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Introdu
tionGoutte nf Très petite quantité d'un liquide qui se déta
he ave
 une forme sphérique.Droplet: small amount of liquid that breaks away with a spheri
al shape. This is thede�nition given by the famous Fren
h di
tionary Larousse [1℄. The droplet is de�nitely a dailyen
ountered 
on
ept. Strings of raindrops that fall and slide on our windows, small pearlsobserved on spider webs in the early morning, oily droplets that spread everywhere and makethese so feared grease stains, the drip-drip of syringes, spatters, tears... but also fog, sprays,spindrift, ink drops in printers, fuel drops inje
ted in motors, et
. Finally, we must not forgetthe emulsions (e.g. dairy produ
ts, beauty 
reams) obtained when two immis
ible liquids arefor
ed to blend together: one of them forms a myriad of tiny droplets into the other, resultingin an usually opaque material.A droplet... an outwardly simple obje
t... whi
h has no reason to 
aptivate ? The de�nitionproposed by di
tionaries do not stand the test of daily observation. The oily stains are notremoved without 
leaning agents, and the small droplets on our winds
reens 
annot �y awayunless a powerful wind blows them out. Regarding the spheri
ity, it is only en
ountered in avery spe
ial 
ase: a droplet �oating in weightlessness. On the 
ontrary ! The atypi
al shapesof droplets in "normal" 
onditions have often inspired artists and poets. The physi
s hiddenbehind this 
on
ept of "droplet" is in fa
t extremely ri
h and 
omplex. A 
ountless numberof questions have been raised by s
ientists during the last 
entury, that remain 
urrentlyunanswered.On a te
hnologi
al point of view, the droplet seems to be the absolute must in mi
ro�uidi
s,i.e. the miniaturization of �uid pro
esses. Many appli
ations make use of the manipulation ofvery small amounts of liquid. Nevertheless, to deal with droplets is not as simple as it seems:let's leave a water droplet on the table and try to pi
k it up ba
k entirely to put it elsewhere.Impossible to 
olle
t the whole volume all at on
e! The droplet inevitably leaves on the tablea signi�
ant part of its 
ontents, no matter how pri
eless it is. Hopefully, the droplet physi
shas a tri
k or two up its sleeve.In this thesis, we propose to explore various te
hniques that would "skillfully" handledroplets, and to study the related physi
al phenomena. By "skillful" manipulation, we meanthat a simple rule is satis�ed: the more a droplet is tou
hed by solid surfa
es, the moreits properties (volume, 
hemi
al 
omposition, physi
al properties) are likely to be a�e
ted.Therefore, in droplet handling, we must avoid 
onta
t with solid parts, so far as we 
an.We start with two introdu
tory 
hapters; the �rst one sets the s
ene and gives the physi
alba
kground required to understand this thesis, while the se
ond one is a non-exhaustive reviewof the 
urrent te
hnologi
al advan
es and improvements related to the droplet physi
s. Themanus
ript is then divided in two parts. In the �rst, we dis
uss the behavior of droplets in the6



vi
inity of another liquid interfa
e. In parti
ular, the boun
ing of liquids is deeply investigatedthrough several examples. We explain how the observed phenomena may be useful to handleindividual droplets without tou
hing them. The se
ond part is dedi
ated to the study ofdroplets on �bers. We show that many elementary mi
ro�uidi
 operations 
an be performedthanks to simple �ber networks. Finally, the main 
on
lusions and the numerous perspe
tivesof this thesis are summarized.
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Chapter 1At droplet s
ale...I have often been impressed by the s
anty attention paid even by original work-ers in physi
s to the great prin
iple of similitude. It happens not infrequently thatresults in the form of "laws" are put forward as novelties on the basis of elabo-rate experiments, whi
h might have been predi
ted a priori after a few minutes'
onsideration. However useful veri�
ation may be, whether to solve doubts or toexer
ise students, this seems to be an inversion of the natural order. Lord Rayleigh,in Nature (1915) [2℄It is surprising to see how liquids behave di�erently a

ording to the s
ale they are observed.Indeed, the for
es that drive these liquids and shape them usually depend on the 
hara
teristi
size of the system. For example, the Coriolis for
e, whi
h is due to the Earth rotation, isresponsible for various phenomena related to the atmospheri
 and o
eani
 
ir
ulations atplanet s
ale. On the other hand, 
ontrary to a 
ommon mis
on
eption, its impa
t is negligibleon the dire
tion of the vortex observed when we drain our sink. Time and length s
alesinvolved in the Earth rotation (one day and several thousands kilometers) have nothing in
ommon with the s
ales of a sink draining (one minute and a few tens of 
entimeters). Soea
h physi
al phenomenon, ea
h for
e, ea
h in�uen
e has its own range of s
ales on whi
hit is e�
ient. At droplet s
ale (say from mi
rometer to millimeter), the dominant for
es areoften due to 
apillarity. As an example, the small water inse
t in Fig. 1.1(a) relies on 
apillaryfor
es to move on water and 
limb on plants. Nevertheless, other for
es (gravity, vis
osity,inertia, ...) may also be important at this s
ale and 
ountera
t 
apillary e�e
ts. In order toevaluate the relative impa
t of ea
h for
e on the system, we de�ne dimensionless numbers that
orrespond to the ratios between these se
ondary for
es and 
apillarity [3, 4℄ .1.1 Surfa
e tensionCapillary e�e
ts shape the mi
ros
opi
 world like no other for
e 
an do. Indeed, they areamong the rare for
es in physi
s that exert on a surfa
e and not in bulk. Although gravityattra
ts obje
ts downwards, 
apillary for
es have no favorite dire
tion: they only tend toredu
e the surfa
e of a liquid exposed to the neighboring. The resulting 
omplexity is wellillustrated in Fig. 1.1(b-
).Capillarity results from the 
ohesion of liquids (to be general, every 
ondensed phase).Mole
ules in the bulk experien
e an isotropi
 attra
tion from their neighbors whi
h self-8



Figure 1.1: (a) This water inse
t has to 
limb on the liquid interfa
e 
urved by surfa
e tensionin order to rea
h the leaf. To pro
eed, it bends its ba
k so it also 
urves the surroundingwater surfa
e. The ex
ess surfa
e of water between the inse
t and the plant spontaneouslyresorbs, exerting a for
e that pulls the animal onto the leaf [5℄ - (Credit J.W.M. Bush, MIT).(b) Water droplet taking an ephemeral, un
ommon and relatively evo
ative shape during asplash on a water bath [6℄ - (Credit : www.liquids
ulpture.
om). (
) The 
ollision betweentwo jets is able to generate 
omplex stru
tures su
h as this "ba
kbone" [7℄ - (Credit J.W.M.Bush, MIT). 9



balan
es, while mole
ules lo
ated at the liquid boundary are only attra
ted toward the 
enter,resulting in a net for
e inwards. This latter 
orresponds to a potential energy higher for sur-fa
e mole
ules than for others. The ex
ess of surfa
e potential energy Eσ is proportional tothe surfa
e S of the liquid obje
t
Eσ = σS, (1.1)the proportionality fa
tor is 
alled surfa
e tension σ. It also 
orresponds to a (
onservative)for
e per unit length, exerted tangentially to the liquid interfa
e.When the liquid surfa
e is 
urved, surfa
e tension 
reates a dis
ontinuity in the stressnormal to the interfa
e. If the liquid is at rest, this dis
ontinuity results in an overpressure

∆p inwards, given by Lapla
e law
∆P = σ∇ · ~n = 2σC, (1.2)where ∇ · ~n is the divergen
e of the normal ve
tor of the interfa
e, equal to twi
e the mean
urvature C. For a spheri
al droplet of radius R, C = 1/R and ∆P = 2σ/R.Surfa
e tension is mainly modi�ed by two fa
tors; it de
reases when the temperaturein
reases and when surfa
tant mole
ules are added. Inhomogeneities in temperature or sur-fa
tant 
on
entration 
orrespond to surfa
e tension gradients. These latter are responsible forthe dis
ontinuities in tangential stress, that 
an set the liquid into motion [8℄.1.2 Gravity, Bond number and the 
apillary lengthGravity attra
ts obje
ts towards the Earth 
enter with a for
e proportional to the obje
tmass M , the proportionality 
onstant being the a

eleration of gravity g = 9.81 m/s2. Thepotential energy related to this 
onservative for
e is Eg = MgZ, where Z is here the height ofthe mass 
enter of the obje
t. A spheri
al droplet has thus an additional gravity energy MgR
ompared to a 
on�guration where the liquid 
ompletely spreads on the table. This ex
essmay be 
ompared to the surfa
e energy of the droplet Es = 4πσR2, whi
h de�nes the Bondnumber Bo =

Mg

4πσR
=
ρgR2

3σ
∼ GravitySurfa
e tension . (1.3)The 
apillary for
es are more important than gravity for length s
ales smaller than the 
apillarylength

λσ =

√

σ

ρg
. (1.4)This length only depends on the liquid physi
al properties. For usual liquids, σ ∈ [20, 70] mN/mwhile ρ ∼ 1000kg/m3 : the 
apillary length is about a few millimeters. Both the height ofthe menis
us formed at 
onta
t between a bath and its 
ontainer and the maximal size of adroplet are of the order of the 
apillary length. When a droplet is dipped into an immis
ibleliquid of similar density ρs, the 
apillary length is 
onsiderably larger and the Bond numbersmaller, namely Bos =

|ρ− ρs|gR2

3σs
and λσs =

σs

|ρ− ρs|g
, (1.5)where σs the interfa
ial tension between both liquids.10



1.3 Inertia, Weber number and 
apillary timeInertia may be seen as the ability of obje
ts to resist external for
es. The inertial for
eis given by the produ
t of mass and a

eleration. Inertia is often opposed to surfa
e tensionin impa
t problems [6℄. For a droplet of mass M impa
ting an obje
t at speed V , the 
orre-sponding kineti
 energy is given by K = MV 2/2. We de�ne the Weber number as the ratiobetween this kineti
 energy and the surfa
e energy Eσ:We =
3MV 2

4πσR2
=
ρV 2R

σ
∼ InertiaSurfa
e tension . (1.6)When We ≪ 1, the droplet is hardly deformed by the kineti
 energy released at impa
t. Onthe other hand, when We ≫ 1, the ex
ess kineti
 energy turns into enough surfa
e energy tomake the droplet blow up into a myriad of mi
rodroplets.1.3.1 Capillary waves on a dropletCapillary waves at the surfa
e of a liquid result from a 
ombination of inertia and surfa
etension. Inertia is here related to internal �ows inside the liquid. At the surfa
e of a droplet,small amplitude waves may be des
ribed as a sum of eigenmodes 
alled spheri
al harmoni
s

Y m
ℓ . These deformation modes of a sphere are made of a number of hollows and humps. Thoseregions are separated by meridian and parallel imaginary 
ir
les 
orresponding to the zero-deformation points of the sphere (Fig. 1.2). Spheri
al harmoni
s are denoted by two integers:the degree ℓ is the total number of zero-deformation 
ir
les, and the order m is the numberof meridians among these 
ir
les. Harmoni
s with m = 0 are always symmetri
 around theverti
al axis. For example, mode Y 0

2 
orresponds to a spheroid, i.e. an ellipsoid of revolution.
Figure 1.2: Spheri
al harmoni
s of degree ℓ = 5 for various values of the order m. Regionsof hollows and humps, always alternated, are separated by 5 zero-deformation 
ir
les, m ofwhi
h are verti
al and 5 −m horizontal.The dispersion relation of waves at the surfa
e of a �oating droplet yields the naturalfrequen
y f(ℓ,m) of ea
h mode Y m

ℓ ,
f2
(ℓ,m) =

ℓ(ℓ− 1)(ℓ+ 2)

3π

σ

M
. (1.7)Initially obtained by Lord Rayleigh (App. C), this relation suggests that the frequen
y doesnot depend on m; there is a degenera
y a

ording to this parameter. The wave period isproportional to the 
apillary time

τσ =

√

M

σ
. (1.8)This time is 
hara
teristi
 of surfa
e-tension-driven motions at droplet s
ale. We show innext 
hapters that the boun
ing of a droplet and its fusion with a liquid bath both o

ur at11



times
ales 
lose to τσ. A millimetri
 oil droplet 
orresponds to τσ ∼ 10 ms, so fast imaging(up to thousands of frames per se
ond) is often required to observe these phenomena [9℄.1.4 Vis
osity, Ohnesorge number and the vis
ous lengthThe �uid vis
osity is related to the momentum di�usion. Two nearby �uid parti
les (sep-arated by a distan
e dx) with slightly di�erent velo
ities (u and u+du) exert a stress µdu/dxon ea
h other, µ being the dynami
 vis
osity. The di�usion 
oe�
ient ν, also 
alled kinemati
vis
osity, satis�es ν = µ/ρ. Vis
osity leads to dissipative for
es that do not derive from anypotential energy. Moreover, as in every di�usion pro
ess, the vis
osity transfers informationover a distan
e that in
reases with time. The vis
ous time τν = R2/ν is the time needed totransfer momentum over the droplet s
ale R by di�usion. The Ohnesorge number is de�nedas the ratio between 
apillary and vis
ous times,
Oh =

ν
√
ρ√

σR
∼ τσ
τν

∼ Vis
ositySurfa
e tension . (1.9)Among others, this number is proportional to the damping fa
tor of 
apillary waves on thedroplet (App. C). Vis
osity invalidates the inertia/
apillary balan
e at s
ales smaller than thevis
ous length
λν =

ρν2

σ
. (1.10)Like the 
apillary length, the vis
ous length only depends on the liquid properties. For σ ∼

40 mN/m and ρ ∼ 1000 kg/m3, the vis
ous length is 25 nm for a liquid as vis
ous as water(ν ∼ 1 
S), and 250 µm for a ν = 100 
S liquid. In that 
ase, vis
ous e�e
ts are alwayssigni�
ant at droplet s
ale. In parti
ular, 
apillary waves are fully damped at the surfa
e ofsu
h vis
ous liquids.

12



Chapter 2Droplets in s
ien
e and engineeringPra
ti
al appli
ations of the droplet physi
s are numerous, and we are unable to list themall. This 
hapter gives an overview of some s
ienti�
 and engineering problems involvingdroplets. In parti
ular, we explain how droplets 
an be useful in mi
ro�uidi
s, and we dis
ussthe various te
hni
al solutions that are 
urrently investigated in this �eld.Droplet physi
s is found everywhere, in everyday life, from the formation of raindropsto the sprays (paintings, fuel inje
tion, plant treatment), the emulsions, the ink-jet printing,et
. More exoti
 appli
ations are found in the s
ienti�
 litterature; e.g. the aeration of lakes(an absolute requirement for life inside) whi
h is mainly made by an air bubble trappingme
hanism that o

urs ea
h time a raindrop impa
ts the lake surfa
e [6℄. S
ientists have alsoobserved that some meteorites, named tektites, have a shape somewhat similar to droplets,whi
h suggest that they were formed thanks to analog physi
al pro
esses [10℄.The use of droplets is also promising in mi
ro-te
hnologies. For example, they 
an serve asbearing stru
tures [11℄. Glue and welding droplets 
an perform self-mi
ro-assembly [12℄, e.g.through elasto-
apillarity [13℄. Nowadays, droplets are already used as opti
al lenses in ourmobile phone 
ameras ((Fig. 2.1a-b). Two immis
ible liquids of di�erent refra
ting index arepla
ed in a small tube, the walls of whi
h are 
overed with an hydrophobi
 
oating. The �rstliquid, an aqueous solution, is a good ele
tri
al 
ondu
tor, while the se
ond liquid (an oil) is abad 
ondu
tor. By tuning the voltage a
ross the system, the hydrophobi
ity of the 
oating is
hanged (ele
trowetting), whi
h modi�es the shape of the water/oil interfa
e and so the fo
allength of this �uidi
 lens. Advantages of this te
hnique patented by Philips [14℄ are numerous:the mi
ro-lens fo
al length is tuned from 5 
m to in�nity in less than 10 ms, with a quasi-zeroele
tri
 
onsumption. The lifetime of this lens is estimated at more than one million fo
usingoperations without any loss of performan
e; the lens resists well to sho
ks and temperaturevariations. Droplets may be used as lenses in several other opto-�uidi
 operations [15℄. Butthe main 
urrent interest in droplet physi
s 
omes from mi
ro�uidi
s, as dis
ussed here below.2.1 Mi
ro�uidi
sMi
ro�uidi
s is the emergent part of �uid dynami
s that studies how to handle amountsof liquid smaller than 1 µL. It was born about two de
ades ago, when resear
hers begandis
ussing the intriguing idea of shrinking the equipment needed for everyday 
hemistry andbiology pro
edures to �t on a 
entimetri
 
hip. These pro
edures involve many elementaryoperations on �uids: displa
ement, inje
tion, division, fusion, mixing, dosage, extra
tion,13



Figure 2.1: (a) Lens-e�e
t of a droplet. - Credit : www.liquids
ulpture.
om (b) Opti
al lenswith variable fo
using patented by Philips [14℄. (
-e) Various te
hniques in digital mi
ro�u-idi
s : (
) Droplets are released in a multiphasi
 �ow inside a mi
ro-
hannel network [16℄.(d) Droplets are sandwi
hed between two solid substrates 
overed with printed 
ir
uits, andhandled by ele
trowetting. - Credit : http://mi
ro�uidi
s.ee.duke.edu (e) Droplets are pla
edon a printed 
ir
uit and moved by ele
trowetting, the guiding is ensured by 
atenary �bers[17℄.
14



identi�
ation, re
overy, storage, et
. The results of the bio
hemi
al rea
tions are 
ommonlybrought ba
k by using �uores
en
e te
hniques [18℄. Mi
ro�uidi
s bene�ts from the experien
ein mi
rofabri
ation of ele
troni
 systems a
quired during the twentieth 
entury. For example,many mi
ro�uidi
 systems are built in PDMS thanks to soft lithography, whi
h is an adap-tation of the te
hniques used in mi
roele
troni
s [19℄. But while this latter brilliantly followsthe Moore's law, the shrinking of �uidi
s has to fa
e mu
h more fundamental issues. Indeed,
ontrary to ele
tromagnetism, the physi
s of �uids widely depends on the system length-s
aleand seems not so easy to miniaturize [18℄.In twenty years of resear
h, s
ientists have brought a large panel of te
hniques, des
ribedhereafter, that are more or less suitable for given appli
ations. Nowadays, the greatest 
hal-lenge is to integrate these te
hniques into smart mi
ro�uidi
 systems that may be used bypeople who are not experts in �uid physi
s. Those systems must be widely and inexpensivelyavailable [19℄.2.1.1 Continuous vs. digital mi
ro�uidi
sCurrent mi
ro�uidi
 systems may be sorted in two main 
ategories: 
ontinuous and digi-tal. In 
ontinuous mi
ro�uidi
s, histori
ally the �rst, liquids travel into 
omplex mi
ro-
hannelnetworks through ele
trome
hani
al pumps, gates and mixers. The pumps are not as 
onven-tional, though air pressure 
ould push samples through 
hannels. But the 
hannel walls wouldexert a drag on the liquid, so that �uid at the 
enter of the 
hannel would move faster thanthat at the edge and 
on
entrated samples would qui
kly be
ome smeared. The most 
om-monly used alternative makes use of a phenomenon 
alled ele
tro-osmosis: the 
hannel wallionizes water mole
ules in its vi
inity and, when an ele
tri
 �eld is applied along the 
hannel,these ions �ow towards the negative pole and drag the rest of the �uid along with them;the liquid moves as a plug �ow [20℄. Continuous mi
ro�uidi
s is already used for mi
ros
aleheat transfer, display, ink-jet printing, et
. [21℄. Nevertheless, it is taking a long time to use
ontinuous mi
ro�uidi
s for bio-
hemi
al appli
ations, the main reason is that reagents arenot 
on�ned and may di�use through the entire network. Moreover, air bubble entrapmentfrequently o

urs when solvents do not perfe
tly wet the 
hannel surfa
e, resulting in drasti

hanges of the devi
e response dynami
s [18℄.In digital mi
ro�uidi
s, small droplets are used as 
ontainers in whi
h the liquid of interestis pla
ed. Droplets are almost ideal bio
hemi
al rea
tors be
ause they 
reate homogeneous
ontrolled 
onditions without any hydrodynami
 dispersion; the high surfa
e-to-volume ratiogrants very fast thermal transfer and internal re
ir
ulations inside the droplet allow e�
ientmixing. One of the main goals is thus to handle the many droplets that 
an be generatedwith only a minute amount of material, and to divide and re
ombine them in a multipli
ityof nanorea
tors so as to perform multiplexing. This requires the 
ontrol and reprodu
ibilityof many droplet operations: fabri
ation, sorting, storage, fusion and breakup among others.Potential appli
ations of digital mi
ro�uidi
s are numerous [16, 17, 21, 22℄. For example,genomi
s and proteomi
s, i.e. sequen
ing of the human genom (DNA) and the various proteinsit produ
es, may advantageously make pro�t from the high rates and indexing 
apabilities ofdigital mi
ro�uidi
s. Low-
ost, simple to use and reusable diagnosti
 tools should be designedfor medi
al, food and environmental appli
ations. In these 
ases, robustness is the mainrequirement, sin
e the physi
o-
hemi
al properties of the samples to analyze are not known apriori. Digital mi
ro�uidi
s is also of interest for synthesizing proteins, organi
 mole
ules ornanoparti
les. Cellular 
ultures may be parallelized through en
apsulation inside droplets; this15




on�ned environment allows an a

urate determination of what is absorbed/reje
ted by the
ell. Resear
hers also think about using droplets as a support to reprodu
e some networks offun
tional biologi
al rea
tions, su
h as enzyme 
y
les. Finally, advan
es in mi
ro�uidi
s 
ouldbe very useful for both pharma
euti
 [23℄ and food industries [24℄. Indeed, it is 
urrently theonly te
hnology that 
an produ
e 100%-su

ess en
apsulation of an a
tive substan
e by meansof a one-step pro
ess [25℄. For example, one 
an dissolve the desired mole
ules or polymersinto an organi
 phase and let the latter �ow into an aqueous stream to generate droplets. Todry the resulting emulsion, the organi
 solvent is either ex
hanged with the aqueous phase orslowly evaporated through it. A last step of ultraviolet-indu
ed 
ross-linking or polymerization
an then be used to solidify the 
olloids. The polydispersity of the parti
les 
an be as low as afew per
ent, far better than what is a
hievable with 
lassi
al means of generating emulsions.Many te
hni
al solutions have been explored to perform mi
ro�uidi
 operations, the mainones are dis
ussed here below.2.1.2 LevitationLevitation 
onsists in applying a for
e to the droplet that makes it �oat into the air byexa
tly balan
ing gravity. The for
e may result from aerodynami
al, a
ousti
al [26, 27℄, opti
al[28℄ or ele
tromagneti
al e�e
ts [29℄. Although appealing at �rst sight for spe
i�
 appli
ations[30℄, levitation is unwieldy to implement and is therefore inappropriate for most mi
ro�uidi
issues.2.1.3 Multiphasi
 �ow through mi
ro-
hannel networksNowadays, the most prominent mi
ro�uidi
 te
hnology [16℄ 
onsists in making use of animmis
ible 
arrying liquid (usually oil) to 
onvey nanoliter aqueous droplets through a mi
ro-
hannel network (Fig. 2.1
). This te
hnique is advantageous in many respe
ts. First of all,droplets 
annot evaporate, whi
h is appre
iated when dealing with tiny amounts of aqueoussolutions. Thanks to the well-de�ned velo
ity in 
hannels, it is possible to 
onvert temporalvariations (e.g. the kineti
s of a 
hemi
al rea
tion) into a spatial variation in the �ow dire
tion.A typi
al �ow of 0.1 m/s 
onve
ting 1 mm droplets allows a temporal resolution of 10 ms. Toavoid the 
ollision between two su

essive droplets in the 
hannel, one 
an separate them withplugs made of a third immis
ible phase (e.g. a gas) [31℄. The T -jun
tions between 
hannels are
onsidered as one of the elementary blo
ks of the network, on the basis of whi
h it is possibleamong others to 
reate the droplets: one bran
h of the T brings water, and both others
onvey the oil (Fig. 2.1
). This results in droplets of sizes 
omparable to the 
hannel diameter[16℄. T -jun
tions are also used as logi
al gates that may be 
ombined to perform 
omplexoperations su
h as 
ounting [32℄. The droplet size is 
urrently 
ontrolled by tuning the input�ow rates. Unfortunately, this a�e
ts simultaneously the frequen
y, 
omposition and speed ofthe droplets, whereas one would want to 
ontrol ea
h of these parameters independently [25℄. Anatural mi
rofabri
ation strategy is to integrate a
tuators in order to a
hieve a lo
al 
ontrol ofthe droplet motion. This gain in 
ontrol may unfortunately result in somewhat sophisti
ated,spe
ialized and expensive 
hips with limited �exibility and versatility. It must be ne
essary tostandardize a few basi
 on-
hip fun
tions, with a drift toward passive strategies that 
ombinesimpli
ity and robustness. For example, as an alternative to the 
omplex mi
rofabri
ation bylithography, mi
ro�uidi
 
ir
uits 
an already be 
reated on a support as simple as a papersheet thanks to a desktop plotter and some spe
ial inks [33℄.16



2.1.4 Ele
trowettingMi
ro
hannel networks su�er from an evident la
k of �exibility. In other words, it is hardto make di�erent operations on su

essive droplets. Moreover, these networks are usually notreprogrammable and are 
onsequently designed for a single spe
i�
 appli
ation. The handlingby ele
trowetting 
ould be an interesting alternative to that issue: operations are indeed drivenby ele
troni
 
ir
uits that 
an be programmed.The sandwi
h te
hnique [17, 34℄ 
onsists in pla
ing droplets in between two parallel solidplanes distant from about a few tenths of millimeter. The �rst plane is an insulator while these
ond is usually made of glass; both are 
overed with an hydrophobi
 
oating (Fig. 2.1d).Under the insulating layer, a series of ele
trodes are pla
ed that pilot the droplet; the 
on-du
ting glass is 
onne
ted to the ground. Droplets thus behaves as 
apa
itors, their 
apa
ityvaries with the interfa
e shape. Droplets are moved by su

essively a
tivating the ele
trodes:a droplet lying simultaneously on two 
ontiguous ele
trodes moves towards the a
tivated one.Although fusion between droplets is obviously performed, division of a single droplet is harder:the droplet may 
over at least three ele
trodes, the middle one is swit
hed o�, so dividing thedroplet in two parts. We perfe
tly understand that su
h a pro
ess 
annot perform divisionin hundreds of mi
ro-droplets, whi
h is though required for high-throughput multiplexingoperations. Moreover, the walls are never perfe
tly hydrophobi
, so the liquid may adhereon them [35℄. Droplets thus lose some mass by 
oating everything behind them [36, 37℄, so
ontaminating other next droplets that have to pass the same points.In order to minimize losses by 
oating, one 
an use only a single solid insulating surfa
eon whi
h droplets are also driven by ele
trowetting [17, 38℄. A mi
ro-
atenary may serve asthe se
ond ele
trode, as well as a guide for droplets (Fig. 2.1e). Another option 
onsists inhaving two parallel 
ondu
ting strips on the insulating surfa
e [39℄. Nevertheless, we notethat droplet division is even an harder issue with these te
hni
al solutions.2.1.5 Spontaneous motion on a
tive surfa
esDroplets 
an be driven by the physi
al properties of the solid surfa
e on whi
h they arereleased. For example, spontaneous motion is observed on surfa
es with a wettability gradientdue to thermi
, opti
al [21℄ or 
hemi
al e�e
ts [40℄. Hydrophobi
ity is also tuned by 
hangingthe mi
ro-texture [41℄. Like lotus leaves [42℄, the surfa
e may ally roughness to 
hemi
alhydrophobi
ity to o�er the minimum of surfa
e to water droplets. Conta
t angles up to 160◦are observed and surfa
es a
quire a kind of self-
leaning property : droplets roll on them,taking dust away [43℄.To de�nitely avoid 
onta
t, one may use the Leidenfrost e�e
t: when a droplet is pla
edon a very hot surfa
e, its bottom evaporates and the vapor 
reates a gas 
ushion on whi
hthe droplet �oats. On an asymmetri
ally textured surfa
e, Leidenfrost droplets experien
espontaneous motion [44℄. Although there is no 
onta
t between the droplet and the substrate,there is still an important mass loss through evaporation. Another solution to prevent 
onta
tis to texture the droplet itself, namely to 
over it with an hydrophobi
 powder [45, 46℄. So
oated, the droplet is moved without any fri
tion or mass loss. It 
an also �oat on the surfa
eof a water bath. Some inse
ts walk on water by using a similar te
hnique; their texturedhydrophobi
 legs o�er them a minimal 
onta
t with water [47℄.Finally, we note that droplets 
an be moved by inertial for
es, e.g. by shaking the solidsubstrate on whi
h they are pla
ed. Under given 
onditions, droplets may 
limb on in
lined17



vibrated surfa
es [48, 49℄. Su
h te
hnique has also been exploited in nature: some shorebirds�sh by striking the water surfa
e with their long thin beak, so extra
ting a droplet 
ontainingthe prey. The droplet 
limbs along the beak and rea
hes the mouth thanks to a qui
k ande�
ient su

ession of opening/
losing 
y
les [50℄.2.2 A need for alternativesIt is obvious, there is no te
hni
al solution without drawba
ks: impossibility to performsome basi
 operations, expensiveness, di�
ulty to use, la
k of �exibility and robustness, et
.Nevertheless, the droplet physi
s is far from being fully explored. One of the goals of this thesisis to propose some new alternatives that would 
omplete this range of existing te
hniques.The �rst part dis
usses an elegant variant of levitation, in whi
h droplets boun
e inde�nitelyon a liquid bath though they never tou
h ea
h other. A mu
h more promising solution ispresented in part two: droplets slide down �bers. The basi
s in mi
ro�uidi
s is advantageouslytransposed on simple �ber networks. In parti
ular, the division and multiplexing operationsare performed very e�
iently.
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Part IDroplets on liquid interfa
es
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Chapter 3Boun
ing or 
oales
en
e, life or deathThe 
ollision of two distin
t streams of drops presents points of interest whi
h have beenmade subje
t of examination. [...℄ When the angle of 
ollision is small, the disposition ofthe �les of drops may be made su
h that they rebound without 
rossing (�g.3). More often,however, the drops shoulder their way through after one or more 
ollisions, somewhat as in�g.4. [...℄ At a somewhat higher angle of 
ollision amalgamation will usually o

ur. Thestreams do not usually join into one, as we might perhaps expe
t, but appear to pass throughone another, mu
h as if no union of drops had o

urred. With the aid of the revolving diskthe 
ourse of things is rendered evident. The separating layer is indeed ruptured at 
onta
tand, for a short time, the drops move as one mass. There is, however, in general, 
onsiderableoutstanding relative velo
ity, whi
h is su�
ient to bring about an ultimate separation, pre
ededby the formation of a ligament (�g.5). Lord Rayleigh, 1882 (referen
e to Fig. 3.1).Lord Rayleigh (1879) was in the �rst physi
ists to investigate the intera
tions betweenseveral droplets [51℄. In his experiment [52℄, two jets destabilized in a series of falling droplets
ollide with ea
h other. The very fast motion of droplets is seen through strobos
opi
 e�e
t.Rayleigh observed various behaviors depending on the 
ollision parameters (angle, velo
ity):the droplets may boun
e on ea
h other, or fuse together (
oales
en
e) and possibly aftersplit into many droplets. The pi
tures from Rayleigh (Fig. 3.1) are remarkably a

urate andrealisti
. He also dis
ussed the signi�
ant impa
ts of many fa
tors, in
luding vis
osity, surfa
etension, solubility of the interstitial gas, ele
tri
 
harge, addition of surfa
tant mole
ules anddusts. His work has been 
ompleted by many authors [53, 54℄. Some of them have also studieddroplets intera
ting with a liquid bath [55, 56℄; again, the droplet may boun
e onto or 
oales
einto the bath.At the same time as Rayleigh, Worthington [57℄ was publishing his beautiful observationsof droplets impa
ting a bath at high velo
ity; this violent fusion is often 
alled a splash. Thedroplet usually turns into a 
rown that breaks up in a myriad of tiny droplets, as if the initialdroplet was blowing up. A powerful verti
al jet is formed at the impa
t point, whi
h usuallydestabilises into many droplets as in the experiment of Rayleigh. The transition between
oales
en
e and splash is des
ribed in [58℄. During impa
t, a small air bubble may be trappedunder the bath surfa
e. This bubble is mainly responsible for the noise made by raindrops[59℄. The air trapping is even greater when a liquid jet impa
ts a bath. The jet 
an alsoboun
e onto the bath [60℄ or penetrate inside [61℄ and possibly turn into antibubbles [62℄, i.e.water droplets surrounded by an air layer, the whole immersed in the bath. Droplet impa
ts20



Figure 3.1: Drawings made by Lord Rayleigh in 1882 to des
ribe his observations on intera
tingdroplets. These latter may boun
e onto or brush against ea
h other, fuse together and possiblysplit again.have been studied in many 
on�gurations, on other kind of surfa
es, e.g. on a liquid �lm[63℄, on a dry solid surfa
e [6℄, into another immis
ible liquid [64℄, et
. Re
ently, impa
ts onsuper-hydrophobi
 surfa
es have been investigated [65, 66, 67℄.Introdu
ed in that way, the droplet physi
s seems in�nitely 
omplex; ea
h experimenthas a number of variations, ea
h one bringing qualitatively new phenomena. However, thebehavior of a single droplet in the vi
inity of another liquid/gas interfa
e (droplet or bath) isnearly di
hotomi
: it boun
es or it 
oales
es. In the 
ase of boun
ing, both liquid masses nevertou
h ea
h other, the 
onta
t is only apparent. On a mi
ro�uidi
 point of view, where thedroplet is 
onsidered as an individual entity 
ontaining information (e.g. the a
tive prin
ipleof a medi
ation), boun
ing is equivalent to survival. A straight 
onta
t between two mis
ibleliquids implies 
oales
en
e, i.e. the death of the mi
ro�uidi
 entity by dilution. Nevertheless,this fusion may be partial and give birth to new smaller droplets.3.1 Birth and death of a dropletThere are many ways to 
reate a droplet, i.e. to extra
t a small amount of liquid froma 
ontainer. The most 
ommon and straightforward is dripping, i.e. letting droplets slowlyes
ape from a tap or a syringe. At a given time, a pin
h o

urs and the droplet is de�nitelyseparated from the rest. Droplets produ
ed by this way have a relatively 
alibrated volume,provided the 
reation is quasi-stati
, i.e. in�nitely slow [68℄. Conversely, when �nite-amplitudedripping are 
onsidered, the physi
s qui
kly be
omes 
omplex [69, 70, 71℄, even 
haos is en-
ountered [72℄. Droplets 
an also be born from the destabilization of a jet [73℄ sin
e, for agiven volume, their surfa
e is less than the jet surfa
e. This instability was �rst dis
overed byPlateau and Rayleigh [74, 75℄ (Chap. 8, App. G).Droplets may be as well dire
tly extra
ted from a bath. For example, a toothpi
k tipdipped into a bath and qui
kly taken out pulls a thin thread of liquid out from the bath,whi
h turns into a droplet thanks to the Rayleigh-Plateau instability and falls onto the bathsurfa
e [76℄. Droplet are also formed when the bath is violently shaken up and down (Faradayinstability [77℄) or when it is ex
ited by powerful a
ousti
 waves [30℄. Finally, s
ientists fromMIT have re
ently dis
overed an original way to extra
t droplets, by using an elasti
 sheet(Fig. 3.2). This latter behaves as a 
lamp whose opening is driven by surfa
e tension [13℄.21



Finally, as already mentioned, droplets may result from a partial 
oales
en
e of other droplets.

Figure 3.2: A �exible millimetri
 �ower-shaped plasti
 sheet is used as a elasto-
apillarypipette. Driven by a balan
e between surfa
e tension and elasti
ity, it is able to extra
tdroplets from a bath and release them into another one (Credit: Pedro M. Reis, MIT).Both the fusion and the separation of liquid obje
ts involve a topologi
al 
hange of theliquid interfa
es, with the o

urren
e of singularities whi
h satisfy to universal self-similaritylaws [78℄. For example, when two low-vis
osity liquid obje
ts 
oales
e together, the radius ofthe e�e
tive 
onta
t zone in
reases as the square root of time [79℄, whatever the 
onsideredgeometry.3.2 Delaying 
oales
en
eA droplet falling on a bath behaves as a ball thrown on the ground; it boun
es some times,less and less higher, before it eventually 
omes at rest on the bath surfa
e. Starting from thatpoint, the 
oales
en
e is not ne
essarily immediate; the droplet rests for a short time. Thethin layer of surrounding �uid (e.g. air) between the droplet and the bath must be drainedoutwards for 
oales
en
e to o

ur. The �lm thi
kness is estimated from the interferen
efringes that are seen when the droplet is lightened with a mono
hromati
 sour
e (Fig. 3.3a); itis typi
ally mi
rometri
 [80℄. This momentary live of droplets on a bath was �rst reported byLord Rayleigh in 1879 [51℄, then in 1881 by Osborne Reynolds[81℄. Five years later, Reynolds
ame with the explanation, a theory 
alled lubri
ation (App. D). This theory does not onlyexplain the delayed 
oales
en
e of droplets [82℄ but also rationalizes the �ows in every thin�lms, e.g. among others, the spreading of pan
akes in a pan, the slipping of an obje
t onanother, the lava �ows in an erupting vol
ano, the dynami
s of soap �lms, bubbles [83℄ andantibulles [84℄.The lubri
ation equations are obtained starting from the Navier-Stokes equations, in whi
hthe length s
ale in a given dire
tion (namely the �lm thi
kness) is set mu
h smaller than inother dire
tions. Consequently, the pressure is 
onstant along the thi
kness, resulting in a2-D Poiseuille-like �ow (Fig. 3.3b). The overpressure in the �lm gives rise to a for
e FL that
22



opposes further thinning. A �lm of size R 
orresponds to a lubri
ation for
e of
FL ∼ µRḣ

(

R

h

)3

, (3.1)where ḣ is the thinning rate of the �lm. Due to the fa
tor (R/h)3, the lubri
ation for
ebe
omes giganti
 when the �lm is very thin. Nevertheless, lubri
ation e�e
ts are 
onsiderablyattenuated when the �lm boundaries are set into motion (e.g. pulled by the liquid inside thedroplet or bath). The resulting �ow inside the �lm is a 
ombination of a Poiseuille �ow anda Couette �ow, the latter might in
rease the drainage rate without modifying the lubri
ationfor
e (Fig. 3.3
).
Figure 3.3: (a) Interferen
e fringes visible through the droplet when the air �lm is mi
rometri
.(b) A low-vis
osity �lm is surrounded by high-vis
osity liquids at rest; interfa
es are motionlessand the drainage is slow. (
) The low-vis
osity �lm is pulled by the motion of the upper liquid;drainage is signi�
antly in
reased by this additional �ow.When a droplet is ta
tfully pla
ed on a bath in su
h a way that the liquids remain at rest,the air drainage may be 
onsidered as a pure Poiseuille �ow. The lifetime tL of the droplet
orresponds to the drainage time of the �lm when the lubri
ation for
e is balan
ed by theweight. This yields

tL ∼ µaR
4

Mgh2
, (3.2)where µa ≃ 18 · 10−6 kg/m.s is the dynami
 vis
osity of air. The �lm breaks when a sub-mi
rometri
 thi
kness is rea
hed, thanks to the 
ohesive for
es (Van Der Waals) exerted bythe liquids on ea
h side. The large 
urvature of the interfa
e next to the rupture point 
ausesthe �lm to qui
kly retra
t. A

ording to Eq. (3.2), the lifetime of a millimetri
 droplet pla
edat 1 µm from the bath is tL ∼ 0.3 s. Pra
ti
ally, droplets experien
e mu
h lower lifetimesdue to residual �ows inside [85℄. Moreover, a number of fa
tors signi�
antly a�e
t the result:temperature, ele
trostati
 �elds, surfa
tant mole
ules [86, 87℄, vapor 
on
entration, rheologi
properties, presen
e of stabilizing polymers [88℄, et
. The 
oales
en
e time of droplets is of
ru
ial importan
e for many industrial pro
esses involving emulsions [89℄: dairy produ
ts infood industry, petrol demulsi�
ation, 
osmeti
s, et
. Nevertheless, in spite of the tremendouse�orts made by s
ientists sin
e the sixties [90℄, the lifetime of droplets is hardly predi
ted witha

ura
y and reprodu
ibility.For the problem we are interested in, we need not to slow down the air drainage, but to
an
el it so droplets 
an be handled without this time 
onstraint. Many te
hniques have beenproposed in the last ten years to prevent 
oales
en
e [91℄. For example, a horizontal relativemotion between the droplet and the bath 
an maintain the air �lm; a lift for
e balan
es the23



weight. The motion may be a rotation [92, 93℄ or a hydrauli
 jump [94℄. It may also be dueto thermo
apillary �ows [93℄. A water droplet pla
ed in the vi
inity of a very hot sour
e (asolid surfa
e [95, 96℄ or a bath [97℄) is observed to �oat on a gas 
ushion, as already notedby Leidenfrost in 1756. The air �lm transfers the heat to the bottom of the droplet whi
hevaporates; the released vapor balan
es the losses due to drainage.In 1978, Jearl Walker [98℄ proposed an astonishing way to maintain a droplet alive ona bath surfa
e. The bath is simply vibrated verti
ally, e.g. by �xing the 
ontainer on themembrane of a loud-speaker. This for
ing makes the droplet boun
e inde�nitely on the bath,exa
tly as a ball 
an be kept boun
ing on a ra
ket by swinging it up and down (App. E). Theair �lm is regenerated at ea
h boun
e and the energy dissipated by vis
osity is balan
ed bythe in
oming energy from the vibration. We note that an horizontal os
illation of the bath[99℄ may also delay the 
oales
en
e, but 
annot enable sustained boun
ing. In this thesis,we 
on
entrate spe
i�
ally on this te
hnique of verti
ally vibrating the liquid substrate inorder to provide the energy required for periodi
 boun
ing. To understand it, we need �rst toinvestigate the physi
s of boun
ing.3.3 The physi
s of boun
ingBoun
ing obje
ts are subje
t to universal me
hanisms whi
h, qualitatively, are weaklydependent on the 
onsidered 
on�guration. To get boun
ing, the system obje
t/substrate musthave at least one e�
ient spring me
hanism. At impa
t, the translational kineti
 energy is
onverted into deformation potential energy (through surfa
e tension for liquids, and elasti
ityfor solids). This energy is then partly given ba
k to the translational motion. The other partfeeds waves, os
illations and internal motions. The apparent 
onta
t time tc between theobje
t and the substrate is similar to the energy transfer 
hara
teristi
 time
tc ∼

√

M/k, (3.3)where M is the mass of the boun
ing obje
t and k the sti�ness of the spring me
hanism. Fora droplet [65, 100℄, we �nd the 
apillary time τσ =
√

M/σ. For rigid beads on an elasti
membrane under tension T , tc ∼√M/T [101℄; and for elasti
 balls of Young modulus E andradius R on a rigid ground, tc ∼√M/ER. As universal as the spring me
hanism is the dissi-pative pro
ess, whose �nal e�e
t is to damp the boun
ing: vis
osity for �uids, shear/fri
tionfor solids. Depending on the 
ase, some dissipations are more signi�
ant than others - e.g. thedissipation of mi
ro-�ows inside the droplet, or the dissipation in the intervening air layer.Despite its universal features, the boun
ing dynami
s is di�
ult to model in a general 
ase.Consider for example a 10 
S millimetri
 droplet boun
ing on a bath made of the same liquid.At impa
t, both the droplet and the bath are deformed and store surfa
e energy. The resulting�ow in the bath is hardly des
ribed mathemati
ally. A 
rater is formed at impa
t, whi
h 
anbe represented by nonlinear 
apillary waves. Owing to its mass, the bath has inertia; it rea
tsto the droplet in a �nite time with its own dynami
s. In these 
onditions, boun
ing is reallyhard to model.Two spe
i�
 boun
ing 
on�gurations are dis
ussed in this thesis. Ea
h one 
orrespondsto a limit in whi
h the bath dynami
s is overly simpli�ed, even negle
ted. In the �rst 
ase(Chap. 4), the droplet boun
es on a soap �lm. This spe
ial bath is mu
h lighter than thedroplet, it has a negligible inertia and it rea
ts quasi-instantaneously to external soli
itations,it lets itself be shaped by the droplet. In the se
ond 
ase (Chap. 5), the liquid bath is highly24



vis
ous, bath deformations are limited and the stored energy 
annot be given ba
k. Therefore,we suppose in �rst approximation that the bath behaves as a rigid surfa
e of in�nite inertia.The main di�eren
e with a solid surfa
e is that the bath is perfe
tly smooth down to atomi
s
ale. This quality is required for boun
ing droplets, sin
e any mi
rometri
 rugosity in thesurfa
e would prematurely break the air �lm and lead to 
oales
en
e.3.4 SummaryIn this 
hapter, we have dis
ussed the various intera
tions between a droplet and anotherliquid obje
t. The droplet usually boun
es or 
oales
es into the other liquid. The boun
ingis a priori 
omplex sin
e both the bath and the droplet dynami
s in�uen
e ea
h other. Thenext 
hapters 
on
entrate on limit 
ases in whi
h these intera
tions are simpli�ed.The boun
ing may be seen as a way to prevent 
oales
en
e, i.e. the inevitable death of adroplet in the vi
inity of a liquid bath. This 
oales
en
e is delayed thanks to the interveningair layer between the droplet and the bath, that must �rst be drained out for fusion to o

ur.This drainage obeys to the lubri
ation theory; it 
an be slowed down and even stopped bymany te
hniques. Among others, a droplet 
an boun
e inde�nitely without 
oales
ing whenthe liquid bath is verti
ally vibrated.
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Chapter 4A droplet on a soap �lmA soap �lm is a liquid �lm of mi
rometri
 thi
kness 
overed on ea
h side with a monolayerof surfa
tant mole
ules. This latter 
onsiderably de
reases the surfa
e energy of the �lm, soit is expe
ted to deform mu
h more easily. When the �lm is very thin, both surfa
tant layersmay interpenetrate and repulse ea
h other, whi
h yields additional stability to the soap �lm.The impa
t of a droplet on a soap �lm was des
ribed for the �rst time by Courbin andStone [102℄ in 2006. These authors observed that small obje
ts (liquid or solid) inter
eptingthe �lm at high speed are able to 
ross it without breaking it. For smaller impa
t velo
ity, solidparti
les have a di�erent behavior from liquids. Owing to its roughness, the bead immediatelytou
hes the soap �lm, whi
h rea
ts by applying a for
e upwards at the 
onta
t line. This for
eslows down the bead fall and, if the velo
ity is not su�
ient, the bead is trapped by the soap�lm [103℄. Conversely, as we have seen in Chap. 3, a droplet may avoid tou
hing the soap �lmthanks to the existen
e of a thin lubri
ating air layer. Nevertheless, the soap �lm is highlydeformed by the droplet. The deformation energy of the �lm is taken from, then given ba
kto the translational energy of the droplet. As a gymnast on a trampoline, the droplet boun
eson the irides
ent soap �lm (Fig. 4.1). Although not en
ountered in nature or in industrialpro
esses, the boun
ing of a droplet on a soap �lm has two major parti
ularities that makeits understanding and quantitative modeling mu
h easier than other boun
ing 
on�gurations:
• The soap �lm stores pra
ti
ally all the energy of the in
oming droplet.
• The soap �lm inertia is negligible 
ompared to the droplet inertia.It is therefore a perfe
t 
ase study to �rst understand the physi
s of boun
ing.4.1 Experimental setupWe have studied the boun
ing of droplets on a horizontal soap �lm through two series ofexperiments, both performed at the Massa
husetts Institute of Te
hnology in 
ollaborationwith Professor John W.M. Bush [104, 105℄.In the �rst series, a droplet impa
ts a soap �lm of thi
kness hsf ∼ 1 µm �xed on a thinmetalli
 ring of radius Rsf = 8 mm (Fig. 4.2a). In the se
ond experiment, the soap �lm isverti
ally vibrated in order to provide additional energy to the droplet; sustained boun
ingis observed exa
tly as in Walker's experiment [98℄. The vibration is ensured by pinning thesoap �lm on the edge of a plexiglas tube of radius Rsf = 16 mm. The tube is �xed to a26



Figure 4.1: A millimetri
 droplet boun
ing on an irides
ent soap �lm pinned on a ring.loud-speaker membrane that vibrates sinusoidally with an amplitude A and a frequen
y fbetween 20 and 80 Hz (Fig. 4.2b). To avoid the pra
ti
al di�
ulties of leveling the soap �lm,the tube is put in a larger 
on
entri
 tube (Fig. 4.2b) that is partially �lled with water and�xed to the speaker. The soap �lm is 
reated on the inner tube while the tube is immersedin the �uid reservoir, so that an air 
olumn is trapped between the soap �lm and the liquidbath. The inner tube is then moved slightly upwards before �xing it to the outer 
ylinder withs
rews. The low pressure in the air 
olumn de�e
ts the soap �lm downwards at its 
enter andthe resulting �lm 
urvature stabilizes the boun
ing droplet.Droplets of 
onstant radius R = 0.8 mm are released above the soap �lm from an insulinsyringe. The impa
t speed V is varied between 0.1 and 1 m/s by 
hanging the release height.The liquid used for both the droplet and the soap �lm is a mixture of water, gly
erol and
ommer
ial soap (Dover). The 
on
entration of soap is 1 % by volume. The vis
osity of theliquid is altered by varying the 
on
entration of gly
erol (App. B). Most of the experimentswere performed with a mixture of 80 % water and 20 % gly
erol, whi
h 
orresponds to a vis-
osity ν ≃ 2 
S, a density ρ = 1050 kg/m3 and a surfa
e tension σ ≃ 22 mN/m. Experimentsare re
orded from the side with a high-speed video 
amera with a
quisition rate 1000 fps andresolution 256 × 256 pixels. For our typi
al �eld of view, the 
hara
teristi
 pixel size is 50 µm.Measurements of drop position and �lm shape are made via image pro
essing.The droplet impa
t on a vibrating soap �lm is 
hara
terized by 12 physi
al variables (R,
Rsf , hsf , ρ, ν, σ, ρa, νa, g, V , f and A - Fig. 4.2), so nine independent dimensionless numbers
an be formed. Nevertheless, we 
hoose to only vary four parameters V , Rsf , f and A, whi
hare related to four dimensionless numbers:

• the Weber number We = ρV 2R/σ ∈ [1, 30], whi
h 
orresponds to the ratio between thekineti
 energy of the in
oming droplet and its surfa
e energy,
27



Figure 4.2: Experimental set-up. (a) Without vibration: a droplet strikes a horizontal soap�lm �xed on a thin ring. (b) With vibration: the soap �lm is pinned at the end of the innertube, whi
h is verti
ally vibrated by a speaker. The arrangement with the outer 
ylinderensures a downward 
urvature of the �lm, and so stabilizes the boun
ing droplet.
• the ratio between the soap �lm and droplet radii

ξ =
Rsf

R
, (4.1)

• the for
ing a

eleration
Γ =

4π2Af2

g
∈ [0.15, 3], and (4.2)

• the redu
ed frequen
y
ω = 2πf

√

M

k
∈ [0.7, 3], where (4.3)

k = ckσ (4.4)is the sti�ness of the soap �lm. The exa
t value of ck is dedu
ed latter.In our experiments, ξ = 10 when the �lm is at rest, and ξ = 20 when it is vibrated. Otherdimensionless numbers, su
h as Bo = 0.1 and Oh = 0.015, are not varied.4.2 From boun
ing to 
rossing: the soap �lm shapeAs previously observed by [102℄, the droplet boun
es on the soap �lm for low We while, athigh We, it 
rosses the soap �lm without breaking it. In this se
tion, we dis
uss the transitionbetween both behaviors as a fun
tion of We.During a boun
ing event (Fig. 4.3a-b), the kineti
 energy of the falling droplet is primarily
onverted into surfa
e energy of the distorted soap �lm; thereafter, the bulk of this energy28



Figure 4.3: Various behaviors of a droplet impa
ting a soap �lm. Snapshots are taken every4 ms. (a) Boun
ing at We ≃ 7. (b) Boun
ing at We ≃ 12. (
) Partial 
rossing at We ≃ 16.(d) Full 
rossing at We ≃ 15.
29
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ing to 
rossing for impa
t on a stationary �lm. The proba-bility P of di�erent events is represented as a fun
tion of We. The number of events in ea
h
lass is reported in the middle of the 
olumns. The transition between boun
ing and passingo

urs for a 
riti
al Weber number Weth ≃ 16.is restored to the droplet kineti
 energy. To avoid 
oales
en
e, the droplet must never tou
hthe soap �lm: the thin intervening air layer must persist. As this layer thins, the resultinglubri
ation pressure deforms the underlying �lm. At impa
t, the droplet be
omes oblate, butre
overs a roughly spheri
al shape when the soap �lm de�e
tion is maximal. As the drop iseje
ted, it again be
omes oblate. For the sequen
e illustrated in Fig. 4.3(a), the 
onta
t time

tc, during whi
h the droplet is in the immediate vi
inity of the soap �lm, is about 20 ms.In a 
rossing event (Fig. 4.3d), the soap �lm is not able to absorb the initial kineti
 energyof the droplet: as the droplet passes through, the �lm self-heals. How the passage from oneside to the other does o

ur ? Here is a plausible s
enario: the air layer is so 
ompressed bythe in
oming droplet that it breaks, the droplet 
oales
es into the soap �lm. Nevertheless, theresidual kineti
 energy allows the droplet to keep going downwards and eventually separatefrom the �lm. After 
oales
en
e, a part of the droplet may possibly be eje
ted upwards(Fig. 4.3
). The formation of droplets after 
oales
en
e is also observed on a bath and 
alledpartial 
oales
en
e (Chap. 7).In Fig. 4.4, the likelihood of boun
ing and 
rossing is represented as a fun
tion of We.The transition between boun
ing and 
rossing regimes o

urs at Weth ≃ 16. The probabilityof a 
oales
en
e in
reases with the Weber number sin
e the air layer be
omes thinner. Thethreshold Weber is high relative to other 
on�gurations. For example, when a droplet impa
tsa liquid �lm on a solid substrate [63℄, the transition between boun
ing and 
oales
en
e o

ursat Weth ≃ 7.In order to rationalize this experimental result, we �rst model the shape of the soap �lm, sowe dedu
e a relation between the drop position and the for
e generated by the soap �lm. Thesoap �lm rea
ts to the external for
ing asso
iated with the impa
ting droplet at a times
aledetermined by the speed of 
apillary waves on the soap �lm, ucw ∼
√

σ/(ρhsf ) [106℄. For30
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(b)Figure 4.5: (a) Hypotheti
al shape for the soap �lm: the region of 
urvature 1/R below thedroplet mat
hes onto an exterior region of zero 
urvature at the point Pm 
orresponding to anin
lination angle θ. The soap �lm is pinned at (r, z) = (Rsf , 0), while its point of maximum
enterline de�e
tion rea
hes (0,−ζ). The 
enter of mass of the droplet is at (0, Z), and itsverti
al de�exion is denoted by η. (b) Observed shape of the soap �lm at We = 9.7. The solid
urves represent the "sphere plus 
atenoid" model.a �lm of thi
kness hsf = 1 µm, the wave speed, ucw ∼ 5 m/s, is approximately 10 timeslarger than the 
hara
teristi
 droplet impa
t speed. The soap �lm thus adjusts rapidly to theapplied for
ing, the information being transmitted by 
apillary waves [107℄. For the relativelylow-impa
t speeds 
onsidered in our study, the �lm shape may be des
ribed as quasi-stati
:there is a univo
al relation between the soap �lm deformation ζ and the resulting verti
alfor
e Fσ applied to the droplet through the air layer. As seen below, this relation does neitherdepend on time, nor on the loading history of the soap �lm whi
h has no memory.The shape expe
ted for the soap �lm is in perfe
t agreement with experimental observations(Fig. 4.5). We assume that the droplet remains roughly spheri
al and that, near the droplet,the soap �lm is a spheri
al 
ap lying tangent to the droplet with 
onstant mean 
urvature 1/R.Beyond the droplet, the soap �lm has zero 
urvature sin
e the air pressure is atmospheri
 onboth sides (Fig. 4.5a). The only non-planar axisymmetri
 surfa
e that has zero mean 
urvatureis the 
atenoid:
z

rm
= −acosh

(

Rsf

rm

)

± acosh

(

r

rm

)

, (4.5)where rm is the minimum radius of the 
atenoid. We must mat
h this 
atenoid to the spher-i
al 
ap at a point Pm pres
ribed by the angle θ: rm/R = sin2 θ. The maximum verti
aldeformation ζ of the soap �lm may be expressed as a fun
tion of θ through
ζ

R
= 1 − cos θ + sin2 θ

[

acosh

(

1

sin γ

)

− sign(cos θ)acosh

(

1

sin θ

)]

, (4.6)where sin γ = rm/Rsf = (sin2 θ)/ξ. The anomalous surfa
e generated by the �lm deformation,
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(b)Figure 4.6: Theoreti
al model of the soap �lm shape for ξ = 10. (a) Variation of ∆S/(πR2),
ζ/R and Fσ/(2πσR) with θ. The surfa
e is maximum in θ = θM . Insets represent theshape of the �lm. (b) Theoreti
ally predi
ted for
e�displa
ement 
urve for a spheri
al dropimpinging on a soap �lm. The solid line represents the variation of the for
e Fσ/(2πσR) withrespe
t to the maximum �lm de�e
tion ζ/R for ξ = 10. The dashed line represents the linearspring approximation (4.9) and the (N) are the experimental measurements. (Inset) Sti�ness
oe�
ient ck = k/σ as a fun
tion of ξ. Our stati
 soap �lm (ξ = 10) has a sti�ness 
oe�
ient
ck ≃ 8π/7 while for the vibrated soap �lm (ξ = 20), ck ≃ 24π/25.
∆S, is given by

∆S

πR2
= (1 − cos θ)2(2 + cos θ) − sin4 θ

1 + cos γ

+ sin4 θ

[

acosh

(

1

sin γ

)

− sign(cos θ)acosh

(

1

sin θ

)]

. (4.7)The verti
al for
e Fσ required to produ
e a verti
al displa
ement ζ is given by
Fσ

2σπR
=
∂θ∆S/(πR

2)

∂θζ/R
= 2 sin2 θ. (4.8)Of 
ourse, this for
e is obtained more easily by integrating the verti
al 
omponent of the surfa
etension over the 
ir
le formed by revolving the point of mat
hing Pm about the verti
al axis

r = 0.The dependen
e on θ of ∆S/(πR2), ζ/R and Fσ/(2πσR) is illustrated in Fig. 4.6(a) for
ξ = 10. The anomalous surfa
e ∆S rea
hes a maximum for a 
riti
al angle θM ≃ 5π/8. For
θ < θM , the system tends to the θ = 0 state (droplet above the soap �lm), while for θ > θMit tends to the θ = π state (droplet fully en
losed by the soap �lm). The maximum de�e
tion
ζ/R ≃ 4.4 is also rea
hed for θ = θM . The for
e Fσ exerted by the soap �lm on the dropletremains dire
ted upwards, whatever the value of θ. The maximum for
e generated by thesoap �lm, Fσ = 4πσR, o

urs when θ = π/2. The for
e is represented as a fun
tion of themaximum 
enterline de�e
tion ζ in Fig. 4.6(b). Four distin
t regimes are apparent.32



• When 0 < ζ < 3R (0 < θ < 3π/8), the soap �lm rea
ts like a spring, exerting a for
ethat grows roughly linearly with the deformation
Fσ = kζ, (4.9)where the sti�ness k is given by k = ckσ. The dependen
e of ck on ξ is illustratedin Fig. 4.6(b): ck ≃ 8π/7 when ξ = 10 (stati
 soap �lm in our experiments) while

ck ≃ 24π/25 when ξ = 20 (vibrated soap �lm in our experiments). Agreement withexperimental data is ex
ellent. In parti
ular, we 
on�rm that there is no hysteresis; thedeformation does not depend on the dire
tion of the droplet.
• When 3R < ζ < 4R (3π/8 < θ < π/2), the spring law be
omes nonlinear as the for
esaturates. The sti�ness vanishes when ζ = 4.
• When 4R < ζ < 4.4R (π/2 < θ < θM ), the sti�ness is negative: in
reasing the deforma-tion results in de
reasing the for
e. The sti�ness diverges when θ → θM and the systemswit
hes equilibrium states.
• When θ > θM , ζ de
reases towards 2R and the sti�ness is again positive. Here, thesystem tends towards the θ = π 
on�guration, where the droplet is wrapped by the �lm.We note that for θ > θM , the �lm shape is poorly des
ribed by the model: the lastframes of Fig. 4.3(d) 
learly indi
ate that the �lm does not wrap the drop as it passesthrough.Finally, we apply this quasi-stati
 model for the �lm shape to estimate the minimumWebernumber Weth required for a droplet to pass through the soap �lm. Supposing that the wholeinitial kineti
 energy is 
onverted into surfa
e energy of the �lm, the energy balan
e is written

2π
3 ρR

3V 2 = 2σmax(∆S), so Weth = 3
max(∆S)

πR2
. (4.10)In our experiments, the stati
 soap �lm has a radius of Rsf =8 mm and 
orresponding ξ = 10;we thus anti
ipate Weth = 16. This value is in good agreement with the experiments reportedin Fig. 4.4. We note that the predi
tion (4.10) negle
ts energy dissipated during impa
t aswell as the droplet deformation. Nevertheless, it does provide a good leading-order 
riterionfor droplet breakthrough.4.3 Boun
ing on a �lm at restWe pro
eed by 
hara
terizing two important boun
ing parameters: the apparent 
onta
ttime tc and the energy dissipated during a single boun
e. Both quantities were measured forvarious We. As seen in Fig. 4.7(a), tc is proportional to the 
apillary time τσ and independentof We:

tc ≃ 1.86τσ. (4.11)This result is similar to those reported by [101℄ for beads boun
ing on elasti
 membranes andby [65℄ for droplets boun
ing on hydrophobi
 surfa
es. In that latter 
ase, the proportionality
onstant is mu
h lower, tc ≃ 1.27τσ. 33
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(b)Figure 4.7: (a) Conta
t time tc normalized by τσ. (b) Di�eren
e in We before and after theboun
e as a fun
tion of We. Dashed lines in (a) and (b) represent �ts of Eq. (4.11) and (4.14),respe
tively. Solid lines were dedu
ed by integrating (4.31) with cT = 0.028 (best �t).In the previous se
tion, we have 
on
luded that the soap �lm behaves as a linear spring ofsti�ness k ≃ 8π/7σ, whi
h 
orresponds to a natural frequen
y
fsf =

1

2π

√

k

M
=

0.3

τσ
≃ 30 Hz. (4.12)One expe
ts the 
onta
t time to be approximately half a period of os
illation of the soap �lm,i.e. tc = 1.66τσ, whi
h is 
oherent with the experimental results.During ea
h boun
e, a droplet loses a fra
tion of its initial translational energy throughvis
ous dissipation. In dimensionless terms, the Weber number is de
reased by an amount

∆We at ea
h boun
e owing to dissipation inside the droplet, soap �lm or intervening air layer.The 
oe�
ient of restitution, spe
i�
ally the ratio of take-o� and landing speeds, is given by
ǫ =

√

1 − ∆WeWe . (4.13)The dependen
e of ∆We on We is reported in Fig. 4.7(b). The experimental data 
ollapseonto a single 
urve 
orresponding to a power law 
lose to
∆We ≃ 0.09We3/2. (4.14)The dissipation is markedly di�erent from that observed by [108℄, i.e. ∆We ≃ 0.2We, fordroplets boun
ing at We ≪ 1 on a hydrophobi
 surfa
e.We pro
eed by developing a simple theoreti
al model to rationalize Eq. (4.14). The 
enterof mass of the droplet Z evolves a

ording to
MZ̈ = Fσ(ζ) −Mg. (4.15)If η denotes the verti
al deformation of the droplet (Fig. 4.5), we 
an write Z = −ζ +R+ η.Equation (4.15) 
an then be re
ast in terms of energy as

d

dt

[

MŻ2

2
+MgZ + Eσsf (ζ)

]

= Fσ(ζ)η̇ (4.16)34



where Eσsf (ζ) is the surfa
e energy stored in the soap �lm, so that dEσsf (ζ)/dζ = Fσ(ζ).The only remaining non-
onservative term in (4.16) is Fσ(ζ)η̇, the work done by the soap �lmin deforming the droplet. This term des
ribes the transfer of energy between the translationaland vibrational motions of the droplet. The total energy removed in this fashion during impa
tne
essarily s
ales as Fση̇tc. We thus need to know how Fσ, η̇ and tc s
ale with We.The maximum 
enterline de�e
tion of the soap �lm, ζ, was measured for various We.When ζ < 4 (i.e. θ < π/2), the maximum for
e FσM exerted by the soap �lm o

urs atthe point of maximum de�e
tion and 
an be 
al
ulated from (4.6) and (4.8). As shown inFig. 4.8(a), the maximum for
e is linearly proportional to We.
FσM

σR
≃ 1.11We. (4.17)The droplet deformation rate during impa
t η̇ s
ales as ηM/τσ, where ηM is the maximumdroplet deformation. The droplet rea
ts rapidly to the impa
t; it is already highly 
ompressedby the time the soap �lm begins to deform. Indeed, the natural frequen
y of the soap �lmis given by Eq. (4.12), while a

ording to Rayleigh (Eq. 1.7), the natural frequen
y of thedroplet os
illating in the mode Y 0

2 is
f(2,0) =

0.92

τσ
≃ 90 Hz, (4.18)so the droplet rea
ts three times faster than the soap �lm. For an experiment at We ≃ 9
orresponding to a kineti
 energy K ≃ 2.60 µJ, the maximum drop deformation is estimatedto be ηM ∼ 0.41R. The 
orresponding surfa
e energy is

Eσ ≃ 8π

5
ση2

M ≃ 0.13 µJ, (4.19)whi
h represents a fra
tion Λ ≃ 5 % of the kineti
 energyK. This lost energy at impa
t 
annota

ount for the 
hara
teristi
 value ∆We/We ∼ 0.25 observed in Fig. 4.7(b), from whi
h weinfer that some additional energy is transferred after impa
t. Substituting Eσ = ΛK intoEq. (4.19) yields a s
aling for ηM

(

ηM

R

)2

≃ 5Λ

8π

K

σR2
=

5

12
ΛWe. (4.20)This s
aling is similar to that observed by [109℄ for droplets striking a hydrophobi
 surfa
e.Equations (4.11), (4.17) and (4.20) together yield

∆We =
3

2π

∆K

σR2
=

3

2πσR2

∫ tc

0
Fση̇dt ∼

3

2π

FσM η̇tc
σR2

≃ 0.63Λ1/2We3/2. (4.21)For Λ = 5 %, we thus obtain
∆We ≈ 0.14We3/2, (4.22)whi
h is 
lose to the observed s
aling (4.14). While the 
oe�
ient dedu
ed (0.14) is 50% higherthan that observed (0.087), this estimate has not taken into a

ount the variations of the sign of

Fση̇ over the integration period. Nevertheless, sin
e tc/τσ is independent ofWe, it is reasonableto suppose that the time 
orrelation of Fσ and η̇ remains un
hanged with in
reasingWe, whi
hlends further 
redibility to this s
aling. In summary, the translation energy is 
onverted into35



deformation energy, only a part of whi
h is transferred ba
k to translation. The remainingpart is dissipated through internal motions in the droplet. This dissipation me
hanism is alsoobserved for droplets boun
ing on hydrophobi
 surfa
es [108℄, though the s
aling is di�erent.Some energy is also inevitably dissipated in the air layer and the soap �lm. Both �lm anddroplet are 
oated by a 
ommer
ial surfa
tant whose pre
ise surfa
e properties are not easilyquanti�ed. The extent to whi
h a surfa
tant-laden surfa
e is rigidi�ed depends on both thetype and 
on
entration of surfa
tant. In general, soap �lms lie between the "rigid" and "free"limits, in whi
h the internal �ows 
orrespond, respe
tively, to Poiseuille and plug �ows. ThePoiseuille regime is more dissipative sin
e velo
ity gradients arise a
ross the thi
kness of the�lm. Conversely, in plug �ow, transverse velo
ity gradients are negligible and the dissipationresults from velo
ity gradients in dire
tions parallel to the �lm, whi
h are ne
essarily mu
hsmaller. Therefore, for the sake of bounding the dissipation in the soap �lm, only the Poiseuille
ase is 
onsidered here. Lubri
ation equations write
∂h

∂t
+ ∇ · ~Q = 0 (4.23)

~Q+
h3

12µ
∇P = 0 (4.24)where ~Q is the �ow rate and ∇P the pressure gradient, both parallel to the air �lm. Theenergy dissipation ∆K in the whole �lm (surfa
e S) during tc is given by

∆K = −
∫ tc

0

∫

S

~Q · ∇PdSdt (4.25)These equations are s
aled to yield
h

tc
∼ Q

R

Q ∼ h∆P

12µR











⇒















Q2 ∼ 12µR4

t3c∆P

h2 ∼ 12µR2

tc∆P

(4.26)and
∆K ∼ tc(2πR

2)
∆P

R
Q ∼ 4π

√

3µR6∆P

1.86τσ
(4.27)The overpressure ∆P , i.e. the pressure at 
enter of the air �lm below the droplet, should s
aleas FσM/(πR

2) ∼ 0.35(σ/R)We, whi
h gives a s
aling for the dissipated energy
∆We ∼ 3Oh1/2We1/2. (4.28)Assuming that the 
onstant of proportionality is relevant, the range of energy loss due todissipation in a soap �lm with Oh = 0.015 is ∆We ∈ [0.37, 1.5], while the observed rangeof dissipation is ∆We ∈ [0.2, 5]. So, for We . 1, we expe
t the resulting dissipation in thesoap �lm to be relevant for the 
ase of rigid �lms. This additional sour
e of dissipation mightexplain the fa
t that the observed dissipation is systemati
ally higher than the s
aling law(4.14) for We ∼ 1. Nevertheless, the s
aling ∆We ∼ We1/2 is not observed experimentallyfor We & 1. The observed loss of translational energy mainly results from a transfer to thevibrational motion of the droplet. 36
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(b)Figure 4.8: (a) Dependen
e on We of the maximum for
e FσM applied by the soap �lm on thedroplet. The solid line 
orresponds to Eq. (4.17). (b) Observed (dots) and simulated (solidline) traje
tories of a droplet released at We = 15.24 and boun
ing on a stationary soap �lm.Experimental data 
ould only be obtained in the apparent �eld of view, that was partiallyobs
ured by the frame of the soap �lm and also limited from above.Although Eq. (4.16) seems to 
orre
tly des
ribe the energy transfer between the dropletand the �lm, it 
annot be solved unless an evolution equation for the drop deformation η iswritten. Instead, for the sake of mathemati
al simpli
ity, we model the dissipative transferterm Fσ(ζ)η̇ as a fun
tion of ζ̇, spe
i�
ally
Fσ(ζ)η̇ = −cT

M

R
H(ζ)|ζ̇|3, (4.29)where H(ζ) is the Heaviside fun
tion and cT is the transfer 
onstant. The transfer is zerowhen Z > 0 (the droplet is �ying), but is negative de�nite and s
ales as We3/2 when Z < 0.We further simplify the system by assuming that |η| ≪ |ζ|: the droplet deformation is mu
hsmaller than the amplitude of verti
al motion, so that Z ≃ R − ζ. Finally, 
onsistent with(4.9), we assume that the soap �lm has a linear for
e�displa
ement law Fσ(ζ) = H(ζ)kζ. Wethus obtain

d

dt

[

Mζ̇2

2
−Mgζ + H(ζ)

kζ2

2

]

= −cT
M

R
H(ζ)|ζ̇|3, (4.30)so

Mζ̈ = Mg − kζH(ζ) − cT
M

R
H(ζ)ζ̇|ζ̇|. (4.31)The 
onstant cT = 0.028 is determined by �tting the solutions of (4.31) to the experimen-tal data in Fig. 4.7(b). The results from (4.31) with the cT value so dedu
ed represent animprovement over the s
aling law (4.14). The predi
ted 
onta
t time tc/τσ is also in goodagreement with experimental data reported in Fig. 4.7(a). As seen in Fig. 4.8(b), the modelprodu
es a remarkably a

urate pi
ture of the damped boun
ing on a stationary �lm.
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Figure 4.9: Threshold a

eleration for boun
ing, Γth, as a fun
tion of the dimensionless for
ingfrequen
y ω. For a given frequen
y, a droplet was released onto a �lm vibrating at Γ > Γth;subsequently, Γ was de
reased until the droplet 
oales
ed. The experiment was repeatedseveral times to 
apture both modes (1,1) and (2,1): the minimum measured value of Γ
orresponds to the threshold reported by (N). When for
ing parameters (Γ, ω) are lo
atedinside the shaded area, no periodi
 boun
ing is observed and the droplet 
oales
es. Solid (resp.dashed) line represents the threshold 
omputed by solving (4.33) numeri
ally and 
orrespondsto the mode (2,1) (resp. (1,1)). The lower threshold solution roughly 
orresponds to ourexperimental data.4.4 Sustained boun
ing on a vibrating soap �lmOn a stationary soap �lm, the We de
reases at ea
h boun
e, until the droplet settlesonto and ultimately merges into the �lm. To 
ounter dissipative losses, a verti
al vibration isapplied to the frame of the soap �lm: energy is thus transferred from the frame to the �lmto the droplet. Provided the me
hani
al energy so supplied balan
es dissipative losses, thedroplet is re-energized during impa
t and may boun
e inde�nitely, as in Walker's experiment[98℄. Thanks to our simple model (4.31), it is possible to deeply understand this sustainedboun
ing.First, we measure the a

eleration threshold Γth(ω), whi
h is the minimal a

eleration
Γ that 
an sustain periodi
 droplet traje
tories, as a fun
tion of the dimensionless for
ingfrequen
y ω (Fig. 4.9). For ω < 2, Γth is roughly 
onstant (about 0.15 ± 0.04). When ω > 2,boun
ing droplets 
annot be sustained. We note that this 
riti
al frequen
y 
orresponds to aperiod of 18 ms, a value roughly equal to the measured 
onta
t time.A striking 
hara
teristi
 of droplet boun
ing on soap �lms is the 
oexisten
e of multipleperiodi
 solutions for given for
ing parameters (Γ, ω), or, in the parlan
e of dynami
al sys-tems theory, multi-periodi
ity. Boun
ing modes are denoted by two integers (p, q) su
h thatone period of the traje
tory 
orresponds to p for
ing periods and q boun
es of the droplet.For example, modes (1,1), (2,1) and (3,1) are displayed in the spatiotemporal diagrams ofFig. 4.10(a-
). All these solutions are observed to be stable, at least during the 8 se
onds ofre
ording 
orresponding to 240 for
ing periods. Depending on initial 
onditions, spe
i�
allythe impa
t speed and phase, the droplet lo
ks onto one parti
ular mode. Note that the am-plitude of the jumps experien
ed by modes (2,1) and (3,1) is mu
h larger than the for
ingamplitude. Weber numbers at impa
t are about 0.06, 1.5 and 3.9 for modes (1,1), (2,1) and38



Figure 4.10: Spatiotemporal diagrams of a droplet boun
ing on a soap �lm vibrating at
f = 33 Hz (ω = 1.21). The dark low-amplitude os
illation at the top of these pi
turesrepresents the verti
al motion of the ring to whi
h the soap �lm is pinned. (a) Mode (1,1)at Γ = 0.6 - We ≃ 0.06. (b) Mode (2,1) at Γ = 0.6 - We ≃ 1.5. (
) Mode (3,1) at Γ = 0.6- We ≃ 3.9. (d) Mode (3,3) at Γ = 0.7. (e) Period-doubling transition, from mode (1,1) tomode (2,2) at Γ = 1.2. (f) Chaoti
 boun
ing traje
tory at Γ = 1.1.(3,1), respe
tively. A

ording to (4.14), with ea
h boun
e these modes lose kineti
 energysu
h that ∆We is approximately 10−3, 0.16 and 0.67, respe
tively. For periodi
 solutions,this energy loss has to be perfe
tly balan
ed by the energy input from the for
ing. In thefollowing, we shall demonstrate that the same for
ing 
an deliver three di�erent amounts ofenergy a

ording to the impa
t phase of the droplet.We also observed more 
omplex periodi
 boun
ing states, where the periodi
ity appearsonly after several jumps (q > 1). For example, the mode (3,3), observed at Γ = 0.7 and
ω = 1.21 (Fig. 4.10d), is 
hara
terized by three su

essive jumps of di�erent amplitude. Athigher a

elerations, a period-doubling transition may o

ur spontaneously (at �xed for
ingparameters), transforming a mode (1,1) into a mode (2,2) as seen in Fig. 4.10(e). Chaoti
traje
tories are also observed (Fig. 4.10f), with episodi
 periods of high-amplitude boun
ing.The 
haoti
 boun
ing is usually unstable and the air �lm ultimately breaks, typi
ally after aparti
ularly vigorous impa
t.The sustained boun
ing may be modeled by adding to Eq. (4.31) a �
titious inertial for
e
MgΓ cos(2πft + φ), sin
e Newton's law is expressed in a frame moving with the vibrating�lm. De�ning dimensionless variables

y =
−kZ
Mg

, τ =

√

k

M
t and U =

V

g

√

k

M
(4.32)yields

ÿ + H(−y)y + 1 = −4πcT
ck

BoH(−y)|ẏ|ẏ + Γ cos(ωτ + φ). (4.33)whi
h may be solved subje
t to initial 
onditions y(0) = 0 and ẏ(0) = −U at impa
t. Themulti-periodi
ity is observed as in the experiments (Fig. 4.11a). The droplet in the high-energy mode (3,1) lands before that in low-energy mode (1,1), thereby in
reasing the amount39



Figure 4.11: Numeri
al solution of Eq. (4.33) at ω = 1.21. Solid lines 
orrespond to traje
tories
y(ωτ) in the frame of the ring; dashed lines 
orrespond to the ring motion; verti
al dash�dottedlines represent the landing (L) and take-o� (T) phases measured experimentally. (a) Modes(1,1), (2,1) and (3,1) at Γ = 0.6. (b) Mode (3,3) at Γ = 0.8545. (
) Mode (2,2) at Γ = 1.5.(d) Chaoti
 boun
ing at Γ = 1.82.
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(b)Figure 4.12: Chaoti
 solutions for (Γ, ω) = (1.82, 1.21). (a) Chaoti
 attra
tor in the phasediagram. (b) Positive Lyapunov exponent ≃ 0.4 . Initially neighboring traje
tories divergeexponentially, indi
ating sensitivity to initial 
onditions.of energy extra
ted during impa
t. The model also reprodu
es 
omplex modes (3,3) and (2,2),as seen in Fig. 4.11(b-
). The measured phases of landing and take-o� are in good agreementwith the model predi
tions, though these 
omplex modes are not observed at pre
isely thesame for
ing parameters as in the experiments. Many other 
omplex periodi
 solutions aregenerated by the model for di�erent for
ing parameters (Γ, ω) and initial 
onditions (U, φ).The system (4.33) is similar to that arising from the Du�ng equation and the verti
allyos
illated pendulum [110℄; it thus supports 
haoti
 solutions (Fig. 4.11d), as many otherboun
ing systems [111, 112℄. The traje
tory rolls up on a strange attra
tor (Fig. 4.12a) and
orresponds to a positive Lyapunov exponent dedu
ed by 
al
ulating the rate of exponentialdivergen
e of two initially adja
ent traje
tories (Fig. 4.12b). The model (4.33) exhibits 
haosstarting from Γ = 1.76, a value mu
h higher than observed in experiments (Γ = 1.1). Thisdis
repan
y is presumably due to the short
omings of our simple model for the dissipation inthe system; in parti
ular, details of the droplet deformation are not modeled in Eq. (4.33).We pro
eed by solving (4.33) with ω = 1.21 �xed for various a

elerations Γ ∈ [0, 2] todevelop a bifur
ation diagram of our system (Fig. 4.13a). Modes (p, q) are represented by
q di�erent bran
hes 
orresponding to the dimensionless impa
t velo
ity U of the q di�erentboun
es. Many 
omplex bifur
ation events appear on the bifur
ation diagram, analysis ofwhi
h is beyond the s
ope of this thesis. For Γ < 0.18, no periodi
 boun
ing is possible.
Γ

(2,1)
th = 0.18 
orresponds to the lower boun
ing threshold, at whi
h mode (2, 1) appears.At the upper boun
ing threshold Γ

(1,1)
th = 0.47, the stati
 solution 
ompletely disappearsand transforms into a periodi
 boun
ing (1, 1). Both thresholds are 
omputed for variousfor
ing frequen
ies ω (Fig. 4.9), the lower of whi
h is in good agreement with experiments. Inparti
ular, the threshold remains roughly 
onstant and less than 0.2 until ω = 2; thereafter,it in
reases drasti
ally, 
onsistent with the observed absen
e of boun
ing for ω & 2. We notethat the minimum in the upper threshold 
urve 
orresponds to the resonant frequen
y of thesoap �lm ω = 1, as de�ned in (4.12). As Γ is in
reased, the prin
ipal modes (p, 1) bran
h to

(2p, 2) states through period-doubling events. The transition to 
haos o

urs via a number of41
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(b)Figure 4.13: (a) Bifur
ation diagram of the impa
t speed U as a fun
tion of Γ for ω = 1.21.Ea
h mode (p, q) is represented by q bran
hes. (b) Period-doubling 
as
ade from mode (2, 1)to mode (64, 32). The 
as
ade 
onverges in Γ = 1.764 where a 
haoti
 attra
tor is 
reated.The inset represents a zoom on the shaded region.su
h bran
hing events, known as a period-doubling 
as
ade (Fig. 4.13b).Solutions of (4.33) 
an be displayed on a Poin
aré se
tion made at impa
t (Fig. 4.14).The net energy ∆K gained by the drop during the ith boun
e is 
omputed for ea
h (U, φ),and 
ontours of iso-values are plotted. For impa
t in the grey and white regions, the dropexperien
es a net energy gain and loss, respe
tively. On the intervening 
urve, the energytransferred to the drop pre
isely balan
es that dissipated, ∆K = 0. Modes (p, 1) are stationarystates in this iterative map 
orresponding to single points that ne
essarily fall on this zero
ontour. Complex modes q > 1 are represented by 
losed 
ir
uits of q points, the energyof whi
h ne
essarily sums to zero. In mode (3, 3), two boun
es in
rease the energy, thevelo
ity and the phase until the droplet leaves the shaded region. The third boun
e dissipatesenergy, thereby restoring the initial 
onditions of the �rst boun
e. The Poin
aré se
tion of the
haoti
 attra
tor emerging at (Γ, ω) = (1.82, 1.21) is stru
tured as a spiral-like fra
tal shape(Fig. 4.14b) in polar 
oordinates.4.5 SummaryIn this 
hapter, we have mainly dis
ussed the boun
ing me
hanisms of a droplet on a soap�lm. Although this 
on�guration may seem exoti
, it is a good start for our investigation ofboun
ing sin
e the 
orresponding model is overly simple and a

urate. Indeed, the soap �lmhas a negligible inertia and is thus in quasi-stati
 equilibrium; it may be des
ribed througha s
alar relation between its verti
al deformation and the for
e it exerts on the droplet. Bymodeling the soap �lm as the 
ombination of a spheroid and a 
atenoid, we have su

eededin rationalizing the transition between the boun
ing and 
rossing behaviors at Weth ≃ 16.For smaller We, the �lm behaves as a linear spring, the 
onta
t time between the boun
ingdroplet and the �lm is shown to be independent on the impa
t velo
ity. At ea
h boun
e,the droplet loses a part ∆We of its in
oming translation energy that in
reases as We3/2.42
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(b)Figure 4.14: Poin
aré se
tions representing the impa
t parameters (U, φ) in polar 
oordinates,
omputed from (4.33) with ω = 1.21. Contours 
orrespond to the net energy transferred tothe drop during impa
t. In the shaded area, the droplet gains more energy during impa
t thanit loses to dissipation; in the white area, the opposite o

urs. (a) Simple modes (q = 1 - •)and 
omplex modes (q > 1 - N) at Γ = 0.82. (b) Chaoti
 attra
tor at Γ = 1.82.Theoreti
al arguments suggest that this energy is in reality transferred to the vibrationaland internal motions of the droplet, before being dissipated through vis
ous e�e
ts. Thisloss of energy 
an be balan
ed by verti
ally vibrating the soap �lm, so the droplet boun
ingbe
omes periodi
. Multiperiodi
ity is observed; namely, for a given for
ing, the droplet mayboun
e in several di�erent ways depending on the initial 
onditions. The droplet adjusts itsimpa
t phase in order to extra
t from the for
ing the exa
t amount of energy to balan
e itslosses. Complex periodi
 motions (i.e. sequen
es of several di�erent boun
es) and 
haoti
traje
tories are also observed. Experiments are in ex
ellent agreement with the solutions of asingle ordinary di�erential equation of order 2, dedu
ed from the se
ond Newton's law.
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Chapter 5Periodi
 boun
ing on a high-vis
osityvibrating bathIn this 
hapter, we dis
uss the boun
ing me
hanisms in a se
ond limit 
ase, probably 
loserfrom potential mi
ro�uidi
 appli
ations, namely droplets boun
ing on a vis
ous bath. Here,the bath 
annot e�
iently store surfa
e energy and the droplet has to boun
e by itself. Likein the soap �lm experiment (Chap. 4), we observe a threshold for
ing a

eleration Γth abovewhi
h sustained boun
ing is possible. The threshold measurements from Denis Terwagne andStéphane Dorbolo [113℄ are rationalized through a model similar to Eq. (4.33).5.1 Experimental results : boun
ing threshold and droplet de-formationsA 
ontainer is �lled with about 8 mm of sili
on oil (Dow Corning 200, ν = 1000 
S) and�xed on an ele
tromagneti
 shaker that vibrates a

ording to A cos 2πft. Droplets of radius
R ∈ [0.73, 0.93] mm made of a less vis
ous sili
on oil (ν ∈ [0.65, 100] 
S) are released from asyringe in the vi
inity of the bath. The threshold a

eleration Γth = 4π2Af2/g is measured asdes
ribed in Chap. 4: droplets are 
reated when Γ > Γth, then Γ is de
reased until 
oales
en
e.The threshold Γth is measured as a fun
tion of the for
ing frequen
y f for various dropletvis
osity (Fig. 5.1a). At 100 
S, Γth monotoni
ally in
reases with f , starting from Γth → 1in f → 0. At lower vis
osity, regularly spa
ed extrema are seen on the threshold 
urve.Boun
ing is easier around some spe
i�
 frequen
ies, whi
h suggests that the system behavesas a resonating damped os
illator. Vis
osity is obviously the damping me
hanism, sin
e theextrema disappear at high vis
osity. On the other hand, the boun
ing seems to be ensuredthrough the droplet deformation. Indeed, as seen in Fig. 5.2, the droplet shape 
hangesas the frequen
y is in
reased, we may re
ognize some of the droplet eigenmodes, i.e. theaxisymmetri
 spheri
al harmoni
s Y 0

ℓ already introdu
ed in Chap. 1. The droplet sele
ts thedeformation mode used to boun
e as a fun
tion of the for
ing frequen
y, and ea
h minimumin the threshold 
urve Γth(f) 
orresponds to a mode Y 0
ℓ .The dispersion relation of 
apillary waves (1.7) suggests to s
ale the for
ing frequen
y withthe frequen
y f(2,0) of the spheri
al harmoni
 Y 0

2 . The droplet is thus seen as a spring of sti�-ness k = ckσ with ck = 32π/3, and the dimensionless frequen
y writes again ω = 2πf
√

M
k .The thresholds 
orresponding to di�erent droplet radii 
ollapse on a single 
urve (Fig. 5.1b).44
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(b)Figure 5.1: (a) Threshold a

eleration Γth as a fun
tion of the for
ing frequen
y f for a dropletof R = 0.765 mm. (•) ν = 1.5 
S; (�) ν = 10 
S; (N) ν = 100 
S. The inset represents thethreshold 
urve in logarithmi
 s
ale, for ν = 100 
S. The solid (resp. dashed) line is a powerlaw of exponent 3.5 (resp. 2, as proposed in [114℄). (b) Normalized threshold amplitudeas a fun
tion of the dimensionless frequen
y ω for various droplet sizes (ν = 1.5 
S): (•)
R = 0.765 mm; (�) R = 0.812 mm; (N) R = 0.931 mm. The verti
al dashed lines 
orrespondto the droplet natural frequen
ies (Eq.5.1).By repla
ing Γth by a more appropriate dimensionless number based on the threshold ampli-tude Ath, namely Ath/(gτ

2
σ), the extrema are all lo
ated at the same dimensionless for
inglevel, whatever the sele
ted mode.The dimensionless natural frequen
ies ω(ℓ,m) = f(ℓ,m)/f(2,0) of a droplet �oating in mi
ro-gravity (Eq.1.7) do neither 
orrespond to the minima, nor to the maxima of the threshold
urve. Indeed, several authors have already observed that the dispersion relation of 
apil-lary waves depends on the 
onsidered geometri
al 
on�guration, e.g. a droplet pla
ed on ahydrophobi
 surfa
e vibrated verti
ally [115, 116℄ or horizontally [117℄, a large droplet signi�-
antly �attened by gravity [118℄, or simply a droplet highly deformed in the nonlinear regime[119, 120℄. On the other hand, these frequen
ies ω(ℓ,m) multiplied by a fa
tor 1.15 
orrespondto the maxima ωM (ℓ) of the threshold 
urve,
ω2

M = (1.15ω(ℓ,m))
2 = 0.165ℓ(ℓ− 1)(ℓ+ 2). (5.1)Therefore, it is more di�
ult to make a droplet boun
e when for
ing the system at one of thedroplet natural frequen
ies. Moreover, the droplet is observed to sele
t the mode Y 0

ℓ when thefor
ing frequen
y ranges in [ωM (ℓ − 1), ωM (ℓ)]. These results may seem 
ontradi
tory; sin
ethe boun
ing is due to the droplet deformation, an in
reased deformation would fa
ilitate theboun
ing and the natural frequen
ies of the droplet should 
orrespond to the minima of thethreshold 
urve. The model developed in the next se
tion explains this apparent paradox.
45



Figure 5.2: Axisymmetri
 spheri
al harmoni
s Y 0
ℓ observed when a droplet boun
es on avibrated high-vis
osity bath. The ellipsoidal mode Y 0

2 is obtained at f = 50 Hz and Γ = 0.3;the mode Y 0
3 at f = 160 Hz and Γ = 2; and the mode Y 0

4 at f = 275 Hz and Γ = 6. Modes arebetter re
ognized in the third 
olumn, 
orresponding to the di�eren
e between images fromboth �rsts.
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5.2 Modeling the boun
ing on a bath5.2.1 The model of CouderThe �rst modeling of the sustained boun
ing of a droplet on a verti
ally vibrating bath wasproposed by Couder and 
oworkers in 2005 [114℄. These authors have studied the boun
ingof highly vis
ous droplets (ν = 500 
S) on a bath made of the same liquid. They suggest thefollowing me
hanism 1:Stability requires that the air �lm resists squeezing during the half period of upward motionand that, during the downward half period, air has time to penetrate the �lm to allow lift-o�.We must thus 
onsider the dynami
s of the thin air �lm, and seek if it 
an sustain the dropboun
ing and be renewed. At a given time the thi
kness of this �lm is h and its radius rL.In the following, we assume that the vis
osity of the liquid µ is mu
h larger than that of air
µa, so that the air�ow does not entrain the liquid. At the drop landing, the �lm of air resistssqueezing only when a vis
ous regime is rea
hed, i.e. the Reynolds number be
omes smallenough: Re = ρah

2f/µa < Reth, with ρa and µa being the density and vis
osity of air. This
ondition sets a s
ale for a typi
al �lm thi
kness h. Reynolds lubri
ation theory shows that the�lm resists squeezing with a for
e of magnitude FL ∼ µar
4
Lf/h

2 (using the vibration period asa time s
ale). Let M be the drop mass and Γ the imposed a

eleration. At landing the balan
eof for
es gives −Mg + FL = MgΓ, and at lift-o� Mg + FL = MgΓ. The lift-o� 
onditionbeing more restri
tive determines the 
riti
al a

eleration Γth needed for boun
ing (using thes
ale for the �lm thi
kness found above):
Γth = 1 +

1Reth

ρa

ρ

r4L
R3

f2. (5.2)Qualitatively, this means that a larger a

eleration is needed to squeeze or �ll the air �lm at ahigher frequen
y or for a more extended �lm. [...℄The model 
orre
tly des
ribes several experimental observations; e.g. for vis
ous droplets,the threshold Γth(f) in
reases monotoni
ally with the for
ing frequen
y starting from Γth(0) =
1. Nevertheless, it has some major short
omings that are addressed in the following se
tion.1. The power law Γth − 1 ∼ f2 is approximately 
orre
t for 500 
S droplets on a 500 
Sbath, but it is already not valid anymore for 100 
S droplets on a 1000 
S bath (inset ofFig. 5.1a) where the exponent of the power law is 
loser to 3.5.2. Neither the vis
osity nor the surfa
e tension and the deformation of the droplet are takeninto a

ount. So the model 
annot 
at
h the boun
ing physi
s of less vis
ous droplets.3. The for
e balan
e is only written at a given instant, namely the take-o�, so the wholetraje
tory 
annot be 
omputed.4. The 
hoi
e of that Reynolds number to estimate the typi
al �lm thi
kness may be
ontested. Indeed, it is based on the verti
al velo
ity of the droplet, of the order of h ·f .Another (maybe better) 
hoi
e would have been the horizontal drainage velo
ity of theair �lm, whi
h is about R · f ≫ h · f and leads to the s
aling Γth − 1 ∼ f3.1Notations have been adapted from the original manus
ript in order to be 
oherent with our notations.47



Figure 5.3: (a) Geometri
al variables: R is the radius of the undeformed droplet, η is itsverti
al deformation about the axis of symmetry, h is the thi
kness of the intervening air �lmand Z is the position of the droplet mass 
enter relative to the bath. (b) Interferen
e fringesobserved through the thin air layer when the droplet is lightened by a mono
hromati
 light.5.2.2 Taking the droplet deformation into a

ountThe proposed model [121℄ 
onsists in two di�erential equations, one des
ribing the motionof the droplet 
enter of mass (verti
al position Z, as for the soap �lm), and one for the dropletverti
al deformation η. The droplet is supposed to sele
t the Y 0
2 ellipsoidal mode (Fig. 5.3a);the bath deformation is negle
ted. During its �ight, the droplet experien
es the apparentgravity Mg(Γ cos 2πft − 1) in the frame of the vibrating bath. The air layer is des
ribedthrough the lubri
ation theory; a verti
al lubri
ation for
e FL is applied on the droplet. Thedeformations are responsible for mi
ro-�ows within the droplet that may help the air drainageand modify the resulting FL. At leading order, the drainage is 
onsidered as a Poiseuille-Couette �ow between two parallel plane interfa
es. The bottom interfa
e (bath) is at rest,while the top interfa
e moves with a velo
ity proportional to η̇r/R, where r is the radialhorizontal 
oordinate (
ylindri
al). Cal
ulations (App. D) yield

FL = cL1µaR
4

(

cL2
η̇

h2R
− ḣ

h3

)

, (5.3)where cL1 and cL2 are positive 
onstants. The lubri
ation theory suggests that cL1 = 3π/2.On the other hand, the parameter cL2, representing the e�e
t of deformation on drainage,
annot be estimated through simple arguments.The se
ond Newton's law in a frame moving with the bath writes
MZ̈ = Mg

(

Γ cos 2πft− 1

)

+ FL. (5.4)For pra
ti
al purposes, we use the thi
kness of the air layer h = Z − R − η instead of Z.The evolution of η is pres
ribed by an energy balan
e in the frame of the mass 
enter of thedroplet,
d(K + Eσ)

dt
= −PD − η̇FL, (5.5)48



where K is here the kineti
 energy of the motion inside the droplet, Eσ is the interfa
ialenergy and PD is the vis
ous dissipative power inside the droplet. In order to 
lose thesystem, variables K, Eσ and PD must be estimated as fun
tions of η. S
aling arguments yield
K = cKM

η̇2

2
, Eσ = cσσ

η2

2
, PD = cDνM

η̇2

R2
, (5.6)where 
onstants cK , cσ and cD depend on the �ow inside the droplet. For example, thepotential �ow related to the spheri
al harmoni
 Y 0

2 leads to cK = 3/10, cσ = 16π/5 and
cD = 3, so ck = cσ/cK (App. C).The whole system is written in dimensionless form by using

y =
k

Mg
h, x =

k

Mg
η and τ =

√

k

M
t. (5.7)








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















ẍ+ ÿ = Γ cosωτ − 1 +
FL

Mg
,

cK ẍ+ cD

√

4π

3ck
Ohẋ+

cσ
ck
x = − FL

Mg
,

FL

Mg
=

√
3

(4π)7/2
c
5/2
k cL1

µa

µ

OhBo3

(

4π
cL2

ck
Bo ẋ

y2
− ẏ

y3

)

.

(5.8)Moreover, the se
ond equation is repla
ed by the sum of both �rst in order to remove thelubri
ation term.














ẍ+ ÿ = Γ cosωt− 1 +

√
3

(4π)7/2
c
5/2
k cL1

µa

µ

OhBo3

(

4π
cL2

ck
Bo ẋ

y2
− ẏ

y3

)

,

(cK + 1)ẍ+ cD

√

4π

3ck
Ohẋ+

cσ
ck
x = Γ cosωτ − 1 − ÿ.

(5.9)Terwagne et al. [122℄ observed the dynami
s of the air �lm lo
ated between the dropletand the bath using a mono
hromati
 light. Con
entri
 fringes of interferen
e appear whenthe air �lm is squeezed (Fig. 5.3b). When the droplet boun
es, the motion of the fringes isperfe
tly periodi
. No attenuation or phase drift take pla
e and the boun
ing is stationary.On the other hand, the number of fringes de
reases when the droplet does not boun
e; the �lmthins and �nally breaks, leading to 
oales
en
e. The periodi
ity of the fringes motion suggestsperiodi
 solutions from Eq. (5.9). Conditions for su
h solutions are obtained by integratingEq. (5.9) over a period 2π/ω. Under the assumption of periodi
ity, many terms vanish, giving
∫ 2π/ω

0
xdτ = −2π

ω

ck
cσ

and cL2

∫ 2π/ω

0

ẋ

y2
dτ =

64π7/2

√
3cL1c

3/2
k

µ

µa

Bo2Ohω . (5.10)Terms on the right-hand side are always stri
tly positive. A

ording to the �rst relation,a me
hanism of potential energy storage (here, the droplet deformation) should be takeninto a

ount (x 6= 0). The droplet has to spend more time in an oblate state (x < 0)than in a prolate state (x > 0). A

ording to the se
ond equation, internal movements inthe liquid phase, related to the deformation rate, must have a signi�
ant in�uen
e on the�lm drainage and the resulting lubri
ation for
e (cL2 6= 0). Moreover, a signi�
ant phaseshift between the minimum �lm thi
kness and the maximum 
ompression must be observed.49



Indeed, ∫ 2π/ω
0 ẋdt = 0, while 1/y2 is stri
tly positive and vanishes when the �lm thi
kens. Tohave a positive left hand side in the se
ond equation, we expe
t the �lm to be the thinnestwhen the droplet begins to re
over its spheri
al shape (ẋ > 0). All these required 
onditionsshow us that this model is minimal: if the model does not take into a

ount all above listed
onditions, its predi
tion fails and no periodi
 boun
ing solutions 
an be found.We pro
eed by 
omputing typi
al traje
tories of this model, for an oil droplet (R = 0.8 mm,

ν = 50 
S, σ = 20 mN/m) released on a bath at f = 50 Hz. The various 
oe�
ients are ob-tained through a �tting pro
edure detailed here after. Experiments suggest a 
oales
en
eat Γ = 0.5 and a sustained boun
ing at Γ = 1.5. These observations are well-rendered bythe model (Fig. 5.4a-d). Below the boun
ing threshold (Γ = 0.5 - Fig. 5.4a-b), the dropletdeformation x and �lm thi
kness y (in log s
ale) os
illate sinusoidally and in-phase. The di-mensional thi
kness 
orresponding to y ranges in [0.1,1℄ µm, whi
h foretells a near 
oales
en
e:the air �lm is not fully regenerated and its mean thi
kness signi�
antly de
reases on the longrun. Above the threshold (Γ = 1.5 - Fig. 5.4
-d), the deformation is not sinusoidal anymore,and the �lm thi
kness rea
hes about 100 µm every period. The droplet is seen to take-o�and the motion is perfe
tly periodi
. On the phase diagram (y, x), the traje
tory at Γ = 0.5
onsists in a series of quasi-parallel straight lines (y and x are in-phase), while a limit 
y
leappears at Γ = 1.5.The a

eleration threshold Γth required for periodi
 boun
ing may be estimated startingfrom Eq. (5.9). When Γ < Γth, the droplet does not boun
e, the air �lm remains thin and
ÿ ≪ 1. The se
ond equation in Eq. (5.9) does not depend on y anymore. The droplet behavesas a simple for
ed os
illator

x(τ) = GΓ cos(ωt+ φ) − ck
cσ

(5.11)where G and φ are fun
tions of ω de�ned as


















G−2 =

[

cσ
ck

− (cK + 1)ω2

]2

+
4π

3ck
c2DOh2ω2,

tanφ = cD

√

4π

3ck

Ohω
(cK + 1)ω2 − cσ

ck

.
(5.12)The resonan
e frequen
y related to this os
illator is given by

ω2
res =

cσ
ck(cK + 1)

[

1 − 2πc2D
3cσ(cK + 1)

Oh2

]

. (5.13)To �nd y with the �rst equation of Eq. (5.9), it is 
onvenient to de�ne the amplitude Y (τ) ofits variation (i.e. the short-term average) as
y(τ) = Y (τ)e

4π
cL2
ck
BoGΓ cos(ωt+φ)

. (5.14)Cal
ulations yield
√

3

(4π)7
cL1c

5/2
k

µa

µ

OhBo3

Ẏ

Y 3
=

{

GΓ

[

(
cσ
ck

− cKω
2) cos(ωt+ φ)

− cD

√

4π

3ck
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− 1

}

e
8π

cL2
ck
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.(5.15)50
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(f)Figure 5.4: Droplet traje
tory obtained by numeri
ally integrating Eq. (5.9). Physi
al param-eters are R = 0.8 mm, ν = 50 
S, σ = 20 mN/m and f = 50 Hz. (a-b) The droplet doesnot boun
e and the �lm thins at Γ = 0.5. (
-d) The droplet boun
es periodi
ally at Γ = 1.5.(a-
) The solid line is the �lm thi
kness y and the dashed line is the droplet deformation x,both as fun
tions of time τ . (e) Phase diagram (y, x) on whi
h traje
tories at Γ = 0.5 (left)and Γ = 1.5 (right) are plotted. (f) Evolution of the short-term averaged thi
kness of the airlayer Y (τ). The dashed line 
orresponds to the boun
ing threshold. (•) Γ = 0, (N) Γ = 0.5,(�) Γ = 1.1, (H) Γ = 1.5. 51



By integrating this equation over a long time τ and by only keeping se
ular terms, we obtain:
Y (τ) =

[

Y (0)−2 − 2

√

(4π)7

3

1

cL1c
5/2
k

µ

µa

Bo3Oh Cτ]−1/2

, (5.16)where the fun
tion C(Γ, ω) is de�ned as

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









C =

(

cσ
ck
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BoGΓ
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,

Ij(x) =
1

π

∫ π

0
ex cos t cos(jt)dt.

(5.17)When C < 0, the averaged �lm thi
kness Y de
reases with time and the droplet �nally
oales
es. Conversely, when C > 0, Y diverges and the solution is not longer valid. Thedroplet takes o�, ÿ 
annot be negle
ted anymore in Eq. (5.9) and boun
ing o

urs. Thethreshold a

eleration for boun
ing Γth 
an thus be de�ned as the value of Γ su
h that C = 0.
(

cσ
ck

− cKω
2

)

GΓthI1

(

8πcL2

ck
BoGΓth

)

= I0

(

8πcL2

ck
BoGΓth

)

. (5.18)This equation has one positive solution when cσ − cKckω
2 > 0, and no solution in the other
ase. There is a 
ut-o� frequen
y

ω2
co =

cσ
ckcK

(5.19)above whi
h the model 
annot predi
t boun
ing based on the deformation mode Y 0
2 (C isalways negative). This frequen
y 
orresponds to the natural resonan
e ωM (ℓ = 2) of thedroplet (Eq.5.1), and to the �rst maximum of the Γth(ω) 
urve (Fig. 5.1b). Beyond ωco, thedroplet does not sele
t the mode Y 0

2 anymore. The 
ut-o� frequen
y is always higher than ωres,whi
h may be seen as the resonan
e frequen
y of the system "droplet + air �lm" and the �rstminimum of Fig. 5.1(b). This minimum is shown to disappear when ωres is 
omplex, i.e. whenOh2 > 3cσ(cK + 1)/(2πc2D) whi
h 
orresponds to high vis
osity, as observed experimentally.At this stage, I would like to thank the �rst of my faithful and 
areful readers by o�eringhim a billion of freshly handled 1 nL droplets of a deli
ious Belgian beer, provided he 
anre
onstru
t by heart the model from the beginning to this point. Finally, as in Couder'smodel, the predi
ted threshold 
urve Γth(ω) tends asymptoti
ally to a 
onstant value > 1when ω → 0.In order to 
ompare the model predi
tions to the experimental data shown in Fig. 5.5, asingle �t has been made on 
oe�
ients cL2 and cK , while the nominal value of mode Y 0
2 is takenfor other 
oe�
ients, namely cσ = 16π/5, ck = 32π/3 and cD = 3. The 
oe�
ients resultingfrom the �tting pro
edure are cL2 ≃ 17.5 and cK ≃ 0.1. The 
omparison with experiments isa

eptable, both qualitatively and quantitatively. In parti
ular, the minima for low vis
ositiesand the divergen
e for high frequen
ies are reprodu
ed. A

ording to the �t, ωres = 0.52,whi
h perfe
tly 
orresponds to the �rst minimum of Fig. 5.1(b). Nevertheless, there are somesigni�
ant dis
repan
ies between the model and experiments. First, the value of cK obtainedthrough �tting is mu
h lower than predi
ted by theory (cK = 0.3). And se
ond, the predi
ted
ut-o� at ωco = 1.73 is far beyond the �rst maximum of Fig. 5.1(b). These short
omings mightbe due to several reasons: The experimental threshold is very sensitive to the droplet size,whi
h is not systemati
ally measured. Moreover, the model only takes mode Y 0

2 into a

ountand supposes that the droplet deformation is symmetri
 with respe
t to the mid-horizontalplane. 52
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(d)Figure 5.5: A

eleration threshold Γth(ω) for droplets of R = 0.765 mm and various vis
osities,i.e Ohnesorge numbers: (a) Oh = 0.012, (b) Oh = 0.077, (
) Oh = 0.388 and (d) Oh = 0.776.For Oh = 0.012, thresholds are di�erent a

ording to whether the a

eleration is in
reased(N) or de
reased (•). The solid (resp. dashed) line 
orresponds to the model predi
tion (5.18)with the �tting value cK = 0.1 (resp. the theoreti
al value cK = 0.3).
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(b)Figure 5.6: Lifetime tL of boun
ing droplets of radius R = 0.84 mm as a fun
tion of thenormalized a

eleration Γ/Γth, (a) for various vis
osities and (b) for
ing frequen
ies. Thedashed 
urves 
orrespond to Eq. (5.22).5.3 Delayed 
oales
en
e below the boun
ing thresholdAlthough droplets 
annot boun
e periodi
ally when Γ < Γth, their lifetime tL seems to besigni�
antly in
reased by the vibration [123℄. Indeed, droplets on under-vibrated bath may�oat for near to a minute while they last a few tenths of se
onds on a stati
 bath. Surpris-ingly, the lifetime is observed to be important for small Γ and to de
rease with in
reasing Γ,until in
reasing again and diverging when Γ → Γth (Fig. 5.6). Moreover, the dispersion ofmeasurements is important for small Γ, while the lifetime seems more reprodu
ible at larger
Γ. We pro
eed by rationalizing these observations thanks to the model (5.9) developed in theprevious se
tion.First, for pra
ti
al purpose, we de�ne the fun
tion Υ(ω) = 8π cL2

ck
BoGΓth and write

(

cσ
ck

− cKω
2

)

ck
8πcL2BoΥI1(Υ) = I0(Υ), (5.20)so

C =
I0(Υ)

I1(Υ)

Γ

Γth
I1

(

Υ
Γ

Γth

)

− I0

(

Υ
Γ

Γth

)

. (5.21)In this mathemati
al expression of C, the frequen
y information is fully 
ontained in Υ andthe for
ing a

eleration is always 
ompared to the threshold Γth.Now, suppose that the air �lm breaks in at time tL su
h as Y = Yth. Then, Eq. (5.16)yields
tL = − t0

C
(5.22)where t0 is the hypotheti
 lifetime at Γ = 0 (C = −1). Equation (5.22) is �tted on theexperimental 
urves of Fig. 5.6 thanks to this single �tting parameter tL. The agreementis good, espe
ially for the deterministi
 part of the data. The model 
orre
tly 
at
hes thevariations of tL with the for
ing parameters Γ and ω. The in�uen
e of other droplet-relatedfa
tors is unfortunately hidden in t0. 54



5.4 SummaryIn this 
hapter, we have dis
ussed the boun
ing of droplets on a high-vis
osity bath.Contrary to the boun
ing on a soap �lm, the droplet deformation is shown to play a key rolein this 
ase. Di�erent natural modes of the droplets (spheri
al harmoni
s) 
an be ex
iteddepending on the for
ing frequen
y. The threshold in for
ing a

eleration Γth is shown to bemaximum when the system is ex
ited at one of the natural frequen
ies of the droplet, whileit is minimum in between these frequen
ies. The model we have proposed is based on twodi�erential equations, the �rst being the Newton law applied to the droplet mass 
enter (likefor the soap �lm) and the other des
ribing the droplet deformation. The model predi
tionsare in good agreement with the experiments in the range of frequen
y 
overed by the spheri
alharmoni
 Y 0
2 . In parti
ular, the model 
orre
tly reprodu
es the transition from the �lmthinning regime (that leads to 
oales
en
e) to the periodi
 boun
ing regime (that prevents
oales
en
e). The threshold Γth obeys to an impli
it equation, the solution of whi
h �ts wellthe experimental data. A minimum in Γth (and so in the energy to provide for the dropletthrough the for
ing) is observed at the same frequen
y as in experiments. It 
orrespondsto a resonan
e of the system "air layer + droplet" where the in
oming energy is e�
ientlyused to make the droplet boun
e. On the other hand, a divergen
e is predi
ted when thefor
ing frequen
y 
orresponds to the natural frequen
y of the droplet alone. In that 
ase, theenergy is fully absorbed by the droplet deformation. The model suggests that boun
ing is notpossible anymore in mode Y 0

2 when this frequen
y is ex
eeded. Finally, it gives an a

uratepi
ture of the lifetime experien
ed by droplets before 
oales
en
e when the for
ing is belowthe threshold. The main short
oming of the proposed model is that it only takes the mode
Y 0

2 into a

ount, while other deformation modes are observed at higher frequen
y.
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Chapter 6Movements and intera
tions on avibrated bathAt this stage, we are able to maintain droplets for hours in a boun
ing 
on�guration ontoa vibrated liquid bath. The next step in our approa
h of handling is to move these dropletshorizontally on the bath surfa
e, or more spe
i�
ally to make them move by themselves. Inother words, we need to break the horizontal symmetry of the boun
ing me
hanism. There aretwo di�erent ways to a
hieve this goal, depending on what is deformed: the droplet (rollers)or the bath (walkers). Both motions are dis
ussed here below. The walkers have some veryinteresting intera
tion properties that are espe
ially studied on a statisti
al point of view.6.1 The rollersAs noted in the previous 
hapter, a low vis
osity droplet makes use of its deformation inorder to boun
e on a high vis
osity bath. The deformation is expressed in terms of spheri
alharmoni
s Y m
ℓ , whi
h are axisymmetri
 when m = 0. Depending on the for
ing frequen
y,the droplet sele
ts a spe
i�
 deformation mode. As seen in Eq. (1.7), for a droplet in free-fall,the natural frequen
y f(ℓ,m) of the mode Y m

ℓ only depends on ℓ, not on m. This degenera
y isobserved to break down when the droplet boun
es. For example, modes Y 0
2 and Y 1

2 are ex
itedon distin
t frequen
y ranges. The Y 1
2 mode is preferentially sele
ted when the frequen
y is
lose to the �rst maximum ω ≃ 1 in the threshold 
urve (Fig. 5.1), i.e. between about 100 Hzand 140 Hz for droplets of radius 0.765 mm. The asymmetri
 motion of droplets in the Y 1

2mode makes them roll on the bath surfa
e (Fig. 6.1a), whi
h gives birth to a slight but robusthorizontal translation perpendi
ular to the rotation axis. These self-propelled droplets are
alled rollers.The roller velo
ity vr has been measured for various for
ing parameters (Γ,f). Data roughly
ollapse on a single 
urve (Fig. 6.1b), whose equation is determined empiri
ally
vr = 0.82(A−Ath)(f − f0), (6.1)where Ath is the threshold amplitude given by Γthg/(4π

2f2) and f0 ≃ 103 Hz is the lowestfrequen
y for whi
h rollers are observed.On a �at bath, the roller traje
tory is a straight line whose dire
tion is sele
ted initially.The traje
tory is sensitive to bath deformations. For example, due to the menis
us, rollerdroplets boun
e ba
k on the bath walls. They 
an therefore be guided between two parallel56
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(b)Figure 6.1: (a) At f = 115 Hz and Γ = 4.5 > Γth, a droplet of radius R = 0.765 mmdeforms asymmetri
ally and rolls on the bath surfa
e. The spheri
al harmoni
 Y 1
2 is 
learlyidenti�ed on the last snapshot, 
orresponding to the subtra
tion between the images 1 and 6.(b) Horizontal velo
ity of the roller droplet as a fun
tion of the for
ing parameters. The solidline 
orresponds to Eq. (6.1).walls forming a 
hannel. Sin
e ea
h droplet makes a slight hollow on the bath surfa
e, therollers are also attra
ted by ea
h other, whi
h may promote their 
oales
en
e. Both guidingand attra
tion are interesting operations for potential droplet handling.6.2 The walkersOn a low vis
osity bath (typi
ally 50 
S or less), the boun
ing is also ensured by thebath deformation. Couder and 
oworkers [124℄ have shown that under spe
i�
 
onditions, asymmetry breaking 
an also set the droplet into a permanent horizontal motion. Indeed, theimpa
t de�e
ts the bath surfa
e and a 
apillary wave is emitted (Fig. 6.2a). At next boun
e,the droplet may thus fall on the slope of the wave it has previously 
reated, whi
h gives it asmall horizontal impulse (Fig. 6.2b); the droplet turns into a walker.A verti
ally vibrated bath is subje
t to the Faraday instability [125, 126, 127℄ when thefor
ing a

eleration is higher than a threshold value ΓF [128, 129, 130℄. Below this threshold,
apillary waves are qui
kly damped while above ΓF , a pattern of standing 
apillary waves
overs the bath surfa
e (Fig. 6.2
). The frequen
y of these waves is half the for
ing frequen
y(App. F).As ΓF is approa
hed from below, the damping fa
tor of 
apillary waves progressivelyvanishes and emitted waves propagate over a longer distan
e. For this reason, the walkingdroplets are observed just below the Faraday threshold. Indeed, their horizontal impulse
omes from the waves they have emitted on the bath at the previous boun
e. These wavesmust not have been damped meanwhile. Couder's team [131, 76℄ has lo
ated the range ofphysi
al parameters (Γ,f ,R,ν) in whi
h walkers are observed (Fig. 6.3a-b).We investigated the behavior of an assembly of walkers on a bath made of 50 
S sili
on oilvibrated at Γ = 4.2 and f = 50 Hz. These experimental 
onditions are kept through the whole57



Figure 6.2: (a) A walker boun
es on the wave it has 
reated on the bath at previous impa
t(Credit: S. Protière [76℄). (b) Spatiotemporal diagram of a walking droplet (Credit: S. Protière[76℄). (
) Standing Faraday waves observed when Γ > ΓF (Credit: H. Caps).

Figure 6.3: Identi�
ation of the walker zone in the phase diagrams of the boun
ing droplet.(a) In the (Γ, D)-diagram, where D = 2R is the droplet diameter, the walking zone (resp.Faraday instability zone) is indi
ated by W (resp. F ). Other parameters are f = 50 Hz and
ν = 50 
S. (b) In the (f,Γ)-diagram, the shaded walking zone is slightly under the Faradaythreshold (solid line), for various vis
osities: (�) ν = 100 
S, (�) ν = 50 
S, (•) ν = 20 
Sand (N) ν = 10 
S. (Credit: S. Protière [131, 76℄)
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(b)Figure 6.4: (a) Probability Distribution Fun
tion of the radius R of droplets 
reated with anail tip. The dashed line is a normal distribution of mean 0.43 mm and standard deviation0.06 mm. (b) Velo
ity vw of the walkers as a fun
tion of their size R. The solid line 
orrespondsto Eq. (6.2).se
tion. Walking droplets (R ∼ 0.4 mm) are about twi
e smaller than droplets usually madewith a syringe and a needle (R ∼ 0.8 mm), so they need to be produ
ed by another way, herewith a nail tip dipped into a bath and qui
kly taken out (
f. se
.3.1). The droplets and thebath are thus made from the same liquid (so they have the same vis
osity). With this methodof 
reation, the droplet size R is not perfe
tly reprodu
ible; it follows a normal distributionof mean 0.43 mm and standard deviation 0.06 mm (Fig. 6.4a). The walker horizontal velo
ity
vw has also been measured as a fun
tion of its radius R (Fig. 6.4b). Droplets start walkingat R ≥ 0.29 mm, through a pit
hfork bifur
ation. The velo
ity in
reases as the square rootof the distan
e to the threshold size, until it abruptly vanishes for R ≥ 0.55 mm (Fig. 6.4b).The average velo
ity is about 10 mm/s;

vw[mm/s] =

{

35
√

R[mm] − 0.29 if R ∈ [0.290.55] mm,
0 otherwise. (6.2)6.2.1 Non-lo
al intera
tionsThe walker and the surfa
e wave on the bath are interlo
ked. Indeed, the wave was bornfrom the droplet boun
ing, and the walking ability is only due to the wave. The walker istherefore a marvelous and unique example of wave-parti
le duality at ma
ros
opi
 s
ale [124℄.Droplets use their wave to probe the surroundings. The wave extension around the dropletvaries with the damping rate, whi
h de
reases as the distan
e to the Faraday threshold ΓF isde
reased. On the other hand, the threshold ΓF signi�
antly in
reases when the bath depthis de
reased below 5 mm. So a droplet 
annot walk where the bath is not su�
iently deep,the asso
iated wave being fully damped. By immersing obje
ts of height 8 mm in a bathof depth 9 mm, we observe that the waves propagate everywhere but on these obje
ts. Asa 
onsequen
e, in
oming walkers feel the submarine obje
ts and stay away from them [76℄;59



Figure 6.5: (a) A droplet probes the surrounding thanks to the wave it emits. Consequently,it is re�e
ted from a distan
e by the walls (Credit: S. Protière [76℄). (b) A droplet may beguided through a 
ir
ular 
hannel. (
) A droplet is randomly deviated when passing througha slit between two submarine obje
ts (Credit: Y. Couder [133℄). In (a,b,
), the su

essiveimages taken by the 
amera are superposed in order to reveal the traje
tory of the droplet;bla
k line in (a) and (
), white line in (b).
Figure 6.6: (a) Two walking droplets intera
t through the wave they emit. These walkers mayrepulse (b) or attra
t (
) ea
h other, resulting in 
omplex orbital motions. As an example (d),two droplets may orbit around a virtual 
enter of rotation (Credit: S. Protière [76, 134℄).they are re�e
ted by the walls (Fig. 6.5a). Thanks to this property, walkers may be guidedthrough 
hannels, exa
tly as rollers do (Fig. 6.5b). Nevertheless, it is better here to only usesubmarine walls than emersed walls. Indeed, the menis
us that mat
hes the bath surfa
e tothe wall may emit parasite Faraday waves [132℄. The duality between a wave and a parti
leis highlighted in the brilliant following experiment, made by Couder and 
oworkers in 2006[133℄. Two submarine obje
ts are pla
ed next to ea
h other with a small gap between both.A droplet that enters the gap seems to be deviated randomly (Fig. 6.5
). Nevertheless, whenrepeating the experiment a large number of times, it appears that the Probability DistributionFun
tion of the deviation angle forms a di�ra
tion pattern perfe
tly similar to those observedwith photons or ele
trons!When two walkers 
ome in the vi
inity of ea
h other, they intera
t through their waves[76℄. Indeed, the wave pattern on whi
h they boun
e is the sum of individual waves emittedby both (Fig. 6.6a). The in
oming droplets may repulse or attra
t ea
h other, depending onthe distan
e between them (Fig. 6.6b-
). Attra
tion leads to the formation of 
omplex orbitalmotions and epi
y
les [134℄, as those observed in 
elestial me
hani
s (Fig. 6.6d).When more than two walkers intera
t together, they usually form a 
rystalline stru
ture60



Figure 6.7: (a) Large boun
ing droplets agglomerate together and form rafts, even at lowfor
ing a

eleration. (b) Several walkers form a 
rystalline stru
ture (often hexagonal) wherethe distan
e between parti
les is 
lose to the wavelength of the emitted waves (Credit: S. Pro-tière [76℄). (
) Two unequal walkers form a spontaneously moving rat
het, the dire
tion beingpres
ribed by the for
ing 
onditions. (d) Larger droplets are able to set a whole 
rystallinestru
ture of small droplets into motion.(Fig. 6.7b), where the distan
e between two droplets is 
lose to the wavelength of the emitted
apillary waves [131℄. At lower for
ing, larger boun
ing (but not walking) droplets have asimilar behavior [135, 136℄, but the distan
e between them is now next to nothing (Fig. 6.7a).Indeed, two parti
les (even solid spheres or bubbles) pla
ed on a bath attra
t ea
h other tominimize the ex
ess surfa
e 
reated by the menis
us around ea
h parti
le [137, 138, 139, 140℄.Two walkers with a di�erent size form a rat
het [141℄; the symmetry is broken and the resultingsystem experien
es a net translational motion (Fig. 6.7
). One or several larger droplets pla
edin a 
rystal of small droplets 
an drive the whole stru
ture, i.e. give it a translational/rotationalmotion (Fig. 6.7d).Walker stru
tures 
an also be moved by using virtual droplets (D. Caballero, private
ommuni
ation). A pulsed laser lo
ally heats the bath surfa
e periodi
ally, whi
h 
reates a
apillary wave due to a Marangoni e�e
t. This 
apillary wave intera
ts with the walker wavesexa
tly as if it was also 
oming from another walker. Therefore, the walkers 
an be drivenby the 
ontrolled motion of the laser beam. This way to manipulate droplets is also of greatinterest for possible appli
ations in mi
ro�uidi
s.6.2.2 A gas of dropletsOur main 
ontribution to resear
h on walkers 
onsists in studying the statisti
al behaviorof a large number of them boun
ing onto a bath of surfa
e S = 4900 mm2. In parti
ular,we want to know to whi
h extent this set of droplets behaves as a gas (Fig. 6.8). The initialnumber Ni of droplets is varied from 10 to 50, �ve re
ordings of about 130 s are made inea
h 
ase. Droplets are observed to strongly intera
t with ea
h other, using every me
hanism61



Figure 6.8: Time evolution of a gas of droplets. Snapshots are taken every 16 s.detailed here above: repulsions, orbits, 
rystals, rat
hets... Sometimes, two walkers 
ollideand fuse together. The resulting droplet may be too large to keep walking.As a 
onsequen
e, the number of droplets N(t) de
reases with time and the walkers pro-gressively turn into a motionless population (Fig. 6.9a). The number of droplets is relativelywell �tted by a de
reasing exponential
N(t) = Nf + (Ni −Nf )e−t/tN , (6.3)whi
h 
orresponds to a relaxing pro
ess from the initial number of droplets Ni to the equi-librium �nal state Nf with a 
hara
teristi
 time tN . The �nal number Nf in
reases with Ni(Fig. 6.9b) while tN de
reases (Fig. 6.9
). We note that tN is also mu
h more reprodu
iblewhen Ni is su�
iently large for statisti
al tools to apply. The in
rease of Nf with Ni may berationalized by a simple model based on the following hypotheses 
oming from observations:

• There are two distin
t populations of droplets, Nw walkers andNnw not walking droplets,su
h as the total number of droplets is N = Nw +Nnw.
• When a walker 
oales
es with another droplet, the result is a motionless droplet. Theprobability of 
oales
en
e does not depend on the nature of this other droplet (walkeror not).
• Two motionless droplets 
annot 
oales
e together.The probability Pw/w for a walker/walker 
oales
en
e and the probability Pw/nw for a 
oales-
en
e between a walker and a droplet at rest are respe
tively

Pw/w =
Nw − 1

Nw − 1 +Nnw
and Pw/nw =

Nnw

Nw − 1 +Nnw
. (6.4)Starting from Ni walkers and zero motionless droplet, the probability P(Nw,Nnw) of ea
h s
e-nario (Nw, Nnw) may be evaluated until Nw = 0. An example is given in Fig. 6.9(d) for62



Ni = 6. The mean number of resulting motionless droplets is given by
Nf (Ni) ≃

Ni/2
∑

j=0

jP(0,j). (6.5)The standard deviation is also 
omputed
∆Nf (Ni) ≃

√

√

√

√

√

Ni/2
∑

j=0

(

j2P(0,j) −N2
f

)

. (6.6)This solution, plotted in Fig. 6.9(a), roughly �ts the experimental data. Nevertheless, a
-
ording to the distribution of droplet sizes (Fig. 6.4a), there is a signi�
ant probability thattwo 
oales
ing walkers form a walker again. So the model has been generalized to threepopulations: small walkers, large walkers and droplets at rest (Fig. 6.9a). A more a

uratemodel 
ould be a 
ombination of both s
enarios that would take into a

ount the initial sizedistribution.We have also investigated the velo
ity distribution of droplets. These distributions areobtained by measuring the instantaneous velo
ity of every droplets during a short intervalof time (here 4 s, whi
h 
orresponds to 100 images). Examples of Cumulative DistributionFun
tions (CDF) are plotted in Fig. 6.10 for Ni = 30. The distribution is seen to signi�
antlyevolve with time. In any 
ase, it is well �tted by a Weibull distribution, for whi
h PDF(Probability Density Fun
tion) and CDF are given by:
PDF (vw) =

b

a

(

vw

a

)b−1

e
−

(

vw/a

)b with vw > 0, (6.7)
CDF (vw) = 1 − e

−

(

vw/a

)b with vw > 0. (6.8)The Weibull distribution has two parameters, the s
ale a and the shape b. For spe
i�
 valuesof b, it is equal to some well-known distributions; the exponential distribution is obtained when
b = 1, b = 2 leads to the Rayleigh distribution and b = 3.4 is very 
lose to a normal distribution.The Rayleigh distribution is of importan
e in this 
ontext sin
e it is the 2-dimensional analogof the Maxwell-Boltzmann distribution followed by the velo
ity of mole
ules in an ideal gas.Ea
h experimental sequen
e is divided into segments of 4 s on whi
h the velo
ity distribu-tion is evaluated and �tted by a Weibull distribution. The resulting parameters a and b aremeasured on ea
h sequen
e as a fun
tion of time (Fig. 6.11). Various sequen
es 
orrespondingto the same Ni are averaged together. Although data are s
attered, the s
ale parameter a doesnot seem to depend on Ni. It seems to de
rease from ai = 12.12 mm/s, whi
h 
orrespondsto the mean velo
ity of a single walker. The �nal value is af = 5.56 mm/s and the 
hara
-teristi
 time ta = 63.2 s roughly 
orresponds to twi
e the relaxation time tN of N(t). Theshape parameter b also de
reases with time, and seem to 
onverge towards b = 1 (exponentialdistribution). The initial value de
reases with in
reasing Ni.These results may be explained with physi
al arguments. At the beginning, the walkersstart with a velo
ity distribution around b = 2 whi
h roughly 
orresponds to an ideal gas,though the distribution is expe
ted to be 
lose to the one presented in Fig. 6.4(b). Then, due63
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(
) (d)Figure 6.9: (a) Evolution of the number N(t) of droplets for various initial numbers: (•)
Ni = 52, (N) Ni = 42, (�) Ni = 30, (�) Ni = 20 and (H) Ni = 10. The solid lines 
orrespondto Eq. (6.3). (b) Final (equilibrium) number of droplets Nf as a fun
tion of the initial number
Ni. The solid line (resp. dashed line) 
orresponds to the mean number of motionless dropletspredi
ted by the 2-populations model (resp. 3-populations). The shaded zone represents thestandard deviation. (
) Chara
teristi
 time tN of the relaxing pro
ess as a fun
tion of Ni.(d) Example of evolution predi
ted by the 2-populations model for Ni = 6. In ea
h box, thenumber of both populations is indi
ated in bra
kets (walkers, droplets at rest), followed bythe probability to rea
h this state. Next to the arrows is the 
onditional probability to gofrom one box to another. The pro
ess ends when the number of walkers is zero.
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 [mm/s]Figure 6.10: Cumulative Distribution Fun
tion (CDF) of the droplet velo
ity vw at varioustimes t. (•) t = 0 s, (N) t = 36 s, and (�) t = 90 s.to the 
oales
en
es between walkers, b de
reases and tends towards unity, whi
h 
orresponds tothe exponential distribution. In this regime, the major part of droplets result from 
oales
en
eand are at rest, while there are still a few walkers with high velo
ity. A similar velo
itydistribution is en
ountered for large assemblies of young �shes, e.g. Nile Tilapia alevins [142℄.Indeed, these alevins are generally at rest, and only a few individuals explore the surroundingsthrough brief sequen
es of high-speed motion.The 
hara
teristi
 time of the de
reasing of b may be related to the mean free path of thewalkers. Indeed, in a 2-dimensional gas, the mean time between two su

essive 
ollisions isgiven by
tcoll ≃

S

vwNiR
, (6.9)where S = 4900 mm2 is the bath surfa
e, vw ≃ 9 mm/s is roughly the mean velo
ity, and

R ≃ 0.45 mm is the droplet radius, whi
h approximately 
orresponds to the 
ross se
tionof the droplet. Therefore, tcoll ≃ 1210/Ni, whi
h is is good agreement with the observed
hara
teristi
 time for the de
reasing of b.6.3 SummaryIn this 
hapter, we have dis
ussed two 
on�gurations in whi
h boun
ing droplets experien
ea self-propelled horizontal motion, namely the rollers and the walkers. The �rst is due to thedroplet deformation while the se
ond relies on the waves emitted at the bath surfa
e. Bothrollers and walkers are re�e
ted on the walls of the 
ontainer, so they 
an be guided in
hannels. The walkers 
an also be handled with a laser beam. The self-propelled motiono

urs in a spe
i�
 range of for
ing parameters, so it 
an be started and stopped by onlytuning the for
ing : the 
ontrolled manipulation of droplets onto a vibrating bath is possible.The walkers experien
e long-range intera
tions through the waves they emit, so they may65



0 20 40 60 80 100 120
0

2

4

6

8

10

12

t [s]

a 
[m

m
/s

]

(a) 0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

t [s]

b

(b)Figure 6.11: (a) S
ale parameter a and (b) shape parameter b of the velo
ity distribution asa fun
tion of time. (•) Ni = 50, (N) Ni = 40, (�) Ni = 30, (H) Ni = 20 and (�) Ni = 10.The solid lines are guides for the eyes.form 
omplex orbits or 
rystalline stru
tures. Moreover, droplets are attra
ted by ea
h other,whi
h promote their 
oales
en
e.We have mainly investigated the 
olle
tive behavior of a large number of walkers froma statisti
al point of view. Due to the unavoidable 
ollisions and 
oales
en
es between thewalkers, the number of them de
reases with time. The system tends to an equilibrium statein whi
h droplets are too big to keep walking. The velo
ity distribution is 
orre
tly des
ribedby a Weibull distribution. Initially 
lose to that of an ideal gas, it turns into an exponentialdistribution in whi
h the major part of droplets is at rest while only a few individuals are stillwalking. This distribution is also observed in other systems of 
olle
tive behaviors, su
h asthe Nile Tilapia alevins. Therefore, the gas of walking droplets 
ould be a promising modelfor statisti
al physi
s of 
olle
tive motions and self-organization.
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Chapter 7Partial 
oales
en
eIn previous 
hapters, we have seen that a droplet 
an be sustained onto a bath as longas there is a thin air layer separating both liquids. When the air is 
ompletely drained out,the droplet qui
kly 
oales
es into the liquid bath. Nevertheless, the fusion is not always inone go, and may result in a droplet of radius about half the initial droplet: the 
oales
en
e issaid to be partial (Fig. 7.1). This daughter droplet also stays on the bath, drains its air layerand 
oales
es. Again, the 
oales
en
e may be partial, thus giving birth to a grand-daughterdroplet. Up to seven su

essive generations have been observed during the 
oales
en
e of asingle mother droplet. When the daughter droplet is su�
iently small, it 
oales
es totally,thus ending this 
as
ade of partial 
oales
en
es. The whole pro
ess lasts about 200 ms (ea
hpartial 
oales
en
e is only a few millise
onds), so it is hardly visible to the naked eye.

Figure 7.1: Cas
ade of partial 
oales
en
es of a 5 µL oil droplet (ν = 1.5 
S). Four su

essivepartial 
oales
en
es are observed, ea
h of them halving the droplet radius; the last daughterdroplet is about 1/10000th of the initial mother droplet in volume !The detail of a partial 
oales
en
e is seen in Fig. 7.2(a). Coales
en
e only begins when theair �lm breaks. This rupture usually o

urs asymmetri
ally at the boundary of the apparent
onta
t zone between the droplet and the bath [143, 144℄. The hole qui
kly opens due to highpressure gradients resulting from the Lapla
e law (1.2). Indeed, the �lm thi
kness at ruptureis mi
rometri
, so the related 
urvature near the break point is about C ∼ 106 m−1. Duringthe retra
tion, a part of the bath 
omes up into the droplet [145, 146℄, as seen when 
olorlessdroplet 
oales
es into a 
olored bath. Next, the emptying droplet takes a 
olumn shape that67



may pin
h o� and form a daughter droplet (partial 
oales
en
e), or alternatively 
ollapse intothe bath (total 
oales
en
e). Finally, the liquid below the pin
h is violently eje
ted downwardsand forms a powerful vorti
al ring in the bath [147, 148, 149℄.Partial 
oales
en
e was reported by Mahajan in 1930 [150℄, but the �rst systemati
 investi-gation was only made by Charles and Mason in 1960 [151℄, thanks to the re
ent developmentsof high-speed photography. These authors 
onsidered the partial 
oales
en
e of water dropletsat the planar interfa
e between an oil layer and a water layer. Sin
e the water droplet is sur-rounded by oil instead of air, the lifetime tL between two su

essive 
oales
en
es is in
reased,so ea
h daughter droplet is visible to the naked eye. Charles and Mason thought that theformation of the daughter droplet is due to a Rayleigh-Plateau instability that reshapes the
olumn of �uid formed by the fusing mother droplet. Nowadays, this s
enario is invalidated.In 1993, the Fren
h PhD-student Y. Leblan
 [89℄ studied the sensitivity of partial 
oales
en
eto variations in size, surfa
e tension, and vis
osity of both �uids. Unfortunately, his resultswere never published in international journals; they were redis
overed by others [152, 153, 154℄several years later. But the main breakthrough o

urs in 2006, due to Blan
hette and Bigioni[155, 156℄ who dis
overed the main me
hanism of partial 
oales
en
e. A

ording to theseauthors, the 
olumn shape formed by the 
oales
ing mother droplet is mainly due to thepropagation of 
apillary waves on the droplet surfa
e. These latter are 
reated by the air �lmretra
tion at the bottom of the droplet [89, 152, 153℄. They 
limb on the droplet and 
onvergeat the top. This greatly lifts the droplet interfa
e and delays its verti
al 
ollapse, thus givingadvantage to the horizontal pin
h. Other works on partial 
oales
en
e have been publishedsin
e [157, 158, 159, 160, 161℄. Unfortunately, they rarely take into a

ount the very re
entresults of Blan
hette.In this 
hapter, we present a deeper investigation of partial 
oales
en
e at the interfa
ebetween two immis
ible liquids [162℄. After a dimensional analysis, we study the in�uen
eof the physi
al properties of both �uids on the 
oales
en
e out
ome. We dis
uss the exa
trole played by 
apillary waves in the partial 
oales
en
e me
hanism. Finally, we show that a
as
ade of partial 
oales
en
e 
an be stopped on a vibrated bath.7.1 Experimental setupPartial 
oales
en
e is robust and easy to observe experimentally. A 
ontainer is partly �lledwith an aqueous solution. Then, an oil layer (ν < 50 
S) denoted (s) is poured on it, as seenin Fig. 7.2(a). A water droplet (mother) is released from a syringe in the oil phase. Thanks togravity, it migrates towards the water/oil interfa
e and �nally 
oales
es into its homophase.The mother droplet radius is varied by 
hanging the needle diameter. The vis
osity of bothliquids is tuned between about 1 and 100 
S (various sili
on oils and water/gly
erol/ethanolmixtures - App. B). The interfa
ial tension between water and oil has been measured. It isapproximately 40 mN/m for (water+gly
erol)/oil interfa
es, and it sharply de
reases with anaddition of ethanol (down to 9 mN/m for a mixture made of 40% ethanol for 60% water).More than 150 partial 
oales
en
es have been �lmed thanks to a high-speed 
amera (2000 fps,pixel size 30 µm). The interfa
e position (supposed axisymmetri
) is dete
ted as a fun
tionof time by post-pro
essing the images.Many experimental pre
autions have been taken in order to ensure the data reprodu
ibility:
• A glass 
ontainer is easier to 
lean. 68



(a) (b)Figure 7.2: (a) Sequen
e of events in a partial 
oales
en
e of an oil droplet (ν = 1.5 
S) inair. (b) Experimental setup: a 
ontainer is �lled with an aqueous mixture (water + gly
erol+ ethanol) and a layer of sili
on oil (s). An aqueous droplet 
rosses the (s) layer and 
oales
esinto its bulk phase.
• The 
urvature of the liquid-liquid interfa
e may a�e
t the 
oales
en
e out
ome [155℄,so the interfa
e needs to be as planar as possible. To prevent unexpe
ted 
urvatures, ahorizontal groove is made, in whi
h the liquid/liquid interfa
e is pinned.
• The droplet may be at rest on the interfa
e (no internal �ows) at the beginning of the
oales
en
e. Therefore, experiments are not taken into a

ount when the drainage timeis less than 1 s.
• The 
ontainer is su�
iently large to avoid parasite re�e
tions of 
apillary waves on thewalls during the 
oales
en
e.7.2 Invariant s
alings in 
oales
en
eHow mu
h time is a 
oales
en
e ? Do partial and total 
oales
en
e share some 
ommonfeatures, or are they 
ompletely di�erent sin
e their beginning ? To answer these questions,we started by measuring the time evolution of two variables that 
hara
terize the 
oales
en
e.The �rst is the ex
ess surfa
e energy Eσ = σ∆S, 
ompared to the �nal state where the droplethas fully 
oales
ed (Fig. 7.3a). The se
ond quantity is the volume Ω of the droplet that is stillabove the mean level of the liquid/liquid interfa
e (Fig. 7.3b). These measurements are madefor every observed 
oales
en
e, whatever its out
ome, and both ∆S and Ω are normalized bytheir initial value.The 
oales
en
e was already observed to s
ale on the 
apillary time τσ [146, 152℄. Sur-prisingly, all the ∆S(t) and Ω(t) 
urves 
ollapse when the time is s
aled by τσ, no matter theout
ome. The di�eren
e between partial and total 
oales
en
e only appears in the later stagesof 
oales
en
e. The possible pin
h-o� o

urs between 0.7 and 0.8 τσ after the beginning. The69



de
rease in ∆S is remarkably linear; the power released by surfa
e tension to set the liquidsinto motion is roughly 
onstant during the main part of the 
oales
en
e. The emerged volumede
reases as the 
ube of time, so the emptying is relatively slow until t = 0.3τσ. The 
orre-sponding �ow rate evolves as the square of time. These s
aling laws are only observations,and still need to be rationalized.
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(b)Figure 7.3: Evolution of the global quantities for a total (N) and two partial 
oales
en
es (•and �) with various liquids. (a) Ex
ess of surfa
e ∆S. (b) Volume Ω above the mean interfa
elevel. The verti
al solid line indi
ates the start point of 
oales
en
e (i.e. the �lm breaking).The solid 
urves in (b) 
orrespond to a �t by the equation 1 − Ω(t)/Ω(0) ∼ (t/τσ)3.7.3 Dimensional analysisOn
e the 
oales
en
e has started, the dynami
s is ma
ros
opi
ally governed by three for
esresulting from surfa
e tension, gravity and vis
osity respe
tively. Therefore, seven dimensionalparameters are relevant: the interfa
ial tension σ, both densities ρ, ρs and vis
osities ν, νs,the droplet radius R and the gravity g. A

ording to the Π-theorem (Vas
hy-Bu
kingham),four independent dimensionless numbers 
an be built that entirely determine the 
oales
en
eout
ome. Any dimensionless quantity that des
ribes the partial 
oales
en
e must be a fun
tionof these four numbers only. Sin
e the 
oales
en
e times
ale is shown to be τσ, surfa
e tensionmust be the driving me
hanism. Indeed, no other for
e (neither gravity nor vis
ous for
es)
ould explain the 
omplex shapes en
ountered in partial 
oales
en
e.If partial, the 
oales
en
e is roughly self-similar: it repeats identi
ally, no matter the sizeof the initial droplet. On the other hand, the 
ompetition between two for
es gives rise toa length s
ale at whi
h both for
es balan
e ea
h other. For example, as seen in Chap. 1,gravity and surfa
e tension have the same order of magnitude when the system is 
lose to the
apillary length. In these 
onditions, the pro
ess 
annot be self-similar sin
e the dominantfor
e is gravity for larger droplets while it is surfa
e tension for smaller droplets. Therefore,self-similarity requires surfa
e tension to be the only dominant for
e at the 
onsidered s
ale.When the droplet size is about the 
apillary length (resp. the vis
ous length), i.e. when theBond (resp. the Ohnesorge) number is of the order of unity, surfa
e tension is not dominantanymore and the self-similarity of partial 
oales
en
e is 
ompromised. Bond (Bos) and both70



Ohnesorge numbers (Oh and Ohs) are thus pertinent dimensionless numbers. The fourthdimensionless number may be the relative di�eren
e in density
∆ρ =

ρ1 − ρ2

ρ1 + ρ2
. (7.1)The validity of this dimensional analysis may be 
ontested when signi�
ant residual mi
ro-�ows are present within the initial droplet. In that 
ase, additional parameters (and dimen-sionless numbers) are required to des
ribe the 
oales
en
e. Sin
e these mi
ro-�ows dire
tlyenhan
e the drainage, their 
hara
teristi
 times
ale must be of the order of the drainage time.When this time is measured to be mu
h higher than the 
oales
en
e time, residual mi
ro-�ows
an be negle
ted.7.3.1 The Ψ fun
tionWhat kind of transition separates partial and total 
oales
en
es ? To answer this question,the most relevant parameter may be the the ratio between radii of the daughter Rf and mother

Ri. Obviously, this latter is a fun
tion Ψ of the four independent dimensionless numbers only;
Rf

Ri
= Ψ(Bos,Oh,Ohs,∆ρ). (7.2)When Bos,Oh,Ohs ≪ 1, surfa
e tension is the only dominant for
e and the 
oales
en
eis partial and self-similar (Fig. 7.4a). The ratio Ψ only depends on the relative di�eren
ein density ∆ρ, whi
h is 
onstant during a single 
as
ade. In this regime, we observe Ψ ≃

0.45 ± 0.05 in average. Unfortunately, the liquid density is always 
lose to water, so ourexperiments do not 
over a range of ∆ρ su�
iently large to assess about the variation of Ψwith ∆ρ.The Bond number in
reases with the droplet size, and large droplets are in�uen
ed bygravity. This latter signi�
antly a

elerates the droplet emptying [89, 155℄, whi
h is in favorof total 
oales
en
e. As 
he
ked experimentally (Fig. 7.5a), the Ψ fun
tion de
reases with anin
rease in Bos. A

ording to the present data, it is not possible to state that Ψ is 0 (total
oales
en
e) for Bond numbers larger than a 
riti
al value Bos/th.A de
rease in droplet size 
orresponds to an in
rease in both Ohnesorge numbers. The�ows responsible for the partial 
oales
en
e (e.g. 
apillary waves) are progressively dampedby vis
osity in both �uids [89, 152, 155℄. This results in a de
rease of the Ψ fun
tion, whi
hends up vanishing when Oh ≥ Ohth ≃ 0.02 ± 0.005 or Ohs ≥ Ohs/th ≃ 0.3 ± 0.05 (Fig. 7.5b).Variations of Oh indu
e a sharp and premature transition from partial to total 
oales
en
e,while variations of Ohs result in a smoother and delayed transition. Both vis
osities do nothave the same role in inhibiting the partial 
oales
en
e me
hanisms. As seen in Fig. 7.4(
-d),the interfa
e swit
hes from a 
olumn shape to a 
usp-like shape for high Ohs values.We have also studied the behavior of Ψ with a 
ombined variation of both Ohnesorgenumbers, the Bond number being negligible (Fig. 7.6). The boundary 
urve between partialand total 
oales
en
e has been modeled by Leblan
, asOh + 0.057Ohs = 0.02. (7.3)Although this equation is in relatively good agreement with the experimental results whenOhs ∼ 1, it fails 
at
hing the boundary 
lose to Oh = Ohs: partial 
oales
en
e is observed formu
h greater Ohnesorges than predi
ted. 71



(a)
(b)
(
)
(d)Figure 7.4: Partial and total 
oales
en
es for various values of Bos, Oh and Ohs. (a) Partial
oales
en
e for small Ohnesorges (Bos = 0.049, Oh = 0.0025, Ohs = 0.013). (b) Total
oales
en
e due to a high Ohnesorge on the aqueous side (Bos = 0.079, Oh = 0.018, Ohs =

0.0049). (
) Intermediate partial 
oales
en
e due to a high Ohnesorge on the oil side (Bos =
0.011, Oh = 0.0030, Ohs = 0.16). (d) Total 
oales
en
e when the oil side Ohnesorge is veryhigh (Bos = 0.0095, Oh = 0.0031, Ohs = 0.34). The time is indi
ated in 
apillary time unitsin the lower left 
orner. Images are obtained by subtra
ting two su

essive images in order tohighlight the interfa
e motion; the blue interfa
e is advan
ing while the red is re
eding.72
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Figure 7.6: Combined in�uen
e of both Ohnesorge numbers on the 
oales
en
e out
ome:partial (△) or total (•). The Bond number is always smaller than 0.03. The solid straight line
orresponds to Oh = Ohs, while the dashed 
urve is Eq. (7.3). Cir
led letters 
orrespond tothe snapshots of Fig. 7.4.
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7.4 Capillary wavesA

ording to Blan
hette [155℄, the 
onvergen
e of 
apillary waves at the top of the dropletis responsible for the partial 
oales
en
e. The motion of the droplet interfa
e is highlighted bysubtra
ting su

essive images of the snapshots (Fig. 7.4). The progression of 
apillary wavesis 
learly seen in Figure 7.7, whi
h represents a time zoom on Fig. 7.4(a).

Figure 7.7: Time zoom on Fig. 7.4(a), revealing the 
apillary wave propagation. The timestep is 0.021τσ; the lines help lo
ating the wavefront.The dispersion relation of 
apillary waves (Eq.1.7) may be extended to the 
ase of a dropletimmersed in another immis
ible liquid (App. C):
(f(ℓ,m)τσ)2 =

ℓ(ℓ2 − 1)(ℓ+ 2)(1 + ∆ρ)

3π(2ℓ+ 1 + ∆ρ)
. (7.4)74



A

ording to Fig. 7.7, the dominant mode is ℓ = 11 ± 1. The wave is 
reated at about 7.5◦below equator, at the beginning of the 
oales
en
e, when the hole expands below the droplet.Its phase velo
ity ucw is 5.27 radians per unit of 
apillary time, in ex
ellent agreement withthe velo
ity 
al
ulated through
ucwτσ
Ri

=
2πf(ℓ,m)τσ

ℓ
, (7.5)when ℓ = 11. The propagation time tcw of the waves from the bottom to the top of the dropletis proportional to ℓ−1/2. So modes ℓ > 8 arrive more or less at the same time, while modes

ℓ < 8 
ome later, separately, and 
annot parti
ipate to the 
onvergen
e.The 
apillary waves are damped by vis
osity e�e
ts on both sides of the interfa
e. Thisdamping may be quanti�ed by measuring the amplitude of waves as they 
onverge at the top.The height of the top H(t) is measured as a fun
tion of time (Fig. 7.8a). The maximum HMo

urs in t = tcw ≃ 0.4τσ and 
orresponds to the 
onvergen
e of 
apillary waves. We seein Fig. 7.8(b) that the damping does not signi�
antly depend on whi
h vis
osity is in
reased(inside or outside the droplet). For similar vis
osities, damping is only 1.5 times more e�
ientwithin the droplet. The 
riti
al Ohnesorge for waves to be damped before rea
hing the topof the droplet is about 0.08. The vis
ous dissipation 
an be estimated theoreti
ally (App. C).The wave amplitude at the top is
HM = HM0e

−βtcw/τσ , (7.6)where the damping fa
tor is de�ned as
β =

√

π

3

2ℓ+ 1

2ℓ+ 1 + ∆ρ

[

(ℓ2 − 1)Oh + ℓ(ℓ+ 2)
√

1 − ∆ρ2Ohs

]

. (7.7)This solution is 
lose to the measured damping (Fig. 7.8b). Again, the fa
tors that weightboth Ohnesorge numbers in Eq. (7.7) are not signi�
antly di�erent for ℓ = 11 and ∆ρ≪ 1.
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7.4.1 Capillary waves and the partial to total transitionAs seen in previous se
tions, the transition between partial and total 
oales
en
e doesdepend on whi
h Ohnesorge is in
reased, while the 
apillary wave damping are not so mu
hin�uen
ed by that. In parti
ular, 
apillary waves may be observed in a total 
oales
en
e(Fig. 7.4b), while being fully damped in a partial 
oales
en
e (Fig. 7.4
). Capillary waves arefully damped when one of both Ohnesorge numbers ex
eeds 0.08. On the other hand, the
riti
al Ohnesorge values for the partial/total transition are Ohth ≃ 0.02 and Ohs/th ≃ 0.3,so 4 times less and 4 times mode than the 
riti
al Ohnesorge for wave damping, respe
tively.So the link between partial 
oales
en
e and 
apillary waves presented by Blan
hette [155℄must be revised. There must be an additional me
hanism, antisymmetri
 in relation to bothvis
osities, that promotes total 
oales
en
e for high Oh and partial 
oales
en
e for high Ohs.Moreover, this me
hanism should not be e�
ient when Oh ∼ Ohs, whi
h would explain theoutgrowth of the partial 
oales
en
e zone in the (Oh,Ohs) diagram of Fig. 7.6.During a 
oales
en
e, the main �uid �ow is a powerful rotation that eje
ts the dropletliquid into the underlying bath (
f. PIV experiments of [153℄, and numeri
al simulations of[155, 161℄). This motion, represented by thi
k arrows in Fig. 7.9, originates from the 
onversionof interfa
ial energy into kineti
 energy, whi
h has been observed to o

ur at a 
onstant rate,regardless of the 
oales
en
e out
ome. This kineti
 energy is unequally distributed to bothliquids, though 
ontinuity 
onditions are satis�ed at the interfa
e.

Figure 7.9: S
hemati
 view of hypotheti
al motions o

urring in a 
oales
en
e. Thi
k solidarrows represent the nominal rotation (low vis
osity). Dotted arrows (resp. dashed and dash-dot) 
orrespond to an favored rotation due to an in
rease in Oh (resp. Ohs).The vis
osity is known to di�use momentum, and so kineti
 energy; zones with highvelo
ity gradients (next to the interfa
e among others) signi�
antly spread when the vis
osity isin
reased. Sin
e the motion is driven by the interfa
e dynami
s, the 
onstantly released kineti
energy preferentially goes into the most vis
ous �uid. So when Oh > Ohs, the rotation withinthe droplet is a

entuated (dotted arrows in Fig. 7.9), whi
h promotes the droplet emptying, aqui
k 
ollapse of the �uid 
olumn and a resulting total 
oales
en
e. Conversely, when Ohs >Oh, the horizontal 
ollapse is favored by the reinfor
ement of the external rotation, whi
hexplains the 
usp-like shape observed at latter stages of the pro
ess (Fig. 7.4
-d). For moderateOhs, the vis
ous di�usion of the external rotation is limited and the horizontal 
ollapse o

ursbelow the equator, the 
oales
en
e is partial (dashed arrows in Fig. 7.9). At higher Ohs, theexternal rotation rea
hes the top of the droplet, thus also promoting the verti
al 
ollapse; the
oales
en
e is total (dash-dot arrows in Fig. 7.9). When Ohs = Ohs/th ≃ 0.32, the distan
eover whi
h momentum is di�used is about 0.5Ri during the whole 
oales
en
e (t = 0.8τσ),76
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ally boun
ing on a vibrated bath, when they meetand 
oales
e together. The resulting droplet is too heavy to boun
e, so it 
oales
es partiallywith the bath. The daughter droplet has a suitable mass for permanent boun
ing. (b) Maxi-mum size for boun
ing as a fun
tion of the for
ing a

eleration Γ, for various frequen
ies. (•)Stable boun
ing droplets, and (◦) unstable boun
ing droplets that ends up partially 
oales
ing.whi
h is 
oherent with the proposed me
hanism. Although this latter is still hypotheti
aland must be 
on�rmed by experiments and numeri
al simulations, it 
an rationalize the roleplayed by ea
h vis
osity on the partial/total transition.7.5 Stopping a 
as
ade of partial 
oales
en
esIn a mi
ro�uidi
 perspe
tive, the partial 
oales
en
e might be of interest for tuning thevolume of a droplet, provided that the resulting daughter 
an be retrieved. In other words, the
as
ade of partial 
oales
en
es must be stopped before the ultimate total 
oales
en
e. Thisgoal is naturally a
hieved by vibrating the bath on whi
h the droplet 
oales
es [163℄. Indeed,as seen in Chap. 5, a droplet of massM boun
es on a bath vibrated with a for
ing frequen
y fprovided the for
ing a

eleration is larger than a threshold Γth(ω) where ω = 2πf
√

M/k and
k = 32πσ/3. Therefore, for given for
ing parameters (Γ, f), there is a 
riti
al droplet mass
Mth ∼ (ω/f)2 above whi
h droplets 
oales
e and below whi
h they 
an boun
e. Dropletsheavier than Mth thus 
oales
e partially until their daughter rea
hes a mass suitable forboun
ing (Fig. 7.10a). In some sense, the system behaves as a low-pass �lter that only sele
tsdroplets smaller than a 
riti
al mass Mth. Droplets of di�erent sizes have been released ona bath vibrated with various for
ing parameters (Γ,f). Figure 7.10(b) indi
ates whi
h oneswere observed to boun
e and whi
h ones 
oales
ed partially. Data from di�erent f 
ollapsewhen ω is 
onsidered instead of M . For ea
h Γ, there is a threshold ωth, tuned by the for
ingparameters, that pres
ribes the maximum size for permanent boun
ing.7.6 SummaryLow vis
osity droplets are seen to partially 
oales
e into a stati
 bath; a smaller droplet isformed at the end of the 
oales
en
e pro
ess. This daughter droplet may also partially 
oales
e77



and so on and so forth until the droplet rea
hes a 
riti
al size below whi
h it totally 
oales
es.The exa
t 
onditions for partial 
oales
en
e have been investigated for droplets 
rossing aninterfa
e between two immis
ible liquids. Partial 
oales
en
e is possible when both Bond andOhnesorge numbers are smaller than some 
riti
al values. Capillary waves may be observedat the surfa
e of the droplet. The exa
t relation between them and the partial 
oales
en
ehas been dis
ussed. Finally, we have shown that a 
as
ade of partial 
oales
en
es 
an bestopped by vibrating the underlying bath; the droplet partially 
oales
es until it rea
hes asuitable size for boun
ing. The vibrating bath is thus 
onsidered as a low-pass �lter that onlysele
ts small droplets. Large droplets are redu
ed through partial 
oales
en
e until their sizeis appropriate.
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Chapter 8A droplet on a verti
al �berIn the early morning, the spider webs in our gardens are often 
overed with a myriad ofdew pearls. At dawn, the fresh and humid air 
ondenses into a thin water �lm on the threads.Qui
kly, this �lm turns into a string of droplets, the smallest of whi
h stay on the web and waitfor the �rst sunbeams to evaporate again. The biggest slide and roll along the web (Fig. 8.1),
ollide and fuse together, leave pearls in their wake, and sometimes fall from the web due toa possible overweight.Droplets on �bers are omnipresent in nature and everyday life. The �rst work that exploresthe subje
t is probably the book of the belgian physi
ist Joseph Plateau, published in 1873[74℄. Sin
e, a relatively small number of studies were dedi
ated to the intera
tions betweenindividual droplets and �bers. Physi
ists have rather investigated the �ows of liquid �lms onthreads [164, 165, 166℄. However, "fusion", "sliding", "mi
ro-droplets" are words 
ommonlyused in digital mi
ro�uidi
s. In these 
hapters, we show how the droplet behavior on those"ara
hnidean" buildings 
an indeed inspire new ways for mi
ro�uidi
s.8.1 Experimental methodThe method explained here below is shared by experiments from both 
hapters 8 and 9.Fibers made of nylon (�shing thread) are tight on a metalli
 frame. The tension in �bers issupposed of negligible in�uen
e on the droplet motion. Unless otherwise stated, droplets aremade of sili
on oil (Dow Corning 200), though the results may be generalized to any liquidthat wets nylon. Experiments involve droplets made of six di�erent vis
osities (1.5, 5, 10, 20,50 and 100 
S) and �bers of 5 di�erent diameters (80, 100, 140, 200 and 250 µm). Droplets aredire
tly released on the �bers with a syringe. The droplet size is varied by 
hanging the needlediameter. Moreover, by moving the release point on the �ber, one 
an tune the volume of thedroplet when it enters a spe
i�ed region of interest. Indeed, as explained below, the dropletloses some mass by 
oating the �ber; so the greater the distan
e between the release pointand the region of interest, the smaller the resulting droplet (Fig. 8.2a). About 500 dropletshave been �lmed from the side with a high-speed 
amera (re
ording frequen
y up to 1000 fps).Measures are made by image pro
essing (Fig. 8.2b).
80



Figure 8.1: An oil droplet (ν = 100 
S) slides and rolls along a �ber of diameter 140 µm.Snapshots are taken every 50 ms. The ba
kground, in
luding the originally dry �ber, issubtra
ted in order to reveal the mi
rometri
 
oating �lm left in the wake of the droplet. Thelast pi
ture 
orresponds to the sum of formers; parti
les within the droplet follow 
ir
ularpaths, indi
ating that the droplet rolls on the �ber.

Figure 8.2: (a) The droplet size is tuned by 
hanging the release point, and so the distan
e tothe region of interest. (b) Axisymmetri
 shape of a droplet on a verti
al �ber. The dash-dot(resp. solid) line 
orresponds to the numeri
al solution of Eq. (8.1) with (resp. without)gravity. 81



Figure 8.3: Drawings of Joseph Plateau [74℄: the liquid form a string of pearls 
alled unduloidon �bers of various diameters.8.2 GeometryJoseph Plateau has already observed that, due to surfa
e tension only, a liquid 
overinga �ber spontaneously turns into a string of pearls (Fig. 8.3) 
alled unduloid. This instabilityhas been rationalized a few years later by Lord Rayleigh [75℄. Nevertheless, droplets maytake other shapes than the one proposed by Plateau. For example, the axisymmetry of theshape is broken down by gravity for large droplets on a horizontal �ber. If the liquid does notperfe
tly wet the �ber (e.g. pure water on nylon), the droplet 
ower on one side of the �ber,without wrapping it [167, 168℄. Su
h droplets often hang at rest on a verti
al �ber [169℄; theirweight is balan
ed by a bottom-up di�eren
e in 
onta
t angle. In this thesis, we mainly studydroplets that perfe
tly wet �bers and slide on them.On a verti
al �ber of diameter dv, wetting droplets take an axisymmetri
 shape of volume
Ω, 
lose to the unduloid of Plateau (Fig. 8.2b), dimensions (width W and extension X) ofwhi
h are represented as a fun
tion of Ω in Fig. 8.4(a-b). This shape is 
omputed theoreti
allyas [r(s), z(s), ϕ(s)], where s is the 
urvilinear 
oordinate along a meridian of the interfa
e(Fig. 8.2b). If supposing a balan
e between gravity and surfa
e tension, the Lapla
e equation(1.2) yields























dr

ds
= cosϕ,

dz

ds
= sinϕ,

dϕ

ds
=

∆P

σ
− sinϕ

r
+

z

λ2
σ

,

(8.1)where ∆P is the overpressure within the droplet, at lo
ation z = 0. Nevertheless, if thisbalan
e gravity / surfa
e tension was e�e
tive, the droplet would stay at rest on the �ber.The observed sliding of the droplet suggests that vis
ous stresses have to be taken into a

ount.Therefore, we may suppose that these stresses balan
e gravity, and that surfa
e tension for
esbalan
e themselves. To assess this hypothesis, Eq. (8.1) is solved numeri
ally, su

essivelywith and without the gravity term z/λ2
σ. The 
omparison with experimental observations82
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(b)Figure 8.4: (a) Width W and (b) extension X of a droplet of volume Ω on a �ber of diameter
dv. The dashed line represents the asymptoti
 s
alings (G.3) and (G.6). The solid line (resp.dash-dot line) 
orresponds to the numeri
al solution of (8.1) without (resp. with) 
onsideringthe gravity term z/λ2

σ.(Fig. 8.2b and 8.4b) 
learly 
on�rms this se
ond s
enario; gravity 
an be negle
ted in theLapla
e equation and the droplet indeed takes an unduloidal shape. Although this unduloid
annot be des
ribed with a simple expli
it equation, it is possible to �nd analyti
al expressionsin the asymptoti
 regimes Ω ≫ d3
v and Ω ≪ d3

v (App. G).8.3 Short-term steady motionThe motion of a droplet on a verti
al �ber involves several e�e
ts with spe
i�
 times
ales.Starting from rest, the droplet �rst a

elerates and qui
kly rea
hes (in less than 0.1 s) a limitspeed where vis
ous e�e
ts balan
e gravity, as shown indire
tly in the previous se
tion. On theother hand, the droplet leaves some mass in the 
oating �lm; the mass loss be
omes signi�
antafter several se
onds. Therefore, only the (not too) short-term velo
ity may be 
onsidered as
onstant. The gravity/vis
osity balan
e has already been en
ountered in other related systems,su
h as the propagation of a slug in a tube [36℄, or the droplet motion on horizontal �bersindu
ed by thermal e�e
ts [170℄, geometry [171℄ or aerodynami
 for
es [172℄. The fri
tion isdue to velo
ity gradients within the droplet, that are estimated by cν1v/W ·X/2z. Here, z isthe distan
e to the nearest 
onta
t line and cν1 a proportionality fa
tor that may depend onsurfa
e tension among others. The resulting vis
ous for
e is
Fν = 2 · πdv

∫ X/2

0
cν1

µv

z

X

2W
dz. (8.2)This integral diverges due to the singularity at 
onta
t point (z = 0). In order to solve thisparadox, one may begin to integrate from z = Ξ ∼ 10−9 m - the 
hara
teristi
 length of themole
ular �lm 
overing the �ber - instead of z = 0. This yields

Fν = πcν1ανρdv
X

W
v, (8.3)83



where
α = ln(X/2Ξ) ≃ 15. (8.4)Balan
ing this for
e with the droplet weight ρgΩ gives
νv

gd2
v

=
1

πcν1α

W

X

Ω

d3
v

. (8.5)As previously seen (Fig. 8.4), the dependen
e of W/X on Ω/d3
v is 
omplex in the general 
ase,but droplets su�
iently large 
ompared to the �ber tend to be spheri
al, so W/X → 0.5.Equation 8.5 is in ex
ellent agreement with experimental results (Fig. 8.5), whatever the �berdiameter dv, provided that cν1 satis�es

cν1 = cν2

√

λσ

dv
⇒ νv

gd2
v

= πcν2α

√

dv

λσ

W

X

Ω

d3
v

. (8.6)The fa
tor √dv/λσ 
learly indi
ates that gravity is not perfe
tly balan
ed by vis
ous e�e
ts,and that surfa
e tension also plays a role in the droplet limit velo
ity. The 
oe�
ient cν2 isof the order of unity; it slightly depends on the vis
osity when this one is lower than 10 
S.The following empiri
al law is proposed (inset of Fig. 8.5):
cν2 = 0.33

(

1 + 0.01

√

gλ3
σ

ν

)

. (8.7)We 
an now estimate the a

eleration time of the droplet
tacc ∼

v

g
=

1

πcν2α

√

dv

λσ

W

X

Ω

dvν
, (8.8)and 
he
k that, for a typi
al velo
ity of 1 m/s, the steady regime is rea
hed after 0.1 s.8.4 Long-term mass lossThe 
oating of a solid by a liquid has been deeply investigated sin
e the pioneering workof Landau, Levi
h and Derjaguin [173℄. The LLD theory rationalizes the 
oating of a �berslowly pulled out of a liquid bath. The thi
kness δ of the 
oating �lm is given by

δ

dv
= cweCa2/3 with Ca =

µv

σ
, (8.9)where Ca is the 
apillary number and the wetting 
onstant cwe = 0.67 a

ording to theauthors. Many 
orre
tions (gravity, inertia, geometry, wetting, et
.) 
an be implemented bysimply 
hanging this fa
tor cwe [174℄. For example, cwe = 1.07 when the �ber 
rosses theinterfa
e between two immis
ible liquids [175, 36℄.Sliding droplets are observed to 
oat �bers exa
tly as if these latter were pulled out of abath. Consequently, the droplets lose some mass through 
oating as they move on the �ber.Equation (8.9) may be applied to predi
t the mass loss and be 
oupled to (8.6) in order toget the long-term traje
tory of the droplet. Denoting by Z the verti
al position of the dropletmass 
enter, the volume variation Ω̇ is

Ω̇ = −πdvδŻ = −πcwed
2
v

(

µ

σ

)2/3

Ż5/3. (8.10)84
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Figure 8.5: Short-term balan
e: normalized velo
ity νv/gd2
v as a fun
tion of the normalizedvolume Ω/d3

v. Bla
k (resp. white) symbols 
orrespond to vis
osity ν ≥ 10 
S (resp. ν < 10 
S).(◦,•) dv = 80 µm, (N) dv = 100 µm, (�) dv = 140 µm, (�) dv = 200 µm, (H,▽) dv = 250 µm.The solid line represents Eq. (8.6) where cν2 takes its high-vis
osity value (0.33). The dashedline is Eq. (8.6) in the low-vis
osity regime, i.e. cν2 > 0.33. (Inset) Coe�
ient cν2 as a fun
tionof the normalized vis
osity ν/√gλ3
σ. The solid line 
orresponds to Eq. (8.7).We pro
eed by deriving (8.6) a

ording to time, supposing that W/X is 
onstant:

Ω̇ = πcν2α
X

W

√

λσ

dv

νdvZ̈

g
. (8.11)Both equations yield

Z̈ = − cwe

cν2α

W

X

√

dv

λσ

(

µ

σ

)2/3 gdv

ν
Ż5/3,

= −wŻ5/3 with w =
−cwe

cν2α

W

X

√

dv

λσ

(

µ

σ

)2/3 gdv

ν
, (8.12)where the parameter w only depends on physi
al 
onstants. This equation is integrated twi
e;

Z =

Żi
1/3 −

(

Żi
−2/3

+ 2
3wt

)−1/2

w/3
, (8.13)where Żi is the initial velo
ity of the droplet. Predi
tions of Eq. (8.13) are 
ompared to theobserved long-term traje
tories (Fig. 8.6). The initial velo
ity Żi is �tted on the experiments,and w is 
omputed by su

essively taking cwe = 0.67 and cwe = 1.5. This se
ond value givesan a

urate des
ription of the traje
tory, whatever the droplet vis
osity or size. Finally, we
he
k a posteriori that the ratio W/X is approximately 
onstant over a traje
tory. Typi
ally,

W/X variations be
ome signi�
ant when Ω is varied by a fa
tor 10, whi
h happens after about
5.5/(wŻi

2/3
), so 89 s for the (H)-
urve in Fig. 8.6.85
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Figure 8.6: Long-term traje
tories Z(t) of droplets with various vis
osity and size on a �berof diameter dv = 250 µm. The solid line (resp. dashed line) 
orresponds to Eq. (8.13) with
cwe = 1.5 (resp. cwe = 0.67).8.5 Shape transitionThe droplet shape on a �ber is not always axisymmetri
 and unique; several equilibrium
on�gurations may 
oexist, some being more stable than others [168℄. We have seen that some100 
S droplets sliding on a verti
al �ber 
an remain in a metastable asymmetri
al shape. Atany moment, these droplets qui
kly swit
h to the well-known axisymmetri
al 
on�guration.By the way, the fri
tion is 
onsiderably in
reased and the droplets immediately slow down(Fig. 8.7a). The inverse transition has never been observed and is likely impossible.The velo
ity vf of the �nal symmetri
al shape has been measured as a fun
tion of theinitial velo
ity vi before the transition, for 100 
S droplets on various �bers (Fig. 8.7b). Datasuggest

vf = 0.30vi, (8.14)so the fri
tion 
oe�
ient cν2 is about 3.3 times less in the asymmetri
al 
on�guration.We have observed a similar transition on in
lined �bers, though both 
on�gurations areasymmetri
 in that 
ase (Fig. 8.8). The velo
ity is only de
reased by a fa
tor 2.8.6 SummaryIn this 
hapter, we have 
hara
terized the shape and motion of a droplet on a verti
al �ber.Provided that the droplet wets the �ber, it takes an axisymmetri
 shape and starts slidingdown the �ber. After a short a

eleration, the droplet rea
hes its terminal velo
ity, thatresults from a balan
e between its weight and the vis
ous fri
tion on the �ber. As the dropletslides, it 
oats the �ber and loses some mass. Consequently, the terminal velo
ity slowlyde
reases. Finally, we have observed that the droplet may keep a metastable asymmetri
shape for se
onds before axisymmetry is re
overed.86
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(b)Figure 8.7: (a) A 100 
S droplet slides along a verti
al �ber of diameter dv = 160 µm. Snap-shots are taken every 160 ms. The initially asymmetri
al shape suddenly be
omes symmetri
,whi
h de
reases the droplet velo
ity from 18 mm/s to 5.7 mm/s. (b) Velo
ity of the symmet-ri
al shape vf as a fun
tion of the velo
ity of the 
orresponding asymmetri
al shape vi. Thesolid line 
orresponds to Eq. (8.14). (Inset) Typi
al traje
tory Z(t) of a droplet experien
inga shape transition in t = 0. The solid lines represent 
onstant velo
ity traje
tories.

Figure 8.8: A 100 
S droplet slides along an in
lined �ber of diameter dv = 140 µm. Snapshotsare taken every 320 ms and superposed together. The shape transition in
reases the fri
tion,so de
reasing the velo
ity from 6 mm/s to 3 mm/s.
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Chapter 9Interse
tion between two �bersIn 
hapter 8, we have studied droplet motion on a single �ber. We naturally pro
eed bydis
ussing the behavior of droplets as they en
ounter an interse
tion between two �bers. Thejun
tion is simply made by pla
ing a horizontal �ber next to the verti
al one, so they justtou
h ea
h other; 
onta
t is ensured by the tension between �bers.9.1 Blo
king/
rossing transitionDroplets are released on the verti
al �ber, upstream from the interse
tion. As they ap-proa
h, two s
enarios are observed: small droplets remain pinned on the node (Fig. 9.1a) whilelarger droplets 
ross the interse
tion and keep sliding downwards (Fig. 9.1b). The trapping ofsmall droplets is mainly due to the 
apillary for
es developed by the horizontal �ber. On theother hand, large droplet are likely too heavy to hang on the horizontal �ber. Loren
eau andQuéré have already investigated problems that involve the same me
hanism, namely fallingdroplets that impa
t a sieve [176℄ or a horizontal �ber [177℄. The balan
e between gravity andsurfa
e tension is the Bond number related to the �ber, de�ned asBo =
Mg

2πσdh
, (9.1)where dh is the diameter of the horizontal �ber. A sharp transition is observed betweenblo
king and 
rossing regimes (Fig. 9.2a); there is a 
riti
al Bond number Both ∼ 1 abovewhi
h droplets 
ross the node and below whi
h they are blo
ked. The interse
tion behavesas a �uidi
 diode. This Both depends on the droplet vis
osity ν, at least when this latter issmall.When 
rossing, a tiny amount of liquid is still trapped by the horizontal �ber, so the dropletmass (and 
orresponding Bond number Bof ) after 
rossing is slightly lower than before (Boi).Although this volume 
annot be a

urately measured, it should be about a few times the"volume" of the interse
tion, namely dhdv(dh + dv).Large high vis
osity droplets may experien
e signi�
ant delays (sometimes as long a severalse
onds) when they 
ross the interse
tion (Fig. 9.3). These delays are shown to diverge asBo → Both, as often in physi
s when a potential barrier is just 
rossed (Fig. 9.2b). Thedivergen
e is not observed for low vis
osity droplets, whose 
rossing time remains small.As already seen in Fig. 9.2, the threshold Bond number Both in
reases with the dropletvis
osity, and saturates to a limit value in the high vis
osity regime where delays are observed.88



(a) (b)Figure 9.1: A 5 
S oil droplet intera
ts with a jun
tion between two nylon �bers (diameter140 µm). Snapshots are taken every 10 ms. The interse
tion behaves as a �uidi
 diode: (a)A small droplet is pinned on the jun
tion, while (b) a large droplet 
rosses it. In that latter
ase, a tiny amount of liquid is left at the interse
tion.
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(b)Figure 9.2: (a) Relationship between the volume of liquid allowed to 
ross the node and theinitial droplet volume, expressed in terms of Bond numbers Bof (Boi). The solid lines 
or-respond to equations Bof = 0 when Boi < Both (blo
king) and Bof = Boi − 0.05 whenBoi > Both (
rossing). (b) Time th needed by the droplet to 
ross the interse
tion, as a fun
-tion of Boi. The solid line is the empiri
al law th/ν = 900/(Boi − Both). (a-b) Experimentaldata for dh = 250 µm and dv = 80 µm: (◦) ν = 1.5 
S, (△) ν = 5 
S, (�) ν = 10 
S, (▽)
ν = 20 
S, (♦) ν = 50 
S and (⊳) ν = 100 
S. Error bars typi
ally 
orrespond to the symbolsize. The dashed lines 
orrespond to the Both values.
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Figure 9.3: A delay of nearly 0.2 s is observed when a 50 
S droplet with Bo → Both 
rossesthe interse
tion between two �bers of diameter 140 µm. Snapshots are taken every 34 ms.
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(b)Figure 9.4: (a) Variation of Both with the droplet vis
osity ν for (•) dh = dv = 80 µm, (�)
dh = 80 µm and dv = 250 µm, and (N) dh = 250 µm and dv = 80 µm. (b) Variation of Bothwith the �ber diameters, for ν = 50 
S. (•) dh = 80 µm and dv is varied, (�) dv = 80 µm and
dh is varied, and (N) dh = dv are both varied.The 
riti
al vis
osity above whi
h Both is 
onstant depends on the �ber diameter (Fig. 9.4a).In general, Both de
reases with in
reasing �ber diameter (Fig. 9.4b) in a non-obvious way.9.1.1 ModelingIn order to model the behavior of a droplet intera
ting with a jun
tion between two �bers,we have �rst to measure and analyze the droplet traje
tory. Observations are again qual-itatively di�erent depending on the vis
osity regime. As already mentioned, high vis
ositydroplets 
ross the jun
tion with a delay time that in
reases as they approa
h the thresholdBoth (Fig. 9.5a). Small droplets are smoothly blo
ked, and the traje
tory is always mono-toni
. Low vis
osity droplets do not experien
e any signi�
ant delay when 
rossing is allowed.Moreover, small blo
ked droplets largely os
illate before 
oming at rest on the node (Fig. 9.5b).These results strongly suggest to model the droplet as a damped harmoni
 os
illator whose90
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(b)Figure 9.5: (a) Droplet traje
tory in the high-vis
osity regime, namely for dh = dv =
80 µm and ν = 100 
S, so Both ≃ 1.67. (•) Blo
king for Boi = 1.54, (N) 
rossing forBoi = 1.87, and (�) 
rossing with delay for Boi = 1.68. (b) Droplet traje
tory in the low-vis
osity regime, namely for dh = 250 µm, dv = 80 µm and ν = 1.5 
S, so Both ≃ 0.41. (•)Blo
king for Boi = 0.38, and (N) 
rossing for Boi = 0.52. In both (a) and (b), the solid line
orresponds to the �t of Eq. (9.2), while the dash-dot line represents the linear traje
tory thatthe droplet would have taken if it had not been delayed by the horizontal �ber. The 
rossindi
ates the delay time th.restoring for
e is trun
ated to the neighborhood of the node, i.e.

MZ̈ + cµ1µΩ1/3Ż + kZχ[−Z1,Z2](Z) = Mg, (9.2)where cµ1 is the fri
tion 
oe�
ient, χ[−Z1,Z2](Z) is the 
hara
teristi
 fun
tion equal to 1 when
−Z1 < Z < Z2 and 0 otherwise, and k is the sti�ness of the spring me
hanism related to thehorizontal �ber, so

k = ckσ = cσ
dh

Ω1/3
σ. (9.3)The position Z of the droplet mass 
enter is 
ounted from the interse
tion, thus 
orrespondingto Z = 0. Equation (9.2) is put in a dimensionless form by using

y = Z/Z1 (9.4)and τ =
√

k/Mt;
ÿ + 2βẏ + yχ[−1,κ](y) = Θ, (9.5)where

κ = Z2/Z1, 2β =
cµ1√
cσ

µ√
ρσdh

and Θ =
Mg

kZ1
=

2πΩ1/3

cσZ1
Bo. (9.6)We note that the damping fa
tor β is equivalent to an Ohnesorge number based on dh, andthe for
ing parameter Θ is proportional to the Bond number.This equation may be solved starting from the initial 
ondition y(0) = −1 and ẏ(0) =

Θ/2β, i.e. when the droplet, evolving at the limit speed Θ/2β as des
ribed in Chap. 8,91



tou
hes the horizontal �ber. Like in the 
lassi
al damped os
illator, two regimes are observedin Eq. (9.5) a

ording to the value of β. For β > 1, the system is overdamped and 
orrespondsto the high-vis
osity regime, while it is underdamped otherwise.In the overdamped regime β > 1, the solution is
y(τ) = Θ − e−βτ

[

(1 + Θ) cosh(Φτ) +
2β2(1 + Θ) − Θ

2βΦ
sinh(Φτ)

]

, (9.7)where
Φ =

√

|β2 − 1|. (9.8)The solution always tends monotoni
ally towards y = Θ. Nevertheless, the solution is notvalid anymore when y > κ due to the trun
ation; Θth = κ is therefore the threshold thatseparates blo
king (Θ < κ) and 
rossing (Θ > κ) behaviors. The 
rossing time obviouslydiverges when Θ → κ+, as in experiments.In the underdamped regime β < 1, the solution is
y(τ) = Θ − e−βτ

[

(1 + Θ) cos(Φτ) +
2β2(1 + Θ) − Θ

2βΦ
sin(Φτ)

]

. (9.9)The solution also tends towards y = Θ, but with damped os
illations. The 
riti
al point y = κis ne
essarily rea
hed at the �rst os
illation, so the 
rossing delay 
annot be larger than theos
illator period. The blo
king/
rossing threshold Θth is obtained when the �rst maximum ofEq. (9.9) 
oin
ides with y = κ, whi
h yields
y(τth,Θth) = κ with tan(Φτth) =

−ΘthΦ

β(Θth + 2)
, (9.10)where τth is the time of �rst maximum when Θ = Θth. This system of impli
it equationswith unknowns (τth,Θth) 
annot be solved analyti
ally. Nevertheless, it 
an be shown that

(τth,Θth) → (π, 0) when β → 0.When 
rossing o

urs and y passes the κ-point in τκ, the droplet starts a

elerating againuntil it rea
hes its terminal velo
ity:
y(τ) = κ+

Θ

2β
(τ − τκ) − Θ − 2βẏ(τκ)

4β2

[

1 − e−2β(τ−τκ)

]

, (9.11)where ẏ(τκ) is the velo
ity at the exit point y = κ.Equations perfe
tly �t experimental traje
tories (Fig. 9.5). As seen in Fig. 9.6, the �ttingparameters cµ1 and cσ approximately satisfy














cµ1 = cµ2

(

dh

λσ
, dv

λσ

)

λ3
σ

Ω ,

cσ = cσ

(

dh

λσ
, dv

λσ

)

.
(9.12)More pre
isely, we obtain for dv = 80 µm, Dimensionless parameters Θ and β are 
omputed forea
h experiment, starting from these values of cµ2 and cσ. The agreement with the theoreti
alequation (9.10) is rather good (Fig. 9.7), 
onsidering the signi�
ant error made by 
onvertingthe measured physi
al parameters into dimensionless quantities β and Θ.92



dh = 80 µm dh = 250 µm
cµ2 13 ± 20% 27 ± 12%
cσ 16 ± 18% 9.9 ± 22%
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(b)Figure 9.6: Coe�
ients cµ1 and cσ of the dimensional model (9.2). Symbol data are obtainedby �tting this model to the experimental traje
tories. The lines 
orrespond to Eq. (9.12), theshaded areas represent standard deviations. The (•) and solid line (resp. (N) and dashed line)
orrespond to dh = 80 µm (resp. dh = 250 µm), while dv = 80 µm in both 
ases.
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Figure 9.8: A H2SO4 droplet (up
oming) fuses with a NaOH droplet on a node. The rea
tionis revealed by bromomethyl blue. The snapshot length is 0.1 s.Finally, we note that the parameter cσ may be related to the 
riti
al Bond number Both.Indeed, in the overdamped regime, Θth = κ, so
Z2 = 4π

Ω∗1/3

cσ
Both,ν→∞. (9.13)Measurements of Both(dh, dv) (dire
tly from the experiments) and cσ(dh, dv) (from the tra-je
tory �tting) suggest that Z2 = 0.68Ω1/3, whatever dh and dv. Therefore,

cσ ≃ 9.24Both,ν→∞. (9.14)9.2 Mi
ro�uidi
 operations on �ber networksWe now pro
eed by showing that the interse
tion between two �bers may be the basi

omponent of a new �ber-based mi
ro�uidi
 te
hnology, exa
tly as the "T" jun
tion in mi-
ro
hannels [178℄. Indeed, a �ber jun
tion is a perfe
t pla
e to bring several droplets 
arryinga bio
hemi
al 
ontent and make them rea
t together (Fig. 9.8). An e�
ient and spontaneousmixing o

urs when both droplets 
oales
e together, the rea
tion is nearly 
ompleted afteronly a few tenths of se
onds. The resulting droplet may �ow down or remain pinned on thejun
tion, depending on the initial volumes used in the pro
ess.9.2.1 DivisionA large droplet spontaneously divides into N small droplets on a network made of Nparallel horizontal �bers that 
ross a single verti
al �ber in N points. The large droplet 
rossesevery jun
tion, but 
oats the intervening verti
al segments. The 
oating �lm destabilizesand the resulting pearls are 
olle
ted on the next jun
tion (Fig. 9.9a), giving birth to Nlo
alized mi
rodroplets. An experimental prototype has been realized with 44 horizontal�bers (diameter dh = 80 µm, spa
ing 4 mm) and a verti
al �ber (dv = 80 µm) mounted on aLEGO frame. An oil droplet of Ω = 2 µL and ν = 5 
S slides down the verti
al �ber, the thin
oating �lm left in its wake destabilizes and forms 44 pearls of volume about 60 nL, 
olle
tedat the jun
tions.By 
hanging the �ber diameter and spa
ing, this division network 
an be optimized, e.g.with respe
t to the number of mi
rodroplets N that are 
reated from a single droplet. This94



number obviously depends on the amount of liquid left by 
oating, whi
h itself varies with theinitial droplet velo
ity. This velo
ity is about
v ∼ Mg

33µ
√
dvλσ

, (9.15)whi
h means that, a

ording from the 
oating law of Landau-Levi
h, the mass loss per unitlength is
dM

dZ
= πρdvδ ∼ 0.13ρd2

v

(

Mg

σ
√
dvλσ

)2/3

. (9.16)Remarkably, this mass loss does not depend on µ; approximately the same quantity of liquidis lost by 
oating, whatever the vis
osity of the initial droplet. This fa
t is of importan
esin
e it ensures a strong robustness of the te
hnique to the physi
al properties of the liquidof interest. The maximum length L that a droplet is able to travel on a verti
al �ber beforebeing entirely 
onsumed and transformed in a 
oating �lm is
L ∼ 4

(

σ

ρgd2
v

)5/6

Ω1/3, (9.17)whi
h is about 0.5 m for a 2 µL oil droplet on a 80 µm �ber. The droplet 
an thus travel abouta distan
e equal 360 times its size when dv = 80 µm, and 180000 times when dv = 2 µm !Sin
e the spa
ing between �bers needs to be at least 3 times the droplet size, we 
on
ludethat about 100 mi
ro-droplets may be generated on a 80 µm �ber network, and 50000 on2 µm �bers ! Pra
ti
ally, the division fa
tor is less, sin
e a small part of the initial droplet isalso dire
tly retained at ea
h jun
tion.The rate at whi
h the division is performed mainly depends on the time needed by themi
ro-pearls to rea
h the next jun
tion. Sin
e the initial droplet is about 1 mm in diameter,a �ber spa
ing of 4 mm seems to be a reasonable minimum. Pearls of volume Ω ≃ 60 nL andvis
osity 5 
S have a velo
ity ν ≃ 10 mm/s, so they are 
olle
ted on the node in less than ase
ond, as observed experimentally.9.2.2 MultiplexingThe division pro
ess des
ribed here above is of parti
ular interest for multiplexing issues.Multiplexing 
onsists in making bio
hemi
al rea
tions in parallel between a liquid A and Nliquids B1, B2, ..., BN . One have to divide liquid A in N parts and make every of them rea
twith one of the Bi liquids. For example, the droplet A, released on the verti
al �ber of adivision network, divides into N parts. Then, the setup is rotated 90◦, and the B-droplets arepla
ed on the newly verti
al N �bers. The fusion and rea
tion between A and B o

urs onthe interse
tions.Sin
e the B droplets are made with a syringe, they may be too large to be blo
ked by the�bers. An improved prototype has been made in LEGO, in order to make a droplet A rea
twith 4 droplets Bi, i = 1...4. This setup, s
hematized in Fig. 9.9(b), 
onsists in a verti
al �ber
V250 (diameter 250 µm), four verti
al �bers V80 (diameter 80 µm) and 4 horizontal �bers H250(diameter 250 µm). Fibers are shifted in su
h a way that the H250 �bers tou
h the V250, aswell as only one of the V80. An A droplet is released on V250, it slides down the �ber and
rosses the four interse
tions, leaving 4 mi
rodroplets. The Bi droplets are pla
ed on ea
h
V80, they 
ross only one jun
tion where they leave a single mi
rodroplet. The setup is then95



(a)

(b)Figure 9.9: (a) With jun
tions in series, a droplet of Ω = 60 nL and ν = 5 
S is divided into 44mi
rodroplets of volume 60 nL. The �uid lost by 
oating is 
olle
ted on the nodes. Snapshotsare taken every 48 ms. (b) S
hemati
 view of a multiplexing devi
e that make a white dropletrea
t separately with four bla
k droplets.
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rotated by 90◦, the V80 �bers are now horizontal so they 
annot sustain the Bi mi
rodroplets.These latter fall down the H250 �bers until merging and rea
ting with the A mi
rodropletslo
ated at the next jun
tion.9.2.3 En
apsulationsTiny aqueous droplets evaporate very qui
kly, only in a few minutes. To prevent evapo-ration, the droplets may be wrapped with an oil layer. This wrapping 
an be made at thejun
tion between two �bers (Fig. 9.10). In order to study this phenomenon, a 
olored waterdroplet is pla
ed at an interse
tion, and some oil droplets are left on the verti
al �ber. Theselatter slide down and wrap the water droplet. It is observed that the water droplet may be
aught by the oil and 
arried away from the jun
tion (Fig. 9.10a), or it may be left 
oated atthe jun
tion while the oil keeps sliding down (Fig. 9.10b). The �rst s
enario is of interest inmi
ro�uidi
s sin
e the oil droplet may be seen as "
leaning" the �ber and resetting the systemafter any operation on the water droplet. The transition between both behaviors has beeninvestigated as a fun
tion of the water volume Ω and related Bond number Bo = ρΩ/(2πσdh),where σ ≃ 30 N/m is here the interfa
ial tension between water and oil. There is a 
riti
alBoth below whi
h the water droplet is left and above whi
h it is 
aught by the in
oming oildroplets (Fig. 9.11a).9.2.4 Fiber networks in mi
ro�uidi
sFiber-based mi
ro�uidi
 devi
es present numerous advantages over existing te
hnologies(e.g. pressure-driven droplet 
onve
tion into mi
ro
hannels, handling on a 
hip by ele
trowet-ting).
• The 
onta
t between droplets and solid parts is redu
ed; the loss of liquid through
oating is minimized, espe
ially sin
e the 
oating pearls are also 
olle
ted. Therefore, amillimetri
 droplet 
an be qui
kly divided into tens of mi
rodroplets.
• The operations des
ribed above are robust to the physi
o-
hemi
al properties of theliquid of interest. They only require the liquid to wet the �ber, whi
h is easily satis�ed byusing adequate �ber materials or by adding surfa
tant mole
ules. This is of importan
ein diagnosti
 appli
ations, where the physi
al properties of the liquid to be tested arenot known in advan
e. Su
h a robustness property does not exist in mi
ro
hannels,where e.g. it is impossible to divide high vis
osity droplets [179℄.
• Contrary to the planar labs-on-a-
hip, the geometry of �bers allows the design of fully3-dimensional networks with many �bers bringing multiple rea
tants to the same point.
• Channel-based mi
ro�uidi
s [178℄ often requires syn
hronisation of the droplets 
onveyedinto various 
hannels, whi
h is a
hieved through high-te
h mi
ropumps. Here, there isno need for any external syn
hronisation: droplets wait for ea
h other on the nodes.
• Thanks to the sharpness of the blo
king/
rossing transition, the volume of a dropletthat 
ome o� a node is a

urately 
ontrolled.
• There is no risk of denaturing the bio
hemi
al 
ontent of the droplet due to prohibitiveele
tri
 �elds generated by ele
troni
 
omponents.97



(a)

(b)Figure 9.10: (a) A large water droplet is wrapped and 
aught by in
oming oil droplets. (b)A small water droplet is wrapped and left by in
oming oil droplets. In both 
ases, the oilvis
osity is ν = 100 
S and the diameter of both �bers is d = 250 µm.
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Figure 9.11: Threshold Ωth between the "left" and the "
aught" behaviors for dh = dv =
250 µm and ν = 20 
S. Values of Ωth are mentioned for di�erent �ber radius and oil vis
osity.

• Finally, �ber networks are reusable, zero-energy 
onsuming and pra
ti
ally 
ostless.They do not need neither any high-te
h devi
e nor any expertise from a resear
h lab.They are also transportable, sin
e mi
rodroplets only unpin from the interse
tions withextreme inertial for
ing. These advantages are 
ru
ial be
ause they allow anybody tobuy and use this diagnosti
 devi
e "at home".The main drawba
ks of �ber networks are the risk of evaporation of mi
rodroplets and theoperation rate whi
h is not as high as in some other te
hnologies. Nevertheless, evaporation
an be avoided by en
apsulating droplets, or by pla
ing the setup in a saturated atmosphere.Con
erning the rate, whi
h is in fa
t not so bad, we would argue that most mi
ro�uidi
operations do not ne
essarily require the highest a
hievable rates. It does not matter if amedi
al diagnosti
 test is made in 0.1 s with a 
omplex apparatus based on mi
ro
hannels, orin maybe 1 s thanks to a simple, ergonomi
 and low-
ost �ber network !9.3 SummaryIn this 
hapter, we have analyzed the behavior of droplets sliding on �bers as they en-
ounter a 
rossing between two �bers. Large droplets 
ross the node while small ones remainpinned; the transition between both behaviors o

urs for a 
riti
al Bond number. The droplettraje
tories have been measured. Vis
ous droplets are observed to experien
e signi�
ant de-lays in 
rossing the node. These experimental results are well-rendered by a theoreti
al modelthat 
onsists in a trun
ated harmoni
 os
illator. Finally, we have shown that simple �bernetworks 
ould advantageously perform some basi
 mi
ro�uidi
 operations.
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Con
lusions and future work
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Con
lusionAlthough droplets are 
ommon obje
ts that may seem perfe
tly understood, the s
ienti�

ommunity is more and more interested in their physi
s. As explained in 
hapter 2, dropletsare 
urrently 
onsidered as very promising obje
ts for mi
ro�uidi
 developments. Indeed,ea
h individual droplet 
an serve as a support for mi
ros
ale bio
hemi
al rea
tions. Manypro
esses involved in 
hemistry, biology and medi
ine 
ould be miniaturized by handling,mixing, dividing, 
ombining individual droplets of reagent. Nowadays, several te
hniquesof droplet manipulation are already under investigation, e.g. droplets 
onveyed through a
hannel network by an immis
ible liquid, droplets traveling on a 
hip by ele
trowetting, et
.Ea
h appli
ation has a series of 
onstraints and requirements that the various te
hniques 
anmeet more or less easily. Therefore, s
ientists take advantage to develop every possible wayto perform the set of basi
 operations en
ountered in digital mi
ro�uidi
s. Hopefully, thanksto the 
omplex a
tion of surfa
e tension, the physi
s of droplets is extraordinarily ri
h and weare far from having explored every variant.The main obje
tive of this thesis was to �nd some new alternatives to mi
ro�uidi
s andto investigate them through simple experiments and mathemati
al models. We have mainlyfo
used on the following 
onstraint :Is it possible to manipulate droplets without tou
hing them with any solid or liquid ? If not,how to minimize the 
onta
t ?These questions are addressed respe
tively in both parts of the manus
ript. In parti
ular, weexplain how to handle droplets through boun
ing on a bath and on �ber networks.Usual levitation is de�nitely expensive and unsuitable for handling individual droplets.Conversely, it is mu
h easier to maintain them in the vi
inity of another liquid interfa
e. Inparti
ular, we have shown that droplets 
an be kept boun
ing onto a liquid bath, providedthis latter is verti
ally vibrated. While boun
ing, the droplets must never tou
h the liquidbeneath, otherwise they would 
oales
e. A boun
e implies a 
hange of dire
tion, whi
h 
anbe a
hieved only by storing and restoring the kineti
 energy of the in
oming droplet. In orderto understand the underlying me
hanisms, we have studied two 
on�gurations of boun
ingdroplets, namely on a soap �lm (
hapter 4) and on a high-vis
osity liquid bath (
hapter 5).In the �rst 
ase, the storage is primarily ensured by the soap �lm. Sin
e its mass is negligible,it instantaneously deforms in response to the droplet, a property whi
h deeply simpli�es the
orresponding model. On the other hand, the vis
ous bath 
annot restore energy so the dropletmust rely on its own deformation. In both 
ases, permanent boun
ing is observed when theliquid support (bath or �lm) is for
ed through a verti
al sinusoidal motion. More pre
isely,there is a for
ing amplitude threshold above whi
h the droplet boun
es inde�nitely. Sin
ethe boun
ing involves a spring me
hanism with a related natural frequen
y, this thresholddepends on the for
ing frequen
y. In parti
ular, the threshold may be signi�
antly lowered101



by a resonan
e phenomenon between the for
ing and the spring, as well-rendered by theproposed models. Physi
ally, boun
ing droplets exhibit some interesting properties su
h asmulti-periodi
ity and transition to 
haos.To maintain droplets "alive" by making them boun
e permanently on a vibrated liquidbath is only the �rst step. In 
hapter 6, we have dis
ussed two modes of horizontal self-propulsion of boun
ing droplets, namely rollers and walkers. These moving droplets stay ata distan
e from the edges of the 
ontainer, so they 
an be guided when the boundaries forma 
hannel. The walkers also intera
t together and form orbits, 
rystalline stru
tures, et
. Wehave mainly studied the 
olle
tive motion of a large number of walkers. In this spe
ial gas,
olliding parti
les 
oales
e together until they are so large that they 
annot move anymore.Unfortunately, although fusion between droplets is easily a
hieved, we still do not know how toperform the inverse operation, namely to break up the droplets. In 
ounterpart, as explainedin 
hapter 7, the droplet volume may be 
ontrolled in some way. Indeed, low vis
osity dropletsare shown to experien
e partial 
oales
en
e, i.e. they do not 
oales
e in one step. Instead, ahalf-smaller droplet is formed at the end of the 
oales
en
e. If su�
iently small, this daughterdroplet starts boun
ing. Otherwise, it partially 
oales
es again until it rea
hes the appropriatesize sele
ted by the for
ing 
onditions.At this stage, the "boun
ing-based" mi
ro�uidi
s 
ome 
lose to being fundamental resear
hrather than applied physi
s. Nevertheless, we 
an already 
at
h a glimpse of the advantages itwould bring over other handling te
hniques. The �rst of them is likely the �exibility: manip-ulations are driven through the for
ing parameters, whi
h 
an be reprogrammed in real-time.This property is of interest for resear
h and development, when one has to deal with a smallnumber of droplets at a time without doing the same operation twi
e. Sin
e the droplet doesnever tou
h another liquid or solid, it is free of unwilled 
ontamination or mass loss by wet-ting. Finally, as mentioned in the perspe
tive se
tion, some operations 
an be performed ondroplets that are hardly made otherwise, e.g. the spontaneous 
reation of a mi
ro-emulsionin a boun
ing 
ompound droplet.In the se
ond part of this thesis, we have investigated the behavior of droplets on �bernetworks. Fibers are indeed a good 
ompromise sin
e the droplet is tou
hed but the 
onta
tarea is minimal. First, we have rationalized the motion of a droplet on a verti
al �ber (
hap-ter 8). After a short a

eleration, the droplet rea
hes a terminal velo
ity that results from abalan
e between gravity and fri
tion for
es. The droplet is observed to leave a thin 
oating�lm in its wake. Thanks to the Rayleigh-Plateau instability, this �lm qui
kly turns into smallpearls that also �ow down the �ber. Se
ondly (
hapter 9), we have studied what happenswhen the sliding droplet en
ounters the basi
 element of a �ber network, namely a jun
tionwith another (horizontal) �ber. Depending on its volume, the droplet may stop or it may keepsliding downwards. This binary behavior turns out to be very interesting for many dropletmanipulations. For example, the division of a droplet into a large number of mi
ro-droplets isperformed more easily than ever by pla
ing as many nodes in series. Indeed, a large droplet
rosses them all while the small pearls resulting from its 
oating �lm are blo
ked. Therefore,ea
h node 
olle
ts the pearls left in the se
tion just upstream. We have �nally studied someother basi
 operations on �ber networks, su
h as fusion, multiplexing and en
apsulation. Asdis
ussed at the end of 
hapter 9, �ber networks 
an be advantageously implemented in anumber of mi
ro�uidi
 systems, in
luding 
ostless and easy-to-use diagnosti
 tools.102



Future workThe physi
s of droplets is extraordinarily ri
h and still shrouded in mystery. These lastse
tions shortly pave the way for new work involving droplets. Some of them 
an likely beaddressed in a few months while others are open questions that may span de
ades.Boun
ing on a vibrated surfa
e: universal behaviorsProblems related to boun
ing on a moving surfa
e share a lot of similarities and universalfeatures. In parti
ular, the 
orresponding models exhibit 
ommon behaviors, su
h as multi-periodi
ity and 
haos. Moreover, their bifur
ation diagrams often seem qualitatively equiva-lent. Nevertheless, an extensive study of the bifur
ations is still la
king, even for the simplestof these systems, i.e. the elasti
 ball (App. E). Indeed, the involved equations are usuallynot 
ontinuous but pie
ewise-smooth, so the 
lassi
al theory of nonlinear systems 
annot bedire
tly applied and must be reformulated [180℄.Independently from its possible use in mi
ro�uidi
s, the boun
ing of obje
ts on a vibratedsurfa
e may also be of interest to rationalize some behaviors en
ountered in nature. Forexample, �ying �shes are observed to boun
e onto the sea surfa
e in order to es
ape predators.Physi
ally, this boun
ing is not due to surfa
e tension anymore, but rather to inertial for
es,as for skipping stones [181, 182℄. Surprisingly, they seem to systemati
ally swim perpendi
ularto the waves. Would they take advantage of the waves to optimize their traje
tory ?Walkers and rollersWe have dis
ussed two modes of self-propulsion of boun
ing droplets on a vibrated bath,namely rollers and walkers. Although a signi�
ant work has already been made on walkers[76, 133, 141℄, both modes need further investigation. In parti
ular, the intera
tions betweendroplets must be addressed in details. How does the virtual for
e they exert on ea
h others
ale ? What is the stability of 
rystalline stru
tures ? Can phase transitions be observedfrom an ordered to a gas-like state ? What are the similarities with other systems involving
olle
tive motion, su
h as an ideal gas, a 
olony of ba
teria or a �sh s
hool ?Re�e
tion / refra
tion of dropletsRe�e
tion and refra
tion are known for 
enturies in wave theory. In me
hani
s, ma
ro-s
opi
 obje
ts may also be re�e
ted or refra
ted as they en
ounter a boundary betweentwo media. While the billiard ball re�e
tion is well-understood, there are a number of103



Figure 9.12: (a-b) A water droplet impa
ts on an in
lined soap �lm. Depending on its ve-lo
ity, it may boun
e on (a) or 
ross (b) the �lm. In both 
ases, the traje
tory is deviated,
orresponding to a re�e
tion and a refra
tion respe
tively. (
) A droplet is also deviated whenit impa
ts an in
lined �ber.re�e
tion/refra
tion-like motions that still need to be studied, espe
ially in �uid me
han-i
s. In relation with this thesis, droplets that intera
t with an in
lined soap �lm are deviatedso both re�e
tion and refra
tion are observed (Fig. 9.12a-b). Deviations are also seen whena droplet impa
ts an in
lined �ber (Fig. 9.12
). Can the Snell's laws be extended to thesesystems ? If not, what are the relevant parameters to s
ale and rationalize these traje
torydeviations ?Stati
 shape of dropletsIn this thesis, we mainly fo
used on axisymmetri
 droplets be
ause they are easily observed,
hara
terized and modeled. Nevertheless, it is essential to develop mathemati
al tools that
an e�
iently deal with asymmetri
 shapes. For example, we need to �nd a 
onvenient way torepresent the shape of a droplet hanged on a horizontal or in
lined �ber. Nowadays, the onlyavailable tool is numeri
al 
omputation (e.g. Surfa
e Evolver); but we would take advantagein des
ribing these shapes with a relatively small number of parameters, e.g. through spe
tralmethods, perturbations of well-known axisymmetri
 
ases, et
.Partial 
oales
en
e in various 
on�gurationsWe have investigated the partial 
oales
en
e of droplets into a bath. However, partial
oales
en
e may be observed in a variety of 
on�gurations. Among others, low vis
ositydroplets partially 
oales
e with a soap �lm. This 
ase is di�erent from the 
oales
en
e at aliquid/liquid interfa
e in many respe
ts. First, the droplet usually impa
ts the soap �lm witha signi�
ant velo
ity, so the Weber number must be taken into a

ount in the dimensionalanalysis. The Ψ parameter, namely the size ratio between the �nal and the initial droplets, isusually mu
h greater than 0.5. Moreover, several satellite droplets may be formed (Fig. 9.13).But the most striking property of 
oales
en
e on soap �lms is that daughter and satellite104



Figure 9.13: Partial 
oales
en
e of a droplet on a soap �lm, with the formation of satellitedroplets. Time is indi
ated in millise
onds.droplets may be eje
ted upwards, or downwards (Fig. 4.3d), or both (Fig. 4.3
) ! In thatlatter 
ase, the soap �lm splits the droplet in two parts that may evolve independently fromea
h other. Partial 
oales
en
e 
an even be mu
h wilder, as seen with this pure water droplet
oales
ing into a soapy water bath in Fig. 9.14. Partial 
oales
en
e is far from being fullyunderstood and, among others, the 
onditions of appearan
e of satellite droplets have still tobe addressed. The Ψ fun
tion is also of interest for droplet handling, sin
e partial 
oales
en
emay be seen as a 
onvenient way to progressively de
rease the volume of a droplet.Compound dropletsAn major theme of the droplet physi
s 
onsists in studying the behavior of 
ompounddroplets, typi
ally water droplets wrapped by an oil layer [183℄. We have already seen thatwater droplets may be easily en
apsulated on �bers (Chap. 9). There are several other waysto 
reate 
ompound obje
ts [184℄. One of the most spe
ta
ular 
onsists in making a waterdroplet impa
t on a water bath 
overed with a thin oil layer (Fig. 9.15a). Depending on thelayer thi
kness, the droplet may experien
e 
omplex motions in whi
h water and oil wrap ea
hother, sometimes resulting in an onion 
omposed of four layers! A similar entrapment andwrapping me
hanism is en
ountered in the 
reation of antibubbles [62, 84℄.Unfortunately, all these exoti
 obje
ts are unstable; the lighter layers are drained upwardsby buoyan
y for
es, so layers made of the same liquid �nally 
oales
e together and the obje
tdisappears. Nevertheless, it is possible to 
reate stable en
apsulations of water droplets by
arefully 
hoosing the oil phase. For example, diiodomethane is a liquid of espe
ially highdensity ρ = 3325 kg/m3 and low surfa
e tension σ = 50.8 mN/m. Consequently, a dropletof diiodomethane released on a water bath shapes as a lens �oating on the bath surfa
e.The important thi
kness of this lens is due to the 
ompetition between gravity (that tries tomake it sinking) and surfa
e tension (that makes it �oating). As seen in Fig. 9.15(b), smallwater droplets 
an be pla
ed in these lenses in a stable fashion, whi
h may be of interestfor preservation and long-term storage of droplets in a 
on�ned volume. Although alreadyinvestigated (e.g. [185℄), the dynami
s of lenses is far from explored. What is their exa
t105



Figure 9.14: Partial 
oales
en
e of a plain water droplet into a soapy water bath. The surfa
-tant gradients make the phenomenon mu
h more 
omplex.shape ? What is the maximum amount of water that 
an be pla
ed inside ? How do severallenses intera
t together ? Is it possible to mix two oil lenses without mixing their water
ontent ?Compound droplets also boun
e permanently onto a vibrated liquid bath. Nevertheless,something amazing o

urs when a little soap is added: at ea
h impa
t, the oil layer maybe pushed inside the water droplet. Under given 
onditions, the water pin
hes the oil layer,resulting in an oil droplet en
apsulated in water. The repeated impa
ts progressively 
reatean oil-in-water mi
ro-emulsion! The exa
t me
hanism is still unknown, though it is thoughtto have analogies with other experiments involving a similar 
hange in the interfa
e topology[186℄.Laser manipulationAnother important dire
tion for applied resear
h is the manipulation of droplets withlasers. We have already mentioned that pulsed lasers may generate wave patterns on a liquidsurfa
e that are similar to those emitted by a walking droplet (D. Caballero, private 
om-muni
ation). In some sense, the laser may be 
onsidered as a virtual droplet. Sin
e walkersintera
t together, they 
an be attra
ted and driven by the laser. The lenses introdu
ed in lastse
tion may also be handled with lasers [187℄, and it is likely that �ber networks 
an also takeadvantage of the laser te
hnology.
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Figure 9.15: (a) By making a water droplet impa
t a water bath 
overed with an oil layer,one may 
reate multi-en
apsulations, namely water-in-oil-in-water-in-oil-in-water obje
ts !(Credit: S. Dorbolo) (b) A thi
k sessile lens is made by releasing a droplet of diiodomethane atthe surfa
e of a water bath. A small 
olored water droplet 
an be stored for a long time insidethe lens. (
) A 
ompound droplet 
an also experien
e permanent boun
ing on a vibrated bath.At ea
h impa
t, the oil layer may be trapped and pin
hed, thus releasing an oil droplet withinthe water part; an oil-in-water mi
ro-emulsion is spontaneously formed. (Credit: D. Terwagne)
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Mi
ro�uidi
s on �ber networksFinally, the most promising work to undertake is likely the development of smart �bernetworks. With an in
reasing number of 
apabilities, these latter are expe
ted to providesolutions for pra
ti
al appli
ations, in parti
ular for bio
hemi
al assays and diagnosti
 tools.Future resear
h may be divided in four axes:
• First, some fundamental questions have to be addressed. Among others, how does adroplet behave as it en
ounters a node formed with more than two �bers? What isthe evaporation times
ale of a droplet on a �ber? How e�
ient is the mixing of twodroplets at a node? Is this mixing enhan
ed by the internal 
onve
tion 
reated withinthe resulting droplet when it slides down ? How do these pro
esses s
ale as the �bersize is de
reased down to a few mi
rons or less?
• Fiber nodes are observed to exert a diode-like a
tion on droplets. By analogy withthe re
ently developed bubble 
omputing [32℄, is it possible to invent a set of logi
aloperations on droplets that may be 
ombined to perform 
omplex �uidi
 tasks?
• Until now, we have dealt with �shing nylon �bers. Nevertheless, the physi
s des
ribedin this thesis is likely appli
able to �bers of any kind. A judi
iously 
hosen material 
anprovide additional 
apabilities to the network. The �ber 
ould be for example an opti
al�ber or an ele
tri
al wire, possibly textured or 
hemi
ally 
oated. The development ofele
tro-wetting on �bers would provide an ele
troni
 
ontrol of the blo
king/
rossingtransition. The intera
tion between light/ele
tri
al 
urrent and the droplet 
ontent
ould allow an in-situ measurement of the droplet properties; mi
ro-rea
tions would beprobed in real time! Moreover, these a
tive �bers may indu
e 
hemi
al rea
tions withinthe droplet through heating, UV 
ross-linkage, et
.
• Finally, droplets 
an also have a feedba
k on the �ber network be
ause the �bers areusually elasti
. Indeed, liquids exert a 
apillary a
tion on �bers that may shape them.The best example is the dense network of our hair, whi
h shapes di�erently if it is wetor not [188℄. Elasto
apillary phenomena open the way to self-assembly [189℄. Dropletsare already used in mi
rofabri
ation, e.g. for the self-alignment of two �bers [12℄ or forthe assembly through drying [190℄. Here, the droplets may help designing the networkon whi
h they �ow ! This in
reases further the �eld of appli
ation of �ber networks.
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Appendix ANotationsThe main notations en
ountered in the text are summarized in these tables. Note that theappendi
es have their own notations that may be di�erent from the list below.Var. Signi�
ation Eq./Fig. Var. Signi�
ation Eq./Fig.
α Fri
tion 
oef. E(8.4) τ Dimensionless time E(4.32)
β Dimensionless damping E(7.7-9.6) τσ Capillary time E(1.8)
δ Coating thi
kness E(8.9) φ Phase
ζ Max. de�e
tion s.f. F4.5(a) ϕ Interfa
e angle F8.2(b)
η Droplet deformation F4.5(a)-5.3(a) χ Chara
teristi
 fun
tion
θ In
lination angle F4.5(a) ω Dimensionless f E(4.3)
κ Dimensionless Z2 E(9.6) ∆ Di�eren
e
λσ Capillary length E(1.4) ∆ρ Rel. Di�. of ρ E(7.1)
µ Dynami
 vis
osity Γ Dimensionless A E(4.2)
ν Kinemati
 vis
osity Θ Dimensionless Mg E(9.6)
ξ Size ratio E(4.1) Φ Dimensionless freq. �ber E(9.8)
ρ Density Ψ Size ratio E(7.2)
σ Surfa
e tension E(1.1) Ω Droplet volumeTable A.1: Greek 
hara
ters.Subs
ript Signi�
ation Subs
ript Signi�
ation

F Faraday instability m Minimum
M Maximum nw Not walking droplet
a Air s Surrounding immis
ible liquid
cw Capillary waves sf Soap �lm
f Final state th Threshold
h Horizontal �ber v Verti
al �ber
i Initial state w WalkerTable A.2: Subs
ripts.
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Var. Signi�
ation Eq./Fig. Var. Signi�
ation Eq./Fig.
A For
ing amplitude F4.2(b) a S
ale Weibull E(6.7)Bo Bond number E(1.3-9.1) b Shape Weibull E(6.7)
C Boun
ing thres. fun. E(5.17) cD Dissipation 
oef. E(5.6)
C Mean 
urvature E(1.2) cK Kineti
 energy 
oef. E(5.6)Ca Capillary number E(8.9) cL1, cL2 Lubri
ation 
oef. E(5.3)
Eσ Surfa
e energy E(1.1) cT Transfer 
oef. E(4.29)
FL Lubri
ation for
e ck Sti�ness 
oef. E(4.4)
Fσ Capillary for
e cwe Wetting 
oef. E(8.9)
G Deformation ampl. E(5.11) cµ1, cµ2 Fri
tion 
oef. E(9.2-9.12)
H Height drop. summit cν1, cν2 Fri
tion 
oef. E(8.2-8.6)
H Heaviside fun
tion cσ Surfa
e tension 
oef. E(4.4-9.12)
Ii Mod. Bessel 1st kind E(5.17) d Fiber diameter
K Kineti
 en. impa
t f For
ing frequen
y F4.2(b)
L Traveling length E(9.17) f(ℓ,m) Natural freq. of Y m

ℓ E(1.7)
M Droplet mass g Gravitational a

el.
N Number of droplets h Film thi
kness F5.3(a)Oh Ohnesorge number E(1.9) j Index
P Pressure k Sti�ness E(4.4)
P Probability ℓ Degree of Y m

ℓ F1.2
PD Dissipated power m Order of Y m

ℓ F1.2
Q, ~Q Flow rate p N. for
. per./boun
R Mean radius F4.2(a) q N. boun/per. traj.
S Surfa
e area r Radial axis F4.5(a)
U Dimensionless V E(4.32) s Curvilinear 
oord.
V Vert. vel. impa
t t Time
W Droplet width F8.2(b) tc Conta
t time E(3.3)We Weber number E(1.6) tL Lifetime
X Droplet extension F8.2(b) u, ~u Lo
al velo
ity
Y Short-term average y E(5.14) v Droplet velo
ity
Y m

ℓ Spheri
al harmoni
s F1.2 x Dimensionless η E(5.7)
Z Vert. pos. drop. F4.5(a) y Dimensionless Z, h E(4.32-5.7-9.4)

Z1, Z2 Trun
ature E(9.2) z Verti
al axis F4.5(a)Table A.3: Latin 
hara
ters.
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Appendix BPhysi
al properties of the liquidsThe relevant physi
al properties of the liquids used in the experiments of this thesis aresummarized in Table B.1. The interfa
ial tension σw/o between aqueous mixtures and sili
onoils has been measured by the pendent drop te
hnique. Pure water gives σw/o ≃ 45±1 mN/m,whatever the asso
iated oil. Addition of gly
erol de
reases the interfa
ial tension down to
σw/o ≃ 42 ± 1 mN/m. On the other hand, a signi�
ant variation is observed when ethanol isadded:

σw/o(10%E) = 25 mN/m, σw/o(20%E) = 17 mN/m,
σw/o(30%E) = 12 mN/m,σw/o(20%E) = 9 mN/m .
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Liquid ρ (kg/m3) ν (
S) σ (mN/m)W 1000 0.893 72.087.5%W + 12.5%G 1030 1.17 70.280%W + 20%G 1048 1.47 69.575%W + 25%G 1061 1.73 69.062.5%W + 37.5%G 1093 2.67 68.050%W + 50%G 1127 4.74 67.425%W + 75%G 1195 30.9 66.190%W + 10%E 983 1.35 46.680%W + 20%E 969 1.82 37.770%W + 30%E 954 2.23 32.360%W + 40%E 934 2.51 29.6DC-0.65 
S 761 0.65 15.9DC-1.5 
S 850 1.5 16.8DC-5 
S 920 5 19.7DC-10 
S 934 10 20.1DC-20 
S 949 20 20.6DC-50 
S 960 50 20.8DC-100 
S 965 100 20.9DC-1000 
S 971 1000 21.2Table B.1: Liquid properties (G=Gly
erol, E=Ethanol, W=Water, DC=Dow Corning 200sili
on oil).
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Appendix CCapillary waves on a spheri
alinterfa
eC.1 Useful formulas in spheri
al 
oordinatesThe deformations of a sphere 
an be represented through the surfa
e ~x = R(θ, ϕ)~er, where
(~er, ~eθ, ~eϕ) =





sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0



 . (C.1)These unit ve
tors form a 
artesian 
oordinate system and satisfy, among others, to ∂θ ~er = ~eθand ∂ϕ ~er = sin θ ~eϕ.The main di�erential operators are written:
∇F = ~er∂rF + ~eθ

∂θF

r
+ ~eϕ

∂ϕF

r sin θ
, (C.2)

∇ · ~F =
∂r(r

2Fr)

r2
+
∂θ(sin θFθ)

r sin θ
+
∂ϕFϕ

r sin θ
, (C.3)

∇ ∧ ~F =
∂θ(sin θFϕ) − ∂ϕFθ

r sin θ
~er +

∂ϕFr − sin θ∂r(rFϕ)

r sin θ
~eθ +

∂r(rFθ) − ∂θFr

r
~eϕ, (C.4)

∇2F =
∂r(r

2∂rF ) + ∇2
θϕF

r2
, (C.5)where the angular 
omponent of the Lapla
ian operator is

∇2
θϕF =

∂ϕϕF + sin θ∂θ(sin θ∂θF )

sin2 θ
. (C.6)The eigenfun
tions of this operator are the spheri
al harmoni
s Y m

ℓ = Pℓ(cos θ)eimϕ obeyingto
∇2

θϕY
m
ℓ + ℓ(ℓ+ 1)Y m

ℓ = 0. (C.7)The outward-pointing normal ve
tor is
~n =

~er − ∂θR
R ~eθ − ∂ϕR

R sin θ ~eϕ
√

1 +

(

∂θR
R

)2

+

(

∂ϕR
R sin θ

)2
. (C.8)
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C.1.1 Linearization for small deformationsThe surfa
e is represented by R = R0(1 + η) where η ≪ 1. This yields
~n ≃ ~er −

∂θη

R0
~eθ −

∂ϕη

R0 sin θ
~eϕ, (C.9)

∇ · ~n ≃ 2(1 − η)

R0
−

∇2
θϕη

R0
, (C.10)

~n · ∇ ≃ ∂r. (C.11)C.2 Dispersion relationWe pro
eed by establishing the dispersion relation of 
apillary waves on a spheri
al dropletimmersed in a surrounding liquid (denoted by the subs
ript s). We suppose that
• the �ow is irrotational and in
ompressible,
• the wavelength is mu
h larger than the vis
ous length √ν/f , and
• the wave amplitude is small 
ompared to the wavelength.So the velo
ity �eld inside ~u and outside ~us may be derived from s
alar potentials ψ and ψssatisfying to the Lapla
e equation: ∇2ψ = ∇2ψs = 0, so for ea
h mode (ℓ,m),

ψ = B(t)

(

r

R0

)ℓ

Y m
ℓ and ψs = Bs(t)

(

r

R0

)−(ℓ+1)

Y m
ℓ . (C.12)The 
ontinuity of the normal velo
ity on the interfa
e r = R0(1 + η) implies ~n · ~u]r=R0

=
~n · ~us]r=R0

= R0∂tη, so
B =

R2
0

ℓY m
ℓ

∂tη and Bs = − R2
0

(ℓ+ 1)Y m
ℓ

∂tη. (C.13)Finally, the linearized Bernoulli equation gives the pressure within the �ow P = 2σs/R0−ρ∂tψand Ps = −ρs∂tψs. A

ording to the Lapla
e law, P − Ps = σs∇ · ~n on the interfa
e, so
ρ∂tψ]r=R0

− ρs∂tψs]r=R0
=
σs

R0

(

2η + ∇2
θϕη

)

, (C.14)whi
h yields
∂ttη =

σs

[(ℓ+ 1)ρ+ ℓρs]R3
0

ℓ(ℓ+ 1)

(

2η + ∇2
θϕη

)

. (C.15)We 
an now de
ompose the perturbations into spheri
al harmoni
s η = η0(t)Y
m
ℓ and obtain

η̈0 +
ℓ(ℓ2 − 1)(ℓ+ 2)

(ℓ+ 1)ρ+ ℓρs

σs

R3
0

η0 = 0. (C.16)We de�ne the mean density ρm = (ρ + ρs)/2 and the relative di�eren
e of density ∆ρ =
(ρ− ρs)/(ρ+ ρs). Therefore, the natural frequen
y f(ℓ,m) of the mode (ℓ,m) is given by

(2πf(ℓ,m))
2 =

σs

ρmR3
0

ℓ(ℓ2 − 1)(ℓ+ 2)

2ℓ+ 1 + ∆ρ
. (C.17)114



We see that this relation dispersion is degenerated, namely it does not depend on m.When ρs = 0, Eq. (1.7) is re
overed:
f2
(ℓ,m) =

σ

3πM
ℓ(ℓ+ 2)(ℓ− 1). (C.18)The planar 
ase is obtained as the limit when R0 → ∞, with ℓ = 2πR0/λ:

f2 =
2πσs

(ρ+ ρs)λ3
. (C.19)In summary, the general solution is







































R = R0(1 +BY m
ℓ cos(2πft)

ψ = −B 2πfR2
0

ℓ

(

r
R0

)ℓ

Y m
ℓ sin(2πft)

ψs = B
2πfR2

0

ℓ+1

(

r
R0

)−(ℓ+1)

Y m
ℓ sin(2πft)

(2πf)2 = σs

R3
0

ℓ(ℓ2−1)(ℓ+2)
ρ(ℓ+1)+ρsℓ .

(C.20)
C.3 Vis
ous dissipationAlthough the �ow is supposed irrotational (and so invis
id), it is possible to estimate thevis
ous dissipation on the basis of the velo
ity gradients provided by the potential solution.The lo
al dissipation D (per unit volume) writes
D = = 2µ

[

(∂rur)
2 +

(∂θuθ + ur)
2

r2
+

(∂ϕuϕ + ur sin θuθ cos θ)2

r2 sin2 θ

]

+

[

r∂r

(

uθ

r

)

+
∂θur

r

]2

+

[

sin θ

r
∂θ

(

uϕ

sin θ

)

+
∂ϕuθ

r sin θ

]2

+

[

∂ϕur

r sin θ
+ r∂r

(

uϕ

r

)]2

. (C.21)The dissipated power PD is 
al
ulated by integrating this dissipation fun
tion over the wholespa
e:
PD =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R0

0
drDr2 sin θ

=
B2µ(2πf)2R3

0(ℓ− 1)(2ℓ+ 1)(1 + δm0) sin2(2πft)

ℓ

PDs =

∫ 2π

0
dϕ

∫ π

0
dθ

∫

∞

R0

drDsr
2 sin θ

=
B2µs(2πf)2R3

0(ℓ+ 2)(2ℓ+ 1)(1 + δm0) sin2(2πft)

ℓ+ 1
. (C.22)We observe that PD/µ < PDs/µs; the dissipated power per unit vis
osity is higher in thesurrounding �uid.
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The total kineti
 energy of the �ow is also obtained from the potential solution:
K =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R0

0
dr
u2

r + u2
θ + u2

ϕ

2
r2 sin θ

=
B2ρ(2πf)2R5

0(1 + δm0) sin2(2πft)

4ℓ

Ks =

∫ 2π

0
dϕ

∫ π

0
dθ

∫

∞

R0

dr
u2

r + u2
θ + u2

ϕ

2
r2 sin θ

=
B2ρs(2πf)2R5

0(1 + δm0) sin2(2πft)

4(ℓ+ 1)
. (C.23)The kineti
 energy per unit density is smaller in the surrounding �uid, K/ρ > Ks/ρs.The total me
hani
al energy E of 
apillary waves de
reases with time as a de
reasingexponential of fa
tor β:

E = Et=0e
−βt, (C.24)where

β =
PD + PDs

2(K +Ks)
=

2ℓ+ 1

2R2
0

µ(ℓ2 − 1) + µsℓ(ℓ+ 2)

ρ(ℓ+ 1) + ρsℓ
. (C.25)Obviously, the shorter are the waves (large ℓ), the more e�
ient is the damping. Like thedispersion relation, the damping fa
tor does not depend on the parameter m.For a planar interfa
e, the dissipation is

β = 4π2 µ+ µs

(ρ+ ρs)λ2
. (C.26)C.4 Axisymmetri
 progressive wavesThe propagation of plane waves is well-des
ribed by the solution

X = X̃e2πi(x/λ−ft), (C.27)
orresponding to a mono
hromati
 wave of wavelength λ and frequen
y f . This wave travelsat speed λf in the dire
tion of in
reasing x; it is therefore a progressive wave. Sin
e thephysi
al problem is linearized, every linear 
ombination of two solutions is also a solution.The sum of two waves only di�ering by their dire
tion give birth to a standing wave
X = X̃ cos(2πx/λ) cos(2πft). (C.28)When axisymmetri
 waves on a sphere are 
onsidered, 
al
ulations be
ome more 
ompli-
ated. The separation of variables is requested and solutions are

X = X̃Pℓ(cos θ)e−2πift, (C.29)where Pℓ(x) is the Legendre polynomial of degree ℓ. This solution is already a standing wave,and it seems di�
ult to dedu
e the 
orresponding progressive wave.However, there is a approximation for progressive waves that is determined hereafter. Inorder to 
ombine angular and time variables, we need to formulate the angular part as an116



amplitude modulation of the 
osine. In other words, we need to determine the fun
tions Aℓ(θ)and ωℓ(θ) satisfying to
Pℓ(cos θ) = Aℓ(θ) cos

(

2πωℓ(θ)

)

. (C.30)The progressive waves are then given by
X = X̃Aℓ(θ)e

2πi(ωℓ(θ)±ft). (C.31)The equation C.30 would have an in�nity of solution if we did not impose Aℓ(θ) > 0. So thezeros of cos(2πωℓ(θ)) must 
oin
ide with the zeros of the Legendre polynomials.C.4.1 Determination of ωℓ(θ)The Legendre polynomial of degree ℓ always has ℓ zeros, so the same is for the 
osine. Ifwe observe these zeros as fun
tions of θ, (Fig. C.1a), we see that they are regularly spa
ed.More exa
tly, they are approximately at positions
θj =

3π
4 + jπ

ℓ+ 1
2

; j ∈
(

Z

⋂

[0, ℓ− 1]

)

. (C.32)The error made with this approximation is represented in the inset of Fig. C.1(a). Sin
e thezeros of the 
osine are in π/2 + jπ, we dedu
e the equation for ωℓ(θ).
ωℓ(θ) =

(

ℓ+
1

2

)

θ

2π
− 1

8
. (C.33)C.4.2 Determination of Aℓ(θ)
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hed by equation (C.32).(Inset) Absolute error of Eq. (C.32) on the the position of zeros in the 50 �rst Legendrepolynomials. (b) (•) Legendre polynomial with ℓ = 10. The solid line is the approximation
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The amplitude Aℓ(θ) 
annot be obtained by simply dividing the Legendre polynomial bythe 
osine. Indeed, sin
e the zeros of both fun
tions do not exa
tly 
oin
ide, the error explodes
lose to these points. We start giving some properties of the fun
tion Aℓ(θ):1. It is even a

ording to π/2: Aℓ(π − θ) = Aℓ(θ). Indeed, both the polynomial and the
osine have the same parity as ℓ.2. Its �rst derivative satis�es
dPℓ(x = cos(θ))

dθ
= −dPℓ

dx
sin θ =

dAℓ

dθ
cos

[(

ℓ+
1

2

)

θ−π
4

]

−Aℓ

(

ℓ+
1

2

)

sin

[(

ℓ+
1

2

)

θ−π
4

]

.(C.34)3. In θ = 0 (and so in θ = π),
Aℓ(0) =

√
2 and dAℓ

dθ

]

θ=0

= −
√

2

(

ℓ+
1

2

)

. (C.35)4. In θ = π/2,
• if ℓ is even,

Aℓ

(

π

2

)

= (−1)
ℓ
2Pℓ(x = 0). (C.36)

• else
Aℓ

(

π

2

)

= (−1)
ℓ−1

2
ℓ

ℓ+ 1
2

Pℓ−1(x = 0). (C.37)5. Aℓ(θ) is positive de�nite, must be minimal in θ = π/2 (smallest amplitude be
ause theenergy is distributed on the whole equator) and maximal in θ = 0 and θ = π (
onvergen
eof the energy on the poles).We 
hoose to represent Aℓ(θ) by a polynomial in (π/2 − θ):
Aℓ(θ) = c0 +

n
∑

i=1

ci

(

π

2
− θ

)2i (C.38)where the 
oe�
ients ci are positive, in order to ensure the positivity of the fun
tion. Coe�-
ients are subje
t to three additional 
onstraints, resulting from the behavior of Aℓ in θ = 0and θ = π/2:
n
∑

i=1

ci

(

π

2

)2i

=
√

2 − c0, (C.39)
n
∑

i=1

ci · 2i

(

π

2

)2i−1

=
√

2(l + 1/2), (C.40)
c0 =

{

(−1)
ℓ−1

2
ℓ

ℓ+1/2Pℓ−1(0) when l is uneven,
(−1)

ℓ
2Pℓ(0) when ℓ is even. (C.41)The determination of 
oe�
ients ci is a 
onstrained linear least-square problem whi
h is easilysolved numeri
ally. The number of 
oe�
ients is arbitrarily 
hosen to n = 2ℓ. The result ofthis optimization is shown in Fig. C.1(b). 118



C.4.3 Wave 
onvergen
eIt is possible to estimate the ratio between the amplitudes of waves at the poles and atthe equator. This ratio illustrates the 
onvergen
e of energy in the polar zone, and is given by
Aℓ(θ = 0)

Aℓθ = π/2)
=

2ℓ+0.5

[(

ℓ
2

)

!

]2

ℓ!
(C.42)This ratio is in
reasing with ℓ, so higher modes experien
e a more important 
onvergen
e.
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Appendix DLubri
ationIn this appendix, we study the axisymmetri
 quasi-steady �ow within the air �lm lo
atedbeneath a droplet of radius R. The air �lm is supposed horizontal has a thi
kness h ≪ Rhomogeneous a

ording to r. The obje
tive is to estimate the verti
al for
e FL required tothin the �lm with a thinning rate ḣ.In 
ylindri
al 
oordinates, the 
ontinuity equation writes
∂r(rur)

r
+ ∂zuz = 0. (D.1)The �rst term s
ales as ur/R while the se
ond term s
ales as uz/h, so uz ∼ urh/R≪ ur andthe �ow is mainly in the r dire
tion. The Navier-Stokes equation is greatly simpli�ed underthe assumptions h≪ R, ∂z ≫ ∂r and ur ≪ uz, namely

∂rP = µa∂zzur and ∂zP = 0. (D.2)In order to integrate this equation and �nd the radial velo
ity ur, we need to pres
ribe bound-ary 
onditions. We suppose that the bath beneath the air �lm (in z = 0) is at rest. Onthe other hand, the internal �ows within the droplet make the droplet/air interfa
e (z = h)moving with a velo
ity cUr. That yields
ur =

cUr

h
z − ∂rP

2µa
z(h− z). (D.3)The velo
ity averaged over the �lm thi
kness is

U =

∫ h
0 urdz

h
=
cUr

2
− ∂rP

12µa
h2. (D.4)We pro
eed by integrating the 
ontinuity equation in the z-dire
tion with the assumption

∂rh = 0,
ḣ =

−h
2r
∂r(r

2cU ) +
h3

12µar
∂r(r∂rP ). (D.5)The pressure P is obtained by integrating this equation twi
e a

ording to r, and by supposingthat the pressure is zero in r = R.

P = −3µa

h2

(

ḣ

h
+ cU

)

(R2 − r2). (D.6)120



The resulting verti
al for
e FL resulting from P is then given by
FL = 2π

∫ R

0
Prdr = −3π

2
µaR

2

(

R

h

)2( ḣ

h
+ cU

) (D.7)We note that both the exponent and prefa
tor of R/h strongly depend on the 
onsideredgeometry (e.g. spheri
al instead of 
ylindri
al).When a droplet is released 
lose to a liquid interfa
e, it thins the air �lm (ḣ < 0) anddrains it outwards. In the same time, the droplet �attens, whi
h 
reates an internal motionoutwards (cU > 0). Therefore, the internal �ows help the air �lm to drain and de
rease FL.At leading order, cU is proportional to the droplet deformation η̇, namely cU ∼ η̇/R.The resulting verti
al for
e FL impa
ts on the energy balan
e of the droplet (Eq.5.5)through the term FLη̇. Although the resultant of horizontal stresses vanishes, the work theyprodu
e does not. It is estimated to
2π

∫ R

0
µa

(

∂zur

)

z=h

(cUr)rdr =
3π

2
µacUR

3R

h

(

ḣ

h
+

4cU
3

) (D.8)This power s
ales as FLη̇(h/R), whi
h is mu
h smaller than the verti
al power FLη̇ and maythus be negle
ted.
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Appendix EThe elasti
 ballWalker's experiment is based on the old problem of the elasti
 ball. In this system, apartially elasti
 bead boun
es inde�nitely onto a surfa
e vibrated a

ording to a verti
alsinusoidal motion of amplitude A and frequen
y f . The verti
al position zs(t) of the surfa
e isgiven by zs = A cos 2πft. In the mathemati
al model, the bead boun
ing is su
h that the take-o� velo
ity is proportional to the impa
t velo
ity; the 
oe�
ient of proportionality is 
alledrestitution 
oe�
ient ǫ. Moreover, the 
onta
t time is null, so take-o� o

urs immediatelyafter landing. Nowadays, the elasti
 ball is 
onsidered as one of the simplest experimentsthat illustrates 
haoti
 
on
epts [191℄. It obeys to relatively simple equations of motion, thatare solved numeri
ally without major issues. Like the logisti
 map, it seems to experien
e a
as
ade of period doubling bifur
ations that leads to 
haos [111℄.In spite of its apparent simpli
ity, the elasti
 ball problem is far from being solved. Experi-mentally, the restitution 
oe�
ient is observed to depend on the impa
t velo
ity [192℄, exa
tlylike for droplets on a vibrated soap �lm (Chap. 4). On the other hand, the 
haoti
 behavior ofthe system is 
ontested. Indeed, the elasti
 ball usually experien
e sti
king 
as
ades, namelyseries of boun
es smaller and smaller that 
onverge to rest in a �nite time [193℄. The ballthen sti
ks on the plate and takes o� again when the instantaneous a

eleration of the plateis su�
iently low (i.e. less than −g). Even if the traje
tory seems 
haoti
, the ball alwaysends up sti
king to the plate [111℄. This resets the system in some way, and makes the motionne
essarily periodi
. The sti
king o

urren
e in
reases with de
reasing ǫ.The elasti
 ball problem is involved in various appli
ations in both fundamental physi
sand engineering. It is dire
tly related to the Fermi model en
ountered in astrophysi
s andatomi
 physi
s [194℄. Shaken granular materials [195℄ and some opti
al systems [196℄ presentobvious similarities with the elasti
 ball. It also provides a theoreti
al ba
kground for manyte
hnologies in �elds as various as a
ousti
s [197℄, milling [198℄ or atomi
 for
e mi
ros
opy[199℄. Finally, the elasti
 ball is a standard problem in 
ontrol theory [200℄, where the goal isto 
reate a 
ontinuous signal zs(t) to drive the boun
ing motion. One of the simplest strategies
onsists in juxtaposing parabolas (one per boun
e) whi
h parameters are 
omputed from thedata of previous impa
t. As an analog of the juggling problem [201℄, the elasti
 ball is a study
ase to test the 
ontrol ability of human brain [202℄.
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E.1 Equations of the elasti
 ballThe position of the elasti
 ball relative to the surfa
e beneath is given by
Z(t) = c1 + c2t− g

t2

2
−A cos

[

2πft

]

, (E.1)whi
h 
an be made dimensionless by de�ning y = (2πf)2Z/g and φ = 2πft, so
y(φ) = c3 + c4φ− φ2

2
− Γ cosφ, (E.2)where Γ = 4π2Af2/g. The 
onstants c3 and c4 are determined by �xing the take-o� 
ondition

(y, ẏ) = (0, Vn) in φ = φn. Moreover, the ball lands in φn+1 and takes-o� immediately afterwith a velo
ity pres
ribed by Vn+1 = −ǫẏ(φn+1), so
F1 ≡ Γ(cosφn − cosφn+1) + (φn+1 − φn)(Vn − Γ sinφn) − (φn+1 − φn)2

2
= 0, (E.3)

F2 ≡ Vn+1 + ǫ

[

Γ(sinφn+1 − sinφn) + Vn − (φn+1 − φn)

]

= 0. (E.4)The �ight time is de�ned as Tn = φn+1 − φn. For given parameters (Γ, ǫ), the system (E.3) isa 2-dimensional map that 
al
ulates (φn+1, Vn+1) as a fun
tion of (φn, Vn).Fixed points are given by the 
onditions φn+1 = φn + 2kπ and Vn+1 = Vn, whi
h yield
φn = − arcsin

(

1 − ǫ

1 + ǫ

kπ

Γ

) and Vn = 2kπ
ǫ

1 + ǫ
. (E.5)These points only exist when

Γ ≥ Γm =
kπ(1 − ǫ)

(1 + ǫ)
. (E.6)Their stability is addressed by looking to the ampli�
ation of a small perturbation (dφn,dVn)around the �xed point:

(

dφn+1

dVn+1

)

= J

(

dφn

dVn

) with J = −
(

∂F1

∂φn+1

∂F1

∂Vn+1

∂F2

∂φn+1

∂F2

∂Vn+1

)−1( ∂F1

∂φn

∂F1

∂Vn
∂F2

∂φn

∂F2

∂Vn

)

. (E.7)At �xed point, J is given by
J =

(

1 − (1 + ǫ)Γ cosφn 1 + ǫ
ǫ(1 + ǫ)Γ cosφn(Γ cosφn − 1) ǫ2(1 − Γ cosφn) − ǫΓ cosφn.

) (E.8)The �xed point is stable only when the eigenvalues of J are smaller than 1 in modulus. After
al
ulations, this 
ondition writes
Γ < ΓM =

√

4(1 + ǫ2)2

(1 + ǫ)4
+ Γ2

m. (E.9)Passed this point, the system experien
e a period doubling bifur
ation.123



E.2 Inelasti
 ballEquations (E.3) may be parti
ularized to the 
ase of a 
ompletely inelasti
 ball, namely
ǫ = 0 [203℄. At impa
t, the ball loses any information about its previous velo
ity, and takesthe velo
ity of the vibrating plate (i.e. Vn = 0). Therefore, immediate take-o� is observedonly when Γ cosφn ≥ 1. Otherwise, the ball sti
ks on the plate until the take-o� 
ondition issatis�ed. The �ight time Tn is given by

F ≡ Γ cosφn(1 − cosTn) −−Γ sinφn(Tn − sinTn) − T 2
n

2
= 0, (E.10)whi
h is mu
h simple sin
e we only need to determine Tn(φn) with a single parameter Γinstead of two. As easy as this problem may seem, its bifur
ation diagram Tn(Γ) is 
omplexand 
ontains fra
tal-like stru
tures, shaped by the interplay of two kinds of bifur
ations,repeated a non-denumerable number of times. A more detailed investigation of this 
ase hasbeen made in [204℄.
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Appendix FFaraday instabilityThe Faraday instability 
onsists in the destabilization of a planar interfa
e between two�uids, due to a verti
al os
illation of the whole system. In a 
ontainer of �nite dimensions,this instability gives birth to standing waves of �nite amplitude. Experiments on these waveswere reported for the �rst time by Faraday in 1831 [125℄. Although the waves are easilyobserved by pla
ing a simple 
ontainer on a speaker, a

urate measurements of the thresholdrequire good experimental 
onditions. In parti
ular, the vibration has to be perfe
tly verti
al[126℄, and the menis
us at the 
ontainer edges must be kept horizontal. This 
an be made bypinning the menis
us into a wedge, or by realizing an over�ow. In the 
ase the menis
us isfree to move, it starts emitting 
apillary waves that prematurely trigger the instability [132℄.The �rst analyti
al model of the Faraday instability was proposed in 1954 by Benjamin andUrsell [126℄. These authors assumed invis
id �uids and obtained a Mathieu equation, i.e. ase
ond-order linear homogeneous di�erential equation where the 
oe�
ient of the 0-order termis periodi
. A

ording to this equation, the threshold should be zero, and the interfa
e mustalways be unstable. In reality, the Faraday instability 
annot be des
ribed without takingvis
osity into a

ount.In this appendix, we present the model �rstly introdu
ed by Kumar and Tu
kerman in1994 [129℄, adapted to a liquid/air interfa
e. We denote by ~v the velo
ity �eld, ~u its horizontal
omponent and w~ez its verti
al 
omponent, where ~ez is the downward-pointing unit ve
tor.Continuity and Navier-Stokes equations are written for the liquid phase, in the frame of thevibrated 
ontainer,
∇ · ~v = 0 (F.1)

∂t~v + (~v · ∇)~v = −∇P

ρ
+ g(1 − Γ cosωt)~ez + ν∇2~v, (F.2)where ω is the angular frequen
y of the vibration. We linearize the se
ond equation around thereferen
e state (planar interfa
e): ~v = 0 and P0 = ρgz(1 − Γ cosωt). We note p the pressureperturbation and keep ~v, ~u and w for the velo
ity perturbations. The verti
al velo
ity w andpressure p are thus obtained by

∂t∇2w = ν∇4w (F.3)
∇2

hp = ρ∂tzw − ρν∇2∂zw, (F.4)where ∇2
h is the horizontal part of the Lapla
ian operator.125



One has now to impose boundary 
onditions. At the bottom of the 
ontainer, the velo
itymust vanish, sow = 0 and ~u = 0 in z = h. At the free surfa
e (z = η(x, y, t)), the normalvelo
ity of �uid parti
les has to be equal to the normal velo
ity of the interfa
e. This 
ondition,on
e linearized, yields w = ∂tη. Moreover, the tangential stress exerted by the air is negligible,whi
h gives ∇2
hw = ∂zzw. The normal stress involves pressure, gravity, the normal 
omponentof the velo
ity gradient and surfa
e tension. Balan
e between these intera
tions yields

p

ρ
= gη(Γ cosωt− 1) + 2ν∂zw + σ∇2

hη. (F.5)This equation 
an be reformulated by using the equation for pressure within the liquid, so
[

∂t − 3ν∇2
h − ν∂zz

]

∂zw =

[

g(Γ cosωt− 1) +
σ

ρ
∇2

h

]

∇2
hη. (F.6)We note that this equation is the only one where the for
ing term Γ cosωt appears. In amedia of in�nite horizontal extension, we may assume that the horizontal part of the solutionis proportional to sin(kxx + kyy). We 
an therefore repla
e ∇2

h by −k2 with k2 = k2
x + k2

y.By the way, we do not need anymore to pres
ribe boundary 
onditions on the lateral walls.Pra
ti
ally, the spe
trum of kx and ky is dis
retized by the lateral walls, an e�e
t whi
h issigni�
ant only when the wavelength is of the order of the horizontal extension of the 
ontainer.We thus obtain a system of equations for unknowns w(z, t) and η(t):
(∂t + νk2 − ν∂zz)(∂zz − k2)w = 0 ∀z, (F.7)

w = ∂zw = 0 in z = h, (F.8)
w = ∂tη in z = 0, (F.9)

(∂zz + k2)w = 0 in z = 0, (F.10)
[

∂t + 3νk2 − ν∂zz

]

∂zw =

[

g(1 − Γ cosωt) +
σ

ρ
k2

]

k2η in z = 0. (F.11)A

ording to the Floquet theory, we should expe
t
w(z, t) = e(µ+iα)t

∞
∑

n=−∞

wn(z)einωt, (F.12)
η(t) = e(µ+iα)t

∞
∑

n=−∞

ηneinωt, (F.13)(F.14)with α ∈ [0, ω/2]. The solutions are stable when µ < 0 and unstable otherwise. The solutionis harmoni
 when α = 0, while it is subharmoni
 when α = ω/2. De�ning q2n = 1 + µ+i(α+nω)
νk2yields

wn(z) = an cosh kz + bn sinh kz + cn cosh qnkz + dn sinh qnkz. (F.15)The four �rst boundary 
onditions are








cosh kh sinh kh cosh qnkh sinh qnkh
sinh kh cosh kh qn sinh qnkh qn cosh qnkh

2 0 1 + q2n 0
1 0 1 0

















an

bn
cn
dn









= νk2(q2n − 1)ηn









0
0
0
1









. (F.16)126



Inverting this system leads to the 
oe�
ients an, bn, cn and dn:






















an = νk2(1 + q2n)ηn,

bn =
(qn−tanh kh tanh qnkh)an+ qnc

cosh kh cosh qnkh

tanh qnkh−qn tanh kh ,

cn = −2νk2ηn,

dn =
(qn tanh kh tanh qnkh−1)c− a

cosh kh cosh qnkh

tanh qnkh−qn tanh kh .

(F.17)The last boundary 
ondition writes
2

[

1 +
σk2

ρg
− ν2k3

g
F (qn, kh)

]

ηn = Γ(ηn+1 + ηn−1), (F.18)where
F (qn, kh) =

(q5n + 2q3n + 5qn) − (q4n + 6q2n + 1) tanh kh tanh qnkh− 4 qn+q3
n

cosh kh cosh qnkh

tanh qnkh− qn tanh kh
. (F.19)We note that this 
ondition 
ouples ηn+1 and ηn−1 to ηn through the for
ing term, so thesolution 
annot be obtained analyti
ally. The 
ondition F.18 is a system with an in�nity of
omplex equations, that has to be trun
ated by only 
omputing ηn with n ∈ [0, N ]. Realperturbations η satisfy η−n = η∗n in the harmoni
 
ase (α = 0) and η−n−1 = η∗n in thesubharmoni
 
ase (α = ω/2).Usually, in stability analysis, k and Γ are �xed, so µ and α are determined and the observedmode is the most unstable, namely the mode of largest µ. Here, we pro
eed ba
kwards and
ompute the marginal stability 
urves (µ = 0) for both harmoni
 and subharmoni
 
ases(whi
h �x α). These tongue-like 
urves are plotted in Fig. F.1(a) for the following parameters:

g = 9.81 m/s2, σ = 20 mN/m, ρ = 965 kg/m3, h = 0.1 m, ν = 50 
S and ω = 100π rad/s. Thesolution in unstable and Faraday waves appear within the tongues. The instability threshold
ΓF is the minimum of these stability 
urves; its abs
issa kF indi
ates the wavelength observedjust above the threshold. The predi
ted threshold is in relatively good agreement with theexperimental measurements at h = 9 mm (Fig. F.1b). Finally, we note that, by equalling Γ tozero in Eq. (F.18), we re
over the dispersion relation of gravity/
apillary waves with a �nitedepth and the in
lusion of vis
osity e�e
ts,

1 +
σk2

ρg
=
ν2k3

g
F (qn, kh). (F.20)F.1 Instability in a 
ontainer of in�nite depthWhen the liquid bath is su�
iently deep, namely when kSh ≫ 1, the fun
tion F (qn, kh)is notably simpli�ed,

F (qn) = −(q4n + 2q2n + 4qn + 1). (F.21)Figure F.2 represents the threshold ΓF 
omputed by Eq. (F.18) as a fun
tion of vis
osity νand frequen
y f = ω/2π. S
aling laws are observed for both ΓF and kF :
{

ω ≃ 2Ω(kF ),

ΓF ≃ 3.5νkF ω
g ,

(F.22)127
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Figure F.1: (a) Marginal stability 
urves: (·) subharmoni
, and (×) harmoni
 solutions.Within the tongues, the system is unstable and Faraday waves appear. (b) Comparisonbetween the model results and the experimental measurements for ν = 50 
S, h = 9 mm,
σ = 20 mN/m and ρ = 965 kg/m3.where ω = Ω(k) is the dispersion relation of gravity/
apillary waves given by Eq. (F.20).The �rst equation indi
ates that the sele
ted wave number 
orresponds to half the for
ingfrequen
y, whi
h is 
oherent for the subharmoni
 
ase. As seen in Fig. F.2, these s
aling laws
orre
tly represent the threshold 
urves in a large range of parameters. Predi
tions are goodprovided kFh > 2, whi
h is 
oherent with our hypothesis of in�nite depth.We 
on
lude by establishing the dispersion relation Ω(k) for the vis
ous gravity/
apillarywaves. First, we de�ne

1 + x = q2n = 1 +
µ(k) + iΩ(k)

νk2
, (F.23)in Eq. (F.20) and

α =
gk + σk3

ν2k4
, (F.24)so

x4 + 8x3 + (24 + 2α)x2 + (16 + 8α)x+ α(α+ 8) = 0. (F.25)This equation has four 
omplex solutions. Nevertheless, the polynomial is 
onvex, namely these
ond derivative is positive everywhere, and the fun
tion is both positive and in
reasing in
x = 0, whatever α. So we 
an state that every real solution is ne
essarily negative or zero.But in reality, waves 
orrespond to not-real solutions, for whi
h Ω(k) 6= 0. To �nd them, wehave to set x = a+ ib, whi
h yields
{

b2 = a3+6a2+(12+α)a+4+2α
a+2 ,

a6 + 12a5 + (60 + α)a4 + 8(20 + α)a3 + 4(59 + 6α)a2 + 16(11 + 2α)a+ 4(11 + 4α) = 0.(F.26)This polynomial of degree 6 has a �xed point a

ording to α in a = −2. In this point, thepolynomial is negative and experien
e a lo
al maximum. This maximum should be the onlyone sin
e the fourth derivative is positive semi-de�nite. So the polynomial 
annot have morethan two distin
t real roots a, whi
h are shown to be negative. Pra
ti
ally, we 
an show thatwhen α < 0.546, Eq. (F.25) has two real roots that do not 
orrespond to waves, and a pair128
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(f)Figure F.2: Threshold a

eleration ΓF and wavelength kF of the Faraday instability for a
ontainer of in�nite depth. Parameters are h = 0.1 m, ρ = 965 kg/m3 and σ = 20 mN/m.The solid lines 
orrespond to the numeri
al resolution of Eq. (F.18) while the dashed linesrepresent the relation (F.22). (a-b) Variation with f for ν = 1 
S, (
-d) variation with f for
ν = 1000 
S, and (e-f) variation with ν for f = 100 Hz.
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of 
omplex 
onjugate roots 
orresponding to damped waves. When α > 0.546, there are twopairs of 
omplex 
onjugate roots, so two distin
t frequen
ies satisfy to the dispersion relationfor the same k. This transition between one and two frequen
ies 
orresponds to the 
hange ofregime non-vis
ous/vis
ous observed in Fig. F.2(e-f).
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Appendix GDroplets on �bersG.1 Stati
 shape of a droplet on a �berIn this se
tion, we propose to solve Eq. (8.1) introdu
ed in 
hapter 8 to des
ribe theaxisymmetri
 shape of a droplet of volume Ω wetting a �ber of diameter dv. We negle
t thein�uen
e of gravity, so equations are






dr
ds = cosϕ,
dz
ds = sinϕ,
dϕ
ds = ∆P

σ − sin ϕ
r ,

(G.1)where ∆P is the overpressure within the droplet, at lo
ation z = 0. These equations 
annotbe solved analyti
ally in the general 
ase, but asymptoti
 solutions may be inferred when thedroplet volume Ω is either mu
h smaller or mu
h bigger than d3
v.Large droplets (typi
ally Ω/d3

v > 104) tend to keep their spheri
al shape when hangedon a �ber. The sphere of radius R, des
ribed by (r0, z0, s0) = R(sinϕ, 1 − cosϕ,ϕ) satis�esEq. (8.1) for ∆p = 2σ/R ≪ 1, but not mat
hing 
onditions on the �ber. Next to thesemat
hing points, the 
urvature still need to be 1/R, whi
h is mu
h smaller than the �ber
urvature 2/dv. Therefore, the droplet may be lo
ally approximated by a 
atenoid (zero-
urvature surfa
e) of equation
r1 =

dv

2 sinϕ
, z1 =

dv

2
ln

(

sinϕ

1 − cosϕ

) and s =
dv

2
cotϕ. (G.2)Both solutions mat
h ea
h other when r0 = r1 for the same angle ϕ, so when sinϕ =

√

dv/2Rand r =
√

RdV /2 ≪ R. The droplet volume is roughly equal to the volume of the sphere, the
atenoidal 
ontribution being negligible. Therefore, we infer
W

dv
≃
(

3Ω

4πd3
v

) and X = 2W. (G.3)These s
alings are similar to those dis
ussed in [171℄.When the droplet size is smaller than dv, the droplet spreads on the �ber in su
h a way thatthe 
urvature of its interfa
e is only slightly lower than the �ber 
urvature 2/dv. Therefore, we
an infer the asymptoti
 solution by perturbing the solution (r0, z0, ϕ0) = (dv/2, s, π/2) when131



Ω = 0 (
orresponding to the �ber itself). Supposing ∆p = 2σ(1 − ε)/dv and perturbationsdenoted by tilted variables, we obtain










dr̃
ds ≃ −ϕ̃,
dz̃
ds ≃ 0,
dϕ̃
ds ≃ 4r̃

d2
v
− 2ε

dv
,

(G.4)from whi
h we �nd the droplet shape




r
z
ϕ



 =









dv

2

[

1 + ε

(

1 − cos 2s
dv

)]

s
π
2 − ε sin 2s

dv









. (G.5)The droplet shape is therefore 
lose to a sinusoid. The verti
al extension X is equal to πdv,whi
h 
orresponds to the �ber perimeter. The thi
kness and volume of the droplet are easily
omputed,
W

dv
= ε =

8Ω

π2d3
V

and X

dv
= π. (G.6)It is seen in �gure 8.4 that both small and large droplets are well des
ribed by the proposedasymptoti
 behaviors.G.2 Rayleigh-Plateau instabilityA �lm of liquid 
overing a �ber spontaneously turns into a string of droplets, i.e. anunduloidal shape, due to the Rayleigh-Plateau instability. The related 
al
ulation is detailedin this se
tion. We �rst suppose that the thi
kness of the �lm h is mu
h smaller than the �berdiameter d, so the lubri
ation equations 
an be applied,

∂zP = µ∂rruz and ∂rP = 0, (G.7)where the z-axis (resp. r-axis) is parallel (resp. normal) to the �ber. Boundary 
onditionsare uz(d/2) = 0 (no-slip 
ondition) and ∂ruz(d/2 + h) = 0 (free surfa
e). The velo
ity �eldthus writes
uz = −∂zP

µ

(

r − d

2

)(

h− 2r − d

4

)

, (G.8)so the �ow rate in a z-se
tion is
Q(z) = 2π

∫ h+d/2

d/2
uzrdr = −πdh

3∂zP

3µ

(

1 +
5h

4d

)

. (G.9)The 
ontinuity equation yields
∂zQ = −πd

(

1 +
2h

d

)

∂th, (G.10)so
3µd

(

1 +
2h

d

)

∂th = ∂z

[(

1 +
5h

4d

)

dh3pzP

]

. (G.11)132



The pressure gradient is found through the Lapla
e law,
P

σ
= − ∂zzh

[

1 + (∂zh)2
]3/2

+
2

(2h+ d)

[

1 + (∂zh)2
]1/2

. (G.12)Both equations (G.11) and (G.12) are 
onsiderably simpli�ed under the assumptions h ≪ dand ∂zh≪ 1,
3µ∂th = ∂z

(

h3∂zP

) (G.13)
P

σ
= −∂zzh+

2

d+ 2h
, (G.14)so

3µ

σ
∂th = −h3∂zzzzh− 4h3

d2
∂zzh− 3h2∂zh∂zzzh− 3

4h2

d2
(∂zh)

2. (G.15)We pro
eed by linearizing this equation and 
onsidering a small perturbation of the initialuniform �lm h = hi, namely
h = hi + εeikze−βt. (G.16)Substituting this expression into (G.15) leads to the damping fa
tor

β =
σ

3µ

h3
i

d4
k2d2

(

k2d2 − 4

)

. (G.17)The instability o

urs when β < 0, whi
h 
orresponds to a wavelength λ = 2π/k > πd.Therefore, any perturbation of wavelength greater than the �ber diameter is unstable. Theobserved wavelength is the most unstable one, i.e. λ = π
√

2d. The related 
hara
teristi
 timeof the instability is
tRP =

1

β
=

3µd4

4σh3
0

. (G.18)
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