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Introduction

Goutte nf Trés petite quantité d’un liquide qui se détache avec une forme sphérique.

Droplet: small amount of liquid that breaks away with a spherical shape. This is the
definition given by the famous French dictionary Larousse [1|. The droplet is definitely a daily
encountered concept. Strings of raindrops that fall and slide on our windows, small pearls
observed on spider webs in the early morning, oily droplets that spread everywhere and make
these so feared grease stains, the drip-drip of syringes, spatters, tears... but also fog, sprays,
spindrift, ink drops in printers, fuel drops injected in motors, etc. Finally, we must not forget
the emulsions (e.g. dairy products, beauty creams) obtained when two immiscible liquids are
forced to blend together: one of them forms a myriad of tiny droplets into the other, resulting
in an usually opaque material.

A droplet... an outwardly simple object... which has no reason to captivate 7 The definition
proposed by dictionaries do not stand the test of daily observation. The oily stains are not
removed without cleaning agents, and the small droplets on our windscreens cannot fly away
unless a powerful wind blows them out. Regarding the sphericity, it is only encountered in a
very special case: a droplet floating in weightlessness. On the contrary ! The atypical shapes
of droplets in "normal" conditions have often inspired artists and poets. The physics hidden
behind this concept of "droplet" is in fact extremely rich and complex. A countless number
of questions have been raised by scientists during the last century, that remain currently
unanswered.

On a technological point of view, the droplet seems to be the absolute must in microfluidics,
i.e. the miniaturization of fluid processes. Many applications make use of the manipulation of
very small amounts of liquid. Nevertheless, to deal with droplets is not as simple as it seems:
let’s leave a water droplet on the table and try to pick it up back entirely to put it elsewhere.
Impossible to collect the whole volume all at once! The droplet inevitably leaves on the table
a significant part of its contents, no matter how priceless it is. Hopefully, the droplet physics
has a trick or two up its sleeve.

In this thesis, we propose to explore various techniques that would "skillfully" handle
droplets, and to study the related physical phenomena. By "skillful" manipulation, we mean
that a simple rule is satisfied: the more a droplet is touched by solid surfaces, the more
its properties (volume, chemical composition, physical properties) are likely to be affected.
Therefore, in droplet handling, we must avoid contact with solid parts, so far as we can.

We start with two introductory chapters; the first one sets the scene and gives the physical
background required to understand this thesis, while the second one is a non-exhaustive review
of the current technological advances and improvements related to the droplet physics. The
manuscript is then divided in two parts. In the first, we discuss the behavior of droplets in the



vicinity of another liquid interface. In particular, the bouncing of liquids is deeply investigated
through several examples. We explain how the observed phenomena may be useful to handle
individual droplets without touching them. The second part is dedicated to the study of
droplets on fibers. We show that many elementary microfluidic operations can be performed
thanks to simple fiber networks. Finally, the main conclusions and the numerous perspectives
of this thesis are summarized.



Chapter 1

At droplet scale...

I have often been impressed by the scanty attention paid even by original work-
ers in physics to the great principle of similitude. It happens not infrequently that
results in the form of "laws" are put forward as novelties on the basis of elabo-
rate experiments, which might have been predicted a priori after a few minutes’
consideration. However useful verification may be, whether to solve doubts or to
exercise students, this seems to be an inversion of the natural order. Lord Rayleigh,
in Nature (1915) [2]

It is surprising to see how liquids behave differently according to the scale they are observed.
Indeed, the forces that drive these liquids and shape them usually depend on the characteristic
size of the system. For example, the Coriolis force, which is due to the Earth rotation, is
responsible for various phenomena related to the atmospheric and oceanic circulations at
planet scale. On the other hand, contrary to a common misconception, its impact is negligible
on the direction of the vortex observed when we drain our sink. Time and length scales
involved in the Earth rotation (one day and several thousands kilometers) have nothing in
common with the scales of a sink draining (one minute and a few tens of centimeters). So
each physical phenomenon, each force, each influence has its own range of scales on which
it is efficient. At droplet scale (say from micrometer to millimeter), the dominant forces are
often due to capillarity. As an example, the small water insect in Fig. 1.1(a) relies on capillary
forces to move on water and climb on plants. Nevertheless, other forces (gravity, viscosity,
inertia, ...) may also be important at this scale and counteract capillary effects. In order to
evaluate the relative impact of each force on the system, we define dimensionless numbers that
correspond to the ratios between these secondary forces and capillarity [3, 4] .

1.1 Surface tension

Capillary effects shape the microscopic world like no other force can do. Indeed, they are
among the rare forces in physics that exert on a surface and not in bulk. Although gravity
attracts objects downwards, capillary forces have no favorite direction: they only tend to
reduce the surface of a liquid exposed to the neighboring. The resulting complexity is well
illustrated in Fig. 1.1(b-c).

Capillarity results from the cohesion of liquids (to be general, every condensed phase).
Molecules in the bulk experience an isotropic attraction from their neighbors which self-



(b)

Figure 1.1: (a) This water insect has to climb on the liquid interface curved by surface tension
in order to reach the leaf. To proceed, it bends its back so it also curves the surrounding
water surface. The excess surface of water between the insect and the plant spontaneously
resorbs, exerting a force that pulls the animal onto the leaf [5] - (Credit J.W.M. Bush, MIT).
(b) Water droplet taking an ephemeral, uncommon and relatively evocative shape during a
splash on a water bath [6] - (Credit : www.liquidsculpture.com). (c) The collision between
two jets is able to generate complex structures such as this "backbone" [7] - (Credit J.W.M.
Bush, MIT).



balances, while molecules located at the liquid boundary are only attracted toward the center,
resulting in a net force inwards. This latter corresponds to a potential energy higher for sur-
face molecules than for others. The excess of surface potential energy E, is proportional to
the surface S of the liquid object

E, =085, (1.1)

the proportionality factor is called surface tension o. It also corresponds to a (conservative)
force per unit length, exerted tangentially to the liquid interface.

When the liquid surface is curved, surface tension creates a discontinuity in the stress
normal to the interface. If the liquid is at rest, this discontinuity results in an overpressure
Ap inwards, given by Laplace law

AP =0V -1 =20C, (1.2)

where V - 7 is the divergence of the normal vector of the interface, equal to twice the mean
curvature C. For a spherical droplet of radius R, C = 1/R and AP = 20/R.

Surface tension is mainly modified by two factors; it decreases when the temperature
increases and when surfactant molecules are added. Inhomogeneities in temperature or sur-
factant concentration correspond to surface tension gradients. These latter are responsible for
the discontinuities in tangential stress, that can set the liquid into motion [8].

1.2 Gravity, Bond number and the capillary length

Gravity attracts objects towards the Earth center with a force proportional to the object
mass M, the proportionality constant being the acceleration of gravity g = 9.81 m/s%. The
potential energy related to this conservative force is E, = M gZ, where Z is here the height of
the mass center of the object. A spherical droplet has thus an additional gravity energy MgR
compared to a configuration where the liquid completely spreads on the table. This excess
may be compared to the surface energy of the droplet E; = 4roR?, which defines the Bond
number
Mg pgR? Gravity
" 4n0R 30 Surface tension’

Bo (1.3)

The capillary forces are more important than gravity for length scales smaller than the capillary
length
Ao =4[ —. (1.4)
Py
This length only depends on the liquid physical properties. For usual liquids, o € [20,70] mN/m
while p ~ 1000kg/m? : the capillary length is about a few millimeters. Both the height of
the meniscus formed at contact between a bath and its container and the maximal size of a
droplet are of the order of the capillary length. When a droplet is dipped into an immiscible
liquid of similar density ps, the capillary length is considerably larger and the Bond number
smaller, namely
— R?
Bo, = lP=Psl9B” n = T (15)
30, o= pslg

where o the interfacial tension between both liquids.
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1.3 Inertia, Weber number and capillary time

Inertia may be seen as the ability of objects to resist external forces. The inertial force
is given by the product of mass and acceleration. Inertia is often opposed to surface tension
in impact problems [6]. For a droplet of mass M impacting an object at speed V', the corre-
sponding kinetic energy is given by K = MV?2/2. We define the Weber number as the ratio
between this kinetic energy and the surface energy E,:

3MV? - pV2R Inertia
drocR?2 o Surface tension

We =

(1.6)

When We < 1, the droplet is hardly deformed by the kinetic energy released at impact. On
the other hand, when We > 1, the excess kinetic energy turns into enough surface energy to
make the droplet blow up into a myriad of microdroplets.

1.3.1 Capillary waves on a droplet

Capillary waves at the surface of a liquid result from a combination of inertia and surface
tension. Inertia is here related to internal flows inside the liquid. At the surface of a droplet,
small amplitude waves may be described as a sum of eigenmodes called spherical harmonics
Y,". These deformation modes of a sphere are made of a number of hollows and humps. Those
regions are separated by meridian and parallel imaginary circles corresponding to the zero-
deformation points of the sphere (Fig. 1.2). Spherical harmonics are denoted by two integers:
the degree £ is the total number of zero-deformation circles, and the order m is the number
of meridians among these circles. Harmonics with m = 0 are always symmetric around the
vertical axis. For example, mode Y3 corresponds to a spheroid, i.e. an ellipsoid of revolution.

B AN AN RLT SN
ST (5.0) (5.1) S, (5 \\ (5,3) (5.4) (5,5)

Figure 1.2: Spherical harmonics of degree £ = 5 for various values of the order m. Regions
of hollows and humps, always alternated, are separated by 5 zero-deformation circles, m of
which are vertical and 5 — m horizontal.

The dispersion relation of waves at the surface of a floating droplet yields the natural
frequency f(g ., of each mode Y™,

Ll —1)(¢ o
fomy = LD (1.7

Initially obtained by Lord Rayleigh (App. C), this relation suggests that the frequency does
not depend on m; there is a degeneracy according to this parameter. The wave period is
proportional to the capillary time

To =\l (1.8)
This time is characteristic of surface-tension-driven motions at droplet scale. We show in
next chapters that the bouncing of a droplet and its fusion with a liquid bath both occur at
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timescales close to 7,. A millimetric oil droplet corresponds to 7, ~ 10 ms, so fast imaging
(up to thousands of frames per second) is often required to observe these phenomena [9].

1.4 Viscosity, Ohnesorge number and the viscous length

The fluid viscosity is related to the momentum diffusion. Two nearby fluid particles (sep-
arated by a distance dz) with slightly different velocities (u and u+ du) exert a stress pudu/dx
on each other, u being the dynamic viscosity. The diffusion coefficient v, also called kinematic
viscosity, satisfies v = pu/p. Viscosity leads to dissipative forces that do not derive from any
potential energy. Moreover, as in every diffusion process, the viscosity transfers information
over a distance that increases with time. The viscous time 7, = R?/v is the time needed to
transfer momentum over the droplet scale R by diffusion. The Ohnesorge number is defined
as the ratio between capillary and viscous times,

Oh — vy/p Ts Viscosity

~ . 1.9
Vo Ty Surface tension (1.9)

Among others, this number is proportional to the damping factor of capillary waves on the
droplet (App. C). Viscosity invalidates the inertia/capillary balance at scales smaller than the
viscous length ,
=2 (1.10)
o
Like the capillary length, the viscous length only depends on the liquid properties. For o ~
40 mN/m and p ~ 1000 kg/m?, the viscous length is 25 nm for a liquid as viscous as water
(v ~ 1 ¢S), and 250 um for a ¥ = 100 ¢S liquid. In that case, viscous effects are always
significant at droplet scale. In particular, capillary waves are fully damped at the surface of
such viscous liquids.
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Chapter 2

Droplets in science and engineering

Practical applications of the droplet physics are numerous, and we are unable to list them
all. This chapter gives an overview of some scientific and engineering problems involving
droplets. In particular, we explain how droplets can be useful in microfluidics, and we discuss
the various technical solutions that are currently investigated in this field.

Droplet physics is found everywhere, in everyday life, from the formation of raindrops
to the sprays (paintings, fuel injection, plant treatment), the emulsions, the ink-jet printing,
etc. More exotic applications are found in the scientific litterature; e.g. the aeration of lakes
(an absolute requirement for life inside) which is mainly made by an air bubble trapping
mechanism that occurs each time a raindrop impacts the lake surface [6]. Scientists have also
observed that some meteorites, named tektites, have a shape somewhat similar to droplets,
which suggest that they were formed thanks to analog physical processes [10].

The use of droplets is also promising in micro-technologies. For example, they can serve as
bearing structures [11]. Glue and welding droplets can perform self-micro-assembly [12], e.g.
through elasto-capillarity [13]. Nowadays, droplets are already used as optical lenses in our
mobile phone cameras ((Fig. 2.1a-b). Two immiscible liquids of different refracting index are
placed in a small tube, the walls of which are covered with an hydrophobic coating. The first
liquid, an aqueous solution, is a good electrical conductor, while the second liquid (an oil) is a
bad conductor. By tuning the voltage across the system, the hydrophobicity of the coating is
changed (electrowetting), which modifies the shape of the water/oil interface and so the focal
length of this fluidic lens. Advantages of this technique patented by Philips [14] are numerous:
the micro-lens focal length is tuned from 5 ¢m to infinity in less than 10 ms, with a quasi-zero
electric consumption. The lifetime of this lens is estimated at more than one million focusing
operations without any loss of performance; the lens resists well to shocks and temperature
variations. Droplets may be used as lenses in several other opto-fluidic operations [15]. But
the main current interest in droplet physics comes from microfluidics, as discussed here below.

2.1 Microfluidics

Microfluidics is the emergent part of fluid dynamics that studies how to handle amounts
of liquid smaller than 1 yL.. It was born about two decades ago, when researchers began
discussing the intriguing idea of shrinking the equipment needed for everyday chemistry and
biology procedures to fit on a centimetric chip. These procedures involve many elementary
operations on fluids: displacement, injection, division, fusion, mixing, dosage, extraction,

13



5 (b)

Target Sample (©)
- Receiving
Capillary

Preformed
Cartridge

Figure 2.1: (a) Lens-effect of a droplet. - Credit : www.liquidsculpture.com (b) Optical lens
with variable focusing patented by Philips [14]. (c-e) Various techniques in digital microflu-
idics : (c) Droplets are released in a multiphasic flow inside a micro-channel network [16].
(d) Droplets are sandwiched between two solid substrates covered with printed circuits, and
handled by electrowetting. - Credit : http://microfluidics.ee.duke.edu (e) Droplets are placed
on a printed circuit and moved by electrowetting, the guiding is ensured by catenary fibers

[17].

14



identification, recovery, storage, etc. The results of the biochemical reactions are commonly
brought back by using fluorescence techniques [18]. Microfluidics benefits from the experience
in microfabrication of electronic systems acquired during the twentieth century. For example,
many microfluidic systems are built in PDMS thanks to soft lithography, which is an adap-
tation of the techniques used in microelectronics [19]. But while this latter brilliantly follows
the Moore’s law, the shrinking of fluidics has to face much more fundamental issues. Indeed,
contrary to electromagnetism, the physics of fluids widely depends on the system length-scale
and seems not so easy to miniaturize [18].

In twenty years of research, scientists have brought a large panel of techniques, described
hereafter, that are more or less suitable for given applications. Nowadays, the greatest chal-
lenge is to integrate these techniques into smart microfluidic systems that may be used by
people who are not experts in fluid physics. Those systems must be widely and inexpensively
available [19].

2.1.1 Continuous vs. digital microfluidics

Current microfluidic systems may be sorted in two main categories: continuous and digi-
tal. In continuous microfluidics, historically the first, liquids travel into complex micro-channel
networks through electromechanical pumps, gates and mixers. The pumps are not as conven-
tional, though air pressure could push samples through channels. But the channel walls would
exert a drag on the liquid, so that fluid at the center of the channel would move faster than
that at the edge and concentrated samples would quickly become smeared. The most com-
monly used alternative makes use of a phenomenon called electro-osmosis: the channel wall
ionizes water molecules in its vicinity and, when an electric field is applied along the channel,
these ions flow towards the negative pole and drag the rest of the fluid along with them:;
the liquid moves as a plug flow [20]. Continuous microfluidics is already used for microscale
heat transfer, display, ink-jet printing, etc. [21|. Nevertheless, it is taking a long time to use
continuous microfluidics for bio-chemical applications, the main reason is that reagents are
not confined and may diffuse through the entire network. Moreover, air bubble entrapment
frequently occurs when solvents do not perfectly wet the channel surface, resulting in drastic
changes of the device response dynamics [18].

In digital microfluidics, small droplets are used as containers in which the liquid of interest
is placed. Droplets are almost ideal biochemical reactors because they create homogeneous
controlled conditions without any hydrodynamic dispersion; the high surface-to-volume ratio
grants very fast thermal transfer and internal recirculations inside the droplet allow efficient
mixing. One of the main goals is thus to handle the many droplets that can be generated
with only a minute amount of material, and to divide and recombine them in a multiplicity
of nanoreactors so as to perform multiplexing. This requires the control and reproducibility
of many droplet operations: fabrication, sorting, storage, fusion and breakup among others.
Potential applications of digital microfluidics are numerous [16, 17, 21, 22]. For example,
genomics and proteomics, i.e. sequencing of the human genom (DNA) and the various proteins
it produces, may advantageously make profit from the high rates and indexing capabilities of
digital microfluidics. Low-cost, simple to use and reusable diagnostic tools should be designed
for medical, food and environmental applications. In these cases, robustness is the main
requirement, since the physico-chemical properties of the samples to analyze are not known a
priori. Digital microfluidics is also of interest for synthesizing proteins, organic molecules or
nanoparticles. Cellular cultures may be parallelized through encapsulation inside droplets; this

15



confined environment allows an accurate determination of what is absorbed/rejected by the
cell. Researchers also think about using droplets as a support to reproduce some networks of
functional biological reactions, such as enzyme cycles. Finally, advances in microfluidics could
be very useful for both pharmaceutic [23] and food industries [24]. Indeed, it is currently the
only technology that can produce 100%-success encapsulation of an active substance by means
of a one-step process [25]. For example, one can dissolve the desired molecules or polymers
into an organic phase and let the latter flow into an aqueous stream to generate droplets. To
dry the resulting emulsion, the organic solvent is either exchanged with the aqueous phase or
slowly evaporated through it. A last step of ultraviolet-induced cross-linking or polymerization
can then be used to solidify the colloids. The polydispersity of the particles can be as low as a
few percent, far better than what is achievable with classical means of generating emulsions.
Many technical solutions have been explored to perform microfluidic operations, the main
ones are discussed here below.

2.1.2 Levitation

Levitation consists in applying a force to the droplet that makes it float into the air by
exactly balancing gravity. The force may result from aerodynamical, acoustical |26, 27], optical
[28] or electromagnetical effects [29]. Although appealing at first sight for specific applications
[30], levitation is unwieldy to implement and is therefore inappropriate for most microfluidic
issues.

2.1.3 Multiphasic flow through micro-channel networks

Nowadays, the most prominent microfluidic technology [16]| consists in making use of an
immiscible carrying liquid (usually oil) to convey nanoliter aqueous droplets through a micro-
channel network (Fig. 2.1c). This technique is advantageous in many respects. First of all,
droplets cannot evaporate, which is appreciated when dealing with tiny amounts of aqueous
solutions. Thanks to the well-defined velocity in channels, it is possible to convert temporal
variations (e.g. the kinetics of a chemical reaction) into a spatial variation in the flow direction.
A typical flow of 0.1 m/s convecting 1 mm droplets allows a temporal resolution of 10 ms. To
avoid the collision between two successive droplets in the channel, one can separate them with
plugs made of a third immiscible phase (e.g. a gas) [31]. The T-junctions between channels are
considered as one of the elementary blocks of the network, on the basis of which it is possible
among others to create the droplets: one branch of the T brings water, and both others
convey the oil (Fig. 2.1¢). This results in droplets of sizes comparable to the channel diameter
[16]. T-junctions are also used as logical gates that may be combined to perform complex
operations such as counting [32]. The droplet size is currently controlled by tuning the input
flow rates. Unfortunately, this affects simultaneously the frequency, composition and speed of
the droplets, whereas one would want to control each of these parameters independently [25]. A
natural microfabrication strategy is to integrate actuators in order to achieve a local control of
the droplet motion. This gain in control may unfortunately result in somewhat sophisticated,
specialized and expensive chips with limited flexibility and versatility. It must be necessary to
standardize a few basic on-chip functions, with a drift toward passive strategies that combine
simplicity and robustness. For example, as an alternative to the complex microfabrication by
lithography, microfluidic circuits can already be created on a support as simple as a paper
sheet thanks to a desktop plotter and some special inks [33].
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2.1.4 Electrowetting

Microchannel networks suffer from an evident lack of flexibility. In other words, it is hard
to make different operations on successive droplets. Moreover, these networks are usually not
reprogrammable and are consequently designed for a single specific application. The handling
by electrowetting could be an interesting alternative to that issue: operations are indeed driven
by electronic circuits that can be programmed.

The sandwich technique [17, 34] consists in placing droplets in between two parallel solid
planes distant from about a few tenths of millimeter. The first plane is an insulator while the
second is usually made of glass; both are covered with an hydrophobic coating (Fig. 2.1d).
Under the insulating layer, a series of electrodes are placed that pilot the droplet; the con-
ducting glass is connected to the ground. Droplets thus behaves as capacitors, their capacity
varies with the interface shape. Droplets are moved by successively activating the electrodes:
a droplet lying simultaneously on two contiguous electrodes moves towards the activated one.
Although fusion between droplets is obviously performed, division of a single droplet is harder:
the droplet may cover at least three electrodes, the middle one is switched off, so dividing the
droplet in two parts. We perfectly understand that such a process cannot perform division
in hundreds of micro-droplets, which is though required for high-throughput multiplexing
operations. Moreover, the walls are never perfectly hydrophobic, so the liquid may adhere
on them [35]. Droplets thus lose some mass by coating everything behind them [36, 37|, so
contaminating other next droplets that have to pass the same points.

In order to minimize losses by coating, one can use only a single solid insulating surface
on which droplets are also driven by electrowetting |17, 38]. A micro-catenary may serve as
the second electrode, as well as a guide for droplets (Fig. 2.1e). Another option consists in
having two parallel conducting strips on the insulating surface [39]. Nevertheless, we note
that droplet division is even an harder issue with these technical solutions.

2.1.5 Spontaneous motion on active surfaces

Droplets can be driven by the physical properties of the solid surface on which they are
released. For example, spontaneous motion is observed on surfaces with a wettability gradient
due to thermic, optical [21] or chemical effects [40]. Hydrophobicity is also tuned by changing
the micro-texture [41|. Like lotus leaves [42|, the surface may ally roughness to chemical
hydrophobicity to offer the minimum of surface to water droplets. Contact angles up to 160°
are observed and surfaces acquire a kind of self-cleaning property : droplets roll on them,
taking dust away [43].

To definitely avoid contact, one may use the Leidenfrost effect: when a droplet is placed
on a very hot surface, its bottom evaporates and the vapor creates a gas cushion on which
the droplet floats. On an asymmetrically textured surface, Leidenfrost droplets experience
spontaneous motion [44]. Although there is no contact between the droplet and the substrate,
there is still an important mass loss through evaporation. Another solution to prevent contact
is to texture the droplet itself, namely to cover it with an hydrophobic powder [45, 46]. So
coated, the droplet is moved without any friction or mass loss. It can also float on the surface
of a water bath. Some insects walk on water by using a similar technique; their textured
hydrophobic legs offer them a minimal contact with water [47].

Finally, we note that droplets can be moved by inertial forces, e.g. by shaking the solid
substrate on which they are placed. Under given conditions, droplets may climb on inclined
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vibrated surfaces |48, 49]. Such technique has also been exploited in nature: some shorebirds
fish by striking the water surface with their long thin beak, so extracting a droplet containing
the prey. The droplet climbs along the beak and reaches the mouth thanks to a quick and
efficient succession of opening/closing cycles [50].

2.2 A need for alternatives

It is obvious, there is no technical solution without drawbacks: impossibility to perform
some basic operations, expensiveness, difficulty to use, lack of flexibility and robustness, etc.
Nevertheless, the droplet physics is far from being fully explored. One of the goals of this thesis
is to propose some new alternatives that would complete this range of existing techniques.
The first part discusses an elegant variant of levitation, in which droplets bounce indefinitely
on a liquid bath though they never touch each other. A much more promising solution is
presented in part two: droplets slide down fibers. The basics in microfluidics is advantageously
transposed on simple fiber networks. In particular, the division and multiplexing operations
are performed very efficiently.
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Part 1

Droplets on liquid interfaces
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Chapter 3

Bouncing or coalescence, life or death

The collision of two distinct streams of drops presents points of interest which have been
made subject of examination. [...] When the angle of collision is small, the disposition of
the files of drops may be made such that they rebound without crossing (fig.3). More often,
however, the drops shoulder their way through after one or more collisions, somewhat as in
fig.4. [...] At a somewhat higher angle of collision amalgamation will usually occur. The
streams do not usually join into one, as we might perhaps expect, but appear to pass through
one another, much as if no union of drops had occurred. With the aid of the revolving disk
the course of things is rendered evident. The separating layer is indeed ruptured at contact
and, for a short time, the drops move as one mass. There is, however, in general, considerable
outstanding relative velocity, which is sufficient to bring about an ultimate separation, preceded
by the formation of a ligament (fig.5). Lord Rayleigh, 1882 (reference to Fig. 3.1).

Lord Rayleigh (1879) was in the first physicists to investigate the interactions between
several droplets [51]. In his experiment [52], two jets destabilized in a series of falling droplets
collide with each other. The very fast motion of droplets is seen through stroboscopic effect.
Rayleigh observed various behaviors depending on the collision parameters (angle, velocity):
the droplets may bounce on each other, or fuse together (coalescence) and possibly after
split into many droplets. The pictures from Rayleigh (Fig. 3.1) are remarkably accurate and
realistic. He also discussed the significant impacts of many factors, including viscosity, surface
tension, solubility of the interstitial gas, electric charge, addition of surfactant molecules and
dusts. His work has been completed by many authors [53, 54]. Some of them have also studied
droplets interacting with a liquid bath |55, 56]; again, the droplet may bounce onto or coalesce
into the bath.

At the same time as Rayleigh, Worthington [57] was publishing his beautiful observations
of droplets impacting a bath at high velocity; this violent fusion is often called a splash. The
droplet usually turns into a crown that breaks up in a myriad of tiny droplets, as if the initial
droplet was blowing up. A powerful vertical jet is formed at the impact point, which usually
destabilises into many droplets as in the experiment of Rayleigh. The transition between
coalescence and splash is described in [58]. During impact, a small air bubble may be trapped
under the bath surface. This bubble is mainly responsible for the noise made by raindrops
[59]. The air trapping is even greater when a liquid jet impacts a bath. The jet can also
bounce onto the bath [60] or penetrate inside [61] and possibly turn into antibubbles [62], i.e.
water droplets surrounded by an air layer, the whole immersed in the bath. Droplet impacts
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Figure 3.1: Drawings made by Lord Rayleigh in 1882 to describe his observations on interacting
droplets. These latter may bounce onto or brush against each other, fuse together and possibly
split again.

have been studied in many configurations, on other kind of surfaces, e.g. on a liquid film
[63], on a dry solid surface [6], into another immiscible liquid [64], etc. Recently, impacts on
super-hydrophobic surfaces have been investigated [65, 66, 67].

Introduced in that way, the droplet physics seems infinitely complex; each experiment
has a number of variations, each one bringing qualitatively new phenomena. However, the
behavior of a single droplet in the vicinity of another liquid/gas interface (droplet or bath) is
nearly dichotomic: it bounces or it coalesces. In the case of bouncing, both liquid masses never
touch each other, the contact is only apparent. On a microfluidic point of view, where the
droplet is considered as an individual entity containing information (e.g. the active principle
of a medication), bouncing is equivalent to survival. A straight contact between two miscible
liquids implies coalescence, i.e. the death of the microfluidic entity by dilution. Nevertheless,
this fusion may be partial and give birth to new smaller droplets.

3.1 Birth and death of a droplet

There are many ways to create a droplet, i.e. to extract a small amount of liquid from
a container. The most common and straightforward is dripping, i.e. letting droplets slowly
escape from a tap or a syringe. At a given time, a pinch occurs and the droplet is definitely
separated from the rest. Droplets produced by this way have a relatively calibrated volume,
provided the creation is quasi-static, i.e. infinitely slow [68]. Conversely, when finite-amplitude
dripping are considered, the physics quickly becomes complex [69, 70, 71|, even chaos is en-
countered [72]. Droplets can also be born from the destabilization of a jet [73] since, for a
given volume, their surface is less than the jet surface. This instability was first discovered by
Plateau and Rayleigh [74, 75] (Chap. 8, App. G).

Droplets may be as well directly extracted from a bath. For example, a toothpick tip
dipped into a bath and quickly taken out pulls a thin thread of liquid out from the bath,
which turns into a droplet thanks to the Rayleigh-Plateau instability and falls onto the bath
surface [76]. Droplet are also formed when the bath is violently shaken up and down (Faraday
instability [77]) or when it is excited by powerful acoustic waves [30]. Finally, scientists from
MIT have recently discovered an original way to extract droplets, by using an elastic sheet
(Fig. 3.2). This latter behaves as a clamp whose opening is driven by surface tension [13].
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Finally, as already mentioned, droplets may result from a partial coalescence of other droplets.

Figure 3.2: A flexible millimetric flower-shaped plastic sheet is used as a elasto-capillary
pipette. Driven by a balance between surface tension and elasticity, it is able to extract
droplets from a bath and release them into another one (Credit: Pedro M. Reis, MIT).

Both the fusion and the separation of liquid objects involve a topological change of the
liquid interfaces, with the occurrence of singularities which satisfy to universal self-similarity
laws [78]. For example, when two low-viscosity liquid objects coalesce together, the radius of
the effective contact zone increases as the square root of time |79]|, whatever the considered
geometry.

3.2 Delaying coalescence

A droplet falling on a bath behaves as a ball thrown on the ground; it bounces some times,
less and less higher, before it eventually comes at rest on the bath surface. Starting from that
point, the coalescence is not necessarily immediate; the droplet rests for a short time. The
thin layer of surrounding fluid (e.g. air) between the droplet and the bath must be drained
outwards for coalescence to occur. The film thickness is estimated from the interference
fringes that are seen when the droplet is lightened with a monochromatic source (Fig. 3.3a); it
is typically micrometric [80]. This momentary live of droplets on a bath was first reported by
Lord Rayleigh in 1879 [51], then in 1881 by Osborne Reynolds|81]. Five years later, Reynolds
came with the explanation, a theory called lubrication (App. D). This theory does not only
explain the delayed coalescence of droplets [82] but also rationalizes the flows in every thin
films, e.g. among others, the spreading of pancakes in a pan, the slipping of an object on
another, the lava flows in an erupting volcano, the dynamics of soap films, bubbles [83] and
antibulles [84].

The lubrication equations are obtained starting from the Navier-Stokes equations, in which
the length scale in a given direction (namely the film thickness) is set much smaller than in
other directions. Consequently, the pressure is constant along the thickness, resulting in a
2-D Poiseuille-like flow (Fig. 3.3b). The overpressure in the film gives rise to a force F, that
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opposes further thinning. A film of size R corresponds to a lubrication force of

3
Fr ~ uRh(%) , (3.1)

where & is the thinning rate of the film. Due to the factor (R/h)3, the lubrication force
becomes gigantic when the film is very thin. Nevertheless, lubrication effects are considerably
attenuated when the film boundaries are set into motion (e.g. pulled by the liquid inside the
droplet or bath). The resulting flow inside the film is a combination of a Poiseuille flow and
a Couette flow, the latter might increase the drainage rate without modifying the lubrication

force (Fig. 3.3c).
|
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Figure 3.3: (a) Interference fringes visible through the droplet when the air film is micrometric.
(b) A low-viscosity film is surrounded by high-viscosity liquids at rest; interfaces are motionless
and the drainage is slow. (¢) The low-viscosity film is pulled by the motion of the upper liquid;
drainage is significantly increased by this additional flow.

When a droplet is tactfully placed on a bath in such a way that the liquids remain at rest,
the air drainage may be considered as a pure Poiseuille flow. The lifetime t; of the droplet
corresponds to the drainage time of the film when the lubrication force is balanced by the
weight. This yields

NaR4

~ 3.2
e (32)

lr
where 1, ~ 18 - 1076 kg/m.s is the dynamic viscosity of air. The film breaks when a sub-
micrometric thickness is reached, thanks to the cohesive forces (Van Der Waals) exerted by
the liquids on each side. The large curvature of the interface next to the rupture point causes
the film to quickly retract. According to Eq. (3.2), the lifetime of a millimetric droplet placed
at 1 um from the bath is t;, ~ 0.3 s. Practically, droplets experience much lower lifetimes
due to residual flows inside [85]. Moreover, a number of factors significantly affect the result:
temperature, electrostatic fields, surfactant molecules [86, 87|, vapor concentration, rheologic
properties, presence of stabilizing polymers [88], etc. The coalescence time of droplets is of
crucial importance for many industrial processes involving emulsions [89]: dairy products in
food industry, petrol demulsification, cosmetics, etc. Nevertheless, in spite of the tremendous
efforts made by scientists since the sixties [90], the lifetime of droplets is hardly predicted with
accuracy and reproducibility.

For the problem we are interested in, we need not to slow down the air drainage, but to
cancel it so droplets can be handled without this time constraint. Many techniques have been
proposed in the last ten years to prevent coalescence [91]. For example, a horizontal relative
motion between the droplet and the bath can maintain the air film; a lift force balances the
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weight. The motion may be a rotation |92, 93] or a hydraulic jump [94]. It may also be due
to thermocapillary flows [93]. A water droplet placed in the vicinity of a very hot source (a
solid surface [95, 96] or a bath [97]) is observed to float on a gas cushion, as already noted
by Leidenfrost in 1756. The air film transfers the heat to the bottom of the droplet which
evaporates; the released vapor balances the losses due to drainage.

In 1978, Jearl Walker [98] proposed an astonishing way to maintain a droplet alive on
a bath surface. The bath is simply vibrated vertically, e.g. by fixing the container on the
membrane of a loud-speaker. This forcing makes the droplet bounce indefinitely on the bath,
exactly as a ball can be kept bouncing on a racket by swinging it up and down (App. E). The
air film is regenerated at each bounce and the energy dissipated by viscosity is balanced by
the incoming energy from the vibration. We note that an horizontal oscillation of the bath
[99] may also delay the coalescence, but cannot enable sustained bouncing. In this thesis,
we concentrate specifically on this technique of vertically vibrating the liquid substrate in
order to provide the energy required for periodic bouncing. To understand it, we need first to
investigate the physics of bouncing.

3.3 The physics of bouncing

Bouncing objects are subject to universal mechanisms which, qualitatively, are weakly
dependent on the considered configuration. To get bouncing, the system object /substrate must
have at least one efficient spring mechanism. At impact, the translational kinetic energy is
converted into deformation potential energy (through surface tension for liquids, and elasticity
for solids). This energy is then partly given back to the translational motion. The other part
feeds waves, oscillations and internal motions. The apparent contact time . between the
object and the substrate is similar to the energy transfer characteristic time

te ~/M/k, (3.3)

where M is the mass of the bouncing object and k the stiffness of the spring mechanism. For
a droplet [65, 100], we find the capillary time 7, = \/M/o. For rigid beads on an elastic
membrane under tension 7, t. ~ /M /7 [101]; and for elastic balls of Young modulus £ and
radius R on a rigid ground, t, ~ /M /ER. As universal as the spring mechanism is the dissi-
pative process, whose final effect is to damp the bouncing: viscosity for fluids, shear /friction
for solids. Depending on the case, some dissipations are more significant than others - e.g. the
dissipation of micro-flows inside the droplet, or the dissipation in the intervening air layer.

Despite its universal features, the bouncing dynamics is difficult to model in a general case.
Consider for example a 10 ¢S millimetric droplet bouncing on a bath made of the same liquid.
At impact, both the droplet and the bath are deformed and store surface energy. The resulting
flow in the bath is hardly described mathematically. A crater is formed at impact, which can
be represented by nonlinear capillary waves. Owing to its mass, the bath has inertia; it reacts
to the droplet in a finite time with its own dynamics. In these conditions, bouncing is really
hard to model.

Two specific bouncing configurations are discussed in this thesis. Each one corresponds
to a limit in which the bath dynamics is overly simplified, even neglected. In the first case
(Chap. 4), the droplet bounces on a soap film. This special bath is much lighter than the
droplet, it has a negligible inertia and it reacts quasi-instantaneously to external solicitations,
it lets itself be shaped by the droplet. In the second case (Chap. 5), the liquid bath is highly
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viscous, bath deformations are limited and the stored energy cannot be given back. Therefore,
we suppose in first approximation that the bath behaves as a rigid surface of infinite inertia.
The main difference with a solid surface is that the bath is perfectly smooth down to atomic
scale. This quality is required for bouncing droplets, since any micrometric rugosity in the
surface would prematurely break the air film and lead to coalescence.

3.4 Summary

In this chapter, we have discussed the various interactions between a droplet and another
liquid object. The droplet usually bounces or coalesces into the other liquid. The bouncing
is a priori complex since both the bath and the droplet dynamics influence each other. The
next chapters concentrate on limit cases in which these interactions are simplified.

The bouncing may be seen as a way to prevent coalescence, i.e. the inevitable death of a
droplet in the vicinity of a liquid bath. This coalescence is delayed thanks to the intervening
air layer between the droplet and the bath, that must first be drained out for fusion to occur.
This drainage obeys to the lubrication theory; it can be slowed down and even stopped by
many techniques. Among others, a droplet can bounce indefinitely without coalescing when
the liquid bath is vertically vibrated.
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Chapter 4

A droplet on a soap film

A soap film is a liquid film of micrometric thickness covered on each side with a monolayer
of surfactant molecules. This latter considerably decreases the surface energy of the film, so
it is expected to deform much more easily. When the film is very thin, both surfactant layers
may interpenetrate and repulse each other, which yields additional stability to the soap film.

The impact of a droplet on a soap film was described for the first time by Courbin and
Stone [102] in 2006. These authors observed that small objects (liquid or solid) intercepting
the film at high speed are able to cross it without breaking it. For smaller impact velocity, solid
particles have a different behavior from liquids. Owing to its roughness, the bead immediately
touches the soap film, which reacts by applying a force upwards at the contact line. This force
slows down the bead fall and, if the velocity is not sufficient, the bead is trapped by the soap
film [103]. Conversely, as we have seen in Chap. 3, a droplet may avoid touching the soap film
thanks to the existence of a thin lubricating air layer. Nevertheless, the soap film is highly
deformed by the droplet. The deformation energy of the film is taken from, then given back
to the translational energy of the droplet. As a gymnast on a trampoline, the droplet bounces
on the iridescent soap film (Fig. 4.1). Although not encountered in nature or in industrial
processes, the bouncing of a droplet on a soap film has two major particularities that make
its understanding and quantitative modeling much easier than other bouncing configurations:

e The soap film stores practically all the energy of the incoming droplet.
e The soap film inertia is negligible compared to the droplet inertia.

It is therefore a perfect case study to first understand the physics of bouncing.

4.1 Experimental setup

We have studied the bouncing of droplets on a horizontal soap film through two series of
experiments, both performed at the Massachusetts Institute of Technology in collaboration
with Professor John W.M. Bush [104, 105].

In the first series, a droplet impacts a soap film of thickness hsy ~ 1 um fixed on a thin
metallic ring of radius Rsy = 8 mm (Fig. 4.2a). In the second experiment, the soap film is
vertically vibrated in order to provide additional energy to the droplet; sustained bouncing
is observed exactly as in Walker’s experiment [98]. The vibration is ensured by pinning the
soap film on the edge of a plexiglas tube of radius R;y = 16 mm. The tube is fixed to a
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Figure 4.1: A millimetric droplet bouncing on an iridescent soap film pinned on a ring.

loud-speaker membrane that vibrates sinusoidally with an amplitude A and a frequency f
between 20 and 80 Hz (Fig. 4.2b). To avoid the practical difficulties of leveling the soap film,
the tube is put in a larger concentric tube (Fig. 4.2b) that is partially filled with water and
fixed to the speaker. The soap film is created on the inner tube while the tube is immersed
in the fluid reservoir, so that an air column is trapped between the soap film and the liquid
bath. The inner tube is then moved slightly upwards before fixing it to the outer cylinder with
screws. The low pressure in the air column deflects the soap film downwards at its center and
the resulting film curvature stabilizes the bouncing droplet.

Droplets of constant radius R = 0.8 mm are released above the soap film from an insulin
syringe. The impact speed V is varied between 0.1 and 1 m/s by changing the release height.
The liquid used for both the droplet and the soap film is a mixture of water, glycerol and
commercial soap (Dove®). The concentration of soap is 1 % by volume. The viscosity of the
liquid is altered by varying the concentration of glycerol (App. B). Most of the experiments
were performed with a mixture of 80 % water and 20 % glycerol, which corresponds to a vis-
cosity v ~ 2 ¢S, a density p = 1050 kg/m? and a surface tension ¢ ~ 22 mN/m. Experiments
are recorded from the side with a high-speed video camera with acquisition rate 1000 fps and
resolution 256 x 256 pixels. For our typical field of view, the characteristic pixel size is 50 pm.
Measurements of drop position and film shape are made via image processing.

The droplet impact on a vibrating soap film is characterized by 12 physical variables (R,
Rs¢, hst, p, v, 0, pa, Va, 9, V, f and A - Fig. 4.2), so nine independent dimensionless numbers
can be formed. Nevertheless, we choose to only vary four parameters V, R,¢, f and A, which
are related to four dimensionless numbers:

e the Weber number We = pV2R/o € [1,30], which corresponds to the ratio between the
kinetic energy of the incoming droplet and its surface energy,
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Figure 4.2: Experimental set-up. (a) Without vibration: a droplet strikes a horizontal soap
film fixed on a thin ring. (b) With vibration: the soap film is pinned at the end of the inner
tube, which is vertically vibrated by a speaker. The arrangement with the outer cylinder
ensures a downward curvature of the film, and so stabilizes the bouncing droplet.

e the ratio between the soap film and droplet radii

Ry

= 4.1
g= L, (@)
e the forcing acceleration

Am? A f?
I = ”g I c10.15,3], and (4.2)
e the reduced frequency
M
w = 2mf4/ % € [0.7,3], where (4.3)
k = Cro (4.4)

is the stiffness of the soap film. The exact value of ¢ is deduced latter.

In our experiments, £ = 10 when the film is at rest, and & = 20 when it is vibrated. Other
dimensionless numbers, such as Bo = 0.1 and Oh = 0.015, are not varied.

4.2 From bouncing to crossing: the soap film shape

As previously observed by [102], the droplet bounces on the soap film for low We while, at
high We, it crosses the soap film without breaking it. In this section, we discuss the transition
between both behaviors as a function of We.

During a bouncing event (Fig. 4.3a-b), the kinetic energy of the falling droplet is primarily
converted into surface energy of the distorted soap film; thereafter, the bulk of this energy
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Figure 4.3: Various behaviors of a droplet impacting a soap film. Snapshots are taken every
4 ms. (a) Bouncing at We ~ 7. (b) Bouncing at We ~ 12. (c) Partial crossing at We ~ 16.
(d) Full crossing at We ~ 15.
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Figure 4.4: Transition from bouncing to crossing for impact on a stationary film. The proba-
bility P of different events is represented as a function of We. The number of events in each
class is reported in the middle of the columns. The transition between bouncing and passing
occurs for a critical Weber number Wey;, ~ 16.

is restored to the droplet kinetic energy. To avoid coalescence, the droplet must never touch
the soap film: the thin intervening air layer must persist. As this layer thins, the resulting
lubrication pressure deforms the underlying film. At impact, the droplet becomes oblate, but
recovers a roughly spherical shape when the soap film deflection is maximal. As the drop is
ejected, it again becomes oblate. For the sequence illustrated in Fig. 4.3(a), the contact time
te, during which the droplet is in the immediate vicinity of the soap film, is about 20 ms.

In a crossing event (Fig. 4.3d), the soap film is not able to absorb the initial kinetic energy
of the droplet: as the droplet passes through, the film self-heals. How the passage from one
side to the other does occur 7 Here is a plausible scenario: the air layer is so compressed by
the incoming droplet that it breaks, the droplet coalesces into the soap film. Nevertheless, the
residual kinetic energy allows the droplet to keep going downwards and eventually separate
from the film. After coalescence, a part of the droplet may possibly be ejected upwards
(Fig. 4.3c). The formation of droplets after coalescence is also observed on a bath and called
partial coalescence (Chap. 7).

In Fig. 4.4, the likelihood of bouncing and crossing is represented as a function of We.
The transition between bouncing and crossing regimes occurs at Wey, ~ 16. The probability
of a coalescence increases with the Weber number since the air layer becomes thinner. The
threshold Weber is high relative to other configurations. For example, when a droplet impacts
a liquid film on a solid substrate [63], the transition between bouncing and coalescence occurs
at Wey, ~ 7.

In order to rationalize this experimental result, we first model the shape of the soap film, so
we deduce a relation between the drop position and the force generated by the soap film. The
soap film reacts to the external forcing associated with the impacting droplet at a timescale
determined by the speed of capillary waves on the soap film, uc, ~ \/o/(phss) [106]. For
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Figure 4.5: (a) Hypothetical shape for the soap film: the region of curvature 1/R below the
droplet matches onto an exterior region of zero curvature at the point P, corresponding to an
inclination angle 6. The soap film is pinned at (r,z) = (Rsf,0), while its point of maximum
centerline deflection reaches (0, —(). The center of mass of the droplet is at (0, 2), and its
vertical deflexion is denoted by 7. (b) Observed shape of the soap film at We = 9.7. The solid
curves represent the "sphere plus catenoid" model.

a film of thickness hyy = 1 um, the wave speed, ¢, ~ 5 m/s, is approximately 10 times
larger than the characteristic droplet impact speed. The soap film thus adjusts rapidly to the
applied forcing, the information being transmitted by capillary waves [107]. For the relatively
low-impact speeds considered in our study, the film shape may be described as quasi-static:
there is a univocal relation between the soap film deformation ¢ and the resulting vertical
force F, applied to the droplet through the air layer. As seen below, this relation does neither
depend on time, nor on the loading history of the soap film which has no memory.

The shape expected for the soap film is in perfect agreement with experimental observations
(Fig. 4.5). We assume that the droplet remains roughly spherical and that, near the droplet,
the soap film is a spherical cap lying tangent to the droplet with constant mean curvature 1/R.
Beyond the droplet, the soap film has zero curvature since the air pressure is atmospheric on
both sides (Fig. 4.5a). The only non-planar axisymmetric surface that has zero mean curvature

is the catenoid: R
- acosh<—sf> + acosh(L), (4.5)
T'm 'm 'm

where 7, is the minimum radius of the catenoid. We must match this catenoid to the spher-
ical cap at a point P,, prescribed by the angle §: r,,/R = sin?f. The maximum vertical
deformation ¢ of the soap film may be expressed as a function of 6 through

¢ .9 1 : 1
==1- 0 h — 0 h 4.
7 cos 6 + sin“ # | acos S sign(cos #)acos o) | (4.6)

where siny = r,,/Rgf = (sin? @) /¢. The anomalous surface generated by the film deformation,
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Figure 4.6: Theoretical model of the soap film shape for £ = 10. (a) Variation of AS/(7R?),
(/R and F,/(2mnoR) with 6. The surface is maximum in § = 6,;. Insets represent the
shape of the film. (b) Theoretically predicted force displacement curve for a spherical drop
impinging on a soap film. The solid line represents the variation of the force Fy,/(2moR) with
respect to the maximum film deflection (/R for £ = 10. The dashed line represents the linear
spring approximation (4.9) and the (A) are the experimental measurements. (Inset) Stiffness
coefficient ¢ = k/o as a function of £. Our static soap film (£ = 10) has a stiffness coefficient
¢, ~ 87 /7 while for the vibrated soap film (£ = 20), ¢ ~ 247/25.

AS, is given by

AS 2 sin? 0
7T—_R2 = (1—COS9) (2+COS€)—m
1 1
+ sin*f [acosh <—> — sign(cos #)acosh (—)} : (4.7)
sin 7y sin 0

The vertical force F, required to produce a vertical displacement ( is given by

F,  0,AS/(xR?)

— = 2sin? 0. 4.
207R 89C/R i (48)

Of course, this force is obtained more easily by integrating the vertical component of the surface
tension over the circle formed by revolving the point of matching F,, about the vertical axis
r=0.

The dependence on 6 of AS/(7R?), (/R and F,/(2roR) is illustrated in Fig. 4.6(a) for
& = 10. The anomalous surface AS reaches a maximum for a critical angle 6y, ~ 57/8. For
0 < 0pr, the system tends to the 6 = 0 state (droplet above the soap film), while for 6 > 60,
it tends to the 6 = 7 state (droplet fully enclosed by the soap film). The maximum deflection
(/R ~ 4.4 is also reached for 6 = ;. The force F, exerted by the soap film on the droplet
remains directed upwards, whatever the value of §. The maximum force generated by the
soap film, F; = 4noR, occurs when 6 = w/2. The force is represented as a function of the
maximum centerline deflection ¢ in Fig. 4.6(b). Four distinct regimes are apparent.
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e When 0 < ¢ < 3R (0 < 0 < 37/8), the soap film reacts like a spring, exerting a force
that grows roughly linearly with the deformation

FO’ - k'Ca (49)

where the stiffness k is given by k = cxo. The dependence of ¢ on £ is illustrated
in Fig. 4.6(b): ¢ ~ 87/7 when £ = 10 (static soap film in our experiments) while
¢k ~ 24w /25 when £ = 20 (vibrated soap film in our experiments). Agreement with
experimental data is excellent. In particular, we confirm that there is no hysteresis; the
deformation does not depend on the direction of the droplet.

e When 3R < ( < 4R (371/8 < 0 < m/2), the spring law becomes nonlinear as the force
saturates. The stiffness vanishes when ¢ = 4.

e When 4R < ( < 4.4R (w/2 < 0 < 6)r), the stiffness is negative: increasing the deforma-
tion results in decreasing the force. The stiffness diverges when 6 — 6, and the system
switches equilibrium states.

e When 6 > 6, ¢ decreases towards 2R and the stiffness is again positive. Here, the
system tends towards the § = 7 configuration, where the droplet is wrapped by the film.
We note that for 6§ > 6, the film shape is poorly described by the model: the last
frames of Fig. 4.3(d) clearly indicate that the film does not wrap the drop as it passes
through.

Finally, we apply this quasi-static model for the film shape to estimate the minimum Weber
number Wey, required for a droplet to pass through the soap film. Supposing that the whole
initial kinetic energy is converted into surface energy of the film, the energy balance is written
ZpR3V? = 20 max(AS), so
max(AS)

TR2
In our experiments, the static soap film has a radius of R,y =8 mm and corresponding § = 10;
we thus anticipate Wey, = 16. This value is in good agreement with the experiments reported
in Fig. 4.4. We note that the prediction (4.10) neglects energy dissipated during impact as
well as the droplet deformation. Nevertheless, it does provide a good leading-order criterion
for droplet breakthrough.

Weth =3 (410)

4.3 Bouncing on a film at rest

We proceed by characterizing two important bouncing parameters: the apparent contact
time t. and the energy dissipated during a single bounce. Both quantities were measured for
various We. As seen in Fig. 4.7(a), t. is proportional to the capillary time 7, and independent
of We:

te ~ 1.867,. (4.11)

This result is similar to those reported by [101] for beads bouncing on elastic membranes and
by [65] for droplets bouncing on hydrophobic surfaces. In that latter case, the proportionality
constant is much lower, t. >~ 1.277,.
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Figure 4.7: (a) Contact time t. normalized by 7,. (b) Difference in We before and after the
bounce as a function of We. Dashed lines in (a) and (b) represent fits of Eq. (4.11) and (4.14),
respectively. Solid lines were deduced by integrating (4.31) with e¢p = 0.028 (best fit).

In the previous section, we have concluded that the soap film behaves as a linear spring of
stiffness k ~ 87 /70, which corresponds to a natural frequency

fo = % % _ % ~ 30 Hz. (4.12)
One expects the contact time to be approximately half a period of oscillation of the soap film,
i.e. t. = 1.667,, which is coherent with the experimental results.

During each bounce, a droplet loses a fraction of its initial translational energy through
viscous dissipation. In dimensionless terms, the Weber number is decreased by an amount
A We at each bounce owing to dissipation inside the droplet, soap film or intervening air layer.
The coefficient of restitution, specifically the ratio of take-off and landing speeds, is given by

A We

We

The dependence of AWe on We is reported in Fig. 4.7(b). The experimental data collapse
onto a single curve corresponding to a power law close to

AWe ~ 0.09 We/2. (4.14)

The dissipation is markedly different from that observed by [108], i.e. AWe ~ 0.2We, for
droplets bouncing at We < 1 on a hydrophobic surface.

We proceed by developing a simple theoretical model to rationalize Eq. (4.14). The center
of mass of the droplet Z evolves according to

MZ=F,()— Mg. (4.15)
If n denotes the vertical deformation of the droplet (Fig. 4.5), we can write Z = —( + R+ 7.
Equation (4.15) can then be recast in terms of energy as
d [MZ?
dt| 2

e=14/1

(4.13)

+MgZ+Easf(C) :Fo(Oﬁ (4-16)
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where E,4¢(C) is the surface energy stored in the soap film, so that dE,s¢(¢)/d( = F5({)-
The only remaining non-conservative term in (4.16) is F(¢)n, the work done by the soap film
in deforming the droplet. This term describes the transfer of energy between the translational
and vibrational motions of the droplet. The total energy removed in this fashion during impact
necessarily scales as F,nt.. We thus need to know how F,, nn and t. scale with We.

The maximum centerline deflection of the soap film, {, was measured for various We.
When ¢ < 4 (i.e. 0 < 7/2), the maximum force F,)s exerted by the soap film occurs at
the point of maximum deflection and can be calculated from (4.6) and (4.8). As shown in
Fig. 4.8(a), the maximum force is linearly proportional to We.

F,
M 111 We. (4.17)
cR

The droplet deformation rate during impact 7 scales as /7o, where 7y is the maximum
droplet deformation. The droplet reacts rapidly to the impact; it is already highly compressed
by the time the soap film begins to deform. Indeed, the natural frequency of the soap film
is given by Eq. (4.12), while according to Rayleigh (Eq. 1.7), the natural frequency of the
droplet oscillating in the mode Y3 is

0.92

g
so the droplet reacts three times faster than the soap film. For an experiment at We ~ 9
corresponding to a kinetic energy K ~ 2.60 pJ, the maximum drop deformation is estimated
to be nyr ~ 0.41R. The corresponding surface energy is

8
E, ~ ?ﬂ—mﬁ\/[ ~ 0.13 puJ, (4.19)

which represents a fraction A ~ 5 % of the kinetic energy K. This lost energy at impact cannot
account for the characteristic value A We/We ~ 0.25 observed in Fig. 4.7(b), from which we
infer that some additional energy is transferred after impact. Substituting E, = AK into
Eq. (4.19) yields a scaling for ny,

2
— ) ~——=—AWe. 4.20
< R > StoR? 12 ¢ (420)

This scaling is similar to that observed by [109] for droplets striking a hydrophobic surface.
Equations (4.11), (4.17) and (4.20) together yield

3 AK 3 te 3 Fyymt
AWe = —=" = Fondt ~ — =220~ 0.63AY/2 We?/2. 4.21
‘T 9noR2 ~ 210R2 /0 K 21 oR? ¢ (421)
For A =5 %, we thus obtain
AWe ~ 0.14 We®/?, (4.22)

which is close to the observed scaling (4.14). While the coefficient deduced (0.14) is 50% higher
than that observed (0.087), this estimate has not taken into account the variations of the sign of
Fyn over the integration period. Nevertheless, since t./7, is independent of We, it is reasonable
to suppose that the time correlation of F;,; and 7 remains unchanged with increasing We, which
lends further credibility to this scaling. In summary, the translation energy is converted into
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deformation energy, only a part of which is transferred back to translation. The remaining
part is dissipated through internal motions in the droplet. This dissipation mechanism is also
observed for droplets bouncing on hydrophobic surfaces [108], though the scaling is different.

Some energy is also inevitably dissipated in the air layer and the soap film. Both film and
droplet are coated by a commercial surfactant whose precise surface properties are not easily
quantified. The extent to which a surfactant-laden surface is rigidified depends on both the
type and concentration of surfactant. In general, soap films lie between the "rigid" and "free"
limits, in which the internal flows correspond, respectively, to Poiseuille and plug flows. The
Poiseuille regime is more dissipative since velocity gradients arise across the thickness of the
film. Conversely, in plug flow, transverse velocity gradients are negligible and the dissipation
results from velocity gradients in directions parallel to the film, which are necessarily much
smaller. Therefore, for the sake of bounding the dissipation in the soap film, only the Poiseuille
case is considered here. Lubrication equations write

oh -

[ . p— 4.2

e +V-Q 0 (4.23)

%

Q+—VP =0 (4.24)
12

where Cj is the flow rate and V P the pressure gradient, both parallel to the air film. The
energy dissipation AK in the whole film (surface S) during ¢, is given by

te .
AK = — / / G - vPdsdt (4.25)
0 S

These equations are scaled to yield

hQ o 2um

t R t3AP
¢ = ¢ 4.26
O~ hAP . 12 R? (4.26)

12pR t.AP

and

6
AK ~ tC(QWRQ)%Q ~ 4 f % (4.27)
867,

The overpressure AP, i.e. the pressure at center of the air film below the droplet, should scale
as F,pr/(mR?) ~ 0.35(c/R) We, which gives a scaling for the dissipated energy

AWe ~ 3002 We'/2, (4.28)

Assuming that the constant of proportionality is relevant, the range of energy loss due to
dissipation in a soap film with Oh = 0.015 is AWe € [0.37,1.5], while the observed range
of dissipation is AWe € [0.2,5]. So, for We < 1, we expect the resulting dissipation in the
soap film to be relevant for the case of rigid films. This additional source of dissipation might
explain the fact that the observed dissipation is systematically higher than the scaling law
(4.14) for We ~ 1. Nevertheless, the scaling AWe ~ We'/? is not observed experimentally
for We 2 1. The observed loss of translational energy mainly results from a transfer to the
vibrational motion of the droplet.
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Figure 4.8: (a) Dependence on We of the maximum force F,; applied by the soap film on the
droplet. The solid line corresponds to Eq. (4.17). (b) Observed (dots) and simulated (solid
line) trajectories of a droplet released at We = 15.24 and bouncing on a stationary soap film.
Experimental data could only be obtained in the apparent field of view, that was partially
obscured by the frame of the soap film and also limited from above.

Although Eq. (4.16) seems to correctly describe the energy transfer between the droplet
and the film, it cannot be solved unless an evolution equation for the drop deformation 7 is
written. Instead, for the sake of mathematical simplicity, we model the dissipative transfer
term F,(¢)n as a function of ¢, specifically

Fo(Q)it = —er s HQICP, (4.29)

where H(() is the Heaviside function and cr is the transfer constant. The transfer is zero
when Z > 0 (the droplet is flying), but is negative definite and scales as We3/? when Z < 0.
We further simplify the system by assuming that |n| < |(]: the droplet deformation is much
smaller than the amplitude of vertical motion, so that Z ~ R — (. Finally, consistent with
(4.9), we assume that the soap film has a linear force displacement law F,(¢) = H({)k(. We
thus obtain

M2 k(2 M
I~ MoC+ HQO S | = —er THQIP, (4.30)
SO M
M¢=Mg—kCH(C) — erH(C )¢IC]- (4.31)

The constant ¢y = 0.028 is determined by fitting the solutions of (4.31) to the experimen-
tal data in Fig. 4.7(b). The results from (4.31) with the ¢p value so deduced represent an
improvement over the scaling law (4.14). The predicted contact time ¢./7, is also in good
agreement with experimental data reported in Fig. 4.7(a). As seen in Fig. 4.8(b), the model
produces a remarkably accurate picture of the damped bouncing on a stationary film.
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Figure 4.9: Threshold acceleration for bouncing, I'y;, as a function of the dimensionless forcing
frequency w. For a given frequency, a droplet was released onto a film vibrating at I' > I'y;
subsequently, I' was decreased until the droplet coalesced. The experiment was repeated
several times to capture both modes (1,1) and (2,1): the minimum measured value of T’
corresponds to the threshold reported by (A). When forcing parameters (I',w) are located
inside the shaded area, no periodic bouncing is observed and the droplet coalesces. Solid (resp.
dashed) line represents the threshold computed by solving (4.33) numerically and corresponds
to the mode (2,1) (resp. (1,1)). The lower threshold solution roughly corresponds to our
experimental data.

4.4 Sustained bouncing on a vibrating soap film

On a stationary soap film, the We decreases at each bounce, until the droplet settles
onto and ultimately merges into the film. To counter dissipative losses, a vertical vibration is
applied to the frame of the soap film: energy is thus transferred from the frame to the film
to the droplet. Provided the mechanical energy so supplied balances dissipative losses, the
droplet is re-energized during impact and may bounce indefinitely, as in Walker’s experiment
[98]. Thanks to our simple model (4.31), it is possible to deeply understand this sustained
bouncing.

First, we measure the acceleration threshold I'y(w), which is the minimal acceleration
I’ that can sustain periodic droplet trajectories, as a function of the dimensionless forcing
frequency w (Fig. 4.9). For w < 2, Ty, is roughly constant (about 0.15 £ 0.04). When w > 2,
bouncing droplets cannot be sustained. We note that this critical frequency corresponds to a
period of 18 ms, a value roughly equal to the measured contact time.

A striking characteristic of droplet bouncing on soap films is the coexistence of multiple
periodic solutions for given forcing parameters (I',w), or, in the parlance of dynamical sys-
tems theory, multi-periodicity. Bouncing modes are denoted by two integers (p, q) such that
one period of the trajectory corresponds to p forcing periods and g bounces of the droplet.
For example, modes (1,1), (2,1) and (3,1) are displayed in the spatiotemporal diagrams of
Fig. 4.10(a-c). All these solutions are observed to be stable, at least during the 8 seconds of
recording corresponding to 240 forcing periods. Depending on initial conditions, specifically
the impact speed and phase, the droplet locks onto one particular mode. Note that the am-
plitude of the jumps experienced by modes (2,1) and (3,1) is much larger than the forcing
amplitude. Weber numbers at impact are about 0.06, 1.5 and 3.9 for modes (1,1), (2,1) and

Y
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Figure 4.10: Spatiotemporal diagrams of a droplet bouncing on a soap film vibrating at
f = 33 Hz (w = 1.21). The dark low-amplitude oscillation at the top of these pictures
represents the vertical motion of the ring to which the soap film is pinned. (a) Mode (1,1)
at I' = 0.6 - We ~ 0.06. (b) Mode (2,1) at I' = 0.6 - We ~ 1.5. (¢) Mode (3,1) at I' = 0.6
- We ~ 3.9. (d) Mode (3,3) at I' = 0.7. (e) Period-doubling transition, from mode (1,1) to
mode (2,2) at I' = 1.2. (f) Chaotic bouncing trajectory at I' = 1.1.

(3,1), respectively. According to (4.14), with each bounce these modes lose kinetic energy
such that AWe is approximately 1073, 0.16 and 0.67, respectively. For periodic solutions,
this energy loss has to be perfectly balanced by the energy input from the forcing. In the
following, we shall demonstrate that the same forcing can deliver three different amounts of
energy according to the impact phase of the droplet.

We also observed more complex periodic bouncing states, where the periodicity appears
only after several jumps (¢ > 1). For example, the mode (3,3), observed at I' = 0.7 and
w = 1.21 (Fig. 4.10d), is characterized by three successive jumps of different amplitude. At
higher accelerations, a period-doubling transition may occur spontaneously (at fixed forcing
parameters), transforming a mode (1,1) into a mode (2,2) as seen in Fig. 4.10(e). Chaotic
trajectories are also observed (Fig. 4.10f), with episodic periods of high-amplitude bouncing.
The chaotic bouncing is usually unstable and the air film ultimately breaks, typically after a
particularly vigorous impact.

The sustained bouncing may be modeled by adding to Eq. (4.31) a fictitious inertial force
MgT cos(2m ft + ¢), since Newton’s law is expressed in a frame moving with the vibrating
film. Defining dimensionless variables

—kZ [ k V |k
= — T=14/— U=—\/— 4.32
4 Mg’ Mt and g VM (4:32)

47TCT

yields
GHH(-yy+1=—

BoH(—y)|9|y + I cos(wT + ¢). (4.33)

which may be solved subject to initial condltlons y(0) = 0 and y(0) = —U at impact. The
multi-periodicity is observed as in the experiments (Fig. 4.11a). The droplet in the high-
energy mode (3,1) lands before that in low-energy mode (1,1), thereby increasing the amount
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Figure 4.11: Numerical solution of Eq. (4.33) at w = 1.21. Solid lines correspond to trajectories
y(wT) in the frame of the ring; dashed lines correspond to the ring motion; vertical dash—dotted
lines represent the landing (L) and take-off (T) phases measured experimentally. (a) Modes
(1,1), (2,1) and (3,1) at T' = 0.6. (b) Mode (3,3) at ' = 0.8545. (c) Mode (2,2) at ' = 1.5.
(d) Chaotic bouncing at I' = 1.82.
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Figure 4.12: Chaotic solutions for (I',w) = (1.82,1.21). (a) Chaotic attractor in the phase
diagram. (b) Positive Lyapunov exponent ~ 0.4 . Initially neighboring trajectories diverge
exponentially, indicating sensitivity to initial conditions.

of energy extracted during impact. The model also reproduces complex modes (3,3) and (2,2),
as seen in Fig. 4.11(b-c). The measured phases of landing and take-off are in good agreement
with the model predictions, though these complex modes are not observed at precisely the
same forcing parameters as in the experiments. Many other complex periodic solutions are
generated by the model for different forcing parameters (I, w) and initial conditions (U, ¢).
The system (4.33) is similar to that arising from the Duffing equation and the vertically
oscillated pendulum [110]; it thus supports chaotic solutions (Fig. 4.11d), as many other
bouncing systems [111, 112]. The trajectory rolls up on a strange attractor (Fig. 4.12a) and
corresponds to a positive Lyapunov exponent deduced by calculating the rate of exponential
divergence of two initially adjacent trajectories (Fig. 4.12b). The model (4.33) exhibits chaos
starting from I' = 1.76, a value much higher than observed in experiments (I" = 1.1). This
discrepancy is presumably due to the shortcomings of our simple model for the dissipation in
the system; in particular, details of the droplet deformation are not modeled in Eq. (4.33).
We proceed by solving (4.33) with w = 1.21 fixed for various accelerations I € [0, 2] to
develop a bifurcation diagram of our system (Fig. 4.13a). Modes (p,q) are represented by
q different branches corresponding to the dimensionless impact velocity U of the ¢ different
bounces. Many complex bifurcation events appear on the bifurcation diagram, analysis of
which is beyond the scope of this thesis. For I' < 0.18, no periodic bouncing is possible.

I‘Ei’l) = 0.18 corresponds to the lower bouncing threshold, at which mode (2,1) appears.

At the upper bouncing threshold Fg,ll’l) = 0.47, the static solution completely disappears

and transforms into a periodic bouncing (1,1). Both thresholds are computed for various
forcing frequencies w (Fig. 4.9), the lower of which is in good agreement with experiments. In
particular, the threshold remains roughly constant and less than 0.2 until w = 2; thereafter,
it increases drastically, consistent with the observed absence of bouncing for w = 2. We note
that the minimum in the upper threshold curve corresponds to the resonant frequency of the
soap film w = 1, as defined in (4.12). As I' is increased, the principal modes (p, 1) branch to
(2p, 2) states through period-doubling events. The transition to chaos occurs via a number of
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Figure 4.13: (a) Bifurcation diagram of the impact speed U as a function of I" for w = 1.21.
Each mode (p, q) is represented by ¢ branches. (b) Period-doubling cascade from mode (2, 1)
to mode (64,32). The cascade converges in I' = 1.764 where a chaotic attractor is created.
The inset represents a zoom on the shaded region.

such branching events, known as a period-doubling cascade (Fig. 4.13b).

Solutions of (4.33) can be displayed on a Poincaré section made at impact (Fig. 4.14).
The net energy AK gained by the drop during the ith bounce is computed for each (U, ¢),
and contours of iso-values are plotted. For impact in the grey and white regions, the drop
experiences a net energy gain and loss, respectively. On the intervening curve, the energy
transferred to the drop precisely balances that dissipated, AK = 0. Modes (p, 1) are stationary
states in this iterative map corresponding to single points that necessarily fall on this zero
contour. Complex modes g > 1 are represented by closed circuits of ¢ points, the energy
of which necessarily sums to zero. In mode (3,3), two bounces increase the energy, the
velocity and the phase until the droplet leaves the shaded region. The third bounce dissipates
energy, thereby restoring the initial conditions of the first bounce. The Poincaré section of the
chaotic attractor emerging at (I',w) = (1.82,1.21) is structured as a spiral-like fractal shape
(Fig. 4.14b) in polar coordinates.

4.5 Summary

In this chapter, we have mainly discussed the bouncing mechanisms of a droplet on a soap
film. Although this configuration may seem exotic, it is a good start for our investigation of
bouncing since the corresponding model is overly simple and accurate. Indeed, the soap film
has a negligible inertia and is thus in quasi-static equilibrium; it may be described through
a scalar relation between its vertical deformation and the force it exerts on the droplet. By
modeling the soap film as the combination of a spheroid and a catenoid, we have succeeded
in rationalizing the transition between the bouncing and crossing behaviors at Wey, ~ 16.
For smaller We, the film behaves as a linear spring, the contact time between the bouncing
droplet and the film is shown to be independent on the impact velocity. At each bounce,
the droplet loses a part AWe of its incoming translation energy that increases as We?/2.
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Figure 4.14: Poincaré sections representing the impact parameters (U, ¢) in polar coordinates,
computed from (4.33) with w = 1.21. Contours correspond to the net energy transferred to
the drop during impact. In the shaded area, the droplet gains more energy during impact than
it loses to dissipation; in the white area, the opposite occurs. (a) Simple modes (¢ = 1 - o)
and complex modes (¢ > 1- A) at I' = 0.82. (b) Chaotic attractor at I = 1.82.

Theoretical arguments suggest that this energy is in reality transferred to the vibrational
and internal motions of the droplet, before being dissipated through viscous effects. This
loss of energy can be balanced by vertically vibrating the soap film, so the droplet bouncing
becomes periodic. Multiperiodicity is observed; namely, for a given forcing, the droplet may
bounce in several different ways depending on the initial conditions. The droplet adjusts its
impact phase in order to extract from the forcing the exact amount of energy to balance its
losses. Complex periodic motions (i.e. sequences of several different bounces) and chaotic
trajectories are also observed. Experiments are in excellent agreement with the solutions of a
single ordinary differential equation of order 2, deduced from the second Newton’s law.
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Chapter 5

Periodic bouncing on a high-viscosity
vibrating bath

In this chapter, we discuss the bouncing mechanisms in a second limit case, probably closer
from potential microfluidic applications, namely droplets bouncing on a viscous bath. Here,
the bath cannot efficiently store surface energy and the droplet has to bounce by itself. Like
in the soap film experiment (Chap. 4), we observe a threshold forcing acceleration I'y;, above
which sustained bouncing is possible. The threshold measurements from Denis Terwagne and
Stéphane Dorbolo [113] are rationalized through a model similar to Eq. (4.33).

5.1 Experimental results : bouncing threshold and droplet de-
formations

A container is filled with about 8 mm of silicon oil (Dow Corning 200, v = 1000 cS) and
fixed on an electromagnetic shaker that vibrates according to A cos 2w ft. Droplets of radius
R €]0.73,0.93] mm made of a less viscous silicon oil (v € [0.65,100] ¢S) are released from a
syringe in the vicinity of the bath. The threshold acceleration T'y, = 4712 Af? /g is measured as
described in Chap. 4: droplets are created when I' > T'y,, then I is decreased until coalescence.

The threshold I'y, is measured as a function of the forcing frequency f for various droplet
viscosity (Fig. 5.1a). At 100 cS, I'y, monotonically increases with f, starting from I'y, — 1
in f — 0. At lower viscosity, regularly spaced extrema are seen on the threshold curve.
Bouncing is easier around some specific frequencies, which suggests that the system behaves
as a resonating damped oscillator. Viscosity is obviously the damping mechanism, since the
extrema disappear at high viscosity. On the other hand, the bouncing seems to be ensured
through the droplet deformation. Indeed, as seen in Fig. 5.2, the droplet shape changes
as the frequency is increased, we may recognize some of the droplet eigenmodes, i.e. the
axisymmetric spherical harmonics YZO already introduced in Chap. 1. The droplet selects the
deformation mode used to bounce as a function of the forcing frequency, and each minimum
in the threshold curve I'y,(f) corresponds to a mode Y.

The dispersion relation of capillary waves (1.7) suggests to scale the forcing frequency with
the frequency f(2 ) of the spherical harmonic Yy. The droplet is thus seen as a spring of stiff-

ness k = cyo with ¢ = 327/3, and the dimensionless frequency writes again w = 27 f4/ %
The thresholds corresponding to different droplet radii collapse on a single curve (Fig. 5.1b).
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Figure 5.1: (a) Threshold acceleration I'y, as a function of the forcing frequency f for a droplet
of R =0.765 mm. (o) v =1.5cS; (M) v =10 cS; (A) v = 100 cS. The inset represents the
threshold curve in logarithmic scale, for v = 100 ¢S. The solid (resp. dashed) line is a power
law of exponent 3.5 (resp. 2, as proposed in [114]). (b) Normalized threshold amplitude
as a function of the dimensionless frequency w for various droplet sizes (v = 1.5 ¢S): (o)
R =0.765 mm; (B) R =0.812 mm; (A) R =0.931 mm. The vertical dashed lines correspond
to the droplet natural frequencies (Eq.5.1).

By replacing I'y, by a more appropriate dimensionless number based on the threshold ampli-
tude Ay, namely Ay, /(g72), the extrema are all located at the same dimensionless forcing
level, whatever the selected mode.

The dimensionless natural frequencies Wi,y = f(e,m)/f(2,0) of a droplet floating in micro-
gravity (Eq.1.7) do neither correspond to the minima, nor to the maxima of the threshold
curve. Indeed, several authors have already observed that the dispersion relation of capil-
lary waves depends on the considered geometrical configuration, e.g. a droplet placed on a
hydrophobic surface vibrated vertically [115, 116] or horizontally [117], a large droplet signifi-
cantly flattened by gravity [118], or simply a droplet highly deformed in the nonlinear regime
[119, 120]. On the other hand, these frequencies W(¢,m) multiplied by a factor 1.15 correspond
to the maxima wps(¢) of the threshold curve,

wiy = (1.15w(g,m))* = 0.1650(¢ — 1)(€ + 2). (5.1)

Therefore, it is more difficult to make a droplet bounce when forcing the system at one of the
droplet natural frequencies. Moreover, the droplet is observed to select the mode Yé0 when the
forcing frequency ranges in |[wys (¢ — 1),wpr(€)]. These results may seem contradictory; since
the bouncing is due to the droplet deformation, an increased deformation would facilitate the
bouncing and the natural frequencies of the droplet should correspond to the minima of the
threshold curve. The model developed in the next section explains this apparent paradox.

45



Figure 5.2: Axisymmetric spherical harmonics YKO observed when a droplet bounces on a
vibrated high-viscosity bath. The ellipsoidal mode Y20 is obtained at f = 50 Hz and ' = 0.3;
the mode Yy at f = 160 Hz and I' = 2; and the mode Y,? at f = 275 Hz and ' = 6. Modes are
better recognized in the third column, corresponding to the difference between images from
both firsts.
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5.2 Modeling the bouncing on a bath

5.2.1 The model of Couder

The first modeling of the sustained bouncing of a droplet on a vertically vibrating bath was
proposed by Couder and coworkers in 2005 [114]. These authors have studied the bouncing
of highly viscous droplets (v = 500 ¢S) on a bath made of the same liquid. They suggest the
following mechanism ':

Stability requires that the air film resists squeezing during the half period of upward motion
and that, during the downward half period, air has time to penetrate the film to allow lift-off.
We must thus consider the dynamics of the thin air film, and seek if it can sustain the drop
bouncing and be renewed. At a given time the thickness of this film is h and its radius rp .
In the following, we assume that the viscosity of the liquid p is much larger than that of air
lha, So that the airflow does not entrain the liquid. At the drop landing, the film of air resists
squeezing only when a viscous regime 1is reached, i.e. the Reynolds number becomes small
enough: Re = ph?f/1a < Rew,, with pg and pg being the density and viscosity of air. This
condition sets a scale for a typical film thickness h. Reynolds lubrication theory shows that the
film resists squeezing with a force of magnitude Fr, ~ pqri f/h? (using the vibration period as
a time scale). Let M be the drop mass and T' the imposed acceleration. At landing the balance
of forces gives —Mg + Fr, = Mgl', and at lift-off Mg+ Fr, = Mgl'. The lift-off condition
being more restrictive determines the critical acceleration Ty, needed for bouncing (using the
scale for the film thickness found above):

1
1 Pall g2 (5.2)

Iy, =1
h +RethﬂR3

Qualitatively, this means that a larger acceleration is needed to squeeze or fill the air film at a
higher frequency or for a more extended film. [...]

The model correctly describes several experimental observations; e.g. for viscous droplets,
the threshold Iy, (f) increases monotonically with the forcing frequency starting from I'y, (0) =
1. Nevertheless, it has some major shortcomings that are addressed in the following section.

1. The power law I'y, — 1 ~ f? is approximately correct for 500 cS droplets on a 500 cS
bath, but it is already not valid anymore for 100 ¢S droplets on a 1000 ¢S bath (inset of
Fig. 5.1a) where the exponent of the power law is closer to 3.5.

2. Neither the viscosity nor the surface tension and the deformation of the droplet are taken
into account. So the model cannot catch the bouncing physics of less viscous droplets.

3. The force balance is only written at a given instant, namely the take-off, so the whole
trajectory cannot be computed.

4. The choice of that Reynolds number to estimate the typical film thickness may be
contested. Indeed, it is based on the vertical velocity of the droplet, of the order of h- f.
Another (maybe better) choice would have been the horizontal drainage velocity of the
air film, which is about R - f > h - f and leads to the scaling T'y, — 1 ~ f3.

!Notations have been adapted from the original manuscript in order to be coherent with our notations.
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Figure 5.3: (a) Geometrical variables: R is the radius of the undeformed droplet, n is its
vertical deformation about the axis of symmetry, h is the thickness of the intervening air film
and Z is the position of the droplet mass center relative to the bath. (b) Interference fringes
observed through the thin air layer when the droplet is lightened by a monochromatic light.

5.2.2 Taking the droplet deformation into account

The proposed model [121] consists in two differential equations, one describing the motion
of the droplet center of mass (vertical position Z, as for the soap film), and one for the droplet
vertical deformation 7. The droplet is supposed to select the Y3 ellipsoidal mode (Fig. 5.3a);
the bath deformation is neglected. During its flight, the droplet experiences the apparent
gravity Mg(I'cos2mft — 1) in the frame of the vibrating bath. The air layer is described
through the lubrication theory; a vertical lubrication force Fj, is applied on the droplet. The
deformations are responsible for micro-flows within the droplet that may help the air drainage
and modify the resulting Fr. At leading order, the drainage is considered as a Poiseuille-
Couette flow between two parallel plane interfaces. The bottom interface (bath) is at rest,
while the top interface moves with a velocity proportional to 7r/R, where r is the radial
horizontal coordinate (cylindrical). Calculations (App. D) yield

n h
Fr, = cpipa R <CL2m - ﬁ) (5.3)

where cr; and cpo are positive constants. The lubrication theory suggests that c¢p; = 37/2.
On the other hand, the parameter cro, representing the effect of deformation on drainage,
cannot be estimated through simple arguments.

The second Newton’s law in a frame moving with the bath writes

MZ = Mg (r cos 2 ft — 1> + Fr. (5.4)

For practical purposes, we use the thickness of the air layer h = Z — R — n instead of Z.
The evolution of 7 is prescribed by an energy balance in the frame of the mass center of the
droplet,

d(K + Ey)

= —Pp —nF 5.5
7 p —nFL, (5.5)
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where K is here the kinetic energy of the motion inside the droplet, E, is the interfacial
energy and Pp is the viscous dissipative power inside the droplet. In order to close the
system, variables K, F, and Pp must be estimated as functions of 7. Scaling arguments yield

2 22

.2
K:cKM%, Ea:caa%, PD:cDVMn—

o (5.6)

where constants cg, ¢, and ¢p depend on the flow inside the droplet. For example, the
potential flow related to the spherical harmonic Y20 leads to cx = 3/10, ¢, = 167/5 and
c¢p =3, 50 ¢, = ¢ /cx (App. C).

The whole system is written in dimensionless form by using

k k k
- -0 d 7=/t 5.7
7 A VL 'V} (5.
F
fé+y:Fcosz—1+—Lg,
. 47r . Cg FL
[20 Ohg o S90 — _ 2L
ck¥ + cp 3Ck0 T+ Ckx m (5.8)

Mg~ (4n) 2% U BB

Moreover, the second equation is replaced by the sum of both first in order to remove the
lubrication term.

V3 52 g Oh L2, T Y
r+y="TI t—1 ———|4r—Bo— — =
r+y cosw + (477)7/2ck Cr1 p Bo3< T o 0y2 y3>’

Fy, V3 52 pa Oh < LC2p & g)

\

.. 4r . Co . (59)
(cx +1)& +cpy/ 7—Ohi + —x =Tcoswr — 1 — 4.

3¢k Ck
Terwagne et al. [122] observed the dynamics of the air film located between the droplet
and the bath using a monochromatic light. Concentric fringes of interference appear when
the air film is squeezed (Fig. 5.3b). When the droplet bounces, the motion of the fringes is
perfectly periodic. No attenuation or phase drift take place and the bouncing is stationary.
On the other hand, the number of fringes decreases when the droplet does not bounce; the film
thins and finally breaks, leading to coalescence. The periodicity of the fringes motion suggests
periodic solutions from Eq. (5.9). Conditions for such solutions are obtained by integrating
Eq. (5.9) over a period 27 /w. Under the assumption of periodicity, many terms vanish, giving

27w 2 2rjw 64 7/2 B 2
/ pdr = — 2% and cm/ %dT = T 375 Lty (5.10)
0 W Co 0 Y \/chlck/ Ha Ohw

Terms on the right-hand side are always strictly positive. According to the first relation,
a mechanism of potential energy storage (here, the droplet deformation) should be taken
into account (z # 0). The droplet has to spend more time in an oblate state (z < 0)
than in a prolate state (z > 0). According to the second equation, internal movements in
the liquid phase, related to the deformation rate, must have a significant influence on the
film drainage and the resulting lubrication force (cpo # 0). Moreover, a significant phase
shift between the minimum film thickness and the maximum compression must be observed.
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Indeed, fozﬂ/w idt = 0, while 1/y? is strictly positive and vanishes when the film thickens. To
have a positive left hand side in the second equation, we expect the film to be the thinnest
when the droplet begins to recover its spherical shape (& > 0). All these required conditions
show us that this model is minimal: if the model does not take into account all above listed
conditions, its prediction fails and no periodic bouncing solutions can be found.

We proceed by computing typical trajectories of this model, for an oil droplet (R = 0.8 mm,
v =50 ¢S, 0 = 20 mN/m) released on a bath at f = 50 Hz. The various coefficients are ob-
tained through a fitting procedure detailed here after. Experiments suggest a coalescence
at I' = 0.5 and a sustained bouncing at I' = 1.5. These observations are well-rendered by
the model (Fig. 5.4a-d). Below the bouncing threshold (I' = 0.5 - Fig. 5.4a-b), the droplet
deformation z and film thickness y (in log scale) oscillate sinusoidally and in-phase. The di-
mensional thickness corresponding to y ranges in [0.1,1] um, which foretells a near coalescence:
the air film is not fully regenerated and its mean thickness significantly decreases on the long
run. Above the threshold (I' = 1.5 - Fig. 5.4c¢-d), the deformation is not sinusoidal anymore,
and the film thickness reaches about 100 pum every period. The droplet is seen to take-off
and the motion is perfectly periodic. On the phase diagram (y,x), the trajectory at T' = 0.5
consists in a series of quasi-parallel straight lines (y and x are in-phase), while a limit cycle
appears at I' = 1.5.

The acceleration threshold I'y, required for periodic bouncing may be estimated starting
from Eq. (5.9). When I < I'y,, the droplet does not bounce, the air film remains thin and
i < 1. The second equation in Eq. (5.9) does not depend on y anymore. The droplet behaves
as a simple forced oscillator

z(7) = GI' cos(wt + ¢) — (C:—k (5.11)
ag

where G and ¢ are functions of w defined as

2
G2 = [C—" — (ex + 1)&} + AT 2 on2,

Ck 3¢k
o Ir Ohw (5.12)
an¢® = cpy/ — .
P\ 3¢, (cx + 1)w? — =
The resonance frequency related to this oscillator is given by
2
9 Co 2mey, 9
= — |1 - —=———0h~|. 5.13
“res ck(cx +1) [ 3cq(cx +1) } (5.13)

To find y with the first equation of Eq. (5.9), it is convenient to define the amplitude Y (7) of
its variation (i.e. the short-term average) as

ZJLTrCCL—k2 BoGr cos(wt+¢)

y(t) =Y (1)e (5.14)

Calculations yield

3 5/2 Ha Oh }. Co )
[ 2 Pa V02 Tl —
(47T>7cmck B Y3 G (Ck cxw?) cos(wt + @)

4 ﬂ'c cos(w
— ¢py/ 3TWOhcu sin(wt + gb)] - 1}68 o Boar cos( t+¢{5.15)
k
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Figure 5.4: Droplet trajectory obtained by numerically integrating Eq. (5.9). Physical param-
eters are R = 0.8 mm, v = 50 ¢S, 0 = 20 mN/m and f = 50 Hz. (a-b) The droplet does
not bounce and the film thins at I' = 0.5. (c-d) The droplet bounces periodically at I' = 1.5.
(a-c) The solid line is the film thickness y and the dashed line is the droplet deformation x,
both as functions of time 7. (e) Phase diagram (y,x) on which trajectories at I' = 0.5 (left)
and I' = 1.5 (right) are plotted. (f) Evolution of the short-term averaged thickness of the air
layer Y (7). The dashed line corresponds to the bouncing threshold. (e¢) I' =0, (A) I' = 0.5,
(M) T =11, (v)T = L5.
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By integrating this equation over a long time 7 and by only keeping secular terms, we obtain:

-1/2

(m)7_ 1 “BOSCT] : (5.16)

3 CL102/2 pta Oh

Y (1) = [Y(O)2 —2

where the function C(I',w) is defined as

C = <C—" - cKw2> GTI, <8n@BoGr> A (chﬂBoGr>,
Ck Ck

Ii(z) = _/0 e 05 cos(jit)dt.

When C' < 0, the averaged film thickness Y decreases with time and the droplet finally
coalesces. Conversely, when C' > 0, Y diverges and the solution is not longer valid. The
droplet takes off, § cannot be neglected anymore in Eq. (5.9) and bouncing occurs. The
threshold acceleration for bouncing I'y, can thus be defined as the value of I' such that C' = 0.

8 8
<C_U _ cKw2> Grth11< L2 BoGI‘th> - 10< e BoGI‘th>. (5.18)
Ck Ck Ck

(5.17)

This equation has one positive solution when ¢, — cxcrw? > 0, and no solution in the other
case. There is a cut-off frequency

2 Co

wi, = en (5.19)
above which the model cannot predict bouncing based on the deformation mode Yy (C is
always negative). This frequency corresponds to the natural resonance wps(¢ = 2) of the
droplet (Eq.5.1), and to the first maximum of the I'y,(w) curve (Fig. 5.1b). Beyond we,, the
droplet does not select the mode Y20 anymore. The cut-off frequency is always higher than w.es,
which may be seen as the resonance frequency of the system "droplet + air film" and the first
minimum of Fig. 5.1(b). This minimum is shown to disappear when w,¢s is complex, i.e. when
Oh? > 3c,(cx + 1)/(2mc%) which corresponds to high viscosity, as observed experimentally.
At this stage, I would like to thank the first of my faithful and careful readers by offering
him a billion of freshly handled 1 nL droplets of a delicious Belgian beer, provided he can
reconstruct by heart the model from the beginning to this point. Finally, as in Couder’s
model, the predicted threshold curve I'y,(w) tends asymptotically to a constant value > 1
when w — 0.

In order to compare the model predictions to the experimental data shown in Fig. 5.5, a
single fit has been made on coefficients czo and cg, while the nominal value of mode Y20 is taken
for other coefficients, namely ¢, = 167/5, ¢ = 327/3 and c¢p = 3. The coefficients resulting
from the fitting procedure are cpo ~ 17.5 and cx ~ 0.1. The comparison with experiments is
acceptable, both qualitatively and quantitatively. In particular, the minima for low viscosities
and the divergence for high frequencies are reproduced. According to the fit, wyes = 0.52,
which perfectly corresponds to the first minimum of Fig. 5.1(b). Nevertheless, there are some
significant discrepancies between the model and experiments. First, the value of cx obtained
through fitting is much lower than predicted by theory (cx = 0.3). And second, the predicted
cut-off at we, = 1.73 is far beyond the first maximum of Fig. 5.1(b). These shortcomings might
be due to several reasons: The experimental threshold is very sensitive to the droplet size,
which is not systematically measured. Moreover, the model only takes mode Y3 into account
and supposes that the droplet deformation is symmetric with respect to the mid-horizontal
plane.
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Figure 5.5: Acceleration threshold I'y, (w) for droplets of R = 0.765 mm and various viscosities,
i.e Ohnesorge numbers: (a) Oh = 0.012, (b) Oh = 0.077, (c¢) Oh = 0.388 and (d) Oh = 0.776.

For Oh = 0.012, thresholds are different according to whether the acceleration is increased

(A) or decreased (o). The solid (resp. dashed) line corresponds to the model prediction (5.18)
with the fitting value cx = 0.1 (resp. the theoretical value cx = 0.3).
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Figure 5.6: Lifetime t; of bouncing droplets of radius R = 0.84 mm as a function of the
normalized acceleration I'/T'y,, (a) for various viscosities and (b) forcing frequencies. The
dashed curves correspond to Eq. (5.22).

5.3 Delayed coalescence below the bouncing threshold

Although droplets cannot bounce periodically when I' < I'yy,, their lifetime t7, seems to be
significantly increased by the vibration [123]. Indeed, droplets on under-vibrated bath may
float for near to a minute while they last a few tenths of seconds on a static bath. Surpris-
ingly, the lifetime is observed to be important for small I' and to decrease with increasing I,
until increasing again and diverging when I' — T, (Fig. 5.6). Moreover, the dispersion of
measurements is important for small I', while the lifetime seems more reproducible at larger
I'. We proceed by rationalizing these observations thanks to the model (5.9) developed in the
previous section.

First, for practical purpose, we define the function Y(w) = 87TCCL_: BoGTyy, and write

Co _ 2\ __ % —
<Ck exew >8W6L2BO T1,(T) = In(T), (5.20)
" Io(Y) T r r
c="2"/_" <’r—> I <T—) 5.21
Ii(Y) Ty "\ Ty T (5:21)

In this mathematical expression of C', the frequency information is fully contained in T and
the forcing acceleration is always compared to the threshold I'y.

Now, suppose that the air film breaks in at time ¢7, such as Y = Yj,. Then, Eq. (5.16)
yields

t
tr = —50 (5.22)
where ¢ is the hypothetic lifetime at I' = 0 (C = —1). Equation (5.22) is fitted on the

experimental curves of Fig. 5.6 thanks to this single fitting parameter ¢7. The agreement
is good, especially for the deterministic part of the data. The model correctly catches the
variations of t;, with the forcing parameters I' and w. The influence of other droplet-related
factors is unfortunately hidden in tg.
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5.4 Summary

In this chapter, we have discussed the bouncing of droplets on a high-viscosity bath.
Contrary to the bouncing on a soap film, the droplet deformation is shown to play a key role
in this case. Different natural modes of the droplets (spherical harmonics) can be excited
depending on the forcing frequency. The threshold in forcing acceleration I'y, is shown to be
maximum when the system is excited at one of the natural frequencies of the droplet, while
it is minimum in between these frequencies. The model we have proposed is based on two
differential equations, the first being the Newton law applied to the droplet mass center (like
for the soap film) and the other describing the droplet deformation. The model predictions
are in good agreement with the experiments in the range of frequency covered by the spherical
harmonic Yy. In particular, the model correctly reproduces the transition from the film
thinning regime (that leads to coalescence) to the periodic bouncing regime (that prevents
coalescence). The threshold I'y, obeys to an implicit equation, the solution of which fits well
the experimental data. A minimum in I'y, (and so in the energy to provide for the droplet
through the forcing) is observed at the same frequency as in experiments. It corresponds
to a resonance of the system "air layer + droplet" where the incoming energy is efficiently
used to make the droplet bounce. On the other hand, a divergence is predicted when the
forcing frequency corresponds to the natural frequency of the droplet alone. In that case, the
energy is fully absorbed by the droplet deformation. The model suggests that bouncing is not
possible anymore in mode Y3 when this frequency is exceeded. Finally, it gives an accurate
picture of the lifetime experienced by droplets before coalescence when the forcing is below
the threshold. The main shortcoming of the proposed model is that it only takes the mode
Yy into account, while other deformation modes are observed at higher frequency.

95



Chapter 6

Movements and interactions on a
vibrated bath

At this stage, we are able to maintain droplets for hours in a bouncing configuration onto
a vibrated liquid bath. The next step in our approach of handling is to move these droplets
horizontally on the bath surface, or more specifically to make them move by themselves. In
other words, we need to break the horizontal symmetry of the bouncing mechanism. There are
two different ways to achieve this goal, depending on what is deformed: the droplet (rollers)
or the bath (walkers). Both motions are discussed here below. The walkers have some very
interesting interaction properties that are especially studied on a statistical point of view.

6.1 The rollers

As noted in the previous chapter, a low viscosity droplet makes use of its deformation in
order to bounce on a high viscosity bath. The deformation is expressed in terms of spherical
harmonics Y,;™, which are axisymmetric when m = 0. Depending on the forcing frequency,
the droplet selects a specific deformation mode. As seen in Eq. (1.7), for a droplet in free-fall,
the natural frequency f(; ) of the mode Y;™ only depends on £, not on m. This degeneracy is
observed to break down when the droplet bounces. For example, modes Y20 and Y21 are excited
on distinct frequency ranges. The Y3 mode is preferentially selected when the frequency is
close to the first maximum w ~ 1 in the threshold curve (Fig. 5.1), i.e. between about 100 Hz
and 140 Hz for droplets of radius 0.765 mm. The asymmetric motion of droplets in the Y3
mode makes them roll on the bath surface (Fig. 6.1a), which gives birth to a slight but robust
horizontal translation perpendicular to the rotation axis. These self-propelled droplets are
called rollers.

The roller velocity v, has been measured for various forcing parameters (I, f). Data roughly
collapse on a single curve (Fig. 6.1b), whose equation is determined empirically

vr = 0.82(A = Au)(f — fo), (6.1)

where Ay, is the threshold amplitude given by T'ypg/ (472 f2) and fy ~ 103 Hz is the lowest
frequency for which rollers are observed.

On a flat bath, the roller trajectory is a straight line whose direction is selected initially.
The trajectory is sensitive to bath deformations. For example, due to the meniscus, roller
droplets bounce back on the bath walls. They can therefore be guided between two parallel
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Figure 6.1: (a) At f = 115 Hz and T" = 4.5 > Ty, a droplet of radius R = 0.765 mm
deforms asymmetrically and rolls on the bath surface. The spherical harmonic Y3 is clearly
identified on the last snapshot, corresponding to the subtraction between the images 1 and 6.
(b) Horizontal velocity of the roller droplet as a function of the forcing parameters. The solid
line corresponds to Eq. (6.1).

walls forming a channel. Since each droplet makes a slight hollow on the bath surface, the
rollers are also attracted by each other, which may promote their coalescence. Both guiding
and attraction are interesting operations for potential droplet handling.

6.2 The walkers

On a low viscosity bath (typically 50 ¢S or less), the bouncing is also ensured by the
bath deformation. Couder and coworkers [124] have shown that under specific conditions, a
symmetry breaking can also set the droplet into a permanent horizontal motion. Indeed, the
impact deflects the bath surface and a capillary wave is emitted (Fig. 6.2a). At next bounce,
the droplet may thus fall on the slope of the wave it has previously created, which gives it a
small horizontal impulse (Fig. 6.2b); the droplet turns into a walker.

A vertically vibrated bath is subject to the Faraday instability [125, 126, 127] when the
forcing acceleration is higher than a threshold value I'r [128, 129, 130]. Below this threshold,
capillary waves are quickly damped while above I'p, a pattern of standing capillary waves
covers the bath surface (Fig. 6.2c). The frequency of these waves is half the forcing frequency
(App. F).

As I'r is approached from below, the damping factor of capillary waves progressively
vanishes and emitted waves propagate over a longer distance. For this reason, the walking
droplets are observed just below the Faraday threshold. Indeed, their horizontal impulse
comes from the waves they have emitted on the bath at the previous bounce. These waves
must not have been damped meanwhile. Couder’s team [131, 76| has located the range of
physical parameters (I, f,R,v) in which walkers are observed (Fig. 6.3a-b).

We investigated the behavior of an assembly of walkers on a bath made of 50 ¢S silicon oil
vibrated at I' = 4.2 and f = 50 Hz. These experimental conditions are kept through the whole
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Figure 6.2: (a) A walker bounces on the wave it has created on the bath at previous impact
(Credit: S. Protiére [76]). (b) Spatiotemporal diagram of a walking droplet (Credit: S. Protiére
[76]). (c) Standing Faraday waves observed when I' > ' (Credit: H. Caps).
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Figure 6.3: Identification of the walker zone in the phase diagrams of the bouncing droplet.
(a) In the (', D)-diagram, where D = 2R is the droplet diameter, the walking zone (resp.
Faraday instability zone) is indicated by W (resp. F'). Other parameters are f = 50 Hz and
v =50 cS. (b) In the (f,T')-diagram, the shaded walking zone is slightly under the Faraday
threshold (solid line), for various viscosities: (H) v = 100 ¢S, (¢) v = 50 ¢S, (o) v = 20 ¢S
and (A) v =10 ¢S. (Credit: S. Protiére [131, 76])
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Figure 6.4: (a) Probability Distribution Function of the radius R of droplets created with a
nail tip. The dashed line is a normal distribution of mean 0.43 mm and standard deviation
0.06 mm. (b) Velocity vy, of the walkers as a function of their size R. The solid line corresponds
to Eq. (6.2).

section. Walking droplets (R ~ 0.4 mm) are about twice smaller than droplets usually made
with a syringe and a needle (R ~ 0.8 mm), so they need to be produced by another way, here
with a nail tip dipped into a bath and quickly taken out (cf. sec.3.1). The droplets and the
bath are thus made from the same liquid (so they have the same viscosity). With this method
of creation, the droplet size R is not perfectly reproducible; it follows a normal distribution
of mean 0.43 mm and standard deviation 0.06 mm (Fig. 6.4a). The walker horizontal velocity
vy has also been measured as a function of its radius R (Fig. 6.4b). Droplets start walking
at R > 0.29 mm, through a pitchfork bifurcation. The velocity increases as the square root
of the distance to the threshold size, until it abruptly vanishes for R > 0.55 mm (Fig. 6.4b).
The average velocity is about 10 mm/s;

o — :{ (?;5\/R[mm] —0.29 if R € [0.290.55] mm, (6.9)

otherwise.

6.2.1 Non-local interactions

The walker and the surface wave on the bath are interlocked. Indeed, the wave was born
from the droplet bouncing, and the walking ability is only due to the wave. The walker is
therefore a marvelous and unique example of wave-particle duality at macroscopic scale [124].

Droplets use their wave to probe the surroundings. The wave extension around the droplet
varies with the damping rate, which decreases as the distance to the Faraday threshold I'r is
decreased. On the other hand, the threshold I'r significantly increases when the bath depth
is decreased below 5 mm. So a droplet cannot walk where the bath is not sufficiently deep,
the associated wave being fully damped. By immersing objects of height 8 mm in a bath
of depth 9 mm, we observe that the waves propagate everywhere but on these objects. As
a consequence, incoming walkers feel the submarine objects and stay away from them |76];
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Figure 6.5: (a) A droplet probes the surrounding thanks to the wave it emits. Consequently,
it is reflected from a distance by the walls (Credit: S. Protiére |76]). (b) A droplet may be
guided through a circular channel. (¢) A droplet is randomly deviated when passing through
a slit between two submarine objects (Credit: Y. Couder [133]). In (a,b,c), the successive
images taken by the camera are superposed in order to reveal the trajectory of the droplet;
black line in (a) and (c), white line in (b).

Figure 6.6: (a) Two walking droplets interact through the wave they emit. These walkers may
repulse (b) or attract (c) each other, resulting in complex orbital motions. As an example (d),
two droplets may orbit around a virtual center of rotation (Credit: S. Protiére [76, 134]).

they are reflected by the walls (Fig. 6.5a). Thanks to this property, walkers may be guided
through channels, exactly as rollers do (Fig. 6.5b). Nevertheless, it is better here to only use
submarine walls than emersed walls. Indeed, the meniscus that matches the bath surface to
the wall may emit parasite Faraday waves [132]. The duality between a wave and a particle
is highlighted in the brilliant following experiment, made by Couder and coworkers in 2006
[133]. Two submarine objects are placed next to each other with a small gap between both.
A droplet that enters the gap seems to be deviated randomly (Fig. 6.5¢). Nevertheless, when
repeating the experiment a large number of times, it appears that the Probability Distribution
Function of the deviation angle forms a diffraction pattern perfectly similar to those observed
with photons or electrons!

When two walkers come in the vicinity of each other, they interact through their waves
[76]. Indeed, the wave pattern on which they bounce is the sum of individual waves emitted
by both (Fig. 6.6a). The incoming droplets may repulse or attract each other, depending on
the distance between them (Fig. 6.6b-c). Attraction leads to the formation of complex orbital
motions and epicycles [134], as those observed in celestial mechanics (Fig. 6.6d).

When more than two walkers interact together, they usually form a crystalline structure
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Figure 6.7: (a) Large bouncing droplets agglomerate together and form rafts, even at low
forcing acceleration. (b) Several walkers form a crystalline structure (often hexagonal) where
the distance between particles is close to the wavelength of the emitted waves (Credit: S. Pro-
tiere [76]). (c) Two unequal walkers form a spontaneously moving ratchet, the direction being
prescribed by the forcing conditions. (d) Larger droplets are able to set a whole crystalline
structure of small droplets into motion.

(Fig. 6.7b), where the distance between two droplets is close to the wavelength of the emitted
capillary waves [131]. At lower forcing, larger bouncing (but not walking) droplets have a
similar behavior [135, 136], but the distance between them is now next to nothing (Fig. 6.7a).
Indeed, two particles (even solid spheres or bubbles) placed on a bath attract each other to
minimize the excess surface created by the meniscus around each particle [137, 138, 139, 140].
Two walkers with a different size form a ratchet [141]; the symmetry is broken and the resulting
system experiences a net translational motion (Fig. 6.7¢). One or several larger droplets placed
in a crystal of small droplets can drive the whole structure, i.e. give it a translational /rotational
motion (Fig. 6.7d).

Walker structures can also be moved by using virtual droplets (D. Caballero, private
communication). A pulsed laser locally heats the bath surface periodically, which creates a
capillary wave due to a Marangoni effect. This capillary wave interacts with the walker waves
exactly as if it was also coming from another walker. Therefore, the walkers can be driven
by the controlled motion of the laser beam. This way to manipulate droplets is also of great
interest for possible applications in microfluidics.

6.2.2 A gas of droplets

Our main contribution to research on walkers consists in studying the statistical behavior
of a large number of them bouncing onto a bath of surface S = 4900 mm?. In particular,
we want to know to which extent this set of droplets behaves as a gas (Fig. 6.8). The initial
number N; of droplets is varied from 10 to 50, five recordings of about 130 s are made in
each case. Droplets are observed to strongly interact with each other, using every mechanism
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Figure 6.8: Time evolution of a gas of droplets. Snapshots are taken every 16 s.

detailed here above: repulsions, orbits, crystals, ratchets... Sometimes, two walkers collide
and fuse together. The resulting droplet may be too large to keep walking.

As a consequence, the number of droplets N (t) decreases with time and the walkers pro-
gressively turn into a motionless population (Fig. 6.9a). The number of droplets is relatively
well fitted by a decreasing exponential

N(t) = Ny + (N; — Ny)eH/tn (6.3)

which corresponds to a relaxing process from the initial number of droplets N; to the equi-
librium final state Ny with a characteristic time ¢). The final number Ny increases with N;
(Fig. 6.9b) while ¢y decreases (Fig. 6.9c). We note that ¢y is also much more reproducible
when Nj; is sufficiently large for statistical tools to apply. The increase of Ny with N; may be
rationalized by a simple model based on the following hypotheses coming from observations:

e There are two distinct populations of droplets, IV, walkers and N,,,, not walking droplets,
such as the total number of droplets is N = Ny, + Npp-

e When a walker coalesces with another droplet, the result is a motionless droplet. The
probability of coalescence does not depend on the nature of this other droplet (walker
or not).

e Two motionless droplets cannot coalesce together.

The probability P,,/,, for a walker /walker coalescence and the probability P, /nw for a coales-
cence between a walker and a droplet at rest are respectively

Ny —1 N

_— d =— 6.4
Nw_ 1+an an Pw/nw Nw_ 1+an ( )

Pw/w =

Starting from N; walkers and zero motionless droplet, the probability Py, n,.,) of each sce-
nario (N, Nyw) may be evaluated until N, = 0. An example is given in Fig. 6.9(d) for
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N; = 6. The mean number of resulting motionless droplets is given by

N; /2
Nf(Ni) 2> P ) (6.5)
j=0
The standard deviation is also computed
N; /2
ANp(N;) ~ | ) (j?P(O,j) — NJ%). (6.6)
§=0

This solution, plotted in Fig. 6.9(a), roughly fits the experimental data. Nevertheless, ac-
cording to the distribution of droplet sizes (Fig. 6.4a), there is a significant probability that
two coalescing walkers form a walker again. So the model has been generalized to three
populations: small walkers, large walkers and droplets at rest (Fig. 6.9a). A more accurate
model could be a combination of both scenarios that would take into account the initial size
distribution.

We have also investigated the velocity distribution of droplets. These distributions are
obtained by measuring the instantaneous velocity of every droplets during a short interval
of time (here 4 s, which corresponds to 100 images). Examples of Cumulative Distribution
Functions (CDF) are plotted in Fig. 6.10 for N; = 30. The distribution is seen to significantly
evolve with time. In any case, it is well fitted by a Weibull distribution, for which PDF
(Probability Density Function) and CDF are given by:

b
(i) ()
PDF(v,) = - <7“’> e with v, > 0, (6.7)
b
()
CDF(v,) = 1l—e with v, > 0. (6.8)

The Weibull distribution has two parameters, the scale a and the shape b. For specific values
of b, it is equal to some well-known distributions; the exponential distribution is obtained when
b =1, b = 2leads to the Rayleigh distribution and b = 3.4 is very close to a normal distribution.
The Rayleigh distribution is of importance in this context since it is the 2-dimensional analog
of the Maxwell-Boltzmann distribution followed by the velocity of molecules in an ideal gas.

Each experimental sequence is divided into segments of 4 s on which the velocity distribu-
tion is evaluated and fitted by a Weibull distribution. The resulting parameters ¢ and b are
measured on each sequence as a function of time (Fig. 6.11). Various sequences corresponding
to the same N; are averaged together. Although data are scattered, the scale parameter a does
not seem to depend on Nj;. It seems to decrease from a; = 12.12 mm/s, which corresponds
to the mean velocity of a single walker. The final value is ay = 5.56 mm/s and the charac-
teristic time ¢, = 63.2 s roughly corresponds to twice the relaxation time ¢y of N(¢). The
shape parameter b also decreases with time, and seem to converge towards b = 1 (exponential
distribution). The initial value decreases with increasing N;.

These results may be explained with physical arguments. At the beginning, the walkers
start with a velocity distribution around b = 2 which roughly corresponds to an ideal gas,
though the distribution is expected to be close to the one presented in Fig. 6.4(b). Then, due
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Figure 6.9: (a) Evolution of the number N(¢) of droplets for various initial numbers: (e)
N; =52, (A) N; =42, () N; =30, (¢) N; =20 and (V) N; = 10. The solid lines correspond
to Eq. (6.3). (b) Final (equilibrium) number of droplets Ny as a function of the initial number
N;. The solid line (resp. dashed line) corresponds to the mean number of motionless droplets
predicted by the 2-populations model (resp. 3-populations). The shaded zone represents the
standard deviation. (c) Characteristic time ¢y of the relaxing process as a function of Nj.
(d) Example of evolution predicted by the 2-populations model for N; = 6. In each box, the
number of both populations is indicated in brackets (walkers, droplets at rest), followed by
the probability to reach this state. Next to the arrows is the conditional probability to go
from one box to another. The process ends when the number of walkers is zero.
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Figure 6.10: Cumulative Distribution Function (CDF) of the droplet velocity v, at various
times t. (o) t=0s, (A) t=36s, and (W) ¢t =90 s.

to the coalescences between walkers, b decreases and tends towards unity, which corresponds to
the exponential distribution. In this regime, the major part of droplets result from coalescence
and are at rest, while there are still a few walkers with high velocity. A similar velocity
distribution is encountered for large assemblies of young fishes, e.g. Nile Tilapia alevins [142].
Indeed, these alevins are generally at rest, and only a few individuals explore the surroundings
through brief sequences of high-speed motion.

The characteristic time of the decreasing of b may be related to the mean free path of the
walkers. Indeed, in a 2-dimensional gas, the mean time between two successive collisions is
given by

(6.9)

teoll =
coll UwNiR,
where S = 4900 mm? is the bath surface, v, ~ 9 mm/s is roughly the mean velocity, and
R ~ 0.45 mm is the droplet radius, which approximately corresponds to the cross section
of the droplet. Therefore, t.,; ~ 1210/N;, which is is good agreement with the observed
characteristic time for the decreasing of b.

6.3 Summary

In this chapter, we have discussed two configurations in which bouncing droplets experience
a self-propelled horizontal motion, namely the rollers and the walkers. The first is due to the
droplet deformation while the second relies on the waves emitted at the bath surface. Both
rollers and walkers are reflected on the walls of the container, so they can be guided in
channels. The walkers can also be handled with a laser beam. The self-propelled motion
occurs in a specific range of forcing parameters, so it can be started and stopped by only
tuning the forcing : the controlled manipulation of droplets onto a vibrating bath is possible.
The walkers experience long-range interactions through the waves they emit, so they may
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Figure 6.11: (a) Scale parameter a and (b) shape parameter b of the velocity distribution as
a function of time. (o) N; = 50, (A) N; = 40, (W) N; = 30, (V) N; = 20 and () N; = 10.
The solid lines are guides for the eyes.

form complex orbits or crystalline structures. Moreover, droplets are attracted by each other,
which promote their coalescence.

We have mainly investigated the collective behavior of a large number of walkers from
a statistical point of view. Due to the unavoidable collisions and coalescences between the
walkers, the number of them decreases with time. The system tends to an equilibrium state
in which droplets are too big to keep walking. The velocity distribution is correctly described
by a Weibull distribution. Initially close to that of an ideal gas, it turns into an exponential
distribution in which the major part of droplets is at rest while only a few individuals are still
walking. This distribution is also observed in other systems of collective behaviors, such as
the Nile Tilapia alevins. Therefore, the gas of walking droplets could be a promising model
for statistical physics of collective motions and self-organization.
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Chapter 7

Partial coalescence

In previous chapters, we have seen that a droplet can be sustained onto a bath as long
as there is a thin air layer separating both liquids. When the air is completely drained out,
the droplet quickly coalesces into the liquid bath. Nevertheless, the fusion is not always in
one go, and may result in a droplet of radius about half the initial droplet: the coalescence is
said to be partial (Fig. 7.1). This daughter droplet also stays on the bath, drains its air layer
and coalesces. Again, the coalescence may be partial, thus giving birth to a grand-daughter
droplet. Up to seven successive generations have been observed during the coalescence of a
single mother droplet. When the daughter droplet is sufficiently small, it coalesces totally,
thus ending this cascade of partial coalescences. The whole process lasts about 200 ms (each
partial coalescence is only a few milliseconds), so it is hardly visible to the naked eye.

—

e a
e — ., -

Figure 7.1: Cascade of partial coalescences of a 5 uL oil droplet (v = 1.5 ¢S). Four successive
partial coalescences are observed, each of them halving the droplet radius; the last daughter
droplet is about 1/10000th of the initial mother droplet in volume !

The detail of a partial coalescence is seen in Fig. 7.2(a). Coalescence only begins when the
air film breaks. This rupture usually occurs asymmetrically at the boundary of the apparent
contact zone between the droplet and the bath [143, 144]. The hole quickly opens due to high
pressure gradients resulting from the Laplace law (1.2). Indeed, the film thickness at rupture
is micrometric, so the related curvature near the break point is about C ~ 10° m~!. During
the retraction, a part of the bath comes up into the droplet [145, 146], as seen when colorless
droplet coalesces into a colored bath. Next, the emptying droplet takes a column shape that
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may pinch off and form a daughter droplet (partial coalescence), or alternatively collapse into
the bath (total coalescence). Finally, the liquid below the pinch is violently ejected downwards
and forms a powerful vortical ring in the bath [147, 148, 149].

Partial coalescence was reported by Mahajan in 1930 [150], but the first systematic investi-
gation was only made by Charles and Mason in 1960 [151], thanks to the recent developments
of high-speed photography. These authors considered the partial coalescence of water droplets
at the planar interface between an oil layer and a water layer. Since the water droplet is sur-
rounded by oil instead of air, the lifetime ¢; between two successive coalescences is increased,
so each daughter droplet is visible to the naked eye. Charles and Mason thought that the
formation of the daughter droplet is due to a Rayleigh-Plateau instability that reshapes the
column of fluid formed by the fusing mother droplet. Nowadays, this scenario is invalidated.
In 1993, the French PhD-student Y. Leblanc [89] studied the sensitivity of partial coalescence
to variations in size, surface tension, and viscosity of both fluids. Unfortunately, his results
were never published in international journals; they were rediscovered by others [152, 153, 154|
several years later. But the main breakthrough occurs in 2006, due to Blanchette and Bigioni
[155, 156] who discovered the main mechanism of partial coalescence. According to these
authors, the column shape formed by the coalescing mother droplet is mainly due to the
propagation of capillary waves on the droplet surface. These latter are created by the air film
retraction at the bottom of the droplet [89, 152, 153]. They climb on the droplet and converge
at the top. This greatly lifts the droplet interface and delays its vertical collapse, thus giving
advantage to the horizontal pinch. Other works on partial coalescence have been published
since [157, 158, 159, 160, 161|. Unfortunately, they rarely take into account the very recent
results of Blanchette.

In this chapter, we present a deeper investigation of partial coalescence at the interface
between two immiscible liquids [162]. After a dimensional analysis, we study the influence
of the physical properties of both fluids on the coalescence outcome. We discuss the exact
role played by capillary waves in the partial coalescence mechanism. Finally, we show that a
cascade of partial coalescence can be stopped on a vibrated bath.

7.1 Experimental setup

Partial coalescence is robust and easy to observe experimentally. A container is partly filled
with an aqueous solution. Then, an oil layer (v < 50 ¢S) denoted (s) is poured on it, as seen
in Fig. 7.2(a). A water droplet (mother) is released from a syringe in the oil phase. Thanks to
gravity, it migrates towards the water/oil interface and finally coalesces into its homophase.
The mother droplet radius is varied by changing the needle diameter. The viscosity of both
liquids is tuned between about 1 and 100 ¢S (various silicon oils and water/glycerol /ethanol
mixtures - App. B). The interfacial tension between water and oil has been measured. It is
approximately 40 mN /m for (water-+glycerol)/oil interfaces, and it sharply decreases with an
addition of ethanol (down to 9 mN/m for a mixture made of 40% ethanol for 60% water).
More than 150 partial coalescences have been filmed thanks to a high-speed camera (2000 fps,
pixel size 30 um). The interface position (supposed axisymmetric) is detected as a function
of time by post-processing the images.

Many experimental precautions have been taken in order to ensure the data reproducibility:

e A glass container is easier to clean.
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(b)

Figure 7.2: (a) Sequence of events in a partial coalescence of an oil droplet (v = 1.5 ¢S) in
air. (b) Experimental setup: a container is filled with an aqueous mixture (water + glycerol
+ ethanol) and a layer of silicon oil (s). An aqueous droplet crosses the (s) layer and coalesces
into its bulk phase.

e The curvature of the liquid-liquid interface may affect the coalescence outcome [155],
so the interface needs to be as planar as possible. To prevent unexpected curvatures, a
horizontal groove is made, in which the liquid/liquid interface is pinned.

e The droplet may be at rest on the interface (no internal flows) at the beginning of the
coalescence. Therefore, experiments are not taken into account when the drainage time
is less than 1 s.

e The container is sufficiently large to avoid parasite reflections of capillary waves on the
walls during the coalescence.

7.2 Invariant scalings in coalescence

How much time is a coalescence 7 Do partial and total coalescence share some common
features, or are they completely different since their beginning 7 To answer these questions,
we started by measuring the time evolution of two variables that characterize the coalescence.
The first is the excess surface energy FE, = 0 AS, compared to the final state where the droplet
has fully coalesced (Fig. 7.3a). The second quantity is the volume 2 of the droplet that is still
above the mean level of the liquid/liquid interface (Fig. 7.3b). These measurements are made
for every observed coalescence, whatever its outcome, and both AS and () are normalized by
their initial value.

The coalescence was already observed to scale on the capillary time 7, [146, 152]. Sur-
prisingly, all the AS(¢) and €(¢) curves collapse when the time is scaled by 7,, no matter the
outcome. The difference between partial and total coalescence only appears in the later stages
of coalescence. The possible pinch-off occurs between 0.7 and 0.8 7, after the beginning. The
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decrease in AS is remarkably linear; the power released by surface tension to set the liquids
into motion is roughly constant during the main part of the coalescence. The emerged volume
decreases as the cube of time, so the emptying is relatively slow until ¢ = 0.37,. The corre-
sponding flow rate evolves as the square of time. These scaling laws are only observations,
and still need to be rationalized.
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Figure 7.3: Evolution of the global quantities for a total (A) and two partial coalescences (e
and M) with various liquids. (a) Excess of surface AS. (b) Volume Q2 above the mean interface
level. The vertical solid line indicates the start point of coalescence (i.e. the film breaking).
The solid curves in (b) correspond to a fit by the equation 1 — Q(¢)/Q(0) ~ (t/7,)3.

7.3 Dimensional analysis

Once the coalescence has started, the dynamics is macroscopically governed by three forces
resulting from surface tension, gravity and viscosity respectively. Therefore, seven dimensional
parameters are relevant: the interfacial tension o, both densities p, ps and viscosities v, vs,
the droplet radius R and the gravity g. According to the Il-theorem (Vaschy-Buckingham),
four independent dimensionless numbers can be built that entirely determine the coalescence
outcome. Any dimensionless quantity that describes the partial coalescence must be a function
of these four numbers only. Since the coalescence timescale is shown to be 7, surface tension
must be the driving mechanism. Indeed, no other force (neither gravity nor viscous forces)
could explain the complex shapes encountered in partial coalescence.

If partial, the coalescence is roughly self-similar: it repeats identically, no matter the size
of the initial droplet. On the other hand, the competition between two forces gives rise to
a length scale at which both forces balance each other. For example, as seen in Chap. 1,
gravity and surface tension have the same order of magnitude when the system is close to the
capillary length. In these conditions, the process cannot be self-similar since the dominant
force is gravity for larger droplets while it is surface tension for smaller droplets. Therefore,
self-similarity requires surface tension to be the only dominant force at the considered scale.
When the droplet size is about the capillary length (resp. the viscous length), i.e. when the
Bond (resp. the Ohnesorge) number is of the order of unity, surface tension is not dominant
anymore and the self-similarity of partial coalescence is compromised. Bond (Bos) and both
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Ohnesorge numbers (Oh and Ohg) are thus pertinent dimensionless numbers. The fourth
dimensionless number may be the relative difference in density

Ap=P1_L2 (7.1)
p1+ p2

The validity of this dimensional analysis may be contested when significant residual micro-
flows are present within the initial droplet. In that case, additional parameters (and dimen-
sionless numbers) are required to describe the coalescence. Since these micro-flows directly
enhance the drainage, their characteristic timescale must be of the order of the drainage time.
When this time is measured to be much higher than the coalescence time, residual micro-flows

can be neglected.

7.3.1 The ¥ function

What kind of transition separates partial and total coalescences 7 To answer this question,
the most relevant parameter may be the the ratio between radii of the daughter Ry and mother
R;. Obviously, this latter is a function ¥ of the four independent dimensionless numbers only;

By _ U (Bos, Oh, Ohs, Ap). (7.2)
R;

When Bog, Oh, Ohgs < 1, surface tension is the only dominant force and the coalescence
is partial and self-similar (Fig. 7.4a). The ratio ¥ only depends on the relative difference
in density Ap, which is constant during a single cascade. In this regime, we observe ¥ ~
0.45 4+ 0.05 in average. Unfortunately, the liquid density is always close to water, so our
experiments do not cover a range of Ap sufficiently large to assess about the variation of ¥
with Ap.

The Bond number increases with the droplet size, and large droplets are influenced by
gravity. This latter significantly accelerates the droplet emptying [89, 155|, which is in favor
of total coalescence. As checked experimentally (Fig. 7.5a), the ¥ function decreases with an
increase in Bos. According to the present data, it is not possible to state that W is 0 (total
coalescence) for Bond numbers larger than a critical value Bogy,.

A decrease in droplet size corresponds to an increase in both Ohnesorge numbers. The
flows responsible for the partial coalescence (e.g. capillary waves) are progressively damped
by viscosity in both fluids |89, 152, 155]. This results in a decrease of the ¥ function, which
ends up vanishing when Oh > Ohy, >~ 0.02 £ 0.005 or Ohs > Ohgy, =~ 0.3 +0.05 (Fig. 7.5b).
Variations of Oh induce a sharp and premature transition from partial to total coalescence,
while variations of Ohg result in a smoother and delayed transition. Both viscosities do not
have the same role in inhibiting the partial coalescence mechanisms. As seen in Fig. 7.4(c-d)
the interface switches from a column shape to a cusp-like shape for high Ohs values.

We have also studied the behavior of ¥ with a combined variation of both Ohnesorge
numbers, the Bond number being negligible (Fig. 7.6). The boundary curve between partial
and total coalescence has been modeled by Leblanc, as

Oh + 0.0570h, = 0.02. (7.3)

Although this equation is in relatively good agreement with the experimental results when
Ohg ~ 1, it fails catching the boundary close to Oh = Ohg: partial coalescence is observed for
much greater Ohnesorges than predicted.
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Figure 7.4: Partial and total coalescences for various values of Bogs, Oh and Ohg. (a) Partial
coalescence for small Ohnesorges (Bos = 0.049, Oh = 0.0025, Ohs = 0.013). (b) Total
coalescence due to a high Ohnesorge on the aqueous side (Bos = 0.079, Oh = 0.018, Ohs =
0.0049). (c) Intermediate partial coalescence due to a high Ohnesorge on the oil side (Bos =
0.011, Oh = 0.0030, Ohs = 0.16). (d) Total coalescence when the oil side Ohnesorge is very
high (Bos = 0.0095, Oh = 0.0031, Ohs = 0.34). The time is indicated in capillary time units
in the lower left corner. Images are obtained by subtracting two successive images in order to
highlight the interface motion; the blue interface is advancing while the red is receding.
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Figure 7.5: (a) Radii ratio ¥ as a function of Bos. The corresponding Ohnesorge numbers are
always smaller than 7.5 x 1073, (b) Variation of the W function with respect to Oh (e) and

The Bond number is always smaller than 0.03, and the other Ohnesorge number
smaller than 7.5 x 1073, Dashed lines are guides for the eyes.

Ohs (0).

Figure 7.6: Combined influence of both Ohnesorge numbers on the coalescence outcome:
partial (A) or total (e). The Bond number is always smaller than 0.03. The solid straight line

corresponds to Oh = Ohg, while the dashed curve is Eq. (7.3). Circled letters correspond to
the snapshots of Fig. 7.4.
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7.4 Capillary waves

According to Blanchette [155], the convergence of capillary waves at the top of the droplet
is responsible for the partial coalescence. The motion of the droplet interface is highlighted by
subtracting successive images of the snapshots (Fig. 7.4). The progression of capillary waves
is clearly seen in Figure 7.7, which represents a time zoom on Fig. 7.4(a).

2 mm

Figure 7.7: Time zoom on Fig. 7.4(a), revealing the capillary wave propagation. The time
step is 0.0217,; the lines help locating the wavefront.

The dispersion relation of capillary waves (Eq.1.7) may be extended to the case of a droplet
immersed in another immiscible liquid (App. C):
5 L2 —1)(£+2)(1+Ap)

(f(l,m)Ta) = 37T(2£+ 1—|—Ap) (74)
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According to Fig. 7.7, the dominant mode is £ = 11 + 1. The wave is created at about 7.5°
below equator, at the beginning of the coalescence, when the hole expands below the droplet.
Its phase velocity uc, is 5.27 radians per unit of capillary time, in excellent agreement with
the velocity calculated through
UcwTo 27Tf(f,m)7-a
R, 14 ’
when ¢ = 11. The propagation time ¢, of the waves from the bottom to the top of the droplet
is proportional to £~Y/2. So modes ¢ > 8 arrive more or less at the same time, while modes
¢ < 8 come later, separately, and cannot participate to the convergence.

The capillary waves are damped by viscosity effects on both sides of the interface. This
damping may be quantified by measuring the amplitude of waves as they converge at the top.
The height of the top H(t) is measured as a function of time (Fig. 7.8a). The maximum H,
occurs in t = tq, ~ 0.47, and corresponds to the convergence of capillary waves. We see
in Fig. 7.8(b) that the damping does not significantly depend on which viscosity is increased
(inside or outside the droplet). For similar viscosities, damping is only 1.5 times more efficient
within the droplet. The critical Ohnesorge for waves to be damped before reaching the top
of the droplet is about 0.08. The viscous dissipation can be estimated theoretically (App. C).
The wave amplitude at the top is

(7.5)

Hp = Hpppe Plew/e (7.6)

where the damping factor is defined as

5 \f 20+ 1 [(g2_1)0h+£(e+2)\/m0h5] (7.7)

320+1+4 Ap

This solution is close to the measured damping (Fig. 7.8b). Again, the factors that weight
both Ohnesorge numbers in Eq. (7.7) are not significantly different for £ = 11 and Ap < 1.

0.5 T
I.C\V
%%
0
b . IHM
0 00 °

—_ °

S .

s .

= .

=% .

T 0.5t .

00%%
0
.
.
0
0
0
_1 1 ~‘
-0.2 0 02 04 06 08 1 12 1.4

Figure 7.8: (a) Time evolution of the height of the droplet summit H(t) for a partial coales-
cence. (b) Normalized maximal height of the interface, as a function of Oh (e) and Ohs (A).
Dashed lines are guides for the eyes, while the solid line corresponds to Eq. (7.6).
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7.4.1 Capillary waves and the partial to total transition

As seen in previous sections, the transition between partial and total coalescence does
depend on which Ohnesorge is increased, while the capillary wave damping are not so much
influenced by that. In particular, capillary waves may be observed in a total coalescence
(Fig. 7.4b), while being fully damped in a partial coalescence (Fig. 7.4c). Capillary waves are
fully damped when one of both Ohnesorge numbers exceeds 0.08. On the other hand, the
critical Ohnesorge values for the partial/total transition are Ohy, ~ 0.02 and Ohgy, =~ 0.3,
so 4 times less and 4 times mode than the critical Ohnesorge for wave damping, respectively.
So the link between partial coalescence and capillary waves presented by Blanchette [155]
must be revised. There must be an additional mechanism, antisymmetric in relation to both
viscosities, that promotes total coalescence for high Oh and partial coalescence for high Oh.
Moreover, this mechanism should not be efficient when Oh ~ Ohg, which would explain the
outgrowth of the partial coalescence zone in the (Oh, Ohg) diagram of Fig. 7.6.

During a coalescence, the main fluid flow is a powerful rotation that ejects the droplet
liquid into the underlying bath (cf. PIV experiments of [153], and numerical simulations of
[155, 161]). This motion, represented by thick arrows in Fig. 7.9, originates from the conversion
of interfacial energy into kinetic energy, which has been observed to occur at a constant rate,
regardless of the coalescence outcome. This kinetic energy is unequally distributed to both
liquids, though continuity conditions are satisfied at the interface.

7 ."'4 j.""' N

Figure 7.9: Schematic view of hypothetical motions occurring in a coalescence. Thick solid
arrows represent the nominal rotation (low viscosity). Dotted arrows (resp. dashed and dash-
dot) correspond to an favored rotation due to an increase in Oh (resp. Ohg).

The viscosity is known to diffuse momentum, and so kinetic energy; zones with high
velocity gradients (next to the interface among others) significantly spread when the viscosity is
increased. Since the motion is driven by the interface dynamics, the constantly released kinetic
energy preferentially goes into the most viscous fluid. So when Oh > Ohg, the rotation within
the droplet is accentuated (dotted arrows in Fig. 7.9), which promotes the droplet emptying, a
quick collapse of the fluid column and a resulting total coalescence. Conversely, when Ohg >
Oh, the horizontal collapse is favored by the reinforcement of the external rotation, which
explains the cusp-like shape observed at latter stages of the process (Fig. 7.4c-d). For moderate
Oh g, the viscous diffusion of the external rotation is limited and the horizontal collapse occurs
below the equator, the coalescence is partial (dashed arrows in Fig. 7.9). At higher Ohg, the
external rotation reaches the top of the droplet, thus also promoting the vertical collapse; the
coalescence is total (dash-dot arrows in Fig. 7.9). When Ohs = Ohy, ~ 0.32, the distance
over which momentum is diffused is about 0.5R; during the whole coalescence (¢t = 0.87,),
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Figure 7.10: (a) Two droplets are periodically bouncing on a vibrated bath, when they meet
and coalesce together. The resulting droplet is too heavy to bounce, so it coalesces partially
with the bath. The daughter droplet has a suitable mass for permanent bouncing. (b) Maxi-
mum size for bouncing as a function of the forcing acceleration I', for various frequencies. (e)
Stable bouncing droplets, and (o) unstable bouncing droplets that ends up partially coalescing.

which is coherent with the proposed mechanism. Although this latter is still hypothetical
and must be confirmed by experiments and numerical simulations, it can rationalize the role
played by each viscosity on the partial/total transition.

7.5 Stopping a cascade of partial coalescences

In a microfluidic perspective, the partial coalescence might be of interest for tuning the
volume of a droplet, provided that the resulting daughter can be retrieved. In other words, the
cascade of partial coalescences must be stopped before the ultimate total coalescence. This
goal is naturally achieved by vibrating the bath on which the droplet coalesces [163]. Indeed,
as seen in Chap. 5, a droplet of mass M bounces on a bath vibrated with a forcing frequency f
provided the forcing acceleration is larger than a threshold I'y;, (w) where w = 27 f\/M/k and
k = 32mo /3. Therefore, for given forcing parameters (T, f), there is a critical droplet mass
My, ~ (w/f)? above which droplets coalesce and below which they can bounce. Droplets
heavier than My, thus coalesce partially until their daughter reaches a mass suitable for
bouncing (Fig. 7.10a). In some sense, the system behaves as a low-pass filter that only selects
droplets smaller than a critical mass My,. Droplets of different sizes have been released on
a bath vibrated with various forcing parameters (I',f). Figure 7.10(b) indicates which ones
were observed to bounce and which ones coalesced partially. Data from different f collapse
when w is considered instead of M. For each I', there is a threshold wyy, tuned by the forcing
parameters, that prescribes the maximum size for permanent bouncing.

7.6 Summary

Low viscosity droplets are seen to partially coalesce into a static bath; a smaller droplet is
formed at the end of the coalescence process. This daughter droplet may also partially coalesce
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and so on and so forth until the droplet reaches a critical size below which it totally coalesces.
The exact conditions for partial coalescence have been investigated for droplets crossing an
interface between two immiscible liquids. Partial coalescence is possible when both Bond and
Ohnesorge numbers are smaller than some critical values. Capillary waves may be observed
at the surface of the droplet. The exact relation between them and the partial coalescence
has been discussed. Finally, we have shown that a cascade of partial coalescences can be
stopped by vibrating the underlying bath; the droplet partially coalesces until it reaches a
suitable size for bouncing. The vibrating bath is thus considered as a low-pass filter that only
selects small droplets. Large droplets are reduced through partial coalescence until their size
is appropriate.
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Part 11

Droplets on fibers
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Chapter 8

A droplet on a vertical fiber

In the early morning, the spider webs in our gardens are often covered with a myriad of
dew pearls. At dawn, the fresh and humid air condenses into a thin water film on the threads.
Quickly, this film turns into a string of droplets, the smallest of which stay on the web and wait
for the first sunbeams to evaporate again. The biggest slide and roll along the web (Fig. 8.1),
collide and fuse together, leave pearls in their wake, and sometimes fall from the web due to
a possible overweight.

Droplets on fibers are omnipresent in nature and everyday life. The first work that explores
the subject is probably the book of the belgian physicist Joseph Plateau, published in 1873
[74]. Since, a relatively small number of studies were dedicated to the interactions between
individual droplets and fibers. Physicists have rather investigated the flows of liquid films on
threads [164, 165, 166]. However, "fusion", "sliding", "micro-droplets" are words commonly
used in digital microfluidics. In these chapters, we show how the droplet behavior on those
"arachnidean" buildings can indeed inspire new ways for microfluidics.

8.1 Experimental method

The method explained here below is shared by experiments from both chapters 8 and 9.
Fibers made of nylon (fishing thread) are tight on a metallic frame. The tension in fibers is
supposed of negligible influence on the droplet motion. Unless otherwise stated, droplets are
made of silicon oil (Dow Corning 200), though the results may be generalized to any liquid
that wets nylon. Experiments involve droplets made of six different viscosities (1.5, 5, 10, 20,
50 and 100 ¢S) and fibers of 5 different diameters (80, 100, 140, 200 and 250 pum). Droplets are
directly released on the fibers with a syringe. The droplet size is varied by changing the needle
diameter. Moreover, by moving the release point on the fiber, one can tune the volume of the
droplet when it enters a specified region of interest. Indeed, as explained below, the droplet
loses some mass by coating the fiber; so the greater the distance between the release point
and the region of interest, the smaller the resulting droplet (Fig. 8.2a). About 500 droplets
have been filmed from the side with a high-speed camera (recording frequency up to 1000 fps).
Measures are made by image processing (Fig. 8.2b).

80



Figure 8.1: An oil droplet (v = 100 ¢S) slides and rolls along a fiber of diameter 140 pm.
Snapshots are taken every 50 ms. The background, including the originally dry fiber, is
subtracted in order to reveal the micrometric coating film left in the wake of the droplet. The
last picture corresponds to the sum of formers; particles within the droplet follow circular
paths, indicating that the droplet rolls on the fiber.

Figure 8.2: (a) The droplet size is tuned by changing the release point, and so the distance to
the region of interest. (b) Axisymmetric shape of a droplet on a vertical fiber. The dash-dot
(resp. solid) line corresponds to the numerical solution of Eq. (8.1) with (resp. without)
gravity.
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Figure 8.3: Drawings of Joseph Plateau [74]: the liquid form a string of pearls called unduloid
on fibers of various diameters.

8.2 Geometry

Joseph Plateau has already observed that, due to surface tension only, a liquid covering
a fiber spontaneously turns into a string of pearls (Fig. 8.3) called unduloid. This instability
has been rationalized a few years later by Lord Rayleigh [75]. Nevertheless, droplets may
take other shapes than the one proposed by Plateau. For example, the axisymmetry of the
shape is broken down by gravity for large droplets on a horizontal fiber. If the liquid does not
perfectly wet the fiber (e.g. pure water on nylon), the droplet cower on one side of the fiber,
without wrapping it [167, 168]. Such droplets often hang at rest on a vertical fiber [169]; their
weight is balanced by a bottom-up difference in contact angle. In this thesis, we mainly study
droplets that perfectly wet fibers and slide on them.

On a vertical fiber of diameter d,, wetting droplets take an axisymmetric shape of volume
2, close to the unduloid of Plateau (Fig. 8.2b), dimensions (width W and extension X) of
which are represented as a function of Q in Fig. 8.4(a-b). This shape is computed theoretically
as [r(s), z(s), p(s)], where s is the curvilinear coordinate along a meridian of the interface

(Fig. 8.2b). If supposing a balance between gravity and surface tension, the Laplace equation
(1.2) yields

dr
— = cos ,
s
z
— =sing, (8.1)
s
o AP sinp @z
ds o r A2’

where AP is the overpressure within the droplet, at location z = 0. Nevertheless, if this
balance gravity / surface tension was effective, the droplet would stay at rest on the fiber.
The observed sliding of the droplet suggests that viscous stresses have to be taken into account.
Therefore, we may suppose that these stresses balance gravity, and that surface tension forces
balance themselves. To assess this hypothesis, Eq. (8.1) is solved numerically, successively
with and without the gravity term z/A2. The comparison with experimental observations

82



wid,

-1 0 1 2 3 4 -1

0 10 10 10 10 10’ 10' 10° 10° 10'
a/d a/d
(a) (b)

10 10 1

Figure 8.4: (a) Width W and (b) extension X of a droplet of volume Q on a fiber of diameter
dy. The dashed line represents the asymptotic scalings (G.3) and (G.6). The solid line (resp.
dash-dot line) corresponds to the numerical solution of (8.1) without (resp. with) considering
the gravity term z/\2.

(Fig. 8.2b and 8.4b) clearly confirms this second scenario; gravity can be neglected in the
Laplace equation and the droplet indeed takes an unduloidal shape. Although this unduloid
cannot be described with a simple explicit equation, it is possible to find analytical expressions
in the asymptotic regimes > d3 and Q < d3 (App. G).

8.3 Short-term steady motion

The motion of a droplet on a vertical fiber involves several effects with specific timescales.
Starting from rest, the droplet first accelerates and quickly reaches (in less than 0.1 s) a limit
speed where viscous effects balance gravity, as shown indirectly in the previous section. On the
other hand, the droplet leaves some mass in the coating film; the mass loss becomes significant
after several seconds. Therefore, only the (not too) short-term velocity may be considered as
constant. The gravity/viscosity balance has already been encountered in other related systems,
such as the propagation of a slug in a tube [36], or the droplet motion on horizontal fibers
induced by thermal effects [170], geometry [171] or aerodynamic forces [172]. The friction is
due to velocity gradients within the droplet, that are estimated by c¢,1v/W - X/2z. Here, z is
the distance to the nearest contact line and ¢,; a proportionality factor that may depend on
surface tension among others. The resulting viscous force is

X/2
puov X
F,=2-mnd, 11— ——dz. 8.2
4 /0 oWt (8.2)

This integral diverges due to the singularity at contact point (z = 0). In order to solve this
paradox, one may begin to integrate from z = Z ~ 107 m - the characteristic length of the
molecular film covering the fiber - instead of z = 0. This yields

X
F, = wcylowpdev, (8.3)
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where
a =In(X/2E) ~ 15. (8.4)

Balancing this force with the droplet weight pg€) gives

o 1 W8 (8.5)
gd?2 w0 X dB
As previously seen (Fig. 8.4), the dependence of W/X on Q/d> is complex in the general case,
but droplets sufficiently large compared to the fiber tend to be spherical, so W/X — 0.5.
Equation 8.5 is in excellent agreement with experimental results (Fig. 8.5), whatever the fiber
diameter d,, provided that ¢, satisfies

Ao Vv dy W Q
Cyl = Cp2 d_v = E = TC (X A—Uyd—% (86)

The factor y/d,/\, clearly indicates that gravity is not perfectly balanced by viscous effects,
and that surface tension also plays a role in the droplet limit velocity. The coefficient ¢, is
of the order of unity; it slightly depends on the viscosity when this one is lower than 10 cS.
The following empirical law is proposed (inset of Fig. 8.5):

AS
ey = 0.33 (1 + 0.01—Vlg/">. (8.7)

We can now estimate the acceleration time of the droplet

v 1 d, W Q

~ — =

g mama\ Ao X do’

(8.8)

tacc

and check that, for a typical velocity of 1 m/s, the steady regime is reached after 0.1 s.

8.4 Long-term mass loss

The coating of a solid by a liquid has been deeply investigated since the pioneering work
of Landau, Levich and Derjaguin [173]. The LLD theory rationalizes the coating of a fiber
slowly pulled out of a liquid bath. The thickness ¢ of the coating film is given by

9 = cpeCd®®  with Ca= &, (8.9)
dy o

where Ca is the capillary number and the wetting constant ¢, = 0.67 according to the
authors. Many corrections (gravity, inertia, geometry, wetting, etc.) can be implemented by
simply changing this factor cye [174]. For example, ¢y, = 1.07 when the fiber crosses the
interface between two immiscible liquids [175, 36].

Sliding droplets are observed to coat fibers exactly as if these latter were pulled out of a
bath. Consequently, the droplets lose some mass through coating as they move on the fiber.
Equation (8.9) may be applied to predict the mass loss and be coupled to (8.6) in order to
get the long-term trajectory of the droplet. Denoting by Z the vertical position of the droplet
mass center, the volume variation Q is

. . 2/3 |
O = —1dydZ = —meyped? <ﬁ> Z5/3, (8.10)
g

84



10°

2 3

1 10
Q/d DwWiIx o /x )Y?
\ vV O

10

Figure 8.5: Short-term balance: normalized velocity vv/gd? as a function of the normalized
volume Q/d2. Black (resp. white) symbols correspond to viscosity v > 10 ¢S (resp. v < 10 cS).
(o,0) d, = 80 pum, (A) dy = 100 pm, (W) d, = 140 pm, (#) d, = 200 pm, (V,V) d, = 250 pm.
The solid line represents Eq. (8.6) where ¢,o takes its high-viscosity value (0.33). The dashed
line is Eq. (8.6) in the low-viscosity regime, i.e. ¢,2 > 0.33. (Inset) Coefficient ¢,9 as a function
of the normalized viscosity v/4/gA3. The solid line corresponds to Eq. (8.7).

We proceed by deriving (8.6) according to time, supposing that W/X is constant:

. X o UZ
2 =re07 Z—v”dg . (8.11)

Both equations yield

p oo e W[ 0\ Pdy s
coa X V A \o v ’
- . —cwe W [dy (p\*gd
= —wZ3  with w= e [ (K v 8.12
w wi w coa XV A \o v’ ( )

where the parameter w only depends on physical constants. This equation is integrated twice;

) L 71/2
73 <Zi 28 4 %wt)

7 =
w/3 ’

(8.13)

where Z; is the initial velocity of the droplet. Predictions of Eq. (8.13) are compared to the
observed long-term trajectories (Fig. 8.6). The initial velocity Z; is fitted on the experiments,
and w is computed by successively taking c,e = 0.67 and ¢y = 1.5. This second value gives
an accurate description of the trajectory, whatever the droplet viscosity or size. Finally, we
check a posteriori that the ratio W/X is approximately constant over a trajectory. Typically,
W/ X variations become significant when (2 is varied by a factor 10, which happens after about

5.5/(wZi2/3), so 89 s for the (¥)-curve in Fig. 8.6.
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Figure 8.6: Long-term trajectories Z(t) of droplets with various viscosity and size on a fiber

of diameter d, = 250 ym. The solid line (resp. dashed line) corresponds to Eq. (8.13) with
Cwe = 1.5 (resp. cye = 0.67).

8.5 Shape transition

The droplet shape on a fiber is not always axisymmetric and unique; several equilibrium
configurations may coexist, some being more stable than others [168]. We have seen that some
100 ¢S droplets sliding on a vertical fiber can remain in a metastable asymmetrical shape. At
any moment, these droplets quickly switch to the well-known axisymmetrical configuration.
By the way, the friction is considerably increased and the droplets immediately slow down
(Fig. 8.7a). The inverse transition has never been observed and is likely impossible.

The velocity vy of the final symmetrical shape has been measured as a function of the
initial velocity v; before the transition, for 100 ¢S droplets on various fibers (Fig. 8.7b). Data
suggest

vy = 0.300;, (8.14)

so the friction coefficient c,o is about 3.3 times less in the asymmetrical configuration.
We have observed a similar transition on inclined fibers, though both configurations are
asymmetric in that case (Fig. 8.8). The velocity is only decreased by a factor 2.

8.6 Summary

In this chapter, we have characterized the shape and motion of a droplet on a vertical fiber.
Provided that the droplet wets the fiber, it takes an axisymmetric shape and starts sliding
down the fiber. After a short acceleration, the droplet reaches its terminal velocity, that
results from a balance between its weight and the viscous friction on the fiber. As the droplet
slides, it coats the fiber and loses some mass. Consequently, the terminal velocity slowly
decreases. Finally, we have observed that the droplet may keep a metastable asymmetric
shape for seconds before axisymmetry is recovered.
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Figure 8.7: (a) A 100 ¢S droplet slides along a vertical fiber of diameter d,, = 160 pm. Snap-
shots are taken every 160 ms. The initially asymmetrical shape suddenly becomes symmetric,
which decreases the droplet velocity from 18 mm/s to 5.7 mm/s. (b) Velocity of the symmet-
rical shape vy as a function of the velocity of the corresponding asymmetrical shape v;. The
solid line corresponds to Eq. (8.14). (Inset) Typical trajectory Z(t) of a droplet experiencing
a shape transition in ¢ = 0. The solid lines represent constant velocity trajectories.

Figure 8.8: A 100 ¢S droplet slides along an inclined fiber of diameter d, = 140 pm. Snapshots
are taken every 320 ms and superposed together. The shape transition increases the friction,

so decreasing the velocity from 6 mm/s to 3 mm/s.
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Chapter 9

Intersection between two fibers

In chapter 8, we have studied droplet motion on a single fiber. We naturally proceed by
discussing the behavior of droplets as they encounter an intersection between two fibers. The
junction is simply made by placing a horizontal fiber next to the vertical one, so they just
touch each other; contact is ensured by the tension between fibers.

9.1 Blocking/crossing transition

Droplets are released on the vertical fiber, upstream from the intersection. As they ap-
proach, two scenarios are observed: small droplets remain pinned on the node (Fig. 9.1a) while
larger droplets cross the intersection and keep sliding downwards (Fig. 9.1b). The trapping of
small droplets is mainly due to the capillary forces developed by the horizontal fiber. On the
other hand, large droplet are likely too heavy to hang on the horizontal fiber. Lorenceau and
Quéré have already investigated problems that involve the same mechanism, namely falling
droplets that impact a sieve [176] or a horizontal fiber [177]|. The balance between gravity and
surface tension is the Bond number related to the fiber, defined as

Mg

Bo =
¢ 2rody,’

(9.1)

where d;, is the diameter of the horizontal fiber. A sharp transition is observed between
blocking and crossing regimes (Fig. 9.2a); there is a critical Bond number Boy, ~ 1 above
which droplets cross the node and below which they are blocked. The intersection behaves
as a fluidic diode. This Boy, depends on the droplet viscosity v, at least when this latter is
small.

When crossing, a tiny amount of liquid is still trapped by the horizontal fiber, so the droplet
mass (and corresponding Bond number Boy) after crossing is slightly lower than before (Bo;).
Although this volume cannot be accurately measured, it should be about a few times the
"volume" of the intersection, namely dpd,(dp, + d,).

Large high viscosity droplets may experience significant delays (sometimes as long a several
seconds) when they cross the intersection (Fig. 9.3). These delays are shown to diverge as
Bo — Boyy, as often in physics when a potential barrier is just crossed (Fig. 9.2b). The
divergence is not observed for low viscosity droplets, whose crossing time remains small.

As already seen in Fig. 9.2, the threshold Bond number Boy, increases with the droplet
viscosity, and saturates to a limit value in the high viscosity regime where delays are observed.
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Figure 9.1: A 5 ¢S oil droplet interacts with a junction between two nylon fibers (diameter
140 pm). Snapshots are taken every 10 ms. The intersection behaves as a fluidic diode: (a)
A small droplet is pinned on the junction, while (b) a large droplet crosses it. In that latter
case, a tiny amount of liquid is left at the intersection.
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Figure 9.2: (a) Relationship between the volume of liquid allowed to cross the node and the
initial droplet volume, expressed in terms of Bond numbers Bog¢(Bo;). The solid lines cor-
respond to equations Boy = 0 when Bo; < Boy, (blocking) and Boy = Bo; — 0.05 when
Bo; > Boyy, (crossing). (b) Time ¢t needed by the droplet to cross the intersection, as a func-
tion of Bo;. The solid line is the empirical law ¢ /v = 900/(Bo; — Boyy,). (a-b) Experimental
data for dp = 250 ym and d, = 80 ym: (o) v = 1.5 ¢S, (A) v =5 ¢S, () v = 10 ¢S, (V)
v =20 cS, (0) v =50 cS and (<) ¥ = 100 ¢S. Error bars typically correspond to the symbol
size. The dashed lines correspond to the Boyj, values.
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Figure 9.3: A delay of nearly 0.2 s is observed when a 50 ¢S droplet with Bo — Boy, crosses
the intersection between two fibers of diameter 140 um. Snapshots are taken every 34 ms.

1.67
1.6
1.4r
1.4
1.2r
1.2r
l.
< 1f IS
o~ o
@ 4 @ 08
0.6 0.6
0.4 : 0.4
0.2r g 0.2r
0 0 . 1 . 2 (905 Oll 0 .15
10 10 10 : d./7\ Jd /A '
v [cS] h"c’ V"o

(a) (b)

Figure 9.4: (a) Variation of Boy, with the droplet viscosity v for (e) dj, = d, = 80 um, (H)
dp = 80 ym and d, = 250 ym, and (A) dp = 250 pm and d,, = 80 um. (b) Variation of Boy,
with the fiber diameters, for v = 50 cS. (o) d, = 80 um and d, is varied, (W) d, = 80 um and
dj, is varied, and (A) dj, = d,, are both varied.

The critical viscosity above which Boy, is constant depends on the fiber diameter (Fig. 9.4a).
In general, Boy, decreases with increasing fiber diameter (Fig. 9.4b) in a non-obvious way.

9.1.1 Modeling

In order to model the behavior of a droplet interacting with a junction between two fibers,
we have first to measure and analyze the droplet trajectory. Observations are again qual-
itatively different depending on the viscosity regime. As already mentioned, high viscosity
droplets cross the junction with a delay time that increases as they approach the threshold
Boyy, (Fig. 9.5a). Small droplets are smoothly blocked, and the trajectory is always mono-
tonic. Low viscosity droplets do not experience any significant delay when crossing is allowed.
Moreover, small blocked droplets largely oscillate before coming at rest on the node (Fig. 9.5b).

These results strongly suggest to model the droplet as a damped harmonic oscillator whose
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Figure 9.5: (a) Droplet trajectory in the high-viscosity regime, namely for d, = d, =
80 um and v = 100 ¢S, so Boy, ~ 1.67. (e) Blocking for Bo; = 1.54, (A) crossing for
Bo; = 1.87, and (M) crossing with delay for Bo; = 1.68. (b) Droplet trajectory in the low-
viscosity regime, namely for d, = 250 ym, d, = 80 um and v = 1.5 ¢S, so Bog, ~ 0.41. (e)
Blocking for Bo; = 0.38, and (A) crossing for Bo; = 0.52. In both (a) and (b), the solid line
corresponds to the fit of Eq. (9.2), while the dash-dot line represents the linear trajectory that
the droplet would have taken if it had not been delayed by the horizontal fiber. The cross
indicates the delay time ¢j,.

restoring force is truncated to the neighborhood of the node, i.e.
MZ—l—culqu/3Z'+k:ZX[,Zl,Zﬂ(Z) = Mg, (9.2)

where ¢, is the friction coefficient, X[—ZhZQ](Z) is the characteristic function equal to 1 when
—Z1 < Z < Zy and () otherwise, and k is the stiffness of the spring mechanism related to the
horizontal fiber, so

dp

k= CLO0 = CO—WU.

(9.3)

The position Z of the droplet mass center is counted from the intersection, thus corresponding
to Z = 0. Equation (9.2) is put in a dimensionless form by using

y=12/% (9.4)
and 7 = \/k/Mt;
i+ 269 + yx-1,4(y) = ©, (9.5)
where 1/
k= Zy/Z1, 20 = Gl _# and © = Mg _ 2n2 Bo. (9.6)

Vo /pady, kZy  ceZr

We note that the damping factor § is equivalent to an Ohnesorge number based on dj, and
the forcing parameter © is proportional to the Bond number.

This equation may be solved starting from the initial condition y(0) = —1 and g(0) =

©/203, i.e. when the droplet, evolving at the limit speed ©/23 as described in Chap. 8,
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touches the horizontal fiber. Like in the classical damped oscillator, two regimes are observed
in Eq. (9.5) according to the value of 3. For 3 > 1, the system is overdamped and corresponds
to the high-viscosity regime, while it is underdamped otherwise.

In the overdamped regime § > 1, the solution is

26%(14 ©) — ©

y(1) =0 — e P | (1 + ©) cosh(®r) + 530

sinh(®7) |, (9.7)

where
o =./|5%—1]. (9.8)

The solution always tends monotonically towards y = ©. Nevertheless, the solution is not
valid anymore when y > x due to the truncation; Oy, = k is therefore the threshold that
separates blocking (0 < k) and crossing (© > k) behaviors. The crossing time obviously
diverges when © — k™, as in experiments.

In the underdamped regime 3 < 1, the solution is

26%(1+0) -0
206P

y(1) =0 — e P |(1 + 0) cos(P7) + sin(®7)|. (9.9)
The solution also tends towards y = O, but with damped oscillations. The critical point y = &
is necessarily reached at the first oscillation, so the crossing delay cannot be larger than the
oscillator period. The blocking/crossing threshold ©y, is obtained when the first maximum of
Eq. (9.9) coincides with y = k, which yields

—Oy, ®
B(Ow, +2)

where 7y, is the time of first maximum when © = Oy,. This system of implicit equations
with unknowns (74, ©y,) cannot be solved analytically. Nevertheless, it can be shown that
(Tth, ©wn) — (m,0) when 8 — 0.

When crossing occurs and y passes the x-point in 7., the droplet starts accelerating again

Y(Teh, Osp) =k with  tan(Pry) = (9.10)

until it reaches its terminal velocity:

y(r) =k + %(T gy - 22 28(T) _igf () [1 - e_Qﬁ(T_T“)] , (9.11)

where ¢(7,) is the velocity at the exit point y = k.
Equations perfectly fit experimental trajectories (Fig. 9.5). As seen in Fig. 9.6, the fitting
parameters c,1 and ¢, approximately satisfy

_ dn dy | A%
Cul—cy2<X>ﬁ>ﬁaa

d;, d
Co :cC,(ﬁ,ﬁ).

More precisely, we obtain for d,, = 80 um, Dimensionless parameters © and 3 are computed for
each experiment, starting from these values of ¢,2 and ¢,. The agreement with the theoretical
equation (9.10) is rather good (Fig. 9.7), considering the significant error made by converting

the measured physical parameters into dimensionless quantities 3 and ©.

(9.12)
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Figure 9.6: Coefficients c,1 and ¢, of the dimensional model (9.2). Symbol data are obtained
by fitting this model to the experimental trajectories. The lines correspond to Eq. (9.12), the
shaded areas represent standard deviations. The (e) and solid line (resp. (A) and dashed line)
correspond to dp = 80 um (resp. dj = 250 um), while d,, = 80 um in both cases.
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Figure 9.7: Dimensionless threshold curve ©(f3) given by Eq. (9.10). Symbols represent the
experimental data for d, = 80 um and (e) d;, = 80 pum or (A) dp = 250 ym. The conversion
from dimensional measurements to dimensionless variables is made through Eq. (9.6).
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Figure 9.8: A H3S0, droplet (upcoming) fuses with a NaOH droplet on a node. The reaction
is revealed by bromomethyl blue. The snapshot length is 0.1 s.

Finally, we note that the parameter ¢, may be related to the critical Bond number Boy,.
Indeed, in the overdamped regime, O, = K, s0

O*1/3
ZQ =A4r

BOth,V—K)O' (913)
(o

Measurements of Boy,(dp,d,) (directly from the experiments) and c,(dp,d,) (from the tra-

jectory fitting) suggest that Zs = 0.68Q1/3, whatever dj, and d,. Therefore,

Co ~9.24Botp, oo (9.14)

9.2 Microfluidic operations on fiber networks

We now proceed by showing that the intersection between two fibers may be the basic
component of a new fiber-based microfluidic technology, exactly as the "T" junction in mi-
crochannels [178]. Indeed, a fiber junction is a perfect place to bring several droplets carrying
a biochemical content and make them react together (Fig. 9.8). An efficient and spontaneous
mixing occurs when both droplets coalesce together, the reaction is nearly completed after
only a few tenths of seconds. The resulting droplet may flow down or remain pinned on the
junction, depending on the initial volumes used in the process.

9.2.1 Division

A large droplet spontaneously divides into N small droplets on a network made of N
parallel horizontal fibers that cross a single vertical fiber in N points. The large droplet crosses
every junction, but coats the intervening vertical segments. The coating film destabilizes
and the resulting pearls are collected on the next junction (Fig. 9.9a), giving birth to N
localized microdroplets. An experimental prototype has been realized with 44 horizontal
fibers (diameter dj, = 80 pm, spacing 4 mm) and a vertical fiber (d, = 80 um) mounted on a
LEGO frame. An oil droplet of Q = 2 ul and v = 5 ¢S slides down the vertical fiber, the thin
coating film left in its wake destabilizes and forms 44 pearls of volume about 60 nL, collected
at the junctions.

By changing the fiber diameter and spacing, this division network can be optimized, e.g.
with respect to the number of microdroplets IV that are created from a single droplet. This
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number obviously depends on the amount of liquid left by coating, which itself varies with the
initial droplet velocity. This velocity is about

v Mg
33uvdy g

which means that, according from the coating law of Landau-Levich, the mass loss per unit
length is

(9.15)

dM Mg \?*3
— = 7pdyd ~ 0.13 2 —L= . 9.16
dZ ﬂ—p p 1)(0_ /dUA0.> ( )

Remarkably, this mass loss does not depend on pu; approximately the same quantity of liquid
is lost by coating, whatever the viscosity of the initial droplet. This fact is of importance
since it ensures a strong robustness of the technique to the physical properties of the liquid
of interest. The maximum length L that a droplet is able to travel on a vertical fiber before
being entirely consumed and transformed in a coating film is

o \5/6

which is about 0.5 m for a 2 uL oil droplet on a 80 pm fiber. The droplet can thus travel about
a distance equal 360 times its size when d, = 80 um, and 180000 times when d, = 2 ym !
Since the spacing between fibers needs to be at least 3 times the droplet size, we conclude
that about 100 micro-droplets may be generated on a 80 um fiber network, and 50000 on
2 pm fibers ! Practically, the division factor is less, since a small part of the initial droplet is
also directly retained at each junction.

The rate at which the division is performed mainly depends on the time needed by the
micro-pearls to reach the next junction. Since the initial droplet is about 1 mm in diameter,
a fiber spacing of 4 mm seems to be a reasonable minimum. Pearls of volume €2 ~ 60 nL. and
viscosity 5 ¢S have a velocity ¥ ~ 10 mm/s, so they are collected on the node in less than a
second, as observed experimentally.

9.2.2 Multiplexing

The division process described here above is of particular interest for multiplexing issues.
Multiplexing consists in making biochemical reactions in parallel between a liquid A and N
liquids By, B, ..., By. One have to divide liquid A in N parts and make every of them react
with one of the B; liquids. For example, the droplet A, released on the vertical fiber of a
division network, divides into N parts. Then, the setup is rotated 90°, and the B-droplets are
placed on the newly vertical NV fibers. The fusion and reaction between A and B occurs on
the intersections.

Since the B droplets are made with a syringe, they may be too large to be blocked by the
fibers. An improved prototype has been made in LEGO, in order to make a droplet A react
with 4 droplets B;,7 = 1...4. This setup, schematized in Fig. 9.9(b), consists in a vertical fiber
Vaso (diameter 250 pm), four vertical fibers Vzg (diameter 80 pum) and 4 horizontal fibers Hasg
(diameter 250 um). Fibers are shifted in such a way that the Hasg fibers touch the Vasg, as
well as only one of the Vgg. An A droplet is released on Vasg, it slides down the fiber and
crosses the four intersections, leaving 4 microdroplets. The B; droplets are placed on each
Vg, they cross only one junction where they leave a single microdroplet. The setup is then
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Figure 9.9: (a) With junctions in series, a droplet of = 60 nL and v = 5 ¢S is divided into 44
microdroplets of volume 60 nL. The fluid lost by coating is collected on the nodes. Snapshots
are taken every 48 ms. (b) Schematic view of a multiplexing device that make a white droplet
react separately with four black droplets.
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rotated by 90°, the Vg fibers are now horizontal so they cannot sustain the B; microdroplets.
These latter fall down the Hasg fibers until merging and reacting with the A microdroplets
located at the next junction.

9.2.3 Encapsulations

Tiny aqueous droplets evaporate very quickly, only in a few minutes. To prevent evapo-
ration, the droplets may be wrapped with an oil layer. This wrapping can be made at the
junction between two fibers (Fig. 9.10). In order to study this phenomenon, a colored water
droplet is placed at an intersection, and some oil droplets are left on the vertical fiber. These
latter slide down and wrap the water droplet. It is observed that the water droplet may be
caught by the oil and carried away from the junction (Fig. 9.10a), or it may be left coated at
the junction while the oil keeps sliding down (Fig. 9.10b). The first scenario is of interest in
microfluidics since the oil droplet may be seen as "cleaning" the fiber and resetting the system
after any operation on the water droplet. The transition between both behaviors has been
investigated as a function of the water volume Q and related Bond number Bo = pQ}/(27wody,),
where ¢ ~ 30 N/m is here the interfacial tension between water and oil. There is a critical
Boyy, below which the water droplet is left and above which it is caught by the incoming oil
droplets (Fig. 9.11a).

9.2.4 Fiber networks in microfluidics

Fiber-based microfluidic devices present numerous advantages over existing technologies
(e.g. pressure-driven droplet convection into microchannels, handling on a chip by electrowet-
ting).

e The contact between droplets and solid parts is reduced; the loss of liquid through
coating is minimized, especially since the coating pearls are also collected. Therefore, a
millimetric droplet can be quickly divided into tens of microdroplets.

e The operations described above are robust to the physico-chemical properties of the
liquid of interest. They only require the liquid to wet the fiber, which is easily satisfied by
using adequate fiber materials or by adding surfactant molecules. This is of importance
in diagnostic applications, where the physical properties of the liquid to be tested are
not known in advance. Such a robustness property does not exist in microchannels,
where e.g. it is impossible to divide high viscosity droplets [179].

e Contrary to the planar labs-on-a-chip, the geometry of fibers allows the design of fully
3-dimensional networks with many fibers bringing multiple reactants to the same point.

e Channel-based microfluidics [178] often requires synchronisation of the droplets conveyed
into various channels, which is achieved through high-tech micropumps. Here, there is
no need for any external synchronisation: droplets wait for each other on the nodes.

e Thanks to the sharpness of the blocking/crossing transition, the volume of a droplet
that come off a node is accurately controlled.

e There is no risk of denaturing the biochemical content of the droplet due to prohibitive
electric fields generated by electronic components.
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Figure 9.10: (a) A large water droplet is wrapped and caught by incoming oil droplets. (b)

A small water droplet is wrapped and left by incoming oil droplets. In both cases, the oil
viscosity is ¥ = 100 ¢S and the diameter of both fibers is d = 250 um.
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Figure 9.11: Threshold €, between the "left" and the "caught" behaviors for dp = d, =
250 pm and v = 20 cS. Values of €2, are mentioned for different fiber radius and oil viscosity.

e Finally, fiber networks are reusable, zero-energy consuming and practically costless.
They do not need neither any high-tech device nor any expertise from a research lab.
They are also transportable, since microdroplets only unpin from the intersections with
extreme inertial forcing. These advantages are crucial because they allow anybody to
buy and use this diagnostic device "at home".

The main drawbacks of fiber networks are the risk of evaporation of microdroplets and the
operation rate which is not as high as in some other technologies. Nevertheless, evaporation
can be avoided by encapsulating droplets, or by placing the setup in a saturated atmosphere.
Concerning the rate, which is in fact not so bad, we would argue that most microfluidic
operations do not necessarily require the highest achievable rates. It does not matter if a
medical diagnostic test is made in 0.1 s with a complex apparatus based on microchannels, or
in maybe 1 s thanks to a simple, ergonomic and low-cost fiber network !

9.3 Summary

In this chapter, we have analyzed the behavior of droplets sliding on fibers as they en-
counter a crossing between two fibers. Large droplets cross the node while small ones remain
pinned; the transition between both behaviors occurs for a critical Bond number. The droplet
trajectories have been measured. Viscous droplets are observed to experience significant de-
lays in crossing the node. These experimental results are well-rendered by a theoretical model
that consists in a truncated harmonic oscillator. Finally, we have shown that simple fiber
networks could advantageously perform some basic microfluidic operations.
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Conclusions and future work
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Conclusion

Although droplets are common objects that may seem perfectly understood, the scientific
community is more and more interested in their physics. As explained in chapter 2, droplets
are currently considered as very promising objects for microfluidic developments. Indeed,
each individual droplet can serve as a support for microscale biochemical reactions. Many
processes involved in chemistry, biology and medicine could be miniaturized by handling,
mixing, dividing, combining individual droplets of reagent. Nowadays, several techniques
of droplet manipulation are already under investigation, e.g. droplets conveyed through a
channel network by an immiscible liquid, droplets traveling on a chip by electrowetting, etc.
Each application has a series of constraints and requirements that the various techniques can
meet more or less easily. Therefore, scientists take advantage to develop every possible way
to perform the set of basic operations encountered in digital microfluidics. Hopefully, thanks
to the complex action of surface tension, the physics of droplets is extraordinarily rich and we
are far from having explored every variant.

The main objective of this thesis was to find some new alternatives to microfluidics and
to investigate them through simple experiments and mathematical models. We have mainly
focused on the following constraint :

Is it possible to manipulate droplets without touching them with any solid or liquid ? If not,
how to minimize the contact ?

These questions are addressed respectively in both parts of the manuscript. In particular, we
explain how to handle droplets through bouncing on a bath and on fiber networks.

Usual levitation is definitely expensive and unsuitable for handling individual droplets.
Conversely, it is much easier to maintain them in the vicinity of another liquid interface. In
particular, we have shown that droplets can be kept bouncing onto a liquid bath, provided
this latter is vertically vibrated. While bouncing, the droplets must never touch the liquid
beneath, otherwise they would coalesce. A bounce implies a change of direction, which can
be achieved only by storing and restoring the kinetic energy of the incoming droplet. In order
to understand the underlying mechanisms, we have studied two configurations of bouncing
droplets, namely on a soap film (chapter 4) and on a high-viscosity liquid bath (chapter 5).
In the first case, the storage is primarily ensured by the soap film. Since its mass is negligible,
it instantaneously deforms in response to the droplet, a property which deeply simplifies the
corresponding model. On the other hand, the viscous bath cannot restore energy so the droplet
must rely on its own deformation. In both cases, permanent bouncing is observed when the
liquid support (bath or film) is forced through a vertical sinusoidal motion. More precisely,
there is a forcing amplitude threshold above which the droplet bounces indefinitely. Since
the bouncing involves a spring mechanism with a related natural frequency, this threshold
depends on the forcing frequency. In particular, the threshold may be significantly lowered
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by a resonance phenomenon between the forcing and the spring, as well-rendered by the
proposed models. Physically, bouncing droplets exhibit some interesting properties such as
multi-periodicity and transition to chaos.

To maintain droplets "alive" by making them bounce permanently on a vibrated liquid
bath is only the first step. In chapter 6, we have discussed two modes of horizontal self-
propulsion of bouncing droplets, namely rollers and walkers. These moving droplets stay at
a distance from the edges of the container, so they can be guided when the boundaries form
a channel. The walkers also interact together and form orbits, crystalline structures, etc. We
have mainly studied the collective motion of a large number of walkers. In this special gas,
colliding particles coalesce together until they are so large that they cannot move anymore.
Unfortunately, although fusion between droplets is easily achieved, we still do not know how to
perform the inverse operation, namely to break up the droplets. In counterpart, as explained
in chapter 7, the droplet volume may be controlled in some way. Indeed, low viscosity droplets
are shown to experience partial coalescence, i.e. they do not coalesce in one step. Instead, a
half-smaller droplet is formed at the end of the coalescence. If sufficiently small, this daughter
droplet starts bouncing. Otherwise, it partially coalesces again until it reaches the appropriate
size selected by the forcing conditions.

At this stage, the "bouncing-based" microfluidics come close to being fundamental research
rather than applied physics. Nevertheless, we can already catch a glimpse of the advantages it
would bring over other handling techniques. The first of them is likely the flexibility: manip-
ulations are driven through the forcing parameters, which can be reprogrammed in real-time.
This property is of interest for research and development, when one has to deal with a small
number of droplets at a time without doing the same operation twice. Since the droplet does
never touch another liquid or solid, it is free of unwilled contamination or mass loss by wet-
ting. Finally, as mentioned in the perspective section, some operations can be performed on
droplets that are hardly made otherwise, e.g. the spontaneous creation of a micro-emulsion
in a bouncing compound droplet.

In the second part of this thesis, we have investigated the behavior of droplets on fiber
networks. Fibers are indeed a good compromise since the droplet is touched but the contact
area is minimal. First, we have rationalized the motion of a droplet on a vertical fiber (chap-
ter 8). After a short acceleration, the droplet reaches a terminal velocity that results from a
balance between gravity and friction forces. The droplet is observed to leave a thin coating
film in its wake. Thanks to the Rayleigh-Plateau instability, this film quickly turns into small
pearls that also flow down the fiber. Secondly (chapter 9), we have studied what happens
when the sliding droplet encounters the basic element of a fiber network, namely a junction
with another (horizontal) fiber. Depending on its volume, the droplet may stop or it may keep
sliding downwards. This binary behavior turns out to be very interesting for many droplet
manipulations. For example, the division of a droplet into a large number of micro-droplets is
performed more easily than ever by placing as many nodes in series. Indeed, a large droplet
crosses them all while the small pearls resulting from its coating film are blocked. Therefore,
each node collects the pearls left in the section just upstream. We have finally studied some
other basic operations on fiber networks, such as fusion, multiplexing and encapsulation. As
discussed at the end of chapter 9, fiber networks can be advantageously implemented in a
number of microfluidic systems, including costless and easy-to-use diagnostic tools.
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Future work

The physics of droplets is extraordinarily rich and still shrouded in mystery. These last
sections shortly pave the way for new work involving droplets. Some of them can likely be
addressed in a few months while others are open questions that may span decades.

Bouncing on a vibrated surface: universal behaviors

Problems related to bouncing on a moving surface share a lot of similarities and universal
features. In particular, the corresponding models exhibit common behaviors, such as multi-
periodicity and chaos. Moreover, their bifurcation diagrams often seem qualitatively equiva-
lent. Nevertheless, an extensive study of the bifurcations is still lacking, even for the simplest
of these systems, i.e. the elastic ball (App. E). Indeed, the involved equations are usually
not continuous but piecewise-smooth, so the classical theory of nonlinear systems cannot be
directly applied and must be reformulated [180].

Independently from its possible use in microfluidics, the bouncing of objects on a vibrated
surface may also be of interest to rationalize some behaviors encountered in nature. For
example, flying fishes are observed to bounce onto the sea surface in order to escape predators.
Physically, this bouncing is not due to surface tension anymore, but rather to inertial forces,
as for skipping stones [181, 182]. Surprisingly, they seem to systematically swim perpendicular
to the waves. Would they take advantage of the waves to optimize their trajectory ?

Walkers and rollers

We have discussed two modes of self-propulsion of bouncing droplets on a vibrated bath,
namely rollers and walkers. Although a significant work has already been made on walkers
[76, 133, 141], both modes need further investigation. In particular, the interactions between
droplets must be addressed in details. How does the virtual force they exert on each other
scale 7 What is the stability of crystalline structures ? Can phase transitions be observed
from an ordered to a gas-like state 7 What are the similarities with other systems involving
collective motion, such as an ideal gas, a colony of bacteria or a fish school 7

Reflection / refraction of droplets

Reflection and refraction are known for centuries in wave theory. In mechanics, macro-
scopic objects may also be reflected or refracted as they encounter a boundary between
two media. While the billiard ball reflection is well-understood, there are a number of
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Figure 9.12: (a-b) A water droplet impacts on an inclined soap film. Depending on its ve-
locity, it may bounce on (a) or cross (b) the film. In both cases, the trajectory is deviated,
corresponding to a reflection and a refraction respectively. (¢) A droplet is also deviated when
it impacts an inclined fiber.

reflection /refraction-like motions that still need to be studied, especially in fluid mechan-
ics. In relation with this thesis, droplets that interact with an inclined soap film are deviated
so both reflection and refraction are observed (Fig. 9.12a-b). Deviations are also seen when
a droplet impacts an inclined fiber (Fig. 9.12c). Can the Snell’s laws be extended to these
systems 7 If not, what are the relevant parameters to scale and rationalize these trajectory
deviations 7

Static shape of droplets

In this thesis, we mainly focused on axisymmetric droplets because they are easily observed,
characterized and modeled. Nevertheless, it is essential to develop mathematical tools that
can efficiently deal with asymmetric shapes. For example, we need to find a convenient way to
represent the shape of a droplet hanged on a horizontal or inclined fiber. Nowadays, the only
available tool is numerical computation (e.g. Surface Evolver); but we would take advantage
in describing these shapes with a relatively small number of parameters, e.g. through spectral
methods, perturbations of well-known axisymmetric cases, etc.

Partial coalescence in various configurations

We have investigated the partial coalescence of droplets into a bath. However, partial
coalescence may be observed in a variety of configurations. Among others, low viscosity
droplets partially coalesce with a soap film. This case is different from the coalescence at a
liquid/liquid interface in many respects. First, the droplet usually impacts the soap film with
a significant velocity, so the Weber number must be taken into account in the dimensional
analysis. The ¥ parameter, namely the size ratio between the final and the initial droplets, is
usually much greater than 0.5. Moreover, several satellite droplets may be formed (Fig. 9.13).
But the most striking property of coalescence on soap films is that daughter and satellite

104



Figure 9.13: Partial coalescence of a droplet on a soap film, with the formation of satellite
droplets. Time is indicated in milliseconds.

droplets may be ejected upwards, or downwards (Fig. 4.3d), or both (Fig. 4.3¢) ! In that
latter case, the soap film splits the droplet in two parts that may evolve independently from
each other. Partial coalescence can even be much wilder, as seen with this pure water droplet
coalescing into a soapy water bath in Fig. 9.14. Partial coalescence is far from being fully
understood and, among others, the conditions of appearance of satellite droplets have still to
be addressed. The W function is also of interest for droplet handling, since partial coalescence
may be seen as a convenient way to progressively decrease the volume of a droplet.

Compound droplets

An major theme of the droplet physics consists in studying the behavior of compound
droplets, typically water droplets wrapped by an oil layer [183]. We have already seen that
water droplets may be easily encapsulated on fibers (Chap. 9). There are several other ways
to create compound objects [184]. One of the most spectacular consists in making a water
droplet impact on a water bath covered with a thin oil layer (Fig. 9.15a). Depending on the
layer thickness, the droplet may experience complex motions in which water and oil wrap each
other, sometimes resulting in an onion composed of four layers! A similar entrapment and
wrapping mechanism is encountered in the creation of antibubbles [62, 84].

Unfortunately, all these exotic objects are unstable; the lighter layers are drained upwards
by buoyancy forces, so layers made of the same liquid finally coalesce together and the object
disappears. Nevertheless, it is possible to create stable encapsulations of water droplets by
carefully choosing the oil phase. For example, diiodomethane is a liquid of especially high
density p = 3325 kg/m® and low surface tension ¢ = 50.8 mN/m. Consequently, a droplet
of diiodomethane released on a water bath shapes as a lens floating on the bath surface.
The important thickness of this lens is due to the competition between gravity (that tries to
make it sinking) and surface tension (that makes it floating). As seen in Fig. 9.15(b), small
water droplets can be placed in these lenses in a stable fashion, which may be of interest
for preservation and long-term storage of droplets in a confined volume. Although already
investigated (e.g. |[185]), the dynamics of lenses is far from explored. What is their exact
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Figure 9.14: Partial coalescence of a plain water droplet into a soapy water bath. The surfac-
tant gradients make the phenomenon much more complex.

shape 7 What is the maximum amount of water that can be placed inside 7 How do several
lenses interact together 7 Is it possible to mix two oil lenses without mixing their water
content 7

Compound droplets also bounce permanently onto a vibrated liquid bath. Nevertheless,
something amazing occurs when a little soap is added: at each impact, the oil layer may
be pushed inside the water droplet. Under given conditions, the water pinches the oil layer,
resulting in an oil droplet encapsulated in water. The repeated impacts progressively create
an oil-in-water micro-emulsion! The exact mechanism is still unknown, though it is thought
to have analogies with other experiments involving a similar change in the interface topology
[186].

Laser manipulation

Another important direction for applied research is the manipulation of droplets with
lasers. We have already mentioned that pulsed lasers may generate wave patterns on a liquid
surface that are similar to those emitted by a walking droplet (D. Caballero, private com-
munication). In some sense, the laser may be considered as a virtual droplet. Since walkers
interact together, they can be attracted and driven by the laser. The lenses introduced in last
section may also be handled with lasers [187], and it is likely that fiber networks can also take
advantage of the laser technology.
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t=3.5ms
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t=12.5 ms
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. ©

Figure 9.15: (a) By making a water droplet impact a water bath covered with an oil layer,
one may create multi-encapsulations, namely water-in-oil-in-water-in-oil-in-water objects !
(Credit: S. Dorbolo) (b) A thick sessile lens is made by releasing a droplet of dilodomethane at
the surface of a water bath. A small colored water droplet can be stored for a long time inside
the lens. (c) A compound droplet can also experience permanent bouncing on a vibrated bath.
At each impact, the oil layer may be trapped and pinched, thus releasing an oil droplet within
the water part; an oil-in-water micro-emulsion is spontaneously formed. (Credit: D. Terwagne)
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Microfluidics on fiber networks

Finally, the most promising work to undertake is likely the development of smart fiber
networks. With an increasing number of capabilities, these latter are expected to provide
solutions for practical applications, in particular for biochemical assays and diagnostic tools.
Future research may be divided in four axes:

e First, some fundamental questions have to be addressed. Among others, how does a
droplet behave as it encounters a node formed with more than two fibers? What is
the evaporation timescale of a droplet on a fiber? How efficient is the mixing of two
droplets at a node? Is this mixing enhanced by the internal convection created within
the resulting droplet when it slides down 7 How do these processes scale as the fiber
size is decreased down to a few microns or less?

e Fiber nodes are observed to exert a diode-like action on droplets. By analogy with
the recently developed bubble computing [32], is it possible to invent a set of logical
operations on droplets that may be combined to perform complex fluidic tasks?

e Until now, we have dealt with fishing nylon fibers. Nevertheless, the physics described
in this thesis is likely applicable to fibers of any kind. A judiciously chosen material can
provide additional capabilities to the network. The fiber could be for example an optical
fiber or an electrical wire, possibly textured or chemically coated. The development of
electro-wetting on fibers would provide an electronic control of the blocking/crossing
transition. The interaction between light/electrical current and the droplet content
could allow an in-situ measurement of the droplet properties; micro-reactions would be
probed in real time! Moreover, these active fibers may induce chemical reactions within
the droplet through heating, UV cross-linkage, etc.

e Finally, droplets can also have a feedback on the fiber network because the fibers are
usually elastic. Indeed, liquids exert a capillary action on fibers that may shape them.
The best example is the dense network of our hair, which shapes differently if it is wet
or not [188]. Elastocapillary phenomena open the way to self-assembly [189]. Droplets
are already used in microfabrication, e.g. for the self-alignment of two fibers [12] or for
the assembly through drying [190]. Here, the droplets may help designing the network
on which they flow ! This increases further the field of application of fiber networks.
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Appendix A

Notations

The main notations encountered in the text are summarized in these tables

appendices have their own notations that may be different from the list below.

. Note that the

| Var. | Signification | Eq./Fig. H Var. | Signification ‘ Eq./Fig. ‘
a | Friction coef. E(8.4) 7 | Dimensionless time E(4.32)
# | Dimensionless damping E(7.7-9.6) Ts | Capillary time E(1.8)
0 | Coating thickness E(8.9) ¢ | Phase
¢ | Max. deflection s.f. F4.5(a) ¢ | Interface angle F8.2(b)
n | Droplet deformation F4.5(a)-5.3(a) X | Characteristic function
6 | Inclination angle F4.5(a) w | Dimensionless f E(4.3)
t | Dimensionless Z E(9.6) A | Difference
Ao | Capillary length E(1.4) Ap | Rel. Diff. of p E(7.1)
i | Dynamic viscosity I' | Dimensionless A E(4.2)
v | Kinematic viscosity © | Dimensionless Mg E(9.6)
¢ | Size ratio E(4.1) ® | Dimensionless freq. fiber | E(9.8)
p | Density ¥ | Size ratio E(7.2)
o | Surface tension E(1.1) Q | Droplet volume

Table A.1: Greek characters.

Subscript | Signification Subscript | Signification
F Faraday instability m Minimum
M Maximum nw Not walking droplet
a Air S Surrounding immiscible liquid
cw Capillary waves sf Soap film
f Final state th Threshold
h Horizontal fiber v Vertical fiber
1 Initial state w Walker

Table A.2: Subscripts.
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‘ Var. ‘Signiﬁca‘nion

‘ Eq./Fig. H Var. ‘Signiﬁcation

Eq./Fig.

YOz ENRSTZQIANNQaQT

T

Forcing amplitude
Bond number
Bouncing thres. fun.
Mean curvature
Capillary number
Surface energy
Lubrication force
Capillary force
Deformation ampl.
Height drop. summit
Heaviside function
Mod. Bessel 1st kind
Kinetic en. impact
Traveling length
Droplet mass
Number of droplets
Ohnesorge number
Pressure

Probability
Dissipated power
Flow rate

Mean radius

Surface area
Dimensionless V'
Vert. vel. impact
Droplet width
Weber number
Droplet extension
Short-term average y
Spherical harmonics
Vert. pos. drop.
Truncature

F4.2(b)
£(1.3-9.1)
E(5.17)
E(1.2)
E(8.9)
E(1.1)

E(5.11)

E(5.17)

E(9.17)

E(1.9)

F4.2(a)
E(4.32)

F8.2(b)
E(1.6)
F8.2(b)
E(5.14)
F1.2
F4.5(a)
£(9.2)

a
b

CD
CK
CL1, CL2
cr
Ck
Cwe
Cul, Cu2
Cul, Cu2

=
fgx&&

S n IRY I IS T

\.: S+~ o~
ﬁihﬁ

e 8 e

Scale Weibull
Shape Weibull
Dissipation coef.
Kinetic energy coef.
Lubrication coef.
Transfer coef.
Stiffness coef.
Wetting coef.
Friction coef.
Friction coef.

Surface tension coef.

Fiber diameter
Forcing frequency
Natural freq. of Y,
Gravitational accel.
Film thickness
Index

Stiffness

Degree of Y,”
Order of Y™

N. forc. per./boun
N. boun/per. traj.
Radial axis
Curvilinear coord.
Time

Contact time
Lifetime

Local velocity
Droplet velocity
Dimensionless 7,
Dimensionless Z, h
Vertical axis

6.7

NI
ov ot ot &
Nwooa N
Leesdd
S—

—
I
.

S—

(8.9)

£(9.2-9.12)
E(8.2-8.6)
£(4.4-9.12)

cloPlclole ol

F4.2(b)
E(L.7)

F5.3(a)
E(4.4)

F1.2
F1.2

F4.5(a)

E(3.3)

E(5.7)
E(4.32-5.7-9.4)
F4.5(a)

Table A.3: Latin characters.
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Appendix B

Physical properties of the liquids

The relevant physical properties of the liquids used in the experiments of this thesis are
summarized in Table B.1. The interfacial tension o/, between aqueous mixtures and silicon
oils has been measured by the pendent drop technique. Pure water gives o,,/, ~ 45+1 mN/m,
whatever the associated oil. Addition of glycerol decreases the interfacial tension down to
Owjo =242+ 1 mN/m. On the other hand, a significant variation is observed when ethanol is
added:

Ow/o(10%E) = 25 mN/m, 0,/,(20%F) = 17 mN /m,
Ow/o(30%E) = 12 mN/m,0,/,(20%E) =9 mN/m .
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‘ Liquid H p (kg/m?) ‘ v (cS) | o (mN/m) ‘

W 1000 0.893 72.0
875%W + 12.5%G 1030 1.17 70.2
8O%W + 20%G 1048 1.47 69.5
T5%W + 25%G 1061 1.73 69.0
62.5%W + 37.5%G 1093 2.67 68.0
50%W + 50%G 1127 4.74 67.4
25%W + T5%G 1195 30.9 66.1
90%W + 10%E 983 1.35 46.6
80%W + 20%E 969 1.82 37.7
T0%W + 30%E 954 2.23 32.3
60%W + 40%E 934 2.51 29.6
DC-0.65 ¢S 761 0.65 15.9
DC-1.5 cS 850 1.5 16.8
DC-5 ¢S 920 5 19.7
DC-10 ¢S 934 10 20.1
DC-20 ¢S 949 20 20.6
DC-50 ¢S 960 50 20.8
DC-100 ¢S 965 100 20.9
DC-1000 ¢S 971 1000 21.2

Table B.1: Liquid properties (G—Glycerol, E=Ethanol, W—Water, DC—Dow Corning 200
silicon oil).
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Appendix C

Capillary waves on a spherical
interface

C.1 Useful formulas in spherical coordinates

The deformations of a sphere can be represented through the surface ¥ = R(6, p)é;., where

sinflcosp cosfcosp —sing
(€r,€p,€,) = | sinfsing cosfsing cosy : (C.1)
cosf —sind 0

These unit vectors form a cartesian coordinate system and satisfy, among others, to dyé, = €
and 0, €, = sin fe,.
The main differential operators are written:

OpF 0o F

VF = ¢€.0, F+eg— + e, (C.2)
rsing’
- O, (r?F, 8 OF, O, F,
r2 rsiné rsiné
- in6F, F, F, —sin00,.(rF,) | TF—FT_,
VAR - Op(sin0F,) — 0, 97+8¢ 511'18(7’ s[,)636)+8(7“ 9) — Op e
rsinf rsin @ r
Or(r?0,F) + Vi _F
V2F — ( )2 O , (05)
T
where the angular component of the Laplacian operator is
vng _ Opp k' + sin 089(5111 969F) (C.6)
sin? 0

The eigenfunctions of this operator are the spherical harmonics Y;” = P;(cos 6)ei™# obeying

to
Vo Y + L+ 1)Y;" = 0. (C.7)

The outward-pointing normal vector is

€r — "R 60— Rsme €y ) (CS)




C.1.1 Linearization for small deformations

The surface is represented by R = Ry(1 + 1) where n < 1. This yields

— — 8977 — 65077 —

n o~ é o €p o g (C.9)

- 2(1—-n) vgwn

. ~ — C.10
v » 202 (.10)
7V o~ 0. (C.11)

C.2 Dispersion relation

We proceed by establishing the dispersion relation of capillary waves on a spherical droplet
immersed in a surrounding liquid (denoted by the subscript s). We suppose that

e the flow is irrotational and incompressible,
e the wavelength is much larger than the viscous length \/v/f, and
e the wave amplitude is small compared to the wavelength.

So the velocity field inside 4 and outside uy may be derived from scalar potentials ¢ and 1),
satisfying to the Laplace equation: V21 = V21, = 0, so for each mode (£,m),

T T

¢ —(e+1)
w:B<t>(R—O) ¥ and ws:Bsa)(R—o) 7 (C.12)

The continuity of the normal velocity on the interface r = Ry(1 + n) implies 7 - @],=g, =
7. u_‘)S]T:Ro = Roatna S0
R3

i

B - v
(C+ 1y

Om and Bg=-— o. (C.13)

Finally, the linearized Bernoulli equation gives the pressure within the flow P = 204/ Ro— pOy)
and P, = —ps0i)s. According to the Laplace law, P — P; = 0,V - 77 on the interface, so

Os
POp]r=ry — PsOithslr=ro = Ry <277 + Vﬁwn), (C.14)
which yields
g
Oy = : e+ 20+ Vi n). C.15
T+ Vp+ ol R} ¢+ )( " ‘9“’77) (€13)

We can now decompose the perturbations into spherical harmonics 7 = 79(¢)Y;” and obtain

(P-1D(l+2) o
C+1D)p+lps RZ® -

1o + (C.16)
We define the mean density p,, = (p + ps)/2 and the relative difference of density Ap =
(p = ps)/(p+ ps). Therefore, the natural frequency f ) of the mode (¢,m) is given by

os L2 —-1)(0+2)

2 2= . C.17
( Wf(g’m)) meg 20+ 14+ Ap ( )
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We see that this relation dispersion is degenerated, namely it does not depend on m.
When ps; =0, Eq. (1.7) is recovered:

Fomy = 3 Me(e+2)(e—1). (C.18)

The planar case is obtained as the limit when Ry — oo, with £ = 27w Ry/\:

/2= (piﬂﬁ. (C.19)
In summary, the general solution is
(R = Ro(1 + BY;™ cos(2m ft)
" oy BulLl (R_O)an sin (27 ft)
bs =X/ (o _(M)an sin(27 ft) (20
(rf) = F T

\

C.3 Viscous dissipation

Although the flow is supposed irrotational (and so inviscid), it is possible to estimate the
viscous dissipation on the basis of the velocity gradients provided by the potential solution.
The local dissipation D (per unit volume) writes

2 . 2 2
D= — 2 [(@W)Q N (Ogug + uy) N (Opuyp + U, sin Bug cos 0) ] N {T&(ue) N 8gur]

r2 r2sin’ @ T r
. 2 2

sind, (up ) gt |* | | Qotir ro, (e )] . (C.21)
r sin 6 rsin 0 rsinf r

The dissipated power Pp is calculated by integrating this dissipation function over the whole

space:
27 Ro
Pp = / dcp/ dG/ drDr?sin 6

p(2mf)2R3(0 — 1)(2€ 4 1)(1 + 6mo) sin? (27 f1)
14
2 T 0o
Pps = / d(p/ de drDgr? sin 0
Ro
B2us (27 f)2R3 (£ + 2)(2€ 4+ 1)(1 + 6pmo) sin (27Tft)

= .22
(+1 (C.22)

We observe that Pp/p < Pps/us; the dissipated power per unit viscosity is higher in the
surrounding fluid.
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The total kinetic energy of the flow is also obtained from the potential solution:

27 Ro + +
K:/dgo/de/ ur ”9 %22 ing

p(2Tf)2R3(1 +6m0) sin (27rft)

2m u? 4+ u2 + u?
Ksz/dgo/dé/ 9 L0 ¥r2ging
Ro

_ B2ps (21 f) ROEK j: f;n(]) sin (27Tft) (C.23)

The kinetic energy per unit density is smaller in the surrounding fluid, K/p > K/ps.
The total mechanical energy FE of capillary waves decreases with time as a decreasing
exponential of factor 3:

E = E,_ge ", (C.24)

where
5o Pp+ Pps 2041 p(0* — 1) 4 pl(l + 2) (C.25)
2(K+K,) 2R? p(l+1)+psl ‘
Obviously, the shorter are the waves (large £), the more efficient is the damping. Like the
dispersion relation, the damping factor does not depend on the parameter m.

For a planar interface, the dissipation is

M+ s
f=dn? -5 C.26
o+ PN (€20
C.4 Axisymmetric progressive waves
The propagation of plane waves is well-described by the solution
X = Xe2mi@/A=ft), (C.27)

corresponding to a monochromatic wave of wavelength A and frequency f. This wave travels
at speed Af in the direction of increasing x; it is therefore a progressive wave. Since the
physical problem is linearized, every linear combination of two solutions is also a solution.
The sum of two waves only differing by their direction give birth to a standing wave

X = X cos(2mz /) cos(27 ft). (C.28)

When axisymmetric waves on a sphere are considered, calculations become more compli-
cated. The separation of variables is requested and solutions are

X = X Py(cos e 2™t (C.29)

where Py(z) is the Legendre polynomial of degree ¢. This solution is already a standing wave,
and it seems difficult to deduce the corresponding progressive wave.

However, there is a approximation for progressive waves that is determined hereafter. In
order to combine angular and time variables, we need to formulate the angular part as an
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amplitude modulation of the cosine. In other words, we need to determine the functions Ay ()
and wy(0) satisfying to

Py(cosB) = Ay(0) cos (277(%(0)) : (C.30)
The progressive waves are then given by
X = X Ay(9)e?miwe®)ES), (C.31)

The equation C.30 would have an infinity of solution if we did not impose Ay(#) > 0. So the
zeros of cos(2mwy(f)) must coincide with the zeros of the Legendre polynomials.

C.4.1 Determination of w,(0)

The Legendre polynomial of degree £ always has ¢ zeros, so the same is for the cosine. If
we observe these zeros as functions of 6, (Fig. C.1a), we see that they are regularly spaced.
More exactly, they are approximately at positions

g

0; = 1 ,je(Zﬂ[O,ﬁ—l]). (C.32)

The error made with this approximation is represented in the inset of Fig. C.1(a). Since the
zeros of the cosine are in w/2 + jm, we deduce the equation for wy(6).

1\ 6 1
C.4.2 Determination of A,(0)
3.
1.2
25 5 -
5 Llj @ 0.8f
CEEN: Z 0.4
S o2t §  FRTTTAN
(=)
1F <— 0.
-0.2
0.5
-0.4
% 2 4 6 8 10 0 05 1 1'.% 2 25 3
J

Figure C.1: (a) (e) Zeros 6; of the polynomial P;0(cosf), approached by equation (C.32).
(Inset) Absolute error of Eq. (C.32) on the the position of zeros in the 50 first Legendre
polynomials. (b) (e) Legendre polynomial with £ = 10. The solid line is the approximation
Ajp cos(2mwig). The dashed line is the function Aqg.
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The amplitude Ay(f) cannot be obtained by simply dividing the Legendre polynomial by
the cosine. Indeed, since the zeros of both functions do not exactly coincide, the error explodes
close to these points. We start giving some properties of the function Ay(6):

1. Tt is even according to 7/2: Ag(m — 6) = Ay(f). Indeed, both the polynomial and the
cosine have the same parity as .

2. Its first derivative satisfies

dPy(z =cos(f))  dP, . , dA 1 v 1\ . 1 v
0 =4 sin@ = 0 cos €+2 0 1 Ay €+2 sin £+2 0 1l

(C.31)

3. In0 =0 (and so in § = )

3

A¢(0) = V2 and —L:O = —ﬂ(e + —). (C.35)

4. In 0 =7/2,
o if / is even,

Ag<3> = (~1)2Py(z = 0). (C.36)

e clse

AZ@) - (_1)421£+Z %Pg_l(:c = 0). (C.37)

5. Ay(0) is positive definite, must be minimal in # = 7/2 (smallest amplitude because the
energy is distributed on the whole equator) and maximal in § = 0 and § = 7 (convergence
of the energy on the poles).

We choose to represent Ay(6) by a polynomial in (7/2 — 6):

Ag(0) = co + 2: ¢ (g - 9) ) (C.38)

where the coefficients ¢; are positive, in order to ensure the positivity of the function. Coeffi-
cients are subject to three additional constraints, resulting from the behavior of Ay in 6 = 0
and 0 = 7/2:

ici(f)% = V2—q, (C.39)

n 2i—1
Zc,- : 2i<5> = V2(1+1/2), (C.40)

{ (—1)%LP5_1(0) when [ is uneven,

C.41
(—1)%Pg(0) when £ is even. ( )

The determination of coefficients ¢; is a constrained linear least-square problem which is easily
solved numerically. The number of coefficients is arbitrarily chosen to n = 2¢. The result of
this optimization is shown in Fig. C.1(b).
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C.4.3 Wave convergence

It is possible to estimate the ratio between the amplitudes of waves at the poles and at
the equator. This ratio illustrates the convergence of energy in the polar zone, and is given by

A0 =0) 2 [(5) !] 2 (C.42)

Al =m/2) 0!

This ratio is increasing with ¢, so higher modes experience a more important convergence.
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Appendix D

Lubrication

In this appendix, we study the axisymmetric quasi-steady flow within the air film located
beneath a droplet of radius R. The air film is supposed horizontal has a thickness h < R
homogeneous according to r. The objective is to estimate the vertical force Fp required to
thin the film with a thinning rate h.

In cylindrical coordinates, the continuity equation writes

Or (Tuy)

r

+ 0,u, = 0. (D.1)

The first term scales as u,/R while the second term scales as u/h, so u, ~ uh/R < u, and
the flow is mainly in the r direction. The Navier-Stokes equation is greatly simplified under
the assumptions h < R, 9, > 0, and u, < u,, namely

O P = py0;,u, and 0,P = 0. (D.2)

In order to integrate this equation and find the radial velocity u,, we need to prescribe bound-
ary conditions. We suppose that the bath beneath the air film (in z = 0) is at rest. On
the other hand, the internal flows within the droplet make the droplet/air interface (z = h)
moving with a velocity cyr. That yields

cyr opP

U=

z(h — z). (D.3)
The velocity averaged over the film thickness is

_ foh u,dz cyr 0P 32

=T _ . D.4
u h 2 1244 (D-4)

We proceed by integrating the continuity equation in the z-direction with the assumption

dh = 0,
3

12447

The pressure P is obtained by integrating this equation twice according to r, and by supposing
that the pressure is zero in r = R.

h = %5?5»(T2CU)4+ 0 (rd,.P). (D.5)

:J%%%+@yﬁ—ﬂy (D.6)
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The resulting vertical force F, resulting from P is then given by

R 2 /3
h

Fy = 271'/ Prdr = —3—”ua32<§> (— + cU> (D.7)
) 2 n) \n

We note that both the exponent and prefactor of R/h strongly depend on the considered
geometry (e.g. spherical instead of cylindrical).

When a droplet is released close to a liquid interface, it thins the air film (h < 0) and
drains it outwards. In the same time, the droplet flattens, which creates an internal motion
outwards (cy > 0). Therefore, the internal flows help the air film to drain and decrease FT.
At leading order, ¢y is proportional to the droplet deformation 7, namely ¢y ~ 7/R.

The resulting vertical force Fp impacts on the energy balance of the droplet (Eq.5.5)
through the term Frn. Although the resultant of horizontal stresses vanishes, the work they
produce does not. It is estimated to

R .
27r/0 Ha <8zur> z_h(cUr)rdr = %MGCUR?’% (% + 46%) (D.8)

This power scales as Frn(h/R), which is much smaller than the vertical power F77 and may
thus be neglected.
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Appendix E

The elastic ball

Walker’s experiment is based on the old problem of the elastic ball. In this system, a
partially elastic bead bounces indefinitely onto a surface vibrated according to a vertical
sinusoidal motion of amplitude A and frequency f. The vertical position z4(t) of the surface is
given by zs = A cos 27 ft. In the mathematical model, the bead bouncing is such that the take-
off velocity is proportional to the impact velocity; the coefficient of proportionality is called
restitution coefficient e. Moreover, the contact time is null, so take-off occurs immediately
after landing. Nowadays, the elastic ball is considered as one of the simplest experiments
that illustrates chaotic concepts [191]. It obeys to relatively simple equations of motion, that
are solved numerically without major issues. Like the logistic map, it seems to experience a
cascade of period doubling bifurcations that leads to chaos [111].

In spite of its apparent simplicity, the elastic ball problem is far from being solved. Experi-
mentally, the restitution coefficient is observed to depend on the impact velocity [192], exactly
like for droplets on a vibrated soap film (Chap. 4). On the other hand, the chaotic behavior of
the system is contested. Indeed, the elastic ball usually experience sticking cascades, namely
series of bounces smaller and smaller that converge to rest in a finite time [193]. The ball
then sticks on the plate and takes off again when the instantaneous acceleration of the plate
is sufficiently low (i.e. less than —g). Even if the trajectory seems chaotic, the ball always
ends up sticking to the plate [111]. This resets the system in some way, and makes the motion
necessarily periodic. The sticking occurrence increases with decreasing e.

The elastic ball problem is involved in various applications in both fundamental physics
and engineering. It is directly related to the Fermi model encountered in astrophysics and
atomic physics [194]. Shaken granular materials [195] and some optical systems [196] present
obvious similarities with the elastic ball. It also provides a theoretical background for many
technologies in fields as various as acoustics [197], milling [198] or atomic force microscopy
[199]. Finally, the elastic ball is a standard problem in control theory [200], where the goal is
to create a continuous signal z4(t) to drive the bouncing motion. One of the simplest strategies
consists in juxtaposing parabolas (one per bounce) which parameters are computed from the
data of previous impact. As an analog of the juggling problem [201], the elastic ball is a study
case to test the control ability of human brain [202].
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E.1 Equations of the elastic ball

The position of the elastic ball relative to the surface beneath is given by
2
Z(t) =c +02t—95 — Acos {27rft], (E.1)

which can be made dimensionless by defining y = (27f)2Z/g and ¢ = 27 ft, so
¢2
y(¢) = c3 +cadp — o —Leos, (E.2)

where I' = 4712 Af?/g. The constants c3 and ¢4 are determined by fixing the take-off condition
(y,9) = (0,V,,) in ¢ = ¢,,. Moreover, the ball lands in ¢,+1 and takes-off immediately after
with a velocity prescribed by V11 = —€y(¢n+1), s0

(¢n+1 - ¢n)2
2

F, = Vn+1 + G[F(Sin ¢n+1 — sin ¢n) +Vn— (¢n+1 - ¢n):| = 0. (E4)

o= F(COS ¢n — COS ¢n+l) + (¢n+1 - ¢n)(Vn — I'sin ¢n) - = 07 (E3)

The flight time is defined as T}, = ¢ +1 — ¢,. For given parameters (T, €), the system (E.3) is
a 2-dimensional map that calculates (¢,41, Vy41) as a function of (¢, V4,).
Fixed points are given by the conditions ¢,+1 = ¢, + 2km and V41 = V,,, which yield

1—e€k
qﬁn:—arcsin(l_i_z?ﬂ) and Vn:kalie. (E.5)
These points only exist when
k(1 —
r>r, = ml=¢ (E.6)

-  (14e

Their stability is addressed by looking to the amplification of a small perturbation (d¢,,dV,,)
around the fixed point:

dont1 dé agi SO -1 or  on
( AV ) B J( v, ) with J=—1" ok ok %o o). (BT

6¢n+1 8‘/TH»I W aVn

At fixed point, J is given by

B 1—(1+¢€)lcos oy, 1+e€
J = < e(1 +e)lcospp(Tcos g, — 1) €2(1 —T cosy,) — €l cos ¢y,. > (E8)

The fixed point is stable only when the eigenvalues of J are smaller than 1 in modulus. After
calculations, this condition writes

Passed this point, the system experience a period doubling bifurcation.
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E.2 Inelastic ball

Equations (E.3) may be particularized to the case of a completely inelastic ball, namely
e = 0 [203]. At impact, the ball loses any information about its previous velocity, and takes
the velocity of the vibrating plate (i.e. V;, = 0). Therefore, immediate take-off is observed
only when I"cos ¢, > 1. Otherwise, the ball sticks on the plate until the take-off condition is
satisfied. The flight time T, is given by

T2

F =T cos ¢p(1 — cosT,,) — —T'sin ¢, (T, —sinT,,) — 7” =0, (E.10)
which is much simple since we only need to determine T),(¢,) with a single parameter T’
instead of two. As easy as this problem may seem, its bifurcation diagram T),(T") is complex
and contains fractal-like structures, shaped by the interplay of two kinds of bifurcations,

repeated a non-denumerable number of times. A more detailed investigation of this case has
been made in [204].
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Appendix F

Faraday instability

The Faraday instability consists in the destabilization of a planar interface between two
fluids, due to a vertical oscillation of the whole system. In a container of finite dimensions,
this instability gives birth to standing waves of finite amplitude. Experiments on these waves
were reported for the first time by Faraday in 1831 [125]. Although the waves are easily
observed by placing a simple container on a speaker, accurate measurements of the threshold
require good experimental conditions. In particular, the vibration has to be perfectly vertical
[126], and the meniscus at the container edges must be kept horizontal. This can be made by
pinning the meniscus into a wedge, or by realizing an overflow. In the case the meniscus is
free to move, it starts emitting capillary waves that prematurely trigger the instability [132].
The first analytical model of the Faraday instability was proposed in 1954 by Benjamin and
Ursell |[126]. These authors assumed inviscid fluids and obtained a Mathieu equation, i.e. a
second-order linear homogeneous differential equation where the coefficient of the 0-order term
is periodic. According to this equation, the threshold should be zero, and the interface must
always be unstable. In reality, the Faraday instability cannot be described without taking
viscosity into account.

In this appendix, we present the model firstly introduced by Kumar and Tuckerman in
1994 [129], adapted to a liquid/air interface. We denote by ¢ the velocity field, 4 its horizontal
component and we, its vertical component, where €, is the downward-pointing unit vector.
Continuity and Navier-Stokes equations are written for the liquid phase, in the frame of the
vibrated container,

V.7 =0 (F.1)
S o " vp - 2
O+ (V- V) = ———+g(1 =T coswt)e; + v V=Y, (F.2)
p

where w is the angular frequency of the vibration. We linearize the second equation around the
reference state (planar interface): ¥ =0 and Py = pgz(1 — I'coswt). We note p the pressure
perturbation and keep ¥, & and w for the velocity perturbations. The vertical velocity w and
pressure p are thus obtained by

Vi = vViw (F.3)
V%p = p(?tzw—puvzazw, (F.4)

where V,zl is the horizontal part of the Laplacian operator.
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One has now to impose boundary conditions. At the bottom of the container, the velocity
must vanish, sow = 0 and @ = 0 in z = h. At the free surface (z = n(x,y,t)), the normal
velocity of fluid particles has to be equal to the normal velocity of the interface. This condition,
once linearized, yields w = 9yn. Moreover, the tangential stress exerted by the air is negligible,
which gives Vzw = 0,,w. The normal stress involves pressure, gravity, the normal component
of the velocity gradient and surface tension. Balance between these interactions yields

L gn(T coswt — 1) + 200w + o V. (F.5)

p

This equation can be reformulated by using the equation for pressure within the liquid, so
2 92 |2
Oy — 3vVi — 1/822} O, w = [g(F coswt — 1) + ;Vh Vin. (F.6)

We note that this equation is the only one where the forcing term I' coswt appears. In a
media of infinite horizontal extension, we may assume that the horizontal part of the solution
is proportional to sin(kzx + kyy). We can therefore replace V%L by —k? with k% = k2 + kg
By the way, we do not need anymore to prescribe boundary conditions on the lateral walls.
Practically, the spectrum of k, and k, is discretized by the lateral walls, an effect which is
significant only when the wavelength is of the order of the horizontal extension of the container.
We thus obtain a system of equations for unknowns w(z,t) and n(¢):

(O +vk? — 10,,)(0.. — K )w =0 Vz, (F.7)

w=0,w=0 in z = h, (F.8)

w =0 in z =0, (F.9)

(0o +kHw=0  inz=0, (F.10)

O + 3vk? — V@ZZ] o,w = [g(l —Tcoswt) + %kQ] k*n in z =0. (F.11)

According to the Floquet theory, we should expect

(e}

w(z,t) = elktio) Z wp (2)e™t, (F.12)
n=-—o0o
'r](t) = e(#-‘-la)t Z ,,,}neznwt7 (F13)
n=-—o0o
(F.14)
with a € [0,w/2]. The solutions are stable when p < 0 and unstable otherwise. The solution
is harmonic when a = 0, while it is subharmonic when a = w/2. Defining ¢2 = 1+ %
yields
wy(2) = ap cosh kz + by, sinh kz + ¢, cosh g, kz + dy, sinh ¢, kz. (F.15)
The four first boundary conditions are
coshkh sinhkh  coshg,kh sinh g, kh an 0
sinh kh cosh kh gq,sinhq,kh ¢, coshq,kh bn | _ 2,2 0
1 0 1 0 d,, 1
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Inverting this system leads to the coefficients a,,, by, ¢, and dy:

an = vk*(1 + ¢2)mn,

(gn—tanh kh tanh gy, kh)aner

bn = ) tanh gnkh—qn tanh kh ’ (F17)
Cn = —2vk s
d — (gn tanhkhtanhanh—l)c—m

n = .

tanh g, kh—qn tanh kh

The last boundary condition writes

ok? 12k
211+ p—g - F(Qna kh) T = F(??n+1 + nnfl)v (F-18)
where
5 3 (4 2 - antdd
Flgn. kh) — (g, +2q5 + 5qn) — (g, + 6q; + 1) tanh kh tanh g, kh 4—Coshkhwshanh (F.10)

tanh g, kh — ¢, tanh kh

We note that this condition couples 7,+1 and 1,1 to 7, through the forcing term, so the
solution cannot be obtained analytically. The condition F.18 is a system with an infinity of
complex equations, that has to be truncated by only computing 7, with n € [0, N]. Real
perturbations n satisfy n_, = 7} in the harmonic case (« = 0) and n_,_; = 7} in the
subharmonic case (o = w/2).

Usually, in stability analysis, k and I' are fixed, so ;1 and « are determined and the observed
mode is the most unstable, namely the mode of largest u. Here, we proceed backwards and
compute the marginal stability curves (u = 0) for both harmonic and subharmonic cases
(which fix o). These tongue-like curves are plotted in Fig. F.1(a) for the following parameters:
g=981m/s? o =20mN/m, p=965kg/m? h=0.1m, v =>50cS and w = 1007 rad/s. The
solution in unstable and Faraday waves appear within the tongues. The instability threshold
I'r is the minimum of these stability curves; its abscissa kg indicates the wavelength observed
just above the threshold. The predicted threshold is in relatively good agreement with the
experimental measurements at h = 9 mm (Fig. F.1b). Finally, we note that, by equalling T" to
zero in Eq. (F.18), we recover the dispersion relation of gravity/capillary waves with a finite
depth and the inclusion of viscosity effects,

2 2.3
1+ T R g k). (F.20)
pPg g

F.1 Instability in a container of infinite depth

When the liquid bath is sufficiently deep, namely when kgh > 1, the function F(qy, kh)
is notably simplified,
F(gn) = —(ap + 245 + 44 + 1) (F.21)

Figure F.2 represents the threshold I'r computed by Eq. (F.18) as a function of viscosity v
and frequency f = w/27m. Scaling laws are observed for both I'p and kp:

{ w ~ 20(kp),

Iy~ 354k (F-22)
g Y
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Figure F.1: (a) Marginal stability curves: (:) subharmonic, and (x) harmonic solutions.
Within the tongues, the system is unstable and Faraday waves appear. (b) Comparison
between the model results and the experimental measurements for v = 50 ¢S, h = 9 mm,
o =20 mN/m and p = 965 kg/m?.

where w = Q(k) is the dispersion relation of gravity/capillary waves given by Eq. (F.20).
The first equation indicates that the selected wave number corresponds to half the forcing
frequency, which is coherent for the subharmonic case. As seen in Fig. F.2, these scaling laws
correctly represent the threshold curves in a large range of parameters. Predictions are good
provided krph > 2, which is coherent with our hypothesis of infinite depth.

We conclude by establishing the dispersion relation (k) for the viscous gravity /capillary
waves. First, we define

(k) + iQ(k)

— 42
l+x=gq, =1+ e , (F.23)
in Eq. (F.20) and
gk + ok3
S0
2t 4 823 4 (24 4 20) 2% 4 (16 4 8a)z + oo+ 8) = 0. (F.25)

This equation has four complex solutions. Nevertheless, the polynomial is convex, namely the
second derivative is positive everywhere, and the function is both positive and increasing in
x = 0, whatever a. So we can state that every real solution is necessarily negative or zero.
But in reality, waves correspond to not-real solutions, for which Q(k) # 0. To find them, we
have to set = a + b, which yields

a+2 ’
a® +12a° + (63+ a)a* + 8(20 + a)a® + 4(59 + 6a)a? + 16(11 + 2a)a + 4(11 + 4a) = 0.

(F.26)
This polynomial of degree 6 has a fixed point according to a in a = —2. In this point, the
polynomial is negative and experience a local maximum. This maximum should be the only
one since the fourth derivative is positive semi-definite. So the polynomial cannot have more
than two distinct real roots a, which are shown to be negative. Practically, we can show that
when a < 0.546, Eq. (F.25) has two real roots that do not correspond to waves, and a pair

{ b2 — a’4+6a?+(124a)at+4+2a
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Figure F.2: Threshold acceleration I'r and wavelength kr of the Faraday instability for a
container of infinite depth. Parameters are h = 0.1 m, p = 965 kg/m® and ¢ = 20 mN/m.
The solid lines correspond to the numerical resolution of Eq. (F.18) while the dashed lines
represent the relation (F.22). (a-b) Variation with f for v = 1 ¢S, (c-d) variation with f for
v = 1000 cS, and (e-f) variation with v for f = 100 Hz.
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of complex conjugate roots corresponding to damped waves. When « > 0.546, there are two
pairs of complex conjugate roots, so two distinct frequencies satisfy to the dispersion relation
for the same k. This transition between one and two frequencies corresponds to the change of
regime non-viscous/viscous observed in Fig. F.2(e-f).
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Appendix G

Droplets on fibers

G.1 Static shape of a droplet on a fiber

In this section, we propose to solve Eq. (8.1) introduced in chapter 8 to describe the
axisymmetric shape of a droplet of volume € wetting a fiber of diameter d,. We neglect the
influence of gravity, so equations are

dr _

i Ccos ,

P

e = sing, (G.1)
dp _ AP sing

ds o ro)

where AP is the overpressure within the droplet, at location z = 0. These equations cannot
be solved analytically in the general case, but asymptotic solutions may be inferred when the
droplet volume € is either much smaller or much bigger than d>.

Large droplets (typically /d? > 10%) tend to keep their spherical shape when hanged
on a fiber. The sphere of radius R, described by (ro, 20, 50) = R(sing, 1 — cosp, ) satisfies
Eq. (8.1) for Ap = 20/R < 1, but not matching conditions on the fiber. Next to these
matching points, the curvature still need to be 1/R, which is much smaller than the fiber
curvature 2/d,. Therefore, the droplet may be locally approximated by a catenoid (zero-
curvature surface) of equation

d d i d
o=, 21 = —vln<ﬂ> and s = — cot . (G.2)
2sin @ 2

Both solutions match each other when ry = 7 for the same angle ¢, so when sinp = /d, /2R

and r = \/Rdy /2 < R. The droplet volume is roughly equal to the volume of the sphere, the

catenoidal contribution being negligible. Therefore, we infer

W (3%
- \4rd?

¥ ) and X =2W. (G.3)

These scalings are similar to those discussed in [171].

When the droplet size is smaller than d,,, the droplet spreads on the fiber in such a way that
the curvature of its interface is only slightly lower than the fiber curvature 2/d,,. Therefore, we
can infer the asymptotic solution by perturbing the solution (rg, 20, o) = (dy/2, s, 7/2) when
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2 = 0 (corresponding to the fiber itself). Supposing Ap = 20(1 — ¢)/d, and perturbations
denoted by tilted variables, we obtain

d&F =
g—g ~ —p,
dp 4F _ 2¢
ds — d2 dy’
from which we find the droplet shape
T %’|:1—|—€<1—COS§—?>:|
z | = s . (G.5)
¥ 5 —e€sin (Zi—j

The droplet shape is therefore close to a sinusoid. The vertical extension X is equal to wd,,
which corresponds to the fiber perimeter. The thickness and volume of the droplet are easily

computed,

w 80 X
d_,u =& = @ and d_v =Tr. (GG)

It is seen in figure 8.4 that both small and large droplets are well described by the proposed
asymptotic behaviors.

G.2 Rayleigh-Plateau instability

A film of liquid covering a fiber spontaneously turns into a string of droplets, i.e. an
unduloidal shape, due to the Rayleigh-Plateau instability. The related calculation is detailed
in this section. We first suppose that the thickness of the film A is much smaller than the fiber
diameter d, so the lubrication equations can be applied,

0,P = pdpu, and 9.P =0, (G.7)

where the z-axis (resp. r-axis) is parallel (resp. normal) to the fiber. Boundary conditions
are uy(d/2) = 0 (no-slip condition) and 0,u,(d/2 + h) = 0 (free surface). The velocity field

thus writes g J ) J
2 r—
z = — A h’ - ) .
" 2 <T 2> < 4 > (G8)

so the flow rate in a z-section is

htd/2 7dh30, P 5h
Q(z) =2 /d/2 uyrdr = BT (1 + 4_d) (G.9)

The continuity equation yields

9.Q = —7rd<1 + %)ath, (G.10)
" 2h h
3ud(1 + F)a,fh =0, [(1 + Z—d> dh3pZP} . (G.11)
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The pressure gradient is found through the Laplace law,

P 0x.h 2

[1 + (azh)2] v (2h + d) [1 + (6zh)2}

Both equations (G.11) and (G.12) are considerably simplified under the assumptions h < d
and 0,h < 1,

3udh = az<h3azp) (G.13)
P 2
— = _azzh+M’ (G.14)
SO h3 h2
3p 3 4 2 4 2
Loth = —h%0,...h — —=0..h — 3h20,hd,..h — 3—5(0,h)>. 1
—0 0 70 3h%0,h0 3d2(a) (G.15)

We proceed by linearizing this equation and considering a small perturbation of the initial
uniform film h = h;, namely
h = h; 4 ee*e =P, (G.16)

Substituting this expression into (G.15) leads to the damping factor

3= T (2 (G.17)
~ 3pd ( ) '
The instability occurs when § < 0, which corresponds to a wavelength A = 27 /k > nd.
Therefore, any perturbation of wavelength greater than the fiber diameter is unstable. The
observed wavelength is the most unstable one, i.e. A = 7v/2d. The related characteristic time
of the instability is

1 3ud

thRp = — = —=. G.18
RP ﬂ 40’h(3) ( )
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