicts the stability regions of the period-two solution in the parameter
space (θ, τ1). As in the period-one stability analysis, one of the eigenvalues is always
equal to 1, the energy being conserved over two impacts in the period-two orbit. The
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Figure 6.3: Stability regions of the period-two solution: marginal stability (black)
and exponential instability (grey).

two remaining eigenvalues either are complex and lie on the unitary circle (black
zone, marginal stability) or are real, at least one of them being outside the unitary
circle (grey zone, instability).

Similarly to what was observed for the period-one orbit2, Fig. 6.3 shows that
all period-two orbits are exponentially unstable for θ > 45◦. In contrast, marginally
stable orbits coexist with unstable orbits for θ < 45◦, depending on the energy
difference |Er⋆ − El⋆| via the ratio τ1. Finally, for θ = 45◦, |Vn

r⋆| = |Vn
l⋆| induces

τ1 = τ2 = 1. The three eigenvalues of M2M1 are equal to 1. Because the dynamics
become linear (see Sepulchre and Gerard, 2003), then the period-two orbits are
unstable. �

It is of interest to observe the unstable behavior of all period-two orbits for a
particular value of θ about 26◦. This value corresponds to (1−α2)/((1 + α2)

2
) = 0.5

(i.e. α =
√√

5 − 2), in which case two eigenvalues of the linearized system (6.13)
are equal to ±i. The linearized system (6.36) corresponds to a double iteration of
(6.13) when τ1 = 1, resulting in two eigenvalues equal to (±i)2 = −1. They split
into two real eigenvalues, one of them outside the unit circle, when τ1 6= 1. The
same critical value of θ causes uncontrollability of a linearized model of the elastic
wedge-billiard which is controlled with one edge. For this particular aperture, the
dynamics of the normal velocity, the radial velocity and the energy decouple. At
first order, the control input leaves each of these dynamics invariant (Gerard and
Sepulchre, 2004).

2Note that the period-one eigenvalues (6.14) lie on a “slice” of Fig. 6.3, for τ1 = τ2 = 1
(χ1 = χ2 = 0). In that case, M1 and M2 are equal to (6.13).
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6.4 Periodic orbits of the sinusoidally actuated wed-

ge-billiard

None of the periodic orbits studied in Section 6.3 are attractors: either the linearized
system is marginally stable or unstable. In this section, we introduce how a simple
periodic actuation of the wedge can isolate and stabilize one of the periodic orbits,
characterized by its energy level(s) (E⋆ for a period-one orbit or Er⋆ and El⋆ for a
period-two orbit).

The stabilization method presented in this section is completely similar to the
one studied by Holmes (1982) in the bouncing ball dynamics (see Section 3.2.2), i.e.
a sinusoidal actuation of the edges (3.7). Such an harmonic motion is the closest
imitation of the fundamental cyclic motion of the juggler’s hands. Moreover, we
assume that this edges remain synchronized in anti-phase (in intrinsic space), such
that their aperture remains constant throughout the cycles.

As previously mentioned, the special configuration of the square wedge-billiard
turns out to bridge the bouncing ball dynamics studied in Section 3.2 and the wedge
dynamics.

6.4.1 The square wedge-billiard

The steady-state velocity-energy relation of the square wedge-billiard (6.32) has
exactly the same form as for a bouncing ball3, emphasizing the decoupling of the
square wedge: the dynamics along each edge can be viewed as a 1 DOF independent
bouncing ball motion that is unaffected by the bounces on the other axis (Sepulchre
and Gerard, 2003), see Chapter 5 (Fig. 5.4). The parameter Vr

⋆ determines the
phase shift between the two bouncing balls.

The steady-state regime is characterized by two frequency-locking relations be-
tween the ball and the wedge (Ronsse et al., 2004):

(t[k + 2] − t[k])⋆ ≡ ∆tr⋆ + ∆tl⋆ = n
2π

ω
, (6.37)

(t[k + 1] − t[k])⋆ ≡ ∆tr⋆ = (2m − 1)
π

ω
(6.38)

where (•)⋆ denotes the steady-state solutions. These relations rest on the trivial
assumption m ≤ n, with m and n ∈ N. Eq. (6.37) expresses that the ball period
is a multiple of the edge vibration period: this is the frequency-locking relation of
each dynamics similar to (3.10). Eq. (6.38) expresses that the phase difference
between two successive impacts must be equal to an odd multiple of the vibration
half-frequency. As a convention, m will be associated with the flight time between
the right edge and the left edge: ∆tr⋆ = (2m− 1)π/ω, while the flight time between

3Consider simply that the bouncing ball dynamics refer to an exchange of a maximal potential

energy E⋆ (at the top-point) and a maximal kinetic energy ∝ (Vn

⋆)2 (just before impacts), i.e.
|Vn

⋆| ∝
√

E⋆.
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Table 6.1: Periodic orbits for the square wedge-billiard. (x : y) denotes the ratio
between both flight times where x (y) is associated to the flight from left to right
(from right to left).

m=1 m=2 m=3 m=4 . . .

n=1 X X X

n=2 X X

n=3 X . . .

n=4

...
...

the left edge and the right edge will be ∆tl⋆ = (2n− 2m+1)π/ω in the steady-state
regime. Table 6.1 illustrates the first periodic orbits for the vibrating square wedge-
billiard and the ratios between the low toss and the high toss flight times for each of
these orbits. A sustained steady-state shower pattern will be characterized exactly
by the same ratios, n denoting also the number of juggled balls. It is interesting to
point out how the symmetry of the square wedge-billiard captures the symmetry of
the juggler behavior. Beek and Lewbel (1995) wrote a very accessible paper on the
“scientific aspects of juggling” where they present a compact notation for juggling
patterns: Site-swap notation represents the order in which props are thrown and
caught in each cycle of the juggle, assuming throws happen on beats that are equally
spaced in time, being the case both in most of the common juggling patterns, and
in the square wedge-billiard. The site-swap notation of the 3 balls shower is simply
‘51’, where the 5 refers to the duration of the high toss and the 1 to the time needed
to pass the ball from one hand to the other on the lower part of the arc. Each (x : y)
orbit presented in Table 6.1 will then be “site-swap” noted ‘xy’.

Injecting the flight time solutions (6.34) in (6.37) and (6.38), we obtain the
steady-state velocities of the periodic orbits of the square wedge-billiard, while the
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energy E⋆, the impact position R⋆ derive from (6.32) and (6.33):

E⋆ =
(nπg)2

2ω2
, (6.39)

|Vn
⋆| =

nπg

ω
, (6.40)

Vr
r⋆ = −(n − 2m + 1)πg

ω
= −Vr

l⋆ , (6.41)

R⋆ =
g

2

(π

ω

)2

(2m − 1)(2n − 2m + 1). (6.42)

The steady-state energy is independent of m. The radial velocity naturally corre-
sponds to the period-one solution (Vr

⋆ = 0) when n = 2m − 1 (see Table 6.1).
By considering the cartoon model introduced in Chapter 5 and a sinusoidal ac-

tuation along the axis perpendicular to the edges (see Fig. 5.4), the normal velocity
is updated as: Vn[k+2] = eVn[k]+(1+e)Ṡ[k+2], exhibiting the decoupling between
the dynamics along each edge. The stability properties of the periodic orbits are
immediately inherited from the decoupled dynamics, i.e. from the stability proper-
ties of the bouncing ball, assuming the small amplitude assumption4. Under this
assumption, the parametric stability region is slightly different of (3.17) (Holmes,
1982):

nπ
1 − e

1 + e
<

√
2Aω2

g
<

√

n2π2

(
1 − e

1 + e

)2

+ 1. (6.43)

Note that only g/
√

2 of the gravity field applies along each axis. The differences
between the parametric stability regions characterized by (3.17) and (6.43) have
been studied by Bapat et al. (1986). Significant differences between the exact and
the approximated model are more likely if e is below about 0.8; nevertheless, the
approximated model provides a good description of the qualitative dynamical be-
havior.

Consequently, each periodic orbit depicted in Table 6.1 is composed of two phase-
locked period-one bouncing balls. They are stable if (6.43) is respected.

6.4.2 The general vibrating wedge-billiard

The dynamics of a ball in the general wedge-billiard do not decouple in two indepen-
dent dynamics along each edge. The frequency-locking relation (6.37) between two
successive impacts times on the same edge is still valid. In contrast, we introduce a
scaling parameter ρ in (6.38) to take the energy dissymmetry into account:

∆tr⋆ = (2m − 1)ρ
π

ω
. (6.44)

4The small amplitude assumption of the bouncing ball assumes that the edges motion is much
smaller that the ball motion, the impacts therefore occurring at a constant position, i.e. s[k]
constant ∀k.
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The parameter ρ must fulfill 0 < ρ < 2n
2m−1

, tuning the flight time ∆tr⋆ between 0

and (t[k + 2] − t[k])⋆.
Injecting the flight time solutions (6.30) in (6.37), we obtain a relation about the

mean of the normal velocities:

|Vn
r⋆| + |Vn

l⋆| =
πng

ω

1 + α2

α2
(6.45)

that must be combined with (6.44) to obtain the steady-state normal velocities of
the periodic orbits, while the energy levels, the radial velocities and the impact
position derive from (6.27), (6.28) and (6.29):

Er⋆ =
1

2α2

(nπg

ω

)2
((

(2m − 1)ρ

2n

)2

(α2 − 1) + 1

)

, (6.46)

El⋆ =
1

2α2

(nπg

ω

)2
((

2n − (2m − 1)ρ

2n

)2

(α2 − 1) + 1

)

, (6.47)

|Vn
r⋆| =

nπg

ω

(α2 − 1) (2m−1)ρ
2n

+ 1

α2
, (6.48)

|Vn
l⋆| =

nπg

ω

(1 − α2) (2m−1)ρ
2n

+ α2

α2
, (6.49)

Vr
r⋆ =

−πg

ω
(n − (2m − 1)ρ) = −Vr

l⋆ , (6.50)

R⋆ =
g(1 + α2)

4α2

(π

ω

)2

(2m − 1)ρ(2n − (2m − 1)ρ). (6.51)

The energy exchange between the ball and the edges at each impact is:

±(El⋆ − Er⋆) = ±α2 − 1

2α2

(nπg

ω

)2
(

n − (2m − 1)ρ

n

)

.

In the bouncing ball dynamics, the bifurcation parameter is a non-dimensional
amplitude proportional to the vibration amplitude A and to the square of the vi-
bration frequency ω2 (Holmes, 1982; Schaal et al., 1996). Therefore both these pa-
rameters can be used to generate the cascade of bifurcations. This non-dimensional
parameter depends on ρ. This rests on a trigonometric relation between the steady-
state edges phases at impact deriving from sin2 φr⋆ + cos2 φr⋆ = 1:

cos2 φr⋆ + cos2 φl⋆ − 2 cos φr⋆ cos φl⋆ cos ((2m − 1)ρπ) = sin2 ((2m − 1)ρπ) (6.52)

which is not invertible.
Summarizing the derivations in this section, we obtain the following proposition:

Proposition 5 The wedge-billiard model (6.3) with harmonic actuation s(t) =
A sin (ωt) isolates particular periodic orbits among those derived in Proposition 4.



72
6.5. STABILIZATION OF PERIODIC ORBITS BY ROTATIONAL

ACTUATION OF THE EDGES

≈

Figure 6.4: The controlled rotational wedge (left), and the simplified model when µ
is small (right).

These orbits are characterized by (6.46) to (6.51) via n and m and satisfy frequency-
locking relations between the ball and the edges ((6.37) and (6.44)). For the particu-
lar square wedge configuration (θ = 45◦), (6.44) degenerates to (6.38). Considering
a cartoon model for a sinusoidal actuation (the parallel actuation depicted in Fig.
5.4), the dynamics decouple into two 1 DOF dynamics along each edge. Stability
of the isolated periodic orbits follows immediately from the bouncing ball stability
(6.43).

6.5 Stabilization of periodic orbits by rotational ac-

tuation of the edges

The Wiper robot, presented in Section 6.6, uses rotational actuation of the edges
instead of linear actuation as depicted in Fig. 5.4. A rotational implementation
is indeed much simpler to design, since the arms can be directly actuated by DC
motors. We examine in this section how rotational actuation modifies the model
studied in the previous sections, both for period-one and period-two orbits.

With rotational actuation, the angle θ of each edge with the vertical is no longer
constant, which significantly complicates the derivation of the flight map. To avoid
the complication of computing that new flight map, a “small amplitude” assumption
is introduced: we neglect the variation of θ in the derivation of the flight map but
only take it into account in the derivation of the impact map. As illustrated in Fig.
6.4, this simplification amounts to assume that the impacts always occur at angle
θ but that the angular actuation µ rotates the normal and tangential directions of
the impacted edge by an angle µ (Fig. 6.4, right). This simplification neglects the
displacement of the impact point and is more likely if |µ| ≪ θ.

The Poincaré map of the rotational wedge is derived in Appendix 6.A of this
chapter.

The general steady-state equations derived in Section 6.4 still hold in that case
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(Eqs. (6.46) to (6.51)). The edges velocity being equal to µ̇(t) = Aω cos (ωt), the
steady-state edges phases derive from (6.48), (6.49) and (6.60):

φr⋆ = arccos




1 − e

1 + e

nπg

AR⋆ω2

(α2 − 1)
(1+e)

(2m−1)ρ
2n

−e

1−e
+ 1

α



, (6.53)

φl⋆ = arccos




1 − e

1 + e

nπg

AR⋆ω2

(α2 − 1)
(1+e)

(2m−1)ρ
2n

−1

1−e
− 1

α



− π.

Because the steady-state impact position R⋆ is proportional to 1/ω2 (6.51), the non-
dimensional bifurcation parameter is now proportional to the vibration amplitude
A only. The vibration frequency acts as a temporal scaling factor and does not
influence the stability properties.

To analyze how the modified model affects the stability of periodic orbits, we
numerically computed the eigenvalues of the linearized Poincaré map in two simple
cases:

• The period-one orbits (n = 2m − 1, ρ = 1).

• The period-one and period-two orbits in the square rotational wedge (θ = 45◦,
ρ = 1).

6.5.1 Stability of period-one orbits

The simplest period-one orbit (n = m = 1) has been first mentioned as an open-loop
stable orbit in a wedge-billiard with a rotational sinusoidal actuation by Schaal and
Atkeson (1993). The stability region presented in this paper is in agreement with our
results. This stability region has been obtained from a linearized model which does
not rest on a “small amplitude” assumption. Accordance between stability regions
obtained from both models is viewed as a validation of our “small amplitude” model.

The period-one orbits are particular cases of Equations (6.46) to (6.51) and
Equation (6.53) with n = 2m − 1 and ρ = 1, which is required for period-one. We
find:

E⋆ =
3 + α2

8α2

(
(2m − 1)πg

ω

)2

, (6.54)

|Vn
⋆| =

1 + α2

α2

(2m − 1)πg

2ω
, (6.55)

Vr
⋆ = 0, (6.56)

R⋆ =
1 + α2

4α2

(
(2m − 1)π

ω

)2

g, (6.57)

φ⋆ = arccos

(
1 − e

1 + e

2α

A

1

(2m − 1)π

)

. (6.58)
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Figure 6.5: Parametric stability region of two period-one orbits in the general wedge
(solid lines). The dotted lines denote the physical minimum value for the amplitude
A (the arccos argument in (6.58) must be ≤ 1).

The stability is studied via the linearized Poincaré map of B̃ (6.60) and of the
flight time (6.5) around the period-one solution just derived. We find the Jacobian
matrix (6.63) derived in Appendix 6.B of this chapter. Its eigenvalues were numer-
ically computed for several values of e and α. Fig. 6.5 depicts the stability region
for the first two period-one orbits (n = 1, m = 1 (a) and n = 3, m = 2 (b)). The
superposed curves stand for different values of e.

A decreasing coefficient of restitution reduces the stability regions and shifts it
in a zone corresponding to closer angles between the edges. We can see that even
for e = 0, the first period-one orbit is still theoretically stabilizable with a sinusoidal
vibration of the edges if the impacts occur with θ ∈ [15◦, 40◦].

We conclude that sinusoidal actuation of edges stabilizes period-one orbits, for
any coefficient of restitution e < 1 and for a broad domain of wedge geometry. For
θ > 45◦ this exponential stability is in sharp contrast with the instability of the
same periodic orbit in the fixed elastic wedge.
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Figure 6.6: Parametric stability region of periodic orbits in the square wedge with
linear actuation (dotted) and rotational actuation (solid).
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6.5.2 Stability of period-two orbits in the square wedge

With linear actuation of the edges, we have shown in Section 6.4.1 that stability
of period-two orbits in the square wedge follows from the bouncing ball dynamics
analysis, yielding exponentially stable orbits in the parameter range (6.43). We now
show that this stabilization result also holds with rotational actuation of the edges,
by computing the eigenvalues of the Jacobian linearization of the map B̃ ◦ B̃ = B̃2

(6.60) and of (6.5) around the period-two solution. We find the matrix M̃2M̃1

derived in Appendix 6.B of this chapter (6.66).

Despite the new dynamics of the rotational wedge, there still exists a region in
the parameters space where the absolute values of the four eigenvalues of this matrix
are less than 1. This region is depicted on Fig. 6.6 (solid lines) for five of the periodic
solutions emphasized: (n = 1, m = 1) and (n = 3, m = 2) are two (1 : 1) period-one
solutions depicted in 6.6(a) and 6.6(d), respectively; while (n = 2, m = 1 — (1 : 3)),
(n = 3, m = 1 — (1 : 5)) and (n = 4, m = 2 — (3 : 5)) are three period-two
solutions depicted in 6.6(b), 6.6(c) and 6.6(e), respectively. Each of those stability
regions is compared with the corresponding stability region of the double bouncing
balls system (dotted lines), where

√
2A has been replaced by AR⋆ in (6.43). These

stability regions clearly overlap more accurately for a high coefficient of restitution
e. This makes a physical sense: the largest the coefficient of restitution, the smallest
the vibration, and thus the more acceptable the small angle assumption.

Note that each of the curves depicted in Fig. 6.5 crosses the θ = 45◦ line (light
dotted) with intervals corresponding to those drawn in Fig.s 6.6(a) and 6.6(d), for
the corresponding values of e.

6.5.3 Stability of period-two orbits in the actuated non-square

wedge

The eigenvalues of the Jacobian matrix of the period-two orbits in the non-square
wedge have not been computed. By analogy with the period-one orbits, we expect
the conclusions obtained for the square wedge to persist in a range of values around
θ = 45◦.

The results of this section are summarized in the following proposition:

Proposition 6 For a broad range of parameters (θ,e,A), a sinusoidal actuation of
the edges around a common fixed point (i.e. rotational actuation) achieves expo-
nential stability of isolated periodic orbits. In particular, Fig. 6.5 illustrates the
parametric stability region of two period-one orbits; and Fig. 6.6 illustrates the
parametric stability region of five periodic orbits in the square configuration.



CHAPTER 6. SENSORLESS STABILIZATION OF 2D PATTERNS OF THE
WIPER ROBOT 77

6.6 Experimental results

This section describes an experimental validation of the stability results derived in
the previous section for period-one and period-two orbits5.

The experimental validations have been realized with the Wiper robot, described
in Chapter 5 and pictured in Fig. 5.2. The goal of the crude model we derived in
Sections 6.2 to 6.5 is to capture the main effect of sensorless actuation of Wiper.
The good matching between our experimental data and the theoretical predictions
(see the rest of this section) is the best argument we can provide to validate the
model, at least for the period-one motion.

6.6.1 Stabilization of period-one orbits

Our first experimental result is the stabilization of the first period-one orbit (n =
m = 1) with rotational sinusoidal actuation of the edges. According to Fig. 6.5(a),
two parameters are supposed to be crucial in the determination of the theoretical
stability region: α, which is a geometrical parameter of the wedge and is therefore
derived from the edges position, and the coefficient of restitution e, which on the
contrary is difficult to estimate.

For a set of initial wedge aperture, we isolated experimentally the amplitude do-
mains where the first period-one motion is stable. The experiments were conducted
with a table inclined at an angle of 15◦ and a vibration frequency tuned in order
to have a steady-state impact position R⋆ close to 0.7m (Equation (6.57)). Both
parameters serve as tempo scaling factors and do not influence the stability regions.

Fig. 6.7 exhibits the experimental results obtained: all the tested conditions
are marked by a point. The white and light gray zones are simply crude “contour”
interpolations of the observed stability regions: all experimentally stable conditions
belong to the white set. The light gray set contains the conditions which have been
sorted as fragile but stable in the sense that either the period-one was stable, but
only for a limited number of impacts (basically more than 10 but less than 30),
or the puck described a complex motion confined around the period-one solution.
The dark gray zone covers the experimental instability region, and the black zone
excludes the experimental conditions leading to a risk of collision between the edges
or with the table frame.

In order to compare the experimental results with the theoretical predictions,
we superposed the theoretical stability region (solid lines) on Fig. 6.7, for e = 0.5.
This region fits very well the experimental results and therefore validates the model
and the mathematical analysis presented in the previous sections.

We note that Fig. 6.7 and Fig. 6.5(a) should be compared with caution. In Fig.
6.7, the parameter along the horizontal axis is the mean edge angle which is easily
determined experimentally. However, the mean edge angle differs from the impact

5The interested reader will find two movies illustrating the stabilization of these periodic orbits
on http://ieeexplore.ieee.org (Ronsse et al., 2006) or on the first author’s homepage.
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Figure 6.7: Experimental results on period-one stabilization: the points correspond
to the tested conditions, the white zone surrounds the stability region, the light gray
zone surrounds the “weak stability” region (see text), the dark gray zone depicts the
instability region and the black zone excludes the non-secure zone. The results are
compared with the theoretical prediction (solid lines) for e = 0.5.

angle, used as a parameter in Fig. 6.5. This explains why the theoretical parameter
stability regions in Fig. 6.7 appears to be shifted and elongated compared to the
corresponding region in Fig. 6.5(a).

6.6.2 Stabilization of period-two orbits

Experimental stabilization of period-two orbits turned out to be much more chal-
lenging. This is partly explained by the reduced stability regions of period-two orbits
(see Fig. 6.6), but we also point out two additional reasons supporting that fact:

• The basins of attraction of the period-two orbits are much smaller than the
period-one ones: a period-two orbit will be stabilized with a faster vibration
frequency than a period-one orbit with an equivalent steady-state impact po-
sition (compare the ω obtained from Equations (6.51) and (6.57) for similar
values of R⋆). The period-two orbits are therefore more sensitive to the phase
initial condition.

• The nonzero tangential impact velocity in period-two orbits causes the puck to
spin. This phenomenon, not captured by the model, likely affects the stability
properties and requires further investigations. See Spong (2001) for a study
on the control of the spin dynamics.

We focused on the stabilization of the first period-two orbit (n = 2,m = 1). Fig.
6.6(b) shows that this periodic solution is not stable in the square configuration for
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Figure 6.8: Stability region of the (n = 2,m = 1) period-two orbit in the general
Wiper for e = 0.5 (black points) and e = 0.7 (gray points).

the expected coefficient of restitution (e ≈ 0.5). The Jacobian matrix of the period-
two orbits in the general Wiper being hard to calculate, we preferred to simulate
numerically the effect of small perturbations in our dynamical model, around the
period-two limit cycle.

The points lying on Fig. 6.8 correspond to parameters values where a small
perturbation of the period-two solution decreases through the impacts. These points
therefore give an idea of the parametric stability region of that period-two orbit. Fig.
6.8 is consistent with Fig. 6.6(b)6: the parametric stability region has no intersection
with the 45◦ black dotted line for e smaller than 0.7.

We successfully stabilized the period-two orbit in the lab during more than 50
impacts with a vibration amplitude A equal to 7.45◦. The impact angular position
has been visually estimated around 43◦. This point is marked by a white square
in Fig. 6.8 and clearly belongs to the numerically predicted stability region of the
(n = 2,m = 1) period-two orbit. This result opens the door to the stabilization of
juggling patterns implying several pucks (two in this case), requiring only a temporal
separation of the pucks equal to 2π/ω. In this way, Wiper would mimic the popular
shower juggling pattern.

6.7 Conclusion

This chapter has established the experimental validation of the sensorless stabiliza-
tion of bounce juggling patterns in the Wiper robot, described in Chapter 5. This
result is also supported by a mathematical analysis of the modified stability prop-

6Let us recall that Fig.s 6.6(b) and 6.8 slice differently the stability region in the 3D parameter
space (e,θ,A): Fig. 6.6(b) slices the parameter space for θ = 45◦ while Fig. 6.8 slices the parameter
space for e = 0.5 and e = 0.7. These figures match at their intersections: (θ = 45◦,e = 0.5) and
(θ = 45◦,e = 0.7).
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erties: from periodic orbits which have been proved to be unstable, we derived an
actuation law which stabilizes the same patterns.

Aiming at mimicking the popular shower juggling pattern, in Section 6.3 two
particular periodic solutions of the wedge-billiard were studied: the period-two orbit,
and its degenerate case, i.e. the period-one orbit. These periodic solutions have been
proved to be either marginally stable or unstable for an uncontrolled elastic wedge-
billiard. In Section 6.4, we derived the steady-state periodic orbits of a periodically
actuated wedge-billiard. For the particular square wedge-billiard configuration, this
generalizes the results on the bouncing ball dynamics (Holmes, 1982) to stabilize
the wedge-billiard periodic orbits. A practical implementation of this stabilization
requires a different configuration which has been modeled in Section 6.5. Within a
single robot, several juggling patterns can therefore be stabilized through sensorless
actuation, at least theoretically.

Finally, these theoretical predictions have been validated by several experimen-
tal results on Wiper robot, as explained in Section 6.6. Fig. 6.7 emphasized that
our model under-estimated the stability region for the first period-one orbit. The
dynamical properties that are not captured by our model seem to have a stabilizing
effect on the period-one. Conversely, the period-two orbits were never stabilized
during more than 30 seconds in our actual setup, while the model predicted reason-
able parametric stability regions. We suppose that the spin effect, no captured in
the map B (6.60) while permanent in period-two trajectories, is highly destructive
for stability; and that the sensorless control is not robust enough to cope with these
unmodeled dynamics.

This chapter content has been published in Ronsse et al. (2006).

6.A Iteration map of the rotationally actuated wed-

ge-billiard

Under the “small amplitude" assumption (Fig. 6.4), the impact rule I captures the
angular rotation. It is now given by

M(µ[k])

(
Vr[k]
Vn[k]

)

=

(
1 0

0 −e

)

M(µ[k])

(
V −

r [k]
V −

n [k]

)

+

(
0

1+e
α

R[k]

)

µ̇[k] (6.59)

with M(µ) denoting the rotation matrix of the edge:

M(µ) =

(
cos µ α sin µ
− sin µ

α
cos µ

)

and µ[k] = µ(t[k]) (µ̇[k] = µ̇(t[k])) denoting the edge position (velocity) at impact
time t[k]. The presence of R[k] in (6.59) is due to a second important feature
introduced by the rotational actuation: the energy exchange with the edges depends
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now on the impact position R[k]. The map B̃ of the rotational wedge is given by:

(
Vr[k + 1]
Vn[k + 1]

)

= J(µ[k + 1])

(
|Vn|[k] − Vr[k] − |V −

n |[k + 1]
|V −

n |[k + 1]. sign(Vn[k])

)

+
1 + e

α

(
−α sin µ[k + 1]R[k + 1]

cos µ[k + 1]R[k + 1]

)

µ̇[k + 1],

R[k + 1] = R[k] +
1

2g
V 2

r [k] +
α2

2g
V 2

n [k] (6.60)

− 1

2g
(|Vn|[k] − Vr[k] − |V −

n |[k + 1])2 − α2

2g
|V −

n |2[k + 1]

with

J(µ) = M(−µ)

(
1 0
0 −e

)

M(µ) =

(

cos2 µ − e sin2 µ α(1+e)
2

sin 2µ
1+e
2α

sin 2µ sin2 µ − e cos2 µ

)

.

(6.61)
The flight time is still given by (6.5).

The “small amplitude" assumption is done around the steady-state periodic or-
bits. They are therefore unchanged with respect to those which have been derived
in Section 6.4. The actual actuation law is then:

µ(t) = A
(
sin ωt − sin ({φr⋆ , φl⋆})

)
, (6.62)

providing µ⋆ = 0.

6.B Jacobian matrices

The linearized Poincaré map of the period-one orbits of the rotational wedge-billiard
is the matrix M̃:
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(6.63)

that is given by:
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with

µ11 =
1 − e

1 + e

4α2

1 + α2
,
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√
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2πα
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.

Note that the determinant of M̃ is equal to

|M̃| =
e ((1 − e)(3α2 − 1) + 2(1 + α2))

(1 + e)(1 + α2)
(6.65)

which is equal to 1 in the elastic case (e = 1), ∀α. This illustrates that the sinusoidal
input does not achieve exponential stability of the period-one orbit in the elastic
wedge, because all the eigenvalues of this matrix cannot be < 1 in that case.

The linearized Poincaré map of the periodic orbits of the rotational square wedge-
billiard is the matrix M̃2M̃1:
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M̃1 being given by

M̃1 =








− 2η
η+ν

− 1−e
1+e

2(η+ν)
ν

1 − 2
η+ν

− 1−e
1+e

2(η+ν)
ην

−1−e
1+e

(η+ν)2

ην
−e(ν−η)

η+ν
+(1−e)( 2ηβ

η+ν
+ ν−η

ν ) (1−e) η+ν
ν

2e
η+ν

+(1−e)( 2β
η+ν

+ ν−η
ην ) (1 − e)β

(ν−η)η
η+ν

η ν−η
η+ν

0
2η

η+ν
0 2

η+ν
1








(6.67)
with

β =
(ν + η)(η − ν)

νη
− νη

2

√
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1 + e

1 − e
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Aπ2

)2

−
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2nπ
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)2

.

In (6.67), η = 2m− 1 and ν = 2n− 2m+1 depends on the steady-state flight times.
M̃2 has exactly the same structure as M̃1 with an exchange between ν and η.



Chapter 7

Rhythmic Feedback Control of

Wiper in Blindness

Music and rhythm find their way

into the secret places of the soul.

Plato

7.1 Introduction

In Chapter 6, we provided experimental validation of a sensorless control law (a
purely sinusoidal actuation of the juggler arms) that robustly stabilizes the period-
one orbit (Fig. 6.2(a)), but failed to robustly stabilize the period-two orbit (Fig.
6.2(b)) for more than a few seconds. The aim of the present chapter is consequently
to investigate whether adding feedback to the loop may help to robustly stabilize
the period-two. The control law proposed in the present chapter can be interpreted
as a phase and amplitude modulation of the sinusoidal control law, based on the
feedback information provided by the impact times. The technical material of this
hybrid control strategy (discrete feedback for continuous-time actuation) has been
presented for the bouncing ball in Chapter 4.

In Section 7.2, we briefly generalize the bouncing ball strategy to the special
configuration of Wiper that reduces to two coupled bouncing balls (see Section 5.2).
Along each decoupled dynamics — i.e. each edge — the control algorithm is exactly
similar to (4.15). Zero static error between the frequencies of these dynamics1 is
ensured through the integral control described in Section 4.3.3.

The more accurate model of Wiper, based on the wedge-billiard described in
Section 6.2 and derived in Section 6.A, is considered in Section 7.3. Discrete feedback
control based on impact times is realized in a similar manner to the bouncing ball
control: a model-based observer is synchronized with the actual dynamics through

1Such that the phase-lag between them is fixed and invariant.
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the impact times. Sustained experimental stabilization of the period-two orbit is also
provided. Once again, let us emphasize that our experimental validation suffers from
large discrepancies between the wedge-billiard model and the real setup dynamics.
For example, the Newton impact model does not capture the spin effect of the
puck, clearly visible in the period-two pattern. However, the focus of our approach
is precisely to validate the robustness of a model-based control scheme in a real setup
in spite of the many discrepancies between the model and the experimental setup.
The robustness has been quantified in Chapter 4 via the acceleration of the actuator
at impact. Obviously, we tuned our controller to match with the optimal acceleration
(4.21) locally around impacts, such that the closed-loop robustness there obtained
is large enough to compensate for the model discrepancies.

7.2 Feedback Control of the Simplified Wedge-Bil-

liard

First, let us generalize the robust feedback control strategy discussed for the bounc-
ing ball (Chapter 4) to the special configuration of the wedge-billiard, presented in
Section 5.2 and pictured in Fig. 5.4. The two edges are then assumed to remain
aligned with the two orthogonal axes of a fixed reference frame (this requires parallel
actuation of the edges, in contrast with the rotational actuation of the Wiper robot,
see Chapter 5). In this special configuration, the resulting dynamics nicely decouple:
the dynamics along each axis are the dynamics of a one-dimensional bouncing ball
(see Section 5.2 and Sepulchre and Gerard, 2003).

A period-two orbit of the planar juggler projects onto a period-one orbit along
each axis (see Fig. 5.4) . The phase shift Φ⋆ (not represented in the figure) between
the x-orbit and the y-orbit controls the shape (that is the apex difference between
the low toss and the high toss) of the period-two planar orbit, since the impact times
obey:

t[kx] =
2πkx

ω
, (7.1)

t[ky] =
2πky + Φ⋆

ω

where kx and ky denote the kth impact along the x and y axes, respectively; and ω
still denotes the cycle frequency.

Based upon this analogy, the stabilization of the period-two planar orbit of the
juggler reduces to the stabilization of a period-one orbit in two independent 1D
bouncing balls. As a consequence, the blind feedback control — i.e. based only
on impact times measurement — introduced in Chapter 4 directly applies for the
simplified wedge billiard. Any period-one or period-two orbit can be stabilized
through proper control of the phase between the two decoupled dynamics. Phase
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control with no static error can be achieved with the integral control described in
Section 4.3.3.

7.3 Experimental Validation with the Wiper Robot

7.3.1 Experimental setup

In the Wiper robot, both edges are actuated around their fixed point, like in the
general wedge-billiard model (see Sections 6.2 and 6.A, and Fig. 6.1). Fig. 5.2 is a
picture of Wiper.

The actuated metallic edges are controlled by two independent motors, which
are mounted close to each other (about 10cm) since the model assumes that both
edges rotate around the same point. Both motors are controlled with a real-time
computer running with XPCTarget (The Mathworks c©). Impact times are
detected by two accelerometers mounted at the top of the edges to record the high-
frequency vibrations generated by the impacts. More technical details can be found
in Appendix B.1.

7.3.2 From the bouncing ball model to the wiper model

The double bouncing ball model presented in Section 7.2 is obviously a crude model
of the Wiper robot: it neglects the coupling resulting from a rotational actuation
of the edges, and a steady-sate aperture possibly different from 2θ = 90◦. How-
ever, a more accurate model of Wiper was derived in Chapter 62, under the small
angle assumption (Fig. 6.4). Despite this assumption, the model predicted a para-
metric stability region of the period-one orbit which is in excellent agreement with
experiments (Fig. 6.7).

The Wiper model (see 6.60) has three state variables — Vr, Vn and R — and
two input variables — µ[k] and µ̇[k], denoting the impacted edge position w.r.t. θ
(left) or −θ (right), and velocity at impact k — see Figure 6.1. Injecting the flight
time (6.5) into the state-space model (6.60) gives the following state-space model,
depending explicitly on the time difference:
(

Vr[k + 1]
Vn[k + 1]

)

= J(µ[k + 1])

(
1−α2

1+α2 Vr[k] + 2α2

1+α2 |Vn|[k] − g(t[k + 1] − t[k])
“

−2

1+α2 Vr[k]+ 1−α2

1+α2 |Vn|[k]+g(t[k+1]−t[k])
”

sign(Vn[k])

)

+
1 + e

α

(
−α sin µ[k + 1]R[k + 1]

cos µ[k + 1]R[k + 1]

)

µ̇[k + 1], (7.2)

R[k + 1] =
1 + α2

4g

(
V 2

n [k] − (|Vn|[k] − g(t[k + 1] − t[k]))2)

with the rotation matrix J(µ) given by (6.61).

2See also Lehtihet and Miller (1986); Sepulchre and Gerard (2003); Gerard and Sepulchre (2004,
2005); Chang et al. (2005); Ronsse et al. (2005, 2006)
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The output control law (4.15) derived in Chapter 4 for the bouncing ball is
adapted for Wiper as follows:

(i) State observer: The deadbeat velocity observer (4.14) is replaced by a copy
of Wiper’s dynamics (7.2), in which we substitute estimated variables V̂r, V̂n,
R̂ to the state variables Vr, Vn, R; and where the measured flight time is
injected from the measurements (see (6.5)) to synchronize the observer with
the actual state variables:

(
V̂r[k]

V̂n[k]

)

= J(µ[k])

(
1−α2

1+α2 V̂r[k − 1] + 2α2

1+α2 |V̂n|[k − 1] − g(t[k] − t[k − 1])
“

−2
1+α2 V̂r[k−1]+ 1−α2

1+α2 |V̂n|[k−1]+g(t[k]−t[k−1])
”

sign(V̂n[k−1])

)

+
1 + e

α

(
−α sin µ[k]

cos µ[k]

)

R̂[k]µ̇[k], (7.3)

R̂[k] =
1 + α2

4g

(

V̂n

2
[k − 1] −

(

|V̂n|[k − 1] − g(t[k] − t[k − 1])
)2
)

.

We suppose that the inputs µ[k] and µ̇[k] are directly available from the mea-
sured trajectory of the edges µ(t) and the impact times. This observer displays
excellent convergence properties in simulations.

(ii) Tracking controller: The tracking controller (4.4), (4.5), (4.6) is adapted to
the Wiper model. The desired next impact time is estimated on the basis of
(6.5):

tu[k + 1] = t[k] +
1

g

(

|V̂ −
n |[k + 1] +

(α2 − 1)|V̂n|[k] + 2V̂r[k]

1 + α2

)

. (7.4)

The position reference is simply µ⋆
ρ = 0 since the objective is to stabilize

periodic orbits of Wiper whose impacts occur at ±θ. The “local” velocity of
the edge, at the impact point, depends obviously both on the velocity input
µ̇ρ[k +1] and the impact radial position R[k +1]. Defining Ṡ = ṡ/ sin θ, where
ṡ is equal to this local velocity, one has therefore µ̇[k+1] = αṠ[k+1]/R[k+1].
This “local” edge velocity derives from the impact rule:

Ṡu[k + 1] =
|Vn|ρ[k + 1] − e|V̂ −

n |[k + 1]

1 + e
(7.5)

where the reference post-impact velocity |Vn|ρ[k + 1] is equal to:

|Vn|ρ[k+1] =
g

2α2
(tρ[k + 3]− tu[k+1])− g(1 − α2)

2α2
(tρ[k + 2]− tu[k+1]) (7.6)

and is computed from the impact times reference. In the square configuration
(α = 1), this equation becomes similar to (4.25). In that case, the wedge-
billiard dynamics decouple into two bouncing ball dynamics, one along each
edge, as mentioned in Sections 6.4 and 7.2.
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Finally, the estimate of the radial position is obtained from the estimated state
variables (see (6.60)):

Ru[k + 1] = R̂[k] +
1

2g
V̂r

2
[k] +

α2

2g
V̂n

2
[k] (7.7)

− 1

2g
(|V̂n|[k] − V̂r[k] − |V̂ −

n |[k + 1])2 − α2

2g
(V̂ −

n )2[k + 1].

(iii) Continuous-time actuation: The piecewise quadratic control law (4.7) gen-
erates obviously sharp position transients at impact, even in steady-state. In
order to smoothen the actuation, we chose to design a closed-loop control
that reaches the desired position and velocity at impact, but that is smooth
in steady-state. This modification helped to prevent false impact detection
and motor damages in real experiments. This was realized by adapting the
open-loop sinusoidal law (3.7) to take feedback into account, for amplitude
and phase tunning:

µ(t) = A

(

κFB
Ṡu[k + 1]

Ṡ⋆

R⋆

Ru[k + 1]
+ (1 − κFB)

)

(7.8)

(sin (ω(t − tu[k + 1]) + φ⋆) − sin φ⋆) sign(•)

where sign(•) = 1 for the left arm and −1 for the right one. The steady-state
phase φ⋆ is given by (6.58), with m = 1. At time t = tu[k + 1], we obtain the
desired impact position (µ(tu[k + 1]) = 0) and the impact velocity:

µ̇(tu[k + 1]) = κFBµ̇u[k + 1] + (1 − κFB)µ̇⋆. (7.9)

The amplitude A is tuned to match, in steady-state, the local impact accelera-
tion S̈(tu[k +1]) with the optimal value defined by (4.21). This acceleration is
equal to µ̈(t), with µ defined in (7.8), and is obviously negative in steady-state
since 0◦ < φ⋆ < 90◦ (see (6.58)).

The feedback gain 0 ≤ κFB ≤ 1 is tuned to achieve the best possible trade-
off between the stabilizing performance of the observer-based output feedback
controller (κFB = 1) and its sensitivity to the model uncertainty.

7.3.3 Results

The experimental challenge was to stabilize period-one and, more importantly,
period-two orbits of Wiper. This section describes the results we obtained for an
aperture of θ = 40◦. The parameters of the actuation law (7.8) were tuned to
A = 9◦ and ω = 1.1πrad/s, while the feedback gain has been empirically tuned
to κFB = 0.4. The coefficient of restitution was estimated about e = 0.73. The

3The puck used in that experiment was then more elastic than the puck used in the experiments
reported in Chapter 6.
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Figure 7.1: The flight times between two successive impacts (detected by the ac-
celerometers) are depicted with the black crosses. The gray circles denote the ref-
erence flight times, as defined by tρ[k] − tρ[k − 1]. The first part of the trajectory
(about 0 < k < 50) displays the closed-loop stabilization of a period-one motion:
∆t⋆ = π/ω ≃ 0.91s. The second part of the trajectory (about 50 < k < 90) displays
the closed-loop stabilization of a “small” period-two motion, i.e. when the reference
flight time alternates between 0.9∆t⋆ and 1.1∆t⋆. The last part of the trajectory
(about k > 90) displays the closed-loop stabilization of a larger period-two motion:
the flight time reference alternates between 0.8∆t⋆ and 1.2∆t⋆.

experiment initialization has been realized by proper throwing of the puck while
the edges were sinusoidally actuated. Initialization then exploited the good basin of
attraction of the period-one orbit in open-loop (see Chapter 6). Closed-loop control
was switched on after convergence of the observer. Then the reference was switched
from period-one to a period-two with small aperture, and finally to a period-two
with large aperture. A movie is available4 to illustrate this experiment.

The flight times between two successive impacts, as detected by the accelerome-
ters, are depicted in Figure 7.1, w.r.t. the reference. The first part of the trajectory
(till k ≃ 50) displays the closed-loop stabilization of the period-one motion, i.e.
when the target flight time is always equal to ∆t⋆ = π/ω ≃ 0.91s. The second part
of the trajectory (about 50 < k < 90) displays the closed-loop stabilization of a
“small” period-two motion, i.e. when the flight time alternates between 0.9∆t⋆ and
1.1∆t⋆. The last part of the trajectory (about k > 90) displays the closed-loop sta-
bilization of a larger period-two motion: the flight time reference alternates between
0.8∆t⋆ and 1.2∆t⋆. The mismatch between the reference and the actual trajectory
increases for the “large” period-two orbit. This can be explained as follows: the
steady-state velocity Ṡ⋆ and impact position R⋆ depend on the reference pattern
(see (6.35), (6.48), (6.49) and (6.51)). However, for the sake of simplicity, we let
them equal to the steady-state values of the period-one motion ((6.55) and (6.57))

4http://ieeexplore.ieee.org (Ronsse et al., 2007a) or on the first author’s homepage. The
material is 15.9 MB in size.
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in the control law (7.8), regardless of the reference. This introduces a steady-state
error w.r.t. the two reference flight times when they significantly differ from each
other, when α 6= 1.

7.4 Conclusion

The successful experimental validation of period-two orbits in Wiper, with robust
control of the trajectory, contrasts with previous results obtained with a sensorless
control (Chapter 6 and Ronsse et al., 2006). In that case, indeed, the period-two
orbits collapsed after a few seconds. This was due to both the small model-predicted
basins of attraction, and the lack of robustness with respect to the real dynamics
variability. This illustrates that feedback is required to stabilize the shower pattern
with Wiper. A first “naive” attempt to add feedback in Wiper’s dynamics would
be to generalize the mirror law algorithms developed by Buehler, Koditschek and
Kindlmann (1988, 1990, 1994) for the bouncing ball. However, this law would have
sharply contrasted with the encouraging results of the sensorless strategy discussed
in Chapter 6, which had already satisfying behavior for the simplest periodic orbit,
i.e. the period-one. Indeed, the mirror law requires permanent tracking of the
puck in order to measure its continuous-time position and energy (see (3.18)). Such
permanent tracking would necessitate a complex sensor design. Preliminary results
of the mirror law implementation with a video-based tracker in Wiper can be found
in Manuel Gerard’s PhD thesis (Gerard, 2005).

In contrast, we discussed in Chapter 4 an alternative feedback source, based
on limited sensing demand: the impact times. Indeed, the times of impact can be
cheaply measured by accelerometers on the edges (as we did), or microphones, which
require limited signal processing to extract the relevant information (see Appendix
B.1). This limited sensing led to robust control, which compensated for the discrep-
ancies between the model-based observer and the actual dynamics. In agreement
with the robustness analysis of Section 4.3, we illustrated that sustained stabiliza-
tion in the lab required a proper (negative) tuning of the impact acceleration and
could never be achieved with positive acceleration.

The present chapter material has been published in Ronsse et al. (2007a).
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