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Faculté des Sciences Appliquées
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Abstract

Presburger arithmetic is the first-order theory of the integers with addition and or-
dering, but without multiplication. This theory is decidable and the sets it defines
admit several different representations, including formulas, generators, and finite
automata, the latter being the focus of this thesis. Finite-automata representations
of Presburger sets work by encoding numbers as words and sets by automata-
defined languages. With this representation, set operations are easily computable
as automata operations, and minimized deterministic automata are a canonical
representation of Presburger sets. However, automata-based representations are
somewhat opaque and do not allow all operations to be performed efficiently. An
ideal situation would be to be able to move easily between formula-based and
automata-based representations but, while building an automaton from a formula
is a well understood process, moving the other way is a much more difficult prob-
lem that has only attracted attention fairly recently.

The main results of this thesis are new algorithms for extracting information
about Presburger-definable sets represented by finite automata. More precisely,
we present algorithms that take as input a finite-automaton representing a Pres-
burger definable set S and compute in polynomial time the affine hull over Q

or over Z of the set S, i.e., the smallest set defined by a conjunction of linear
equations (and congruence relations in Z) which includes S. Also, we present
an algorithm that takes as input a deterministic finite-automaton representing the
integer elements of a polyhedron P and computes a quantifier-free formula corre-
sponding to this set.

The algorithms rely on a very detailed analysis of the scheme used for encod-
ing integer vectors and this analysis sheds light on some structural properties of
finite-automata representing Presburger definable sets.

The algorithms presented have been implemented and the results are encour-
aging : automata with more than 100000 states are handled in seconds.
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Chapter 1

Introduction

1.1 Presburger Arithmetic and its Applications

Back to the work of Frege, formal logic [End01] has been the subject of inten-
sive research and has lead to significant developments in many areas, including
mathematics and computer science. In the context of Tarski’s research project
of the years 1926-1929, Mojz̀esz Presburger has introduced in [Pre29, Pre91]
the first-order theory of the integer numbers with addition and ordering relation
〈Z, 0, 1,+, <〉, called Presburger arithmetic. By defining a set of axioms and ap-
plying the general procedure of elimination of quantifiers, Presburger showed that
this theory is complete and therefore decidable. This result is of particular signifi-
cance in light of Godël’s incompleteness proofs, and Church’s and Rosser’s unde-
cidability results, directed toward classical first order theories powerful enough to
represent the axioms of Peano arithmetic which involve only the constants 0 and
1, addition and multiplication.

Since Presburger arithmetic is expressive, and yet decidable, it is a useful tool
for many problems. These include discrete optimization problems [Sch86], com-
piler optimization techniques [OME], program analysis tools [SKR98] and state-
space exploration problems [Boi99, Ler03].

This work has been triggered by applications of Presburger arithmetic in the
context of state-space exploration. State-space exploration refers to the compu-
tation of all possible states of computer systems. In many instances of computer
systems, states can be represented by integer vectors, and both sets of states and
the transition relation can be defined in Presburger arithmetic. The general issue
is then to compute the set of reachable states by recursively applying the reflexive
closure R of the transition relation on the set of initial states I , i.e. computing the

1



2 CHAPTER 1. INTRODUCTION

least fixpoint R∗(I) of the sequence

I ⊆ R(1)(I) ⊆ R(2)(I) ⊆ R(3)(I) ⊆ . . .

where R(i)(X) represents R(R(. . . R
︸ ︷︷ ︸

i

(I))).

Concretely, the general approach is the following. If ϕ0(x) and ψ(x,x′), where x

and x′ are integer vector variables, are Presburger formulas defining respectively
the set of initial states I and the reflexive closure R of the transition relation, the
set of states reachable in at most one step is defined by the formula

ϕ1(x) =def ∃y (ϕ0(y) ∧ ψ(y,x)) .

The set of states reachable in at most k + 1 steps is defined by the formula

ϕk+1(x) =def ∃y (ϕk(y) ∧ ψ(y,x)) .

The fixpoint is reached after k steps if k is the smallest integer such that

R(k+1)(I) ⊆ R(k)(I).

This inclusion holds if and only if the following first-order formula holds.

∀x (ϕk+1(x) ⇒ ϕk(x)) .

Note that a fixpoint does not always exist and that there exist methods for accel-
erating the computation of the fixpoint (see [Boi99, Ler03]).

1.2 Representing Presburger Definable Sets

1.2.1 Formulas

The most immediate way of handling Presburger definable sets, i.e. sets definable
in Presburger arithmetic, is to work directly with the formulas. An important issue
is to be able to check the satisfiability of a formula, i.e. the existence of a solu-
tion satisfying a given formula ϕ(x1, . . . , xn), where x1, . . . , xn are the free vari-
ables. The general procedure for this problem relies on a quantifier-elimination
method. However, Presburger arithmetic as such does not admit the elimination
of quantifiers. For example, there is no quantifier-free formula equivalent to the
formula ∃y (x = 2 · y). We can overcome this by adding new symbols ≡m, with
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m ∈ {1, 2, . . .}, for congruence relations modulo m, i.e. x ≡m y if and only
if there exists an integer k such that m · k = x − y, where m · k is simply an
abbreviation of k + . . .+ k

︸ ︷︷ ︸

m

.

The general procedure for testing the satisfiability of a formula ϕ(x1, . . . , xn)

is the following.

• Generate a new formula ψ by quantifying existentially all free variables, i.e.
ψ =def ∃x1∃x2 . . .∃xn ϕ(x1, . . . , xn).

• Generate a quantifier-free formula ψ′ equivalent to ψ.

• Decide whether ψ′ holds.

Deciding whether the quantifier-free formula ψ ′ holds is simple since there are
no variable in ψ′, i.e. ψ′ is a Boolean combination of formulas a ≡m b, a ≤ b

or a = b, where a, b,m ∈ Z with m ≥ 1. So, the non-trivial operation is the
elimination of the quantifiers. A detailed procedure is given in Section 2.5.

The explicit handling of formulas and the quantifier elimination procedure
have been successfully implemented e.g. in the Omega package [OME]. The
major drawback of handling explicit formulas is the lack of canonicity. Indeed,
there exist generally many formulas corresponding to the set, and there is no cri-
terion that favors one particular formula rather than the others. As a result, if a
Presburger set is built incrementally, the final formula can be large although the
represented set is simple. In addition, if the construction is a fixpoint computation,
each step requires a test of inclusion, which is in the worst-case triply exponential
in the length of the formula [Opp78].

1.2.2 Generators

Presburger sets can be represented by means of generators according to the char-
acterization of Presburger-definable sets as semi-linear sets [GS66]. A subset S
of Zn is linear if there exist vectors c,p1, . . . ,pk ∈ Zn such that

S = {c +
k∑

i=1

ai · pi | a1, . . . , ak ∈ N}.

In the following, given the vector c ∈ Zn and the finite set P ⊆ Zn, we use the
notation (c;P ) to denote the linear set {c +

∑k

i=1 ai · pi | pi ∈ P ∧ ai ∈ N}.
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A subset S of Zn is semi-linear if it is a finite union of linear sets, i.e. if
there exists a finite set of vectors c1, . . . , ct ∈ Zn and a finite set of finite sets
P1, . . . , Pt ⊆ Zn such that S =

⋃

j∈{1,...,t}(cj;Pj). It has been shown in [GS66]
that a subset of Zn is a semi-linear set if and only if there exists a a Presburger
formula defining the set and the conversion from one representation to the other
is computable1.

Clearly, given a semi-linear set S = ∪i∈{1,...,k}(ci;Pi), there exists a Pres-
burger formula defining S. For the converse implication, one notes first that for
each set S corresponding to the integer elements of a (convex) polyhedron, i.e. the
integer solutions of a system of linear inequations, there exists a semi-linear set
generating S. Also, applying any operation corresponding to a Boolean operators
or to an existential quantification on semi-linear sets produces another semi-linear
set, whose semi-linear representation (i.e. the finite sets of generators) can be ef-
fectively computed from semi-linear representations of the initial sets. So, given
a Presburger formula ϕ(x1, . . . , xn), in which atomic formulas are linear inequa-
tions, a semi-linear representation of the set defined by ϕ is built incrementally.
One generates first semi-linear representations of sets corresponding to the linear
inequations (see [AC97]), and then applies the Boolean operators and the existen-
tial quantification. As an example, a semi-linear representation of the set defined
by the formula x1 ≥ 0 ∧ x2 ≥ 0∧ ∃y (x1 + x2 − 2 · y ≤ 3∧ x1 − 2 · x2 − 3 · y ≤

−1 ∧ −x1 + y ≤ 0) is
⋃

c∈{(0,1),(0,2),(0,3),(1,0)}

(
c; {(1, 0), (1, 1)}

)
.

Clearly, given the semi-linear representation of a set, finding one element in
the set is trivial. The costly operations are the computation of the semi-linear rep-
resentation of the intersection between two semi-linear sets. Yet, another short-
coming is that in general, the semi-linear representations are not canonical. None-
theless, this representation has been used in [RV02] in the context of sets restricted
to be positive integer elements in finite union of (convex) polyhedra, i.e. sets
which can be defined by Boolean combinations of inequations.

1.2.3 Finite Automata

A third approach for handling Presburger sets is to represent them via finite au-
tomata. The idea of representing sets of numbers with finite state machines dates

1The proof in [GS66] is done for subsets of Nn and Presburger arithmetic over the natural
numbers, but it is easily generalized to subsets of Zn.
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back to the work of Büchi [Buc60] and is the following. Any positive integer
can be encoded as a finite word w = dl . . . d0 of digits belonging to the set
Σr = {0, . . . , r − 1} such that

a =

l∑

i=0

di · r
i.

The encoding of a is not unique since prefixing any encoding by 0 generate an-
other encoding of the same number. This encoding scheme can be generalized for
all integers by requiring that the encodings of z ∈ Z such that −rp ≤ z < rp,
where p ≥ 0, have at least p + 1 digits. If z < 0, then, the encodings of z are the
last p′ +1 digits of rp′+1 + z for all p′ ≥ p. For example, the words 0120 and 2201

are 3-encodings of the numbers 15 and −8 respectively. Indeed, we have

−33 ≤ 15 < 33 and 15 = 32 + 2 · 31 + 0 · 30,

−32 ≤ −8 < 32 and 34 − 8 = 2 · 33 + 2 · 32 + 0 · 31 + 1 · 30.

According to the above scheme, the first digit of the encodings of an integer z
will be 0 if z ≥ 0 and r − 1 if z < 0. For this reason, the first digit of an
encoding is called the sign digit. One notes that the encoding of a number is
not unique since prefixing an encoding by its sign digit leads to another encoding
of the same number. For instance, 201 and 2201 are both 3-encodings of −8.
One generalizes this encoding scheme to vectors of integer numbers by reading
simultaneously the digits of the r-encodings of the components, provided that they
share the same length. An r-encoding of a vector a ∈ Zn is therefore a word over
the alphabet Σn

r . For example, the word (0, 2)(1, 2)(2, 0)(0, 1) is a 3-encoding of
the vector (15,−8). The restriction regarding the length of the encodings of the
vector components is easily dealt with since one can always prefix a r-encoding by
any sequence of sign digits without modifying the encoded number. This encoding
scheme is further detailed in Section 5.1. We say that a set S of positive integer
vectors is r-recognizable if there exists a finite automaton accepting the sets of all
r-encodings of the elements in S.

Any Presburger-definable set is r-recognizable for any r ≥ 2.

• First note that finite automata accepting the encodings of the elements in
sets corresponding to the formulas x = y, x ≤ y and x+ y = z are given in
Fig. 1.1, Fig. 1.2, and 1.3 respectively2.

2Recall that the words accepted by a finite automaton are those labeling paths from the initial
state (denoted as ) to a final state (denoted as ).
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0,0
1,1

0,0
1,1 q1q0

Figure 1.1: Finite automaton accepting the 2-encodings of the set {(x, y) ∈ Z2 |

x = y}.

0,1

1,0

0,0

0,0

0,0
1,1

1,1

0,1
1,0
1,1

q0
q1

q2

Figure 1.2: Finite automaton accepting the 2-encodings of the set {(x, y) ∈ Z2 |

x ≤ y}.

0,0,0

1,0,1

1,1,1
1,0,0
0,1,0

0,1,1

0,0,0
0,1,1
1,0,1

1,1,1
1,0,0
0,1,0

0,0,1 1,1,0

q1

q2

q0

Figure 1.3: Finite automaton accepting the 2-encodings of the set {(x, y, z) ∈ Z3 |

x+ y = z}.
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• Also, the sets of r-encodings of the union, intersection, Cartesian produc-
tand difference of two sets S1, S2 are the union, intersection, Cartesian prod-
uct and the difference of the sets of r-encodings of the elements in S1 and
S2. So, computing the union, intersection, Cartesian product and difference
of sets can be done by applying the corresponding operations on automata.

• Similarly, the set of r-encodings of the complement of a set S ⊆ Zn is
the set of r-encodings which are not encodings of elements of S, and an
automaton representing this set can be computed from the automaton repre-
senting S.

• Finally, given an automaton accepting the set of r-encodings of the elements
of a set S ⊆ Zn, one obtains an automaton accepting the set of r-encodings
of the set {(x1, . . . , xi−1, xi+1, . . . , xn) | (x1, . . . , xn) ∈ S} by removing
the ith component of the transition labels and ensuring that if some encoding
of a vector is accepted in the automaton, then all the smaller encodings of
the vectors are also accepted. This is required when the smallest encoding
of the removed component of a vector is larger than the smallest encoding
of the other component. For instance, all 2-encodings of the vector (2, 0, 0)

have at least 3 symbols whereas one encoding of the vector (0, 0) has only
one symbol.

• Since any Presburger-definable set can be defined by a formula obtained by
combining atomic formulas of types x+ y = z and x ≤ y with Boolean op-
erators and existential quantifiers, we conclude that any Presburger-definable
set is r-recognizable.

For example, a finite automata accepting the 2-encodings of the elements in the set
defined by the formula ∃y (x1+x2−2·y ≤ 3∧x1−2·x2−3·y ≤ −1∧−x1+y ≤ 0)

is given in Fig 1.4.
In 1969, A. Cobham proved that any subset of N r-recognizable for all r ≥ 2

is definable in Presburger arithmetic [Cob69], and this result has been generalized
by A. Semenov in [Sem77] for subsets of Nn, i.e. any subset of Nn r-recognizable
for all r ≥ 2 is definable in Presburger arithmetic. Another proof of this result
can be found in [BHMV94, Muc03]. The generalization to subsets of Zn does not
present any additional difficulties.

The automata-based representations of Presburger sets have been recently in-
vestigated in practical applications [WB95, BC96, Boi99]. This approach presents
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0,0

1,0
1,1

0,1

0,0

1,0
1,1

0,10,0

1,0

0,0

1,1

1,0

0,1

0,1

1,0
0,0

1,1
1,0

1,1

0,1

0,0

1,0
1,1

0,1

0,0
0,1
1,1

0,0
q1 q2

q3

q4

q7

q5

q6

q0

Figure 1.4: Finite automaton accepting the 2-encodings of the set {(x1, x2) ∈ N2 |

∃y (x1 + x2 − 2 · y ≤ 3 ∧ x1 − 2 · x2 − 3 · y ≤ −1 ∧ −x1 + y ≤ 0)}.

two main advantages. First, automata have a canonical form. Second, finite au-
tomata theory has been investigated for a long time, and efficient (polynomial
time complexity) procedures exist for set operations performed on automata in
the canonical form (except for projection which may require an exponential time
determinization in order to remain in canonical form). Those characteristics make
the automata-based approach particularly suitable for applications involving many
set manipulations. Still they are some drawbacks associated to automata-based
representations. First, simple sets can lead to large automata. For example, the
canonical automaton representing the set of integer solutions satisfying the linear
equation x − 10000y = 0 has more than 10000 states. Secondly, some simple
mathematical transformations such as an affine transformation are costly when
performed on automata. Indeed, those operations are achieved by means of a se-
quence of product, intersection, projection and determinization operations, and
the determinization can lead to an exponential increase of the number of states.
Finally, automata are somewhat opaque representations and existing procedures
may not be sufficient or efficient if one is interested in extracting the information
contained in the automata. For example, in the context of state-space exploration,
one would like to identify quickly the unexpected states or to use the results of
an analysis performed with automata-based representations as input to tools us-
ing other representations, but those issues are not properly addressed by existing
procedures.
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1.3 Our Contribution

In this thesis, we address some of the above drawbacks related to automata-based
representation of sets of integer vectors.

We present algorithms that take as input a finite automaton representing a
Presburger definable set S and compute in polynomial time the affine hull over
Q or over Z of the set S. The affine hull over D, with D ∈ {Q,Z}, of a set S,
denoted affD(S), is the smallest set containing all the affine combinations of S,
i.e. if x1, . . . ,xk ∈ S, then

k∑

i=1

ai · xi ∈ affD(S),

for all a1, . . . , ak ∈ D such that
∑k

i=1 ai = 1. Interestingly, given a set S ⊆ Qn,
affQ(S) is the set of elements (in Qn) satisfying a conjunction of linear equations
and is the smallest set containing S with this property. Similarly, given a set S ⊆

Zn, affZ(S) is the set of elements (in Zn) satisfying a conjunction of equations
and congruence relations and is the smallest set containing S with this property.

We also present an algorithm that takes as input a deterministic finite au-
tomaton representing the integer elements of a polyhedron P and computes a
quantifier-free formula corresponding to this set.

Our algorithms rely on a very detailed analysis of the scheme used for encod-
ing integer vectors and this analysis sheds light on some structural properties of
finite automata representing Presburger definable sets.

The general problem of computing formulas or generators corresponding to
sets of integer vectors represented by automata has been addressed in [Ler03,
Lat04, Lug04, Ler04b, Ler04a, Ler05, Lat05a, FL05]. What really distinguishes
our approach is that our focus is on practical solutions. Indeed, the algorithms
presented in this thesis have been implemented and applied to automata occurring
in practical applications, with more than 100000 states. Also, the formulas gener-
ated by our algorithms present the advantage of being such that a polynomial time
procedure exists for generating an automaton representing the same set.

1.4 Overview of the Thesis

The thesis is divided in two parts.
In the first part, we review the main theoretical concepts required for under-

standing our contribution. Chapter 2 recalls some basic notions regarding sets,
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numbers and first-order theories. In Chapter 3, we detail some notions of algebra;
those include the concept of (convex) polyhedron, vector space over Q and Z-
module and some of their properties. Relevant notions regarding finite automata
are provided in Chapter 4, and in Chapter 5, we show how finite automata can
represent sets of integer vectors.

In the second part, we present our main contributions. In Chapter 6, we
present methods for computing over-approximations of sets represented by au-
tomata. More precisely, we present methods for computing the affine hulls over
Q and over Z of the sets represented by automata.

In Chapter 7, we characterize automata representing integer elements of poly-
hedra, and present an algorithm which, given a finite automaton representing the
integer elements of a polyhedron, generates both a formula whose integer solu-
tions are the integer elements of the polyhedron as well as a semi-linear represen-
tation of this set.

Finally, in Chapter 8, we give general conclusions and present directions for
future work.



Part I

Theoretical Background

11





Chapter 2

Preliminaries

2.1 Sets and Relations

We recall useful facts regarding sets and relations, and introduce some notations.
Given two sets A and B, we write A ⊆ B if all elements of A are in B and

A ⊂ B if in addition there is at least one element in B which is not in A. Also,
the cardinality of a finite set S is denoted by |S|.

A binary operation ∗ on a set is a rule which assigns to each pair of elements
of the set an element of the set. A binary operation ∗ on a set S is commutative if
a ∗ b = b ∗ a for all a, b ∈ S. The operation is associative if (a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a, b, c ∈ S.
The Cartesian product of two sets A and B, denoted A × B, is the set of all

ordered pairs (x, y) such that x ∈ A and y ∈ B. The set An is the set of n-tuples
of elements of A.

A relation R on a set S is a subset of S2. A n-ary relation on A is a a subset
of An.

We say that a binary relation R on set S is

1. reflexive if (a, a) ∈ R for all a ∈ S;

2. transitive if (a, b) ∈ R and (b, c) ∈ R implies that (a, c) ∈ R;

3. symmetric if (a, b) ∈ R implies (b, a) ∈ R;

A relation R that is reflexive, symmetric and transitive is said to be an equiv-
alence relation.

13
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Given a set S and an equivalence relation R on S, the equivalence class of
an element a ∈ S, denoted [a]R, is the subset of all elements in S which are
equivalent to a :

[a]R = {b ∈ S|(a, b) ∈ R}.

A partition of a set S is a set of non-empty subsets of S such that every element
of S is in exactly one of these subsets.

If an equivalence relationR is given on the set S, then the set of all equivalence
classes of R forms a partition of S. Conversely, if a partition P is given on S, we
can define an equivalence relation R on S by writing (a, b) ∈ R iff there exists a
member of P which contains both a and b. The notions of equivalence relation
and partition are thus essentially equivalent.

The number of equivalence classes generated by an equivalence relation R is
the index of R. Given two equivalence relationsR1, R2 defined on the same set S,
R1 is a refinement of R2 if for each equivalence class [a]R1

of R1, there exists an
equivalence class [b]R2

of R2 such that [a]R1
⊆ [b]R2

.
A (total) function from X to Y is a subset f of the cartesian product X × Y ,

such that for each x ∈ X , there is a unique y ∈ Y , denoted f(x), such that the
ordered pair (x, y) belongs to f .

A partial function from X to Y is a subset f of the cartesian product X × Y ,
such that for each x ∈ X , there is at most one element y ∈ Y , denoted f(x), such
that the ordered pair (x, y) belongs to f . Given an element x ∈ X , if there is no
element y ∈ Y such that (x, y) ∈ f , one writes f(x) = ⊥.

2.2 Numbers, Vectors, Matrices

As usual, R, Q, Z and N denote the sets of real, rational, integer and natural
numbers.

Given a number a, |a|, dae and bac denote respectively the absolute value of
a, the smallest integer larger or equal to a and the largest integer smaller or equal
to a respectively. Also, logr(a) is the logarithm in base r of a and is well defined
if a, r > 0. The notation log a is also used for log2(a).

Given an integer m with m > 0, two integers a, b ∈ Z are congruent modulo
m, denoted a ≡m b, if m divides a − b. We use the notation b mod m to denote
the integer in {0, . . . , m − 1} congruent modulo m to b. Congruence modulo m
is an equivalence relation, and the set of equivalence classes of this relation is
denoted by Zm. In the following, each class in Zm is represented by the element
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a in the class such that a ∈ {0, . . . , m− 1}. So, any addition or multiplication of
elements in Zm corresponds to addition or multiplication in Z modulo m so that
the result is in {0, . . . , m− 1}.

Let D be any set among Q, N, Z and Zm. For n ∈ N, n ≥ 1, we denote by
Dn the set of vectors with n components in D. The ith component of a vector a is
written a[i]. Vector addition, vector multiplication by a scalar and scalar product
are defined as usual, i.e.

• given k ∈ D and a,b ∈ Dn, b = ka is such that b[i] = ka[i] for all
i ∈ {1, . . . , n};

• given a,b, c ∈ Dn, c = a + b is such that c[i] = a[i] + b[i] for all i ∈
{1, . . . , n};

• given k ∈ D and a,b ∈ Dn, k = a.b is such that k =
∑n

i=1 a[i]b[i].

Also, given two sets A,B ⊆ Dn, we define A +B = {a + b | a ∈ A ∧ b ∈ B}.
If A = {a}, we simply write a + B for A + B. For any vector a ∈ Dn, ‖ a+‖ =
∑

a[i]≥0 a[i] and ‖ a−‖ = −
∑

a[i]<0 a[i].
For p, q ∈ N, p, q ≥ 1, Dp×q is the set of p × q-matrices with components in

D. For a matrix A ∈ Dp×q, the row index set of A is {1, . . . , p} and the column
index set is {1, . . . , q}, and the entry located in the ith row and jth column is
written A[i, j]. The ith row of A is denoted A[i, ∗] and similarly, the jth column
is denoted A[∗, j]. For c1, . . . , cq ∈ Dp and A ∈ Dp×q, we write A = (c1 · · · cq)

if A[i, j] = cj[i] for all i ∈ {1, . . . , p} and j ∈ {1, . . . , q}. The matrix In will
denote in the sequel the identity matrix of dimension n, that is, In ∈ Zn×n and

In[i, j] =

{
0 if i 6= j

1 if i = j
.

We define matrix transposition, multiplication of matrix by a scalar, matrix
addition and matrix multiplication as usual, i.e.

• given A ∈ Dp×q, B ∈ Dq×p, B = At is such that B[j, i] = A[i, j] for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , q};

• given k ∈ D, A,B ∈ Dp×q, B = kA is such that B[i, j] = kA[i, j] for all
i ∈ {1, . . . , p}, j ∈ {1, . . . , q};

• given A,B,C ∈ Dp×q, C = A + B is such that C[i, j] = A[i, j] + B[i, j]

for all i ∈ {1, . . . , p}, j ∈ {1, . . . , q};
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• given A ∈ Dp×q, B ∈ Dq×r, C ∈ Dp×r, C = AB is such that C[i, j] =
∑q

k=1 A[i, k] · B[k, j] for all i ∈ {1, . . . , p}, j ∈ {1, . . . , r}.

A matrix is in column echelon form if the following conditions are satisfied.

1. All zero columns are at the right of the matrix.

2. The first nonzero entry of each nonzero column after the first one occurs
below the first non-zero entry of the previous column.

An integer matrix H ∈ Zm×n is in Hermite form if the following conditions
are satisfied.

1. H is in column echelon form.

2. For all i ∈ {1, . . . , n}, if the ith column is a nonzero column and if H[ki, i]

denotes the first non-zero entry of this column, then 0 < H[ki, i] and 0 ≤

H[ki, i
′] < H[ki, i] for all i′ ∈ {1, . . . , i− 1}.

Example 1. Let A1 =





1 4 8

3 5 2

8 8 1



, A2 =





1 0 0

3 5 0

8 8 1



, A3 =





1 0 0

3 5 0

8 8 9



.

The matrix A1 is neither in column echelon form nor in Hermite form, the matrix
A2 is in column echelon form but not in Hermite form, and finally, the matrix A3

is both in column echelon form and in Hermite form.

Finally, an integer matrix A ∈ Zm×n is prime1 if the greatest common divisor
of the determinants of the largest square matrices obtained from A by removing
some rows or columns is 1.

2.3 Systems of Linear (In)Equations

Given a vector a ∈ Dn and a scalar b ∈ D, the formula a.x = b, where x ∈ Dn is
an unknown of the equation, is a linear equation, also called affine relation, and
a.x ≤ b is a linear inequation. A system of linear equations is a conjunction of
linear equations a1.x = b1 ∧ . . . ∧ am.x = bm and is denoted Ax = b where
A[i, j] = ai[j] and b[i] = bi, i ∈ {1, . . . , m}. A system of linear inequations is
defined similarly and is denoted Ax ≤ b.

1The concept of prime matrix as defined here appeared in [Smi61].
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2.4 Basic Notions of Abstract Algebra

The following definitions are standard definitions [Fra94].
A group 〈G, ∗〉 is a set G together with a binary operation ∗ such that the

following axioms are satisfied.

• The binary operation ∗ is associative.

• There is an element e in G such that e ∗ x = x ∗ e = x for all x ∈ G. This
element is an identity element for ∗ on G.

• For each a in G, there is an element a′ in G with the property that a′ ∗ a =

a ∗ a′ = e. The element a′ is an inverse of a with respect to ∗.

A group 〈G, ∗〉 is abelian if ∗ is commutative.

Example 2. The set Z together with the addition + is an abelian group, but the
set Z together with the multiplication · is not a group.

A ring 〈R,+, ·〉 is a set R together with two binary operations + and · of addi-
tion and multiplication defined on R such that the following axioms are satisfied.

• 〈R,+〉 is an abelian group.

• Multiplication is associative.

• For all a, b, c ∈ R, the left distributive law, a · (b+ c) = (a · b) + (a · c), and
the right distributive law, (a+ b) · c = (a · c) + (b · c) hold.

A ring R in which the multiplication is commutative is a commutative ring. A
ring R with a multiplicative identity 1 such that 1 · x = x · 1 = x for all x ∈ R

is a ring with unity. A multiplicative identity in a ring is unity. A multiplicative
inverse of an element a in a ring R with unity 1 is an element a−1 ∈ R such that
a · a−1 = a−1 · a = 1.

Let R be a ring with unity. If every nonzero element of R has an inverse, then
R is a division ring. A field is a commutative division ring.

Example 3. The set Z together with the addition and multiplication is a commu-
tative ring with unity but it is not a field, whereas the set Q with the addition and
the multiplication is a field.
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A vector space is an abelian group V under addition and a field F , together
with an operation of scalar multiplication · of each element of V by each element
of F on the left, such that for all a, b ∈ F and x,y ∈ V , the following conditions
are satisfied.

• a · x ∈ V .

• a · (b · x) = (a · b) · x.

• (a+ b) · x = (a · x) + (b · x).

• a · (x + y) = (a · x) + (a · y).

• 1 · x = x.

In the sequel, we will say that V is a vector space over F .
A (left) R-module is an abelian group M under addition and a ringR, together

with an operation of scalar multiplication of each element of M by each element
of R on the left such that for all a, b ∈ R and x,y ∈ M , the following conditions
are satisfied.

• a · x ∈M .

• a · (b · x) = (a · b) · x.

• (a+ b) · x = (a · x) + (b · x).

• a · (x + y) = (a · x) + (a · y).

In the sequel, we will say that M is a R-module.

Example 4. The set {k · (1, 1) | k ∈ Z} with vector addition forms an abelian
group, and this group combined with multiplication over Z forms a Z-module, but
not a vector space since Z is not a field. The set {k · (1, 1) | k ∈ Q} with vector
addition forms an abelian group, and this group combined with multiplication
over Q forms a vector space over Q.

Note that aR-module is very much like a vector space except that the “scalars”
form a ring. Intuitively, the major difference is that in a R-module, one cannot
“cancel” a scalar by multiplying by another scalar. For example, one cannot gen-
erate (3, 1) ∈ Z2 by multiplying 7 · (3, 1) ∈ Z2 by some integer. Conversely, one
obtains (3, 1) ∈ Q2 by multiplying 7 · (3, 1) ∈ Q2 by 1

7
∈ Q.
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2.5 Quantifier-elimination in Presburger Arithmetic

In this section, we detail an important aspect of the proof in [Pre29, Pre91], i.e.
the fact there exists a quantifier-elimination method in Presburger arithmetic. We
mainly follow [End01].

First note that the theory of 〈Z, 0, 1,+, <〉 does not admit elimination of quan-
tifiers. We can overcome this by adding the symbols ≡2, ≡3, . . . with ≡m denoting
congruence relation modulo m. The structure for this expanded language is then
〈Z, 0, 1,+, <,≡m>0〉. By definition, for all x, y, we have

x ≡m y iff ∃z (x+m · z = y).

We deduce that for all sets S ⊆ Zn, S is definable in the structure 〈Z, 0, 1,+, <〉

iff S is definable in 〈Z, 0, 1,+, <, (≡m)m>0〉.
In the sequel, we call Presburger formula any well-formed formula over the

language of the structure 〈Z, 0, 1,+, <, (≡m)m>0〉.

Proposition 5. The theory 〈Z, 0, 1,+, <, (≡m)m>0〉 admits the elimination of the
quantifiers.

Proof. We prove that for each formula, there exists an equivalent quantifier-free
formula.

Note first that for all formulas ϕ, ∀x(ϕ) is equivalent to ¬∃x (¬ϕ), and there-
fore, one only has to consider the elimination of existential quantification ∃x. We
detail below a procedure removing the innermost existential quantifier, i.e. given
a formula ∃y ϕ(x1, . . . , xn, y) where ϕ is a quantifier-free formula, we generate
a quantifier-free formula ϕ′(x1, . . . , xn) equivalent to ∃y ϕ(x1, . . . , xn, y). By
definition, for all formulas ϕ1, ϕ2, the formulas ϕ1 ⇒ ϕ2 and ϕ1 ⇔ ϕ2 are re-
spectively equivalent to the formulas ¬ϕ1 ∨ ϕ2 and (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2).
Therefore, without loss of generality, we can assume that the only Boolean con-
nectives occurring in ϕ are ∧, ∨ and ¬.

For a term t and a natural number n, we denote by n · t and n the terms
t+ . . .+ t
︸ ︷︷ ︸

n

and 1 + . . .+ 1
︸ ︷︷ ︸

n

respectively. Any term can be expanded to a1 · x1 +

. . . + an · xn + b with a1, . . . , an, b ∈ N. Also, we use the abbreviation t1 ≤ t2
to denote t1 = t2 ∨ t1 < t2. Since each equality t1 = t2 can be expressed
as t1 ≤ t2 ∧ t2 ≤ t1, we assume in the following that all atomic formulas
occurring the formula are either of the form t1 ≤ t2 or of the form t1 ≡m t2. Also,
without loss of generality, each variable occurs either on the left-hand side or on
the right-hand side but not both.
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1. Eliminate negation. Thanks to de Morgan’s laws, the negations can be
pushed inwards, i.e. ϕ can be transformed into Boolean combination of
atomic formulas or negations of atomic formulas. Then, since for all terms
t1, t2, the formulas ¬(t1 ≤ t2) and ¬(t1 ≡m t2) are respectively equivalent
to the formulas t2 + 1 ≤ t1 and

∨

k∈{1,...m∗−1}(t1 ≡m t2 + k), one can re-
move negations. Also, using de Morgan’s laws, ϕ can be transformed into
a disjunction of conjunctions of atomic formulas. Note that for all formulas
ϕ1, ϕ2, ∃y (ϕ1∨ϕ2) is equivalent to (∃y ϕ1)∨(∃y ϕ2). So, in the remaining
steps of the procedure, it suffices to show how to transform a conjunction of
atomic formulas into an equivalent quantifier-free formula. Without loss of
generality we can assume that y appears in each conjunct.
We illustrate the remaining steps with the formula

∃y (y ≥ 0 ∧ x1 + x2 ≤ 2 · y + 3 ∧ x1 + 1 ≤ 2 · x2 + 3 · y ∧ y ≤ x1

∧ x1 + x2 + 1 ≡3 2 · y).

2. Uniformize the coefficients of y. Let a∗ > 0 be the least common multiple
of the coefficient of y. Each equation and inequation can be converted to
an equivalent formula in which the coefficient of y is a∗ by multiplying the
terms by the appropriate factor. For the congruence relations, one has also
to multiply the modulos :

t1 ≡m t2 iff k · t1 ≡k·m k · t2,

for all terms t1, t2 and integer numbers k,m > 0.
In our example, we get

∃y (6 · y ≥ 0 ∧ 3 · x1 + 3 · x2 ≤ 6 · y + 9 ∧ 2 · x1 + 2 ≤ 4 · x2 + 6 · y

∧ 6 · y ≤ 6 · x1 ∧ 3 · x1 + 3 · x2 + 3 ≡9 6 · y).

3. Eliminate the coefficients of y. Replace a∗ ·y by y′ in each atomic formula
and add the congruence relation y ′ ≡a∗ 0 as a new conjunct. By transposing
terms to compensate for the absence of substraction, we get a formula of
the form

∃y′




∧

j∈{1,...,p}

tj − sj ≤ y′ ∧
∧

j∈{p+1,...,p+q}

y′ ≤ tj − sj

∧
∧

j∈{p+q+1,...,p+q+r}

y′ ≡mj
tj − sj



 ,
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where tj, sj, with 1 ≤ j ≤ p+ q + r, are terms in which y ′ does not occur.

In our continuing example we get

∃y′ (0 ≤ y′ ∧ 3 · x1 + 3 · x2 − 9 ≤ y′ ∧ 2 · x1 − 4 · x2 + 2 ≤ y′

∧ y′ ≤ 6 · x1 ∧ y′ ≡9 3 · x1 + 3 · x2 + 3 ∧ y′ ≡6 0).

We now have a formula that asserts the existence of an integer number y ′
which is not smaller than certain lower bounds α1, . . . , αp and not larger
than certain upper bounds and which satisfies certain congruences. Let m∗

be the least common multiple of the moduli mp+q+1, . . . , mp+q+r. By defi-
nition, for all y′ ∈ Zn, y′ +m∗ ≡mj

y′ for all j ∈ {p+ q+1, . . . , p+ q+r}.
So, as y′ increases, the pattern of residues of y ′ modulomp+q+1, . . . ,mp+q+r

has periodm∗. Thus in searching for a solution to the congruences, one only
needs to search m∗ consecutive integers. Therefore, considering the lower
bounds, if there is a solution, then one of the following is a solution :

α1, α1 + 1, . . . , α1 +m∗ − 1,

α2, α2 + 1, . . . , α2 +m∗ − 1,

. . .

αp, αp + 1, . . . , αp +m∗ − 1.

The formula asserting the existence of a solution for y ′ can now be replaced
by a quantifier-free disjunction that asserts that one of the numbers in the
above matrix is an integer solution :

∨

k∈{0,...,m−1}

∨

j′∈{1,...,p}




∧

j∈{1,...,j′−1,j′+1,...,p}

tj − sj ≤ tj′ − sj′ + k

∧
∧

j∈{p+1,...,p+q}

tj′ − sj′ + k ≤ tj − sj

∧
∧

j∈{p+q+1,...,p+q+r}

tj′ − sj′ + k ≡mj
tj − sj



 .
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In our continuing example, we get
∨

k∈{0,...,17}

[
(3 · x1 + 3 · x2 − 9 ≤ k ∧ 2 · x1 − 4 · x2 + 2 ≤ k ∧ k ≤ 6 · x1

∧ k ≡9 3 · x1 + 3 · x2 + 3 ∧ k ≡6 0)

∨ (0 ≤ 3 · x1 + 3 · x2 − 9 + k ∧ 2 · x1 − 4 · x2 + 2 ≤ 3 · x1 + 3 · x2 − 9 + k

∧ 3 · x1 + 3 · x2 − 9 + k ≤ 6 · x1

∧ 3 · x1 + 3 · x2 − 9 + k ≡9 3 · x1 + 3 · x2 + 3 ∧ 3 · x1 + 3 · x2 − 9 + k ≡6 0)

∨ (0 ≤ 2 · x1 − 4 · x2 + 2 + k ∧ 3 · x1 + 3 · x2 − 9 ≤ 2 · x1 − 4 · x2 + 2 + k

∧ 2 · x1 − 4 · x2 + 2 + k ≤ 6 · x1

∧ 2 · x1 − 4 · x2 + 2 + k ≡9 3 · x1 + 3 · x2 + 3 ∧ 2 · x1 − 4 · x2 + 2 + k ≡6 0)
]
.

2.6 Size and Complexity

We define the size of numbers as follows. The size of an integer number a ∈ Z,
denoted size(a), is 1 if a = 0, and 1 + blog2 |a|c otherwise. The size of a rational
a/b, denoted size(a/b), where a ∈ Z, b ∈ N \ {0} and gcd(a, b) = 1 is size(a) +

size(b). The size of a m×n-matrix A, denoted size(A) is mn+
∑

i,j size(A[i, j]).
In order to reason about the complexity of the algorithms presented in this

thesis, we assume that direct memory accesses are performed in constant time and
that arithmetic operations are performed in unit time.



Chapter 3

Basic Algebra

3.1 Hulls in Q, Z and Zm

Let D be either Q, Z or Zm, and let S ⊆ Dn.
A vector x ∈ Dn is a linear combination over D of the vectors x1, . . . ,xk ∈

Dn if x = a1x1 + · · · + akxk, for some a1, . . . , ak ∈ D. By setting additional
constraints on the coefficients ai, one defines the conic, affine and convex combi-
nations over D :

• if a1, . . . , ak ≥ 0, then x is a conic combination over D,

• if a1 + . . .+ ak = 1, then x is an affine combination over D, and finally,

• if a1, . . . , ak ≥ 0 and a1 + . . . + ak = 1, then x is a convex combination
over D.

For a nonempty subset S ⊆ Dn, the linear (resp. conic, affine, convex) hull of
S over D is the set of all linear (resp. conic, affine, convex) combinations over D

of finitely many vectors of S, and is denoted by linD(S) (resp. coneD(S), affD(S),
convD(S)).

Proposition 6. Let S ⊆ Dn. For all a ∈ S,

1. a + linD(−a + S) = affD(S),

2. −a + affD(S) = linD(−a + S).

Proof.

23
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y

x

Figure 3.1: S = {(−16,−4), (−7,−1), (2, 2)}

1. Suppose x ∈ a + linD(−a + S). By definition, x = a +
∑p

i=1 ki(yi − a),
for some p ∈ N with yi ∈ S and ki ∈ D for all i ∈ {1, . . . , p}. So,
x = (1 −

∑p

i=1 ki) · a +
∑p

i=1 kiyi, and by definition, x ∈ affD(S).

Conversely, suppose that x ∈ affD(S). By definition, x =
∑p

i=1 kiyi for
some p ∈ N, with yi ∈ S, ki ∈ D for all i ∈ {1, . . . , p} and

∑p

i=1 ki = 1.
Therefore, x = a +

∑p

i=1 ki(yi − a), and x ∈ a + linD(−a + S).

2. This is a direct consequence of the above result. Indeed, we have
−a + affD(S) = −a +

(
a + linD(−a + S)

)
= linD(−a + S).

Example 7. Given the set S = {(−16,−4), (−7,−1), (2, 2)}, displayed in Fig.3.1,
we have coneQ(S) = {(x, y) ∈ Q2 | x − 4y ≤ 0 ∧ x − y ≤ 0}, coneZ(S) =

{a1 · (−16,−4)+a2 · (−7,−1)+a3 · (2, 2) | a1, a2, a3 ∈ N}, affQ(S) = {(x, y) ∈

Q2 | x − 3y = −4}, affZ(S) = {(x, y) ∈ Z2 | x − 3y = −4 ∧ x ≡9 2},
convQ(S) = {(x, y) ∈ Q2 | x− 3y = −4 ∧−16 ≤ x ≤ 2} and convZ(S) = S =

{(−16,−4), (−7,−1), (2, 2)}. The sets coneQ(S), affQ(S), convQ(S), affZ(S),
convZ(S) and coneZ(S) are given in Fig.3.2, Fig.3.3, Fig.3.4, Fig.3.5, Fig.3.6
and Fig.3.7 respectively.

The vectors x1, . . . ,xp ∈ Dn are linearly independent over D if
∑p

i=1 aixi = 0

implies that ai = 0, ∀i ∈ {1, . . . , p}. The vectors x1, . . . ,xp ∈ Dn are affinely
independent over D if the vectors x1 − xj , . . . , xj−1 − xj, xj+1 − xj , . . . , xp − xj

are linearly independent over D for any j ∈ {1, . . . , p}.
If the vectors x1, . . . ,xp ∈ Dn are not linearly (resp. affinely) independent,

they are linearly (resp. affinely) independent.
Let S ⊆ Dn. A set GD-generates S if linD(G) = S. If in addition, the vectors

in G are linearly independent over D, then G is a D-basis of S.
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x

y

Figure 3.2: coneQ(S) = {(x, y) ∈ Q2 | x− 4y ≤ 0 ∧ x− y ≤ 0}

x

y

Figure 3.3: coneZ(S) = {a1·(−16,−4)+a2·(−7,−1)+a3·(2, 2) | a1, a2, a3 ∈ N}

x

y

Figure 3.4: affQ(S) = {(x, y) ∈ Q2 | x− 3y = −4}
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x

y

Figure 3.5: affZ(S) = {(x, y) ∈ Z2 | x− 3y = −4 ∧ x ≡9 2}

x

y

Figure 3.6: convQ(S) = {(x, y) ∈ Q2 | x− 3y = −4 ∧ −16 ≤ x ≤ 2}

y

x

Figure 3.7: convZ(S) = S = {(−16,−4), (−7,−1), (2, 2)}
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Let S ⊆ Dn and let d be the maximal number of affinely independent vectors
in S. The dimension of S is d− 1.

The rank of a matrix A ∈ Dm×n is the maximum number of linearly indepen-
dent columns in A when each column is considered as a vector.

3.2 Vector Space over Q, Affine Space over Q

Proposition 8. A set V ⊆ Qn is a vector space over Q iff V 6= ∅ and linQ(V ) =

V .

Proof. Direct consequence of the definitions.

By analogy, we define an affine space over Q as a nonempty set A ⊆ Qn such
that affQ(A) = A.

Proposition 9. Let S ⊆ Qn. There exists a unique vector space V over Q such
that affQ(S) = a + V for some a ∈ Qn.

Proof. Let a ∈ S and V = linQ(−a + S). Thanks to Proposition 6, affQ(S) =

a + V .
Suppose that affQ(S) = a′+V ′ for some a′ ∈ Qn and a vector space V ′ ⊆ Qn.

By construction, a + V = a′ + V ′. By definition, 0 ∈ V ∩ V ′, and therefore,
a = a′ + x′ for some x′ ∈ V ′ and a′ = a + x for some x ∈ V . So, we have

V = −a + (a + V ) = −a + (a′ + V ′) = −x′ + V ′.

Since V ′ is a vector space and x′ ∈ V ′, we have −x′ + V ′ = V ′ and we conclude
that V = V ′.

Proposition 10. Any vector space S ⊆ Qn has a Q-basis, and all Q-bases of S
have the same number of elements d ≤ n. If the set {x1, . . . ,xk} ⊆ S is a set of
linearly independent vectors, then it can be enlarged to form a Q-basis of S, that
is, there exist y1, . . . ,yt ∈ S such that {x1, . . . ,xk,y1, . . . ,yt} is a Q-basis of S.

Proof. See [Fra94].

Example 11. The set S = {(x, y) ∈ Q2 | 2x − y = 1} is a Q-affine space.
The vector space V associated to S is V = {(x, y) ∈ Q2 | 2x − y = 0}, i.e.
V = {(a, 2a) | a ∈ Q}. Note that S = (a, 2a − 1) + V for all a ∈ Q. Finally,
{(1, 2)} is a Q-basis of V .
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Proposition 12. Any sequence of vector spaces V1, V2, . . . ⊆ Qn such that V1 ⊂

V2 ⊂ . . . is finite and bounded by n+ 1.

Proof. By definition, dim(Vi) < dim(Vi+1) and 0 ≤ dim(Vi) ≤ n for all i, and
therefore, there are at most n + 1 vector spaces in the sequence.

3.3 Z- and Zm-Modules, Z- and Zm-Affine Modules

Let D be either Z or Zm.

Proposition 13. A set M ⊆ Qn is a D-module iff M 6= ∅ and linD(M) = M .

Proof. Direct consequence of the definitions.

By analogy, we define an affine D-module as a nonempty set A ⊆ Qn such
that affD(A) = A.

Proposition 14. Let S ⊆ Qn. There exists a unique D-module M such that
affD(S) = a +M for some a ∈ Dn.

Proof. The proof is similar to the proof of Proposition 9.

Proposition 15. Any D-module S ⊆ Dn has a D-basis, and all D-basis of S have
the same number of elements d ≤ n.

Proof. See [Jac89].

Proposition 16. For all k ∈ N, there exist a sequence of Z-modulesM1, . . .Mk+1 ⊆

Zn such that M1 ⊂ M2 ⊂ . . . ⊂ Mk+1.

Proof. Indeed, for any vector g ∈ Zn \ {0}, the sequence M1, . . . ,Mk+1 ⊆ Zn

where
Mi = linZ(2k+1−i · g),

is such that Mi ⊂Mi+1 for all i ∈ {1, . . . , k}.

Proposition 17. Any sequence of Z-modules M1,M2, . . . ⊆ Zn such that M1 ⊂

M2 ⊂ . . . is finite.

Proof. See [Gra91].
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Propositions 12 and 16 emphasize a major difference between Z-modules and
vector spaces over Q. Another difference that will be relevant in the sequel is that
any set of linearly independent vectors of a vector space V over Q can enlarged
to form a Q-basis of V , whereas it is in general not possible to enlarge a set of
linearly independent vectors of a Z-module M to form a Z-basis of M .

Example 18. The set S = {(x, y) ∈ Z2 | 2x − y = 1} is an affine Z-module.
The Z-module M associated to S is M = {(x, y) ∈ Z2 | 2x − y = 0}, i.e.
M = {(a, 2a) | a ∈ Z}. Note that S = (a, 2a − 1) + M for all a ∈ Z. Finally,
{(1, 2)} is a Z-basis of M . Note that the set of (trivially) linearly independent
vector {(2, 4)} ⊆M can not be enlarged to form a basis of M .

3.4 Polyhedra

In this section, the definition domain is Q, i.e. all scalars and matrix components
are rational numbers and the domain of the variables is Q.

An inequation a.x ≤ b from Ax ≤ b is called an implicit equation in Ax ≤ b

if Ax ≤ b implies a.x = b.

Example 19. The implicit equations in the system x+2y−z ≤ −1∧−x−2y+z ≤

1 ∧ −x ≤ 0 are the inequations x + 2y − z ≤ 1 and −x− 2y + z ≤ −1.

We use the following notations (taken from [Sch86]) :

• A=x ≤ b= is the (possibly empty) subsystem of Ax ≤ b formed by the
implicit equations,

• A+x ≤ b+ is the (possibly empty) subsystem of Ax ≤ b formed by the
inequations which are not implicit equations.

If all solutions of a proper subsystem A′x ≤ b′ satisfy Ax ≤ b, then the
inequations of Ax ≤ b which do not appear in A′x ≤ b′ are redundant. If a
system Ax ≤ b has no redundant inequation, then it is called irredundant. It
is always possible to generate an irredundant system A′x ≤ b′ from a system
Ax ≤ b by removing successively one redundant inequation until there is no
redundant inequation left.

The set C ⊆ Qn is a cone if C = coneQ(C). A cone C is polyhedral if
C = {x ∈ Qn | Ax ≤ 0} for some rational matrix A. The coneC is generated by
the set G if C = coneQ(G). If there exists a finite set G such that C = coneQ(G),
then C is finitely generated.



30 CHAPTER 3. BASIC ALGEBRA

Theorem 20. A convex cone is polyhedral iff it is finitely generated.

Proof. See [Sch86].

A set P of vectors in Qn is called a (convex) polyhedron if P = {x ∈ Qn |

Ax ≤ b} for some rational matrix A and some rational vector b.
A set of vectors is a (convex) polytope if it is the convex hull of finitely many

vectors.

Theorem 21. A set P of vectors is a polyhedron iff P = Q+C for some polytope
Q and cone C.

Proof. See [Sch86].

In the remaining of this section, P denotes the polyhedron P = {x ∈ Qn |

Ax ≤ b}, with A ∈ Qm×n and b ∈ Qm.
The characteristic cone of P , denoted by char-cone(P ), is the set

char-cone(P ) = {y ∈ Qn | (∀x ∈ P )(x + y ∈ P )}

= {y ∈ Qn | Ay ≤ 0}.

The lineality space of P , denoted lin-space(P ), is the vector space

lin-space(P ) = {y | y ∈ char-cone(P ) ∧ −y ∈ char-cone(P )}

= {y ∈ Qn | Ay = 0}.

If the dimension of the lineality space is zero, P is said to be pointed. Note
that if P is pointed, then for any polyhedron P ′ with P ′ ⊆ P , P ′ is also pointed.

Theorem 22. If P = Q + C for some polytope Q and cone C, then C =

char-cone(P ).

Proof. See [Sch86].

Example 23. The polyhedron P = {(x, y) |





−4 1

1 −1

−1 −3





[
x

y

]

≤





−4

4

−9



} is

displayed in Figure 3.8. The characteristic cone of P is char-cone(P ) = {(x, y) |




−4 1

1 −1

−1 −3





[
x

y

]

≤





0

0

0



} and is displayed in Figure 3.9.
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x− y = 4

−x− 3y = −9

−4x + y = −4y

x

Figure 3.8: The polyhedron P = {(x, y) |





−4 1

1 −1

−1 −3





[
x

y

]

≤





−4

4

−9



}

−4x + y = 0

x

y

−x− 3y = 0

x− y = 0

Figure 3.9: The cone char-cone(P ) = {(x, y) |





−4 1

1 −1

−1 −3





[
x

y

]

≤





0

0

0



}
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Theorem 24. If P is a convex polyhedron, then convQ(P ∩ Zn) is also a polyhe-
dron, and char-cone(P ) = char-cone (convQ(P ∩ Zn)).

Proof. See [Sch86].

If c is a non-zero vector and b = max{c.x | Ax ≤ b} is well-defined, then
the set {x ∈ Qn | c.x = b} is a supporting hyperplane of P . A subset F of P is
called a face of P if either F = P , or F is the intersection of P with a supporting
hyperplane of P . A facet of P is a maximal (w.r.t. inclusion) face distinct from
P .

Theorem 25. F is a face of P iff F = {x ∈ P | A′x = b′} for some subsystem
A′x ≤ b′ of Ax ≤ b.

Proof. See [Sch86].

Theorem 26. If no inequation in A+x ≤ b+ is redundant in Ax ≤ b, then there
exists a one-to-one correspondence between facets of P and the inequations in
A+x ≤ b+, given by

F = {x ∈ P | a.x = b}

for any facet F of P and any inequation a.x ≤ b from A+x ≤ b+.

Proof. See [Sch86].

Theorem 27. The dimension of a face F of P is dim(P )− 1 iff F is a facet of P .

Proof. See [Sch86].

In the following lemmas, we assume that C is a cone with C = {x ∈ Qn |

Cx ≤ 0} and no inequation in C+x ≤ 0 is redundant in Cx ≤ 0.

Lemma 28. linQ(C) = {x ∈ Qn | C=x = 0}.

Proof. Since for all x ∈ C, C=x = 0, by definition of the linear hull, linQ(C) ⊆

{x ∈ Qn | C=x = 0}.
Suppose now that y ∈ Qn with C=y = 0. If there is no inequation in C+x ≤

0, then y ∈ C and y ∈ linQ(C). Suppose therefore that there are t inequations
in C+x ≤ 0, denoted by c1.x ≤ 0, . . . , ct.x ≤ 0. By definition, for each
i ∈ {1, . . . , t}, there exists yi ∈ C such that ci.yi = ai < 0. Let ci.y = bi and let
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z =
∑

i∈{1,...,t}

∣
∣
∣

bi

ai

∣
∣
∣yi + y. By construction, z ∈ C. Indeed, C=z = 0 and for all

ci.x ≤ 0 in C+x ≤ 0, we have

ci.z = ci.(
∑

j∈{1,...,t}

∣
∣
∣
∣

bj
aj

∣
∣
∣
∣
yj + y)

≤ ci.(

∣
∣
∣
∣

bj
aj

∣
∣
∣
∣
yj + y)

≤ 0

We conclude that y ∈ linQ(C) since y is a linear combination of elements in
linQ(C).

Lemma 29. Let F be a facet of C, with F = {x ∈ C | c.x = 0} for some
inequation c.x ≤ 0 in C+x ≤ 0.

linQ(F ) = {x ∈ Qn | C=x = 0 ∧ c.x = 0}.

Proof. Since for all x ∈ F , C=x = 0 and c.x = 0, by definition of the linear
hull, we have

linQ(F ) ⊆ {x ∈ Qn | C=x = 0 ∧ c.x = 0}. (3.1)

Since c.x ≤ 0 is not an implicit equation in Cx ≤ 0, there exists y ∈ Qn such
that C=y = 0 but c.y 6= 0, and therefore, dim({x ∈ Qn | C=x = 0 ∧ c.x =

0}) = dim({x ∈ Qn | C=x = 0}) − 1. According to Lemma 28, linQ(C) =

{x ∈ Qn | C=x = 0}, and therefore, dim({x ∈ Qn | C=x = 0 ∧ c.x = 0}) =

dim(C) − 1. From Theorem 27, dim(F ) = dim(C) − 1, and we deduce that

dim({x ∈ Qn | C=x = 0 ∧ c.x = 0}) = dim(F ) (3.2)

From (3.1) and (3.2), and by definition of a linear hull, we conclude that

linQ(F ) = {x ∈ Qn | C=x = 0 ∧ c.x = 0}. (3.3)

Lemma 30. For all faces F1, F2 of a cone C, we have

linQ(F1) = linQ(F2) ⇔ F1 = F2.
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Proof. Let c1, . . . , cm ∈ Qn such that C = {x ∈ Qn |
∧

i∈{1,...,m} ci.x ≤ 0}.
Thanks to Theorem 25, there exists a set I1 ⊆ {1, . . . , m} such that

F1 = {x ∈ C |
∧

i∈I1

ci.x = 0}.

Without loss of generality, we can assume that for all i ∈ {1, . . . , m}\I1, we have

F1 6⊆ {x ∈ Qn | ci.x = 0}.

Similarly, there exists a set I2 ⊆ {1, . . . , m} such that

F2 = {x ∈ C |
∧

i∈I2

ci.x = 0},

and for all i ∈ {1, . . . , m} \ I1, we have

F2 6⊆ {x ∈ Qn | ci.x = 0}.

By definition, F1 = F2 iff I1 = I2. Also, F1 and F2 are cones and thanks to
Lemma 28, we have

linQ(F1) = {x ∈ Qn |
∧

i ∈ I1ci.x = 0}

linQ(F2) = {x ∈ Qn |
∧

i∈I2

ci.x = 0}.

We prove that linQ(F1) = linQ(F2) iff I1 = I2.

• Clearly, if I1 = I2, then linQ(F1) = linQ(F2).

• Assume now that I1 6= I2. Without loss of generality, there exists j ∈ I2\I1.

By hypothesis, F2 ⊆ {x ∈ Qn | cj.x = 0} and thus

linQ(F2) ⊆ {x ∈ Qn | cj.x = 0}.

Conversely, F1 6⊆ {x ∈ Qn | cj.x = 0} and so, we have

linQ(F1) 6⊆ {x ∈ Qn | cj.x = 0}.

We deduce that linQ(F1) 6= linQ(F2).

So, we conclude that F1 = F2 iff I1 = I2 iff linQ(F1) = linQ(F2).
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3.5 Integer Solutions of Systems of Linear Equations

Let A ∈ Zm×n with rank(A) = r < n, and let X = (x1, . . . ,xn−r) ∈ Zn×(n−r).
The set {x1, . . . ,xn−r} is a complete set of solutions of Ax = 0 if x1, . . . ,xn−r

are linearly independent and if Axi = 0 for all xi ∈ {x1, . . . ,xn−r}. If in addi-
tion, the matrix X is prime then {x1, . . . ,xn−r} is a fundamental set of solutions.
If rank(A) = n, then 0 is the only solution to the linear system Ax = 0. In this
case, the fundamental set of solutions is the empty set.

Theorem 31. For any matrix A ∈ Zm×n, there exists a fundamental set of solu-
tions {x1, . . . ,xn−r}, with r = rank(A), for the system Ax = 0.

Proof. See [Smi61].

Theorem 32. If A ∈ Zm×n and b ∈ Zm are such that the linear system Ax = b

has at least one integer solution y ∈ Zn, then the set of integer solutions for the
linear system is :

{y +
n−r∑

i=1

aixi | ai ∈ Z}

where r = rank(A) and the set {x1, . . . ,xn−r} is a fundamental set of solutions
of the linear system Ax = 0.

Proof. See [Smi61].

3.6 Hilbert Basis and Integer Elements of Polyhe-
dra

In this section, we describe the concepts of Hilbert basis and of extended Hilbert
basis. The concept of (extended) Hilbert basis has been of interest in integer linear
programming problems [Sch86], in important unification problems [Kir89] and
even in the context of verification [BW01]. Many algorithms have been proposed
for generating the (extended) Hilbert basis given a system of linear (in)equations,
including [CF89, Pot91, Dom91, AC95, AC97].

Intuitively, an Hilbert basis is a finite set of integer vectors such that the pos-
itive integer combinations of those vectors correspond to the integer elements of
the cone generated by the set of vectors. Formally, we have the following defini-
tion.
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Definition 33. A finite set of integer vectors {y1, . . . ,ys} is an Hilbert basis if
coneQ(y1, . . . ,ys) ∩ Zn = coneZ(y1, . . . ,ys).

We have the following theorem regarding Hilbert basis of polyhedral cone.

Theorem 34. For any polyhedral cone C, there exists an Hilbert basis y1, . . . ,ys

such that C ∩ Zn = coneZ(y1, . . . ,ys).
If C is pointed, then there is a unique minimal (w.r.t. inclusion) Hilbert basis.

Proof. See [Hil90, vdC31, GP79, Sch86].

Example 35. The (minimal) Hilbert basis of the set C ∩ Z2 with

C = {(x, y) |





−4 1

1 −1

−1 −3





[
x

y

]

≤





0

0

0



}

is {(1, 1), (1, 2), (1, 3), (1, 4)}.

So, Hilbert basis are the generators of the set of integer solutions of systems
of homogeneous inequations, and we can therefore relate this concept to that of
generators of the integer solutions of a system of homogeneous equations, i.e. a
fundamental set of solutions of the system. An important difference between those
concepts is that there exists no bounds on the number of elements in the smallest
Hilbert basis whereas the number of elements in the fundamental solutions of a
system of linear equations is bounded by the number of variables.

The concept of Hilbert basis can be extended as follows.

Definition 36. An extended Hilbert basis is a pair of finite sets X = {x1, . . . ,xt}

and Y = {y1, . . . ,ys} such that Y is an Hilbert basis. The elements in X are the
constants and the elements in Y are the periods of the basis. The set S generated
from (X, Y ) is the set X + coneZ(Y ).

The extended Hilbert basis is minimal if Y is a minimal Hilbert basis, and if
for all x ∈ X , x can not be decomposed into x′ ∈ X \ {x}, and y ∈ coneZ(Y )

such that x = x′ + y.

Remark 37. The concept of extended Hilbert basis is very similar to that of basis
presented in [AC95, RV02]. A major difference is that an extended Hilbert basis
is not defined with respect to a polyhedron, i.e. we do not impose that for any
extended Hilbert basis (X, Y ), X + coneZ(Y ) = P ∩ Zn for some polyhedron
P .
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We first present two properties of the extended Hilbert basis, and then we show
the relationship between extended Hilbert basis basis and polyhedra.

Lemma 38. Let (X, Y ) and (X, Y ′) be two extended Hilbert bases.

If X + coneZ(Y ) = X + coneZ(Y ′), then coneZ(Y ) = coneZ(Y ′).

Proof. Without loss of generality, it suffices to prove that for all y ∈ coneZ(Y ),
y ∈ coneZ(Y ′).

Let X = {x1, . . . ,xt} and let y ∈ coneZ(Y ). By hypothesis, for each x ∈ X ,
x+y ∈ X+coneZ(Y ′). We construct recursively the sequences xk1

,xk2
, . . . ∈ X

and yk2
,yk3

, . . . ∈ coneZ(Y ′) as follows. We choose xk1
= x1, and for all i ≥ 1,

xki+1
and yki+1

are any vector in X and coneZ(Y ′) respectively such that

xki
+ y = xki+1

+ yki+1
.

SinceX is finite, there is a positive integerm is such that xkm+1
∈ {xk1

, . . . ,xkm
},

and for all 1 ≤ i 6= j ≤ m, xki
6= xkj

. Let s with 1 ≤ s ≤ m such that
xkm+1

= xks
. By construction, we have

m∑

i=s

xki
+ (m− s+ 1) · y =

m+1∑

i=s+1

xki
+

m+1∑

i=s+1

yki

=

m∑

i=s

xki
+

m+1∑

i=s+1

yki
.

So, (m− s+1) ·y =
∑m+1

i=s+1 yki
and (m− s+1) ·y ∈ coneZ(Y ′). By definition,

Y ′ is an Hilbert basis and coneZ(Y ′) = coneQ(Y ′) ∩ Zn. Since (m − s + 1) ·

y ∈ coneZ(Y ′), by definition, y ∈ coneQ(Y ′) and y ∈ Zn. We conclude that
y ∈ coneZ(Y ′).

Remark 39. In general, given a finite set X ⊆ Zn and two sets Y, Y ′ ⊆ Zn,
X + Y = X + Y ′ does not imply that Y = Y ′. For example, if X = {0, 1},
Y = {1, 3} and Y ′ = {1, 2, 3}, we have X + Y = X + Y ′ although Y 6= Y ′.

Lemma 40. Let (X, Y ) be an extended Hilbert basis.

If the cone coneQ(Y ) is pointed, then there exists a unique minimal extended
Hilbert basis (Xmin, Ymin), with Xmin ⊆ X such that

X + coneZ(Y ) = Xmin + coneZ(Ymin).
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Proof. Since coneQ(Y ) is pointed, then there exists a unique minimal Hilbert ba-
sis Ymin such that coneZ(Y ) = coneZ(Ymin).

Let Xmin be computed as follows. Initially, Xmin = X and while there exists
x ∈ Xmin such that x = x′ + y with y ∈ C ∩ Zn and x′ ∈ Xmin \ {x}, remove x

from Xmin.
By definition, (Xmin, Ymin) is minimal and we have

Xmin + coneZ(Ymin) = X + coneZ(Y ).

Suppose that there exists another minimal basis (X ′, Y ′) such that

X ′ + coneZ(Y ′) = X + coneZ(Y ).

We prove first that Ymin = Y ′ and then that Xmin = X ′.

1. By definition, we have

Xmin + coneZ(Ymin) = X ′ + coneZ(Y ′)

= X ′ + coneZ(Y ′) + coneZ(Y ′)

= Xmin + coneZ(Ymin) + coneZ(Y ′)

= Xmin + coneZ(Ymin ∪ Y
′) .

From Lemma 38, coneZ(Ymin) = coneZ(Ymin ∪ Y ′). Similarly, we show
that coneZ(Y ′) = coneZ(Ymin ∪ Y ′), and we deduce that coneZ(Ymin) =

coneZ(Y ′). Since Ymin and Y ′ are both minimal Hilbert basis, Ymin = Y ′.

2. Let x ∈ Xmin. By hypothesis x ∈ X ′ + coneZ(Y ′) and from above, we
have Ymin = Y ′. So, x = x′ + y for some x′ ∈ X ′ and y ∈ coneZ(Ymin).
Similarly, x′ ∈ Xmin + coneZ(Ymin), and therefore, x′ = x2 + y2 for some
x2 ∈ Xmin and y2 ∈ coneZ(Ymin). So, x = x2 + y + y2 with x2 ∈ Xmin

and y + y2 ∈ coneZ(Ymin). Since (Xmin, Ymin) is minimal, x = x2 and
so, y + y2 = 0. Finally, since C is pointed and y,y2 ∈ C, y = 0 = y2,
we deduce that x = x′, i.e. x ∈ X ′. We conclude that Xmin ⊆ X ′, and
similarly, one proves that X ′ ⊆ Xmin. So, X ′ = Xmin.

Thanks to Theorem 21, a polyhedron P can be decomposed into a polytope
Q and a cone C such that P = Q + C, and thanks to Theorem 22, C must
be the characteristic cone of P . We show in the following theorem1 that this
decomposition leads to the possibility of generating all the integer elements of P .

1The proof of the existence of an extended Hilbert basis generating the integer elements of a
polyhedron has been outlined in [Sch86], and the existence of a minimal extended Hilbert basis
when the polyhedron is pointed has been mentioned without proof in [RV02].
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Theorem 41. For any convex polyhedron, there exists an extended Hilbert basis
(X, Y ) such that P ∩ Zn = X + coneZ(Y ) and char-cone(P ) ∩ Zn = coneZ(Y ).

If P is pointed, then there exists a unique minimal extended Hilbert basis
(Xmin, Ymin) such that P ∩ Zn = Xmin + coneZ(Ymin) and char-cone(P ) ∩ Zn =

coneZ(Ymin).

Proof. Thanks to Theorem 21, P can be decomposed into a polytope Q and a
cone C such that P = Q + C, and thanks to Theorem 22, C = char-cone(P ).
Also, thanks to Theorem 34, there exists an Hilbert basis Y = {y1, . . . ,ys} such
that C ∩ Zn = coneZ(Y ). Based on the definition of a cone, one deduces that
C = coneQ(Y ).

Let B be the polytope B = {
∑s

j=1 bjyj | 0 ≤ bj ≤ 1}.
We show that P ∩ Zn =

(
(Q +B) ∩ Zn

)
+
(
C ∩ Zn

)
by proving the mutual

inclusion.

• Let x ∈ (Q + B) ∩ Zn and y ∈ C ∩ Zn, if z = x + y, then z ∈ Zn. Also,
x = x1 + x2 for some x1 ∈ Q and x2 ∈ B. So, z = x1 + x2 + y, i.e.

z = x1 +

s∑

j=1

(bj + b′j)yj,

such that 0 ≤ bj ≤ 1 and b′j ≥ 0. So, z = x′ + y′ such that x′ ∈ Q and
y′ ∈ C, and by definition, z ∈ P . So, we conclude that

P ∩ Zn ⊇ (Q +B) ∩ Zn + C ∩ Zn. (3.4)

• Suppose z ∈ P ∩Zn. By definition, z = x+ y for some x ∈ Q and y ∈ C.
By definition, y =

∑s

j=1 bjyj . Let ya,yb ∈ Qn such that

ya =

s∑

j=1

bbjcyj,

yb = y − ya.

By construction, we have ya ∈ C ∩ Zn, yb ∈ B and z = x + ya + yb.
Finally, since z ∈ Zn and ya ∈ Zn, x + yb ∈ Zn. So, z = x′ + y′ with
x′ ∈ (Q+B) ∩ Zn and y′ ∈ C ∩ Zn. We conclude that

P ∩ Zn ⊆ (Q +B) ∩ Zn + C ∩ Zn. (3.5)
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Since both Q and B are polytopes, (Q + B) ∩ Zn is finite, i.e. there exists a
finite set X = {x1, . . . ,xt} ⊆ Zn such that (Q+B)∩Zn = X , and thus, we have

P ∩ Zn = X + coneZ(Y ).

Suppose that P is pointed. By definition, coneQ(Y ) = C = char-cone(P ) is
pointed, and the claim is a direct consequence of Lemma 40.

Example 42. The (minimal) extended Hilbert basis of the set P ∩ Z2 with

P = {(x, y) |





−4 1

1 −1

−1 −3





[
x

y

]

≤





−4

4

−9



}

is ({(2, 3), (2, 4), (3, 2), (3, 3), (4, 2), (5, 2), (6, 2)}, {(1, 1), (1, 2), (1, 3), (1, 4)}).



Chapter 4

Finite Automata

In this section, we introduce the notion of finite automaton, which is a finite data-
structure used for representing potentially infinite sets of words. Two main prop-
erties of finite automata are that there is a canonical form, the minimum-state
automaton, and set operations are easily performed on automata.

4.1 Basic Definitions

An alphabet is a (non-empty) finite set of symbols. A word over an alphabet Σ is
a finite sequence of symbols taken from Σ. The symbol ε denotes the empty word,
i.e. the word containing no symbol. The length of a word w, denoted by |w|, is the
number of symbols in w. Given two words u and v, uv denotes the word formed
by the concatenation of u with v. A word u is a prefix of a word w if there exists
a word v such that uv = w. The set of prefixes of a word w is denoted by pre(w).
A language L over Σ is a set of words over Σ. We denote by Σ∗ (resp. Σ+) the set
of all (resp. non-empty) words over Σ.

Given two languages L1 and L2 over Σ, we define the left-quotient of L1 with
L2, denoted as L2 ÷ L1, as the set of suffixes that complete words from L2, such
that the resulting word is in L1. Formally, we have

L2 ÷ L1 = {v ∈ Σ∗
r | uv ∈ L1 for some u ∈ L2}.

If L2 = {w}, we simply write w ÷ L1.
A finite automaton (FA) A is a quintuple (Q,Σ,∆, QI, QF), where

• Q is a finite set of states,

41
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• Σ is the input alphabet,

• ∆ : Q×Σ∗×Q is the transition relation. For each transition (q, w, q ′) ∈ ∆,
q is the origin, w is the label and q′ is the destination.

• QI is the set of initial states,

• QF ⊆ Q is the set of final states (also called accepting states).

If (q, w, q′) ∈ ∆ for q, q′ ∈ Q andw ∈ Σ∗, then we say that there is a transition
from q to q′ labeled by w. By extension, there is a path from q to q ′ labeled by
w if there exists a sequence of transitions (q0, w0, q1), . . . , (qk, wk, qk+1) such that
w = w1 · · ·wk and q0 = q and qk+1 = q′.

The set of words labeling paths from a state q1 to a state q2 in A is denoted
as LA(q1 → q2). The language accepted from a state q ∈ Q, denoted LA(q), is
the set of words labeling paths in A from the state q to a final state. The language
accepted by A, denoted by L(A), is the language accepted from the initial states.
Two FAs are equivalent if they accept the same language. A language L is regular
if there exists a FA A such that L(A) = L.

An interesting feature of finite automata is that testing whether there is at least
one word in the language accepted by a FA A can be done efficiently.

Proposition 43. There exists an algorithm AUTO EMPTY? which takes as argu-
ments a FA, A = (Q,Σ,∆, QI, QF) and tests whether the language accepted by
A is empty.
The time cost of AUTO EMPTY? is O(|∆|).

Proof. It suffices to test whether there is a path from an initial state to a final
state, and this can be achieved through a depth first search [Tar72], as shown in
Fig 4.1.

A FA A = (Q,Σ,∆, QI, QF) is reduced if for all states q ∈ Q, q is reachable
from an initial state and one can reach a final state from q, i.e. there exists an
inital strate qI ∈ QI and a final state qF ∈ QF such that LA(qI → q) 6= ∅ and
LA(q → qF) 6= ∅.

Lemma 44. There is a function AUTO REDUCE which, given a FA A, generates
an equivalent reduced FA A′. The time complexity of AUTO REDUCE is O(|A|).

Proof. First one performs a backward search from the accepting state and remove
all states from which there are no path towards an accepting state. Then one
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function AUTO EMPTY?(FA A = (Q, Σn
r , ∆, QI, QF)) : {false , true }

1: var Qvisited : set of state;

2: q : state;

3: function EXPLORE-FW(state q) : {false , true }

4: var q′ : state;

5: w : word;

6: begin

7: Qvisited := Qvisited ∪ {q};

8: if q ∈ QF then return true ;

9: for each (q, w, q′) ∈ ∆, q′ ∈ Q \ Qvisited do

10: if EXPLORE-FW(q′) then return true ;

11: return false ;

12: end

13: begin

14: for each q ∈ QI do

15: if EXPLORE-FW(q) then return true ;

16: return false ;

17: end

Figure 4.1: Function AUTO EMPTY?
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performs a forward search from all initial states and remove all states which are
not reachable.

Let A = (Q, σ,∆, QI, QF) be a FA. If for each transition (q, w, q′) ∈ ∆,
|w| ≤ 1, then A is in normal form. If for each transition (q, w, q ′) ∈ ∆, |w| = 1,
then A is in strong normal form. The FA A is deterministic if

• |QI| = 1,

• for all (q, w, q′) ∈ ∆, w 6= ε,

• for all distinct transitions (q, w1, q
′
1), (q, w2, q

′
2) ∈ ∆, w1 6∈ pre(w2) and

w2 6∈ pre(w1).

In the sequel, DFA stands for deterministic finite automaton.

Remark 45. If a DFA is in normal form, by definition it is also in strong normal
form.

We have the following well-known results from automata theory.

Proposition 46. There is an algorithm AUTO NORMALIZE that takes a FA
A = (Q,Σ,∆, Qinit , QF) as input and returns a FA in normal form A′ such that
L(A) = L(A′), and if A is deterministic, then A′ is also deterministic.

The time cost of AUTO NORMALIZE is O(|Q| + l), where l is the sum of the
lengths of the labels of all transitions in A, and the number of states in A′ is
|Q| + l.

Proof. Let A′ = (Q ∪ Q′,Σ,∆′, Qinit , QF), where Q′ and ∆′ are computed from
Q and ∆ as follows. For each transition (q, w, q ′) ∈ ∆,

• if |w| ≤ 1, then one adds (q, w, q′) to ∆′,

• if |w| > 1, one adds |w − 1| new states q1, . . . , q|w|−1 to Q′ and adds
(q, α1, q1), (q1, α2, q2), . . . , (q|w|+1, α|w|, q

′) to ∆′ where αi ∈ Σ for i ∈

{1, . . . , n} and α1 · · ·α|w| = w.

Proposition 47. There is an algorithm AUTO DETERMINIZE that takes a FA
A = (Q,Σ,∆, Qinit , QF) as input and returns a DFA in strong normal form A′

such that L(A) = L(A′).
The time cost of AUTO DETERMINIZE is O(2|Q|+|l|), where l is the sum of the

lengths of the labels of all transitions in A.



4.1. BASIC DEFINITIONS 45

Proof. First, one generates via the function AUTO NORMALIZE(A) a FA A′′ =

(Q′′,Σ,∆′′, Q′′
I, Q

′′
F) in normal form, equivalent to A. Thanks to Proposition 46,

|Q|′′ ≤ l+|Q|. Then one constructs the finite automatonA′ = (Q′,Σ, δ′, {q′I}, Q
′
F)

such that

• Q′ is the power set of Q′′, i.e. the set of all subsets of Q′′,

• q′I = {q ∈ Q′′ | ε ∈ LA′′(q′ → q) for some q′ ∈ Q′′
I},

• ∆′ is defined as follows. Given S1, S2 ⊆ Q′′ and α ∈ Σ, (S1, α, S2) ∈ ∆′ if
S2 = {q2 | (∃q1 ∈ S1)(α ∈ LA′′(q1 → q2)}, that is, S2 is exactly the sets of
states reachable in A′′ from states in S1 via paths labeled by α.

• Q′
F is the set of subsets Q′′ containing at least one accepting state of A′′, i.e.

Q′
F = {S ⊆ Q′′ | S ∩Q′′

F 6= ∅}.

By construction, A′ is a DFA in normal form and L(A′) = L(A).

If a DFA A = (Q,Σ,∆, QI, QF) is in normal form, for each state q and for
each symbol α ∈ Σ, there is at most one state q ′ such that (q, α, q′) ∈ ∆. Also,
for any transition (q, w, q′), |w| = 1, i.e. w ∈ Σ. In order to emphasize those
characteristics, the automaton will be described by the quintuple (Q,Σ, δ, qI, QF)

where {qI} = QI and the partial function δ : Q × Σ → Q is deduced from the
transition relation ∆ by setting δ(q, α) = q′ if (q, α, q′) ∈ ∆. If for all q′ ∈ Q,
(q, α, q′) 6∈ ∆, we have δ(q, α) = ⊥. Also, the partial function δ can be extended
to words in the following way.

• for all q ∈ Q, δ̂(q, ε) = q,

• for all states q ∈ Q, words w ∈ Σ∗ and symbols α ∈ Σ,

δ̂(q, αw) =

{

⊥ if δ(q, α) = ⊥

δ̂(δ(q, α), w) if δ(q, α) ∈ Q

Since δ̂(q, α) = δ(q, α) for all α ∈ Σ, there can be no disagreement between δ
and δ̂ on arguments for which both are defined.

A DFA in strong normal form A = (Q,Σ, δ, qI, QF) is complete if δ(q, α) ∈ Q

for all q ∈ Q and α ∈ Σ. Given a DFA in strong normal form A = (Q,Σ, δ, qI, QF),
we construct an equivalent complete DFA A′ in strong normal form by adding a
new state q⊥ to Q and adding transitions labeled by α ∈ Σ from q to q⊥ for all
q ∈ Q such that δ(q, α) = ⊥. Note that a DFA in strong normal form can be
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q1 q2q0

α α

α

Figure 4.2: Example of FA which is not permutation-free

both reduced and complete. For example, the DFA A = ({qI},Σ, δ, qI, {qI}),
with δ(qI, α) = qI for all α ∈ Σ, accepting the language Σ∗ is both complete and
reduced.

Lemma 48. Let A = (Q,Σ, δ, qI, QF) be a DFA in strong normal form and q ∈ Q.
If δ̂(qI, w) = q, then w ÷ L(A) = LA(q).

Proof. This is a direct consequence of the definition of a DFA and of w ÷ L.
Indeed, wv ∈ L(A) iff δ̂(qI, wv) ∈ QF, and since A is a DFA, δ̂(qI, w) = q. So,
wv ∈ L(A) iff δ̂(q, v) ∈ QF, i.e. v ∈ w ÷ L(A) iff v ∈ LA(q).

Finally, we consider two structural aspects of FAs.
A strongly connected component (SCC) S of a FA A is a pair (Q′,∆′) such

that

• Q′ ⊆ Q,

• ∆′ = {(q, w, q′) ∈ ∆ | q, q′ ∈ Q′}, and,

• for all q, q′ ∈ Q′, LA(q → q′) 6= ∅.

An SCC (Q′,∆′) of A is maximal if for all q ∈ Q \ Q′ and q′ ∈ Q′, either
LA(q → q′) = ∅ or LA(q′ → q) = ∅.

Given a FA A = (Q,Σ,∆, QI, QF), there is a (non-trivial) permutation of
a subset of states {q1, . . . , qk} ⊆ Q on the word w if for i ∈ {1, . . . , k}, w ∈

LA(qi → qp(i)), where p(1), . . . , p(k) is a (non-trivial) permutation of 1, . . . , k. A
FA is permutation-free[NP71] if there is no non-trivial permutation of any subset
Q′ on a word w. For example, the FA presented in Fig.4.2 is not permutation-free.

4.2 Minimal Automata

There is a well-known result in automata theory [Clu65, Har65, Hop71, HU79]
stating that the minimum-state complete DFA A in strong normal form accepting
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a regular language L is unique up to isomorphism, i.e. any complete DFA A′

in strong normal form accepting L has more states than A or is equal to A up
to renaming states. We give below a detailed proof of this result. The goal is
twofold. First, in most algorithms in this thesis, we do not use minimum-state
complete DFA but minimum-state reduced DFA, and the relationship between
those are easily deduced from the detailed proof. Secondly, in many algorithms we
use properties of minimum-state DFA that are clearly apparent from the detailed
proof.

An equivalence relation R on Σ∗ such that (u, v) ∈ R implies that (uw, vw) ∈

R for all words w ∈ Σ∗ is right invariant (with respect to concatenation).

Proposition 49. Let R be a right invariant equivalence relation on Σ∗ of finite
index and L be the union of some equivalence classes of R.

There exists a complete DFA A such that L(A) = L and such that the number
of states in A is bounded by the number of equivalence classes of R.

Proof. Let A = (Q,Σ, δ, qI, QF) where

• Q = {[u]R | u ∈ Σ∗}.

• For each α ∈ Σ and [u]R ∈ Q, δ([u]R, α) = [uα]R.

• qI = [ε]R.

• QF = {[u]R | u ∈ L}.

By hypothesis, Q is finite and the definition of δ is consistent. Indeed, for all
u′ ∈ [u]R, (u, u′) ∈ R and since R is right-invariant, for any α ∈ Σ, [u′α]R =

[uα]R.
For all u ∈ Σ∗ and [u]R ∈ Q, we prove by induction on the size of u that

δ̂([ε]R, u) = [u]R. This is trivially true for ε. Suppose that the property holds
for words of length smaller or equal to k and u = ukα with α ∈ Σ, uk ∈ Σ∗

and |uk| = k. By inductive hypothesis, δ̂([ε]R, uk) = [uk]R, and by construction,
δ([uk]R, α) = [ukα]R.

From above, we conclude that A is a complete DFA with L(A) = L.
We may associate with an arbitrary language L a right invariant equivalence

relation RL on Σ∗ such that for any word u, v ∈ Σ∗, (u, v) ∈ RL iff for each word
w ∈ Σ∗, either uw, vw ∈ L or uw, vw 6∈ L.

Proposition 50. Let A(Σ, Q, δ, qI, QF) be a complete DFA and let RA be the re-
lation on Σ∗ such that for all words u, v ∈ Σ∗, (u, v) ∈ RA iff δ̂(qI, u) = δ̂(qI, v).
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• The relationRA is a right invariant equivalence relation and is a refinement
of RL, and

• L(A) is a union of equivalence classes of RA.

Proof.

• Clearly, RA is an equivalence relation. In addition, by definition, for all
words u, v ∈ Σ∗, if (u, v) ∈ RA, then δ̂(qI, u) = δ̂(qI, v). Therefore, for
all words w, δ̂(qI, uw) = δ̂(qI, vw) and (uw, vw) ∈ RA, i.e. RA is right
invariant. Also, for all words u, v, if v ∈ [u]RA

, δ̂(qI, u) = δ̂(qI, v), and
therefore, for all words w, δ̂(qI, uw) = δ̂(qI, vw), and so, uw ∈ L iff vw,
i.e. v ∈ [u]RL

and RA is a refinement of RL.

• By definition, L(A) = ∪q∈QF
{u ∈ Σ∗ | δ̂(qI, u) = q}, and therefore,

L(A) = ∪q∈QF,u∈LA(qI→q)[u]RA

Proposition 51 (The Myhill-Nerode Theorem, [HU79]). Let L ⊆ Σ∗. The fol-
lowing three statements are equivalent.

• L is accepted by some finite automaton.

• L is the union of some equivalence classes of a right invariant equivalence
relation of finite index.

• The equivalence relation RL is of finite index and for any DFA A accepting
L, RA is a refinement of RL.

Proof. Direct consequence of Propositions 49 and 50.
A direct consequence of the Myhill-Nerode Theorem is that for any regular

language L, there exists a minimum-state complete DFA A accepting L unique
up to isomorphism. That is, the number of states in A is smaller or equal to the
number of states of any complete DFA A′ accepting L, and if the equality holds,
then A′ is identical to A up to renaming of states. We call A the complete minimal
DFA accepting L.

Proposition 52. Given a regular language L, the complete minimal DFA A =

(Q,Σ, δ, qI, QF) with L(A) = L is determined uniquely up to isomorphism.

Proof. Let A′ = (Q′, σ, δ′, q′I, Q
′
F) be a complete DFA with L(A′) = L.
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Without loss of generality, we can assume that each state of A′ is reachable
since otherwise, the states that are not reachable can be removed without altering
the language accepted by A.

For each q ∈ Q′
F, let uq ∈ Σ∗ such that δ̂′(q′I, uq) = q.

Since A′ is complete, each equivalence class [u]RA′ of the equivalence relation
RA′ can be associated to one and only one state q ∈ Q′ such that

[uq]RA′ = LA′(qI → q).

Let A = (Q,Σ, δ, qI, QF) be the complete DFA accepting L defined as in
Proposition 49 when the right invariant equivalence relation is RL. By construc-
tion, there is a bijection between the states q of A and the equivalence classes
[uq]RL

of RL such that for all v ∈ Σ∗, δ̂(q′I, v) = q iff v ∈ [uq]RL
.

Thanks to Proposition 50, RA′ is a refinement of RL, and therefore, for each
word v ∈ Σ∗, if δ′(qI, v) = q then LA′(qI → q) = [v]RA′ ⊆ [v]RL

. Since both
A and A′ are complete DFAs where all states are reachable from the initial state,
we deduce that |Q| ≤ |Q′|. If the equality holds, then each state q ′ ∈ Q′ can
be identified with a state q ∈ Q such that LA(qI → q) = LA′(q′I → q′), and
therefore, A′ is equal to A up to isomorphism.

Let A = (Q,Σ, δ, qI, QF) be a minimal complete DFA. From the proof above,
we deduce the following properties of the minimal complete DFA. We first define
a sink state q as a state such that δ(q, α) = q for all α ∈ Σ. A sink-state q is
accepting if q ∈ QF and non-accepting otherwise.

Proposition 53. For each state q, q′ ∈ Q, LA(q) 6= LA(q′) iff q 6= q′.

Proof. If LA(q) 6= LA(q′), then by definition, q 6= q′.
Conversely, if LA(q) = LA(q′), then q = q′ since otherwise, q and q′ could be

merged and A would not be minimal.

Proposition 54. If A is not reduced, then there exists one and only one non ac-
cepting sink state q⊥. Also, for all v ∈ Σ∗ such that for all w ∈ Σ∗, vw 6∈ L(A),
δ(qI, v) = q⊥.

Proof. Direct consequence of the proof of Proposition 52.

Based on Proposition 53, there exists an algorithm which, when input a DFA,
returns the equivalent minimal complete DFA.
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Proposition 55. There is an algorithm AUTO MINIMIZEC that takes a DFA
A = (Q,Σ, δ, Qinit , QF) as input and returns the equivalent minimal complete
DFA A′. The time cost of AUTO MINIMIZEC is O(|Q| log(|Q|)).

Proof. Given in [Hop71].

In many algorithms presented in this thesis, we will require DFAs to be re-
duced. So, we define naturally the reduced minimal DFA accepting a regular
language L as the minimum-state reduced DFA Amin accepting L. We show that
Amin is the reduced DFA obtained from the complete minimal DFA Ac

min essen-
tially by removing the non-accepting sink state q⊥ (if any) in Ac

min as well as all
transitions whose destination state is q⊥.

First, note that given an alphabet Σ, the reduced minimal DFA accepting ∅ is
Amin = ({qI},Σ, δ, qI, ∅) with δ(qI, α) = ∅ for all α ∈ Σ.

Proposition 56. Let L 6= ∅ be a regular language and Ac
min = (Q,Σ, δ, qI, QF)

be the complete minimal DFA accepting L.

• If Ac
min is reduced, then let Amin = Ac

min.

• If Ac
min is not reduced, then let Amin be the DFA obtained by removing the

non-accepting sink state s⊥ of Ac
min as well as all transitions incoming in

s⊥.

We have that Amin is a reduced DFA accepting L and for any DFA A accepting
L, A has more states than Amin or is equal to Amin up isomorphism.

Proof.

• Suppose Ac
min is reduced. For all reduced DFAs A accepting L, without

loss of generality, we can assume that all states of A are reachable and
so, A must be complete (otherwise L(A) 6= L), and therefore, thanks to
Proposition 52, either A has more states than Amin or they are equal up to
isomorphism.

• Suppose Ac
min is not reduced. Thanks to Proposition 54, there exists a non-

accepting sink state and Amin is well-defined. Also, by definition, Amin is a
reduced DFA.

Let A be a reduced DFA accepting L. By definition, A is not complete but it
can be completed by adding a new state q⊥ and transitions labeled by α ∈ Σ

from q to q⊥ for all states q of A having no outgoing transitions labeled by
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α. Let Ac be this complete DFA. Thanks to Proposition 52, either Ac has
more states than Ac

min or they are equal up to isomorphism. Consequently,
A has more states than Amin or they are equal up to isomorphism.

From the above proposition and thanks to Proposition 55, we conclude this
part with the following proposition.

Proposition 57. There is an algorithm AUTO MINIMIZE that takes a DFA
A = (Q,Σ, δ, Qinit , QF) as input and returns the equivalent minimal reduced
DFA Amin.

The time cost of AUTO MINIMIZE is O(|Q| log(|Q|)).

Proof. It suffices to construct the complete minimal DFA Ac
min accepting L(A)

and then to generate the reduced minimal DFA Amin as in Proposition 56.

4.3 Set Operations on Finite Automata

In this subsection, we briefly recall the cost of algorithms performing basic set
operations on DFA. A description of the algorithms can be found in [HU79, Per90,
Boi99]. Note that we assume that for each DFA, all states are reachable from the
initial state.

Proposition 58. There exists an algorithm AUTO PRODUCT which takes as ar-
guments two complete DFAs in normal form, A1 = (Q1,Σ1, δ1, qI,1, QF,1) and
A1 = (Q2,Σ2, δ2, qI,2, QF,2), and computes a complete DFA in normal form A

over the alphabet Σ1 × Σ2 accepting the language

{(w1, w2) | w1 ∈ L(A1) ∧ w2 ∈ L(A2) ∧ |w1| = |w2|}.

The time cost of AUTO PRODUCT is O(|Q1| · |Q2| · |Σ1| · |Σ2|).

Proof. Construct the DFA A = (Q1 × Q2,Σ1 × Σ2, δ, (qI,1, qI,2), QF,1 × QF,2)

where δ is such that δ
(
q1, q2), (α1, α2)

)
= (q′1, q

′
2) for each q1, q′1 ∈ Q1, q2, q′2 ∈

Q2, α1 ∈ Σ1 and α2 ∈ Σ2 such that δ1(q1, α1) = q′1 and δ2(q2, α2) = q′2.

Proposition 59. There exists an algorithm AUTO INTERSECTION which takes as
arguments two complete DFAs in normal form, A1 = (Q1,Σ, δ1, qI,1, QF,1) and
A1 = (Q2,Σ, δ2, qI,2, QF,2), and computes a complete DFA in normal form A

accepting the language L(A1) ∩ L(A2).
The time cost of AUTO INTERSECTION is O(|Q1| · |Q2| · |Σ|).
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Proof. Construct A = (Q1 × Q2,Σ, δ, (qI,1, qI,2), QF,1 × QF,2) where δ is such
that δ

(
(q1, q2), α

)
= (q′1, q

′
2) for each q1, q′1 ∈ Q1, q2, q′2 ∈ Q2, α ∈ Σ such that

δ1(q1, α) = q′1 and δ2(q2, α) = q′2.

Proposition 60. There exists an algorithm AUTO UNION which takes as argu-
ments two complete DFAs in normal form, A1 = (Q1,Σ, δ1, qI,1, QF,1) and
A2 = (Q2,Σ, δ2, qI,2, QF,2), and computes a DFA A accepting the language
L(A1) ∪ L(A2).
The time cost of AUTO UNION is O(|Q1| · |Q2| · |Σ|).

Proof. Construct A = (Q1 × Q2,Σ, δ, (qI,1, qI,2), (QF,1 × Q2) ∪ (Q1 × QF,2)),
where δ is such that δ

(
q1, q2), α

)
= (q′1, q

′
2) for each q1, q′1 ∈ Q1, q2, q′2 ∈ Q2,

α ∈ Σ such that δ1(q1, α) = q′1 and δ2(q2, α) = q′2.

Proposition 61. There exists an algorithm AUTO COMPLEMENT which takes as
arguments a complete DFA in normal form, A = (Q,Σ, δ, qI, QF) and computes
a DFA A′ over the alphabet Σ accepting the language Σ∗ \ L(A).
The time cost of AUTO COMPLEMENT is O(|Q|).

Proof. The complete DFA A′ is (Q,Σ, δ, qI, Q \QF).

Proposition 62. There exists an algorithm AUTO DIFFERENCE which takes as
arguments two complete DFAs in normal form, A1 = (Q1,Σ, δ1, qI,1, QF,1) and
A1 = (Q2,Σ, δ2, qI,2, QF,2), and computes a DFA A accepting the language
L(A1) \ L(A2).
The time cost of AUTO DIFFERENCE is O(|Q1| · |Q2| · |Σ|).

Proof. The complete DFA A is AUTO INTERSECTION(A1 , A3), where
A3 = AUTO COMPLEMENT(A2).

Proposition 63. There exists an algorithm AUTO INCLUDED? which takes as
arguments two complete DFAs in normal form, A1 = (Q1,Σ, δ1, qI,1, QF,1) and
A1 = (Q2,Σ, δ2, qI,2, QF,2), and tests whether L(A1) ⊆ L(A2).
The time cost of AUTO INCLUDED? is O(|Q1| · |Q2| · |Σ|).

Proof. This test can be done by checking the emptiness of the difference between
A1 and A2.
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Proposition 64. There exists an algorithm AUTO REVERSE which takes as argu-
ment a FA A = (Q,Σ,∆, QI, QF) and computes a FA AR such that for all words
w ∈ Σ∗, w ∈ L(A) iff wR ∈ L(AR), where wR denotes the word w written from
right to left.
The time cost of AUTO REVERSE is O(|∆| + l) where l is the sum of the lengths
of the labels of all transitions in A.

Proof. The FA AR is (Q,Σ,∆R, QF , QI) such that (q, w, q′) ∈ ∆ iff (q′, wR, q) ∈

∆R.

The last operation presented in this section is the operation of homomorphism.
A homomorphism is a function f : Σ∗

1 → Σ∗
2 such that for any two words

w1, w2 ∈ Σ∗
1, we have f(w1w2) = f(w1)f(w2). According to this definition,

a homomorphism is defined by the relation {(α, f(α)) | α ∈ Σ}. Applying a
homomorphism to an automaton A consists of computing an automaton A′ such
that L(A′) = {f(w) | w ∈ L(A)}. We have the following proposition.

Proposition 65. There exists an algorithm AUTO HOMOMORPHISM which takes
as arguments one FA in strong normal form, A = (Q,Σ,∆, QI, QF) and a ho-
momorphism f : Σ∗ → Σ∗

f , and computes a FA Af such that for all words
w ∈ Σ∗, w ∈ L(A) iff f(w) ∈ L(Af ). The time cost of AUTO HOMOMORPHISM
is O(|∆|).

If for all α ∈ Σ, f(α) ∈ Σf , then Af is in strong normal form.

Proof. We have Af = (Q,Σf ,∆f , QI, QF) such that for all (q, α, q′) ∈ ∆, we
have (q, f(α), q′) ∈ ∆f , and there are no other transition in ∆f .
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Chapter 5

Number Decision Diagrams

In this chapter, we explain how automata can represent particular sets of integer
vectors. In addition, we give some properties of the proposed encoding scheme.

5.1 Automata-Based Representations of Integer Vec-
tor Sets

This idea of representing sets of integer by automata goes back at least to [Buc60]
and it consists in establishing mappings between vectors and words, the mappings
being based on the positional expression of numbers, with a signed-complement
system for negative integers.

Given a positive integer number r > 1, any positive number z can be expressed
as a sum of powers of r, z =

∑p−1
i=0 air

i, with ai ∈ {0, . . . , r−1}, for some p ∈ N.
The sequence ap−1ap−2 . . . a0 is then a word on the alphabet Σr = {0, . . . , r− 1}.
The elements of Σr are called digits, and as defined, the encoding proposed is
characterized by the fact that we start with the coefficient of the highest power
of r in the decomposition, it is therefore called most significant digit first (msdf).
This encoding scheme is easily generalized to integer numbers by using the r-
complement scheme according to which the encoding of a negative integer z with
−rp ≤ z < 0 is given by the last p + 1 digits of rp+1 + z.

Remark 66. If a0, . . . , ap ∈ {0, . . . , r− 1} and z ∈ Z, with −rp ≤ z < 0, satisfy
the relation

rp+1 + z =

p
∑

i=0

ai · r
i,

55
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then rp+1 + z = (r − 1) · rp + rp − z wih 0 ≤ rp − z < rp. Therefore, we have
ap = r − 1 and

z = −rp+1 + ap · r
p +

p−1
∑

i=0

ai · r
i

= −
ap

r − 1
· rp +

p−1
∑

i=0

ai · r
i.

If a0, . . . , ap ∈ {0, . . . , r − 1} and z ∈ Z, with 0 ≤ z < rp, satisfy the relation

z =

p
∑

i=0

ai · r
i,

then ap = 0 and

z = ap · r
p +

p−1
∑

i=0

ai · r
i

= −
ap

r − 1
· rp +

p−1
∑

i=0

ai · r
i.

Formally, we have the following definition.

Definition 67. Given an encoding basis r > 1, a word w = apap−1 . . . a0 with
p ∈ N, ap ∈ {0, r− 1} and ai = {0, . . . , r− 1} for i ∈ {0, . . . , p− 1}, is an msdf
r-encoding of an integer z ∈ Z, denoted by 〈w〉r = z, if

z = −
ap

r − 1
· rp +

p−1
∑

i=0

air
i.

For example, the words 0120 and 2201 are 3-encodings of the numbers 15 and
−8 respectively.

Note that a word w ∈ Σ∗
r is an r-encoding of some integer z if and only if

|w| ≥ 1 and the first symbol a of w belongs to {0, r − 1}. If a = r − 1, then
z < 0, and conversely, if a = 0, z ≥ 0. The first digit of w is therefore called the
sign digit. Also, two r-encodings of the same number differ only by the repetitions
of the sign digit, as proved in the following lemma.
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Lemma 68. Let w1, w2 ∈ (Σr)
+ be r-encodings.

There exist a ∈ {0, r − 1} and w ∈ Σ∗
r such that w1 = ak1w and w2 = ak2w

for some k1, k2 ∈ N \ {0} if and only if w1 and w2 are r-encodings of the same
number.

Proof.

• Suppose that w1, w2 ∈ Σ+
r are r-encodings of some z ∈ Z. Without loss of

generality, assume that |w1| ≤ |w2|, and let a1,|w1|−1, a2,|w2|−1 ∈ {0, r − 1}

and a1,0, . . . , a1,|w1|−2, a2,0, . . . , a2,|w2|−2 ∈ {0, . . . , r − 1} such that w1 =

a1,|w1|−1 . . . a1,0 and w2 = a2,|w2|−1 . . . a2,0. By definition of the encoding
scheme, we have

〈w1〉r = −r|w1|−1a1,|w1|−1

r − 1
+

|w1|−2
∑

i=0

a1,ir
i (5.1)

〈w2〉r = −r|w2|−1a2,|w2|−1

r − 1
+

|w2|−2
∑

i=0

a2,ir
i. (5.2)

The sign digits of w1 and w2 must be equal and so, a1,|w1|−1 = a2,|w2|−1 = a.
Since 〈w1〉r = z = 〈w2〉r, we deduce that

0 = −r|w2|−1 a

r − 1
+

|w2|−2
∑

i=|w1|

a2,ir
i+(a2,|w1|−1+

a

r − 1
)r|w1|−1+

|w1|−2
∑

i=0

(a2,i−a1,i)r
i.

(5.3)
So, a2,i = a1,i for i ∈ {0, . . . , |w1| − 2} and

−r|w2|−1 a

r − 1
+

|w2|−2
∑

i=|w1|−1

a2,ir
i = −r|w1|−1 a

r − 1
. (5.4)

If a = 0, then
∑|w2|−2

i=|w1|−1 a2,ir
i = 0, and so a2,i = 0 for i ∈ {|w1|, . . . , |w2|−

1}. Conversely, if a = r − 1, then
∑|w2|−2

i=|w1|−1 a2,ir
i = r|w2| − r|w1|. Since

a2,i ≤ r − 1, for all i ∈ {|w1| − 1, . . . , |w2| − 2},
∑|w2|−2

i=|w1|−1 a2,ir
i =

r|w2| − r|w1| iff a2,i = r − 1 for all i ∈ {|w1| − 1, . . . , |w2| − 2}.

• Suppose that there exist a ∈ {0, r − 1} and w ∈ Σ∗
r such that w1 = ak1w

and w2 = ak2w for some k1, k2 ∈ N \ {0}. We show that for any k,

〈ak〉r = 〈a〉r.
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Once this is proved, by definition of the encoding scheme, we deduce that
〈akw〉r = 〈aw〉r, and therefore we have

〈ak1w〉r = 〈ak2w〉r.

Clearly, if k = 1, then 〈ak〉r = 〈a〉r. If k ≥ 2, by definition of the encoding
scheme, we have

〈ak〉r = −rk−1 a

r − 1
+

k−2∑

i=0

ria

= −
rk−1

r − 1
a +

rk−1 − 1

r − 1
a

= −
a

r − 1
= 〈a〉r.

Definition 69. The r-encoding of z ∈ Z having no repetition of the sign digit is
called the minimal r-encoding of z.

Note that thanks to Lemma 68, given an integer z ∈ Z, the minimal r-encoding
of z is unique.

In order to encode a vector z ∈ Zn, it suffices to read synchronously one digit
from the encodings of all its components, provided that these encodings share
the same length. This requirement can always be met by prefixing the minimal
r-encodings of the components by a sequence of copies of their sign digit. An
r-encoding of a vector z ∈ Zn can indifferently be viewed as a tuple of n words in
(Σr)

∗ or as a word in (Σn
r )∗. In the following, we adopt the latter, and therefore,

each symbol α ∈ Σn
r is a tuple of digits (a1, . . . , an) with ai ∈ {0, . . . , r−1}. For

convenience, the ith element of α is denoted α[i].
Formally, we have the following definition.

Definition 70. Given a dimension n ≥ 0 and an encoding basis r > 1, a word
w = αpαp−1 . . . α0 over Σn

r , with p ∈ N and p ≥ 1, is a (msdf) r-encoding
of an integer vector z ∈ Zn, denoted 〈w〉r,n = z if for each j ∈ {1, . . . , n},
〈αp[j]αp−1[j] . . . α0[j]〉r = z[j].

The synchronous encoding scheme ES(r) is the relation that associates to a
vector z ∈ Zn the words w ∈ (Σn

r )∗ such that z = 〈w〉r,n.
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Note that a wordw ∈ (Σn
r )∗ is an r-encoding of some integer vector if and only

if |w| ≥ 1 and the first symbol ofw belongs to {0, r−1}n. Generalizing the notion
of sign digit, the first symbol of any r-encoding is called the sign symbol. Since
sets of integer vectors whose components are all positive will play an important
role in the sequel, for convenience, we will use the symbol o to denote (0, . . . , 0).

Lemma 68 easily generalizes to the vector case as follows.

Lemma 71. Let w1, w2 ∈ (Σn
r )+ be r-encodings.

There exist α ∈ {0, r − 1}n and w ∈ (Σn
r )∗ such that w1 = αk1w and w2 =

αk2w for some k1, k2 ∈ N \ {0} iff w1 and w2 are r-encodings of the same vector.

Proof. Direct consequence of the encoding scheme and of Lemma 68.
As in the case of a single integer, we deduce from the above lemma the exis-

tence of an r-encoding of an integer vector with minimal length.

Definition 72. The encoding of z ∈ Zn having no repetition of the sign symbol is
called the minimal r-encoding of z.

Note that thanks to Lemma 71, given an integer vector z ∈ Z, the minimal
r-encoding of z is unique. Also, the sign symbols of all encodings of a vector are
identical. We define the function signr : Zn → Σn

R such that signr(z) returns the
sign symbol of the r-encodings of z.

Remark 73. By definition, for all x ∈ Zn, we have signr(x) = αsign iff for all

i ∈ {1, . . . n},

{
x[i] < 0 if αsign[i] = r − 1

x[i] ≥ 0 if αsign[i] = 0
.

Let S ⊆ Zn with n ≥ 1. If the languageL(S) containing all the r-encodings of
all the vectors in S is regular, then any finite automaton A = (Q,Σn

r ,∆, QI, QF)

accepting L(S), i.e. such that L(A) = L(S), is a Number Decision Diagram
(NDD), and we say that A represents S and S is recognizable with respect to the
synchronous encoding scheme ES(r). In this paper, we use the following nota-
tions. We denote by Sq

A the set of integer vectors whose encodings label paths
from any qI ∈ QI to q in the NDD A, and by SA the set of integer vectors repre-
sented by the NDD A.

The choice of accepting all the encodings of the elements in the set is based
on the fact that most set operations on sets recognizable with respect to ES(r) can
be performed by applying the corresponding operations on the automata. There is
only some extra cost for the projection operation [Boi99, BL01].

Automata-based representations of sets of integer vectors have been studied
for a long time, at least back to [Buc60]. We conclude this section by providing
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two important results regarding recognizable sets of integer vectors. The first
theorem characterizes the sets of integer vectors that are recognizable with respect
to ES(r), for some r > 1, the second characterizes the sets that are recognizable
with respect to ES(r), for all r > 1.

Theorem 74. The sets definable in the first order theory 〈Z, 0, 1,+, Vr, <〉, where
Vr is the function defined as follows.

Vr : Z → Z : z 7→

{
the greatest power of r dividing z if z 6= 0,
1 if z = 0.

correspond exactly to the sets that are recognizable with respect to the synchronous
encoding scheme ES(r), r > 1.

Proof. [Buc60, McN63, Bru85, MP86, Vil92, Boi99]

Theorem 75. The sets definable in the first order theory 〈Z, 0, 1,+, <〉 corre-
spond exactly to the sets that are recognizable with respect to all synchronous
encoding schemes ES(r) with r > 1.

Proof. [Cob69, Sem77, BHMV94, MV96, Muc03]1.
Finally, we give the bound on the size of the minimal NDD representing a set

defined by a Presburger formula ϕ.

Theorem 76. For any Presburger formula ϕ(x1, . . . , xn), there exists a com-
plete minimal NDD A accepting the (msdf) r-encodings of the elements of the set

S = {(x1, . . . , xn) ∈ Zn | ϕ(x1, . . . , xn)} with at most 222
|ϕ|

states.

Proof. [Kla04b, Kla04a].

5.2 Basic Operations on NDDs

In this section, we detail procedures for performing basic operations on NDDs.
The operations of intersection, union, complement, difference and product can be
directly performed on the corresponding operations on automata. The procedure
corresponding to the projection is similar to the operation of homomorphism but
required some additional considerations.

1The proofs actually apply to subsets of Nn. The generalization to subsets of Zn is immediate.
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Theorem 77. Let A1 = (Q1,Σ
n
r , δ1, qI,1, QF,1) and A2 = (Q2,Σ

n
r , δ2, qI,2, QF,2)

be deterministic NDDs in strong normal form representing the set S1 ⊆ Zn and
S2 ⊆ Zn.

The DFAs in strong normal form AUTO INTERSECTION(A1 , A2),
AUTO UNION(A1, A2), AUTO DIFFERENCE(A1 , A2) and AUTO PRODUCT(A1 ,
A2) are deterministic NDD in normal form representing the sets S1 ∩S2, S1 ∪ S2,
S1 \ S2 and S1 × S2.

Proof. Direct consequence of the fact that all encodings of the elements in a set S
are accepted by an NDD representing S.

Theorem 78. There exists a procedure NDD COMPLEMENT which, given a NDD
in normal form A = (Q,Σn

r ,∆, QI, QF) representing the set S ⊆ Zn, generates a
deterministic NDD A′ in strong normal form representing Zn \ S.

The time complexity of NDD COMPLEMENT is O(2|Q| · |Σn
r |) and the number

of states in A′ is at most O(2|Q|).

Proof. Let AZn = ({q1, q2},Σ
n
r , δZn , q1, {q2}) such that δ(q1, α) = q2 for all α ∈

{0, r− 1}n and δ(q2, α) = q2 for all α ∈ Σn
r . By construction, AZn is the minimal

NDD representing Zn.
The NDD A′ is AUTO DETERMINIZE(AUTO DIFFERENCE( AZn , A)).

Finally, we define the projection operation as follows. Given a set S ⊆ Zn,
n ≥ 2, the projection of S with respect to the ith component, denoted ∃i(S), is
defined as follows.

∃i(S) = {(x1, . . . , xi−1, xi+1, . . . , xn) | (x1, . . . , xn) ∈ S}.

Theorem 79. There exists a procedure NDD PROJECTION which, given an inte-
ger i ∈ {1, . . . , n} and an NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF)

representing the set S ⊆ Zn, n ≥ 2, generates an NDD A′ in strong normal form
representing ∃i(S).

The time complexity of NDD PROJECTION is O(|∆| · |Σn
r |) and the number

of states in A′ is |Q|.

Proof. Let f be the homomorphism mapping Σn
r onto Σn−1

r by removing the ith
component. Formally, f : Σn

r → Σn−1
r with







ε→ε

α→(α[1], . . . , α[i− 1], α[i+ 1], . . . , α[n]

w1w2→f(w1)f(w2)
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Let Af be the FA generated via the call AUTO HOMOMORPHISM(A, f ).
Thanks to Lemma 65, Af is in strong normal form.

For each w ∈ L(Af), 〈w〉r,n−1 ∈ ∃i(S). However, if x ∈ S, then some
encodings of x might not be accepted by Af . For example, if S = {(0, 3)},
then L(A) = {(0, 0)k(0, 1)(0, 1) | k ≥ 1}. By definition, ∃1(S) = {(0)} and
L(Af) = {(0)k(0)(0) | k ≥ 1}.

In order to add the missing encodings of elements of ∃i(S), for each encodings
αk, k ≥ 1 labeling a path from an initial state to a state q in Af , one needs to add
the paths labeled by αk′ for all k′ ≥ 1. This can be done by performing for each
α ∈ {O, r − 1}n−1 a depth-first-search starting at the states in QI, and following
only transitions labeled by α. A formal description of NDD PROJECTION is given
in Fig 5.1.

The function NDD PROJECTION is easily generalized in order to project with
respect to a set of components. Given a set S ⊆ Zn, n ≥ 2, the projection of
S with respect to a set of component I , denoted ∃I(S) is defined recursively as
follows.

∃{i}(S) = ∃i(S)

∃{i1 ,...,ik+1}(S) = ∃{i1,...,ik}

(
∃ik+1

(S)
)

Theorem 80. There exists a procedure NDD MULTI PROJECTION which, given
a set I ⊆ {1, . . . , n} and an NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF)

representing the set S ⊆ Zn, n ≥ 1, generates an NDD A′ in strong normal form
representing ∃I(S).

The time complexity of NDD MULTI PROJECTION is O(|∆| · |Σn
r |) and the

number of states in A′ is |Q|.

Proof. The proof of Theorem 79 is easily adapted for the projection with respect
to a set of components.

5.3 Synchronous Encoding Scheme and Linear Con-
straints

In this section, we describe some properties of the encoding scheme. Based on
those properties, we present in Section 5.4 an efficient algorithm for generating an
NDD for a set given a quantifier-free Presburger formula defining the set, which is
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function NDD PROJECTION(integer i, NDD A = (Q, Σn
r , ∆, QI, QF)) : NDD

1: var Qvisited : set of state;

2: q, q′, q′′ : state;

3: f : function;

4: (Q′, Σ′, ∆′, Q′
I, Q

′
F) : automaton;

5: α, α′ : symbol;

6: procedure EXPLORE-FW(state s)

7: var s′ : state;

8: begin

9: Qvisited := Qvisited ∪ {s};

10: for each (s, α′, s′) ∈ ∆′ do

11: begin

12: ∆′ := ∆′ ∪ {(q′, α′, s′), (q′′, α′, s′)};

13: if s′ 6∈ Qvisited then EXPLORE-FW(s′);

14: end

15: end

16: begin

17: let f : Σn
r → Σn−1

r :







ε → ε

α → (α[1], . . . , α[i − 1], α[i + 1], . . . , α[n]

w1w2 → f(w1)f(w2)

;

18: (Q′, Σ′, ∆′, Q′
I, Q

′
F) := AUTO HOMOMORPHISM(A, f);

19: let q′ 6∈ Q′;

20: Q′ := Q′ ∪ {q′};

21: Q′
I := Q′

I ∪ {q′};

22: for each α ∈ {0, r − 1}n−1 do

23: begin

24: let q′′ 6∈ Q′;

25: Q′ := Q′ ∪ {q′′};

26: ∆′ := ∆′ ∪ {(q′, α, q′′), (q′′, α, q′′)};

27: Qvisited := ∅;

28: for each q ∈ QI do EXPLORE-FW(q);

29: end

30: return (Q′, Σ′, ∆′, Q′
I, Q

′
F);

31: end

Figure 5.1: Function NDD PROJECTION
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essentially the one given in [Kla04b, Kla04a]. The properties are also used when
analyzing the structure of NDDs.

Intuitively, the following lemmas show how, given an encoding u ∈ (Σn
r )+ and

a vector a ∈ Zn, the value of a.〈u〉r,n constrains the possible values of a.〈uv〉r,n

for any word v ∈ (Σn
r )∗.

Lemma 81. Let a ∈ Zn and u1, u2 be encodings over Σn
r .

1. If a.〈u1〉r,n ≤ a.〈u2〉r,n, then for all words v ∈ (Σn
r )∗, we have

a.〈u1v〉r,n ≤ a.〈u2v〉r,n.

2. If a.〈u1〉r,n ≡m a.〈u2〉r,n, then for all words v ∈ (Σn
r )∗, we have

a.〈u1v〉r,n ≡m a.〈u2v〉r,n.

Proof. By definition of the encoding scheme, 〈uv〉r,n = r|v|〈u〉r,n + 〈ov〉r,n.

1. If a.〈u1〉r,n ≤ a.〈u2〉r,n, then we have

a.〈u1v〉r,n = a.
(
r|v|〈u1〉r,n + 〈ov〉r,n

)

≤ a.
(
r|v|〈u2〉r,n + 〈ov〉r,n

)

≤ a.〈u2v〉r,n .

2. If a.〈u1〉r,n ≡m a.〈u2〉r,n, then we have

a.〈u1v〉r,n ≡m a.
(
r|v|〈u1〉r,n + 〈ov〉r,n

)

≡m a.
(
r|v|〈u2〉r,n + 〈ov〉r,n

)

≡m a.〈u2v〉r,n .

Lemma 82. Let a ∈ Zn and let u ∈ (Σn
r )+ be an encoding.

1. If a.〈u〉r,n ≤ −‖ a+‖, then ∀v ∈ (Σn
r )∗, a.〈uv〉r,n ≤ a.〈u〉r,n.

2. If a.〈u〉r,n < −‖ a+‖, then ∀v ∈ (Σn
r )∗, a.〈uv〉r,n < a.〈u〉r,n.

3. If a.〈u〉r,n ≥ ‖ a−‖, then ∀v ∈ (Σn
r )∗, a.〈uv〉r,n ≥ a.〈u〉r,n.

4. If a.〈u〉r,n > ‖ a−‖, then ∀v ∈ (Σn
r )∗, a.〈uv〉r,n > a.〈u〉r,n.
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Proof. We prove (1), the proofs for (2), (3) and (4) are similar.
Suppose that a.〈u〉r,n ≤ −‖ a+‖. By definition of the encoding scheme,

〈uv〉r,n = r|v|〈u〉r,n + 〈ov〉r,n, and 0 ≤ 〈ov〉r,n[i] ≤ r|v| − 1, for i ∈ {1, . . . , n},
implying that 0 ≤ a.〈0v〉r,n ≤ (r|v| − 1)‖ a+‖. So, we have

a.〈uv〉r,n = a.(r|v|〈u〉r,n + 〈ov〉r,n)

= a.〈u〉r,n + (r|v| − 1)a.〈u〉r,n + a.〈ov〉r,n

≤ a.〈u〉r,n − (r|v| − 1)‖ a+‖ + (r|v| − 1)‖ a+‖

≤ a.〈u〉r,n.

Lemma 83. Let a.x � b where � ∈ {<,≤,=,≥, >}. Let u ∈ (Σn
r )+ be an

encoding.

1. If a.〈u〉r,n < min(b,−‖ a+‖), then for all v ∈ (Σn
r )∗, a.〈uv〉r,n � b holds iff

� ∈ {<,≤}.

2. If a.〈u〉r,n > max(b, ‖ a−‖), then for all v ∈ (Σn
r )∗, a.〈uv〉r,n � b holds iff

� ∈ {>,≥}.

Proof. We prove (1), the proof for (2) is similar.
Suppose that a.〈u〉r,n < min(b,−‖ a+‖). Thanks to Lemma 82, for all v ∈

(Σn
r )∗, a.〈uv〉r,n < a.〈u〉r,n < b. So, a.〈uv〉r,n � b holds iff � ∈ {<,≤}.
Thanks to the above lemma, given an (in)equation a.x � b, we can partition

encodings as follows.

• [cmin] = {u ∈ (Σn
r )+ | a.〈u〉r,n < min(b,−‖ a+‖)}.

• [c] = {u ∈ (Σn
r )+ | a.〈u〉r,n = c} for c ∈ Z with min(b,−‖ a+‖) ≤ c ≤

max(b, ‖ a−‖).

• [cmax] = {u ∈ (Σn
r )+ | a.〈u〉r,n > max(b, ‖ a−‖)}.

If two encodings u1, u2 are in the same class, then a.〈u1v〉r,n � b⇔ a.〈u2v〉r,n � b

for all words v ∈ (Σn
r )∗.

Finally, the strongly connected components of NDDs will play a key role when
generating exact formulas corresponding to represented sets. A first indication of
the reasons why loops bring important information is provided in the following
lemma, where one shows that for all scalar vectors a ∈ Zn, for all encodings
u ∈ (Σn

r )+ and words v ∈ (Σn
r )∗, the sequence a.〈u〉r,n, a.〈uv〉r,n, a.〈uv2〉r,n,

. . . is either constant or strictly monotonic.
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Lemma 84. Let a ∈ Zn and let u ∈ (Σn
r )+ be an encoding. For all words

v ∈ (Σn
r )∗, there have three possibilities.

• If a.(〈uv〉r,n − 〈u〉r,n) < 0, then for all k ∈ N, a.〈uvk+1〉r,n < a.〈uvk〉r,n.

• If a.(〈uv〉r,n − 〈u〉r,n) = 0, then for all k ∈ N, a.〈uvk+1〉r,n = a.〈uvk〉r,n.

• If a.(〈uv〉r,n − 〈u〉r,n) > 0, then for all k ∈ N, a.〈uvk+1〉r,n > a.〈uvk〉r,n.

Proof. By definition of the encoding scheme, we have

a.(〈uvk+1〉r,n − 〈uvk〉r,n) = a.(rk·|v|〈uv〉r,n + 〈ovk〉r,n − rk·|v|〈u〉r,n − 〈ovk〉r,n)

= rk·|v|a.(〈uv〉r,n − 〈u〉r,n).

The claim is then immediate since rk·|v| > 0.
Combining Lemmas 83 and 84, we deduce the following lemma.

Lemma 85. For any inequation a.x ≤ b, a ∈ Zn, for all encodings u ∈ (Σn
r )+

and words v ∈ (Σn
r )∗, there exists kmin ∈ N such that for all words w ∈ (Σn

r )∗,
there are 3 possibilities.

• If a.〈uv〉r,n < a.〈u〉r,n, then a.〈uvkw〉r,n ≤ b for all k ≥ kmin.

• If a.〈uv〉r,n > a.〈u〉r,n, then a.〈uvkw〉r,n > b for all k ≥ kmin.

• If a.〈uv〉r,n = a.〈u〉r,n, then a.〈uvkw〉r,n = a.〈uvk+1w〉r,n, for all k ∈ N.

Proof. Direct consequence of Lemmas 83 and 84.

We now show that the previous lemma imposes that any minimal reduced
NDD representing a set defined by a Boolean combination of inequations is
permutation-free.

Lemma 86. The reduced minimal NDD representing a set defined by a Boolean
combination of finitely many linear inequations is permutation-free.

Proof. Let A = (Q,Σn
r , δ, qI, QF) be the reduced minimal NDD representing a set

S defined by the formula
∨

i∈I

∧

j∈J aij .x ≤ bij , where I and J are finite subsets
of N and aij ∈ Zn for all i ∈ I and j ∈ J .

We prove by contradiction that A is permutation-free.
Suppose that A is not permutation-free. By definition, there exist a word v ∈

(Σn
r )∗ and a set Q′ = {q1, . . . , qm} ⊆ Q, with m ≥ 2, such that δ̂(qi, v) = qi+1 for

1 ≤ i ≤ m− 1 and δ̂(qm, v) = q1.
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Figure 5.2: minimal NDD representing S = {(x, y) ∈ Z2 | x+ y ≡3 1}

Since A is reduced minimal, without loss of generality, there exist an encoding
u ∈ (Σn

r )+ and a word w ∈ (Σn
r )∗ such that δ̂(qI, u) = q1 and uvlmw ∈ L(A) but

uvlm+1w 6∈ L(A) for all l ∈ N . Therefore, by definition, there exist i′ ∈ I and
j ′ ∈ J such that

ai′j′.〈uv
lmw〉r,n ≤ bi′j′ and ai′j′.〈uv

lm+1w〉r,n > bi′j′ for infinitely many l.
(5.5)

Thanks to Lemma 85, there exists kmin such that either ai′j′.〈uv
kw〉r,n ≤ bi′j′

for all k ≥ kmin, ai′j′.〈uv
kw〉r,n > bi′j′ for all k ≥ kmin, or ai′j′.〈uv

kw〉r,n =

ai′j′.〈uv
k+1w〉r,n for all k ≥ kmin. However, this contradicts (5.5).

Remark 87. The property of being permutation-free does not hold whenever con-
gruence relations are introduced. For example, the reduced minimal NDD given
in Fig.5.2 represents the set S = {(x, y) ∈ Z2 | x+ y ≡3 1} in basis 2, and is not
permutation-free, since o makes a non-trivial permutation of the subset of states
{q1, q3}.
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5.4 Construction of NDDs from Quantifier-Free For-
mulas

In this section, we give a bound on the size of the minimal NDD representing a
set defined by a quantifier-free Presburger formula as well as a procedure for con-
structing a deterministic NDD whose size is equal to the bound. The main result
has been proved in [Kla04b, Kla04a] and is given here for the sake of complete-
ness. Note that in [Kla04b, Kla04a], the construction uses extensively the concept
of pre-automaton which is a DFA except that the set of accepting states is not
specified. We give below a direct approach which is based on a right-invariant
equivalence relation and does not involve pre-automata, but the idea as well as the
complexity of the construction are essentially the same as in [Kla04b, Kla04a].
Note that the NDDs generated by the procedure given in this section are deter-
ministic but in general not minimal. Efficient procedures generating minimal
NDD for sets defined by a single equation and a single inequation are given in
[WB00, Kla04b, Kla04a].

The basic idea for generating the NDD representing a set defined by a quantifier-
free Presburger formula ϕ(x1, . . . , xn) is the following. Given a quantifier-free
Presburger formula ϕ(x1, . . . , xn), one can compute finitely many formulas
ϕi(x1, . . . , xn) satisfying the following requirements.

• Each vector in Zn satisfies exactly one formula ϕi.

• Vectors satisfying the same formula have the same “possible future”, i.e.
if Li is the set of encodings of vectors satisfying ϕi(x1, . . . , xn), for all
u1, u2 ∈ Li, for all words w, ϕ holds for 〈u1w〉r,n iff ϕ holds for 〈u2w〉r,n.

• ϕ is equivalent to a disjunction of some formulas ϕi.

Then one defines a right-invariant equivalence relationRϕ on words in (Σn
r )∗ such

that the equivalence classes of Rϕ correspond to sets of encodings satisfying the
individual formulas ϕi. The construction of the NDD consists in associating one
state to each equivalence class and defining the transition function based on the
equivalence classes of Rϕ.

Let ϕ(x1, . . . , xn) be a quantifier-free Presburger formula, i.e. ϕ(x1, . . . , xn)

is a Boolean combination of atomic formulas of the form a.x � b, with a ∈ Zn

and � ∈ {<,≤,=,≥, >}, or a.x ≡m b, with a ∈ Zn and m ∈ Z, m ≥ 1. In the
sequel, the symbol n� (resp. n≡) denotes the number of different vectors a such
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that a.x�b (resp. a.x ≡m b) appears in ϕ for some b ∈ Z (andm ∈ Z). Similarly,
the symbol nm denotes the number of integer m such that a.x ≡m b appears in ϕ
for some a ∈ Zn and m ∈ Z.

Let cmin, cmax, mmax ∈ Z, a�,1, . . . , a�,n�
, a≡,1, . . . , a≡,n≡ ∈ Zn and

m1, . . . , mnm
∈ N such that

• for all atomic formulas in ϕ of the form a.x � b, a = a�,i for some i ∈
{1, . . . , n�}, cmin < min(−‖ a+‖, b), and cmax > max(‖ a−‖, b),

• for all atomic formulas in ϕ of the form a.x ≡m b, a = a≡,i for some
i ∈ {1, . . . , n≡}, m = mj for some j ∈ {1, . . . , nm}, and m ≤ mmax.

For all c ∈ {cmin, . . . , cmax}
n� and m ∈ {1, . . . , m1}

n≡×· · ·×{1, . . . , mnm
}n≡ ,

we define ϕc,m as follows.

ϕc,m(x) =def

∧

i∈{1,...,n�}

a�,i.x�ic[i]∧
∧

i ∈ {1, . . . , n≡},

j ∈ {1, . . . , nm}

a≡,i.x ≡mj
m[i+(j−1)·n≡],

where �i is







≤ if c[i] = cmin

= if cmin < c[i] < cmax

≥ if c[i] = cmax

.

Example 88. Let φ(x, y) =def (x + y = 1 ∨ x + y ≤ −3 ∨ 2x − y ≤

−4) ∧ (x + 2y ≡3 1 ∨ x+ 2y ≡4 0 ∨ 3x + y ≡5 2).
By definition, one can choose

• n� = 2 with a�,1 = (1, 1) and a�,2 = (2,−1),

• n≡ = 2 with a≡,1 = (1, 2) and a≡,2 = (3, 1),

• nm = 3 with m1 = 3, m2 = 4 and m3 = 5,

• cmin = −5, cmax = 2, and mmax = 5.

Let c ∈ {−5, . . . , 2}2 and m ∈ {1, . . . , 3}2 × {1, . . . , 4}2 × {1, . . . , 5}2. By
definition, we have

ϕc,m(x, y) =def x+ y �1 c[1] ∧ 2x− y �2 c[2]

∧ x+ 2y ≡3 m[1] ∧ 3x+ y ≡3 m[2] ∧ x + 2y ≡4 m[3]

∧ 3x+ y ≡4 m[4] ∧ x+ 2y ≡5 m[5] ∧ 3x+ y ≡5 m[6],

where �i is







≤ if c[i] = −5

= if −5 < c[i] < 2

≥ if c[i] = 2

.
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We have the following lemmas.

Lemma 89. For each x ∈ Zn, there is exactly one pair (c,m) with
c ∈ {cmin, . . . , cmax}

n� and m{1, . . . , m1}
n≡ × · · · × {1, . . . , mnm

}n≡ , such that
ϕc,m holds for x.

Proof. This is a direct consequence of the definition of the formulas ϕc,m.

Lemma 90. Each formula ϕc,m, with c ∈ {cmin, . . . , cmax}
n� and

m ∈ {1, . . . , m1}
n≡ × · · · × {1, . . . , mnm

}n≡ , satisfies the following property.
For all encodings u1, u2 ∈ (Σn

r )+ and words v ∈ (Σn
r )∗, if ϕc,m holds for both

u1 and u2, then ϕ holds for 〈u1v〉r,n iff ϕ holds for 〈u2v〉r,n.

Proof. Suppose that ϕc,m holds for u1 and u2. By construction, for all a.x � b

appearing in ϕ, either a.〈u1〉r,n ≤ cmin ∧ a.〈u2〉r,n ≤ cmin, a.〈u1〉r,n = a.〈u2〉r,n,
or, a.〈u1〉r,n ≥ cmax ∧ a.〈u2〉r,n ≥ cmax. Therefore, by definition of cmin and cmax,
and thanks to Lemma 83, we have either a.〈u1v〉r,n ≤ cmin < b ∧ a.〈u2v〉r,n ≤

cmin < b, a.〈u1v〉r,n = a.〈u2v〉r,n, or, a.〈u1v〉r,n ≥ cmax > b ∧ a.〈u2v〉r,n ≥

cmax > b. So, the formula a.x � b holds for 〈u1v〉r,n iff it holds for 〈u2v〉r,n.
In addition, for all a.x ≡m b appearing in ϕ, by construction, there exist

m = mj for some j ∈ {1, . . . , nm} and a = ai for some i ∈ {1, . . . , n≡}. So,
by hypothesis, a.〈u1〉r,n ≡m a.〈u2〉r,n, and thanks to Lemma 81, a.〈u1v〉r,n ≡m

a.〈u2v〉r,n. Therefore, the formula a.x ≡m b holds for 〈u1v〉r,n iff it holds for
〈u2v〉r,n.

We conclude that ϕ holds for 〈u1v〉r,n iff it holds for 〈u2v〉r,n.

Lemma 91. There exists a sequence of pairs (c1,m1), . . . , (cp,mp) with ci ∈

{cmin, . . . , cmax}
n� and mi ∈ {1, . . . , m1}

n≡ × · · · × {1, . . . , mnm
}n≡ for all

i ∈ {1, . . . , p} such that for all x ∈ Zn, we have

ϕ(x) ⇔
∨

i∈{1,...,p}

ϕci,mi
(x).

Proof. Thanks to Lemma 89, we can partition the encodings u ∈ (Σn
r )+ based

on the formula ϕc,m satisfied by 〈u〉r,n. Thanks to Lemma 90, if u1 and u2 are in
the same partition, ϕ holds for 〈u1〉r,n iff it holds for 〈u2〉r,n. Let (c1,m1), . . . ,
(cp,mp) be the pairs such that ϕ and ϕci,mi

holds for some x. We conclude that
for all x ∈ Zn, ϕ(x) ⇔

∨

i∈{1,...,p} ϕci,mi
(x).

We define the relation Rϕ as the smallest binary relation on words in (Σn
r )∗

satisfying the following requirements.
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• (ε, ε) ∈ Rϕ,

• (u, v) ∈ Rϕ if u, v are valid encodings (i.e. |u|, |v| ≥ 1 and their first
symbol is a sign symbol) and for all c ∈ {cmin, . . . , cmax}

n� and m ∈

{1, . . . , m1}
n≡ × · · · × {1, . . . , mnm

}n≡ , ϕc,m(〈u〉r,n) ⇔ ϕc,m(〈v〉r,n).

Lemma 92. The binary relationRϕ is an equivalence relation and its equivalence
classes are

• {ε},

• (Σn
r )+ \ {αu ∈ (Σn

r )+ | α ∈ {0, r − 1}n},

• the nonempty sets {αu ∈ (Σn
r )+ | α ∈ {0, r − 1}n ∧ ϕc,m(〈αu〉r,n)} for all

c ∈ {cmin, . . . , cmax}
n� and m ∈ {1, . . . , m1}

n≡ × · · · × {1, . . . , mnm
}n≡ .

Proof. By definition, Rϕ is reflexive, symmetric and transitive, and therefore, Rϕ

is an equivalence relation. In addition, for all valid encodings u, v ∈ (Σn
r )+,

if ϕc,m holds for both 〈u〉r,n and 〈v〉r,n, then (u, v) ∈ Rϕ, i.e. u and v are
in the same equivalence class. Finally, since there is exactly one formula ϕc,m

holding for each integer vector in Zn, the sets {αu ∈ (Σn
r )+ | α ∈ {0, r −

1}n ∧ ϕc,m(〈αu〉r,n)}, c ∈ {cmin, . . . , cmax}
n� and m ∈ {1, . . . , m1}

n≡ × · · · ×

{1, . . . , mnm
}n≡ , are disjoint.

In order to construct the NDD representing the integer vectors satisfying ϕ in
a way similar to the automaton construction of Lemma 49, one needs to show that
Rϕ is right-invariant with respect to concatenation, i.e. for all u, v, w ∈ (Σn

r )∗, if
(u, v) ∈ Rϕ, then (uw, vw) ∈ Rϕ. This is a direct consequence of the following
lemma.

Lemma 93. Let u, v ∈ (Σn
r )+ be valid encodings and let c ∈ {cmin, . . . , cmax}

n�

and m ∈ {1, . . . , m1}
n≡ × · · · × {1, . . . , mnm

}n≡ .
Ifϕc,m holds for both 〈u〉r,n and 〈v〉r,n, thenϕc′,m′(〈uw〉r,n) ⇔ ϕc′,m′(〈vw〉r,n)

for all w ∈ (Σn
r )∗, c′ ∈ {cmin, . . . , cmax}

n� and m′ ∈ {1, . . . , m1}
n≡ × · · · ×

{1, . . . , mnm
}n≡ .

Proof. Suppose that ϕc,m holds for both 〈u〉r,n and 〈v〉r,n.
By construction, for all i ∈ {1, . . . , n�}, either ai.〈u〉r,n ≤ cmin ∧ ai.〈v〉r,n ≤

cmin, ai.〈u〉r,n = ai.〈v〉r,n, or, ai.〈u〉r,n ≥ cmax ∧ ai.〈v〉r,n ≥ cmax. Therefore,
by definition of cmin and cmax, and thanks to Lemmas 81 and 83, we have either
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ai.〈uw〉r,n ≤ cmin ∧ ai.〈vw〉r,n ≤ cmin, ai.〈uw〉r,n = ai.〈vw〉r,n, or, ai.〈uw〉r,n ≥

cmax ∧ ai.〈vw〉r,n ≥ cmax.
In addition, for all i ∈ {1, . . . , n≡} and j ∈ {1, . . . , nm}, ai.〈u〉r,n ≡mj

ai.〈v〉r,n, and thanks to Lemma 81, ai.〈uw〉r,n ≡mj
ai.〈vw〉r,n.

The claim is then a consequence of the definition of the formulas ϕc,m.

Lemma 94. The binary relation Rϕ is right-invariant.

Proof. Let u, v ∈ (Σn
r )∗ and suppose that (u, v) ∈ Rϕ. By definition, either

u = v = ε or u and v are valid encodings and ϕc,m holds for both 〈u〉r,n and
〈v〉r,n, for some c ∈ {cmin, . . . , cmax}. In both cases, thanks to Lemma 93 and by
definition of Rϕ, for all words w ∈ (Σn

r )∗, (uw, vw) ∈ Rϕ.

Theorem 95. There exists a function NDD CONSTRUCT, which, given the
quantifier-free Presburger formula ϕ(x1, . . . , xn), returns a deterministic NDD
A in strong normal form accepting the set of integer vectors for which ϕ holds.

The NDD A has at most (|cmin| + |cmax| + 1)n� ·mn≡·nm
max states and the time

complexity of NDD CONSTRUCT is O(|Σn
r | · (|cmin| + |cmax| + 1)n� ·mn≡·nm

max ).

Proof. Thanks to Lemmas 92 and 94, Rϕ is a right-invariant equivalence relation
of finite index, whose equivalence classes are

• {ε},

• Σn
r )+ \ {αu ∈ (Σn

r )+ | α ∈ {0, r − 1}n}, and

• the nonempty sets {αu ∈ (Σn
r )+ | α ∈ {0, r − 1}n ∧ ϕc,m(〈αu〉r,n)} for all

c ∈ {cmin, . . . , cmax}
n� and m ∈ {1, . . . , m1}

n≡ × · · · × {1, . . . , mnm
}n≡ .

Also, thanks to Lemma 91, the set of encodings of vectors for which ϕ holds is a
union of equivalence classes. Therefore, thanks to Lemma 49, one can construct
the NDD representing the integer vectors satisfying ϕ. More precisely, if [u]Rϕ

denotes the equivalence class of Rϕ containing the word u, A is (Q,Σ, δ, qI, QF)

where

• Q = {[u]Rϕ
| u ∈ Σ∗}.

• For each α ∈ Σn
r and [u]Rϕ

∈ Q, δ([u]Rϕ
, α) = [uα]Rϕ

.

• qI = [ε]Rϕ
.

• QF = {[u]Rϕ
| u ∈ {0, r − 1}n(Σn

r )∗ ∧ ϕ(〈u〉r,n)}.
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Note that the construction can be done incrementally, starting with the initial state
[ε], and given a state [u]Rϕ

∈ Q, for each α ∈ Σn
r , one computes [uα]Rϕ

∈ Q as
follows. If uα is not a valid encoding, then [uα]Rϕ

is (Σn
r )+ \ {αu ∈ (Σn

r )+ | α ∈

{0, r− 1}n}. Otherwise, [uα]Rϕ
is the equivalence class associated to the formula

ϕc,m such that for all i ∈ {1, . . . , n�},

c[i] = cmin if ai.〈uα〉r,n ≤ cmin

c[i] = ai.〈uα〉r,n if cmin < ai.〈uα〉r,n < cmax

c[i] = cmax if ai.〈uα〉r,n ≥ cmax

and for all i ∈ {1, . . . , n≡}, j ∈ {1, . . . , nm},

m[i + j · n≡] = ai.〈uα〉r,n mod mj.

By construction, A has at most (|cmin| + |cmax| + 1)n� · mn≡·nm
max states and

since each state is handled only once, the time complexity of the algorithm is
O(|Σn

r | · (|cmin| + |cmax| + 1)n� ·mn≡·nm
max ).

5.5 Other Encoding Schemes

The synchronous encoding scheme is not the only scheme that is suited for integer
vectors. In this section, we present two encoding schemes closely related to the
synchronous encoding scheme, the reverse synchronous encoding scheme and the
synchronous interleaved encoding scheme [Boi99].

5.5.1 Reverse Synchronous Encoding Scheme

The Reverse Synchronous Encoding Scheme follows the same rules as the Syn-
chronous Encoding Scheme except that the digits are read from the least signifi-
cant digit one to the most significant one rather than the other way round.

Definition 96. Given an encoding basis r > 1, a word w = a0 . . . ap with p ∈ N,
ap ∈ {0, r−1} and ai = {0, . . . , r−1} for i ∈ {0, . . . , p−1}, is an lsdf r-encoding
of an integer z ∈ Z, denoted by 〈w〉Rr = z, if z = −rp · ap

r−1
+
∑p−1

i=0 air
i.

Note that given an integer z, and 0 ≤ ai < r, i ∈ {0, . . . , p}, 〈a0 . . . ap〉
R
r = z

if and only if 〈ap . . . a0〉r = z.

Definition 97. Given a dimension n ≥ 0 and an encoding basis r > 1, a word
w = α0 . . . αp in (Σn

r )∗, with p ∈ N and p ≥ 1, is an lsdf r-encoding of an integer
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vector z ∈ Zn, denoted 〈w〉Rr,n = z if for each j ∈ {1, . . . , n}, 〈α0[j] . . . αp[j]〉
R
r =

z[j].
The reverse synchronous encoding schemeER(r) is the relation that associates

to a vector z ∈ Zn the words w ∈ (Σn
r )∗ such that z = 〈w〉Rr,n.

Given a set S ⊆ Zn, if the language LR(S) containing all the lsdf r-encodings
of all the vectors in S is regular, then S is recognizable with respect to the reverse
synchronous encoding scheme ER(r).

Theorem 98. A set S ⊆ Zn is recognizable with respect to the synchronous en-
coding scheme ES(r) if and only if S is recognizable with respect to the reverse
synchronous scheme.

Proof. This is a direct consequence of the facts that w is an msdf r-encoding of
a vector z ∈ Zn if and only if wR is a lsdf r-encoding of z and that, thanks to
Propositions 47 and 64, a language L is accepted by a DFA if and only if LR is
accepted by a DFA, where LR = {wR | w ∈ L}.

Although the class of sets that are recognizable with respect to the synchronous
encoding scheme ES(r) and the class of sets recognizable with respect to the re-
verse encoding schemeER(r) are identical, this does not mean that there are equiv-
alent in practice. Indeed, the conversion from one representation to the other im-
plies a determinization and it is known [MF71, Moo71] that there exist languages
L such that the (reduced) minimal automaton accepting L is exponentially larger
that some FA accepting L. So, since Theorem 76 relating the size of the com-
plete minimal DFA representing a set defined by a Presburger formula ϕ with
respect to the synchronous encoding scheme ES(r) does not apply when consid-
ering the reverse synchronous scheme, the best available bound on the size of the
complete minimal DFA accepting the set defined by ϕ with respect to the reverse
synchronous encoding scheme is 222

2
|ϕ|

, although the current conjecture is that the
worst case complexity are identical for both encoding schemes. Note also that the
worst case presented in [Kla04b, Kla04a] is very peculiar and we do not expect
such a complexity for most practical cases, as confirmed by experiments.

In order to provide some ideas on the differences in practice between the sizes
of the automata when using the different encoding schemes, we compare the sizes
of NDDs using both the synchronous encoding scheme and the reverse encod-
ing scheme in five types of simple formulas : linear equations, linear inequations,
congruence relations with modulos relatively prime to the encoding basis, congru-
ence relations with modulos powers of the encoding basis, and formulas of type
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bmin ≤ a.x ≤ bmax, which we call intervals. In addition, we analyze the impact
of the sign symbol when using both encoding.

In all formulas, we used 8 variables, i.e. the represented sets are subsets of Z8,
and all scalars used in the formulas were integer numbers randomly chosen within
some bounds. We use 2 as the encoding basis.

In Figures2 5.3,5.4, 5.5,5.6 and 5.7, the sets considered are all subsets of N8.
Then in Figures 5.8,5.9, 5.10,5.11 and 5.12, we dropped the requirement on the
sign of the solutions. In each graph, the sizes of the automata obtained when using
the synchronous encoding scheme are plotted on the abscissa whereas the sizes of
the automata obtained when using the reverse synchronous encoding are plotted
on the ordinate.

According to Figures 5.3,5.4, 5.5,5.6 and 5.7, the sizes of the automata ac-
cepting encodings of positive solutions of equations, inequations or congruences
modulo p where p is prime relatively to the encoding basis does not depend on
the choice of encoding scheme. This is no longer true in the case of congruences
modulo a power of the basis, where the size is almost doubled when using the
reverse encoding scheme. The difference is even more striking with intervals.

When considering the sign symbols, it appears that using the reverse syn-
chronous encoding scheme incurs an additional cost. We explain this as follows.
With the reverse synchronous encoding scheme, since the semantic of a symbol
is different whether the symbol is the last symbol of an encoding, i.e. the sign
symbol, or not, one has to distinguish final states from the others, and the extra
information regarding the accepting status leads to splitting some states. For ex-
ample, when representing the equation 2x1 + 3x2 = 0 with the reverse encoding
scheme, the prefixes u1 = (1, 0)(0, 1)(1, 0) and u2 = (0, 0)(0, 0)(1, 1) are equiv-
alent when at least one symbol must be read. Indeed, in both cases, 3 symbols
have been read and since 〈u1o〉

R
r,n = (5, 2) and 〈u2o〉

R
r,n = (4, 4), the value of the

left-hand side of 2x1 + 3x2 = 0 is 16 when substituting (x1, x2) by 〈u1o〉
R
r,n or

〈u2o〉
R
r,n. However, if the third symbol is the sign symbol, then 〈u1〉

R
r,n = (−3, 2)

and 〈u2〉
R
r,n = (−4,−4), and in this case, the value of the left-hand side is 0 for u1

and −20 for u2, and the encodings are no longer equivalent. With the synchronous
encoding scheme, the above phenomenon does not occur since the sign symbols
label transitions rooted at the initial state and they do no longer appear afterward,
i.e. they do not label transitions rooted at some other state.

Based on the experimental results presented above, we conclude that in the
2We slightly modified the encoding schemes by removing the sign symbol, (which would have

been o for all encodings).
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Figure 5.3: msdf vs lsdf in equations (no sign)
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Figure 5.4: msdf vs lsdf in inequations (no sign)
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Figure 5.5: msdf vs lsdf in congruences with modulo prime to basis (no sign)
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Figure 5.6: msdf vs lsdf in congruences with modulo power of the basis (no sign)
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Figure 5.7: msdf vs lsdf in intervals (no sign)
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Figure 5.8: msdf vs lsdf in equations
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Figure 5.9: msdf vs lsdf in inequations
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Figure 5.10: msdf vs lsdf in congruences with modulo prime to basis
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Figure 5.11: msdf vs lsdf in congruences with modulo power of the basis
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case of simple sets, the synchronous encoding scheme leads to NDDs with fewer
states than those produced when using the reverse encoding scheme. We expect
that this observation also holds for more general sets on average.

5.5.2 Synchronous Interleaved Encoding Scheme

As mentioned in Section 5.1, when using the synchronous encoding scheme, each
symbol αi of an r-encoding αp . . . α0 of a vector z ∈ Zn is basically a vector
of digits, and αi[j] is the ith digit of an r-encoding of z[j]. In the synchronous
interleaved encoding scheme, also referred to as the serial encoding, the digits of
the encodings of the components are read sequentially rather than simultaneously.
Formally, we have the following definitions.

Definition 99. Given a dimension n ≥ 0 and an encoding basis r > 1, a word
w = ap,1 . . . ap,n . . . a0,n in (Σr)

∗, with p ∈ N and p ≥ 1, is a (msdf) serialized
r-encoding of an integer vector z ∈ Zn, denoted 〈w〉Ir,n = z, if for each j ∈

{1, . . . , n}, 〈αp,jαp−1,j . . . α0,j〉r = z[j].
The synchronous interleaved encoding scheme (also called serial encoding

scheme), EI(r) is the relation that associates to a vector z ∈ Zn the words w ∈

(Σr)
∗ such that z = 〈w〉Ir,n.

The sets of vectors that are recognizable with respect to synchronous inter-
leaved encoding scheme are exactly the ones that are recognizable with respect to
the synchronous encoding scheme.

Theorem 100. A set S ⊆ Zn is recognizable with respect to the synchronous
encoding scheme ES(r) if and only if S is recognizable with respect to the syn-
chronous interleaved encoding scheme.

Proof. A DFA A′ = (Q′,Σ′
r, δ

′, q′I, Q
′
F) representing a set S ⊆ Zn with respect

to the synchronous interleaved encoding scheme EI(r) is easily generated from
a DFA A = (Q,Σr, δ, qI, QF) representing S with respect to the synchronous
encoding scheme by adding intermediate states. That is, if δ(q, α) = q ′, one adds
n − 1 states q1, . . . , qn−1 ∈ Q′ such that δ′(q, α[1]) = q1, δ′(qi−1, α[i]) = qi,
i ∈ {2, . . . , n− 2} and δ′(qn−1, α[n]) = q′.

The reciprocal transformations can be achieved by removing the intermediate
states.

The interest of the synchronous interleaved encoding scheme is that some re-
dundant information in the transition function can now be gotten rid of by sharing
intermediate states.
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This is shown in Figures 5.13 and 5.14, which display the reduced minimal
DFA representing Z3 with respect to the synchronous encoding scheme and syn-
chronous interleaved scheme respectively.

In order to analyze the impact of using the synchronous interleaved scheme,
we do a comparison of sizes of NDDs when using the synchronous encoding
scheme ES(r) and the synchronous interleaved one EI(r), similar to what has been
presented in Section 5.5.1, i.e. we consider sets corresponding to linear equations,
linear inequations, congruence relations with modulos relatively prime to the en-
coding basis, congruence relations with modulos powers of the encoding basis,
and intervals.

In all formulas, we used 8 variables, i.e. the represented sets are subsets of Z8,
and all scalars used in the formulas were integer numbers randomly chosen within
some bounds. We use 2 as the encoding basis.

The results are presented in Figures 5.15, 5.16, 5.17, 5.18 and 5.19.
From the figures, we see that, as a rule of thumb, the number of states of the

complete minimal DFA representing a set S ⊆ Zn is multiplied by n when using
EI(r) as compared to ES(r). In order to get the number of transitions in the com-
plete minimal DFA, one has to multiply the number of states by the number of
symbols in the alphabet, that is, rn and r when using ES(r) and EI(r) respectively.
So, from the figures, we conclude that the number of transitions is exponentially
smaller in general when using the synchronous interleaved scheme. This suggests
that in general, the transition relations of NDDs using the synchronous encod-
ing scheme contain a lot of redundancy which can be gotten rid of by using the
synchronous interleaved scheme.

In the sequel, all results will be stated when using the synchronous encoding
schemeES(r) since it presents the advantage that the label of any path rooted at the
initial state is an encoding, and so, it facilitates the interpretation of the results.
However, in order to test the algorithms presented in the sequel, we will adapt
those for the synchronous interleaved scheme in order to take advantage of the
efficiency gain resulting from this scheme.
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Figure 5.12: msdf vs lsdf in intervals
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Figure 5.15: synchronous vs serial in equations
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Figure 5.16: synchronous vs serial in inequations
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Figure 5.17: synchronous vs serial in congruences with modulo prime to basis
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Figure 5.18: synchronous vs serial in congruences with modulo power of the basis
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Figure 5.19: synchronous vs serial in intervals
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Part II

From Automata to Formula
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Chapter 6

Over-Approximation : Affine Hull of
NDDs

In this chapter, we present a first approach for extracting information about sets
represented by NDDs. We describe algorithms that, given a reduced NDD in
strong normal form representing a set S of integer vectors, generate the affine hull
of the set S over either Q or Z. Most of those results appeared in [Lat05b]. The
algorithms we present take as input a reduced (possibly nondeterministic) NDD
in strong normal form using the synchronous encoding scheme.

6.1 Triangular Sets

The algorithms presented in this chapter manipulate intensively vector spaces over
Q, Z-modules and Zm-modules. In order to have more efficient procedures, we
maintain sets of generators in a particular form : the triangular form [MS05a].
For a nonzero vector x, we call i the leading index of x and x[i] the leading entry
of x if x[i] 6= 0 and x[j] = 0 for j ∈ {1, . . . , i− 1}. A set of nonzero vectors T is
triangular if the leading entries of all vectors in T are positive and for all distinct
vectors x,x′ ∈ T , the leading indices of x and x′ are distinct. Intuitively, a set
is triangular if the vectors are the columns of a column echelon matrix A with
no zero-column, i.e. each column of A has a nonzero element and if A[ki, i] and
A[kj, j] are the first nonzero element of the ith and jth columns respectively with
j > i, then kj > ki. Note that the vectors belonging to a triangular set of integer
vectors are necessarily linearly independent.

Efficient procedures for generating an integer basis in triangular form of a

87
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vector space over Q or of a Z-module given a set of integer generators are available
from the current literature. In particular, we have the following results.

Proposition 101. There exists an algorithm GETTRIANGQBASIS which, given a
finite set G ⊆ Zn as input, generates a triangular set T ⊆ Zn such that

linQ(G) = linQ(T ).

The sizes of the components of vectors in T are bounded by n · (k + log n) where
k is the bound on the component size of vectors in G, and the time complexity of
GETTRIANGQBASIS is O(|G| · n2).

Proof. Let A be the matrix whose columns are the vectors in G, and let B be the
matrix obtained by applying general Gaussian elimination to At (see [Sch86]).
Let C be the matrix obtained when multiplying each row of B by the least com-
mon multiplier of the denominators of the elements in the row. The set T is then
the columns of Ct. By construction, the nonzero vectors in T are linear combina-
tions of the vectors in G and vice versa.

Proposition 102. There exists an algorithm UPDATETRIANGQ which, given a
triangular set T ⊆ Qn and a vector x ∈ Qn, generates a triangular set T ′ and a
vector x′ ∈ Qn such that the following assertions are valid.

• linQ(T ′) = linQ(T ∪ {x}).

• If x ∈ linQ(T ), then T ′ = T

• If x 6∈ linQ(T ), then T ′ = T ∪ {x′}.

• The time complexity of UPDATETRIANGQ is O(n2).

Proof. The algorithm relies on the property that the vectors in a triangular set are
linearly independent over Q.

The function is recursive. If x = 0, the function returns (T, 0). Assume that
x 6= 0 and let i be the leading index of x.

• If for all g ∈ T , the leading index of g is not i, then the function returns the
pair (G ∪ {x},x).

• Otherwise, let g be the vector of T whose leading index is i. The function
returns UPDATETRIANGQ(T , x − x[i]

g[i]
· g).
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Since the leading index of the argument x in the recursive calls is strictly increas-
ing, there are at most n recursive calls and the complexity of the algorithm is
immediate.

The correctness of the algorithm can be proved by induction on the value of
the leading index of the argument x, starting with n and decreasing down to 1.

Proposition 103. There exists an algorithm GETTRIANGZBASIS which, given a
finite set G ⊆ Zn as input, generates a triangular set T ⊆ Zn such that

linZ(G) = linZ(T ).

The sizes of the components of vectors in T are bounded by k · n · logn, where
k is the bound on the component size of vectors in G, and the time complexity of
GETTRIANGZBASIS is O(|G| · k · n3 · logn).

Proof. It suffices to generate the matrix A whose columns are the vectors in the
set G, and then to compute the Hermite form H of A, i.e. the matrix H such
that H is in Hermite form and H = AU for some square integer matrix U whose
determinant is 1. The general complexity is obtained by using the computation of
the Hermite form given in [Sto00].

Remark 104. Computing a basis is more efficient over Q than over Z. This is
due to the fact that given a Z-module S and a set G ⊂ S of linearly independent
vectors over Z, there does not generally exist a set G′ ⊆ S such that G ∪ G′ is a
basis of S. For example, take S = {(x, y) ∈ Z2 | x = y} and G = {(2, 2)}.

Proposition 105. There exists an algorithm INLINEARHULLZ? which, given a
triangular set T ⊆ Zn and a vector x ∈ Zn, returns true if x ∈ linZ(T ) and
false otherwise.

The time complexity of INLINEARHULLZ? is O(n2).

Proof. The algorithm relies on the property that the vectors in a triangular set are
linearly independent.

The algorithm is recursive. If x = 0, it returns true . Assume that x 6= 0 and
let i be the leading index of x.

• If there is no vector in T whose leading index is i, then it returns false .

• If there is a vector y ∈ T whose leading index is i, then there are two
possibilities.
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– If y[i] does not divide x[i], then it return false .
– If y[i] divides x[i], then the algorithm returns INLINEARHULLZ?(T ,

x′), with x′ = x − x[i]
y[i]

· y.

Proposition 106. There exists an algorithm UPDATETRIANGZM which, given
a strictly positive integer m, a triangular set T ⊆ Zn

m and a vector x ∈ Zn
m,

generates a triangular set T ′ ⊆ Zn
m such that

linZm
(T ′) = linZm

(T ∪ {x}).

The time complexity of UPDATETRIANGZM is O(n2 · logm).

Proof. See Section 6.6.1

The following property will be required when proving the complexity of an
algorithm which calls recursively the procedure UPDATETRIANGZM.

Proposition 107. Assume thatm = pq1

1 . . . pqt

t for distinct prime numbers p1, . . . , pt.
Then a sequence of triangular sets T1, T2, . . . ,⊆ Zn

m such that Tk 6= Tk+1 and
Tk+1 = UPDATETRIANGZM(m, Tk,xk) has length at most n · (q1 + . . .+ qt).

Proof. See Section 6.6.1.

Proposition 108. Given a triangular set T ⊆ Zn with |T | = q, and a vector x0 ∈

Zn, there exists an algorithm that generates a set of congruences ai.x ≡mi
bi,

i = 1, . . . , q, and a set of equations ai.x = bi, i = q + 1, . . . , n, where numbers
are bounded by O(n logn + nk), k being a bound on the size of the numbers in
the vectors in T and x0, such that

x ∈ x0 + linZ(T ) ⇔
∧

i=1,...,q

ai.x ≡mi
bi ∧

∧

i=q+1,...,n

ai.x = bi,

and
x ∈ x0 + linQ(T ) ⇔

∧

i=q+1,...,n

ai.x = bi.

Proof. Without loss of generality, we may assume that the vectors of T are the

columns of a matrix
[

B

C

]

such that B ⊆ Zq×q is not singular, i.e. there exists a

matrix B−1 such that B−1B = Iq where Iq is the identity matrix with q rows and
columns.
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So, we have for all x ∈ Zn,

x ∈ x0 + linZ(T ) ⇔ (x − x0) =

[
B

C

]

c, for some c ∈ Zq. (6.1)

Since B is not singular,
[

B−1 0

CB−1 −In−q

]

is not singular, and we have

x − x0 =

[
B

C

]

c ⇔

[
B−1 0

CB−1 −In−q

]

(x − x0) =

[
Iq

0

]

c. (6.2)

Let at
i

mi
denotes the ith row of

[
B−1 0

CB−1 −In−q

]

, with ai ∈ Zn andmi ∈ N\{0}.

From (6.1) and (6.2), we deduce that x ∈ x0 + linZ(T ) iff there exist k1, . . . , kq ∈

Z such that ai.(x − x0) = mi · ki for all i ∈ {1, . . . , q} and ai.(x − x0) = 0 for
all i ∈ {q + 1, . . . , n}, i.e.

x ∈ x0 +linZ(T ) ⇔
∧

i=1,...,q

ai.(x−x0) ≡mi
0∧

∧

i=q+1,...,n

ai.(x−x0) = 0. (6.3)

With a similar reasoning, we also deduce the following equivalence.

x ∈ x0 + linQ(T ) ⇔
∧

i=q+1,...,n

ai.(x − x0) = 0. (6.4)

Finally, it is well-known that the coefficients of B−1 are quotients of deter-
minants of sub-matrices of B. Since the determinant of B can be expressed as a
sum of n! products of n elements of B, its size is bounded by n logn + kn, and
therefore, the sizes of the elements in B−1 are bounded by O(n log n + nk), and
the sizes of the elements in CB−1 are bounded by O(n log n+ nk).

6.2 Affine Hulls over Q

In this section, we present an algorithm which takes as input a reduced NDD in
strong normal form A = (Q,Σn

r ,∆, QI, QF) and generates the affine hull over Q

of the set represented by A. Note that we do not assume that A is deterministic.
Also, since A is reduced and is an NDD, for all q ∈ QF, Sq

A 6= ∅.
We first present an algorithm based on [MS04] and similar to [Ler04a]. Then

we present a more efficient algorithm which takes advantage of the special affine
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transformation corresponding to transitions in NDDs. In addition, this more ef-
ficient version is also part of the more sophisticated algorithm for computing the
affine hull over Z.

Recall from Section 5.1 that Sq
A denotes the set of vectors whose encodings

label paths from any qI ∈ QI to q in the NDD A, and SA denotes the set of integer
vectors represented by the NDD A. In addition, we define the sets Vq, q ∈ Q, as
the vector spaces over Q such that if Sq

A 6= ∅, affQ(Sq
A) = x+Vq for some x ∈ Qn.

Similarly, the set V is the vector space over Q such that affQ(SA) = x + V for
some x ∈ Qn. Finally, we define lmin as the smallest integer such that for all states
q, if Sq

A 6= ∅ then there exists an encoding w, with 0 < |w| ≤ lmin, labeling a path
from some initial state to q.

The vector space V is related to the vector spaces Vq, q ∈ Q, as follows.

Theorem 109. Let xq ∈ Sq
A for all q ∈ Q with Sq

A 6= ∅ and let q′ ∈ QF.

linQ

(
⋃

q∈QF

(xq − xq′) ∪
⋃

q∈QF

Vq

)

= V.

Proof. By definition, we have

xq′ + V = affQ(SA) = affQ(
⋃

q∈QF

Sq
A). (6.5)

Thanks to Proposition 6 and by definition, we have

affQ

(
⋃

q∈QF

Sq
A

)

= affQ

(
⋃

q∈QF

affQ(Sq
A)

)

= affQ

(
⋃

q∈QF

xq + Vq

)

= xq′ + linQ

(
⋃

q∈QF

(xq − xq′) + Vq

)

In addition, we have

linQ

(
⋃

q∈QF

(xq − xq′) + Vq

)

= linQ

(
⋃

q∈QF

(xq − xq′) ∪
⋃

q∈QF

Vq

)

.

Indeed, we prove the muutal inclusion.
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• Suppose x ∈ linQ

(
⋃

q∈QF
(xq − xq′) + Vq

)

. We have x =
∑

q∈QF
aq · (xq −

xq′ + yq) with aq ∈ Q and yq ∈ Vq for all q ∈ QF. By definition of a linear
hull, x ∈ linQ

(
⋃

q∈QF
(xq − xq′) ∪

⋃

q∈QF
Vq

)

.

• Suppose x ∈ linQ

(
⋃

q∈QF
(xq − xq′) ∪

⋃

q∈QF
Vq

)

. We have

x =
∑

q∈QF

aq · (xq − xq′) +
∑

q∈QF

bqyq

=
∑

q∈QF

aq · (xq − xq′ +
bq
aq

yq)

with aq, bq ∈ Q and yq ∈ Vq for all q ∈ QF. Since Vq are vector spaces,
bq

aq
yq) ∈ Vq, and by definition, we have x ∈ linQ

(
⋃

q∈QF
(xq − xq′) + Vq

)

.

We conclude that V = linQ

(
⋃

q∈QF
(xq − xq′) ∪

⋃

q∈QF
Vq

)

.

6.2.1 A First Algorithm

Our first algorithm is achieved in three steps.

1. One computes for each state q a vector xq such that xq ∈ Sq
A. This can be

done via a breadth first search exploration of the states according to which
one visits at step k all states q such that the smallest nonempty path from an
initial state to q is of length k, and if w labels a path of length k, one sets xq

equal to 〈w〉r,n.

2. For each state q, one computes a triangular set of vectors Tq such that xq +

linQ(Tq) = affQ(Sq
A).

3. One computes the triangular set T via a call GETTRIANGQBASIS(
⋃

q∈QF
Tq∪

⋃

q∈QF
(xq − xq′)) for some q′ ∈ QF with Sq′

A 6= ∅, and the algorithm returns
(T,xq′).

Theorem 110.

xq′ + linQ(T ) = affQ(SA).

Proof. This is a direct consequence of Proposition 6 and Theorem 109.
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We now explain how to compute the sets Tq with q ∈ Q, assuming that for
each q ∈ Q with Sq

A 6= ∅, xq ∈ Sq
A.

The computation relies on the fact that the vector spaces Vq, with q ∈ Q, are
the smallest vector spaces Kq, with q ∈ Q satisfying the following constraints.

〈α〉r,n ∈ xq′ +Kq′ for each (q, α, q′) ∈ ∆ with q ∈ QI (C.Q.1)

r · xq + 〈oα〉r,n − xq′ ∈ Kq′ for each (q, α, q′) ∈ ∆ with Sq
A 6= ∅ (C.Q.2)

Kq ⊆ Kq′ for each (q, α, q′) ∈ ∆ (C.Q.3)

We first show that the vector spaces Vq, with q ∈ Q, satisfy the constraints.

Lemma 111. The vector spaces Vq, q ∈ Q, satisfy (C.Q.1).

Proof. By definition, 〈α〉r,n ∈ Sq′

A and Sq′

A ⊆ xq′ + Vq′ .

Lemma 112. The vector spaces Vq, q ∈ Q, satisfy (C.Q.2).

Proof. By definition, there exists uq ∈ LA(qI → q) with 〈uq〉r,n = xq for some
initial state qI ∈ QI. Therefore, by hypothesis, uqα ∈ LA(qI → q′), and so,
〈uqα〉r,n ∈ Sq′

A . By definition of the encoding scheme, 〈uqα〉r,n = r ·xq + 〈oα〉r,n,
and therefore, r · xq + 〈oα〉r,n ∈ Sq′

A . Since Sq′

A ⊆ xq′ + Vq′ , we conclude that
r · xq + 〈oα〉r,n − xq′ ∈ Vq′ .

Lemma 113. The vector spaces Vq, q ∈ Q, satisfy (C.Q.3).

Proof. Thanks to Propositions 8 and 9,

Vq = linQ(−xq + Sq
A) (6.6)

Vq′ = linQ(−xq′ + Sq′

A) (6.7)

Let g ∈ Vq. By definition, there exists y1, . . . ,yt ∈ −xq +Sq
A and a1, . . . , at ∈ Q

such that

g =

t∑

i=1

aiyi with a1, . . . , at ∈ Q. (6.8)

By definition, for each i ∈ {1, . . . , t}, there exists ui ∈ LA(qi → q) for some
initial state qi ∈ QI, such that yi = −xq + 〈ui〉r,n. Therefore, for each i ∈

{1, . . . , t}, uiα ∈ LA(qi → q′) and 〈uiα〉r,n ∈ Sq′

A . By definition of the encoding
scheme, 〈uiα〉r,n = r · 〈ui〉r,n + 〈oα〉r,n, and therefore,

r · (yi + xq) + 〈oα〉r,n ∈ Sq′

A . (6.9)
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In addition, thanks to Lemma 112,

r · xq + 〈oα〉r,n − xq′ ∈ Vq′. (6.10)

Combining (6.7), (6.9) and (6.10), we deduce that for each i ∈ {1, . . . , t}, we
have

r · yi ∈ Vq′. (6.11)

Therefore, from (6.8), we deduce that g ∈ Vq′ , and we conclude that Vq ⊆ Vq′ .

Now, we show that any sequence of vector spaces Kq, with q ∈ Q satisfying
the constraints (C.Q.1), (C.Q.2) and (C.Q.3) are such that Vq ⊆ Kq for all q ∈ Q.

Lemma 114. Let Kq, q ∈ Q, be a sequence of vector spaces over Q satisfying
(C.Q.1). (C.Q.2) and (C.Q.3). For all q ∈ Q with Sq

A 6= ∅, Kq ⊇ Vq.

Proof. By definition, for all q ∈ Q with Sq
A 6= ∅, we have xq + Vq = affQ(Sq

A),
and therefore, Vq = linQ(−xq +Sq

A). So, it suffices to prove that for all q ∈ Q and
x ∈ Sq

A, x− xq ∈ Kq in order to prove that Vq ⊆ Kq. This is proved by induction
on the length of the encodings w ∈ (Σn

r )+ of x such that w ∈ LA(qI → q) for
some qI ∈ QI and q ∈ Q. If |w| = 1, then this is a direct consequence of the
fact that Kq, q ∈ Q, satisfy (C.Q.1). Suppose the property holds for encodings of
length k ≥ 1, and let wk+1 ∈ LA(qI → q), with |wk+1| = k + 1, qI ∈ QI and
q ∈ Q. By hypothesis, wk+1 = wkα for some encoding wk ∈ (Σn

r )+ and symbol
α ∈ Σn

r . Let qk be such that wk ∈ LA(qI → qk) and (qk, α, q) ∈ ∆. Since Kq,
q ∈ Q, satisfy (C.Q.2), we have

r · xqk
+ 〈oα〉r,n − xq ∈ Kq. (6.12)

By inductive hypothesis, we have 〈wk〉r,n − xqk
∈ Kqk

, and since Kq, q ∈ Q

satisfy (C.Q.3), Kqk
⊆ Kq. So we have

〈wk〉r,n − xqk
∈ Kq. (6.13)

Finally, since wk+1 = wkα, by definition of the encoding scheme, we have

〈wk+1〉r,n = r · 〈wk〉r,n + 〈oα〉r,n. (6.14)

Since Kq is a vector space, we can combine (6.12), (6.13) and (6.14), we find that
〈wk+1〉r,n − xq ∈ Kq.

Theorem 115. The vector spaces Vq, q ∈ Q, are the smallest vector spaces satis-
fying (C.Q.1), (C.Q.2) and (C.Q.3).
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Proof. Direct consequence of Lemmas 111, 112, 113 and 114.

Thanks to Theorem 115, the computation of the triangular sets Tq is a least
fixpoint computation. Initially, for all states q ∈ Q, the set of vectors Tq are
empty. First, for all transitions (q, α, q′) ∈ ∆ such that q ∈ QI, one sets Tq′ so
that 〈α〉r,n−xq′ ∈ linQ(Tq′). This is achieved via a call to UPDATETRIANGQ(Tq′ ,
〈α〉r,n). Similarly, for all transitions (q, α, q′) ∈ ∆, one sets Tq′ so that r · xq +

〈oα〉r,n − xq′ ∈ linQ(Tq′). Finally, while linQ(Tq) 6⊆ linQ(Tq′) for some states
q, q′ ∈ Q with (q, α, q′) ∈ ∆, one updates Tq′ so that the inclusion is satisfied.
This is done by sequentially updating Tq′ via the calls UPDATETRIANGQ(Tq′ , g1),
. . . , UPDATETRIANGQ(Tq′ , gk), where {g1, . . . , gk} = TQ. Thanks to Proposi-
tion 102, if (T ′

q,x
′) = UPDATETRIANGQ(Tq′ , x), then Tq ⊆ T ′

q, i.e. whenever a
vector is added to Tq, it is never removed. So, the test linQ(Tq) 6⊆ linQ(Tq′) will
only be verified when Tq is modified. So, it suffices to store in a set W the states
q for which Tq has been modified and check only for those states whether one has
to modify the set Tq′ of the successors q′.

The formal algorithm is given in Fig 6.1. Note that this algorithm always
terminates since each Tq is modified at most n times.

Theorem 116. Let x ∈ Zn and T ⊆ Qn such that (T,x) = QAFFINEHULL 1(A),
with QAFFINEHULL 1 given in Fig 6.1.

We have x + linQ(T ) = affQ(SA).
The time complexity of QAFFINEHULL 1 is O(|∆| · n4).

Proof. By construction, the vector spaces linQ(Tq), q ∈ Q, satisfy (C.Q.1),
(C.Q.2) and (C.Q.3), and therefore, thanks to Theorem 115, linQ(Tq) ⊇ Vq. Also,
by construction, the sets Tq, q ∈ Q, are modified via calls to UPDATETRIANGQ(Tq ,
y) such that

• y = 〈α〉r,n − xq, for some α ∈ Σn
r and qI ∈ QI with (qI, α, q) ∈ ∆,

• y = r · xq′ + 〈oα〉r,n − xq for some q′ ∈ Q, α ∈ Σn
r with (q′, α, q) ∈ ∆, or

• y ∈ linQ(Tq′) for some q′ ∈ Q, α ∈ Σn
r with (q′, α, q) ∈ ∆.

Therefore, thanks to Proposition 102 and Lemmas 111, 112 and 113, one proves
by induction on the number of modifications brought to the sets Tq that Tq ⊆ Vq.

For each q ∈ Q, Tq is modified at most n times. So, by inspection, there are at
most n · |∆| states added to W . Thanks to Proposition 102, the time complexity
of UPDATETRIANGQ is O(n2), and therefore, the overall complexity is O(|∆| ·

n4).
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function QAFFINEHULL 1(NDD A = (Q, Σn
r , ∆, QI, QF)) : (set of vectors in Qn, integer

vector)

1: var W : set of state;

2: q, q′ : state;

3: T1, . . . , T|Q|, T, G : set of vectors in Qn;

4: α : symbol;

5: w : word;

6: g,g′,x1, . . . ,x|Q| : vector in Qn;

7: begin

8: for each q ∈ Q do Tq := ∅;

9: for each q ∈ Q with S
q
A 6= ∅, let xq ∈ S

q
A;

10: for each q ∈ QI, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ do

11: begin

12: (T , g) := UPDATETRIANGQ(Tq′ , 〈α〉r,n − ·xq′ );

13: if T 6= Tq′ then W := W ∪ {q′};

14: Tq′ := T ;

15: end

16: for each q, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ ∧ S

q
A 6= ∅ do

17: begin

18: (T , g) := UPDATETRIANGQ(Tq′ , r · xq + 〈oα〉r,n − ·xq′ );

19: if T 6= Tq′ then W := W ∪ {q′};

20: Tq′ := T ;

21: end

(. . . )

Figure 6.1: Function QAFFINEHULL 1
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(. . . )

22: while W 6= ∅ do

23: begin

24: let q ∈ W ;

25: W := W \ {q};

26: for each q′ ∈ Q such that (q, α, q′) ∈ ∆ with α ∈ Σn
r do

27: for each g ∈ Tq do

28: begin

29: (T , g′) := UPDATETRIANGQ(Tq′ , r · g);

30: if T 6= Tq′ then W := W ∪ {q′};

31: Tq′ := T ;

32: end

33: end

34: G := ∅;

35: let q′ ∈ QF;

36: for each q ∈ QF do G := G ∪ Tq ∪ {xq − xq′};

37: return (GETTRIANGQBASIS(G), xq′ )

38: end

Figure 6.2: Function QAFFINEHULL 1 (continued)
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As mentioned in [MH04], the efficiency of QAFFINEHULL 1 can be improved
thanks to the following observation. When modifying a triangular set Tq′ via a call
to UPDATETRIANGQ(Tq′ , g), all vectors in Tq′ before the call are left unchanged,
the only difference that might occur is that one vector g′ could be added to Tq′ . So,
when a triangular set Tq is modified, it is sufficient to update with the new element
of Tq (and not with all other vectors in Tq) the sets Tq′ for all states q′ such that
(q, α, q′) ∈ ∆ for some symbol α ∈ Σn

r . Consequently, since each set is modified
at most n times, there are at most |∆| · n calls to UPDATETRIANGQ, and the time
complexity is reduced by a factor n, i.e. the time complexity is O(|∆| ·n3). In the
next section, we show another improvement which allows to get rid of all calls to
UPDATETRIANGQ.

6.2.2 An Improved Algorithm

We can improve the algorithm QAFFINEHULL 1 presented in the previous section
based on the following property which is an extension of Lemma 113 holding
thanks to the fact that A is reduced.

Lemma 117. For all q ∈ Q, Vq ⊆ V .

Proof. Since A is reduced, there exist a sequence of symbols α1, . . . , αk ∈ Σn
r

and a sequence of states q1, . . . , qk, qk+1 ∈ Q such that

• q = q1,

• qk+1 ∈ QF, and

• for all i ∈ {1, . . . , k}, (qi, αi, qi+1) ∈ ∆.

Thanks to Lemma 113, Vqi
⊆ Vqi+1

for all i ∈ {1, . . . , k}, and therefore

Vq ⊆ Vqk+1
. (6.15)

Also, by definition, affQ(S
qk+1

A ) ⊆ affQ(SA), and

Vqk+1
⊆ V. (6.16)

Combining (6.15) and (6.16), we have Vq ⊆ V .

Thanks to the previous property, we deduce that it is not necessary to com-
pute at each individual state q a triangular set Tq and a vector xq such that xq +

linQ(Tq) = affQ(Sq
A). One only needs to consider one element xq per state and
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function QAFFINEHULL(NDD A = (Q, Σn
r , ∆, QI, QF)) : (set of vectors in Qn, integer

vector)

1: q, q′ : state;

2: G : set of vectors in Qn;

3: α : symbol;

4: g,g′,x1, . . . ,x|Q| : vector in Qn;

5: begin

6: G := ∅;

7: for each q ∈ Q with S
q
A 6= ∅, let xq ∈ S

q
A;

8: for each q ∈ QI, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ do

9: G := G ∪ {〈α〉r,n − xq′};

10: for each q, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ ∧ S

q
A 6= ∅ do

11: G := G ∪ {r · xq + 〈oα〉r,n − ·xq′};

12: let q′ ∈ QF;

13: for each q ∈ QF do G := G ∪ {xq − xq′};

14: return (G, xq′ )

15: end

Figure 6.3: Function QAFFINEHULL

one set of generators for the whole NDD. Practically, this means that in Fig 6.1,
we can substitute all triangular sets Tq by a single set T , and remove the main
while -loop at line 22. Consequently, we don’t have to check directly whether a
vector g is in linQ(T ) or not, as it is done via the call UPDATETRIANGQ(Tq , g).
We choose to remove completely calls to UPDATETRIANGQ. This decreases the
time complexity by a factor n2 at the expense of a larger set of generators (at most
|∆| elements compared to n). This choice is justified by the fact that it is more
efficient to perform once a call to GETTRIANGQBASIS with a set G that |G| calls
to UPDATETRIANGQ. Even the call GETTRIANGQBASIS is not part of the algo-
rithm because it is not always required to have a triangular set. Also, this gives
more flexibility, and this will be useful in the sequel.

The algorithm QAFFINEHULL displayed in Fig 6.3 incorporates the above
considerations.
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Theorem 118. Let xF ∈ Zn andG ⊆ Zn such that (G,xF ) = QAFFINEHULL(A).
We have

xF + linQ(G) = affQ(SA).

The number of elements in G is bounded by O(|∆| + |Q|), the sizes of the
components of the vectors in G are bounded by O(lmin) and the time complexity
of QAFFINEHULL is O(n · (|∆| + |Q|)),

Proof. See Section 6.6.2.

Since the set G of vectors generated by the algorithm QAFFINEHULL can get
fairly large, one might be interested in computing a triangular set T corresponding
to G, since a triangular set has at most n elements.

Theorem 119. There exists an algorithm QAFFINEHULLT which, given a re-
duced NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF), generates a vector
xF and a triangular set of vectors T such that

affQ(SA) = xF + linQ(T ).

The time complexity of QAFFINEHULLT is O(|∆| · n2).

Proof. Thanks to Theorem 118, by applying the algorithm QAFFINEHULL with
A as input, we compute, in time proportional to O(|∆| · n), a pair (G,xF ) such
that affQ(SA) = xF + linQ(G). The number of elements in G is bounded by ∆

and the sizes of the components of vectors in G are bounded by O(|Q|).
According to Proposition 101, we can compute a triangular set T of at most

n generators from the set G. The size of the numbers in T is then bounded by
O(n · (|∆|+logn)) and the time complexity for the call GETTRIANGQBASIS(G)
is O(|∆| · n2).

So, the overall time complexity of QAFFINEHULLT is O(|∆| · n2).

Finally, thanks to Proposition 108, we can compute a system of linear equa-
tions corresponding to the affine hull, as shown by the next theorem.

Theorem 120. There exists an algorithm QAFFINEHULLEQUATIONS which, given
a reduced NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF), generates a sys-
tem of at most n linear equations Ax = b such that

affQ(SA) = {x ∈ Qn | Ax = b}.

The time complexity of QAFFINEHULLEQUATIONS is O(|∆| · n2).
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Proof. Direct consequence of Theorem 119 and of Proposition 108.

6.3 Affine Hulls over Z

In this section, we give an algorithm for computing the affine hull over Z of the set
represented by a reduced NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF).
Without loss of generality, we assume that for all accepting states q ∈ QF, Sq

A 6= ∅.
Note first that in general, if (G,xF ) = QAFFINEHULL(A), with QAFFINE-

HULL described in Fig.6.3, the set xF + linZ(G) is not equal to affZ(SA). This
stems from the fact that Lemma 117 does not hold in the integer case, since in the
case of a Z-module M , the fact that r · g ∈Mq does not imply that g ∈ Mq.

Throughout this section, the sets Mq, q ∈ Q, are the Z-modules such that if
Sq
A 6= ∅, affZ(Sq

A) = xq + Mq for some xq ∈ Sq
A. Similarly, the set M is the

Z-module such that affZ(SA) = x + M for some x ∈ SA. Finally, we define
dmin and lmin as follows. The integer dmin is the smallest integer such that from
each state q ∈ Q reachable from some initial state, there is a path from q to an
accepting state labeled by w with |w| ≤ dmin. The integer lmin is defined as in
Section 6.2 as the smallest integer such that for all states q, if Sq

A 6= ∅ then there
exists an encoding w, with 0 < |w| ≤ lmin, labeling a path from some initial state
to q.

There is a relation between the Z-module M and the Z-modules Mq similar to
the relation holding between the vector space V and the vector spaces Vq given in
Section 6.2.

Theorem 121. Let xq ∈ Sq
A for all q ∈ Q with Sq

A 6= ∅ and let q′ ∈ QF.

linZ

(
⋃

q∈QF

(xq − xq′) ∪
⋃

q∈QF

Mq

)

= M.

Proof. The proof is similar to the proof of Theorem 109.

6.3.1 A first Algorithm

We first present an algorithm similar to QAFFINEHULL 1 presented in Section 6.2.1.
Basically, the difference is that in QAFFINEHULL 1 one computes a set of gen-
erators for the vector spaces Vq, for all states q ∈ Q, whereas in the following
algorithm, one computes a set of generators for the Z-modules Mq, for all states
q. Note that in both cases, the sets are generated via a fixpoint computation.
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There are three steps in the algorithm.

1. One computes for each state q a vector xq such that xq ∈ Sq
A. This can be

done through a simple breadth first search exploration starting at the initial
states as explained in Section 6.2.1.

2. For all states q, one computes a set Gq such that linZ(Gq) = Mq.

3. The algorithm returns the pair (xq′, G) where q′ ∈ QF with Sq
A 6= ∅ and G

is constructed as follows.

G =
⋃

q∈QF

Gq ∪
⋃

q∈QF

xq − xq′.

Theorem 122.
xq′ + linZ(G) = affZ(SA).

Proof. This is a direct consequence of Proposition 6 and Theorem 121.

We now explain how to compute the sets Gq with q ∈ Q.
The computation relies on the fact that the Z-modules Mq, with q ∈ Q, are the

smallest Z-modules Kq, with q ∈ Q satisfying the following constraints.

〈α〉r,n ∈ xq′ +Kq′ for each (q, α, q′) ∈ ∆ with q ∈ QI (C.Z.1)

r · xq + 〈oα〉r,n − xq′ ∈ Kq′ for each (q, α, q′) ∈ ∆ with Sq
A 6= ∅ (C.Z.2)

{r · y | y ∈ Kq} ⊆ Kq′ for each (q, α, q′) ∈ ∆ (C.Z.3)

We first show that the Z-modules Mq, with q ∈ Q, satisfy the constraints
(C.Z.1), (C.Z.2) and (C.Z.3).

Lemma 123. The Z-modules Mq, q ∈ Q, satisfy (C.Z.1).

Proof. By definition, 〈α〉r,n ∈ Sq′

A and Sq′

A ⊆ xq′ +Mq′ .

Lemma 124. The Z-modules Mq, q ∈ Q, satisfy (C.Z.2).

Proof. Similar to the proof of Lemma 112.

Lemma 125. The Z-modules Mq, q ∈ Q, satisfy (C.Z.3).

Proof. The proof is similar to the proof of Lemma 113, except that linear hull and
affine hull are over Z.
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Now, we show that the Z-modules Mq are the smallest Z-modules satisfying
the constraints (C.Z.1), (C.Z.2) and (C.Z.3).

Lemma 126. Let Kq, q ∈ Q, be a sequence of Z-modules satisfying (C.Z.1),
(C.Z.2) and (C.Z.3). For all q ∈ Q with Sq

A 6= ∅, Kq ⊇Mq.

Proof. The proof is similar to the proof of Lemma 114.

Theorem 127. The Z-modules Mq, q ∈ Q, are the smallest Z-modules satisfying
the constraints (C.Z.1), (C.Z.2) and (C.Z.3).

Proof. Direct consequence of Lemmas 123, 124, 125 and 126.

Thanks to Theorem 127, the computation of the sets Gq is a least fixpoint
computation. Initially, for all states q ∈ Q, the set of vectors Gq are empty. First,
for all transitions (q, α, q′) ∈ ∆ such that q ∈ QI, one adds 〈α〉r,n − xq′ to Gq′ .
Similarly, for all transitions (q, α, q′) ∈ ∆, one adds r · xq + 〈oα〉r,n − xq′ to Gq′ .

Finally, while {r · g | g ∈ Gq} 6⊆ linZ(Gq′) for some states q, q′ ∈ Q with
(q, α, q′) ∈ ∆, one adds {r · g | g ∈ Gq} to Gq′ . Note that in order to test for
inclusion in the linear hull over Z, one computes first a triangular set generating
the same Z-module, and this is done via the function GETTRIANGZBASIS.

The formal algorithm is given in Fig 6.4. The fact that this algorithm termi-
nates is not as trivial as in the case of QAFFINEHULL 1. However, this is the case
thanks to the fact that any sequence of Z-modules M1, . . . , Mk, . . .⊆ Zn, with
Mi ⊂Mi+1, is bounded thanks to Proposition 17.

Theorem 128. Let x ∈ Zn andG ⊆ Qn such that (G,x) = ZAFFINEHULL 1(A),
with ZAFFINEHULL 1 given in Fig 6.4. We have

x + linZ(T ) = affZ(SA).

Proof. Let xq, q ∈ Q be the vector appearing in ZAFFINEHULL 1. By inspection,
if Sq

A 6= ∅, xq ∈ Sq
A and there exists a state q′ in QF such that x = xq′ .

Thanks to Theorem 121,

xq′ + linZ

(
⋃

q∈QF

Mq ∪
⋃

q∈QF

(xq − xq′)

)

= affZ(SA). (6.17)

So, it suffices to prove that for each q ∈ QF, linZ(Gq) = Mq.
By construction, the Z-modules linZ(Gq), q ∈ Q, satisfy (C.Z.1), (C.Z.2) and

(C.Z.3), and therefore, thanks to Theorem 127, linZ(Gq) ⊇ Mq. Also, by con-
struction, the setsGq, q ∈ Q, are modified either by a call GETTRIANGZBASIS(Gq )
which does not alter the linear hull, or by adding a vector y such that
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function ZAFFINEHULL 1(NDD A = (Q, Σn
r , ∆, QI, QF)) : (set of vectors in Zn, integer

vector)

1: var W : set of (state, set of vectors in Zn);

2: q, q′ : state;

3: G1, . . . , G|Q|, G : set of integer vector;

4: α : symbol;

5: g,x1, . . . ,x|Q| : integer vector;

6: begin

7: for each q ∈ Q with S
q
A 6= ∅, let xq ∈ S

q
A;

8: for each q ∈ QI, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ do

9: begin

10: W := W ∪ {q′};

11: Gq′ := Gq′ ∪ {〈α〉r,n − xq′};

12: end

13: for each q, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ ∧ S

q
A 6= ∅ do

14: begin

15: W := W ∪ {q′};

16: Gq′ := Gq′ ∪ {r · xq + 〈oα〉r,n − ·xq′};

17: end

(. . . )

Figure 6.4: Function ZAFFINEHULL 1
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(. . . )

18: while W 6= ∅ do

19: begin

20: let q ∈ W ;

21: W := W \ {q};

22: for each q′ ∈ Q such that (q, α, q′) ∈ ∆ for some α ∈ Σn
r do

23: for each g ∈ Gq do

24: begin

25: Gq′ := GETTRIANGZBASIS(Gq′ );

26: if INLINEARHULLZ?(Gq′ , r · g) = false then

27: begin

28: Gq′ := Gq′ ∪ {r · g};

29: W := W ∪ {q′};

30: end

31: end

32: end

33: G := ∅;

34: let q′ ∈ QF;

35: for each q ∈ QF do

36: begin

37: G := G ∪ {xq − xq′};

38: G := G ∪ Gq ;

39: end

40: return (G, xq′ )

41: end

Figure 6.5: Function ZAFFINEHULL 1 (continued)
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• y = 〈α〉r,n − xq, for some α ∈ Σn
r and qI ∈ QI with (qI, α, q) ∈ ∆,

• y = r · xq′ + 〈oα〉r,n − xq for some q′ ∈ Q, α ∈ Σn
r with (q′, α, q) ∈ ∆, or

• y = r · g with g ∈ Gq′ for some q′ ∈ Q, α ∈ Σn
r with (q′, α, q) ∈ ∆.

Therefore, thanks to Lemmas 123, 124 and 125, one proves by induction on the
number of modifications brought to the sets Gq that Gq ⊆Mq for all q ∈ Q.

6.3.2 An Improved Algorithm

In this section, we present a polynomial time algorithm computing the affine hull
over Z of the set represented by an NDD.

Although the algorithm ZAFFINEHULL 1 always terminated, there is no bound
on the number of computation steps. In [MS05a], they solve the problem by work-
ing with modular arithmetic. More precisely, they do not compute the affine rela-
tions over Z holding at some control locations, but the affine relation over Zm for
some given m. The difference is that the length of any sequence of Zm-modules
M1, . . . , Mk . . . ⊆ Zn

m with Mi ⊂ Mi+1 is bounded by n logm [MS05a]. In the
sequel, we show how to incorporate some modular arithmetic in the algorithm
ZAFFINEHULL 1 and obtain a polynomial time algorithm computing the affine
hull over Z of the set represented by an NDD.

As we already mentioned, the set returned by the call QAFFINEHULL(A),
with QAFFINEHULL given in Fig 6.3, is not a set of generators of M . However,
thanks to Lemma 125 and given the specification QAFFINEHULL, we have the
following lemma.

Lemma 129. Let QAFFINEHULL be the algorithm given in Fig 6.3.
Let Gpre , Tpre ⊆ Zn and x ∈ Zn such that (Gpre ,x) = QAFFINEHULL(A) and

Tpre is a basis over Z of Gpre . We have

• for all q ∈ Q with Sq
A 6= ∅, Mq ⊆ linZ(Tpre), and

• for all g ∈ Tpre , rdming ∈M .

Proof. See Section 6.6.3.

Given Lemma 129, we modify the algorithm ZAFFINEHULL 1 presented in
Section 6.3.1 as follows. Recall that in ZAFFINEHULL 1, one computes for all
q ∈ Q with Sq

A 6= ∅ the Z-modules Mq such that xq + Mq = affZ(Sq
A) with

xq ∈ Sq
A. In the algorithm presented below, one computes the Z-modules M ′

q, for
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all q ∈ Q with Sq
A 6= ∅ such that the Z-modules M ′

q are the smallest Z-modules
such that Mq ∪ {rdmin · g | g ∈ Tpre} ⊆M ′

q. By definition, we have

M ′
q = linZ

(
{x − xq | x ∈ Sq

A} ∪ {rdmin · g | g ∈ Tpre}
)
.

Theorem 121 still holds when substituting M ′
q for Mq.

Theorem 130. Let xq ∈ Sq
A for all q ∈ Q with Sq

A 6= ∅ and let q′ ∈ QF.

linZ

(
⋃

q∈QF

(xq − xq′) ∪
⋃

q∈QF

M ′
q

)

= M.

Proof. Thanks to Theorem 121, we have

linZ

(
⋃

q∈QF

Mq ∪
⋃

q∈QF

(xq − xq′)

)

= M. (6.18)

In addition, thanks to Lemma 129,

{rdmin · g | g ∈ Tpre}) ⊆M. (6.19)

Combining (6.18) and (6.19), we have

linZ

(

{rdmin · g | g ∈ Tpre} ∪
⋃

q∈QF

Mq ∪
⋃

q∈QF

(xq − xq′)

)

= M. (6.20)

By definition of M ′
q, q ∈ Q, we conclude that

linZ

(
⋃

q∈QF

(xq − xq′) ∪
⋃

q∈QF

M ′
q

)

= M.

There are four steps in the modified algorithm.

1. One computes the set Gpre ⊆ Zn with (Gpre ,x) = QAFFINEHULL(A), and
one computes a set Tpre ⊆ Zn such that Tpre is basis over Z of linZ(Gpre).

2. One computes for each state q a vector xq such that xq ∈ Sq
A. This can be

done through a simple breadth first search exploration starting at the initial
state, as explained in Section 6.2.1.
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3. One computes the sets Gq ⊆ Zn, for all q ∈ Q, such that the sets Gq

generate the Z-modules M ′
q.

4. The algorithm returns a pair (G,xq′) where q′ ∈ QF and G is constructed as
follows.

G =
⋃

q∈QF

Gq ∪
⋃

q∈QF

xq − xq′.

Theorem 131.
xq′ + linQ(G) = affZ(SA).

Proof. This is a direct consequence of Proposition 6 and Theorem 130.

We now explain how to compute the sets Gq for all q ∈ Q.
The computation relies on the fact that the Z-modules M ′

q, with q ∈ Q, are the
smallest Z-modules Kq, with q ∈ Q, satisfying the constraints (C.Z.1), (C.Z.2)

and (C.Z.3) given in Section 6.3.1, as well the following additional constraints.

Kq ⊆ linZ(Tpre) for each q ∈ Q (C.Z.4)

Kq ⊇ {rdmin · g | g ∈ Tpre} for each q ∈ Q (C.Z.5)

We first show that the Z-modules M ′
q, with q ∈ Q, satisfy the constraints.

Lemma 132. The Z-modules M ′
q, q ∈ Q, satisfy (C.Z.1).

Proof. Direct consequence of Lemma 123 and of the fact that Mq ⊆ M ′
q for all

q ∈ Q.

Lemma 133. The Z-modules M ′
q, q ∈ Q, satisfy (C.Z.2).

Proof. Direct consequence of Lemma 124 and of the fact that Mq ⊆ M ′
q for all

q ∈ Q.

Lemma 134. The Z-modules M ′
q, q ∈ Q, satisfy (C.Z.3).

Proof. Let {y1, . . . ,yt} be a basis over Z of the Z-module Mq, and assume that
Tpre = {z1, . . . , zk}. By definition, M ′

q = linZ({y1, . . . ,yt, r
dmin · z1, . . . , r

dmin ·

zk}).
Let y ∈ M ′

q. By definition, we have

y =

t∑

i=1

aiyi +

k∑

i=1

bi · r
dmin · zi. (6.21)



110 CHAPTER 6. OVER-APPROXIMATION : AFFINE HULL OF NDDS

For all i ∈ {1, . . . , t}, yi ∈ Mq, and therefore, thanks to Lemma 125, r · yi ∈

Mq′ ⊆ M ′
q′ . Also, for all i ∈ {1, . . . , k}, rdmin+1zi ∈ linZ({rdmin · z1, . . . , r

dmin ·

zk}) ⊆Mq′ . Since Mq′ is a Z-module, we conclude that r · y ∈M ′
q′ .

Lemma 135. The Z-modules M ′
q, q ∈ Q, satisfy (C.Z.4).

Proof. By definition, M ′
q = linZ(Mq ∪ {rdmin · g | g ∈ Tpre}). Thanks to

Lemma 129, for all y ∈ Mq, y ∈ linZ(Tpre), and therefore, for all y′ ∈ M ′
q,

y ∈ linZ(Tpre).

Lemma 136. The Z-modules M ′
q, q ∈ Q, satisfy (C.Z.5).

Proof. This is a direct consequence of the definition of M ′
q.

Lemma 137. Let Kq, q ∈ Q, be a sequence of Z-modules satisfying (C.Z.1),
(C.Z.2), (C.Z.3), (C.Z.4) and (C.Z.5). For all q ∈ Q with Sq

A 6= ∅, Kq ⊇M ′
q.

Proof. Since the sequence of Z-modules Kq, q ∈ Q, satisfies (C.Z.1), (C.Z.2)

and (C.Z.3) thanks to Lemma 126, for each q ∈ Q with Sq
A 6= ∅, we have

Kq ⊇Mq. (6.22)

Also, since the sequence of Z-modules Kq satisfies (C.Z.5), we have

Kq ⊇ {rdmin · g | g ∈ Tpre}. (6.23)

Finally, by definition, we have linZ(Kq) = Kq, and therefore, combining (6.22)
and (6.23), we have

Kq ⊇ linZ(Mq ∪ {rdmin · g | g ∈ Tpre}). (6.24)

The claim is then immediate since M ′
q = linZ(Mq ∪ {rdmin · g | g ∈ Tpre}).

Theorem 138. The Z-modules M ′
q, q ∈ Q, are the smallest Z-modules satisfying

the constraints (C.Z.1), (C.Z.2), (C.Z.3), (C.Z.4) and (C.Z.5).

Proof. Direct consequence of Lemmas 132, 133, 134, 135, 136 and 137.

Basically, the difference between the algorithm presented in Section 6.3.1 and
its modified version as presented in this section, is that in the former, one com-
putes the smallest Z-modules satisfying (C.Z.1), (C.Z.2) and (C.Z.3), whereas
in the latter, one computes the smallest Z-modules satisfying (C.Z.1), (C.Z.2),
(C.Z.3), (C.Z.4)and (C.Z.5). Adding the constraints (C.Z.4)and (C.Z.5) pro-
vides a bound on the fixpoint computation, as shown in the following lemma.
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Lemma 139. The lengths of the sequences of Z-modules K1, . . . , Kk, . . . ⊆ Zn,
with Ki ⊂ Ki+1, for all 1 ≤ i < k, and linZ(rdmin · g | g ∈ Tpre) ⊆ Ki ⊆

linZ(Tpre), for all i, are bounded by n · dmin · log r.

Proof. Let g1, . . . , gp be the vectors in Tpre , and let K1, . . . , Kk, . . . ⊆ Zn, with
Ki ⊂ Ki+1, for all 1 ≤ i < k, and linZ(rdmin · g | g ∈ Tpre) ⊆ Ki ⊆ linZ(Tpre),
for all 1 ≤ i ≤ k.

Since for all i, Ki ⊆ linZ(Tpre), for all y in Ki, we have

y =

p∑

i=1

ai · gi with ai ∈ Z for all i ∈ {1, . . . , p}. (6.25)

Since Tpre is a basis over Z, the coefficients ai are unique.
Also, since Ki ⊇ linZ({rdmin · g1, . . . , r

dmin · gp}), for all a1, . . . , ap ∈ Zn,
p
∑

j=1

aj · gi ∈ Ki iff
p
∑

j=1

(aj mod rdmin) · gj ∈ Ki. (6.26)

Based on the above considerations, we associate to each Ki a triangular set
Ci ⊆ Z

p

rdmin
such that

p
∑

j=1

aigj ∈ Ki iff (a1 mod rdmin, . . . , ap mod rdmin)
t
∈ linZ

rdmin
(Ci).

(6.27)
The sets Ci are constructed as follows. First, we construct C1. While there
is a vector y ∈ K1 with y =

∑p

i=1 aigi, such that the vector a ∈ Zp, with
a[i] = ai, is not in the linear hull over Zrdmin of C1, then one sets C1 equals to
UPDATETRIANGZM(rdmin , C1, a mod rdmin). Thanks to Proposition 107, C1 is
modified at most n ·dmin · log r times. Given Cj, one initializes Cj+1 to be equal to
Cj, and then Cj+1 is modified in the same way as C1 is constructed via the succes-
sive calls to the function UPDATETRIANGZM. So, Ck is obtained by successive
modifications of C1 via UPDATETRIANGZM, and thanks to Proposition 107, there
are at most n · dmin · log r Z-modules Ki in the sequence.

In the actual algorithm ZAFFINEHULL, formalized in Fig. 6.6, we do not store
the sets Gq but the corresponding triangular set Cq as presented in the proof of
Lemma 139. Note that the function DISTANCETOFINAL takes a reduced NDD
in strong normal form A as input and returns the smallest number dmin such that
for each state q, there is a path of length smaller or equal to dmin from q to an
accepting state.
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function ZAFFINEHULL(NDD A = (Q, Σn
r , ∆, QI, QF)) : (set of integer vector, integer

vector)

1: var W : set of state;

2: q, q′ : state;

3: Gpre , {g1, . . . ,gp}, C, C1, . . . , C|Q| : set of integer vector;

4: α : symbol;

5: c,x1, . . . ,x|Q| : integer vector;

6: dmin : integer;

7: begin

8: for each q ∈ Q with S
q
A 6= ∅, let xq ∈ S

q
A;

9: for each q ∈ Q do Cq := ∅;

10: (Gpre ,xF ) := QAFFINEHULL(A);

11: {g1, . . . ,gp} := GETTRIANGZBASIS(Gpre );

12: dmin := DISTANCETOFINAL(A);

13: for each q ∈ QI, q′ ∈ Q, α ∈ Σn
r such that (q, α, q′) ∈ ∆ do

14: begin

15: W := W ∪ {q′};

16: Let c ∈ Zp such that 〈α〉r,n − xq =
∑p

i=1
c[i]gi;

17: Cq′ := UPDATETRIANGZM(rdmin , Cq′ , c mod rdmin);

18: end

19: for each q, q′ ∈ Q, α ∈ Σn
r such thatS

q
a 6= ∅ ∧ (q, α, q′) ∈ ∆ do

20: begin

21: W := W ∪ {q′};

22: Let c ∈ Zp such that r · xq + 〈oα〉r,n − xq′ =
∑p

i=1
c[i]gi;

23: Cq′ := UPDATETRIANGZM(rdmin , Cq′ , c mod rdmin);

24: end

(. . . )

Figure 6.6: Function ZAFFINEHULL
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(. . . )

25: while W 6= ∅ do

26: begin

27: let q ∈ W ;

28: W := W \ {q};

29: for each q′ ∈ Q such that (q, α, q′) ∈ ∆ for some α ∈ Σn
r do

30: for each c ∈ Cq do

31: begin

32: C := UPDATETRIANGZM(rdmin , Cq′ , r · c);

33: if C 6= Cq′ do W := W ∪ {q′};

34: Cq′ := C;

35: end

36: end

37: C := ∅;

38: for each q ∈ QF, c ∈ Cq do C := UPDATETRIANGZM(rdmin , C, c);

39: G := ∅;

40: for each c ∈ C do G := G ∪ {
∑p

i=1
c[i]gi};

41: for each i ∈ {1, . . . , p} do G := G ∪ {rdmingi};

42: let q′ ∈ QF;

43: for each q ∈ QF do G := G ∪ {xq − xq′};

44: return (G, xq′ )

45: end

Figure 6.7: Function ZAFFINEHULL (continued)
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Theorem 140. Let xF ∈ Zn, G ⊆ Zn such that (G,xF ) = ZAFFINEHULL(A),
with ZAFFINEHULL displayed in Fig. 6.6. We have

xF + linZ(G) = affZ(SA).

The number of vectors in G is bounded by |Q| + 2n, the sizes of components
of vectors in G are bounded by O(n · log n · lmin + dmin), and the time complexity
of ZAFFINEHULL is O(|∆| · n3 · d2

min · log2 r).

Proof. In this proof, we consider the values of the variables used in Fig. 6.6 at the
end of the computation, i.e. at line 44 in Fig. 6.6. For all q ∈ Q with Sq

A, let Gq

be defined as follows.

Gq = {

p
∑

i=1

c[i] · gi | c ∈ Cq} ∪ {rdming1, . . . , r
dmingp}. (6.28)

We show that for all q ∈ Q with Sq
A 6= ∅, linZ(Gq) = M ′

q. Once this is proved, by
inspection, the correctness is immediate since, thanks to Theorem 130,

xq′ + linZ

(
⋃

q∈QF

M ′
q ∪

⋃

q∈QF

(xq − xq′)

)

= affZ(SA). (6.29)

By construction and by inspection of Fig. 6.6, the sequence of Z-modules
linZ(Gq), q ∈ Q, satisfies (C.Z.1), (C.Z.2), (C.Z.3)(C.Z.4) and (C.Z.5). So,
thanks to Lemma 137, we have

linZ(Gq) ⊇M ′
q, (6.30)

for all q ∈ Q with Sq
A 6= ∅.

By construction, the sets Cq, q ∈ Q, are modified by calls
UPDATETRIANGZM(rdmin , Cq, c mod rdmin), such that

•
∑p

i=1 c[i] ·gi = 〈α〉r,n−xq, for some α ∈ Σn
r and qI ∈ QI with (qI, α, q) ∈

∆,

•
∑p

i=1 c[i] · gi = r · xq′ + 〈oα〉r,n − xq for some q′ ∈ Q, α ∈ Σn
r with

(q′, α, q) ∈ ∆, or

• c = r · c′ with c′ ∈ Cq′ for some q′ ∈ Q, α ∈ Σn
r with (q′, α, q) ∈ ∆.
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Therefore, thanks to Proposition 106 and Lemmas 132, 133 and 134, one proves
by induction on the number of modifications brought to the sets Cq, q ∈ Q, that
the following inclusion relation is always satisfied for all q ∈ Q,

{

p
∑

i=1

c[i] · gi | c ∈ Cq} ⊆ M ′
q. (6.31)

So, by inspection and by definition of M ′
q, we have

Gq ⊆M ′
q, (6.32)

for all q ∈ Q with Sq
A 6= ∅.

Combining (6.30) and (6.32), we deduce that linZ(Gq) = M ′
q.

By definition, there are at most n vectors in a triangular set over Zn
m, and

therefore |C| ≤ n. Similarly, a basis over Z of a Z-module of Zn has at most n
elements, and therefore p ≤ n. So, by inspection, the number of vectors in G is
bounded by |Q|+2n. Thanks to Theorem 118, the sizes of the components of the
vectors in Gpre are bounded by O(lmin), and thanks to Proposition 103, the sizes
of the components in the vectors g1, . . . , gp are bounded by O(lmin · n · log n).
Also, the vectors xq can be computed via a breadth first search, and in this case,
the sizes of the components are bounded by O(lmin) as explained in the proof of
Theorem 118. So, by inspection, the sizes of the components of vectors in G are
bounded by O(n·log n·lmin+dmin). Finally, thanks to Proposition 107, the setsCq

are modified at most n·dmin ·log r, and therefore there are at most |∆|·n·dmin ·log r

calls to UPDATETRIANGZM. Thanks to Proposition 106, we conclude that the
time complexity of ZAFFINEHULL is O(|∆| · n3 · d2

min · log2 r).

Finally, exactly as we did for the linear hull over Q, there exist algorithms
generating a triangular set as well as a system of linear equations and congruences.

Theorem 141. There exists an algorithm ZAFFINEHULLT which, given a reduced
NDD in strong normal form A = (Q,Σn

r ,∆, QI, QF), generates a vector xF and
a triangular set of vectors T such that

affZ(SA) = xF + linZ(T ).

The time complexity of ZAFFINEHULLT is O(|∆| · |Q|2 · n3 · log2 r).

Proof. Thanks to Theorem 140, by applying the algorithm ZAFFINEHULL with
A as input, we generate in time proportional to |∆| ·n3 ·d2

min · log2 r a pair (G,xF )
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such that affZ(SA) = xF + linZ(G) with |G| ≤ |Q| + 2n. The sizes of the
components of vectors in G are bounded by O(n · logn · lmin +dmin). Then thanks
to Proposition 103, by applying the function GETTRIANGZBASIS to G, we can
generate a basis T of linZ(G) in time proportional to O(|G| · k · n3 · log n), where
k = n · log n · lmin + dmin, and the size of the components of vectors in T are
bounded by k · n · log n.

Since lmin, dmin ≤ |Q|, the overall complexity is therefore O(|∆| · |Q|2 · n3 ·

log2 r).

Finally, thanks to Proposition 108, we can compute a system of linear equa-
tions corresponding to the affine hull, as shown in the next theorem.

Theorem 142. There exists an algorithm ZAFFINEHULLEQUATIONS which, given
a reduced NDD in strong normal form A = (Q,Σn

r ,∆, qI, QF), generates a set of
congruence relations ai.x ≡mi

bi, i = 1, . . . , k, and a set of equations ai.x = bi,
i = k + 1, . . . , k + t such that

affZ(SA) = {x ∈ Zn |
∧

i∈{1,...,k}

ai.x ≡mi
bi ∧

∧

i∈{k+1,...,k+t}

ai.x = bi}.

The time complexity of ZAFFINEHULLEQUATIONS is O(|∆| · |Q|2 · n3 · log2 r).

Proof. This is a direct consequence of Theorem 141 and Proposition 108.

6.4 Experimental Results

The algorithms QAFFINEHULL and ZAFFINEHULL presented in this chapter have
been implemented within the LASH library [LAS]. Note that these algorithms
have been slightly modified in order to use the synchronous interleaved encoding
scheme, which significantly decreases the running time. We have taken r = 2 as
encoding basis.

The time and memory used for the computation of the algorithms QAFFINE-
HULLT and ZAFFINEHULLT in a prototype implementation running on a Pentium-
M at 1,5 GHz are given in the table below. The columns indicate successively the
set on which the computation is performed, the number of components of the
vectors in the set, the number of states in the corresponding NDD (with alphabet
Σ2), the values of lmin and dmin (see Theorems 118 and 140), and finally, the time
and memory requirements for the computation of QAFFINEHULL and ZAFFINE-
HULL.
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The sets used for testing our implementations of the algorithms are given in
Fig.6.8. Note that all sets S1, . . . , S12 are defined by a Boolean combination of
several equations, inequations and congruence relations. In addition, S1, . . . , S6

are Z-affine modules, which is not the case of S7, . . . , S12.

A QAFFINEHULLT ZAFFINEHULLT

Set n Nb. States lmin dmin Time Mem Time Mem
(sec.) (Mb) (sec.) (Mb)

S1 7 64874 3 12 1.0 6.1 3.5 46.7
S2 6 115727 2 15 1.6 10.4 4.6 64.5
S3 6 287713 6 27 3.3 27.4 22.5 162.1
S4 6 215685 4 4 3.3 22.5 10.8 123.4
S5 10 281135 4 5 3.1 31.4 119.9 379.3
S6 11 112754 2 5 2.3 13.1 10.9 183.4
S7 7 279598 4 7 4.3 29.2 63.2 203.8
S8 7 42067 5 10 0.8 4.3 6.4 30.6
S9 6 54186 5 5 1.2 5.4 6.6 30.8
S10 7 50580 5 6 0.7 5.1 7.2 36.7
S11 6 52177 4 8 0.9 4.9 4.2 29.3
S12 6 44920 6 7 1.0 4.4 4.5 25.4

In the above table, we note that in the sets considered, the values of lmin and
dmin are small compared to |Q|. There exist sets for which the values of lmin and
dmin have the same magnitude as |Q|. For example, the NDDs representing the
sets x ≡2k 0 in base 2 have k states and lmin ' dmin ' k. Our intuition is that
whenever the characteristics numbers of a set (i.e. the constants appearing in a
formula describing the set) are small then lmin and dmin are also small and our
algorithms perform very well.

6.5 Conclusion

In this chapter, we have presented two algorithms, QAFFINEHULL and
ZAFFINEHULL, that take a reduced (nondeterministic) NDD A as input and com-
pute the affine hull over Q and over Z respectively of the set represented by A

(note that the restriction that the NDDs be reduced is not constraining since any
NDD can be reduced in linear time). More precisely, the algorithms generate a
pair (G,xF ) with a finite setG ⊆ Zn and a vector xF ∈ Zn such that xF +linQ(G)
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S1 = {(x0, x1, x2, x3, x4, x5, x6) ∈ Z7 | 3x0 + 2x1 − 5x2 + 6x3 − 10x4 +

3x5 + 2x6 = 2 ∧ x0 + x1 + 3x2 + 2x3 + 7x4 + 15x5 − 20x6 = 2 ∧

10x0 + 20x1 + 30x2 = 0}

S2 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 3x0 + 2x1 − 5x2 + 6x3 − 10x4 + 3x5 = 2

∧ x0 + x1 + 3x2 + 2x3 + 7x4 + 15x5 = 2 ∧ 10x0 + 20x1 + 30x2 = 0 ∧

x0 + 2x1 ≡5 0}

S3 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 21x0 + 3x1 − 5x2 + 2x3 + 4x4 − x5 = 24 ∧

5x0 + x1 − 2x2 − 2x3 + 6x4 + 3x5 = 11 ∧ x0 ≡128 0 ∧ x0 + x1 + x2 ≡49 3}

S4 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 11x0 + 5x1 + 9x2 + 19x3 + 5x4 + 6x5 ≡33 0

∧ 2x0 + 1x1 + 3x2 + 4x3 + 6x4 + 2x5 ≡33 0 ∧ 5x0 + 21x1 + 1x2 + 8x3 +

0x4 + x5 ≡33 0}

S5 = {(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) ∈ Z10 | x0 + x1 − x2 + 3x3 + 4x4 +

x5 + 5x6 + x7 + 3x8 + x9 ≡7 2 ∧ x0 − 3x2 = 3 ∧ 4x3 − 5x4 = 0 ∧

x7 + x8 ≡20 10 ∧ 10x2 − 5x9 ≡16 1 ∧ 2x1 + 3x5 + x6 = 12 ∧ x7 ≡3 0}

S6 = {(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) ∈ Z11 | 1x0+2x1−1x4+1x5 = 3

∧ 1x2 + 2x4 − 1x9 = 2 ∧ 2x1 + 1x3 + 2x5 + 1x6 − 1x7 = 5 ∧ 1x1 + 1x4 +

2x6 + 8x8 + 1x10 ≡13 12 ∧ 2x0 + 3x2 + 1x4 + 1x7 + 8x8 + 4x9 ≡5 0}

S7 = {(x0, x1, x2, x3, x4, x5, x6) ∈ Z7 |((x0 +2x1 +3x2−4x5 = 2 ∧ 3x0 +3x2 +

x3 + 5x4 − 6x5 + 3x6 ≤ 10 ) ∨ (4x0 + 5x2 + 2x3 − 6x4 + 3x5 + 4x6 = 2))
∧ x0 + x1 + x3 + 3x4 + 4x5 = 4}

S8 = {(x0, x1, x2, x3, x4, x5, x6) ∈ Z7 | ( 3x0 + x1 + 8x2 + x4 + x5 + 8x6 = 2 ∨

3x0 +x1 +8x2 +x4 +x5 +8x6 = 27 ∨ 3x0 +x1 +8x2 +x4 +x5 +8x6 = 52

) ∧ 4x0 + 7x1 + 2x2 − 8x3 − x4 + 4x5 = 0 ∧ x0 ≥ 10 ∧ x1 ≥ 15}

S9 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 12x0−9x1 +11x3−2x4 ≡28 5 ∧ 3x1 +x2 +

2x3 + 5x5 ≡30 1 ∧ x0 + 2x1 + 5x2 + 4x4 + x5 = 0 ∧ (x0 ≤ −10∨ x0 ≥ 20)
∧ (x0 +x1 +x2 +x3 +x4 +3x5 ≥ 0 ∨ x0 +x1 +x2 +x3 +x4 +3x5 ≤ 50)}

S10 = {(x0, x1, x2, x3, x4, x5, x6) ∈ Z7 | 3x1 +2x2 +x3 +2x6 ≡36 2 ∧ x1 −6x2 +

x4 + x6 = 0 ∧ (x1 ≥ 10 ∨ x1 ≤ 10) ∧ (x2 + x3 = 20 ∨ x2 + x3 ≤ −10) ∧
(x1 + 4x2 − 10x5 ≤ 0)}

S11 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 2x0 + 3x1 + 15x2 + 11x4 + 6x5 ≡20 10 ∧

x0+x1−6x2+1x3+x4 = 0∧ (x0+4x1−x2+x3 = 10∨ x0+4x1−x2+x3 =

18 ∨ x0 + 4x1 − x2 + x3 = 32) ∧ (x1 + 4x2 − 10x5 ≤ 10)}

S12 = {(x0, x1, x2, x3, x4, x5) ∈ Z6 | 2x0 + 3x1 + 15x2 + 11x4 + 6x5 = 3 ∧

x0+x1−6x2+x3+x4 = 0∧ ( x0+4x1+6x5 ≡4 3 ∨ −x2+x3+3x4 ≡16 10

∨ x0 + 5x1 + 6x2 + 3x4 = 2 ∨ x0 = 0)}

Figure 6.8: Formulas of sets used in the experimental results
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(resp. xF + linZ(G)) is the affine hull over Q (resp. Z) of the set represented by
A. The size of the numbers manipulated in QAFFINEHULL (resp. ZAFFINE-
HULL) are bounded by O(|Q|) (resp. O(n logn · |Q|)) and the time complexity is
O(n · (|∆|+ |Q|)) (resp. O(|∆| · |Q|2 ·n3)), where n is the number of components
in the vectors, and Q and ∆ are respectively the set of states and the transition
relation of the input NDD A.

Finally, note that the results we have presented also hold when considering
reduced NDDs using the reverse synchronous encoding scheme. Indeed, those
can be converted in linear time into a reduced (nondeterministic) NDDs using the
synchronous encoding scheme by calling the function AUTO REVERSE which
simply flips the origins and the destinations of the transitions as well as the initial
and the final states.

6.5.1 Related Work

An algorithm for computing the affine hull over Q of sets of positive vectors rep-
resented by NDDs can be obtained by adapting the algorithm in [MS04] which
originally handles affine program. Affine programs are programs whose assign-
ments are affine transformations, and in [MS04], the set of affine relations satisfied
by the variables at some control locations is computed. Our algorithm QAFFINE-
HULL 1 is an adaptation of this algorithm by considering each transition in an
NDD as an affine transformation. In addition, in [MS04], they consider only the
incremental modifications brought to the triangular sets Sq while computing the
least fixpoint, and, as mentioned in Section 6.2.1, this decreases the time complex-
ity by a factor n. The time complexity of [MS04] adapted to NDD is O(|∆| · n3).

Another algorithm for computing the affine hull over Q of sets of positive
vectors represented by NDDs is presented in [Ler04a]. This algorithm differs
from QAFFINEHULL 1 as follows.

• Only encodings of positive integer vectors are handled in [Ler04a], i.e.
NDDs represent subsets of Nn for some n ∈ N.

• The encoding scheme is the reverse synchronous interleaved scheme. The
fact that it deals with reverse encodings simply implies that one has to sub-
situte the final states for the initial states and one has to reverse the tran-
sition, i.e. substitute (q′, α, q) for (q, α, q′). The fact that the encoding is
interleaved is more an implementation aspect and the algorithms QAFFINE-
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HULL 1 and QAFFINEHULL can also be adapted to the synchronous inter-
leaved scheme in a way similar to what is done in [Ler04b].

The complexity of the algorithm in [Ler04a] is identical to that of QAFFINE-
HULL 1, i.e. O(|∆| · n4).

Regarding the affine hull over Z, there is nothing specific for sets represented
by NDDs. In [Gra91], the set of affine relations as well as the congruence re-
lations satisfied by the variable at some control locations in affine programs is
computed. Although the computation always terminates, there is no bound on the
number of execution steps required. The algorithm ZAFFINEHULL 1 presented
in Section 6.2.1 can be roughly seen as an adaptation of [Gra91] to NDDs.

More recently, [MS05a] describes a polynomial time algorithm for computing
affine relations over Zm, for some givenm, satisfied by the variables at control lo-
cations in affine programs. While submitting this thesis, the authors have extended
the algorithm presented in [MS05a] in order to deal with the more general case of
finding affine relations as well as linear congruences in [MS05b]. The complexity
of the proposed algorithm is polynomial and comparable to the complexity of our
algorithm ZAFFINEHULL.

In the context of affine programs, we also want to mention [CH78]. The
algorithm of [CH78] computes a system of linear inequations satisfied by the
variables at some control location. This algorithm differs from the other algo-
rithms mentioned aboved because the linear inequations computed only define
over-approximation that does not have a single definition. This fact is directly
related to the way the linear inequations are generated. Indeed, it uses a widening
operator whose effect is to ensure that the algorithm terminates but whose precise
effect is not explicit. Our intuition is that this algorithm could be also adapted to
NDD with a more adequate widening operator and, in this context, it might lead
to an algorithm computing the convex hull of the represented set.

Two other over-approximations for sets represented by NDDs have been pro-
posed.

An algorithm computing the semi-affine hull (over Q) of the set represented
by an NDD has been introduced in [Ler03]. A Q-semi-affine space is a finite
union of Q-affine spaces, and the semi-affine hull of a set S is the smallest Q-
semi-affine space including the set S. Given a set S, the semi-affine hull of S is
included in the affine hull of S, and in general the inclusion is strict. For example,
if one takes a finite set of vectors in Qn, the semi-affine hull of this set is the set
itself, whereas the affine hull might be Qn (if there are n+ 1 affinely independent
vectors in the set). There are two drawbacks associated to the algorithm of [Ler03]
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computing the semi-affine hulls of sets represented by NDDs. First, representing
Q-semi-affine spaces is expensive in general. For example, any finite set is a
Q-semi-affine space, and therefore, one might need a large number of vectors to
describe a Q-semi-affine-space. Secondly, the algorithm presented in [Ler03] is
exponential in the number of states, and there is no indication that the algorithm
might perform well when applied to practical examples.

Finally, an algorithm computing the convex hull over Q of the set represented
by an NDD has been introduced in [FL05] and it is proved that the convex hull of
any set representable by an NDD is a convex polyhedron. The method proposed
in [FL05] is exponential and it is not clear how this algorithm would behave in
practice.

6.6 Additional Proof Details

6.6.1 Proof of Propositions 106 and 107

In this section, we follow the main ideas presented in [MH04]. In order to handle
the general case of a triangular set in Zm where m is an arbitrary strictly positive
integer, we first deal with the case when m = pq for some prime number p.

For a triangular set T = {y1, . . . ,yk} in Zn
pq , we define rank(T ) as follows.

rank(T ) =
∑

i

qi + (n− k) · q,

where qi is such that dip
qi is the leading entry of yi for some di ∈ Z with

gcd(di, p). Clearly, we have

0 ≤ rank(T ) ≤ n · q.

Proposition 143. There exists an algorithm UPDATETRIANGZPQ, which, given
a prime number p, a positive integer q, a triangular set T ⊆ Zn

pq and a vector
x ∈ Zn

pq , such that if T ′ = UPDATETRIANGZPQ(p, q, T,x), then the following
assertions are valid.

• T ′ ⊆ Zn
pq and T ′ is triangular.

• linZpq (T
′) = linZpq (T ∪ {x}).

• If T ′ 6= T , then rank(T ′) < rank(T ).
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• The time complexity of UPDATETRIANGZPQ is O(n2 · q).

Proof. Recall that operations on elements of Zpq are carried out by using arith-
metic modulo Zpq .

Let i be the leading index of x.

• If there is no vector in T whose leading index is also i, then it returns T ∪

{x}.

• If there is a vector y in T whose leading index is also i, and if x[i] = apb

and y[i] = a′pb′ , such that gcd(a, p) = 1 and gcd(a′, p) = 1, there are two
possibilities.

– If b′ ≤ b, then there exists c ∈ {1, . . . , p− 1} such that x[i] − cpb−b′ ·

y[i] ≡pq 0. In this case, the algorithm returns

UPDATETRIANGZPQ(p, q, T,x − cpb−b′y).

– If b′ > b, then the algorithm returns

UPDATETRIANGZPQ(p, q,x ∪ T \ {y},y).

See [MH04] for the correctness.

We now turn to the general case, i.e. m = Πt
i=1mi, where m1, . . . , mt are

pairwise relatively prime. The key observation is that every element of x ∈ Zm

is uniquely determined by the values xi = x mod mi. That is, x ≡m y if and
only if x ≡mi

y for i = 1, . . . , t. This result is known as the Chinese Remainder
Theorem. Interestingly, a corollary of this theorem is that given the remainders
x1, . . . , xt with 0 ≤ xi < mi, we can generate a number x such that x ≡mi

xi

for i = 1, . . . , t. Indeed, thanks to Euclid’s Algorithm, one can find in times
O(logm) numbers yi, zi such that mi · yi + m

mi
· zi = 1. Let si = m

mi
· zi mod m.

By construction, for every i, j ∈ {1, . . . , t}, we have

si mod mj =

{
1 if i = j

0 if i 6= j
(6.33)

Finally, we compute x as x =
(∑t

i=1 si · xi

)
mod m. From (6.33), one deduces

that x ≡mi
xi for all i ∈ {1, . . . , t}. The construction of x based on the remainders

x1, . . . , xt is called the Chinese remainder reconstruction and is denoted x =
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x1 ∗ . . .∗xt. Note that the coefficients s1, . . . , st are independent of x1, . . . , xt and
need to be computed only once.

We extend the Chinese remainder reconstruction to vectors as follows. The
vector x = x1 ∗ . . . ∗ xk is such that x[i] = x1[i] ∗ . . . ∗ xk[i]. We can now state
the main theorem.

Theorem 144. Let M ⊆ Zn
m be a Zm-module, and let Mi = {x mod mi | x ∈

M} for i ∈ {1, . . . , t}.

1. If G is a set of generators of M , then Gi = {x mod mi | x ∈ G} is a set
of generators of Mi.

2. For i ∈ {1, . . . , t}, let Gi = {g
(i)
1 , . . . , g

(i)
n } denotes a set of generators for

Mi. Then G = {g1, . . . , gn} with gj = g
(1)
j ∗ . . . ∗g

(t)
j is a set of generators

of M .

Proof. See [MH04].
Thanks to Theorem 144, we can generalize Proposition 143.

Proposition 145. There exists an algorithm UPDATETRIANGZM which, given
a strictly positive integer m, a triangular set T ⊆ Zn

m and a vector x ∈ Zn
m,

generates a triangular set T ′ ⊆ Zn
m such that

linZm
(T ′) = linZm

(T ∪ {x}).

The time complexity of UPDATETRIANGZM is O(n2 · logm).

Proof. Theorem 144 holds for any decomposition of m in pairwise relatively
prime numbers and for any ordering of the elements in the sets Gi. In particu-
lar, we can choose prime powers mi = pqi

i and triangular sets Gi. So, Propo-
sition 143 can be generalized to arbitrary m as follows. Compute T (i) = {x

mod mi | x ∈ T} and T
(i)
new = UPDATETRIANGZPQ(pi, qi, T

(i),x) for each
i ∈ {1, . . . t}.

• If T (i)
new = T (i) for all i, then return T .

• If T (i)
new 6= T (i) for some i, then return T ′ with T ′ = {g1, . . . , gn} such that

gj = g
(1)
j ∗ . . . ∗ g

(t)
j where g

(i)
j is the vector of T (i) whose leading index is

j or 0 if there is no vector whose leading index is j in T (i).

As a corollary, we have the following proposition.
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Proposition 146. Assume that m = pq1

1 . . . pqt

t for pairwise different prime num-
bers pi. Then every chain of triangular sets T1, T2, . . . such that Tk 6= Tk+1 and
Tk+1 = UPDATETRIANGZM(m, Tk,xk) has length at most n · (q1 + . . .+ qt).

Proof. For all k and for all i ∈ {1, . . . , t}, let T (i)
k = {x mod mi | x ∈ Tk}. By

construction, for all k, we have

rank(T
(i)
k+1) ≤ rank(T

(i)
k ) for all i ∈ {1, . . . , t}, and

rank(T
(j)
k+1) < rank(T

(j)
k ) for some j ∈ {1, . . . , t}.

Also, by definition
0 ≤ rank(T

(i)
k ) ≤ n · qi.

The claim is then immediate.

6.6.2 Proof of Theorem 118

In this section, the set G ⊆ Zn and the vector xF ∈ Zn are such that (G,xF ) =

QAFFINEHULL(A), where A = (Q,Σn
r ,∆, QI, QF) is a reduced NDD in strong

normal form and QAFFINEHULL is given in Fig. 6.3. Also, the vectors xq ∈ Zn

are those appearing in Fig. 6.3.
We first prove the following lemma.

Lemma 147. For all q ∈ Q, x ∈ Sq
A, we have

(x − xq) ∈ linQ(G).

Proof. We now show that for all states q, for all encodings w with w ∈ LA(qI →

q) for some initial state qI ∈ QI, we have 〈w〉r,n − xq ∈ linQ(G). The proof is by
induction on the length of w. By inspection, this holds if |w| = 1. Suppose this
holds for all encodings of length smaller or equal to k ≥ 1 and let |w| = k + 1

and q be such that w ∈ LA(qI → q) for some initial state qI ∈ QI. By hypothesis,
w = wkα with wk ∈ (Σn

r )+ and α ∈ Σn
r . Let qk be such that wk ∈ LA(qI → qk)

and (qk, α, q) ∈ ∆. By inductive hypothesis, we have

〈wk〉r,n − xqk
∈ linQ(G). (6.34)

Also, by inspection, we have

r · xqk
+ 〈oα〉r,n − xq ∈ linQ(G). (6.35)



6.6. ADDITIONAL PROOF DETAILS 125

Combining (6.34) and (6.35), we have

r · 〈wk〉r,n + 〈oα〉r,n − xq ∈ linQ(G). (6.36)

By definition of the encoding scheme, 〈w〉r,n = r ·〈wk〉r,n+〈oα〉r,n, and therefore,
〈w〉r,n − xq ∈ linQ(G).

Theorem 148. We have

xF + linQ(G) = affQ(SA).

The number of elements in G is bounded by O(|∆| + |Q|), the sizes of the
components of the vectors in G are bounded by O(lmin) and the time complexity
of QAFFINEHULL is O(n · (|∆| + |Q|)),

Proof. By inspection xF ∈ SA, and by definition

affQ(SA) = xF + V. (6.37)

By inspection, for all y ∈ G, there are three possibilities.

• y = 〈α〉r,n−xq′ and there exists an initial state q ∈ QI such that (q, α, q′) ∈

∆. By definition, 〈α〉r,n ∈ Sq′

A and therefore, 〈α〉r,n − xq′ ∈ Vq′ . So, thanks
to Lemma 117, y ∈ V .

• y = r ·xq+〈oα〉r,n−xq′ . By definition, there exists an encodingw ∈ (Σn
r )+

with 〈w〉r,n = xq such that w ∈ LA(qI → q) for some initial state qI ∈ QI.
Therefore, wα ∈ LA(qI → q′) and by definition of the encoding scheme,
we have

r · xq + 〈oα〉r,n ∈ Sq′

A . (6.38)

So, we have y ∈ Vq′ and thanks to Lemma 117, y ∈ V .

• y = xq − xq′ , with q, q′ ∈ QF. So, by definition, y ∈ V .

We deduce that G ⊆ V and so, since V is a vector space over Q, linQ(G) ⊆ V .
Given (6.37), we conclude that

xF + linQ(G) ⊆ affQ(SA). (6.39)

Let x ∈ Sq
A. By definition, there exist w ∈ (Σn

r )+, qI ∈ QI and q ∈ QF such
that w ∈ LA(qI → q). Therefore, thanks to Lemma 147, we have

x − xq ∈ linQ(G). (6.40)
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By inspection, xF − xq ∈ G, and therefore,

x ∈ xF + linQ(G). (6.41)

So, we deduce that SA ⊆ xF + linQ(G). Thanks to Proposition 6, affQ(xF +

linQ(G)) = xF + linQ(G), and we conclude that

affQ(SA) ⊆ xF + linQ(G). (6.42)

Combining (6.39) and (6.42), we find that affQ(SA) = xF + linQ(G).
Clearly, the number of elements in G is bounded by O(|Q| + |∆|), and there-

fore, the time complexity is O(n · (|Q|+ |∆|)). Finally, the vectors xq, q ∈ Q, can
be computed via a breadth first search according to which one visits at step k all
states q such that the smallest nonempty path from an initial state to q is of length
k, and if w labels a path of length k, one sets xq equal to 〈w〉r,n. By definition
of lmin, there are lmin steps in the computation, and by definition of the encoding
scheme, the sizes of the components of the vectors xq are bounded by O(lmin).
So, by inspection, the sizes of the components of the vectors in G are bounded by
O(lmin).

6.6.3 Proof of Lemma 129

In this section, the setGpre ⊆ Zn and the vector xF ∈ Zn are such that (Gpre ,xF ) =

QAFFINEHULL(A), where A = (Q,Σn
r ,∆, QI, QF) is a reduced NDD in strong

normal form and QAFFINEHULL is given in Fig. 6.3. Also, the vectors xq ∈ Zn

are those appearing in Fig. 6.3.
We first prove an auxiliary result.

Lemma 149. For all q ∈ Q, x ∈ Sq
A, we have

x − xq ∈ linZ(Gpre).

Proof. The proof is the same as the proof of Lemma 147, it suffices to substitute
linQ(G) by linZ(Gpre).

Lemma 150. For all q ∈ Q with Sq
A 6= ∅, Mq ⊆ linZ(Gpre), and for all g ∈ Gpre ,

rdming ∈M .

Proof.
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• Let y ∈Mq. By definition, xq +Mq = affZ(Sq
A), and therefore,

y = −xq +

k∑

i=1

aixi , (6.43)

with
∑k

i=1 ai = 1 and for all i ∈ {1, . . . , k}, ai ∈ Z and xi ∈ Sq
A.

From (6.43), we have y =
∑k

i=1 ai(xi −xq), and thanks to Lemma 149, for
all i ∈ {1, . . . , k}, we have xi − xq ∈ linZ(Gpre). So, by definition of the
linear hull over Z, we have y ∈ linZ(Gpre).

• Let y ∈ Gpre . There are three possibilities.

– y = 〈α〉r,n − xq′ and there exists an initial state q ∈ QI such that
(q, α, q′). By definition, 〈α〉r,n belongs to Sq′

A and therefore we have

〈α〉r,n − xq′ ∈Mq′ .

By definition of dmin, there exists a path from q′ to a state qF ∈ QF

labeled by w with |w| ≤ dmin. So, thanks to Lemma 125 and by
definition of a Z-module, we deduce that r|w| · y ∈MqF , and thus

rdmin · y ∈MqF.

Since xqF +MqF ⊆ xqF +M , we conclude that rdmin · y ∈M .

– y = r · xq + 〈oα〉r,n − xq′ . By definition, there exists an encoding
u ∈ (Σn

r )+ with 〈u〉r,n = xq such that u ∈ LA(qI → q) for some
initial state qI ∈ QI. Therefore, uα labels a path from qI to q′ and thus
〈uα〉r,n belongs to Sq′

A . So, by definition of the encoding scheme, we
have

r · xq + 〈oα〉r,n ∈ Sq′

A . (6.44)

So, we have y ∈Mq′ . As shown previously, this implies that rdmin ·y ∈

M .

– y = xq − xq′ , with q, q′ ∈ QF. So, by definition, y belongs to M .

We conclude that for all y ∈ G, rdmin · y is in M .
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Chapter 7

Exact Formula : Integer Restrictions
of Polyhedra

In this chapter, we present a method which, given the reduced minimal NDD using
the synchronous encoding scheme ES(r) representing the integer solutions of a
(convex) polyhedron P , generates a formula whose integer solutions are exactly
the integer elements in P .

The choice of restricting the class of handled sets stems from the fact that
there exist simple mathematical descriptions of the integer elements of polyhedra,
and one of them is canonical. Also, thanks to [FL05], the convex hull over Q of
any set represented by an NDD is a computable polyhedron. So, even if the initial
NDD does not represent the integer elements of a polyhedron, it is still possible, in
theory, to generate another NDD representing the convex hull over Q of the initial
set, and apply on the resulting NDD the algorithms presented in this chapter.

By definition, a polyhedron corresponds to the solutions of a conjunction of
inequations, and therefore, the integer elements of the polyhedron correspond to
the integer solutions of the system of inequations. In addition, there is another
representation for those sets, the extended Hilbert basis, i.e. a pair of finite sets
of vectors, the constants and the periods, whose positive integer combinations
generate the integer elements in the polyhedron. If the polyhedron is pointed,
then, there exists a unique minimal extended Hilbert basis.

Interestingly, the sets of constants and periods of the minimal extended Hilbert
basis corresponding to the integer elements of a pointed polyhedron P can be
defined in Presburger arithmetic, extended with a predicate indicating the mem-
bership to P ∩ Zn. So, a first approach to computing the extended Hilbert basis
given an NDD representing P ∩Zn is to construct the NDDs corresponding to the

129
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sets of constants and periods by converting the defining formulas. This method is
presented in the first section. It has experimentally been observed to be expensive.

We show in the second section interesting structural properties of reduced min-
imal NDDs representing the positive integer elements of polyhedra, and based on
those properties, we develop an algorithm which, given the reduced minimal NDD
representing the set of positive integer elements of a polyhedron, generates a sys-
tem of linear inequations Cx ≤ 0 corresponding to the characteristic cone of this
polyhedron.

Next, we show how to generalize those results to arbitrary signs. A polyhe-
dron containing only positive integer elements is such that the encodings of all
its elements have o as sign symbol. The generalization consists in considering
polyhedra whose integer elements have all the same symbol αsign, which may be
different from o.

In Section 7.4, we present an algorithm which, given the reduced minimal
NDD representing the set of integer solutions of a pointed polyhedron P , gener-
ates the minimal extended Hilbert basis of the represented set. From this set, one
then generates a formula defining P ∩ Zn :

∨

i∈{1,...,t}

C(x − xi) ≤ 0,

where {x1, . . . ,xt} are the (finite) set of constants of the extended Hilbert basis.
The results presented in this chapter, except those in Section 7.1, only hold

with the synchronous encoding schemeES(r). This choice is motivated by the fact
that NDDs are usually smaller when using the synchronous encoding scheme than
when using the reverse synchronous encoding scheme, as shown in Section 5.5.1.
Also, when dealing with an extension of NDDs, the Real Vector Automaton (RVA)
[BRW98, BJW01], representing sets defined in the first order theory 〈R,+, <

, Integer?〉, where Integer? is a one-place predicate testing for membership in
Z, the difference in size when using the synchronous compared to the reverse
encoding scheme could even be more striking. Given the structural similarities
between NDDs and RVAs, the results presented in this chapter could be applied
to RVAs in the future.

7.1 Formula-based Generation of Basis

There is a simple solution for determining the constants and the periods of the
extended Hilbert basis of the integer elements of a pointed polyhedron P repre-
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sented by a NDD, independently of the choice of encoding scheme. Indeed, the
sets of constants and periods can be defined via a formula in Presburger arithmetic
extended with an additional predicate ϕP expressing the membership to P ∩ Zn.
Although we conclude this section on the fact that the formula-based approach is
too expensive for the generation of the minimal extended Hilbert basis, the pos-
sibility to express the extended Hilbert basis in Presburger arithmetic gives some
hints on the link between extended Hilbert bases and NDDs. The link is further
detailed in the remaining sections.

We first present a formula ϕC such that for all x ∈ Zn, ϕC(x) holds if and
only if x ∈ char-cone(P ). Intuitively, a vector x is not in the characteristic cone
if there exists a vector y ∈ P ∩ Zn such that x + y 6∈ P ∩ Zn.

ϕC(x) =def ¬(∃y, z ∈ Zn) (ϕP (y) ∧ z = x + y ∧ ¬ϕP (z)) (7.1)

For convenience, we define ϕC0
as follows.

ϕC0
(x) =def ϕC(x) ∧ x 6= 0. (7.2)

Similarly, we define the formula ϕcst and ϕper defining the membership to the
sets of constants and of periods of the basis of P ∩ Zn :

ϕcst(z) =def ϕP (z) ∧ ¬(∃x,y ∈ Zn)(ϕP (x) ∧ ϕC0
(y) ∧ z = x + y

)
(7.3)

ϕper(z) =def ϕC0
(z) ∧ ¬(∃x,y ∈ Zn)(ϕC0

(x) ∧ ϕC0
(y) ∧ z = x + y

)
.(7.4)

Now, we show how to generate the NDDs AC , Acst and Aper representing the
sets of vectors satisfying respectively ϕC , ϕper and ϕcst.

Based on Theorem 95, we can construct in time exponential in n a determin-
istic NDD Ax+y=z in strong normal form, accepting the encodings of vectors
(x,y, z) ∈ Z3n such that z = x +y. The number of states of Ax+y=z is exponen-
tial in n.

We can also construct the NDD A 6=0 accepting the encodings of vectors x ∈

Zn such that x 6= 0. The minimal reduced NDD accepting the set Z2 \ {0} in
basis 2 is given in Fig.7.1.

The NDD AC is obtained through the following automata-based operations
involving AP representing P ∩ Zn, i.e. representing the predicate ϕP .

A1 = NDD COMPLEMENT(AP )

A2 = AUTO PRODUCT(AZn,AUTO PRODUCT(AP ),A1)

A3 = AUTO INTERSECTION(Ax+y=z,A2)

A4 = NDD MULTI PROJECTION({n+ 1, . . . 3n},A3)

AC = NDD COMPLEMENT(A4)
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0,0
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1,0

1,1

1,1
0,0

1,0

0,1
q0 q1

Figure 7.1: minimal NDD representing S = {(x, y) ∈ Z2 | (x, y) 6= (0, 0)}

The relationship between the automata A1, . . . , A3, AC and the formula (7.1) is
given below.

ϕC(x) =def ¬ (∃y, z ∈ Zn)



ϕP (y) ∧ z = x + y ∧ ¬ϕP (z)
︸ ︷︷ ︸

A1





︸ ︷︷ ︸

A3
︸ ︷︷ ︸

A4
︸ ︷︷ ︸

AC

Thanks to Propositions 58, 59 and Theorems 77, 78 and 79, the size of the
NDD AC is O(2|Q|2·2n

).
The deterministic NDD AC0

representing {x ∈ Zn | ϕC0
(x)} is generated

from AC as follows.

AC0
= AUTO INTERSECTION(AC,A 6=0) . (7.5)

We construct a deterministic NDD representing the set of constants of the
minimal extended Hilbert basis of P ∩ Zn as follows.

A1 = AUTO PRODUCT(AP ,AUTO PRODUCT(AC0
,AZn))

A2 = AUTO INTERSECTION(Ax+y=z,A1)

A3 = NDD MULTI PROJECTION({1, . . . 2n},A2)

A4 = NDD COMPLEMENT(A3)

Acst = AUTO INTERSECTION(AP ,A4)

The relationship between the automata A1, . . . , A4, Acst and the formula (7.3)
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is given below.

ϕcst(z) =def ϕP (z) ∧ ¬ (∃x,y ∈ Zn) (ϕP (x) ∧ ϕC0
(y) ∧ z = x + y)

︸ ︷︷ ︸

A2
︸ ︷︷ ︸

A3
︸ ︷︷ ︸

A4
︸ ︷︷ ︸

Acst

.

Finally, we construct a deterministic NDD representing the set of periods of
the minimal extended Hilbert basis as follows.

A1 = AUTO PRODUCT(AC0
,AUTO PRODUCT(AC0

,AZn))

A2 = AUTO INTERSECTION(Ax+y=z,A1)

A3 = NDD PROJECTION({1, . . . 2n},A2)

A4 = NDD COMPLEMENT(A3)

Aper = AUTO INTERSECTION(AC0
,A4)

The relationship between the automata A1, . . . , A4, Aper and the formula (7.3)
is given below.

ϕper(z) =def ϕC0
(z) ∧ ¬ (∃x,y ∈ Zn) (ϕC0

(x) ∧ ϕC0
(y) ∧ z = x + y)

︸ ︷︷ ︸

A2
︸ ︷︷ ︸

A3
︸ ︷︷ ︸

A4
︸ ︷︷ ︸

Aper

.

Thanks to Propositions 58, 59 and Theorems 77, 78 and 79, the size of the
NDD Acst and Aper are O(22|Q|2·2n

).
We have tested several examples using the LASH [LAS]. It turns out that

the method presented in this section is not efficient in practice, even when using
the synchronous interleaved encoding scheme. For example, if ϕ1 is the predicate
testing membership into the set S1 = {(x1, x2, x3, x4) ∈ Z4 | x1−x2−x3−3x4 ≤

2∧−2x1 + 3x2 + 3x3 − 5x4 ≤ 3}, computing AC from the minimal NDD repre-
senting S1 requires more than 512 megabytes of memory and takes more than two
days, although the minimal NDD AP (using the synchronous interleaved encod-
ing scheme) has only 415 states. Even if AC is provided, computing the periods or
the constants of the minimal Hilbert basis also required more than 512 megabytes
of memory and more than one day of computation. In the remaining sections,
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we present a more efficient method for computing AC . In addition, it generates a
system of linear inequations whose integer solutions are the integer elements sat-
isfying ϕC . As a comparison, the method presented in the next section computes
AC and the minimal extended Hilbert basis from the minimal NDD representing
S1 in less than one second, and uses less than one megabyte of memory.

7.2 Synthesis of Formula for char-cone(P ) over the
Natural Numbers

First, we highlight structural properties of NDDs representing positive integer el-
ements of polyhedra. Then, we present an algorithm exploiting those properties
which, given an NDD representing a set P ∩Nn where P is a polyhedron, synthe-
sizes a formula corresponding to the characteristic cone of P .

Throughout this section, A = (Σn
r , Q, δ, qI, QF) denotes the reduced min-

imal NDD using the synchronous encoding scheme ES(r) representing the set
S = P ∩ Nn, where

P = {x ∈ Qn | Ax ≤ b} ⊆ {x ∈ Qn | x ≥ 0},

for some integer matrix A ∈ Zm×n and integer vector b ∈ Zm.
The inequations in Ax ≤ b are a1.x ≤ b1, . . . , am.x ≤ bm. Also, the

characteristic cone of P is denoted by C, i.e.

C = char-cone(P ) = {x ∈ Qn | Ax ≤ 0}.

Finally, C is an integer matrix such that C = {x ∈ Qn | Cx ≤ 0} and such that
no inequation in C+x ≤ 0 is redundant in Cx ≤ 0. The system of inequations
Cx ≤ 0 can be generated by removing one by one the redundant inequations in
Ax ≤ 0.

Note that many structural properties described in this section are valid only if
A is reduced minimal. Also, since all elements of the represented set belong to
Nn, the sign symbols of all encodings of all elements in the represented set are o.
Since A is reduced, this means that the first symbol of the words labeling paths
rooted at qI must be o.

Lemma 151. For all non-empty words u labeling a path rooted at qI, we have

• 〈u〉r,n ∈ Nn,
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Figure 7.2: minimal reduced NDD Ax representing Sx

• 〈ou〉r,n = 〈u〉r,n, and

• δ̂(qI, u) = δ̂(qI, ou).

Proof. Let q = δ̂(qI, u). Since A is reduced, there exists a word w ∈ (Σn
r )∗ such

that uw ∈ L(A), and by hypothesis, 〈uw〉r,n ∈ Nn. Therefore, by definition of
the encoding scheme, the sign symbol of u is o, and therefore, 〈u〉r,n ∈ Nn and
〈ou〉r,n = 〈u〉r,n.

Finally, since 〈ou〉r,n = 〈u〉r,n, for all words w ∈ (Σn
r )∗, 〈ouw〉r,n = 〈uw〉r,n,

and so, ouw ∈ L(A) ⇔ uw ∈ L(A). So, since A is minimal, we conclude that
δ̂(qI, u) = δ̂(qI, ou).

Example 152. We give in Fig.7.2 the reduced minimal NDD Ax representing the
set Sx, with

Sx = {(x, y) ∈ Z2 | x− y ≥ 1 ∧ x− 2y ≤ 2 ∧ x ≥ 0 ∧ y ≥ 0}. (7.6)

We will use this example to illustrate some definitions and theorems throughout
this chapter. The sets of elements associated to the different states, i.e. {〈u〉r,n |

u ∈ LAx
(qI → q)}, with q ∈ {q1, q2, q3, q4, q5, q6} are given in Figure 7.3.
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{〈u〉r,n | u ∈ LAx
(qI → q1)}

{〈u〉r,n | u ∈ LAx
(qI → q3)}

{〈u〉r,n | u ∈ LAx
(qI → q4)}

{〈u〉r,n | u ∈ LAx
(qI → q5)}

{〈u〉r,n | u ∈ LAx
(qI → q6)}

{〈u〉r,n | u ∈ LAx
(qI → q2)}

x

y

Figure 7.3: Sets associated to states in Ax

7.2.1 Zero-states

We show below that any simple loop in A labeled by a sequence of o symbols must
be of size 1. We call such a loop a zero-loop, and states at which zero-loops are
rooted are called zero-states. We then show that zero-states are strongly related to
the characteristic cone of P . Given a zero-state qz, we characterize successively
the set of words labeling paths from qz to accepting states, i.e. LA(qz), and the
set of words labeling loops rooted at qz, i.e. LA(qz → qz). We conclude this part
with a theorem that shows an equivalence between the existence of paths between
zero-states and the inclusion of languages accepted from those states.

Lemma 153. Any simple loop in A labeled by a sequence of o symbols is of size1.

Proof. Since A is reduced minimal and since it represents a polyhedron, i.e. a
conjunction of finitely many inequations, according to Lemma 86, A is permutation-
free. Consequently, for any simple loop labeled by vk for some words v ∈ (Σn

r )+,
we have k = 1. So, it suffices to choose v = o to prove the claim.

Example 154. In the NDD Ax of Fig.7.2, there are four zero-states, q1, q2, q3 and
q5.

We now show a relationship between the integer elements in C and those in P
based on the following considerations.
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• The cone C is defined as the set of vectors y ∈ Qn such that for all x ∈ P ,
x + y ∈ P . We deduce that the elements of C are the vectors y ∈ Qn such
that for all x ∈ P and for all k > 0, x + k · y ∈ P .

• A very specific feature of the synchronous encoding scheme ES(r) is that
suffixing an encoding u by a word v amounts to multiplying 〈u〉r,n by r|v|
and adding 〈ov〉r,n to the resulting vector.

Lemma 155. For all encodings u ∈ (Σn
r )∗, 〈u〉r,n belongs to C ∩ Zn if and only

if for all elements 〈ov〉r,n of P ∩ Zn, 〈uv〉r,n is also in P ∩ Zn.

Proof. Suppose that 〈u〉r,n ∈ C. Let v ∈ (Σn
r )∗ with 〈ov〉r,n ∈ P . We have

A〈u〉r,n ≤ 0 and A〈ov〉r,n ≤ b. So A(r|v|〈u〉r,n + 〈ov〉r,n) ≤ b and, by definition
of the encoding scheme, A〈uv〉r,n ≤ b. Therefore, 〈uv〉r,n ∈ P .

Suppose that 〈u〉r,n 6∈ C. We have A〈u〉r,n 6≤ 0. So, there exists an inequation
a.x ≤ b in Ax ≤ b such that a.〈u〉r,n > 0. Therefore, by definition of the
encoding scheme, a.〈uo〉r,n = ra.〈u〉r,n > a.〈u〉r,n. Thanks to Lemma 85, there
exists kmin such that for all words w ∈ (Σn

r )∗, a.〈uokw〉r,n > b for all k ≥ kmin,
and so, there exists a word v ∈ (Σn

r )∗ such that 〈ov〉r,n ∈ P and 〈uv〉r,n 6∈ P .
In light of the previous lemma, we expect to find the encodings of the inte-

ger elements of the characteristic cone among the prefixes of encodings labeling
paths rooted at the initial state qI and leading to accepting states in A. The fol-
lowing lemma gives a very simple criterion for identifying which prefixes are the
encodings of integer elements in C.

Theorem 156. Let QC be the set of states q such that there is a path from q to a
zero-state labeled by a sequence of o symbols.

The integer elements of C are exactly the integer vectors whose encodings
label paths from qI to a state in QC .

Proof.

• Suppose 〈u〉r,n ∈ C. From Lemma 155, for all 〈ov〉r,n ∈ P , for all k ∈ N,
we have 〈uokv〉r,n ∈ P , i.e. uokv labels a path from qI to an accepting state.
Let q be the state reached via the path labeled by u from qI. So, one can
follow from q a path of arbitrary length labeled by a sequence of o in A.
Since the number of states of A is finite, there must be a loop labeled by a
sequence of o reachable from q via a path labeled by op for some p ∈ N.
From Lemma 153, the loop is a zero-loop rooted at some zero-state of A.
Therefore, by definition, δ̂(qI, u) ∈ QC .
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• Let q ∈ QC and u ∈ (Σn
r )+ such that δ̂(qI, u) = q. By definition, there is

a path labeled by op for some p, from q to a zero-state qz. So, uop labels a
path from qI to qz. In addition, since A is reduced, there is a path labeled by
w from qz to an accepting state, and the words uop+kw, k ∈ N, label paths
from qI to an accepting state, i.e. 〈uop+kw〉r,n ∈ P for all k ∈ N. Therefore,
A〈u〉r,n ≤ 0, i.e. 〈u〉r,n ∈ C. Otherwise, there would be an inequation
a.x ≤ b from Ax ≤ b such that a.〈u〉r,n > 0, and therefore, by definition
of the encoding scheme, a.〈u0〉r,n > a.〈u〉r,n, and thanks to Lemma 85,
there would exist k′ ∈ N such that a.〈uop+k′

w〉r,n > b, and by definition,
this would mean that uop+k′

w 6∈ L(A), violating the hypothesis.

Remark 157. Thanks to Theorem 156, given A, we can generate in time pro-
portional to |A| a deterministic NDD AC accepting the encodings of the positive
integer elements of C by setting all states in QC as the only accepting states, i.e.
AC = (Q,Σn

r , δ, qI, QC). This can be done by performing a backward search,
starting from all zero-states, and following only transitions labeled by o. The
states reached are exactly those in QC .

We now address the characterization of the languagesLA(qz → qz) andLA(qz)

for any zero-state qz. We will show that those languages correspond to encodings
of the positive integer solutions of A′x ≤ b′ and of A′x = 0 respectively, for
some subsystem A′x ≤ b′ of Ax ≤ b such that for all u ∈ LA(qI → qz),
A′〈u〉r,n = 0. Intuitively, the reasoning goes as follows. For any word u labeling
a path from the initial state qI to a zero-state qz and for any inequation a.x ≤ b

in Ax ≤ b, the product a.〈u〉r,n must be less or equal to 0. Otherwise, a.〈uok〉r,n
would be arbitrarily large with increasing k, and it would not be possible to add a
suffix w to uok such that a.〈uokw〉r,n ≤ b, i.e. there would not be any path from
qz to an accepting state, violating the hypothesis that A is reduced. For similar
reasons, if a.〈u〉r,n < 0, then, for some k, for all words w, a.〈uokw〉r,n ≤ b, i.e.
the inequation a.x ≤ b does not constrain the suffixes w such that 〈uw〉r,n ∈ P .
This means that the only inequations in Ax ≤ b constraining the suffixes in a
given zero-state qz are those such that the equation a.〈u〉r,n = 0 is satisfied for
all words u labeling paths from the initial state to qz. We call those inequations
the pending inequations. From above, we conclude that LA(qz) is the set of en-
codings (without the sign symbol) of the vectors in Nn satisfying A′x ≤ b′ and
LA(qz → qz) is the set of encodings (without the sign symbol) of the vectors in
Nn satisfying A′x = 0, where A′x ≤ b′ are the pending inequations.

Definition 158. An inequation a.x ≤ b is pending in a zero-state qz if for all
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words u ∈ LA(qI → qz), a.〈u〉r,n = 0.

In order to prove that the language accepted from a zero-state qz can be for-
mulated in terms of the inequations of Ax ≤ b pending in qz, we first prove two
auxiliary lemmas.

We show that all words labeling paths from qI to qz also label loops rooted
at qz. Intuitively, if the word ou labels a path from qI to a zero-state qz, then A

does not differentiate ou from ouok for all k ∈ N. In other words, A does not
distinguish the vectors 〈ou〉r,n and rk〈ou〉r,n. Since the set represented is con-
vex, integer vectors on the line segment between 〈ou〉r,n and rk〈ou〉r,n can not be
distinguished by A, and since 〈ouu〉r,n is (r|u| + 1)〈ou〉r,n, A does not differen-
tiate 〈ou〉r,n from 〈ouu〉r,n, and therefore, we expect that ou and ouu label paths
leading to the same state.

Lemma 159. For any zero-state qz in A, if qz is reachable from qI by a path
labeled by ou, then there is a loop rooted at qz labeled by u.

Proof. Let qz be a zero-state and ou ∈ LA(qI → qz). According to Theorem 156,
A〈ou〉r,n ≤ 0.

Since A is minimal, by definition, there is a loop rooted at qz labeled by u if
and only if for all w ∈ (Σn

r )∗, ouw ∈ L(A) ⇔ ouuw ∈ L(A).

• Suppose that ouw ∈ L(A). Then we have A(r|w|〈ou〉r,n + 〈ow〉r,n) ≤ b,
and since A〈ou〉r,n ≤ 0, we have

A(r|w|+|u|〈ou〉r,n + r|w|〈ou〉r,n + 〈ow〉r,n) ≤ A(r|w|〈ou〉r,n + 〈ow〉r,n) ≤ b.

By Lemma 81, ouuw is an encoding of r|u|+|w|〈ou〉r,n+r|w|〈ou〉r,n+〈ow〉r,n
and we have ouuw ∈ L(A).

• Suppose that ouuw ∈ L(A). Then there is a path labeled by uw from qz to
an accepting state, and therefore, since there is a zero-loop rooted at qz, for
all k ∈ N, ouokuw ∈ P i.e. A〈ouokuw〉r,n ≤ b. Since A〈ou〉r,n ≤ 0, we
have

b ≥ A〈ouokuw〉r,n

≥ A
(
(r|u|+|w|+k + r|w|)〈ou〉r,n + 〈ow〉r,n

)

≥ A
(
r|u|+|w|+k+1〈ou〉r,n + 〈ow〉r,n

)

≥ A〈ouok+1w〉r,n.

Therefore, ouok+1w ∈ L(A) and ok+1w ∈ LA(qz), for all k ∈ N. Since
o ∈ LA(qz → qz), we conclude that w ∈ LA(qz) and ouw ∈ L(A).
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Given a zero-state qz, thanks to previous lemma, concatenations of encodings
labeling paths from qI to qz label also paths from qI to qz. Given the definition of
the pending inequations, we deduce the following lemma.

Lemma 160. Let qz be a zero-state. There is a word uz ∈ LA(qI → qz) such that
for all inequations a.x ≤ b from Ax ≤ b pending in qz, a.〈uz〉r,n = 0 and for all
inequations a.x ≤ b of Ax ≤ b not pending in qz, a.〈uz〉r,n < min(b,−‖ a+‖).

Proof. Recall that ai.x ≤ bi, i ∈ {1, . . . , m} are the inequations of Ax ≤ b.
We partition the inequations ai.x ≤ bi, i ∈ {1, . . . , m} into those pending in qz
and those not pending in qz. Let Ip ⊆ {1, . . . , m} such that i ∈ Ip if and only if
ai.x ≤ bi is pending in qz.

By definition, for i ∈ {1, . . . , m} \ Ip, there is a word ui ∈ LA(qI → qz)

such that ai.〈ui〉r,n 6= 0. From Theorem 156, 〈ui〉r,n ∈ C and A〈ui〉r,n ≤ 0. So,
ai.〈ui〉r,n < 0. Thanks to Lemma 151, 〈oui〉r,n = 〈ui〉r,n and δ̂(qI, oui) = qz. So,
from Lemma 159, we deduce that ui ∈ LA(qz → qz).

Let u be ou1u2 . . . um such that for i ∈ {1, . . . , m}, ui ∈ LA(qI → qz), and
ai.〈ui〉r,n < 0 if i 6∈ Ip . By construction, u ∈ LA(qI → qz), and therefore, by
definition, for all i ∈ Ip, ai.〈u〉r,n = 0. For all i ∈ {1, . . . , m} \ Ip, ai.〈u〉r,n < 0.
Indeed, by definition, ai.〈ui〉r,n < 0, and for all j ∈ {1, . . . , m}, ai.〈uj〉r,n ≤ 0.
So, according to Lemma 81, we have

ai.〈u〉r,n = ai.(r
|u2...um|〈u1〉r,n + . . .+ r|ui+1...um|〈ui〉r,n + . . .+ 〈um〉r,n)

≤ r|ui+1...um|ai.〈ui〉r,n

< 0.

Finally, from Lemma 85, there exists k ∈ N such that for all i ∈ {1, . . . , m} \ Ip,
ai.〈uo

k〉r,n < min(bi,−‖ ai
+‖) and for all i ∈ Ip, ai.〈uo

k〉r,n = 0. Since uok ∈

LA(qI → qz), uz = uok satisfies the claim.
Since there is a word uz such that for all inequations a.x ≤ b of Ax ≤ b not

pending in qz, a.〈uz〉r,n ≤ min(b,−‖ a+‖), according to the encoding scheme,
for any suffix w, a.〈uzw〉r,n ≤ b. We deduce that the inequations not pending in
qz do not constrain the language accepted from qz. In addition, by definition, for
all inequations a.x ≤ b of Ax ≤ b pending in qz, a.〈uz〉r,n = 0, and therefore,
according to the encoding scheme, all suffixes w labeling a path from qz to an
accepting state have to satisfy a.〈ow〉r,n ≤ b. Thanks to this result, we can specify
LA(qz).
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Theorem 161. Let qz be a zero-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip
if and only if ai.x ≤ bi is pending in qz.

LA(qz) = {w ∈ (Σn
r )∗ |

∧

i∈Ip

ai〈ow〉r,n ≤ bi}.

Proof. From Lemma 160, there is a word uz ∈ LA(qI → qz) such that for all
i ∈ Ip, ai〈uz〉r,n = 0 and for all i ∈ {1, . . . , m}\Ip, ai〈uz〉r,n < min(bi,−‖ ai

+‖).

• Suppose that
∧

i∈Ip
ai〈ow〉r,n ≤ bi. According to Lemma 82, for all i ∈

{1, . . . , m} \ Ip, we have ai.〈uzw〉r,n < min(bi,−‖ ai
+‖). In addition,

according to Lemma 81, for all i ∈ Ip, ai.〈uzw〉r,n = ai.〈ow〉r,n ≤ bi.
Therefore, A〈uzw〉r,n ≤ b, i.e. w ∈ LA(qz).

• Suppose that w ∈ LA(qz). Then, by definition, uzw ∈ L(A) and
A〈uzw〉r,n ≤ b. Since for all i ∈ Ip, ai.〈uz〉r,n = 0, we have

ai.〈uzw〉r,n = ai.〈ow〉r,n.

We conclude that for all i ∈ Ip, we have

ai.〈ow〉r,n ≤ bi.

The next theorem is also a consequence of the fact that only pending inequa-
tions play a role in the language accepted from a zero-state.

Theorem 162. Let qz be a zero-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip
if and only if ai.x ≤ bi is pending in qz.

LA(qz → qz) = {u ∈ (Σn
r )∗ |

∧

i∈Ip

ai.〈ou〉r,n = 0}.

Proof.

• Suppose
∧

i∈Ip
ai.〈ou〉r,n = 0. Thanks to Lemma 81, for all i ∈ Ip and for

all w ∈ (Σn
r )∗, we have

ai.〈uw〉r,n = ai.〈ow〉r,n. (7.7)
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According to Theorem 161, we have LA(qz) = {w |
∧

i∈Ip
ai.〈ow〉r,n ≤ bi},

and therefore, by definition, we get

u÷ LA(qz) = {w |
∧

i∈Ip

ai.〈uw〉r,n ≤ bi}. (7.8)

From (7.7) and (7.8), we deduce that

u÷ LA(qz) = {w |
∧

i∈Ip

ai.〈uw〉r,n ≤ bi}

= {w |
∧

i∈Ip

ai.〈ow〉r,n ≤ bi}

= LA(qz).

Let q′ = δ̂(qz, u). By definition, LA(q′) = LA(q). Therefore, since A is
reduced minimal, q′ = qz, i.e. u ∈ LA(qz → qz).

• Suppose u ∈ LA(qz → qz). Let v ∈ LA(qI → qz). By hypothesis, vu ∈

LA(qI → qz). Therefore, by definition, for all i ∈ Ip, ai.〈v〉r,n = 0 and
ai.〈vu〉r,n = 0, which implies that ai.〈ou〉r,n = 0 given Lemma 81.

In the following theorem, we show that the language accepted from a zero-
state q1 is included in the language accepted from another zero-state q2 if and only
if there is a path from q1 to q2, which occurs if and only if any word labeling a loop
rooted at q1 labels a loop rooted at q2. This result is a direct consequence of the
fact that the inequations of Ax ≤ b pending in q2 form a subset of the inequations
pending in q1 and that the language accepted from a zero-state qz is expressed in
terms of inequations of Ax ≤ b pending in qz.

Theorem 163. Let q1 and q2 be zero-states. The following assertions are equiva-
lent :

1. There exists a path from q1 to q2.

2. LA(q1 → q1) ⊆ LA(q2 → q2).

3. LA(q1) ⊆ LA(q2).

Proof. We will prove that (1) ⇒ (2) ⇒ (3) ⇒ (1).
Let I1 ⊆ {1, . . . , m} be such that i ∈ I1 if and only if ai.x ≤ bi is pending in

q1, and similarly, let I2 ⊆ {1, . . . , m} be such that i ∈ I1 if and only if ai.x ≤ bi
is pending in q2.
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From Theorem 161, we have

LA(q1) = {w |
∧

i∈I1

ai.〈ow〉r,n ≤ bi} (7.9)

LA(q2) = {w |
∧

i∈I2

ai.〈ow〉r,n ≤ bi}, (7.10)

and from Theorem 162, we have

LA(q1 → q1) = {u |
∧

i∈I1

ai.〈ou〉r,n = 0} (7.11)

LA(q2 → q2) = {u |
∧

i∈I2

ai.〈ou〉r,n = 0}. (7.12)

Finally, recall that thanks to Lemma 151, for any state q ∈ Q and word u ∈ (Σn
r )+,

if δ̂(qI, u) = q, then δ̂(qI, ou) = q.

• Suppose that there is a path from q1 to q2 labeled by w. From Lemma 160,
there is a word u1 ∈ LA(qI → q1) such that

ai.〈u1〉r,n = 0 if i ∈ I1

ai.〈u1〉r,n < min(bi,−‖a+
i ‖) if i ∈ {1, . . . , m} \ I1.

By hypothesis, u1w labels a path from qI to q2 and, thanks to Lemma 82, we
deduce that for all i ∈ {1, . . . , m} \ I1, ai.〈u1w〉r,n < min(bi,−‖a+

i ‖) < 0.
Hence, by definition, I1 ⊇ I2. From (7.11) and (7.12), we conclude that
LA(q1 → q1) ⊆ LA(q2 → q2).

• Suppose that LA(q1 → q1) ⊆ LA(q2 → q2). Let u1 ∈ LA(qI → q1) and let
u2 ∈ LA(qI → q2). Thanks to Theorem 156, we have A〈u1〉r,n ≤ 0 and
A〈u2〉r,n ≤ 0. Let w ∈ LA(q1). By definition, u1w is in A and therefore,
ou1w belongs also to L(A). So, by hypothesis, we have

A(r|w|〈ou1〉r,n + 〈ow〉r,n) ≤ b. (7.13)

Since A〈u2〉r,n ≤ 0, we deduce that

A(r|u1|+|u2|+|w|〈u2〉r,n + r|w|〈ou1〉r,n + 〈ow〉r,n) ≤ b. (7.14)

From (7.14) and by defintion of the encoding scheme, we deduce that
A〈u2u1w〉r,n ≤ b. Thus, by hypothesis, the word u2u1w is in L(A) and
we have

u1w ∈ LA(q2). (7.15)
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From Lemma 159, u1 labels a loop rooted at q1, and therefore, by hy-
pothesis, u1 labels a loop rooted at q2. So, since u1w is accepted from
q2 and since A is deterministic, w is accepted from q2. We conclude that
LA(q1) ⊆ LA(q2).

• Suppose LA(q1) ⊆ LA(q2). Let u1 ∈ LA(qI → q1) and let u2 ∈ LA(qI →

q2), and so δ̂(qI, ou2) = q2. Thanks to Lemma 48, we have

u1 ÷ L(A) ⊆ u2 ÷ L(A). (7.16)

Therefore, by definition, we have

u1u2 ÷ L(A) ⊆ u2u2 ÷ L(A). (7.17)

From Lemma 159, there is a loop rooted at q2 labeled by u2. So, thanks to
Lemma 48, u2u2 ÷ L(A) = u2 ÷ L(A), and we deduce from (7.17) that

u1u2 ÷ L(A) ⊆ u2 ÷ L(A). (7.18)

In addition, from Theorem 156, 〈u1〉r,n ∈ C and from Lemma 155, for all
word w ∈ (Σn

r )∗, we have

ou2w ∈ L(A) ⇒ u1u2w ∈ L(A). (7.19)

So, we have

u1u2 ÷ L(A) ⊇ ou2 ÷ L(A) = u2 ÷ L(A). (7.20)

From (7.18) and (7.20), we deduce that

u1u2 ÷ L(A) = u2 ÷ L(A). (7.21)

Since A is reduced minimal, δ̂(q1, u2) = δ̂(qI, u1u2) = δ̂(qI, u2) = q2. We
conclude that there is a path from q1 to q2 labeled by u2.

7.2.2 Zero-SCCs

In this subsection, we characterize the SCCs having a zero-state. We show that
there is at most one zero-state in any SCC and we partition the maximal SCCs
of A between those having a zero-state (called zero-SCCs) and the other SCCs.
In the previous section, we have shown that the words labeling loops rooted at
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some zero-state qz are the encodings (without sign symbol) of the elements in the
intersection between a Q-vector space V and Nn. We will show in this section
that the languages corresponding to words labeling paths from qz to another state
in the same SCC are the encodings of the intersection between a coset of V and
Nn. Therefore, the particular Q-vector space V characterizes the zero-SCC, and
in particular, we define the dimension of a zero-SCC as the dimension of V ∩ Nn.
Finally, we characterize the labels of the incoming transitions in states of a zero-
SCC as well as the number of incoming transitions.

Lemma 164. In any maximal SCC of A, there is at most one zero-state.

Proof. Let q1 and q2 be zero-states in a maximal SCC S. From Theorem 163,
LA(q1) = LA(q2) and since A is reduced minimal, q1 = q2.

Definition 165. A zero-SCC is a maximal strongly connected component having
a zero-state.

From Lemma 164, there is exactly one zero-state in any zero-SCC. Note that
some SCCs do not have any zero-state.

According to Theorem 163, the words labeling loops rooted at the zero-state of
a zero-SCC are the encodings (from which the sign symbol o has been removed)
of the natural solutions of a system of homogeneous equations, i.e. the elements in
the intersection of a vector space with Nn. We define the dimension of a zero-SCC
as the dimension of this intersection.

Definition 166. Let S be a zero-SCC and let qz be the zero-state of S. The dimen-
sion of S, written dim(S), is the dimension of the set {〈ou〉r,n | u ∈ LA(qz →

qz)}.

Example 167. In the NDD Ax of Fig.7.2, there are four zero-SCCs. The dimen-
sion of the zero-SCC containing the zero-state q1 (resp. q2, q3, q5) is 0 (resp. 1, 2
and 1). Note that q6 forms a SCC with no zero-state.

By definition, for NDDs representing the positive integer elements of poly-
hedra in Qn, the dimensions of the zero-SCCs are at least 0 and at most n. The
following theorems describe the structure of the zero-SCCs in these extreme cases.
We show that in both cases, there is only one state in the SCC, the zero-state. In
addition, if dim(S) = n, then for all α ∈ Σn

r , there is a simple loop labeled by
α rooted at the zero-state, and if dim(S) = 0, then there is only one simple loop
rooted at qz and it is labeled by o.
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Theorem 168. Let S be a zero-SCC and let qz be the zero-state of S.
If dim(S) = n, then LA(qz) = LA(qz → qz) = (Σn

r )∗.

Proof. Let S = {〈ou〉r,n | u ∈ LA(qz → qz)}, and let Ip ⊆ {1, . . . , m} such that
i ∈ Ip if and only if ai.x ≤ bi is pending in qz.

According to Theorem 162, LA(qz → qz) = {u |
∧

i∈Ip
ai.〈ou〉r,n = 0},

and therefore, S = V ∩ Nn for some Q-vector space V . If dim(S) = n, then by
definition, there exist n vectors linearly independent in V and V = Zn. Therefore,
S = Nn, and for all α ∈ Σn

r , δ(qz, α) = qz. Since A is reduced minimal and since
qz is the only reachable state from qz, qz is an accepting state and qz ∈ QF.

Theorem 169. Let S be a zero-SCC and let qz be the zero-state of S.
If dim(S) = 0, then there is only one simple loop rooted at qz, and this loop is

labeled by o.

Proof. This is a direct consequence of the definition of the dimension of a zero-
SCC and of the fact that the zero-loops are of size 1.

Example 170. In Fig.7.2, the NDD Ax representing Sx ⊆ Z2 is such that the
dimension of the zero-SCC containing the zero-state q1 is 0 and the dimension of
the zero-SCC containing the zero-state q3 is 2.

Since the set of words labeling loops rooted at a zero-state is defined by the
homogeneous system of equations corresponding to the pending inequations, the
set of words labeling paths from the zero-state qz to a state q in the same zero-
SCC corresponds to the same linear system, but whose right-hand side vector is
possibly different than 0, i.e. if the words labeling loops rooted at the zero-state
qz are the encodings (without sign symbol) of the positive integer solutions of
A′x = 0, then the words labeling paths from qz to a state q in the same zero-
SCC are the encodings (without sign symbol) of the positive integer solutions of
A′x = b′ for some b′. Indeed, on the one hand, if for an equation a.x = 0

from A′x = 0 there are two words u and v labeling paths from qz to q such
that a.〈ou〉r,n 6= a.〈ov〉r,n, then either a.〈ouw〉r,n 6= 0 or a.〈ovw〉r,n 6= 0 for
some w with uw, vw ∈ LA(qz → qz). On the other hand, since the pending
inequations specify the suffixes leading to accepting states, if two vectors are not
distinguishable with respect to the pending inequations, their encodings should
label paths to the same state in the NDD. Formally, we have the following theorem.

Theorem 171. Let S be a zero-SCC, let qz be its zero-state and let Ip ⊆ {1, . . . , m}

be such that i ∈ Ip if and only if ai.x ≤ bi is pending in qz.
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For all states q in S and for all vqzq ∈ LA(qz → q),

LA(qz → q) = {u |
∧

i∈Ip

ai.(〈ou〉r,n − 〈ovqzq〉r,n) = 0}.

Proof. Let vqzq ∈ LA(qz → q) and vqqz ∈ LA(q → qz).

• Suppose u ∈ LA(qz → q). By definition, we the word uvqqz labels a loop
rooted at qz. Thanks to Theorem 162, we have

LA(qz → qz) = {w |
∧

i∈Ip

ai.〈ow〉r,n = 0}.

Therefore, we deduce that the following assertions hold.
∧

i∈Ip

ai.〈ovqzqvqqz〉r,n = 0 ,

∧

i∈Ip

ai.〈ouvqqz〉r,n = 0.

So, for all i ∈ Ip, according to Lemma 81, we have

ai.(r
|vqqz |〈ovqzq〉r,n + 〈ovqqz〉r,n) = ai.〈ovqzqvqqz〉r,n,

= ai.〈ouvqqz〉r,n,

= ai.(r
|vqqz |〈ou〉r,n + 〈ovqqz〉r,n).

We conclude that for all i ∈ Ip, ai.〈ou〉r,n = ai.〈ovqzq〉r,n.

• Suppose
∧

i∈Ip
ai.(〈ou〉r,n − 〈ovqzq〉r,n) = 0. Thanks to Lemma 48, we have

LA(q) = vqzq ÷ LA(qz), and thanks to Theorem 161, we have

LA(qz) = {w |
∧

i∈Ip

ai.〈ow〉r,n ≤ bi}.

Therefore, we have

u÷ LA(qz) = {w |
∧

i∈Ip

ai.〈ouw〉r,n ≤ bi}

= {w |
∧

i∈Ip

ai.(r
|w|〈ou〉r,n + 〈ow〉r,n) ≤ bi}

= {w |
∧

i∈Ip

ai.(r
|w|〈ovqzq〉r,n + 〈ow〉r,n) ≤ bi}

= {w |
∧

i∈Ip

ai.〈ovqzqw〉r,n ≤ bi}

= vzq ÷ LA(qz).
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Since A is reduced minimal, thanks to Proposition 53, we conclude that
δ̂(qz, u) = δ̂(qz, uqzq) = q and u ∈ LA(qz → q).

The following theorem characterizes further the languages corresponding to
paths from a zero-state to other states in the same zero-SCC.

Theorem 172. Let S be a zero-SCC, let qz be the zero-state of S and let d =

dim(S).
There exists an integer matrix B of rank n − d such that for all states q ∈ S

and words vq ∈ LA(qz → q),

• {〈ov〉r,n | v ∈ LA(qz → q)} = {x ∈ Nn | B(x− 〈ovq〉r,n) = 0},

• affQ({〈ov〉r,n | v ∈ LA(qz → q)}) = {x ∈ Qn | B(x − 〈ovq〉r,n) = 0}.

Proof. If d = n, then from Theorem 168, {〈ov〉r,n | v ∈ LA(qz → q)} = Nn and
qz is the only state in S. Therefore, one can chose B to be the matrix with one
row and n columns whose elements are all 0.

In the following, we assume that d < n. Let S = {〈ou〉r,n | u ∈ LA(qz → qz)}

and let Ip ⊆ {1, . . . , m} such that i ∈ Ip if and only if ai.x ≤ bi is pending in qz.
From Theorem 162,

S = {〈ou〉r,n |
∧

i∈Ip

ai.〈ou〉r,n = 0}. (7.22)

Since dim(S) = d, there exist d words u1, . . . , ud ∈ LA(qz → qz) and d vectors
x1, . . . ,xd linearly independent in S with 〈oui〉r,n = xi, i ∈ {1, . . . , d}. So, there
exists B ∈ Z(n−d)×n with rank(B) = n − d such that {x ∈ Qn | Bx = 0} =

linQ({x1, . . . ,xd}) and S = {x ∈ Nn | Bx = 0}.
Let q be a state of S and let vqzq ∈ LA(qz → q). Since qz and q are in the same

SCC, there exists a word vqqz labeling a path from q to qz.

• Suppose u ∈ LA(qz → q). Then we have uvqqz ∈ LA(qz → qz) and by
definition of B, we deduce that

B〈ouvqqz〉r,n = 0 = B〈ovqzqvqqz〉r,n.

Therefore, we have B(〈ou〉r,n − 〈ovqzq〉r,n) = 0.

• Suppose x ∈ Nn satisfies B(x − 〈ovqzq〉r,n) = 0. By definition, we have

x − 〈ovqzq〉r,n =
d∑

j=1

ajxj,
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for some a1, . . . , ad ∈ Q.

Therefore, since xj ∈ S for j ∈ {1, . . . , d}, we deduce that for all i ∈ Ip, we
have ai.(x − 〈ovqzq〉r,n) = 0. Since x ∈ Nn, there exists a word u ∈ (Σn

r )∗

with 〈ou〉r,n = x, and for all i ∈ Ip, ai.(〈ou〉r,n − 〈ovqzq〉r,n) = 0. From
Theorem 171, we have

LA(qz → q) = {w ∈ (Σn
r )∗ |

∧

i∈Ip

ai.(〈ow〉r,n − 〈ovqzq〉r,n) = 0}.

Therefore, we conclude that u ∈ LA(qz → q).

We have therefore proved that

{x ∈ Nn | B(x− 〈ovqzq〉r,n)} = {〈ov〉r,n | v ∈ LA(qz → q)}. (7.23)

By definition of the affine hull, we have

affQ({x ∈ Nn | B(x − 〈ovqzq〉r,n) = 0}) ⊆ {x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0}

(7.24)
From (7.23) and (7.24), we deduce that

{x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0} ⊇ affQ({〈ov〉r,n | v ∈ LA(qz → q)}) (7.25)

Since rank(B) = n− d, we have

dim({x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0}) = d. (7.26)

In addition, by definition, u1vqzq, . . . , udvqzq ∈ LA(qz → q), and 〈ovqzq〉r,n,
〈ou1vqzq〉r,n, . . . , 〈oudvqzq〉r,n are affinely independent, and

dim(affQ({〈ov〉r,n | v ∈ LA(qz → q)}) ≥ d. (7.27)

From (7.25), (7.26) and (7.27), we conclude that

affQ({〈ov〉r,n | v ∈ LA(qz → q)}) = {x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0}. (7.28)

Based on the previous theorem, we introduce the notion of representative ma-
trix.

Definition 173. A representative matrix of a zero-SCC S of dimension d is an
integer matrix B of rank n− d such that if qz is the zero-state of S, for all states
q ∈ S and all vqzq ∈ LA(qz → q),
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• {〈ov〉r,n | v ∈ LA(qz → q)} = {x ∈ Nn | B(x− 〈ovqzq〉r,n) = 0},

• affQ({〈ov〉r,n | v ∈ LA(qz → q)}) = {x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0}.

Corollary 174. For each zero-SCC S, there exists a representative matrix.

Proof. Direct consequence of Theorem 172 and of the definition of a representa-
tive matrix.

As it will become clear in the remaining of this section, the notions of zero-
SCC, and in particular of representative matrix, will play a key role in our algo-
rithm generating a formula for the characteristic cone of P . In the next theorem,
we show that one can efficiently compute a representative matrix.

Theorem 175. Let S be a zero-SCC, let qz be the zero-state of S and let QS ⊆ Q

be the set of states in S.
There exists an algorithm GETREPRESENTATIVEMATRIX which, given the

reduced minimal NDD A and the zero-SCC S, computes a representative matrix
of S and whose time complexity is O(|QS | · |Σ

n
r | · n

2).

Proof. It suffices to create a new NDD AS = (Q′
S ,Σ

n
r , δ

′, q′I, {qz}), such that
the set of states Q′

S and the transitions correspond to the set of states and the
transitions in S, except for a new state q ′I which is set as the initial state of AS

and for a new transition, from q′I to qz labeled by o. Finally, qz is marked as
the only accepting state in AS . By construction, the set represented by AS is
SS = {〈ou〉r,n | u ∈ LA(qz → qz)}. Therefore, given the NDD AS as input, the
output of algorithm QAFFINEHULLEQUATIONS is a system of linear equations
Bx = 0 such that B is a representative matrix of S. By construction and thanks
to Theorem 120, the time complexity for generating a representative matrix of S
is O(|QS | · |Σ

n
r | · n

2).

We conclude this section by characterizing the incoming transitions in states
of a zero-SCC.

Lemma 176. For each α in Σn
r and each state q of a zero-SCC S of A, there is at

most one state q′ ∈ S such that δ(q′, α) = q.

Proof. Let qz be the zero-state of S, let vqzq ∈ LA(qz → q) and let Ip ⊆ {1, . . . , m}

such that i ∈ Ip if and only if ai.x ≤ bi is pending in qz.
From Theorem 171,

LA(qz → q) = {v |
∧

i∈Ip

ai.(〈ov〉r,n − 〈ovqzq〉r,n) = 0}
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Therefore, for all u1, u2 ∈ (Σn
r )∗ such that u1α, u2α ∈ LA(qz → q), for all i ∈ Ip,

ai.〈ou1α〉r,n = ai.(r〈ou1〉r,n + 〈oα〉r,n)

= ai.〈ovqzq〉r,n

ai.〈ou2α〉r,n = ai.(r〈ou2〉r,n + 〈oα〉r,n)

= ai.〈ovqzq〉r,n.

Therefore, ∀i ∈ Ip, ai.〈ou1〉r,n = ai.〈ou2〉r,n. Considering Theorem 171, we
conclude that δ̂(qz, u1) = δ̂(qz, u2), i.e. all transitions incoming in q from states
in S and labeled by α originate from the same state, i.e. there is at most one
incoming transition originating from a state in S labeled by α.

Theorem 177. Let S be a zero-SCC and let qz be the zero-state of S and let
d = dim(S).

Each state of S has rd incoming transitions from states in S.

Proof. See Section 7.8.1.

7.2.3 Zero-SCCs and Faces of the Characteristic Cone

In this section, we emphasize the relationship between zero-SCCs of the NDD A

representing P ∩ Nn and the faces of the characteristic cone C of P . Recall first
that one can associate a vector space V to each zero-SCC such that V is equal
to the linear hull of the vectors whose encodings (without the o sign-symbol)
label loops rooted at the zero-state of the zero-SCC. We present two kinds of
associations between faces and zero-SCCs. First we show that for any zero-SCC
S, the vector space of S is the linear hull of one and only one face of C. Second,
we show that for each face F of C, there is one and only one zero-SCC S such
that there is an encoding of an element of F labeling a path from the initial state
to the zero-state of S and the linear hull of F is included in the vector space of S.
Then, based on the properties of the facets, we give some technical results which
form the justifications of the algorithm given in the next section detailing how one
can generate efficiently a formula whose set of solutions is C.

Recall that C is the characteristic cone of P = {x ∈ Qn | Ax ≤ b}. There-
fore, by definition, C = {x ∈ Qn | Ax ≤ 0}. Also, since P ⊆ {x ∈ Qn | x ≥

0}, we have C ⊆ {x ∈ Qn | x ≥ 0}. Finally, we have defined the matrix C such
that C = {x ∈ Qn | Cx ≤ 0}, and no inequations in C+x ≤ 0 is redundant in
Cx ≤ 0.

Since C ⊆ {x ∈ Qn | x ≥ 0}, we have the following lemma.
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Lemma 178. For each face F of C, linQ(F ) = linQ

(
linQ(F ) ∩ Nn

)
.

Proof. See Section 7.8.2.
Let qz be a zero-state and let F = {x ∈ C | A′x = 0}, where A′x ≤ b′ are

the inequations of Ax ≤ b pending in qz. The set F is by definition a face of C.
Thanks to Theorem 156 and by definition of the pending inequations, the vectors
whose encodings label paths from qI to qz are in F . In addition, by definition,
the linear hull over Q of F is the set of solution to the system of linear equations
corresponding to the pending equations. This gives the possibility of expressing
Lemma 160 and Theorem 162 in terms of the face F . The following lemma
incorporate those considerations.

Lemma 179. Let qz be a zero-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip if
and only if ai.x ≤ bi is pending in qz. Let F = {x ∈ C |

∧

i∈Ip
ai.x = 0}.

• For all u ∈ LA(qI → qz), 〈u〉r,n ∈ F ,

• There exists a word u ∈ (Σn
r )∗ with u ∈ LA(qI → qz) such that 〈u〉r,n ∈ F

and for all proper faces F ′ of F , 〈u〉r,n 6∈ F ′,

• LA(qz → qz) = {v ∈ (Σn
r )∗ | 〈ov〉r,n ∈ linQ(F )},

• linQ({〈ov〉r,n | v ∈ LA(qz → qz)}) = linQ(F )

Proof. See Section 7.8.3.
Thanks to the previous lemma, we deduce that the following theorem, and this

constitutes the first association between zero-SCCs and faces of C.

Theorem 180. For each zero-SCC S, one can associate one and only one face FS

of C such that

linQ(FS) = linQ({〈ou〉r,n | u ∈ LA(qz → qz)}),

where qz is the zero-state of S.

Proof. This is a direct consequence of Lemma 179 and of the fact that for all faces
F1, 2 of a cone, linQ(F1) = linQ(F2) iff F1 = F2, as proved in Lemma 30.

Remark 181. Given a zero-SCC S and a representative matrix B of S, if FS is
such that linQ(F ) = linQ({〈ou〉r,n | u ∈ LA(qz → qz)}) where qz is the zero-state
of S, then, by definition of a representative matrix

linQ(FS) = {x ∈ Qn | Bx = 0}.
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We now introduce the second association between faces and zero-SCCs. We
first show in the following lemma how each face can be related to one unique
zero-state. The idea is that a face F of C is the set of solutions of a system of
homogeneous inequations corresponding to the inequations a.x ≤ b defining P .
Among those inequations, one distinguishes the implicit equations a.x ≤ 0 such
that the corresponding equation a.x = 0 is satisfied by all elements in F from
the other inequations. An element of F which does not belong to a proper face
satisfies strictly all inequations which are not implicit equations. By definition
of the encoding scheme, we deduce that suffixing any encoding u of such (inte-
ger) element by o symbols leaves the right-hand sides of the implicit equations
unchanged i.e.

0 = a.〈u〉r,n = a.〈uo〉r,n = a.〈uoo〉r,n = . . .

but the right-hand-sides of the inequations which are not implicit are decreasing,
i.e.

a.〈u〉r,n > a.〈uo〉r,n > a.〈uoo〉r,n > . . .

At some point, a.〈uokw〉r,n ≤ b for all suffixes w, and the inequations are no
longer constraining. So, for sufficiently large k, for all encodings u, v of integer
elements of F not in any proper face of F , the NDD does not differentiate uok

and vok, and so uok and vok label paths from qI to the same state.

Lemma 182. For each face F of the characteristic cone C, there exists one and
only one zero-state, denoted qF , such that the encodings, possibly suffixed by a
sequence of o symbols, of all integer elements in F which do not belong to a
proper face of F label paths from qI to qF .

In addition, the state qF is such that

• LA(qF → qF ) ⊇ {v ∈ (Σn
r )∗ | 〈ov〉r,n ∈ linQ(F )}, and

• linQ({〈ov〉r,n | v ∈ LA(qF → qF )}) ⊇ linQ(F ).

Proof. See Section 7.8.4.

Theorem 183. For each face F of C, there is one and only one zero-SCC SF such
that if qz is the zero-state of SF , the following assertions hold.

• There is at least one encoding of an element of F which labels a path from
qI to qz, and

• linQ(F ) ⊆ linQ({〈ou〉r,n | u ∈ LA(qz → qz)}).
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Proof. Thanks to Lemma 182, there is at least one zero-SCC for which the asser-
tions hold. So, it suffices to show that this zero-SCC is unique, and this is achieved
by showing that the zero-state of each zero-SCC satisfying the assertions is reach-
able from the initial state by a path labeled by v such that 〈v〉r,n is in F and does
not belong to any proper face of F . Once this is proved, the claim is then a direct
consequence of Lemma 182.

Let q′z be the zero-state of a zero-SCC S ′ such that

• there exists an encoding v ∈ (Σn
r )+ ∈ LA(qI → q′z) with 〈v〉r,n ∈ F , and

• linQ(F ) ⊆ linQ({〈ou〉r,n | u ∈ LA(q′z → q′z)}).

Let ou′ be the encoding of an element of F which does not belong to any proper
face of F . By hypothesis, u′ labels a loop rooted at q′z, and therefore we have

vu′ ∈ LA(qI → q′z).

Also, let A′x ≤ 0 be the largest subsystem of inequations of Ax ≤ 0 such that
for all x ∈ Qn, x ∈ F ⇒ A′x = 0. By definition, we have

F = {x ∈ Qn | Ax ≤ 0 ∧ A′x = 0},

and for each proper face F ′ of F , there is at least one inequation a.x ≤ 0 from the
system Ax ≤ 0 but not in A′x ≤ 0 such that for all x ∈ Qn,

x ∈ F ′ ⇒ a.x = 0.

Since 〈v〉r,n, and 〈ou′〉r,n are in F , and since 〈vu′〉r,n = r|u
′|〈v〉r,n + 〈ou′〉r,n, we

deduce that 〈vu′〉r,n is in F .
In addition, by hypothesis, for each inequation a.x ≤ 0 in Ax ≤ 0 but not in

A′x ≤ 0, we have a.〈v〉r,n ≤ 0 and a.〈ou′〉r,n < 0. Therefore, by definition of
the encoding scheme, we have

a.〈vu′〉r,n < 0

and thus 〈vu′〉r,n does not belong to any proper face of F .

Remark 184. For any zero-SCC S and face F of C, if B is a representative
matrix of S and if linQ(F ) ⊆ linQ({〈ou〉r,n | u ∈ LA(qz → qz)}) where qz is the
zero-state of S, then, by definition of a representative matrix

linQ(F ) ⊆ {x ∈ Qn | Bx = 0}.
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Combining the fact that each zero-SCC S is associated to one and only one
face FS of C as detailed in Theorem 180, and conversely, that each face F of C
is associated to one and only one zero-SCC SF as detailed in Theorem 183, we
deduce the following theorems regarding the linear hulls of C and of the facets
of C. The motivation behind those theorems is to be able to recover from the
representative matrices of the zero-SCCs of dimension dim(C) and dim(C)− 1 a
set of inequations C′x ≤ 0 such that the system C′x ≤ 0 is equivalent to Cx ≤ 0.
The algorithm is given in the next section.

Theorem 185. For each zero-SCC S, the dimension of S is at most dim(C).

Proof. Direct consequence of the definition of the definition of a zero-SCC and
of Theorem 180.

Theorem 186. There is one and only one zero-SCC S of dimension dim(C) and
if B is a representative matrix of S, we have

{x ∈ Qn | Bx = 0} = linQ(C).

Proof. From Theorem 183, there is one and only one zero-SCC S such that if B

is a representative matrix of S and qz is its zero-state, we have

• linQ(C) ⊆ {x ∈ Qn | Bx = 0}, and

• there is an encoding v ∈ (Σn
r )+ such that 〈v〉r,n ∈ C and v ∈ LA(qI → qz).

In addition, thanks to Theorem 180, there is a face F associated to S such that

linQ(F ) = {x ∈ Qn | Bx = 0}. (7.29)

Since F is a face of C, by definition we have linQ(F ) ⊆ linQ(C), and we deduce
that linQ(F ) = linQ(C), i.e.

linQ(C) = {x ∈ Qn | Bx = 0}. (7.30)

Let S ′ be a zero-SCC with a representative matrix B′ such that linQ(C) =

{x ∈ Qn | B′x = 0}. Thanks to Theorem 156, for all encodings u labeling paths
from qI to the zero-state of S ′, 〈u〉r,n ∈ C, and therefore, thanks to Theorem 183,
S ′ = S.

Theorem 187. Let c.x ≤ 0 be an inequation in C+x ≤ 0 and let F be the facet
of C such that F = {x ∈ C | c.x = 0}. At least one on the following assertions
holds.
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• There exists a zero-SCC S whose dimension is dim(C) − 1 and such that
for any representative matrix B of S, {x ∈ Qn | Bx = 0} = linQ(F ).

• For all x ∈ Qn, C=x = 0 ∧ x ≥ 0 ⇒ c.x ≤ 0.

Proof. Thanks to Theorem 180, there exists one zero-SCC S such that if qz is its
zero-state and B is a representative matrix of S, we have

• linQ(F ) ⊆ {x ∈ Qn | Bx = 0}, and

• there is an encoding v ∈ LA(qI → qz) such that 〈v〉r,n ∈ F .

If linQ(F ) = {x ∈ Qn | Bx = 0}, then the first assertion hold.
Suppose on the other hand that linQ(F ) ⊂ {x ∈ Qn | Bx = 0}. Since

dim(F ) = dim(C) − 1, by definition of the dimension of a zero-SCC and thanks
to Theorem 185, the dimension of S is dim(C). Thanks to Theorem 186,

linQ(C) = {x ∈ Qn | Bx = 0}. (7.31)

We prove by contradiction that for all x ∈ Qn,

C=x = 0 ∧ x ≥ 0 ⇒ c.x ≤ 0.

Suppose that the assertion does not hold. There would exist y ∈ Qn with y ≥

0 and C=y = 0 but c.y > 0. Since each component of y is a rational ni

di
,

one could multiply y by the lowest common multiple of d1, . . . , dn and obtain a
positive integer vector, and therefore, there would exist a word u ∈ (Σn

r )∗ such
that C=〈ou〉r,n = 0 and c.〈ou〉r,n > 0. Thanks to Lemma 28, we have

linQ(C) = {x ∈ Qn | C=x = 0}.

So, given (7.31) and by definition of a representative matrix, u would label a loop
rooted at qz. By hypothesis, 〈v〉r,n ∈ F , and we have c.〈v〉r,n = 0. Also, v labels
a path from qI to qz, and thus, for all k ∈ N, vuk would label a path from qI to
qz. Let w ∈ (Σn

r )∗ be a word labeling a path from qz to an accepting state of A.
By definition, vukw would belong to L(A) for all k ∈ N. By definition of the
encoding scheme, 〈vu〉r,n = r|u|〈v〉r,n + 〈ou〉r,n, and we would have

c.〈vu〉r,n > c.〈v〉r,n.

Thanks to Lemma 84, we deduce that for all b, there would exist kb such that

c.〈vukbw〉r,n > b.
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However, this leads to a contradiction. Indeed, from Theorem 21, P = Q + C

for some polytope Q, and therefore, ∃bmax ∈ Q such that for all x ∈ P , we have
c.x ≤ bmax.

Theorem 188. Let S be a zero-SCC whose dimension is dim(C)− 1 and let B be
a representative matrix of S.

There exists one and only one facet F such that

{x ∈ Qn | Bx = 0} = linQ(F ).

Proof. Thanks to Theorem 180, there exists one and only one face F of C such
that

{x ∈ Qn | Bx = 0} = linQ(F ).

So, by definition dim(F ) = dim(C) − 1 and, thanks to Theorem 27, F is a
facet.

Theorem 189. Let S be a zero-SCC with dim(S) = dim(C)− 1, and let qz be its
zero-state and B be a representative matrix of S.

There is one and only one inequation c.x ≤ 0 ∈ C+x ≤ 0 such that

1. Each row of B is a linear combination of the rows of C= and of ct,

2. For all rows at of B either x ∈ C ⇒ a.x ≤ 0 or x ∈ C ⇒ a.x ≥ 0.

3. There is a row at of B such that at is not a linear combination of the rows
of C=,

4. For all rows at of B such that at is not a linear combination of the rows of
C=, either for all x ∈ Qn, C=x = 0 ∧ a.x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0,
or for all x ∈ Qn, C=x = 0 ∧ (−a).x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0.

Proof. Let ci.x ≤ 0, i ∈ {1, . . . , t}, be the inequations in C=x ≤ 0.
Since dim(S) = dim(C) − 1, from Theorem 188, there is one and only one

facet F such that
linQ(F ) = {x ∈ Qn | Bx = 0}. (7.32)

In addition, from Theorem 26 and from Lemma 29, there is an inequation c.x ≤ 0

in C+x ≤ 0 such that

F = {x ∈ C | c.x = 0} (7.33)
linQ(F ) = {x ∈ Qn | C=x = 0 ∧ c.x = 0} (7.34)
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1. From (7.32) and (7.34), we deduce that for all x ∈ Qn,

Bx = 0 ⇔ C=x = 0 ∧ c.x = 0. (7.35)

Therefore, each row of B is a linear combination of the rows of C= and of
ct.

2. Let at be a row of B. As stated above, at is a linear combination of
{c1

t, . . . , ct
t, ct}, i.e. a =

∑

i∈{1,...,t} kici + kc, with k1, . . . , kt, k ∈ Q.
Therefore, for all x ∈ C, by definition of C=, C=x = 0, i.e. ci.x = 0 for
i ∈ {1, . . . , t}, and a.x = k · c.x. Since x ∈ C, c.x ≤ 0, and therefore, we
conclude that either x ∈ C ⇒ a.x ≤ 0 or x ∈ C ⇒ a.x ≥ 0.

3. There is a row at of B such that at is not a linear combination of the rows
of C=. Otherwise, ct would be linear combination of the rows of C= since
Bx = 0 ⇒ c.x = 0, and c.x = 0 would be an implicit equation in C,
i.e. c.x ≤ 0 would be in C=x ≤ 0, violating the fact that c.x ≤ 0 is in
C+x ≤ 0.

4. For all rows at of B such that at is not a linear combination of the rows of
C=, a =

∑

i∈{1,...,t} kici + kc, with k1, . . . , km, k ∈ Q and k 6= 0. If k > 0,
for all x ∈ Qn, C=x = 0 ∧ a.x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0, and if k < 0,
for all x ∈ Qn, C=x = 0 ∧ (−a).x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0.

7.2.4 Algorithm

In this section, we present an algorithm that, given reduced minimal NDD A

representing the integer elements of a polyhedron P = {x ∈ Qn | Ax ≤ b}

such that P ⊆ {x ∈ Qn | x ≥ 0}, synthesizes a system of linear inequations
corresponding to the characteristic coneC of P . The algorithm uses the properties
given in Section 7.2.3 regarding the zero-SCCs of dimension dmax and dmax −

1 where dmax is the dimension of the characteristic cone, and its overall time
complexity is polynomial with respect to the size of the input NDD.

Recall that if the characteristic cone is described via the system of linear in-
equations Cx ≤ 0 containing no redundant inequation, the system can be par-
titioned into a system of implicit equations C=x ≤ 0 and the other inequations
C+x ≤ 0, and there is a bijection between the facets of C and the inequations in
C+x ≤ 0 such that F is a facet of C if and only if F = {x ∈ C | a.x ≤ 0} for
some inequation a.x ≤ 0 in C+x ≤ 0. The idea of the algorithm is to compute
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a system of linear inequations equivalent to C=x = 0 and for each facet F , an
inequation a′.x ≤ 0 such that F = {x ∈ Qn | C=x = 0 ∧ a′.x ≤ 0}.

The algorithm works as follows. It first extracts the zero-SCCs. Thanks to
Theorem 185, the dimensions of the zero-SCCs are at most dim(C), and thanks to
Theorem 186, there is exactly one zero-SCC, Smax, whose dimension is dim(C).
Also, if Bmax is the computed representative matrix for Smax, we have

{x ∈ Qn | Bmaxx = 0} = linQ(C). (7.36)

One initializes the matrix C′ to





−In

Bmax

−Bmax



. Recall that In is the n × n

identity matrix. So, at this point, for all x ∈ Qn, we have

C′x ≤ 0 iff x ∈ linQ(C) ∧ x ≥ 0.

Recall that for all facets F of C, F = {x ∈ C | c.x = 0} for some inequation
c.x ≤ 0 in C+x ≤ 0. Thanks to Theorem 187, for each inequation c.x ≤ 0 in
C+x ≤ 0, either

• for all x ∈ Qn, C=x = 0 ∧ x ≥ 0 ⇒ c.x ≤ 0, or

• there exists a zero-SCC S whose dimension is dim(C)−1 and such that for
any representative matrix B of S, {x ∈ Qn | Bx = 0} = linQ(F ).

Clearly, if the first assertion holds, then at this stage of the algorithm, we have
C′x ≤ 0 ⇒ c.x ≤ 0 for all x ∈ Qn.

In order to cover all inequations in C+x ≤ 0, one has to consider all zero-
SCCs of dimension dim(C) − 1, and this is done via the recursive procedure
EXPLORE-BW which is basically a backward search, starting at the zero-state of
Smax such that each state is visited at most once. Its arguments are a state q and
a word w such that w labels a path from q to the zero-state of Smax. It first marks
the state q as visited. If q is a zero-state, one checks whether the dimension of
the corresponding zero-SCC S is dmax − 1. If this is the case, then thanks to
Theorem 189, there is one and only one inequation c.x ≤ 0 in C+x ≤ 0 such that
if B is a representative matrix of the zero-SCC having q as zero-state then for all
x ∈ Qn, Bx = 0 ⇔ C=x = 0 ∧ c.x = 0. Also, it is possible to extract a row at

from B such that either for all x ∈ Qn,

C=x = 0 ∧ a.x ≤ 0 iff C=x = 0 ∧ c.x ≤ 0,
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or for all x ∈ Qn,

C=x = 0 ∧ −a.x ≤ 0 iff C=x = 0 ∧ c.x ≤ 0.

One checks which assertion holds by testing the sign of a.〈ow〉r,n. Indeed, thanks
to Lemma 159 and by definition of a, for all encodings v labeling a path from qI
to q, we have a.〈v〉r,n = 0, C=〈vw〉r,n = 0 and a.〈vw〉r,n 6= 0 (since at is not a
linear combination of the rows of C=). Therefore, by definition of the encoding
scheme, we have

a.〈ow〉r,n 6= 0.

Once a is identified, one adds at (or −at depending on which assertion holds) as
a new row of the matrix C′.

The procedure terminates with a recursive call, propagating the current path
backward. When all states have been explored, the function returns the system of
linear inequations C′x ≤ 0.

By construction, for all x ∈ Qn, we have

Cx ≤ 0 ⇒ C′x ≤ 0.

Also, for all x ∈ Qn, we have

C′x ≤ 0 ⇒ C=x ≤ 0,

and thanks to Theorems 187 and 188, for all inequations c.x ≤ 0 in C+x ≤ 0, for
all x ∈ Qn,

C′x ≤ 0 ⇒ cx ≤ 0.

So, we conclude that for all x ∈ Qn,

C′x ≤ 0 ⇔ Cx ≤ 0.

A formal description of the above function, called CHARCONEFORMULA, is
given in Fig.7.4. Based on the above description, we have the following theorem.

Theorem 190. Let A = (Q,Σn
r , δ, qI, QF) be the reduced minimal NDD repre-

senting the positive integer elements of a polyhedron P ⊆ Qn.
Let C′x ≤ 0 be the system of linear inequations returned by the function

CHARCONEFORMULA, described in Fig.7.4.
Then C′x ≤ 0 is such that

char-cone(P ) = {x ∈ Qn | C′x ≤ 0}.

The time complexity of CHARCONEFORMULA is O(|δ| · n2 + k · |Q| · n) where k
is the number of zero-SCCs whose dimension is dim(char-cone(P )) − 1.
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Proof. The correctness has already been partly justified in the informal descrip-
tion, and we detail below the complexity of the algorithm.

The computation of the zero-SCC can be achieved in time linear with respect
to |A|. Indeed, one simply has to check the states having a loop labeled by o and
then compute the maximal strongly connected components to which those states
belong. The computation of these SCCs can be done in linear time with respect
of |A| with standard algorithms [Tar72].

Thanks to Theorem 177, the dimension of a zero-SCC is provided by the num-
ber of incoming transitions in any state of the same SCC rooted at states in the
same SCC, and therefore, it can be computed in constant time.

Thanks to Theorem 175, there exists an algorithm GETREPRESENTATIVE-
MATRIX which, given the reduced minimal NDD A and the zero-state of a zero-
SCC S(QS , δS) of A, computes a representative matrix of S and whose time com-
plexity is O(|δS| · n

2) where |δS| denotes the number of transitions in S.
Since the states visited during the backward search are marked as visited when

first met and since one extends the search only for states not yet visited, each state
q appears at most once as argument of EXPLORE-BW. Also, one easily proves by
recursion that if the state q and the word w are arguments of EXPLORE-BW, then
w labels a path from q to the zero-state of the zero-SCC Smax.

Finally, thanks to Theorem 163, Smax is reachable from all zero-SCCs S, and
in particular from all zero-SCCs of dimension dmax − 1. So, the zero-states of all
zero-SCCs of dimension dmax − 1 are handled in the recursive called EXPLORE-
BW. If they are m zero-SCC of dimension dmax − 1, the overall cost of the back-
ward search is O(|δ| +m · |Q| · n).

Adding the costs involved at each step of the computation, the overall time
complexity of the function CHARCONEFORMULA is O(|δ| ·n2 +m · |Q| ·n).

Example 191. In the NDD Ax displayed in Fig.7.2, the zero-SCC with the max-
imal dimension is the one associated to the zero-state q3. Its dimension is 2 and
the associated vector space is Q2. A representative matrix is

[
0 0

]
. There

are two zero-SCCs with dimension 1, those associated to the zero-states q2 and
q5. The associated vector spaces are {(x, y) ∈ Q2 | x − y = 0} and {(x, y) ∈

Q2 | x − 2 · y = 0}. A representative matrice for the zero-SCC associated to
q2 is

[
1 −1

]
and a representative matrix for the zero-SCC associated to q5 is

[
1 −2

]
. Given the labels of the paths from q2 and q5 to q3, the characteristic

cone is {(x, y) ∈ Q2 | x ≥ 0 ∧ y ≥ 0 ∧ −x + y ≤ 0 ∧ x− 2 · y ≤ 0}.
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function CHARCONEFORMULA(NDD A = (Q, Σn
r , δ, qI, QF)) : system of linear inequa-

tions
1: var SSCC : set of zero-SCC;

2: Qvisited : set of state;

3: dmax : integer;

4: B,C′ : array of rational;

5: procedure EXPLORE-BW(state q, word w)

6: var q′ : state;

7: α : symbol;

8: S : zero-SCC;

9: a : vector of rational;

10: begin

11: Qvisited := Qvisited ∪ {q};

12: if q is a zero-state then

13: begin

14: letS ∈ SSCC such that q is zero-state ofS;

15: if GETDIMENSIONSCC(S) = dmax − 1 then

16: begin

17: B := GETREPRESENTATIVEMATRIX(S);

18: let a such thatat is a row of B

and a.〈ow〉r,n 6= 0;

19: if a.〈ow〉r,n > 0 thena :=−a;

20: C′ :=
[

C′

at

]

;

21: end

22: end

23: for each α ∈ Σn
r , q′ ∈ Q \ Qvisited such that δ(q′, α) = q do

24: EXPLORE-BW(q′, αw);

25: end

(. . . )

Figure 7.4: Function CHARCONEFORMULA
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(. . . )

26: begin

27: SSCC := GETZEROSCCS(A);

28: dmax := maxS∈SSCC
(GETDIMENSIONSCC (S);

29: letSmax such that GETDIMENSIONSCC(Smax) = dmax;

30: B := GETREPRESENTATIVEMATRIX(Smax);

31: C′ :=





−In

B

−B



;

32: EXPLORE-BW(GETZEROSTATE(Smax), ε);

33: returnC′x ≤ 0;

34: end

Figure 7.5: Function CHARCONEFORMULA (continued)

7.3 Synthesis of Formula for char-cone(P )

In this section, we generalize the results presented in Section 7.2 as follows. In
Sections 7.2, all integer elements of the polyhedra had to be in Nn i.e. signr(z) =

o for all z ∈ P ∩Zn. In this section, we still impose that all integer elements have
the same sign, but this sign is arbitrary, i.e. signr(z1) = αsign = signr(z2) for all
z1, z2 ∈ P ∩ Zn and some sign symbol αsign.

Basically, all the results of Section 7.2 are modified in the following way. All
encodings labeling paths in the NDD will have the same sign symbol αsign. The
concept of zero-loop is generalized to the concept of sign-loop, that is, simple
loop labeled by αsign. Also, the role played by the faces of char-cone(P ) are now
played by the faces of the polyhedron 〈αsign〉r,n + char-cone(P ).

Throughout this section, A = (Σn
r , Q, δ, qI, QF) denotes the reduced minimal

NDD accepting the encoding in base r of the elements in the set P ∩ Zn, where
P = {x ∈ Qn | Ax ≤ b} for some integer matrix A ∈ Zm×n and integer vector
b ∈ Zm. We impose the additional condition that P ∩Zn ⊆ {x ∈ Zn | signr(x) =

αsign}.
The inequations in Ax ≤ b are a1.x ≤ b1, . . . , am.x ≤ bm. Also, the

characteristic cone of P is denoted by C, i.e.

C = char-cone(P ) = {x ∈ Qn | Ax ≤ 0}.
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Finally, C is an integer matrix such that C = {x ∈ Qn | Cx ≤ 0} and such that
no inequation in C+x ≤ 0 is redundant in Cx ≤ 0. The system of inequations
Cx ≤ 0 can be generated by removing successively the redundant inequations in
Ax ≤ 0.

We have the following lemma.

Lemma 192. For all non-empty words u labeling a path rooted at qI, we have

• signr(〈u〉r,n) = αsign,

• 〈αsignu〉r,n = 〈u〉r,n, and,

• δ̂(qI, u) = δ̂(qI, αsignu).

Proof. Similar to the proof of Lemma 151.
We highlight an important property shared by the elements in C. The proof

also provides some valuable insights on how one handles decomposition of en-
codings having αsign as sign symbol.

Lemma 193. For all integer elements x in 〈αsign〉r,n + C, we have signr(x) =

αsign.

Proof. By definition, signr(x) = αsign if and only if, for all i ∈ {1, . . . n},

x[i] < 0 if αsign[i] = r − 1, and

x[i] ≥ 0 if αsign[i] = 0.

In addition, by hypothesis, P = {x ∈ Qn | Ax ≤ b} and P ∩ Zn ⊆ {x ∈

Zn | signr(x) = αsign}.
Let i ∈ {1, . . . n}.

• Suppose αsign[i] = r − 1. Then by hypothesis, we have

P = {x ∈ Qn | Ax ≤ b ∧ x[i] < 0}.

Therefore, by definition, we have

C = {x ∈ Qn | Ax ≤ 0 ∧ x[i] ≤ 0},

and thus

〈αsign〉r,n + C = {x ∈ Qn | A(x − 〈αsign〉r,n) ≤ 0 ∧ x[i] ≤ −1}.

We deduce that for all x ∈ 〈αsign〉r,n + (C ∩ Zn), we have x[i] < 0.
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• Suppose αsign[i] = 0. Then by hypothesis, we have

P = {x ∈ Qn | Ax ≤ b ∧ x[i] ≥ 0}.

Therefore, by definition, we have

C = {x ∈ Qn | Ax ≤ 0 ∧ x[i] ≥ 0},

and thus

〈αsign〉r,n + C = {x ∈ Qn | A(x − 〈αsign〉r,n) ≤ 0 ∧ x[i] ≥ 0}.

We deduce that for all x ∈ (C ∩ Zn) + 〈αsign〉r,n, we have x[i] ≥ 0.

So, we conclude that for all x ∈ (C ∩ Zn) + 〈αsign〉r,n, signr(x) = αsign.

From the above lemma, we deduce that the characteristic cone C is pointed.

Lemma 194. The cone C is pointed.

Proof. Let x ∈ C ∩ (−C). By definition, x ∈ Qn and there exists a vector
y ∈ Zn such that y = k · x for some positive integer k. Since C and (−C) are
cones, y ∈ C.

Since y ∈ C ∩ Zn, thanks to Lemma 193, for all i ∈ {1, . . . , n}, we have

y[i] ≤ 0 if 〈αsign〉r,n[i] = r − 1 (7.37)
y[i] ≥ 0 if 〈αsign〉r,n[i] = 0 (7.38)

Similarly, since y ∈ (−C), we have −y ∈ C and

−y[i] ≤ 0 if 〈αsign〉r,n[i] = r − 1 (7.39)
−y[i] ≥ 0 if 〈αsign〉r,n[i] = 0 (7.40)

We deduce that for all i ∈ {1, . . . , n}, y[i] = 0. We conclude that C ∩ (−C) =

{0}, i.e. C is pointed.

Example 195. We give in Fig.7.6 the reduced minimal NDD Asign representing
the set Ssign, with

Ssign = {(x, y) ∈ Z2 | x− y ≤ 1 ∧ x− 2y ≥ 2 ∧ x < 0 ∧ y < 0}. (7.41)

We will use this example to illustrate some definitions and theorems throughout
this chapter.
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Figure 7.6: minimal reduced NDD Asign representing Ssign

Since the sign symbol of elements in 〈αsign〉r,n + C ∩ Zn and in P ∩ Zn is
αsign, and given the role played by the elements in those sets, the decomposition
〈ouv〉r,n = r|v|〈ou〉r,n + 〈ov〉r,n, which appeared in many technical proofs of Sec-
tion 7.2, will be substituted in this section by the decomposition 〈αsignuv〉r,n =

r|v|〈αsignu〉r,n − r|v|〈αsign〉r,n + 〈αsignv〉r,n. In order to assess the usefulness of
this decomposition, if a.x ≤ b is an inequation satisfied by all elements in the
polyhedron P , then for all elements in C, a.x ≤ 0, and therefore, for all elements
〈αsignu〉r,n in 〈αsign〉r,n +C ∩ Zn, a.(〈αsignu〉r,n − 〈αsign〉r,n) ≤ 0. So, based on
the decomposition presented above, we have a.〈αsignuv〉r,n = a.〈αsignv〉r,n. This
simple example already introduces the fact that, in some important cases, we will
be able to deal only with the suffices of the encodings labeling paths rooted at qI,
dropping the prefix (except the sign symbol), exactly as we did in Section 7.2.

7.3.1 Sign-states

Any simple loop in A labeled by a sequence of αsign must be of size 1. We call
such a loop a sign-loop, and the state at which the loop is rooted a sign-state.
The concepts of sign-loop and sign-state generalize the concept of zero-loop and
zero-state introduced in Section 7.2.1.

We show that the properties of zero-states translate easily to similar properties
of sign-states. Generally, it suffices to replace the symbol o by αsign and the cone
C by the polyhedron 〈αsign〉r,n + C. The reason of this is rooted in the encoding
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scheme and in the fact that αsign is the sign symbol of all encodings labeling paths
rooted at qI.

Lemma 196. Any simple loop in A labeled by a sequence of αsign is of size 1.

Proof. Similar to proof of Lemma 153.

Example 197. In the NDD Asign of Fig.7.6, the sign symbol αsign is (1, 1) and
there are four sign-states, q1, q4, q5 and q6.

We now show a relationship between the integer elements in 〈αsign〉r,n + C

and those in P , generalizing Lemma 155.

Lemma 198. For all encodings u ∈ (Σn
r )∗, 〈u〉r,n is in the polyhedron 〈αsign〉r,n+

C if and only if for all elements 〈αsignv〉r,n of P , 〈uv〉r,n is also in P .

Proof. Suppose that 〈u〉r,n ∈ 〈αsign〉r,n +C. Let v ∈ (Σn
r )∗ with 〈αsignv〉r,n ∈ P .

We have A(〈u〉r,n − 〈αsign〉r,n) ≤ 0 and A〈αsignv〉r,n ≤ b. By definition of the
encoding scheme, we have

A〈uv〉r,n = A(r|v|〈u〉r,n + 〈ov〉r,n)

≤ A(r|v|〈αsign〉r,n + 〈ov〉r,n)

≤ A〈αsignv〉r,n

≤ b

Therefore, by definition, 〈uv〉r,n ∈ P .
Suppose that 〈u〉r,n 6∈ 〈αsign〉r,n+C. We have A(〈u〉r,n−〈αsign〉r,n) 6≤ 0. So,

there exists an inequation a.x ≤ b in Ax ≤ b such that a.(〈u〉r,n−〈αsign〉r,n) > 0.
Therefore, by definition of the encoding scheme,

a.〈uαsign〉r,n = ra.〈u〉r,n + a.〈oαsign〉r,n

= ra.〈u〉r,n + a.((1 − r)〈αsign〉r,n)

= a.〈u〉r,n + (r − 1)a.(〈u〉r,n − 〈αsign〉r,n)

> a.〈u〉r,n

Thanks to Lemma 85, there exists kmin such that for all words w ∈ (Σn
r )∗,

a.〈uαk
signw〉r,n > b for all k ≥ kmin, and so, there exists a word v ∈ (Σn

r )∗

such that 〈αsignv〉r,n ∈ P and 〈uv〉r,n 6∈ P .
We now describe the link between paths in A and the characteristic cone C,

and this generalizes Theorem 156.
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Theorem 199. Let QC be the set of states q such that there is a path from q to a
sign-state labeled by a sequence of αsign symbols.

The integer elements of 〈αsign〉r,n + C are exactly the integer vectors whose
encodings label paths from qI to a state in QC .

Proof. The proof is exactly the same as the proof of Theorem 156. It suffices to
substitute αsign for o, and use Lemmas 198 and 196 instead of Lemmas 155 and
153 respectively.

Based on the previous theorem, given A, we can generate in time proportional
to |A| a deterministic NDD AC accepting the encodings of the integer elements
of 〈αsign〉r,n + C by setting all states in QC as the only accepting states, i.e.
AC = (Q,Σn

r , δ, qI, QC). This can be done by performing a backward search,
starting from all sign-states, and following only transitions labeled by αsign. The
states reached are exactly those in QC .

We now address the characterization of the languagesLA(qs → qs) andLA(qs)

for any sign-state qs. Again, this is a simple generalization of the corresponding
results established for zero-states. We first adapt the definition of a pending in-
equation.

Definition 200. An inequation a.x ≤ b is pending in a sign-state qs if for all
words u ∈ LA(qI → qs), a.(〈u〉r,n − 〈αsign〉r,n) = 0.

As for the zero-state, we first prove a lemma regarding words labeling loops
rooted at sign-state.

Lemma 201. For any sign-state qs in A, if qs is reachable from qI by a path
labeled by αsignu, then there is a loop rooted at qs labeled by u.

Proof. The proof is similar to the proof of Lemma 159.

Lemma 202. Let qs be a sign-state. There is a word us ∈ LA(qI → qs) such that
for all inequations a.x ≤ b from Ax ≤ b pending in qs, a.(〈us〉r,n−〈αsign〉r,n) =

0 and for all inequations a.x ≤ b of Ax ≤ b not pending in qs, a.〈us〉r,n <

min(b,−‖ a+‖).

Proof. The proof is similar to the proof of Lemma 160. However, given the small
particularities, we give a full proof below.

Recall that ai.x ≤ bi, i ∈ {1, . . . , m} are the inequations of Ax ≤ b. We
partition the inequations ai.x ≤ bi, i ∈ {1, . . . , m} into those pending in qs and
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those not pending in qs. Let Ip ⊆ {1, . . . , m} such that i ∈ Ip if and only if
ai.x ≤ bi is pending in qs.

Since the sign symbol of all encodings labeling paths rooted at qI is αsign and
by definition of Ip, for i ∈ {1, . . . , m} \ Ip there is a word αsignui labeling a path
from qI to qs such that

ai.(〈αsignui〉r,n − 〈αsign〉r,n) 6= 0.

From Theorem 199, 〈αsignui〉r,n belongs to 〈αsign〉r,n + C and thus we have

A(〈αsignui〉r,n − 〈αsign〉r,n) ≤ 0.

In particular, we have ai.(〈αsignui〉r,n−〈αsign〉r,n) < 0. Also, since αsignui labels
a path from qI to qs, thanks to Lemma 201, we deduce that

ui ∈ LA(qs → qs).

Let u be u1u2 . . . um such that for i ∈ {1, . . . , m}, αsignui labels a path from
qI to qs, and ai.(〈αsignui〉r,n − 〈αsign〉r,n) < 0 if i 6∈ Ip. By construction, αsignu

labels a path from qI to qs, and therefore, by definition, for all i ∈ Ip, we have

ai.(〈αsignu〉r,n − 〈αsign〉r,n) = 0.

Also, for all i ∈ {1, . . . , m} \ Ip, we have

ai.(〈αsignu〉r,n − 〈αsign〉r,n) < 0.

Indeed, by definition, ai.(〈αsignui〉r,n−〈αsign〉r,n) < 0, and for all j ∈ {1, . . . , m},
ai.(〈αsignuj〉r,n − 〈αsign〉r,n) ≤ 0. So, according to Lemma 81, we have

ai.〈αsignu〉r,n = ai.(r
|u2...um|〈αsignu1〉r,n + 〈ou2 . . . um〉r,n)

≤ ai.(r
|u2...um|〈αsign〉r,n + 〈ou2 . . . um〉r,n)

≤ ai.〈αsignu2 . . . um〉r,n

Proceeding similarly to remove u2, . . . , ui−1, we find

ai.〈αsignu〉r,n ≤ ai.〈αsignui . . . um〉r,n.

Then, since ai.〈αsignui〉r,n < ai.〈αsign〉r,n, we have

ai.〈αsignui . . . um〉r,n = ai.(r
|ui+1...um|〈αsignui〉r,n + 〈oui+1 . . . um〉r,n

< ai.(r
|ui+1...um|〈αsign〉r,n + 〈oui+1 . . . um〉r,n

< ai.〈αsignui+1 . . . um〉r,n.
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Again, we can apply similar development to eliminate successively ui+1, . . . ,
um, and we find ai.〈αsignui+1 . . . um〉r,n ≤ ai.〈αsign〉r,n.

So, combining the above results, we have ai.〈αsignu〉r,n < ai.〈αsign〉r,n.
Finally, from Lemma 85, there exists k ∈ N such that for all i ∈ {1, . . . , m} \

Ip, ai.〈αsignu
k〉r,n < min(bi,−‖ ai

+‖) and for all i ∈ Ip, ai.(〈αsignu
k〉r,n −

〈αsign〉r,n) = 0. Since αsignu
k ∈ LA(qI → qz), us = uk satisfies the claim.

Exactly as we did for pending inequations in zero-state, we deduce that the
inequations not pending in a sign-state qs do not constrain the language accepted
from qz. In addition, by definition, for all inequations a.x ≤ b of Ax ≤ b pend-
ing in qs, a.(〈us〉r,n − 〈αsign〉r,n) = 0, and therefore, according to the encoding
scheme, all suffixes w labeling a path from qs to an accepting state have to satisfy
a.〈αsignw〉r,n ≤ b. Thanks to this result, we can specify LA(qs).

Theorem 203. Let qs be a sign-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip
if and only if ai.x ≤ bi is pending in qs.

LA(qs) = {w |
∧

i∈Ip

ai〈αsignw〉r,n ≤ bi}.

Proof. The proof is similar to the proof of Theorem 161.
The next theorem is also a consequence of the fact that only pending inequa-

tions play a role in the language accepted from a sign-state. It shows that the
language of words labeling loops rooted at some sign-state correspond to the set
of encodings (with no sign symbol) of the integer solutions of a system of linear
equations, i.e. the integer elements of a Q-affine space.

Theorem 204. Let qs be a sign-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip
if and only if ai.x ≤ bi is pending in qs.

LA(qs → qs) = {u |
∧

i∈Ip

ai.(〈αsignu〉r,n − 〈αsign〉r,n) = 0}.

Proof. The proof is similar to the proof of Theorem 162.
Finally, the relationships between languages accepted from sign-states are the

same as those existing between zero-states.

Theorem 205. Let q1 and q2 be sign-states. The following assertions are equiva-
lent :

1. There exists a path from q1 to q2.
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2. LA(q1 → q1) ⊆ LA(q2 → q2).

3. LA(q1) ⊆ LA(q2).

Proof. The proof is similar to the proof of Theorem 163.

7.3.2 Sign-SCCs

In this subsection, we characterize the SCCs having a sign-state, called sign-
SCCs. The results presented are generalizations of those presented in Section 7.2.2.
In particular, we show that there is a vector-space associated to each sign-SCC
characterizing the sign-SCC and the concept of representative matrix also applies
to sign-SCC.

Lemma 206. In any maximal SCC of A, there is at most one sign-state.

Proof. Let q1 and q2 be sign-states in a maximal SCC S. From Theorem 205,
LA(q1) = LA(q2) and since A is reduced minimal, q1 = q2.

Definition 207. A sign-SCC is a maximal strongly connected component having
a sign-state.

Definition 208. Let S be a sign-SCC and let qs be the sign-state of S. The dimen-
sion of S, written dim(S), is the dimension of the set {〈αsignu〉r,n | u ∈ LA(qs →

qs)}.

Example 209. In the NDD Asign of Fig.7.2, there are four sign-SCCs. The di-
mension of the sign-SCC associated to q1 (resp. q4, q5, q6) is 0 (resp. 1, 2 and 1).
Note that q2 forms a SCC with no sign-state.

Theorem 210. Let S be a sign-SCC, let qs be the sign-state of S and let d =

dim(S).
There exists an integer matrix B of rank n − d such that for all states q ∈ S

and words vq ∈ LA(qz → q),

• {〈αsignv〉r,n | v ∈ LA(qs → q)}

= {x ∈ Zn | B(x − 〈αsignvq〉r,n) = 0 ∧ signr(x) = αsign},

• affQ({〈αsignv〉r,n | v ∈ LA(qs → q)})

= {x ∈ Qn | B(x − 〈αsignvq〉r,n) = 0}.
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Proof. The proof is similar to the proof of Theorem 172.
Based on the previous theorem, we introduce the notion of representative ma-

trix.

Definition 211. A representative matrix of a sign-SCC S of dimension d is an
integer matrix B of rank n− d such that if qs is the sign-state of S, for all states
q ∈ S and all vqsq ∈ LA(qs → q),

• {〈αsignv〉r,n | v ∈ LA(qs → q)}

= {x ∈ Zn | B(x − 〈αsignvq〉r,n) = 0 ∧ signr(x) = αsign},

• affQ({〈αsignv〉r,n | v ∈ LA(qs → q)})

= {x ∈ Qn | B(x − 〈αsignvq〉r,n) = 0}.

Corollary 212. For each sign-SCC S, there exists a representative matrix.

Proof. Direct consequence of Theorem 210 and of the definition of a representa-
tive matrix.

With minor changes, the procedure GETREPRESENTATIVEMATRIX applies to
sign-SCC and we have the following Theorem.

Theorem 213. Let S be a sign-SCC, let qs be the sign-state of S and let QS ⊆ Q

be the set of states in S.
There exists an algorithm GETREPRESENTATIVEMATRIX which, given the

reduced minimal NDD A and the sign-SCC S, computes a representative matrix
of S and whose time complexity is O(|QS | · |Σ

n
r | · n

2).

We conclude this section by characterizing the incoming transitions in states
of a sign-SCC.

Theorem 214. Let S be a sign-SCC and let qs be the sign-state of S. Let d =

dim(S).
Each state of S has rd incoming transitions from states in S.

Proof. The proof is similar to the proof of Theorem 177.

7.3.3 Sign-SCCs and Faces of 〈αsign〉r,n + C

In this section, we emphasize the relationship between sign-SCCs of the NDD
A representing P ∩ Zn and the faces 〈αsign〉r,n + C where C is the characteristic
cone of P . The technical proofs are similar to those presented in Section 7.2.3, the
required modifications having already been introduced in the preceding section.
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We first present results on the properties of faces of the polyhedron 〈αsign〉r,n+

C. Recall that C = {x ∈ Qn | Cx ≤ 0}, and no inequation in C+x ≤ 0 is
redundant in Cx ≤ 0.

Lemma 215. affQ(〈αsign〉r,n + C) = {x ∈ Qn | C=(x − 〈αsign〉r,n) = 0}.

Proof. Direct consequence of Lemma28.

Lemma 216. Let F be a facet of C, with F = {x ∈ C | c.x = 0} for some
inequation c.x ≤ 0 in C+x ≤ 0.

affQ(〈αsign〉r,n+F ) = {x ∈ Qn | C=(x−〈αsign〉r,n) = 0∧c.(x−〈αsign〉r,n) = 0}.

Proof. Direct consequence of Lemma 29.

Lemma 217. For each face F ofC, affQ(〈αsign〉r,n+F ) = affQ

(
affQ(〈αsign〉r,n+

F ) ∩ {x ∈ Zn | signr(x) = αsign}
)
.

Proof. See Section 7.8.5.

Lemma 218. Let qs be a sign-state and let Ip ⊆ {1, . . . , m} be such that i ∈ Ip if
and only if ai.x ≤ bi is pending in qs. Let F = {x ∈ C |

∧

i∈Ip
ai.x = 0}.

• For all u ∈ LA(qI → qs), 〈u〉r,n ∈ 〈αsign〉r,n + F ,

• There exists a word u ∈ (Σn
r )∗ with u ∈ LA(qI → qs) such that 〈u〉r,n ∈

〈αsign〉r,n + F and for all proper faces F ′ of 〈αsign〉r,n + F , 〈u〉r,n 6∈ F ′,

• LA(qs → qs) = {v ∈ (Σn
r )∗ | 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n + F )},

• affQ({〈αsignv〉r,n | v ∈ LA(qs → qs)}) = affQ(〈αsign〉r,n + F ).

Proof. The proof is similar to the proof of Lemma 179.
Thanks to the previous lemma, we deduce the following theorem, and this

constitutes the first association between zero-SCCs and faces of C.

Theorem 219. For each sign-SCC S, one can associate one and only one face FS

of C such that

affQ(〈αsign〉r,n + FS) = affQ({〈αsignu〉r,n | u ∈ LA(qs → qs)}),

where qs is the sign-state of S.

Proof. This is a direct consequence of Lemma 218 and of the fact that for all faces
F1, 2 of a cone, linQ(F1) = linQ(F2) iff F1 = F2, as proved in Lemma 30.
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Remark 220. Given a sign-SCC S and a representative matrix B of S, if FS is
such that affQ(〈αsign〉r,n + F ) = affQ({〈αsignu〉r,n | u ∈ LA(qs → qs)}) where
qs is the sign-state of S, then, by definition of a representative matrix, we have

• affQ(〈αsign〉r,n + FS) = {x ∈ Qn | B(x − 〈αsign〉r,n) = 0}, and

• linQ(FS) = {x ∈ Qn | Bx = 0}.

Lemma 221. For each face F of the characteristic cone C, there exists one and
only one sign-state, denoted qF , such that the encodings, possibly suffixed by a
sequence of αsign symbols, of all integer elements in 〈αsign〉r,n + F which do not
belong to a proper face of 〈αsign〉r,n + F label paths from qI to qF .

In addition, the state qF is such that

• LA(qF → qF ) ⊇ {v ∈ (Σn
r )∗ | 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n + F )}, and

• affQ({〈αsignv〉r,n | v ∈ LA(qF → qF )}) ⊇ affQ(〈αsign〉r,n + F ).

Proof. See Section 7.8.6.

Theorem 222. For each face F of C, there is one and only one sign-SCC SF such
that if qs is the sign-state of SF , the following assertions hold.

• There is at least one encoding of an element of 〈αsign〉r,n + F which labels
a path from qI to qs, and

• affQ(〈αsign〉r,n + F ) ⊆ linQ({〈αsignu〉r,n | u ∈ LA(qz → qz)}).

Proof. Thanks to Lemma 221, there is at least one sign-SCC for which the asser-
tions hold. So, it suffices to show that this sign-SCC is unique, and this is achieved
by showing that the sign-state of each sign-SCC satisfying the assertions is reach-
able from the initial state by a path labeled by v such that 〈v〉r,n is in 〈αsign〉r,n+F

and does not belong to any proper face of F . Once this is proved, the claim is then
a direct consequence of Lemma 221.

Let q′s be the sign-state of a sign-SCC S ′ such that

• there exists an encoding v ∈ (Σn
r )+ ∈ LA(qI → q′s) with 〈v〉r,n ∈ 〈αsign〉r,n+

F , and

• affQ(〈αsign〉r,n + F ) ⊆ affQ({〈αsignu〉r,n | u ∈ LA(q′s → q′s)}).
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Let αsignu
′ be the encoding of an element of 〈αsign〉r,n +F which does not belong

to any proper face of 〈αsign〉r,n + F . By hypothesis, we have u′ ∈ LA(q′s → q′s),
and therefore vu′ ∈ LA(qI → q′s). Also, let A′x ≤ 0 be the largest subsystem
of inequations of Ax ≤ 0 such that for all x ∈ Qn, x ∈ F ⇒ A′x = 0.
By definition, 〈αsign〉r,n + F = {x ∈ Qn | A(x − 〈αsign〉r,n) ≤ 0 ∧ A′(x −

〈αsign〉r,n) = 0} and for each proper face F ′ of 〈αsign〉r,n + F , there is at least
one inequation a.x ≤ 0 from the system Ax ≤ 0 but not in A′x ≤ 0 such that
for all x ∈ Qn, x ∈ F ′ ⇒ a.(x − 〈αsign〉r,n) = 0. Since 〈v〉r,n, 〈αsignu

′〉r,n ∈

〈αsign〉r,n +F and 〈vu′〉r,n = r|u
′|(〈v〉r,n −〈αsign〉r,n)+ 〈αsignu

′〉r,n, 〈vu′〉r,n is in
〈αsign〉r,n +F . Also, by hypothesis, for each inequation a.x ≤ 0 from the system
Ax ≤ 0 but not in A′x ≤ 0, a.(〈v〉r,n − 〈αsign〉r,n) ≤ 0 and a.(〈αsignu

′〉r,n −

〈αsign〉r,n) < 0, and therefore 〈vu′〉r,n does not belong to any proper face of
〈αsign〉r,n + F .

Remark 223. For any sign-SCC S and face F ofC, if B is a representative matrix
of S and if affQ(〈αsign〉r,n + F ) ⊆ affQ({〈αsignu〉r,n | u ∈ LA(qs → qs)}) where
qs is the sign-state of S, then, by definition of a representative matrix,

affQ(〈αsign〉r,n + F ) ⊆ {x ∈ Qn | B(x − 〈αsign〉r,n) = 0}.

Combining the fact that each sign-SCC S is associated to one and only one
face FS of C as detailed in Theorem 219, and conversely, that each face F of C
is associated to one and only one sign-SCC SF as detailed in Theorem 222, we
deduce the following theorems regarding the linear hulls of C and of the facets
of C. The motivation behind those theorems is to be able to recover from the
representative matrices of the zero-SCCs of dimension dim(C) and dim(C)− 1 a
set of inequations C′x ≤ 0 such that the system C′x ≤ 0 is equivalent to Cx ≤ 0.
The algorithm is given in the next section.

Theorem 224. For each sign-SCC S, the dimension of S is at most dim(C).

Proof. Direct consequence of the definition of a sign-SCC and of Theorem 219.

Theorem 225. There is one and only one sign-SCC S of dimension dim(C) and
if B is a representative matrix of S, we have

{x ∈ Qn | Bx = 0} = linQ(C).
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Proof. The proof is similar to the proof of Theorem 186.

Theorem 226. Let c.x ≤ 0 be an inequation in C+x ≤ 0 and let F be the facet
of C such that F = {x ∈ C | c.x = 0}. At least one of the following assertions
holds.

• There exists a sign-SCC S whose dimension is dim(C) − 1 and such that
for any representative matrix B of S, {x ∈ Qn | Bx = 0} = linQ(F ).

• For all x ∈ Qn, we have


C=x = 0 ∧
∧

αsign [i]=0

x[i] ≥ 0 ∧
∧

αsign [i]=r−1

x[i] ≤ 0



⇒ c.x ≤ 0.

Proof. Thanks to Theorem 219, there exists one sign-SCC S such that if qs is its
sign-state and B is a representative matrix of S, we have

• linQ(F ) ⊆ {x ∈ Qn | Bx = 0}, and

• there is an encoding v ∈ LA(qI → qs) such that 〈v〉r,n ∈ 〈αsign〉r,n + F .

If linQ(F ) = {x ∈ Qn | Bx = 0}, then, the first assertion holds.
Suppose on the other hand that linQ(F ) ⊂ {x ∈ Qn | Bx = 0}. Since

dim(F ) = dim(C) − 1, by definition of the dimension of a sign-SCC and thanks
to Theorem 224, the dimension of S is dim(C). Thanks to Theorem 225,

linQ(C) = {x ∈ Qn | Bx = 0}. (7.42)

We prove by contradiction that for all x ∈ Qn, we have


C=x = 0 ∧
∧

αsign [i]=0

x[i] ≥ 0 ∧
∧

αsign [i]=r−1

x[i] ≤ 0



⇒ c.x ≤ 0.

Suppose that the assertion does not hold. There would exist a vector y ∈ Qn

with
∧

αsign [i]=0 y[i] ≥ 0,
∧

αsign [i]=r−1 y[i] ≤ 0 and C=y = 0 but c.y > 0. Since
each component of y is a rational ni

di
, one could multiply y by the lowest common

multiple of d1, . . . , dn and obtain a positive integer vector, and therefore, there
exists a vector y′ ∈ Zn such that

∧

αsign [i]=0 y′[i] ≥ 0,
∧

αsign [i]=r−1 y′[i] ≤ 0 and
C=y′ = 0 but c.y′ > 0. Let z = y′ − 〈αsign〉r,n. By definition,

∧

αsign [i]=0 y′[i] ≥

0 ∧
∧

αsign [i]=r−1 y′[i] ≤ 0 is equivalent to signr(z) = αsign, and thus we have

signr(z) = αsign ∧ C=(z − 〈αsign〉r,n) = 0 ∧ c.(z− 〈αsign〉r,n) > 0 (7.43)
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So, there exists a word u ∈ (Σn
r )∗ such that

C=(〈αsignu〉r,n − 〈αsign〉r,n) = 0 ∧ c.(〈αsignu〉r,n − 〈αsign〉r,n) > 0 (7.44)

Given (7.42), by definition of a representative matrix, u ∈ LA(qs → qs). Recall
that by hypothesis, v ∈ LA(qI → qs) and 〈v〉r,n ∈ 〈αsign〉r,n + F . Therefore, for
all k ∈ N we have vuk ∈ LA(qI → qs). Also we have c.(〈v〉r,n − 〈αsign〉r,n) = 0.
Let w ∈ (Σn

r )∗ be a word labeling a path from qs to an accepting state of A. We
have

c.〈vu〉r,n = c.(r|v|〈v〉r,n + 〈ou〉r,n)

= r|u|〈αsign〉r,n + c.(〈αsignu〉r,n − r|u|〈αsign〉r,n)

= c.〈αsignu〉r,n

> c.〈αsign〉r,n

> c.〈v〉r,n

So, thanks to Lemma 85, for any b, ∃kb ∈ N such that c.〈vukbw〉r,n > b, with
〈vukbw〉r,n ∈ P . But this leads to a contradiction. Indeed, from Theorem 21,
P = Q + C for some polytope Q, and therefore, ∃bmax ∈ Q such that for all
x ∈ P , c.x ≤ bmax.

Theorem 227. Let S be a sign-SCC whose dimension is dim(C)− 1 and let B be
a representative matrix of S.

There exists one and only one facet F such that

{x ∈ Qn | Bx = 0} = linQ(F ).

Proof. Thanks to Theorem 219, there exists one and only one face F of C such
that

{x ∈ Qn | Bx = 0} = linQ(F ).

So, by definition dim(F ) = dim(C) − 1 and, thanks to Theorem 27, F is a
facet.

Theorem 228. Let S be a sign-SCC with dim(S) = dim(C)− 1, and let qs be its
sign-state and B be a representative matrix of S.

There is one and only one inequation c.x ≤ 0 ∈ C+x ≤ 0 such that

1. Each row of B is a linear combination of the rows of C= and of ct,

2. For all rows at of B either x ∈ C ⇒ a.x ≤ 0 or x ∈ C ⇒ a.x ≥ 0.
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3. There is a row at of B such that at is not a linear combination of the rows
of C=,

4. For all rows at of B such that at is not a linear combination of the rows of
C=, either for all x ∈ Qn, C=x = 0 ∧ a.x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0, or
for all x ∈ Qn, C=x = 0 ∧ (−a).x ≤ 0 ⇔ C=x = 0 ∧ c.x ≤ 0.

Proof. The proof is similar to the proof of Theorem 189.

7.3.4 Algorithm

In this section, we present an algorithm that, given reduced minimal NDD A

representing the integer elements of a polyhedron P = {x ∈ Qn | Ax ≤ b}

such that P ∩ Zn ⊆ {x ∈ Zn | signr(x) = αsign}, synthesizes a system of linear
inequations corresponding to the characteristic cone C of P . The algorithm uses
the properties given in Section 7.3.3 regarding the sign-SCCs of dimension dmax

and dmax−1 where dmax is the dimension of the characteristic cone, and its overall
time complexity is polynomial with respect to the size of the input NDD.

The algorithm and the justification of its correctness are similar to what has
been done in Section 7.2.4. So, we simply give the formal description of the
algorithm in Figure 7.7 and state its correctness. Note that in this case, one needs
to identify the sign symbol αsign by checking the label of the transition outgoing
from the initial state.

Theorem 229. Let A = (Q,Σn
r , δ, qI, QF) be the reduced minimal NDD repre-

senting the integer elements of a polyhedron P ⊆ Qn with P ∩ Zn ⊆ {x ∈ Zn |

signr(x) = αsign}.

Let Cx ≤ 0 be the system of linear inequations returned by the function
CHARCONEFORMULA, described in Fig.7.7.

Then, Cx ≤ 0 is such that

char-cone(P ) = {x ∈ Qn | Cx ≤ 0}.

The time complexity of CHARCONEFORMULA is O(|δ| · n2 +m · |Q| · n) where
m is the number of sign-SCC of dimension dim(char-cone(P )) − 1.

Proof. The proof is similar to the proof of Theorem 190.
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function CHARCONEFORMULA(NDD A = (Q, Σn
r , δ, qI, QF)) : system of linear inequa-

tions
1: var SSCC : set of sign-SCC;

2: Qvisited : set of state;

3: dmax : integer;

4: αsign : symbol;

5: B,C : array of rational;

6: procedure EXPLORE-BW(state q, word w)

7: var q′ : state;

8: α : symbol;

9: S : sign-SCC;

10: a : vector of rational;

11: begin

12: Qvisited := Qvisited ∪ {q};

13: if q is a sign-state then

14: begin

15: letS ∈ SSCC such that q is sign-state ofS;

16: if GETDIMENSIONSCC(S) = dmax − 1 then

17: begin

18: B := GETREPRESENTATIVEMATRIX(S);

19: leta such thatat is a row of B

and a.(〈αsignw〉r,n − 〈αsign〉r,n) 6= 0;

20: ifa.(〈αsignw〉r,n − 〈αsign〉r,n) > 0 then

21: a :=−a;

22: C :=
[

C

at

]

;

23: end

24: end

25: for each α ∈ Σn
r , q′ ∈ Q \ Qvisited such that δ(q′, α) = q do

26: EXPLORE-BW(q′, αw);

27: end

(. . . )

Figure 7.7: Function CHARCONEFORMULA
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(. . . )

28: begin

29: let αsign such that δ(qI, αsign) ∈ Q;

30: SSCC := GETSIGNSCCS(A, αsign);

31: dmax := maxS∈SSCC
(GETDIMENSIONSCC (S);

32: letSmax such that GETDIMENSIONSCC(Smax) = dmax;

33: B := GETREPRESENTATIVEMATRIX(Smax);

34: C := In;

35: for each i ∈ {1, . . . n} do

36: if (αsign[i] = 0) thenC[i, i] :=−1;

37: C :=





C

B

−B



;

38: EXPLORE-BW(GETSIGNSTATE(Smax), ε);

39: returnCx ≤ 0;

40: end

Figure 7.8: Function CHARCONEFORMULA (continued)
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Example 230. In the NDD Asign displayed in Fig.7.6, the sign-SCC with the
maximal dimension is the one associated to the state q5. Its dimension is 2 and the
associated vector space is Q2. A representative matrix is

[
0 0

]
. There are two

sign-SCCs with dimension 1, those associated to the sign-states q4 and q6. The
associated vector spaces are {(x, y) ∈ Q2 | x − 2 · y = 0} and {(x, y) ∈ Q2 |

x− y = 0} respectively. A representative matrice for the sign-SCC associated to
q4 is

[
1 −2

]
and a representative matrix for the sign-SCC associated to q6 is

[
1 −1

]
. Given the labels of the paths from q4 and q6 to q5, the characteristic

cone is {(x, y) ∈ Q2 | x ≤ 0 ∧ y ≤ 0 ∧ x− y ≤ 0 ∧ −x + 2 · y ≤ 0}.

7.4 Synthesis of Basis of P ∩ Zn

In this section, we present an algorithm that, given a reduced minimal NDD
A = (Q,Σn

r , δ, qI, QF) representing the integer elements of a polyhedron P =

{x ∈ Qn | Ax ≤ b} such that P ∩ Zn ⊆ {x ∈ Zn | signr(x) = αsign} and
an integer matrix C such that char-cone(P ) = {x ∈ Qn | Cx ≤ 0}, gener-
ates the basis of P ∩ Zn. The set C will denote the characteristic cone of P , i.e.
C = char-coneP .

Remark 231. Thanks to Lemma 194,C is pointed, and thereforeP is also pointed.

Note that since a deterministic NDD AC accepting the encodings of the inte-
ger elements in C can be generated in linear time from A and |AC| ≤ |A|, the
complexity of procedures presented in Section 7.1 computing the constants and
the periods of the Hilbert basis must be revisited. Indeed, given AC , the worst-
case time complexities of the procedures are O(2|Q|2·2n

). The procedures given in
this section have also an exponential worst-case complexities. However, they are
much more efficient in practice as already discussed in Section 7.1.

In Section 7.4.1, we express the sets P ∩Zn and C∩Zn as a finite union of sets
Sq
A + (C ∩ Zn), where Sq

A is the set of vectors whose encodings label paths from
qI to q in A. Then, in Section 7.4.2, we show that for each q ∈ Q, there exists
an extended Hilbert basis generating the set Sq

A + (C ∩ Zn), and in Section 7.4.3,
we show that an Hilbert basis generating C ∩ Zn and an extended Hilbert basis
generating P ∩ Zn can be computed from the extended Hilbert basis generating
Sq
A+(C∩Zn). Finally, the algorithms performing the computation of the extended

Hilbert basis of P ∩ Zn is given in Section 7.4.4.
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7.4.1 Association of Sets of Vectors to States

Recall that for each q ∈ Q, the set Sq
A is the set of vectors whose encodings label

paths from qI to q, i.e. Sq
A = {〈u〉r,n | u ∈ LA(qI → q)}.

Remark 232. Since A is reduced minimal, if q 6= q ′, then Sq
A ∩ Sq′

A = ∅.

By definition, the set P ∩ Zn can be expressed in terms of Sq
A. Indeed, it

suffices to take the union of the sets Sq
A for all q ∈ QF. Since P is a polyhedron

and A is reduced, the vectors in C ∩ Zn can be added to the vectors in any Sq
A.

Theorem 233. P ∩ Zn = ∪q∈QF
Sq
A = ∪q∈QF

(
Sq
A + (C ∩ Zn)

)
.

Proof. By definition, P ∩Zn = {〈u〉r,n | δ̂(qI, u) ∈ QF}. Therefore, by definition
of Sq

A,
P ∩ Zn = ∪q∈QF

Sq
A (7.45)

In addition, for all x ∈ P ∩ Zn and for all y ∈ C ∩ Zn, x + y ∈ P ∩ Zn. So,
(P ∩ Zn) + (C ∩ Zn) ⊆ P ∩ Zn. Since 0 ∈ (C ∩ Zn), we have

P ∩ Zn = P ∩ Zn + C ∩ Zn = ∪q∈QF

(
Sq
A + (C ∩ Zn)

)
. (7.46)

Thanks to Theorem 199, the integer elements in C can also be deduced from
the sets Sq

A.

Theorem 234. Let QC be the set of states q such that there is a path from q to a
sign-state labeled by a sequence of αsign symbols.

C ∩Zn = −〈αsign〉r,n +(∪q∈QC
Sq
A) = −〈αsign〉r,n +

(
∪q∈QC

(
Sq
A + (C ∩ Zn)

))
.

Proof. Thanks to Theorem 199, we have

〈αsign〉r,n + C ∩ Zn = ∪q∈QC
Sq
A (7.47)

Also, since C is a cone, by definition, we have

C ∩ Zn = (C ∩ Zn) + (C ∩ Zn). (7.48)

Combining (7.47) and (7.48), we have

C ∩ Zn = ∪q∈QC
(−〈αsign〉r,n + Sq

A)

= ∪q∈QC

(
(−〈αsign〉r,n + Sq

A) + (C ∩ Zn)
)

= −〈αsign〉r,n + (∪q∈QC
(Sq

A) + (C ∩ Zn)) .
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7.4.2 Extended Hilbert Basis for States in A

In this section, we show that for each q ∈ Q, there exists an extended Hilbert basis
(X, Y ) with X + coneZ(Y ) = Sq

A + (C ∩ Zn) such that the minimal encoding of
each x ∈ X labels an acyclic path from qI to q and Y is an Hilbert basis generating
C ∩ Zn.

Since A is a reduced minimal NDD representing the integer elements of P ,
for each inequation defining P there is a bound on the value of the left-hand side
when replacing in the inequation the vector of indeterminates by any vector whose
encodings label paths in A, as proved in the following lemma.

Lemma 235. For each inequation a.x ≤ b of Ax ≤ b, there exists an upper
bound bmax ∈ Z such that for all encodings u labeling a path in A, a.〈u〉r,n ≤

bmax.

Proof. Let q ∈ Q with u ∈ LA(qI → q). Since A is reduced minimal, there exists
a word w with |w| ≤ |Q| labeling a path from q to an accepting state. By defini-
tion, a.〈uw〉r,n ≤ b. Thanks to Lemma 81, a.〈uw〉r,n = r|w|a.〈u〉r,n + a.〈ow〉r,n
and by definition of the encoding scheme, a.〈ow〉r,n ≥ (1 − r|w|+1)‖ a−‖. So, we
deduce that

a.〈u〉r,n = r−|w| (a.〈uw〉r,n − a.〈ow〉r,n)

≤ r−|w|
(
b− (1 − r|w|+1)‖ a−‖

)

≤ b + r‖ a−‖.

As a corollary of the above lemma, we deduce that for each inequation defining
P , the left-hand side can not increase when considering the vectors corresponding
to a path and the same path with a loop, as shown in the following lemma.

Lemma 236. For each inequation a.x ≤ b of Ax ≤ b, for each state q ∈ Q and
for each u, v ∈ (Σn

r )∗ with u ∈ LA(qI → q) and v ∈ LA(q → q), we have

a.〈uv〉r,n ≤ a.〈u〉r,n.

Proof. The proof is by contradiction. Suppose that q ∈ Q and u, v ∈ (Σn
r )∗ with

u ∈ LA(qI → q) and v ∈ LA(q → q), and a.〈uv〉r,n > a.〈u〉r,n. So, thanks
to Lemma 85, for all b, there exists kb such that a.〈uvkb〉r,n > b, contradicting
Lemma 235.
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From the above lemma, we deduce that the difference between two vectors
whose encodings label paths differing only by a loop is in C ∩ Zn.

Lemma 237. Let q1, q2 ∈ Q. If u, v, w ∈ (Σn
r )∗ are such that δ̂(qI, u) = q1,

δ̂(qI, uv) = q1 and δ̂(qI, uvw) = q2, then

〈uvw〉r,n − 〈uw〉r,n ∈ C ∩ Zn.

Proof. By definition, C = {x ∈ Zn | Ax ≤ 0}, and from Lemma 236, we have

A〈uv〉r,n ≤ A〈u〉r,n.

So, thanks to Lemma 81, we have A〈uvw〉r,n ≤ A〈uw〉r,n.
As a direct consequence, we have the following lemma.

Lemma 238. Let q ∈ Q and z ∈ Sq
A.

If the minimum encoding of z does not label an acyclic path, then z can be
decomposed into a vector x ∈ Sq

A and a vector y ∈ C ∩ Zn \ {0} such that
z = x + y and the minimal encoding u of x labels an acyclic path from qI to q.

Proof. Let w be the minimal encoding of z. Since A is reduced minimal,
δ̂(qI, w) = q. By hypothesis, there exist u1, u2, u3 ∈ (Σn

r )∗ with u2 6= ε such
that u1u2u3 = w, δ̂(qI, u1) = δ̂(qI, u1u2) and δ̂(qI, u1u2u3) = q. Thanks to
Lemma 237, 〈u1u2u3〉r,n − 〈u1u3〉r,n ∈ C ∩ Zn, i.e. z = z1 + y1 with z1 =

〈u1u3〉r,n ∈ Sq
A and y1 ∈ C ∩ Zn. Since w is the minimal encoding of z,

〈u1u2u3〉r,n 6= 〈u1u3〉r,n, and by definition of the encoding scheme, for all j ∈

{1, . . . , n}, |〈u1u2u3〉r,n[j]| ≥ |〈u1u3〉r,n[j]|, and therefore, we have

n∑

j=1

|z1[j]| <
n∑

j=1

|z[j]|.

We apply recursively the same reasoning to z1 until reaching a vector whose min-
imum encoding labels an acyclic path. So, we generate a sequence of vectors
z0, z1, . . . , zt ∈ Sq

A such that z0 = z and for all 0 ≤ k, zk = zk+1 + yk+1

with yk+1 ∈ C ∩ Zn. From above, we have 0 ≤
∑n

j=1 |zk+1[j]| <
∑n

j=1 |zk[j]|

for all k, and therefore, the sequence z0, z1, . . . , zt is finite. By construction,
z0 = zt +

∑t

i=1 yi, and by definition of a cone,
∑t

i=1 yi ∈ C ∩ Zn. We conclude
that z = zt+y with y ∈ C∩Zn and zt ∈ Sq

A\{z} such that the minimal encoding
of zt labels an acyclic path from qI to q.
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Remark 239. First note that given Lemma 71, in a reduced minimal NDD, two
encodings labeling acyclic paths are encodings of different vectors. Also, in some
cases, there are exactly as many constants in the minimal extended Hilbert basis
as there are acyclic paths. This happens in particular when the characteristic
cone of P is {0}, which occurs if P is a polytope. In this case, P ∩ Zn is finite
and each acyclic path from qI to an accepting state q corresponds to a unique
vector which can not be decomposed, and therefore, is a constant of the minimal
extended Hilbert basis generating P ∩ Zn.

Theorem 240. Let Ymin be the minimal Hilbert basis of C ∩ Zn.
For each q ∈ Q, there exists a finite set Xq,min such that

1. for each x ∈ Xq,min there exists an acyclic path from qI to q labeled by the
minimal encoding of x,

2. (Xq,min, Ymin) is a minimal extended Hilbert basis,

3. (Xq,min, Ymin) generates Sq
A + C ∩ Zn.

Proof. Let q ∈ Q and let Sq,acyclic
A be the set of vectors x such that there exists an

acyclic path from qI to q labeled by u with 〈u〉r,n = x. By definition, Sq,acyclic
A is

finite and (Sq,acyclic
A , Ymin) is an extended Hilbert basis. Also, since C is pointed

and coneZ(Ymin) = C ∩ Zn, thanks to Lemma 40, there exists a set Xq,min ⊆

Sq,acyclic
A such that (Xq,min, Ymin) is a minimal extended Hilbert basis and

Xq,min + coneZ(Ymin) = Sq,acyclic
A + coneZ(Ymin).

By construction, for all x ∈ Xq,min, there exists an acyclic path from qI to q

labeled by u with 〈u〉r,n = x. Also, since A is reduced minimal, u must be
the minimal encoding of x. Indeed, otherwise, if umin 6= u was the minimal
encoding of x, thanks to Lemma 71, it would only differ by a repetition of the
sign symbol, and since A is minimal reduced, for all sign symbols α and k ∈ N,
δ̂(qI, α

k) = δ(qI, α), and therefore, u would not label an acyclic path.
Finally, we show that Sq,acyclic

A +coneZ(Ymin) = Sq
A +C ∩Zn. By definition,

coneZ(Ymin) = C ∩ Zn and Sq,acyclic
A ⊆ Sq

A, and therefore, we have

S
q,acyclic

A + coneZ(Ymin) ⊆ Sq
A + C ∩ Zn. (7.49)

Also, thanks to Lemma 238, by definition, for all z ∈ Sq
A \ Sq,acyclic

A , z = x + y

with x ∈ Sq
A \ {z} and y ∈ C ∩Zn such that the minimal encoding of x labels an

acyclic path from qI to q, i.e. x ∈ Sq,acyclic
A . So, we have

Sq
A + C ∩ Zn ⊆ Sq,acyclic

A + C ∩ Zn. (7.50)
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Combining (7.49) and (7.50), we conclude that

Sq
A + C ∩ Zn = Sq,acyclic

A + C ∩ Zn.

Remark 241. For all extended Hilbert basis (Xq, Y ) generating the set Sq
A +

(C ∩ Zn), thanks to Theorem 34 and Lemma 40, if (Xq,min, Ymin) is the minimal
extended Hilbert basis generating Sq

A + (C ∩ Zn), then Xq,min ⊆ Xq and Ymin ⊆

Y .

7.4.3 From Basis of Sq
A + C ∩ Zn to Basis of P ∩ Zn

In this section, we first show how to generate the constants X of an extended
Hilbert basis generating P ∩ Zn from extended Hilbert basis of sets Sq

A + (C ∩

Zn). Then, with a similar method, we show how to generate an Hilbert basis Y
generating the set C ∩ Zn. By definition, the pair (X, Y ) is then an extended
Hilbert basis generating P ∩ Zn.

Theorem 242. For each q ∈ Q, let (Xq, Yq) be an extended Hilbert basis gener-
ating Sq

A + (C ∩ Zn), and let Y be an Hilbert basis generating C ∩ Zn.
The pair (∪q∈QF

Xq, Y ) is an extended Hilbert basis generating P ∩ Zn.

Proof. Thanks to Theorem233, we have

P ∩ Zn = ∪q∈QF

(
Sq
A + (C ∩ Zn)

)
. (7.51)

By hypothesis, Sq
A + (C ∩ Zn) = Xq + coneZ(Y ), and therefore, we have

P ∩ Zn = (∪q∈QF
Xq) + coneZ(Y ). (7.52)

Since ∪q∈QF
Xq is finite, by definition, the pair (∪q∈QF

Xq, Y ) is an extended Hilbert
basis generating P ∩ Zn.

Comparing Theorems 233 and 234, from the above theorem, we might expect
that an Hilbert basis generating C ∩ Zn would be given by the set −〈αsign〉r,n +

∪q∈QC
Xq, where QC is defined as in Theorem 234 and Xq is the set of constants

of an extended Hilbert basis generating Sq
A+(C∩Zn). However, this is in general

not correct since ∪q∈QC
Xq could simply be 〈αsign〉r,n. The problem arises since

〈αsign〉r,n ∈ Sq
A for some q ∈ QC . Indeed, thanks to Theorem 199, we have

Sq
A ⊆ 〈αsign〉r,n + C.
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Figure 7.9: minimal reduced NDD representing {x ∈ Z2 | x ≥ 0}.

Thus, for all x ∈ Sq
A \ {〈αsign〉r,n}, we have

x − 〈αsign〉r,n ∈ C ∩ Zn.

We deduce that x is not a constant of the minimal extended Hilbert basis gen-
erating Sq

A + C + ∩Zn, although x might be an element in the minimal Hilbert
basis of C ∩ Zn. Consider for example the case where P is {x ∈ Q2 | x ≥ 0}.
The minimal NDD representing P ∩ Z2 is given in Figure 7.9. Clearly, the set of
constant in the minimal extended Hilbert basis of Sq1

+ C ∩ Zn is {0}.

Theorem 243. For each q ∈ Q, let (Xq, Yq) be an extended Hilbert basis gener-
ating Sq

A + (C ∩ Zn), and let QC be the set of states q such that there is a path
from q to a sign-state labeled by a sequence of αsign symbols.

LetX ′
qαsign

=
{
r · x + 〈oα〉r,n | ∃q ∈ Q,α ∈ Σn

r

(
δ(q, α) = qαsign

∧ x ∈ Xq

)}

and let qαsign
∈ Q such that δ(qI, αsign) = qαsign

.

The set −〈αsign〉r,n +
(

X ′
qαsign

∪
⋃

q∈QC
Xq

)

is an Hilbert basis generating

C ∩ Zn.

Proof. See Section 7.8.7.

7.4.4 Algorithm

In this last section, we present an algorithm generating the basis of P ∩ Zn based
on result given in Sections 7.4.2 and 7.4.3. The polyhedron P must be such that
P ∩ Zn ⊆ {x ∈ Zn | signr(x) = αsign}, and consequently, P is pointed.

According to Theorems 242 and 243, the set of constants and the set of periods
of an extended Hilbert basis generating P ∩ Zn can be computed from the sets of
constants Xq of any extended Hilbert basis generating the sets Sq

A + (C ∩ Zn),
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where C is the characteristic cone of P and Sq
A is the set of vectors whose encod-

ings label paths from qI to q. So, the main issue of this section is the computation
of the sets Xq, with q ∈ Q.

Thanks to Theorem 240, for each q ∈ Q, if (Xq,min, Ymin) is the minimal
extended Hilbert basis generating Sq

A + (C ∩ Zn), then each vector x ∈ Xq,min

has an encoding labeling an acyclic path from qI to q. This translates into a first
approach for computing the sets Xq. It suffices to compute for each q the set of
vectors Sq,acyclic

A having an encoding labeling an acyclic path from qI to q. By
definition, Sq,acyclic

A is finite and from above,

Xq,min ⊆ Sq,acyclic
A .

Therefore, one can choose Xq = Sq,acyclic
A . The drawback of this approach is

that one systematically explores all acyclic paths in the NDD. In the following,
we present an approach which filters out some of the acyclic paths. The property
on which the filtering process relies is the following. If u and v label paths from
qI to q and 〈u〉r,n − 〈v〉r,n ∈ (C ∩ Zn) \ {0}, then 〈u〉r,n is not in Xq,min and for
each w labeling a path from q to another state q ′, 〈uw〉r,n is not in Xq′,min. So,
one does not need to explore the paths rooted at qI and prefixed by u. Although
the worst case complexity is identical to the complexity of the above algorithm, it
significantly improves the performance in practice.

First, we give a formal proof of the correctness of the filtering criterion.

Lemma 244. Let q ∈ Q and u, v ∈ (Σn
r )∗ such that δ̂(qI, u) = q = δ̂(qI, v).

If 〈u〉r,n − 〈v〉r,n ∈ (C ∩ Zn) \ {0}, then for all q′ ∈ Q and w ∈ (Σn
r )∗

with δ̂(q, w) = q′, 〈uw〉r,n is not a constant of the minimal extended Hilbert basis
generating Sq′

A + (C ∩ Zn).

Proof. By definition, C is a cone, and therefore, there exists a matrix C such that
C = {x ∈ Qn | Cx ≤ 0}. By hypothesis and by definition of C, we have

C(〈u〉r,n − 〈v〉r,n) ≤ 0. (7.53)

We show that for all w, C(〈uw〉r,n − 〈vw〉r,n) ≤ 0. Clearly, if w = ε, then
C(〈uw〉r,n−〈vw〉r,n) ≤ 0. If |w| ≥ 1, then, by definition of the encoding scheme,
we have

〈uw〉r,n − 〈vw〉r,n = r|w|〈u〉r,n + 〈ow〉r,n − r|w|〈v〉r,n − 〈ow〉r,n

= r|w|(〈u〉r,n − 〈v〉r,n).
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Therefore, 〈uw〉r,n − 〈vw〉r,n 6= 0 and C(〈uw〉r,n − 〈vw〉r,n) ≤ 0.
So, we conclude that 〈uw〉r,n − 〈vw〉r,n ∈ (C ∩ Zn) \ {0}, i.e. 〈uw〉r,n =

〈vw〉r,n + y with 〈uw〉r,n, 〈vw〉r,n ∈ Sq′

A and y ∈ (C ∩ Zn). So, by definition,
〈uw〉r,n is not a constant of the minimal extended Hilbert basis generating Sq′

A +

(C ∩ Zn).

Remark 245. Given a matrix C such that C = {x ∈ Qn | Cx ≤ 0}, checking
whether x − y is in C ∩ Zn can be done by computing the product C(x − y) in
time proportion to O(k · n) where k is the number of rows of C.

Based on the above considerations, there exists an algorithm COMPUTEBASIS
computing an extended Hilbert basis generating the set P∩Zn with P∩Zn ⊆ {x ∈

Zn | signr(x) = αsign} given the reduced minimal NDD A = (Q,Σn
r , δ, qI, QF)

representing P ∩ Zn and a matrix C such that the characteristic cone of P is
{x ∈ Qn | Cx ≤ 0}. The algorithm computes first the sets Xq for each state
q ∈ Q such that (Xq, Y ) is an extended Hilbert basis generating Sq

A + (C ∩ Zn)

and Y is an Hilbert basis generating C ∩ Zn. Once the sets Xq are computed,
the constant and the periods of an extended Hilbert basis generating P ∩ Zn are
computed thanks to Theorems 242 and 243.

We have the following theorem.

Theorem 246. Let A = (Q,Σn
r , δ, qI, QF) be the reduced minimal NDD repre-

senting the set P ∩ Zn for some polyhedron P such that P ∩ Zn ⊆ {x ∈ Zn |

signr(x) = αsign} and let C be an integer matrix such that char-cone(P ) = {x ∈

Qn | Cx ≤ 0}. With A and C as input parameters, the algorithm COMPUTE-
BASIS presented in Figure 7.10 terminates, and if (X, Y ) = COMPUTEBASIS(A,
C), then (X, Y ) is an extended Hilbert basis generating P ∩ Zn.

The time complexity of the algorithm is O(2|A|).

Proof. Let C = char-cone(P ). The sets Xq are computed incrementally. By
construction, one explores only acyclic paths rooted at qI, and for each x ∈ Xq,
there exists an encoding u of x labeling an acyclic path from qI to q.

At the lth iteration of the main while -loop at lines 11-23, one explores acyclic
paths rooted at qI of length l + 1, more precisely, one considers all acyclic paths
labeled by wα such that |w| = l if q = δ̂(qI, w), then 〈w〉r,n ∈ Xq (practically, it
suffices to store the minimal encodings, and their lengths, of all vectors in the sets
Xq, q ∈ Q). If δ(q, α) = q′, one checks first whether wα labels an acyclic path
in A rooted at qI via the function ACYCLIC? (it suffices to check whether a state
is met twice in the path labeled by wα). Then one checks whether there exists a
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function COMPUTEBASIS(NDD A = (Q, Σn
r , δ, qI, QF), C) : (set of integer vector,

set of integer vector)

1: var W, Wnext, QC : set of state;

2: q, q′ : state;

3: Bper, Bcst, X1, . . . , X|Q| : set of integer vector;

4: α, αsign : symbol;

5: w : word;

6: x : integer vector;

7: l : integer;

8: begin

9: let q and αsign such that δ(qI, αsign) = q;

10: Xq := {〈αsign〉r,n}; Wnext := {q}; l := 0;

11: while Wnext 6= ∅ do

12: begin

13: W := Wnext;

14: Wnext := ∅; l := l + 1;

15: for each q ∈ W do

16: begin

17: for each q′ ∈ Q, w ∈ (Σn
r )∗, α ∈ Σn

r such that

δ(q, α) = q′ ∧ ACYCLIC?(A, wα) ∧ |w| = l

∧〈w〉r,n ∈ Xq ∧ ∀y ∈ Xq′C〈wα〉r,n − y 6≤ 0 do

18: begin

19: Xq′ := Xq′ ∪ {〈wα〉r,n};

20: Wnext := Wnext ∪ {q′};

21: end

22: end

23: end

(. . . )

Figure 7.10: Function COMPUTEBASIS
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(. . . )

24: for each q ∈ QF do Bcst := Bcst ∪ Xq ;

25: let QC := {q | δ̂(q, αk
sign) = qs for some sign-state qs and k ∈ N};

26: for each q ∈ QC do Bper := Bper ∪ Xq);

27: let q such that δ(qI, αsign) = q;

28: for each q′ ∈ Q, α ∈ Σn
r , x ∈ Xq′ such that δ(q′, α) = q do

29: Bper := Bper ∪ {r · x + 〈oα〉r,n};

30: return ( Bper, Bcst)

31: end

Figure 7.11: Function COMPUTEBASIS (continued)

vector y ∈ Xq′ such that 〈wα〉r,n − y ∈ (C ∩ Zn) \ {0}. If this is not the case,
then 〈wα〉r,n is added to Xq′ and q′ is stored in Wnext so that paths of length l + 1

prefixed by wα are explored at the next iteration of the main while -loop.
Since one explores only acyclic paths of increasing length, there are at most

|Q| iterations of the main while -loop. By construction, when one leaves the main
while -loop, Xq ⊆ Sq

A. We show that for all states q ∈ Q, if (Xq,min, Ymin) is the
minimal extended Hilbert basis generating Sq

A + (C ∩ Zn), then Xq,min ⊆ Xq.
The proof is by induction on the length of the minimal encoding w of the vectors
x ∈ Xq,min, q ∈ Q.

• If |w| = 1, then, thanks to Lemma 192, w = αsign, and by construction,
〈w〉r,n is added to Xq.

• If |w| > 1, then there exist an encoding w′ and a symbol α such that
w′α = w. Since w is the minimal encoding of x, w′ is the minimal encoding
of a vector x′ 6= x. Let q′ ∈ Q such that δ̂(qI, w′) = q′. Since x ∈ Xq,min,
thanks to Lemma 244, x′ ∈ Xq′,min, and so, by hypothesis, x′ ∈ Xq′ . By
construction, there are at least |w| iterations of the main while -loop, and at
the |w| iteration, the path labeled by w from qI to q must has been consid-
ered. Since 〈w〉r,n ∈ Xq,min and Xq ⊆ Sq

A, by definition, for all y ∈ Xq,
〈w〉r,n − y 6∈ (C ∩ Zn). So, C(〈w〉r,n − y) 6≤ 0. By inspection, we deduce
that 〈w〉r,n is added to Xq.

The overall time complexity of the algorithm is O(2|A|) since in the worst
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case, one considers all acyclic paths rooted at qI.

7.5 General Algorithm and Complexity

In this section, we summarize our main algorithm that, given a minimal reduced
NDD A accepting the encodings of the integer elements of a polyhedron P , syn-
thesizes a quantifier-free Presburger formula ϕ(x) such that ϕ(x) holds iff there
is a word u with 〈u〉r,n = x such that u ∈ L(A).

The general idea is to decompose the polyhedron P into pointed polyhe-
dra Pαsign

according to the sign of the vector components. More precisely, for
each sign symbol αsign, we compute the reduced minimal NDD Aαsign

such that
L(Aαsign

) = {αsignu ∈ L(A)}, and Pαsign
is the convex hull of the vectors whose

encodings are accepted by Aαsign
. Then for each Aαsign

, the algorithm proceeds in
two steps, the generation of a matrix Cαsign

such that

x ∈ char-cone(Pαsign
) ⇔ Cαsign

x ≤ 0,

and the computation of an extended Hilbert basis (Xαsign
, Yαsign

) generating
Pαsign

∩ Zn. A quantifier-free Presburger formula corresponding to P ∩ Zn is
then ϕ(x) with

ϕ(x) =def

∨

αsign∈{0,r−1}n




∨

x′∈Xαsign

(
Cαsign

(x − x′) ≤ 0
)



 .

The formal algorithm is given in Figure 7.12.
In order to prove the correctness of the algorithm given in Figure 7.12, we need

the following lemma which shows how to decompose the NDD representing the
integer elements of a polyhedron P into NDDs regrouping the integer elements of
P sharing the same sign.

Lemma 247. Let A = (Q,Σn
r , δ, qI, QF) be the reduced minimal NDD represent-

ing the set P ∩ Zn for some polyhedron P , and let αsign ∈ {0, r − 1}n be a sign
symbol.

Let Aαsign
= (Q ∪ {q′I},Σ

n
r , δαsign

, , QF) with δαsign
(q, α) = δ(q, α) for all

q ∈ Q and α ∈ Σn
r , and δαsign

(q′I, αsign) = δ(qI, αsign).
The automaton Aαsign

is a deterministic NDD in strong normal form repre-
senting the set P ∩ {x ∈ Zn | signr(x) = αsign}.
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function GENERATEFORMULA(NDD A = (Q, Σn
r , δ, qI, QF)) : Presburger formula

1: var Aαsign
: automaton;

2: δαsign
: function;

3: Cαsign
: matrix;

4: ϕ : Presburger formula;

5: α, αsign : symbol;

6: Xαsign
, Yαsign

: set of integer vector;

7: begin

8: ϕ(x) := false ;

9: for each αsign ∈ {0, r − 1}n do

10: begin

11: let q 6∈ Q;

12: let δαsign
: (Q ∪ {q})× Σn

r → Q ∪ {q}

:

{
(q′ 6= q, α) → δ(q, α)

(q, αsign) → δ(qI, αsign)
;

13: Aαsign
:= AUTO MINIMIZE(Q ∪ {q}, Σn

r , δαsign
, q, QF);

14: if AUTO EMPTY?(A) = false then

15: begin

16: letCαsign
such that

Cαsign
x ≤ 0 = CHARCONEFORMULA(Aαsign

);

17: (Xαsign
, Yasign) := COMPUTEBASIS(Aαsign

, Cαsign
);

18: ϕ(x) := ϕ(x) ∨
∨

x
′∈Xαsign

Cαsign
(x − x′) ≤ 0;

19: end

20: end

21: returnϕ

22: end

Figure 7.12: Function GENERATEFORMULA
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Proof. Clearly, Aαsign
is deterministic and in strong normal form, and L(Aαsign

) ⊆

{αsignu | u ∈ (Σn
r )∗}.

• If for all αu ∈ L(A), α 6= αsign, then there is no outgoing transition from q

and since A is deterministic in strong normal form, Aαsign
is also determin-

istic in strong normal form.

• Suppose that αsignu ∈ L(A) for some u ∈ (Σn
r )∗. Let qαsign

∈ Q such
that δ(qI, αsign) = qαsign

. By definition, δ(q′I, αsign) = qαsign
. Also, by

definition, δ̂(qαsign
, u) ∈ QF, and therefore, δ̂αsign

(qαsign
, u) ∈ QF. So,

αsignu ∈ L(Aαsign
), i.e.

L(Aαsign
) ⊇ L(A) ∩ {αsignu | u ∈ (Σn

r )∗}. (7.54)

Conversely, if αv ∈ L(Aαsign
), then δ̂αsign

(qαsign
, v) ∈ QF. So, by definition,

δ̂(qαsign
, v) ∈ QF and αv ∈ L(A), i.e.

L(Aαsign
) ⊆ L(A) ∩ {αsignu | u ∈ (Σn

r )∗}. (7.55)

We conclude that

L(Aαsign
) = L(A) ∩ {αsignu | u ∈ (Σn

r )∗}, (7.56)

and by definition, Aαsign
is an NDD.

Theorem 248. Given a reduced minimal NDD A representing the integer ele-
ments of a polyhedronP , the algorithm GENERATEFORMULA presented in Fig 7.12
terminates, and if ϕ(x) is the Presburger formula returned by
GENERATEFORMULA(A), then we have

ϕ(x) iff x ∈ P ∩ Zn.

The time complexity of the algorithm is O(2n · 2|A|).

Proof. Thanks to Lemma 247, for each αsign ∈ {0, r− 1}n, Aαsign
is the reduced

minimal NDD representing the set Sαsign
= {x ∈ Zn | x ∈ P∧signr(x) = αsign}.

By construction, the NDD Aαsign
has at most one state more than A.

Let Pαsign
be the convex hull of Sαsign

. By definition, Pαsign
is a polyhedron

and Pαsign
∩ Zn = Sαsign

.
WithAαsign

as input, the function CHARCONEFORMULA, described in Fig.7.4,
generates a system of linear inequations Cαsign

x ≤ 0 in time polynomial in
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|Aαsign
|, such that for all x ∈ Qn, x ∈ char-cone(Pαsign

) if and only if Cαsign
x ≤

0, as proved in Theorem 190. Thanks to Theorem 246, (Xαsign
, Yαsign

) is an ex-
tended Hilbert basis generating Pαsign

∩ Zn, and the computation is done in time
proportional to 2|Aαsign

| in the worst case.
Finally, thanks to Lemma 38 and Theorem 41, char-cone(Pαsign

) ∩ Zn =

coneZ(Yαsign
) and by hypothesis, char-cone(Pαsign

) ∩ Zn = {x ∈ Zn | Cαsign
x ≤

0}. Also, by definition, Pαsign
∩ Zn =

⋃

x′∈Xαsign
x′ + coneZ(Y ). So, we have

Pαsign
∩ Zn =






x ∈ Zn |

∨

x′∈Xαsign

(
Cαsign

(x − x′) ≤ 0
)






.

Since P ∩ Zn =
⋃

αsign∈{0,r−1}n

(
Pαsign

∩ Zn
)
, by inspection, it is immediate

that for all x ∈ Zn, ϕ(x) holds iff x ∈ P .

The exponential time complexity of the algorithm generating the basis is re-
lated to the fact that in the worst case, one explores all acyclic paths rooted in the
initial state of the NDD.

In practice, a prototype of our algorithm performs well on large automata, as
shown in Section 7.6. We attribute this to the fact that our algorithm succeeds in
filtering out many irrelevant paths. Based on the description of our algorithm, if
the sizes of the setsXq, q ∈ Q, are proportional to the size of the minimal extended
Hilbert basis, both in terms of number of elements and of minimal length of words
encoding the largest element in the set, the actual cost would be polynomial in
the size of the NDD, in the number of elements in the basis and in the minimal
encoding lengths of the elements, and this is what suggest the experimental results
presented in the following section.

Finally, in the particular case where P ∩ Zn ⊆ {x ∈ Zn | signr(x) = αsign}

and P ∩Zn = 〈αsign〉r,n +(char-cone(P )∩Zn), a formula for P ∩Zn is given by
ϕ(x) ≡ C(x−〈αsign〉r,n) ≤ 0, and therefore, in this case, the formula for P ∩Zn

is generated in time polynomial in |A| since it is not required to compute the basis
of P ∩ Nn, it suffices to apply the function CHARCONEFORMULA.

Note that testing whether P ∩ Zn ⊆ {x ∈ Zn | signr(x) = αsign} and
P ∩ Zn = 〈αsign〉r,n + (char-cone(P ) ∩ Zn), can be done in time linear in |A|

by checking first if there is only one transition outgoing from qI and that this
transition is labeled by αsign, and secondly, whether QC = QF where QC is the
set QC = {q ∈ Q | ∃p ∈ N ∃qs ∈ Q(δ̂(q, αp

sign) = qs ∧ qs is a sign-state)}, as
deduced from Theorem 199.
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7.6 Experimental Results

The algorithms presented in this chapter have been implemented within the LASH
library [LAS]. Note that the algorithms have been slightly modified in order to
use the synchronous interleaved encoding scheme EI(r) , which significantly de-
creases the running time. Also, the tests have been performed on sets of positive
integer vectors, and therefore, only the sign symbol o needs to be considered.

The following sets have been converted into NDDs over which we have run
our implementation. As encoding basis, we have taken r = 2. Note that the sets
S1,S2, S3,S4,S5,S6 have been taken from [AC97], (S6 is an example which is not
handled efficiently in [AC97] because their pruning criterion C1 does not apply).

S1 = {x ∈ Z4 |

[
1 −1 −1 −3

−2 3 3 −5

]

x ≤

[
2

3

]

}

S2 = {x ∈ Z5 |
[

7 −2 11 3 −5
]
x ≤

[
5
]
}

S3 = {x ∈ Z4 |

[
1 −2 −3 4

100 45 −78 −67

]

x ≤

[
0

0

]

}

S4 = {x ∈ Z5 |
[

23 −56 −34 12 11
]
x ≤

[
0
]
}

S5 = {x ∈ Z4 |





1 0 −4 8

−1 0 4 −8

12 19 −11 −7



x ≤





2

−2

−7



}

S6 = {x ∈ Z3 |=def

[
23 −12 −9

1 −8 −8

]

x ≤

[
0

0

]

}

S7 = {x ∈ Z7 |












3 −7 −1 −1 −2 0 −1

4 −3 9 3 −5 −3 1

5 1 0 0 0 0 −4

−5 −1 0 0 0 0 4

0 1 3 0 0 −1 0

0 −1 −3 0 0 1 0












x ≤












10

5

0

0

0

0












}

S8 = {x ∈ Z5 |












1 1 1 −1 −4

4 −3 9 3 −5

1 −1 0 0 0

−1 1 0 0 0

0 −1 0 0 −1

−1 0 0 0 0












x ≤












10

5

3

−3

−10

−5












}

S9 = {x ∈ Z7 |












1 −4 1 0 0 −4 −1

0 0 0 3 −1 0 3

0 1 −2 6 0 0 0

0 −1 2 −6 0 0 0

13 −1 0 −11 1 0 0

−13 1 0 11 −1 0 0












x ≤












0

0

0

0

0

0












}
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S10 = {x ∈ Z7 |












1 −4 1 0 0 −4 −1

0 0 0 3 −1 0 3

0 1 −2 6 0 0 0

0 −1 2 −6 0 0 0

13 −1 0 −11 1 0 0

−13 1 0 11 −1 0 0












x ≤












10

17

6

−6

1

−1












}

S11 = {x ∈ Z6 |
















1 1 −4 5 0 0

0 0 0 3 −1 3

0 0 0 1 0 0

0 0 0 −1 0 0

11 −8 0 −1 0 3

−1 0 −2 −1 0 0

0 0 1 6 −5 0

0 0 −1 −6 5 0
















x ≤
















10

−10

4

−4

0

−5

3

−3
















}

S12 = {x ∈ Z6 |














7 2 −3 −5 0 −1

0 0 0 3 −1 −6

0 1 0 0 0 0

0 −1 0 0 0 0

1 −1 0 −1 0 1

−4 0 1 0 0 3

5 0 1 0 0 6














x ≤














10

−10

3

−3

0

0

12














}

S13 = {x ∈ Z3 |





1 0 0

0 1 0

0 0 1



x ≤





31

31

31



}

The following table shows the results of our experiments. The columns give
successively the name of the set, the number of states of the corresponding NDD,
the number of constants and periods in the basis as well as the maximal length of
minimal encodings of elements in the basis, the time (in seconds) and memory (in
megabytes) required for the generation of a formula corresponding to the charac-
teristic cone, and the time and the memory required for the computation of the
basis.
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Extended Hilbert Basis CHARCONEFORMULA COMPUTEBASIS

|Q| Constant Periods length time space time space
[Secs.] [Mbytes] [Secs] [Mbytes]

S1 425 69 214 4 0.1 0 0.1 0
S2 198 29 39 4 0.1 0 0.0 0
S3 11609 1 26 10 2.1 5 0.1 3
S4 889 1 567 6 0.1 0 0.3 1
S5 3439 8 21 7 0.2 1 0.2 1
S6 165 1 15 5 0.0 0 0.0 0
S7 8465 25 37 6 0.1 8 0.3 5
S8 2368 95 26 5 0.2 8 0.1 1
S9 99094 1 246 9 10.5 32 7.0 86
S10 132619 1040 246 10 12.5 34 10.5 112
S11 43777 25541 922 10 3.7 10 537.8 116
S12 7496 88 19 5 0.8 2 0.1 2
S13 21 32768 0 5 0.1 0 19.5 5

From these results, we can see that the algorithm performs well on most sets,
especially the generation of the formula corresponding to the characteristic cone,
which is done for each set in a few seconds. This fits well with the computed
complexity of this part of the algorithm. Indeed, in Section 7.2.4, we showed that
if the number of zero-SCCs is small compared to the number of states, which is
the case in practice, the computation is proportional to the number of transitions.
Regarding the generation of the basis, our algorithm performs well on most sets.
The time cost appears proportional to the maximal length of minimal encodings
of elements in the basis, the number of elements in the basis, and the size of the
NDD (when using the serial encoding in basis r, we have |A| = r · |Q|). This
suggests that in the algorithm of COMPUTEBASIS of Fig. 7.10, for each q ∈ Q,
the size of Xq is proportional to the size of the minimal extended Hilbert basis.

7.7 Conclusion

In this chapter, we first have characterized finely the structure of an NDD A rep-
resenting the integer elements of a polyhedron P = {x ∈ Qn | Ax ≤ b} such
that the encodings of all integer elements have the same sign symbol.

Then, we have presented an algorithm, CHARCONEFORMULA, relying heav-
ily on the structural properties of A, which synthesizes a linear system of inequa-
tions Cx ≤ 0 corresponding to the characteristic cone of P , in linear time when
assuming that the number of strongly connected components with a sign-state is
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small compared to the number of states, which is verified in practice.
We have also presented an algorithm, COMPUTEBASIS, extracting from A an

extended Hilbert basis (X, Y ) generating P ∩Zn. In the worst case, the computa-
tional costs of the algorithm are proportional to the number of acyclic paths in A

rooted at the initial state. In practice, our method filters out many acyclic paths. A
quantifier-free Presburger formula is directly obtained from X and from the linear
system Cx ≤ 0, and has the form

⋃

xi∈X

C(x − xi) ≤ 0.

Then, we presented an algorithm, GENERATEFORMULA, which is not re-
stricted to NDDs accepting sets whose elements have all the same sign, and this
is done as follows. Given an NDD A representing the integer element of a poly-
hedron P , we consider each sign symbol αsign in turn. In each case, we compute
in linear time a deterministic NDD Aαsign

accepting the integer elements of P
whose encodings have αsign as sign symbol. This set is the integer elements of
a polyhedron Pαsign

such that all elements in P ∩ Zn have the same sign. Once
Aαsign

is minimized, we apply the algorithms CHARCONEFORMULA and GEN-
ERATEBASIS and compute respectively a system of linear equations Cαsign

x ≤ 0

corresponding to the characteristic cone of Pαsign
and an extended Hilbert basis

(Xαsign
, Yαsign

) of P ∩ 〈αsign〉r,n.
A quantifier-free Presburger formula corresponding to P ∩ Zn is then ϕ(x)

with

ϕ(x) =def

∨

αsign∈{0,r−1}n




∨

x′∈Xαsign

(
Cαsign

(x − x′) ≤ 0
)



 .

The overall algorithm has been tested with a prototype implementation, and
the experimental results are very encouraging : the generation of formulas and
bases corresponding to NDDs with more than 100,000 states can be achieved in
seconds. Experimental results suggest that the actual cost is proportional to the
size of the NDD as well as to both the number of elements in the basis and their
encoding lengths.

7.7.1 Related Work

In [Lug04], an algorithm is proposed which, given a deterministic NDD A repre-
senting a set SA ⊆ Nn, computes a pair of finite sets (Scst, Sper) such that x ∈ SA

iff x ∈
⋃

xc∈Scst
xc + coneZ(Sper). The restrictions on the input NDD is that the
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set SA must correspond to a set of the form
⋃

xc∈Scst
xc + coneZ(Sper) for some

finite sets Scst and Sper, and that coneQ(Sper) must be pointed. Clearly, any pair
(Scst, Sper) is not necessarily an extended Hilbert basis since we do not require
Sper to be an Hilbert basis.

In a way similar to what we have done regarding extended Hilbert basis, there
is a minimality criterion for the pairs (Scst, Sper) since the cone coneQ(Sper) is
pointed, and there exist formulas ϕcst and ϕper expressed in Presburger arithmetic
extended with a predicate corresponding to the membership to SA such that for
all x ∈ Zn, ϕcst(x) holds iff x ∈ Scst and similarly ϕper(x) holds iff x ∈ Sper.
Interestingly, the algorithm does not depend on the implementation details associ-
ated to the NDDs, such as the encoding scheme. The shortcoming of the method
is its huge computational cost, O(22|A|

) which in practice prohibits any practical
application, as seen in Section 7.1.

More recently, [Ler04b, Ler05] detail a polynomial algorithm computing a
Presburger formula corresponding to the set represented by a deterministic NDD
using the reverse synchronous encoding scheme. The sole restriction on the input
NDD is that all elements in the represented set must be positive integer vectors,
i.e. vectors in Nn for some n ∈ N. Although the algorithm is polynomial, its costs
appears to be high in practice. Indeed, the computational costs are proportional
to at least |Q|4, where Q is the set of states, and this leads to huge numbers when
considering NDDs with thousands of states. Another aspect which may prevent
the practical application of the algorithm is the presence of a polynomial number
of quantifiers in the generated formula.

7.8 Additional Proof Details

7.8.1 Proof of Theorem 177

In order to prove Theorem 177, we need some additional lemmas.
First, we recall some definitions and theorems regarding congruences.
Let a,x ∈ Zn, b ∈ Z, m ∈ N with m 6= 0. A congruence a.x ≡m b expresses

that a.x − b is divisible by m. The number m is called the modulus. A system of
linear congruences is a conjunction of congruences ai.x ≡m bi and is represented
in matrix form as Ax ≡m b for some integer matrix A and integer vector b.

A system of p linear congruences with n indeterminates is redundant if p > n

and defective if p < n. Two solutions x1,x2 of a system of linear congruences
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Ax ≡m b are congruous if for all i, x1[i] ≡m x2[i], otherwise, they are incongru-
ous.

Theorem 249. If every determinant of the augmented matrix of a redundant sys-
tem of linear congruences Ax ≡m b is divisible by the modulus q, while the
greatest divisor of the unaugmented matrix is prime to the modulus, the system is
resoluble and admits only one incongruous solution.

Proof. See [Smi61].

Theorem 250. If the greatest common divisor of the determinants of the unaug-
mented matrix of a non-redundant, non-defective system of linear congruences
Ax ≡m b is not divisible by the modulus q, the system is resoluble and admits
only one incongruous solution.

Proof. See [Smi61].

Lemma 251. Let A ∈ Zn×d be a prime matrix with n ≥ d. For all 0 < m ∈ N,
and x ∈ Zd, Ax ≡m 0 ⇔ x ≡m 0.

Proof. Suppose Ax ≡m 0. Since A is prime, according to Theorems 249 and
250, there is one and only one incongruous solution to Ax ≡m 0. Since 0 is a
solution, for all solutions x, x ≡m 0.

Suppose now that x ≡m 0. Then it is obvious that for any a ∈ Zd, a.x ≡m 0,
and therefore, Ax ≡m 0.

Next, we prove than for any linear system Ax = 0, whenever there is a com-
plete set of positive integer solutions, there is a fundamental set of positive integer
solutions.

Lemma 252. If {y1, . . . ,yd} is a complete set of solutions of the linear system
Ax = 0 and yi ∈ Nn for i ∈ {1, . . . , d}, then there exists a fundamental set of
solutions y

f
1 , . . . ,y

f
d such that yf

i ∈ Nn for i ∈ {1, . . . , d}.

Proof. We may suppose that the components of the vector y1, . . . ,yd ∈ Zn admit
no common divisor but unity; for if all components of a vector yi are divisible by
ki, the vectors y1/k1, . . . ,yd/kd are also a complete set of positive independent
solutions for Ax = 0.

We will construct a sequence of matrices Y(i), 1 ≤ i ≤ d, such that Y(1) =

(y1) , and for each i, Y(i) ∈ Zn×i and is prime, and the columns of Y(i) are a set
of positive independent solutions for Ax = 0. So, the columns of Y(d) form a
fundamental set of solutions for Ax = 0.
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The idea is to augment the matrix Y(k), which is supposed to be prime, by a
linear combination of the columns of Y(k) and yk+1 such that the resulting matrix
is prime. Let the determinants of the matrix Y(k) augmented with yk+1 admit µ
as greatest divisor. Determine x1, . . . , xk by the system of congruences

Y(k)






x1

...
xk




 ≡µ yk+1

which is always soluble from Theorem 249 since Y(k) is prime by recursive hy-
pothesis.

We can always choose the x1, . . . , xk to be negative by subtracting a finite
number of times µ.

Let Y(k+1) be Y(k) augmented with the vector y such that

y =
1

µ

(
yk+1 −

k−1∑

j=0

xjY
(k)[∗, j]

)

By construction, y ∈ Zn and Y(k+1) is prime. Indeed, adding to one column
of a square matrix a linear combination of other columns does not modify the
determinant, and the determinant of a square matrix is divided by µ if all elements
of a column are divided by µ.

In addition, since the elements of Y(k) and of yk+1 are nonnegative integers
by hypothesis, the elements of y are nonnegative integers. Finally, Y(k+1) is an
independent set of solutions of Ax = 0. Indeed, the k first columns are the
columns of Y(k) forming an independent set of solutions by recursive hypothesis,
and y is a solution since it is a linear combination of solutions and it is independent
of the first k columns since yk+1 is linearly independent of y1 . . .yk.

Lemma 253. Let S be a zero-SCC and let qz be the zero-state of S and let d =

dim(S). If 0 < d < n, there exists a prime matrix Y ∈ Nn×d such that for all
states q ∈ S and words vqzq ∈ LA(qz → q),

affQ({〈ov〉r,n | v ∈ LA(qz → q)}) ∩ Zn = {〈ovqzq〉r,n + Yc | c ∈ Zd}.

Proof. By definition, there exist u1, . . . , ud ∈ LA(qz → qz) such that the vectors
〈ou1〉r,n, . . . , 〈oud〉r,n are linearly independent.

From Corollary 174, there exists an integer matrix B such that rank(B) =

n− d and for all states q ∈ S and for all vqzq ∈ LA(qz → q),
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• {〈ov〉r,n | v ∈ LA(qz → q)} = {x ∈ Nn | B(x − 〈ovqzq〉r,n) = 0},

• affQ({〈ov〉r,n | v ∈ LA(qz → q)}) = {x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0}.

By definition, B〈ou〉r,n = 0 for u ∈ {u1, . . . , ud}, and since rank(B) = n−d and
〈ou1〉r,n, . . . , 〈oud〉r,n are linearly independent, the vectors 〈ou1〉r,n, . . . , 〈oud〉r,n
form a complete set of independent solutions of Bx = 0.

From Lemma 252, there exists a fundamental set of natural solutions of Bx =

0, and let {y1, . . . ,yd} be such a set. Let Y ∈ Nn×d with Y[i, j] = yj[i], for
i ∈ {1, . . . , n} and j ∈ {1, . . . , d}. By definition, Y is prime and {x ∈ Zn |

Bx = 0} = {Yc | c ∈ Zd}.
Let q be a state of S and let vqzq ∈ LA(qz → q). By definition of B, we have

affQ({〈ov〉r,n | v ∈ LA(qz → q)}) ∩ Zn = {x ∈ Zn | B(x − 〈ovqzq〉r,n) = 0}

= {〈ovqzq〉r,n +

d∑

i=1

µiyi | µi ∈ Z}

= {〈ovqzq〉r,n + Yc | c ∈ Zd}.

Theorem 254. Let S be a zero-SCC and let qz be the zero-state of S. Let d =

dim(S).
Each state of S has rd incoming transitions from states in S.

Proof. From Theorem 168, if d = n, qz is the unique state in S and for all α ∈ Σn
r ,

δ(qz, α) = qz. Therefore, there are rn incoming transitions in qz.
From Theorem 169, if d = 0, then qz is the unique state in S and there is only

one incoming transition in qz which is labeled by o.
Suppose now that 0 < d < n. Let q ∈ S and let vqzq ∈ LA(qz → q). From

Theorem 172 and Lemma 253, there exists an integer matrix B of rank n− d and
a prime matrix Y ∈ Nn×d such that

LA(qz → q) = {v | B(〈ov〉r,n − 〈ovqzq〉r,n) = 0} (7.57)

and

affQ({〈ov〉r,n | v ∈ LA(qz → q)})

= {x ∈ Qn | B(x − 〈ovqzq〉r,n) = 0} (7.58)
= {〈ovqzq〉r,n + Yc | c ∈ Zd} (7.59)
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Since all elements in Y are non-negative integers, for all vectors c ∈ {0, . . . , r−

1}d, 〈ovqzq〉r,n + Yc ≥ 0, and by definition of the encoding scheme, there exist
u ∈ (Σn

r )∗ and α ∈ Σn
r such that 〈ouα〉r,n = 〈ovqzq〉r,n + Yc. From (7.58) and

(7.59), B(〈uα〉r,n − 〈ovqzq〉r,n) = 0 and from (7.57), uα ∈ LA(qz → q).
Let c1, c2 ∈ {0, . . . , r−1}d, u1, u2 ∈ (Σn

r )∗ and α1, α2 ∈ Σn
r with 〈ou1α1〉r,n =

〈ovqzq〉r,n +Yc1 and 〈ou2α2〉r,n = 〈ovqzq〉r,n +Yc2. The following relation is im-
mediate.

(〈ou1α1〉r,n ≡r 〈ou2α2〉r,n) ⇔ (Yc1 ≡r Yc2) (7.60)
By definition of the encoding scheme, 〈ou1α1〉r,n ≡ 〈oα1〉r,n mod r and sim-
ilarly, 〈ou2α2〉r,n ≡r 〈oα2〉r,n. So, (〈oα1〉r,n ≡r 〈oα2〉r,n) ⇔ (α1 = α2), and
(7.60) is equivalent to

(α1 = α2) ⇔ (Yc1 ≡r Yc2). (7.61)

In addition, since Y is prime, according to Lemma 251, we have Yc1 ≡r Yc2 if
and only if c1 ≡r c2, and since c1, c2 ∈ {0, . . . , r − 1}d, by definition, (c1 ≡r

c2 ⇔ (c1 = c2). So, we have

α1 = α2 ⇔ c1 = c2 (7.62)

Since there are rd elements in {0, . . . , r − 1}d, there are at least rd different sym-
bols α such that B(〈ouα〉r,n − 〈ovqzq〉r,n) = 0 for some u ∈ (Σn

r )∗, and since
uα ∈ LA(qz → q) if B(〈ouv〉r,n − 〈ovqzq〉r,n) = 0, there are at least rd incoming
transitions in q, each with a different label.

Let c ∈ Zd such that ∃u ∈ (Σn
r )∗, ∃α ∈ Σn

r with 〈ouα〉r,n = 〈ovqzq〉r,n +

Yc. From (7.57), (7.58) and (7.59), B(〈ouα〉r,n − 〈ovqzq〉r,n) = 0 and uα ∈

LA(qz → q). By definition, ∃c′ ∈ {0, . . . , r − 1}d such that c′ = c mod r.
From above, ∃u′ ∈ (Σn

r )∗, α′ ∈ Σn
r with 〈ou′α′〉r,n = 〈ovqzq〉r,n + Yc′ and

B(〈ou′α′〉r,n − 〈ovqzq〉r,n) = 0. Since c′ = c mod r and since Y is prime,
according to Lemma 251, Yc ≡r Yc′, and therefore, 〈ouα〉r,n ≡r 〈ou′α′〉r,n, i.e.
α = α′. This implies that there are at most rd different symbols labeling incoming
transitions in q.

We conclude that there are rd incoming transitions in q, each with a different
label.

7.8.2 Proof of Lemma 178

Lemma 255. If C ⊆ {x ∈ Qn | x ≥ 0}, for each face F of C, we have

linQ(F ) = linQ

(
linQ(F ) ∩ Nn

)
.
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Proof. By definition, linQ

(
linQ(F ) ∩ Nn

)
⊆ linQ(F ). In addition, by definition,

for all x ∈ linQ(F ), there exists a finite set of elements x1, . . . ,xk ∈ F , such
that x is a linear combination of x1, . . . ,xk. Since x1, . . . ,xk ∈ Qn, there exists
a ∈ N such that ax1, . . . , axk ∈ Zn, and by definition of F , ax1, . . . , axk ∈ F .
Since F ⊆ C ⊆ {x ∈ Qn | x ≥ 0}, ax1, . . . , axk ∈ F ∩ Nn, and we conclude
that linQ(F ) = linQ

(
linQ(F ) ∩ Nn

)
.

7.8.3 Proof of Lemma 179

Lemma 256. Let qz be a zero-state of S and let Ip ⊆ {1, . . . , m} be such that
i ∈ Ip if and only if ai.x ≤ bi is pending in qz. Let F = {x ∈ C |

∧

i∈Ip
ai.x = 0}.

1. For all u ∈ LA(qI → qz), 〈u〉r,n ∈ F ,

2. There exists a word u ∈ (Σn
r )∗ with u ∈ LA(qI → qz) such that 〈u〉r,n ∈ F

and for all proper faces F ′ of F , 〈u〉r,n 6∈ F ′,

3. LA(qz → qz) = {v ∈ (Σn
r )∗ | 〈ov〉r,n ∈ linQ(F )},

4. linQ({〈ov〉r,n | v ∈ LA(qz → qz)}) = linQ(F )

Proof. From Lemma 160, there is a word uz ∈ LA(qI → qz) such that for all i ∈
Ip, ai.〈uz〉r,n = 0 and for all i ∈ {1, . . . , m} \ Ip, ai.〈uz〉r,n < min(bi,−‖a+

i ‖).
Also, from Theorem 162, we have

LA(qz → qz) = {u |
∧

i∈Ip

ai.〈ou〉r,n = 0}. (7.63)

1. From Theorem 156, for all words u in LA(qI → qz), 〈u〉r,n ∈ C ∩ Nn,
and by definition of Ip,

∧

i∈Ip
ai.〈u〉r,n = 0. Therefore, by definition of F ,

〈u〉r,n ∈ F .

2. By definition, for all proper faces F ′ of F , F ′ ⊆ {x ∈ F | a.x = 0} for
some inequation a.x ≤ b of Ax ≤ b not pending in qz. So, by definition of
uz, uz 6∈ F ′.

3. By definition, linQ(F ) ⊆ {x ∈ Qn |
∧

i∈Ip
ai.x = 0}, and therefore,

linQ(F ) ∩ Nn ⊆ {x ∈ Nn |
∧

i∈Ip

ai.x = 0}. (7.64)

Let y ∈ Nn such that
∧

i∈Ip
ai.y = 0. We will prove that y ∈ linQ(F )∩Nn.
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For each j ∈ {1, . . . , m}\Ip, let aj = aj.y. Let a = 1+maxj∈{1,...,m}\Ip(|aj|)

and let z ∈ Nn such that z = y + a〈uz〉r,n. By construction, (∀j ∈

{1, . . . , m} \ Ip)(aj.z < 0) and (∀i ∈ Ip)(ai.z = 0), implying that z ∈ F .
Since a〈uz〉r,n ∈ F , we have that y ∈ linQ(F ), and given that y ∈ Nn,
y ∈ linQ(F ) ∩ Nn. We have therefore proved that

linQ(F ) ∩ Nn ⊇ {x ∈ Nn |
∧

i∈Ip

ai.x = 0}. (7.65)

Combining (7.64) and (7.65), we deduce that

linQ(F ) ∩ Nn = {x ∈ Nn |
∧

i∈Ip

ai.x = 0}. (7.66)

Finally, from (7.63) and (7.66), we conclude that

{〈ov〉r,n | v ∈ LA(qz → qz)} = linQ(F ) ∩ Nn. (7.67)

4. From (7.67), we have

linQ({〈ov〉r,n | v ∈ LA(qz → qz)}) = linQ

(
linQ(F ) ∩ Nn

)
. (7.68)

From Lemma 178, linQ(F ) = linQ

(
linQ(F ) ∩ Nn

)
, and therefore,

linQ({〈ov〉r,n | v ∈ LA(qz → qz)}) = linQ(F ). (7.69)

7.8.4 Proof of Lemma 182

Lemma 257. For each face F of the characteristic cone C, there exists one and
only one zero-state, denoted qF , such that the encodings, possibly suffixed by a
sequence of o symbols, of all integer elements in F which do not belong to a
proper face of F label paths from qI to qF .

In addition, the state qF is such that

• LA(qF → qF ) ⊇ {v ∈ (Σn
r )∗ | 〈ov〉r,n ∈ linQ(F )}, and

• linQ({〈ov〉r,n | v ∈ LA(qF → qF )}) ⊇ linQ(F ).
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Proof. By definition, C = {x ∈ Qn | Ax ≤ 0} and

F = {x ∈ Qn | Ax ≤ 0 ∧ A′x = 0} (7.70)

where A′x ≤ 0 is a subsystem of Ax ≤ 0.
Recall that the inequations in Ax ≤ b are a1.x ≤ b1, . . . , am.x ≤ bm. Let

IF ⊆ {1, . . . , m} be the set of indices i such that ai.x ≤ bi is an implicit equation
in Ax ≤ 0 ∧ A′x = 0. By definition, for all x ∈ Qn, we have

(
∧

i∈IF

ai.x = 0

)

⇒ A′x = 0 . (7.71)

Any proper face F ′ of F is such that

F ′ ⊆ {x ∈ F | aj.x = 0},

for some j ∈ {1, . . . , m} \ IF .
So, for all encodings u of elements which do not belong to a proper face of F ,

we have
ai.〈u〉r,n = 0 if i ∈ IF
ai.〈u〉r,n < 0 if i ∈ {1, . . . , m} \ IF .

(7.72)

Thanks to Lemma 84, for all k ≥ |min(β,−‖ a+‖)|, we have

ai.〈uo
k〉r,n = 0 if i ∈ IF

ai.〈uo
k〉r,n ≤ min(b1,−‖ a+‖) if i ∈ {1, . . . , m} \ IF .

(7.73)

So, we have

uok ÷ L(A) = {w ∈ (Σn
r )∗ |

∧

i∈{1,...,m}

ai.〈uo
kw〉r,n ≤ bi} (7.74)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈uo
kw〉r,n ≤ bi} (7.75)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈ow〉r,n ≤ bi} (7.76)

Similarly, we have

uok+1 ÷ L(A) = {w ∈ (Σn
r )∗ |

∧

i∈{1,...,m}

ai.〈uo
k+1w〉r,n ≤ bi} (7.77)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈ow〉r,n ≤ bi} (7.78)
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Since {w ∈ (Σn
r )∗ |

∧

i∈IF
ai.〈ow〉r,n ≤ bi} 6= ∅, there exists a state QF such that

uok ∈ LA(qI → qF ), and since uok ÷ L(A) = uok+1L(A), δ(qF , o) = qF and qF
is a zero-state.

Since F is a cone, thanks to Lemma 28, from (7.70) and (7.71), we deduce

linQ(F ) = {x ∈ Qn |
∧

i∈IF

ai.x = 0} . (7.79)

From (7.76) and (7.79), we deduce that for all 〈ov〉r,n ∈ linQ(F ), v ∈ LA(qF →

qF ), i.e.
LA(qF → qF ) ⊇ {v ∈ (Σn

r )∗ | 〈ov〉r,n ∈ linQ(F )} (7.80)

Finally, thanks to Lemma 178, linQ(F ) = linQ

(
linQ(F )∩Nn

)
, and thanks to

(7.80), we have

linQ({〈ov〉r,n | v ∈ LA(qF → qF )}) ⊇ linQ({〈ov〉r,n | 〈ov〉r,n ∈ linQ(F )})

⊇ linQ(linQ(F ) ∩ Nn)

⊇ linQ(F ) .

7.8.5 Proof of Lemma 217

Lemma 258. For each face F ofC, affQ(〈αsign〉r,n+F ) = affQ

(
affQ(〈αsign〉r,n+

F ) ∩ {x ∈ Zn | signr(x) = αsign}
)
.

Proof. By definition, affQ(〈αsign〉r,n + F ) ⊇ affQ

(
affQ(〈αsign〉r,n + F ) ∩ {x ∈

Zn | signr(x) = αsign}
)
.

In addition, by definition, for all x ∈ affQ(〈αsign〉r,n + F ), there exists a
finite set of elements x1, . . . ,xk ∈ 〈αsign〉r,n + F , such that x =

∑k

i=1 aixi with
∑k

i=1 ai = 1. Therefore, x−〈αsign〉r,n =
∑k

i=1 ai(xi−〈αsign〉r,n). By definition,
xi − 〈αsign〉r,n ∈ F , for all i ∈ {1, . . . , k}, and so we have x − 〈αsign〉r,n ∈

linQ(F ).
Since x1, . . . ,xk ∈ Qn, there exists a ∈ N such that ax1, . . . , axk ∈ Zn,

and since F is the face of a cone, it is itself a cone, and by definition, a(x1 −

〈αsign〉r,n), . . . , a(xk−〈αsign〉r,n) ∈ F ∩Zn. So, by definition, 〈αsign〉r,n+a(x1−

〈αsign〉r,n), . . . , 〈αsign〉r,n + a(xk − 〈αsign〉r,n) ∈ 〈αsign〉r,n + F ∩ Zn. Thanks to
Lemma 193, signr

(
〈αsign〉r,n +a(xi−〈αsign〉r,n)

)
= αsign, for all i ∈ {1, . . . , k}

and therefore, 〈αsign〉r,n + a(xi − 〈αsign〉r,n) ∈ affQ(〈αsign〉r,n + F ) ∩ {x ∈ Zn |
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signr(x) = αsign}. Also, by definition, 〈αsign〉r,n ∈ affQ(〈αsign〉r,n + F ) ∩ {x ∈

Zn | signr(x) = αsign}. So, by construction, we have

x =
1

a

(
k∑

i=1

ai · axi

)

=
1

a

(

a〈αsign〉r,n +

k∑

i=1

ai · a(xi − 〈αsign〉r,n)

)

=
1

a

(

a〈αsign〉r,n − 〈αsign〉r,n +

k∑

i=1

ai(〈αsign〉r,n + a(xi − 〈αsign〉r,n)

)

=
1

a

(

(a− 1)〈αsign〉r,n +

k∑

i=1

ai(〈αsign〉r,n + a(xi − 〈αsign〉r,n)

)

=
1

a

(

(a− 1)y0 +

k∑

i=1

aiyi

)

with y0, . . . ,yk ∈ affQ(〈αsign〉r,n + F ) ∩ {x ∈ Zn | signr(x) = αsign}. Also,
1
a
(a − 1 +

∑k

i=1 ai) = 1. So, x ∈ affQ

(
affQ(〈αsign〉r,n + F ) ∩ {x ∈ Zn |

signr(x) = αsign}
)
.

7.8.6 Proof of Lemma 221

Lemma 259. For each face F of the characteristic cone C, there exists one and
only one sign-state, denoted qF , such that the encodings, possibly suffixed by a
sequence of αsign symbols, of all integer elements in 〈αsign〉r,n + F which do not
belong to a proper face of 〈αsign〉r,n + F label paths from qI to qF .

In addition, the state qF is such that

• LA(qF → qF ) ⊇ {v ∈ (Σn
r )∗ | 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n + F )}, and

• affQ({〈αsignv〉r,n | v ∈ LA(qF → qF )}) ⊇ affQ(〈αsign〉r,n + F ).

Proof. By definition, C = {x ∈ Qn | Ax ≤ 0} and

F = {x ∈ Qn | Ax ≤ 0 ∧ A′x = 0} (7.81)

where A′x ≤ 0 is a subsystem of Ax ≤ 0.
Recall that the inequations in Ax ≤ b are a1.x ≤ b1, . . . , am.x ≤ bm. Let

IF ⊆ {1, . . . , m} be the set of indices i such that for all x ∈ Qn, x ∈ F ⇒ ai.x =
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0. By definition, for all x ∈ Qn, we have
(
∧

i∈IF

ai.x = 0

)

⇒ A′x = 0 . (7.82)

Any proper face F ′ of 〈αsign〉r,n + F is such that

F ′ ⊆ {x ∈ 〈αsign〉r,n + F | aj.(x − 〈αsign〉r,n) = 0},

for some j ∈ {1, . . . , m} \ IF .
So, for all encodings u of elements of 〈αsign〉r,n +F which do not belong to a

proper face of 〈αsign〉r,n + F , we have

ai.(〈u〉r,n − 〈αsign〉r,n) = 0 if i ∈ IF
ai.(〈u〉r,n − 〈αsign〉r,n) < 0 if i ∈ {1, . . . , m} \ IF .

(7.83)

By definition of the encoding scheme, we have

〈uαsign〉r,n = r〈u〉r,n + 〈oαsign〉r,n = r〈u〉r,n + (1 − r)〈αsign〉r,n.

Therefore, we deduce that

ai.〈uαsign〉r,n = ai.〈αsign〉r,n if i ∈ IF
ai.〈uαsign〉r,n < ai.〈αsign〉r,n if i ∈ {1, . . . , m} \ IF .

(7.84)

Thanks to Lemma 84, for all k ≥ |min(β,−‖ a+‖)|, we have

ai.〈uα
k
sign〉r,n = 0 if i ∈ IF

ai.〈uα
k
sign〉r,n ≤ min(b1,−‖ a+‖) if i ∈ {1, . . . , m} \ IF .

(7.85)

So, we have

uαk
sign ÷ L(A) = {w ∈ (Σn

r )∗ |
∧

i∈{1,...,m}

ai.〈uα
k
signw〉r,n ≤ bi} (7.86)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈uα
k
signw〉r,n ≤ bi} (7.87)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈αsignw〉r,n ≤ bi} (7.88)

Similarly, we have

uαk+1
sign ÷ L(A) = {w ∈ (Σn

r )∗ |
∧

i∈{1,...,m}

ai.〈uα
k+1
signw〉r,n ≤ bi} (7.89)

= {w ∈ (Σn
r )∗ |

∧

i∈IF

ai.〈αsignw〉r,n ≤ bi} (7.90)
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Since {w ∈ (Σn
r )∗ |

∧

i∈IF
ai.〈αsignw〉r,n ≤ bi} 6= ∅, there exists a state qF

such that uαk
sign ∈ LA(qI → qF ), and since uαk

sign ÷ L(A) = uαk+1
signL(A),

δ(qF , αsign) = qF and qF is a sign-state.
Since F is a cone, thanks to Lemma 215, from (7.81) and (7.82), we deduce

affQ(〈αsign〉r,n + F ) = {x ∈ Qn |
∧

i∈IF

ai.(x − 〈αsign〉r,n) = 0} . (7.91)

From (7.88) and (7.91), we deduce that for all 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n +F ),
v ∈ LA(qF → qF ), i.e.

LA(qF → qF ) ⊇ {v ∈ (Σn
r )∗ | 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n + F )} (7.92)

Finally, thanks to Lemma 217, affQ(〈αsign〉r,n +F ) = affQ

(
affQ(〈αsign〉r,n +

F ) ∩ {x ∈ Zn | signr(x) = αsign}
)
, and thanks to (7.92), we have

affQ({〈αsignv〉r,n | v ∈ LA(qF → qF )})

⊇ affQ({〈αsignv〉r,n | 〈αsignv〉r,n ∈ affQ(〈αsign〉r,n + F )})

⊇ affQ

(
affQ(〈αsign〉r,n + F ) ∩ {x ∈ Zn | signr(x) = αsign}

)

⊇ affQ(〈αsign〉r,n + F ) .

7.8.7 Proof of Theorem 243

Theorem 260. For each q ∈ Q, let (Xq, Yq) be an extended Hilbert basis gener-
ating Sq

A + (C ∩ Zn), and let QC be the set of states q such that there is a path
from q to a sign-state labeled by a sequence of αsign symbols.

LetX ′
qαsign

=
{
r · x + 〈oα〉r,n | ∃q ∈ Q,α ∈ Σn

r

(
δ(q, α) = qαsign

∧ x ∈ Xq

)}

and let qαsign
∈ Q such that δ(qI, αsign) = qαsign

.

The set −〈αsign〉r,n +
(

X ′
qαsign

∪
⋃

q∈QC
Xq

)

is an Hilbert basis generating

C ∩ Zn.

Proof. We show that coneZ

(

−〈αsign〉r,n +
(

X ′
qαsign

∪
⋃

q∈QC
Xq

))

= C∩Zn by
proving the mutual inclusion.

• Thanks to Theorem 234, we have

C ∩ Zn = −〈αsign〉r,n + ∪q∈QC

(
Sq
A + (C ∩ Zn)

)
. (7.93)
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By definition,Xq ⊆ Sq
A+(C∩Zn). Also, qαsign

∈ QC andX ′
qαsign

⊆ S
qαsign

A .
So, we have

−〈αsign〉r,n +

(

X ′
qαsign

∪
⋃

q∈QC

Xq

)

⊆ C ∩ Zn. (7.94)

Since C is a cone, by definition, we have

coneZ

(

−〈αsign〉r,n +

(

X ′
qαsign

∪
⋃

q∈QC

Xq

))

⊆ C ∩ Zn. (7.95)

• Let Ymin be the minimal Hilbert basis generating C ∩ Zn and let y ∈ Ymin.
Since C is pointed, thanks to Lemma 40, for each q ∈ Q, there exists a
minimal extended Hilbert basis (Xq,min, Ymin) generating the set Sq

A + (C ∩

Zn) with Xq,min ⊆ Xq. Thanks to Theorem 240, for each x ∈ Xq,min, there
exists an encoding u of x labeling an acyclic path from qI to q, and since A
is reduced minimal, u is the minimal encoding of x.
Let z such that

z = 〈αsign〉r,n + y. (7.96)
Thanks to Theorem 199, there exists a state qz ∈ QC such that z ∈ Sqz

A .
By definition, z = x + y′ for some x ∈ Xqz,min and y′ ∈ C ∩ Zn. There
are two possibilities, either x = 〈αsign〉r,n or x = z. Indeed, otherwise,
one would have y = x − 〈αsign〉r,n + y′ with both x − 〈αsign〉r,n and y′ in
(C ∩ Zn) \ {0}, and therefore, y would not be in the minimal Hilbert basis
generating C ∩ Zn.

– Suppose that x = z. Then we have

y ∈ −〈αsign〉r,n +Xqz. (7.97)

– Suppose that x = 〈αsign〉r,n. By definition, the minimal encoding
of x is αsign and thanks to Theorem 240, qz = δ(qI, αsign), and by
definition, qz = qαsign

. Let u be the minimal encoding of z. We have

〈u〉r,n = z. (7.98)

We prove that there exist a state q′ ∈ Q and a symbol α ∈ Σn
r with

δ(q′, α) = qαsign
such that z = r · z′ + 〈oα〉r,n for some z′ ∈ Xq′,min,

and this implies that

y ∈ −〈αsign〉r,n +X ′
qαsign

. (7.99)
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∗ Suppose that |u| = 1. This case is not possible. Indeed, since y is
in the minimal Hilbert basis of C ∩ Zn, y 6= 0, and therefore, by
construction, z 6= 〈αsign〉r,n, i.e. u 6= αsign and |u| > 1.

∗ Suppose that |u| = 2. Then, by definition, u = αsignα and
δ(qαsign

, α) = qαsign
. Also, by definition of the encoding scheme,

〈u〉r,n = r · 〈αsign〉r,n + 〈oα〉r,n, and from above, 〈αsign〉r,n ∈

Xqαsign
,min.

∗ Suppose that |u| ≥ 3. Then, by definition, u = αsignvα for some
v ∈ (Σn

r )∗. Let q ∈ Q such that δ̂(qI, αsignv) = q. Since u is a
minimal encoding, 〈αsignv〉r,n 6= 〈u〉r,n and by definition of the
encoding scheme,

〈u〉r,n = r · 〈αsignv〉r,n + 〈oα〉r,n. (7.100)

By definition,
〈αsignv〉r,n = xv + yv , (7.101)

with xv ∈ Xq,min and yv ∈ C ∩ Zn. Thanks to Theorem 240, the
minimal encoding of xv labels a path from qI to q and thanks to
Lemma 192, the sign symbol of the minimal encoding is αsign.
Let αsignw be the minimal encoding of xv. By construction and
by definition of the encoding scheme, we have

y = −〈αsign〉r,n + r · (xv + yv) + 〈oα〉r,n

= −〈αsign〉r,n + r · 〈αsignw〉r,n + 〈oα〉r,n + r · yv

= −〈αsign〉r,n + 〈αsignwα〉r,n + r · yv

By construction, αsignwα labels a path from qI to qαsign
∈ QC ,

and therefore, thanks to Theorem 199, 〈αsignwα〉r,n ∈ 〈αsign〉r,n+

(C ∩ Zn), i.e. 〈αsignwα〉r,n − 〈αsign〉r,n ∈ C ∩ Zn. Since C is
pointed, 〈αsignwα〉r,n − 〈αsign〉r,n + yv 6= 0. So, since y is in the
minimal Hilbert basis of C ∩ Zn, we have

yv = 0. (7.102)

Indeed, otherwise, y = y1 + y2, with y1 = 〈αsignwα〉r,n −

〈αsign〉r,n + yv 6= 0 and y2 = (r − 1) · yv 6= 0, violating the def-
inition of the minimal Hilbert basis. From (7.102), since yv = 0

and y = −〈αsign〉r,n + 〈u〉r,n, we deduce that

〈u〉r,n = r · xv + 〈oα〉r,n , (7.103)
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with xv ∈ Xq,min ⊆ Xq, q ∈ QC and δ(q, α) = qαsign
.

From (7.97) and (7.99), we deduce that for all y in the minimal Hilbert basis
Ymin generating C ∩ Zn, we have

y ∈

(

−〈αsign〉r,n +

(

X ′
qαsign

∪
⋃

q∈QC

Xq

))

(7.104)

By definition, coneZ(Ymin) = C ∩ Zn, and we have that

coneZ

(

−〈αsign〉r,n +

(

X ′
qαsign

∪
⋃

q∈QC

Xq

))

⊆ C ∩ Zn. (7.105)

From (7.94) and (7.106), we conclude that

coneZ

(

−〈αsign〉r,n +

(

X ′
qαsign

∪
⋃

q∈QC

Xq

))

= C ∩ Zn. (7.106)



Chapter 8

General Conclusion

8.1 Summary

The main results of this thesis are new algorithms for extracting information about
Presburger-definable sets represented by Number Decision Diagrams (NDDs).
The extracted information is a quantifier-free Presburger formula (or a set of gen-
erators) corresponding to the represented set or an over-approximation of this set.

In Chapter 6, we have presented two algorithms, QAFFINEHULL and
ZAFFINEHULL, that take as input a reduced (non-deterministic) NDD A using
the synchronous encoding scheme and compute, in polynomial time, the affine
hulls over Q and over Z respectively of the set represented by A.

The restrictions that the NDDs be reduced and use the synchronous encoding
scheme are not constraining. Indeed, any NDD can be reduced in linear time,
and similarly, any NDD using the reverse synchronous encoding scheme can be
converted into an NDD using the synchronous encoding scheme representing the
same set in linear time.

We conclude that computing the affine hull, whether over Q or Z, presents the
advantages of being fast and of generating simple representations, i.e. a conjunc-
tion of linear equations (and congruences over Z) and a set of at most n generators,
where n is the number of components of the vectors. However, formulas corre-
sponding exactly to the represented sets might be required.

In Chapter 7, we have presented an algorithm GENERATEFORMULA comput-
ing a formula corresponding exactly to the set represented by a reduced minimal
NDD A using the synchronous encoding scheme, provided that the represented
set is the set of integer elements of a convex polyhedron P , i.e. the integer solu-
tions of a conjunction of linear inequations. The algorithm exploits the property
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that P is decomposable into P = Q + C, where C is the characteristic cone of P
and Q is a polytope. When dealing with the integer elements in P , i.e. P ∩ Zn,
this property translated into the existence of a pair of finite sets (Scst, Sper), where
Sper is an Hilbert basis, such that the positive integer combinations of elements in
those sets correspond exactly to P ∩ Zn, more precisely

P ∩ Zn =
⋃

xi∈Scst

{xi +
∑

yj∈Sper

aj · yj | ai ∈ N}.

Two important components of the algorithm COMPUTEFORMULA are the func-
tions CHARCONEFORMULA and COMPUTEBASIS.

• The function CHARCONEFORMULA, relying on detailed structural proper-
ties of the NDD, generates a system of homogeneous inequations Cx ≤ 0

corresponding to the characteristic cone of P in polynomial time.

• The function COMPUTEBASIS computes a pair of finite set (Scst, Sper) gen-
erating P ∩ Zn. In the worst-case, the number of elements in the set Scst is
proportional to the number of acyclic paths in the NDD and this lead to an
exponential worst-case complexity.

Combining those results, the formula generated by COMPUTEFORMULA, corre-
sponding exactly to the set P ∩ Zn, is

∨

xi∈Scst

C(x − xi) ≤ 0.

Interestingly, thanks to [Kla04b], this type of quantifier-free Presburger formula
can be converted back into NDDs in polynomial time, as recalled in Section 5.4.

Note that the functions CHARCONEFORMULA and COMPUTEBASIS handle
NDDs accepting encodings with the same sign. In order to deal with the case of
multiple signs, one has to perform the computation for each sign and merge the
results.

The overall algorithm has been tested with a prototype implementation, and
the experimental results are very encouraging : the generation of formulas and
bases corresponding to NDDs with more than 100,000 states can be achieved in
seconds. Experimental results suggest that the actual cost is proportional to the
size of the NDD as well as to both the number of elements in the basis and their
encoding lengths, and those are in general much smaller compared to the num-
ber of acyclic paths. This explains why our algorithm performs well in practice
despite an exponential worst-case complexity.
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8.2 Discussion

We briefly recall the main elements presented in Sections 6.5.1 and 7.7.1.
An algorithm computing the affine hull over Q of the set represented by an

NDD A can be deduced from [MS04] in which a method for computing the affine
relations holding at control locations in affine programs is given. The time com-
plexity of this adapted algorithm is O(|∆| · n3), where ∆ is the transition relation
of A and n is the number of components of the vectors in the represented set.

The problem of computing the affine hull over Q of a set represented by an
NDD (when restricting to positive integer elements) has been also addressed in
[Ler04a]. The time complexity of the algorithm in [Ler04a] is O(|∆| ·n4). So, our
main contribution with respect to computing affine hull over Q is the presentation
of an algorithm of better time complexity than existing work. Indeed, the time
complexity of our algorithm QAFFINEHULL is O(|∆| · n) (or O(|∆| · n2) if one
requires at most n generators or a set of equations).

An algorithm computing the affine hull over Z of a set represented by an NDD
can be deduced from [Gra91] which presents an algorithm for computing the
affine relations as well as the linear congruences holding at some control loca-
tions in affine programs. Although the algorithm always terminates, the number
of execution steps is not bounded. By using modular arithmetic, our algorithm
ZAFFINEHULL computes the affine hull over Z in polynomial time. This was
made possible by exploiting specific properties of NDDs.

In [Ler03], an algorithm computing another over-approximation, the semi-
affine hull, has been presented. The semi-affine hull S ′ of a set S is the smallest
union of affine spaces over Q including S, and so, S ⊆ S ′ ⊆ affQ(S), i.e., this
over-approximation is closer to the original set. The number of affine spaces in a
semi-affine space is not bounded, and in particular, the semi-affine hull of a finite
set is the set itself. Therefore, given an NDD representing a finite set, the size of
the semi-affine hull is proportional to the number of acyclic paths, i.e., exponential
in the number of states. This explains the exponential complexity of the algorithm
computing semi-affine hulls presented in [Ler03].

An algorithm computing the convex hull over Q has been presented in [FL05].
The time complexity is also exponential and the practical costs are not clear.

There is also other work on the computation of formulas corresponding exactly
to sets represented by NDDs. In [Lug04], an algorithm has been proposed which
computes the semi-linear set corresponding to the set SA represented by an NDD
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A, with the restriction that

SA =
⋃

xi∈Scst

{xi +
∑

yj∈Sper

aj · yj | ai ∈ N}.

for some finite sets of vectors Scst and Sper. Note that SA is not necessarily the
set of integer elements of a polyhedron since Sper is not restricted to be an Hilbert
basis.

Interestingly, the algorithm does not depend on the implementation details
associated to NDDs, such as the encoding scheme, however its computational
cost (double exponential worst case complexity) prevents its use in practice.

More recently, [Ler04b, Ler05] detail a polynomial algorithm computing a
Presburger formula corresponding to the set represented by a deterministic NDD
using the reverse synchronous encoding scheme given as input. The sole restric-
tion on the input NDD is that it must represent a subset of Nn for some n ∈ N.
Although the complexity of the algorithm is polynomial, the practical cost are
significant. Indeed, the computational cost is at least |Q|4, where Q is the set of
states, and this leads to huge numbers when considering NDDs with thousands
of states. Another aspect which may prevent the practical applications of the al-
gorithm is the presence of a polynomial number of quantifiers in the generated
formula.

8.3 Future Work

The general problem of extracting information from NDDs in a practical way is
far from closed.

Although already discussed in [FL05], we think that more can be done with
respect to the computation of the convex hull over Q of sets represented by NDDs.
Given that the convex hull is always a polyhedron, it might appear interesting to
adapt the algorithm of [CH78], in a way similar to what we have done regarding
the algorithm of [MS04], and modify the widening criterion based on the proper-
ties of the encoding scheme. The general idea would be to compute for each state
q the smallest polyhedron Pq such that for all encoding u labeling a path from an
initial state to q, we have 〈u〉r,n ∈ Pq. One could also consider the convex hull
over Z.

Also, the problem of directly generating a formula corresponding exactly to
the set represented by an NDD is still open when using the synchronous encoding
scheme. We think it might be interesting to tackle some restricted classes before
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considering the general problem. In particular, minimal NDDs corresponding to
integer elements satisfying a Boolean combination of inequations present inter-
esting similarities with those corresponding to convex polyhedra. The concepts
of sign-state, sign-loop, sign-SCC, representative matrix are unchanged, and this
might be inferred from the fact that minimal NDDs representing integer elements
of polyhedra are permutation-free as proved in Lemma 86. The concept of pend-
ing inequations defined as inequations that constrain the language accepted from
a sign-state can be adapted naturally. The major difference is that one can not gen-
eralize easily the notion of characteristic cone and distinguish a single infinite part
for the whole set. However, it can be proved from the construction algorithm given
in Section 5.4 that, in any minimal NDD using the synchronous encoding scheme
representing the integer solutions of a Boolean combination of inequations, the
set of encodings labeling paths from the initial state to some state q corresponds
also to the integer elements satisfying a Boolean combination of inequations. Our
intuition is that one could compute for each state q a formula ϕq(x) whose integer
solutions are the vectors whose encodings label paths from the initial state to the
state q and such that ϕq is a Boolean combination of inequations ai.x ≤ b where
the vectors of coefficients ai could be computed from representative matrices of
the sign-SCCs which are crossed when following paths from the initial state and
q.

Another restricted class that might be of interest is the class of sets that can
be represented by a conjunction of inequations and congruence relations. When
restricting to encodings having one particular sign symbol, [Lug04] proved that
a set S in this class can be generated from a pair of finite sets (Scst, Sper), in a
way similar to what is done in the case of convex polyhedra. Our intuition is that
the properties and the algorithms presented in Chapter 7 can be adapted when
considering NDDs representing integer solutions of systems of inequations and
congruence relations. For example, sign-loop could have a length greater than
one and the representative matrix should probably be a representative system of
equations and congruence relations. Also, when dealing with integer elements in
polyhedra, we associated a vector space to some strongly connected components
of the NDD. The generalization could lead to associate Z-modules rather than
vector spaces to strongly connected components.

Finally, our work on the structure of NDDs representing the integer elements
of polyhedra, and in particular the association of vector spaces over Q with some
strongly connected components, has shown that one might use formulas to repre-
sent at least part of an NDD, raising the possibility of a more compact representa-
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tion for representing sets of integer vectors.
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Université de Mons, Belgium, 1985.

221



222 BIBLIOGRAPHY

[BRW98] B. Boigelot, S. Rassart, and P. Wolper. On the expressiveness of real
and integer arithmetic automata (extended abstract). In ICALP, pages
152–163, 1998.

[Buc60] J.R. Buchi. Weak second-order arithmetic and finite automata.
Zeitschrift Math. Logik und Grundlagen der Mathematik, 6:66–92,
1960.

[BW01] A. Bockmayr and V. Weispfenning. Solving numerical constraints.
In A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning, pages 751–842. Elsevier Science, 2001.

[CF89] M. Clausen and A. Fortenbacher. Efficient solution of linear dio-
phantine equations. Journal of Symbolic Computation, 8:201–216,
1989.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In Conference Record of the
Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97. ACM Press, New York, NY,
1978.

[Clu65] E.J. Cluskey. Introduction to the theory of switching circuits. Mc-
GrawHill, 1965.

[Cob69] A. Cobham. On the base-dependence of sets of numbers recogniz-
able by finite automata. Mathematical Systems Theory, 3:186–192,
1969.

[Dom91] E. Domenjoud. Solving systems of linear diophantine equations: An
algebraic approach. In Mathematical Foundations of Computer Sci-
ence, pages 141–150, 1991.

[End01] H. B. Enderton. A Mathematical Introduction to Logic. Academic
Press, New-York, second edition, 2001.

[FL05] A. Finkel and J. Leroux. The convex hull of a number decision di-
agram is a computable polyhedron. To appearn in Information Pro-
cessing Letters, 2005.



BIBLIOGRAPHY 223

[Fra94] J.B. Fraleigh. A First Course in Abstract Algebra. Addison-Wesley,
1994.

[GP79] F.R. Giles and W.R. Pulleyblank. Total dual integrality and integer
polyhedra. Linear Algebra and its Applications, 25:191–196, 1979.

[Gra91] P. Granger. Static analysis of linear congruence equalitites among
variables of a program. In S. Abramsky and T. S. E. Maibaum,
editors, TAPSOFT’91: Proc. of the International Joint Conference
on Theory and Practice of Software Development, pages 169–192.
Springer, Berlin, Heidelberg, 1991.

[GS66] S. Ginsburg and E.H. Spanier. Semigroups, Presburger formulas and
languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[Har65] M.A. Harrison. Introduction to switching and automata theory. Mc-
GrawHill, 1965.
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Fédéré en Vérification, 2005.

[Lat05b] L. Latour. Computing affine hulls over Q and Z from sets repre-
sented by number decision diagrams. In Proceedings of 10th In-
ternational Conference on Implementations and Applications of Au-
tomata, number 3845 in Lecture Notes in Computer Science, pages
213–224, 2005.

[Ler03] J. Leroux. Algorithmique de la vérification des systèmes à compteurs.
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