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SUMMARY 
 

Managing pain and promoting recovery in patients with disorders of consciousness (DOC) is a real 

clinical challenge. The first aim of my thesis was to improve pain management by improving our knowledge 

of (i) potential pain assessment tools and (ii) spasticity, a potential source of pain that may also prevent 

further recovery in this population. The second aim of my work was to investigate potential pharmacological 

and non-pharmacological treatments for promoting recovery in patients with DOC. 

1. Symptomatic treatments: pain and spasticity 

Pain management in non-communicative patients is a real challenge. Clinically, it is difficult to adapt 

treatment, since it is not possible to obtain feedback from the patients. Previous studies have shown that 

the Nociception Coma Scale-Revised (NCS-R), a scale to assess pain and nociception in patients with DOC, 

is a sensitive tool to assess responses to noxious stimulation. To further investigate the neural correlates of 

the scale, we assessed whether NCS-R scores could reflect nociceptive brain processing in this population. 

We investigated the correlation between NCS-R total scores and cerebral metabolism in areas involved in 

pain processing. Results showed a positive correlation between NCS-R total scores and brain metabolism in 

the posterior part of the anterior cingulate cortex - an area known to be involved in the cognitive and 

affective aspects of pain processing. This result supports the hypothesis that the NCS-R is related to cortical 

processing of pain and may constitute an appropriate behavioural tool to assess the efficacy of treatment 

and monitor nociception and pain in non-communicative patients.  

Apart from detecting pain in this population, there is also the challenge of identifying and treating 

the possible sources of pain. One potential source of discomfort is spasticity, which may even reduce the 

patients’ ability to show signs of consciousness at the bedside. Though spasticity is known to be very 

common in patients following a stroke or acquired brain damage, we know very little about its driving 

mechanisms and prevalence in DOC. As a result, there is also a lack of guidelines regarding pharmacological 

treatment and rehabilitation. In a cross-sectional study involving 65 patients in unresponsive wakefulness 

syndrome/vegetative state (UWS/VS) and minimally conscious state (MCS), we reported that 89% of the 

patients showed spasticity in at least one limb and 62% of the patients had severe invalidating spasticity 

based on the Modified Ashworth Scale. Interestingly, we also observed a positive correlation between the 
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severity of spasticity and pain scores observed during care (as measured by the NCS-R), highlighting the 

importance of standardized management of pain and spasticity in this population. Finally, we identified a 

linear positive correlation between the severity of spasticity and time since injury, emphasizing the 

importance of prolonged and revised treatments in chronic stages. Recently, we conducted a single-blind 

randomized sham-controlled trial aiming to assess the efficacy of soft splints on upper limb spasticity in 

chronic patients with DOC. A positive effect of the splints on intrinsic hand muscle spasticity (as assessed by 

the Modified Ashworth Scale) and hand opening was observed after wearing the splints for 30 minutes. 

These findings suggest that soft splints, through their positive effects on muscle hypertonia, their comfort 

and simple application, could be easily and efficiently added to the patient’s daily management to decrease 

spasticity. 

2. Curative treatments: zolpidem and transcranial direct current stimulation 

Zolpidem, a short-acting non-benzodiazepine hypnotic drug, has been shown to induce paradoxical 

effect in some rare cases of patients in DOC, promoting recovery of behavioural signs of consciousness. 

Using Positron Emission Tomography (PET), we assessed zolpidem-induced changes in regional brain 

metabolism in three chronic MCS patients with known zolpidem response (i.e. temporary emergence from 

MCS). The aim of this study was to better understand the neural mechanisms underlying such a recovery. 

Our results highlighted increased metabolism within the prefrontal areas following zolpidem intake as 

compared with placebo. This finding corroborates the key role of the prefrontal cortices in the recovery of 

consciousness.  

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has 

been previously reported to transiently improve working memory and attention by stimulating the left 

dorsolateral prefrontal cortex (DLPF) in patients with stroke as well as Parkinson’s and Alzheimer’s disease. 

However, no studies have investigated its ability to promote recovery in patients with DOC. We performed 

the first double-blind randomized placebo-controlled clinical trial in patients in UWS/VS and MCS and 

assessed the effect on the level of consciousness (as measured by the Coma Recovery Scale-Revised) of a 

single session of anodal tDCS over the left DLPF cortex. This crossover trial showed that, at the group level, 

tDCS could promote recovery of behavioural signs of consciousness in patients in MCS but not in UWS/VS. 

Forty three percent of patients in MCS (13/30) responded to the stimulation – i.e. showed a new sign of 
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consciousness (e.g. visual pursuit, object localization or recognition, localisation to pain or command 

following) after the real tDCS that was not present before, nor after the sham tDCS. Out of these 13 patients, 

5 were in this state for more than one year, suggesting that tDCS could still be effective after long time 

periods in a MCS. In order to improve our understanding of the underlying mechanisms of tDCS, we then 

retrospectively investigated why some patients showed tDCS-induced improvement (i.e. responders), while 

others did not. Neuroimaging data (PET and structural magnetic resonance imaging – MRI) allowed us to 

compare residual brain metabolism and grey matter volume in responders versus non-responders. We 

found that the transient recovery of signs of consciousness following tDCS in patients with chronic MCS (> 

3 months) seems to require residual metabolic activity and residual grey matter in (i) the presumed 

stimulated area (i.e. left DLPFC), (ii) distant cortical areas (i.e. precuneus), and (iii) subcortical brain regions 

(i.e. thalamus) known to be involved in awareness and arousal. These findings suggest that tDCS is a feasible 

treatment that may promote recovery of new signs of consciousness in patients with DOC, although it also 

suggests that some patients may be more suited to benefit from tDCS than others. We therefore need to 

deepen our understanding of the neuronal correlates underlying its effect, especially in patients with brain 

lesions, in order to provide guidelines for clinicians. 

In this work, we highlighted several potential pharmacological and non-pharmacological treatments 

that may be helpful for improving patients’ quality of life and promoting recovery in DOC. Future studies 

should provide guidelines for standardized management and treatment in DOC in order to improve both 

motor and cognitive rehabilitation in this population.  
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RÉSUMÉ 

 

Traiter la douleur et stimuler la récupération des patients en état de conscience altérée (ECA) est 

un vrai défi pour les chercheurs et les cliniciens. Le premier but de ma thèse visait à améliorer la gestion de 

la douleur en enrichissant nos connaissances (i) sur les outils cliniques d’évaluation de la douleur et (ii) sur 

la spasticité, une source potentiel de douleur pouvant entraver la récupération des patient en ECA. Le 

second objectif de mon travail était d’investiguer les effets de traitements pharmacologiques et non-

pharmacologiques sur l’amélioration de la récupération de la conscience au sein de cette population de 

patients. 

1. Traitements symptomatiques : douleur et spasticité 

Cliniquement, il est difficile d’adapter de manière adéquate un traitement chez les patients non-

communicants, puisqu’il est impossible d’obtenir un feed-back de leur part sur leur ressenti. Des études ont 

montré que la Nociception Coma Scale Revised (NCS-R), évaluant la douleur et la nociception des patients 

en ECA, est un outil adéquat permettant d’apprécier les réponses des patients à des stimuli douloureux. 

Afin d’approfondir l’étude des corrélats neuronaux de cette échelle, nous avons évalué si les scores de la 

NCS-R pouvaient refléter les processus neuronaux du traitement de la douleur au sein de cette population 

de patients. Pour ce faire, nous avons étudié la corrélation entre les scores totaux de la NCS-R et le 

métabolisme cérébral régional des aires impliquées dans le traitement de la douleur chez des patients en 

ECA. Les résultats ont montré une corrélation positive entre les scores totaux de la NCS-R et le métabolisme 

cérébral de la partie postérieure du cortex cingulaire antérieur, une région connue pour son implication 

dans les processus cognitifs et affectifs de la gestion de la douleur. Ces résultats confirment l’hypothèse que 

la NCS-R est liée au traitement cortical de la douleur. Cette échelle pourrait ainsi constituer un outil 

comportemental approprié pour le contrôle de la douleur chez les patients non-communicants.  

En parallèle à la détection de la douleur au sein de cette population, notons également le défi 

d’identifier et de traiter les possibles sources de douleur. L’une d’elles est la spasticité, qui en plus d’être 

inconfortable pour le patient, peut également réduire les capacités de celui-ci à exprimer des signes de 

conscience. Bien que la spasticité soit courante chez les individus ayant été victime d’un accident vasculaire 
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cérébral ou d’autres lésions cérébrales, nous en connaissons peu sur les mécanismes qui induisent la 

spasticité, ni sur sa prévalence chez les patients en ECA. En conséquence, on observe un manque de 

recommandations thérapeutiques par rapport à la prise en charge de ces patients, qu’elles soient 

pharmacologique et/ou rééducative. C’est pourquoi nous avons réalisé une première étude évaluant la 

sévérité de la spasticité chez des patients en ECA. Dans cette étude portant sur 65 patients en éveil non-

répondant/état végétatif (ENR/EV) et en état de conscience minimale (ECM), nous avons observé que 89% 

des patients démontrent un signe de spasticité au niveau d’au moins un membre et que 62% d’entre eux 

souffrent d’une spasticité sévère invalidante (mesurée avec l’échelle d’Ashworth modifiée). De manière 

intéressante, nous avons également observé une corrélation positive entre la gravité de la spasticité et les 

signes de douleur observés au cours des soins (mesurée avec la NCS-R). Cette observation souligne 

l'importance d’une prise en charge commune de la douleur et de la spasticité au sein de cette population. 

Enfin, nous avons identifié une corrélation positive entre la sévérité de la spasticité et le temps écoulé 

depuis l’accident, soulignant l'importance de traitements prolongés et adaptés lorsque les patients en sont 

à un stade chronique. Récemment, nous avons réalisé une étude contrôlée randomisée en simple aveugle 

visant à évaluer l'efficacité d’attelles souples sur la spasticité des membres supérieurs chez des patients en 

ECA chroniques. Un effet positif des attelles sur la spasticité des muscles intrinsèques de la main (évaluée 

par l'échelle d’Ashworth modifiée) et sur l'ouverture de la main a été observé après le port de celles-ci 

pendant 30 minutes. Ces résultats suggèrent que ces attelles souples, grâce à leur effet positif sur 

l’hypertonie musculaire, leur confort et leur application aisée, pourraient être efficaces et facilement 

implémentées à la prise en charge quotidienne des patients en ECA. 

2. Traitements curatifs : zolpidem et stimulation transcranienne à courant continu  

Le zolpidem, un médicament hypnotique à courte durée d'action, a déjà induit un effet paradoxal 

chez quelques rares cas de patients en ECM. En effet, certains patients ont récupéré, de manière transitoire, 

des signes comportementaux de conscience à la suite de la prise de ce médicament. En utilisant la 

tomographie à émission de positons (TEP), nous avons évalué les changements induits par le zolpidem sur 

le métabolisme cérébral régional chez trois patients en ECM qui répondaient à ce médicament (à la suite 

d’une prise de zolpidem, ces patients ont émergé temporairement de l’ECM). Le but de cette étude était 

de mieux comprendre les mécanismes neuronaux qui sous-tendent une telle évolution. Nos résultats 



 
20 

 

mettent en évidence une augmentation du métabolisme dans les régions préfrontales à la suite de la prise 

de zolpidem. Ce résultat corrobore le rôle clé du cortex préfrontal dans la récupération de la conscience. 

La stimulation transcranienne à courant continu (tDCS – transcranial direct current stimulation) est 

une technique de stimulation cérébrale non invasive qui a montré un effet positif transitoire sur la mémoire 

de travail et l’attention de patients victimes d’un accident vasculaire cérébral ou souffrant de la maladie de 

Parkinson ou encore d'Alzheimer, à la suite d’une stimulation du cortex préfrontal dorsolatéral gauche 

(PFDL). Cependant, aucune étude n’a examiné sa capacité à promouvoir la récupération chez les patients 

en ECA. C’est pourquoi, nous avons effectué une étude pilote, randomisée en double aveugle contrôlée par 

placebo, chez des patients en ENR/EV et en ECM. Nous avons évalué l'effet sur le niveau de conscience 

(mesuré par la Coma Recovery Scale Revised; CRS-R) d'une stimulation anodique sur le cortex PFDL gauche. 

Cette étude a montré que la tDCS pouvait favoriser la récupération de signes comportementaux de 

conscience chez les patients en ECM. Cet effet n’a néanmoins pas été observé pour les patients en ENR/EV. 

Quarante-trois pour cent des patients en ECM (13/30) ont répondu à la stimulation, en montrant un 

nouveau signe de conscience (par exemple, une poursuite visuelle, une localisation ou reconnaissance 

d'objets, ou encore, une réponse à la commande) après la tDCS qui n’était pas présent avant, ni avant ou 

après la stimulation placebo. Sur ces 13 patients, cinq étaient dans cet état depuis plus d'un an. Cela suggère 

que la tDCS pourrait encore être efficace même après de longues périodes dans un ECM.  

Afin d'améliorer notre compréhension des mécanismes qui sous-tendent les effets de la tDCS, nous 

avons investigué, rétrospectivement, les raisons pour lesquelles certains patients ont montré une 

amélioration suite à la tDCS (patients répondants), tandis que d'autres n’ont pas répondu à la stimulation 

(patients non-répondants). Des données de neuro-imagerie (TEP et Imagerie par Résonance Magnétique - 

IRM) acquises chez des patients en ECM chroniques ayant participé à l’étude pilote, nous ont permis de 

comparer le métabolisme cérébral et le volume de la matière grise des patients répondants par rapport aux 

non-répondants. Les résultats ont mis en évidence que la récupération transitoire de signes de conscience 

à la suite de la tDCS semble exiger une activité métabolique résiduelle et une préservation partielle de la 

matière grise au niveau de (i) la région stimulée (cortex PFDL gauche), (ii) d’aires corticales éloignées 

(précuneus), et (iii) de régions cérébrales sous-corticales (thalamus) ; celles-ci étant connues pour être 

impliquées dans l’éveil et la conscience. Ces résultats suggèrent que la tDCS pourrait être un traitement 
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efficace pour favoriser la récupération de nouveaux signes de conscience chez les patients en ECA. 

Cependant, certains patients semblent avoir une activité cérébrale plus adaptée pour bénéficier des effets 

de la tDCS que d'autres. Nous avons donc besoin d'approfondir notre compréhension des corrélats 

neuronaux qui sous-tendent les effets de la tDCS, surtout chez les patients atteints de lésions cérébrales 

sévères, afin de fournir des recommandations thérapeutiques claires pour les cliniciens prenant en charge 

des patients en ECA. 

Ce travail nous a permis de mettre en évidence plusieurs traitements pharmacologiques et non-

pharmacologiques qui pourraient potentiellement être efficaces pour améliorer la qualité de vie et la 

récupération des patients en ECA. Il serait donc intéressant de mener d’autres études sur le sujet afin de 

permettre l’établissement de recommandations thérapeutiques standardisées visant à perfectionner la 

prise en charge et le traitement des patients en ECA.  
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ABBREVIATIONS 

 

DOC   Disorders of Consciousness 

UWS/VS Unresponsive Wakefulness Syndrome/Vegetative state  

MCS  Minimally Conscious State 

LIS  Locked-in Syndrome 

FDG-PET  [18F]-fluorodeoxyglucose Positron Emission Tomography 

EEG   Electroencephalography 

fMRI  Functional Magnetic Resonance Imaging 

VBM  Voxel Based Morphometry 

CRS-R  Coma Recovery Scale Revised 

NCS-R  Nociception Coma Scale Revised 

TBI   Traumatic Brain Injury  

MAS  Modified Ashworth Scale 

MTS  Modified Tardieu Scale 

ROM  Range of Motion    

CNS  Central Nervous System 

ACC  Anterior Cingulate Cortex 

S1 & S2  Primary and Secondary Somatosensory Areas 

tDCS  Transcranial Direct Current Stimulation 

TMS  Transcranial Magnetic Stimulation 

MEP  Motor Evoked Potential 

GABA  γ-Aminobutyric Acid 

NMDA  N-Methyl-D-aspartate  
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1. Introduction 
 

 

“I have always loved the desert. One sits down on a desert sand dune, sees nothing, hears nothing. Yet 

through the silence something throbs, and gleams . . . “ 

Antoine de Saint-Exupery 
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In the 1950s, the invention of the artificial respirator made surviving severe brain damage possible 

for many patients. Unfortunately, while the heart and the lungs can recover next to normal function after 

intensive cares, lesions in the brain cause various level of functional impairment and can lead to various 

states of impaired consciousness. These patients can stay in this state for years or, in some cases, recover 

spontaneously a certain degree of autonomy. 

An accurate diagnosis is crucial since it influences the patient’s cares, pain treatments, rehabilitation, 

outcome and end-of-life decisions. Therefore, it is of paramount importance to develop valid and sensitive 

behavioural scales to detect the presence of even the subtlest sign of consciousness. The clinical way to 

diagnose precisely these patients is to observe their spontaneous behaviours and their reactions to external 

stimuli. One of the most important limitation of these behavioural evaluations is their sensibility to patients’ 

physical (e.g. motor impairment), mental (e.g. vigilance level) or language (e.g. aphasia) disabilities at the 

time of assessment. Missing signs of consciousness is not rare, and the diagnostic error rate can be as high 

as 40% (Schnakers, Vanhaudenhuyse et al. 2009). To circumvent those functional and cognitive 

impairments, neuroimaging (e.g. magnetic resonance imaging – MRI; Positron Emission Tomography – PET) 

are now available to help clinician in the assessment of consciousness levels in this challenging patient 

population. 

In this chapter, we will first define the different states of consciousness following a severe brain injury, 

and the main existing scales developed for the assessment of consciousness at the bedside. We will then 

present the neuronal characteristics of patients with disorders of consciousness (DOC) and especially how 

MRI and PET-scan can complement standard examinations. Finally, we will present the objectives of this 

thesis. 
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1.1 Characteristics of patients with disorders of consciousness 

 

Many definitions of consciousness have been proposed by scientists, neuroscientists or philosophers. 

If a commonly shared definition of consciousness does not exist, it is widely accepted that it is a multi-

component term involving a series of cognitive processes such as attention and memory (Baars, Ramsoy et 

al. 2003, Zeman 2005). At the bedside, consciousness can be defined by reducing it to two components: (i) 

arousal (i.e. wakefulness), that we can call the level of consciousness and (ii) awareness (e.g. awareness of 

the environment and if the self), which is the content of consciousness (Laureys, Faymonville et al. 2002, 

Posner, Saper et al. 2007). For patients with DOC, both arousal level and the contents of consciousness can 

be affected.  

From a pathological point of view, DOC can result from focal brain injuries that induce widespread 

functional changes, or from a diffuse brain injury. Specific brain areas and networks seem to be particularly 

important for the recovery of consciousness (i.e. lateral fronto-parietal network for external consciousness 

and medial network – mesiofrontal/anterior cingulate cortex and precuneus/posterior cingulate cortex – for 

internal consciousness). In these networks, the cortico-cortical connectivity and the cortico-thalamic 

connectivity also have a huge importance (Laureys, Antoine et al. 2002).  

Clinically, after the period of coma, some patients will regain full consciousness, some will die, while 

other progress to a state of preserved wakefulness in the absence of awareness (i.e. unresponsive 

wakefulness syndrome/vegetative state – UWS/VS) or with minimal and fluctuating signs of awareness, not 

encompassing the ability to communicate consistently (i.e. minimally conscious state – MCS). These states 

can be described in terms of degree of arousal and awareness. Gradual recovery from coma is illustrated in 

figure 1. 
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1.1.1 Brain death 
 
Brain death is classically caused by a severe brain lesion (e.g. massive traumatic injury, intracranial 

haemorrhage, or anoxia) that results in increased intracranial pressure. In brain death, critical functions 

such as respiration, blood circulation, neuroendocrine and homeostatic regulation are absent, the organism 

survive only thanks to medical assistance (Bernat 1998, Haupt and Rudolf 1999). The patient is apnoeic and 

unreactive to environmental stimulation. The diagnosis of brain death can be posed only after the 

demonstration of irreversible cessation of all clinical functions of the brain and brainstem, and can be made 

within 6–24 h post injury (1981). Patients in brain death show no residual brain activity on PET-scan. This 

syndrome is sometimes called the “black box syndrome”, due to the complete loss of brain metabolism 

(figure 2a). 

 

1.1.2 Coma 
 

Coma is an acute state of non-responsiveness in which patients cannot be awakened even when 

intensively stimulated (Jennett and Plum 1972, Plum and Posner 1972, Posner, Saper et al. 2007), and only 

show some reflex behaviours (Teasdale and Jennett 1974). It is the result of diffuse cortical or white matter 

damage and/or an acute lesion in the brainstem. Brain-injured patients can stay in coma for several days or 

weeks, showing no arousal (i.e. eyes closed) and no awareness (i.e. no voluntary behavioural responses). 

This state rarely lasts longer than two to four weeks (Laureys 2007), thus the term “acute” in the definition.  

Coma has numerous aetiologies, which can clinically be divided in two major categories - traumatic 

and non-traumatic. Traumatic brain injury (TBI) can induce coma because of the considerable initial brain 

damage (as in diffuse axonal injury or extensive bilateral hemisphere lesions) or the strategic location of the 

lesion (e.g. of the brainstem or bilateral lesion of the thalami). The underlying pathophysiology is the same 

for both aetiologies, consisting of interruption and/or global impairment of the arousal system. Even when 

the primary lesion does not itself result in coma, patients can suffer complications and secondary lesions, 

including brain swelling, haemorrhage or brain herniation, which can lead to loss of consciousness. 
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Figure 1. Different clinical entities encountered on the gradual recovery from coma, illustrated as a function 
of cognitive and motor capacity. Restoration of spontaneous or elicited eye-opening, in the absence of 
voluntary motor activity, marks the transition from coma to vegetative state/unresponsive wakefulness 
syndrome (UWS/VS). The passage from the UWS/VS to the minimally conscious state minus (MCS-) is 
marked by reproducible evidence of ‘voluntary behaviour’. Simple command following characterizes the 
MCS plus (MCS+). Emergence from MCS is signalled by the return of functional communication or object 
use. Adapted from (Chatelle and Laureys 2011). 

 

The prognosis for recovery is influenced by different factors such as aetiology, patient’s general 

medical condition, and age. The outcome is known to be unfavourable if, during three consecutive days, 

there is an absence of pupillary or corneal reflexes, presence of stereotyped or absent motor responses to 

noxious stimulation, and presence of isoelectric or burst suppression electroencephalogram (EEG) patterns 

(Attia and Cook 1998). Recovery from coma may lead to an unresponsive wakefulness syndrome/vegetative 

state (UWS/VS), a minimally conscious state (MCS), and more rarely, to a locked-in syndrome (LIS). 
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1.1.3 Unresponsive wakefulness syndrome/vegetative state  
 
This state was first named apallic syndrome (Kretschmer 1940) or coma vigil (Calvet and Coll 1959), 

and in 1972 it was called vegetative state (VS;(Jennett and Plum 1972). A new terminology was proposed in 

2010 - the unresponsive wakefulness syndrome (UWS) (Laureys, Celesia et al. 2010) - to avoid the strong 

negative connotation of the term “vegetative”. Moreover, the term UWS allows a more accurate description 

of the clinical state, referring to patients that are unable to respond appropriately to external stimuli (hence 

unresponsive), while showing periods of time with eyes opened (hence wakefulness). This state implies the 

preservation of autonomic functions (e.g. cardiovascular regulation, thermoregulation) and period of eyes 

opening in the absence of awareness. Behaviourally, patients in UWS/VS open their eyes spontaneously or 

in response to stimulation, but they only show reflex behaviours, unrelated to the environment (The Multi-

Society Task Force on PVS 1994). The UWS/VS may be transitory, chronic or permanent. 

Although recovery of the sleep-wake cycle is part of the criteria of UWS/VS, recent studies have 

demonstrated an absence of electrophysiological characteristics of sleep (Landsness, Bruno et al. 2011, 

Cologan, Drouot et al. 2013) in UWS/VS. Brain metabolism is usually diminished by 40 to 50% with impaired 

cortico-thalamo-cortical circuits but relatively preserved brainstem functions (Gosseries, Bruno et al. 2011) 

(figure 2b).  

In term of prognosis, increased length of time spent in an unconscious state, as well as the aetiology 

of the coma, also have major impacts on prognosis. Traumatic aetiology is usually associated with a better 

prognosis than non-traumatic causes of coma. Patients with an UWS/VS following TBI may continue to 

improve for up to 12 months after the original insult, whereas little improvement is often observed beyond 

3 months in non-traumatic cases of coma (The Multi-Society Task Force on PVS 1994). Nevertheless, more 

recent studies have been challenging these temporal boundaries of irreversibility (e.g.(Estraneo, Moretta 

et al. 2010). 

 

1.1.4 Minimally conscious state  
 

Since the formal definition of the minimally conscious state (MCS), there is a little more than 10 years 

ago (Giacino, Ashwal et al. 2002), a number of authors have questioned the usefulness of differentiating 
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UWS/VS from MCS patients considering both patient groups as hopelessly brain damaged (Bruno, Gosseries 

et al. 2011). Several studies have demonstrated the high interest of disentangling both clinical entities, as 

functional neuroimaging has shown differences in residual cerebral processing and hence, conscious 

perception (e.g.(Boly, Faymonville et al. 2008, Coleman, Bekinschtein et al. 2009, Vanhaudenhuyse, 

Noirhomme et al. 2010). PET-scan showed that metabolic activity in MCS patients is usually reduced but 

cortico-cortical and thalamo-cortical connections are partly restored (figure 2c;(Laureys, Faymonville et al. 

2000). Furthermore, there is a differences in outcome between UWS/VS and MCS (e.g.(Luaute, Maucort-

Boulch et al. 2010, Bruno, Ledoux et al. 2012).  

Behaviourally, patients in a MCS are awake and show fluctuating but reproducible signs of awareness 

(Giacino, Ashwal et al. 2002). These patients can manifest reproducible responses to verbal or written 

commands, visual pursuit, localisation to pain, intelligible verbalizations, intentional communication, and 

reaching/holding objects. However, these behaviours can fluctuate in time, which makes the detection of 

awareness a difficult endeavour. Recently, we have proposed to subcategorize the clinically heterogeneous 

“MCS entity” in minimally conscious PLUS (MCS+) and MINUS (MCS-) based on the level of complexity of 

observed behavioural responses (Bruno, Vanhaudenhuyse et al. 2011). MCS+ was defined by the presence 

of (i) command following, (ii) intelligible verbalization or (iii) gestural or verbal yes/no responses. In contrast, 

MCS- patients only show minimal levels of behavioural interaction characterized by the presence of non-

reflex movements such as: (i) orientation of noxious stimuli, (ii) pursuit eye movements that occur in direct 

response to moving a salient stimuli, (iii) movements or affective behaviours that occur in contingent 

relation to relevant environmental stimuli (such as appropriate smiling or crying, vocalizations, objects 

localization or manipulation). This classification is supported by neuroanatomical data that demonstrate 

better preservation of language-related networks in patients in MCS+ as compared to MCS- (Bruno, Majerus 

et al. 2012). Emergence from MCS (i.e. EMCS) is defined by the recovery of functional communication 

and/or functional object use.  
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Figure 2: Cerebral brain metabolism acquired with 18fluorodesoxyglucose-positron emission tomography 
(FDG-PET) in patients in brain death (a), unresponsive wakefulness syndrome/vegetative state (UWS/VS) 
(b), minimally conscious state (MCS) (c), emergence of the minimally conscious state (EMCS) (d), locked in 
syndrome (LIS) (e) and in healthy subjects (f). Adapted from (Laureys, Owen et al. 2004) and (Laureys 2005). 

 

Concerning the prognosis of patients in MCS, a Belgian study demonstrated that half of patients in 

MCS diagnosed one month after a traumatic injury, emerged from this state at 12 months, whereas only 23 

% of those in an UWS/VS (also of traumatic aetiology) improved either to MCS or emergence from this state 

(Ledoux, Bruno et al. 2008). However, there are reported cases of UWS/VS (Estraneo, Moretta et al. 2010) 

and MCS (Luaute, Maucort-Boulch et al. 2010) that have improved long after these intervals, albeit usually 

with a very poor functional outcome. In summary, UWS/VS of non-traumatic aetiology has the worst 

prognosis, with 90% of patients either dead or still unconscious at 12 months, whereas the MCS of traumatic 

origin has the best prognosis, with 50% emerging from that state after one year (Ledoux, Bruno et al. 2008). 

 (a) BRAIN DEATH            (b) UWS/VS                    (c) MCS 

   (d) EMCS                        (e) LIS            (f) HEALTHY SUBJECT 
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Even if prognosis is better as compared to UWS/VS, some patients can remain in an MCS without fully 

recovering consciousness for a prolonged period of time (Giacino, Ashwal et al. 2002). 

 

1.1.5 Locked-in syndrome  
 

Disorders of consciousness must be differentiated from the locked-in syndrome (LIS), which usually 

results from lesions of the mid-pons and complete disruption of the pyramidal tracts and most of the cranial 

nerves (American Congress of Rehabilitation Medecine 1995). In this condition, usually following a period 

of coma, patients seem unresponsive. However, they are actually fully conscious and lack the ability to react 

to stimuli because they are completely paralyzed (except for eye movements and blinking;(Gosseries, Bruno 

et al. 2009). LIS patients cannot move or talk due to quadriplegia but show preserved sensory and cognitive 

functions (Schnakers, Majerus et al. 2008), as well as normal supratentorial brain metabolism (Thibaut, 

Bruno et al. 2012)-(figure 2e). It is vital to make the correct diagnosis, but this is unfortunately often delayed. 

The primary way of communication is through vertical eye movements or blinking (Gosseries, Bruno et al. 

2009, Schnakers, Perrin et al. 2009). Through the recovery of distal movements (e.g. tip of a finger or head 

movement), chronic patients are often able to communicate with a computer and even, to control their 

wheelchair. Brain computer interfaces have also been tested to communicate with patients in LIS, by 

measuring electrical brain activity (Lule, Noirhomme et al. 2013) and pupil size (Stoll, Chatelle et al. 2013). 

We can divide LIS in 3 different categories based on the extent of motor impairment: (1) “classical LIS” (i.e. 

total immobility but preserved vertical eye movements and blinking); (2) “incomplete LIS” (i.e. remnant non-

ocular voluntary motions – head or fingers movements); (3) “total LIS” (i.e. no residual mobility, no eye 

control). Finally, it is important to note that, according to a survey conducted in France, most chronic LIS 

patients report living a happy and meaningful life and the demand for euthanasia, albeit existing, is 

infrequent (Bruno, Bernheim et al. 2011).  
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1.2 Clinical diagnosis 
 

To date, detection of signs of consciousness is mainly performed at the patient’s bedside by searching 

for a response to command or non-reflexive behaviours in response to external stimulations. The detection 

of voluntary behaviours is nevertheless difficult and signs of consciousness can easily be missed due to 

sensory and motor disabilities, tracheostomy, or fluctuating arousal levels (Majerus, Gill-Thwaites et al. 

2005). Currently, the diagnostic is extremely challenging leading to a diagnostic error rate up to 40% when 

it is not assessed with an appropriate standardised scale (Schnakers, Vanhaudenhuyse et al. 2009). 

Numerous behavioural rating scales have been developed and validated to assess levels of consciousness 

and to help establishing accurate diagnoses. In this section, we will review behavioural scales commonly 

used for the assessment of consciousness. 

The Glasgow Coma Scale (GCS): The GCS was the first validated rating scale and remains the most 

widely used to assess to level of consciousness in acute-care settings. This scale is short to perform and can 

be easily incorporated into clinical daily cares. It includes three subscales that evaluate: (1) arousal level, (2) 

motor function, and (3) verbal abilities. The total score ranges from 3 to 15 and gives information about the 

conscious state of a person. The GCS has been widely investigated for its prognostic value (Jagger, Jane et 

al. 1983, Weir, Bradford et al. 2003, Bodart, Laureys et al. 2013, Kouloulas, Papadeas et al. 2013). Despite 

its extensive use, the GCS has been criticized for variable inter-rater agreement and problems in scoring 

patients with ocular trauma, tracheostomy, or ventilator support (Rowley and Fielding 1991, Moskopp, 

Stahle et al. 1995, Wijdicks, Kokmen et al. 1998). Moreover, it does not assess visual pursuit, which is one 

of the first sign of consciousness recovered, and which can diagnose a LIS (Giacino, Ashwal et al. 2002). 

The Full Outline of UnResponsiveness Scale (FOUR): The FOUR was developed to replace the GCS to 

assess patients with severe TBI in intensive care (Wijdicks, Bamlet et al. 2005, Wijdicks 2006, Bruno, Ledoux 

et al. 2011). The scale has the advantage to be short and easy to perform and includes four subscales 

assessing motor and ocular responses, brainstem reflexes, and breathing. The total score ranges from 0 to 

16. As compared to the GCS, the FOUR does not assess verbal functions since a high number of patients are 

intubated in intensive care. Moreover, it assesses visual functions and, therefore, is specifically designed to 

detect patients in a LIS by using oculomotor commands that detect vertical eye movements and eye blinks, 
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both being preserved in LIS. A score of 0 on the FOUR assumes the absence of brainstem reflexes and 

breathing and, consequently, helps to diagnose brain death.  

The Wessex Head Injury Matrix (WHIM): The WHIM was developed to capture changes in patients in 

UWS/VS until emergence from post-traumatic amnesia (Shiel, Horn et al. 2000, Wilson, Elder et al. 2009). It 

permits to assess the cognitive evolution of the patient through items of increasing complexity. This tool is 

particularly sensitive to detecting small behavioural changes in patients in MCS not apprehended by 

traditional scales such as the GCS. The 62 items were ordered according to the mean sequence of recovery 

observed in 97 severely brain-injured patients who recovered from coma; this items assess arousal level 

and concentration, visual behaviours, communication, cognition (i.e. memory and spatiotemporal 

orientation), and social behaviours. The WHIM score represents the rank of the most complex behaviour 

observed (Wilson, Elder et al. 2009).  

The JFK Coma Recovery Scale-Revised (CRS-R): The CRS was initially described by Giacino et al in 

1991 (Giacino, Kezmarsky et al. 1991). The scale was revised in 2004 as the CRS-R (Giacino, Kalmar et al. 

2004). It was created on the basis of the MCS’s criteria and was shown to be significantly more effective 

than the GCS in detecting signs of awareness in non-communicating patients (Schnakers, Vanhaudenhuyse 

et al. 2009). Nowadays, the CRS-R seems the most appropriate scale for differentiating patients in UWS/VS 

and patients in MCS. The scale consists of 23 items classified in six subscales addressing auditory, visual, 

motor, verbal, communication, and arousal functions. Each CRS-R subscales are comprised of hierarchically 

arranged items associated with brain stem and cortical processes. The lowest item on each subscale 

represents a reflex response while the highest items represent a higher cognitive process. The purpose of 

the CRS-R is to assist the differential diagnosis, prognostic assessment, and treatment planning in patients 

with DOC. It should be administered by trained examiners and it produces stable scores over repeated 

assessments. Validity analyses have shown that the CRS-R is capable of discriminating patients in MCS from 

those in UWS/VS, which is of critical importance in establishing prognosis but also influence treatment 

interventions or even end of life decision (Schnakers, Giacino et al. 2006, Schnakers, Majerus et al. 2008). 

However, all these scales are based on motor responses and language comprehension, which makes 

the diagnosis difficult since patients with DOC suffer from motor disabilities, aphasia (Majerus, Bruno et al. 
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2009) and fluctuation of vigilance (Giacino, Ashwal et al. 2002). It is therefore important to develop other 

neuroimaging tools to detect signs of consciousness when no response can be observed at the bedside. 

  



 
36 

 

1.3 Neural characteristics of patients with disorders of consciousness  
 

As we discussed in the previous section, it is difficult to establish a diagnosis in patients with DOC 

based only on behavioural assessments. In this section, we will give an overview of the contribution that 

neuroimaging techniques (i.e. MRI and PET-scan) can provide in assessing non-communicative patients (for 

a complete review see(Di Perri, Thibaut et al. 2014). Such techniques are expected to improve our 

understanding of brain function in states of unconsciousness and to lead to a more accurate evaluation of 

individual patients’ cognitive abilities, providing both diagnostic and prognostic indicators. That noted, we 

will discuss neither electrophysiological (EEG) pattern of patients with DOC nor cortical connectivity 

assessed with transcranial magnetic stimulation coupled with EEG (TMS-EEG) in this section. 

 

1.3.1 Magnetic Resonance Imaging  
 
Structural MRI is the method of choice to detect brain oedema, contusion, haematomas, herniation, 

haemorrhage, hydrocephalus, or haemorrhagic shearing lesion due to diffuse axonal injuries common in 

post-traumatic patients (T2* sequences) (Kampfl, Schmutzhard et al. 1998, Giacino, Fins et al. 2014). 

However, these methods have failed to explain why some patients in an UWS/VS or in a MCS have no or 

minimal brain lesions. This highlights the lack of specificity and sensitivity of conventional MRI in DOC, which 

alone cannot be considered a reliable tool for assessing this patient category. 

Functional Magnetic Resonance Imaging (fMRI) 

Activation studies using visual, auditory and somatosensory stimuli have revealed high-level cortical 

activation encompassing the associative cortices in patients in MCS, similar to that observed in healthy 

controls (Di, Yu et al. 2007, Di, Boly et al. 2008). In contrast, only low-level cortical activation, limited to the 

primary sensory areas, was detected in UWS/VS. The minority of patients in UWS/VS with high level cortical 

activation often showed signs of recovery on the long term follow up (Owen, Coleman et al. 2005, Di, Yu et 

al. 2007). Besides the prognostic value of this technique, active fMRI paradigms have recently been 

performed to detect covert awareness in patients who are behaviourally unresponsive by investigating signs 

which are independent from motor command following, and in some cases even establishing “yes-no” 



 
37 

 

communication (Monti, Coleman et al. 2009, Monti, Vanhaudenhuyse et al. 2010, Bekinschtein, Manes et 

al. 2011). 

Resting-state fMRI is a non-invasive technique used to investigate the spontaneous temporal 

coherence in BOLD (blood-oxygen-level dependent) fluctuations related to the amount of synchronized 

neural activity (i.e. functional connectivity) between distinct brain locations, in the absence of input or 

output tasks (Biswal, Van Kylen et al. 1997). This technique has been increasingly used in the analysis of 

patients with DOC, mainly because it is not invasive and it bypasses the requirement for motor output or 

language comprehension. To date, resting state fMRI studies suggest that activity of this default mode 

network (DMN – precuneus, bilateral temporo-parietal junctions and medial prefrontal cortex) decreases 

concurrently with the level of consciousness. It has been demonstrated, for example, that the connectivity 

of this network is correlated to the level of consciousness, ranging from patients in UWS/VS (low 

connectivity) to patients in MCS and to healthy controls (higher connectivity) (Vanhaudenhuyse, 

Noirhomme et al. 2010). Recently, more networks at resting state have been investigated in DOC, such as 

the bilateral fronto-parietal or executive control networks, salience, sensorimotor, auditory, visual systems, 

and the cerebellar network. It was found that, besides DMN, the bilateral executive control networks and 

the auditory system were also significantly less identifiable (in terms of spatial and neural properties) in 

patients with DOC compared to healthy controls, and showed consciousness-level dependent decreases in 

functional connectivity across the spectrum of DOC (Demertzi, Gomez et al. 2014). 

 

1.3.2 Positron Emission Tomography 
 

18-Fluorodesoxyglucose-PET (FDG-PET) studies were the first to demonstrate massive decrease in 

brain metabolism in patients with DOC (for a review see(Thibaut, Chatelle et al. 2014). Using PET in resting 

state conditions, it was shown that patients in UWS/VS exhibit a decrease in brain metabolism of up to 40% 

of the normal value (Laureys 2005). Nevertheless, recovery from the UWS/VS does not coincide with the 

recovery of global metabolic levels. Instead it seems that some areas are more important to consciousness 

than others. In fact, patients suffering from DOC show decreased metabolism in a widespread network 

encompassing fronto-parietal areas, such as in the lateral prefrontal and posterior parietal regions as well 
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as midline anterior cingulate/mesiofrontal and posterior cingulate/precuneal associative cortices 

(Nakayama, Okumura et al. 2006, Silva, Alacoque et al. 2010). Importantly, recovery from the UWS/VS 

parallels connectivity restoration in these areas (cortico-cortical) and between these regions and the 

thalamus (thalamo-cortical;(Laureys, Lemaire et al. 1999). 

To better understand the metabolic characteristics of patients with DOC and how we can 

differentiate patients in UWS/VS and MCS, we realised a prospective study where we assessed brain 

metabolism in 70 patients in UWS/VS, MCS, EMCS and LIS (Thibaut, Bruno et al. 2012). Data were pre-

processed and analysed using Statistical Parametric Mapping (SPM8). We identified areas of significant 

hypometabolism in UWS/VS, MCS, EMCS and LIS as compared to 39 healthy controls. We also identified 

brain regions showing a linear correlation with CRS-R total scores. Our results highlighted that UWS/VS 

patients showed metabolic dysfunction in both thalami and both extrinsic/lateral and intrinsic/medial 

networks, as compared to controls, while MCS patients showed metabolic dysfunction in both thalami but 

only in the intrinsic/medial network. EMCS patients showed hypometabolism in the posterior cingulate 

cortex, while LIS patients did not show metabolic dysfunction in the supra-tentorial regions (see figure 3). 

CRS-R total scores correlated both extrinsic/lateral network (i.e. bilateral posterior parietal and prefrontal 

areas) and part of the intrinsic/medial network (i.e. the precuneus and adjacent posterior cingulate cortex).  

Our results in UWS/VS of different aetiologies show a widespread fronto-parietal cortical dysfunction, 

in agreement with previous studies (Laureys, Goldman et al. 1999, Juengling, Kassubek et al. 2005, 

Nakayama, Okumura et al. 2006, Bruno, Gosseries et al. 2011). We observed a hypometabolism in the 

external network (i.e. external awareness network, related to sensory awareness or awareness of the 

environment; (Vanhaudenhuyse, Demertzi et al. 2011, Demertzi, Soddu et al. 2013, Demertzi, 

Vanhaudenhuyse et al. 2013) encompassing left and right lateral parietal and lateral prefrontal cortices and 

in the internal network (i.e. intrinsic awareness network, related to internal awareness or self-related 

processes) encompassing midline precuneus/posterior cingulate and mesiofrontal/anterior cingulate 

cortices. While, in MCS patients it seems that the extrinsic/lateral network is less impaired than the 

intrinsic/medial network.  
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Figure 3: Areas showing metabolic impairment (shown in blue) in vegetative state/unresponsive 
wakefulness syndrome (UWS/VS, n=24), minimally conscious state (MCS, n=28), emergence from MCS 
(EMCS, n=10) and locked-in syndrome (LIS, n=8) as compared to age-matched controls (n=39) (thresholded 
at p<0.01 family wise correction for multiple comparisons). In red, areas showing a correlation with Coma 
Recovery Scale –Revised (CRS-R) scores are shown (thresholded at uncorrected p<0.001). Note that in 
UWS/VS there is a metabolic dysfunction in the thalamus (T), external network encompassing left and right 
lateral parietal (LP) and lateral prefrontal (LF) cortices, and in the internal network encompassing midline 
precuneus/posterior cingulate (MP) and mesiofrontal/anterior cingulate (MF) cortices. In MCS the thalamus 
(T) and intrinsic network are impaired (MP, MF). EMCS shows partly impaired intrinsic network activity (MP), 
and LIS fully preserved awareness networks, with only impairment in the cerebellum (C). The behavioural 
assessment scores correlate with activity in the extrinsic network (LP, LF) and part of the intrinsic network 
(MP). From (Thibaut, Bruno et al. 2012). 

 

Our findings are consistent with the clinical finding that these patients show evidence of 

external/sensory awareness, known to depend upon the functional integrity of the extrinsic/lateral fronto-
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parietal system (Bornhovd, Quante et al. 2002, Sergent and Dehaene 2004, Boly, Balteau et al. 2007, Rees 

2007, Fuhrmann, Hein et al. 2008, Vanhaudenhuyse, Demertzi et al. 2011). The predominance of 

intrinsic/midline network impairment in MCS could reflect an impaired internal/self-awareness in these 

patients, difficult to quantify at the bedside. Indeed, CRS-R assessments only have one item possibly 

assessing some form of internal/self-awareness: visual pursuit in response to a moving mirror 

(Vanhaudenhuyse, Giacino et al. 2008). In summary, our data show, a progressive recovery of intrinsic 

network metabolic activity in severely brain-damaged patients ranging from UWS/VS, MCS, EMCS to LIS. 

MCS patients showed a cortical dysfunction of the intrinsic/internal awareness network more than of the 

extrinsic/external awareness networks. These findings indicate an impairment of a clinically barely 

measurable dysfunction of internal or self-awareness in MCS. 

More recently, in a study in which it was compared to active fMRI, FDG-PET proved to be the more 

sensitive tool for identifying patients in MCS (Stender, Gosseries et al. 2014). This study included 41 patients 

in UWS/VS, 81 in MCS and 4 in LIS. They were assessed with repeated CRS–R, cerebral FDG-PET, and fMRI 

during mental activation tasks and we assessed outcome after 12 months with the Glasgow Outcome Scale–

Extended. We found that FDG-PET had high sensitivity for identification of patients in MCS (93%) and high 

congruence (85%) with CRS–R scores. The active fMRI method was less sensitive at diagnosis of MCS (45%) 

and had lower overall congruence with CRS-R scores (63%). Moreover, FDG- PET correctly predicted 

outcome in 75 of 102 patients (74%), and fMRI in 36 of 65 patients (56%, 43–67). These findings suggest 

that FDG-PET is currently the most accurate neuroimaging tool for diagnosing patients in MCS.   
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1.4 Objectives of this work 
 

The clinical management of patients with DOC remains very challenging, but technological advances 

in neuroimaging are now offering new ways to improve their diagnosis. A proper diagnosis is essential since 

it may contribute to premature withdrawal of life-sustaining care and lead to inappropriate medical 

management such as neglect of pain treatment (Giacino, Fins et al. 2014). The failure to detect sign of 

consciousness may also limit access to specialized neuro-rehabilitation centres, and therefore, limits 

patients’ chances to recover. Moreover, patients in MCS are thought to have a better prognosis than 

UWS/VS (Luaute, Maucort-Boulch et al. 2010, Bruno, Ledoux et al. 2012) and some patients might be 

diagnosed in an UWS/VS or a MCS despite being in a LIS, where an accurate diagnosis would have a huge 

impact on the quality of life and rehabilitation of the patient. A lot of work has been done to try to diagnose 

patients and understand the neural correlates of consciousness. Nevertheless, only a few studies have 

investigated how to treat such patients in order to improve their quality of life (i.e. symptomatic treatments) 

and their rehabilitation (i.e. curative treatments). In this work, we investigated both parts of the problem in 

attempt to find ways to treat patients with DOC. 

In the first part of this work, our primary concern was to improve our knowledge of clinical ways to 

detect signs of pain in non-communicative patients. In a recent review, we aimed to provide an overview of 

current knowledge on pain processing, assessment and management in patients with DOC (Thibaut, 

Chatelle et al. 2014). Previous studies have investigated pain processing in DOC using MRI and PET-scan, as 

these patients cannot communicate their feelings (Laureys, Faymonville et al. 2002, Boly, Faymonville et al. 

2008). Nevertheless, in daily clinical practice it is not possible to perform such investigations to find out if a 

patient is in pain or not. In order to behaviourally assess pain in DOC, Schnakers and Chatelle developed a 

scale, the Nociception Coma Scale – Revised (NCS-R;(Chatelle, Majerus et al. 2012). This validated scale aims 

to assess pain in patients with DOC in a way which is simple and usable for all caregivers. To further 

investigate the sensitivity of this scale, we assessed whether NCS-R scores could reflect nociceptive brain 

processing in this population of patients (Chatelle, Thibaut et al. 2014).  

Secondly, we wanted to explore the prevalence and impact of spasticity in patients in UWS/VS and 

MCS. This motor disorder can induce pain and influence patients’ quality of life (Thibaut, Chatelle et al. 
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2013). It is even more important to treat this motor disorder in patients with DOC since they cannot 

communicate, express their feelings and they are nearly always lying in bed without any voluntary or 

induced movements. This explains, hypothetically, why spasticity can arise more easily, be more severe and 

induce more serious side-effects in this specific population of patients. In addition, as we discussed above, 

there is a high incidence of misdiagnosis that can be put down to motor disorders (Schnakers, 

Vanhaudenhuyse et al. 2009). Several studies have shown that between 10 and 30% of patients 

behaviourally unconscious at the bedside, correctly activated the corresponding brain area following a 

simple command when bypassing the motor interface using fMRI or EEG (Monti, Vanhaudenhuyse et al. 

2010, Cruse, Chennu et al. 2011). This considered, spasticity could be a disabling factor as it could reduce 

the patient’s ability to behaviourally express a sign of consciousness. For these two reasons (patients’ quality 

of life and detection of consciousness), we aimed to improve our knowledge of spasticity in patients with 

DOC. Our first step was to carry out a cross-sectional study evaluating spasticity in a cohort of patients in 

UWS/VS and MCS. We also evaluated the correlation between spasticity and potential factors of co-

morbidity, frequency of physical therapy, time from insult, presence of pain, presence of tendon retraction, 

and aetiology and diagnosis. In another study, we tried to find a simpler way to reduce spasticity. Only 

passive treatments such as stretching are possible, and said treatment usually requires the presence of a 

physical therapist treating the patient for about 30 minutes per day. To overcome this problem, we 

compared the effect of soft-splints to conventional manual stretching on upper limb spasticity in chronic 

patients with DOC. The soft splints we used have the advantage of being easy to use, comfortable and they 

can be worn several hours per day without any risks or need of any supervision (Thibaut, Deltombe et al. in 

press). 

The second part of this work focused on finding and understanding treatments to improve the 

recovery of severely brain-damaged patients. Another important way to enhance patients’ quality of life is 

to stimulate their recovery and improve their interaction with their environment, with the main goal of 

establishing a communication. The recovery of communication, even using only a binary code, allows 

patients’ to interact with their relatives and caregivers to tell them when and where they are in pain, how 

they feel, or what they want. Communication is a major improvement, first for patients, but also for 

clinicians and families. 
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There are no guidelines to date regarding the treatment of these patients and only one drug (i.e. 

Amantadine) showed positive results in a placebo-controlled study on a large cohort of patients with DOC 

(Giacino, Whyte et al. 2012). Another drug called Zolpidem has shown to be impressively efficient, inducing 

the recovery of communication or functional use of objects for patients in MCS (i.e. emergence from MCS). 

Nevertheless, its effects have been observed in only a very few patients and the mechanisms underlying its 

benefits have not yet been fully understood. We therefore analysed the PET-scan under both zolpidem and 

a placebo of three chronic post-anoxic MCS patients with known zolpidem response (Thibaut, Chatelle et 

al. 2014). Our objective was to identify which brain areas are activated following zolpidem intake. Moreover, 

the results would subsequently highlight the areas relevant to consciousness recovery. 

We then turned our attention to trying to find a new way to improve patient recovery. Transcranial 

direct current stimulation (tDCS) has shown to improve cognitive functions in patients with neurological 

lesions (e.g. Parkinson's and Alzheimer disease, stroke and traumatic brain-injured patients;(Thibaut, 

Chatelle et al. 2013). This technique has the advantage of being safe, inexpensive, easy to carry out and it 

does not induce seizure or severe side-effects like Amantadine or deep brain stimulation can. To find out if 

tDCS could be beneficial for patients with DOC we carried out a first double-blind sham controlled, 

randomized cross-over study (Thibaut, Bruno et al. 2014). We decided to stimulate the left prefrontal 

dorsolateral (DLPF) cortex as the stimulation of this area has already been shown to improve working 

memory and the attention of patients with neurological disorders. We enrolled patients in UWS/VS and 

MCS, acute and chronic, traumatic and non-traumatic- and assessed the effects using the CRS-R.  

Following this first study, we wanted to then understand why some patients responded to tDCS while 

others did not. In order to answer this question, we investigated the relationship between tDCS 

responsiveness and neuroimaging data (i.e. MRI and PET) in MCS patients (Thibaut, Di Perri et al. submitted). 

Thanks to this study we were able to identify brain areas where a preservation of grey matter and a residual 

metabolic activity is needed to induce an improvement after a tDCS session. The results of this study helped 

us to define a subgroup of patients with DOC that can respond to this specific treatment. These results were 

very encouraging and we are currently carrying out further studies to determine whether the effects of 

tDCS can be amplified and made more durable, the likes of which would be necessary if tDCS were to be 

used in clinical practice. 
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2. Palliative treatments for patients with disorders of consciousness 
 

 

“The world is a dangerous place to live; not because of the people who are evil, but because of the people 
who don't do anything about it.” 

Albert Einstein 
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2.1 The challenge of managing pain in disorders of consciousness 
 
Pain management in patients with DOC is an extremely challenging task, as assessment is limited by 

the absence of patients‘ communication and subjective report. It is, therefore, impossible for them to 

express their feelings or even use any usual scale (such as the Visual Analog Scale) to communicate the 

presence of pain and its subjective intensity (Huskisson 1982). Additionally, several conditions are likely to 

induce pain in acute as in chronic stages, such as polytraumatic injuries, open wounds, spasticity, tendon 

retraction or peripheral injuries, especially during care and mobilization. This is, however, one of the most 

important questions to address as it has obvious clinical and ethical implications (Demertzi, Racine et al. 

2013). In this chapter, we will introduce the neuroimaging findings relative to pain perception in patients 

with DOC as well as the recent and current investigations performed to develop and validate behavioural 

protocols (such as the Nociception Coma Scale-Revised – NCS-R;(Chatelle, Majerus et al. 2012) which will 

help clinicians assess and treat pain in these patients. We will also discuss the findings from our recent study 

investigating the neural correlate of the NCS-R.   
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2.1.1 Pain processing in patients with disorders of consciousness 

 

Pain is defined as ‘‘an unpleasant sensory and emotional experience associated with real or potential 

tissue damage” (International Association for the Study of Pain 1979), whereas nociception is described as 

“an actually or potentially tissue damaging event transduced and encoded by nociceptors” (Loeser and 

Treede 2008), referring to the basic processing of a noxious stimulus. Nociception is necessary to pain 

perception but it will not necessarily lead to a conscious experience (Loeser and Treede 2008). On the 

contrary, pain is a conscious first-person experience, which has to be reported, verbally or non-verbally, to 

be correctly assessed. A distinction has been proposed between brain areas involved in nociception versus 

suffering as suffering is related to the conscious perception of pain. Neuroimaging studies suggest that pain 

is mediated by a widely distributed cerebral network. First of all, the stimulation of nociceptors (A-δ and C 

fibres) leads to the transmission of information via the spinothalamic and spinoreticular pathways to 

midbrain (i.e. periaqueductal matter) and the thalamus (which participates in the increase of arousal 

following a nociceptive stimulus). These two regions are thought to be involved in the modulation of reflex 

responses to nociceptive stimuli. Afterwards, nociceptive information may be transmitted to the cortex or 

not. In contrast, pain processing mainly involves cortical activation. The primary and secondary 

somatosensory cortices (S1 and S2 – lateral network) participate in the sensory–discriminative aspects of 

pain processing (Ploner, Schmitz et al. 1999, Ploner, Gross et al. 2002, Lockwood, Iannetti et al. 2012), 

whereas the cingulate, insula, and prefrontal cortices (medial network) are considered to be involved in the 

motivational-affective and cognitive-evaluative aspects of pain processing (Sikes and Vogt 1992, Peyron, 

Garcia-Larrea et al. 2000, Vogt 2005, Shackman, Salomons et al. 2011). The involvement of all these areas 

is what is called the “pain matrix” (Ingvar 1999). Even though recent studies support the idea that the “pain 

matrix” is not only related to pain but involved in multimodal processing of saliency (Mouraux, Diukova et 

al. 2011, Moulton, Pendse et al. 2012, Ronga, Valentini et al. 2013), the connectivity within these regions 

seems to play an important role in conscious perception of pain (Massimini, Boly et al. 2009, Owen, Schiff 

et al. 2009, Schnakers, Chatelle et al. 2012).  

For patients with DOC, it is a real challenge to know whether consciousness is required for sensory 

perception, including nociception and pain. Using neuroimaging techniques, previous studies aimed to 
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objectively measure pain perception in this population of patients. Laureys et al. investigated central 

processing of pain stimuli by using H2O PET imaging in post-comatose patients (Laureys, Faymonville et al. 

2002). In response to an electrical stimulation applied in the median nerve at the wrist, they observed an 

increase of metabolism in midbrain, contralateral thalamus, and S1 in an UWS/VS (n=15). Nevertheless, the 

activated S1 was functionally disconnected from S2, bilateral posterior parietal, premotor, polysensory 

superior temporal and prefrontal cortices as compared to 15 healthy controls. For patients in an UWS/VS, 

the severely impaired functional connectivity in cortico–cortical pathways suggests that the activation of 

the primary cortex seems to be isolated from higher-order associative cortices, reducing the probability that 

painful stimuli are experienced in an integrated and conscious manner. Boly et al. studied the same 

processes for patients in MCS. They reported brain activation similar to controls in response to noxious 

stimuli encompassing not only midbrain, thalamus, and S1 but also S2, insular, posterior parietal and 

posterior part of the anterior cingulate cortex (ACC;(Boly, Faymonville et al. 2008). The activation of these 

areas (and, particularly, ACC and insula) suggests that patients in a MCS may perceive the unpleasant aspect 

of painful stimuli (Bingel, Quante et al. 2002, Shackman, Salomons et al. 2011). Moreover, intact 

connectivity between primary and associative cortices has also been observed in these patients, suggesting 

the existence of an integrated and distributed neural processing which makes plausible the existence of 

conscious pain perception in this population. 

It is important to stress that, despite these neuroimaging studies, it is still unclear whether all patients 

in an UWS/VS are unable to feel pain. Kassubek et al. scanned (H2O PET) post anoxic patients in an UWS/VS 

during an electrical noxious stimulus. They reported atypical pain-induced activation in areas known to be 

involved in pain processing (i.e. posterior insula;(Kassubek, Juengling et al. 2003). In parallel, two recent 

studies have found activation in ACC and/or insula – part of the affective pain network – in about 20 to 30% 

of patients in an UWS/VS in response to pain cries and noxious stimulation (Markl, Yu et al. 2013, Yu, Lang 

et al. 2013). This suggests that some patients diagnosed as being in an UWS/VS may have residual pain 

perception. As a certain number of patients diagnosed at the bedside as being in an UWS/VS, have 

previously shown brain activation in response to active cognitive tasks (Schnakers, Perrin et al. 2009, Monti, 

Vanhaudenhuyse et al. 2010, Cruse, Chennu et al. 2011), it is plausible to assume that a percentage of 

patients who do not show behavioural signs of consciousness may be able to perceive external stimuli such 
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as pain. This underlines the importance to consider potential pain experience in all patients with DOC, both 

MCS and UWS/VS, and to develop tools to appropriately assess and treat pain in those non-communicative 

patients.  
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2.1.2 Pain assessment in non-communicative patients 
 

Recently, Schnakers et al. developed a new scale to assess nociception and pain in patients with DOC, 

the Nociceptive Coma Scale (NCS –(Schnakers, Chatelle et al. 2010). The term “nociception” was chosen for 

two reasons. First, the NCS aimed to assess both patients in an UWS/VS and in a MCS and is therefore 

assessing responses underlying both high-level brain processing related to pain and low-level brain 

processing related to nociception. Second, as pain is a subjective experience, it is difficult to use this term 

when no self-report is available. The first version of the NCS (Schnakers, Chatelle et al. 2010) has been 

developed on the basis of pre-existent pain scales for non-communicative patients with advanced dementia 

(Hummel 2006) and new-borns (American Geriatrics Society 2002). It consisted of 4 subscales assessing 

motor, verbal and visual responses as well as facial expression to noxious stimuli. Its total score ranged from 

0 to 12. This version of the NCS has been validated in patients from intensive care, neurology or 

neurosurgery units, rehabilitation centres and nursing homes.  

Another study was performed in order to compare NCS scores observed at rest, in response to a non-

noxious stimulus (i.e. tap on the shoulders) and in response to a noxious stimulus (i.e. nail bed pressure) in 

patients with DOC (Chatelle, Majerus et al. 2012). Results showed that the NCS total scores as well as the 

motor, verbal and facial sub-scores were significantly higher in response to the noxious stimulus than at 

rest or in response to a non-noxious stimulus, reflecting the good sensitivity of the scale. However, no 

difference could be observed between noxious and non-noxious conditions for the visual sub-scores. The 

authors therefore decided to propose a new version excluding the visual subscale, the Nociception Coma 

Scale – Revised (NCS-R – table 1;(Chatelle, Majerus et al. 2012). Based on this version, a cut-off score of 4 

has been defined as a potential clinical threshold for detecting pain or nociception for both patients in MCS 

and UWS/VS, with a sensitivity of 73%, a specificity of 97% and an accuracy of 85%.  

MOTOR RESPONSES 

3 - Localization to painful stimulation  

2 - Flexion withdrawal  

1 - Abnormal posturing  

0 - None/Flaccid  
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VERBAL RESPONSES 

3 – Groaning 

2 - Verbalisation (intelligible) 

1 – Vocalisation 

0 – None 

FACIAL RESPONSES 

3 - Cry 

2 - Grimace 

1 - Oral reflexive movement/Startle response 

0 - None 

Table 1: the Nociception Coma Scale Revised. From (Chatelle, Majerus et al. 2012). 
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2.1.3 Correlation between the Nociception Coma Scale-Revised and pain matrix cortical 
activity 
 

As described above, previous studies have shown that the NCS-R is a validated and sensitive tool to 

assess responses to noxious stimulation (Schnakers, Chatelle et al. 2010, Chatelle, Majerus et al. 2012). In 

the present study, we investigated whether the NCS-R was related to cortical processing of pain. Using FDG-

PET scan, we looked at the correlation between NCS-R total scores and brain metabolism measured in areas 

known to be part of the pain matrix (Ingvar 1999, Peyron 2000, Boly, Faymonville et al. 2008).  

FDG-PET was performed at rest after intravenous injection of 5 to 10 mCi (185-370 MBq) FDG on a 

Gemini Big Bore PET/CT scanner (Philips Medical Systems). Each patient was assessed with the NCS-R the 

day of FDG-PET imaging. We measured patients’ responses following a noxious stimulation (i.e. applying 

52±8 Newton pressure on the right and left middle fingers’ nailbed) during 5 seconds (Schnakers, Chatelle 

et al. 2010, Chatelle, Majerus et al. 2012). Patients’ diagnosis was based on the best score obtained from 

repeated CRS-R assessments (performed on day of scanning, two days before and two days after).  

PET data were spatially normalized and smoothed using a 16 mm full width at a half maximum 

Gaussian kernel. Statistical analyses were performed using Statistical Parametric Mapping (SPM8; 

www.fil.ion.ucl.ac.uk/spm). T-contrasts identified positive and negative linear correlations between 

regional brain metabolism and NCS-R total scores. Differences in the level of consciousness (i.e. CRS-R total 

scores), diagnosis (i.e. UWS/VS versus MCS), aetiology (i.e. traumatic versus non traumatic) and interval 

since insult (i.e. acute/sub-acute vs longstanding; >1 year post-insult) were modelled as additional 

covariates in the design matrix. Global normalization was performed by proportional scaling. Results were 

considered significant at p<0.05 small-volume corrected for multiple comparisons, using 10 mm-radius 

spheres centred on a priori coordinates for areas previously identified in pain processing in DOC (i.e., 

thalamus, S1, S2, insula and ACC; Boly, Faymonville et al. 2008).  

Forty-two patients were included (29 males, aged 42±17 years, 24 ± 32 months post-insult, 19 TBI; 

26 MCS), 22 were in an acute/sub-acute stage (i.e. <1 year post-insult). We identified a significant positive 

correlation between metabolism and NCS-R total scores in the posterior ACC (Z=2.43; corrected p=0.038; 

Talairach coordinates x=12, y=2, z=42, see figure 4). Moreover, this area positively correlated with NCS-R 

http://www.fil.ion.ucl.ac.uk/spm
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and not with CRS-R total scores (Z= 2.74; corrected p= 0.018; Talairach coordinates x=20, y=16, z=36 mm). 

We did not find a significant effect of level of consciousness, aetiology or chronicity. No negative 

correlations with NCS-R scores were observed. 

 

Figure 4. Metabolism in the posterior part of the anterior cingulate cortex (ACC) showed a positive 
correlation with Nociception Coma Scale-Revised total scores (NCS-R). Results were considered significant 
at p<0.05 small-volume corrected for multiple comparisons. From (Chatelle, Thibaut et al. 2014). 
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Summary and discussion 

In this study, we investigated the correlation between regional brain metabolism and NCS-R total 

scores in patients with DOC and highlighted the posterior ACC. According to previous neuroimaging studies 

on pain perception, the posterior ACC is part of the network involved in the cognitive and affective aspects 

of pain processing (Peyron 2000). This region is a hub where information about negative reinforcers and 

pain can be linked to motor centres responsible for expressing affect and executing goal-directed behaviour 

(Shackman, Salomons et al. 2011). It should be noted that metabolism in the ACC correlated with NCS-R 

total scores and not with CRS-R total scores, suggesting that the NCS-R reflects nociception and pain rather 

than differences in patients’ level of consciousness.  

Near-normal regional cerebral blood flow increases in response to nociception in MCS patients, 

including the ACC was reported in a previous study (Boly, Faymonville et al. 2008). In contrast, a study on 

UWS/VS patients showed isolated S1 activation to noxious stimuli, disconnected from the rest of the brain 

(Laureys, Faymonville et al. 2002), while others have reported residual activation in the ACC in some patients 

behaviourally diagnose as being in an UWS/VS (Markl, Yu et al. 2013). In the present study, we did not find 

an effect of the clinical diagnosis (UWS/VS versus MCS) which support the idea that some behaviourally 

“unconscious” patients might actually show higher cortical processing, not detectable at the bedside. Given 

the high rate of misdiagnosis reported in this population (Monti, Vanhaudenhuyse et al. 2010, Cruse, 

Chennu et al. 2011), we think it is important to use a sensitive scale to manage possible pain in every patient, 

both UWS/VS and MCS (Schnakers, Chatelle et al. 2012).  

Recently, some authors supported the idea that the network encompassing the pain matrix (including 

the ACC) is not specific to pain processing but rather be involved in multimodal processing (Menon, Ford et 

al. 1997, Iannetti, Hughes et al. 2008, Lui, Duzzi et al. 2008, Mouraux and Iannetti 2009, Mouraux, Diukova 

et al. 2011, Moulton, Pendse et al. 2012, Ronga, Valentini et al. 2012). Indeed, those studies have reported 

the activation of this network in other modalities such as auditory, visual or non-noxious stimulations. 

However, if not uniquely involved in pain processing, the key role of the posterior ACC in the cognitive 

evaluative dimension of pain (e.g. avoidance behaviour, attention shifting) has been supported by 

numerous studies (Peyron 1999, Vogt 2005, Shackman, Salomons et al. 2011). Lesion studies reported that 

ACC damages in humans and animals induced a decrease in pain affect associated with a preserved sensory 
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discriminative ability (Foltz and White 1962, Vaccarino and Melzack 1989, Sikes and Vogt 1992). Moreover, 

previous studies showed that an increased activity in the posterior ACC prior to painful stimulation was 

linearly associated with increased painfulness in conscious healthy volunteers (Boly 2007), and that this area 

showed a reduced activity during hypnosis-induced analgesia (Rainville 1997, Vanhaudenhuyse, Boly et al. 

2009). Altogether, those results suggest that posterior ACC is a key area for the cognitive integration of pain 

(Peyron 2000, Shackman, Salomons et al. 2011).  

In conclusion, our results support the hypothesis that the NCS-R is related to cortical processing of 

nociception and hence may constitute an appropriate behavioural tool to assess pain perception in non-

communicative patients with severe DOC. Future studies using event-related fMRI should investigate the 

correlation between NCS-R scores and brain activation and connectivity in response to noxious stimulation 

at the single-subject level in this challenging patient population. 
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2.2 Spasticity in disorders of consciousness 
 

Spasticity is a very common motor disorder that can affect patients after a stroke or acquired brain 

damage. The mechanisms underlying this disorder are not yet completely understood. Spasticity can induce 

pain and decrease the potential recovery of patients (Thibaut, Chatelle et al. 2014). It is, therefore, very 

important to take this into account when discussing the treatment of patients with DOC as (i) they are 

unable to communicate their sensations, (ii) they are more likely to be misdiagnosed (i.e. being considered 

unconscious, whilst actually being conscious, because of limited motor abilities), (iii) their participation in 

active rehabilitation programs is even more limited in the case of spasticity.  

In this chapter we will provide an overview regarding assessments and treatments (pharmacological 

and physiotherapeutic) of spasticity for brain-injured patients. We will then discuss the findings from our 

study assessing the occurrence and clinical impact of spasticity in patients with DOC. Finally, we will report 

the results of our single-blind randomized sham-controlled trial study which aims to assess the efficacy of 

soft splints on upper limb spasticity of chronic patients with DOC. 
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2.2.1 Spasticity: Principles 

 

Definition  

Spasticity was first described by Lance in 1980 as “a motor disorder characterized by a velocity 

dependent increase in tonic stretch reflexes (muscle tone) with exaggerated tendon jerks, resulting from 

hyperexcitability of the stretch reflex, as one component of the upper motor neuron syndrome” (Lance 1980). 

This description characterizes spasticity during passive movement, but does not take into account its effects 

on voluntary gestures. In 1994, Young added neurophysiological elements to define spasticity 

independently of the type of movement: “a motor disorder characterized by a velocity-dependent increase 

in tonic stretch reflexes that results from abnormal intra-spinal processing of primary afferent input” (Young 

1994). There is, however, still no consensus for the definition of spasticity, and this reflects the complexity 

and the diversity of the phenomena. This is especially true for motor disorders occurring after a brain 

damage, which can give rise to a considerable variety of symptoms (e.g. clonus, dystonia, muscle weakness, 

abnormal reflex responses). The name “upper motor neuron syndrome” defines spasticity as one of the 

motor disturbances appearing after a brain lesion, and merges it with other motor symptoms which occur 

after lesions in the descending corticospinal system (Mayer and Esquenazi 2003). According to this 

definition, spasticity is one of the positive signs of the upper motor neuron syndrome (see table 2). 
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Positive signs 

Increased tendon reflexes  Result from hyper-excitability of the stretch reflex 

Clonus Series of involuntary, rhythmic, muscular contractions and 
relaxations due to a self-re-excitation of hyperactive stretch 
reflexes in the affected muscle 

Positive Babinski sign Extension of the big toe, while the other toes fan outwardly in 
response to rubbing of the sole of the foot. It indicates a lesion 
of the corticospinal tract 

Spasticity Muscle hypertonia, dependent upon velocity of muscle stretch 

Extensor/flexor spasms Spasms occur spontaneously or in response to stimulation 
(movement of the leg, change of position). The commonest 
pattern of flexor spasm is flexion of the hip, knee and ankle 

Spastic co-contraction (during 
movement) 

Agonist and antagonist muscles co-contract simultaneously 
inappropriately and thus disrupt normal limb movement. This 
is due to the perturbation of the spinal reflexes that contribute 
to reciprocal innervation 

Associated reactions and other 
dyssynergic stereotypical 
spastic dystonia 

Remote form of synkinesis due to a failure to inhibit spread of 
motor activity (e.g. flexion of the elbow simultaneously to 
flexion of the hip during walking) 

Negative signs 

Muscle weakness Muscles have lower strength due to the loss of corticospinal 
drive 

Loss of dexterity Loss of hand precise movements, such as opposition of the 
thumb due to a weakness of the intrinsic and extrinsic hand 
muscles 

Fatigability Greater effort required to perform a movement leading to 
tiredness 

Table 2: Description of positive and negative signs observed in case of upper motor neuron syndrome due 

to stroke (Sheean 2002). 

 

Spasticity is a serious complication to brain injury, often accompanied by dyskinesia, spasms or 

muscle flaccidity (Ward 2012). This disorder results from impaired reflex functions and pathological changes 

in rheologic muscle properties such as atrophy, stiffness and fibrosis (Dietz and Sinkjaer 2007). In addition 

to hyper-excitability of the stretch reflex, patients may suffer from spastic dystonia (i.e. muscle constriction 

in the absence of voluntary movement), and/or spastic co-contraction (i.e. contraction of both agonist and 

antagonist muscles) (McComas 1994, Sommerfeld, Eek et al. 2004, Gracies, Bayle et al. 2010). These 

modifications can induce pain and reduce functional autonomy (Doan, Brashear et al. 2012). Spasticity has 
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also been reported to be associated with tendon retraction, fixed equinovarus feet and pain in patients 

suffering from multiple sclerosis (Svensson, Borg et al. 2014) or stroke (Ada, O'Dwyer et al. 2006, Malhotra, 

Pandyan et al. 2011, Brainin 2013). All these complications increase the clinical impact of spasticity on 

recovery by impeding the patient’s ability to perform activities of daily living and by increasing the cost of 

treatment (Brainin 2013, Zorowitz, Gillard et al. 2013, Svensson, Borg et al. 2014). Spasticity occurs in 

approximately 25 to 42% of patients with stroke (Urban, Wolf et al. 2010, Wissel, Schelosky et al. 2010). 

Although the onset is usually within the first few days or weeks post-insult (Mayer and Esquenazi 2003), 

spasticity may appear in the short-, medium-, or long-term period post-insult (Ward 2012). 

A study by Wissel et al. (2010) showed that 25% of stroke patients suffer from spasticity within the 

first six weeks of the event. They also observed that spasticity primarily affects the elbow (79% of patients), 

the wrist (66%), and the ankle (66%) (Wissel, Schelosky et al. 2010). In the upper limbs, the most frequent 

pattern of arm spasticity is internal rotation and adduction of the shoulder coupled with flexion at the elbow 

and neutral positioning of the forearm and wrist (Marciniak 2011, Hefter, Jost et al. 2012). A high degree of 

paresis and hypoesthesia at stroke onset has been suggested as one of the predictors for the development 

of spasticity (Urban, Wolf et al. 2010, Coupar, Pollock et al. 2012). Other risk factors were also identified for 

the development of permanent spasticity after a stroke: (i) any paresis in affected limb, (ii) more severe 

paresis at 16 weeks compared to the first week, (iii) Modified Ashworth Scale (MAS) ≥ 2 in at least one joint 

within 6 weeks after stroke, (iv) more than two joints affected by increased muscle tone, (v) hemispasticity 

within 6 weeks after stroke, and (vi) lower Barthel Index at baseline (Wissel, Schelosky et al. 2010). Variables 

that can reliably predict recovery have yet to be identified. But before this can happen, we need to properly 

assess spasticity and various scales are being used in this context. 

How to assess spasticity? Review of the most commonly used scales 

Several scales have been developed and validated to assess spasticity in brain-injured patients. The 

two most commonly used are the Modified Ashworth Scale (Bohannon and Smith 1987) and the Modified 

Tardieu Scale (Tardieu, Shentoub et al. 1954, Held and Pierrot-Deseilligny 1969). These scales assess the 

degree and angle of muscle contraction, and in the case of retraction, the amplitude of the permitted 

movement.  
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The Modified Ashworth Scale (MAS): this scale measures the level of resistance to passive movement, 

but does not evaluate the velocity of passive joint movement, the angle of contraction outbreak, or 

potential tendon retraction (Pandyan, Johnson et al. 1999) (table 3). The MAS is effective in clinical practice 

because of its ease and speed of use. Moreover, this scale is widely used in research and has been highly 

investigated in many studies (e.g. to objectively measure the effect of a treatment;(Gracies, Fitzpatrick et 

al. 1997, Brashear, Gordon et al. 2002, Brashear, Zafonte et al. 2002, Sommerfeld, Eek et al. 2004). 

Unfortunately, validation studies only showed “moderate” to “good” intra-rater reliability and “poor” to 

“moderate” inter-rater reliability (Lee, Carson et al. 1989, Brashear, Zafonte et al. 2002, Ghotbi, Nakhostin 

Ansari et al. 2011). Even if this scale seems to measure the resistance adequately, the reduced range of joint 

motion due to contractures might also limit its reliability (Mehrholz, Major et al. 2005). It is now established 

that the MAS evaluates a combination of soft tissue contracture and spastic dystonia, in addition to 

spasticity itself (Thakker and Rubin 2004, Gracies, Burke et al. 2010). Furthermore, it is not velocity 

dependent, as Lance’s definition of spasticity specified.  

The Modified Tardieu Scale (MTS): in comparison with the MAS, the MTS does take into account the 

velocity of passive joint movement, the angle of contraction outbreak, and the potential tendon retraction. 

In this scale, spasticity is assessed with three velocities (low, normal, and fast; see table 3), and the snap 

angle is reported as the angle of retraction (Held and Pierrot-Deseilligny 1969, Boyd and Graham 1999, 

Mehrholz, Wagner et al. 2005). The MTS tends to be more sensitive in the detection of post-treatment 

changes because it measures muscle resistance as well as the velocity of the movement that induces 

muscular contraction (Katz, Rovai et al. 1992, Gracies, Marosszeky et al. 2000, Mehrholz, Wagner et al. 

2005). When comparing the two scales, the distribution of the mean scores correlates poorly (Mehrholz, 

Wagner et al. 2005). This may be explained by the fact that these two scales measure two different 

dimensions (Mehrholz, Wagner et al. 2005). The MTS is closer to Lance’s definition, as it assesses spasticity 

at three different velocities. Considering its good inter- and intra-subject reliability (Brashear, Zafonte et al. 

2002), the MTS might be a more appropriate instrument for the measurement of spasticity than the MAS. 

Although this scale seems more accurate than the MAS, its validity still needs to be assessed (Yelnik, Simon 

et al. 2010). In theory, this scale demonstrates several advantages over the MAS, as it uses both a fast and 

slow speed of movement, and incorporates an interval level measure (range of movement; ROM), as well 
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as a subjective rating scale. Further studies need to be performed on a larger population to confirm the 

reliability and the specificity of this scale for assessing spasticity. 

Modified Ashworth Scale 

0 No increase in muscle tone 

1 
Slight increase in muscle tone, manifested by a catch or by minimal resistance at the end of the 
range of motion (ROM) when the affected part(s) is (are) moved in flexion or extension 

1+ 
Slight increase in muscle tone, manifested by a catch, followed by minimal resistance throughout 
the remainder (less than half) of the ROM 

2 More marked increase in muscle tone through most of the ROM, but affected part(s) easily moved 

3 Considerable increase in muscle tone, passive movement difficult 

4 Affected part(s) rigid in flexion or extension 

Modified Tardieu Scale 

X: Quality of movement mobilization 

0 No resistance throughout the course of the passive movement  

1 Slight resistance throughout the course of passive movement, no clear catch at a precise angle 

2 Clear catch at a precise angle, interrupting the passive movement, followed by release 

3 
Fatigable clonus with less than 10 seconds when maintaining the pressure and appearing at the 
precise angle 

4 
Unfatigable clonus with more than 10 seconds when maintaining the pressure and appearing at a 
precise angle 

5 Joint is fixed 

V : measurements take place in 3 different velocities  

V1 As slow as possible 

V2 Speed of limb segment falling under gravity 

V3 As fast as possible 

Y: Angle of catching (muscle reaction) 

Table 3: The Modified Ashworth Scale (MAS;(Bohannon and Smith 1987) and the Modified Tardieu Scale 

(MTS;(Held and Pierrot-Deseilligny 1969).  
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Treatments: current knowledge 

Pharmacological treatments: treatment to reduce spasticity should be introduced when the patient 

suffers from motor disability due to spasticity. Motor hyperactivity is the only motor disorder that can 

benefit from drug treatment. Medication should be tailored according to the lesion area (e.g. cortical, spinal 

cord) and the intended effects. Pharmacological treatments either act on the central nervous system (CNS) 

or directly on the muscle. Several treatments aim to reduce muscle tone, either through oral or injectable 

administrations, or through an intrathecal pump. Their efficacy, however, remains controversial and not 

well understood. A summary of the most commonly used treatments are recapitulated in table 4; for a 

complete review see (Thibaut, Chatelle et al. 2013). Unfortunately only a few studies are double-blind sham 

controlled and the posology of each treatment can vary considerably from country to country, or even from 

a hospital to another one. 

Drug Dose 
(admin) 

Mechanism of action Side effects 

Diazepam  5-20 mg 
3 times 
daily 
(oral) 

Increases the affinity of 
GABA for the GABAa 

receptor complex leading 
to an increase in 
presynaptic inhibition and 
reduction of synaptic 
reflexes 

Sedation, weakness, 
hypotension, adverse 
gastrointestinal effects, 
memory trouble, confusion, 
depression, and ataxia 

Clonazepam  0.5 to 
1.0 mg 
once 
daily 
(oral) 

Idem Weakness, hypotension, 
ataxia, dyscoordination, 
sedation, depression, and 
memory impairment. 
Prolonged use could increase 
the risk of addiction 

Gabapentin 240-360 
mg daily 
(oral) 

Structurally similar to the 
GABA. Increases the brain 
level of GABA  

Fainting, somnolence, 
nystagmus, 

ataxia, headache, tremor 

Baclofen 5-20 mg 
3-4 
times 
daily 
(oral) 

Centrally acting GABA 
analogue. Binds to GABAb 
receptor at the 
presynaptic terminal and 
inhibits the muscle 
stretch reflex 

Sedation, dizziness, weakness, 
fatigue, nausea. Lowers seizure 
threshold 
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Tizanidine 4-36 mg 
daily 
(oral) 

Imidazole derivative, with 
agonist action on alpha-2 
adrenergic receptors in 
CNS 

Sedation, dizziness, mild 
hypotension, weakness, 
hepatotoxicity  

Dantrolene 25-100 
mg 4 
times 
daily 
(oral) 

Interferes with the 
release of calcium from 
the sarcoplasmic 
reticulum of the muscle 

Generalized muscle weakness, 
mild sedation, dizziness, 
nausea, diarrhoea, 
hepatotoxicity 

Phenol/ 

alcohol 

30 
mg/kg 
(injectab
le) 

Chemical denervation of 
the muscles 

Burning and dysesthesias. 
Damage of the sensory nerves 
and pain 

Botulinum 
toxin 

10-15 
units/kg 
(injectab
le) 

Inhibit the release of 
acetylcholine at the 
neuromuscular junction 

Pain (during injection)  

Local weakness  

Swallowing trouble for 
patients with respiratory and 
swallowing disorders  

Intrathecal 
baclofen 

25-1000 
µg daily 
(IP) 

Binds to GABAB receptor 
at the presynaptic 
terminal and inhibits the 
muscle stretch reflex 

Decreased ambulation speed 
and muscle weakness 

Table 4: Dosing, mechanism of action and side effects of pharmacological treatment of spasticity. Adapted 

from (Satkunam 2003, Yelnik, Simon et al. 2009, Lapeyre, Kuks et al. 2010). IP= intrathecal pump. 

 

Physical therapy: The basic treatment for all patients with spasticity is physical therapy (Gracies 

2001, Watanabe 2004). Limiting muscle contractures and reducing hyperactivity for at least a short period 

of time can be helpful for patients. The aim of stretching is to improve the viscoelastic properties of the 

muscle-tendon unit and to increase its extensibility. Other structures can also be put under tension, such as 

tendons or connective, vascular, dermal, or neural tissue (Harvey, Herbert et al. 2002, Bovend'Eerdt, 

Newman et al. 2008). There is, however, no consensus about the optimal frequency, intensity, velocity, and 

duration of stretching. A recent systematic review of the effectiveness of stretching to treat and prevent 

contracture in patients with brain injuries concluded that stretching does not induce significant changes in 

joint mobility, pain, spasticity, or activity limitation (Katalinic, Harvey et al. 2010). Another method, casting, 

immobilizes the limb in a stretch position and induces prolonged muscle stretching. This technique allows 
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improving muscle length, increasing joint range of motion, and reducing contracture, pain, and spasticity 

(Watt, Sims et al. 1986). However, there are no guidelines yet, nor any scientific evidence that this method 

can reduce spasticity caused by neurological disorders (Lannin, Novak et al. 2007). Beside muscle stretching, 

muscle strength training is also used to recover functional motricity (Morris, Dodd et al. 2004). One of the 

most widely used approaches is the Progressive Resistance Strength Training, although, at this time, there 

is no gold standard for strengthening protocols (Sunnerhagen, Olver et al. 2013). Other physical therapies 

are used to decrease spasticity and improve motor function, such as Bobath technique, which is based on 

the reduction of spasticity and postural reflexes prior to facilitating voluntary activity in paretic muscles 

through attention to trunk posture as well as controlled muscle stretch at the limbs (Bobath 1979). 

Nonetheless, only few studies showed that this technique is efficient to reduce spasticity in patients 

suffering from a stroke (Ansari and Naghdi 2007). Additional therapies, like hydrotherapy, cryotherapy, 

thermotherapy, vibratory stimuli or neurodevelopmental inhibitory techniques, and robotic are used to 

relax muscles and to reduce the intensity of spasticity. Future studies should also be investigated to 

determine their effectiveness (Sunnerhagen, Olver et al. 2013). 

Splints: these devices are frequently used in complement with physiotherapy sessions. Several types 

of splints exist but, as with physiotherapy, no practical guidelines have been defined so far. The aims of 

splinting are reductions in spasticity and pain, improvement of function, compensation for protective 

sensation, and prevention of contracture and deformity (Neuhaus, Ascher et al. 1981). The principal 

advantage of splints is the duration of their effectiveness, because they can be placed and left for several 

hours without the presence of a physiotherapist or nurse. Nevertheless, their efficacy is not yet proven by 

any double-blind studies. However, selective groups of patients seem to have benefited from some types 

of splints (Flinn and Craven 2014). 

Summary 

Spasticity seems to affect more than one out of four patients following a brain injury (Wissel, 

Schelosky et al. 2010). The complexity and the diversity of spasticity make the identification of its underlying 

mechanisms and predisposing factors complex. Understanding of the spasticity phenomenon is essential so 

that drugs and therapeutic strategies can be developed to efficiently treat causes rather than symptoms. 

Failures in motor neuron activation and alterations in spinal motor neurons appear to be two major 
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components of the pathophysiology behind paresis following a brain lesion. However, motor impairment 

due to paresis is greatly exacerbated by the muscles, the joint contracture, and the changes in muscle 

contractile properties caused by immobilization. In addition, chronic disuse causes an alteration of CNS 

function that further reduces the ability to voluntarily recruit motor units (Gracies 2005).  

In terms of treatment, physical therapy and pharmacological treatment are essential for avoiding 

retraction and joint fixation, but to date, except for Botulinum toxin on the upper limb, there are no 

scientific guidelines for the application of different therapies in patients suffering from spasticity. For this 

reason, clear guidelines need to be developed regarding the revalidation of patients with spasticity through 

physical therapy, pharmacological treatment and other techniques. To do so, double-blind randomized 

controlled studies on pharmacological and non-pharmacological treatments should be performed to 

improve our insight into spasticity. However, no study investigating this motor disorder in a large cohort of 

patients with DOC has yet been performed. Firstly, therefore, we need to characterize spasticity in this 

specific population of patients. 
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2.2.2 Influence of spasticity on patients with disorders of consciousness 
 

The occurrence of spasticity in severe brain-damaged patients with DOC has been poorly explored. 

As mentioned earlier, these patients are unable to express their feelings and cannot communicate about 

potential discomfort or pain (Schnakers and Zasler 2007, Chatelle, Thibaut et al. 2014). To our knowledge, 

only a few studies of small sample size have described motor patterns in this population. These studies 

reported the presence of abnormal primitive reflexes (Lapitskaya, Moerk et al. 2013), altered tonus, 

considerable posturing and varied degrees of reduced range of joint motion (Pilon and Sullivan 1996, Leong 

2002) as well as abnormal cortical excitability of the motor cortex (Lapitskaya, Gosseries et al. 2013). In 

addition, due to severe motor impairments, which accompany spasticity, some patients fail to show clinical 

signs of consciousness, thus leaving them vulnerable to misdiagnosis (Bekinschtein, Coleman et al. 2008, 

Monti, Vanhaudenhuyse et al. 2010, Cruse, Chennu et al. 2011, Cruse, Chennu et al. 2012, Habbal, Gosseries 

et al. 2014, Stender, Gosseries et al. 2014). Thus the need to understand and prevent spasticity in this 

population is urgent.  

The aim of our first study was to measure the occurrence and clinical impact of spasticity in patients 

with DOC. We assessed the presence of spasticity in a cohort of chronic patients in UWS/VS or MCS. We 

also investigated the correlation between the degree of spasticity and the level of consciousness, aetiology, 

potential factors of co-morbidity (i.e. tendon retraction in the upper extremities and fixed equinovarus feet), 

level of treatment (i.e. application of anti-spastic medication and physiotherapy), time since insult and 

presence of pain.  

In this study, we included 65 patients (22 women; mean age: 44±14 years; 40 traumatic aetiology; 

time since insult: 39±37 months). Patients were diagnosed as being in UWS/VS (n=25) or in MCS (n=40) 

based on repetitive assessments using the CRS-R (Giacino, Kalmar et al. 2004, Schnakers, Majerus et al. 

2008). Anti-spastic medication was classified as oral treatments (baclofen, clonazepam, tizanidine) or 

intrathecal baclofen therapy. Inclusion criteria were: 1) a diagnosis of UWS/VS or MCS, 2) time since onset 

of condition more than 3 months, and 3) age 16 years and over. Exclusion criteria were: 1) documented 

neurological disorders previous to the acquired brain damage, and 2) presence of skin or musculoskeletal 

lesions (e.g. bedsores, fractures, wounds). All patients were examined by the same physiotherapist with the 
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MAS (Mehrholz, Wagner et al. 2005) to minimize inter-rater variability. The score of the most affected upper 

limb muscle group was used for our correlation analyses. Among the 65 studied patients, 48 were also 

assessed with the NCS-R to assess behavioural signs of pain (Chatelle, Majerus et al. 2012).  

MAS data were evaluated on a scale ranging from 0 to 5, assigning the 1+ a value of 2, the 2 a value 

of 3, and so on. We used the Mann-Whitney U tests to investigate the difference of MAS scores according 

to the level of consciousness (i.e. UWS/VS versus. MCS), joint deformities (i.e. presence vs. absence of upper 

limb tendon retraction and equinovarus feet), and medication (i.e. presence vs. absence of pharmacological 

treatment) (Hart 2001). We used the Wilcoxon test to assess differences in MAS scores between upper and 

lower extremities. Correlations between MAS scores and NCS-R total scores, time since insult, and 

frequency of physical therapy were assessed with Kendall’s Tau tests (Kendall 1938, Brown and Hayden 

1985). Differences in MAS scores according to the aetiology (i.e. anoxic, haemorrhagic, traumatic and mixt) 

were assessed with Kruskal-Wallis ANOVA. Statistical analysis was performed using Statistica 10.0 with 

statistical significance set at the 5% level. 

We found that, out of 65 patients, 58 showed signs of spasticity (89%; MAS ≥ 1). Out of these 65 

patients, 40 suffered from severe spasticity (62%; MAS ≥ 4) (see table 5). Seven patients (11%) showed no 

signs of spasticity (MAS=0) including five patients (8%) who were flaccid. Six patients (9%) had a maximal 

score of 2, 12 (18.5%) had a maximal score of 3, 12 (18.5%) had a maximal score of 4 and 28 (43%) had a 

maximal score of 5. Spasticity was more important for upper limbs than lower limbs (T=446.5; Z=2.55; 

p=0.01, see table 6).  

A negative correlation was found between MAS scores and the frequency of physical therapy for both 

the upper limbs (tau=-0.20, Z=-2.37; p=0.018) and the lower limbs (tau=-0.20; Z=-2.41; p=0.016). On the 

other hand, a positive correlation was found between MAS scores and time since insult for both upper limbs 

(tau=0.23; Z=2.71; p=0.007) and lower limbs (tau=0.21; Z=2.46; p=0.014), and between MAS scores and 

NCS-R total scores for the upper limbs only (upper limbs, tau= 0.31, Z=3.11; p=0.001; lower limbs: tau=0.18; 

Z=1.80; p=0.072).  
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Presence of  % of patients – IC 95% (n=65) 

Spasticity 89 ± 12% 

Severe spasticity (MAS ≥ 4) 62 ± 11.8% 

Upper extremity tendon retraction 42 ± 10.8% 

Fixed equinovarus feet 57 ± 11.7% 

Medication 67 ± 12% 

                Table 5: Percentage of motor disabilities and medication. 
 
Twenty-seven patients had tendon retraction in the upper limbs (i.e. metacarporphalangean joint, 

wrist and elbow) and 37 fixed equinovarus feet (see table 5). The presence of retraction was associated with 

higher MAS score for the upper limbs (U=155; Z=4.71; p<0.001) and equinovarus feet were associated with 

higher MAS scores of the lower limbs (U=139.5; Z=4.89; p<0.001).  

Regarding medication, 39 out of 58 patients who showed sign of spasticity received oral anti-spastic 

treatment (34 baclofen, 3 tizanidine, 2 clonazepam), 4 patients received intrathecal baclofen therapy and 

15 patients did not receive any pharmacological treatment. Patients on anti-spastic medication (n=43, 74%) 

showed more spasticity than patients without anti spastic treatment for the lower limbs (U=209.5; Z=2.52; 

p=0.01) but not for the upper limbs (U=260; Z=1.67; p=0.09, see table 6).  

 Upper and lower limbs MAS scores did not differ according to the aetiology (U=1.75; p=0.63 and 

U=0.76; p=0.86, respectively). No difference was found between MAS score and the level of consciousness 

(upper limbs: U=459; Z=0.55; p=0.59; lower limbs: U=477.5; Z=-0.30; p=0.76, see table 6). 
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Comparison Limbs MAS median(IQR) p value 

UL and LL UL 4 (1) p=0.01* 

LL 3 (3) 

Treatment UL Medicated 3.5 (1) p=0.09 

Unmedicated 3 (2) 

LL Medicated 3 (2) p=0.01* 

Unmedicated 2 (1) 

Aetiology UL Trauma 4 (1) p=0.56 

Anoxia 4 (5) 

Subarachnoid hemorr. 4 (1.5) 

Mixed 3.5 (3.5) 

LL Trauma 4 (1) p=0.87 

Anoxia 2 (4) 

Subarachnoid hemorr. 2 (1.5) 

Mixed 4.5 (2.5) 

Diagnosis UL UWS/VS 3.5 (2) p=0.59 

MCS 3 (2) 

LL UWS/VS 2 (3.5) p=0.76 

MCS 2.5 (2) 

Table 6: Results of group comparisons with median and interquartile range (IQR) of the MAS and p value. 

Abbreviations: MAS= Modified Ashworth Scale; UL= upper limbs; LL= lower limbs; UWS/VS= vegetative 

state/unresponsive wakefulness syndrome; MCS= minimally conscious state. * indicated a significant result 

(p>0.05). 

  

Summary and discussion 

Current literature reports the presence of spasticity in 25 to 42% of patients after stroke or traumatic 

brain injury (Elovic, Simone et al. 2004, Urban, Wolf et al. 2010, Wissel, Schelosky et al. 2010). In our cohort 

of 65 chronic patients with DOC, 89% showed spasticity, 62% of which to a severe degree. This result 

suggests that spasticity is more frequent in this population of patients, than in patients with milder brain 

injuries. This high rate of spasticity supports previous results from a pilot study conducted by Pilon and 

collaborators, reporting important motor and posturing impairments in 12 patients with DOC (Pilon and 

Sullivan 1996). Extensive brain lesions, prolonged immobility, as well as weakness, disuse, and absence of 
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muscle movement in contracted positions are, since they are known to increase spasticity and contracture, 

likely to be causative factors, (Gracies 2005). Our analyses reported a negative correlation between the 

degree of spasticity and the frequency of physical therapy. This result suggests that frequent physiotherapy 

may have a positive effect on patients’ spasticity. One could argue, however, that patients with less 

spasticity might receive more physical therapy as our result is based on a correlation. It is our view, however, 

that this is less likely to be the case as the amount of physical therapy is not determined by the severity of 

spasticity, but rather the health system of the country and insurance reimbursement. In fact, it is possible 

that patients showing more spasticity may actually receive less physical therapy, especially at chronic stage. 

Some patients may show signs of pain (e.g. grimace or other facial expressions) during stretching, which 

may make the physical therapist reduce the time of stretching or even stop it altogether. Another reason 

why patients could receive less therapy is that high levels of tendon retraction or joint fixation makes 

stretching very limited and, this, physical therapy is less effective. Overall, our results do not allow us to 

claim that less spasticity is the result of more physical therapy.  

In the present study, spasticity appeared to increase over time. This result highlights problems of 

patient management (e.g. mobilization, stretching) associated with immobility. Spasticity and 

immobilization induce adaptive anatomical muscle change and reflex modifications (e.g. muscle atrophy, 

loss of sarcomeres and accumulation of connective tissue and fat;(Gracies 2005), thus constituting a self-

reinforcing negative effect. A positive correlation between upper limb spasticity and pain was previously 

observed in other patients with neurological disease (e.g. multiple sclerosis;(Kheder and Nair 2012). This 

finding is critical as patients with DOC are, by definition, unable to communicate potential discomfort 

(Chatelle, Thibaut et al. 2014). Interventions to alleviate potential pain are, therefore, mandatory in this 

population of patients. Concerning side-effects, about half of our sample suffered tendon retraction, the 

presence of which was associated with higher levels of spasticity. This supports the notion that spasticity 

increases the risk of tendon retraction (Ada, O'Dwyer et al. 2006, Malhotra, Pandyan et al. 2011). Joint 

immobilization could also be a driving factor in this regard (for a review see(Gracies 2005).  

Surprisingly, patients not administered anti-spastic medication had lower MAS scores, for lower limbs 

specifically, than medicated patients. This probably indicates that patients who do not show signs of 

spasticity do not need anti-spastic medication, whilst patients who do suffer spasticity need it to decrease 
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spasticity severity. This treatment, however, may not be sufficient to completely abolish it. Currently 

available treatments can reduce spasticity by inhibiting excitatory pathways (e.g. baclofen), by stimulating 

inhibitory pathways (e.g. diazepam) or by inducing local muscle paralysis (e.g. botulinum toxin). To date, no 

standard treatment is known to totally suppress spasticity (Thibaut, Chatelle et al. 2013).  

It should be noted that this study has some limitations. The first one is the single assessment of 

spasticity. Future longitudinal studies should assess spasticity several times in the same patients as spasticity 

may fluctuate over time. Moreover, controlled trials should be performed to provide more easily 

interpretable results, such as those regarding the correlation between physiotherapy and spasticity. 

Furthermore, our population was heterogeneous, involved various aetiologies and time from insult varied. 

Studies including a larger number of patients could enable us to compare the occurrence of spasticity with 

regard to different aetiologies.  

Clinical advices 

In line with recommendations for stroke patients (Hesse, Mach et al. 2012), our findings reinforce 

the fact that muscle hyperactivity should be treated early to minimize the risk of spasticity and joint fixation, 

thus improving the prospect of functional recovery. Subsequently, in clinical practice, even at acute stage, 

daily comprehensive stretching is highly recommended for all patients. Initial treatment of severely brain-

injured patients tends to focus on cerebral and cardiopulmonary functions whilst muscular and motor 

functions, since they are not important for vital prognosis, are down-prioritized. Anti-spastic therapy is 

usually implemented at the sub-acute stage, even though we know that spasticity can occur earlier. Critical 

care physicians and medical doctors should therefore administer anti-spastic drugs as soon as muscle 

hypertonicity is detected, and physiotherapy sessions should be increased so that respiratory deficiency 

and movement disorders can be managed as early as possible. At chronic stage, when patients leave the 

rehabilitation unit, they should continue to receive adapted care management to minimize the adverse 

effects of spasticity and immobility. Such care includes daily mobilizations, several hours on a chair, raising 

and braces and appropriate, regularly adapted pharmacological treatment. Further studies need to be 

carried out to find spasticity-reducing treatments that are easily applicable in clinical practice. 
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2.2.3 How to manage spasticity in chronic severe brain-injured non-communicative patients 
 

Patients in UWS/VS and MCS are unable to actively participate in rehabilitation. Therefore, passive 

techniques are mainly used to treat spasticity. As already mentioned, the mainstay of physical treatment is 

muscle stretching, which should be started as early as possible to prevent muscle shortening. The 

disadvantage of manual stretching is the required participation of a physiotherapist, which limits the 

frequency at which it is applied. In addition, severe contractures necessitate prolonged stretching that can 

only be achieved through the use of postures, splints, or casts (Dean, Mackey et al. 2000). Rigid splints are 

often used as orthopaedic devices in patients in UWS/VS and MCS during acute and chronic stages. 

Nevertheless, their effectiveness remains controversial, as they seem to be of little use if they are 

implemented when the patient already presents severe contractures and significant spasticity (Lannin, 

Cusick et al. 2007, Lannin, Novak et al. 2007, Shah 2007, Dockery, Hueckel-Weng et al. 2009, Basaran, Emre 

et al. 2012). Moreover, rigid splints can be harmful for patients with severe spasticity, because they may 

induce bedsores, oedema, or circulatory troubles (Feldman 1990). It is even truer for patients with DOC 

since they cannot move or remove the splint or communicate to their caregivers when they are 

uncomfortable. Soft splints are a potential alternative, but at present they are still rarely used. They may 

avoid these negative effects due to their softness and still decrease spasticity and improve hand opening by 

relaxing the patient and maintain their hands in an open position.  

The aim of the present study was to compare the effectiveness of a hand rolled soft splint on the 

upper limb spasticity of patients with DOC, compared to conventional manual stretching. We hypothesized 

that: (i) soft splints decrease spasticity of the finger flexor muscles, as assessed with the MAS and the MTS; 

(ii) soft splints increase hand opening of patients, and (iii) manual stretching could have higher impact on 

elbow spasticity than splints. 

For this study we used a soft splint with a form of roller that fits in the palm of the hand (see figure 

5). We compare the soft splint (wore for 30 minutes) with conventional manual stretching (started from 

distal, fingers and wrist, to proximal joints, elbow and shoulder).  
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Figure 5: Soft splint placed in patient’s hand. From (Thibaut, Deltombe et al. in press). 

 

Spasticity was evaluated by means of the MAS (Bohannon and Smith 1987) (grades 0; 1; 1+; 2; 3; 4) 

and MTS (Held and Pierrot-Deseilligny 1969) (grades 0 to 5) over the fingers, wrist and elbow flexors. The 

ROM was measured at the level of the metacarpophalangeal joints, the wrist and the elbow, using standard 

and digital goniometers. Hand opening was assessed by measuring the passive major-palm distance. 

Assessments were always performed from distal to proximal, starting at the metacarpophalangeal joints 

and continuing up to the shoulder. All assessments were made while patients were lying in bed. 

The inclusion criteria were: (i) age over 18 years, (ii) be in an UWS/VS or a MCS after a severe acquired 

brain injury according to published diagnostic criteria (Plum and Posner 1972, Giacino, Ashwal et al. 2002), 

(iii) be in an UWS/VS or a MCS for at least three months, (iv) have stable vital signs, and (v) have a spastic 

pattern in flexion bending in both upper limbs (MAS ≥ 1). Exclusion criteria were: (i) have cutaneous or joint 

pathologic states in the upper limb (e.g. wound, bedsore or fracture), (ii) have a spasticity pattern in 

extension, and (iii) demonstrate a hypersensitivity to polyurethane. 

Patients received different consecutive treatments on each upper limb for 30 minutes, with a 60-

minutes break between each. Assessments were performed before and directly after each treatment, and 

once again 60 minutes later. The treatments were manual stretching, splint, and a controlled condition with 

no treatment. The order of treatments was randomized. Since the patient population was small, two 

treatments were applied to the left upper limb and two to the right in order to get more measurements. 
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For example, a patient received splint then stretching 60 minutes later on the left upper limb, and no 

treatment then splint 60 minutes later on the right upper limb. The protocol was performed by two 

physiotherapists and lasted 4 hours and 30 minutes (figure 6). The first physiotherapist, the assessor, 

handled pre- (T1), post- (T2) and 60-minute post-treatment (T3) assessments alone in the patient’s room 

and left the room after the assessments. The second physiotherapist, the experimenter, then entered the 

room and applied the stretching, the splint or the control condition to the patient (a different treatment on 

each upper limb) based on a list established by a classifier. The assessor physiotherapist stayed outside the 

patient’s room during experimentation and was blinded to the treatment used prior to the assessment. 

 

 
Figure 6: Experimental protocol. Treatments: splint, manual stretching, or no treatment. Assessments were 
performed by physiotherapist 1; treatments were performed by physiotherapist 2. From (Thibaut, 
Deltombe et al. in press). 

 

Three groups were formed based on treatments received on one upper limb (left or right; the two 

upper limbs were considered independent): 1) splint and manual stretching (n=14), 2) splint and controlled 

condition (n=12), and 3) manual stretching and controlled condition (n=8). For parametric data (major-palm 

distances and ROM), differences between changes occurring after the treatment, and 60 minutes later were 

analysed by ANOVA with repeated measures (pre, post, and 60 min. post). When a significant time effect 

was observed, a post-hoc analysis was performed using a t-test for paired sample. Non-parametric data 

(MAS and MTS) were analysed using Wilcoxon’s signed rank test. We compared the difference between T1 

and T2; and T1 and T3. Statistical analysis was performed using Statistica 10.0 with statistical significance 

set at the 5% level, Bonferroni-corrected for multiple comparisons (p<0.025). We further evaluated the 

possible impact of treatment, diagnosis, and aetiology on major-palm distance and ROM using a repeated-

measures analysis of variance with one independent variable. The independent variable represented 

whether patients were medicated or not, UWS/VS or MCS, or if their injury had traumatic or non-traumatic 

origin. A Mann-Whitney U test was used for the non-parametric measures (i.e. MAS or MTS). 
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We enrolled a total of 26 chronic patients; seven patients suffered from a spasticity pattern in 

extension and two patients had no spasticity (MAS = 0). Seventeen patients who fulfilled the selection 

criteria were included in this randomized, single blind and controlled study (5 UWS/VS, 12 MCS; mean age: 

42±12 years; time since insult: 35±31 months; 7 women). The results showed significant changes at the 

level of the metacarpophalangean joints. No significant results were observed for the wrist and elbow. No 

differences were observed between treatment, diagnosis, or aetiology. 

Splint-stretching group (n=14): Regarding the finger flexor muscles, the MAS score decreased significantly 

at T2 (post-technique) compared to T1 (pre-technique) after splint application (p=0.014; median (IQR) from 

3.5(1.25) to 2.5(2.25)) and after the manual stretching (p=0.022; from 2.5(3) to 2(2)). At T3 (60 min post-

treatment), however, no significant improvement was observed for either technique (p=0.093; 3(1.25) and 

p=1; 2.5(2.25), respectively; see figure 7). Hand opening (i.e. major-palm distance) increased significantly at 

T2 for the splinting (p=0.005; from 5.07±4.32 to 7.46±3.51), but not for the manual stretching (p=0.249; 

from 5.79±4.49 to 6.11±4.58). At T3, the values returned to baseline for the splint group (4.86±3.79). No 

significant changes were observed for the other variables (MTS, ROM).  

Splint-no treatment group (n=12): When wearing the splint, the MAS score of finger flexor muscles 

decreased significantly between T1 and T2 (p=0.014; from 2.5(2) to 1.5(2)) and this reduction was 

maintained at T3 (p=0.022; 2(1.5)). Hand opening (i.e. major-palm distance) increased significantly in T2 

(p=0.009; from 3.54±3.49 to 6.17±3.47), but the effect was not maintained at T3 (p=0.486; 3.88±3.29). 

Other variables (MTS, ROM) did not change significantly. No significant changes were found when the 

patients were not treated.  

Stretching-no treatment group (n=8): We did not find any significant changes for all the variables of all 

tested joints neither after stretching nor after the absence of treatment. 



 
76 

 

 

Figure 7: Median and interquartile range of Modified Ashworth Scale (MAS) scores at baseline (T1), after 30 
minutes of treatment - splint or stretching (T2), and 60 minutes later (T3), for the group “splint-stretching”. 
An asterisk (*) denotes statistical significance at p < 0.05 and NS stands for Non-Significant. 
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Summary and discussion 

Our main results showed that the soft splint and manual stretching temporarily reduced spasticity of 

finger flexors muscles in patients with DOC. A decrease in spasticity was observed after 30 minutes of soft 

splinting and after 30 minutes of manual stretching. A longer lasting effect of the soft splint was observed 

in the group "splint-no treatment". The results of manual stretching are in line with previous studies which 

report the transient effect of manual stretching in children with DOC (Leong 2002). Other studies also 

showed the direct effect of manual stretching in reducing spasticity in post-stroke patients (Al-Zamil, Hassan 

et al. 1995), children with cerebral palsy (Tremblay, Malouin et al. 1990), and traumatic brain injury (Hale, 

Fritz et al. 1990). However, its effect fades after about 30 minutes. Gracies et al. (2000) tested the 

effectiveness of wearing a soft splint (a glove in Lycra) for 3 hours in 16 acute patients with stroke. They 

showed that this glove provided comfort to patients by reducing spasticity (MAS) in flexion of the wrist and 

fingers and improving wrist posture. The lasting effect of the soft splint in “splint-no treatment" group may 

be attributed to the fact that the splint is comfortable and could, as a result, be relaxing. Unlike manual 

stretching which involves mobilizing the upper limb, the use of a soft splint is less likely to cause pain, the 

likes of which could induce a spastic reaction (Katalinic, Harvey et al. 2010). Thus, the patient is relaxed 

when the splint is removed, and this relaxation effect can last longer.  

The soft splint failed to show an improvement in spasticity and ROM of the wrist and elbow. This is 

logical as the splint extends the fingers, but has no direct action on the wrist or elbow. Nevertheless, manual 

stretching also failed to decrease spasticity of the wrist and elbow joints, even though all the joints were 

maximally elongated. This could be due to the joint assessment order; the physiotherapist performing the 

evaluations always started by assessing the fingers, then the wrist and then the elbow. This order could 

increase the likelihood of observing an effect on the fingers’ flexor muscles. Moreover, manual stretching 

can generate pain and increase spasticity. Indeed, the physiotherapists in our study often had to decrease 

the stretching due to signs of pain (e.g. grimaces or restlessness). 

In both the “splint-stretching” and “splint-no treatment” groups, soft splinting improved hand 

opening (increased major-palm distance). The thickness of the splint allowed the metacarpophalangeal and 

interphalangeal joints to be positioned near their maximum stretching position. In patients with DOC, it is 

imperative to maintain good hand opening. Firstly, it is important from a point of view of hygiene as it 
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prevents problems such as maceration, pressure sores, or injury caused by driving nails into the palm. 

Secondly, it facilitates nursing. In addition, if patients recover cognitively, it is important that they are able 

to mobilize their fingers so they can grasp objects and maximize their autonomy.  

 One of the limitations of this study is the small number of patients and the fact that we considered 

the two upper limbs (left and right) independently. We must, therefore, interpret our results with caution. 

Further studies should assess the effect of soft splints in a larger group of patients, in both acute and chronic 

stages. 

Clinical advices 

The advantage of soft splints is that they are easy to place, comfortable, flexible, and they allow 

contraction (e.g. grasping reflex or muscle contraction) without resistance. In addition, the risk of injury and 

bedsores is less than with rigid splints. Rigid splints are often difficult to place, especially in severe patients 

with spastic and tendon retraction where hand opening and access to the palm is frequently difficult. Soft 

splints can be worn for hours without pain and without inducing a grasping reflex or muscle cramps. The 

use of a soft, comfortable splint should be recommended for patients with DOC since they are not able to 

communicate pain. Moreover, in cases of abrupt muscle contraction, a soft splint can adapt itself to the 

increase of patient activity. Soft splints, therefore, seem to be a really good alternative for reducing hand 

spasticity in chronic patients with DOC.  
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2.3 Conclusion and future directions 

 

 These studies aimed at developing tools that can help clinicians manage pain and spasticity in 

patients with DOC. As mentioned before, taking care of patients’ pain is an ethical responsibility of clinicians 

and it can influence treatment decisions (Demertzi, Racine et al. 2013).  

We first reviewed studies showing that the NCS-R is a validated and sensitive tool for assessing 

nociception in this population (Thibaut, Chatelle et al. 2014). Our study on the correlation between NCS-R 

and brain metabolism showed that its total scores positively correlate with the posterior part of the ACC, a 

key area for the cognitive integration of pain (Shackman, Salomons et al. 2011). These results suggest that 

the NCS-R is at least partially related to cortical pain processing and, hence, may constitute a suitable 

behavioural tool for assessing, monitoring and treating nociception and pain in non-communicative patients 

with DOC. Nevertheless, further studies should investigate whether or not the scale is related to the 

connectivity of the ACC with the rest of the pain matrix as it has been shown that cortico-cortical 

connectivity is related to consciousness and, hence, to conscious pain perception (see above “Pain 

processing in patients with DOC”). Overall, our research supports the use of the NCS-R for the assessment 

of nociception and pain in patients with DOC. The next step would be to validate the NCS-R for clinical use 

by evaluating its sensitivity in detecting the efficacy of an analgesic treatment. It would then be interesting 

to develop tools, behavioural scales or physiological monitoring, to indicate the presence of pain or 

nociception in patients as soon as possible.  

It is a known fact that spasticity can influence a patient’s quality of life and interfere with their 

rehabilitation. There is still, however, a significant lack of clear guidelines for its treatment. We first studied 

the impact of this motor disorder on patients with DOC. Our study shows an alarmingly high incidence of 

spasticity in this population of patients. Since these patients are already limited in their range of movement, 

spasticity constitutes one of the most important disabling factors to be treated.  

Due to paresis and the lack of controlled voluntary movements, patients with DOC are almost 

constantly immobile. This chronic inactivity may enhance the severity of spasticity and the various other 

side-effects (e.g. ankylose, tendon retraction or joint fixation). This hypothesis is in line with our finding 

where we noticed a positive correlation between severity of spasticity and time from brain injury (Thibaut, 
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Chatelle et al. 2014). Moreover, disuse and paresis result in a decrease of cortical excitability of the motor 

cortical areas coupled with a decrease in motor representation of the immobilized body parts (Kaneko, 

Murakami et al. 2003). Besides, joint immobilization in a shortened position also aggravates the disuse 

(Talmadge, Roy et al. 1995). In addition to spastic paresis, patients suffer from muscle atrophy, loss of 

sarcomeres and accumulation of connective tissue and fat (for a complete review see;(Gracies 2005). 

Previous studies have already highlighted the correlation between the degree of spasticity and the duration 

of immobilization and disuse (Harlaar, Becher et al. 2000). In conclusion, paresis and spasticity form a vicious 

circle which is exacerbated by prolonged immobilization. It is of upmost importance to break this vicious 

circle by managing these motor disorders from the time the first signs appear (a few days or weeks after 

the brain lesion) and by ensuring intensive mobilization of the patient’ limb, even if no active movement is 

possible. In other words, efforts should be made to increase the intensity of passive treatments on the 

upper and lower limbs using, for example, a motorized movement trainer as soon as possible following brain 

injury. 

In addition, managing spasticity could help this population to initiate and execute movements and 

may facilitate voluntary gestures, enabling, for example, a response to command. Complications such as 

pain or pathological tendon retraction impair these patients’ quality of life and functional recovery. Further 

research should use neurophysiology testing and neuroimaging methods to examine the association 

between the brain lesion location and the presence of spasticity. Additionally, further studies should assess 

the impact of specific and combined treatments on spasticity or tendon retraction and behavioural signs of 

pain. The correlation between spasticity and pain highlights the detrimental effect of spasticity on quality 

of life and the importance of rapid action to address this complication. Moreover, as motor impairments 

have been shown to prevent the expression of signs of consciousness at the bedside (Monti, 

Vanhaudenhuyse et al. 2010, Cruse, Chennu et al. 2011), it is of critical importance to improve the quality 

of care and rehabilitation of this population. We are currently acquiring more data on spasticity in patients 

with DOC in order to classify patients according to their specific aetiology, brain lesion, rehabilitation and 

time since insult.  

Finally, we tried to find a way to reduce spasticity and increase patients’ comfort by using a simple 

technique; soft splints. As mentioned above, these splints have the advantage of being easy to use, they 
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can be worn several hours a day, do not require any supervision, are comfortable for the patient and they 

present no risk of injury. We found that the soft splints and manual stretching both transiently reduced 

spasticity of the flexor finger muscles. The soft splint, however, was the only treatment that improved hand 

opening. They are comfortable and simple to apply, so they could easily be applied in patient’s daily care. 

Further studies of the long-term effects of wearing these splints are required prior to their being used in 

daily clinical practice.  
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3. Curative treatments for patients with disorders of consciousness 
 

 

“You cannot teach a man anything, you can only help him to find it within himself.”  

Galileo Galilei 
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3.1 Problem statement 
 

Patients in UWS/VS and MCS represent a challenging clinical entity which is prone to misdiagnosis 

(Schnakers, Vanhaudenhuyse et al. 2009, Stender, Gosseries et al. 2014) and lacks effective treatment 

options (Giacino, Fins et al. 2014). At present, there are no evidence-based guidelines regarding the 

treatment of patients with DOC (Bernat 2006, Giacino, Fins et al. 2014). Until recently, the medical 

community has viewed patients in UWS/VS and MCS with great pessimism regarding both prognosis and 

effective treatments. Unfortunately, this pessimism results in the neglect of patients in terms of health care 

as no improvement is expected. Nevertheless, in the past 10 years a number of studies have reported that 

some patients in MCS could improve even several years after the insult (Voss, Uluc et al. 2006, Estraneo, 

Moretta et al. 2010, Bruno, Ledoux et al. 2012) and several treatments can enhance signs of consciousness 

(Schiff, Giacino et al. 2007, Giacino, Whyte et al. 2012, Thonnard, Gosseries et al. 2014, Whyte, Rajan et al. 

2014). Indeed, research on treatments improving cognitive abilities in patients with DOC has shown that 

deep brain stimulation (stimulation of the intralaminar nuclei of the thalamus;(Schiff, Giacino et al. 2007) 

and some pharmacological agents such as amantadine (Schnakers, Hustinx et al. 2008, Giacino, Whyte et 

al. 2012), apomorphine (Fridman, Calvar et al. 2009), intrathecal baclofen (Sara, Sacco et al. 2007) and 

zolpidem (Whyte and Myers 2009, Thonnard, Gosseries et al. 2014) can sometimes improve behavioural 

signs of consciousness in patients with DOC (see table 7). So far, only amantadine has been shown to 

increase signs of consciousness in a large cohort of acute and sub-acute patients with DOC in a placebo-

controlled trial (Giacino, Whyte et al. 2012). However, one of the most common adverse side-effects of this 

drug is the occurrence of epileptic seizures, the likes of which can be extremely frequent and can 

significantly affect the cognitive state of these patients (Bagnato, Boccagni et al. 2013). Moreover, the 

mechanisms underlying the recovery of behavioural signs of consciousness observed in some patients with 

DOC following the administration of these drugs are still poorly understood. Our next challenge is to better 

understand the mechanism of action of these drugs on the clinical improvement of patients with DOC and 

how to possibly improve treatment options for this category of patients. 
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Authors  Drug Design  N 
(aetiol
ogy) 

Time 
since 
injury 

Results  

Giacino et 
al., (2012) 

Amantadine 
(antiviral and an 
anti-parkinsonian; 
NMDA antagonist 
and indirect 
dopamine agonist) 

Prospective, 
multicentric, 
randomized, 
double-blind, 
placebo-
controlled 

184 
(TBI) 

1 to 3 
months 

Amantadine group: 
faster recovery; 
decrease of DRS 
scores and increase of 
behavioural bench 
markers on the CRS-R 

Fridman 
et al., 
(2010) 

Apomorphine 
(dopamine agonist 
used in Parkinson 
disease) 

Prospective 
case series 

8 (TBI) 1 to 4 
months 

Functional recovery 
with decrease of the 
CNC, DRS and increase 
of GOS scores 

Whyte & 
Myers 
(2009) 

Zolpidem 
(nonbenzodiaze-
pine GABA agonist 
hypnotic used to 
treat insomnia) 

Mutlicentric, 
double-blind, 
randomized 
study 

15 (8 
TBI) 

3 
months 
to 23 
years 

1 responder (UWS/VS 
to MCS+); increase in 
CRS-R score, visual 
pursuit, response to 
command 

Thonnard 
et al., 
(2014) 

Zolpidem  Open label 
study 

60 (31 
TBI) 

2 
months 
to 26 
years 

12 patients showed 
improvement in CRS-R 
scores. Change of 
diagnosis in 1 patient 
(from MCS+ to EMCS) 

Sara    et 
al., (2009) 

Baclofen (GABA 
agonist used to 
decrease 
spasticity) 

Case report 5 (2 
TBI) 

6 to 10 
months 

Clinical improvement 
in all patients after 2 
weeks (increase in 
CRS-R scores) 

Table 7: Main studies using amantadine, apomorphin, baclofen or zolpidem treatment in patients with 
disorders of consciousness. DRS: disability rating scale; CRS-R: Coma Recovery Scale; CNC: Coma/Near-Coma 
Scale; GOS: Glasgow Coma Scale; NMDA: N-methyl-D-aspartate; GABA: γ-Aminobutyric acid; TBI: traumatic 
brain injury; UWS/VS: Unresponsive wakefulness Syndrome/Vegetative State; MCS: Minimally Conscious 
State; EMCS: emergence from MCS. 

 

In this chapter, we will first present the findings of our study investigating brain metabolism in 

patients who clinically responded to zolpidem, trying to better understand the mechanism of action of this 

drug. We will then explore the potential effects of a non-invasive brain stimulation technique, transcranial 

direct current stimulation (tDCS), on the improvement of signs of consciousness in patients with DOC. We 

will talk about what is currently known about this technique and I will present the results of our pilot double-

blind, sham controlled, randomised cross-over study on a single session of tDCS over the left dorsolateral 
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prefrontal (DLPF) cortex in acute and chronic patients in UWS/VS and MCS. Finally, we will try to characterize 

the brain metabolism and morphology of the patients who clinically improved upon tDCS.  
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3.2 Pharmacological treatment: an example with zolpidem 

 

Zolpidem, a short-acting non-benzodiazepine agent from the imidazopyridine class, GABA-A agonist, 

usually used to treat insomnia (Langtry and Benfield 1990, Sanger 2004), has been shown to induce 

paradoxical responses in some patients with DOC, leading improvement of arousal and cognitive abilities. 

Several case-studies showed that zolpidem can lead to very impressive recoveries in some severely brain-

damaged patients of various aetiologies (Clauss, Guldenpfennig et al. 2000, Cohen, Chaaban et al. 2004, 

Clauss and Nel 2006, Brefel-Courbon, Payoux et al. 2007, Shames and Ring 2008, Williams, Conte et al. 

2013). However, this effect remains rare (i.e. around 5-7% responders;(Whyte and Myers 2009, Thonnard, 

Gosseries et al. 2014, Whyte, Rajan et al. 2014) and so far unpredictable. 

In this study, we assessed zolpidem-induced changes in regional brain metabolism in a case-series of 

three patients with known zolpidem response after chronic post-anoxic MCS. According to the mesocircuit 

model for the recovery of consciousness (Schiff 2010), zolpidem is suggested to disinhibit the globus pallidus 

interna (GPi) and consequentially increase the thalamic excitatory role on prefrontal cortices (see figure 8). 

Based on this model, we hypothesized that an impaired brain metabolism in the thalamus, the striatum and 

the prefrontal cortex would be observed after placebo, whilst a recovery of brain metabolism would occur 

following zolpidem intake. 
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Figure 8. The mesocircuit model underlying forebrain dysfunction and interventions in severe brain injuries. 
Reduction of thalamocortical and thalamostriatal outflow following deafferentation and neuronal loss from 
the central thalamus withdraws the afferent drive to the striatum, which may then fail to reach firing 
threshold because of their requirement for high levels of synaptic background activity. Loss of active 
inhibition from the striatum allows neurons of the globus pallidus interna to tonically fire and provide active 
inhibition to their synaptic targets, including relay neurons of the already disfacilitated central thalamus, 
and possibly also the projection neurons of the pedunculopontine nucleus. Since the GABAA a-1 subunit is 
normally expressed in large quantities in the globus pallidus interna, zolpidem could inhibit the latter, 
substituting its normal inhibition from the striatum, and hence induce an increase of the thalamic excitatory 
influence on prefrontal cortices. From(Giacino, Fins et al. 2014). 

 

In this study we investigated 3 patients in MCS who responded to zolpidem (i.e. who emerged from 

MCS after zolpidem intake, see table 8).  

The first patient was a 37-year-old female, assessed 18 months post anoxia (cardio-respiratory 

arrest). Within one month post-insult, she evolved into a MCS plus. MRI showed ischemic brain lesions in 

the basal ganglia, in the left occipital and bilateral posterior parietal cortices. After zolpidem administration, 
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she could systematically follow simple commands, recognize different objects and use them adequately, as 

well as functionally communicate (i.e. emerged from MCS)  

The second patient was a 38-year-old male, assessed 12 years and 7 months post-anoxia (cardio-

respiratory arrest). The patient was diagnosed as MCS minus (e.g. visual pursuit and automatic motor 

reactions but no command following). The MRI showed lesions in the brainstem and thalami, and diffuse 

periventricular white matter damage, more pronounced in the left hemisphere and in the occipital regions 

bilaterally. After zolpidem administration, this patient was able to systematically follow simple commands, 

recognize objects and use them consistently, and functionally communicate. He was diagnosed as emerged 

from MCS. 

The third patient was a 50-year-old female, assessed 7 years post anoxia (cardio-respiratory arrest). 

Structural MRI did not show focal abnormalities (PET glucose and activation blood-flow data have been 

reported elsewhere;(Brefel-Courbon, Payoux et al. 2007). She showed automatic motor reactions, 

reproducible but not consistent command following, localization of objects and intentional communication 

(i.e. MCS plus). Following zolpidem intake, she showed consistent command following, functional use of 

objects and functional communication (i.e. emerged from MCS). 
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 MCS 1 MCS 2 MCS 3 

P Z P Z P Z 

AUDITORY FUNCTION  

 4 – Consistent Command Following*  X  X  X 

 3 – Reproducible Command Following* X     X  

 2 – Localization to Sound       

 1 – Auditory Startle       

 0 – None   X    

VISUAL FUNCTION SCALE  

 5 – Object Recognition*  X  X  X 

 4 – Object Localization: Reaching*      X  

 3 – Pursuit Eye Movements*  X  X    

 2 – Fixation*        

 1 – Visual Startle       

 0 – None       

MOTOR FUNCTION SCALE  

 6 – Functional Object Use †  X  X  X 

 5 – Automatic Motor Response *   X  X  

 4 – Object Manipulation*       

 3 – Localization to Noxious Stimulation*       

 2 – Flexion Withdrawal X      

 1 – Abnormal Posturing       

 0 – None/Flaccid       

VERBAL FUNCTION SCALE  

3 – Intelligible Verbalization*   X  X  X 

2 – Vocalization/Oral Movement X      

1 – Oral Reflexive Movement   X    

0 – None     X  

COMMUNICATION SCALE  

 2 – Functional: Accurate †  X  X  X 

 1 – Non-Functional: intentional*  X    X  

 0 – None   X    

AROUSAL SCALE  

 3 – Attention     X  X 

 2 – Eye Opening w/o Stimulation X  X    

 1 – Eye Opening with Stimulation  X   X  

 0 – Unarousable       

DIAGNOSIS MCS+ EMCS MCS- EMCS MCS+ EMCS 

Table 8. Behavioural assessments after placebo and zolpidem intake (based on the Coma Recovery Scale-
Revised). MCS-: minimally conscious state minus (i.e. non-reflex movements without response to 
command); MCS+: minimally conscious state plus (i.e. presence of response to command); EMCS: 
emergence from MCS (i.e. functional communication or object use). *indicates clinical signs compatible 
with MCS. † indicates EMCS. P: placebo; Z: zolpidem. From (Chatelle, Thibaut et al. 2014). 
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Zolpidem intake was stopped at least 12 hours prior to the research protocol and 10 mg of zolpidem 

or placebo (water) were administered via gastrostomy in a randomised order, in a double blind two-day 

design. All other treatments remained unchanged throughout the study. Standardized clinical assessment 

using the CRS-R (Giacino, Kalmar et al. 2004, Schnakers, Majerus et al. 2008) was performed 30 minutes 

after administration of zolpidem or placebo. FDG-PET cerebral metabolism data were acquired 90 minutes 

after zolpidem or placebo intake according to a standard clinical protocol. An intravenous injection of 300 

MBq fluorodeoxyglucose was administered 30 minutes before the FDG-PET. PET data of patients were 

compared to an age-matched group of 39 healthy participants (mean age 45±16 years; 18 men). 

Pre-processing of the PET data included spatial normalization and smoothing (using a 14 mm full 

width at a half maximum Gaussian kernel), implemented in Statistical Parametric Mapping toolbox (SPM8; 

www.fil.ion.ucl.ac.uk/spm) as previously published (Phillips, Bruno et al. 2011, Bruno, Majerus et al. 2012, 

Thibaut, Bruno et al. 2012). A full-factorial design was performed, three design matrices modelled the 

subject-effect (MCS patient 1, 2, 3), drug-effect (placebo versus zolpidem) and group effect (patients versus 

controls). After proportional scaling, we identified brain areas showing an impaired metabolism following 

both placebo and zolpidem intake as compared to healthy controls. We further investigated those brain 

regions showing a relative increased metabolism after zolpidem intake as compared to placebo. Results 

were considered significant at false discovery rate cluster level p<0.001 after a Bonferroni correction for 

multiple comparisons.  

The results at group level analysis highlighted, after placebo, an impaired brain metabolism as 

compared with controls in the thalami and the left precuneus/posterior cingulate areas (see figure 9A). At 

a less conservative statistical threshold (i.e. p<0.0001 uncorrected for multiple comparison), an impaired 

metabolism was also observed in the bilateral superior and middle frontal gyri, the left precuneus/posterior 

cingulate, the bilateral precentral gyri, the left insula and right inferior parietal areas. After administration 

of zolpidem, brain metabolism impairment was confined to the thalami and the left precuneus/posterior 

cingulate areas, as compared with controls (figure 9B). At a less conservative threshold, metabolism 

impairment was also observed in the precentral gyri, the left superior frontal and temporal gyri, the left 

middle frontal gyrus, the precuneus and the right inferior parietal lobe. We identified increased brain 

metabolism in the bilateral superior frontal gyri and the right medial frontal cortex following zolpidem intake 

http://www.fil.ion.ucl.ac.uk/spm
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as compared to placebo (see figure 9C). At a less conservative statistical threshold uncorrected for multiple 

comparisons, the increased metabolism involved also the left insula, the middle frontal gyri and the left 

inferior frontal and parietal areas. When we looked at the glucose uptake value in the highest peak voxel in 

the prefrontal cortex for all three subjects, we identified an increased metabolism following administration 

of zolpidem as compared to placebo (see figure 10). 

 

 
Figure 9. Impaired brain metabolism after placebo (A) and zolpidem (B) intake and areas showing relative 
recovery after zolpidem (C). Brain areas showing impaired metabolism (in blue) following placebo and 
zolpidem administration and regions which were impaired following placebo but showed relative recovery 
of activity after zolpidem intake (in red). For display purposes results are shown thresholded at uncorrected 
p<0.001. From left to right, medial right and left view, frontal and posterior view of a 3D rendered brain 
MRI. From (Chatelle, Thibaut et al. 2014). 
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Figure 10: Normalized cerebral metabolic rate for glucose (nCMRGlc) values in prefrontal cortices after 
placebo. Values reported for the cluster using MNI peak coordinates x, y, z = -22, 56, 24 after placebo and 
zolpidem intake in patients, as compared to healthy controls (boxplot showing median, 25-75% quartiles 
and inner fences). From (Chatelle, Thibaut et al. 2014). 

 

Summary and discussion 

In this double-blind placebo-controlled study on three chronic post-anoxic patients in MCS who 

showed clinically significant paradoxical behavioural improvements (i.e. emergence from MCS) after 

zolpidem intake, we observed increased metabolism in the prefrontal cortices (following zolpidem intake), 

in line with the previously proposed mesocircuit model for recovery of consciousness in DOC (Schiff 2010).  

Our findings support previous case-studies reporting a change in prefrontal cortex activity after 

zolpidem intake using single-photon emission computed tomography (measuring blood flow;(Clauss, 

Guldenpfennig et al. 2000), FDG-PET (Brefel-Courbon, Payoux et al. 2007, Williams, Conte et al. 2013) and 

EEG (showing a decrease of low frequency activity;(Williams, Conte et al. 2013).  

After zolpidem intake we identified increased metabolism in prefrontal areas known to be involved 

in the “limbic loop” regulation of motivation and are a key centre of the mesocircuit model for 
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consciousness (Schiff 2010, Laureys and Schiff 2012). The mesocircuit hypothesis explaining the effect of 

zolpidem (Schiff 2010) supports the idea that, in normal cognitive processing, the striatum disinhibits the 

central thalamus via the GPi while the central thalamus promotes activity of prefrontal cortices. Therefore, 

if the activity in the striatum is reduced due to a severe brain injury, central thalamic and prefrontal activity 

is also decreased, possibly explaining the observed hypometabolism of the prefrontal regions in the hereby 

reported patients at baseline condition (i.e. after placebo administration). The mesocircuit model assumes 

that zolpidem directly inhibits the GPi, taking over the inhibition that is normally exerted by the striatum 

(one of the most sensitive areas to cerebral hypoxia;(Calabresi, Centonze et al. 2000). This would hence 

increase the thalamic excitatory influence on the prefrontal cortices. The fact that we did not find significant 

structural lesions in the brain areas showing increased metabolism following zolpidem administration 

corroborates previous studies (Clauss, Guldenpfennig et al. 2000, Brefel-Courbon, Payoux et al. 2007). It 

further suggests that neurological deficits observed in those patients who respond to zolpidem might be 

mainly caused by inhibitory functional effects - phenomenon known as cerebral diaschisis (i.e. the loss of 

function in a portion of the brain as a result of its connection to another injured area;(Glassman 1971, 

Feeney and Baron 1986, Tecco, Wuilmart et al. 1998, Witte, Bidmon et al. 2000), rather than by severely 

structurally damaged or dead brain tissue (Shames and Ring 2008). Here, we hypothesize that the observed 

reduced metabolism in the prefrontal cortices might be related to lesions in the striatum and/or thalami.  

In contrast with two previous case-studies (Brefel-Courbon, Payoux et al. 2007, Williams, Conte et al. 

2013), we did not observe a zolpidem-related increased metabolism in thalamic and striatal regions. This 

could be explained either by the fact that the technique used is not sensitive enough to highlight small 

functional activity changes in these areas, or because zolpidem induced changes might modify effective 

connectivity between areas which cannot be investigated using FDG-PET. Future neuroimaging studies 

looking at the effective connectivity in DOC zolpidem-responders would allow to better document the role 

of thalamo-cortical excitatory pathways underlying the observed increased activity in prefrontal areas. In 

addition, further studies on regional glucose metabolism changes at the individual level would help us better 

understand the mechanisms of recovery following zolpidem intake (Fridman, Beattie et al. 2014).   

In parallel to the mesocircuit hypothesis, the “GABA impairment hypothesis” was recently proposed 

by Pistoia et al (Pistoia, Sara et al. 2014). This theory suggests that zolpidem (as well as baclofen, a GABA-B 
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agonist) may act on consciousness recovery through the restoration of a normal ratio between synaptic 

excitation and inhibition by reversing the impairment of GABA in patients with DOC. This hypothesis has the 

advantage to explain the potential mode of action of both zolpidem and baclofen on patient’s recovery. In 

some patients with impaired balance of cortical subcortical-cortical connections, the use of GABA agonists 

can decrease excessive information and thus reorganize a balanced dialogue among different brain nuclei, 

allowing proper information processing. Nevertheless, the time course of the observed effect of these two 

drugs is different. Regarding zolpidem, the short term effects that disappear when the plasma drug 

concentration falls suggest rapid neurotransmitter changes. On the other hand the slow-onset effects of 

baclofen suggest a phenomenon of gradual neuroplasticity. Unfortunately, it was not possible to verify this 

hypothesis through the methods used in our study. However, both mesocircuit and GABA impairment 

hypotheses do not explain why less than 10% of patients react positively to those GABA agonist drugs.  

Our results underline a key role of the prefrontal cortices in the recovery of functional communication 

and object use in hypoxic patients with chronic DOC. It is well known that the prefrontal cortex has a major 

role in executive function and working memory, a recovery of its functionality is therefore likely to influence 

the recovery of object use and functional communication. Our findings partly corroborate previous case  

(Nakayama, Okumura et al. 2006, Thibaut, Bruno et al. 2012) reporting a decreased metabolism in medial 

prefrontal and fronto-basal regions, cingulate gyrus and thalamus in severely brain-injured patients with 

DOC. 

Taken together, the data suggest that the infrequent but existing paradoxical effect of zolpidem could 

be characteristic of patients who have suffered subcortical thalamic (as in all 3 cases here reported) and/or 

striatal functional lesions preventing prefrontal cortices to exert their normal function.  
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3.3 Non-invasive brain stimulations 
 

3.3.1 Principles 
 

tDCS is one of the easiest way to stimulate the brain focally. tDCS was first investigated in the 1960s, 

when researchers showed that transcranial stimulation could affect brain functioning by modifying cortical 

excitability (Creutzfeldt, Fromm et al. 1962, Bindmann, Lippold et al. 1964, Purpura and McMurtry 1965). 

However, only in the beginning of the 21th century tDCS widely attracted the attention of the scientific 

community. The interest in tDCS has been mainly focussed in understanding its underlying way of actions 

and its potential therapeutic applications (Paulus 2003, Fregni, Boggio et al. 2005, Boggio, Ferrucci et al. 

2006, Ferrucci, Mameli et al. 2008, Kang, Kim et al. 2012, Nelson, McKinley et al. 2012), which remained yet 

to be entirely determined (Nitsche, Cohen et al. 2008, George, Padberg et al. 2009).  

tDCS is a safe method to modulate cortical excitability through the emission of a weak (usually ≤ 2mA) 

direct current through the brain between two electrodes, from the anode to the cathode. It is a safe, cheap 

and easy to use device that could be easily integrated in a rehabilitation program. Anodal stimulation can 

enhance the stimulated area’s functions whereas cathodal stimulation reduces them. Currently, a lot of 

clinical trials have been conducted to study the effect of tDCS on post-stroke motor and language deficits, 

in psychiatric disorders, chronic pain, memory impairment and tinnitus in order to reduce symptoms 

(Hummel, Voller et al. 2006, Antal, Terney et al. 2010, Baker, Rorden et al. 2010, Zaehle, Sandmann et al. 

2011, Frank, Schecklmann et al. 2012, Loo, Alonzo et al. 2012).  

Physiologically, anodal tDCS enhances excitability, whereas cathodal tDCS reduces it by decreasing or 

increasing the action potential threshold (Nitsche, Seeber et al. 2005). The establishment of the long-lasting 

after-effects depends on membrane potential changes as well as modulations of N-methyl-D-aspartate 

(NMDA) receptor efficacy (Liebetanz, Nitsche et al. 2002). In another word, tDCS does not induce the firing 

of otherwise resting neurons, but it modulates the spontaneous firing rate of neurons by acting on the 

membrane potential. This characteristic distinguishes tDCS from other stimulation techniques, such as TMS, 

which excites neurons directly. 
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As said above, tDCS can modulate neuronal activity through the induction of a relatively small electric 

current flowing constantly through the cerebral cortex via two electrodes, the anode and the cathode, 

placed on the scalp. Depending on the polarity of the stimulation, this technique can increase or decrease 

the cortical excitability and spontaneous activity of the neurons (Jacobson, Koslowsky et al. 2012). The 

neuronal hyperexcitability of the stimulated region is produced by the anode which lowers the 

depolarization threshold of the neuronal membrane (Purpura and McMurtry 1965, Jefferys 1995). 

Conversely, the cathode induces an increase in the depolarization threshold and, consequently, a decrease 

in neuronal activity. In general, the anode improves the function of the stimulated area whereas the cathode 

can either reduce the performance or have no effect (Jacobson, Koslowsky et al. 2012). In most protocols, 

the currents used are 1 or 2 mA applied for 5 to 30 minutes on a specific cortical area (Been, Ngo et al. 

2007). Apart from the influx, which is lost at the scalp and skull level (40 to 60%), the remaining current 

reaches the cortex and neurons (Miranda , Lomarev et al. 2006). The short-term effects are a direct 

consequence of the neuronal excitability induced by the anode or cathode. The long-term effects, which 

last for about an hour (Nitsche and Paulus 2001), are thought to be related to the NMDA receptors which 

are activated by glutamate and are involved in cellular memory (Nitsche and Paulus 2001). It has been 

shown that tDCS showed no effect when NMDA receptors were blocked by antagonists (Liebetanz David 

2002, Nitsche, Fricke et al. 2003). In contrast, the stimulation effects were prolonged with the NMDA 

receptor agonist, D-cycloserine (Nitsche, Jaussi et al. 2004). These results suggest that the anodal tDCS 

improves the efficiency of NMDA receptors on neuronal depolarization via two independent but synergic 

mechanisms (Nitsche and Paulus 2000). Firstly, high frequency (30Hz) pre-synaptic activity is induced by the 

anode. This lowers the pre- and postsynaptic depolarization threshold and improves the efficiency of the 

voltage-dependent NMDA receptors. Secondly, the changes in the intracellular calcium rate induced by the 

prolonged tDCS enhance changes to the NMDA receptors, the efficacy of which depends on a high 

intracellular level of calcium (Bennet 2000). Indeed, it has be shown that when a calcium inhibitor is injected, 

the long-term effects of anodal tDCS are abolished (Nitsche, Fricke et al. 2003).  

However, despite all the above-mentioned studies, the tDCS mechanisms of action have not yet been 

fully understood. At present, it is commonly accepted that the short-term tDCS effects are the result of 

potential membrane modifications (induced by the anode or cathode) which are known to act on neuronal 
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excitability (Nitsche, Fricke et al. 2003). Long-term effects, however, are related to the modification of 

NMDA receptors excitability and certain ion channels such as calcium channels (Liebetanz David 2002). We 

can therefore conclude that the effects of tDCS depend on a combination of axonal and synaptic tDCS 

induced alterations. 

Several studies showed that a single anodal stimulation of a damaged cortical area of post stroke or 

TBI patients could improve the function of the stimulated area. An anodal session of tDCS over C3 or C4, 

according to the 10-20 international system (Herwig, Satrapi et al. 2003), could enhance motor function 

(Boggio, Castro et al. 2006, Antal, Terney et al. 2010). Likewise the stimulation of the prefrontal cortex (F3 

or F4) showed positive effects on memory (Jo, Kim et al. 2009, Kang, Kim et al. 2012) or attention (Kang, 

Baek et al. 2009). Nevertheless, the effects decreased between one and two hours after the stimulation 

(Nitsche and Paulus 2001). To overcome these limits, researchers tried chronic daily stimulation for one 

(Antal, Terney et al. 2010), two (Boggio, Rigonatti et al. 2008) or three weeks (Polanowska, Lesniak et al. 

2013). Effects upon daily chronic tDCS were shown to last up to 4 weeks after the end of the stimulations.  

In comparison to other non-invasive brain stimulation technique such as TMS, the major limitation of 

tDCS is the lack of a focal stimulation locus, making it difficult to precisely map cortical functions. 

Furthermore, contrary to the TMS, tDCS cannot produce temporally focused cortical effects. A study by 

Miranda et al. modelling the current distribution during tDCS over the left prefrontal dorsolateral cortex 

(Miranda, Lomarev et al. 2006) showed that only a fraction of the current applied to the anode (about 50%) 

could penetrate into the brain. Comparing to TMS, which allows a 1.5 to 3 cm penetration of the pulse in 

the brain (Zangen, Roth et al. 2005), tDCS seems unable to reach deeper brain structures such as the 

precuneus, a critical hub for consciousness recovery (Laureys, Faymonville et al. 2000). On the other hand, 

the use of tDCS is simple, handy and involves no dangerous risk. Moreover, tDCS is easier than TMS for 

efficiently blinding subjects and investigators in double-blind and sham-controlled trials (Gandiga, Hummel 

et al. 2006).  

Given that tDCS showed encouraging results on patient’s motor and cognitive functions, we decided 

to test its efficacy on behavioural recovery in patients with DOC.  
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3.3.2 tDCS as a tool to improve patients’ signs of consciousness 
 

In a first pilot study, we wanted to test the effect of prefrontal tDCS on patients with DOC, both 

UWS/VS and MCS, acute-subacute (< 3months) and chronic, and with traumatic and non-traumatic 

aetiologies. We aimed to assess the effect of a single session of anodal tDCS of the left DLPF cortex on 

consciousness, as evaluated by means of the CRS-R. Our primary question was whether anodal tDCS, as 

compared to sham stimulation, would improve consciousness in a convenience sample of UWS/VS and MCS 

patients. Our second question was whether the tDCS had an impact on CRS-R subscales. Finally, follow-up 

outcome data were acquired 12 months after inclusion using the Glasgow Outcome Scale-Extended to 

assess the long-term effect of tDCS.  

For this study, we recruited 55 patients to receive both anodal and sham tDCS in a crossover study 

design. We included 25 UWS/VS (age: 42±17 years; 9 women; interval since insult: 24 ± 48 months; 6 post-

traumatic) and 30 MCS (age: 43±19 years; 7 women; interval since insult: 43±63 months; 19 post-traumatic). 

Each patient received both anodal and sham tDCS stimulations in randomized order. A computer-generated 

randomization sequence was used to assign in a 1:1 ratio the first session as anodal tDCS or sham tDCS. 

Direct current was applied by a battery-driven constant current stimulator using saline-soaked surface 

sponge electrodes (7x5cm) with the anode positioned over the left DLPF and the cathode placed over the 

right supraorbital region, as previously described (Keeser, Meindl et al. 2011). During tDCS, the current was 

increased to 2 mA from the onset of stimulation and applied for 20 min. For the sham condition, the same 

electrode placement was used as in the stimulation condition, but the current was applied for 5 s, and was 

then ramped down to mimic the somatosensory artefact of real tDCS. Impedances were kept <10 kΩ and 

voltage <26 V. tDCS and sham were tested in random order in two separate sessions separated by 48 h (see 

figure 11). tDCS treatment effect was assessed by means of standardized CRS-R (Giacino 2004). Patients’ 

outcome was assessed 12 months after the trial using the Extended Glasgow Outcome Scale to assess the 

long-term effects of tDCS on clinical evolution of patients (Jennett, Snoek et al. 1981). A good outcome was 

defined by a score >4 (i.e. return to independent living). 
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Figure 11: Protocol of the randomized double blind sham controlled study. Transcranial direct current 
stimulation (tDCS) was either real or sham. A Coma Recovery Scale Revised (CRS-R) was performed before 
and after each tDCS session. 

 

Statistical analysis was performed using Stata (Stata Statistical Software 11.2 StataCorp, College 

Station, TX). The CRS-R responses were summarized using median (P25-P75). Statistical analysis of the cross-

over data was based on the method proposed by Altman (Practical statistics for medical research, Chapman 

and Hall, London, pp. 467-471, 1991) and summarized here bellow. Evolution of CRS-R were considered as 

the difference between CRS-R total score after and before the stimulation (tDCS or sham). We looked for a 

period, interaction and treatment effect. The period effect compared the tDCS-sham response differences 

between the two periods (tDCS-sham and sham-tDCS). If there was no general tendency for subjects to do 

better in one of the two periods, we would expect the mean differences between the periods in the two 

treatment orders to be of the same size but having opposite sign (tDCS minus sham vs sham minus tDCS). 

The interaction effect referred to the calculation of the mean response after tDCS and sham together. In 

the absence of an interaction between treatment and period, a subject’s average response to the two 

treatments would be the same regardless of the order in which they were received. Both, period and 

interaction effects, were tested using a Mann-Whitney U test. If no period and interaction effect was 

observed, then the treatment effect (tDCS versus sham) was assessed using a Wilcoxon signed-rank test. 

Results were considered significant at p<0.05. Multiple comparisons using Bonferroni correction (6 

comparisons) had to be performed for the secondary end-point assessment (i.e. assessment of CRS-R 

subscale change according to tDCS vs sham) and results were considered significant at p<0.0083 (i.e. 

0.05/6). 
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At the individual level, tDCS responders were defined as those patients who presented a sign of 

consciousness (i.e. command following; visual pursuit; recognition, manipulation, localization or functional 

use of objects; orientation to pain; intentional or functional communication;(Giacino 2004) after tDCS that 

was not present before anodal nor before or after sham tDCS sessions.  

32 patients (14 in UWS/VS; mean age of 46±17 years; 9 women; interval since insult: 44±72 months; 

14 post-traumatic) first received anodal tDCS and 23 (11 in UWS/VS; mean age of 40±19 years; 7 women; 

interval since insult: 24±34 months; 11 post-traumatic) first received sham stimulation. No significant 

clinical or demographic differences were observed between the two groups.  

At group level, there was a treatment effect for the MCS (p=0.003) but not for the UWS/VS (p=0.952) 

patients group (figure 12). No period or interaction effects were observed. No effect of tDCS on any of the 

CRS-R subscales was observed in any group (UWS/VS or MCS). 

 

Median (black line) of Coma Recovery Scale-Revised (CRS-R) total scores delta (i.e., CRS-R post tDCS minus 
CRS-R pre tDCS) and interquartile range for patients (IQR, boxes) in minimally conscious state (MCS) and 
unresponsive wakefulness syndrome/vegetative state (UWS/VS), with minimal and maximal values. In grey, 
the results for the real tDCS and in with the sham tDCS. An asterisk (*) denotes statistical significance at p < 
0.05 and NS stands for Non-Significant. From (Thibaut, Bruno et al. 2014). 
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At individual level, 13/30 (43%) patients in MCS showed a tDCS-related improvement (i.e. showed a 

clinical sign of consciousness never observed before). 2 acute (<3 months) patients in UWS/VS out of 25 

(8%) showed a tDCS response (i.e. showed command following and visual pursuit present after the anodal 

stimulation not present at baseline or pre- or post- sham-tDCS). No tDCS related side effects were observed. 

No correlation between tDCS response and patient outcome was observed at 12 months follow-up.  

Summary and discussion 

In this work, we demonstrated that a single session of left DLPF tDCS may transiently improve CRS-R 

scores of patients in MCS without side effects. Our study illustrates the residual capacity for neural plasticity 

and temporary recovery of (minimal) signs of consciousness in some patients in MCS, but does not permit 

to make any claim regarding possible long-term tDCS effects in this setting. This is even more important 

since, at present, there are limited evidence-based pharmacological or non-pharmacological treatment 

options for severely brain-damaged patients with DOC, especially in the chronic setting (Bernat 2006, 

Giacino, Fins et al. 2014). Out of the 13 patients in MCS who showed a tDCS response, 5 were included >12 

months after injury. This show that chronic patients, even years after the brain lesion, can still improve and 

recover some new signs of consciousness (even if no emergence from the MCS was observed in chronic 

patients). These clinical improvements in longstanding MCS corroborate previous evidence for late recovery 

and neural plasticity in MCS (Voss, Uluc et al. 2006, Luaute, Maucort-Boulch et al. 2010).  

On the other hand, we observed no tDCS-related increase in CRS-R total scores in patients in UWS/VS, 

in line with previous studies showing more capacity for neural plasticity in patients in MCS (Monti 2012). It 

should be noted that, two acute UWS/VS patients showed improvement after tDCS. These two patients 

naturally recovered a communication few days following their inclusion in the study.  

It could be that the observed tDCS-related transient improvements in consciousness as assessed by 

changes in CRS-R total score are related to the improvement in attention and working memory (D'Esposito, 

Detre et al. 1995), known to involve prefrontal cortical functioning (D'Esposito, Aguirre et al. 1998). The 

DLPF is thought to play a central integrative function on motor control and behaviour and to be a critical 

component of the decision-making network (Heekeren, Marrett et al. 2006).  
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Previous studies have shown that anodal tDCS over the left DLPF cortex has beneficial effects on 

working memory in neurological patients with Alzheimer’s (Ferrucci, Mameli et al. 2008) and Parkinson’s 

disease (Boggio, Ferrucci et al. 2006). Similarly, there is some evidence that tDCS of the left DLPF could 

improve attention in stroke (Kang, Beak et al. 2009) and mild traumatic brain injury (Kang, Kim et al. 2012) 

patients with attention deficits. A recent fMRI study showed that tDCS of the left DLPF cortex increased 

functional connectivity in the “default mode” (i.e. intrinsic cortical network) and bilateral frontal-parietal 

associative cortical networks (i.e. extrinsic networks;(Keeser, Meindl et al. 2011) considered to be involved 

in internal and external awareness, respectively (Vanhaudenhuyse, Demertzi et al. 2011). As it is mentioned 

in the introduction, both networks are known to be dysfunctional in patients with DOC, as shown by 

previous PET (Thibaut, Bruno et al. 2012) and fMRI (Vanhaudenhuyse, Noirhomme et al. 2010) studies.  

We here showed that tDCS is safe and, thus, could be tested as an alternative neuromodulatory tool 

to improve consciousness and cognitive function in severely brain-injured patients. A methodological 

limitation of tDCS is the absence of MRI-based mapping of the stimulated area. This limit is particularly 

constraining in patients with DOC, given the presence of focal brain damage, atrophy and injury-induced 

heterogeneity of their brain topography. Future studies could employ patient-tailored structural MRI-

guided tDCS to overcome this limitation. Additional studies with functional MRI are warranted to document 

tDCS-specific changes in cerebral functional connectivity in DOC in order to better comprehend the 

mechanisms of action of tDCS, which remain only partially understood.  

Moreover, the long-term effects of tDCS on clinical improvement in this patient population remains 

yet to be shown. Future controlled clinical trials should now employ long duration tDCS and its possible 

long-term effects, as it has been previously performed for other indications such as pain (Fregni, Boggio et 

al. 2006) and depression (Fregni, Liebetanz et al. 2007).  
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3.3.3 Clinical response to tDCS: understand its way of action 
 

The mechanisms of action of tDCS remain only partly understood (for a complete review see(Stagg 

and Nitsche 2011) and several clinical trials have shown that the proportion of tDCS responders may vary 

from 40 to 80% (Song, Vanneste et al. 2012, Goncalves, Borges et al. 2013, Ferrucci, Vergari et al. 2014). In 

our previous study, we reported that left DLPF tDCS could improve signs of consciousness in 43% of patients 

in MCS (Thibaut, Bruno et al. 2014). If these findings suggest the potential interest of tDCS as a treatment 

for DOC, they also highlight the lack of a clinical improvement following tDCS in more than half of the patient 

population. The natural step is to define the structural and functional brain features of those patients that 

are likely to respond to tDCS (Whyte 2014).  

The aim of this retrospective study was to characterize the previously described (Thibaut, Bruno et 

al. 2014) subgroup of tDCS responders by means of multi-modal neuroimaging analyses, including FDG-PET, 

MRI and EEG. For this study, out of the 30 MCS patients included in our previous study, 24 patients 

underwent a brain FDG-PET acquisition, MRI acquisition and EEG registration on clinical demand. The FDG-

PET and MRI scans of three patients were excluded from the statistical analysis due to suboptimal 

normalization. A group of age-matched healthy controls (n=17; mean age 47±13 years; 9 men) underwent 

both MRI and FDG-PET scans acquisition within one week of distance. As a reminder, tDCS responders were 

defined as patients who presented at least one additional sign of consciousness, as measure by the CRS-R, 

after tDCS that was never present before real tDCS, nor before or after the sham tDCS session (i.e. command 

following; visual pursuit; recognition, manipulation, localization or functional use of objects; orientation to 

pain; intentional or functional communication;(Giacino, Kalmar et al. 2004).  

EEG was recorded with a 16 channels cap (using the 10-20 positioning system Fp1, Fp2, Fz, F3, F4, Cz, 

C3, C4, T7, T8, Pz, P3, P4, Oz, O1, O2, referenced to the mastoid for 10 minutes). Basic rhythms were visually 

inspected by an EEG expert in order to discard artefacts and retained epochs. The remaining epochs were 

filtered between 0.75 and 40 Hz. For each subject and electrode the normalized power in each frequency 

bands was estimated (delta:1-4 Hz; theta: 4-7 Hz; alpha: 8-12 Hz; and beta 12-25Hz, as used in (Lehembre, 

Bruno et al. 2012). Then, we calculated the mean of all the electrodes rhythms together during the recording 

time. Student unpaired t tests were performed to compare the mean power averaged of each rhythms of 
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interest (i.e. bands) between responders and non-responders. Results were corrected for multiple 

comparison. 

Structural MRI T1 data (T1-weighted 3D gradient echo images using 120 slices, repetition time = 2300 

ms, echo time = 2.47 ms, voxel size = 1 x 1 x 1.2 mm³, flip angle = 9 degrees, field of view = 256 x 256 mm²) 

were acquired on a 3T scanner (Siemens Trio Tim, Munich, Germany). A T1-based voxel-based morphometry 

(VBM) analysis of brain structure (http://dbm.neuro.uni-jena.de/vbm/) was applied to search for potential 

morphological differences in grey matter volume between the two patient groups. For this analysis, we used 

DARTEL-based spatial normalization (Ashburner 2007) to allow the high-dimensional spatial normalization 

in order to increase the chance of correct normalization of the severely damaged brain of patients with 

disorders of consciousness (Takahashi, Ishii et al. 2010). A study template made from the average of T1 

images from our patients and control subjects was used to facilitate the normalization procedure 

(Ashburner 2007, Peelle, Cusack et al. 2012, Di Perri, Bastianello et al. 2013). The design matrix separately 

modelled patients’ (responders and non-responders) and healthy controls’ grey matter density. Results 

were considered significant at family-wise whole-brain volume-corrected for multiple comparisons (FWE) 

p<0.05.  

Brain metabolism was measured during rest using PET-CT (Gemini Big Bore TF, Philips Medical 

Systems) after intravenous injection of 300 MBq FDG (as previously reported;(Laureys, Faymonville et al. 

2000). In order to reduce the influence of the surrounding structures on the radiotracer concentration, 

phenomenon known as partial volume effect (PVE) - particularly critical when the relative proportion of 

brain tissue components is altered- a partial volume effect correction (PVEc) was applied to the PET images 

(Quarantelli, Berkouk et al. 2004). PET data were then pre-processed as previously published (Phillips, Bruno 

et al. 2011, Bruno, Majerus et al. 2012, Thibaut, Bruno et al. 2012), including spatial normalization, 

smoothing (using a Gaussian kernel of 14 mm full width at a half maximum) and proportional scaling, 

implemented in Statistical Parametric Mapping toolbox (SPM8; www.fil.ion.ucl.ac.uk/spm). The design 

matrix separately modelled patients’ (responders and non-responders) and healthy controls’ PET scans. 

Results were considered significant at family-wise whole-brain volume-corrected for multiple comparisons 

(FWE) p<0.05.  

http://www.fil.ion.ucl.ac.uk/spm
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Statistical comparisons of clinical data between the two groups (patients’ age, time since onset, 

aetiology – traumatic versus non-traumatic – CRS-R total score changes) were performed using student t 

tests implemented in Stata (Stata Statistical Software 11.2 StataCorp, College Station, TX) and considered 

significant at p<0.05 corrected for multiple comparisons. 

Out of the 21 patients in MCS that were included in the analyses, 8 were tDCS responder (4 post-

traumatic, 4 non-traumatic, 4 men) and 13 were non-responder (8 post-traumatic, 5 non-traumatic, 10 

men). The responders and non-responders did not show a significant difference in age (mean ± SD; 38±19 

vs 36±14y respectively; p=0.84), time since onset (6±8 vs 4±3y; p=0.45), or baseline CRS-R total score 

(median (IQR); 9(3) vs 9(7); p=0.29). At the group level, CRS-R total scores improvement (obtained before 

and after active tDCS) were higher in responders as compared to non-responders (see figure 15A).  

 

 



 
107 

 

Figure 13: Voxel based morphometry (VBM): in red are represented the areas of grey matter atrophy in 
responders compared to healthy controls. In blue the areas of grey matter atrophy in non-responders 
compared to healthy controls. In pink the overlapping between responders and non-responders. Results 
are shown at FWE p<0.05 and are superimposed in sagittal slices in MNI space and projected in the lateral 
surfaces of the rendered MNI single subject brain. From (Thibaut, Di Perri et al. submitted). 

 

VBM: Statistical analyses identified: A) reduced grey matter areas (as compared with healthy controls) 

in the subgroup of tDCS non-responders, and B) reduced grey matter areas in the subgroup of tDCS 

responders (as compared with healthy controls). Based on the VBM, responders showed decreased grey 

matter volume in the lateral temporal cortex, the thalamus, the lenticular nuclei, the left caudatum, the 

right amygdala and parahippocampal gyrus and to a certain extent the right DLPF cortex and the cingulate 

cortex. Non-responders showed decreased grey matter volume in the same regions observed in the tDCS 

responders (except for part of the temporal poles) but more extensively in the precuneus/cuneus and the 

cingulate cortex and additionally in the left frontal medium/inferior gyrus, the superior temporal gyri, the 

hippocampi, the left amygdala and to some extent the rolandic areas (see figure 13). 

FDG-PET: Statistical analyses identified: A) brain areas showing hypometabolism (as compared with 

healthy control) in the subgroup of tDCS responders, B) brain areas showing hypometabolism in the 

subgroup of tDCS non-responders, and C) brain areas showing a relatively preserved metabolism in tDCS 

responders as compared to tDCS non-responders. Findings from FGD-PET in tDCS responders showed 

regional hypometabolism (as compared with healthy control) in the medial prefrontal cortex/anterior 

cingulate cortex, the medial thalamus bilaterally and the caudate. tDCS non-responders showed impaired 

metabolism in similar areas (albeit more extended in the medial prefrontal cortex, the caudate and left 

thalamus) and additionally in the precuneus and the left DLPF cortex. Areas showing preserved metabolism 

in responders as compared with non-responders were in the left DLPF cortex, the medial-prefrontal cortex, 

the precuneus, the caudate and the left thalamus (figure 14). Inversely, no brain areas appeared 

metabolically preserved in non-responders as compared with responders. 
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Figure 14: Positron emission tomography (PET): Brain areas showing hypometabolism (in blue), as 
compared to controls, in patients in a minimally conscious state (FEW corrected): (A) 8 tDCS-responders 
and (B) 13 non-responders. (C) Regions with less hypometabolism in responders as compared to non-
responders (in red). (D) Theoretical (Ruffini, Fox et al. 2014) tDCS induced electric fields. Note that 
behavioural responsiveness to short duration left dorsolateral prefrontal cortex (DLPFC) tDCS correlates 
with less impaired metabolism in the areas presumed to be stimulated by tDCS (left DLPFC and mesiofrontal 
cortices) but also of distant cortical (precuneus) and subcortical (thalamus) regions. From (Thibaut, Di Perri 
et al. submitted). 
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When focusing on the mean glucose uptake in three critical regions for consciousness recovery (left 

DLPF cortex, precuneus and thalamus) a significant decreased metabolism was observed in non-responders 

as compared with responders (figure 15B).  

 

Figure 15: A. Mean and standard deviation of Coma Recovery Scale Revised (CRS-R) total score changes in 
tDCS responders and non-responders. B. Mean and standard deviation of normalized glucose metabolism 
(% of normal) in left dorsolateral prefrontal (DLPF) cortex, precuneus and left thalamus in tDCS-responders 
(white) and non-responders (black). An asterisk (*) denotes statistical significance at p < 0.05. From (Thibaut, 
Di Perri et al. submitted). 

 

EEG: We failed to detect significant differences in the mean frequency bands (i.e. delta, theta, alpha, 

and beta) between the two groups. 

Summary and discussion 

In this retrospective study, we observed a common pattern of metabolic preservation (as detected 

by FDG-PET) and grey matter preservation (as detected by MRI), in tDCS responders as compared with non-
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responders, whilst no specific behavioural patterns of improvement among the patients who showed 

clinical improvement following left DLPF cortex tDCS could be observed. The areas of preserved grey matter 

observed in responders as compared with non-responders involved the left frontal medium/inferior gyrus, 

the precuneus, the cingulate cortex, the superior temporal gyri, the hippocampi, the left amygdala and to 

some extent the rolandic areas. The areas metabolically preserved in responders as compared with non-

responders included the left DLPFC, the medial-prefrontal cortex, the precuneus, and the thalamus.  

The residual brain metabolism in the left DLPF cortex where the anode of the tDCS was positioned 

suggests that, independently from the variability of the cortical damage, a residual brain activity in the 

stimulated area is necessary for an effective stimulation. These results are in agreement with a previous 

study on patients with stroke showing that tDCS effects upon stimulation on motor area are limited when 

the pyramidal tract is damaged (as detected by diffusion tensor imaging;(Schlaug, Renga et al. 2008). 

Moreover, a study using TMS coupled with EEG on patients with DOC further showed that cortical responses 

can be detectable only upon stimulation of a preserved cortical tissue (Gosseries, Sarasso et al. 2015). 

Our results regarding the residual brain metabolism and preserved grey matter in the medial-

prefrontal cortex, posterior cingulate/precuneus and thalamus in responders rather than non-responders 

highlight the role played by these structures in the recovery of consciousness. PET studies on unresponsive 

patients versus control subjects have, in fact, previously identified metabolic impairment in regions 

involving the medial-prefrontal cortex and the posterior cingulate/precuneus, also known as default mode 

network, and the lateral fronto-parietal regions including the DLPF cortex, also known as executive control 

network, suggesting their crucial role in the emergence of consciousness (Laureys, Goldman et al. 1999, 

Laureys 2004, Thibaut, Bruno et al. 2012). The default mode network and the executive control network 

have further been functionally related respectively to internal awareness (i.e. awareness of self) and 

external awareness, (i.e. awareness of the environment). Moreover, as we have discussed in the 

introduction, their metabolism has shown to be gradually restored going from a lower to a higher degree 

of consciousness (Thibaut, Bruno et al. 2012). In particular, the residual metabolic and structural integrity 

of the medial-prefrontal cortex and the residual metabolism in the thalamus observed in responders rather 

than non-responders seem to support the key role of these structures in the disturbances of consciousness, 

in the setting of a widespread deafferentation and neuronal cell loss as observed after severe brain injuries 
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(Schiff 2010, Fridman, Beattie et al. 2014). The observed residual metabolic and structural integrity of the 

posterior cingulate/precuneus corroborates a large amount of literature indicating this structure as a key 

component of the internal awareness network, namely the default mode network, and a critical hub for 

consciousness recovery (Laureys, Goldman et al. 1999, Laureys, Boly et al. 2006, Vanhaudenhuyse, 

Noirhomme et al. 2010, Vanhaudenhuyse, Demertzi et al. 2011, Fernandez-Espejo, Soddu et al. 2012, 

Thibaut, Bruno et al. 2012).  

The circumstance that the metabolic and structural integrity of structures belonging to the default 

mode network seems to be necessary for the clinical improvement of MCS patients upon tDCS stimulation 

is consistent with recent studies showing that tDCS enhances diffusively brain functional connectivity, 

especially targeting the default mode network and the executive control network (Lang, Siebner et al. 2005, 

Keeser, Meindl et al. 2011, Pena-Gomez, Sala-Lonch et al. 2012, Stagg, Bachtiar et al. 2012, Clemens, Jung 

et al. 2014). In fact, recent studies combining prefrontal tDCS and resting-state fMRI have shown that 

prefrontal tDCS modulates large-scale patterns of resting-state connectivity in the human brain by 

increasing coactivation patterns both in regions close to anode and cathode stimulation sites and in more 

widespread and distant brain regions. Additionally, these effects appeared to be more pronounced for the 

default mode network (Keeser, Meindl et al. 2011, Pena-Gomez, Sala-Lonch et al. 2012, Clemens, Jung et 

al. 2014). These studies further suggest the extensive and widespread action of the tDCS and therefore the 

importance of intra and inter-network connectivity for its efficacy.  

With regards to EEG, it has been shown that left DLPF cortex tDCS on healthy controls and patients 

with moderate traumatic brain injury can either improve EEG high frequency activity or decrease low 

frequency activity, both at rest and during cognitive tasks (Keeser, Padberg et al. 2011, Song, Shin et al. 

2014, Ulam, Shelton et al. 2014). The routine clinical EEG data hereby collected did not show any statistically 

significant difference between the two patient groups. However, this might be explained by the suboptimal 

quality (small number of electrodes, analysis on whole brain) and accuracy of EEG as acquired in clinical 

setting.  

It is important to stress that our findings must however be read taking into account some caveats: 

i) This study lacks of a direct comparison between the two patient groups (responders versus non-

responders). This is related to the limited size of the population and the high degree of variability 



 
112 

 

within the groups involving both neuroradiological findings and aetiology.  

ii) We cannot use the findings of the present study to predict the clinical improvement upon tDCS at 

single subject level. In fact, our results could effectively be applied only at a group level. Furthers 

studies might be warranted to detect specific features to predict the outcome at individual level. 

iii) The stimulation area might be considered so far only theoretical since patients had widespread brain 

lesion. A functional reorganization and /or the development of atrophy and/or scars under the site 

of stimulation might have occurred. Therefore, a single subject head model of the current field is 

needed in order detect the trajectory of the current in in those severely injured brains. 

iv) Other acquired neuroimaging data, such as functional MRI and diffusion tensor imaging, were not 

analysed. In fact, functional MRI and diffusion imaging tensor are extremely sensitive to motion and 

metal artefacts. This resulted in the availability of a too small sample of good quality data to be 

included in a statistical analysis. Furthermore, when patients were sedated the fMRI data were 

excluded from the analysis by default, as sedation might have affected the results.  

v) Finally, this study does not aim to investigate the effect of tDCS on brain metabolism. Here, we rather 

try to understand what might be the distinctive features of the subgroup of patients who respond to 

tDCS.  

 

In conclusion, the present study showed that the transient improvement of signs of consciousness 

following left DLPF tDCS in patients in sub-acute and chronic MCS seems to require grey matter integrity 

and/or residual metabolic activity in three brain regions: (i) the presumed stimulated area (i.e. left DLPF 

cortex), (ii) long distance cortical areas such as the precuneus, and (iii) subcortical brain areas known to be 

involved conscious processes (i.e. thalamus).   
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3.4 Conclusion and future directions  
 

These studies aimed at better understand the mechanisms of action and the potential benefits of 

two treatment options in patients with DOC, namely zolpidem and tDCS.  

Our first study showed that the behavioural recovery of three MCS patients who responded to 

zolpidem (i.e. emerged from MCS) paralleled a metabolic recovery in the prefrontal cortex (Thibaut, 

Chatelle et al. 2014). We sought to explain these findings in the setting of the mesocircuit hypothesis, 

suggesting that zolpidem (GABA-A agonist) reduces the inhibition of thalamus by acting on the GPi (Schiff 

2010) and, subsequently, increases the connection between the thalamus and the prefrontal cortex. In fact, 

the functional impairment of the prefrontal cortex is related to a functional phenomenon known as 

diastasis, not structural damage. Another mechanism we proposed is the GABA impairment hypothesis 

(Pistoia, Sara et al. 2014). This theory suggests that zolpidem reverses the impairment of GABA therefore, 

restores a normal ratio between synaptic excitation and inhibition. This hypothesis explains the potential 

mode of action of both zolpidem and baclofen on patient recovery. Nevertheless, it does not explain why 

we observed an improvement in brain metabolism in the prefrontal cortex following zolpidem intake in the 

3 patients studied. To test this hypothesis we would need to perform [18F] Fluoroethylflumazenil-PET (FEF-

PET) in order to detect benzodiazepine receptors (Grunder, Siessmeier et al. 2001). Further studies involving 

a larger number of patients or comparing zolpidem responders and non-responders using multimodal 

imaging analyses (MRI, PET, EEG) could help us to better understand the mechanism of zolpidem and the 

reason why only a small number of patients can benefit from this drug. 

In this chapter we also showed the potential therapeutic effects of tDCS (Thibaut, Bruno et al. 2014), 

the likes of which has never before been tested on patients with DOC. Considering that almost half of the 

patients in MCS showed behavioural improvement after a single stimulation, the results of our pilot study 

seem promising. Nevertheless, we still did not know why some MCS patients respond to tDCS and others 

do not. To answer this question we compared brain metabolism and morphology in tDCS responders and 

tDCS non-responders. 

We showed that the transient increase of signs of consciousness in patients with DOC upon tDCS 

requires residual metabolic activity and grey matter preservation in cortical and subcortical brain areas 
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important for consciousness recovery (i.e. left DLPF cortex, precuneus and thalamus –(Thibaut, Di Perri et 

al. submitted). These findings underline the critical role of long-range cortico-thalamic connections in 

consciousness recovery, and provide important information for guidelines on the use of tDCS in DOC. 

Studies in which neuroimaging (MRI, PET and HD-EEG) is done before and after a tDCS session should be 

carried out to investigate the effect of tDCS on the brain of each patient and the differences between 

responders and non-responders such as to better identify the patients who could benefit from left DLPF 

tDCS. 

Regarding tDCS studies on healthy volunteers, a recent meta-analysis concluded that tDCS over the 

prefrontal cortex does not have a significant effect on working memory outcome or language production 

tasks (Horvath, Forte et al. 2015). One hypothesis they propose to explain this finding is state-dependency: 

this concept suggests that the effect an external stimulus has on the brain is highly influenced by the state 

of the brain at the time of stimulus onset (Silvanto, Muggleton et al. 2008), as shown for TMS (Silvanto and 

Pascual-Leone 2008). This hypothesis suggests that the different state-dependent effects of the various 

studies included in the analysis influenced the null results obtained. As information in literature confirming 

this hypothesis is scares, future studies should include such details (e.g. the time of day, day of week, and 

duration of stimulation sessions, energy-levels, amount of sleep of individual participants) in order to better 

understand how these factors influence tDCS results. 

Previous studies on healthy subjects showed that tDCS over the primary motor cortex could enhance 

motor performance of the non-dominant hand but not of the dominant one (e.i. Boggio, Castro et al. 2006). 

This suggests that tDCS can improve skills that are not yet at maximum potential, but has no effect on 

already well trained skills. That is, tDCS has limited effects on a healthy subject without cognitive or motor 

impairment, but could help patients with deficits to recover a dysfunctional ability.  

Furthermore, several sessions of tDCS may be required in order to achieve the desired effect. A study 

of repeated tDCS over the primary motor cortex in healthy volunteers highlighted a consolidation 

mechanism which lasted up to 3 months after 5 tDCS sessions (Reis, Schambra et al. 2009). Unfortunately, 

not enough comparable multiple-day stimulation studies have been carried out to assess whether repeated 

tDCS sessions could be efficient at improving motor or cognitive skills in healthy volunteers. Nevertheless, 

in neurological patients with motor or cognitive deficits, tDCS has shown to be effective and its effects seem 
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to last several weeks or even months when the stimulation is repeated for 5 or 10 consecutive days (for a 

review of reaped tDCS on stroke patients see table 9). Based on the above-said, we believe the efficacy of 

tDCS to be relevant and proven in cognitive or motor deficit rather than in healthy controls and that 

repeated stimulation might be required to induce reliable improvements that could warrant its 

implementation in clinical daily practice. 

Authors 
(year) 

Study Stimulation 
parameters 

Patients  Assessment Results 

Stroke; motor 

Boggio et 
al. (2007)  

Randomised, 
double blind, 
sham 
controlled, 
cross-over 
study 

M1: anode or sham: 
ipsilesional 
hemisphere; cathode: 
contralesional, 1 mA, 
35 cm2, 20 minutes; 
1 weekly session for 1 
month or 1 daily 
session during 10 
consecutive days 

9 patients, 
subcortical 
stroke; 

> 12 
months 
post-insult 

Hand 
function 
(Jebsen 
Taylor Test) 

Transitory 
motor 
improve-
ment after 
anodal and 
cathodal 
stimulation. 
Cumulative 
and lasting 
effect with 
daily 
stimulation 

Linden-
berg et 
al. (2010) 

Randomised 
sham 
controlled 

M1: anode or sham: 
ipsilesional 
hemisphere; cathode: 
contralesional 
hemisphere, 1.5 mA, 
30 minutes, 5 
consecutive days, 
associated with PT 

20 patients 
Sylvian 
ischemic 
stroke.  

Sham 
group: 10 
patients;   
> 5 months 
post insult 

Stroke 
impairment 
(Upper-
Extremity 
Fugl-Meyer 
Assessment) 
and Wolf 
Motor 
Function 
Test 

Significant 
progress in 
the treated 
group, 
lasting one 
week after 
the 
intervention 

Kim et al. 
(2010) 

Randomised, 
double-
blind, sham 
controlled 

M1: anode or sham: 
ipsilesional 
hemisphere; cathode: 
contralesional, 2 mA, 
25 cm2, – 10 sessions 
associated with OT 

18 
patients; 

> 2 months 
post insult 

Fugl Meyer 
(upper limb) 
and Barthel 

Index 

Functional 
progress in 
the three 
groups. 
Better for 
cathodal 
stimulation 
at 6 months 

Nair et 
al. (2011) 

Randomised, 
double-

M1: cathode: 
contralesional 

14 chronic 
(> 1 year) 

Range of 
motion, 

tDCS + OT: 
motor 
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blind, sham 
controlled 

hemisphere; anode: 
opposite 
supraorbicular area; 
1 mA; 30 min for 5 
days. Combined with 
OT. 1 week follow-up 

stroke 
patients 

Upper-
Extremity 
Fugl-Meyer 
Assessment, 
fMRI motor 
task 

progress. 
Effects 
lasted one 
week 

Khedr et 
al. (2013) 

Randomised, 
double-
blind, sham 
controlled 

Anodal: anode or 
sham: ipsilesional 
hemisphere; cathode: 
supraorbicular area; 
Cathodal: cathode or 
sham: contralesional 
hemisphere; anode 
supraorbicular area; 
2mA, 35 cm²; 25 min 
during six 
consecutive days. 3 
months follow-up 

40 acute  
(< 28days) 
patients 
with 
ischemic 
stroke 

NIHSS, 
Barthel 
index, 
Medical 
Research 
Council 
muscle 
strength 
scale, MEP 

Better 
improvemen
t for both 
cathodal 
and anodal 
tDCS 
compare to 
sham of the 
severity of 
stroke at 3 
months 
follow-up 

Ochi et 
al. (2013) 

Randomised, 
double-
blind, sham 
controlled, 
cross-over 
study 

Anodal: anode or 
sham: ipsilesional 
hemisphere; cathode: 
supraorbicular area;  

Cathodal: cathode: 
contralesional 
hemisphere; anode: 
supraorbicular area; 
2mA, 35 cm²; 10 min 
during five days 

18 chronic 
stroke 
patients 

Fugl-Meyer 
assessment 
for the 
upper limb, 
Modified 
Ashworth 
Scale, Motor 
Activity 
Living 

 

Anodal and 
cathodal 
tDCS 
showed 
improvemen
t of motor 
function and 
spasticity. 
Progresses 
lasted one 
week 

Stroke; aphasia  

Baker et 
al. (2010) 

Randomised, 
double blind, 
sham 
controlled, 
cross-over 
study 

Area predetermined 
by fMRI naming task; 
anodal or sham, 1 
mA, 25cm², 20 min; 
cathode over the 
right shoulder. 5 
consecutive days of 
stimulation. 7 days of 
washout 

10 
patients,  

> 10 
months 
post-insult 

Computeri-
zed naming 
test; 2 
additional 
untargeted 
word lists (1 
for each 
stimulation 
type) 

Improvemen
t of naming 
accuracy of 
treated 
items. Effect 
persisted at 
least 1 week  

Fiori et 
al. (2011) 

Randomised, 
double blind, 
sham 
controlled, 

Anode: Wernicke 
(CP5); cathode: 
contralateral 
supraorbicular area, 1 
mA, 20 minutes, 5 

3 patients, 
> 3 months 
post stroke 

Naming task 
and reaction 
time 

More 
correct 
answers and 
better 
reaction 
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cross-over 
study 

consecutive days. 3 
weeks follow-up 

time. Effect 
lasted 3 
weeks 

Marango
-lo et al. 
(2013) 

Randomised, 
double blind, 
sham 
controlled, 
cross-over 
study 

Anode: Broca or 
Wernicke or sham; 
cathode: right 
supraorbicular area; 
1 mA, 35 cm²,20 min; 
10 consecutive days. 
1month follow-up. 
Coupled with speech 
therapy 

12 chronic 
(> 
6months) 
patients 
with left 
hemispher
e stroke 

Battery for 
the analysis 
of aphasic 
disorders, 
Token test, 
selective, 
divided and 
sustained 
attention 
tests, visual 
memory test 

Improvemen
t of aphasia 
after anodal 
tDCS over 
Broca’s area. 
Improvemen
t lasted 1 
month 

Polanows
-ka et al., 
(2013) 

Randomised, 
double blind, 
sham 
controlled 
study 

Broca area: anode or 
sham; cathode: right 
supraorbicular area; 
1 mA; 10 min. 15 
sessions (5days/w, 
during 3w). Combine 
with speech therapy. 
3 months follow-up 

24 stroke 
patients 
with left 
MCA 
stroke (2 
to 24 
weeks post 
onset) 

Naming 
accuracy and 
naming time 

tDCS: higher 
effect sizes 
in naming 
time, until 3-
month 
follow-up 

Vestito et 
al. (2014) 

Pilot, single-
blind, sham-
controlled, 
cross-over 
study 

Anode: Broca’s area; 
cathode: right 
supraorbicular area; 
1.5 mA; 25cm²; 20 
min for 10 days. 21 
weeks follow-up 

Chronic 
stroke 
patients (> 
1 year post 
insult) 

Aachener 
Aphasie 
Test, Boston 
Naming Test 

Improvemen
t of naming 
with positive 
effect until 
the 16th 
week 

Stroke, other 

Olma et 
al. (2013) 

Randomised, 
double blind, 
sham 
controlled 
cross-over 
study 

Anode, or sham: 
ipsilesional calcarine 
sulcus (MRI 
navigation system); 
cathode: Cz; 1.5 mA; 
25cm²; 20 min for 5 
consecutive days. 4 
weeks follow-up 

12 chronic 
stroke 
patients 
and 
homonym
ous visual 
field 
defects 

Motion 
detection 
task 

Improvemen
t in motion 
perception. 
Still present 
at 14- and 
28-day 
follow-up 

Table 9: Studies on the effects of repeated transcranial direct current stimulations on motor and cognitive 
deficit in stroke patients. All studies reported prolonged effects after 5 to 15 days of stimulations that lasted 
up to 4 months. Abbreviations: NIHSS: National Institutes of Health Stroke Scale; M1: primary motor area; 
fMRI: functional magnetic resonance imaging; MEP: motor evoked potential; PT: physical therapy; OT: 
occupational therapy; MCA: middle cerebral artery. 
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Clinical recommendations 

Our next step will be to determine whether or not the short-term effects of tDCS can be improved 

sufficiently in terms of efficacy and duration to make it suitable for use in clinical practice. We have started 

a study to test the effects of repeated stimulation sessions carried out 5 days consecutively and to evaluate 

the benefits, in terms of CRS-R, a week from the end of the stimulations. The results will tell us if tDCS could 

be used as a therapeutic tool on a daily basis in clinical practice, in rehabilitation centres, nursing homes or 

even at the patient’s home. Moreover, we will test if an increased number of stimulations could also 

enhance the beneficial effect (as measured by effect size) and increase the number of patients who respond 

to the treatment.   
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4. Conclusion and perspectives 
 

 

 

“There is nothing permanent except change.”  

Heraclitus 
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Managing pain and promoting recovery in patients with DOC is a major challenge to overcome. In 

this work, we first tried to improve our understanding of pain assessment tools (NCS-R) and of spasticity in 

non-communicative severely brain-injured patients. Next, we studied potential pharmacological (zolpidem) 

and non-pharmacological (tDCS) treatments for promoting recovery in these patients. 

Neuroimaging studies have suggested that patients in MCS and some patients in UWS/VS retain 

sufficient cortical activity to process pain in a similar way to healthy subjects (Boly, Faymonville et al. 2008, 

Markl, Yu et al. 2013). These findings highlight the importance of managing potential pain in patients with 

DOC independent of their diagnosis at the bedside, which might be incorrect (Schnakers, Chatelle et al. 

2012, Thibaut, Chatelle et al. 2014). The NCS-R was developed to behaviourally assess pain in non-

communicative severely brain-injured patients (Chatelle, Majerus et al. 2012). In this thesis, we have shown 

that the NCS-R constitutes a sensitive and appropriate behavioural tool to assess pain in patients with DOC 

by showing that the NCS-R total score is related to cortical processing of pain (Chatelle, Thibaut et al. 2014). 

In the future, we should investigate the sensitivity of the scale to analgesic treatment. This would allow 

clinicians to evaluate the efficacy of a treatment and adapt it rapidly in order to manage patients’ comfort 

and promote recovery. Additionally, further studies will need to investigate the clinical usability of the scale 

to handle chronic pain in patients with DOC. Above and beyond this, we need to develop clear guidelines 

regarding the assessment and the management of pain in this population to help clinicians in the daily 

management of patients.  

A potential source of discomfort in chronic patients is spasticity. Spasticity could also be a main 

confounder in behavioural assessment of consciousness. We showed here that almost 90% of patients in 

UWS/VS and MCS suffer from spasticity, while 62% of patients have severe invalidating spasticity (Thibaut, 

Deltombe et al. in press). We also identified a positive correlation between pain (assessed by the NCS-R) 

and the severity of this motor disorder. This result suggests a strong potential impact of spasticity on 

patients’ quality of life and demonstrates the importance of understanding and treating spasticity as well 

as the other motor and muscle dysfunctions (e.g. tendon retraction, joint fixation, muscular connective 

tissue and fat content, reorganization of CNS motor areas and their activation) commonly associated with 

it. In patients with spasticity the hyperexcitability of the stretch reflex is neurophysiologically characterized 

by an increase of the “H max/M max” ratio. This could be due to an exaggerated facilitation of the H-reflex 
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to voluntary muscle contraction and/or to the lack of inhibition associated with muscle relaxation 

(Schieppati 1987, Nielsen, Petersen et al. 1993). A first step could be to use the H max/M max ratio and 

compare it between the population of stroke patients and patients with DOC. If the observed spasticity in 

this population of patients is more related to hypertonia, dyskinesia or ankyloses than spasticity itself, we 

should observe a similar or smaller H max/M max ratio in DOC as compared to stroke patients. Additionally, 

the H max/M max ratio would not correlate with the MAS scores. This would suggest than scales adapted 

to non-communicative patients with tendon retraction, joint fixation and ankyloses, should be developed 

to evaluate all motor disorders and not only spasticity. Looking at the patients’ structural brain lesions could 

also help us improve our understanding of the mechanisms underlying spasticity in this population. 

Regarding the treatment, we have shown a positive effect of soft splinting on spasticity of the intrinsic 

hand muscles. This technique seems to be a worthy alternative to conventional rigid splints for chronic 

patients with DOC. To evaluate the potential improvement of the effects of soft splinting and to attest its 

utility in clinical daily practice, further studies assessing the long-term effects of daily application are 

needed. We should also study other treatments that can be used on both upper and lower limbs, such as 

botulinum toxin A. Indeed, this drug has been shown to efficiently reduce spasticity in stroke patients, 

improve arm posture, hand hygiene, facilitate dressing for caregivers, and decrease pain (Simpson, 

Alexander et al. 1996, Bhakta, Cozens et al. 2000, Brashear, Gordon et al. 2002). It would be worth studying 

the effect of botulinum toxin A on patients with DOC and investigating the effects on patient comfort (e.g. 

using the NCS-R during mobilization and/or care), as well as the impact on caregivers and bedside 

assessment of consciousness.  

The onset of spasticity could be explained by an anarchic neuronal reorganization after brain lesion 

(Sheean 2002). If we could stimulate the motor regions to promote a healthy cortical reorganization after 

the brain damaged area, it may result in a reduction in motor impairment. We know that non-invasive 

techniques such as anodal tDCS can increase the neuronal excitability under the stimulated area (Nitsche 

and Paulus 2000). It could be hypothesized that stimulating the damaged motor area after a brain lesion 

could stimulate an appropriate and healthy reorganization of the cortex and may potentially reduce the 

occurrence of spasticity in brain-injured patients. 
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Regarding the curative treatments, we have demonstrated that tDCS on the left prefrontal 

dorsolateral cortex may transiently improve signs of consciousness in almost 50% of patients in MCS both 

in acute and chronic stages (> 3 months post insult) (Thibaut, Bruno et al. 2014). Additionally, we have found 

that clinical effects after tDCS seem to be associated with some residual brain metabolism and grey matter 

preservation in the stimulated area (i.e. left prefrontal cortex), long-distance cortical areas (i.e. precuneus) 

and subcortical areas (i.e. thalamus) (Thibaut, Di Perri et al. submitted). If these findings suggest that not all 

patients could respond to this treatment, it highlights the need for improved patient characterization in 

order to guide treatments in this population. 

In our work, we focused on the effect of a single stimulation on recovery of signs of consciousness, 

although it may take more than one stimulation to some patients to respond (Vestito, Rosellini et al. 2014). 

Therefore, it could be interesting to look at the effects of repeated tDCS sessions to know if it may lengthen 

the duration of the benefits as well as increase the proportion of responders. Another potential option for 

increasing the number of responders would be to use a multi-focal tDCS to stimulate the entire external 

awareness network (Vanhaudenhuyse, Demertzi et al. 2011, Thibaut, Bruno et al. 2012). This would increase 

the probability to stimulate relatively preserved brain areas and therefore target higher cognitive function 

in DOC. Mechanistically, this multifocal stimulation of the external consciousness network could increase 

and strengthen long distance functional connectivity inside this network which is thought to correlate with 

the recovery of consciousness in DOC (Vanhaudenhuyse, Noirhomme et al. 2010). Previous fMRI (Keeser, 

Meindl et al. 2011, Pena-Gomez, Sala-Lonch et al. 2012) and EEG (Keeser, Padberg et al. 2011) studies in 

normal volunteers have indeed shown some preliminary evidence that tDCS might increase cerebral 

functional connectivity. It would be interesting to record an EEG at rest before and after the stimulation in 

order to objectively measure any effect on cortical connectivity. This could be used to try to predict clinical 

efficacy based on objective EEG markers (e.g. entropy, time-frequency and connectivity 

measures;(Lehembre, Bruno et al. 2012). 

Treatment combination is another possibility to increase the effect on recovery. We have shown that 

zolpidem induces a metabolic increase in the prefrontal cortex (Thibaut, Chatelle et al. 2014). On the other 

side, we have highlighted the critical role of the prefrontal cortex and the thalamus in tDCS responders. 

These results highlight the key role played by thalamo-cortical connectivity, and especially the connectivity 
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between the prefrontal cortex and the thalamus in recovery of signs of consciousness, which has previously 

been suggested by the literature (Laureys, Faymonville et al. 2000, Laureys, Antoine et al. 2002, Crone, 

Soddu et al. 2014, Monti, Rosenberg et al. 2015). Further treatments to improve the revalidation of patients 

with DOC should focus on these brain areas. The combination of zolpidem and tDCS, both acting on the 

prefrontal cortex, could increase the effects of tDCS and/or increase the number of patients who could 

respond to zolpidem. In addition, other drugs could be tested to prolong and enlarge the effects of the 

stimulation on cognitive functions. For example, combining tDCS with an NMDA receptor agonist, such as 

D-Cycloserine, that has already shown to potentiate the duration of cortical excitability enhancements 

induced by tDCS (Nitsche, Jaussi et al. 2004), may strengthen the effects of tDCS in patients.  

To provide the most efficient treatment to patients with DOC, we could also investigate other non-

invasive brain stimulation techniques such as transcranial pulsed current stimulation (tPCS). This technique, 

tested in healthy volunteers, is thought to stimulate deeper brain structures than tDCS including the 

subcortical arousal network (Jaberzadeh, Bastani et al. 2014). Moreover, it has been hypothesized that tDCS 

and tPCS are two complementary techniques (Castillo Saavedra, Morales-Quezada et al. 2014). tDCS is 

thought to improve cognitive abilities (especially if impaired) by increasing the neuronal firing under the 

stimulated area, whereas tPCS may facilitate behavioural performance of tasks that have been previously 

learned through a more widespread increase of cortical and subcortical connectivity (e.g.(Castillo Saavedra, 

Morales-Quezada et al. 2014). It would be interesting to investigate the effects of tDCS and tPCS, individually 

as well as combined, on cognitive function and to assess stimulation-induced cortical changes using EEG 

and neuroimaging techniques. 

In conclusion, more work has to be done to strengthen our understanding of the mechanisms of pain, 

motor impairments (such as spasticity), and potential treatments to promote the recovery of consciousness 

in patients with DOC. This will help improve daily care, comfort, and rehabilitation in this population in acute 

as well as in chronic stages. We think that tDCS, which is a safe, easy to use, and inexpensive technique, has 

great potential for promoting rehabilitation during both acute and chronic stages. Continuing this research 

on both symptomatic and curative treatments will help us develop clear guidelines to help clinicians improve 

the quality of life of patients with DOC.  
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