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Abstract 

It is now well acknowledged that a close relationship exists between neuroendocrine 

and immune systems. Within this field, the question of the physiological role of the 

GHRH/GH/IGF-1 axis on the immune system is still highly debated. The purpose of this 

thesis was to address this issue by investigating developmental and functional adaptive 

immunity in the Ghrh-/- mouse model of somatotrope deficiency. Analyses in basal 

conditions reveal that Ghrh-/- mice have functional B and T lymphopoiesis and exhibit 

decreased B/T ratio and increased naïve T cells in periphery compared to non-deficient 

mice, but no immunodeficiency was found. Immune aging was not aggravated in Ghrh-/- 

mice and short-term GH treatment had no impact on immune parameters of deficient or 

normal mice, despite its visible metabolic effect. Altogether, those results suggest that 

somatotrope axis is not required for immune system development, maintenance or 

aging. This finding is in accordance with the stress hypothesis, according which 

somatotrope hormones are important counter-regulators of stress-induced 

immunosuppressors. In an attempt to test this hypothesis, mice were injected with 

dexamethasone (DXM), a synthetic glucocorticoid inducing massive thymocyte 

apoptosis. Thymocyte distribution two days post-DXM treatment was less disturbed in 

Ghrh-/- than in normal mice, but ensuing recovery was slower, even though both mice 

present full recovery of thymic parameters 10 days after DXM injection. Also in the line 

of the stress hypothesis, study of infectious stress seems more relevant, as suggested by 

preliminary results obtained with Streptococcus pneumoniae (S.pneum) infection. In 

conclusion, this thesis brings new evidence of the non-essential role played by the 

GHRH/GH/IGF-1 axis on adaptive immune system development and function. It also 

opens the way for further investigations regarding the role of this axis on innate 

immunity and immune response to infectious stress. 





 

 

Résumé 

Il est aujourd’hui bien admis qu’une relation étroite existe entre les systèmes 

neuroendocrinien et immunitaire. Parmi les connaissances dans ce domaine, la question 

du rôle physiologique exercé par l’axe GHRH/GH/IGF-1 sur le système immunitaire est 

toujours fortement débattue. L’objectif de cette thèse était d’étudier cette 

problématique, via l’étude du développement et de la fonction du système immunitaire 

de la souris Ghrh-/-, un modèle murin de déficience de l’axe somatotrope. A l’état basal, 

les analyses ont montré que les souris Ghrh-/- avaient une lymphopoïèse B et T 

fonctionnelle, et présentaient une diminution du rapport B/T et une augmentation des 

cellules T naïves en périphérie. Cependant, aucune immunodéficience n’a été détectée 

chez ces souris. Le vieillissement du système immunitaire n’était pas aggravé chez les 

souris Ghrh-/- et un traitement à court terme par GH s’est révélé sans impact sur les 

paramètres immunitaires des souris déficientes ou normales. Pris ensemble, ces 

résultats suggèrent que l’axe somatotrope n’est pas nécessaire pour le développement, 

la maintenance ou le vieillissement du système immunitaire. Cette conclusion est en 

accord avec l’hypothèse du stress, selon laquelle les hormones somatotropes seraient 

d’importants contre-régulateurs des facteurs immunosuppresseurs induits en cas de 

stress. Pour tester cette hypothèse, les souris ont été injectées avec de la 

dexaméthasone, un glucocorticoïde de synthèse connu pour induire une atrophie 

massive des thymocytes. La distribution des thymocytes deux jours après le traitement 

DXM était moins perturbée chez les souris Ghrh-/- que chez les souris normales, mais la 

récupération qui s’ensuit semblait retardée, bien que chez les deux types de souris un 

rétablissement complet des paramètres thymique était obtenu en 10 jours. Egalement 

en rapport avec l’hypothèse du stress, il semblerait que l’étude du stress infectieux soit 

mieux adaptée, au vu des résultats préliminaires obtenus avec des infections par 

Streptococcus Pneumoniae. En conclusion, cette thèse apporte de nouvelles preuves du 

rôle non essentiel que joue l’axe GHRH/GH/IGF-1 sur le développement et la fonction du 

système immunitaire et elle ouvre la voie vers de futures études concernant le rôle de 

l’axe somatotrope sur l’immunité innée et la réponse au stress infectieux.  
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1 Introduction 

It is now well acknowledged that a crosstalk exists between neuroendocrine and 

immune system. Both systems share common receptors and ligands: some cytokines, 

including interleukin (IL)-1 or IL-6 exert effects on endocrine cells and conversely 

neuroendocrine hormones may act on immune cells [1]. The physiological reality of this 

bidirectional link is still under the scope of many researches. The present work focuses 

on the interaction between the immune system and the neuroendocrine somatotrope 

axis. After a comprehensive description of the somatotrope axis and the immune 

system, this introduction will review the up-to-date knowledge in this field. 

1.1 The somatotrope axis 

The somatotrope axis is a hypothalamo-pituitary axis where growth hormone (GH) 

secretion by pituitary somatotroph cells is under the control of two hypothalamic 

factors; growth hormone releasing hormone (GHRH) which stimulates, and somatostatin 

(or somatotropin release-inhibiting factor – SRIF/SS) which inhibits GH secretion 

(Figure 1.1). In periphery, most of the GH actions are mediated by the insulin-like growth 

factor (IGF-1), a peptide produced mainly in the liver but also locally, so that it can acts 

in an endocrine, autocrine or paracrine way. IGF-1 exerts a negative feedback on the 

hypothalamus and pituitary to suppress GH production. Finally, ghrelin is another factor 

that regulates GH production. This orexigenic hormone, essentially produced in the 

stomach, induces GH release through GHRH stimulation. As indicated by their names, 

GH and IGF-1 stimulate skeletal and tissue growth, but they also have multiple metabolic 

effects, like glucose homeostasis by antagonizing insulin and thereby increasing blood 

glucose, lipolysis by activating lipase or protein anabolism [2,3]. 
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Figure 1.1 – The somatotrope axis. GH production by pituitary somatotroph cells is stimulated by GHRH 

and ghrelin and inhibited by SRIF and IGF-1. GH acts either directly on target tissues or stimulates IGF-1 

production to mediate its growth and metabolic effects. 

1.1.1 Growth Hormone releasing hormone (GHRH) and somatotropin release-

inhibiting factor (SRIF) 

GHRH is a 44-amino acid peptide produced by the arcuate nucleus of the hypothalamus. 

It was isolated for the first time in 1982 from pancreatic tumors of acromegalic 

patients [4,5]. GHRH secretion is stimulated by depolarization, α2-adrenargic 

stimulation, hypoglycemia, hypophysectomy and ghrelin; it is inhibited by SRIF, IGF-1 

and GABAergic neurons. Besides its expression in hypothalamus, GHRH mRNA was found 

in extrahypothalamic neurons, pancreas, epithelial cells of the gastrointestinal tract, 

placenta, male and female gonads and immune cells [6]. In addition to its role for GH 

secretion, GHRH is also important for development and proliferation of somatotroph 

cells. 

GHRH binds to a seven transmembrane G protein-coupled receptor, the GHRH-receptor 

(GHRHR), to increase GH synthesis and release. The binding of GHRH to its receptor 

activates a stimulatory G-protein which in turn stimulates adenylyl cyclase (AC) to 

increase intracellular cyclic 3’,5’-adenosine monophosphate (cAMP). This increase in 
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cAMP induces protein kinase A (PKA) which activates the transcription factor cAMP 

response element binding protein (CREB) by phosphorylation. Activated CREB enhances 

transcription of Pit-1, the transcription factor specific for pituitary cells, which in turn 

promotes GH and GHRHR genes transcription. That leads to increased de novo GH 

production and positive feedback loop increasing GHRHR expression on cell surface. PKA 

activation also leads to the opening of calcium channels, thus allowing influx of calcium, 

which directly induces exocytosis of GH stored in secretory granules (Figure 1.2) [6,7]. 

SRIF is a cyclic peptide expressed by neurons of the arcuate nucleus. Its half-life is 

approximately 2 minutes, thus it is rapidly cleared from the tissue. SRIF secretion is 

activated by GH and IGF-1, exercise and immobilization and inhibited by hyperglycemia 

[2,3]. 

They are five subtypes of receptors for SRIF (SRIFR 1-5) in humans, consisting of seven-

transmembrane, G protein-coupled receptors. All five receptors are expressed by human 

fetal pituitary, but SRIFR4 is no longer present in adult pituitary. Inhibition of GH 

secretion by somatotroph cells is mostly dependent upon SRIFR2 and SRIFR5 [8]. SRIFR 

are coupled to an inhibitory G protein, which, upon activation of the receptor, directly 

inhibits AC and therefore lowers the downstream cascade cAMP – PKA – CREB of the 

GHRHR signaling [9]. This inhibition of GHRHR signaling decreases GH release and 

synthesis (Figure 1.2). 
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Figure 1.2 – GH regulation in somatotroph cells. GHRH binding to its receptor activates the AC/AMPc/PKA 

pathway which leads to phosphorylation of CREB. This transcription factor in turn stimulates expression of 

Pit-1 which activates transcription of GH and GHRHR. PKA also induces calcium channel opening, leading 

to calcium influx and triggering exocytosis of GH from secretory granules. SRIFR activation inhibits AC, thus 

blocking GHRHR signaling. Ghrelin binding to GHSR activates the Gq protein, which stimulates PLC to 

cleave PIP2 into DAG and IP3. DAG activates PKC/ERK pathway leading to CREB phosphorylation and PIt-1 

transcription to increase GH transcription while IP3 increases intracellular calcium triggering GH 

exocytosis. Adapted from Hattori N. 2009 [7] 

1.1.2 Ghrelin 

Ghrelin was discovered in 1999 by M.Kojima as the natural endogenous ligand for 

growth hormone secretagogue receptor (GHSR) [10]. This 28 amino acid peptide exerts 

functional activity through GHSR only when acylated on serine 3, a modification 

mediated by the ghrelin O-acyl transferase which, like ghrelin, is expressed in the 

stomach [11,12]. Ghrelin has diverse biological actions besides its stimulatory effect on 

GH release; it is an orexigenic hormone stimulating hunger and food intake, gut motility 

and gastric acid secretion, but also participates to glucose metabolism, stress, sleep or 

cardiovascular function [13]. GHSR is a 7 transmembrane domain G protein-coupled 

receptor found to be expressed mainly in the hypothalamus and pituitary but also in the 

thyroid, pancreas, spleen, myocardium and adrenal gland [14,15]. Ghrelin-GHSR 

interaction activates the Gq protein, which in turn stimulates phospholipase C (PLC) to 
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cleave phosphatidylinositol 4,5-diphosphate (PIP2) into diacylglycerol (DAG) and inositol 

triphosphate (IP3). On one hand, DAG induces protein kinase C (PKC) to activate 

extracellular signal regulated kinase (ERK) which finally phosphorylates CREB. Similarly 

to GHRH signaling, CREB enhances Pit-1 transcription leading to GH transcription. On the 

other hand, IP3 increases intracellular calcium concentration triggering GH secretory 

granules exocytosis (Figure 1.2) [7,16]. 

1.1.3 Growth Hormone (GH), GH receptor (GHR) and binding protein (GHBP) 

GH, also called somatotropin, is a 191 amino-acid hormone secreted by the somatotroph 

cells of the anterior pituitary in a pulsatile way, with approximately 8 peaks over 24 

hour, mostly during night time. This pulsatile secretion is, at least in part, due to the 

antagonistic actions of GHRH, ghrelin and SRIF. Nevertheless, patterns for GH secretion 

are still not fully understood because of their complexity. Indeed, a lot of factors may 

influence GH secretion such as gender, sexual hormones, fat composition, free fatty 

acids, body mass index, insulin, leptin or adiponectin. Moreover, GH levels vary during 

lifetime. Large amounts are needed for growth during childhood, then a rise occurs at 

puberty and finally in early adulthood, when adult size is reached, GH concentration 

rapidly declines and continues to slowly decrease throughout adult life [3]. Finally, GHBP 

also influences GH availability. Discovered in 1986, it consists of the soluble extracellular 

domain of the GHR[17]. In rodents, it is produced by alternative splicing of the GHR gene 

[18,19]. In humans and rabbits, GHBP is formed through cleavage of the GHR 

ectodomain by tumor necrosis factor-α-converting enzyme (also called ADAM17) [20]. 

Complexation of GH to its BP regulates its bioavailability and bioactivity. Similarly to 

what is observed for GH, changes of GHBP levels occur during the lifetime, with an 

increase from childhood to puberty and decrease throughout adult life [21]. Moreover, 

GHBP concentration is also influenced by body mass index, fat composition or insulin. 

GH secretion is regulated by the transcription factor Pit-1, itself controlled by the 

Prophet of Pit-1 (PROP-1). The two transcription factors are important for pituitary cells 

development and proliferation [22], and their mutation lead to absence of somatotroph, 

lactotroph and thyrotroph cells [23,24]. 
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Figure 1.3 – GHR signaling. GH binding to constitutive dimer of GHR induces rotation of subunits leading 

to activation of several signaling pathways, including Jak2/STAT, IRS/PI3K, PLC/PKC or Ras/MAPK which in 

turn migrate to the nucleus and activate several gene for growth and metabolism. 

GH actions result from the activation of the GHR, a class I cytokine receptor. It consists 

of a single membrane pass receptor with an extracellular domain containing a cytokine 

receptor homology domain, and an intracellular domain with a proline-rich Box 1 for 

binding of tyrosine Janus kinase (JAK) [25]. The general thought is that class I cytokine 

receptors are activated by ligand-dependent dimerization. Interestingly, it was shown 

that GHR already exists as a dimer at the cell surface [26], and that GH binding induces 

rotation of subunits leading to trans-activation of JAK2 [27]. The phosphorylated kinase 

then recruits and activates the signal transducer and activator of transcription (STAT) 

proteins to form homo- or heterodimers that migrate to the nucleus and activate 

transcription of several genes. GH was found to be able to activate 4 members of STAT 

family: STAT1, 3, 5a and 5b [28,29]. GHR activation also activates others signaling 

pathways, including Ras/Mitogen Activated Protein Kinase (MAPK), PLC/PKC or insulin 

receptor substrate (IRS) / phosphatidylinositol 3-kinase (PI3K) [30]. GHR activation signal 

is summarized in Figure 1.3. 
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1.1.4 Insulin-like growth factor 1 (IGF-1) and receptors 

IGF-1 is the main mediator of GH growth actions and this is why it has long been called 

somatomedin (mediator of somatotropin). It belongs to the large insulin-related system, 

which includes insulin, IGF-1 and -2, three receptors (insulin receptor, type 1 and type 2 

IGF receptor) and six IGF binding proteins (IGFBP 1-6) as well as nine IGFBP related 

proteins (IGFBP-rP 1-9) [31]. Discovered in 1957 [32], IGF-1 is composed of 70 amino 

acids and is mainly produced in the liver under the control of GH. However, many 

peripheral tissues are also able to express IGF-1, suggesting an endocrine, paracrine and 

autocrine way of actions. IGF-1 release in the circulation induces a negative feedback 

that inhibits GH production and secretion (Figure 1.1). In the periphery, 99% of IGF-1 is 

complexed to a binding protein and approximately 75% is carried in a ternary structure 

formed by one IGF-1 molecule, one IGFBP-3 and one acid labile subunit. IGF-1 affinity for 

these binding proteins is much higher than for its own receptor, and binding of IGF-1 to 

IGFBP limits its bioavailability and increases its half-life. It also transports IGF-1 to 

different target tissues [31,33]. 

Because of the high homology between the members of the insulin-IGF family, IGF-1 is 

known to bind the three receptors, with the highest affinity for the type 1 IGF receptor 

(IGF-1R). This receptor is expressed by a wide variety of cells and tissues. IGF-1 binding 

to the receptor induces activation of IRS-1 that associates with proteins containing src 

homology 2 (SH2) domains. Amongst those proteins are the PI3K and the growth factor 

receptor-bound protein 2 (Grb2). The first one leads the formation of PIP3 which is a 

direct signal for cell growth. The second one activates the Ras/MAPK pathway, which 

transmits mitogenic and metabolic signals to the nucleus. Grb2 can also be directly 

activated by SHC and then stimulates Ras, independently of IRS [34] (Figure 1.4). 

IGF-1 also binds type 2 IGF receptor (IGF-2R), but with a lower affinity than for IGF-1R. 

IGF-2R is similar to the cation-independent mannose-6-phosphate receptor. The role of 

this receptor to mediate IGFs signaling is not fully understood, but its effect as a 

scavenger that regulates uptake and degradation of IGFs is clear [35]. 

 



Impact of somatotrope axis upon immune system 

 

8 
 

 

Figure 1.4 – IGF-1R signaling. IGF-1 binding to IGF-1R causes phosphorylation of IRS which activates the 

Sh2-domains containing proteins PI3K, leading to the formation of PIP3, and Grb2, leading to activation of 

Ras/MAPK pathway. Grb2 can also be activated by SHC independently of IRS. Downstream signals to the 

nucleus induce mitogenic and metabolic effects. 

Effects of IGF-1, reviewed by Jones and Clemmons [33], include stimulation of cell 

proliferation, inhibition of cell death, stimulation of cell differentiation and function, 

promotion of pre- and postnatal bones growth, insulin-like actions or anabolic effects. 

Most of the growth actions of GH are mediated through IGF-1. This is particularly 

evidenced in patients with Laron syndrome, a dwarfism characterized by IGF-1 

deficiency and high GH concentration caused by a mutation in the GHR gene [36,37]. 

IGF-1 treatment of children with Laron syndrome increases growth rate and could even 

restore normal height if treatment is started at an early age [38]. This growth effect is 

completely independent of GH since GHR function is disrupted in those patients. 
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1.2 Animal models of somatotrope deficiency 

Several mouse models with somatotrope deficiencies exist, deriving from natural 

mutation or laboratory generated (Table 1.1). Mutations occur at different steps of the 

axis, from defects of hypothalamic GHRH or its receptor to mutation in IGF-1 gene and 

passing by multiple deficiencies at the pituitary level in Snell-Bagg and Ames dwarf mice 

or alteration of the GHR gene. 

1.2.1 Snell-Bagg and Ames dwarf mice 

The first murine models for pituitary deficiency were the Snell-Bagg [39] and Ames 

dwarf mice [40]. Both strains have spontaneous autosomal recessive mutations that lead 

to growth failure, absence of GH, thyroid-stimulating hormone (TSH) and prolactin (PRL) 

and hypopituitarism due to defect in the development of somatotroph, thyreotroph and 

lactotroph cells. In 1990, Li et al. discovered the localization of the mutation affecting 

the Snell-Bagg mouse, in the Pit-1 gene [23]. The mutation responsible for the Ames 

Dwarf phenotype was later found localized in the PROP1 gene [24]. 

1.2.2 Other animal models 

Snell-Bagg and Ames dwarf mice have multiple pituitary deficiencies, which make it 

difficult to identify specific effect of each hormone independently. Fortunately, models 

of specific somatotrope deficiency also exist. They result from spontaneous or 

engineered mutations of several members or receptors of the somatotrope axis. 

1.2.2.1 Little mouse (lit/lit)  

A new dwarf mouse was discovered in 1976, carrying an autosomal recessive mutation 

on chromosome 6 and called little mice [41]. The mutation was later identified on the 

GHRHR gene [42]. Little mice (lit/lit) exhibit a dwarf phenotype and reduced GH [42] and 

IGF-1 production [43]. The amount of IGFBP-3 is also decreased [43]. 

1.2.2.1 Laron mouse (GHR-/-) 

In an attempt to obtain a mouse model to study Laron syndrome, Zhou and colleagues 

generated a mouse with an inactive GHR gene [44]. This mouse, named Laron mouse, 



Impact of somatotrope axis upon immune system 

 

10 
 

presents growth retardation and dwarfism, absence of GHR and GHBP, decreased serum 

IGF-1 concentrations and increased GH levels, similarly to what is observed in patients 

with Laron syndrome. The same group then transferred the mutation into a C57BL/6J 

background [45]. 

Table 1.1. Major mouse model of GH deficiencies 

Strain Gene disrupted Serum concentrations Reference 

Snell-Bagg Pit-1 ↙ GH, PRL, TSH, IGF1 Snell 1929 [39] 

Ames dwarf PROP1 ↙ GH, PRL, TSH, IGF1 Schaible and 

Gowen 1961 [40] 

lit/lit GHRHR ↙ GH, IGF1 Eicher and Beamer 

1976 [41] 

Laron mouse GHR 
↗ GH 

↙ IGF1 

Zhou et al. 1997 

[44]  

Igf1
-/-

 IGF-1 ↙ IGF1 Powell-Braxton et 

al. 1993 [46]  

Ghrh
-/-

 GHRH ↙ GH, IGF1 Alba and Salvatori 

2004 [47]  

 

1.2.2.2 Igf1-/- mouse 

To investigate the role of IGF-1 in normal development, a research team developed a 

mouse with targeted disruption of the IGF-1 gene [46]. Unfortunately, 95% of the pups 

died in perinatal period and those who survived were <60% of body weight of normal 

pups, showing the importance of IGF-1 for embryonic development. 

1.2.2.3 Ghrh-/- mouse 

The most recently developed mouse model of somatotrope deficiency is the Ghrh-/- 

mouse. Alba and Salvatori generated this new model in order to investigate the 

functions of GHRH [47]. They disrupted the GHRH gene by replacing part of intron 2 and 

3 by a neomycin resistance cassette (Neor) (Figure 1.5). The recombinant GHRH gene 

was inserted into a plasmid transfected into 129SV embryonic stem cells and then 

injected into C57BL/6 blastocysts. Resulting chimeric pups were mated with C57BL/6 

animals to obtain heterozygous +/- subjects that were mated together afterwards to 

obtain homozygous -/- mice.  
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Gnrh-/- mice present a dwarf phenotype with a 55-60% reduction of their weight at 8 

weeks of age. As a result of the GHRH disruption, pituitary GH and serum and liver IGF-1 

concentrations are decreased compared to normal mice. 

 

Figure 1.5 — Disruption of GHRH gene. Schematic structure of the targeting construct inserted into the 

GHRH gene. The boxes represent exons. In white are the untranslated exonic sequences. The Neor 

substitutes part of intron 2 and a large part of exon 3. Herpes simplex virus thymidine kinase gene (HSV-

tk) is attached to the 3’ end of the construct. From Alba and Salvatori, 2004 [47]. 

 

In this work, we decided to use the Ghrh-/-mouse model because of the several 

advantages it presents compared to other models of somatotrope deficiencies: 

1) Specific somatotrope deficiency: unlike the Snell-Bagg and Ames dwarf mice, 

Ghrh-/- mice show a specific deficiency of GHRH, GH and IGF-1, with no 

alterations in the thyreotrope or lactotrope axis. Therefore, this is a very reliable 

model to identify specific functions and effects of GHRH, GH and IGF-1. 

2) Functional pituitary and peripheral sections of the somatotrope axis: by targeting 

the first member of the axis at the hypothalamic level, this transgenic model 

allows supplementation at each step of the axis: hypothalamic with GHRH [48], 

pituitary with GH [49] and peripherally with IGF-1. 

1.2.3 GH deficiency and longevity 

An extended longevity was reported in each mouse model of GH deficiency (reviewed in 

[50–52]). Ames Dwarf mice live ~50% longer than normal littermates [53]. Similarly, Snell 

dwarf mice showed a >40% increased lifespan compared to the long-lived 

(C3H/HeJ x DW/J)F1 background [54]. The observed delay in aging seems GH-related 

since early treatment of Ames Dwarf mice with GH reduces longevity compared to 

untreated mice [55]. Mice with isolated somatotrope deficiency, such as lit/lit [54], Ghr-/- 

[45] or Ghrh-/- [56] mice also present 25 to 50% increased longevity. Similarly, IGF-1 
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deficiency in Igf1r-/- [57] and liver-specific Igf1-/- mice leads to enhanced lifespan, but 

with a more modest effect than GH deficiency [58]. Mechanisms implicated in this 

improved health span involve increased insulin sensitivity, enhanced cellular stress 

resistance and decreased inflammation. 
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1.3 Immune system 

The immune system is composed of two interdependent branches: the innate and the 

adaptive immunity. Innate immunity is the first host response against pathogenic 

aggressions; it is activated very rapidly but its antigenic repertoire is restraint to a small 

number of pathogenic common determinants and it lacks memory. On the opposite, the 

adaptive immunity presents an extreme diversity of the repertoire for antigen receptors 

(B- and T-cell receptors, BCR and TCR), able to recognize nearly any antigen. Moreover, 

despite its slow activation, after elimination of the aggression, a memory state is 

induced and allows a more rapid and efficient response if the same antigen is further 

encountered. A close relationship exists between the two parts of the immunity: innate 

cells provide the stimulatory signals required for adaptive cells activation. In turn, 

adaptive immunity arms innate cells to clear the pathogen. The purpose of this work is 

of course not to give you an intensive immunity lesson (for a complete but succinct 

overview, refer to [59]) but to highlight the general principles and notions that will be 

addressed further. 

1.3.1 Innate immunity 

The cellular component of the innate immunity is first composed of myeloid cells. They 

are either resident (macrophages and dendritic cells [DCs]) or circulating (monocytes 

and granulocytes [neutrophils, basophils and eosinophils]) cells. Circulating cells can be 

rapidly recruited to the site of infection. The main effector mechanism of myeloid cell is 

phagocytosis, which leads to pathogen destruction and is also important for activation of 

adaptive immunity. Indeed, after pathogen uptake, phagocytic cells can process antigens 

of the pathogen, migrate to lymphoid organs and present antigenic peptides to 

lymphocytes. They are thus called antigen-presenting cells (APCs). DCs constitute the 

most effective APC subtype. Besides this phagocytic function, myeloid cells are also able 

to secrete chemokines (to attract other cells to the site of infection), cytokines (to 

enhance the functional capacities of immunocompetent cells in an autocrine/paracrine 

way), as well as soluble effectors (including reactive oxygen species [ROS], histamine or 

antimicrobial peptides)[60,61]. 
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Recently, a new cellular component of innate immunity has been discovered: the innate 

lymphoid cells (ILCs) [62]. They derived from lymphoid lineage progenitors and are 

closely related to T lymphocytes regarding to the transcription factors and cytokines 

they express, except that they do not express antigen-specific receptors. Natural killer 

(NK) cells were the first identified ILCs. They possess a cytolytic function, which allows 

them to directly kill infected cells, and they also produce inflammatory cytokines [63]. 

1.3.2 Adaptive immunity 

The adaptive immune system is subdivided into two arms: B and T lymphocytes. B 

lymphocytes express BCR, which is an immunoglobulin receptor able to bind soluble 

antigens, and their effector function is to produce antibodies. T lymphocytes are 

characterized by the expression of TCR that recognizes antigens presented by other cells 

through the major histocompatibility complex (MHC). Two effector functions are 

distinguished amongst T lymphocytes: a cytotoxic function (T cytotoxic, Tc), carried out 

by CD8-bearing lymphocytes (CD8 T cells), that directly kill infected or abnormal cells; 

and a helper function (T helper, Th), by CD4 T cells, that activates other cell types 

through cytokine production or direct cell contacts. Several populations of Th cells are 

characterized according to their function and cytokine production. For example, Th1 

cells secrete interferon γ that activates macrophages and Tc; Th2 produce IL-4, IL-5 or IL-

10 and mainly induce eosinophils and B cells; Th17 are IL-17 producing cells with mainly 

a pro-inflammatory role. Many others subsets have been discovered, and make this field 

extremely complex [64,65]. Another CD4 T cell subtype has to be mentioned: the 

regulatory T (Treg) cells. This regulatory subset of T lymphocytes, which expresses the 

transcription factor Forkhead box protein (FoxP3) and bears a self-specific TCR, plays an 

important role in peripheral tolerance, by inactivating autoreactive T cells that have 

escaped intrathymic selection [66,67]. 

B- and T-cell development presents tightly parallel features, as both pass through 

several sequential stages of differentiation distinguishable by expression of specific 

markers. Recombination-activating gene (RAG)-1 and RAG-2 enzymes ensure gene 

rearrangement of their highly similar receptors; they both depend on receptor 

checkpoints that block or allow the subsequent cell development, and they share similar 
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signaling molecules for proliferation and survival, such as IL-7, Flt3 or CXCL12 [68]. The 

parallel developmental pathways of B and T cells are shown in Figure 1.6. 

 

Figure 1.6 — B- and T-cell development in primary lymphoid organs. Lymphocyte lineage cells derive 
from HSCs in the bone marrow through several steps. After differentiation into MPPs and CLPs, cells 
committed to B lineage pursue their development in the bone marrow and evolve from pre-pro-B to pro-
B, pre-B and finally immature B cells with a functional BCR. Part of CLPs migrate to the thymus, becoming 
ETPs, and develop into DN cells, which progressively acquire functional TCR during stages 1 to 4 and 
become DP cells expressing CD4 and CD8, and then commit to CD4 or CD8 lineage in SP cells. Several 
checkpoints control the quality of gene rearrangements and self-tolerance of the receptors, before 
exporting to the periphery. 

B- and T-cell precursors derive from hematopoietic stem cells (HSCs) in the bone 

marrow. HSCs are self-renewing cells able to generate all the hematopoietic lineages. To 

commit into the lymphocytes lineage, HSCs first differentiate into multipotent 

progenitors (MPPs) with restrained self-renewing capacity. MPPs further develop into 

common lymphoid progenitors (CLPs), from which originate both B and T cells. B cells 

pursue their development, named B lymphopoiesis, in the bone marrow while T cells 

differentiate in a specialized organ, the thymus, in a process called thymopoiesis [68,69]. 

It should be noted that B- and T-cell development is still under the scope of many 

studies, and our knowledge in the field is rapidly growing. The reality is much more 

complex than described here, as new intermediate developmental stages are more and 

more characterized. Moreover, the classical view of multipotent progenitors evolving 

toward more specialized cells in dedicated organs needs to be reviewed since cells 

committed to a specific lineage seem still able to give rise to other lineages [69] and a 
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population of B cells was found to develop within the thymus [70]. We will propose here 

a synthetic overview of B lymphopoiesis and thymopoiesis. 

1.3.2.1 B lymphopoiesis 

B-cell development takes place in the bone marrow and gives rise to immature B cells, 

which migrate to secondary lymphoid organs such as spleen and lymph nodes 

(Figure 1.6). Differential stages of maturation can be distinguished, according to 

expression of cell surface markers, immunoglobulins and transcription factors. 

Unfortunately, human and mouse cells express different markers [71], so we will try 

here to synthetically describe the common features between both species. First CLPs 

differentiate into pre-pro-B cells, the first B-cell lineage committed progenitor, which 

further develop into CD19-expressing pro-B cells. Activation of RAG-1 and RAG-2 

enzymes at this pro-B stage activates the immunoglobulin (Ig) genes rearrangement, 

which is required to generate the BCR. First, D-to-J and V-to-DJ rearrangement of the 

heavy chain locus leads to the expression of a pre-BCR composed of Igα and Igβ 

associated with an Ig heavy (H) and a surrogate light (L) chain characterizing the pre-B 

cell stage. Finally, V-to-J rearrangement of the IgL chain induces the expression of a 

functional IgM-BCR on immature B cells [71,72]. This highly regulated process allows the 

export of B cells bearing a functional non-autoreactive BCR via several checkpoints 

[73,74]. A first control takes place after IgH rearrangement, to ensure that a complete 

pre-BCR composed of Igµ, Igα, Igβ and surrogate light chains is expressed. After IgL 

rearrangement, another checkpoint ensures that immature B cells possess a complete 

BCR with replacement of surrogate light chains by Igκ or Igλ. Finally, after interaction 

with stromal cells presenting autoantigens, B cells with an autoreactive BCR undergo 

receptor editing to replace their receptor by rearrangement of other heavy and light 

chains. If receptor editing fails to produce a new non-autoreactive BCR, cells are 

eliminated by deletion or anergy. Those who successfully pass through the successive 

controls are exported to the periphery. An adequate microenvironment is crucial for B 

lymphopoiesis to take place. It provides necessary chemokines, cytokines, signaling 

molecules and cell contacts to support and trigger B cell development [75–78]. Notably, 

IL-7R signaling is required for B-cell progenitor proliferation and survival in mice [79] but 
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not in humans [80], where the key factor implicated in B-cell development is still to be 

identified. 

1.3.2.2 Thymopoiesis 

The generation of the large repertoire of functional self-tolerant T lymphocytes occurs in 

the thymus, the unique organ with the capacity to support T-cell differentiation program 

and to induce central tolerance [81,82]. Two types of T lymphocytes are generated in 

the thymus: αβ and λδ TCR-bearing cells. λδ cells represent only a small proportion of 

the cells generated by the thymus, and will not be discussed here (for reviews about λδ 

cells development, please refer to [83,84]). As for B lymphopoiesis, thymopoiesis is a 

multi-step process highly regulated, avoiding the production of nonfunctional or 

autoreactive cells (Figure 1.6). Progenitors coming from the bone marrow enter the 

thymus where they are called early T-cell progenitors (ETPs). The exact nature of these 

incoming progenitors is not fully elucidated, but it is generally acknowledged that they 

are closely related to marrow CLPs [69,85]. 

Inside the thymus, the successive differentiation stages encountered by the thymocytes 

(i.e. intrathymically developing T lymphocytes) can be distinguished according to the 

expression of two surface markers: CD4 and CD8 [86,87]. The most immature subset, 

counting for 5% of total thymocytes, is called double negative (DN) cells, because they 

express neither CD4 nor CD8 markers. Four sub-populations can be distinguished in this 

DN stage, according to the expression of CD44 and CD25 [88]. Indeed, DN1 cells (or 

thymic lymphoid progenitors) are CD44+ and CD25-. This population of precursor is not 

completely committed to the T lineage, since transfection experiments showed that they 

can generate DCs, NK or B cells in addition to their T-cell potential [85]. DN1 thymocytes 

evolve to DN2 (also called Pro-T cell) after acquisition of CD25 expression. A massive 

proliferation step is characteristic of this stage. Evidence demonstrated that DN2 

precursors still retain NK and DC potential [85]. Thus, the first strictly T-lineage 

committed stage is achieved at DN3 (or early pre-T cells) stage, after loss of CD44 

expression. Finally, down-regulation of CD25 characterizes the DN4 cells (also termed 

late pre-T cells). TCR gene rearrangement is induced at the DN2 and DN3 stages and 

leads to the expression of a pre-TCR composed of a CD3 complex associated with a 
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rearranged β chain and a pre-α chain. The expression of a pre-TCR is a required signal to 

induce survival and progression to the next step of differentiation, the double positive 

(DP) stage. DP cells express both CD4 and CD8 molecules at their surface. They represent 

the majority of thymic T cells (around 80%). Successful β-rearrangement allows 

rearrangement of the α-chain and expression of a complete TCR at the surface of DP 

cells. Signaling of this mature TCR after interaction with the MHC class II or class I 

expressed by stromal cells induces a lineage restriction which generate respectively CD4+ 

or CD8+ single positive (SP) cells, the most mature subset of thymocytes ready to be 

export to peripheral lymphoid organs. The exact mechanism underlying CD4/CD8 lineage 

choice is still under the scope of many investigations, but two main hypotheses are 

debated: the stochastic (random) and the instructive (determined) model [89,90]. 

Amongst this SP population, counting for 15% of total thymocytes, are found CD8+ 

cytotoxic, CD4+ helper and also CD4+ Treg cells.  

The thymus is also the organ for central tolerance: by maintaining several control steps, 

it ensures that only functional and self-tolerant T cells are exported in periphery [91]. A 

first checkpoint takes place at the DN3 stage, the β-selection, which rescues from 

apoptosis cells with a functional β-chain rearrangement. The second control, the 

positive selection, ensures that DP cells express a functional TCR, able to link with a 

certain affinity to the MHC-peptide complex presented by cortical thymic epithelial cells 

(cTEC). Cells that do not receive survival signal through their TCR (around 90% of DP 

thymocytes) die by ‘neglect’. Finally, at the SP stage, autoreactive TCR-bearing cells are 

eliminated after interaction with MHC-self peptides carried by medullar TEC (mTEC) and 

DCs, a phenomenon called negative selection, since only non-self-signaling TCR survived. 

The same association with MHC-self peptide complex also gives rise to Treg cells. How 

the same mechanism leads in some case to deletion of autoreactive clones or in other 

case to the stimulation of regulatory function in CD4+ SP cells is still unknown, even 

though two major hypotheses are suggested: the instructive model suggests that 

medium avidity of TCR for self-antigen leads to Treg generation while strong avidity 

induces apoptosis; the selective model proposes that regulatory fate is determined prior 

to TCR signaling and allows to rescue self-specific cells from negative selection [92,93]. 
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As in the bone marrow for B-cell development, thymic microenvironment is crucial for 

thymopoiesis. Thymocytes follow a highly regulated migration throughout thymic 

compartments in order to reach the appropriate niches providing the correct cell 

interactions, ligands, chemokines or cytokines required by each developmental step 

(Figure 1.7)[87]: precursors enter the thymus at the cortico-medullary junction (CMJ) 

and then migrate to the sub-capsular zone (SCZ) of the cortex during DN stages and 

finally return back to lower cortex and then medulla while evolving to DP and SP stages 

respectively. Notch signal has been shown to be essential for early T-cell development: it 

stimulates survival and proliferation and is implicated in T-lineage commitment [87,94]. 

Stem cell factor (SCF) [95], the ligand of c-Kit, and IL-7 [76,79] are important cytokines 

for survival and proliferation during early thymopoiesis. IL-7 is also implicated in TCR 

rearrangement [96]. Chemokines including CXCL12, CCL19, CCL21 and CCL25 play a role 

in thymocyte trafficking, by favoring homing of precursors into the thymus, regulating 

CMJ-to-cortex and cortex-to-medulla migrations and inducing export of mature 

thymocytes to the periphery [97,98]. TEC constitute the major component of thymic 

stroma. Besides their role in MHC-peptide presentation for positive and negative 

selection, they provide the principal source of cytokines, chemokines and cell contacts 

needed for T-cell development. The transcription factor Foxn1 regulates several 

functions in TECs, including antigen processing and presentation, attraction of T-cell 

precursors or positive and negative selection [99]. Disturbance of Foxn1 gene leads to 

the ‘nude’ (hairless) phenotype in mouse model, characterized by lack of thymus and 

immunodeficiency due to the inability to produce T cells. 

The thymus is known to encounter drastic histological and functional changes with 

aging: this process named thymic involution is characterized by thymus size decrease 

together with replacement of epithelial space by adipose tissue and decline in 

thymopoiesis [100–102]. The diminution in thymus function starts after puberty in 

humans and slowly progresses with time, inducing steady decrease in the export of 

naïve T cells. However, the repertoire diversity of naïve T cells is ensured at least until 

the age of 70 years and drops afterward [103]. 
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Figure 1.7 — Thymocyte migration, microenvironmental signals and checkpoints during thymopoiesis. 
ETPs enter the thymus at the CMJ and migrate to the SCZ of the cortex while evolving from DN1 to DN4 
stages. DN3 cells undergo TCR β-chain rearrangement and β-selection, which rescues cells with functional 
β-rearrangement from death (†). Selected DP cells migrate back through the cortex and endure positive 
selection to pursue with SP-cells bearing a functional αβ TCR, which is tested for auto-reactivity during 
negative selection in the medulla. Several signals from the thymic microenvironment control survival, 
proliferation, migration and differentiation of the developing thymocytes, including ligands (Notch, Wnt), 
cytokines (SCF and IL-7), chemokines (CXCL12, CCL19, 21 and 25) or cell interactions with TECs or DCs. 
From Ciofani and Zuniga-Pflucker, 2007 [87]. 

1.3.2.3 B- and T-cell receptor gene rearrangement 

The adaptive immune system is unique in regard to the wide diversity of the repertoire 

of BCR (or Ig) and TCR, which allows lymphocytes to recognize virtually any antigen. This 

repertoire diversity is achieved as a result of a unique process that occurs in developing 

lymphocytes: the rearrangement of the genes that encode for antigen receptors. Non-
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functional in germ-line, the rearrangement of the variable (V), diversity (D; not present 

in all loci) and joining (J) gene segments (i.e. the V(D)J recombination) activated during 

early lymphocyte development leads, in case of successful recombination, to the 

expression of a functional BCR or TCR at the cell surface (for a complete overview of 

V(D)J recombination process and regulation, please refer to Schatz and Ji, 2001 [104] 

and chapters 5 and 9 of Kuby Immunology [105]). As shown in Figure 1.8, the genes 

coding for each chain of B (IgH and IgL) and T receptors (TCRβ and TCRα-TCRδ) are 

composed of several V, D (not for IgL and TCRα) and J segments in germ-line 

configuration, followed by constant regions. For example, the TCRβ gene possess 30 V 

segments and two D segments, each one being associated with 6 J segments. To be 

expressed, genes need to rearrange in order to ensure the fusion of one V with one D (if 

required) and one J segments. This random association offers a multitude of 

possibilities, assuring a part of the repertoire diversity estimated in the mouse to 2.41 

x106 combinations for immunoglobulin and 3x106 for TCR.  

 

Figure 1.8 — Structure of the mouse antigen receptor genes. Schematic representation of the germ-line 
configuration of the BCR and TCR chains loci. V (yellow), D (red) and J (blue) segments are shown with 
their approximate number and the approximate size of the region. The constant regions are in grey, the 
green ovals represent enhancer elements and green diamonds with arrows are promoters. The blue 
squared areas are the regions where RAG complex bind to initiate the recombination. One example of 
assembly is shown for IgH locus. From Schatz and Ji, 2011 [104]. 
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The order of gene recombination is highly regulated: first the IgH and TCRβ chain 

rearrange in B and T cells, respectively, with D-to-J recombination followed by V-to-DJ 

assembly. If this first rearrangement passes the control step, IgL and TCRα loci 

recombination are initiated, with only V-to-J assembly. 

V(D)J recombination requires: 1) the cleavage of DNA by RAG complex (RAG1 and RAG2) 

at specific coding regions (recombination signal sequences RSS) that flank each V, D and 

J gene segment and 2) the reparation of the DNA double strand break by DNA repair 

enzymes. This result in the deletion of the portions of gene that are between the RSS 

sequences of the selected V(D)J segments. During this process, the joining of the two 

gene segments after RAG cleavage is imprecise and this junctional flexibility can lead 

either to nonfunctional rearrangement or to productive fusion with diversity in the 

sequence of amino acids at the joining sites. Moreover, increased diversity also comes 

from P- and N-nucleotides addition. P-nucleotides are added to complete the single 

strand that results from cleavage of the hairpin structure that appears at the end of the 

sequence after RAG-induced cleavage. N-nucleotides are added by terminal 

deoxynucleotidyl transferase during the joining of D-J or V-DJ segments. Up to 15 N-

nucleotides can be randomly added, largely increasing the receptor diversity. 

The particular phenomenon of excision of the by-products generated during TCR gene 

rearrangement is a very interesting tool to experimentally evaluate thymic function 

[106]. Indeed, the DNA excised during D-to-J and V-to-DJ recombination circularizes and 

forms what is called TCR rearrangement excision circles (TRECs). They are stable in the 

cells and non-duplicated during mitosis, therefore progressively diluted by cell divisions. 

TRECs are formed during any TCR gene rearrangements, but classically only two types 

are quantified to assess thymic function [107]: the DJβTREC formed during β chain 

rearrangement and the sjTREC created by the excision of δ locus located inside α locus 

(Figure 1.9). As sjTRECs are produced at a late stage of thymopoiesis, when cells do not 

proliferate anymore, they are found in almost each cell that leaves the thymus (called 

recent thymic emigrant [RTE]) and are thus a good marker of the quantity of cells 

exported by the thymus. DJβTRECs are then created during D-to-J rearrangement of 

TCRβ chain at the DN2 stages, just before the intensive proliferation phase. By 

calculating the ratio of sj/DJβTREC, the extent of this intrathymic proliferation can thus 
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be assessed. TRECs are currently the best tool to investigate thymic function. The 

experimental method for TREC quantification is detailed in the “Material and Methods” 

part of this work. 

 

Figure 1.9 —TREC formation during thymopoiesis. DJβTREC (black ring) is formed by bypass product of 
TCRβ chain rearrangement at DN2 stage. A proliferation burst occurs thereafter, that dilutes DJβTREC. 
Before TCRα chain rearrangement, the δ locus located inside the α locus need to be excised, leading to the 
production of an sjTREC (white ring) in each DP cell. Proliferation is almost undetectable thereafter, thus 
sjTREC exists in virtually each cell that leaves the thymus (RTE) and is a good marker of thymic export. The 
ratio sj/DJβTREC is a good surrogate of intrathymic proliferation between DN and DP stages.   
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1.4 Somatotrope axis and immune system 

The link existing between the endocrine and immune systems has been known for a long 

time and the field was the focus of numerous researches in the past century. Philip E. 

Smith was the first to establish the direct relationship between endocrine gland and 

lymphoid organ when he observed that hypophysectomy in rats induced thymus 

involution [108]. It was only forty years later that the somatotrope axis was clearly 

evidenced as one of the actors of this relationship. Researchers showed that GH 

treatment could reverse or prevent the thymo-dependent immunodeficiency observed 

in Snell-Bagg mice [109–111]. Moreover, old rats treated with GH3 cells (pituitary 

adenoma cells secreting GH and PRL) exhibited regeneration of their aged-atrophic 

thymus [112]. Finally, expression of GHRH, GH, IGF-1 and their receptors by immune 

cells is a further evidence of the close relationship between the somatotrope axis and 

the immune system. Studies to investigate the effects and mechanisms of somatotrope 

hormones upon immune cells reveal their pleiotropic actions and multiple targets. 

Indeed, the somatotrope axis is able to influence development and function of innate 

lymphoid cells, as well as T and B lymphocytes. A large part of research in this field has 

particularly focused on the T-cell compartment, although it appears now that main 

targets for GH effects in immune system are B cells, neutrophils and 

monocytes/macrophages. 

1.4.1 Expression for GHRH, GH and IGF-1 receptors by immune cells 

Receptors for GHRH, GH, IGF-1 and ghrelin have been described on the cell surface of 

various immune cells, in rodents and humans (Table 1.2). The first observation of GHR 

expression by a human lymphoid cell line was made on IM-9 cells, a B lymphoblast cell 

line. They showed that GH could actively regulate the concentration of GHR [113]. Using 

flow cytometry with biotinylated bovine GH, Gagnerault found GHR expression in 

several murine lymphoid organs [114]. In the bone marrow, 25-30% of lymphoid cells 

were positive, including B cells, T cells, macrophages and granulocyte progenitors. In the 

thymus, 25-30% of thymocytes were stained, with the lowest expression on SP CD4 

thymocytes. GHR expression was also found in 50% of blood and spleen cells and 20% of 

lymph nodes cells, with a higher proportion of positive cells in the B-cell and 
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macrophage subsets (50% of stained cells compared to 20% for T cells). Moreover, they 

showed that T-cell activation with concanavalin A or anti-CD3 antibodies increases GHR 

expression [114]. In human also, thymocytes and TECs express GHR mRNA [115]. They 

confirmed the presence of GHR protein in human TEC by immunohistochemistry. Flow 

cytometry analysis of thymocyte subpopulations showed that GHR was predominantly 

expressed by the immature DN subset [115]. Another team analyzed leucocytes from 

healthy subjects and found GHR mRNA in blood B cells, T cells and neutrophils, with the 

highest proportion in B cells [116]. Both studies also searched for GH mRNA, and they 

found expression of GH in the same cell populations than for GHR [115,116]. GH 

expression has also been described in human TECs [117] and thymocytes [118], as well 

as in rat leukocytes isolated from blood, spleen, thymus and bone marrow [119].  

As for GH and GHR, IGF-1 and its receptor are present in immune cells. By 

immunohistochemistry, Hansson detected intracytoplasmic IGF-1 in stromal and 

lymphoid cells of lymph nodes, thymus, spleen and bone marrow of adult rats [120]. 

Expression of functional type 1 and type 2 IGFR was described by Verland and 

Gammeloft on rat thymocytes and murine thymoma cell lines [121]. In humans, 

presence of IGF-1R was detected in peripheral blood mononuclear cells (PBMCs), with 

high expression on monocytes, NK cells and CD4 T cells, intermediate in CD8 T cells and 

low in B cells [122]. Functional IGF-1R was also found on human thymocytes [123], 

especially in the DN subset which present 3 to 4 time more receptors per cells than DP 

or SP cells [124]. Another group confirmed the presence of IGF1 and IGF-1R in the 

thymus by measuring mRNA expression in human and murine thymocytes and TECs 

[125]. Our laboratory has also shown the importance of the intrathymic IGF system in T-

cell development [126,127]. 

The ability of immune cells to express GH, IGF-1 and their receptors strongly suggests an 

autocrine-paracrine way of action, besides the classical endocrine way. Indeed, it has 

been shown that GH treatment increases IGF-1 production by TECs and thymocytes 

[118,128]. Moreover, IGF-1 antisera or antibodies against IGF-1 and IGF-1R are able to 

inhibit the GH-stimulatory effect on TECs and thymocytes [118,129]. Collectively, this 

data demonstrates that at least a part of GH actions in the thymus are mediated through 
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IGF-1. However, the physiological role, if any, of GH expression in lymphoid cells is still 

unknown.  

Table 1.2. Somatotrope axis members and receptors expression by immune cells 

Molecule / receptor Cell Reference 

GH 

Leukocyte from blood, bone marrow, thymus and 

spleen 

B-cell 

T-cell 

Neutrophil 

Thymocyte 

TEC 

De Mello-Coelho et al. 

1998  

Hattori et al. 2001 

Maggiano et al. 1994 

Sabharwal and Verma 1996 

[115–118] 

GHR 

IM-9 (human B-lymphoma) 

Bone marrow progenitors (B-T-granulocytes-

monocytes) 

B-cell 

T-cell 

Macrophage 

Neutrophil 

Thymocyte 

TEC 

Lesniak et al. 1976 

Gagnerault et al. 1996 

De Mello-Coelho et al. 

1998 

Hattori et al. 2001 

[113–116] 

IGF-1 

Stromal and lymphoid cells of LN, thymus, spleen 

and bone marrow 

Thymocyte 

TEC 

Hansson et al. 1988 

De Mello-Coelho et al. 

2002 

Kecha et al. 1999 – 2000 

[120,125–127] 

IGF-1R 

Monocyte 

NK cell 

T-cell 

B-cell 

Thymocyte 

TEC 

Verland and Gammeloft 

1989 

Kooijman et al. 1992-1995 

De Mello-Coelho et al. 

2002 

Kecha et al. 1999 – 2000 

[121,122,124–127] 

 

Another question is still to be elucidated: are GH and IGF-1 acting directly on immune 

cells or do they induce intermediate mechanisms to mediate their effects? We had 

focused on that question in previous research. One possible intermediary is IL-7, an 

important cytokine for B- and T-cell survival and proliferation during lymphopoiesis [76]( 

and for VD(J) rearrangement of T cell receptor [96]. IGF-1 treatment of human TEC 

primary cultures increases IL-7 expression and production, suggesting a role for IL-7 as a 

downstream effector of IGF-1 effects [130]. 

  



Impact of somatotrope axis upon immune system 

 

28 
 

1.4.2 Somatotrope axis and innate immunity 

Innate immunity is the first host defense against pathogens and is also crucial for 

activation of adaptive immunity, via antigen presentation to lymphocytes by APCs. 

Numerous studies describe effects of somatotrope axis members upon innate cells 

(Table 1.3). First, they have been shown to prime and increase the phagocytic function 

of myeloid cells, and therefore enhancing their ability to eliminate pathogen and to 

present antigenic peptides to activate lymphocytes. Indeed, Keith Kelley’s group was the 

first to show, both in vitro and in vivo, that GH could prime macrophages to increase 

their production of superoxide anion, an important ROS needed to kill ingested 

pathogen [131]. They later demonstrated a similar effect on polymorphonuclear cells 

(PMNs, also called neutrophils), another type of phagocytic myeloid cells. Moreover, 

IGF-1 was similarly able to induce this enhanced ROS production by PMNs, even though 

it did not mediate GH effects, as anti-IGF1 antibody abrogated increased superoxide 

anion production caused by IGF-1 but not GH [132]. Nevertheless, it seems that in 

humans, unlike in porcine or bovine species, the GH-mediated increase in superoxide 

anion production by neutrophils is dependent upon the PRL receptor (PRLR) instead of 

GHR [133]. It is well known that human GH interacts with both human GHR and PRLR. 

Other groups confirmed the priming effect of GH and IGF-1 on macrophages and 

neutrophils, even if some contradictory results appeared. Warwick-Davies demonstrated 

in vitro that GH, but not IGF-1, primes human monocytes for increased production of 

hydrogen-peroxide (H2O2) [134]. GH also enhanced superoxide anion production by 

human monocytes, but failed to induce tumor necrosis factor (TNFα) production or 

killing activity against Mycobacterium tuberculosis [135]. In peripartum cows, GH 

treatment increased the intensity of phagocytosis and ROS release, probably through 

the stimulation of IGF-1 production, while numbers of granulocytes and lymphocytes 

remained unchanged [136]. IGF-1 was shown to directly prime PMNs for increased H2O2 

production, enhanced phagocytosis of Staphylococcus aureus and Candida albicans, 

stronger degranulation and higher expression of complement receptors [137]. 

Furthermore, a synthetic GHS (compound A233) was found to increase superoxide anion 

production by fish leukocyte cultures [138]. These experimental data were confirmed by 

human studies: in GH-deficient children, analyses showed an impaired phagocytic 
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function compared to normal controls in neutrophils and monocytes for one study and 

only neutrophils in the other; long-term GH treatment restored normal phagocytosis in 

those cells [139,140]. Similarly, a 12-months GH treatment in malnourished 

hemodialysis patients stimulated phagocytic function of PMNs [141]. 

Another aspect of innate cells influenced by the somatotrope axis is their migratory and 

motility abilities. In vitro chemotaxis experiments on PMN isolated from acromegalic 

patients (i.e. excessive GH production) revealed a decreased formylpeptide-stimulated 

migration compared to patients with normal GH levels [142]. Similar results were 

obtained when normal PMNs were treated with GH in a modified Boyden chamber 

chemotaxis assay: chemotaxis toward formylpeptide was decreased, probably through 

stimulation of PMN adhesiveness [143]. Same group showed that GH, when tested alone 

in Boyden chamber assay, was chemoattractant for blood-derived human monocytes, 

but when used in combination with other chemoattractant peptides (including 

formylpeptide), GH deactivated the migratory response [144]. Same observations were 

obtained in vivo after a single GH injection in healthy patients [145]. Study with canine 

PMNs showed that canine GH potentiated shape change, adhesion and integrins 

expression, resulting in increased transendothelial migration [146]. Similarly, GH 

treatment of human neutrophils resulted in increased adhesion to plastic substratum 

and shape changes. These effects were mediated through the activation of the 

Jak2/STAT3 pathway and subsequent phosphorylation and focal localization of focal 

adhesion kinases p125FAK and paxillin, two important molecules in neutrophil 

adhesion [147]. Altogether, this data suggests that GH is a potent chemoattractant for 

lymphoid cells, but in combination with other chemoattractants it reduces chemotactic 

response and induces cell adhesion, which is required for cell recruitment from 

bloodstream toward infected sites. 

NK cell activity is also influenced by GH. Indeed, impaired NK cell cytotoxicity was 

observed in case of GH-deficiency (GHD) [148,149], while NK cell proportion was found 

either normal [149,150] or decreased [148]. Long-term GH or GHRH treatments were 

unable to restore normal NK parameters. On the opposite, in vitro pre-treatment with 

GH increased killing activity of NK cells against a NK-sensitive cell line and against glioma 
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cells [151]. Furthermore other in vitro studies demonstrated that IGF-1 was able to 

stimulate NK cell cytotoxicity of both GH-deficient and normal patients [122,150]. 

In addition, somatotrope axis members are also implicated in proliferation, survival and 

cytokine production of innate cells. GH treatment of cultured human PMNs, besides the 

enhancement of ROS production, decreased PMN apoptosis [152]. Similarly, IGF-1 was 

shown to inhibit apoptosis in progenitor myeloid cells and in granulocytes [153,154]. 

Moreover, IGF-1 [155] but not GH [135,155] stimulates TNFα production by 

monocytes/macrophages. Nevertheless, it seems that IGF-1 does not stimulate cytokine 

production (IL-6, IL-8 or TNFα) of granulocytes in vitro [154]. In another study, GH was 

shown to stimulate DC functions. Indeed, they observed an increased expression of MHC 

and co-stimulatory molecules and higher production of IL-12, resulting in a better 

activation of lymphocytes [156]. In patients with adult GH deficiency (AGHD), GH 

treatment resulted in increasing the number of neutrophils and the granulocyte colony-

stimulating factor (G-CSF) plasmatic concentration [157]. G-CSF is a cytokine that 

induces neutrophil production and activation. This study however could not differentiate 

if the effect of GH was direct or IGF-1-mediated. Similar neutrophil accumulation and 

activation was observed in septic rats treated with GH [158]. However, this resulted in 

aggravation of the lung microvascular injury. This last study raises the important 

question of the fragile equilibrium between beneficial and deleterious effects of GH 

treatment. Of course, in light of the various promoting effects of GH and IGF-1 described 

here upon innate cells, it is tempting to use them in therapy to ameliorate innate 

immune response. However, inducing a too strong response could be harmful. Further 

studies are needed to better understand the safety and benefits of GH administration in 

various conditions (infections, cancer, sepsis, etc). 

In conclusion, both in vitro experiments and studies in human patients with GHD suggest 

that the somatotrope axis influences innate immunity by promoting activation, survival 

and function of innate cells. More specifically, GH and IGF-1 are able to increase 

phagocytic and cytotoxic activity of myeloid and lymphoid innate cells, respectively, as 

well as their cytokine production, all crucial functions of the innate immune response. 
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Table 1.3. Effects of somatotrope axis upon innate immunity 

Effects on innate cells Hormones Reference 

↗ Phagocytic function of monocytes, 

macrophages and PMN 

GH 

IGF-1 

GHS 

Edwards et al. 1988 

 Fu et al.1991 - 1992 

Warwick-Davies et al. 1995a+b  

Manfredi et al. 1994 

 Kotzmann et al. 2003 

Bjerkness and Aarskog 1995 

Martinez et al. 2012 

[131–135,137–139,141] 

↗ Migration, ↗ adherence,  

↘ chemoattractants-induced migration 

of PMNs and monocytes 

GH 

Fornari et al. 1994 

Wiedermann et al. 1991-1992-

1993 

Petersen et al. 2000 

Ryu et al. 2000 

[142–147] 

↘ Apoptosis of myeloid cells and 

progenitors 

GH 

IGF-1 

Matsuda et al. 1998 

Burgess et al. 2003 

 Kooijman et al. 2002 

[152–154] 

↗ Cytokine production by innate cells 
GH 

IGF-1 

Sohmiya et al. 2005  

Liu et al. 2010  

Renier et al. 1996  

[155–157] 

↗ Neutrophil accumulation GH 
Sohmiya et al. 2005  

Liu et al. 2002  

[157,158] 

↗ NK cell activity 
GH 

IGF-1 

Sneppen et al. 2002 

Kiess et al. 1988  

Shimizu et al. 2005  

Kooijman et al. 1992 

Auernhammer et al. 1996  

[122,148–151] 

↗ DC functions GH Liu et al.2010  

[156] 

 

1.4.3 Cellular immunity: thymus and T responses 

The somatotrope axis has been shown to affect both development and function of T 

lymphocytes (Table 1.4). Indeed, studies in dwarf mouse models revealed early thymic 

atrophy and T lymphopenia, partially reversible with GH treatment [109,110,159,160]. 

Other in vivo studies have shown that GH or IGF-1 treatment enhanced thymic output of 

naïve T cells (or RTE) [161,162]. The same observations were obtained in some human 

conditions. For example, our laboratory has evaluated thymic function in AGHD with or 

without GH treatment. Results demonstrated that TREC numbers, markers of 

thymopoiesis (see section 1.2.3.3), were decreased after GH withdrawal, but returned to 

starting values after GH resumption (Figure 1.10), revealing the important role of GH for 
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maintenance of a normal thymic function in human adults. Moreover, TREC numbers 

were correlated to IGF-1 plasmatic concentrations, suggesting a role of IGF-1 in 

mediating GH actions [163].  

 Figure 1.10 — Plasma IGF-1 concentrations and sjTREC 
frequency in PBMCs from patients with GH deficiency and 
on GH treatment. The interruption of GH-treatment for 1 
month induced a very significant decrease in blood IGF-1 
(A) and sjTREC levels (B). Both parameters were restored at 
initial levels one month after GH resumption. ***P<0.001 
(by Wilcoxon's signed rank test, n = 22). As shown in C, 
there was a significant positive correlation between blood 
IGF-1 levels and sjTREC frequencies (R = 0.61, P<0.01 by 
Spearman's analysis). From Morrhaye et al. 2009 [163]. 

 

 

 

 

 

 

 

 

 

 

 

Evidence of the thymopoietic effects of GH also come from HIV+ patients. In infected 

patients under antiretroviral therapy, GH administration reduced thymic atrophy, 

enhanced thymic output, as assessed by TREC quantification, and allowed CD4+ T cells 

recovery, since frequency and numbers of CD4+ T cells were higher in GH-treated 

patients [164,165]. However, GH treatment has no additional effect on viral load, 

compared to antiretroviral therapy alone [165]. 
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Altogether this data reveals a role for the somatotrope axis in stimulating thymopoiesis. 

This potentiating effect results from both direct action on thymocyte proliferation and 

trafficking, and stimulation of the thymic microenvironment. In Dwarf mice treated with 

GH, analysis showed a bigger thymus compared to control mice, with increased number 

of thymocytes, especially the DP subset [160]. Same enhanced cellularity of the thymus 

was observed in normal mice intrathymically injected with GH or in transgenic mice 

overexpressing GH [161]. Similarly, IGF-1 treatment induced an increase in the number 

of thymocytes, in the thymic mass and in the number of peripheral T precursors 

[162,166]. This higher number of thymocytes results from a direct stimulation of cell 

proliferation by GH [118,167] and IGF-1 [118,124,128,162,166], as assessed by DNA 

synthesis, tritiated thymidine incorporation or BrdU measurements. GH action could be 

mediated by IGF-1, since IGF-1 antisera inhibited GH-stimulated thymocyte proliferation 

[118]. 

In addition, GH has an impact on thymocyte trafficking inside the thymus. GH treatment 

increased human T-cell engraftment in the thymus of severe combine 

immmunodeficient mice (SCID) [168,169], suggesting that the hormone could favor 

homing to the thymus through a direct effect on T cells, since ovine GH, which could 

interact with murine but not human GHR, was unable to promote thymus engraftment 

[169]. GH further enhances thymocyte adhesion and migration to and through laminin, 

as demonstrated by cell adhesion and Transwell assays with thymocytes isolated from 

GH overexpressing mice or mice intrathymically injected with GH [161]. 

Finally, thymic microenvironment, which actively takes part in the thymopoiesis process 

(see section 1.3.2.2.), is also affected by GH and IGF-1. Both hormones were shown to 

stimulate TEC proliferation in vitro [118,129] and in vivo [162]. They further stimulate 

TEC production of chemokines CXCL12 and CCL25 [161,162] as well as of ligands and 

receptors of extracellular matrix (type IV collagen, laminin, fibronectin, VLA-5 and VLA-6) 

[161,170]. Moreover, GH enhanced production of cytokines IL-1α, IL-1β and IL-6 by 

bovine fetal thymic stromal cells in culture [171]. Interestingly, it appears that actions of 

IGF-1 on TECs are sufficient to promote thymopoiesis, despite the stimulating effects on 

thymocytes. It was demonstrated, in an elegant experiment using a mouse model of 
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specific IGF-1R deletion on thymocytes, that IGF-1 treatment had the same effect on 

thymic function than in normal mice [162]. 

Table 1.4. Effects of somatotrope axis upon cellular immunity 

Effects on cell Hormones Reference 

↗ Thymopoiesis and export of naïve T-

cell 

GH 

IGF-1 

Ghrelin, GHS 

Morrhaye et al. 2009 

 Napolitano et al.  2002-2008 

Dixit et al. 2007 

 Koo et al. 2001 

[163–165,172,173] 

↗ Thymic mass and thymocyte 

proliferation 

GH 

IGF-1 

Ghrelin, GHS 

Murphy et al. 1992 

Smaniotto et al. 2005 

Clark et al. 1993 

Chu et al. 2008 

Yamada et al. 1993 

 Kooijman et al. 1995 

Sabharwal and Varma 1996 

Postel-Vinay et al. 1997 

Dixit et al. 2007 

 Koo et al. 2001 

[118,124,128,160–

162,166,167,172,173] 

↗ Migration and adherence of 

thymocytes 
GH 

Taub et al. 1994 

 Murphy et al. 1992  

Smaniotto et al. 2005 

[161,168,169] 

↗ Proliferation and function of TECs 

GH 

IGF-1 

Ghrelin 

Sabharwa and Varma 1996 

Timsit et al. 1992 

Chu et al. 2008 

Smaniotto et al. 2005 

Mello-Coelho et al. 1997 

Dixit et al. 2007 

[118,129,161,162,170,172] 

↗ Mature T-cell proliferation 

GH 

IGF-1? 

GHS 

Clark et al. 1993 

Postel-Vinay et al. 1997 

Koo et al. 2001 

[166,167,173] 

↗ Migration and adherence of mature T-

cell 
GH 

Taub et al. 1994 

Smantiotto et al. 2010  

[169,174] 

 

Thus, an abundant literature describes the role of the somatotrope axis upon T-cell 

development. Additionally, mature lymphocytes are also influenced by GH and IGF-1, 

although this is far less documented. Similarly to what was observed in the thymus, in 

vivo IGF-1 treatment leads to increased number of splenocytes, including T cells [166]. 

Nevertheless, one in vitro study failed to show any proliferating effect of IGF-1, while GH 

significantly potentiated the proliferation of activated T lymphocytes [167]. Similarly, 
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peripheral T-cell survival and proliferation were unaffected by IGF-1 treatment as 

assessed by Ki67 staining or in thymectomized mice, despite a marked effect on 

thymopoiesis [162]. A stimulation of the mitogenic response of concanavalin A-activated 

T cells was observed after 14 days of IGF-1 treatment, while antigen-specific response 

was unaffected [166]. In addition, stimulation of migration and adhesion of mature T 

cells by GH have been described [169,174]. 

Finally, few studies investigated the effect of ghrelin and GHS (both bind to GHSR) on 

thymopoiesis and T cells. Ghrelin increased thymopoiesis and TCR diversity in aged rats, 

through enhancement of thymocytes, ETP and TEC numbers [172]. GHS similarly 

enhanced thymocyte number in aged mice and increased T-cell engraftment in thymus 

of SCID mice. In addition, GHS was shown to stimulate B- and T-cell proliferation [173]. 

In conclusion, in vitro and in vivo experiments with GH, IGF-1, ghrelin or GHS treatments 

highlighted the capacity of the somatotrope axis to promote thymopoiesis and T-cell 

function, by direct effect on proliferation and trafficking of developing and mature T-cell 

or indirectly via stimulation of the microenvironment. 

1.4.4 Humoral immunity 

It is well acknowledged that B cells show the strongest expression for GH and its 

receptor [114,116]. Hence, it is quite surprising that little interest has been shown to 

investigate GH or IGF-1 effects upon those cells. Studies in dwarf mice revealed a defect 

in B lymphopoiesis due to markedly decreased number of B progenitors, as well as B 

lymphopenia in the spleen. Both parameters were partially restored by GH or IGF-1 

treatment [175,176]. Further investigations in lit/lit and Igf1-/- mouse models pointed 

out that GH and IGF-1 were rather implicated in maintenance of peripheral B cells than 

in their development in the bone marrow, since both mice present normal level of bone 

marrow B progenitors but decreased splenic B cells [177]. This is in contradiction with 

the observation that IGF-1 treatment in normal mice increases the number of bone 

marrow B-lineage cells and faster B-lineage reconstitution after irradiation and bone 

marrow cell transplantation [178]. The promoting effect on B lymphopoiesis was 

confirmed by in vitro experiments showing that addition of IGF-1 or IGF-1-producing 

stromal cells to pro-B cell cultures stimulated the expression of µ-heavy chain specific of 
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the pre-B stage [179]. Moreover, IGF-1 was shown to potentiate the proliferative signal 

provided by IL-7, although it was ineffective to stimulate pro-B cell proliferation by itself 

[179,180]. GH similarly promotes B-lineage differentiation from bone marrow stem cells, 

possibly through autocrine stimulation of IGF-1 expression [181]. 

In addition, stimulation of peripheral B-cell proliferation and function by GH or IGF-1 has 

been described. IGF-1 treatment in mice increased the number of splenic B cells, at least 

partially by directly promoting their proliferation [166,178]. It also improves B-cell 

response, as demonstrated by the improved IgG synthesis after in vivo and in vitro 

antigenic stimulation [166,182]. Likewise, GH showed stimulatory effect on B-cell 

proliferation and Ig synthesis in vitro [183]. A higher IgG response was also observed in 

peripartum cows challenged with ovalbumin and injected with GH [136]. However, 

researchers failed to observe any proliferative effect of GH in LPS-activated B cells [167]. 

Finally, as was observed for peripheral T cells, GH could enhance migratory capacity of B 

cells in secondary lymphoid organs [174].  

Table 1.5. Effects of the somatotrope axis on humoral immunity 

Effects on cell Hormones Reference 

↗ B-lymphopoiesis 

GH 

IGF-1 

Jardieu et al. 1994 

Landreth et al. 1992 

Gibson et al. 1993 

Sumita et al. 2005 

[178–181] 

↗ Proliferation of peripheral B cells 

GH 

IGF-1 

 

Clark et al. 1993 

Jardieu et al. 1994 

Yoshida et al. 1992 

[166,178,183] 

↗ Antigen-specific Ig synthesis  
GH 

IGF-1 

Clark et al. 1993 

Robbins et al. 1994 

Yoshida et al. 1992 

Silva et al. 2005 

[136,166,182,183] 

↗ Migration of peripheral B cells in 

secondary lymphoid organs 
GH Smaniotto et al. 2010 [174] 

 

Therefore, even if few studies focused on the role of the somatotrope axis upon 

humoral immunity, some evidence exists for the positive actions of GH and IGF-1 in 

promoting B-cell development in the bone marrow and in stimulating proliferation, Ig 

synthesis and migration of peripheral B cells (Table 1.5). 
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1.4.5 Immune system in animal models of somatotrope deficiency 

As described below, numerous studies evidence the immunostimulatory capacity of the 

somatotrope axis on both innate and adaptive immunity. However, the physiological 

reality of those effects is not yet understood. If the somatotrope axis is required for 

immune system development or function, we could speculate that somatotrope 

deficiency would induce immunodeficiency. It was indeed the case in several studies 

performed with dwarf mice. Histological and autoradiographic analyses showed 

decreased absolute and relative weight of the thymus and spleen, in parallel with 

disturbed architecture and lymphopenia in primary and secondary lymphoid organs. 

Moreover, their immunological capacity was also reduced, as assessed by the defect in 

production of plaque-forming units in response to sheep erythrocytes, which requires 

the cooperation of both B and T cells [109]. All parameters were restored by GH 

treatment [110,111]. Further investigations in Snell-Bagg mice showed that thymic 

hypoplasia was mainly due to the disappearance of DP thymocytes, which instead were 

found in lymph nodes. Again, DP count returns to normal in the thymus and lymph 

nodes after GH treatment [160]. Antigen-specific T-cell response was found normal in 

this study. Regarding B-cell compartment, normal distribution for B and T lymphocytes 

were observed in the spleen, despite the reduced size of the organ. However, B-cell 

progenitors were almost absent in bone marrow, and GH treatment was unable to 

restore this population [175]. Similar observations were made in the Ames-Dwarf model 

[159]. They present a smaller relative weight of spleen and thymus, peripheral 

lymphopenia and faster thymic involution. Immune response to sheep erythrocytes and 

graft-vs-host activity were deteriorated, but counts and function of bone marrow cells 

and peripheral Ig levels were found normal, thus leading to the conclusion that only the 

thymo-dependent system was defective. 

Conversely, several studies failed to observe any immunodeficiency in dwarf mice. 

Thymic cellularity and mitogenic responsiveness of thymocytes to phytohaemagglutinin 

and concanavalin A were comparable between Snell-Bagg and normal mice [184]. The 

unique difference detected was a reduced number of splenic B and T cells, together with 

higher frequency of T cells and lower frequency of B cells in this organ, but mitogenic 

activities of both lymphocytes were normal. Splenic abnormalities were partially 
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restored by GH treatment. Collectively, this data suggests that thymus physiology is 

unaffected by somatotrope deficiency, while peripheral lymphocyte populations were 

disturbed, more profoundly for B cells. Similar conclusions were obtained in a study 

comparing Snell-Bagg mice with specific models of hormones deficiency including 

hypothyroid, lit/lit and Igf1-/- mice, deficient for thyroid hormones, GH and IGF-1 or IGF-

1 alone respectively [177]. All the analyzed models present normal thymic cellularity 

when normalized to the smaller size of the animal, as well as a normal distribution of the 

four thymocyte subpopulations (DN, DP and SP CD4 or CD8), thus suggesting no impact 

of the somatotrope axis on thymus function. The total number of cells in spleen and 

bone marrow were also identical between normal and deficient mice. Nevertheless, 

Snell-Bagg and hypothyroid mice showed a defect in the number of progenitors and 

mature B cells in the bone marrow, while Snell-Bagg and lit/lit mice shared a decreased 

B cellularity in their spleen. This last result supports the conclusion that thyroid 

hormones are important for B-cell development in the bone marrow, while somatotrope 

hormones are implicated in maintenance of the peripheral pool of B cells. Further 

analysis to evaluate the humoral, cellular and innate immune response in those mouse 

models showed no differences in the B- and T-cell immune capacities, independently of 

the type of the hormonal defect [185]. Innate response was slightly defective in Snell-

Bagg and hypothyroid mice, but normal in lit/lit mouse model, suggesting a role for 

thyroid but not somatotrope hormones in innate cell function. 

There is a confounding discrepancy in the results obtained from mouse models of 

somatotrope deficiency, between those showing a major impact on thymus and T-cell 

compartment and those finding only slow differences, mainly in the peripheral B-cell 

subset. Dorskhind and Horseman came with a theory that could reunify those 

contradictory data: the stress hypothesis [186]. According to this hypothesis, the main 

immune role of hormones, such as GH or IGF-1, is to counteract negative effects of 

immunoregulators, like glucocorticoids (GCs), produced during stressful situations. 

When a stress is applied to an organism, a ‘general adaptation syndrome’ occurs, 

including production of steroids and subsequent immunodeficiency [187]. Somatotrope 

hormones may be produced in response to ensure homeostasis, not only of the immune 

system but of the complete organism. By carefully reviewing literature about immune 
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system in dwarf mice, Dorshkind and Horseman realized that studies where immune 

system was deficient were performed with mice housed in stressful conditions, either 

because of an unsanitary environment or because of psychological stress when dwarf 

mice and normal littermates were housed in the same cage [188]. An evidence of this is 

that, in those studies, dwarf mice lifespan was about 45-60 days [109,111,159] while 

normally GH deficient mice exhibit extended lifespan (see section 1.2.3). On the 

opposite, studies that found no striking immune defects were held in more stringent 

housing conditions. They further reinforced their hypothesis by performing experiments 

where Snell-Bagg mice were housed either separately or together with their normal-

sized littermates [189]. Mice kept in the same cage as larger littermates had striking 

reduced thymic cellularity compared to dwarf mice housed alone. GH treatment 

restored comparable number of cells. This data clearly revealed that housing stress is an 

important factor that leads to thymus deficiency in dwarf mice and bring a plausible 

explanation to the contradictory results previously obtained in those mice. 

1.4.6 Immune system in GH deficient patients 

Various GH deficiencies exist in human, from genetic defect leading to growth failure in 

children to acquired deficiency due to pituitary tumors and irradiation. Very few studies 

have been conducted to investigate the immune system of those patients, despite the 

interrogation about GH requirement for immune system development and function. 

Most of the work performed in children or AGHD found normal distribution of 

circulating leukocyte populations, including B cells, CD4 and CD8 T cells, NK cells, 

granulocytes and monocytes [139,140,149,190]. Leukocyte frequencies were not 

modified after GH treatment. Only innate immune function seems altered in GHD 

patients, since decreased phagocytic function of granulocytes [139,140] and lower NK 

activity [148–150] compared to normal controls were observed. Despite the apparent 

involvement of GH in thymopoiesis of AGHD patients [163], the immune response of T 

and B cells were not different in GHD children compared to age-matched controls, and 

clinical history revealed no increased susceptibility to infections in those deficient 

children [191]. A recent study aimed to evaluate infectious disease and immune 

response in a cohort of 35 patients with untreated GHD resulting from GHRHR gene 

mutation [192]. According to their clinical questionnaire and serological tests, those 
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patients do not exhibit higher frequency of infections. Their total IgG levels were lower 

than controls, albeit within normal range, but it did not affect their vaccination response 

against hepatitis B, tetanus or BCG. A positive response to tests of delayed 

hypersensitivity was also comparable to normal adults, suggesting normal cellular 

response, although papule diameter was smaller. Altogether, this data showed that GHD 

did not alter immune response in adulthood, but the authors do not exclude that some 

unfavorable effects could be seen in severe and acute infections, especially when GHD 

children seem more vulnerable to childhood infections [192]. Unfortunately, to our 

knowledge, there is no study investigating the gravity of infections in GHD children, and 

such a study would be difficult to perform since most GHD children are under GH 

therapy. 
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2 Objectives 

They are numerous reports arguing for pleiotropic effects of the somatotrope axis upon 

immune cells and organs. However, the physiological reality of those effects is still 

obscure. Contradictory findings were obtained regarding the necessity of somatotrope 

hormones for immune system development. Some groups claimed they are crucial for 

thymus function, based on the thymo-dependent immunodeficiency observed in dwarf 

mice that could be corrected by GH injection. Others found no or little effects of 

somatotrope deficiency in mouse models or humans. Therefore, further investigations 

are needed to solve this issue and to better understand the physiological role of GH 

during development, function and homeostasis of the immune system. 

To this purpose, we decided to investigate the developmental and functional 

immunology of the Ghrh-/- mouse model (described in section 1.2.2.4). A previous study 

revealed that Ghrh-/- mice are less prone to the induction of experimental autoimmune 

encephalomyelitis (EAE), showing that the somatotrope axis is involved in the immune 

response to the myelin oligodendrocyte glycoprotein (MOG) used to induce EAE. 

Moreover, GH but not GHRH treatment restored normal susceptibility to EAE in Ghrh-/- 

mice, without normalizing serum IGF-1 concentrations [193]. Thus, it seems that GH (but 

not GHRH or IGF-1) protects mice against EAE. This data points out the impact of 

somatotrope deficiency upon immune response in Ghrh-/- model, here in the case of 

autoimmunity.  

In my thesis, I have first characterized adaptive immune system of Ghrh-/- mice in basal 

conditions, so to see if there is any immunodeficiency or immune alterations resulting 

from the somatotrope defect. Then, I evaluated the impact of somatotrope deficiency 

upon immune aging, by analyzing immunological parameters in aged mutant and control 

mice. Then, Ghrh-/- mice were supplemented with GH to investigate the restoration of 

some immune parameters. Finally, in an attempt to test the stress hypothesis, I 

submitted mice to a metabolic stress by injecting DXM, a synthetic GC that induces a 

severe but reversible thymic atrophy. 
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3 Material and methods 

3.1 Mice 

A Ghrh-/- colony (also referred to as knock-out – KO mice) was established at the animal 

facility of the University of Liège from 2 males and 4 females sent by Pr Roberto 

Salvatori. Control C57Bl/6J (or wild-type – WT) mice were obtained from the colony 

maintained at the animal facility of the University of Liège. We performed a backcross 

between those two strains, in order to obtain animals with completely identical genetic 

background. Briefly, Ghrh-/- and C57Bl/6J mice were bred together to obtain a F1 

generation of heterozygous (HZ) animals. F1 animals were mated together and gave rise 

to F2 mice with Ghrh+/+ (WTb for backcrossed), Ghrh+/- (HZb) and Ghrh-/- (KOb) animals 

(respectively 25% - 50% - 25% proportion expected). Mouse genotype was identified 

phenotypically: original Ghrh-/- mice have agouti color, a dominant trait, where agouti 

gene is located near the Ghrh mutated gene, so they are transmitted together. 

Therefore, WTb F2 mice are black and normal-sized; HZb animals are agouti and normal-

sized and KOb mice are agouti and dwarf. Normal-sized and dwarf mice were separated 

at least 4 weeks before any experiment. Male and female mice of 3 months (mo; 9-12 

weeks) were used for the basal characterization and DXM experiment; 3, 6 and 18mo for 

the aging investigation and 3 and 18mo for the GH supplementation. All the experiments 

were conducted with approval of the Institutional Animal Care and Use Committee of 

the University of Liège (permit n°1305) in strict accordance with the guidelines for the 

care and use animals set out by the European Union. 

3.2 Tissue and cell preparation 

Mice were weighed and euthanized by i.p. injection of Ketamine (100mg/kg) – Xylazine 

(10mg/kg) followed either by puncture of cardiac blood in K2-EDTA microtainer tubes 

(BD biosciences) or by removal of the heart to ensure death. Thymus, spleen and 

inguinal lymph nodes (LN) were removed and weighed. For Igf1 quantification in GH 

supplementation experiments, a piece of liver (approximately 30mg) was also removed 

and placed at 4°C in RNA later (Qiagen) until extraction. For analysis of B lymphopoiesis, 

bone marrow cells were isolated from one femur in WT and two in KO mice, then passed 
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through a MACS SmartStrainer 70µm (Miltenyi Biotec) and washed in Dubelcco’s PBS 

(DPBS, Gibco, Life Technologies; 500g for 5min, RT). PBMCs were isolated from whole 

blood by centrifugation in Lympholyte®-Mammal density separation medium 

(Cedarlane) or by lysis of red blood cell with RBC lysis buffer (eBioscience), according to 

the manufacturer’s instructions. Thymus, spleen and LN were disrupted mechanically 

and resulting cell suspensions were washed twice (5min, 500g, RT) in DPBS. To ensure 

elimination of red blood cells from splenic cell suspensions, a lysing step was performed 

by 5min incubation in 1ml RBC Lysis Buffer Hybri-Max (Sigma-Aldrich) followed by a 

washing step in DPBS. Cell suspensions were then filtered through a MACS SmartStrainer 

70µm to avoid debris and aggregates. Cells were counted in Neubauer Chamber with 

trypan blue exclusion of dead cells, diluted in DPBS and distributed for later 

experiments. 

3.3 Flow cytometry analyses of lymphocyte populations 

Approximately 500,000 cells were stained for detection of specific lymphocyte 

populations in the different organs analyzed. The following mAbs were used: anti-mouse 

CD45.2 FITC (clone 104), CD19 Brilliant Violet (BV) 510 (1D3), CD3 APC-Cy7 (145-2C11), 

CD44 APC (IM7), CD62L PE (MEL-14), IgM PE (R6-60.2), B220 – CD45R PE-Cy7 (RA3-6B2), 

CD43 APC (S7) and Ki67 (B56) were purchased from BD Biosciences. Anti-mouse CD4 

eFluor®450 (RM4-5), CD8a Pe-Cy7 (53-6.7), CD90.2 – Thy-1.2 APC (53-2.1), CD69 APC 

(H1.2F3) and Foxp3 PE (FJK-16s) were purchased from eBioscience. Anti-mouse CD28 PE 

(clone 37.51) was purchased from Miltenyi Biotec. The viability dye 7-AAD (BD 

Biosciences) was used to exclude dead cells from some analysis. 

Briefly, cells were centrifuged and the pullet was resuspended in 100µl of surface mAbs 

cocktail diluted in DPBS + 2% fetal bovine serum (FBS, Life Technologies), before 20min 

of incubation at 4°C protected from the light. The several cocktails used for staining of 

thymus, spleen, lymph nodes, PBMC and bone marrow are described in Table 3.1. Cells 

were next washed in DPBS + 2% FBS and resuspended in 150µl of DPBS medium alone. 

For intracellular staining of FoxP3 and Ki67, after a first step of staining of surface 

antigens, cells were fixed and permeabilized with Fixation/Permeabilization solution 

(Anti-Mouse/Rat Foxp3 Staining Set, eBioscience) according to the manufacturer’s 
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instructions, prior to 30min incubation with FoxP3 or Ki67 antibody diluted in Perm 

Buffer (Anti-Mouse/Rat Foxp3 Staining Set). After two washing steps in Perm Buffer, 

cells were diluted in 150µl of DPBS and analyzed on a BD FACS Verse (BD Biosciences) 

using BD FACS Suite Software and FlowJo Software. 

Table 3.1. Surface antibodies cocktails for staining of lymphoid organs 

Organ – staining Surface antibody Volume per sample (µl) 

Thymus
a
 

Thy1.2 APC diluted 1/20 3 

CD8 PE Cy7 1 

CD4 e450 1.25 

Spleen, LN, PBMC 

(B – T staining) 

CD45.2 FITC 1 

CD62L PE 1 

CD8 PE Cy7 1 

CD44 APC 1 

CD4 e450 1.25 

CD3 APC-Cy7 1 

CD19 BV510 1 

Spleen, LN, PBMC 

(Treg staining
a
) 

CD45.2 FITC 1 

CD8 PE Cy7 1 

CD4 e450 1.25 

CD3 APC-Cy7 1 

Bone marrow 

IgM PE 1 

B220 PE Cy7 0.5 

CD43 APC 1 

CD19 BV510 1 

a
 for Treg staining, 1µl of FoxP3 PE antibody was added separately after fixation/permeabilization step. 

3.4 TREC quantification 

Thymus function was evaluated by quantification of sj and DβTREC, by adapting a 

protocol previously described by Dulude et al. [194]. Total sjTREC number was estimated 

by quantification of δREC1 rearrangement with jα61 and jα58 segments, since they 

represent almost 100% of sjTREC frequency in mice [194]. DJβ2TREC production was 

found to be unproductive [194]; therefore DβTREC content was measured by quantifying 

Dβ1 rearrangements with Jβ1.1 to 1.6. The CD4 gene was used as a single copy gene, 

allowing estimation of the number of cells (each cells possess two alleles of the CD4 
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gene, so the number of cells = number of CD4 copies/2). The relative numbers of copies 

of CD4 gene and TREC were obtained by multiplex nested real-time PCR quantification 

(RT-qPCR), by comparison with plasmids containing both CD4 and sj61 or DJβ4 

sequences respectively for sj- or dβTREC quantification. First, to release DNA content, 

cells were lysed 30min at 56°C in lysing buffer constituted with Tris-HCl (10mM; pH 8.3), 

Tween 20 (0.05%), Igepal (0.05%) and proteinase K (100µg/ml) followed by 10min at 

95°C to inactivate proteinase K. Cell lysates and plasmids were then pre-amplified for 

CD4 gene and sj- or DβTREC in a step called “pre-PCR”, using outer primers (Table 3.2). 

Briefly, 10µl of samples were added to 90µl of a mix composed of 1µl of each primer at 

100mM (CD4 1 and 2, REC1 and Jα58 and 61 for sjTREC; CD4 1 and 2, Dβ1 and Jβ1.1-1.6 

for DβTREC), 20µl of 5X colorless GoTaq® Flexi buffer (Promega), 14µl of MgCl2 25mM 

(Promega), 4µl of dNTP 10mM (Promega), 0.8µl of GoTaq® Flexi DNA Polymerase 

(Promega) completed with nuclease-free water (Ambion). Amplification was performed 

in an iCycler thermocycler (Bio-Rad) with the following program: initial denaturation at 

95°C for 10min; 22 cycles (for spleen and PBMC) or 19 cycles (for thymus) of 

amplification at 95°C for 30s; 60° for 30s; 72°C for 2min; final elongation 72°C for 10min 

and cooling at 15°C. PCR products were diluted 400x for spleen and PBMC and 500x for 

thymus samples and then relative CD4 and TREC number of copies were determined by 

RT-qPCR in a LightCycler480 thermocycler (Roche Diagnostics) by adding 4µl of diluted 

PCR products to 7µl of TakyonTM No Rox SYBR MasterMix Blue dTTP (Eurogentec), 0.2µl 

of CD4 or TREC inner primers (Table 3.2) and completed with nuclease-free water to 

reach a total volume of 14µl. The amplification program was 5min of initial denaturation 

at 95°C; 40 cycles of amplification at 95°C for 10s; 60°C for 15s; 72°C for 10s and cooling 

at 40°C. Results were analyzed on the LightCycler480 Software by the second derivative 

max method. Standard curves with arbitrary determined numbers of copies were 

obtained by performing a 10-fold serial dilution of each plasmid. Number of TREC and 

CD4 were calculated by reporting Ct of each sample to the standard curve. Finally, TREC 

were expressed in number per 106 cells. To evaluate run-to-run variation, an internal 

control was added to each run of RT-qPCR. When the standard deviation of the control 

was above 10% compared to the mean for all runs, a correction factor (control’s TREC 

number in this run / mean control’s TREC number in all runs) was applied to each sample 

of the run. 
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Table 3.2. Outer and inner primers for sj and DβTREC quantification 

Name Sequences Out Sequences In 

CD4 1 CCAACCAACAAGAGCTCAAGGA AGCTCAAGGAGACCACCATGT 

CD4 2 CCCAGAATCTTCCTCTGGT TGGTCAGAGAACTTCCAGGT 

Jα61 AACTGCCTGGTGTGATAAGAT GGAGTATCTCTTTGGAGTGA 

Jα58 CCCAGGACACCTAAAAGGAT AACTCGCACAGTGGAGGAAA 

REC1 AGTGTGTCCTCAGCCTTGAT GAAAACCTCCCCTAGGAAGA 

Dβ1 TATCCACTGATGGTGGTCTGTT GACGTTGGCAGAAGAGGATT 

Jβ1.1 CATGTTTGACATTGCCACAAGT AGCGATTACTCCTCCTATGGT 

Jβ1.2 CTCTCTTCACCCCTTAAGATT GTAAAGGAACCAGACTCACAGTT 

Jβ1.3 TGAGGCTGGATCCACAAAGGT TCAAGATGAACCTCGGGTGGA 

Jβ1.4 GGGCCATTAGGAAACGTGAT GCAGGAAGCATGAGGAAGTT 

Jβ1.5 GGAGGAAGGAAGGATGGTGA CAGAGTCCTGCCTCAAAGAA 

Jβ1.6 CCTGTGACATGCCTCATGGTA TCAGGTCTCAGGGATCTAAGA 

 

3.5 In vitro stimulation of B- and T-cell function 

B or T cells were isolated from splenic cell suspensions by MACS separation in LS column 

(Miltenyi) with Pan Bcell Isolation Kit II or Pan Tcell Isolation Kit II (Miltenyi) respectively, 

according to the manufacturer’s instructions. Cell purification assessed by flow 

cytometry was above 90%. Isolated cells were next labeled with 1µl CFSE (CellTrace 

CFSE, Life Technologies) under agitation and incubated 6min at 37°C with vortexing each 

2min. Labeling was stopped by addition of 3ml of cold FBS and incubation 5min in ice. 

Then cells were washed 3 times (500g for 5min RT) in RPMI (Gibco, Life Technologies) + 

10% FBS. CFSE-labeled cells were counted and 100,000 cells were added in 200µl of 

RPMI + 10% FBS + 1% Penicilin/streptamycin (Lonza) + 1% L-glutamine (Gibco, Life 

Technologies) + 5µM 2-mercaptoethanol (Gibco, Life Technologies) in each well of a 96 

wells U-plate (VWR). For B-cell activation, 2µg/ml of LPS (Sigma) was added to the cells. 

For T-cell, plates were pre-coated with 50µl of purified anti-CD3 antibody 5µg/ml 

(eBioscience) and 2µg/ml of purified CD28 antibody (eBioscience) were then added to 

the cells in the well. Each sample had its own control non-stimulated, to obtain basal 

values. Stimulated cells were finally incubated for 24h, 48h or 72h. At each time, cells 

were harvested and prepared for flow cytometry to measurement of cell proliferation 
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with CFSE dilution and activation with CD69 expression (antibodies cocktails are shown 

in Table 3.3). For experiments with B cells, 50µl of supernatant were sampled for IgM 

measurement by ELISA using the Mouse IgM ELISA Ready-set-go kit according to the 

manufacturer’s instructions (Affymetrix, eBioscience). In some experiments, CD8 naïve T 

cells (CD3+ CD8+ CD44low) were sorted by FACS from MACS-separated T cells and further 

labeled with CFSE and stimulated with CD3-CD28 antibodies in 96 wells U-plate. In 

another experiment, purified T-cells were treated with GH (Genotonorm, Pfizer) or IGF-1 

(Increlex, Ipsen) 10 and 100nM at the same moment than CD28 addition. 

Table 3.3. Antibodies cocktails for analysis B- and T-cell function 

Organ – staining Surface antibody Volume per sample (µl) 

B-cell 
CD19 BV510 1 

CD69 APC  1 

T-cell 

CD3 APC-Cy7 1 

CD4 V450 1.25 

CD8 PE-Cy7 1 

CD69 APC  1 

 

3.6 GH supplementation 

Ghrh-/- and C57Bl/6J young and aged mice were injected daily with human recombinant 

GH (100µl i.p. at 1mg/kg) for 6 weeks. Control mice were injected with DPBS. Before the 

first injection (referred to as d0) and once per week after the beginning of the 

treatment, glycaemia and weight were monitored in order to assess metabolic effects of 

the treatment. In addition, a blood sample (130µl in WT and 65µl in KO mice) was taken 

from the tail weekly for flow cytometry analysis or TREC quantification (each analysis 

was alternatively performed every second week). Basal level of blood TREC was 

determined two weeks before d0. After 6 weeks, mice were killed by i.p. injection of 

Ketamine/Xylazine and cardiac blood puncture. Thymus, spleen and LN were removed 

for immunological analysis and a piece of liver was taken for quantification of Igf1 

expression. 
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3.7 Igf1 quantification by RT-qPCR 

Liver and thymic Igf1 expression was analyzed by RT-qPCR as previously described [195].  

Briefly, RNA was extracted with the NucleoSpin® RNA kit (Macherey-Nagel) according to 

the manufacturer’s instructions. RNA concentration was measured by NanoDrop ND-

1000 (Thermo Scientific) and 500ng were used for reverse-transcription with oligo-dT 

using Transcriptor first strand cDNA synthesis Kit (Roche) following manufacturer’s 

instructions. Transcript quantification was performed using Taqman probes technology 

and iQ Supermix (Bio-Rad) with the following primers: Igf1 forward 

CAGGCTATGGCTCCAGCATT; Igf1 reverse ATAGAGCGGGCTGCTTTTG; probe 6-FAM-

AGGGCACCTCAGACAGGCATTGTGG-BHQ-1. Mouse hypoxanthine-guanine 

phosphoribosyltransferase (HPRT, Mm01324427_m1 TaqMan Gene Expression Assays, 

Applied Biosystems) was used as a housekeeping gene. Amplification was performed in 

an iCycler thermocycler (Bio-Rad) with the following conditions: polymerase activation 

at 50°C for 2min; denaturation at 95°C for 10min; amplification for 50 cycles at 95°C for 

15s and 60°C for 1min. A calibration curve was generated from serial dilutions of 

plasmids containing either IGF-1 or HPRT sequence and number of copies of each 

transcript was calculated by linear regression. 

3.8 DXM administration 

Mice were injected i.p. with 100µl of Dexamethasone dihydrogenophosphat-dinatrium 

20mg/kg (Aacidexam 5mg/ml, Aspen) or DPBS as control. The day of injection was 

referred to as d0. MRI sessions were performed at day 0, 2, 5, 10 and 14 in order to 

follow thymic involution and recovery. At each time point, individual groups of mice 

were euthanized and thymus, blood, spleen and LN were removed for further analysis. 

The d0 group was analyzed before DXM injection to obtain basal values. Results for 

other time points were expressed in percent of this basal value. 

3.9 Thymic volume follow-up by MRI 

Anaesthesia was induced with isoflurane 4 % in air, and then maintained by reducing the 

ratio to 1.5 % for the duration of the acquisition (flow rate: 0.8 L/min). The mice were 

placed prone in a stereotaxic holder (Minerve, France). The breathing rate was 
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monitored during the entire scan and the body temperature maintained at 37 ± 0.5 °C 

with an air warming system (Minerve, France). MRI anatomical images were acquired on 

a 9.4 Tesla MRI DirectDrive VNMRS horizontal bore system with a shielded gradient 

system (Agilent Technologies, Palo Alto, CA) and a 40 mm inner diameter volumetric coil 

(Agilent Technologies, Palo Alto, CA). Fast spin echo multislices sequence were acquired 

using the following parameters adapted from Brooks et al. and Beckmann et al. 

[196,197]: TR/TEeff = 2000/40 ms, matrix = 192 x 192, FOV = 20 x 25 mm, 10 contiguous 

slices focused on the region of interest (thickness = 1.0 mm, in-plane voxel size: 0.104 x 

0.130 mm). Anatomical images were analyzed using PMOD software version 3.6 (PMOD 

Technologies Ltd., Zurich, Switzerland). The thymus was manually segmented, because 

of its difference in signal intensity from the surrounding tissues, on each contiguous slice 

(thereafter referred as region-of-interest, ROI). The PMOD tools allow direct computing 

of the organ volume, by multiplying the effective slice thickness with the surface areas 

of each ROI. 

3.10 Statistical analyses 

Statistical analyses were performed on the Prism 4.0 software (GraphPad). Kolmogorov-

Smirnov and Shapiro-Wilk normality tests were performed to evaluate the Gaussian 

distribution of data. When Gaussian distribution was verified unpaired t-test was 

applied, while Mann-Whitney test was used for non-Gaussian distributions. For multi-

parametric analysis of GH supplementation and DXM administration, two-way ANOVA 

with Bonferroni post-test was used. 
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4 Results 

To investigate the impact of somatotrope deficiency upon immune system development 

and function of the Ghrh-/- mice, I first characterized their immune system in basal 

conditions. Then I studied the effect on aging and immunosenescence. In a third step, 

mice were supplemented with GH to observe if it corrected immunological parameters. 

Finally, I tested the stress hypothesis by following DXM-induced thymic atrophy and 

recovery.  

4.1 Immune system of the Ghrh-/- mouse in basal conditions 

The first objective of this thesis is to reassess to necessity of the somatotrope axis for 

immune system development. To that purpose, I analyzed several immunological 

parameters in 3mo-old mice, comparing weight and cell content of lymphoid organs, 

thymus phenotype and function, peripheral lymphocyte distribution and function and B-

lymphopoiesis between mutant and normal animals. Here, I analyzed backcrossed mice, 

and compared results with original strainsi to verify if mice from WT and KO colonies are 

identical to backcrossed mice or if they present further differences caused by a non-

similar genetic background. 

4.1.1 Weight and cellularity of lymphoid organs 

As shown in Figure 4.1, mutant mice were half the size of normal or heterozygous 

animals. WTb and HZb females were smaller than male counterparts, while no statistical 

differences were found between male and female homozygous mutant mice. The body 

weight of original mice was similar to backcrossed animals. Because of this smaller size, 

weight and cellularity results were normalized in function of total body weight or organ 

weight respectively. 

                                                     
i C57Bl/6J and Ghrh-/- homozygous colonies were handled by the animal facility of the University of Liège. 
Data for WT and KO mice here are the same as d0 groups in DXM experiment, except for TREC 
quantification where backcrossed groups were compared to 3mo WT and KO groups of aging experiment. 
Therefore, original and backcrossed groups were not analyzed in the same experiment. 
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Figure 4.1 – Animal body weight. Original (WT, n=10M; KO n=7M-3F) and backcrossed (WTb, n=7M-4F; 
HZb, n=5M-7F; KOb, n=5M-7F) male (M, full symbol) and female (F, open symbol) mice were weighed after 
euthanasia. Data (mean ± SEM) are representative of 3 or 4 independent experiments. Unpaired t-test 
was used for statistical analysis of male and Mann Whitney test for female mice. *** p < 0.001, 
** p < 0.01, * p < 0.05. 

 

Figure 4.2 –Thymus and spleen weight. Absolute and relative (organ weight/body weight) weight of 
original (WT, KO) and backcrossed (WTb, HZb, KOb) thymus and spleen. Data (mean ± SEM) are 
representative of 3 or 4 independent experiments. Unpaired t-test or Mann Whitney test were used for 
statistical analysis, according to the Gaussian distribution of each group. n=8-12 per group *** p < 0.001, 
** p < 0.01, * p < 0.05. 
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Figure 4.3 –Thymus and spleen cellularity. Absolute and relative (number of cells/mg of tissue) number of 
cells in original (WT, KO) and backcrossed (WTb, HZb, KOb) thymus and spleen. Data (mean ± SEM) are 
representative of 3 or 4 independent experiments. Unpaired t-test was used for statistical analysis. n=8-12 
per group. *** p < 0.001, ** p < 0.01, * p < 0.05. 

Thymus absolute weight was smaller in KO mice compared to WT, but when corrected 

to their smaller size they showed proportionally 2-fold bigger thymus (Figure 4.2). 

Similar results were obtained in backcrossed animals. Mutant mice showed markedly 

reduced absolute weight of their spleen, but relative weight is lower only for original but 

not backcrossed KO mice (Figure 4.2; 3.1 ± 0.22 for WT vs 2.0 ± 0.11 for KO and 2.4 ± 

0.10 for WTb vs 2.4 ± 0.11 for KOb). Results obtained in original mice were different 

from that of the corresponding backcrossed group. For the thymus, this could be 

explained by the difference in the ratio male/female in each group. Indeed, female mice 

exhibited bigger thymus than male mice (data not shown). As original strain groups 

contained almost only male mice while a higher proportion of female were analyzed in 

backcrossed groups, mean thymus weights in the latter groups are bigger than in the 

firsts. However, spleen weights were similar whatever the gender. Thus sex ratio did not 

explain the difference of spleen weight between original and backcrossed animals. 

Numbers of cells in cell suspensions obtained from each organ were counted in a 

Neubauer Chamber and divided by the organ’s weight to calculate relative cellularity. No 

differences of absolute or relative cellularity were found in the thymus of original or 

backcrossed mice (Figure 4.3). The total number of splenic cells was lower in KO and 
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KOb mice compared to WT and WTb or HZb groups respectively. When normalized to 

the weight, the number of cells per gram of tissue was similar between normal and 

mutant mice. However, relative cellularity in KOb mice was smaller than in original KO 

mice (Figure 4.3). 

In conclusion, thymus in Ghrh-/- mice was not reduced in parallel to the total body 

weight and was therefore proportionally bigger than in normal-sized animals, with no 

differences in the number of cells. On the opposite, the spleen in dwarf animals was 

either smaller (in original groups) or equal (in backcrossed groups) to that in normal 

mice, but with comparable relative cellularity. 

4.1.2 Thymus phenotype 

Characterization of the thymus was first assessed by controlling thymocyte distribution 

by flow cytometry. Gating strategy is shown in Figure 4.4 and results in Figure 4.5. No 

statistical difference was obtained between original WT and KO mice, although DN 

subset tended to be lower in KO mice (p=0.0725). KOb mice had a higher proportion of 

DP cells (89.0% ± 0.43 vs 87.5% ± 0.46 and 87.3% ± 0.27) and reduced proportion of SP 

CD4 (6.7% ± 0.25 vs 7.5% ± 0.17 and 7.7% ± 0.17) compared to WTb and HZb. They also 

showed a tendency to DN diminution (p=0.0515). They were no difference in the 

percentage of intrathymic Treg cells (around 4% in all groups). Comparison between 

original and backcrossed groups showed that the percentage of DN was higher in WT 

than in WTb, while other parameters were similar. Original KO mice had a decreased 

percentage of DP and an increased percentage of SP CD4 compared to KOb mice. The 

number of cells was calculated for each sample by multiplying the number of cells/µl 

recorded by the FACS by the dilution factor applied to the analyzed cell suspension. 

Unfortunately, results were hardly interpretable because of a huge distribution of 

results (standard deviation above 2x107 cells for total thymocyte number, data not 

shown)ii. 

                                                     
ii In addition, an important lack of data occurs, due to an unknown error of the FACS device that was 
unable to record the volume of cells analyzed for some sample (almost one out of two data are missing). 
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Altogether, this data demonstrated that distribution of the four developmental stages of 

thymocytes is almost unaffected in Ghrh-/- mice, despite a trend toward a slight DN 

diminution and a significant 2% increase and 1% decrease of DP and SP CD4 

subpopulations, respectively. 

 
Figure 4.4 – Gating strategy for thymus flow cytometry. 500,000 cells were labeled and analyzed on FACS 
Verse. Debris and dead cells were excluded in function of their SSC-A/FSC-A profile (P1) and Thy1.2+ 
thymocytes were selected. Four thymocyte sub-populations were distinguished according to their 
expression of CD4 and CD8: DN CD4

-
CD8

-
; DP CD4

+
CD8

+
; SP CD4 CD4

+
CD8

-
 and SP CD8 CD4

-
CD8

+
. Treg 

FoxP3+ cells were found amongst the SP CD4 population. 30,000 events were recorded. 

 
Figure 4.5 – Thymocyte distribution. Percentage of DN, DP, SP CD4, SP CD8 and Treg thymocytes analyzed 
in the thymus of original (WT, KO) and backcrossed (WTb, HZb, KOb) mice. Data (mean ± SEM) are 
representative of 3 independent experiments. Unpaired t-test was used for statistical analysis. n=8 per 
group. ** p < 0.01, * p < 0.05.  
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4.1.3 Thymus function 

Thymus characterization was further assessed by the quantification of TRECs, markers of 

thymopoiesis. TRECs were measured peripherally in the splenocytes. Number of 

sjTRECs/106 cells was higher in mutant mice compared to normal-sized mice, both in 

original and backcrossed groups. KO mice also had a higher number of dβTRECs, but in 

backcrossed mice the increase was significant only compared to HZb and not WTb mice. 

The sj/Dβ ratio was reduced in WT mice compared to KO (127.7 ± 13.92 in WT vs 62.3 ± 

6.83 in KO), while backcrossed groups showed similar ratios (Figure 4.6). The 

discrepancy of results between original and backcrossed groups was explained by the 

high difference obtained between WT and WTb groups for sjTRECs (18960 ± 1026 for WT 

vs 34106 ± 2966 for WTb), dβTRECs (166.1 ± 20.94 for WT vs 767.5 ± 34.85 for WTb) and 

the ratio (127.7 ± 13.92 for WT vs 44.8 ± 4.06 for WTb).  

 
Figure 4.6 – Quantification of TRECs as markers of thymopoiesis. The number/106 cells of sjTRECs, 
DβTRECs and sj/Dβ ratio were quantified in splenocytes of original (WT, KO) and backcrossed (WTb, HZb, 
KOb) mice. Data (mean ± SEM) are representative of 3 independent experiments. Unpaired t-test was 
used for statistical analysis. n=8-12 per group. *** p < 0.001, ** p < 0.01, * p < 0.05. 

Those results indicated that Ghrh-/- mice have a higher thymic export, since sjTREC are 

markers of naïve T cells leaving the thymus; and possibly have a reduced intrathymic 

proliferation, as assessed by the sj/Dβ ratio. Two hypotheses could explain those 

apparently contradictory results. First, a higher export of naïve cells with decreased or 

equal intrathymic proliferation could happen if more progenitors infiltrated the thymus. 

Keeping in mind that TREC numbers are influenced by cell proliferation, a second and 

non-exclusive explanation is that Ghrh-/- T cells proliferate less in periphery than WT 

cells, therefore diluting TREC to a lesser extent. This latter hypothesis was tested by 

measuring T-cell proliferation in the spleen of WT and KO mice with anti-Ki67 labeling. 

As shown in Figure 4.7, no difference in the proportion of proliferative cells was 

observed between WT and KO mice for T-cell population. Inside this population, CD4 T-
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cell proliferation was also similar but CD8 T cells proliferated less in KO mice (10.9 ± 

0.65% for KO vs 13.5 ± 0.62% for WT). On the opposite, B cells proliferated more in KO 

mice compared to WT mice. Comparable results were obtained in PBMCs (data not 

shown). The overall global mean of lymphocytes proliferation showed a higher 

percentage of Ki67+ cells in KO compared to WT mice (data not shown). Therefore, those 

results invalidated the hypothesis of a reduced cell proliferation to explain the increase 

in TREC numbers of Ghrh-/- mice. 

 

Figure 4.7 – In-vivo T-cell proliferation. Proportion of Ki67+ proliferative cells were analyzed by flow 
cytometry amongst T-cell (CD3+), T CD4 (CD3+CD4+), T CD8 (CD3+CD8+) and B-cell (CD19+) populations from 
spleen cell suspensions of original (WT, KO) mice. Data (mean ± SEM) are representative of 3 independent 
experiments. Unpaired t-test was used for statistical analysis. n=6 per group. * p < 0.05. 

4.1.4 Spleen phenotype 

The immune system was next investigated by analyzing peripheral distribution of mature 

lymphocytes. The spleen was chosen as a representative peripheral lymphoid organ. 

Gating strategies for flow cytometry analyses of B and T lymphocytes and of Treg cells 

are shown in Figure 4.8 A and B respectively. Results showed that KO mice exhibited a 

decreased proportion of B cells and an increased proportion of T cells (around 5% for 

both differences), while percentages of CD4, CD8 and Treg cells were comparable to WT 

mice (Figure 4.9). The same conclusions were obtained in backcrossed animals, with an 

even higher difference (around 8%) of B and T cells proportions between HZb and WTb 

mice. In order to verify if this difference in proportion was due to a change in the 

number of B cells, T cells or both, total numbers of B and T lymphocytes were calculated, 

using two different methods. First method was based on the number of cells/µl 

recorded with the FACS Verse, which is multiplied by the total volume of labeled cells 

and by the dilution factor applied to the cell suspension before antibodies labeling. The 

second method consisted of reporting the percentage of total events for B and T cells to 
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the total number of splenic cells counted with Neubauer chambers. Numbers of cells 

were then normalized per mg of tissue to take into account the smaller size of spleen in 

dwarf mice. Both methods had some disadvantages: with the first method, some data 

were lost because of the inability of the FACS device to record volume of the cell 

suspension analyzed. The second method was influenced by the proportion of debris 

and dead cells in the cell suspension analyzed by flow cytometry, which could strongly 

vary from one sample to another. As cell number was calculated from the percentage of 

B and T cell amongst total events analyzed, they were reduced if the number of debris 

and dead cells was higher. Results shown in Figure 4.10 reveal that in original groups, B 

and T cells numbers per mg of spleen were reduced in KO compared to WT mice. In 

backcrossed groups, the dispersion of results was too important to distinguish any 

differences in the number of cells. The two methods of calculation seemed comparable, 

since they gave similar results. Unfortunately, this investigation did not allow 

understanding of how the number of B and T cells varied to give rise the observed 

differences in their proportions. 

To investigate the naïve and memory profile of T lymphocytes, cells were labeled with 

anti-CD44 and anti-CD69 antibodies. CD44 is a marker of activation, while CD62L is an 

adhesion molecule expressed on naïve cells. Therefore, naïve T cells express high level of 

CD62L and low level of CD44 while T effector memory cells (TEM) have the opposite 

profile (CD44hi CD62low). An intermediate population expressing both CD44 and CD62L 

represents T central memory cells (TCM), a memory cell population found in peripheral 

lymphoid organs. As shown in Figure 4.9, KO mice had a higher proportion of naïve T-

cells and decreased proportion of TCM for both CD4 and CD8 populations (the 

difference reached 20% in CD4 and 15% in CD8 T cells) compared to WT controls. A 

similar increase of naïve cells proportion was observed in KOb mice, but the memory 

pool diminution was distributed between both memory subsets in CD8 T-cells and only 

in TEM in CD4 population. Nonetheless, both original and backcrossed groups revealed 

that Ghrh-/- mice exhibit a higher proportion of naïve T cells at the cost of memory T 

cells, which was consistent with the higher number of TRECs observed in those mice. 
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Figure 4.8 – Gating strategy for flow cytometry of peripheral lymphocytes. 500,000 cells were labeled 
and analyzed on FACS Verse. Debris and dead cells were excluded in function of their SSC-A/FSC-A profile 
(P1) and single cells were selected by FSC-A/FSC-W gating. (A) B-T analysis in periphery. 20,000 CD45+ 

events were recorded. CD3+ T cells and CD19+ B cells were distinguished amongst the CD45+ leukocytes 
population. T cells were next divided into CD4+ and CD8+ subsets. Finally, naïve (CD44lowCD62Lhi), central 
memory (TCM; CD44hiCD62Lhi) and effector memory (TEM; CD44hi CD62low) T cells were analyzed within de 
CD3+CD4+ or CD3+CD8+ populations. (B) Treg analysis in periphery. 20,000 CD45+ events were recorded. 
T cells were gated as CD45+CD3+ cells and then divided into CD4+ and CD8+ cells. FoxP3+ Treg cells were 
analyzed within the CD4+ subset. 
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Figure 4.9 – Lymphocyte distribution in the spleen. Percentage of B and T cells amongst leukocytes; CD4 T 
and CD8 T amongst T cells; Treg cells amongst CD4 T cells. The naïve-memory profile of CD4 or CD8 T-cell 
populations were analyzed in the spleen of original (WT, KO) and backcrossed (WTb, HZb, KOb) mice. Data 
(mean ± SEM) are representative of 3 independent experiments. Unpaired t-test or Mann Whitney test 
were used for statistical analysis, according to the Gaussian distribution of each group. n=5-8 in original 
and 7-10 per group in backcrossed groups. *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Figure 4.10 – Relative numbers of B and T splenocytes calculated by two methods. Number of B and T 
lymphocytes per mg of spleen in original (WT, KO) and backcrossed (WTb, HZb, KOb) mice were calculated 
from FACS Verse counts multiplied by the total volume of labeled cells and the dilution factor (Method 1) 
or from Neubauer counts of total cellularity divided by the percentage of B and T cells from total events 
(Method 2). Data (mean ± SEM) are representative of 2 or 3 independent experiments. Unpaired t-test or 
Mann Whitney test were used for statistical analysis, according to the Gaussian distribution of each group.  
n=4-5 in original and 5-10 per group in backcrossed groups. ** p < 0.01, * p < 0.05.  

4.1.5  B lymphopoiesis 

In order to analyze if the peripheral B-cell defect observed in Ghrh-/- mice resulted from 

a problem in B-cell development in the bone marrow, B lymphopoiesis was investigated 

by flow cytometry. B-lineage committed cells expressed B220. Four developmental 

stages were distinguishable (Figure 4.11): PreProB (CD43+ CD19- IgM-), ProB (CD43+ 

CD19+ IgM-), PreB (CD43- CD19+ IgM-) and immature B cells (CD19+IgM+). As shown in 

Figure 4.12, KOb mice had an almost two-fold higher proportion of B-committed B220+ 

cells compared to WTb or HZb animals. In addition, the percentage of PreProB and ProB 

was significantly reduced in KOb compared to WTb while the percentage of PreB tended 

to increase (p=0.0611). However, immature B proportion was similar between the three 

groups. Therefore, B lymphopoiesis seemed to be not deficient and those results could 

not explain the decreased proportion observed in peripheral B cells. 
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Figure 4.11 – Gating strategy for flow cytometry of B lymphopoiesis in bone marrow. 500,000 cells were 
labeled and analyzed on FACS Verse. Debris and dead cells were excluded in function of their SSC-A/FSC-A 
profile (P1) and single cells were selected by FSC-A/FSC-W gating. 20,000 living cells (7-AAD negative) were 
recorded. B-lineage committed cells were gated as B220+ cells. IgM expression distinguished immature B 
cells from earlier progenitors. Amongst IgM- progenitors, PreProB cells (CD43+CD19-) evolved into ProB 
cells (CD43

+
CD19

+
) that further differentiate into PreB cells (CD43

-
CD19

+
). 

 
Figure 4.12 – B lymphopoiesis in bone marrow. The percentage of B-committed cells amongst living cells 
(left panel) and the proportion amongst B220+ population of the four developmental stages of B-cell 
development (right panel) were analyzed by flow cytometry in the bone marrow of backcrossed (WTb 
blue circle, HZb green square, KOb red triangle) mice. Data (mean ± SEM) are representative of 3 
independent experiments. Unpaired t-test was used for statistical analysis. n=7-8 per group. ** p < 0.01, 
* p < 0.05. 

4.1.6 In vitro T- and B-cell function 

Following adequate stimulation, activated lymphocytes starts to clonally proliferate. 

Ability of T and B cells to respond to non-antigen-specific stimulation was tested in vitro. 

After MACS separation, isolated T and B cells were stimulated with anti-CD3/anti-CD28 
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antibodies or LPS respectively. After 24, 48 and 72h the activation status of cells was 

controlled by their expression of CD69, an early activation marker, and proliferation was 

followed by CFSE dilution method. Non-stimulated control cells did not proliferate nor 

expressed CD69 (data not shown). As illustrated in Figure 4.13 A, the proportion of 

activated CD69+ cells was higher in CD3/CD28 stimulated T cells from KO mice compared 

to WT. Similarly, proliferation was more important in KO cells, as assessed by the smaller 

D0 peak (non-divided cells). The difference was significant only for T-cell proliferation 

after 72h (Figure 4.13 B). T-cell activation was higher in KO cells after 24h and then 

reached a plateau at 48h, where no difference with WT cells was found. After 72h, CD69 

expression decreased since it is an early activation marker. The higher the activation 

was, the higher CD69 diminution was. In backcrossed animals, similar tendency for 

higher activation and proliferation of KOb T cells was observed, although without 

reaching statistical significance, probably because of the small number of samples 

analyzed (n=4). Comparable results were obtained regarding B-cell response after LPS-

stimulation. KOb mice showed a higher proportion of CD69+ cells at 24 and 48h post-

stimulation and more cells had proliferated after 48h (Figure 4.14). IgM release in the 

supernatant followed the same tendency, however without reaching statistical 

significance. Surprisingly, the situation in HZb mice seemed intermediate between that 

in WTb and KOb, for both B- and T-cell responses. This suggested that carrying one 

mutated Ghrh gene is sufficient to induce enhanced in vitro response to stimulation. 

One possible explanation for this enhanced response of T lymphocytes after CD3/CD28 

stimulation could be the higher proportion of naïve cells, which could be more 

prompted for activation than memory cells. However, CD8+CD44- naïve cells isolated by 

FACS and stimulated in the same way with CD3/CD28 showed similar results to unsorted 

T cells, i.e. higher activation and proliferation of KO cells (data not shown). Finally, GH or 

IGF-1 treatment (10 and 100nM) was unable to reduce response of KO T cells to a level 

comparable to that in WT cells (data not shown). Therefore, the mechanism responsible 

for the difference in response was independent of the GH/IGF-1 local environment. 
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Figure 4.13 – T-cell activation and proliferation after in vitro stimulation. T cells from original (WT, KO) 
and backcrossed (WTb, HZb, KOb) spleen cell suspensions were isolated by MACS separation and 100,000 
cells were stimulated in vitro with anti-CD3/anti-CD28. (A) Representative graphs of CD69 expression by T-
cells after 24h of culture and CFSE dilution after 48h of stimulation. The D0 peak represents cells that have 
not proliferated and the rest are proliferative cells where each peak counts for one division cycle. (B) 
Activation (%CD69+ cells) and proliferation (% of non-D0 cells) of T cells after 24, 48 or 72h of stimulation. 
Data (mean ± SEM) are representative of 2 or 3 independent experiments. Unpaired t-test was used for 
statistical analysis. n=7 per group for original and 4 per group for backcrossed. ** p < 0.01, * p < 0.05. 

 
Figure 4.14 – B-cell activation and proliferation after in vitro stimulation. B cells from backcrossed (WTb, 
HZb, KOb) spleen cell suspensions were isolated by MACS separation and 100,000 cells were stimulated in 
vitro with LPS. Activation (%CD69+ cells), proliferation (% of non-D0 cells) and IgM production in the 
supernatant of B cells were analyzed after 24, 48 or 72h of stimulation. Data (mean ± SEM) are 
representative of 2 independent experiments. Unpaired t-test was used for statistical analysis. n=4 per 
group ** p < 0.01, * p < 0.05. 
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4.1.7 Conclusions  

The first objective of this part was to characterize immune system of Ghrh-/- mice to 

evaluate if they present any immunodeficiency or immune defect due to a severe 

deficiency of the somatotrope GHRH/GH/IGF-1 axis. Mutant mice did not exhibit thymic 

atrophy but possibly some slight splenic atrophy compared to non-GH deficient animals. 

Their thymus presented only modest alterations of thymopoiesis, with a 2% increase of 

DP cells, a parallel decrease of SP CD4 cells and a trend for DN diminution. In addition, 

markers of thymic export (sjTREC) were more abundant in peripheral lymphocytes, while 

intrathymic proliferation (assessed by the sj/DβTREC ratio) was equal or decreased. 

Since the hypothesis of reduced peripheral proliferation to explain the higher TREC 

number was excluded by Ki67 proliferation analysis, those results suggest that 

thymopoiesis in Ghrh-/- mice is enhanced, either by increased influx of progenitors into 

the thymus, faster commitment of DN to DP stages (as suggested by the decrease in DN 

and increase in DP percentages) and/or decreased apoptosis of thymocytes. 

Enhancement of thymopoiesis in Ghrh-/- mice is consistent with the higher proportion of 

naïve T cells observed in their spleen. In addition, lymphocyte distribution in the spleen 

was also disturbed in Ghrh-/- mice, with an approximately 5-8% decrease in B cells and 

inversely an increase in T-cell proportion, leading to a lower B/T ratio. It is still unclear if 

this alteration resulted from a defect in B-cell number, increase in T-cell count or both. 

Indeed, the two counting methods used to calculate B- and T-cell cellularity were not 

reliable enough to obtain solid results. Nevertheless, it appeared that B-cell diminution 

did not find its origin in B-cell development in the bone marrow, since the proportion of 

immature B-cells ready to be exported to the periphery was not different between 

normal and deficient mice. Furthermore, B-committed lineage cells were even more 

abundant in Ghrh-/- bone marrow than in WT mice. Surprisingly, peripheral mature B 

cells proliferated more in mutant mice, which might be a compensatory mechanism to 

restore B-cell population to a normal level. Altogether, those results did not allow 

understanding of the exact mechanism underlying the diminution of B/T ratio in Ghrh-/- 

mice. We postulate that improved thymopoiesis in Ghrh-/- mice resulted in the release of 

more T-cells in periphery, therefore shrinking B-cell proportion. However, a diminution 
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in B-cell number cannot be excluded based on available data, even though the origin of 

this diminution remains unknown. 

Finally, B- and T-cell response to in vitro non-specific stimulation was functional in   

Ghrh-/- mice. Maximal levels of activation and proliferation were similar in normal and 

mutant mice (more than 90% of T-cells were activated and proliferated), but it seems 

that they occurred more rapidly in the latter. Acceleration of the time-response curve 

should be confirmed by analyzing CD69 expression and CFSE dilution each 12 hours after 

stimulation. 

In conclusion, characterization of the immune system of Ghrh-/- mice at 3mo reveals that 

mutant mice do not exhibit any immunodeficiency and rather present an improved 

thymopoiesis, as well as cellular and humoral in vitro responses. Therefore, it seems 

that a functional somatotrope axis is not required for the normal development of the 

immune system, at least regarding the adaptive arm. 

A second objective of this part of the work was to validate the use of Ghrh-/- and 

C57Bl/6J colonies from the University of Liège to perform my work. Ghrh-/- mice are on a 

C57Bl/6J genetic background, with a small participation of 129SV genome coming from 

embryonic stem cells, notably responsible of the agouti color [47]. Moreover, Ghrh-/- 

mice originated from the United States, while our C57Bl/6J mice have been bred in the 

animal facility of the University of Liège for many years. Therefore, some genetic drift 

could have occurred in one or the other colony. To evaluate this possibility and the 

impact of 129SV genome in Ghrh-/- background, the immune system of the two original 

colonies were analyzed in parallel to backcrossed WT, HZ and KO mice carrying identical 

genetic background. The mean of certain parameters was different between original and 

corresponding backcrossed group. This could be attributed to experimental bias since 

experiments were not conducted in the same period. All backcrossed experiments were 

conducted within one month while original groups were analyzed over 4 months almost 

one-year away from backcrossed groups. Despite all our efforts to minimize 

experimental variations, we could not exclude uncontrolled changes in housing 

conditions, lot products, devices calibration or manipulator skills over this long time-

period. However, globally the same differences were found in WT vs KO and in WTb vs 
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KOb mice — i.e. increased relative thymic weight, higher TREC number and proportion 

of naïve T cells, lower B/T ratio and improved in vitro T-cell response — therefore 

validating the WT-KO model in original colonies. In the next part of this work, only 

original WT and KO mice will be used, for time, costs and breeding contingencies. Indeed 

it is easier and faster to obtain a sufficient number of WT and KO mice from two distinct 

homozygous colonies than in backcrossed breeding, where theoretically only 25% of the 

pups inherit of +/+ or -/- genotypes. It thus requires more couples in backcross colony to 

obtain comparable numbers of WT and KO mice compared to homozygous breeding. In 

addition, this avoids the social stress of being held with normal-sized littermates for 

dwarf KO mice, which could induce immunological alterations [189]. 
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4.2 Aging in Ghrh-/- mice 

With aging, the immune system becomes deficient, especially in mammals, with reduced 

resistance to infections, decreased efficiency of vaccines, and a higher risk of cancers. 

This immunosenescence is characterized by a pro-inflammatory state (TNFα, IL-6), a 

reduced diversity of TCR repertoire, an increase in memory lymphocytes, and reduced B 

as well as T lymphopoiesis [198,199]. One hallmark event of immunosenescence is 

thymic involution: epithelial areas slowly disappear and are replaced by perivascular 

adipose tissues, leading to decreased thymopoiesis [101]. In addition, hormonal 

fluctuations also occur during aging, notably somatopause — the age-related reduction 

in GH and IGF-1 concentrations [200]. Some argue that somatopause is one of the 

events that trigger thymic involution, even though the causal link is not firmly 

established. Several studies in rodents showed partial rejuvenation of aged-atrophic 

thymus and restoration of thymopoiesis after treatment of aged animals with GH, IGF-1 

or ghrelin and GHS [112,172,201–204]. Nevertheless, the role of reduced somatotrope 

hormones in inducing aged-related immune defects is less clear. An early thymic atrophy 

was observed in Snell-Bagg and Ames-Dwarf mice, partially reversible with GH treatment 

[109,110,159] but lit/lit mice exhibit thymus involution similar to control aged-animals 

[205]. 

Therefore, after investigating the role of the somatotrope axis upon immune system 

development, the second part of this work aims to evaluate the role of somatotrope 

hormones during immune aging. To this purpose, thymus and peripheral lymphoid 

organs were analyzed in young (3mo), middle-aged (6mo) and aged (18mo) WT and KO 

mice. 

4.2.1 Evolution of weight and cellularity of lymphoid organs with aging 

Thymus and spleen of mutant and control mice were weighed and the total number of 

cells was calculated by the FACS Verse method (see section 4.1.4) after flow cytometry 

analyses of cell suspensions. As shown in Figures 4.15 and 4.16, thymus in mutant mice 

were almost half the size at 3 and 6mo but, in aged mice, thymus weight was similar 

between WT and KO mice, because of the shrink in WT thymus weight between 6 and 

18mo (almost 2.5-fold decrease), while thymus weight in KO mice was stable across 
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time. Similarly, the total number of cells in thymus of KO mice was lower than in WT 

thymus, but both mice exhibited a diminution (2.9 for WT and 3.5 times for KO) in total 

cellularity with age. When normalized to total body weight, thymus weight was similar 

between WT and KO mice at 3mo, but was significantly reduced at 6mo and inversely 

higher at 18mo. Both WT and KO relative thymus weight did not change between 3 and 

6mo, and thymic atrophy occurred between 6 and 18mo. No difference in the number of 

cells per mg of thymus was observed between WT and KO mice. Diminution of relative 

cellularity with age happened in both WT and KO mice, but it seemed to appear as soon 

as 6mo in KO mice while it occurred later in WT animals. Altogether, this data suggests 

that thymic involution occurred a little bit earlier in mutant mice (between 3 and 6mo of 

age while it seemed to start after 6mo in WT animals), but with a less severe impact on 

the relative weight at advanced age. 

Absolute and relative spleen weights were diminished in KO compared to WT mice, 

regardless of the age. However, only WT spleen weight increased between 3 and 18mo. 

Similarly, absolute number of cells in the spleen of KO mice was reduced at 3 and 6mo, 

while relative cellularity was not different. On the opposite, at 18mo, both absolute and 

relative spleen cellularity decreased in WT mice but increased in KO mice, leading to a 

surprising 4-fold higher number of cells/mg of spleen in aged KO compared to WT mice 

(Figures 4.15 and 4.16).  
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Figure 4.15 –Thymus and spleen weight. Absolute and relative (organ weight/body weight) weight of 
thymus and spleen of 3mo-, 6mo- and 18mo-old WT and KO mice. Data (mean ± SEM) are representative 
of 2 or 3 independent experiments. Unpaired t-test or Mann Whitney test were used for statistical 
analysis, according to the Gaussian distribution of each group. n=8-18 per group *** p < 0.001, ** p < 
0.01, * p < 0.05. 

 
Figure 4.16 –Thymus and spleen cellularity. Absolute and relative (number of cells/mg of tissue) number 
of cells in the thymus and spleen of 3mo-, 6mo- and 18mo-old WT and KO mice, assessed by the FACS 
Verse method. Data (mean ± SEM) are representative of 2 or 3 independent experiments. Unpaired t-test 
or Mann Whitney test were used for statistical analysis, according to the Gaussian distribution of each 
group. n=5-16 per group *** p < 0.001, ** p < 0.01, * p < 0.05. 
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4.2.2 Thymus phenotype and function during aging 

Flow cytometry analysis of thymic cell suspensions was performed to evaluate the 

distribution of the four thymic subpopulations, as well as intrathymic Treg cells. Gating 

strategy is shown in Figure 4.5 and results in Figure 4.17. Proportion of immature DN 

cells was slightly decreased in 3mo- and 6mo-old KO mice compared to WT. This 1% 

diminution was compensated by increase of DP subset at 3mo and CD8+SP population at 

6mo. Furthermore DN proportion constantly increased with age in KO but not in WT 

mice. Percentage of CD8+SP cells was reduced of around 1% in aged mice, but the 

diminution occurred earlier in WT than in KO mice. On the opposite, CD4+SP T cells did 

not vary with age, except the slight decrease observed between 3 and 6mo in WT mice 

only. Finally, intrathymic Treg population in KO animals was slightly higher in young and 

aged, but not middle-aged mice compared to WT. Proportion of Treg cells increased in 

18mo-old KO mice compared to younger mice. 

 
Figure 4.17 – Thymocyte distribution. Frequencies of DN, DP, SP CD4, SP CD8 and Treg thymocytes in the 
thymus of 3mo-, 6mo- and 18mo-old WT (n=5-9) and KO (n=12-16) mice. Data (mean ± SEM) are 
representative of 2 or 3 independent experiments. Unpaired t-test or Mann Whitney test were used for 
statistical analysis, according to the Gaussian distribution of each group. *** p < 0.001, ** p < 0.01, 
* p < 0.05.  
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Figure 4.18 – Quantification of TREC as markers of thymopoiesis. The number/106 cells of sjTRECs, 
DβTRECs and sj/Dβ ratio were quantified in splenocytes of 3mo-, 6mo- and 18mo-old WT (n=12-14) and 
KO (n=6-20) mice. Data (mean ± SEM) are representative of 3 independent experiments, except for KO 
6mo where only one experiment was performed. Unpaired t-test or Mann Whitney test were used for 
statistical analysis, according to the Gaussian distribution of each group. *** p < 0.001, ** p < 0.01, 
* p < 0.05.  

Thymopoiesis was then assessed by quantification of TRECs in splenocytesiii. Results 

presented on Figure 4.18 confirmed the increase of sj and DβTRECs in KO mice 

compared to WT animals throughout life. The sj/Dβ ratio was lower in 3mo-old KO mice 

than in age-matched WT, but it was equal at 6mo and higher at 18mo. Aging induced a 

decrease in the number of sjTRECs in both WT and KO mice after 6mo. DβTREC number 

was also lower at each time in KO mice, while it was stable in WT animals. Therefore, in 

WT mice where sj but not DβTRECs were reduced with time, the sj/Dβ ratio was lower in 

aged mice compared to young or middle-aged WT animals. On the opposite, KO mice 

presented an increase in sj/Dβ ratio between 3 and 18mo because the diminution of 

DβTRECs was more pronounced than for sjTREC (4-fold decrease vs one third 

respectively). Taken together, those results indicate that in WT normal mice, aging 

induced a decrease in intrathymic proliferation and in thymic export, revealing a 

reduced efficiency of thymopoiesis after the DN stage (since DβTRECs are created in DN2 

cells). The situation in mutant mice seemed different. The number of early DβTRECs 

diminished with age and this was probably compensated by an increased intrathymic 

proliferation between DN and DP stages, that could explain the slight increase in DN 

                                                     
iii It should be noticed that the 18mo-old WT and KO groups presented here corresponded to the basal 
data of the groups of the GH supplementation experiment analyzed two weeks before starting GH 
treatment (see chapter 4.3). Unfortunatley, we were unable to quantifiy TRECs of the aged groups 
normally used in this part because of the lack of available biological material. 
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proportion seen with time. The compensation was not sufficient since thymic export was 

still reduced in aged mice. 

4.2.3 Peripheral lymphocyte variation with age 

Next, the peripheral distribution of lymphocytes was studied across time in spleen, 

lymph nodes and blood of WT and KO mice (see gating strategy Figure 4.8). Mutant mice 

showed a higher T-cell frequency and lower B-cell frequency compared to WT mice in 

the three organs at the three ages analyzed, even though statistical significance was not 

reached in the blood of 3mo- and 6mo-old mice (Table 4.1). Aging had almost no impact 

upon B- and T-cell distribution in mutant mice, except an increase in blood B-cell 

frequency and a decrease in splenic T-cell frequency in 18mo-old KO mice. Similar 

increased B-cell and decreased T-cell frequency was found in LN and blood but not in the 

spleen of 18mo-old WT mice. Comparison of CD4 and CD8 T-cell distribution between 

WT and KO mice revealed more disparate results: there was either no difference or 

higher CD4 (LN at all ages, blood 18mo) and lower CD8 (LN at all ages, blood 3mo and 

18mo, spleen 18mo) proportion in function of age and organ studied (Table 4.1). 

Unexpectedly, the inverse result (lower CD4 and higher CD8 frequencies) occurred in the 

spleen of 6mo-old KO mice, but the difference was slight (around 3%), therefore 

suggesting rather a stochastic result. Effect of aging upon CD4-CD8 distribution was also 

heterogeneous: percentage of CD4 decreased in LN and blood of aged WT and KO mice 

while CD8 proportion increased in LN and blood of WT mice only, and decreased in 

spleen of aged KO mice. Consequently, the CD4/CD8 ratio decreased in LN and blood of 

both mice (for example in LN: 1.2 ± 0.04 at 3mo vs 0.9 ± 0.04 at 18mo in WT and 1.5 ± 

0.08 at 3mo vs 1.2 ± 0.08 at 18mo in KO mice, data not shown). Finally, Treg cells 

frequency was not different between WT and KO mice, besides the slight increase in 

spleen of 3mo-old KO mice. In both mice, Treg frequency increased with aging in the 

three lymphoid organs. 

Study of the evolution of naive and memory of T-cells across time in peripheral organ of 

WT and KO mice is described in Table 4.2. Despite some exceptions, KO mice exhibited a 

bigger pool of naïve cells than WT, lower proportion of TCM and normal TEM, for both 

CD4 and CD8 T cells, whatever the organ or age. As expected, aging was accompanied by 
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a decrease in the pool of naïve cells and an increase in memory cells in the spleen and 

LN of WT and KO mice. Results were more heterogeneous in the blood (see Table 4.2). 

Within the memory pool, CD4 and CD8 TEM were markedly increased at 18 months. CD8 

TCM also increased while CD4 TCM were reduced, already at 6 months of age. 

Table 4.1. Lymphocyte subpopulations in peripheral lymphoid organs of 3mo-, 6mo- 
and 18mo-old WT and KO mice. 

Frequency  3mo  6mo  18mo 

(% of parent 

population) C57BL/6J WT 

(n = 15)
3
 

Ghrh-/- KO 

(n = 16)
3  

C57BL/6J WT 

(n = 8)
2 

Ghrh-/- KO 

(n = 16)
3  

C57BL/6J WT 

(n = 9)
3 

Ghrh-/- KO 

(n = 12)
2 

Spleen         

B-cell 60.0 ± 1.36 52.5 ± 1.18 ***  61.4 ± 0.85 51.7 ± 1.06 ***  61.9 ± 1.67 54.1 ± 1.46 ** 

T-cell 30.6 ± 1.23 35.5 ± 1.17 **  28.9 ± 1.25 33.9 ± 1.41 *  28.3 ± 1.84 30.2 ± 1.29 

 aaa 

T CD8 36.7 ± 0.61 36.9 ± 1.08  36.0 ± 0.67 38.8 ± 0.81 *  37.1 ± 0.93 30.5 ± 1.76 **  

aa, bbb 

T CD4 57.4 ± 0.66 56.2 ± 1.04  57.0 ± 0.40 54.3 ± 0.86 *  55.7 ± 1.08 58.5 ± 1.93  

b 

Treg 14.0 ± 0.38 17.3 ± 0.60 ***  17.9 ± 0.69 

aaa 

18.0 ± 0.61  29.3 ± 1.98 

aaa, bbb 

29.2 ± 2.43 

aaa, bbb 

Lymph node         

B-cell 33.8 ± 1.85 26.5 ± 1.56 **  39.8 ± 3.42 27.6 ± 1.94 **  53.6 ± 2.50 

aaa, bb 

22.9 ± 2.02*** 

T-cell 63.2 ± 1.82 70.1 ± 1.60 **  56.5 ± 3.43 68.2 ± 2.27 *  43.3 ± 2.66 

aaa, b 

67.7 ± 2.23*** 

T CD8 43.5 ± 0.74 39.0 ± 1.15 **  44.5 ± 0.38 40.8 ± 1.00 *  49.8 ± 1.07 

aaa, bbb 

41.8 ± 1.49 ** 

T CD4 53.1 ± 0.71 57.8 ± 1.13 **  50.4 ± 0.48 

a 

55.5 ± 1.05 **  42.0 ± 0.95 

aaa, bbb 

50.4 ± 1.48 ** 

aaa, bb 

Treg 12.5 ± 0.53 12.5 ± 0.22  16.1 ± 0.51 

aaa 

16.3 ± 0.70 

aaa 

 30.3 ± 2.13 

aaa, bbb 

30.7 ± 2.12 

aaa, bbb 

Blood         

B-cell 46.1 ± 2.65 43.3 ± 2.55  54.2 ± 3.10 43.1 ± 5.39  75.7 ± 3.58 

aaa, bb 

54.2 ± 2.63 *** 

aa 

T-cell 38.7 ± 1.64 30.4 ± 3.62 *  29.8 ± 3.83 

a 

33.3 ± 6.31  17.2 ± 2.00 

aaa, b 

26.9 ± 2.19 * 

T CD8 42.5 ± 1.58 37.3 ± 1.43 *  44.9 ± 2.09 46.1 ± 2.95 

a 

 58.2 ± 2.53 

aaa, bb 

37.5 ± 2.71 *** 

b 

T CD4 54.9 ± 1.55 55.3 ± 0.96  52.2 ± 1.94 49.6 ± 3.53  35.5 ± 2.03 

aaa, bbb 

47.5 ± 2.24 ** 

aa 

Treg 9.2 ± 0.98 8.0 ± 0.63  7.5 ± 0.90 7.8 ± 0.44  13.0 ± 0.92 

a, bb 

11.2 ± 1.99 

b 

Data (mean ± SEM) are representative of two2 or three3 independent experiments. 
Unpaired t-test or Mann-Whitney test was used according to the Gaussian distribution of each set of data. 
KO mice compared to age-matched WT: *** p < 0.001, ** p < 0.01, * p < 0.05. 
Comparison of 6mo or 18mo vs 3mo (a) and 18mo vs 6mo (b) within the same strain: aaa, bbb: p < 0.001; 
aa, bb: p < 0.01; a, b: p < 0.05 
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Table 4.2. Naïve and memory T-cell distribution in peripheral lymphoid organs of  
3mo-, 6mo- and 18mo-old WT and KO mice. 

Frequency  3mo  6mo  18mo 

(% of parent 

population) C57BL/6J WT 

(n = 15)
3
 

Ghrh-/- KO 

(n = 16)
3  

C57BL/6J WT 

(n = 8)
2 

Ghrh-/- KO 

(n = 16)
3  

C57BL/6J WT 

(n = 7)
3 

Ghrh-/- KO 

(n = 6)
1 

Spleen         

CD4 naive 12.0 ± 0.62 29.7 ± 1.30 ***  12.1 ± 0.75 21.0 ± 1.36 *** 

aaa 

 3.4 ± 0.36  

aaa, bb 

9.6 ± 2.67 

aaa, bbb 

CD4 TCM 61.7 ± 2.20 45.6 ± 1.42 ***  52.1 ± 2.03  

aa 

50.7 ± 1.39 

a 

 21.2 ± 2.57  

aaa, bbb 

21.5 ± 4.04 

aaa, bbb 

CD4 TEM 24.6 ± 1.62 23.7 ± 1.47  35.5 ± 2.08 

aaa 

27.9 ± 1.99 *  74.7 ± 2.60 

aaa, bbb 

68.5 ± 6.33 

aaa, bb 

CD8 naive 47.9 ± 1.05 57.5 ± 1.26 ***  47.1 ± 1.74 59.2 ± 1.55 ***  17.9 ± 2.18 

aaa, bbb 

29.8 ± 6.02 

aaa, bbb 

CD8 TCM 40.8 ± 1.31 31.0 ± 1.02 ***  42.6 ± 1.57 31.2 ± 1.48 ***  59.4 ± 3.69 

aaa, bbb 

44.5 ± 2.15 ** 

aaa, bbb 

CD8 TEM 7.1 ± 0.69 7.3 ± 0.59  9.4 ± 0.57 

a 

7.6 ± 0.42 *  22.4 ± 2.89 

aaa, bbb 

24.4 ± 4.17 

aaa, bbb 

Lymph node         

CD4 naive 15.2 ± 0.97 35.7 ± 1.72 ***  16.6 ± 0.66 31.4 ± 1.78 ***  10.6 ± 1.33 

a, b 

24.5 ± 3.37 ** 

aa 

CD4 TCM 72.1 ± 1.80 48.7 ± 1.95 ***  63.0 ± 4.68 

a 

54.3 ± 1.70 * 

a 

 52.9 ± 2.39 

aaa 

37.6 ± 3.25 ** 

aa, bbb 

CD4 TEM 11.5 ± 0.99 13.4 ± 1.29  18.7 ± 4.17 

a 

13.3 ± 0.88  36.2 ± 3.01 

aaa, bb 

37.1 ± 5.15 

aaa, bbb 

CD8 naive 57.6 ± 1.19 66.4 ± 1.21 ***  59.7 ± 1.31 65.1 ± 1.51  39.5 ± 2.72 

aaa, bbb 

40.2 ± 4.64 

aaa, bbb 

CD8 TCM 37.3 ± 1.25 25.4 ± 0.84 ***  34.5 ± 1.44 28.0 ± 1.73 *  54.1 ± 2.21 

aa, bb 

47.5 ± 4.29 

aaa, bbb 

CD8 TEM 2.6 ± 0.21 2.8 ± 0.21  3.5 ± 0.27 

a 

3.0 ± 0.25  5.9 ± 0.81 

aaa, b 

9.2 ± 1.66 

aaa, bbb 

Blood         

CD4 naive 15.8 ± 0.88 27.1 ± 4.20 **  19.3 ± 1.93 31.9 ± 2.87 **  18.7 ± 6.06 30.6 ± 4.45 

CD4 TCM 76.7 ± 1.72 36.6 ± 5.31 ***  67.3 ± 2.22 

aa 

49.9 ± 4.06 **  51.9 ± 5.02 

aa, b 

40.9 ± 4.03 

CD4 TEM 6.6 ± 0.90 27.8 ± 7.45 ***  12.1 ± 1.79 

aa 

14.0 ± 2.83  34.9 ± 6.08 

aaa, bb 

28.3 ± 8.25 

CD8 naive 53.4 ± 2.86 31.7 ± 6.19 **  48.6 ± 3.18 44.9 ± 4.03  32.5 ± 5.99 

aa, b 

38.8 ± 6.74 

CD8 TCM 42.6 ± 3.00 42.8 ± 1.87  40.5 ± 2.03 41.52 ± 2.39  49.0 ± 5.05 50.5 ± 4.66 

CD8 TEM 2.6 ± 0.46 17.4 ± 5.08 ***  8.4 ± 1.81 8.34 ± 1.71  20.8 ± 6.55 

aaa, bbb 

10.5 ± 2.94 

Data (mean ± SEM) are representative of one1, two2 or three3 independent experiments. 
Unpaired t-test or Mann-Whitney test was used according to the Gaussian distribution of each set of data. 
KO mice compared to age-matched WT: *** p < 0.001, ** p < 0.01, * p < 0.05. 
Comparison of 6mo or 18mo vs 3mo (a) and 18mo vs 6mo (b) within the same strain: aaa, bbb: p < 0.001; 
aa, bb: p < 0.01; a, b: p < 0.05 

4.2.4 Conclusions 

This second part of the work aimed in investigating the impact of aging upon immune 

system of Ghrh-/- mice. If we assumed that somatopause was responsible for 

immunosenescence as some authors hypothesized, we could expect that congenital 

somatotrope deficiency of the Ghrh-/-
 mice would then accelerate immune aging. 

Here we observed that Ghrh-/- mice present a slight premature thymic atrophy as 

demonstrated by the decrease in thymic relative weight and absolute and relative 
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cellularity at 6mo compared to 3mo in KO mice while, in WT mice, this decrease could 

only be seen at 18mo. However, the final extent of thymus involution was quite similar 

between normal and mutant mice.  

Analysis of thymus phenotype revealed a decrease in the proportion of DN subset in 

young and middle-aged Ghrh-/- mice, compensated by an increase in DP cells at 3mo and 

CD8 SP cells at 6mo. At 18mo, mutant mice exhibited normal distribution of thymocytes, 

similar to that observed in normal mice. In addition, mutant mice presented a higher 

percentage of thymic Treg cells, which increased with age, while the proportion seemed 

stable in WT miceiv. Moreover, the observed differences in proportions of thymocyte 

subsets were of only 1 to 2%. Reliability and pertinence of such small differences is 

questionable. 

TREC analysis revealed a difference in the effect of aging on thymopoiesis between 

normal and mutant mice. In aged WT mice, thymopoiesis was altered after the DN 

stages, with lower intrathymic proliferation and less naïve cells output than in young or 

middle-aged mice, but no difference in the number of the early dβTRECs. On the 

opposite, in aged KO mice, a defect in thymopoiesis was reflected by a lower number of 

dβTRECs, which was compensated by an increase of intrathymic proliferation, although 

this was unable to maintain thymic export to level similar to those in young animals. This 

reduction in dβTREC number could result from a quantitative defect resulting from the 

decline in the entry of progenitors into the thymus, and/or qualitative defect due to 

diminution of successful β-chain rearrangements. Both of these mechanisms have been 

described in mice [206,207]. 

Finally, age-induced changes in lymphocytes distribution in peripheral lymphoid organs 

were studied in mutant and Ghrh-/- mice. First, it is important to note that analysis and 

interpretation of so many parameters was a complex task. A statistical test with a p-

value of 0.05 means that there was 5% risk to wrongly affirm that the difference 

observed is not random. So here, where multiple parameters are analyzed, there was 

                                                     
iv However, only 5 of the 9 analyzed thymi were exploitable in this group of 18mo-oldWT, due to 
experimental problems. Therefore, we could have missed a similar increase in thymic Treg cells of normal 
mice. 
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one chance out of 20 to obtain irrelevant statistical significance. Therefore, careful and 

critical interpretation should be applied. Here, only consistent repeated results were 

taken into consideration. A first conclusion drawn from analysis of spleen, lymph nodes 

and blood was that the differences observed between normal and Ghrh-/- mice at 3mo 

(i.e. lower B-cell and higher T-cell frequencies and higher proportion of naïve T cells and 

diminution of memory pool in KO vs WT mice) were maintained throughout live. 

Altogether, analysis did not reveal a strong differential effect of aging on peripheral 

lymphocytes between Ghrh-/- and normal mice. Both maintained relatively constant 

proportion of B and T cells and, as expected, they experienced a shift in the pool of naïve 

to memory T cells, within which mostly TEM were increased. Frequency of CD4 T cells 

decreased in the blood and LN of normal and mutant mice, but an inverted increase of 

CD8 frequency was observed only in WT organs. This resulted in a decreased CD4/CD8 

ratio in the two compartments of the two types of aged mice, although the intensity of 

this decrease was more important in WT mice. 

Taken together, those results highlighted a slight premature thymic involution and some 

differential mechanisms triggering thymopoiesis defect, but no difference was observed 

in peripheral immune aging. Those differences were not enough striking to declare that 

premature immune aging or aggravation of immunosenescence occurred in GH-deficient 

mice.  
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4.3 GH supplementation 

Several studies demonstrated that GH treatment is able to restore the disturbed 

immune parameters found in GH-deficient mice [110,111,160,176,184], to increase 

thymopoiesis in normal mice [161,168], or to rejuvenate the immune system of aged 

rodents [112,201–203]. In order to verify if a short-term GH treatment could restore the 

slight differences observed in Ghrh-/- mouse (B-cell number and thymopoiesis) model, 

3mo-old mice were supplemented during 6 weeks with a physiological dose of 

recombinant human GH or DPBS as control. Three-month old WT mice were also 

supplemented in order to detect a possible beneficial effect of GH treatment in non-

deficient animals. Finally, aged mutant and normal mice were treated to investigate the 

ability of GH to improve the aging immune system. 

4.3.1 Metabolic effects of GH treatment 

The efficiency of GH treatment was easily controlled by studying its metabolic effects. 

First, weight and glycaemia of GH or control injected mice were recorded each week to 

control effects of GH upon growth and glucose metabolism. Results showed that daily 

GH treatment induced a weight gain for both young and aged WT and KO mice, even 

though the effect was far more important in congenitally deficient mice with a ~45% 

increase for 3mo and ~15% for 18mo compared to ~11 and ~7% respectively for WT 

mice (Figure 4.18 A). Moreover, GH supplementation significantly increased spleen and 

thymus weight in KO (p<0.001) but not WT mice (Figure 4.18 B). Basal glycaemia was 

lower in GH-deficient than in normal mice. It did not vary during GH treatment in WT 

mice, while blood glucose increased in mutant mice but remained within normal value 

(Figure 4.18 A). Finally, the expected GH stimulation of IGF-1 was controlled in the liver. 

Treatment induced a significant increase of Igf1 expression in the liver of aged and 

young KO mice, but was ineffective in WT mice, suggesting the existence of regulatory 

mechanisms that ensured a constant IGF-1 level (Figure 4.18 C). Taken together, those 

results validated the metabolic efficacy of the GH supplementation in young and aged 

WT and mutant mice, although the effects were far more important in GH-deficient 

mice. 
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Figure 4.18 – Metabolic effects of short-term GH supplementation. Young (3mo) and aged (18mo) WT 
and KO mice were daily injected with GH or control DPBS (Ctrl). (A) Week-to-week variations of weight 
expressed in percentage of starting value (weight at d0) and glycaemia (mg/dl). (B) Spleen and thymus 
weight after 6 weeks of treatment. (C) Relative expression of Igf1 to Hprt in the liver. Data (mean ± SEM) 
are representative of 2 independent experiments (n=7-10 per group). Two-way ANOVA test (time and 
treatment, p-value are shown for Ctrl vs GH; for A) or unpaired t-test (for B and C) were used for statistical 
analysis. *** p < 0.001, ** p < 0.01, * p < 0.05, ns = non-significant.  

4.3.2 Thymus phenotype and function after short-term GH treatment 

Immunological effects of GH supplementation were first studied in the thymus. As 

shown in Figure 4.19, frequency of the four thymocytes subpopulations after six weeks 

of GH treatment did not significantly differ from control injected mice, whatever the age 

and the phenotype of the mice. Intrathymic Treg cells did not show variations between 

control and treated mice, except a slight diminution in WT at 3mo (3.4 ± 0.15 in ctrl vs 

2.66 ± 0.13 in GH groups). In order to follow TREC number variations during GH 

supplementation, TRECs were measured in PBMC sampled every second week. Basal 

values were analyzed two weeks before the first GH injection. Globally, results in 

Figure 4.20 showed no effects of GH treatment on TREC content in PBMCs. Two-way 
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ANOVA test revealed a significant difference between control and GH treated groups for 

sjTRECs in 3mo-old WT mice and dβTRECs in 18mo-old KO mice, but there were no 

significant interactions between time and treatment, suggesting that GH effect was not 

the same at each time-point and was probably fortuitous. Moreover, Bonferroni post-

tests that compared control and treated group at each time point were non-significant. 

Therefore, those two significant results were not considered as pertinent. 

 
Figure 4.19 – Impact of GH supplementation on thymocyte distribution. Frequency of DN, DP, SP C D4 
and SP CD8 thymocytes and intrathymic Treg cells in 3- and 18-mo old WT (n=3-7) and KO (n=9-10) mice 
after 6 weeks of daily GH or control DPBS-injection (Ctrl). Data (mean ± SEM) are representative of 2 
independent experiments. Unpaired t-test or Mann Whitney test were used for statistical analysis, 
according to the Gaussian distribution of each group. ** p < 0.01. 

 
Figure 4.20 – Impact of GH supplementation on TREC frequency. Number of sjTRECs, dβTRECs and the 
sj/Dβ ratio in PBMCs of young (3mo) and aged (18mo) WT (n=9-10) and KO (n=10) mice during 6 weeks of 
daily GH or control DPBS-injection (Ctrl). Data (mean ± SEM) are representative of 2 independent 
experiments. Two-way ANOVA test (time and treatment) was used for statistical analyses (p-value are 
shown for Ctrl vs GH; ns = non-significant).   
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4.3.3 Peripheral lymphocyte variations during GH treatment 

Finally the impact of GH supplementation was analyzed in periphery. A blood sample 

was taken (every second week) to follow by flow cytometry the variations of peripheral 

lymphocytes (gating strategy Figure 4.8). Some results are shown in Figure 4.21. 

Proportion of B and T cells varied across time. One-way ANOVA test revealed significant 

difference between control and GH injected groups in both WT and KO mice. 

Nevertheless, for an unknown reason, these proportions were already different at d0, 

before the first GH injection. Therefore, the statistical difference was probably due to 

this basal difference in B- and T-cell proportions between control and treated groups 

rather than to a true effect of GH treatment. However, no effect of treatment was 

observed regarding naïve CD4 and CD8 T cells. No variations were either found in CD4, 

CD8, TCM, TEM or Treg proportions (data not shown). Similar results were obtained in 

aged mice, as well as in spleen and lymph nodes analyzed after 6 weeks of treatment 

(data not shown). 

 
Figure 4.21 – Impact of GH supplementation on blood lymphocytes. Variations of the frequency of 
B cells, T cells, naïve CD4 and CD8 T cells in the blood of 3mo-old WT (n=9-10) and KO (n=10) mice during 6 
weeks of daily GH or control DPBS injection (Ctrl). Data (mean ± SEM) are representative of 2 independent 
experiments. Two-way ANOVA test (time and treatment) was used for statistical analyses (p-value are 
shown for Ctrl vs GH; ns = non-significant). 
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4.3.4 Conclusions 

This experiment was conducted to evaluate the ability of GH to restore normal immune 

parameters in Ghrh-/- mice, including TREC numbers, B- and T-cell frequency and the 

proportion of naïve T-cell pool. The potent immunostimulatory properties of GH 

supplementation were also investigated in normal and GH-deficient young and aged 

mice. Mice were injected daily with a physiological dose of recombinant human GH 

(Genotonorm, 1mg/kg), which was sufficient to induce metabolic effects such as growth, 

glucose release and IGF-1 expression in the liver. The effect was more spectacular in a 

GH-deficient context, even though treatment failed to restore values of normal mice. In 

WT mice, the treatment was unable to alter glycaemia or liver Igf1 expression and 

induced only a moderate weight gain, probably because of regulatory mechanisms that 

maintained constant levels of GH and IGF-1 by down-regulating GHRH production (see 

Figure 1.1). Despite clear evidence of its efficiency, GH supplementation had no effect 

on thymic and immunological parameters. Treatment was unable to restore normal 

parameters in Ghrh-/- mice and had no immunostimulatory properties, except the 

increase of thymus and spleen weights. Moreover, aging was not a sensitizing factor to 

GH treatment, since no additional effects were observed in aged mice either. 





Results 

85 
 

4.4 DXM-induced stress 

At this stage, results obtained in Ghrh-/- mice in basal conditions revealed only a small 

impact of somatotrope deficiency upon immune system development and aging. 

Moreover, short-term GH treatment was ineffective to induce changes in immune and 

thymic parameters. This is in accordance with the stress hypothesis, according to which 

somatotrope hormones could play a role only in case of stress to counteract stress-

induced immunosuppressors [186]. Therefore, organisms that lack such hormones 

would be unable to correctly deal with stressful events and to maintain immune system 

homeostasis. In an attempt to explore this hypothesis in the Ghrh-/- mouse model, stress 

was mimicked in 3mo-old mice through challenge with DXM, a synthetic GC known to 

cause reversible thymic atrophy by inducing massive thymocyte apoptosis. A 

longitudinal follow-up of thymic volume by MRI allowed assessment of thymic atrophy 

and recovery in mutant and normal mice. In addition, thymopoiesis was investigated by 

flow cytometry analysis of thymocyte sub-populations and TREC quantification. 

4.4.1 Thymic volume follow-up by MRI 

MRI has been shown to be a powerful non-invasive quantitative technique to follow 

DXM-induced thymic atrophy [196,197]. Thymus is detectable without contrast agent 

because of its signal intensity different from surrounding tissues (Figure 4.22 A, yellow 

line). MRI sessions were performed in collaboration with Dr Guillaume Becker and Pr 

Alain Plenevaux from the Cyclotron Research center. Mice were scanned at d0 before 

the single injection of DXM 20mg/kg and at days 2, 5, 10 and 14 thereafter in order to 

cover the thymus atrophy, expected to occur at d2 post-injection, and subsequent 

recovery starting from d5 and complete at d14. As shown in the pictures 4.22 A, thymus 

integrity seemed fully recovered in WT mice 2 weeks post-injection, while sections 

appeared smaller at d14 than at d0 for KO mice. As thymus volume was smaller in 

mutant mice than in WT, data were normalized in percentage of starting value (volume 

at d0) and are shown in Figure 4.22 B. Both WT and KO mice displayed a diminution of 

their thymic volumes at d2, followed by progressive recovery. Two-way ANOVA test 

revealed that variations of thymic volumes after DXM-injection differed between WT 

and KO mice (effects of strain p<0.01; time p<0.001; interaction p<0.05). Indeed, 
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Bonferroni post-tests showed a significant lower recovery of mutant thymus at d10 and 

14 (respectively 66.1 ± 1.04% and 66.4 ± 6.48% of starting volume) compared to WT 

mice (107.5 ± 10.58% and 126.7 ± 15.2%). Evolution of thymic volumes in control 

injected groups was similar between both strains, revealing no effect of control injection 

or experimental procedure upon thymic volumes. 

 

 
Figure 4.22 – MRI follow-up of thymic volume after DXM injection. (A) Representatives MRI slices 
showing thymus (ROI, yellow) of WT and KO mice at d0 and d14 after a single DXM injection. Lines show 
three successive slices around the maximal ROI. (B) Evolution of thymic volumes normalized in % of d0 
value is shown for WT and KO mice treated with DXM (n=6 per group) or control solution (Ctrl, n=4 per 
group). Data (mean ± SEM) are representative of 2 independent experiments. Two-way ANOVA test (time 
and strain) with Bonferroni post-test (WT vs KO) were used for statistical analyses. *** p < 0.001, 
* p < 0.05. 

A 

B 
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4.4.2 Thymus weight and cellularity 

In order to complete and reinforce results obtained by longitudinal follow-up, groups of 

mice were injected with DXM and killed at each time-point. Thymus were weighted and 

numbers of cells in cell suspensions were counted in Neubauer chamber. As represented 

in Figure 4.23, thymic weights and cellularities were significantly decreased at d2 and d5 

post-DXM injection compared to basal d0 measures (without DXM injection), in both WT 

and KO mice. As soon as d10, thymus returned to basal values (left panel). Since thymic 

weight and number of cells were different between normal and mutant mice, data was 

normalized in percentage of d0 values, in order to be able to compare WT and KO 

atrophy and recovery after DXM-injection (right panel). Variations of thymic weight 

were similar in both strains. On the opposite, recovery of thymic cellularity differed 

between WT and KO groups (two-way ANOVA: strain p<0.05; time p<0.001; interaction 

non-significant), with a significant difference at d15 (171.8 ± 34.8% in WT vs 87.7 ± 

12.32% in KO).  

 
Figure 4.23 – Evolution of thymus weight and cellularity after DXM injection. Absolute thymus weight 
and cellularity (left panel) and weight and cellularity normalized in % of d0 value (right panel) in WT and 
KO mice at d0, 2, 5, 10 and 15 post DXM injection (n=8-12 per group) and d15 post control injection (n=4). 
Data (mean ± SEM) are representative of 3 independent experiments. Left panel: unpaired t-test or Mann 
Whitney test were used for statistical analysis, according to the Gaussian distribution of each group 
(comparison to d0: *** p < 0.001, ** p < 0.01 * p < 0.05). Right panel: two-way ANOVA test (time and 
strain) with Bonferroni post-test (WT vs KO: # p < 0.05) were used for statistical analyses.  
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Altogether, those results indicated that the thymus of normal and Ghrh-/- mice returned 

to normal weight and cellularity by d10 post DXM injection, but recovery of cells was 

slightly greater in WT animals. 

4.4.3 Flow cytometry analysis of thymocyte sub-populations 

DXM strongly disturbs thymopoiesis by inducing severe thymocyte apoptosis. To follow 

this effect, flow cytometry analyses of thymocyte subpopulations were performed at 

basal level (d0) and at days 2, 5, 10 and 15 post DXM injection. The number of each cell 

subset was counted with the FACS Verse method (see 4.1.4 spleen phenotype). Results 

showed again that both WT and KO mice recovered normal distribution and number of 

thymocytes at d10 post-DXM injection (Figure 4.24 and 4.25). However, the impact of 

DXM treatment strongly differed at d2 post-injection. Indeed, DP population almost 

completely disappeared (2.2±0.62%) in WT thymus, resulting in increased proportion of 

the three others subpopulations while, in KO mice, the DP percentage remained 

important (37.4±4.03%) and equivalent to SP CD4 cells (35.6±2.41%, Figure 4.24 A). 

Analysis of cell number in each subset revealed that this difference in proportion was 

exclusively due to DP cells (0.2x106 ± 62.6x104 cells in WT vs 2.7x106 ± 39.7x104 cells in 

KO mice) while other subset presented similar cell number in WT and KO groups 

(Figure 4.24 B). Comparison of the impact of DXM and recovery between WT and KO 

mice by normalization of thymocytes frequency to basal value confirmed a differential 

effect at d2, where WT animals exhibited an ~97% drop in DP frequency and an 

approximately 8-fold increase in SP CD4 and SP CD8 frequencies while changes in KO 

mice were far more moderate (only 2-fold difference, Figure 4.25). Recovery at d5 also 

significantly differed between WT and KO animals (Figure 4.25). It seemed that WT mice 

returned to normal values of DN, DP and SP CD8 percentages faster than KO mice. DXM 

treatment increased Treg cell proportions in the thymus of both mice, but with a higher 

effect in KO mice (Figure 4.25). 
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Figure 4.24 – Evolution of thymocyte frequency and number after DXM injection. (A) Representative dot 
plot of flow cytometry analysis of thymus (pre-gated on Thy1.2+ cells) of WT and KO mice after DXM 
injection. Means ± SEM are shown for each subset. (B) Number of DN, DP, SP CD4 and SP CD8 cells at d0, 
2, 5 and 10 after DXM injection. Data (mean ± SEM) are representative of 3 independent experiments 
(n=8-12). Unpaired t-test or Mann Whitney test were used for statistical analysis, according to the 
Gaussian distribution of each group (comparison WT vs KO: *** p < 0.001, ns: non-significant).  

 
Figure 4.25 – Variations of thymocyte subpopulations distribution after DXM injection. Distribution of 
DN, DP, SP CD4, SP CD8 and Treg cell subsets normalized in % of d0 value in WT and KO mice at d0, 2, 5, 10 
and 15 post DXM injection (n=8-12 per group) and d15 post control injection (n=4). Data (mean ± SEM) are 
representative of 3 independent experiments. Two-way ANOVA test (time and strain) with Bonferroni 
post-test (WT vs KO: ### p < 0.001, ## p <0.01 # p < 0.05) were used for statistical analyses. 
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4.4.4 TREC quantification 

Another way to investigate the effects of DXM on thymopoiesis was to analyze TRECs in 

thymic cell suspensions. Intrathymic TRECs were quantified as described in section 3.4. 

Unfortunately, results were hardly interpretable because of the differences in frequency 

of DN, DP and SP thymocytes induced by DXM treatment. Indeed, with this method, 

TRECs were expressed in function of total thymocytes. As DβTRECs are produced in DN 

cells and sjTRECs in DP cells, the number of each TREC in the thymus is strongly 

dependent on the proportion of each subset. For example, since DN frequency was 

higher at d2 than in d0 in WT mice (Figure 4.24 A), it resulted in a 2-fold increase in 

DβTREC number (data not shown). It would therefore be interesting to quantify TRECs in 

sorted thymocytes to avoid this bias of subset frequency. Hence, TREC quantification will 

not be taken into account in this experiment. 

4.4.5 Conclusions 

In this part, a metabolic stress was induced in mice by injection of DXM and ability of 

mice to respond to this stress was studied in the thymus. Indeed, this synthetic GC 

induces massive thymic atrophy by apoptosis of thymocytes, but normal thymus 

function and histology is restored within two weeks. This thymus reduction and recovery 

was followed by longitudinal study of of thymic volumes by MRI or in a cross-sectional 

measurement of thymus weight and cellularity. Unfortunately, those techniques 

reported here contradictory results. With the first one, Ghrh-/- mice recovered less than 

normal mice, with a mean thymic volume of 66% of initial value two weeks after DXM 

injection while WT mice showed an even increased volume. But tissue weight 

measurement did not confirm this delayed recovery since both mutant and normal mice 

presented normal weight and cellularity as soon as d10 post-DXM treatment. This 

discrepancy of results could reflect a difference in cell density of mutant thymus. If cells 

were more spaced within the thymus area, this could lead to some increased volume 

without affecting the absolute weight as the quantity of matter is equal. However, we 

cannot exclude technical imprecisions in measurement of thymus volumes by MRI. 

Despite that Brooks and colleagues validated MRI as a non-invasive method to follow 

thymus involution with high statistical power and less animals needed [196], our own 
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experience was less convincing. Images were not always clear and thymus was 

sometimes hardly distinguishable from surrounding tissues, especially in dwarf mice for 

which the stereotaxic holder was not adapted to their smaller size, making it difficult to 

correctly position the mouse for MRI acquisition. Therefore, a reasonable doubt can be 

assumed regarding the accuracy of MRI-measurement of thymic volumes. 

This idea is reinforced by flow cytometry analysis of thymopoiesis. Frequencies of the 

four thymic subpopulations were markedly disturbed at d2 post DXM-injection, but they 

returned to normal by d10 in both normal and mutant mice. Nevertheless, the effect of 

DXM at d2 differed between both mice. DP cells almost completely disappeared in WT 

mice, while a significant DP population was visible in Ghrh-/- thymus. DP thymocytes are 

known to be the most sensitive to GC-induced apoptosis [208]. Two non-mutually 

exclusive possibilities could explain this difference in DP number: either Ghrh-/- DP cells 

are more resistant to DXM-induced apoptosis, or the recovery in mutant mice occurs 

faster and better so that they already showed more than 30% of DP cells at d2. This last 

theory is consistent with the hypothesis of increased influx of ETPs in mutant thymus as 

evocated in section 4.1.7. 

Finally, flow cytometry analysis also revealed a slight delay in mutant recovery at d5. 

Indeed, WT mice showed frequencies of DN, DP and SP CD8 closer to normal values than 

mutant mice.  

Altogether, those results did not allow validating or invalidating the stress hypothesis. 

Mutant mice seemed more resistant to DXM effects on thymopoiesis at d2, but they also 

presented a slight delay in recovery of thymocyte distribution and possibly of thymus 

volume. Further investigations with other type of stress will be of interest, like LPS or 

infectious stress. 
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5 Discussion and conclusions 

While an abundant literature describes the effects of GH upon the immune system, its 

real implication in immune physiology remains unclear and controversial. Most of the 

previous work was done in mouse models with multiple pituitary deficiencies (GH, 

prolactin and thyrotropic hormone), making it difficult to identify the precise role of 

each hormone. In my thesis, I investigated a model with a unique specific deficiency of 

the somatotrope GHRH/GH/IGF1 axis due to Ghrh deletion, in an attempt to elucidate 

the physiological role of somatotropic hormones in immune system development and 

function. I did not find any obvious immunodeficiency, thymic defect or premature aging 

in Ghrh-/- mice. Moreover, GH treatment had no immunological effects whatever the 

phenotype and the age of the mice. Altogether, those results suggest that the 

somatotrope axis is not crucial for normal immune system development and 

maintenance. This is in accordance with the stress hypothesis. Nevertheless, the DXM 

experiment was unhelpful in figuring out the necessity of somatotrope hormones to 

manage GC-mediated stress since Ghrh-/- mice exhibited either enhanced, delayed or 

comparable response to DXM-treatment. 

5.1 Critical reviewing of results homogeneity across experiments 

This work includes four distinct experimental parts (basal characterization, aging, GH 

supplementation and DXM), within which the same parameters were analyzed in WT 

and Ghrh-/- mice. Table 5.1 summarizes the results obtained in KO mice compared to WT 

controls for parameters shared by the four experiments (i.e. thymus and spleen weight 

and cellularity, thymus phenotype, TREC and peripheral lymphocyte frequency). Some 

results were not consistent across experiments: statistical differences observed in one 

group were not reproduced or even the opposite result was found in other experiments. 

In addition to the normal biological variations in living animals, this heterogeneity of 

results could be explained in part by experimental bias that could have occurred despite 

our effort to minimize time-to-time variations. Indeed, this work was spread over 5 

years. During this long period, technical and analytical skills of manipulators had 

evolved, product lots were different, devices were getting older or replaced, and 

housing conditions of mice colonies may have varied. This could induce small differences 
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from one experiment to another. In addition, it is important to keep in mind that 

statistical analyses could also lead to wrong interpretations. With the criteria applied 

here, 5% of the statistical differences between WT and KO mice might be presumably 

due to coincidence rather than to the Ghrh mutation. 

Given these restrictions, only results that were found repeated across several 

experiments are considered as true and reliable and will be taken into account to build 

the firmest conclusions (in bold in Table 5.1). This includes the following differences 

found in Ghrh-/- compared to non-deficient animals: 

- Reduced absolute weight for spleen and thymus. 

- Reduced relative weight for spleen (relative spleen weight is equal between WT 

and KO group in backcrossed animals, but Salvatori’s team also found reduced 

relative spleen weight [49] so this result seems reliable). 

- Decreased absolute spleen cellularity but equal relative spleen and thymus 

cellularity. 

- Tendency to reduced frequency of DN cells in the thymus. 

- Higher number of sjTREC. 

- Lower B and higher T frequencies in peripheral lymphoid organs. 

- Increased pool of naïve T cells and reduction in memory T cells. 

 



 

 
 

Table 5.1. Comparison of results in KO compared to WT mice in different experiments 

KO vs WT 
Original strain  

(DXM d0) 
Backcrossed groups 

Aging 

(3mo, 6mo, 18mo)
2
 

GH supplementation
1
 

(3mo, 18mo)
2
 

Thymus weight ↙ absolute ; ↗ relative ↙ absolute ; ↗ relative ↙ absolute 3-6mo ;  

↗ relative 18mo ↙ 6mo = 3mo 

↙ absolute ; = relative  

 

Spleen weight ↙ absolute ; ↙ relative ↙ absolute ; = relative ↙ absolute ; ↙ relative  ↙ absolute ; ↙ relative  

Thymus cellularity = absolute ; = relative = absolute ; = relative ↙ absolute ; = relative N.D. 

Spleen cellularity ↙ absolute ; = relative ↙ absolute ; = relative ↙ absolute ; = relative (3-6mo) ↗ 18mo N.D. 

Thymus phenotype No differences (except 

tendency ↙ DN) 

↗ DP ; ↙ SP CD4 ; 

tendency ↙ DN 

↙ DN 3-6mo ; ↗ DP 3mo ; ↗ SP CD8 6mo ; 

↗ Treg 3-18mo  

↙ DN 3mo ; ↗ DP 3mo ; ↙ SP CD4 3mo ;  

↗ Treg 3-18mo 

TREC N.D. ↗sj ; = Dβ ; = ratio ↗sj ; ↗ Dβ ; ↙ ratio 3mo = 6mo ↗ 18mo ↗sj ; ↗ Dβ ; = ratio 3mo ↗ 18mo 

Peripheral B-T (%) ↙ B ; ↗ T  ↙ B ; ↗ T ↙ B ; ↗ T ↙ B ; ↗ T blood and LN but = spleen 

Peripheral CD4-CD8 

(%) 

= CD4 ; = CD8 = CD4 ; = CD8 = CD4 except ↗ in LN and blood 18mo ;  

= CD8 except ↙ in LN, blood 3-18mo and 

spleen 18mo 

= CD4 in spleen, ↗ in LN and blood ;  

= CD8 in spleen and LN, ↙ in blood  

Peripheral naïve-

memory T cells (%) 

↗naive ; ↙ TCM ;  

= TEM 

↗naive ; ↙ TCM CD8 ; 

↙ TEM 

↗ naive ; ↙ TCM (except = CD4 TCM 

spleen 6-18mo and = CD8 TCM blood) ;  

= TEM (except ↙ in spleen 6mo and ↗ 

blood 3mo) 

↗ naive ; ↙ TCM (except = CD4 TCM 

spleen 3-18mo, blood 18mo, LN 18mo) ;  

= TEM (except ↙ in spleen 3-18mo and ↙ 

CD4 TEM in blood 18mo and LN 18mo) 

Peripheral Treg (%) = Treg = Treg  = Treg except ↗ in spleen 3mo = Treg except ↗ in spleen 3mo and ↙ blood 

18mo 

In bold are results found similar in all experiments. ND: not determined 
1
 Results from all mice before GH injection if data available or only DPBS group otherwise 

2
 If not specifically stated, similar difference occurs at all ages and in all organs analyzed 
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5.2 Reassessment of the impact of the somatotrope axis upon adaptive 

immunity 

The first objective of my thesis was to evaluate the role of the somatotrope 

GHRH/GH/IGF-1 axis upon immune system development. If GHRH, GH or IGF-1 were 

crucial for immune system physiology, we could expect that the severe somatotrope 

deficiency of the Ghrh-/- mouse will result in significant immunodeficiency, especially in 

the thymus, as this was shown in Snell-Bagg and Ames-Dwarf mice [109,111,159,160]. 

My thesis reveals that Ghrh-/- mice are not thymo-deficient. Thymus weight and 

cellularity are similar to normal animals when corrected to the smaller size of Ghrh-/- 

mice and the distribution of the four thymocyte subsets is unaltered, with the exception 

of a slight decrease in DN frequency. On the opposite, Ghrh-/- mice show an improved 

thymopoiesis compared to normal mice, as demonstrated by the higher number of 

sjTRECs and the increased proportion of naïve cells. It was shown that naïve cells in mice 

derived mostly from thymic output and not from peripheral proliferation as in humans, 

even in older animals [209]. Therefore, the higher pool of naïve cells in Ghrh-/- mice truly 

reflects enhanced thymopoiesis, probably due to increased influx of progenitors into the 

thymus, faster commitment of DN to DP stages and/or decreased apoptosis of 

thymocytes. This sounds surprising since GH and IGF-1 had been shown to have exactly 

the same effects: they increase thymopoiesis [162,163,165] and improve homing to the 

thymus [162,168,169]. How the deficiency in those hormones could lead to similar 

effects than what they are supposed to induce is intriguing. It probably involves 

compensation by other neuroendocrine hormones. Indeed, PRL and thyroid hormones 

have also been shown to improve intrathymic T-cell development [210–213]. 

Similarly, no deficiency in peripheral mature T lymphocytes was found. Instead, T-cell 

frequency was enhanced while B-cell frequency was reduced in peripheral lymphoid 

organs of Ghrh-/- mice. Similar observations were previously obtained in Snell-Bagg and 

lit/lit mouse models, where cellularity and phenotype of the thymus was normal but 

mice exhibited reduced splenic B cells [177,184]. In addition, those authors found 

normal B lymphopoiesis in bone marrow of GHRHR-deficient lit/lit mice, suggesting that 

the somatotrope axis is involved in the maintenance of the peripheral B-cell pool but not 

in their development [177]. Ghrh-/- mice also exhibit functional B lymphopoiesis and 
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their bone marrow contains more B-committed B220+ cells than normal mice. This is in 

contradiction with a previous study showing that GH promotes commitment of marrow 

stem cells to the B lineage [181]. Another study revealed that IGF-1 triggers the 

expression of µ-heavy chain by pro-B cells, leading to differentiation into pre-B cell 

[179]. However, in Ghrh-/- mice, progression of pro-B to pre-B cells seems also increased 

as suggested by the lower proportion of pre-pro-B and pro-B subsets and higher 

frequency of pre-B cells. A possible explanation of those discordant results is that in 

those two studies, GH and IGF-1 effects upon B lymphopoiesis were tested in vitro and 

could not reflect the normal in vivo situation. In any case, the decrease in peripheral B-

cell frequency observed in Ghrh-/- mice is a strictly peripheral event that does not 

originate in the bone marrow. Moreover, it is not due either to a reduced B-cell 

proliferation, since Ki67 labeling revealed a higher proliferation rate of B-cell in Ghrh-/- 

spleen. This lets the possibility of an increase in B-cell apoptosis. GH has been shown to 

prevent mature B-cell apoptosis in B-cell lines, by increasing Bcl-2 and reducing caspase-

3 intracellular levels [214]. Finally, investigations in Ghrh-/- mice do not allow figuring out 

if B-cell number is really decreased in periphery or if the proportion is reduced because 

of an increase in T-cell production. 

The second part of my thesis consisted of evaluating immune aging in Ghrh-/- mice. The 

current hypothesis suggests that immunosenescence is triggered by the decrease in 

neuroendocrine hormones, especially GH and IGF-1. The hallmark of immunosenescence 

is thymus involution. First studies in dwarf mice revealed premature thymic atrophy 

[109,159,160]. In those studies, mice lifespan did not exceed 60 days, therefore 

suggesting that the mice were not in healthy conditions since GH deficiency normally 

leads to increased lifespan [51]. Premature immune aging was not reproduced in other 

studies in dwarf mice or in other mouse models like lit/lit, Igf1-/- or thyreotrope-deficient 

mice [177,184,205]. A group even found delayed immune aging in Snell-Bagg mice [54]. 

Study in Ghrh-/- mice show that thymic involution seems to occur between 3- and 6-mo 

of age in mutant mice while it starts after 6mo in non-deficient mice. In addition, TREC 

quantification reveals possible differential mechanism involved in the loss of efficiency 

of thymopoiesis, with an alteration that seems to occur after DN stage in normal mice 

while defect in Ghrh-/- mice affects earlier stages. Nevertheless, both normal and mutant 
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mice exhibited a decreased thymic output at 18 but not 6mo of age. Similarly, the 

replacement of naïve T cells by memory cells and the increase in CD4/CD8 ratio occurs 

between 6 and 18mo in both types of mice. In humans, CD4/CD8 ratio tends to decrease 

with age [215], but the opposite trend was observed in mice [216,217]. Taken together, 

those results reveal only slight impact of the somatotrope deficiency on immune aging, 

arguing that somatopause is not the main factor that induces immunosenescence. 

Numerous studies showed that GH treatment in mice could improve several immune 

parameters, including thymus and spleen weight and cellularity, thymopoiesis or 

lymphocyte numbers [110,111,160,161,169,175,176]. Especially in aged rodents, GH 

treatment has been shown to be able to rejuvenate involuted thymus [112,201–203]. 

However, our own experiments reveal that GH treatment has no effect on 

immunological parameters of young or aged C57BL/6J and Ghrh-/- mice, despite 

evidences of metabolic activity induced by GH injections. Indeed, at physiological dose 

of 1mg/kg daily-injected, total body and spleen and thymus weight were increased and 

liver production of IGF-1 was stimulated, although without reaching WT values in Ghrh-/- 

mice, as previously observed [49]. Nevertheless, thymus function and peripheral 

lymphocyte frequencies remained similar to control injected animals, even in old 

animals. This is not in contradiction with previous studies. Most of them demonstrate 

that GH treatment increases size and cellularity of lymphoid organs and enhances cell 

proliferation, which is probably what happens in Ghrh-/- mice although we do not have 

data about cellularity and cell proliferation after GH treatment. But frequency of 

thymocytes or peripheral lymphocytes, when analyzed, was generally not influenced by 

GH treatment [201,202]. Only one report describes reactivation of thymopoiesis with 

increase in DP and decrease in DN cells following implantation in aged rats of GH3 cells, 

which produce GH and PRL [203]. However, the proportion of DP and DN cells in young 

rats were quite aberrant in this study (20% and 30% respectively). Thus, it seems that GH 

treatment exerts a promoting effect indifferently on all cell types of the immune system 

and even more globally on the whole body scale. Nonetheless, it is still perplexing that 

the differences induced by the somatotrope deficiency observed in Ghrh-/- mice, like 

decreased B-cell proportion and increased naïve T cells and TREC number, are not 

corrected when mice are supplemented with GH. It might be because the dose injected 
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was not sufficient to have some impact on those parameters despite its evident 

metabolic efficiency. Most of the studies showing immune restoration in dwarf mice 

used doses that were 100-times higher than in the present work [110,111,176]. Another 

possibility is that defects in Ghrh-/- mice are acquired during B and T cells ontogeny and 

are independent of the peripheral GH environment. In that case, only long-term or post-

natal GH supplementation could restore the B-T ratio and naïve-memory proportion. 

Finally, we cannot exclude that the differences exhibited by Ghrh-/- mice are not due to 

GH or IGF-1 but directly to GHRH deficiency. If true, GHRH treatment should be able to 

restore normal parameters in Ghrh-/- mice. 

Altogether, results obtained in Ghrh-/- mice in basal conditions reveal only a weak impact 

of the somatotrope deficiency on immune system development and aging, suggesting 

that integrity of the somatotrope axis is not required for those processes in normal 

conditions. This is in agreement with the stress hypothesis according which somatotrope 

hormones are important regulators of immune homeostasis in case of stress by 

counteracting negative effects of stress mediators, like GC [186]. In this work, DXM was 

used to mimic stress in Ghrh-/- mice, and thymic atrophy and recovery was followed. It 

appears that Ghrh-/- mice present a better resistance and faster recovery of DP 

thymocytes 2 days post-DXM treatment, but recovery was slightly delayed at d5 

compared to non-deficient mice. Previous studies demonstrated that PRL prevents DXM-

induced in vitro apoptosis of thymocytes, while GH was less efficient [218]. It would be 

interesting to measure PRL levels in Ghrh-/- mice. Maybe the activity of the lactotrope 

axis is enhanced to compensate the somatotrope deficiency? Higher PRL concentrations 

would explain the better resistance of DP thymocytes to DXM-induced apoptosis. On the 

opposite, IGF-1 administration in rats has no anti-apoptotic effects but increases the DP 

recovery at day 5 post-DXM injection [219]. The lack of IGF-1 in Ghrh-/- mice might 

explain the delayed DP recovery as seen at d5. Nevertheless, altogether those results do 

not allow validating or invalidating the stress hypothesis. Further investigations with 

other types of stress are needed. My colleague Khalil Farhat is currently testing the 

resistance of Ghrh-/- mice to Streptococcus pneumoniae (S.pneum) infection and 

vaccination. Preliminary results are very interesting. Indeed, Ghrh-/- mice show acute 

pulmonary infection after intranasal S.pneum instillation, as assessed by pulmonary 
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bacterial load (Figure 5.1), accompanied by septicemia, while non-deficient WT or HZ 

animals are able to eliminate the infection within 24h. In addition to the reduced 

resistance to S.pneum infection, response to S.pneum vaccination is also impaired in 

Ghrh-/- mice, as demonstrated by the lower production of specific IgM compared to non-

deficient mice [220]. Quite interestingly, lymphocyte infiltration in the lungs presents a 

lower proportion of B cells in Ghrh-/- mice compared to WT, similar to that found in 

lymphoid organs in basal conditions (Figure 5.2). 

 
Figure 5.1 – Bacterial load in lungs after Streptococcus pneumoniae infection. The presence of bacteria in 
lung homogenates of backcrossed (WTb, HZb, KOb) mice was determined by CFU assay 24h and 48h post 
intra-nasal infection. Data (mean ± SEM) are representative of 2 independent experiments. Unpaired t-
test was used for statistical analysis. n=8 per group. *** p < 0.001, * p < 0.05.  

 
Figure 5.2 – Lymphocyte infiltrates in lungs after Streptococcus pneumoniae infection. Percentage of B- 
and T-cell in lungs of backcrossed (WTb, HZb, KOb) mice was determined by flow cytometry analysis. Data 
(mean ± SEM) are representative of 2 independent experiments. Mann-Whitney test was used for 
statistical analysis. n=2-7 per group. ** p < 0.01, * p < 0.05.  
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5.3 Toward a new approach: somatotrope axis and innate immunity 

In light of the recent results obtained by my colleague Khalil Farhat regarding S.pneum 

infection in Ghrh-/- mice, we are suggesting a new theory: somatotrope hormones could 

be required for innate immunity development and function. Indeed, at the time where 

normal mice eliminated S.pneum infection, cellular and humoral responses are not yet 

activated. Bacterial elimination seems therefore triggered by innate cells. The dramatic 

loss of control of S.pneum infection in Ghrh-/- mice could result from a defect in innate 

immunity. This hypothesis will be the subject of K.Farhat’s further investigations. To our 

knowledge, the impact of somatotrope deficiency upon innate immune system has 

never been studied. However, as described in section 1.4.2, innate cells are potential 

targets for GH and IGF-1. They promote their survival, activation and function (killing 

and phagocytosis). Somatotrope deficiency might result in: 1) developmental defect in 

the generation of innate cells; 2) inability of innate cell to recognize and/or be activated 

by foreign antigens and/or 3) reduced killing, phagocytic and antigen-presenting 

functions.  

Interestingly, this hypothesis could explain several of the surprising results obtained 

during basal characterization of the Ghrh-/- mouse model. First, if somatotrope 

hormones are required during myeloid cell development, their absence could induce a 

reduction in the number of myeloid progenitors in the bone marrow, leading to 

increased proportion of others progenitors, including B220+ B-committed cells as 

observed in Ghrh-/- mice. Secondly, the involvement of the somatotrope axis in innate 

cell activation and function may affect not only innate but also adaptive responses. 

Indeed, adaptive immunity requires proper activation signals provided by innate APCs. In 

a context of a somatotrope deficiency, functional defect in innate immunity could lead 

to reduced killing activity and poor early control of infections, but also to impaired 

phagocytosis and presentation to adaptive cells, resulting in lower B- and T-cell 

activation. This could explain the poor vaccine response observed by K.Farhat in Ghrh-/- 

mice. It is also a possible explanation for the GH-dependent decreased susceptibility of 

these mice to induction of EAE [193]. This experimental model of multiple sclerosis is 

induced by injection of MOG antigen. If the antigen is not properly processed and 

presented by CPA, auto-reactive lymphocytes will not be activated and mice will develop 
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less severe symptoms. The defect in antigen presentation and lymphocyte activation 

could also explain the increased in vitro response observed for Ghrh-/- B and T cells. 

Indeed, lymphocytes may have adapted to the lack of activation by lowering the 

activation threshold required for cell activation. This is called the ‘tuning’, a concept 

according which lymphocytes may reversely adapt their activation threshold in function 

of the ambient signals, including APC contacts [221]. A lower activation threshold leads 

to higher/faster activation than in normal mice in response to the same stimulatory 

signal. Nevertheless, this compensatory mechanism in lymphocytes seems not sufficient 

to restore a normal in vivo response to vaccination or MOG antigen. 

In conclusion, this works brings new evidence of the non-essential role played by the 

GHRH/GH/IGF-1 axis on adaptive immune system development and maintenance. 

Instead, it argues in favor of an effect upon innate immunity and opens the way for 

further investigations of this hypothesis and the role of the somatotrope axis in 

supporting immune system during infectious stress. This could lead to new interesting 

findings about the physiological role of the somatotrope axis in immunity and help to set 

up new therapeutic strategies to improve immune response in contexts of 

immunodeficiency, like acute infection or aging. 
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