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IntrodutionGoutte nf Très petite quantité d'un liquide qui se détahe ave une forme sphérique.Droplet: small amount of liquid that breaks away with a spherial shape. This is thede�nition given by the famous Frenh ditionary Larousse [1℄. The droplet is de�nitely a dailyenountered onept. Strings of raindrops that fall and slide on our windows, small pearlsobserved on spider webs in the early morning, oily droplets that spread everywhere and makethese so feared grease stains, the drip-drip of syringes, spatters, tears... but also fog, sprays,spindrift, ink drops in printers, fuel drops injeted in motors, et. Finally, we must not forgetthe emulsions (e.g. dairy produts, beauty reams) obtained when two immisible liquids arefored to blend together: one of them forms a myriad of tiny droplets into the other, resultingin an usually opaque material.A droplet... an outwardly simple objet... whih has no reason to aptivate ? The de�nitionproposed by ditionaries do not stand the test of daily observation. The oily stains are notremoved without leaning agents, and the small droplets on our windsreens annot �y awayunless a powerful wind blows them out. Regarding the spheriity, it is only enountered in avery speial ase: a droplet �oating in weightlessness. On the ontrary ! The atypial shapesof droplets in "normal" onditions have often inspired artists and poets. The physis hiddenbehind this onept of "droplet" is in fat extremely rih and omplex. A ountless numberof questions have been raised by sientists during the last entury, that remain urrentlyunanswered.On a tehnologial point of view, the droplet seems to be the absolute must in miro�uidis,i.e. the miniaturization of �uid proesses. Many appliations make use of the manipulation ofvery small amounts of liquid. Nevertheless, to deal with droplets is not as simple as it seems:let's leave a water droplet on the table and try to pik it up bak entirely to put it elsewhere.Impossible to ollet the whole volume all at one! The droplet inevitably leaves on the tablea signi�ant part of its ontents, no matter how prieless it is. Hopefully, the droplet physishas a trik or two up its sleeve.In this thesis, we propose to explore various tehniques that would "skillfully" handledroplets, and to study the related physial phenomena. By "skillful" manipulation, we meanthat a simple rule is satis�ed: the more a droplet is touhed by solid surfaes, the moreits properties (volume, hemial omposition, physial properties) are likely to be a�eted.Therefore, in droplet handling, we must avoid ontat with solid parts, so far as we an.We start with two introdutory hapters; the �rst one sets the sene and gives the physialbakground required to understand this thesis, while the seond one is a non-exhaustive reviewof the urrent tehnologial advanes and improvements related to the droplet physis. Themanusript is then divided in two parts. In the �rst, we disuss the behavior of droplets in the6



viinity of another liquid interfae. In partiular, the bouning of liquids is deeply investigatedthrough several examples. We explain how the observed phenomena may be useful to handleindividual droplets without touhing them. The seond part is dediated to the study ofdroplets on �bers. We show that many elementary miro�uidi operations an be performedthanks to simple �ber networks. Finally, the main onlusions and the numerous perspetivesof this thesis are summarized.
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Chapter 1At droplet sale...I have often been impressed by the santy attention paid even by original work-ers in physis to the great priniple of similitude. It happens not infrequently thatresults in the form of "laws" are put forward as novelties on the basis of elabo-rate experiments, whih might have been predited a priori after a few minutes'onsideration. However useful veri�ation may be, whether to solve doubts or toexerise students, this seems to be an inversion of the natural order. Lord Rayleigh,in Nature (1915) [2℄It is surprising to see how liquids behave di�erently aording to the sale they are observed.Indeed, the fores that drive these liquids and shape them usually depend on the harateristisize of the system. For example, the Coriolis fore, whih is due to the Earth rotation, isresponsible for various phenomena related to the atmospheri and oeani irulations atplanet sale. On the other hand, ontrary to a ommon misoneption, its impat is negligibleon the diretion of the vortex observed when we drain our sink. Time and length salesinvolved in the Earth rotation (one day and several thousands kilometers) have nothing inommon with the sales of a sink draining (one minute and a few tens of entimeters). Soeah physial phenomenon, eah fore, eah in�uene has its own range of sales on whihit is e�ient. At droplet sale (say from mirometer to millimeter), the dominant fores areoften due to apillarity. As an example, the small water inset in Fig. 1.1(a) relies on apillaryfores to move on water and limb on plants. Nevertheless, other fores (gravity, visosity,inertia, ...) may also be important at this sale and ounterat apillary e�ets. In order toevaluate the relative impat of eah fore on the system, we de�ne dimensionless numbers thatorrespond to the ratios between these seondary fores and apillarity [3, 4℄ .1.1 Surfae tensionCapillary e�ets shape the mirosopi world like no other fore an do. Indeed, they areamong the rare fores in physis that exert on a surfae and not in bulk. Although gravityattrats objets downwards, apillary fores have no favorite diretion: they only tend toredue the surfae of a liquid exposed to the neighboring. The resulting omplexity is wellillustrated in Fig. 1.1(b-).Capillarity results from the ohesion of liquids (to be general, every ondensed phase).Moleules in the bulk experiene an isotropi attration from their neighbors whih self-8



Figure 1.1: (a) This water inset has to limb on the liquid interfae urved by surfae tensionin order to reah the leaf. To proeed, it bends its bak so it also urves the surroundingwater surfae. The exess surfae of water between the inset and the plant spontaneouslyresorbs, exerting a fore that pulls the animal onto the leaf [5℄ - (Credit J.W.M. Bush, MIT).(b) Water droplet taking an ephemeral, unommon and relatively evoative shape during asplash on a water bath [6℄ - (Credit : www.liquidsulpture.om). () The ollision betweentwo jets is able to generate omplex strutures suh as this "bakbone" [7℄ - (Credit J.W.M.Bush, MIT). 9



balanes, while moleules loated at the liquid boundary are only attrated toward the enter,resulting in a net fore inwards. This latter orresponds to a potential energy higher for sur-fae moleules than for others. The exess of surfae potential energy Eσ is proportional tothe surfae S of the liquid objet
Eσ = σS, (1.1)the proportionality fator is alled surfae tension σ. It also orresponds to a (onservative)fore per unit length, exerted tangentially to the liquid interfae.When the liquid surfae is urved, surfae tension reates a disontinuity in the stressnormal to the interfae. If the liquid is at rest, this disontinuity results in an overpressure

∆p inwards, given by Laplae law
∆P = σ∇ · ~n = 2σC, (1.2)where ∇ · ~n is the divergene of the normal vetor of the interfae, equal to twie the meanurvature C. For a spherial droplet of radius R, C = 1/R and ∆P = 2σ/R.Surfae tension is mainly modi�ed by two fators; it dereases when the temperatureinreases and when surfatant moleules are added. Inhomogeneities in temperature or sur-fatant onentration orrespond to surfae tension gradients. These latter are responsible forthe disontinuities in tangential stress, that an set the liquid into motion [8℄.1.2 Gravity, Bond number and the apillary lengthGravity attrats objets towards the Earth enter with a fore proportional to the objetmass M , the proportionality onstant being the aeleration of gravity g = 9.81 m/s2. Thepotential energy related to this onservative fore is Eg = MgZ, where Z is here the height ofthe mass enter of the objet. A spherial droplet has thus an additional gravity energy MgRompared to a on�guration where the liquid ompletely spreads on the table. This exessmay be ompared to the surfae energy of the droplet Es = 4πσR2, whih de�nes the Bondnumber Bo =

Mg

4πσR
=
ρgR2

3σ
∼ GravitySurfae tension . (1.3)The apillary fores are more important than gravity for length sales smaller than the apillarylength

λσ =

√

σ

ρg
. (1.4)This length only depends on the liquid physial properties. For usual liquids, σ ∈ [20, 70] mN/mwhile ρ ∼ 1000kg/m3 : the apillary length is about a few millimeters. Both the height ofthe menisus formed at ontat between a bath and its ontainer and the maximal size of adroplet are of the order of the apillary length. When a droplet is dipped into an immisibleliquid of similar density ρs, the apillary length is onsiderably larger and the Bond numbersmaller, namely Bos =

|ρ− ρs|gR2

3σs
and λσs =

σs

|ρ− ρs|g
, (1.5)where σs the interfaial tension between both liquids.10



1.3 Inertia, Weber number and apillary timeInertia may be seen as the ability of objets to resist external fores. The inertial foreis given by the produt of mass and aeleration. Inertia is often opposed to surfae tensionin impat problems [6℄. For a droplet of mass M impating an objet at speed V , the orre-sponding kineti energy is given by K = MV 2/2. We de�ne the Weber number as the ratiobetween this kineti energy and the surfae energy Eσ:We =
3MV 2

4πσR2
=
ρV 2R

σ
∼ InertiaSurfae tension . (1.6)When We ≪ 1, the droplet is hardly deformed by the kineti energy released at impat. Onthe other hand, when We ≫ 1, the exess kineti energy turns into enough surfae energy tomake the droplet blow up into a myriad of mirodroplets.1.3.1 Capillary waves on a dropletCapillary waves at the surfae of a liquid result from a ombination of inertia and surfaetension. Inertia is here related to internal �ows inside the liquid. At the surfae of a droplet,small amplitude waves may be desribed as a sum of eigenmodes alled spherial harmonis

Y m
ℓ . These deformation modes of a sphere are made of a number of hollows and humps. Thoseregions are separated by meridian and parallel imaginary irles orresponding to the zero-deformation points of the sphere (Fig. 1.2). Spherial harmonis are denoted by two integers:the degree ℓ is the total number of zero-deformation irles, and the order m is the numberof meridians among these irles. Harmonis with m = 0 are always symmetri around thevertial axis. For example, mode Y 0

2 orresponds to a spheroid, i.e. an ellipsoid of revolution.
Figure 1.2: Spherial harmonis of degree ℓ = 5 for various values of the order m. Regionsof hollows and humps, always alternated, are separated by 5 zero-deformation irles, m ofwhih are vertial and 5 −m horizontal.The dispersion relation of waves at the surfae of a �oating droplet yields the naturalfrequeny f(ℓ,m) of eah mode Y m

ℓ ,
f2
(ℓ,m) =

ℓ(ℓ− 1)(ℓ+ 2)

3π

σ

M
. (1.7)Initially obtained by Lord Rayleigh (App. C), this relation suggests that the frequeny doesnot depend on m; there is a degeneray aording to this parameter. The wave period isproportional to the apillary time

τσ =

√

M

σ
. (1.8)This time is harateristi of surfae-tension-driven motions at droplet sale. We show innext hapters that the bouning of a droplet and its fusion with a liquid bath both our at11



timesales lose to τσ. A millimetri oil droplet orresponds to τσ ∼ 10 ms, so fast imaging(up to thousands of frames per seond) is often required to observe these phenomena [9℄.1.4 Visosity, Ohnesorge number and the visous lengthThe �uid visosity is related to the momentum di�usion. Two nearby �uid partiles (sep-arated by a distane dx) with slightly di�erent veloities (u and u+du) exert a stress µdu/dxon eah other, µ being the dynami visosity. The di�usion oe�ient ν, also alled kinemativisosity, satis�es ν = µ/ρ. Visosity leads to dissipative fores that do not derive from anypotential energy. Moreover, as in every di�usion proess, the visosity transfers informationover a distane that inreases with time. The visous time τν = R2/ν is the time needed totransfer momentum over the droplet sale R by di�usion. The Ohnesorge number is de�nedas the ratio between apillary and visous times,
Oh =

ν
√
ρ√

σR
∼ τσ
τν

∼ VisositySurfae tension . (1.9)Among others, this number is proportional to the damping fator of apillary waves on thedroplet (App. C). Visosity invalidates the inertia/apillary balane at sales smaller than thevisous length
λν =

ρν2

σ
. (1.10)Like the apillary length, the visous length only depends on the liquid properties. For σ ∼

40 mN/m and ρ ∼ 1000 kg/m3, the visous length is 25 nm for a liquid as visous as water(ν ∼ 1 S), and 250 µm for a ν = 100 S liquid. In that ase, visous e�ets are alwayssigni�ant at droplet sale. In partiular, apillary waves are fully damped at the surfae ofsuh visous liquids.
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Chapter 2Droplets in siene and engineeringPratial appliations of the droplet physis are numerous, and we are unable to list themall. This hapter gives an overview of some sienti� and engineering problems involvingdroplets. In partiular, we explain how droplets an be useful in miro�uidis, and we disussthe various tehnial solutions that are urrently investigated in this �eld.Droplet physis is found everywhere, in everyday life, from the formation of raindropsto the sprays (paintings, fuel injetion, plant treatment), the emulsions, the ink-jet printing,et. More exoti appliations are found in the sienti� litterature; e.g. the aeration of lakes(an absolute requirement for life inside) whih is mainly made by an air bubble trappingmehanism that ours eah time a raindrop impats the lake surfae [6℄. Sientists have alsoobserved that some meteorites, named tektites, have a shape somewhat similar to droplets,whih suggest that they were formed thanks to analog physial proesses [10℄.The use of droplets is also promising in miro-tehnologies. For example, they an serve asbearing strutures [11℄. Glue and welding droplets an perform self-miro-assembly [12℄, e.g.through elasto-apillarity [13℄. Nowadays, droplets are already used as optial lenses in ourmobile phone ameras ((Fig. 2.1a-b). Two immisible liquids of di�erent refrating index areplaed in a small tube, the walls of whih are overed with an hydrophobi oating. The �rstliquid, an aqueous solution, is a good eletrial ondutor, while the seond liquid (an oil) is abad ondutor. By tuning the voltage aross the system, the hydrophobiity of the oating ishanged (eletrowetting), whih modi�es the shape of the water/oil interfae and so the foallength of this �uidi lens. Advantages of this tehnique patented by Philips [14℄ are numerous:the miro-lens foal length is tuned from 5 m to in�nity in less than 10 ms, with a quasi-zeroeletri onsumption. The lifetime of this lens is estimated at more than one million fousingoperations without any loss of performane; the lens resists well to shoks and temperaturevariations. Droplets may be used as lenses in several other opto-�uidi operations [15℄. Butthe main urrent interest in droplet physis omes from miro�uidis, as disussed here below.2.1 Miro�uidisMiro�uidis is the emergent part of �uid dynamis that studies how to handle amountsof liquid smaller than 1 µL. It was born about two deades ago, when researhers begandisussing the intriguing idea of shrinking the equipment needed for everyday hemistry andbiology proedures to �t on a entimetri hip. These proedures involve many elementaryoperations on �uids: displaement, injetion, division, fusion, mixing, dosage, extration,13



Figure 2.1: (a) Lens-e�et of a droplet. - Credit : www.liquidsulpture.om (b) Optial lenswith variable fousing patented by Philips [14℄. (-e) Various tehniques in digital miro�u-idis : () Droplets are released in a multiphasi �ow inside a miro-hannel network [16℄.(d) Droplets are sandwihed between two solid substrates overed with printed iruits, andhandled by eletrowetting. - Credit : http://miro�uidis.ee.duke.edu (e) Droplets are plaedon a printed iruit and moved by eletrowetting, the guiding is ensured by atenary �bers[17℄.
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identi�ation, reovery, storage, et. The results of the biohemial reations are ommonlybrought bak by using �uoresene tehniques [18℄. Miro�uidis bene�ts from the experienein mirofabriation of eletroni systems aquired during the twentieth entury. For example,many miro�uidi systems are built in PDMS thanks to soft lithography, whih is an adap-tation of the tehniques used in miroeletronis [19℄. But while this latter brilliantly followsthe Moore's law, the shrinking of �uidis has to fae muh more fundamental issues. Indeed,ontrary to eletromagnetism, the physis of �uids widely depends on the system length-saleand seems not so easy to miniaturize [18℄.In twenty years of researh, sientists have brought a large panel of tehniques, desribedhereafter, that are more or less suitable for given appliations. Nowadays, the greatest hal-lenge is to integrate these tehniques into smart miro�uidi systems that may be used bypeople who are not experts in �uid physis. Those systems must be widely and inexpensivelyavailable [19℄.2.1.1 Continuous vs. digital miro�uidisCurrent miro�uidi systems may be sorted in two main ategories: ontinuous and digi-tal. In ontinuous miro�uidis, historially the �rst, liquids travel into omplex miro-hannelnetworks through eletromehanial pumps, gates and mixers. The pumps are not as onven-tional, though air pressure ould push samples through hannels. But the hannel walls wouldexert a drag on the liquid, so that �uid at the enter of the hannel would move faster thanthat at the edge and onentrated samples would quikly beome smeared. The most om-monly used alternative makes use of a phenomenon alled eletro-osmosis: the hannel wallionizes water moleules in its viinity and, when an eletri �eld is applied along the hannel,these ions �ow towards the negative pole and drag the rest of the �uid along with them;the liquid moves as a plug �ow [20℄. Continuous miro�uidis is already used for mirosaleheat transfer, display, ink-jet printing, et. [21℄. Nevertheless, it is taking a long time to useontinuous miro�uidis for bio-hemial appliations, the main reason is that reagents arenot on�ned and may di�use through the entire network. Moreover, air bubble entrapmentfrequently ours when solvents do not perfetly wet the hannel surfae, resulting in drastihanges of the devie response dynamis [18℄.In digital miro�uidis, small droplets are used as ontainers in whih the liquid of interestis plaed. Droplets are almost ideal biohemial reators beause they reate homogeneousontrolled onditions without any hydrodynami dispersion; the high surfae-to-volume ratiogrants very fast thermal transfer and internal reirulations inside the droplet allow e�ientmixing. One of the main goals is thus to handle the many droplets that an be generatedwith only a minute amount of material, and to divide and reombine them in a multipliityof nanoreators so as to perform multiplexing. This requires the ontrol and reproduibilityof many droplet operations: fabriation, sorting, storage, fusion and breakup among others.Potential appliations of digital miro�uidis are numerous [16, 17, 21, 22℄. For example,genomis and proteomis, i.e. sequening of the human genom (DNA) and the various proteinsit produes, may advantageously make pro�t from the high rates and indexing apabilities ofdigital miro�uidis. Low-ost, simple to use and reusable diagnosti tools should be designedfor medial, food and environmental appliations. In these ases, robustness is the mainrequirement, sine the physio-hemial properties of the samples to analyze are not known apriori. Digital miro�uidis is also of interest for synthesizing proteins, organi moleules ornanopartiles. Cellular ultures may be parallelized through enapsulation inside droplets; this15



on�ned environment allows an aurate determination of what is absorbed/rejeted by theell. Researhers also think about using droplets as a support to reprodue some networks offuntional biologial reations, suh as enzyme yles. Finally, advanes in miro�uidis ouldbe very useful for both pharmaeuti [23℄ and food industries [24℄. Indeed, it is urrently theonly tehnology that an produe 100%-suess enapsulation of an ative substane by meansof a one-step proess [25℄. For example, one an dissolve the desired moleules or polymersinto an organi phase and let the latter �ow into an aqueous stream to generate droplets. Todry the resulting emulsion, the organi solvent is either exhanged with the aqueous phase orslowly evaporated through it. A last step of ultraviolet-indued ross-linking or polymerizationan then be used to solidify the olloids. The polydispersity of the partiles an be as low as afew perent, far better than what is ahievable with lassial means of generating emulsions.Many tehnial solutions have been explored to perform miro�uidi operations, the mainones are disussed here below.2.1.2 LevitationLevitation onsists in applying a fore to the droplet that makes it �oat into the air byexatly balaning gravity. The fore may result from aerodynamial, aoustial [26, 27℄, optial[28℄ or eletromagnetial e�ets [29℄. Although appealing at �rst sight for spei� appliations[30℄, levitation is unwieldy to implement and is therefore inappropriate for most miro�uidiissues.2.1.3 Multiphasi �ow through miro-hannel networksNowadays, the most prominent miro�uidi tehnology [16℄ onsists in making use of animmisible arrying liquid (usually oil) to onvey nanoliter aqueous droplets through a miro-hannel network (Fig. 2.1). This tehnique is advantageous in many respets. First of all,droplets annot evaporate, whih is appreiated when dealing with tiny amounts of aqueoussolutions. Thanks to the well-de�ned veloity in hannels, it is possible to onvert temporalvariations (e.g. the kinetis of a hemial reation) into a spatial variation in the �ow diretion.A typial �ow of 0.1 m/s onveting 1 mm droplets allows a temporal resolution of 10 ms. Toavoid the ollision between two suessive droplets in the hannel, one an separate them withplugs made of a third immisible phase (e.g. a gas) [31℄. The T -juntions between hannels areonsidered as one of the elementary bloks of the network, on the basis of whih it is possibleamong others to reate the droplets: one branh of the T brings water, and both othersonvey the oil (Fig. 2.1). This results in droplets of sizes omparable to the hannel diameter[16℄. T -juntions are also used as logial gates that may be ombined to perform omplexoperations suh as ounting [32℄. The droplet size is urrently ontrolled by tuning the input�ow rates. Unfortunately, this a�ets simultaneously the frequeny, omposition and speed ofthe droplets, whereas one would want to ontrol eah of these parameters independently [25℄. Anatural mirofabriation strategy is to integrate atuators in order to ahieve a loal ontrol ofthe droplet motion. This gain in ontrol may unfortunately result in somewhat sophistiated,speialized and expensive hips with limited �exibility and versatility. It must be neessary tostandardize a few basi on-hip funtions, with a drift toward passive strategies that ombinesimpliity and robustness. For example, as an alternative to the omplex mirofabriation bylithography, miro�uidi iruits an already be reated on a support as simple as a papersheet thanks to a desktop plotter and some speial inks [33℄.16



2.1.4 EletrowettingMirohannel networks su�er from an evident lak of �exibility. In other words, it is hardto make di�erent operations on suessive droplets. Moreover, these networks are usually notreprogrammable and are onsequently designed for a single spei� appliation. The handlingby eletrowetting ould be an interesting alternative to that issue: operations are indeed drivenby eletroni iruits that an be programmed.The sandwih tehnique [17, 34℄ onsists in plaing droplets in between two parallel solidplanes distant from about a few tenths of millimeter. The �rst plane is an insulator while theseond is usually made of glass; both are overed with an hydrophobi oating (Fig. 2.1d).Under the insulating layer, a series of eletrodes are plaed that pilot the droplet; the on-duting glass is onneted to the ground. Droplets thus behaves as apaitors, their apaityvaries with the interfae shape. Droplets are moved by suessively ativating the eletrodes:a droplet lying simultaneously on two ontiguous eletrodes moves towards the ativated one.Although fusion between droplets is obviously performed, division of a single droplet is harder:the droplet may over at least three eletrodes, the middle one is swithed o�, so dividing thedroplet in two parts. We perfetly understand that suh a proess annot perform divisionin hundreds of miro-droplets, whih is though required for high-throughput multiplexingoperations. Moreover, the walls are never perfetly hydrophobi, so the liquid may adhereon them [35℄. Droplets thus lose some mass by oating everything behind them [36, 37℄, soontaminating other next droplets that have to pass the same points.In order to minimize losses by oating, one an use only a single solid insulating surfaeon whih droplets are also driven by eletrowetting [17, 38℄. A miro-atenary may serve asthe seond eletrode, as well as a guide for droplets (Fig. 2.1e). Another option onsists inhaving two parallel onduting strips on the insulating surfae [39℄. Nevertheless, we notethat droplet division is even an harder issue with these tehnial solutions.2.1.5 Spontaneous motion on ative surfaesDroplets an be driven by the physial properties of the solid surfae on whih they arereleased. For example, spontaneous motion is observed on surfaes with a wettability gradientdue to thermi, optial [21℄ or hemial e�ets [40℄. Hydrophobiity is also tuned by hangingthe miro-texture [41℄. Like lotus leaves [42℄, the surfae may ally roughness to hemialhydrophobiity to o�er the minimum of surfae to water droplets. Contat angles up to 160◦are observed and surfaes aquire a kind of self-leaning property : droplets roll on them,taking dust away [43℄.To de�nitely avoid ontat, one may use the Leidenfrost e�et: when a droplet is plaedon a very hot surfae, its bottom evaporates and the vapor reates a gas ushion on whihthe droplet �oats. On an asymmetrially textured surfae, Leidenfrost droplets experienespontaneous motion [44℄. Although there is no ontat between the droplet and the substrate,there is still an important mass loss through evaporation. Another solution to prevent ontatis to texture the droplet itself, namely to over it with an hydrophobi powder [45, 46℄. Sooated, the droplet is moved without any frition or mass loss. It an also �oat on the surfaeof a water bath. Some insets walk on water by using a similar tehnique; their texturedhydrophobi legs o�er them a minimal ontat with water [47℄.Finally, we note that droplets an be moved by inertial fores, e.g. by shaking the solidsubstrate on whih they are plaed. Under given onditions, droplets may limb on inlined17



vibrated surfaes [48, 49℄. Suh tehnique has also been exploited in nature: some shorebirds�sh by striking the water surfae with their long thin beak, so extrating a droplet ontainingthe prey. The droplet limbs along the beak and reahes the mouth thanks to a quik ande�ient suession of opening/losing yles [50℄.2.2 A need for alternativesIt is obvious, there is no tehnial solution without drawbaks: impossibility to performsome basi operations, expensiveness, di�ulty to use, lak of �exibility and robustness, et.Nevertheless, the droplet physis is far from being fully explored. One of the goals of this thesisis to propose some new alternatives that would omplete this range of existing tehniques.The �rst part disusses an elegant variant of levitation, in whih droplets boune inde�nitelyon a liquid bath though they never touh eah other. A muh more promising solution ispresented in part two: droplets slide down �bers. The basis in miro�uidis is advantageouslytransposed on simple �ber networks. In partiular, the division and multiplexing operationsare performed very e�iently.
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Part IDroplets on liquid interfaes
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Chapter 3Bouning or oalesene, life or deathThe ollision of two distint streams of drops presents points of interest whih have beenmade subjet of examination. [...℄ When the angle of ollision is small, the disposition ofthe �les of drops may be made suh that they rebound without rossing (�g.3). More often,however, the drops shoulder their way through after one or more ollisions, somewhat as in�g.4. [...℄ At a somewhat higher angle of ollision amalgamation will usually our. Thestreams do not usually join into one, as we might perhaps expet, but appear to pass throughone another, muh as if no union of drops had ourred. With the aid of the revolving diskthe ourse of things is rendered evident. The separating layer is indeed ruptured at ontatand, for a short time, the drops move as one mass. There is, however, in general, onsiderableoutstanding relative veloity, whih is su�ient to bring about an ultimate separation, preededby the formation of a ligament (�g.5). Lord Rayleigh, 1882 (referene to Fig. 3.1).Lord Rayleigh (1879) was in the �rst physiists to investigate the interations betweenseveral droplets [51℄. In his experiment [52℄, two jets destabilized in a series of falling dropletsollide with eah other. The very fast motion of droplets is seen through strobosopi e�et.Rayleigh observed various behaviors depending on the ollision parameters (angle, veloity):the droplets may boune on eah other, or fuse together (oalesene) and possibly aftersplit into many droplets. The pitures from Rayleigh (Fig. 3.1) are remarkably aurate andrealisti. He also disussed the signi�ant impats of many fators, inluding visosity, surfaetension, solubility of the interstitial gas, eletri harge, addition of surfatant moleules anddusts. His work has been ompleted by many authors [53, 54℄. Some of them have also studieddroplets interating with a liquid bath [55, 56℄; again, the droplet may boune onto or oaleseinto the bath.At the same time as Rayleigh, Worthington [57℄ was publishing his beautiful observationsof droplets impating a bath at high veloity; this violent fusion is often alled a splash. Thedroplet usually turns into a rown that breaks up in a myriad of tiny droplets, as if the initialdroplet was blowing up. A powerful vertial jet is formed at the impat point, whih usuallydestabilises into many droplets as in the experiment of Rayleigh. The transition betweenoalesene and splash is desribed in [58℄. During impat, a small air bubble may be trappedunder the bath surfae. This bubble is mainly responsible for the noise made by raindrops[59℄. The air trapping is even greater when a liquid jet impats a bath. The jet an alsoboune onto the bath [60℄ or penetrate inside [61℄ and possibly turn into antibubbles [62℄, i.e.water droplets surrounded by an air layer, the whole immersed in the bath. Droplet impats20



Figure 3.1: Drawings made by Lord Rayleigh in 1882 to desribe his observations on interatingdroplets. These latter may boune onto or brush against eah other, fuse together and possiblysplit again.have been studied in many on�gurations, on other kind of surfaes, e.g. on a liquid �lm[63℄, on a dry solid surfae [6℄, into another immisible liquid [64℄, et. Reently, impats onsuper-hydrophobi surfaes have been investigated [65, 66, 67℄.Introdued in that way, the droplet physis seems in�nitely omplex; eah experimenthas a number of variations, eah one bringing qualitatively new phenomena. However, thebehavior of a single droplet in the viinity of another liquid/gas interfae (droplet or bath) isnearly dihotomi: it bounes or it oaleses. In the ase of bouning, both liquid masses nevertouh eah other, the ontat is only apparent. On a miro�uidi point of view, where thedroplet is onsidered as an individual entity ontaining information (e.g. the ative prinipleof a mediation), bouning is equivalent to survival. A straight ontat between two misibleliquids implies oalesene, i.e. the death of the miro�uidi entity by dilution. Nevertheless,this fusion may be partial and give birth to new smaller droplets.3.1 Birth and death of a dropletThere are many ways to reate a droplet, i.e. to extrat a small amount of liquid froma ontainer. The most ommon and straightforward is dripping, i.e. letting droplets slowlyesape from a tap or a syringe. At a given time, a pinh ours and the droplet is de�nitelyseparated from the rest. Droplets produed by this way have a relatively alibrated volume,provided the reation is quasi-stati, i.e. in�nitely slow [68℄. Conversely, when �nite-amplitudedripping are onsidered, the physis quikly beomes omplex [69, 70, 71℄, even haos is en-ountered [72℄. Droplets an also be born from the destabilization of a jet [73℄ sine, for agiven volume, their surfae is less than the jet surfae. This instability was �rst disovered byPlateau and Rayleigh [74, 75℄ (Chap. 8, App. G).Droplets may be as well diretly extrated from a bath. For example, a toothpik tipdipped into a bath and quikly taken out pulls a thin thread of liquid out from the bath,whih turns into a droplet thanks to the Rayleigh-Plateau instability and falls onto the bathsurfae [76℄. Droplet are also formed when the bath is violently shaken up and down (Faradayinstability [77℄) or when it is exited by powerful aousti waves [30℄. Finally, sientists fromMIT have reently disovered an original way to extrat droplets, by using an elasti sheet(Fig. 3.2). This latter behaves as a lamp whose opening is driven by surfae tension [13℄.21



Finally, as already mentioned, droplets may result from a partial oalesene of other droplets.

Figure 3.2: A �exible millimetri �ower-shaped plasti sheet is used as a elasto-apillarypipette. Driven by a balane between surfae tension and elastiity, it is able to extratdroplets from a bath and release them into another one (Credit: Pedro M. Reis, MIT).Both the fusion and the separation of liquid objets involve a topologial hange of theliquid interfaes, with the ourrene of singularities whih satisfy to universal self-similaritylaws [78℄. For example, when two low-visosity liquid objets oalese together, the radius ofthe e�etive ontat zone inreases as the square root of time [79℄, whatever the onsideredgeometry.3.2 Delaying oaleseneA droplet falling on a bath behaves as a ball thrown on the ground; it bounes some times,less and less higher, before it eventually omes at rest on the bath surfae. Starting from thatpoint, the oalesene is not neessarily immediate; the droplet rests for a short time. Thethin layer of surrounding �uid (e.g. air) between the droplet and the bath must be drainedoutwards for oalesene to our. The �lm thikness is estimated from the interferenefringes that are seen when the droplet is lightened with a monohromati soure (Fig. 3.3a); itis typially mirometri [80℄. This momentary live of droplets on a bath was �rst reported byLord Rayleigh in 1879 [51℄, then in 1881 by Osborne Reynolds[81℄. Five years later, Reynoldsame with the explanation, a theory alled lubriation (App. D). This theory does not onlyexplain the delayed oalesene of droplets [82℄ but also rationalizes the �ows in every thin�lms, e.g. among others, the spreading of panakes in a pan, the slipping of an objet onanother, the lava �ows in an erupting volano, the dynamis of soap �lms, bubbles [83℄ andantibulles [84℄.The lubriation equations are obtained starting from the Navier-Stokes equations, in whihthe length sale in a given diretion (namely the �lm thikness) is set muh smaller than inother diretions. Consequently, the pressure is onstant along the thikness, resulting in a2-D Poiseuille-like �ow (Fig. 3.3b). The overpressure in the �lm gives rise to a fore FL that
22



opposes further thinning. A �lm of size R orresponds to a lubriation fore of
FL ∼ µRḣ

(

R

h

)3

, (3.1)where ḣ is the thinning rate of the �lm. Due to the fator (R/h)3, the lubriation forebeomes giganti when the �lm is very thin. Nevertheless, lubriation e�ets are onsiderablyattenuated when the �lm boundaries are set into motion (e.g. pulled by the liquid inside thedroplet or bath). The resulting �ow inside the �lm is a ombination of a Poiseuille �ow anda Couette �ow, the latter might inrease the drainage rate without modifying the lubriationfore (Fig. 3.3).
Figure 3.3: (a) Interferene fringes visible through the droplet when the air �lm is mirometri.(b) A low-visosity �lm is surrounded by high-visosity liquids at rest; interfaes are motionlessand the drainage is slow. () The low-visosity �lm is pulled by the motion of the upper liquid;drainage is signi�antly inreased by this additional �ow.When a droplet is tatfully plaed on a bath in suh a way that the liquids remain at rest,the air drainage may be onsidered as a pure Poiseuille �ow. The lifetime tL of the dropletorresponds to the drainage time of the �lm when the lubriation fore is balaned by theweight. This yields

tL ∼ µaR
4

Mgh2
, (3.2)where µa ≃ 18 · 10−6 kg/m.s is the dynami visosity of air. The �lm breaks when a sub-mirometri thikness is reahed, thanks to the ohesive fores (Van Der Waals) exerted bythe liquids on eah side. The large urvature of the interfae next to the rupture point ausesthe �lm to quikly retrat. Aording to Eq. (3.2), the lifetime of a millimetri droplet plaedat 1 µm from the bath is tL ∼ 0.3 s. Pratially, droplets experiene muh lower lifetimesdue to residual �ows inside [85℄. Moreover, a number of fators signi�antly a�et the result:temperature, eletrostati �elds, surfatant moleules [86, 87℄, vapor onentration, rheologiproperties, presene of stabilizing polymers [88℄, et. The oalesene time of droplets is ofruial importane for many industrial proesses involving emulsions [89℄: dairy produts infood industry, petrol demulsi�ation, osmetis, et. Nevertheless, in spite of the tremendouse�orts made by sientists sine the sixties [90℄, the lifetime of droplets is hardly predited withauray and reproduibility.For the problem we are interested in, we need not to slow down the air drainage, but toanel it so droplets an be handled without this time onstraint. Many tehniques have beenproposed in the last ten years to prevent oalesene [91℄. For example, a horizontal relativemotion between the droplet and the bath an maintain the air �lm; a lift fore balanes the23



weight. The motion may be a rotation [92, 93℄ or a hydrauli jump [94℄. It may also be dueto thermoapillary �ows [93℄. A water droplet plaed in the viinity of a very hot soure (asolid surfae [95, 96℄ or a bath [97℄) is observed to �oat on a gas ushion, as already notedby Leidenfrost in 1756. The air �lm transfers the heat to the bottom of the droplet whihevaporates; the released vapor balanes the losses due to drainage.In 1978, Jearl Walker [98℄ proposed an astonishing way to maintain a droplet alive ona bath surfae. The bath is simply vibrated vertially, e.g. by �xing the ontainer on themembrane of a loud-speaker. This foring makes the droplet boune inde�nitely on the bath,exatly as a ball an be kept bouning on a raket by swinging it up and down (App. E). Theair �lm is regenerated at eah boune and the energy dissipated by visosity is balaned bythe inoming energy from the vibration. We note that an horizontal osillation of the bath[99℄ may also delay the oalesene, but annot enable sustained bouning. In this thesis,we onentrate spei�ally on this tehnique of vertially vibrating the liquid substrate inorder to provide the energy required for periodi bouning. To understand it, we need �rst toinvestigate the physis of bouning.3.3 The physis of bouningBouning objets are subjet to universal mehanisms whih, qualitatively, are weaklydependent on the onsidered on�guration. To get bouning, the system objet/substrate musthave at least one e�ient spring mehanism. At impat, the translational kineti energy isonverted into deformation potential energy (through surfae tension for liquids, and elastiityfor solids). This energy is then partly given bak to the translational motion. The other partfeeds waves, osillations and internal motions. The apparent ontat time tc between theobjet and the substrate is similar to the energy transfer harateristi time
tc ∼

√

M/k, (3.3)where M is the mass of the bouning objet and k the sti�ness of the spring mehanism. Fora droplet [65, 100℄, we �nd the apillary time τσ =
√

M/σ. For rigid beads on an elastimembrane under tension T , tc ∼√M/T [101℄; and for elasti balls of Young modulus E andradius R on a rigid ground, tc ∼√M/ER. As universal as the spring mehanism is the dissi-pative proess, whose �nal e�et is to damp the bouning: visosity for �uids, shear/fritionfor solids. Depending on the ase, some dissipations are more signi�ant than others - e.g. thedissipation of miro-�ows inside the droplet, or the dissipation in the intervening air layer.Despite its universal features, the bouning dynamis is di�ult to model in a general ase.Consider for example a 10 S millimetri droplet bouning on a bath made of the same liquid.At impat, both the droplet and the bath are deformed and store surfae energy. The resulting�ow in the bath is hardly desribed mathematially. A rater is formed at impat, whih anbe represented by nonlinear apillary waves. Owing to its mass, the bath has inertia; it reatsto the droplet in a �nite time with its own dynamis. In these onditions, bouning is reallyhard to model.Two spei� bouning on�gurations are disussed in this thesis. Eah one orrespondsto a limit in whih the bath dynamis is overly simpli�ed, even negleted. In the �rst ase(Chap. 4), the droplet bounes on a soap �lm. This speial bath is muh lighter than thedroplet, it has a negligible inertia and it reats quasi-instantaneously to external soliitations,it lets itself be shaped by the droplet. In the seond ase (Chap. 5), the liquid bath is highly24



visous, bath deformations are limited and the stored energy annot be given bak. Therefore,we suppose in �rst approximation that the bath behaves as a rigid surfae of in�nite inertia.The main di�erene with a solid surfae is that the bath is perfetly smooth down to atomisale. This quality is required for bouning droplets, sine any mirometri rugosity in thesurfae would prematurely break the air �lm and lead to oalesene.3.4 SummaryIn this hapter, we have disussed the various interations between a droplet and anotherliquid objet. The droplet usually bounes or oaleses into the other liquid. The bouningis a priori omplex sine both the bath and the droplet dynamis in�uene eah other. Thenext hapters onentrate on limit ases in whih these interations are simpli�ed.The bouning may be seen as a way to prevent oalesene, i.e. the inevitable death of adroplet in the viinity of a liquid bath. This oalesene is delayed thanks to the interveningair layer between the droplet and the bath, that must �rst be drained out for fusion to our.This drainage obeys to the lubriation theory; it an be slowed down and even stopped bymany tehniques. Among others, a droplet an boune inde�nitely without oalesing whenthe liquid bath is vertially vibrated.
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Chapter 4A droplet on a soap �lmA soap �lm is a liquid �lm of mirometri thikness overed on eah side with a monolayerof surfatant moleules. This latter onsiderably dereases the surfae energy of the �lm, soit is expeted to deform muh more easily. When the �lm is very thin, both surfatant layersmay interpenetrate and repulse eah other, whih yields additional stability to the soap �lm.The impat of a droplet on a soap �lm was desribed for the �rst time by Courbin andStone [102℄ in 2006. These authors observed that small objets (liquid or solid) intereptingthe �lm at high speed are able to ross it without breaking it. For smaller impat veloity, solidpartiles have a di�erent behavior from liquids. Owing to its roughness, the bead immediatelytouhes the soap �lm, whih reats by applying a fore upwards at the ontat line. This foreslows down the bead fall and, if the veloity is not su�ient, the bead is trapped by the soap�lm [103℄. Conversely, as we have seen in Chap. 3, a droplet may avoid touhing the soap �lmthanks to the existene of a thin lubriating air layer. Nevertheless, the soap �lm is highlydeformed by the droplet. The deformation energy of the �lm is taken from, then given bakto the translational energy of the droplet. As a gymnast on a trampoline, the droplet bouneson the iridesent soap �lm (Fig. 4.1). Although not enountered in nature or in industrialproesses, the bouning of a droplet on a soap �lm has two major partiularities that makeits understanding and quantitative modeling muh easier than other bouning on�gurations:
• The soap �lm stores pratially all the energy of the inoming droplet.
• The soap �lm inertia is negligible ompared to the droplet inertia.It is therefore a perfet ase study to �rst understand the physis of bouning.4.1 Experimental setupWe have studied the bouning of droplets on a horizontal soap �lm through two series ofexperiments, both performed at the Massahusetts Institute of Tehnology in ollaborationwith Professor John W.M. Bush [104, 105℄.In the �rst series, a droplet impats a soap �lm of thikness hsf ∼ 1 µm �xed on a thinmetalli ring of radius Rsf = 8 mm (Fig. 4.2a). In the seond experiment, the soap �lm isvertially vibrated in order to provide additional energy to the droplet; sustained bouningis observed exatly as in Walker's experiment [98℄. The vibration is ensured by pinning thesoap �lm on the edge of a plexiglas tube of radius Rsf = 16 mm. The tube is �xed to a26



Figure 4.1: A millimetri droplet bouning on an iridesent soap �lm pinned on a ring.loud-speaker membrane that vibrates sinusoidally with an amplitude A and a frequeny fbetween 20 and 80 Hz (Fig. 4.2b). To avoid the pratial di�ulties of leveling the soap �lm,the tube is put in a larger onentri tube (Fig. 4.2b) that is partially �lled with water and�xed to the speaker. The soap �lm is reated on the inner tube while the tube is immersedin the �uid reservoir, so that an air olumn is trapped between the soap �lm and the liquidbath. The inner tube is then moved slightly upwards before �xing it to the outer ylinder withsrews. The low pressure in the air olumn de�ets the soap �lm downwards at its enter andthe resulting �lm urvature stabilizes the bouning droplet.Droplets of onstant radius R = 0.8 mm are released above the soap �lm from an insulinsyringe. The impat speed V is varied between 0.1 and 1 m/s by hanging the release height.The liquid used for both the droplet and the soap �lm is a mixture of water, glyerol andommerial soap (Dover). The onentration of soap is 1 % by volume. The visosity of theliquid is altered by varying the onentration of glyerol (App. B). Most of the experimentswere performed with a mixture of 80 % water and 20 % glyerol, whih orresponds to a vis-osity ν ≃ 2 S, a density ρ = 1050 kg/m3 and a surfae tension σ ≃ 22 mN/m. Experimentsare reorded from the side with a high-speed video amera with aquisition rate 1000 fps andresolution 256 × 256 pixels. For our typial �eld of view, the harateristi pixel size is 50 µm.Measurements of drop position and �lm shape are made via image proessing.The droplet impat on a vibrating soap �lm is haraterized by 12 physial variables (R,
Rsf , hsf , ρ, ν, σ, ρa, νa, g, V , f and A - Fig. 4.2), so nine independent dimensionless numbersan be formed. Nevertheless, we hoose to only vary four parameters V , Rsf , f and A, whihare related to four dimensionless numbers:

• the Weber number We = ρV 2R/σ ∈ [1, 30], whih orresponds to the ratio between thekineti energy of the inoming droplet and its surfae energy,
27



Figure 4.2: Experimental set-up. (a) Without vibration: a droplet strikes a horizontal soap�lm �xed on a thin ring. (b) With vibration: the soap �lm is pinned at the end of the innertube, whih is vertially vibrated by a speaker. The arrangement with the outer ylinderensures a downward urvature of the �lm, and so stabilizes the bouning droplet.
• the ratio between the soap �lm and droplet radii

ξ =
Rsf

R
, (4.1)

• the foring aeleration
Γ =

4π2Af2

g
∈ [0.15, 3], and (4.2)

• the redued frequeny
ω = 2πf

√

M

k
∈ [0.7, 3], where (4.3)

k = ckσ (4.4)is the sti�ness of the soap �lm. The exat value of ck is dedued latter.In our experiments, ξ = 10 when the �lm is at rest, and ξ = 20 when it is vibrated. Otherdimensionless numbers, suh as Bo = 0.1 and Oh = 0.015, are not varied.4.2 From bouning to rossing: the soap �lm shapeAs previously observed by [102℄, the droplet bounes on the soap �lm for low We while, athigh We, it rosses the soap �lm without breaking it. In this setion, we disuss the transitionbetween both behaviors as a funtion of We.During a bouning event (Fig. 4.3a-b), the kineti energy of the falling droplet is primarilyonverted into surfae energy of the distorted soap �lm; thereafter, the bulk of this energy28



Figure 4.3: Various behaviors of a droplet impating a soap �lm. Snapshots are taken every4 ms. (a) Bouning at We ≃ 7. (b) Bouning at We ≃ 12. () Partial rossing at We ≃ 16.(d) Full rossing at We ≃ 15.
29
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√

σ/(ρhsf ) [106℄. For30
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z

rm
= −acosh

(

Rsf

rm

)

± acosh

(

r

rm

)

, (4.5)where rm is the minimum radius of the atenoid. We must math this atenoid to the spher-ial ap at a point Pm presribed by the angle θ: rm/R = sin2 θ. The maximum vertialdeformation ζ of the soap �lm may be expressed as a funtion of θ through
ζ

R
= 1 − cos θ + sin2 θ

[

acosh

(

1

sin γ

)

− sign(cos θ)acosh

(

1

sin θ

)]

, (4.6)where sin γ = rm/Rsf = (sin2 θ)/ξ. The anomalous surfae generated by the �lm deformation,
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∆S, is given by

∆S

πR2
= (1 − cos θ)2(2 + cos θ) − sin4 θ

1 + cos γ

+ sin4 θ

[

acosh

(

1

sin γ

)

− sign(cos θ)acosh

(

1

sin θ

)]

. (4.7)The vertial fore Fσ required to produe a vertial displaement ζ is given by
Fσ

2σπR
=
∂θ∆S/(πR

2)

∂θζ/R
= 2 sin2 θ. (4.8)Of ourse, this fore is obtained more easily by integrating the vertial omponent of the surfaetension over the irle formed by revolving the point of mathing Pm about the vertial axis

r = 0.The dependene on θ of ∆S/(πR2), ζ/R and Fσ/(2πσR) is illustrated in Fig. 4.6(a) for
ξ = 10. The anomalous surfae ∆S reahes a maximum for a ritial angle θM ≃ 5π/8. For
θ < θM , the system tends to the θ = 0 state (droplet above the soap �lm), while for θ > θMit tends to the θ = π state (droplet fully enlosed by the soap �lm). The maximum de�etion
ζ/R ≃ 4.4 is also reahed for θ = θM . The fore Fσ exerted by the soap �lm on the dropletremains direted upwards, whatever the value of θ. The maximum fore generated by thesoap �lm, Fσ = 4πσR, ours when θ = π/2. The fore is represented as a funtion of themaximum enterline de�etion ζ in Fig. 4.6(b). Four distint regimes are apparent.32



• When 0 < ζ < 3R (0 < θ < 3π/8), the soap �lm reats like a spring, exerting a forethat grows roughly linearly with the deformation
Fσ = kζ, (4.9)where the sti�ness k is given by k = ckσ. The dependene of ck on ξ is illustratedin Fig. 4.6(b): ck ≃ 8π/7 when ξ = 10 (stati soap �lm in our experiments) while

ck ≃ 24π/25 when ξ = 20 (vibrated soap �lm in our experiments). Agreement withexperimental data is exellent. In partiular, we on�rm that there is no hysteresis; thedeformation does not depend on the diretion of the droplet.
• When 3R < ζ < 4R (3π/8 < θ < π/2), the spring law beomes nonlinear as the foresaturates. The sti�ness vanishes when ζ = 4.
• When 4R < ζ < 4.4R (π/2 < θ < θM ), the sti�ness is negative: inreasing the deforma-tion results in dereasing the fore. The sti�ness diverges when θ → θM and the systemswithes equilibrium states.
• When θ > θM , ζ dereases towards 2R and the sti�ness is again positive. Here, thesystem tends towards the θ = π on�guration, where the droplet is wrapped by the �lm.We note that for θ > θM , the �lm shape is poorly desribed by the model: the lastframes of Fig. 4.3(d) learly indiate that the �lm does not wrap the drop as it passesthrough.Finally, we apply this quasi-stati model for the �lm shape to estimate the minimumWebernumber Weth required for a droplet to pass through the soap �lm. Supposing that the wholeinitial kineti energy is onverted into surfae energy of the �lm, the energy balane is written

2π
3 ρR

3V 2 = 2σmax(∆S), so Weth = 3
max(∆S)

πR2
. (4.10)In our experiments, the stati soap �lm has a radius of Rsf =8 mm and orresponding ξ = 10;we thus antiipate Weth = 16. This value is in good agreement with the experiments reportedin Fig. 4.4. We note that the predition (4.10) neglets energy dissipated during impat aswell as the droplet deformation. Nevertheless, it does provide a good leading-order riterionfor droplet breakthrough.4.3 Bouning on a �lm at restWe proeed by haraterizing two important bouning parameters: the apparent ontattime tc and the energy dissipated during a single boune. Both quantities were measured forvarious We. As seen in Fig. 4.7(a), tc is proportional to the apillary time τσ and independentof We:

tc ≃ 1.86τσ. (4.11)This result is similar to those reported by [101℄ for beads bouning on elasti membranes andby [65℄ for droplets bouning on hydrophobi surfaes. In that latter ase, the proportionalityonstant is muh lower, tc ≃ 1.27τσ. 33
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fsf =

1

2π

√

k

M
=

0.3

τσ
≃ 30 Hz. (4.12)One expets the ontat time to be approximately half a period of osillation of the soap �lm,i.e. tc = 1.66τσ, whih is oherent with the experimental results.During eah boune, a droplet loses a fration of its initial translational energy throughvisous dissipation. In dimensionless terms, the Weber number is dereased by an amount

∆We at eah boune owing to dissipation inside the droplet, soap �lm or intervening air layer.The oe�ient of restitution, spei�ally the ratio of take-o� and landing speeds, is given by
ǫ =

√

1 − ∆WeWe . (4.13)The dependene of ∆We on We is reported in Fig. 4.7(b). The experimental data ollapseonto a single urve orresponding to a power law lose to
∆We ≃ 0.09We3/2. (4.14)The dissipation is markedly di�erent from that observed by [108℄, i.e. ∆We ≃ 0.2We, fordroplets bouning at We ≪ 1 on a hydrophobi surfae.We proeed by developing a simple theoretial model to rationalize Eq. (4.14). The enterof mass of the droplet Z evolves aording to
MZ̈ = Fσ(ζ) −Mg. (4.15)If η denotes the vertial deformation of the droplet (Fig. 4.5), we an write Z = −ζ +R+ η.Equation (4.15) an then be reast in terms of energy as

d

dt

[

MŻ2

2
+MgZ + Eσsf (ζ)

]

= Fσ(ζ)η̇ (4.16)34



where Eσsf (ζ) is the surfae energy stored in the soap �lm, so that dEσsf (ζ)/dζ = Fσ(ζ).The only remaining non-onservative term in (4.16) is Fσ(ζ)η̇, the work done by the soap �lmin deforming the droplet. This term desribes the transfer of energy between the translationaland vibrational motions of the droplet. The total energy removed in this fashion during impatneessarily sales as Fση̇tc. We thus need to know how Fσ, η̇ and tc sale with We.The maximum enterline de�etion of the soap �lm, ζ, was measured for various We.When ζ < 4 (i.e. θ < π/2), the maximum fore FσM exerted by the soap �lm ours atthe point of maximum de�etion and an be alulated from (4.6) and (4.8). As shown inFig. 4.8(a), the maximum fore is linearly proportional to We.
FσM

σR
≃ 1.11We. (4.17)The droplet deformation rate during impat η̇ sales as ηM/τσ, where ηM is the maximumdroplet deformation. The droplet reats rapidly to the impat; it is already highly ompressedby the time the soap �lm begins to deform. Indeed, the natural frequeny of the soap �lmis given by Eq. (4.12), while aording to Rayleigh (Eq. 1.7), the natural frequeny of thedroplet osillating in the mode Y 0

2 is
f(2,0) =

0.92

τσ
≃ 90 Hz, (4.18)so the droplet reats three times faster than the soap �lm. For an experiment at We ≃ 9orresponding to a kineti energy K ≃ 2.60 µJ, the maximum drop deformation is estimatedto be ηM ∼ 0.41R. The orresponding surfae energy is

Eσ ≃ 8π

5
ση2

M ≃ 0.13 µJ, (4.19)whih represents a fration Λ ≃ 5 % of the kineti energyK. This lost energy at impat annotaount for the harateristi value ∆We/We ∼ 0.25 observed in Fig. 4.7(b), from whih weinfer that some additional energy is transferred after impat. Substituting Eσ = ΛK intoEq. (4.19) yields a saling for ηM

(

ηM

R

)2

≃ 5Λ

8π

K

σR2
=

5

12
ΛWe. (4.20)This saling is similar to that observed by [109℄ for droplets striking a hydrophobi surfae.Equations (4.11), (4.17) and (4.20) together yield

∆We =
3

2π

∆K

σR2
=

3

2πσR2

∫ tc

0
Fση̇dt ∼

3

2π

FσM η̇tc
σR2

≃ 0.63Λ1/2We3/2. (4.21)For Λ = 5 %, we thus obtain
∆We ≈ 0.14We3/2, (4.22)whih is lose to the observed saling (4.14). While the oe�ient dedued (0.14) is 50% higherthan that observed (0.087), this estimate has not taken into aount the variations of the sign of

Fση̇ over the integration period. Nevertheless, sine tc/τσ is independent ofWe, it is reasonableto suppose that the time orrelation of Fσ and η̇ remains unhanged with inreasingWe, whihlends further redibility to this saling. In summary, the translation energy is onverted into35



deformation energy, only a part of whih is transferred bak to translation. The remainingpart is dissipated through internal motions in the droplet. This dissipation mehanism is alsoobserved for droplets bouning on hydrophobi surfaes [108℄, though the saling is di�erent.Some energy is also inevitably dissipated in the air layer and the soap �lm. Both �lm anddroplet are oated by a ommerial surfatant whose preise surfae properties are not easilyquanti�ed. The extent to whih a surfatant-laden surfae is rigidi�ed depends on both thetype and onentration of surfatant. In general, soap �lms lie between the "rigid" and "free"limits, in whih the internal �ows orrespond, respetively, to Poiseuille and plug �ows. ThePoiseuille regime is more dissipative sine veloity gradients arise aross the thikness of the�lm. Conversely, in plug �ow, transverse veloity gradients are negligible and the dissipationresults from veloity gradients in diretions parallel to the �lm, whih are neessarily muhsmaller. Therefore, for the sake of bounding the dissipation in the soap �lm, only the Poiseuillease is onsidered here. Lubriation equations write
∂h

∂t
+ ∇ · ~Q = 0 (4.23)

~Q+
h3

12µ
∇P = 0 (4.24)where ~Q is the �ow rate and ∇P the pressure gradient, both parallel to the air �lm. Theenergy dissipation ∆K in the whole �lm (surfae S) during tc is given by

∆K = −
∫ tc

0

∫

S

~Q · ∇PdSdt (4.25)These equations are saled to yield
h

tc
∼ Q

R

Q ∼ h∆P

12µR
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Q2 ∼ 12µR4

t3c∆P

h2 ∼ 12µR2

tc∆P

(4.26)and
∆K ∼ tc(2πR

2)
∆P

R
Q ∼ 4π

√

3µR6∆P

1.86τσ
(4.27)The overpressure ∆P , i.e. the pressure at enter of the air �lm below the droplet, should saleas FσM/(πR

2) ∼ 0.35(σ/R)We, whih gives a saling for the dissipated energy
∆We ∼ 3Oh1/2We1/2. (4.28)Assuming that the onstant of proportionality is relevant, the range of energy loss due todissipation in a soap �lm with Oh = 0.015 is ∆We ∈ [0.37, 1.5], while the observed rangeof dissipation is ∆We ∈ [0.2, 5]. So, for We . 1, we expet the resulting dissipation in thesoap �lm to be relevant for the ase of rigid �lms. This additional soure of dissipation mightexplain the fat that the observed dissipation is systematially higher than the saling law(4.14) for We ∼ 1. Nevertheless, the saling ∆We ∼ We1/2 is not observed experimentallyfor We & 1. The observed loss of translational energy mainly results from a transfer to thevibrational motion of the droplet. 36
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Fσ(ζ)η̇ = −cT

M

R
H(ζ)|ζ̇|3, (4.29)where H(ζ) is the Heaviside funtion and cT is the transfer onstant. The transfer is zerowhen Z > 0 (the droplet is �ying), but is negative de�nite and sales as We3/2 when Z < 0.We further simplify the system by assuming that |η| ≪ |ζ|: the droplet deformation is muhsmaller than the amplitude of vertial motion, so that Z ≃ R − ζ. Finally, onsistent with(4.9), we assume that the soap �lm has a linear fore�displaement law Fσ(ζ) = H(ζ)kζ. Wethus obtain

d

dt

[

Mζ̇2

2
−Mgζ + H(ζ)

kζ2

2

]

= −cT
M

R
H(ζ)|ζ̇|3, (4.30)so

Mζ̈ = Mg − kζH(ζ) − cT
M

R
H(ζ)ζ̇|ζ̇|. (4.31)The onstant cT = 0.028 is determined by �tting the solutions of (4.31) to the experimen-tal data in Fig. 4.7(b). The results from (4.31) with the cT value so dedued represent animprovement over the saling law (4.14). The predited ontat time tc/τσ is also in goodagreement with experimental data reported in Fig. 4.7(a). As seen in Fig. 4.8(b), the modelprodues a remarkably aurate piture of the damped bouning on a stationary �lm.

37



0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

ω

Γ th

Figure 4.9: Threshold aeleration for bouning, Γth, as a funtion of the dimensionless foringfrequeny ω. For a given frequeny, a droplet was released onto a �lm vibrating at Γ > Γth;subsequently, Γ was dereased until the droplet oalesed. The experiment was repeatedseveral times to apture both modes (1,1) and (2,1): the minimum measured value of Γorresponds to the threshold reported by (N). When foring parameters (Γ, ω) are loatedinside the shaded area, no periodi bouning is observed and the droplet oaleses. Solid (resp.dashed) line represents the threshold omputed by solving (4.33) numerially and orrespondsto the mode (2,1) (resp. (1,1)). The lower threshold solution roughly orresponds to ourexperimental data.4.4 Sustained bouning on a vibrating soap �lmOn a stationary soap �lm, the We dereases at eah boune, until the droplet settlesonto and ultimately merges into the �lm. To ounter dissipative losses, a vertial vibration isapplied to the frame of the soap �lm: energy is thus transferred from the frame to the �lmto the droplet. Provided the mehanial energy so supplied balanes dissipative losses, thedroplet is re-energized during impat and may boune inde�nitely, as in Walker's experiment[98℄. Thanks to our simple model (4.31), it is possible to deeply understand this sustainedbouning.First, we measure the aeleration threshold Γth(ω), whih is the minimal aeleration
Γ that an sustain periodi droplet trajetories, as a funtion of the dimensionless foringfrequeny ω (Fig. 4.9). For ω < 2, Γth is roughly onstant (about 0.15 ± 0.04). When ω > 2,bouning droplets annot be sustained. We note that this ritial frequeny orresponds to aperiod of 18 ms, a value roughly equal to the measured ontat time.A striking harateristi of droplet bouning on soap �lms is the oexistene of multipleperiodi solutions for given foring parameters (Γ, ω), or, in the parlane of dynamial sys-tems theory, multi-periodiity. Bouning modes are denoted by two integers (p, q) suh thatone period of the trajetory orresponds to p foring periods and q bounes of the droplet.For example, modes (1,1), (2,1) and (3,1) are displayed in the spatiotemporal diagrams ofFig. 4.10(a-). All these solutions are observed to be stable, at least during the 8 seonds ofreording orresponding to 240 foring periods. Depending on initial onditions, spei�allythe impat speed and phase, the droplet loks onto one partiular mode. Note that the am-plitude of the jumps experiened by modes (2,1) and (3,1) is muh larger than the foringamplitude. Weber numbers at impat are about 0.06, 1.5 and 3.9 for modes (1,1), (2,1) and38



Figure 4.10: Spatiotemporal diagrams of a droplet bouning on a soap �lm vibrating at
f = 33 Hz (ω = 1.21). The dark low-amplitude osillation at the top of these pituresrepresents the vertial motion of the ring to whih the soap �lm is pinned. (a) Mode (1,1)at Γ = 0.6 - We ≃ 0.06. (b) Mode (2,1) at Γ = 0.6 - We ≃ 1.5. () Mode (3,1) at Γ = 0.6- We ≃ 3.9. (d) Mode (3,3) at Γ = 0.7. (e) Period-doubling transition, from mode (1,1) tomode (2,2) at Γ = 1.2. (f) Chaoti bouning trajetory at Γ = 1.1.(3,1), respetively. Aording to (4.14), with eah boune these modes lose kineti energysuh that ∆We is approximately 10−3, 0.16 and 0.67, respetively. For periodi solutions,this energy loss has to be perfetly balaned by the energy input from the foring. In thefollowing, we shall demonstrate that the same foring an deliver three di�erent amounts ofenergy aording to the impat phase of the droplet.We also observed more omplex periodi bouning states, where the periodiity appearsonly after several jumps (q > 1). For example, the mode (3,3), observed at Γ = 0.7 and
ω = 1.21 (Fig. 4.10d), is haraterized by three suessive jumps of di�erent amplitude. Athigher aelerations, a period-doubling transition may our spontaneously (at �xed foringparameters), transforming a mode (1,1) into a mode (2,2) as seen in Fig. 4.10(e). Chaotitrajetories are also observed (Fig. 4.10f), with episodi periods of high-amplitude bouning.The haoti bouning is usually unstable and the air �lm ultimately breaks, typially after apartiularly vigorous impat.The sustained bouning may be modeled by adding to Eq. (4.31) a �titious inertial fore
MgΓ cos(2πft + φ), sine Newton's law is expressed in a frame moving with the vibrating�lm. De�ning dimensionless variables

y =
−kZ
Mg

, τ =

√

k

M
t and U =

V

g

√

k

M
(4.32)yields

ÿ + H(−y)y + 1 = −4πcT
ck

BoH(−y)|ẏ|ẏ + Γ cos(ωτ + φ). (4.33)whih may be solved subjet to initial onditions y(0) = 0 and ẏ(0) = −U at impat. Themulti-periodiity is observed as in the experiments (Fig. 4.11a). The droplet in the high-energy mode (3,1) lands before that in low-energy mode (1,1), thereby inreasing the amount39



Figure 4.11: Numerial solution of Eq. (4.33) at ω = 1.21. Solid lines orrespond to trajetories
y(ωτ) in the frame of the ring; dashed lines orrespond to the ring motion; vertial dash�dottedlines represent the landing (L) and take-o� (T) phases measured experimentally. (a) Modes(1,1), (2,1) and (3,1) at Γ = 0.6. (b) Mode (3,3) at Γ = 0.8545. () Mode (2,2) at Γ = 1.5.(d) Chaoti bouning at Γ = 1.82.
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(b)Figure 4.12: Chaoti solutions for (Γ, ω) = (1.82, 1.21). (a) Chaoti attrator in the phasediagram. (b) Positive Lyapunov exponent ≃ 0.4 . Initially neighboring trajetories divergeexponentially, indiating sensitivity to initial onditions.of energy extrated during impat. The model also reprodues omplex modes (3,3) and (2,2),as seen in Fig. 4.11(b-). The measured phases of landing and take-o� are in good agreementwith the model preditions, though these omplex modes are not observed at preisely thesame foring parameters as in the experiments. Many other omplex periodi solutions aregenerated by the model for di�erent foring parameters (Γ, ω) and initial onditions (U, φ).The system (4.33) is similar to that arising from the Du�ng equation and the vertiallyosillated pendulum [110℄; it thus supports haoti solutions (Fig. 4.11d), as many otherbouning systems [111, 112℄. The trajetory rolls up on a strange attrator (Fig. 4.12a) andorresponds to a positive Lyapunov exponent dedued by alulating the rate of exponentialdivergene of two initially adjaent trajetories (Fig. 4.12b). The model (4.33) exhibits haosstarting from Γ = 1.76, a value muh higher than observed in experiments (Γ = 1.1). Thisdisrepany is presumably due to the shortomings of our simple model for the dissipation inthe system; in partiular, details of the droplet deformation are not modeled in Eq. (4.33).We proeed by solving (4.33) with ω = 1.21 �xed for various aelerations Γ ∈ [0, 2] todevelop a bifuration diagram of our system (Fig. 4.13a). Modes (p, q) are represented by
q di�erent branhes orresponding to the dimensionless impat veloity U of the q di�erentbounes. Many omplex bifuration events appear on the bifuration diagram, analysis ofwhih is beyond the sope of this thesis. For Γ < 0.18, no periodi bouning is possible.
Γ

(2,1)
th = 0.18 orresponds to the lower bouning threshold, at whih mode (2, 1) appears.At the upper bouning threshold Γ

(1,1)
th = 0.47, the stati solution ompletely disappearsand transforms into a periodi bouning (1, 1). Both thresholds are omputed for variousforing frequenies ω (Fig. 4.9), the lower of whih is in good agreement with experiments. Inpartiular, the threshold remains roughly onstant and less than 0.2 until ω = 2; thereafter,it inreases drastially, onsistent with the observed absene of bouning for ω & 2. We notethat the minimum in the upper threshold urve orresponds to the resonant frequeny of thesoap �lm ω = 1, as de�ned in (4.12). As Γ is inreased, the prinipal modes (p, 1) branh to

(2p, 2) states through period-doubling events. The transition to haos ours via a number of41
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Chapter 5Periodi bouning on a high-visosityvibrating bathIn this hapter, we disuss the bouning mehanisms in a seond limit ase, probably loserfrom potential miro�uidi appliations, namely droplets bouning on a visous bath. Here,the bath annot e�iently store surfae energy and the droplet has to boune by itself. Likein the soap �lm experiment (Chap. 4), we observe a threshold foring aeleration Γth abovewhih sustained bouning is possible. The threshold measurements from Denis Terwagne andStéphane Dorbolo [113℄ are rationalized through a model similar to Eq. (4.33).5.1 Experimental results : bouning threshold and droplet de-formationsA ontainer is �lled with about 8 mm of silion oil (Dow Corning 200, ν = 1000 S) and�xed on an eletromagneti shaker that vibrates aording to A cos 2πft. Droplets of radius
R ∈ [0.73, 0.93] mm made of a less visous silion oil (ν ∈ [0.65, 100] S) are released from asyringe in the viinity of the bath. The threshold aeleration Γth = 4π2Af2/g is measured asdesribed in Chap. 4: droplets are reated when Γ > Γth, then Γ is dereased until oalesene.The threshold Γth is measured as a funtion of the foring frequeny f for various dropletvisosity (Fig. 5.1a). At 100 S, Γth monotonially inreases with f , starting from Γth → 1in f → 0. At lower visosity, regularly spaed extrema are seen on the threshold urve.Bouning is easier around some spei� frequenies, whih suggests that the system behavesas a resonating damped osillator. Visosity is obviously the damping mehanism, sine theextrema disappear at high visosity. On the other hand, the bouning seems to be ensuredthrough the droplet deformation. Indeed, as seen in Fig. 5.2, the droplet shape hangesas the frequeny is inreased, we may reognize some of the droplet eigenmodes, i.e. theaxisymmetri spherial harmonis Y 0

ℓ already introdued in Chap. 1. The droplet selets thedeformation mode used to boune as a funtion of the foring frequeny, and eah minimumin the threshold urve Γth(f) orresponds to a mode Y 0
ℓ .The dispersion relation of apillary waves (1.7) suggests to sale the foring frequeny withthe frequeny f(2,0) of the spherial harmoni Y 0

2 . The droplet is thus seen as a spring of sti�-ness k = ckσ with ck = 32π/3, and the dimensionless frequeny writes again ω = 2πf
√

M
k .The thresholds orresponding to di�erent droplet radii ollapse on a single urve (Fig. 5.1b).44
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(b)Figure 5.1: (a) Threshold aeleration Γth as a funtion of the foring frequeny f for a dropletof R = 0.765 mm. (•) ν = 1.5 S; (�) ν = 10 S; (N) ν = 100 S. The inset represents thethreshold urve in logarithmi sale, for ν = 100 S. The solid (resp. dashed) line is a powerlaw of exponent 3.5 (resp. 2, as proposed in [114℄). (b) Normalized threshold amplitudeas a funtion of the dimensionless frequeny ω for various droplet sizes (ν = 1.5 S): (•)
R = 0.765 mm; (�) R = 0.812 mm; (N) R = 0.931 mm. The vertial dashed lines orrespondto the droplet natural frequenies (Eq.5.1).By replaing Γth by a more appropriate dimensionless number based on the threshold ampli-tude Ath, namely Ath/(gτ

2
σ), the extrema are all loated at the same dimensionless foringlevel, whatever the seleted mode.The dimensionless natural frequenies ω(ℓ,m) = f(ℓ,m)/f(2,0) of a droplet �oating in miro-gravity (Eq.1.7) do neither orrespond to the minima, nor to the maxima of the thresholdurve. Indeed, several authors have already observed that the dispersion relation of apil-lary waves depends on the onsidered geometrial on�guration, e.g. a droplet plaed on ahydrophobi surfae vibrated vertially [115, 116℄ or horizontally [117℄, a large droplet signi�-antly �attened by gravity [118℄, or simply a droplet highly deformed in the nonlinear regime[119, 120℄. On the other hand, these frequenies ω(ℓ,m) multiplied by a fator 1.15 orrespondto the maxima ωM (ℓ) of the threshold urve,
ω2

M = (1.15ω(ℓ,m))
2 = 0.165ℓ(ℓ− 1)(ℓ+ 2). (5.1)Therefore, it is more di�ult to make a droplet boune when foring the system at one of thedroplet natural frequenies. Moreover, the droplet is observed to selet the mode Y 0

ℓ when theforing frequeny ranges in [ωM (ℓ − 1), ωM (ℓ)]. These results may seem ontraditory; sinethe bouning is due to the droplet deformation, an inreased deformation would failitate thebouning and the natural frequenies of the droplet should orrespond to the minima of thethreshold urve. The model developed in the next setion explains this apparent paradox.
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Figure 5.2: Axisymmetri spherial harmonis Y 0
ℓ observed when a droplet bounes on avibrated high-visosity bath. The ellipsoidal mode Y 0

2 is obtained at f = 50 Hz and Γ = 0.3;the mode Y 0
3 at f = 160 Hz and Γ = 2; and the mode Y 0

4 at f = 275 Hz and Γ = 6. Modes arebetter reognized in the third olumn, orresponding to the di�erene between images fromboth �rsts.
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5.2 Modeling the bouning on a bath5.2.1 The model of CouderThe �rst modeling of the sustained bouning of a droplet on a vertially vibrating bath wasproposed by Couder and oworkers in 2005 [114℄. These authors have studied the bouningof highly visous droplets (ν = 500 S) on a bath made of the same liquid. They suggest thefollowing mehanism 1:Stability requires that the air �lm resists squeezing during the half period of upward motionand that, during the downward half period, air has time to penetrate the �lm to allow lift-o�.We must thus onsider the dynamis of the thin air �lm, and seek if it an sustain the dropbouning and be renewed. At a given time the thikness of this �lm is h and its radius rL.In the following, we assume that the visosity of the liquid µ is muh larger than that of air
µa, so that the air�ow does not entrain the liquid. At the drop landing, the �lm of air resistssqueezing only when a visous regime is reahed, i.e. the Reynolds number beomes smallenough: Re = ρah

2f/µa < Reth, with ρa and µa being the density and visosity of air. Thisondition sets a sale for a typial �lm thikness h. Reynolds lubriation theory shows that the�lm resists squeezing with a fore of magnitude FL ∼ µar
4
Lf/h

2 (using the vibration period asa time sale). Let M be the drop mass and Γ the imposed aeleration. At landing the balaneof fores gives −Mg + FL = MgΓ, and at lift-o� Mg + FL = MgΓ. The lift-o� onditionbeing more restritive determines the ritial aeleration Γth needed for bouning (using thesale for the �lm thikness found above):
Γth = 1 +

1Reth

ρa

ρ

r4L
R3

f2. (5.2)Qualitatively, this means that a larger aeleration is needed to squeeze or �ll the air �lm at ahigher frequeny or for a more extended �lm. [...℄The model orretly desribes several experimental observations; e.g. for visous droplets,the threshold Γth(f) inreases monotonially with the foring frequeny starting from Γth(0) =
1. Nevertheless, it has some major shortomings that are addressed in the following setion.1. The power law Γth − 1 ∼ f2 is approximately orret for 500 S droplets on a 500 Sbath, but it is already not valid anymore for 100 S droplets on a 1000 S bath (inset ofFig. 5.1a) where the exponent of the power law is loser to 3.5.2. Neither the visosity nor the surfae tension and the deformation of the droplet are takeninto aount. So the model annot ath the bouning physis of less visous droplets.3. The fore balane is only written at a given instant, namely the take-o�, so the wholetrajetory annot be omputed.4. The hoie of that Reynolds number to estimate the typial �lm thikness may beontested. Indeed, it is based on the vertial veloity of the droplet, of the order of h ·f .Another (maybe better) hoie would have been the horizontal drainage veloity of theair �lm, whih is about R · f ≫ h · f and leads to the saling Γth − 1 ∼ f3.1Notations have been adapted from the original manusript in order to be oherent with our notations.47



Figure 5.3: (a) Geometrial variables: R is the radius of the undeformed droplet, η is itsvertial deformation about the axis of symmetry, h is the thikness of the intervening air �lmand Z is the position of the droplet mass enter relative to the bath. (b) Interferene fringesobserved through the thin air layer when the droplet is lightened by a monohromati light.5.2.2 Taking the droplet deformation into aountThe proposed model [121℄ onsists in two di�erential equations, one desribing the motionof the droplet enter of mass (vertial position Z, as for the soap �lm), and one for the dropletvertial deformation η. The droplet is supposed to selet the Y 0
2 ellipsoidal mode (Fig. 5.3a);the bath deformation is negleted. During its �ight, the droplet experienes the apparentgravity Mg(Γ cos 2πft − 1) in the frame of the vibrating bath. The air layer is desribedthrough the lubriation theory; a vertial lubriation fore FL is applied on the droplet. Thedeformations are responsible for miro-�ows within the droplet that may help the air drainageand modify the resulting FL. At leading order, the drainage is onsidered as a Poiseuille-Couette �ow between two parallel plane interfaes. The bottom interfae (bath) is at rest,while the top interfae moves with a veloity proportional to η̇r/R, where r is the radialhorizontal oordinate (ylindrial). Calulations (App. D) yield

FL = cL1µaR
4

(

cL2
η̇

h2R
− ḣ

h3

)

, (5.3)where cL1 and cL2 are positive onstants. The lubriation theory suggests that cL1 = 3π/2.On the other hand, the parameter cL2, representing the e�et of deformation on drainage,annot be estimated through simple arguments.The seond Newton's law in a frame moving with the bath writes
MZ̈ = Mg

(

Γ cos 2πft− 1

)

+ FL. (5.4)For pratial purposes, we use the thikness of the air layer h = Z − R − η instead of Z.The evolution of η is presribed by an energy balane in the frame of the mass enter of thedroplet,
d(K + Eσ)

dt
= −PD − η̇FL, (5.5)48



where K is here the kineti energy of the motion inside the droplet, Eσ is the interfaialenergy and PD is the visous dissipative power inside the droplet. In order to lose thesystem, variables K, Eσ and PD must be estimated as funtions of η. Saling arguments yield
K = cKM

η̇2

2
, Eσ = cσσ

η2

2
, PD = cDνM

η̇2

R2
, (5.6)where onstants cK , cσ and cD depend on the �ow inside the droplet. For example, thepotential �ow related to the spherial harmoni Y 0

2 leads to cK = 3/10, cσ = 16π/5 and
cD = 3, so ck = cσ/cK (App. C).The whole system is written in dimensionless form by using

y =
k

Mg
h, x =

k

Mg
η and τ =

√

k

M
t. (5.7)
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Ohẋ+

cσ
ck
x = − FL

Mg
,

FL

Mg
=

√
3

(4π)7/2
c
5/2
k cL1

µa

µ

OhBo3

(

4π
cL2

ck
Bo ẋ
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(5.8)Moreover, the seond equation is replaed by the sum of both �rst in order to remove thelubriation term.
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(5.9)Terwagne et al. [122℄ observed the dynamis of the air �lm loated between the dropletand the bath using a monohromati light. Conentri fringes of interferene appear whenthe air �lm is squeezed (Fig. 5.3b). When the droplet bounes, the motion of the fringes isperfetly periodi. No attenuation or phase drift take plae and the bouning is stationary.On the other hand, the number of fringes dereases when the droplet does not boune; the �lmthins and �nally breaks, leading to oalesene. The periodiity of the fringes motion suggestsperiodi solutions from Eq. (5.9). Conditions for suh solutions are obtained by integratingEq. (5.9) over a period 2π/ω. Under the assumption of periodiity, many terms vanish, giving
∫ 2π/ω

0
xdτ = −2π

ω

ck
cσ

and cL2

∫ 2π/ω

0

ẋ

y2
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Bo2Ohω . (5.10)Terms on the right-hand side are always stritly positive. Aording to the �rst relation,a mehanism of potential energy storage (here, the droplet deformation) should be takeninto aount (x 6= 0). The droplet has to spend more time in an oblate state (x < 0)than in a prolate state (x > 0). Aording to the seond equation, internal movements inthe liquid phase, related to the deformation rate, must have a signi�ant in�uene on the�lm drainage and the resulting lubriation fore (cL2 6= 0). Moreover, a signi�ant phaseshift between the minimum �lm thikness and the maximum ompression must be observed.49



Indeed, ∫ 2π/ω
0 ẋdt = 0, while 1/y2 is stritly positive and vanishes when the �lm thikens. Tohave a positive left hand side in the seond equation, we expet the �lm to be the thinnestwhen the droplet begins to reover its spherial shape (ẋ > 0). All these required onditionsshow us that this model is minimal: if the model does not take into aount all above listedonditions, its predition fails and no periodi bouning solutions an be found.We proeed by omputing typial trajetories of this model, for an oil droplet (R = 0.8 mm,

ν = 50 S, σ = 20 mN/m) released on a bath at f = 50 Hz. The various oe�ients are ob-tained through a �tting proedure detailed here after. Experiments suggest a oaleseneat Γ = 0.5 and a sustained bouning at Γ = 1.5. These observations are well-rendered bythe model (Fig. 5.4a-d). Below the bouning threshold (Γ = 0.5 - Fig. 5.4a-b), the dropletdeformation x and �lm thikness y (in log sale) osillate sinusoidally and in-phase. The di-mensional thikness orresponding to y ranges in [0.1,1℄ µm, whih foretells a near oalesene:the air �lm is not fully regenerated and its mean thikness signi�antly dereases on the longrun. Above the threshold (Γ = 1.5 - Fig. 5.4-d), the deformation is not sinusoidal anymore,and the �lm thikness reahes about 100 µm every period. The droplet is seen to take-o�and the motion is perfetly periodi. On the phase diagram (y, x), the trajetory at Γ = 0.5onsists in a series of quasi-parallel straight lines (y and x are in-phase), while a limit yleappears at Γ = 1.5.The aeleration threshold Γth required for periodi bouning may be estimated startingfrom Eq. (5.9). When Γ < Γth, the droplet does not boune, the air �lm remains thin and
ÿ ≪ 1. The seond equation in Eq. (5.9) does not depend on y anymore. The droplet behavesas a simple fored osillator

x(τ) = GΓ cos(ωt+ φ) − ck
cσ

(5.11)where G and φ are funtions of ω de�ned as
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(5.12)The resonane frequeny related to this osillator is given by
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. (5.13)To �nd y with the �rst equation of Eq. (5.9), it is onvenient to de�ne the amplitude Y (τ) ofits variation (i.e. the short-term average) as
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By integrating this equation over a long time τ and by only keeping seular terms, we obtain:
Y (τ) =
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, (5.16)where the funtion C(Γ, ω) is de�ned as
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(5.17)When C < 0, the averaged �lm thikness Y dereases with time and the droplet �nallyoaleses. Conversely, when C > 0, Y diverges and the solution is not longer valid. Thedroplet takes o�, ÿ annot be negleted anymore in Eq. (5.9) and bouning ours. Thethreshold aeleration for bouning Γth an thus be de�ned as the value of Γ suh that C = 0.
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. (5.18)This equation has one positive solution when cσ − cKckω
2 > 0, and no solution in the otherase. There is a ut-o� frequeny

ω2
co =

cσ
ckcK

(5.19)above whih the model annot predit bouning based on the deformation mode Y 0
2 (C isalways negative). This frequeny orresponds to the natural resonane ωM (ℓ = 2) of thedroplet (Eq.5.1), and to the �rst maximum of the Γth(ω) urve (Fig. 5.1b). Beyond ωco, thedroplet does not selet the mode Y 0

2 anymore. The ut-o� frequeny is always higher than ωres,whih may be seen as the resonane frequeny of the system "droplet + air �lm" and the �rstminimum of Fig. 5.1(b). This minimum is shown to disappear when ωres is omplex, i.e. whenOh2 > 3cσ(cK + 1)/(2πc2D) whih orresponds to high visosity, as observed experimentally.At this stage, I would like to thank the �rst of my faithful and areful readers by o�eringhim a billion of freshly handled 1 nL droplets of a deliious Belgian beer, provided he anreonstrut by heart the model from the beginning to this point. Finally, as in Couder'smodel, the predited threshold urve Γth(ω) tends asymptotially to a onstant value > 1when ω → 0.In order to ompare the model preditions to the experimental data shown in Fig. 5.5, asingle �t has been made on oe�ients cL2 and cK , while the nominal value of mode Y 0
2 is takenfor other oe�ients, namely cσ = 16π/5, ck = 32π/3 and cD = 3. The oe�ients resultingfrom the �tting proedure are cL2 ≃ 17.5 and cK ≃ 0.1. The omparison with experiments isaeptable, both qualitatively and quantitatively. In partiular, the minima for low visositiesand the divergene for high frequenies are reprodued. Aording to the �t, ωres = 0.52,whih perfetly orresponds to the �rst minimum of Fig. 5.1(b). Nevertheless, there are somesigni�ant disrepanies between the model and experiments. First, the value of cK obtainedthrough �tting is muh lower than predited by theory (cK = 0.3). And seond, the preditedut-o� at ωco = 1.73 is far beyond the �rst maximum of Fig. 5.1(b). These shortomings mightbe due to several reasons: The experimental threshold is very sensitive to the droplet size,whih is not systematially measured. Moreover, the model only takes mode Y 0

2 into aountand supposes that the droplet deformation is symmetri with respet to the mid-horizontalplane. 52
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. (5.21)In this mathematial expression of C, the frequeny information is fully ontained in Υ andthe foring aeleration is always ompared to the threshold Γth.Now, suppose that the air �lm breaks in at time tL suh as Y = Yth. Then, Eq. (5.16)yields
tL = − t0

C
(5.22)where t0 is the hypotheti lifetime at Γ = 0 (C = −1). Equation (5.22) is �tted on theexperimental urves of Fig. 5.6 thanks to this single �tting parameter tL. The agreementis good, espeially for the deterministi part of the data. The model orretly athes thevariations of tL with the foring parameters Γ and ω. The in�uene of other droplet-relatedfators is unfortunately hidden in t0. 54



5.4 SummaryIn this hapter, we have disussed the bouning of droplets on a high-visosity bath.Contrary to the bouning on a soap �lm, the droplet deformation is shown to play a key rolein this ase. Di�erent natural modes of the droplets (spherial harmonis) an be exiteddepending on the foring frequeny. The threshold in foring aeleration Γth is shown to bemaximum when the system is exited at one of the natural frequenies of the droplet, whileit is minimum in between these frequenies. The model we have proposed is based on twodi�erential equations, the �rst being the Newton law applied to the droplet mass enter (likefor the soap �lm) and the other desribing the droplet deformation. The model preditionsare in good agreement with the experiments in the range of frequeny overed by the spherialharmoni Y 0
2 . In partiular, the model orretly reprodues the transition from the �lmthinning regime (that leads to oalesene) to the periodi bouning regime (that preventsoalesene). The threshold Γth obeys to an impliit equation, the solution of whih �ts wellthe experimental data. A minimum in Γth (and so in the energy to provide for the dropletthrough the foring) is observed at the same frequeny as in experiments. It orrespondsto a resonane of the system "air layer + droplet" where the inoming energy is e�ientlyused to make the droplet boune. On the other hand, a divergene is predited when theforing frequeny orresponds to the natural frequeny of the droplet alone. In that ase, theenergy is fully absorbed by the droplet deformation. The model suggests that bouning is notpossible anymore in mode Y 0

2 when this frequeny is exeeded. Finally, it gives an auratepiture of the lifetime experiened by droplets before oalesene when the foring is belowthe threshold. The main shortoming of the proposed model is that it only takes the mode
Y 0

2 into aount, while other deformation modes are observed at higher frequeny.
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Chapter 6Movements and interations on avibrated bathAt this stage, we are able to maintain droplets for hours in a bouning on�guration ontoa vibrated liquid bath. The next step in our approah of handling is to move these dropletshorizontally on the bath surfae, or more spei�ally to make them move by themselves. Inother words, we need to break the horizontal symmetry of the bouning mehanism. There aretwo di�erent ways to ahieve this goal, depending on what is deformed: the droplet (rollers)or the bath (walkers). Both motions are disussed here below. The walkers have some veryinteresting interation properties that are espeially studied on a statistial point of view.6.1 The rollersAs noted in the previous hapter, a low visosity droplet makes use of its deformation inorder to boune on a high visosity bath. The deformation is expressed in terms of spherialharmonis Y m
ℓ , whih are axisymmetri when m = 0. Depending on the foring frequeny,the droplet selets a spei� deformation mode. As seen in Eq. (1.7), for a droplet in free-fall,the natural frequeny f(ℓ,m) of the mode Y m

ℓ only depends on ℓ, not on m. This degeneray isobserved to break down when the droplet bounes. For example, modes Y 0
2 and Y 1

2 are exitedon distint frequeny ranges. The Y 1
2 mode is preferentially seleted when the frequeny islose to the �rst maximum ω ≃ 1 in the threshold urve (Fig. 5.1), i.e. between about 100 Hzand 140 Hz for droplets of radius 0.765 mm. The asymmetri motion of droplets in the Y 1

2mode makes them roll on the bath surfae (Fig. 6.1a), whih gives birth to a slight but robusthorizontal translation perpendiular to the rotation axis. These self-propelled droplets arealled rollers.The roller veloity vr has been measured for various foring parameters (Γ,f). Data roughlyollapse on a single urve (Fig. 6.1b), whose equation is determined empirially
vr = 0.82(A−Ath)(f − f0), (6.1)where Ath is the threshold amplitude given by Γthg/(4π

2f2) and f0 ≃ 103 Hz is the lowestfrequeny for whih rollers are observed.On a �at bath, the roller trajetory is a straight line whose diretion is seleted initially.The trajetory is sensitive to bath deformations. For example, due to the menisus, rollerdroplets boune bak on the bath walls. They an therefore be guided between two parallel56
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(b)Figure 6.1: (a) At f = 115 Hz and Γ = 4.5 > Γth, a droplet of radius R = 0.765 mmdeforms asymmetrially and rolls on the bath surfae. The spherial harmoni Y 1
2 is learlyidenti�ed on the last snapshot, orresponding to the subtration between the images 1 and 6.(b) Horizontal veloity of the roller droplet as a funtion of the foring parameters. The solidline orresponds to Eq. (6.1).walls forming a hannel. Sine eah droplet makes a slight hollow on the bath surfae, therollers are also attrated by eah other, whih may promote their oalesene. Both guidingand attration are interesting operations for potential droplet handling.6.2 The walkersOn a low visosity bath (typially 50 S or less), the bouning is also ensured by thebath deformation. Couder and oworkers [124℄ have shown that under spei� onditions, asymmetry breaking an also set the droplet into a permanent horizontal motion. Indeed, theimpat de�ets the bath surfae and a apillary wave is emitted (Fig. 6.2a). At next boune,the droplet may thus fall on the slope of the wave it has previously reated, whih gives it asmall horizontal impulse (Fig. 6.2b); the droplet turns into a walker.A vertially vibrated bath is subjet to the Faraday instability [125, 126, 127℄ when theforing aeleration is higher than a threshold value ΓF [128, 129, 130℄. Below this threshold,apillary waves are quikly damped while above ΓF , a pattern of standing apillary wavesovers the bath surfae (Fig. 6.2). The frequeny of these waves is half the foring frequeny(App. F).As ΓF is approahed from below, the damping fator of apillary waves progressivelyvanishes and emitted waves propagate over a longer distane. For this reason, the walkingdroplets are observed just below the Faraday threshold. Indeed, their horizontal impulseomes from the waves they have emitted on the bath at the previous boune. These wavesmust not have been damped meanwhile. Couder's team [131, 76℄ has loated the range ofphysial parameters (Γ,f ,R,ν) in whih walkers are observed (Fig. 6.3a-b).We investigated the behavior of an assembly of walkers on a bath made of 50 S silion oilvibrated at Γ = 4.2 and f = 50 Hz. These experimental onditions are kept through the whole57



Figure 6.2: (a) A walker bounes on the wave it has reated on the bath at previous impat(Credit: S. Protière [76℄). (b) Spatiotemporal diagram of a walking droplet (Credit: S. Protière[76℄). () Standing Faraday waves observed when Γ > ΓF (Credit: H. Caps).

Figure 6.3: Identi�ation of the walker zone in the phase diagrams of the bouning droplet.(a) In the (Γ, D)-diagram, where D = 2R is the droplet diameter, the walking zone (resp.Faraday instability zone) is indiated by W (resp. F ). Other parameters are f = 50 Hz and
ν = 50 S. (b) In the (f,Γ)-diagram, the shaded walking zone is slightly under the Faradaythreshold (solid line), for various visosities: (�) ν = 100 S, (�) ν = 50 S, (•) ν = 20 Sand (N) ν = 10 S. (Credit: S. Protière [131, 76℄)
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(b)Figure 6.4: (a) Probability Distribution Funtion of the radius R of droplets reated with anail tip. The dashed line is a normal distribution of mean 0.43 mm and standard deviation0.06 mm. (b) Veloity vw of the walkers as a funtion of their size R. The solid line orrespondsto Eq. (6.2).setion. Walking droplets (R ∼ 0.4 mm) are about twie smaller than droplets usually madewith a syringe and a needle (R ∼ 0.8 mm), so they need to be produed by another way, herewith a nail tip dipped into a bath and quikly taken out (f. se.3.1). The droplets and thebath are thus made from the same liquid (so they have the same visosity). With this methodof reation, the droplet size R is not perfetly reproduible; it follows a normal distributionof mean 0.43 mm and standard deviation 0.06 mm (Fig. 6.4a). The walker horizontal veloity
vw has also been measured as a funtion of its radius R (Fig. 6.4b). Droplets start walkingat R ≥ 0.29 mm, through a pithfork bifuration. The veloity inreases as the square rootof the distane to the threshold size, until it abruptly vanishes for R ≥ 0.55 mm (Fig. 6.4b).The average veloity is about 10 mm/s;

vw[mm/s] =

{

35
√

R[mm] − 0.29 if R ∈ [0.290.55] mm,
0 otherwise. (6.2)6.2.1 Non-loal interationsThe walker and the surfae wave on the bath are interloked. Indeed, the wave was bornfrom the droplet bouning, and the walking ability is only due to the wave. The walker istherefore a marvelous and unique example of wave-partile duality at marosopi sale [124℄.Droplets use their wave to probe the surroundings. The wave extension around the dropletvaries with the damping rate, whih dereases as the distane to the Faraday threshold ΓF isdereased. On the other hand, the threshold ΓF signi�antly inreases when the bath depthis dereased below 5 mm. So a droplet annot walk where the bath is not su�iently deep,the assoiated wave being fully damped. By immersing objets of height 8 mm in a bathof depth 9 mm, we observe that the waves propagate everywhere but on these objets. Asa onsequene, inoming walkers feel the submarine objets and stay away from them [76℄;59



Figure 6.5: (a) A droplet probes the surrounding thanks to the wave it emits. Consequently,it is re�eted from a distane by the walls (Credit: S. Protière [76℄). (b) A droplet may beguided through a irular hannel. () A droplet is randomly deviated when passing througha slit between two submarine objets (Credit: Y. Couder [133℄). In (a,b,), the suessiveimages taken by the amera are superposed in order to reveal the trajetory of the droplet;blak line in (a) and (), white line in (b).
Figure 6.6: (a) Two walking droplets interat through the wave they emit. These walkers mayrepulse (b) or attrat () eah other, resulting in omplex orbital motions. As an example (d),two droplets may orbit around a virtual enter of rotation (Credit: S. Protière [76, 134℄).they are re�eted by the walls (Fig. 6.5a). Thanks to this property, walkers may be guidedthrough hannels, exatly as rollers do (Fig. 6.5b). Nevertheless, it is better here to only usesubmarine walls than emersed walls. Indeed, the menisus that mathes the bath surfae tothe wall may emit parasite Faraday waves [132℄. The duality between a wave and a partileis highlighted in the brilliant following experiment, made by Couder and oworkers in 2006[133℄. Two submarine objets are plaed next to eah other with a small gap between both.A droplet that enters the gap seems to be deviated randomly (Fig. 6.5). Nevertheless, whenrepeating the experiment a large number of times, it appears that the Probability DistributionFuntion of the deviation angle forms a di�ration pattern perfetly similar to those observedwith photons or eletrons!When two walkers ome in the viinity of eah other, they interat through their waves[76℄. Indeed, the wave pattern on whih they boune is the sum of individual waves emittedby both (Fig. 6.6a). The inoming droplets may repulse or attrat eah other, depending onthe distane between them (Fig. 6.6b-). Attration leads to the formation of omplex orbitalmotions and epiyles [134℄, as those observed in elestial mehanis (Fig. 6.6d).When more than two walkers interat together, they usually form a rystalline struture60



Figure 6.7: (a) Large bouning droplets agglomerate together and form rafts, even at lowforing aeleration. (b) Several walkers form a rystalline struture (often hexagonal) wherethe distane between partiles is lose to the wavelength of the emitted waves (Credit: S. Pro-tière [76℄). () Two unequal walkers form a spontaneously moving rathet, the diretion beingpresribed by the foring onditions. (d) Larger droplets are able to set a whole rystallinestruture of small droplets into motion.(Fig. 6.7b), where the distane between two droplets is lose to the wavelength of the emittedapillary waves [131℄. At lower foring, larger bouning (but not walking) droplets have asimilar behavior [135, 136℄, but the distane between them is now next to nothing (Fig. 6.7a).Indeed, two partiles (even solid spheres or bubbles) plaed on a bath attrat eah other tominimize the exess surfae reated by the menisus around eah partile [137, 138, 139, 140℄.Two walkers with a di�erent size form a rathet [141℄; the symmetry is broken and the resultingsystem experienes a net translational motion (Fig. 6.7). One or several larger droplets plaedin a rystal of small droplets an drive the whole struture, i.e. give it a translational/rotationalmotion (Fig. 6.7d).Walker strutures an also be moved by using virtual droplets (D. Caballero, privateommuniation). A pulsed laser loally heats the bath surfae periodially, whih reates aapillary wave due to a Marangoni e�et. This apillary wave interats with the walker wavesexatly as if it was also oming from another walker. Therefore, the walkers an be drivenby the ontrolled motion of the laser beam. This way to manipulate droplets is also of greatinterest for possible appliations in miro�uidis.6.2.2 A gas of dropletsOur main ontribution to researh on walkers onsists in studying the statistial behaviorof a large number of them bouning onto a bath of surfae S = 4900 mm2. In partiular,we want to know to whih extent this set of droplets behaves as a gas (Fig. 6.8). The initialnumber Ni of droplets is varied from 10 to 50, �ve reordings of about 130 s are made ineah ase. Droplets are observed to strongly interat with eah other, using every mehanism61



Figure 6.8: Time evolution of a gas of droplets. Snapshots are taken every 16 s.detailed here above: repulsions, orbits, rystals, rathets... Sometimes, two walkers ollideand fuse together. The resulting droplet may be too large to keep walking.As a onsequene, the number of droplets N(t) dereases with time and the walkers pro-gressively turn into a motionless population (Fig. 6.9a). The number of droplets is relativelywell �tted by a dereasing exponential
N(t) = Nf + (Ni −Nf )e−t/tN , (6.3)whih orresponds to a relaxing proess from the initial number of droplets Ni to the equi-librium �nal state Nf with a harateristi time tN . The �nal number Nf inreases with Ni(Fig. 6.9b) while tN dereases (Fig. 6.9). We note that tN is also muh more reproduiblewhen Ni is su�iently large for statistial tools to apply. The inrease of Nf with Ni may berationalized by a simple model based on the following hypotheses oming from observations:

• There are two distint populations of droplets, Nw walkers andNnw not walking droplets,suh as the total number of droplets is N = Nw +Nnw.
• When a walker oaleses with another droplet, the result is a motionless droplet. Theprobability of oalesene does not depend on the nature of this other droplet (walkeror not).
• Two motionless droplets annot oalese together.The probability Pw/w for a walker/walker oalesene and the probability Pw/nw for a oales-ene between a walker and a droplet at rest are respetively

Pw/w =
Nw − 1

Nw − 1 +Nnw
and Pw/nw =

Nnw

Nw − 1 +Nnw
. (6.4)Starting from Ni walkers and zero motionless droplet, the probability P(Nw,Nnw) of eah se-nario (Nw, Nnw) may be evaluated until Nw = 0. An example is given in Fig. 6.9(d) for62



Ni = 6. The mean number of resulting motionless droplets is given by
Nf (Ni) ≃

Ni/2
∑

j=0

jP(0,j). (6.5)The standard deviation is also omputed
∆Nf (Ni) ≃

√

√

√

√

√

Ni/2
∑

j=0

(

j2P(0,j) −N2
f

)

. (6.6)This solution, plotted in Fig. 6.9(a), roughly �ts the experimental data. Nevertheless, a-ording to the distribution of droplet sizes (Fig. 6.4a), there is a signi�ant probability thattwo oalesing walkers form a walker again. So the model has been generalized to threepopulations: small walkers, large walkers and droplets at rest (Fig. 6.9a). A more auratemodel ould be a ombination of both senarios that would take into aount the initial sizedistribution.We have also investigated the veloity distribution of droplets. These distributions areobtained by measuring the instantaneous veloity of every droplets during a short intervalof time (here 4 s, whih orresponds to 100 images). Examples of Cumulative DistributionFuntions (CDF) are plotted in Fig. 6.10 for Ni = 30. The distribution is seen to signi�antlyevolve with time. In any ase, it is well �tted by a Weibull distribution, for whih PDF(Probability Density Funtion) and CDF are given by:
PDF (vw) =

b

a

(

vw

a

)b−1

e
−

(

vw/a

)b with vw > 0, (6.7)
CDF (vw) = 1 − e

−

(

vw/a

)b with vw > 0. (6.8)The Weibull distribution has two parameters, the sale a and the shape b. For spei� valuesof b, it is equal to some well-known distributions; the exponential distribution is obtained when
b = 1, b = 2 leads to the Rayleigh distribution and b = 3.4 is very lose to a normal distribution.The Rayleigh distribution is of importane in this ontext sine it is the 2-dimensional analogof the Maxwell-Boltzmann distribution followed by the veloity of moleules in an ideal gas.Eah experimental sequene is divided into segments of 4 s on whih the veloity distribu-tion is evaluated and �tted by a Weibull distribution. The resulting parameters a and b aremeasured on eah sequene as a funtion of time (Fig. 6.11). Various sequenes orrespondingto the same Ni are averaged together. Although data are sattered, the sale parameter a doesnot seem to depend on Ni. It seems to derease from ai = 12.12 mm/s, whih orrespondsto the mean veloity of a single walker. The �nal value is af = 5.56 mm/s and the hara-teristi time ta = 63.2 s roughly orresponds to twie the relaxation time tN of N(t). Theshape parameter b also dereases with time, and seem to onverge towards b = 1 (exponentialdistribution). The initial value dereases with inreasing Ni.These results may be explained with physial arguments. At the beginning, the walkersstart with a veloity distribution around b = 2 whih roughly orresponds to an ideal gas,though the distribution is expeted to be lose to the one presented in Fig. 6.4(b). Then, due63
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tcoll ≃

S

vwNiR
, (6.9)where S = 4900 mm2 is the bath surfae, vw ≃ 9 mm/s is roughly the mean veloity, and

R ≃ 0.45 mm is the droplet radius, whih approximately orresponds to the ross setionof the droplet. Therefore, tcoll ≃ 1210/Ni, whih is is good agreement with the observedharateristi time for the dereasing of b.6.3 SummaryIn this hapter, we have disussed two on�gurations in whih bouning droplets experienea self-propelled horizontal motion, namely the rollers and the walkers. The �rst is due to thedroplet deformation while the seond relies on the waves emitted at the bath surfae. Bothrollers and walkers are re�eted on the walls of the ontainer, so they an be guided inhannels. The walkers an also be handled with a laser beam. The self-propelled motionours in a spei� range of foring parameters, so it an be started and stopped by onlytuning the foring : the ontrolled manipulation of droplets onto a vibrating bath is possible.The walkers experiene long-range interations through the waves they emit, so they may65
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Chapter 7Partial oaleseneIn previous hapters, we have seen that a droplet an be sustained onto a bath as longas there is a thin air layer separating both liquids. When the air is ompletely drained out,the droplet quikly oaleses into the liquid bath. Nevertheless, the fusion is not always inone go, and may result in a droplet of radius about half the initial droplet: the oalesene issaid to be partial (Fig. 7.1). This daughter droplet also stays on the bath, drains its air layerand oaleses. Again, the oalesene may be partial, thus giving birth to a grand-daughterdroplet. Up to seven suessive generations have been observed during the oalesene of asingle mother droplet. When the daughter droplet is su�iently small, it oaleses totally,thus ending this asade of partial oalesenes. The whole proess lasts about 200 ms (eahpartial oalesene is only a few milliseonds), so it is hardly visible to the naked eye.

Figure 7.1: Casade of partial oalesenes of a 5 µL oil droplet (ν = 1.5 S). Four suessivepartial oalesenes are observed, eah of them halving the droplet radius; the last daughterdroplet is about 1/10000th of the initial mother droplet in volume !The detail of a partial oalesene is seen in Fig. 7.2(a). Coalesene only begins when theair �lm breaks. This rupture usually ours asymmetrially at the boundary of the apparentontat zone between the droplet and the bath [143, 144℄. The hole quikly opens due to highpressure gradients resulting from the Laplae law (1.2). Indeed, the �lm thikness at ruptureis mirometri, so the related urvature near the break point is about C ∼ 106 m−1. Duringthe retration, a part of the bath omes up into the droplet [145, 146℄, as seen when olorlessdroplet oaleses into a olored bath. Next, the emptying droplet takes a olumn shape that67



may pinh o� and form a daughter droplet (partial oalesene), or alternatively ollapse intothe bath (total oalesene). Finally, the liquid below the pinh is violently ejeted downwardsand forms a powerful vortial ring in the bath [147, 148, 149℄.Partial oalesene was reported by Mahajan in 1930 [150℄, but the �rst systemati investi-gation was only made by Charles and Mason in 1960 [151℄, thanks to the reent developmentsof high-speed photography. These authors onsidered the partial oalesene of water dropletsat the planar interfae between an oil layer and a water layer. Sine the water droplet is sur-rounded by oil instead of air, the lifetime tL between two suessive oalesenes is inreased,so eah daughter droplet is visible to the naked eye. Charles and Mason thought that theformation of the daughter droplet is due to a Rayleigh-Plateau instability that reshapes theolumn of �uid formed by the fusing mother droplet. Nowadays, this senario is invalidated.In 1993, the Frenh PhD-student Y. Leblan [89℄ studied the sensitivity of partial oaleseneto variations in size, surfae tension, and visosity of both �uids. Unfortunately, his resultswere never published in international journals; they were redisovered by others [152, 153, 154℄several years later. But the main breakthrough ours in 2006, due to Blanhette and Bigioni[155, 156℄ who disovered the main mehanism of partial oalesene. Aording to theseauthors, the olumn shape formed by the oalesing mother droplet is mainly due to thepropagation of apillary waves on the droplet surfae. These latter are reated by the air �lmretration at the bottom of the droplet [89, 152, 153℄. They limb on the droplet and onvergeat the top. This greatly lifts the droplet interfae and delays its vertial ollapse, thus givingadvantage to the horizontal pinh. Other works on partial oalesene have been publishedsine [157, 158, 159, 160, 161℄. Unfortunately, they rarely take into aount the very reentresults of Blanhette.In this hapter, we present a deeper investigation of partial oalesene at the interfaebetween two immisible liquids [162℄. After a dimensional analysis, we study the in�ueneof the physial properties of both �uids on the oalesene outome. We disuss the exatrole played by apillary waves in the partial oalesene mehanism. Finally, we show that aasade of partial oalesene an be stopped on a vibrated bath.7.1 Experimental setupPartial oalesene is robust and easy to observe experimentally. A ontainer is partly �lledwith an aqueous solution. Then, an oil layer (ν < 50 S) denoted (s) is poured on it, as seenin Fig. 7.2(a). A water droplet (mother) is released from a syringe in the oil phase. Thanks togravity, it migrates towards the water/oil interfae and �nally oaleses into its homophase.The mother droplet radius is varied by hanging the needle diameter. The visosity of bothliquids is tuned between about 1 and 100 S (various silion oils and water/glyerol/ethanolmixtures - App. B). The interfaial tension between water and oil has been measured. It isapproximately 40 mN/m for (water+glyerol)/oil interfaes, and it sharply dereases with anaddition of ethanol (down to 9 mN/m for a mixture made of 40% ethanol for 60% water).More than 150 partial oalesenes have been �lmed thanks to a high-speed amera (2000 fps,pixel size 30 µm). The interfae position (supposed axisymmetri) is deteted as a funtionof time by post-proessing the images.Many experimental preautions have been taken in order to ensure the data reproduibility:
• A glass ontainer is easier to lean. 68



(a) (b)Figure 7.2: (a) Sequene of events in a partial oalesene of an oil droplet (ν = 1.5 S) inair. (b) Experimental setup: a ontainer is �lled with an aqueous mixture (water + glyerol+ ethanol) and a layer of silion oil (s). An aqueous droplet rosses the (s) layer and oalesesinto its bulk phase.
• The urvature of the liquid-liquid interfae may a�et the oalesene outome [155℄,so the interfae needs to be as planar as possible. To prevent unexpeted urvatures, ahorizontal groove is made, in whih the liquid/liquid interfae is pinned.
• The droplet may be at rest on the interfae (no internal �ows) at the beginning of theoalesene. Therefore, experiments are not taken into aount when the drainage timeis less than 1 s.
• The ontainer is su�iently large to avoid parasite re�etions of apillary waves on thewalls during the oalesene.7.2 Invariant salings in oaleseneHow muh time is a oalesene ? Do partial and total oalesene share some ommonfeatures, or are they ompletely di�erent sine their beginning ? To answer these questions,we started by measuring the time evolution of two variables that haraterize the oalesene.The �rst is the exess surfae energy Eσ = σ∆S, ompared to the �nal state where the droplethas fully oalesed (Fig. 7.3a). The seond quantity is the volume Ω of the droplet that is stillabove the mean level of the liquid/liquid interfae (Fig. 7.3b). These measurements are madefor every observed oalesene, whatever its outome, and both ∆S and Ω are normalized bytheir initial value.The oalesene was already observed to sale on the apillary time τσ [146, 152℄. Sur-prisingly, all the ∆S(t) and Ω(t) urves ollapse when the time is saled by τσ, no matter theoutome. The di�erene between partial and total oalesene only appears in the later stagesof oalesene. The possible pinh-o� ours between 0.7 and 0.8 τσ after the beginning. The69



derease in ∆S is remarkably linear; the power released by surfae tension to set the liquidsinto motion is roughly onstant during the main part of the oalesene. The emerged volumedereases as the ube of time, so the emptying is relatively slow until t = 0.3τσ. The orre-sponding �ow rate evolves as the square of time. These saling laws are only observations,and still need to be rationalized.
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Ohnesorge numbers (Oh and Ohs) are thus pertinent dimensionless numbers. The fourthdimensionless number may be the relative di�erene in density
∆ρ =

ρ1 − ρ2

ρ1 + ρ2
. (7.1)The validity of this dimensional analysis may be ontested when signi�ant residual miro-�ows are present within the initial droplet. In that ase, additional parameters (and dimen-sionless numbers) are required to desribe the oalesene. Sine these miro-�ows diretlyenhane the drainage, their harateristi timesale must be of the order of the drainage time.When this time is measured to be muh higher than the oalesene time, residual miro-�owsan be negleted.7.3.1 The Ψ funtionWhat kind of transition separates partial and total oalesenes ? To answer this question,the most relevant parameter may be the the ratio between radii of the daughter Rf and mother

Ri. Obviously, this latter is a funtion Ψ of the four independent dimensionless numbers only;
Rf

Ri
= Ψ(Bos,Oh,Ohs,∆ρ). (7.2)When Bos,Oh,Ohs ≪ 1, surfae tension is the only dominant fore and the oaleseneis partial and self-similar (Fig. 7.4a). The ratio Ψ only depends on the relative di�erenein density ∆ρ, whih is onstant during a single asade. In this regime, we observe Ψ ≃

0.45 ± 0.05 in average. Unfortunately, the liquid density is always lose to water, so ourexperiments do not over a range of ∆ρ su�iently large to assess about the variation of Ψwith ∆ρ.The Bond number inreases with the droplet size, and large droplets are in�uened bygravity. This latter signi�antly aelerates the droplet emptying [89, 155℄, whih is in favorof total oalesene. As heked experimentally (Fig. 7.5a), the Ψ funtion dereases with aninrease in Bos. Aording to the present data, it is not possible to state that Ψ is 0 (totaloalesene) for Bond numbers larger than a ritial value Bos/th.A derease in droplet size orresponds to an inrease in both Ohnesorge numbers. The�ows responsible for the partial oalesene (e.g. apillary waves) are progressively dampedby visosity in both �uids [89, 152, 155℄. This results in a derease of the Ψ funtion, whihends up vanishing when Oh ≥ Ohth ≃ 0.02 ± 0.005 or Ohs ≥ Ohs/th ≃ 0.3 ± 0.05 (Fig. 7.5b).Variations of Oh indue a sharp and premature transition from partial to total oalesene,while variations of Ohs result in a smoother and delayed transition. Both visosities do nothave the same role in inhibiting the partial oalesene mehanisms. As seen in Fig. 7.4(-d),the interfae swithes from a olumn shape to a usp-like shape for high Ohs values.We have also studied the behavior of Ψ with a ombined variation of both Ohnesorgenumbers, the Bond number being negligible (Fig. 7.6). The boundary urve between partialand total oalesene has been modeled by Leblan, asOh + 0.057Ohs = 0.02. (7.3)Although this equation is in relatively good agreement with the experimental results whenOhs ∼ 1, it fails athing the boundary lose to Oh = Ohs: partial oalesene is observed formuh greater Ohnesorges than predited. 71



(a)
(b)
()
(d)Figure 7.4: Partial and total oalesenes for various values of Bos, Oh and Ohs. (a) Partialoalesene for small Ohnesorges (Bos = 0.049, Oh = 0.0025, Ohs = 0.013). (b) Totaloalesene due to a high Ohnesorge on the aqueous side (Bos = 0.079, Oh = 0.018, Ohs =

0.0049). () Intermediate partial oalesene due to a high Ohnesorge on the oil side (Bos =
0.011, Oh = 0.0030, Ohs = 0.16). (d) Total oalesene when the oil side Ohnesorge is veryhigh (Bos = 0.0095, Oh = 0.0031, Ohs = 0.34). The time is indiated in apillary time unitsin the lower left orner. Images are obtained by subtrating two suessive images in order tohighlight the interfae motion; the blue interfae is advaning while the red is reeding.72
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Figure 7.6: Combined in�uene of both Ohnesorge numbers on the oalesene outome:partial (△) or total (•). The Bond number is always smaller than 0.03. The solid straight lineorresponds to Oh = Ohs, while the dashed urve is Eq. (7.3). Cirled letters orrespond tothe snapshots of Fig. 7.4.
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7.4 Capillary wavesAording to Blanhette [155℄, the onvergene of apillary waves at the top of the dropletis responsible for the partial oalesene. The motion of the droplet interfae is highlighted bysubtrating suessive images of the snapshots (Fig. 7.4). The progression of apillary wavesis learly seen in Figure 7.7, whih represents a time zoom on Fig. 7.4(a).

Figure 7.7: Time zoom on Fig. 7.4(a), revealing the apillary wave propagation. The timestep is 0.021τσ; the lines help loating the wavefront.The dispersion relation of apillary waves (Eq.1.7) may be extended to the ase of a dropletimmersed in another immisible liquid (App. C):
(f(ℓ,m)τσ)2 =

ℓ(ℓ2 − 1)(ℓ+ 2)(1 + ∆ρ)

3π(2ℓ+ 1 + ∆ρ)
. (7.4)74



Aording to Fig. 7.7, the dominant mode is ℓ = 11 ± 1. The wave is reated at about 7.5◦below equator, at the beginning of the oalesene, when the hole expands below the droplet.Its phase veloity ucw is 5.27 radians per unit of apillary time, in exellent agreement withthe veloity alulated through
ucwτσ
Ri

=
2πf(ℓ,m)τσ

ℓ
, (7.5)when ℓ = 11. The propagation time tcw of the waves from the bottom to the top of the dropletis proportional to ℓ−1/2. So modes ℓ > 8 arrive more or less at the same time, while modes

ℓ < 8 ome later, separately, and annot partiipate to the onvergene.The apillary waves are damped by visosity e�ets on both sides of the interfae. Thisdamping may be quanti�ed by measuring the amplitude of waves as they onverge at the top.The height of the top H(t) is measured as a funtion of time (Fig. 7.8a). The maximum HMours in t = tcw ≃ 0.4τσ and orresponds to the onvergene of apillary waves. We seein Fig. 7.8(b) that the damping does not signi�antly depend on whih visosity is inreased(inside or outside the droplet). For similar visosities, damping is only 1.5 times more e�ientwithin the droplet. The ritial Ohnesorge for waves to be damped before reahing the topof the droplet is about 0.08. The visous dissipation an be estimated theoretially (App. C).The wave amplitude at the top is
HM = HM0e

−βtcw/τσ , (7.6)where the damping fator is de�ned as
β =

√

π

3

2ℓ+ 1

2ℓ+ 1 + ∆ρ

[

(ℓ2 − 1)Oh + ℓ(ℓ+ 2)
√

1 − ∆ρ2Ohs

]

. (7.7)This solution is lose to the measured damping (Fig. 7.8b). Again, the fators that weightboth Ohnesorge numbers in Eq. (7.7) are not signi�antly di�erent for ℓ = 11 and ∆ρ≪ 1.
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7.4.1 Capillary waves and the partial to total transitionAs seen in previous setions, the transition between partial and total oalesene doesdepend on whih Ohnesorge is inreased, while the apillary wave damping are not so muhin�uened by that. In partiular, apillary waves may be observed in a total oalesene(Fig. 7.4b), while being fully damped in a partial oalesene (Fig. 7.4). Capillary waves arefully damped when one of both Ohnesorge numbers exeeds 0.08. On the other hand, theritial Ohnesorge values for the partial/total transition are Ohth ≃ 0.02 and Ohs/th ≃ 0.3,so 4 times less and 4 times mode than the ritial Ohnesorge for wave damping, respetively.So the link between partial oalesene and apillary waves presented by Blanhette [155℄must be revised. There must be an additional mehanism, antisymmetri in relation to bothvisosities, that promotes total oalesene for high Oh and partial oalesene for high Ohs.Moreover, this mehanism should not be e�ient when Oh ∼ Ohs, whih would explain theoutgrowth of the partial oalesene zone in the (Oh,Ohs) diagram of Fig. 7.6.During a oalesene, the main �uid �ow is a powerful rotation that ejets the dropletliquid into the underlying bath (f. PIV experiments of [153℄, and numerial simulations of[155, 161℄). This motion, represented by thik arrows in Fig. 7.9, originates from the onversionof interfaial energy into kineti energy, whih has been observed to our at a onstant rate,regardless of the oalesene outome. This kineti energy is unequally distributed to bothliquids, though ontinuity onditions are satis�ed at the interfae.

Figure 7.9: Shemati view of hypothetial motions ourring in a oalesene. Thik solidarrows represent the nominal rotation (low visosity). Dotted arrows (resp. dashed and dash-dot) orrespond to an favored rotation due to an inrease in Oh (resp. Ohs).The visosity is known to di�use momentum, and so kineti energy; zones with highveloity gradients (next to the interfae among others) signi�antly spread when the visosity isinreased. Sine the motion is driven by the interfae dynamis, the onstantly released kinetienergy preferentially goes into the most visous �uid. So when Oh > Ohs, the rotation withinthe droplet is aentuated (dotted arrows in Fig. 7.9), whih promotes the droplet emptying, aquik ollapse of the �uid olumn and a resulting total oalesene. Conversely, when Ohs >Oh, the horizontal ollapse is favored by the reinforement of the external rotation, whihexplains the usp-like shape observed at latter stages of the proess (Fig. 7.4-d). For moderateOhs, the visous di�usion of the external rotation is limited and the horizontal ollapse oursbelow the equator, the oalesene is partial (dashed arrows in Fig. 7.9). At higher Ohs, theexternal rotation reahes the top of the droplet, thus also promoting the vertial ollapse; theoalesene is total (dash-dot arrows in Fig. 7.9). When Ohs = Ohs/th ≃ 0.32, the distaneover whih momentum is di�used is about 0.5Ri during the whole oalesene (t = 0.8τσ),76
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√

M/k and
k = 32πσ/3. Therefore, for given foring parameters (Γ, f), there is a ritial droplet mass
Mth ∼ (ω/f)2 above whih droplets oalese and below whih they an boune. Dropletsheavier than Mth thus oalese partially until their daughter reahes a mass suitable forbouning (Fig. 7.10a). In some sense, the system behaves as a low-pass �lter that only seletsdroplets smaller than a ritial mass Mth. Droplets of di�erent sizes have been released ona bath vibrated with various foring parameters (Γ,f). Figure 7.10(b) indiates whih oneswere observed to boune and whih ones oalesed partially. Data from di�erent f ollapsewhen ω is onsidered instead of M . For eah Γ, there is a threshold ωth, tuned by the foringparameters, that presribes the maximum size for permanent bouning.7.6 SummaryLow visosity droplets are seen to partially oalese into a stati bath; a smaller droplet isformed at the end of the oalesene proess. This daughter droplet may also partially oalese77



and so on and so forth until the droplet reahes a ritial size below whih it totally oaleses.The exat onditions for partial oalesene have been investigated for droplets rossing aninterfae between two immisible liquids. Partial oalesene is possible when both Bond andOhnesorge numbers are smaller than some ritial values. Capillary waves may be observedat the surfae of the droplet. The exat relation between them and the partial oalesenehas been disussed. Finally, we have shown that a asade of partial oalesenes an bestopped by vibrating the underlying bath; the droplet partially oaleses until it reahes asuitable size for bouning. The vibrating bath is thus onsidered as a low-pass �lter that onlyselets small droplets. Large droplets are redued through partial oalesene until their sizeis appropriate.
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Chapter 8A droplet on a vertial �berIn the early morning, the spider webs in our gardens are often overed with a myriad ofdew pearls. At dawn, the fresh and humid air ondenses into a thin water �lm on the threads.Quikly, this �lm turns into a string of droplets, the smallest of whih stay on the web and waitfor the �rst sunbeams to evaporate again. The biggest slide and roll along the web (Fig. 8.1),ollide and fuse together, leave pearls in their wake, and sometimes fall from the web due toa possible overweight.Droplets on �bers are omnipresent in nature and everyday life. The �rst work that exploresthe subjet is probably the book of the belgian physiist Joseph Plateau, published in 1873[74℄. Sine, a relatively small number of studies were dediated to the interations betweenindividual droplets and �bers. Physiists have rather investigated the �ows of liquid �lms onthreads [164, 165, 166℄. However, "fusion", "sliding", "miro-droplets" are words ommonlyused in digital miro�uidis. In these hapters, we show how the droplet behavior on those"arahnidean" buildings an indeed inspire new ways for miro�uidis.8.1 Experimental methodThe method explained here below is shared by experiments from both hapters 8 and 9.Fibers made of nylon (�shing thread) are tight on a metalli frame. The tension in �bers issupposed of negligible in�uene on the droplet motion. Unless otherwise stated, droplets aremade of silion oil (Dow Corning 200), though the results may be generalized to any liquidthat wets nylon. Experiments involve droplets made of six di�erent visosities (1.5, 5, 10, 20,50 and 100 S) and �bers of 5 di�erent diameters (80, 100, 140, 200 and 250 µm). Droplets arediretly released on the �bers with a syringe. The droplet size is varied by hanging the needlediameter. Moreover, by moving the release point on the �ber, one an tune the volume of thedroplet when it enters a spei�ed region of interest. Indeed, as explained below, the dropletloses some mass by oating the �ber; so the greater the distane between the release pointand the region of interest, the smaller the resulting droplet (Fig. 8.2a). About 500 dropletshave been �lmed from the side with a high-speed amera (reording frequeny up to 1000 fps).Measures are made by image proessing (Fig. 8.2b).
80



Figure 8.1: An oil droplet (ν = 100 S) slides and rolls along a �ber of diameter 140 µm.Snapshots are taken every 50 ms. The bakground, inluding the originally dry �ber, issubtrated in order to reveal the mirometri oating �lm left in the wake of the droplet. Thelast piture orresponds to the sum of formers; partiles within the droplet follow irularpaths, indiating that the droplet rolls on the �ber.

Figure 8.2: (a) The droplet size is tuned by hanging the release point, and so the distane tothe region of interest. (b) Axisymmetri shape of a droplet on a vertial �ber. The dash-dot(resp. solid) line orresponds to the numerial solution of Eq. (8.1) with (resp. without)gravity. 81



Figure 8.3: Drawings of Joseph Plateau [74℄: the liquid form a string of pearls alled unduloidon �bers of various diameters.8.2 GeometryJoseph Plateau has already observed that, due to surfae tension only, a liquid overinga �ber spontaneously turns into a string of pearls (Fig. 8.3) alled unduloid. This instabilityhas been rationalized a few years later by Lord Rayleigh [75℄. Nevertheless, droplets maytake other shapes than the one proposed by Plateau. For example, the axisymmetry of theshape is broken down by gravity for large droplets on a horizontal �ber. If the liquid does notperfetly wet the �ber (e.g. pure water on nylon), the droplet ower on one side of the �ber,without wrapping it [167, 168℄. Suh droplets often hang at rest on a vertial �ber [169℄; theirweight is balaned by a bottom-up di�erene in ontat angle. In this thesis, we mainly studydroplets that perfetly wet �bers and slide on them.On a vertial �ber of diameter dv, wetting droplets take an axisymmetri shape of volume
Ω, lose to the unduloid of Plateau (Fig. 8.2b), dimensions (width W and extension X) ofwhih are represented as a funtion of Ω in Fig. 8.4(a-b). This shape is omputed theoretiallyas [r(s), z(s), ϕ(s)], where s is the urvilinear oordinate along a meridian of the interfae(Fig. 8.2b). If supposing a balane between gravity and surfae tension, the Laplae equation(1.2) yields
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(8.1)where ∆P is the overpressure within the droplet, at loation z = 0. Nevertheless, if thisbalane gravity / surfae tension was e�etive, the droplet would stay at rest on the �ber.The observed sliding of the droplet suggests that visous stresses have to be taken into aount.Therefore, we may suppose that these stresses balane gravity, and that surfae tension foresbalane themselves. To assess this hypothesis, Eq. (8.1) is solved numerially, suessivelywith and without the gravity term z/λ2
σ. The omparison with experimental observations82



10
−1

10
0

10
1

10
2

10
3

10
410

−2

10
−1

10
0

10
1

Ω / d
V
3

W
 / 

d V

(a) 10
−1

10
0

10
1

10
2

10
3

10
410

0

10
1

10
2

Ω / d
V
3

X
 / 

d V

(b)Figure 8.4: (a) Width W and (b) extension X of a droplet of volume Ω on a �ber of diameter
dv. The dashed line represents the asymptoti salings (G.3) and (G.6). The solid line (resp.dash-dot line) orresponds to the numerial solution of (8.1) without (resp. with) onsideringthe gravity term z/λ2

σ.(Fig. 8.2b and 8.4b) learly on�rms this seond senario; gravity an be negleted in theLaplae equation and the droplet indeed takes an unduloidal shape. Although this unduloidannot be desribed with a simple expliit equation, it is possible to �nd analytial expressionsin the asymptoti regimes Ω ≫ d3
v and Ω ≪ d3

v (App. G).8.3 Short-term steady motionThe motion of a droplet on a vertial �ber involves several e�ets with spei� timesales.Starting from rest, the droplet �rst aelerates and quikly reahes (in less than 0.1 s) a limitspeed where visous e�ets balane gravity, as shown indiretly in the previous setion. On theother hand, the droplet leaves some mass in the oating �lm; the mass loss beomes signi�antafter several seonds. Therefore, only the (not too) short-term veloity may be onsidered asonstant. The gravity/visosity balane has already been enountered in other related systems,suh as the propagation of a slug in a tube [36℄, or the droplet motion on horizontal �bersindued by thermal e�ets [170℄, geometry [171℄ or aerodynami fores [172℄. The frition isdue to veloity gradients within the droplet, that are estimated by cν1v/W ·X/2z. Here, z isthe distane to the nearest ontat line and cν1 a proportionality fator that may depend onsurfae tension among others. The resulting visous fore is
Fν = 2 · πdv

∫ X/2

0
cν1

µv

z

X

2W
dz. (8.2)This integral diverges due to the singularity at ontat point (z = 0). In order to solve thisparadox, one may begin to integrate from z = Ξ ∼ 10−9 m - the harateristi length of themoleular �lm overing the �ber - instead of z = 0. This yields

Fν = πcν1ανρdv
X

W
v, (8.3)83



where
α = ln(X/2Ξ) ≃ 15. (8.4)Balaning this fore with the droplet weight ρgΩ gives
νv

gd2
v

=
1

πcν1α

W

X

Ω

d3
v

. (8.5)As previously seen (Fig. 8.4), the dependene of W/X on Ω/d3
v is omplex in the general ase,but droplets su�iently large ompared to the �ber tend to be spherial, so W/X → 0.5.Equation 8.5 is in exellent agreement with experimental results (Fig. 8.5), whatever the �berdiameter dv, provided that cν1 satis�es
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. (8.6)The fator √dv/λσ learly indiates that gravity is not perfetly balaned by visous e�ets,and that surfae tension also plays a role in the droplet limit veloity. The oe�ient cν2 isof the order of unity; it slightly depends on the visosity when this one is lower than 10 S.The following empirial law is proposed (inset of Fig. 8.5):
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. (8.7)We an now estimate the aeleration time of the droplet
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, (8.8)and hek that, for a typial veloity of 1 m/s, the steady regime is reahed after 0.1 s.8.4 Long-term mass lossThe oating of a solid by a liquid has been deeply investigated sine the pioneering workof Landau, Levih and Derjaguin [173℄. The LLD theory rationalizes the oating of a �berslowly pulled out of a liquid bath. The thikness δ of the oating �lm is given by

δ

dv
= cweCa2/3 with Ca =

µv

σ
, (8.9)where Ca is the apillary number and the wetting onstant cwe = 0.67 aording to theauthors. Many orretions (gravity, inertia, geometry, wetting, et.) an be implemented bysimply hanging this fator cwe [174℄. For example, cwe = 1.07 when the �ber rosses theinterfae between two immisible liquids [175, 36℄.Sliding droplets are observed to oat �bers exatly as if these latter were pulled out of abath. Consequently, the droplets lose some mass through oating as they move on the �ber.Equation (8.9) may be applied to predit the mass loss and be oupled to (8.6) in order toget the long-term trajetory of the droplet. Denoting by Z the vertial position of the dropletmass enter, the volume variation Ω̇ is

Ω̇ = −πdvδŻ = −πcwed
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v
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, (8.12)where the parameter w only depends on physial onstants. This equation is integrated twie;
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Żi
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, (8.13)where Żi is the initial veloity of the droplet. Preditions of Eq. (8.13) are ompared to theobserved long-term trajetories (Fig. 8.6). The initial veloity Żi is �tted on the experiments,and w is omputed by suessively taking cwe = 0.67 and cwe = 1.5. This seond value givesan aurate desription of the trajetory, whatever the droplet visosity or size. Finally, wehek a posteriori that the ratio W/X is approximately onstant over a trajetory. Typially,

W/X variations beome signi�ant when Ω is varied by a fator 10, whih happens after about
5.5/(wŻi

2/3
), so 89 s for the (H)-urve in Fig. 8.6.85
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Figure 8.6: Long-term trajetories Z(t) of droplets with various visosity and size on a �berof diameter dv = 250 µm. The solid line (resp. dashed line) orresponds to Eq. (8.13) with
cwe = 1.5 (resp. cwe = 0.67).8.5 Shape transitionThe droplet shape on a �ber is not always axisymmetri and unique; several equilibriumon�gurations may oexist, some being more stable than others [168℄. We have seen that some100 S droplets sliding on a vertial �ber an remain in a metastable asymmetrial shape. Atany moment, these droplets quikly swith to the well-known axisymmetrial on�guration.By the way, the frition is onsiderably inreased and the droplets immediately slow down(Fig. 8.7a). The inverse transition has never been observed and is likely impossible.The veloity vf of the �nal symmetrial shape has been measured as a funtion of theinitial veloity vi before the transition, for 100 S droplets on various �bers (Fig. 8.7b). Datasuggest

vf = 0.30vi, (8.14)so the frition oe�ient cν2 is about 3.3 times less in the asymmetrial on�guration.We have observed a similar transition on inlined �bers, though both on�gurations areasymmetri in that ase (Fig. 8.8). The veloity is only dereased by a fator 2.8.6 SummaryIn this hapter, we have haraterized the shape and motion of a droplet on a vertial �ber.Provided that the droplet wets the �ber, it takes an axisymmetri shape and starts slidingdown the �ber. After a short aeleration, the droplet reahes its terminal veloity, thatresults from a balane between its weight and the visous frition on the �ber. As the dropletslides, it oats the �ber and loses some mass. Consequently, the terminal veloity slowlydereases. Finally, we have observed that the droplet may keep a metastable asymmetrishape for seonds before axisymmetry is reovered.86
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(b)Figure 8.7: (a) A 100 S droplet slides along a vertial �ber of diameter dv = 160 µm. Snap-shots are taken every 160 ms. The initially asymmetrial shape suddenly beomes symmetri,whih dereases the droplet veloity from 18 mm/s to 5.7 mm/s. (b) Veloity of the symmet-rial shape vf as a funtion of the veloity of the orresponding asymmetrial shape vi. Thesolid line orresponds to Eq. (8.14). (Inset) Typial trajetory Z(t) of a droplet experieninga shape transition in t = 0. The solid lines represent onstant veloity trajetories.

Figure 8.8: A 100 S droplet slides along an inlined �ber of diameter dv = 140 µm. Snapshotsare taken every 320 ms and superposed together. The shape transition inreases the frition,so dereasing the veloity from 6 mm/s to 3 mm/s.
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Chapter 9Intersetion between two �bersIn hapter 8, we have studied droplet motion on a single �ber. We naturally proeed bydisussing the behavior of droplets as they enounter an intersetion between two �bers. Thejuntion is simply made by plaing a horizontal �ber next to the vertial one, so they justtouh eah other; ontat is ensured by the tension between �bers.9.1 Bloking/rossing transitionDroplets are released on the vertial �ber, upstream from the intersetion. As they ap-proah, two senarios are observed: small droplets remain pinned on the node (Fig. 9.1a) whilelarger droplets ross the intersetion and keep sliding downwards (Fig. 9.1b). The trapping ofsmall droplets is mainly due to the apillary fores developed by the horizontal �ber. On theother hand, large droplet are likely too heavy to hang on the horizontal �ber. Loreneau andQuéré have already investigated problems that involve the same mehanism, namely fallingdroplets that impat a sieve [176℄ or a horizontal �ber [177℄. The balane between gravity andsurfae tension is the Bond number related to the �ber, de�ned asBo =
Mg

2πσdh
, (9.1)where dh is the diameter of the horizontal �ber. A sharp transition is observed betweenbloking and rossing regimes (Fig. 9.2a); there is a ritial Bond number Both ∼ 1 abovewhih droplets ross the node and below whih they are bloked. The intersetion behavesas a �uidi diode. This Both depends on the droplet visosity ν, at least when this latter issmall.When rossing, a tiny amount of liquid is still trapped by the horizontal �ber, so the dropletmass (and orresponding Bond number Bof ) after rossing is slightly lower than before (Boi).Although this volume annot be aurately measured, it should be about a few times the"volume" of the intersetion, namely dhdv(dh + dv).Large high visosity droplets may experiene signi�ant delays (sometimes as long a severalseonds) when they ross the intersetion (Fig. 9.3). These delays are shown to diverge asBo → Both, as often in physis when a potential barrier is just rossed (Fig. 9.2b). Thedivergene is not observed for low visosity droplets, whose rossing time remains small.As already seen in Fig. 9.2, the threshold Bond number Both inreases with the dropletvisosity, and saturates to a limit value in the high visosity regime where delays are observed.88



(a) (b)Figure 9.1: A 5 S oil droplet interats with a juntion between two nylon �bers (diameter140 µm). Snapshots are taken every 10 ms. The intersetion behaves as a �uidi diode: (a)A small droplet is pinned on the juntion, while (b) a large droplet rosses it. In that latterase, a tiny amount of liquid is left at the intersetion.
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ν = 20 S, (♦) ν = 50 S and (⊳) ν = 100 S. Error bars typially orrespond to the symbolsize. The dashed lines orrespond to the Both values.
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Figure 9.3: A delay of nearly 0.2 s is observed when a 50 S droplet with Bo → Both rossesthe intersetion between two �bers of diameter 140 µm. Snapshots are taken every 34 ms.
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dh = 80 µm and dv = 250 µm, and (N) dh = 250 µm and dv = 80 µm. (b) Variation of Bothwith the �ber diameters, for ν = 50 S. (•) dh = 80 µm and dv is varied, (�) dv = 80 µm and
dh is varied, and (N) dh = dv are both varied.The ritial visosity above whih Both is onstant depends on the �ber diameter (Fig. 9.4a).In general, Both dereases with inreasing �ber diameter (Fig. 9.4b) in a non-obvious way.9.1.1 ModelingIn order to model the behavior of a droplet interating with a juntion between two �bers,we have �rst to measure and analyze the droplet trajetory. Observations are again qual-itatively di�erent depending on the visosity regime. As already mentioned, high visositydroplets ross the juntion with a delay time that inreases as they approah the thresholdBoth (Fig. 9.5a). Small droplets are smoothly bloked, and the trajetory is always mono-toni. Low visosity droplets do not experiene any signi�ant delay when rossing is allowed.Moreover, small bloked droplets largely osillate before oming at rest on the node (Fig. 9.5b).These results strongly suggest to model the droplet as a damped harmoni osillator whose90
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(b)Figure 9.5: (a) Droplet trajetory in the high-visosity regime, namely for dh = dv =
80 µm and ν = 100 S, so Both ≃ 1.67. (•) Bloking for Boi = 1.54, (N) rossing forBoi = 1.87, and (�) rossing with delay for Boi = 1.68. (b) Droplet trajetory in the low-visosity regime, namely for dh = 250 µm, dv = 80 µm and ν = 1.5 S, so Both ≃ 0.41. (•)Bloking for Boi = 0.38, and (N) rossing for Boi = 0.52. In both (a) and (b), the solid lineorresponds to the �t of Eq. (9.2), while the dash-dot line represents the linear trajetory thatthe droplet would have taken if it had not been delayed by the horizontal �ber. The rossindiates the delay time th.restoring fore is trunated to the neighborhood of the node, i.e.

MZ̈ + cµ1µΩ1/3Ż + kZχ[−Z1,Z2](Z) = Mg, (9.2)where cµ1 is the frition oe�ient, χ[−Z1,Z2](Z) is the harateristi funtion equal to 1 when
−Z1 < Z < Z2 and 0 otherwise, and k is the sti�ness of the spring mehanism related to thehorizontal �ber, so

k = ckσ = cσ
dh

Ω1/3
σ. (9.3)The position Z of the droplet mass enter is ounted from the intersetion, thus orrespondingto Z = 0. Equation (9.2) is put in a dimensionless form by using

y = Z/Z1 (9.4)and τ =
√

k/Mt;
ÿ + 2βẏ + yχ[−1,κ](y) = Θ, (9.5)where

κ = Z2/Z1, 2β =
cµ1√
cσ

µ√
ρσdh

and Θ =
Mg

kZ1
=

2πΩ1/3

cσZ1
Bo. (9.6)We note that the damping fator β is equivalent to an Ohnesorge number based on dh, andthe foring parameter Θ is proportional to the Bond number.This equation may be solved starting from the initial ondition y(0) = −1 and ẏ(0) =

Θ/2β, i.e. when the droplet, evolving at the limit speed Θ/2β as desribed in Chap. 8,91



touhes the horizontal �ber. Like in the lassial damped osillator, two regimes are observedin Eq. (9.5) aording to the value of β. For β > 1, the system is overdamped and orrespondsto the high-visosity regime, while it is underdamped otherwise.In the overdamped regime β > 1, the solution is
y(τ) = Θ − e−βτ

[

(1 + Θ) cosh(Φτ) +
2β2(1 + Θ) − Θ

2βΦ
sinh(Φτ)

]

, (9.7)where
Φ =

√

|β2 − 1|. (9.8)The solution always tends monotonially towards y = Θ. Nevertheless, the solution is notvalid anymore when y > κ due to the trunation; Θth = κ is therefore the threshold thatseparates bloking (Θ < κ) and rossing (Θ > κ) behaviors. The rossing time obviouslydiverges when Θ → κ+, as in experiments.In the underdamped regime β < 1, the solution is
y(τ) = Θ − e−βτ

[

(1 + Θ) cos(Φτ) +
2β2(1 + Θ) − Θ

2βΦ
sin(Φτ)

]

. (9.9)The solution also tends towards y = Θ, but with damped osillations. The ritial point y = κis neessarily reahed at the �rst osillation, so the rossing delay annot be larger than theosillator period. The bloking/rossing threshold Θth is obtained when the �rst maximum ofEq. (9.9) oinides with y = κ, whih yields
y(τth,Θth) = κ with tan(Φτth) =

−ΘthΦ

β(Θth + 2)
, (9.10)where τth is the time of �rst maximum when Θ = Θth. This system of impliit equationswith unknowns (τth,Θth) annot be solved analytially. Nevertheless, it an be shown that

(τth,Θth) → (π, 0) when β → 0.When rossing ours and y passes the κ-point in τκ, the droplet starts aelerating againuntil it reahes its terminal veloity:
y(τ) = κ+

Θ

2β
(τ − τκ) − Θ − 2βẏ(τκ)

4β2

[

1 − e−2β(τ−τκ)

]

, (9.11)where ẏ(τκ) is the veloity at the exit point y = κ.Equations perfetly �t experimental trajetories (Fig. 9.5). As seen in Fig. 9.6, the �ttingparameters cµ1 and cσ approximately satisfy
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(9.12)More preisely, we obtain for dv = 80 µm, Dimensionless parameters Θ and β are omputed foreah experiment, starting from these values of cµ2 and cσ. The agreement with the theoretialequation (9.10) is rather good (Fig. 9.7), onsidering the signi�ant error made by onvertingthe measured physial parameters into dimensionless quantities β and Θ.92



dh = 80 µm dh = 250 µm
cµ2 13 ± 20% 27 ± 12%
cσ 16 ± 18% 9.9 ± 22%
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Figure 9.8: A H2SO4 droplet (upoming) fuses with a NaOH droplet on a node. The reationis revealed by bromomethyl blue. The snapshot length is 0.1 s.Finally, we note that the parameter cσ may be related to the ritial Bond number Both.Indeed, in the overdamped regime, Θth = κ, so
Z2 = 4π

Ω∗1/3

cσ
Both,ν→∞. (9.13)Measurements of Both(dh, dv) (diretly from the experiments) and cσ(dh, dv) (from the tra-jetory �tting) suggest that Z2 = 0.68Ω1/3, whatever dh and dv. Therefore,

cσ ≃ 9.24Both,ν→∞. (9.14)9.2 Miro�uidi operations on �ber networksWe now proeed by showing that the intersetion between two �bers may be the basiomponent of a new �ber-based miro�uidi tehnology, exatly as the "T" juntion in mi-rohannels [178℄. Indeed, a �ber juntion is a perfet plae to bring several droplets arryinga biohemial ontent and make them reat together (Fig. 9.8). An e�ient and spontaneousmixing ours when both droplets oalese together, the reation is nearly ompleted afteronly a few tenths of seonds. The resulting droplet may �ow down or remain pinned on thejuntion, depending on the initial volumes used in the proess.9.2.1 DivisionA large droplet spontaneously divides into N small droplets on a network made of Nparallel horizontal �bers that ross a single vertial �ber in N points. The large droplet rossesevery juntion, but oats the intervening vertial segments. The oating �lm destabilizesand the resulting pearls are olleted on the next juntion (Fig. 9.9a), giving birth to Nloalized mirodroplets. An experimental prototype has been realized with 44 horizontal�bers (diameter dh = 80 µm, spaing 4 mm) and a vertial �ber (dv = 80 µm) mounted on aLEGO frame. An oil droplet of Ω = 2 µL and ν = 5 S slides down the vertial �ber, the thinoating �lm left in its wake destabilizes and forms 44 pearls of volume about 60 nL, olletedat the juntions.By hanging the �ber diameter and spaing, this division network an be optimized, e.g.with respet to the number of mirodroplets N that are reated from a single droplet. This94



number obviously depends on the amount of liquid left by oating, whih itself varies with theinitial droplet veloity. This veloity is about
v ∼ Mg

33µ
√
dvλσ

, (9.15)whih means that, aording from the oating law of Landau-Levih, the mass loss per unitlength is
dM

dZ
= πρdvδ ∼ 0.13ρd2

v

(

Mg

σ
√
dvλσ

)2/3

. (9.16)Remarkably, this mass loss does not depend on µ; approximately the same quantity of liquidis lost by oating, whatever the visosity of the initial droplet. This fat is of importanesine it ensures a strong robustness of the tehnique to the physial properties of the liquidof interest. The maximum length L that a droplet is able to travel on a vertial �ber beforebeing entirely onsumed and transformed in a oating �lm is
L ∼ 4

(

σ

ρgd2
v

)5/6

Ω1/3, (9.17)whih is about 0.5 m for a 2 µL oil droplet on a 80 µm �ber. The droplet an thus travel abouta distane equal 360 times its size when dv = 80 µm, and 180000 times when dv = 2 µm !Sine the spaing between �bers needs to be at least 3 times the droplet size, we onludethat about 100 miro-droplets may be generated on a 80 µm �ber network, and 50000 on2 µm �bers ! Pratially, the division fator is less, sine a small part of the initial droplet isalso diretly retained at eah juntion.The rate at whih the division is performed mainly depends on the time needed by themiro-pearls to reah the next juntion. Sine the initial droplet is about 1 mm in diameter,a �ber spaing of 4 mm seems to be a reasonable minimum. Pearls of volume Ω ≃ 60 nL andvisosity 5 S have a veloity ν ≃ 10 mm/s, so they are olleted on the node in less than aseond, as observed experimentally.9.2.2 MultiplexingThe division proess desribed here above is of partiular interest for multiplexing issues.Multiplexing onsists in making biohemial reations in parallel between a liquid A and Nliquids B1, B2, ..., BN . One have to divide liquid A in N parts and make every of them reatwith one of the Bi liquids. For example, the droplet A, released on the vertial �ber of adivision network, divides into N parts. Then, the setup is rotated 90◦, and the B-droplets areplaed on the newly vertial N �bers. The fusion and reation between A and B ours onthe intersetions.Sine the B droplets are made with a syringe, they may be too large to be bloked by the�bers. An improved prototype has been made in LEGO, in order to make a droplet A reatwith 4 droplets Bi, i = 1...4. This setup, shematized in Fig. 9.9(b), onsists in a vertial �ber
V250 (diameter 250 µm), four vertial �bers V80 (diameter 80 µm) and 4 horizontal �bers H250(diameter 250 µm). Fibers are shifted in suh a way that the H250 �bers touh the V250, aswell as only one of the V80. An A droplet is released on V250, it slides down the �ber androsses the four intersetions, leaving 4 mirodroplets. The Bi droplets are plaed on eah
V80, they ross only one juntion where they leave a single mirodroplet. The setup is then95



(a)

(b)Figure 9.9: (a) With juntions in series, a droplet of Ω = 60 nL and ν = 5 S is divided into 44mirodroplets of volume 60 nL. The �uid lost by oating is olleted on the nodes. Snapshotsare taken every 48 ms. (b) Shemati view of a multiplexing devie that make a white dropletreat separately with four blak droplets.
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rotated by 90◦, the V80 �bers are now horizontal so they annot sustain the Bi mirodroplets.These latter fall down the H250 �bers until merging and reating with the A mirodropletsloated at the next juntion.9.2.3 EnapsulationsTiny aqueous droplets evaporate very quikly, only in a few minutes. To prevent evapo-ration, the droplets may be wrapped with an oil layer. This wrapping an be made at thejuntion between two �bers (Fig. 9.10). In order to study this phenomenon, a olored waterdroplet is plaed at an intersetion, and some oil droplets are left on the vertial �ber. Theselatter slide down and wrap the water droplet. It is observed that the water droplet may beaught by the oil and arried away from the juntion (Fig. 9.10a), or it may be left oated atthe juntion while the oil keeps sliding down (Fig. 9.10b). The �rst senario is of interest inmiro�uidis sine the oil droplet may be seen as "leaning" the �ber and resetting the systemafter any operation on the water droplet. The transition between both behaviors has beeninvestigated as a funtion of the water volume Ω and related Bond number Bo = ρΩ/(2πσdh),where σ ≃ 30 N/m is here the interfaial tension between water and oil. There is a ritialBoth below whih the water droplet is left and above whih it is aught by the inoming oildroplets (Fig. 9.11a).9.2.4 Fiber networks in miro�uidisFiber-based miro�uidi devies present numerous advantages over existing tehnologies(e.g. pressure-driven droplet onvetion into mirohannels, handling on a hip by eletrowet-ting).
• The ontat between droplets and solid parts is redued; the loss of liquid throughoating is minimized, espeially sine the oating pearls are also olleted. Therefore, amillimetri droplet an be quikly divided into tens of mirodroplets.
• The operations desribed above are robust to the physio-hemial properties of theliquid of interest. They only require the liquid to wet the �ber, whih is easily satis�ed byusing adequate �ber materials or by adding surfatant moleules. This is of importanein diagnosti appliations, where the physial properties of the liquid to be tested arenot known in advane. Suh a robustness property does not exist in mirohannels,where e.g. it is impossible to divide high visosity droplets [179℄.
• Contrary to the planar labs-on-a-hip, the geometry of �bers allows the design of fully3-dimensional networks with many �bers bringing multiple reatants to the same point.
• Channel-based miro�uidis [178℄ often requires synhronisation of the droplets onveyedinto various hannels, whih is ahieved through high-teh miropumps. Here, there isno need for any external synhronisation: droplets wait for eah other on the nodes.
• Thanks to the sharpness of the bloking/rossing transition, the volume of a dropletthat ome o� a node is aurately ontrolled.
• There is no risk of denaturing the biohemial ontent of the droplet due to prohibitiveeletri �elds generated by eletroni omponents.97



(a)

(b)Figure 9.10: (a) A large water droplet is wrapped and aught by inoming oil droplets. (b)A small water droplet is wrapped and left by inoming oil droplets. In both ases, the oilvisosity is ν = 100 S and the diameter of both �bers is d = 250 µm.
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Figure 9.11: Threshold Ωth between the "left" and the "aught" behaviors for dh = dv =
250 µm and ν = 20 S. Values of Ωth are mentioned for di�erent �ber radius and oil visosity.

• Finally, �ber networks are reusable, zero-energy onsuming and pratially ostless.They do not need neither any high-teh devie nor any expertise from a researh lab.They are also transportable, sine mirodroplets only unpin from the intersetions withextreme inertial foring. These advantages are ruial beause they allow anybody tobuy and use this diagnosti devie "at home".The main drawbaks of �ber networks are the risk of evaporation of mirodroplets and theoperation rate whih is not as high as in some other tehnologies. Nevertheless, evaporationan be avoided by enapsulating droplets, or by plaing the setup in a saturated atmosphere.Conerning the rate, whih is in fat not so bad, we would argue that most miro�uidioperations do not neessarily require the highest ahievable rates. It does not matter if amedial diagnosti test is made in 0.1 s with a omplex apparatus based on mirohannels, orin maybe 1 s thanks to a simple, ergonomi and low-ost �ber network !9.3 SummaryIn this hapter, we have analyzed the behavior of droplets sliding on �bers as they en-ounter a rossing between two �bers. Large droplets ross the node while small ones remainpinned; the transition between both behaviors ours for a ritial Bond number. The droplettrajetories have been measured. Visous droplets are observed to experiene signi�ant de-lays in rossing the node. These experimental results are well-rendered by a theoretial modelthat onsists in a trunated harmoni osillator. Finally, we have shown that simple �bernetworks ould advantageously perform some basi miro�uidi operations.
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Conlusions and future work
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ConlusionAlthough droplets are ommon objets that may seem perfetly understood, the sienti�ommunity is more and more interested in their physis. As explained in hapter 2, dropletsare urrently onsidered as very promising objets for miro�uidi developments. Indeed,eah individual droplet an serve as a support for mirosale biohemial reations. Manyproesses involved in hemistry, biology and mediine ould be miniaturized by handling,mixing, dividing, ombining individual droplets of reagent. Nowadays, several tehniquesof droplet manipulation are already under investigation, e.g. droplets onveyed through ahannel network by an immisible liquid, droplets traveling on a hip by eletrowetting, et.Eah appliation has a series of onstraints and requirements that the various tehniques anmeet more or less easily. Therefore, sientists take advantage to develop every possible wayto perform the set of basi operations enountered in digital miro�uidis. Hopefully, thanksto the omplex ation of surfae tension, the physis of droplets is extraordinarily rih and weare far from having explored every variant.The main objetive of this thesis was to �nd some new alternatives to miro�uidis andto investigate them through simple experiments and mathematial models. We have mainlyfoused on the following onstraint :Is it possible to manipulate droplets without touhing them with any solid or liquid ? If not,how to minimize the ontat ?These questions are addressed respetively in both parts of the manusript. In partiular, weexplain how to handle droplets through bouning on a bath and on �ber networks.Usual levitation is de�nitely expensive and unsuitable for handling individual droplets.Conversely, it is muh easier to maintain them in the viinity of another liquid interfae. Inpartiular, we have shown that droplets an be kept bouning onto a liquid bath, providedthis latter is vertially vibrated. While bouning, the droplets must never touh the liquidbeneath, otherwise they would oalese. A boune implies a hange of diretion, whih anbe ahieved only by storing and restoring the kineti energy of the inoming droplet. In orderto understand the underlying mehanisms, we have studied two on�gurations of bouningdroplets, namely on a soap �lm (hapter 4) and on a high-visosity liquid bath (hapter 5).In the �rst ase, the storage is primarily ensured by the soap �lm. Sine its mass is negligible,it instantaneously deforms in response to the droplet, a property whih deeply simpli�es theorresponding model. On the other hand, the visous bath annot restore energy so the dropletmust rely on its own deformation. In both ases, permanent bouning is observed when theliquid support (bath or �lm) is fored through a vertial sinusoidal motion. More preisely,there is a foring amplitude threshold above whih the droplet bounes inde�nitely. Sinethe bouning involves a spring mehanism with a related natural frequeny, this thresholddepends on the foring frequeny. In partiular, the threshold may be signi�antly lowered101



by a resonane phenomenon between the foring and the spring, as well-rendered by theproposed models. Physially, bouning droplets exhibit some interesting properties suh asmulti-periodiity and transition to haos.To maintain droplets "alive" by making them boune permanently on a vibrated liquidbath is only the �rst step. In hapter 6, we have disussed two modes of horizontal self-propulsion of bouning droplets, namely rollers and walkers. These moving droplets stay ata distane from the edges of the ontainer, so they an be guided when the boundaries forma hannel. The walkers also interat together and form orbits, rystalline strutures, et. Wehave mainly studied the olletive motion of a large number of walkers. In this speial gas,olliding partiles oalese together until they are so large that they annot move anymore.Unfortunately, although fusion between droplets is easily ahieved, we still do not know how toperform the inverse operation, namely to break up the droplets. In ounterpart, as explainedin hapter 7, the droplet volume may be ontrolled in some way. Indeed, low visosity dropletsare shown to experiene partial oalesene, i.e. they do not oalese in one step. Instead, ahalf-smaller droplet is formed at the end of the oalesene. If su�iently small, this daughterdroplet starts bouning. Otherwise, it partially oaleses again until it reahes the appropriatesize seleted by the foring onditions.At this stage, the "bouning-based" miro�uidis ome lose to being fundamental researhrather than applied physis. Nevertheless, we an already ath a glimpse of the advantages itwould bring over other handling tehniques. The �rst of them is likely the �exibility: manip-ulations are driven through the foring parameters, whih an be reprogrammed in real-time.This property is of interest for researh and development, when one has to deal with a smallnumber of droplets at a time without doing the same operation twie. Sine the droplet doesnever touh another liquid or solid, it is free of unwilled ontamination or mass loss by wet-ting. Finally, as mentioned in the perspetive setion, some operations an be performed ondroplets that are hardly made otherwise, e.g. the spontaneous reation of a miro-emulsionin a bouning ompound droplet.In the seond part of this thesis, we have investigated the behavior of droplets on �bernetworks. Fibers are indeed a good ompromise sine the droplet is touhed but the ontatarea is minimal. First, we have rationalized the motion of a droplet on a vertial �ber (hap-ter 8). After a short aeleration, the droplet reahes a terminal veloity that results from abalane between gravity and frition fores. The droplet is observed to leave a thin oating�lm in its wake. Thanks to the Rayleigh-Plateau instability, this �lm quikly turns into smallpearls that also �ow down the �ber. Seondly (hapter 9), we have studied what happenswhen the sliding droplet enounters the basi element of a �ber network, namely a juntionwith another (horizontal) �ber. Depending on its volume, the droplet may stop or it may keepsliding downwards. This binary behavior turns out to be very interesting for many dropletmanipulations. For example, the division of a droplet into a large number of miro-droplets isperformed more easily than ever by plaing as many nodes in series. Indeed, a large dropletrosses them all while the small pearls resulting from its oating �lm are bloked. Therefore,eah node ollets the pearls left in the setion just upstream. We have �nally studied someother basi operations on �ber networks, suh as fusion, multiplexing and enapsulation. Asdisussed at the end of hapter 9, �ber networks an be advantageously implemented in anumber of miro�uidi systems, inluding ostless and easy-to-use diagnosti tools.102



Future workThe physis of droplets is extraordinarily rih and still shrouded in mystery. These lastsetions shortly pave the way for new work involving droplets. Some of them an likely beaddressed in a few months while others are open questions that may span deades.Bouning on a vibrated surfae: universal behaviorsProblems related to bouning on a moving surfae share a lot of similarities and universalfeatures. In partiular, the orresponding models exhibit ommon behaviors, suh as multi-periodiity and haos. Moreover, their bifuration diagrams often seem qualitatively equiva-lent. Nevertheless, an extensive study of the bifurations is still laking, even for the simplestof these systems, i.e. the elasti ball (App. E). Indeed, the involved equations are usuallynot ontinuous but pieewise-smooth, so the lassial theory of nonlinear systems annot bediretly applied and must be reformulated [180℄.Independently from its possible use in miro�uidis, the bouning of objets on a vibratedsurfae may also be of interest to rationalize some behaviors enountered in nature. Forexample, �ying �shes are observed to boune onto the sea surfae in order to esape predators.Physially, this bouning is not due to surfae tension anymore, but rather to inertial fores,as for skipping stones [181, 182℄. Surprisingly, they seem to systematially swim perpendiularto the waves. Would they take advantage of the waves to optimize their trajetory ?Walkers and rollersWe have disussed two modes of self-propulsion of bouning droplets on a vibrated bath,namely rollers and walkers. Although a signi�ant work has already been made on walkers[76, 133, 141℄, both modes need further investigation. In partiular, the interations betweendroplets must be addressed in details. How does the virtual fore they exert on eah othersale ? What is the stability of rystalline strutures ? Can phase transitions be observedfrom an ordered to a gas-like state ? What are the similarities with other systems involvingolletive motion, suh as an ideal gas, a olony of bateria or a �sh shool ?Re�etion / refration of dropletsRe�etion and refration are known for enturies in wave theory. In mehanis, maro-sopi objets may also be re�eted or refrated as they enounter a boundary betweentwo media. While the billiard ball re�etion is well-understood, there are a number of103



Figure 9.12: (a-b) A water droplet impats on an inlined soap �lm. Depending on its ve-loity, it may boune on (a) or ross (b) the �lm. In both ases, the trajetory is deviated,orresponding to a re�etion and a refration respetively. () A droplet is also deviated whenit impats an inlined �ber.re�etion/refration-like motions that still need to be studied, espeially in �uid mehan-is. In relation with this thesis, droplets that interat with an inlined soap �lm are deviatedso both re�etion and refration are observed (Fig. 9.12a-b). Deviations are also seen whena droplet impats an inlined �ber (Fig. 9.12). Can the Snell's laws be extended to thesesystems ? If not, what are the relevant parameters to sale and rationalize these trajetorydeviations ?Stati shape of dropletsIn this thesis, we mainly foused on axisymmetri droplets beause they are easily observed,haraterized and modeled. Nevertheless, it is essential to develop mathematial tools thatan e�iently deal with asymmetri shapes. For example, we need to �nd a onvenient way torepresent the shape of a droplet hanged on a horizontal or inlined �ber. Nowadays, the onlyavailable tool is numerial omputation (e.g. Surfae Evolver); but we would take advantagein desribing these shapes with a relatively small number of parameters, e.g. through spetralmethods, perturbations of well-known axisymmetri ases, et.Partial oalesene in various on�gurationsWe have investigated the partial oalesene of droplets into a bath. However, partialoalesene may be observed in a variety of on�gurations. Among others, low visositydroplets partially oalese with a soap �lm. This ase is di�erent from the oalesene at aliquid/liquid interfae in many respets. First, the droplet usually impats the soap �lm witha signi�ant veloity, so the Weber number must be taken into aount in the dimensionalanalysis. The Ψ parameter, namely the size ratio between the �nal and the initial droplets, isusually muh greater than 0.5. Moreover, several satellite droplets may be formed (Fig. 9.13).But the most striking property of oalesene on soap �lms is that daughter and satellite104



Figure 9.13: Partial oalesene of a droplet on a soap �lm, with the formation of satellitedroplets. Time is indiated in milliseonds.droplets may be ejeted upwards, or downwards (Fig. 4.3d), or both (Fig. 4.3) ! In thatlatter ase, the soap �lm splits the droplet in two parts that may evolve independently fromeah other. Partial oalesene an even be muh wilder, as seen with this pure water dropletoalesing into a soapy water bath in Fig. 9.14. Partial oalesene is far from being fullyunderstood and, among others, the onditions of appearane of satellite droplets have still tobe addressed. The Ψ funtion is also of interest for droplet handling, sine partial oalesenemay be seen as a onvenient way to progressively derease the volume of a droplet.Compound dropletsAn major theme of the droplet physis onsists in studying the behavior of ompounddroplets, typially water droplets wrapped by an oil layer [183℄. We have already seen thatwater droplets may be easily enapsulated on �bers (Chap. 9). There are several other waysto reate ompound objets [184℄. One of the most spetaular onsists in making a waterdroplet impat on a water bath overed with a thin oil layer (Fig. 9.15a). Depending on thelayer thikness, the droplet may experiene omplex motions in whih water and oil wrap eahother, sometimes resulting in an onion omposed of four layers! A similar entrapment andwrapping mehanism is enountered in the reation of antibubbles [62, 84℄.Unfortunately, all these exoti objets are unstable; the lighter layers are drained upwardsby buoyany fores, so layers made of the same liquid �nally oalese together and the objetdisappears. Nevertheless, it is possible to reate stable enapsulations of water droplets byarefully hoosing the oil phase. For example, diiodomethane is a liquid of espeially highdensity ρ = 3325 kg/m3 and low surfae tension σ = 50.8 mN/m. Consequently, a dropletof diiodomethane released on a water bath shapes as a lens �oating on the bath surfae.The important thikness of this lens is due to the ompetition between gravity (that tries tomake it sinking) and surfae tension (that makes it �oating). As seen in Fig. 9.15(b), smallwater droplets an be plaed in these lenses in a stable fashion, whih may be of interestfor preservation and long-term storage of droplets in a on�ned volume. Although alreadyinvestigated (e.g. [185℄), the dynamis of lenses is far from explored. What is their exat105



Figure 9.14: Partial oalesene of a plain water droplet into a soapy water bath. The surfa-tant gradients make the phenomenon muh more omplex.shape ? What is the maximum amount of water that an be plaed inside ? How do severallenses interat together ? Is it possible to mix two oil lenses without mixing their waterontent ?Compound droplets also boune permanently onto a vibrated liquid bath. Nevertheless,something amazing ours when a little soap is added: at eah impat, the oil layer maybe pushed inside the water droplet. Under given onditions, the water pinhes the oil layer,resulting in an oil droplet enapsulated in water. The repeated impats progressively reatean oil-in-water miro-emulsion! The exat mehanism is still unknown, though it is thoughtto have analogies with other experiments involving a similar hange in the interfae topology[186℄.Laser manipulationAnother important diretion for applied researh is the manipulation of droplets withlasers. We have already mentioned that pulsed lasers may generate wave patterns on a liquidsurfae that are similar to those emitted by a walking droplet (D. Caballero, private om-muniation). In some sense, the laser may be onsidered as a virtual droplet. Sine walkersinterat together, they an be attrated and driven by the laser. The lenses introdued in lastsetion may also be handled with lasers [187℄, and it is likely that �ber networks an also takeadvantage of the laser tehnology.
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Figure 9.15: (a) By making a water droplet impat a water bath overed with an oil layer,one may reate multi-enapsulations, namely water-in-oil-in-water-in-oil-in-water objets !(Credit: S. Dorbolo) (b) A thik sessile lens is made by releasing a droplet of diiodomethane atthe surfae of a water bath. A small olored water droplet an be stored for a long time insidethe lens. () A ompound droplet an also experiene permanent bouning on a vibrated bath.At eah impat, the oil layer may be trapped and pinhed, thus releasing an oil droplet withinthe water part; an oil-in-water miro-emulsion is spontaneously formed. (Credit: D. Terwagne)
107



Miro�uidis on �ber networksFinally, the most promising work to undertake is likely the development of smart �bernetworks. With an inreasing number of apabilities, these latter are expeted to providesolutions for pratial appliations, in partiular for biohemial assays and diagnosti tools.Future researh may be divided in four axes:
• First, some fundamental questions have to be addressed. Among others, how does adroplet behave as it enounters a node formed with more than two �bers? What isthe evaporation timesale of a droplet on a �ber? How e�ient is the mixing of twodroplets at a node? Is this mixing enhaned by the internal onvetion reated withinthe resulting droplet when it slides down ? How do these proesses sale as the �bersize is dereased down to a few mirons or less?
• Fiber nodes are observed to exert a diode-like ation on droplets. By analogy withthe reently developed bubble omputing [32℄, is it possible to invent a set of logialoperations on droplets that may be ombined to perform omplex �uidi tasks?
• Until now, we have dealt with �shing nylon �bers. Nevertheless, the physis desribedin this thesis is likely appliable to �bers of any kind. A judiiously hosen material anprovide additional apabilities to the network. The �ber ould be for example an optial�ber or an eletrial wire, possibly textured or hemially oated. The development ofeletro-wetting on �bers would provide an eletroni ontrol of the bloking/rossingtransition. The interation between light/eletrial urrent and the droplet ontentould allow an in-situ measurement of the droplet properties; miro-reations would beprobed in real time! Moreover, these ative �bers may indue hemial reations withinthe droplet through heating, UV ross-linkage, et.
• Finally, droplets an also have a feedbak on the �ber network beause the �bers areusually elasti. Indeed, liquids exert a apillary ation on �bers that may shape them.The best example is the dense network of our hair, whih shapes di�erently if it is wetor not [188℄. Elastoapillary phenomena open the way to self-assembly [189℄. Dropletsare already used in mirofabriation, e.g. for the self-alignment of two �bers [12℄ or forthe assembly through drying [190℄. Here, the droplets may help designing the networkon whih they �ow ! This inreases further the �eld of appliation of �ber networks.
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Appendix ANotationsThe main notations enountered in the text are summarized in these tables. Note that theappendies have their own notations that may be di�erent from the list below.Var. Signi�ation Eq./Fig. Var. Signi�ation Eq./Fig.
α Frition oef. E(8.4) τ Dimensionless time E(4.32)
β Dimensionless damping E(7.7-9.6) τσ Capillary time E(1.8)
δ Coating thikness E(8.9) φ Phase
ζ Max. de�etion s.f. F4.5(a) ϕ Interfae angle F8.2(b)
η Droplet deformation F4.5(a)-5.3(a) χ Charateristi funtion
θ Inlination angle F4.5(a) ω Dimensionless f E(4.3)
κ Dimensionless Z2 E(9.6) ∆ Di�erene
λσ Capillary length E(1.4) ∆ρ Rel. Di�. of ρ E(7.1)
µ Dynami visosity Γ Dimensionless A E(4.2)
ν Kinemati visosity Θ Dimensionless Mg E(9.6)
ξ Size ratio E(4.1) Φ Dimensionless freq. �ber E(9.8)
ρ Density Ψ Size ratio E(7.2)
σ Surfae tension E(1.1) Ω Droplet volumeTable A.1: Greek haraters.Subsript Signi�ation Subsript Signi�ation

F Faraday instability m Minimum
M Maximum nw Not walking droplet
a Air s Surrounding immisible liquid
cw Capillary waves sf Soap �lm
f Final state th Threshold
h Horizontal �ber v Vertial �ber
i Initial state w WalkerTable A.2: Subsripts.
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Var. Signi�ation Eq./Fig. Var. Signi�ation Eq./Fig.
A Foring amplitude F4.2(b) a Sale Weibull E(6.7)Bo Bond number E(1.3-9.1) b Shape Weibull E(6.7)
C Bouning thres. fun. E(5.17) cD Dissipation oef. E(5.6)
C Mean urvature E(1.2) cK Kineti energy oef. E(5.6)Ca Capillary number E(8.9) cL1, cL2 Lubriation oef. E(5.3)
Eσ Surfae energy E(1.1) cT Transfer oef. E(4.29)
FL Lubriation fore ck Sti�ness oef. E(4.4)
Fσ Capillary fore cwe Wetting oef. E(8.9)
G Deformation ampl. E(5.11) cµ1, cµ2 Frition oef. E(9.2-9.12)
H Height drop. summit cν1, cν2 Frition oef. E(8.2-8.6)
H Heaviside funtion cσ Surfae tension oef. E(4.4-9.12)
Ii Mod. Bessel 1st kind E(5.17) d Fiber diameter
K Kineti en. impat f Foring frequeny F4.2(b)
L Traveling length E(9.17) f(ℓ,m) Natural freq. of Y m

ℓ E(1.7)
M Droplet mass g Gravitational ael.
N Number of droplets h Film thikness F5.3(a)Oh Ohnesorge number E(1.9) j Index
P Pressure k Sti�ness E(4.4)
P Probability ℓ Degree of Y m

ℓ F1.2
PD Dissipated power m Order of Y m

ℓ F1.2
Q, ~Q Flow rate p N. for. per./boun
R Mean radius F4.2(a) q N. boun/per. traj.
S Surfae area r Radial axis F4.5(a)
U Dimensionless V E(4.32) s Curvilinear oord.
V Vert. vel. impat t Time
W Droplet width F8.2(b) tc Contat time E(3.3)We Weber number E(1.6) tL Lifetime
X Droplet extension F8.2(b) u, ~u Loal veloity
Y Short-term average y E(5.14) v Droplet veloity
Y m

ℓ Spherial harmonis F1.2 x Dimensionless η E(5.7)
Z Vert. pos. drop. F4.5(a) y Dimensionless Z, h E(4.32-5.7-9.4)

Z1, Z2 Trunature E(9.2) z Vertial axis F4.5(a)Table A.3: Latin haraters.
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Appendix BPhysial properties of the liquidsThe relevant physial properties of the liquids used in the experiments of this thesis aresummarized in Table B.1. The interfaial tension σw/o between aqueous mixtures and silionoils has been measured by the pendent drop tehnique. Pure water gives σw/o ≃ 45±1 mN/m,whatever the assoiated oil. Addition of glyerol dereases the interfaial tension down to
σw/o ≃ 42 ± 1 mN/m. On the other hand, a signi�ant variation is observed when ethanol isadded:

σw/o(10%E) = 25 mN/m, σw/o(20%E) = 17 mN/m,
σw/o(30%E) = 12 mN/m,σw/o(20%E) = 9 mN/m .
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Liquid ρ (kg/m3) ν (S) σ (mN/m)W 1000 0.893 72.087.5%W + 12.5%G 1030 1.17 70.280%W + 20%G 1048 1.47 69.575%W + 25%G 1061 1.73 69.062.5%W + 37.5%G 1093 2.67 68.050%W + 50%G 1127 4.74 67.425%W + 75%G 1195 30.9 66.190%W + 10%E 983 1.35 46.680%W + 20%E 969 1.82 37.770%W + 30%E 954 2.23 32.360%W + 40%E 934 2.51 29.6DC-0.65 S 761 0.65 15.9DC-1.5 S 850 1.5 16.8DC-5 S 920 5 19.7DC-10 S 934 10 20.1DC-20 S 949 20 20.6DC-50 S 960 50 20.8DC-100 S 965 100 20.9DC-1000 S 971 1000 21.2Table B.1: Liquid properties (G=Glyerol, E=Ethanol, W=Water, DC=Dow Corning 200silion oil).
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Appendix CCapillary waves on a spherialinterfaeC.1 Useful formulas in spherial oordinatesThe deformations of a sphere an be represented through the surfae ~x = R(θ, ϕ)~er, where
(~er, ~eθ, ~eϕ) =





sin θ cosϕ cos θ cosϕ − sinϕ
sin θ sinϕ cos θ sinϕ cosϕ

cos θ − sin θ 0



 . (C.1)These unit vetors form a artesian oordinate system and satisfy, among others, to ∂θ ~er = ~eθand ∂ϕ ~er = sin θ ~eϕ.The main di�erential operators are written:
∇F = ~er∂rF + ~eθ

∂θF

r
+ ~eϕ

∂ϕF

r sin θ
, (C.2)

∇ · ~F =
∂r(r

2Fr)

r2
+
∂θ(sin θFθ)

r sin θ
+
∂ϕFϕ

r sin θ
, (C.3)

∇ ∧ ~F =
∂θ(sin θFϕ) − ∂ϕFθ

r sin θ
~er +

∂ϕFr − sin θ∂r(rFϕ)

r sin θ
~eθ +

∂r(rFθ) − ∂θFr

r
~eϕ, (C.4)

∇2F =
∂r(r

2∂rF ) + ∇2
θϕF

r2
, (C.5)where the angular omponent of the Laplaian operator is

∇2
θϕF =

∂ϕϕF + sin θ∂θ(sin θ∂θF )

sin2 θ
. (C.6)The eigenfuntions of this operator are the spherial harmonis Y m

ℓ = Pℓ(cos θ)eimϕ obeyingto
∇2

θϕY
m
ℓ + ℓ(ℓ+ 1)Y m

ℓ = 0. (C.7)The outward-pointing normal vetor is
~n =

~er − ∂θR
R ~eθ − ∂ϕR

R sin θ ~eϕ
√

1 +

(

∂θR
R

)2

+

(

∂ϕR
R sin θ

)2
. (C.8)
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C.1.1 Linearization for small deformationsThe surfae is represented by R = R0(1 + η) where η ≪ 1. This yields
~n ≃ ~er −

∂θη

R0
~eθ −

∂ϕη

R0 sin θ
~eϕ, (C.9)

∇ · ~n ≃ 2(1 − η)

R0
−

∇2
θϕη

R0
, (C.10)

~n · ∇ ≃ ∂r. (C.11)C.2 Dispersion relationWe proeed by establishing the dispersion relation of apillary waves on a spherial dropletimmersed in a surrounding liquid (denoted by the subsript s). We suppose that
• the �ow is irrotational and inompressible,
• the wavelength is muh larger than the visous length √ν/f , and
• the wave amplitude is small ompared to the wavelength.So the veloity �eld inside ~u and outside ~us may be derived from salar potentials ψ and ψssatisfying to the Laplae equation: ∇2ψ = ∇2ψs = 0, so for eah mode (ℓ,m),

ψ = B(t)

(

r

R0

)ℓ

Y m
ℓ and ψs = Bs(t)

(

r

R0

)−(ℓ+1)

Y m
ℓ . (C.12)The ontinuity of the normal veloity on the interfae r = R0(1 + η) implies ~n · ~u]r=R0

=
~n · ~us]r=R0

= R0∂tη, so
B =

R2
0

ℓY m
ℓ

∂tη and Bs = − R2
0

(ℓ+ 1)Y m
ℓ

∂tη. (C.13)Finally, the linearized Bernoulli equation gives the pressure within the �ow P = 2σs/R0−ρ∂tψand Ps = −ρs∂tψs. Aording to the Laplae law, P − Ps = σs∇ · ~n on the interfae, so
ρ∂tψ]r=R0

− ρs∂tψs]r=R0
=
σs

R0

(

2η + ∇2
θϕη

)

, (C.14)whih yields
∂ttη =

σs

[(ℓ+ 1)ρ+ ℓρs]R3
0

ℓ(ℓ+ 1)

(

2η + ∇2
θϕη

)

. (C.15)We an now deompose the perturbations into spherial harmonis η = η0(t)Y
m
ℓ and obtain

η̈0 +
ℓ(ℓ2 − 1)(ℓ+ 2)

(ℓ+ 1)ρ+ ℓρs

σs

R3
0

η0 = 0. (C.16)We de�ne the mean density ρm = (ρ + ρs)/2 and the relative di�erene of density ∆ρ =
(ρ− ρs)/(ρ+ ρs). Therefore, the natural frequeny f(ℓ,m) of the mode (ℓ,m) is given by

(2πf(ℓ,m))
2 =

σs

ρmR3
0

ℓ(ℓ2 − 1)(ℓ+ 2)

2ℓ+ 1 + ∆ρ
. (C.17)114



We see that this relation dispersion is degenerated, namely it does not depend on m.When ρs = 0, Eq. (1.7) is reovered:
f2
(ℓ,m) =

σ

3πM
ℓ(ℓ+ 2)(ℓ− 1). (C.18)The planar ase is obtained as the limit when R0 → ∞, with ℓ = 2πR0/λ:

f2 =
2πσs

(ρ+ ρs)λ3
. (C.19)In summary, the general solution is







































R = R0(1 +BY m
ℓ cos(2πft)

ψ = −B 2πfR2
0

ℓ

(

r
R0

)ℓ

Y m
ℓ sin(2πft)

ψs = B
2πfR2

0

ℓ+1

(

r
R0

)−(ℓ+1)

Y m
ℓ sin(2πft)

(2πf)2 = σs

R3
0

ℓ(ℓ2−1)(ℓ+2)
ρ(ℓ+1)+ρsℓ .

(C.20)
C.3 Visous dissipationAlthough the �ow is supposed irrotational (and so invisid), it is possible to estimate thevisous dissipation on the basis of the veloity gradients provided by the potential solution.The loal dissipation D (per unit volume) writes
D = = 2µ

[

(∂rur)
2 +

(∂θuθ + ur)
2

r2
+

(∂ϕuϕ + ur sin θuθ cos θ)2

r2 sin2 θ

]

+

[

r∂r

(

uθ

r

)

+
∂θur

r

]2

+

[

sin θ

r
∂θ

(

uϕ

sin θ

)

+
∂ϕuθ

r sin θ

]2

+

[

∂ϕur

r sin θ
+ r∂r

(

uϕ

r

)]2

. (C.21)The dissipated power PD is alulated by integrating this dissipation funtion over the wholespae:
PD =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R0

0
drDr2 sin θ

=
B2µ(2πf)2R3

0(ℓ− 1)(2ℓ+ 1)(1 + δm0) sin2(2πft)

ℓ

PDs =

∫ 2π

0
dϕ

∫ π

0
dθ

∫

∞

R0

drDsr
2 sin θ

=
B2µs(2πf)2R3

0(ℓ+ 2)(2ℓ+ 1)(1 + δm0) sin2(2πft)

ℓ+ 1
. (C.22)We observe that PD/µ < PDs/µs; the dissipated power per unit visosity is higher in thesurrounding �uid.
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The total kineti energy of the �ow is also obtained from the potential solution:
K =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R0

0
dr
u2

r + u2
θ + u2

ϕ

2
r2 sin θ

=
B2ρ(2πf)2R5

0(1 + δm0) sin2(2πft)

4ℓ

Ks =

∫ 2π

0
dϕ

∫ π

0
dθ

∫

∞

R0

dr
u2

r + u2
θ + u2

ϕ

2
r2 sin θ

=
B2ρs(2πf)2R5

0(1 + δm0) sin2(2πft)

4(ℓ+ 1)
. (C.23)The kineti energy per unit density is smaller in the surrounding �uid, K/ρ > Ks/ρs.The total mehanial energy E of apillary waves dereases with time as a dereasingexponential of fator β:

E = Et=0e
−βt, (C.24)where

β =
PD + PDs

2(K +Ks)
=

2ℓ+ 1

2R2
0

µ(ℓ2 − 1) + µsℓ(ℓ+ 2)

ρ(ℓ+ 1) + ρsℓ
. (C.25)Obviously, the shorter are the waves (large ℓ), the more e�ient is the damping. Like thedispersion relation, the damping fator does not depend on the parameter m.For a planar interfae, the dissipation is

β = 4π2 µ+ µs

(ρ+ ρs)λ2
. (C.26)C.4 Axisymmetri progressive wavesThe propagation of plane waves is well-desribed by the solution

X = X̃e2πi(x/λ−ft), (C.27)orresponding to a monohromati wave of wavelength λ and frequeny f . This wave travelsat speed λf in the diretion of inreasing x; it is therefore a progressive wave. Sine thephysial problem is linearized, every linear ombination of two solutions is also a solution.The sum of two waves only di�ering by their diretion give birth to a standing wave
X = X̃ cos(2πx/λ) cos(2πft). (C.28)When axisymmetri waves on a sphere are onsidered, alulations beome more ompli-ated. The separation of variables is requested and solutions are

X = X̃Pℓ(cos θ)e−2πift, (C.29)where Pℓ(x) is the Legendre polynomial of degree ℓ. This solution is already a standing wave,and it seems di�ult to dedue the orresponding progressive wave.However, there is a approximation for progressive waves that is determined hereafter. Inorder to ombine angular and time variables, we need to formulate the angular part as an116



amplitude modulation of the osine. In other words, we need to determine the funtions Aℓ(θ)and ωℓ(θ) satisfying to
Pℓ(cos θ) = Aℓ(θ) cos

(

2πωℓ(θ)

)

. (C.30)The progressive waves are then given by
X = X̃Aℓ(θ)e

2πi(ωℓ(θ)±ft). (C.31)The equation C.30 would have an in�nity of solution if we did not impose Aℓ(θ) > 0. So thezeros of cos(2πωℓ(θ)) must oinide with the zeros of the Legendre polynomials.C.4.1 Determination of ωℓ(θ)The Legendre polynomial of degree ℓ always has ℓ zeros, so the same is for the osine. Ifwe observe these zeros as funtions of θ, (Fig. C.1a), we see that they are regularly spaed.More exatly, they are approximately at positions
θj =

3π
4 + jπ

ℓ+ 1
2

; j ∈
(

Z

⋂

[0, ℓ− 1]

)

. (C.32)The error made with this approximation is represented in the inset of Fig. C.1(a). Sine thezeros of the osine are in π/2 + jπ, we dedue the equation for ωℓ(θ).
ωℓ(θ) =

(

ℓ+
1

2

)

θ

2π
− 1

8
. (C.33)C.4.2 Determination of Aℓ(θ)
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(b)Figure C.1: (a) (•) Zeros θj of the polynomial P10(cos θ), approahed by equation (C.32).(Inset) Absolute error of Eq. (C.32) on the the position of zeros in the 50 �rst Legendrepolynomials. (b) (•) Legendre polynomial with ℓ = 10. The solid line is the approximation
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The amplitude Aℓ(θ) annot be obtained by simply dividing the Legendre polynomial bythe osine. Indeed, sine the zeros of both funtions do not exatly oinide, the error explodeslose to these points. We start giving some properties of the funtion Aℓ(θ):1. It is even aording to π/2: Aℓ(π − θ) = Aℓ(θ). Indeed, both the polynomial and theosine have the same parity as ℓ.2. Its �rst derivative satis�es
dPℓ(x = cos(θ))

dθ
= −dPℓ

dx
sin θ =

dAℓ

dθ
cos

[(

ℓ+
1

2

)

θ−π
4

]

−Aℓ

(

ℓ+
1

2

)

sin

[(

ℓ+
1

2

)

θ−π
4

]

.(C.34)3. In θ = 0 (and so in θ = π),
Aℓ(0) =

√
2 and dAℓ

dθ

]

θ=0

= −
√

2

(

ℓ+
1

2

)

. (C.35)4. In θ = π/2,
• if ℓ is even,

Aℓ

(

π

2

)

= (−1)
ℓ
2Pℓ(x = 0). (C.36)

• else
Aℓ

(

π

2

)

= (−1)
ℓ−1

2
ℓ

ℓ+ 1
2

Pℓ−1(x = 0). (C.37)5. Aℓ(θ) is positive de�nite, must be minimal in θ = π/2 (smallest amplitude beause theenergy is distributed on the whole equator) and maximal in θ = 0 and θ = π (onvergeneof the energy on the poles).We hoose to represent Aℓ(θ) by a polynomial in (π/2 − θ):
Aℓ(θ) = c0 +

n
∑

i=1

ci

(

π

2
− θ

)2i (C.38)where the oe�ients ci are positive, in order to ensure the positivity of the funtion. Coe�-ients are subjet to three additional onstraints, resulting from the behavior of Aℓ in θ = 0and θ = π/2:
n
∑

i=1

ci

(

π

2

)2i

=
√

2 − c0, (C.39)
n
∑

i=1

ci · 2i

(

π

2

)2i−1

=
√

2(l + 1/2), (C.40)
c0 =

{

(−1)
ℓ−1

2
ℓ

ℓ+1/2Pℓ−1(0) when l is uneven,
(−1)

ℓ
2Pℓ(0) when ℓ is even. (C.41)The determination of oe�ients ci is a onstrained linear least-square problem whih is easilysolved numerially. The number of oe�ients is arbitrarily hosen to n = 2ℓ. The result ofthis optimization is shown in Fig. C.1(b). 118



C.4.3 Wave onvergeneIt is possible to estimate the ratio between the amplitudes of waves at the poles and atthe equator. This ratio illustrates the onvergene of energy in the polar zone, and is given by
Aℓ(θ = 0)

Aℓθ = π/2)
=

2ℓ+0.5

[(

ℓ
2

)

!

]2

ℓ!
(C.42)This ratio is inreasing with ℓ, so higher modes experiene a more important onvergene.
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Appendix DLubriationIn this appendix, we study the axisymmetri quasi-steady �ow within the air �lm loatedbeneath a droplet of radius R. The air �lm is supposed horizontal has a thikness h ≪ Rhomogeneous aording to r. The objetive is to estimate the vertial fore FL required tothin the �lm with a thinning rate ḣ.In ylindrial oordinates, the ontinuity equation writes
∂r(rur)

r
+ ∂zuz = 0. (D.1)The �rst term sales as ur/R while the seond term sales as uz/h, so uz ∼ urh/R≪ ur andthe �ow is mainly in the r diretion. The Navier-Stokes equation is greatly simpli�ed underthe assumptions h≪ R, ∂z ≫ ∂r and ur ≪ uz, namely

∂rP = µa∂zzur and ∂zP = 0. (D.2)In order to integrate this equation and �nd the radial veloity ur, we need to presribe bound-ary onditions. We suppose that the bath beneath the air �lm (in z = 0) is at rest. Onthe other hand, the internal �ows within the droplet make the droplet/air interfae (z = h)moving with a veloity cUr. That yields
ur =

cUr

h
z − ∂rP

2µa
z(h− z). (D.3)The veloity averaged over the �lm thikness is

U =

∫ h
0 urdz

h
=
cUr

2
− ∂rP

12µa
h2. (D.4)We proeed by integrating the ontinuity equation in the z-diretion with the assumption

∂rh = 0,
ḣ =

−h
2r
∂r(r

2cU ) +
h3

12µar
∂r(r∂rP ). (D.5)The pressure P is obtained by integrating this equation twie aording to r, and by supposingthat the pressure is zero in r = R.

P = −3µa

h2

(

ḣ

h
+ cU

)

(R2 − r2). (D.6)120



The resulting vertial fore FL resulting from P is then given by
FL = 2π

∫ R

0
Prdr = −3π

2
µaR

2

(

R

h

)2( ḣ

h
+ cU

) (D.7)We note that both the exponent and prefator of R/h strongly depend on the onsideredgeometry (e.g. spherial instead of ylindrial).When a droplet is released lose to a liquid interfae, it thins the air �lm (ḣ < 0) anddrains it outwards. In the same time, the droplet �attens, whih reates an internal motionoutwards (cU > 0). Therefore, the internal �ows help the air �lm to drain and derease FL.At leading order, cU is proportional to the droplet deformation η̇, namely cU ∼ η̇/R.The resulting vertial fore FL impats on the energy balane of the droplet (Eq.5.5)through the term FLη̇. Although the resultant of horizontal stresses vanishes, the work theyprodue does not. It is estimated to
2π

∫ R

0
µa

(

∂zur

)

z=h

(cUr)rdr =
3π

2
µacUR

3R

h

(

ḣ

h
+

4cU
3

) (D.8)This power sales as FLη̇(h/R), whih is muh smaller than the vertial power FLη̇ and maythus be negleted.
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Appendix EThe elasti ballWalker's experiment is based on the old problem of the elasti ball. In this system, apartially elasti bead bounes inde�nitely onto a surfae vibrated aording to a vertialsinusoidal motion of amplitude A and frequeny f . The vertial position zs(t) of the surfae isgiven by zs = A cos 2πft. In the mathematial model, the bead bouning is suh that the take-o� veloity is proportional to the impat veloity; the oe�ient of proportionality is alledrestitution oe�ient ǫ. Moreover, the ontat time is null, so take-o� ours immediatelyafter landing. Nowadays, the elasti ball is onsidered as one of the simplest experimentsthat illustrates haoti onepts [191℄. It obeys to relatively simple equations of motion, thatare solved numerially without major issues. Like the logisti map, it seems to experiene aasade of period doubling bifurations that leads to haos [111℄.In spite of its apparent simpliity, the elasti ball problem is far from being solved. Experi-mentally, the restitution oe�ient is observed to depend on the impat veloity [192℄, exatlylike for droplets on a vibrated soap �lm (Chap. 4). On the other hand, the haoti behavior ofthe system is ontested. Indeed, the elasti ball usually experiene stiking asades, namelyseries of bounes smaller and smaller that onverge to rest in a �nite time [193℄. The ballthen stiks on the plate and takes o� again when the instantaneous aeleration of the plateis su�iently low (i.e. less than −g). Even if the trajetory seems haoti, the ball alwaysends up stiking to the plate [111℄. This resets the system in some way, and makes the motionneessarily periodi. The stiking ourrene inreases with dereasing ǫ.The elasti ball problem is involved in various appliations in both fundamental physisand engineering. It is diretly related to the Fermi model enountered in astrophysis andatomi physis [194℄. Shaken granular materials [195℄ and some optial systems [196℄ presentobvious similarities with the elasti ball. It also provides a theoretial bakground for manytehnologies in �elds as various as aoustis [197℄, milling [198℄ or atomi fore mirosopy[199℄. Finally, the elasti ball is a standard problem in ontrol theory [200℄, where the goal isto reate a ontinuous signal zs(t) to drive the bouning motion. One of the simplest strategiesonsists in juxtaposing parabolas (one per boune) whih parameters are omputed from thedata of previous impat. As an analog of the juggling problem [201℄, the elasti ball is a studyase to test the ontrol ability of human brain [202℄.
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E.1 Equations of the elasti ballThe position of the elasti ball relative to the surfae beneath is given by
Z(t) = c1 + c2t− g

t2

2
−A cos

[

2πft

]

, (E.1)whih an be made dimensionless by de�ning y = (2πf)2Z/g and φ = 2πft, so
y(φ) = c3 + c4φ− φ2

2
− Γ cosφ, (E.2)where Γ = 4π2Af2/g. The onstants c3 and c4 are determined by �xing the take-o� ondition

(y, ẏ) = (0, Vn) in φ = φn. Moreover, the ball lands in φn+1 and takes-o� immediately afterwith a veloity presribed by Vn+1 = −ǫẏ(φn+1), so
F1 ≡ Γ(cosφn − cosφn+1) + (φn+1 − φn)(Vn − Γ sinφn) − (φn+1 − φn)2

2
= 0, (E.3)

F2 ≡ Vn+1 + ǫ

[

Γ(sinφn+1 − sinφn) + Vn − (φn+1 − φn)

]

= 0. (E.4)The �ight time is de�ned as Tn = φn+1 − φn. For given parameters (Γ, ǫ), the system (E.3) isa 2-dimensional map that alulates (φn+1, Vn+1) as a funtion of (φn, Vn).Fixed points are given by the onditions φn+1 = φn + 2kπ and Vn+1 = Vn, whih yield
φn = − arcsin

(

1 − ǫ

1 + ǫ

kπ

Γ

) and Vn = 2kπ
ǫ

1 + ǫ
. (E.5)These points only exist when

Γ ≥ Γm =
kπ(1 − ǫ)

(1 + ǫ)
. (E.6)Their stability is addressed by looking to the ampli�ation of a small perturbation (dφn,dVn)around the �xed point:

(

dφn+1

dVn+1

)

= J

(

dφn

dVn

) with J = −
(

∂F1

∂φn+1

∂F1

∂Vn+1

∂F2

∂φn+1

∂F2

∂Vn+1

)−1( ∂F1

∂φn

∂F1

∂Vn
∂F2

∂φn

∂F2

∂Vn

)

. (E.7)At �xed point, J is given by
J =

(

1 − (1 + ǫ)Γ cosφn 1 + ǫ
ǫ(1 + ǫ)Γ cosφn(Γ cosφn − 1) ǫ2(1 − Γ cosφn) − ǫΓ cosφn.

) (E.8)The �xed point is stable only when the eigenvalues of J are smaller than 1 in modulus. Afteralulations, this ondition writes
Γ < ΓM =

√

4(1 + ǫ2)2

(1 + ǫ)4
+ Γ2

m. (E.9)Passed this point, the system experiene a period doubling bifuration.123



E.2 Inelasti ballEquations (E.3) may be partiularized to the ase of a ompletely inelasti ball, namely
ǫ = 0 [203℄. At impat, the ball loses any information about its previous veloity, and takesthe veloity of the vibrating plate (i.e. Vn = 0). Therefore, immediate take-o� is observedonly when Γ cosφn ≥ 1. Otherwise, the ball stiks on the plate until the take-o� ondition issatis�ed. The �ight time Tn is given by

F ≡ Γ cosφn(1 − cosTn) −−Γ sinφn(Tn − sinTn) − T 2
n

2
= 0, (E.10)whih is muh simple sine we only need to determine Tn(φn) with a single parameter Γinstead of two. As easy as this problem may seem, its bifuration diagram Tn(Γ) is omplexand ontains fratal-like strutures, shaped by the interplay of two kinds of bifurations,repeated a non-denumerable number of times. A more detailed investigation of this ase hasbeen made in [204℄.
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Appendix FFaraday instabilityThe Faraday instability onsists in the destabilization of a planar interfae between two�uids, due to a vertial osillation of the whole system. In a ontainer of �nite dimensions,this instability gives birth to standing waves of �nite amplitude. Experiments on these waveswere reported for the �rst time by Faraday in 1831 [125℄. Although the waves are easilyobserved by plaing a simple ontainer on a speaker, aurate measurements of the thresholdrequire good experimental onditions. In partiular, the vibration has to be perfetly vertial[126℄, and the menisus at the ontainer edges must be kept horizontal. This an be made bypinning the menisus into a wedge, or by realizing an over�ow. In the ase the menisus isfree to move, it starts emitting apillary waves that prematurely trigger the instability [132℄.The �rst analytial model of the Faraday instability was proposed in 1954 by Benjamin andUrsell [126℄. These authors assumed invisid �uids and obtained a Mathieu equation, i.e. aseond-order linear homogeneous di�erential equation where the oe�ient of the 0-order termis periodi. Aording to this equation, the threshold should be zero, and the interfae mustalways be unstable. In reality, the Faraday instability annot be desribed without takingvisosity into aount.In this appendix, we present the model �rstly introdued by Kumar and Tukerman in1994 [129℄, adapted to a liquid/air interfae. We denote by ~v the veloity �eld, ~u its horizontalomponent and w~ez its vertial omponent, where ~ez is the downward-pointing unit vetor.Continuity and Navier-Stokes equations are written for the liquid phase, in the frame of thevibrated ontainer,
∇ · ~v = 0 (F.1)

∂t~v + (~v · ∇)~v = −∇P

ρ
+ g(1 − Γ cosωt)~ez + ν∇2~v, (F.2)where ω is the angular frequeny of the vibration. We linearize the seond equation around thereferene state (planar interfae): ~v = 0 and P0 = ρgz(1 − Γ cosωt). We note p the pressureperturbation and keep ~v, ~u and w for the veloity perturbations. The vertial veloity w andpressure p are thus obtained by

∂t∇2w = ν∇4w (F.3)
∇2

hp = ρ∂tzw − ρν∇2∂zw, (F.4)where ∇2
h is the horizontal part of the Laplaian operator.125



One has now to impose boundary onditions. At the bottom of the ontainer, the veloitymust vanish, sow = 0 and ~u = 0 in z = h. At the free surfae (z = η(x, y, t)), the normalveloity of �uid partiles has to be equal to the normal veloity of the interfae. This ondition,one linearized, yields w = ∂tη. Moreover, the tangential stress exerted by the air is negligible,whih gives ∇2
hw = ∂zzw. The normal stress involves pressure, gravity, the normal omponentof the veloity gradient and surfae tension. Balane between these interations yields

p

ρ
= gη(Γ cosωt− 1) + 2ν∂zw + σ∇2

hη. (F.5)This equation an be reformulated by using the equation for pressure within the liquid, so
[

∂t − 3ν∇2
h − ν∂zz

]

∂zw =

[

g(Γ cosωt− 1) +
σ

ρ
∇2

h

]

∇2
hη. (F.6)We note that this equation is the only one where the foring term Γ cosωt appears. In amedia of in�nite horizontal extension, we may assume that the horizontal part of the solutionis proportional to sin(kxx + kyy). We an therefore replae ∇2

h by −k2 with k2 = k2
x + k2

y.By the way, we do not need anymore to presribe boundary onditions on the lateral walls.Pratially, the spetrum of kx and ky is disretized by the lateral walls, an e�et whih issigni�ant only when the wavelength is of the order of the horizontal extension of the ontainer.We thus obtain a system of equations for unknowns w(z, t) and η(t):
(∂t + νk2 − ν∂zz)(∂zz − k2)w = 0 ∀z, (F.7)

w = ∂zw = 0 in z = h, (F.8)
w = ∂tη in z = 0, (F.9)

(∂zz + k2)w = 0 in z = 0, (F.10)
[

∂t + 3νk2 − ν∂zz

]

∂zw =

[

g(1 − Γ cosωt) +
σ

ρ
k2

]

k2η in z = 0. (F.11)Aording to the Floquet theory, we should expet
w(z, t) = e(µ+iα)t

∞
∑

n=−∞

wn(z)einωt, (F.12)
η(t) = e(µ+iα)t

∞
∑

n=−∞

ηneinωt, (F.13)(F.14)with α ∈ [0, ω/2]. The solutions are stable when µ < 0 and unstable otherwise. The solutionis harmoni when α = 0, while it is subharmoni when α = ω/2. De�ning q2n = 1 + µ+i(α+nω)
νk2yields

wn(z) = an cosh kz + bn sinh kz + cn cosh qnkz + dn sinh qnkz. (F.15)The four �rst boundary onditions are








cosh kh sinh kh cosh qnkh sinh qnkh
sinh kh cosh kh qn sinh qnkh qn cosh qnkh

2 0 1 + q2n 0
1 0 1 0
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= νk2(q2n − 1)ηn









0
0
0
1









. (F.16)126



Inverting this system leads to the oe�ients an, bn, cn and dn:






















an = νk2(1 + q2n)ηn,

bn =
(qn−tanh kh tanh qnkh)an+ qnc

cosh kh cosh qnkh

tanh qnkh−qn tanh kh ,

cn = −2νk2ηn,

dn =
(qn tanh kh tanh qnkh−1)c− a

cosh kh cosh qnkh

tanh qnkh−qn tanh kh .

(F.17)The last boundary ondition writes
2

[

1 +
σk2

ρg
− ν2k3

g
F (qn, kh)

]

ηn = Γ(ηn+1 + ηn−1), (F.18)where
F (qn, kh) =

(q5n + 2q3n + 5qn) − (q4n + 6q2n + 1) tanh kh tanh qnkh− 4 qn+q3
n

cosh kh cosh qnkh

tanh qnkh− qn tanh kh
. (F.19)We note that this ondition ouples ηn+1 and ηn−1 to ηn through the foring term, so thesolution annot be obtained analytially. The ondition F.18 is a system with an in�nity ofomplex equations, that has to be trunated by only omputing ηn with n ∈ [0, N ]. Realperturbations η satisfy η−n = η∗n in the harmoni ase (α = 0) and η−n−1 = η∗n in thesubharmoni ase (α = ω/2).Usually, in stability analysis, k and Γ are �xed, so µ and α are determined and the observedmode is the most unstable, namely the mode of largest µ. Here, we proeed bakwards andompute the marginal stability urves (µ = 0) for both harmoni and subharmoni ases(whih �x α). These tongue-like urves are plotted in Fig. F.1(a) for the following parameters:

g = 9.81 m/s2, σ = 20 mN/m, ρ = 965 kg/m3, h = 0.1 m, ν = 50 S and ω = 100π rad/s. Thesolution in unstable and Faraday waves appear within the tongues. The instability threshold
ΓF is the minimum of these stability urves; its absissa kF indiates the wavelength observedjust above the threshold. The predited threshold is in relatively good agreement with theexperimental measurements at h = 9 mm (Fig. F.1b). Finally, we note that, by equalling Γ tozero in Eq. (F.18), we reover the dispersion relation of gravity/apillary waves with a �nitedepth and the inlusion of visosity e�ets,

1 +
σk2

ρg
=
ν2k3

g
F (qn, kh). (F.20)F.1 Instability in a ontainer of in�nite depthWhen the liquid bath is su�iently deep, namely when kSh ≫ 1, the funtion F (qn, kh)is notably simpli�ed,

F (qn) = −(q4n + 2q2n + 4qn + 1). (F.21)Figure F.2 represents the threshold ΓF omputed by Eq. (F.18) as a funtion of visosity νand frequeny f = ω/2π. Saling laws are observed for both ΓF and kF :
{

ω ≃ 2Ω(kF ),

ΓF ≃ 3.5νkF ω
g ,

(F.22)127
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Figure F.1: (a) Marginal stability urves: (·) subharmoni, and (×) harmoni solutions.Within the tongues, the system is unstable and Faraday waves appear. (b) Comparisonbetween the model results and the experimental measurements for ν = 50 S, h = 9 mm,
σ = 20 mN/m and ρ = 965 kg/m3.where ω = Ω(k) is the dispersion relation of gravity/apillary waves given by Eq. (F.20).The �rst equation indiates that the seleted wave number orresponds to half the foringfrequeny, whih is oherent for the subharmoni ase. As seen in Fig. F.2, these saling lawsorretly represent the threshold urves in a large range of parameters. Preditions are goodprovided kFh > 2, whih is oherent with our hypothesis of in�nite depth.We onlude by establishing the dispersion relation Ω(k) for the visous gravity/apillarywaves. First, we de�ne

1 + x = q2n = 1 +
µ(k) + iΩ(k)

νk2
, (F.23)in Eq. (F.20) and

α =
gk + σk3

ν2k4
, (F.24)so

x4 + 8x3 + (24 + 2α)x2 + (16 + 8α)x+ α(α+ 8) = 0. (F.25)This equation has four omplex solutions. Nevertheless, the polynomial is onvex, namely theseond derivative is positive everywhere, and the funtion is both positive and inreasing in
x = 0, whatever α. So we an state that every real solution is neessarily negative or zero.But in reality, waves orrespond to not-real solutions, for whih Ω(k) 6= 0. To �nd them, wehave to set x = a+ ib, whih yields
{

b2 = a3+6a2+(12+α)a+4+2α
a+2 ,

a6 + 12a5 + (60 + α)a4 + 8(20 + α)a3 + 4(59 + 6α)a2 + 16(11 + 2α)a+ 4(11 + 4α) = 0.(F.26)This polynomial of degree 6 has a �xed point aording to α in a = −2. In this point, thepolynomial is negative and experiene a loal maximum. This maximum should be the onlyone sine the fourth derivative is positive semi-de�nite. So the polynomial annot have morethan two distint real roots a, whih are shown to be negative. Pratially, we an show thatwhen α < 0.546, Eq. (F.25) has two real roots that do not orrespond to waves, and a pair128
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(f)Figure F.2: Threshold aeleration ΓF and wavelength kF of the Faraday instability for aontainer of in�nite depth. Parameters are h = 0.1 m, ρ = 965 kg/m3 and σ = 20 mN/m.The solid lines orrespond to the numerial resolution of Eq. (F.18) while the dashed linesrepresent the relation (F.22). (a-b) Variation with f for ν = 1 S, (-d) variation with f for
ν = 1000 S, and (e-f) variation with ν for f = 100 Hz.
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of omplex onjugate roots orresponding to damped waves. When α > 0.546, there are twopairs of omplex onjugate roots, so two distint frequenies satisfy to the dispersion relationfor the same k. This transition between one and two frequenies orresponds to the hange ofregime non-visous/visous observed in Fig. F.2(e-f).
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Appendix GDroplets on �bersG.1 Stati shape of a droplet on a �berIn this setion, we propose to solve Eq. (8.1) introdued in hapter 8 to desribe theaxisymmetri shape of a droplet of volume Ω wetting a �ber of diameter dv. We neglet thein�uene of gravity, so equations are






dr
ds = cosϕ,
dz
ds = sinϕ,
dϕ
ds = ∆P

σ − sin ϕ
r ,

(G.1)where ∆P is the overpressure within the droplet, at loation z = 0. These equations annotbe solved analytially in the general ase, but asymptoti solutions may be inferred when thedroplet volume Ω is either muh smaller or muh bigger than d3
v.Large droplets (typially Ω/d3

v > 104) tend to keep their spherial shape when hangedon a �ber. The sphere of radius R, desribed by (r0, z0, s0) = R(sinϕ, 1 − cosϕ,ϕ) satis�esEq. (8.1) for ∆p = 2σ/R ≪ 1, but not mathing onditions on the �ber. Next to thesemathing points, the urvature still need to be 1/R, whih is muh smaller than the �berurvature 2/dv. Therefore, the droplet may be loally approximated by a atenoid (zero-urvature surfae) of equation
r1 =

dv

2 sinϕ
, z1 =

dv

2
ln

(

sinϕ

1 − cosϕ

) and s =
dv

2
cotϕ. (G.2)Both solutions math eah other when r0 = r1 for the same angle ϕ, so when sinϕ =

√

dv/2Rand r =
√

RdV /2 ≪ R. The droplet volume is roughly equal to the volume of the sphere, theatenoidal ontribution being negligible. Therefore, we infer
W

dv
≃
(

3Ω

4πd3
v

) and X = 2W. (G.3)These salings are similar to those disussed in [171℄.When the droplet size is smaller than dv, the droplet spreads on the �ber in suh a way thatthe urvature of its interfae is only slightly lower than the �ber urvature 2/dv. Therefore, wean infer the asymptoti solution by perturbing the solution (r0, z0, ϕ0) = (dv/2, s, π/2) when131



Ω = 0 (orresponding to the �ber itself). Supposing ∆p = 2σ(1 − ε)/dv and perturbationsdenoted by tilted variables, we obtain
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(G.4)from whih we �nd the droplet shape
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. (G.5)The droplet shape is therefore lose to a sinusoid. The vertial extension X is equal to πdv,whih orresponds to the �ber perimeter. The thikness and volume of the droplet are easilyomputed,
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= ε =
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π2d3
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and X

dv
= π. (G.6)It is seen in �gure 8.4 that both small and large droplets are well desribed by the proposedasymptoti behaviors.G.2 Rayleigh-Plateau instabilityA �lm of liquid overing a �ber spontaneously turns into a string of droplets, i.e. anunduloidal shape, due to the Rayleigh-Plateau instability. The related alulation is detailedin this setion. We �rst suppose that the thikness of the �lm h is muh smaller than the �berdiameter d, so the lubriation equations an be applied,

∂zP = µ∂rruz and ∂rP = 0, (G.7)where the z-axis (resp. r-axis) is parallel (resp. normal) to the �ber. Boundary onditionsare uz(d/2) = 0 (no-slip ondition) and ∂ruz(d/2 + h) = 0 (free surfae). The veloity �eldthus writes
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, (G.8)so the �ow rate in a z-setion is
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The pressure gradient is found through the Laplae law,
P
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= − ∂zzh
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]3/2

+
2

(2h+ d)

[

1 + (∂zh)2
]1/2

. (G.12)Both equations (G.11) and (G.12) are onsiderably simpli�ed under the assumptions h ≪ dand ∂zh≪ 1,
3µ∂th = ∂z
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) (G.13)
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2. (G.15)We proeed by linearizing this equation and onsidering a small perturbation of the initialuniform �lm h = hi, namely
h = hi + εeikze−βt. (G.16)Substituting this expression into (G.15) leads to the damping fator
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. (G.17)The instability ours when β < 0, whih orresponds to a wavelength λ = 2π/k > πd.Therefore, any perturbation of wavelength greater than the �ber diameter is unstable. Theobserved wavelength is the most unstable one, i.e. λ = π
√

2d. The related harateristi timeof the instability is
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