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Abstract
Micro-electromechanical systems (MEMS) are subject to inevitable and inherent uncer-
tainties in their dimensional and material parameters, that lead to variability in their
performance and reliability. Manufacturing processes leave substantial variability in the
shape and geometry of the device due to its small dimensions and high feature complex-
ity, while the material properties of a component are inherently subject to scattering.
The e�ects of these variations have to be considered and a modeling methodology is
needed in order to ensure required MEMS performance under uncertainties.

In the design of high-Q micro-resonators, dissipation mechanisms may have detri-
mental e�ects on the quality factor (Q). One of the major dissipation phenomena to
consider is thermoelastic damping, so that performances are directly related to the
thermoelastic quality factor, which has to be predicted accurately. The purpose of this
research is to develop a numerical method to analyze the e�ects of geometric and mate-
rial property random variations on the thermoelastic quality factor of micro-resonators.

This work is divided into two main research tasks: the development of a compu-
tational framework to determine the thermoelastic quality factor, and the modeling of
uncertainties. A thermopiezoelectric �nite element formulation is �rst derived to carry
out modal analyses of MEMS. The application of this method makes possible the de-
termination of the thermoelastic quality factor of piezoelectrically actuated structures,
and allows a better understanding of the phenomena occurring in thermopiezoelectric
vibrations. Once the deterministic �nite element problem is well de�ned and character-
ized, uncertainties can be added into the model. The present work focuses on second
moment approaches, in which the �rst two statistical moments, i.e. the mean and the
variance, are estimated. The perturbation Stochastic Finite Element Method (SFEM)
is used to determine the mean and the variance of the thermoelastic quality factor
and is compared to direct Monte-Carlo simulations. The perturbation SFEM consists
in a deterministic analysis complemented by a sensitivity analysis with respect to the
random parameters, which are modeled as random variables as well as random �elds.

The originality of this work is the extension of SFEM to the analysis of strongly
coupled multiphysic phenomena. Therefore, using the proposed SFEM, a numerical
method is available to quantify the in�uence of uncertain geometric and material prop-
erty variations on the thermoelastic quality factor of micro-resonators, making available
a new e�cient numerical tool to MEMS designers.
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Chapter 1

Introduction

1.1 Background and Motivation
Microelectromechanical systems (MEMS) technology has been rapidly growing
since its beginnings in the early 1980's. Deriving from the semiconductor industry,
MEMS industry can take advantage of the existing semiconductor manufacturing
techniques and infrastructures, leading to a low cost and large volume production
which makes MEMS commercialization attractive. Moreover, as MEMS are light,
small and consume few energy, they are used in a wide spectrum of areas of en-
gineering such as aerospace, medical, automotive or information technology. Ink
jet printer heads, micropumps, projection display arrays and airbag accelerome-
ters can be cited as a few examples of everyday live devices where MEMS have
successfully replaced more conventional systems. Amongst MEMS community,
there are increasing demands in developing reliable micro-structures with very
high quality factors. These micro-structures constitute the essential active part
of applications such as resonant sensors and RF-MEMS �lters, where increasing
the sensitivity and resolution of devices is a critical issue.

In order to design high-Q micro-resonators, all dissipation mechanisms that
contribute to decreasing the quality factor have to be identi�ed. The majority of
these are extrinsic (e.g. air damping), which means that they can be minimized
by a proper design and operating conditions. Intrinsic losses, on the other hand,
can not be controlled as easily as extrinsic ones. Thermoelastic damping has been
identi�ed as an important loss mechanism in numerous high-Q micro-resonators
[1, 44, 45, 67, 68]. The ability to accurately model and predict energy loss due to

1



2 Chapter 1. Introduction

the thermoelastic e�ects is therefore a key requirement in order to improve the
performance of high-Q resonators. However most studies of thermoelastic quality
factor till date have been based on analytical models, which are subject to very
restrictive assumptions so that they are not su�ciently accurate to predict the
behavior of complex 3-D structures.

Another important issue in MEMS design is that micro-electromechanical
systems are subject to inevitable and inherent uncertainties in dimensional and
material parameters, that lead to variability in their performance and reliability.
Manufacturing processes leave substantial variability in the shape and geometry
of the device due to its small dimensions and high feature complexity, while the
material properties of a component are inherently subject to scattering. The
e�ects of these variations have to be considered and a modeling methodology is
needed in order to ensure required MEMS performance under uncertainties.

1.2 Research Objectives
Due to the importance of the interaction between several physical �elds in micro-
structures, the interest in numerical multi-physics simulations is growing for the
design of accurate micro-sensors. Numerical simulations are advantageous as they
are less demanding in terms of both time and costs than experiments. They also
allow a better understanding of the interactions between the di�erent physical
�elds. Hence, numerical multi-physics simulations are useful in order to improve
the design of high precision micro-structures.

The purpose of this thesis is to develop a numerical method to analyze the
e�ects of geometric and material property random variations on the quality factor
of micro-resonators. The objectives can be divided into two main tasks:

- First, a computational framework has to be developed in order to deter-
mine the thermoelastic quality factor of micro-resonators. The proposed
approach is to derive a strongly coupled thermopiezoelectric �nite element
formulation from a variational analysis considering mechanical, thermal and
electric �elds. The electric contributions are introduced into the formulation
in order to determine the thermoelastic quality factor of micro-resonators
using piezoelectricity as transduction mechanism. Two di�erent kinds of
analysis allow to obtain the thermoelastic quality factor. On the one hand,



1.2 Research Objectives 3

the quality factor can be calculated from the complex eigenvalues obtained
by a modal analysis. On the other hand, an harmonic analysis gives the
frequency response function from which the quality factor can be derived.
The developed �nite element method has to be validated and its validity has
to be investigated through numerical examples from analytically tractable
test cases to complex 3-D structures.

- Once the deterministic problem is well de�ned and characterized, uncertain-
ties can be added into the model. A stochastic �nite element method can be
applied to the thermoelastic problem. Firstly, the most adequate method
should be selected to handle uncertainties in non-symmetric damped prob-
lems. In classical mechanics, �nite element models use symmetric damping
matrix assumption and till date, all stochastic �nite element methods have
been developed for this kind of applications. Secondly, the method being
selected, it has to be adapted to thermoelastic problems. The �nal devel-
opment of this research work is to understand how variability propagates
through the thermoelastic model. Indeed, in order to model uncertainties,
mathematical tools such as probabilistic distributions or random �elds are
used introducing new parameters for which no experimental data are avail-
able for their determination and the sensitivity of the response variability
to these mathematical data has to be investigated.

All the developments of this doctoral thesis are implemented in a software
called Oofelie ("Object Oriented Finite Element Led by Interactive Executer").
It is written in C++ language which using modern object oriented programming
concepts, is favorable for an open architecture and well-suited for the addition of
new features. Its kernel has been designed to deal with strongly coupled multi-
physic problems [77, 78] so that the new thermopiezoelectric elements are easily
implemented. A new tool kit is incorporated into Oofelie in order to model global
or spatially variable material properties as well as geometric uncertainties and
hence, to provide their e�ects on the variability of the behavior of thermoelastic
resonators.
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1.3 Dissertation Outline
In order to present the work carried out, the dissertation is divided into the
following chapters:

- Chapter 1, Introduction, has brie�y introduced the context of the research
and describes the work objectives and strategy.

- Chapter 2, Micro-Resonators, reviews the di�erent energy losses that
occur in MEMS. From this review, it is shown that thermoelastic damping
is the most important energy loss mechanism that has to be considered in
high quality factor micro-resonator design. This chapter also presents the
geometric and material property variability that is inherent to MEMS due
to micro-fabrication.

- Chapter 3, Fundamentals of Thermoelastic Damping, concerns the
thermoelastic fundamentals and gives the state of the art in the prediction
of thermoelastic e�ects on the behavior of micro-resonators.

- Chapter 4, Thermopiezoelectric Finite Element Formulation, derives
the thermopiezoelectric �nite element formulation from the variational prin-
ciple. The �nite element method is validated on 1-D simple test cases that
are analytically tractable.

- Chapter 5, Numerical Applications, exposes the thermoelastic analysis
of clamped-clamped silicon beams. In particular, the e�ects of the beam
aspect ratio, anchor con�guration and residual stress are investigated. It
also presents the thermopiezoelectric analysis of the Vibrating Inertial Ac-
celerometer, which is a vibrating beam accelerometer developed by ONERA.
It is shown that the �nite element results are in good agreement with the
experimental ones and the �nite element method allows to take into account
features which cannot be considered in analytical models. This chapter ends
the deterministic study of the thermoelastic quality factor.

- Chapter 6, Uncertainty Treatment in Finite Element Analysis, pro-
vides a state of the art presentation of the �nite element methods allowing to
handle stochastic problems. The random �eld discretization techniques are
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also introduced. From this review, knowing the advantages and drawbacks
of di�erent methods, it is shown that the perturbation stochastic �nite ele-
ment method is the most adequate method in order to handle uncertainties
in analyses of thermoelastic quality factor of micro-resonators.

- Chapter 7, Perturbation Stochastic Finite Element Method, presents
the extension of the perturbation stochastic �nite element method (PS-
FEM) to the thermoelastic problem. This includes the determination of the
�rst and second order sensitivities of the eigenpairs of non-symmetrically
damped problems.

- Chapter 8, Application of the PSFEM on Quality Factor Analyses
provides numerical examples, where material as well as geometric uncer-
tainties are handled.

- Chapter 9, Introduction to a Stochastic Micro-meso-macro Ap-
proach, gives a general overview of the feasibility of a stochastic micro-
meso-macro approach to derive the correlation characteristics of a random
heterogenous material.

- Conclusion �nally concludes the project and presents further recommen-
dations.
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Chapter 2

Micro-Resonators

This chapter reviews the di�erent energy losses that occur
in MEMS. From this review, it is shown that thermoelastic
damping is the most important energy loss mechanism that
has to be considered in high quality factor micro-resonator de-
sign. This chapter also presents the geometric and material
property variability that is inherent to MEMS due to micro-
fabrication processes. Finally, the VIA, i.e. the Vibrating In-
ertial Accelerometer developed at ONERA is presented. This
accelerometer is an example of a micro-resonator whose qual-
ity factor is limited by thermoelastic damping and will con-
stitute the application case of this dissertation.

2.1 Damping in MEMS
Resonators are critical components in a wide variety of MEMS applications, such
as in accelerometers [89, 138], gyrometers [16, 45, 47], sensors [7], charge detectors
[35], radio-frequency �lters [11, 108, 109], magnetic resonance force microscopes
[162], torque magnetometers [19], ... For these applications, it is important to
fabricate resonators with high quality factors Q, where Q is de�ned by the ratio
of the stored energy in the resonator W and the total dissipated energy per cycle
of vibration ∆W :

Q = 2π
W

∆W
. (2.1)

Understanding the energy dissipation mechanisms in these high-Q resonators is an
important issue to optimize their design and performance. The loss mechanisms

7



8 Chapter 2. Micro-Resonators

can be classi�ed into two categories [33, 140, 154, 155, 156]:

- the extrinsic losses, which can be altered by changing the design or the
operating conditions of the MEMS. Air damping and support losses are the
main contributing extrinsic losses.

- the intrinsic losses, which impose an upper limit to the reachable quality
factors. Thermoelastic damping and internal losses such as the intergranular
losses can be listed as common intrinsic losses.

The global quality factor Qtotal can be expressed as [33, 85, 154, 155, 156]

Q−1
total =

∑
i

Q−1
i = Q−1

air + Q−1
support + Q−1

TED + Q−1
int + Q−1

other, (2.2)

where Qair represents the quality factor associated with air damping, Qsupport

re�ects the energy losses due to the �xation to the support, QTED is the e�ect
of thermoelastic damping, Qint corresponds to internal losses other than ther-
moelastic damping, e.g. intergranular losses and Qother represents any residual
losses, e.g. surface losses. It is obvious that Qtotal can not exceed the smallest
Qi. The following discussion focusses successively on each isolated contribution.

2.1.1 Air Damping
Air damping also called gas damping is one of the most important energy loss in
MEMS. Depending on the pressure level, three di�erent air damping regions can
be identi�ed [22]:

- intrinsic damping region: in this region, the pressure is near vacuum and
air damping is negligible;

- molecular region: damping is caused by independent collisions of noninter-
acting air molecules with the vibrating surface of the resonator;

- viscous region: air acts as a viscous �uid.

Figure 2.1 shows the variation of the quality factor of a Tang resonator with
the pressure. The three regions appear clearly. Below 0.02 mbar, the quality
factor reaches an upper limit of 10000 and is not in�uenced by air damping, it
is the intrinsic damping region. Above 200 mbar, the quality factor reaches its
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Figure 2.1: Variation of the quality factor of a Tang resonator with pressure [119].

lower limit of 23. It is the viscous region. Between these two limits, the quality
factor varies with the pressure, it is the molecular region.

Analytical models are able to quantify the quality factor in the molecular
region. For example, for a cantilever beam, Q is given by [22]

Q =
2πfnHρ

kmP
=

k2
n

kmP

(
H

L

)2
√(

Eρ

12

)
, (2.3)

where
km =

√
32M

9πRT
, (2.4)

fn is the resonant frequency of the nth mode, ρ is the mass density of the
cantilever, P is the pressure, kn is the constant of the nth natural mode (e.g.
kn = 1.875 for the �rst bending mode of a cantilever beam), H and L are the
thickness and length of the cantilever, respectively, the gas constant R = 8.314 103

J/K, T is the temperature (in K) and M is the molecular mass of gas.
For simple geometries, analytical models exist in order to quantify the viscous

damping. Two di�erent types of viscous damping can be usually identi�ed in
MEMS:

- In the Couette �ow case, the damping force appears between two plates
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Figure 2.2: (a) Couette �ow damping between two plates that move parallel one
to the other; (b) Squeeze �lm damping between two plates that move one against
the other.

that move parallel to each other and are separated by a Newtonian �uid
(Figure 2.2a) [30].

- In the squeeze-�lm case, a moving plate moves downwards and upwards
from a �xed plate (Figure 2.2b). Due to the plate motion, the pressure
inside the gas increases, and the gas is squeezed out from the edges of the
plates. When the plates separate, the situation reverses: the pressure drops
between the plates and the gas is sucked back. The viscous drag of the air
during the �ow creates a dissipative mechanical force on the plate, opposing
the motion [14].

In many MEMS devices, viscous damping is dominated by squeeze-�lm damp-
ing. In order to model squeeze-�lm damping, the most popular approach is based
on the compressible Reynolds equation, which is modi�ed by correction factors
to extend its validity over the operating range of MEMS [156]. For example,
Reynolds equation can be modi�ed in order to model perforated plates [18]. An-
other approach is to numerically solve the Navier-Stokes equations [66, 141].

Air damping is extrinsic and can be avoided by operating the device in vac-
uum in order to enter the intrinsic damping region.
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2.1.2 Support Loss

Support loss also called anchor loss or clamping loss is the second dominant dis-
sipation mechanism in MEMS. Support loss concerns the mechanical energy that
is dissipated via the coupling to the support structure. During its vibrating mo-
tion, a resonator exerts both vibrating shear force and moment on its clamped
ends. Acting as excitation sources, these vibrating shear force and moment gener-
ate elastic waves propagating into the support. Therefore, the support structure
absorbs some of the vibration energy of the resonator.

Support loss mechanism has been investigated experimentally on cantilever
resonators [154, 155] and analytical models have been derived in [63] considering
the support as a semi-in�nite thin-plate and in [74] considering the support as a
semi-in�nite solid. Both models give a similar expression for the quality factor:

Q ≈ ks

(
L

H

)3

, (2.5)

where H and L are the beam thickness and length, respectively and ks ranges
between 2 and 3 depending on the �exural mode. Although these models due
to their inherent assumptions can not be successfully applied in some cases for
which they overestimate the support losses [85].

Numerical simulations have also been carried out on this topic, see for ex-
ample the PML (Perfectly Matched Layer) simulations in [20].

Support loss can be considered as an extrinsic loss since it can be altered
by changing the design and especially the mounting mechanisms. For example,
designing nonintrusive supports reduces support loss [148].

2.1.3 Thermoelastic Damping

In the 1930's, Zener [157] was the �rst to realize that thermoelastic damping
may be a signi�cant dissipation mechanism in �exural resonators. More recently,
thermoelastic damping has been identi�ed as an important loss mechanism in
numerous high-Q micro-resonators, especially in those using �exural vibration
modes [1, 44, 45, 67, 68, 85, 154, 155]. Thermoelastic damping is an intrinsic
loss mechanism that occurs through heat conduction. In a thermoelastic solid,
a strong coupling exists between the thermal and mechanical �elds through the
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coe�cient of thermal expansion. When the thermal and mechanical response-
times are of the same order of magnitude, thermoelastic damping occurs. The
dissipation mechanism is achieved through an irreversible heat �ow which allows
the solid to relax to equilibrium. Analytical models have been derived to quantify
the thermoelastic damping in very simple structures [91, 158]. Chapter 3 provides
a more detailed presentation of the study of thermoelastic damping in micro-
resonators.

2.1.4 Internal Losses

The internal losses, which are due to internal friction other than thermoelastic
damping, are dependent on the purity and dislocations of the material used. This
internal friction is di�cult to quantify, since it depends on the imperfections in
the structure of the material and also on the fabrication method. Internal friction
is the dissipation in the form of heat occurring when chemical bonds are made
and broken. In a single-crystal beam, point defects and dislocations are the cause
of internal friction. The energy loss due to a single defect or dislocation can be
modeled and a number of each can be estimated using probabilities to compute
the overall internal friction [94]. In a polycrystalline material, the dominant
cause of internal friction is grain boundaries [136]. In an amorphous material,
the friction is a bulk property. Composite materials also have energy loss at the
boundary between layers.

2.1.5 Surface Losses

Scaling down MEMS increases the surface-to-volume ratio so that the surface
losses become important. This phenomenon has been observed for submicrom-
eter thick cantilevers [154, 155]. Surface losses are mostly caused by surface
stress, which can signi�cantly be modi�ed by absorbates on the surface, or sur-
face defects. To model the surface dissipation, a complex Young's modulus Ec is
considered in the surface layer: Ec = E + iEd, where Ed is the dissipation part
of Young's modulus. The quality factor of structures dominated by surface losses
can be modi�ed through heat or surface treatments.
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Figure 2.3: Two AFM images from two di�erent MUMPS runs indicating the
signi�cant variation of grain sizes of polysilicon [164].

2.2 Uncertainties in MEMS
The performance of a micro-electromechanical system is a�ected by uncertainties.
Manufacturing processes may leave substantial uncertainties in the shape and
geometry of the device while the material properties of a component are inherently
subject to scattering. Moreover, microscale properties are extremely sensitive to
process variations. Accuracy and precision of standard processes are di�cult
to control so that properties vary by recipe, fabrication run, wafer-to-wafer and
across the wafer. The design of accurate MEMS has to take into account the
in�uence of these uncertainties.

2.2.1 Material Uncertainties
The materials making up MEMS are deposited as thin �lms. Although the electric
characterization of thin �lms is well established, the mechanical characterization
of the same �lms is di�cult. Moreover, the material properties are dependent
on the fabrication process and therefore are not the same as the bulk material
ones. The material properties can even be di�erent between runs of the same
fabrication process. Figure 2.3 illustrates two AFM (Atomic Force Microscope)
images for the polysilicon �lms from MUMPS (Multi-User MEMS Processes)
process at di�erent runs.

Although polysilicon shows a lower intrinsic quality factor than single crystal
silicon, it is also used in high-Q resonators [1, 7, 148]. Polysilicon is the most
common material used in MEMS and a large number of experimental characteri-
zations of its mechanical properties are available in the literature [41, 42, 73, 132].
Figure 2.4 shows the variation of the experimental results obtained for Young's
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Figure 2.4: Variation of Young's modulus for polysilicon [132].

modulus in di�erent laboratories. There are several sources for the large scat-
ter of the results. There is of course the inherent experimental measurement
errors but there may also be some material di�erences in polysilicon from one
fabrication facility to another. A di�erence in crystalline orientation from [1 0 0]
to [1 1 1] can account for a change from 130 GPa to 188 GPa. The �lm density
and average orientation are a�ected by �lm deposition and annealing parameters,
changing Young's modulus by up to 10 percents. In [73], the experimental results
show really good agreement with the expected value derived via Voigt and Reuss
models from the grain texture using the Electron Backscatter Kikuchi Pattern
technique. Polysilicon as every polycrystalline material is non-homogeneous and
shows spatial variation in its material properties.

Single-crystal materials have excellent resonating properties in terms of very
high intrinsic Q-factors. The high Q-factor together with other properties make
crystalline silicon and quartz the best candidates for the resonator material.
These single-crystal materials have material properties which are characterized
with high precision. However, the uncertainty on the material properties can be
indirect. Indeed, the material properties depend on the temperature so that un-
certainty on the operation temperature of the resonators induces an uncertainty
on the material properties. Another source of uncertainty arises when doped sil-
icon is used. Although mechanical properties are not dependent on doping level
[160], thermal properties are directly dependent on the doping level [24, 126].
Due to the non-uniformity of the doping [131], the thermal properties show spa-
tial variations.
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Figure 2.5: Application �eld for precision machining in terms of absolute sizes
and absolute and relative tolerances [96].

2.2.2 Geometric Uncertainties
Figure 2.5 shows the increasing loss of relative manufacturing tolerance with
decreasing structure size [96]. While MEMS micromachining, which originates
from the integrated circuit technology, can achieve excellent absolute tolerances,
relative tolerances are rather poor compared with those achieved by more tradi-
tional techniques in macroscale applications. For example, the relative tolerances
achieved for a lithography based micromachining are the same as for building a
house.

Micromachining processes yield shapes that are not geometrically perfect.
Figure 2.6 shows an example of geometric imprecisions induced by MUMPS fab-
rication process. This shows that the process yields rounded corners instead of
sharp 90◦ corners and a beam that is narrower by 20 % than the layout width.
Another common geometric imperfection is the trapezoidal cross-sections that
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Figure 2.6: Geometric errors induced by MUMPS fabrication process [34].

result from anisotropic wet etching. Figure 2.7 shows the pro�les obtained by
an anisotropic wet etching in a <100> silicon wafer. It is obvious that such a
fabrication process does not allow manufacturing rectangular cross-sections.

2.2.3 Residual Stress

The residual stress is another source for imprecision in microfabrication. The
residual stress is setup in a microstructure and deforms it, especially when the
microstructure has a small thickness. Causes for residual stresses include gas
entrapment or impurity inclusions, microvoids created by gases that are generated
during deposition and escape, thermal and lattice mismatches between the �lm
and the substrate, and doping [96]. Moreover, the residual stresses combine
with thermal stresses that are generated through di�erent thermal expansion
coe�cients of the substrate and deposited �lm. Eliminating or reducing the levels
of residual stresses is generally attempted by post-deposition thermal treatment
processes, such as annealing. The residual stresses, which appear during and after
deposition, can be either tensile or compressive.
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Figure 2.7: Anisotropic wet etched pro�les in a <100> silicon wafer [96].

2.3 The Vibrating Inertial Accelerometer

The resonator devices used in this work are accelerometers fabricated at ONERA.
In order to respond to the demand of accurate miniature inertial navigation sys-
tems, ONERA has been working on the design of a vibrating beam accelerometer
called the Vibrating Inertial Accelerometer (VIA) [87]. The present applications
of this device are the guidance and the attitude control of vehicles as well as nav-
igation applications when coupled with other positioning systems such as GPS.
The accuracy of the VIA is directly related to the quality factor of its sensitive
element, which is a beam made of quartz.

2.3.1 VIA Principle and Performance

The Vibrating Inertial Accelerometer (VIA) [86, 87, 98] is a Vibrating Beam
Accelerometer (VBA) made of monocrystalline quartz. Its concept is based on
the resonance frequency shift of a beam when submitted to axial stresses induced
by acceleration. More precisely, in the VIA design, a micrometric beam (cross
section 30 µm x 60 µm, length 2.26 mm) is clamped at one of its ends and is
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Figure 2.8: VIA transducer design with the decoupling frame.

connected to the proof mass at the other one (Figure 2.8). When an acceleration
is applied along the sensitive axis of the sensor, the proof mass generates an axial
stress in the beam, which modi�es its bending resonant frequency. The working
frequency is around 60 kHz and the sensitivity is 24 Hz/g. Upon a measuring
range of 100 g, the scale factor error is about 10 ppm and the bias error is a few
hundreds of µg for a long term stability (10 years).

As quartz is a piezoelectric material, it is possible to actuate and detect the
oscillations of the beam by metallic electrodes which are deposited on it. An
electronic oscillator, with gain and phase control, is used to excite the beam at
its resonance. The output of VIA is thus the frequency of the oscillator signal,
and its variations represent the applied acceleration. Bias stability, i.e. beam
frequency without acceleration, requires a resonator with high quality factor, in
order to reduce the sensitivity of electronic phase drift.

In the VIA, extrinsic losses have been decreased as much as possible. Indeed,
air damping is avoided by operating under vacuum (p= 0.1 mbar), and a speci�c
insulation frame has been developed in order to reduce the losses out of the quartz
structure. Finite element analyses show that, due to this frame, less than 10−8

of the whole energy is dissipated into the support, and very high quality factors
are allowed. Lastly, due to the quality of quartz crystal, viscosity losses can be
neglected.

Thus, intrinsic losses, and especially thermoelastic damping, are the main
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contribution to energy losses and limit the VIA quality factor : Qtotal = QTED.
The experimental quality factor Qtotal is about 13 000, whereas Zener's analytical
thermoelastic model [157] evaluates QTED around 17 000. This di�erence can be
explained by the strong assumptions of the analytical model (such as rectangular
beam, isotropic solid,...) which are not satis�ed in the case of the VIA beam.
Therefore, a �nite element approach has to be developed for the purpose of better
understanding the thermoelastic damping, and hence, improving the design of
future accelerometers.

2.3.2 VIA Fabrication

The VIA is made of two quartz transducers and two electronic oscillator cir-
cuits which actuate the two beams at their resonant frequency by piezoelectricity.
Transducers, i.e. monolithic quartz structures (Figure 2.8), operate in di�eren-
tial mode, in order to reduce common parasitic sensitivities, e.g. temperature,
pressure, aging,... The opposite variations of these frequencies provide a direct
measurement of the applied acceleration.

VIA transducers are manufactured by wet etching of quartz in hydro�uoric
acid-based solution. This anisotropic wet etching does not allow the fabrication
of rectangular cross-sections but only trapezoidal ones. The initial quartz wafer
has a chromium-gold metallization on both sides. This Cr/Au metallization is
obtained via a classical double-side photolithography process and is utilized as a
mask for the chemical etching. The substrate is etched in a �uorine-based solution
until the desired beam thickness is reached. Finally, the actuation and detection
electrodes are made by a Cr/Au metallization. Figure 2.9 shows a quartz wafer
on which 16 VIA transducers have been machined.

After micromachining, the quartz transducer is glued to a standard TO8 base
as shown on the left hand side of Figure 2.10. In order to realize the di�erential
system, two transducers are mounted into a copper case, under a local vacuum
(p=0.1 mbar). A standard Surface Mount Technology is used for the realization
of the electronic oscillator circuits. The right hand side of Figure 2.10 shows an
example of a complete VIA including the electronic circuit.
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Figure 2.9: Quartz wafer comprising 16 VIA transducers.

Figure 2.10: VIA transducer mounted on a TO8 base (left) and complete VIA
with electronic circuit (right).

2.3.3 Thermopiezoelectricity
Quartz crystal is used for the VIA, which leads to several advantages. Firstly, its
piezoelectric properties can be easily used to actuate the oscillations of the vibrat-
ing elements and to detect the vibrations. Secondly, the mechanical properties
of quartz are highly stable and quartz sensors generally show low temperature
sensitivity and low aging. Moreover, intrinsic quality of quartz allows high-Q
resonators to be achieved. Finally, chemical etching of quartz permits collective
micromachining of sensors.

Piezoelectricity is a fundamental process of electromechanical interaction,
which results from the coupling between the electric and mechanical �elds. The
direct piezoelectric e�ect refers to the electric polarization produced by mechan-
ical stress. In other terms, when a piezoelectric material is squeezed, an electric
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charge collects on its surface. Closely related to the direct e�ect is the converse
e�ect; whereby a crystal becomes strained when an electric �eld is applied. In
other words, when a piezoelectric material is subjected to an electric �eld, it me-
chanically deforms. Piezoelectricity in�uences the resonant frequency [71] and
the quality factor of the VIA beam.

From an engineering or modeling point of view, the constitutive equations
of a piezoelectric material involve coupled mechanical and electric contributions.
Moreover, since ONERA has identi�ed the thermoelastic damping as the principal
dissipation source in the VIA, the thermal �eld has also to be taken into account.
Therefore, the generalized thermopiezoelectric constitutive equations have to be
considered in order to precisely quantify the quality factor of VIA beam.

Figure 2.11: Interaction processes between the electric, mechanical and thermal
�elds [71].



22 Chapter 2. Micro-Resonators

Interaction processes between any two of the three physical �elds - electric,
mechanical and thermal - are represented in Figure 2.11. In addition to piezo-
electricity, pyroelectricity and thermoelasticity have to be considered. In simplest
terms, pyroelectricity is characterized by the fact that the temperature changes
when an electric �eld is applied and conversely, an electric potential is induced
when the material is heated or cooled. Pyroelectricity does not occur in the VIA
as quartz is not pyroelectric. Thermoelasticity results from the coupling between
the thermal and mechanical �elds: when the material is heated or cooled, it ex-
pands or contracts and conversely, when the material is contracted or stretched,
its temperature changes. The linear thermopiezoelectric constitutive equations
are the following [71]

σ = Qε−PE− kθ, (2.6)
D = PTε + BE + dθ, (2.7)
S = kTε + dTE + aT θ, (2.8)

where σ, D and S are respectively the stress vector, the electric displacement
vector and the entropy and ε, E and θ are respectively the strain vector, the elec-
tric �eld vector and the temperature increment from the reference temperature.
Matrices Q, B, P, k and d respectively denote the matrix forms of elastic con-
stant, dielectric permittivity, piezoelectric constant, thermal-mechanical coupling
constant and pyroelectric constant. aT is de�ned as CE/To where CE is the heat
capacity and To is the reference temperature. These equations can be derived
from the thermodynamic function as explained in Chapter 4.

2.4 Concluding Remarks
The main dissipation mechanisms that occur in MEMS and consequently, limit
the quality factor of micro-resonators have been presented. From this review,
thermoelastic damping can be considered as the most important loss source in
high-Q micro-resonators using �exural vibration modes. Indeed, since high-Q
micro-resonators are designed to avoid extrinsic losses and their material is cho-
sen to have a good intrinsic quality, their quality factor is limited by thermoelastic
damping which is the main intrinsic loss source unless the surface-to-volume be-
comes really high.
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With present micromachining techniques, fabrication process variations in
MEMS are inevitable and especially, when devices are miniaturized to the point of
process limitations. In the literature, di�erent works were carried out to quantify
the e�ect of the uncertainties on electrostatically actuated MEMS [8, 81, 100, 124].
These studies considered the material and geometric parameters as random vari-
ables and used Monte-Carlo methods as well as �rst and second order reliability
methods. Another approach to avoid the detrimental e�ect of these uncertain-
ties is to design MEMS whose performances are not sensitive to the uncertain
design parameters [92, 101, 102]. In Part II of this dissertation, a stochastic �nite
element method is investigated in order to take into account the e�ects of the
uncertainties on the quality factor of micro-resonators.

Finally, the VIA, i.e. the Vibrating Inertial Accelerometer developed at
ONERA is presented. This accelerometer is an example of a micro-resonator
whose quality factor is limited by thermoelastic damping and will constitute the
application case of this dissertation. Thermopiezoelectric constitutive equations
are used in the �nite element formulation, allowing the determination of the
thermoelastic quality factor of piezoelectrically actuated micro-resonators such
as VIA (Chapter 4).
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Part I

Deterministic Analyses
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Chapter 3

Fundamentals of Thermoelastic
Damping

In this chapter, thermoelastic damping is analyzed analyti-
cally. Firstly, the process of thermoelastic damping is ex-
plained. Two basic analytical models are then presented. On
the one hand, Zener's well known model [157] is exposed. On
the other hand, based on Lifshitz and Roukes work [91], the
equations of linear thermoelasticity are used to derive the nat-
ural frequencies of a thermoelastic beam as well as its quality
factor. Finally, the relevant literature based on these two
models is reviewed.

3.1 The Process of Thermoelastic Damping
The basic notions of thermoelasticity are well known [110]. The term "ther-
moelastic damping" represents the loss in energy from an entropy rise caused
by the coupling between heat transfer and strain rate. Indeed, in isotropic solids
with a positive thermal expansion coe�cient, an increase of temperature induces a
dilatation and inversely, a decrease of temperature produces a compression. Sim-
ilarly, a dilatation lowers the temperature and a compression raises it. Therefore,
when a thermoelastic solid is set in motion, it is taken out of equilibrium, having
an excess of kinetic and potential energy. The coupling between the strain and
the temperature �elds provides an energy dissipation mechanism which allows the
system to relax back to the static equilibrium. Relaxation of the thermoelastic

27
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solid is achieved through the irreversible �ow of heat driven by local temperature
gradients that are generated by the strain �eld through the coupling.

MEMS resonators generally contain elements which vibrate in �exural modes.
In �rst approximation, this sensitive part can be considered as a simple beam in
�exion and it is shown that thermoelastic dissipation may become an important
loss mechanism. In a vibrating beam, the two opposite sides undergo opposite
deformations. When the upper side is compressed (and consequently, its tem-
perature increases), the lower side is stretched (its temperature decreases), and
inversely. Thus, temperature gradients are generated and a relaxation mechanism
occurs. However, this dissipation has not always a measurable in�uence. Indeed,
when the vibration frequency is much lower than the relaxation rate, the solid is
always in thermal equilibrium and the vibrations are isothermal. On the other
hand, when the vibration frequency is much larger than the relaxation rate, the
system has no time to relax and the vibrations are adiabatic. Hence, it is only
when the vibration frequency is of the order of the relaxation rate that the energy
loss becomes appreciable. In MEMS, due to the small dimensions, the response
time of both the mechanical and thermal �elds have similar order of magnitude
and hence, thermoelastic damping has to be taken into account.

3.2 Zener's Standard Model
Zener [158] developed expressions to approximate thermoelastic damping for �ex-
ural vibrations of thin rectangular beams. His theory is based on an extension
of Hooke's law involving stress σ, strain ε as well as their �rst time derivatives σ̇

and ε̇ [158]:
σ + τεσ̇ = ER(ε + τσε̇). (3.1)

This model is also called the "Standard Anelastic Solid" model. Figure 3.1 repre-
sents the mechanical model corresponding to Equation (3.1). This model consists
of a spring in parallel with another spring and a dashpot in series. Parameters
k1, k2 and c are related to the three parameters τε, τσ and ER as follows

ER = k1, (3.2)

τε =
c

k2

(3.3)
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and
τσ =

k1 + k2

k1k2

c. (3.4)

F

k1

k2c

F

Figure 3.1: Equivalent mechanical model of the standard anelastic solid.

The three parameters τε, τσ and ER have the following physical interpretation:

- τε is the relaxation time associated with the exponential stress relaxation
at constant strain,

- τσ is the relaxation time associated with the exponential strain relaxation
at constant stress,

- ER is elastic modulus after all relaxations have occurred.

The unrelaxed value of the elastic modulus EU is de�ned using the three
previous parameters as

EU = ER
τσ

τε

. (3.5)

In order to analyze the vibration characteristics of the solid, the stress and
the strain are considered to vary harmonically:

σ = σoe
iωt, (3.6)

ε = εoe
iωt. (3.7)

Hence, under periodic dynamical conditions, the extended Hooke's law becomes

σo(1 + iωτε) = εoER(1 + iωτσ). (3.8)
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The stress and strain amplitudes are related by a frequency-dependent complex
elastic modulus:

Eo(ω) = ER
σo

εo

=
1 + iωτσ

1 + iωτε

(3.9)

= ER
(1 + iωτσ)(1− iωτε)

1 + ω2τ 2
ε

(3.10)

= ER
1 + ω2τστε + iω(τσ − τε)

1 + ω2τ 2
ε

. (3.11)

With this complex modulus, the strain is out-of-phase with the applied sinusoidal
stress, which leads to an hysteresis.

The dissipation in the solid can be measured by Q−1, the inverse of the
quality factor of the resonating beam, which is de�ned as the fraction of energy
lost per cycle. The dissipation associated to the nth mode is equal to the ratio of
the imaginary and real parts of the complex modulus at the nth natural pulsation
ωn [75], giving

Q−1 =
=(Eo(ωn))

<(Eo(ωn))
=

ωn(τσ − τε)

1 + ω2
nτστε

(3.12)

=
ωn
√

τστε

1 + ω2
nτστε

(√
τσ

τε

−
√

τε

τσ

)
(3.13)

= ∆E
ωnτ

1 + (ωnτ)2
, (3.14)

where τ =
√

τστε is the e�ective relaxation time and ∆E =
√

τσ

τε
−√

τε

τσ
= EU−ER√

EREU

is the relaxation strength.
Thus, the dissipation exhibits a Lorentzian behavior as a function of ωnτ

with a maximum value of ∆E/2 when ωnτ = 1. This agrees with the qualitative
explanation of Section 3.1. Indeed, when the frequency is small compared to
the relaxation rate, i.e. ωnτ << 1, the thermoelastic dissipation is negligible
since the oscillations are isothermal. On the other hand, when the frequency
is large compared to the relaxation rate, i.e. ωnτ >> 1, the oscillations are
adiabatic. Therefore, the thermoelastic dissipation only takes importance when
the frequency is of the order of the relaxation rate, i.e. ωnτ ≈ 1.

In order to identify the e�ective relaxation time and the relaxation strength
in the case of thermoelasticity, the extended Hooke's law is to be derived from
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the coupled linearized equations:

ε =
σ

E
+ αθ, (3.15)

dθ

dt
=

κ

Cv

∇2θ − EαTo

Cv

dε

dt
, (3.16)

where E is Young's modulus, α is the heat expansion coe�cient, κ is the heat
conduction coe�cient, Cv is the heat capacity at constant volume and To is the
reference temperature. The �rst equation is Hooke's law involving the contri-
bution of the thermal dilatation on the strain. The second equation is the heat
conduction equation involving the thermoelastic coupling term [46].

Applying Fourier transform to the above equations and eliminating the tem-
perature yield an e�ective transfer function for stress versus strain and the relax-
ation parameters can be identi�ed. For the Fourier transform, the variables σ,
ε and θ are assumed to have periodic time and spatial dependencies: x(t, x) ⇔
X(s, k). Finally, the quality factor of a thermoelastic �exural beam resonator is
given by

Q−1 =
Eα2To

Cv

ωnτ

1 + (ωnτ)2
, (3.17)

where τ = Cvk
2/κ is the e�ective relaxation time. Therefore, in the case of

thermoelasticity, the relaxation strength ∆E is expressed as follows

∆E =
Eα2To

Cv

. (3.18)

In reference [157], Zener assumes that k = b/π where b is the vibrating
thickness of the beam. This assumption is justi�ed if the relaxation only occurs
through the �rst transverse thermal mode of the beam as de�ned in [157]. In
order to assess the quality factor, the thermoelastic natural frequency ωn of the
beam is needed, but, in �rst approximation, the isothermal frequency ωo,n can be
used. In order to study the in�uence of the di�erent parameters on the quality
factor, it is interesting to express Q−1 as a function of the dimensionless parameter
ζ = b

√
ωo,n

2χ
where ωo,n is the isothermal natural frequency and χ = κ/Cv is the

thermal di�usivity . Hence, approximating the frequency by its isothermal value,
Q−1 is written

Q−1 =
Eα2To

Cv

2ζ2/π2

1 + (2ζ2/π2)2
. (3.19)

This expression will be used to compare Zener's approximation to another model
presented hereafter.
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3.3 Thermoelastic Analysis of a Beam
Zener's theory [157], which has been exposed in the previous section, does not
allow the estimation of the frequency shift induced by thermoelastic e�ects. For
this purpose, thermoelastic equations of a vibrating beam have been developed.

Lifshitz and Roukes (LR) [91] proposed an analysis based on the same funda-
mental physics than Zener [157] but in which the transverse temperature pro�le
is more accurately modeled. Their model allows the obtention of an expression
for thermoelastic damping for the simple geometry of a rectangular beam. A
rectangular beam of length L, width h and height b is considered. The axes are
de�ned so that x is along the length, y is directed along the height and z is in the
direction of the width. Pure transverse vibration in the y-direction is considered.

Accounting for the strain arising from both thermal expansion and mechan-
ical stress, the strain tensor components are

εxx =
σxx

E
+ αθ, (3.20)

εyy = εzz = − ν

E
σxx + αθ, (3.21)

εxy = εyz = εzx = 0, (3.22)

where ν is the Poisson's ratio. The above equations only involve the stress tensor
component σxx. Indeed, the beam surface is stress free, which means that all
stress components but σxx vanish on the surface. Moreover, because the beam is
slender, this holds in the interior.

In the absence of external force, the motion equation of a bending beam is
given by

ρl
∂2w

∂t2
+

∂2M

∂x2
= 0, (3.23)

where ρl is the linear density of the beam, M is the bending moment and w is
the vertical displacement.

According to Bernoulli's beam model, the displacements u and w in the x

and y directions are given by

u = −∂w

∂x
y, w = w(x, t). (3.24)

Therefore, the longitudinal strain component is expressed as follows

εxx = −y
∂2w

∂x2
. (3.25)
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Using the expression given by Equation (3.20) for the stress σxx and substi-
tuting the longitudinal strain from Equation (3.25), the bending moment can be
written as

M = −
∫ b/2

−b/2

hyσxxdy (3.26)

= E
∂2w

∂x2

∫ b/2

−b/2

hy2dy − αEh

∫ b/2

−b/2

θydy (3.27)

= EI
∂2w

∂x2
− αEIT , (3.28)

where I and IT denote the mechanical and thermal area moments of inertia.
Finally, the equation of motion for the beam is obtained:

ρlA
∂2w

∂t2
+

∂2

∂x2
(EI

∂2w

∂x2
+ EαIT ) = 0. (3.29)

This equation does not represent the full thermoelastic coupling, as it only
accounts for the modi�cation of the strain due to the thermal expansion. In
addition, the heat conduction equation involving the thermoelastic coupling term
has to be considered: [46]

∂θ

∂t
= χ∇2θ − EαT

(1− 2ν)Cv

∂

∂t

∑
j

εjj. (3.30)

Two simpli�cations can be made to this equation:

- As the temperature increment is very small compared to the reference tem-
perature, the temperature T can be replaced by the reference temperature
To. This allows the elimination of unnecessary nonlinearities from the prob-
lem.

- As the thermal gradients in the plane of the cross section along the y-
direction are much larger than gradients along the beam axis and as no
gradient exists in the z-direction, ∇2θ can be replaced by ∂2θ/∂y2.

Substituting the value of the strain �eld using Equations (3.20) and (3.25) and
using Equation (3.18) for the expression of the relaxation strength, the heat
conduction equation (3.30) becomes

(
1 + 2∆E

1 + ν

1− 2ν

)
∂θ

∂t
= χ

∂2θ

∂y2
+ y

∆E

α

∂

∂t

(
∂2w

∂x2

)
. (3.31)
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Equations (3.29) and (3.31) constitute the coupled thermoelastic problem.
They allow the calculation of the thermoelastic coupling e�ect on the vibration
of a thin beam.

If the transverse displacement and the temperature increment are assumed
to change harmonically with a pulsation ω, i.e.

w(x, t) = wo(x)eiωt, θ(x, y, t) = θo(x, y)eiωt, (3.32)

the temperature pro�le along the cross section can be �rst calculated using the
heat equation (3.31). Then, using the equation of motion (3.29), the normal
modes of vibration and their corresponding frequencies are evaluated.

The heat equation (3.31) gives

∂2θo

∂y2
= i

ω

χ

(
(1 + 2∆E

1 + ν

1− 2ν
)θo − y

∆E

α

∂2wo

∂x2

)
, (3.33)

where the term of order ∆E that multiplies θo introduces a correction of order
∆2

E and can thus be neglected. It should be noted that the same heat equation
would have been obtained if no cross section deformation had been assumed
(εxx = εyy = 0) and if the heat conduction equation had been the weak coupling
form (3.15). The solution of this di�erential equation is

θo = y
∆E

α

∂2wo

∂x2
+ A sin(ky) + B cos(ky), (3.34)

where k =
√

iω
χ
. The coe�cients A and B are determined by the thermal bound-

ary conditions on the upper and lower surfaces. It is assumed that these surfaces
are thermally insulated, i.e. ∂θo/∂y = 0 at y = ±b/2. Thus, the temperature
pro�le across the beam is given by

θo(x, y) =
∆E

α

∂2wo

∂x2

(
y − sin(ky)

k cos( bk
2
)

)
. (3.35)

This temperature pro�le can be substituted in the motion equation (3.29). In
fact, the temperature pro�le is only present in the thermal inertia:

IT =

∫

A

yθdydz (3.36)

=
∆E

α

∂2wo

∂x2
h

∫ b/2

−b/2

(y2 − y
sin(ky)

kcos(bk/2)
)dyeiωt (3.37)

=
∆E

α

∂2wo

∂x2

hb3

12
(1 +

24

b3k3
(
bk

2
− tan(

bk

2
))eiωt. (3.38)
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Therefore, the thermal inertia can be expressed in terms of the mechanical inertia,
the mechanical constants and a function of the pulsation f(ω):

IT =
∆E

α

∂2wo

∂x2
I(1 + f(ω))eiωt, (3.39)

where f(ω) = 24
b3k3 (

bk
2
− tan( bk

2
)).

Substituting the thermal inertia (Equation (3.39)) in the motion equation
(3.29) gives

ω2wo =
EI

ρlA
[1 + ∆E (1 + f(ω))]

∂4wo

∂x4
, (3.40)

which is formally identical to the equation of the isothermal beam with no ther-
moelastic coupling. The only yet crucial di�erence is that the isothermal value
of Young's modulus E is replaced by a frequency dependent modulus:

Eω = E [1 + ∆E (1 + f(ω))] . (3.41)

When ω becomes very large, f(ω) → 0 and the Young's modulus tends to its
adiabatic value. On the other hand, when the pulsation vanishes to zero, f(ω) →
−1 and the Young's modulus recovers its isothermal value E. For intermediate
value of the pulsation, the Young's modulus is complex. The variation of the
Young's modulus is represented in Figures 3.2 and 3.3 in terms of the variable
ξ = b

√
ω
2χ

so that it is not required to �x the values of the beam height b and
the thermal di�usivity χ. The relaxation strength value is arbitrarily set to 10.
When ξ is smaller than 0.5, the Young's modulus is real and equal to its isothermal
value, E. When ξ is greater than 20, the Young's modulus is real and equal to
its adiabatic value. The phase reaches a maximum value of 56◦ for ξ = 1.2. An
example can be considered to illustrate the order of magnitude of the frequency
range in which the Young's modulus takes its isothermal or adiabatic value. For
a beam height of 9 nm in silicon, for which the thermal di�usivity is 1.0396e+008
nm2/s, below a frequency of 100 kHz, the Young's modulus can be considered to
be isothermal and over a frequency of 160 MHz, it is adiabatic.

The normal modes of vibration of the beam are given as in the isothermal
case by

wo = A sin(qx) + B cos(qx) + C sinh(qx) + D cosh(qx), (3.42)

where the values of A, B, C, D and q are determined by the mechanical boundary
conditions at both ends of the beam. an = qnL is the nth dimensionless pulsation
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Figure 3.2: Variation of the absolute value of the frequency dependent Young's
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of the beam whose length is denoted L and qn is related to the natural pulsation
ωn by

q4
n =

ρlA

IEω

ω2
n. (3.43)

The natural pulsation is given by the following intrinsic equation:

ωn =

√
EωI

ρlA
q2
n = ωo,n

√
1 + ∆E (1 + f(ωn)), (3.44)

where ωo,n is the isothermal resonant pulsation. Neglecting the terms of order
∆2

E, the value of the thermoelastic resonant pulsation becomes

ωn = ωo,n

[
1 +

∆E

2
(1 + f(ωn))

]
. (3.45)

The implicit nature of this equation is removed if f(ωn) is approximated by
f(ωo,n), which only introduces an error of order ∆2

E. Hence, the real and imag-
inary parts of the thermoelastic pulsation can be extracted from the following
equation:

ωn = ωo,n

[
1 +

∆E

2
(1 + f(ωo,n))

]
. (3.46)

The real part <(ωn) represents the new resonant pulsation of the beam in the
presence of thermoelastic coupling. The frequency shift can be calculated by
(<(ωn)−ωo,n)/ωo,n. The imaginary part =(ωn) induces an amplitude attenuation
of the vibration. It allows the thermoelastic damping to be determined.

<(ωn) = ωo,n

[
1 +

∆E

2

(
1− 6

ζ3

sinh ζ − sin ζ

cosh ζ + cos ζ

)]
, (3.47)

=(ωn) = ωo,n
∆E

2

(
6

ζ3

sinh ζ + sin ζ

cosh ζ + cos ζ
− 6

ζ2

)
, (3.48)

where
ζ = b

√
ωo,n

2χ
. (3.49)

The quality factor can be expressed in terms of the imaginary and real parts
of the pulsation. The inverse of the quality factor, which is the fraction of energy
lost per radian, is given by

Q−1 =
2 |=(ωn)|√

<2(ωn) + =2(ωn)
, (3.50)

where the factor 2 arises from the fact that the mechanical energy of the beam
is proportional to the square of the amplitude of deformation. Note that this
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de�nition of the quality factor is the same as the usual one expressed in terms
of the damping ratio ξ: Q = 1/2ξ. This can be checked by considering that
ωn =

√
1− ξ2ωo,n + iξωo,n in Equation (3.50).

As the imaginary part of the resonant pulsation can be considered to be small
compared to the real part, the inverse of the quality factor can be approximated
by the following expression:

Q−1 ≈ 2

∣∣∣∣
=(ωn)

<(ωn)

∣∣∣∣ . (3.51)

Finally, substituting Equations (3.47) and (3.48) in Equation (3.51), the inverse
of the quality factor is given by

Q−1 =
Eα2To

Cv

(
6

ζ2
− 6

ζ3

sinh ζ + sin ζ

cosh ζ + cos ζ

)
. (3.52)

It should be recalled that this theory has been developed to the �rst order
of ∆E and that it considers the e�ect of thermal deformation on the strain but
neglects the relaxation in the longitudinal direction.

3.4 Model Comparison

In this section, the results obtained from Zener and LR models are compared.
These models di�er in the way the transverse temperature pro�le is approxi-
mated. Both methods allow an analytical expression of the quality factor to be
obtained, but only LR model gives the expression of the complex thermoelastic
natural frequencies, allowing the frequency shift as well as the attenuation due
to thermoelastic e�ects to be quanti�ed.

Firstly, the expressions of the inverse of the quality factor are considered
(Equations (3.19) and (3.52)). In both cases, the ratio Q−1/∆E can be expressed
as a convex function of the dimensionless isothermal natural frequency ζ, which
is represented in Figure 3.4. Both models give similar results and present a
maximum at ζ ≈ 2.225. The peak value depends on the Young's modulus, the
heat expansion coe�cient and the heat capacity and not on the dimensions of
the beam. However, the dimensions in�uence the dissipation by means of the
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Figure 3.4: Variation of the inverse of the quality factor in units of the relaxation
strength with respect to the dimensionless variable ζ.

variable ζ since

ζ = b

√
ωo,n

2χ
(3.53)

= b

(
q2
nb

2χL2

√
E

12ρ

)0.5

, (3.54)

where ρ is the mass density. The quality factors predicted by LR model di�er
from Zener's ones by between 2 % and 20 % depending on the value of the
dimensionless parameter ζ. Indeed, it can be shown [91] that the quality factor
given by Equation (3.52) is bounded between two Lorentzians:

∆E
2
√

6

5
L

(
ζ2

√
24

)
≤ Q−1 ≤ ∆E

√
6

2
L

(
ζ2

√
24

)
, (3.55)

where the Lorentzian L is de�ned as

L (η) =
η

1 + η2
. (3.56)

For small values of ζ, the quality factor tends to its lower Lorentzian bound,
while for large values of ζ, it tends to its upper Lorentzian bound. Zener's solution
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corresponds to the following Lorentzian:

Q−1 = L
(

2ζ2

π2

)
. (3.57)

It results from this comparison that expressions (3.19) and (3.52) di�er by less
than 2% on the isothermal side of the peak (low ζ), while on the adiabatic side
of the peak (high ζ), the di�erence can reach 20 %. Hence, when considering
con�gurations located on the adiabatic side of the peak, it is better to use LR
model than Zener's approximation.

Mathematically, the di�erence is explained by the inherent approximations
assumed in the transverse temperature pro�les, which are illustrated in Figure 3.5.
Assuming that the temperature conduction occurs through the �rst transverse
thermal mode, Zener's model approximate the transverse temperature pro�le by
a sinusoidal function:

θ(y)

θmax

= sin

(
πy

ymax

)
, (3.58)

whereas according to Equation (3.35), LR transverse temperature pro�le can be
expressed as

θ(y)

θmax

=

(
y − sin(ky)

k cos(ymaxk)

)
. (3.59)
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Figure 3.5: Transverse temperature pro�le.
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The in�uence of the geometry on the thermoelastic dissipation can be shown
by studying the variation of Q−1 with the beam height for a �xed beam length L.
This variation is plotted in Figure 3.6. This �gure shows that for a given length,
there exists a height for which the thermoelastic dissipation is maximum.
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Figure 3.6: Variation of the inverse of the quality factor with the height for a
�xed length of 90 µm.

From LR model, the imaginary and real parts of the thermoelastic frequency
are given by Equations (3.48) and (3.47). They depend on the material prop-
erty ∆E. The frequency shift <(ωn)−ωo,n

∆Eωo,n
and the imaginary attenuation =(ωn)

∆Eωo,n

are plotted in Figure 3.7 as a function of ζ. The frequency shift varies from
zero for small values of ζ, for which the beam can be considered isothermal,
to the adiabatic threshold value for large values of ζ. The adiabatic frequency
shift threshold is equal to ∆E/2 while at the thermoelastic damping peak, the
frequency shift reaches a value of ∆E/4. The value of the frequency shift only
depends on material data through the parameter ∆E. The attenuation presents
a maximum for ζ ≈ 2.225 as the thermoelastic dissipation does. The value of the
attenuation maximum is equal to ∆E/4 and therefore, only depends on material
data parameters. The shape of the attenuation curve is similar to the inverse of
the quality factor one, which is coherent since the imaginary part of the frequency
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represents the damping.
As ζ represents the dependence on the geometry, the complex frequency

depends on the geometry. Figure 3.8 illustrates the variation of the frequency
shift and the attenuation with respect to the height of the beam for a �xed length.
For frequency-agile mechanisms, it is important to note that the geometry of the
beam has an in�uence on the quality factor but also on the natural frequency. It
also should be noted that all models assume that the upper and lower surfaces
are thermally insulated. This assumption is adequate for micro-structures under
vacuum since there is no heat exchange by convection and since the temperature
remains low, heat radiation can be neglected.
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Figure 3.7: Variation of the frequency shifting and attenuation with the dimen-
sionless variable ζ.

3.5 Extension of Classical Models
The analytical models of Zener and Lifshitz-Roukes are based on very restric-
tive assumptions and are only adequate for the study of thermoelastic damping
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in isotropic homogeneous �exural beams. Two di�erent approaches are used in
the literature in order to extend these analytical models to some more complex
structures: an approach based on energy considerations and an approach based
on the resolution of the thermoelasticity equations.

The energy approach can be viewed as an extension of Zener's model. The
method consists in identifying the mode through which the energy is dissipated
and especially, in quantifying the thermal path lengths that are involved in the
relaxation process. Houston et al [67, 68] assume that the energy loss occurs
solely via �exural motion. Therefore, de�ning a �exural modal participation fac-
tor, i.e. the fraction of potential energy stored in �exure, and applying this to
Zener's theory, these authors quantify the thermoelastic damping occurring in a
silicon double paddle oscillators. Wong et al [150] also derive the quality factor
of slotted beams by studying their strain energy and the corresponding thermal
path lengths. Bishop and Kinra [21] study thermoelastic damping of laminated
beams. Knowing the speci�c thermal path length for each layer, they derive the
quality factor of the laminated beam using an energy approach. Using the ana-
lytical framework developed by Bishop and Kinra, Vengallatore [147] shows that
metallization of silicon and silicon carbide beams can lead to a considerable in-
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crease in damping as well as coating silicon with SiC. Based on similar procedure,
Srikar and Senturia [136] present a closed-form expression to estimate an upper
bound of the attainable quality factors of polycrystalline beam resonators with
thickness much larger than the average grain size.

The second approach is based on the resolution of thermoelasticity equations
as Lifshitz-Roukes model. Wong et al [149] derive an analytical expression for
the thermoelastic quality factor of the in-plane vibration of thin silicon rings.
The presented methodology is exactly the same as in LR work. Moreover, the
obtained results are compared with the results obtained with a modi�ed Zener
model and this comparison shows that both approaches agree to within 2 %.
Younis [106, 156] presents a model to quantify the thermoelastic quality factors
of microplates. He solves the heat equation for the heat �ow across the microplate
so that the thermal equation is decoupled from the mechanical plate equation.
Then a perturbation method allows the derivation of an analytical expression for
the thermoelastic quality factor of microplates. This model takes into account
electrostatic loading as well as residual stresses.

In order to investigate more complex structures (i.e. non rectangular geome-
try, anisotropic material,...), a numerical approach is required. In order to analyze
thermoelastic damping in 1-D longitudinal vibrations, Zhang et al [161] discretize
the thermoelasticity equations and hence, solving the corresponding PDE's, get
the value of the thermoelastic quality factor. A preliminary �nite element method
is developed by Gorman [59]. Due to the chosen �nite element formulation, the
resulting model is only suitable for isotropic problems. Moreover, this �nite ele-
ment formulation leads to an imaginary eigenvalue problem whose resolution is
computationally expensive. This method is thus restricted to small size models,
such as slotted beams [25].

3.6 Concluding Remarks
In this chapter, two classical analytical models, i.e. Zener and LR models, have
been presented for a vibrating thermoelastic beam. The thermoelastic coupling
has been shown to introduce an energy loss as well as a natural frequency shift
in vibrating beams. The importance of the thermoelastic e�ects depends on the
dimensions of the vibrating beam as well as on its material properties, whereas
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the upper bound value of the energy loss factor only depends on the material
data parameters.

Both classical models only hold for simple geometries and isotropic solids and
are not applicable to structures involving a more complex geometry or made of an
anisotropic material. Some extended analytical models have been reviewed, but
these methods are not straightforward and are still restricted to simple problems.
Hence, another method should be developed to predict the thermoelastic e�ects.

Some preliminary work on numerical methods have also been found in the
literature. Even if these results are promising, the adopted formulations limit
their applicability. The development of a more general thermoelastic �nite ele-
ment formulation will allow the prediction of the thermoelastic e�ects for complex
geometries and anisotropic materials.



46 Chapter 3. Fundamentals of Thermoelastic Damping



Chapter 4

Thermopiezoelectric Finite Element
Formulation

This chapter concerns the �nite element formulation of ther-
mopiezoelectricity. The �rst part of this chapter is concerned
with a uni�ed variational principle describing the fundamen-
tal equations of thermopiezoelectricity. Then, the �nite ele-
ment matrices associated with thermopiezoelectricity are de-
rived. A non-symmetric block Lanczos method is exposed
in order to solve the thermopiezoelectric eigenproblem. Fi-
nally, the �nite element formulation is validated for a one-
dimensional problem for which an analytical solution is avail-
able.

4.1 Variational Principle
To describe the behavior of a thermopiezoelectric continuum, the coupled con-
tributions of the thermal, electric and mechanical �elds have to be taken into
account. Indeed, the total free energy B of a thermopiezoelectric body is given
by the following equation 1 [9]:

B(εij, Ei, θ) =
1

2
cijklεijεkl−eijkEiεjk− 1

2
bijEiEj−kijθεij−diEiθ− 1

2
aT θ2, (4.1)

where εij are the components of the strain tensor, Ei are the components of the
electric �eld vector, and θ is the temperature rise from the reference tempera-

1Einstein's notation is used.

47
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ture T0, at which the structure is unstrained and unstressed. The quantities cijkl

and eijk respectively represent the elastic and piezoelectric constants and bij is
the dielectric permittivity. The quantities kij and di respectively represent the
thermo-mechanical and the thermopiezoelectric coupling constants and aT is de-
�ned as CE/T0, where CE is the heat capacity. To take into account the heat
conduction, the dissipation function F has to be considered [9]:

F (ei) =
1

2
κijejei, (4.2)

where κij are the components of the conductivity tensor and ei are the components
of the thermal �eld vector.

Consequently, using the thermodynamic formulation, the constitutive equa-
tions can be derived from the total free energy whereas Fourier's law can be
derived from the dissipation function:

σij =
∂B

∂εij

= cijklεkl − eijkEk − kijθ, (4.3)

Di = − ∂B

∂Ei

= eijkεjk + bijEj + diθ, (4.4)

S = −∂B

∂θ
= kijεij + diEi + aT θ, (4.5)

qi =
∂F

∂ei

= κijej, (4.6)

where σij are the components of the stress tensor, Di are the components of the
electric displacement vector, S is the entropy and qi are the components of the
heat �ux vector.

In order to apply the variational principle, some assumptions are consid-
ered. Three assumptions, one for each physical �eld, give rise to the following
compatibility equations:

- Based on the assumption of small displacements, the strain can be expressed
in terms of the displacements ui

εij =
1

2
(ui,j + uj,i), (4.7)

where the notation , i represents the partial derivative ∂/∂xi.

- Based on linear piezoelectricity, the electric �eld vector is derivable from a
scalar potential function Φ as follows

Ei = −Φ,i. (4.8)
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- Based on Fourier's law, the thermal �eld vector can be expressed as the
gradient of the temperature increment

ei = −θ,i. (4.9)

In order to obtain the dynamic equations of a thermopiezoelectric continuum,
Hamilton's principle is used:

δ

∫ t2

t1

(L+W)dt = 0, (4.10)

in which all variations vanish at times t1 and t2, i.e. δui
(t1) = 0, δui

(t2) = 0,
δθ(t1) = 0, δθ(t2) = 0,... The Lagrangian L and the virtual work W of external
contributions have to include the thermal, electric and mechanical contributions.
For a thermopiezoelectric domain Ω with an external surface S∗, the Lagrangian
can be de�ned as follows [9]

L =

∫

Ω

(K + F −B − Sθ − ST0θ̇)dΩ, (4.11)

where K = 1
2
ρu̇iu̇i is the kinetic energy density.

Using Equations (4.1) to (4.6), B and F become

B =
1

2
σijεij − 1

2
DiEi − 1

2
Sθ, (4.12)

F =
1

2
qiei. (4.13)

Taking into account the three compatibility equations (4.7) to (4.9), the varia-
tion of the Lagrangian is decomposed into independent variations with respect
to the displacement components ui, the electric potential Φ and the temperature
increment θ. Making use of the interchangeability of variation with di�erentia-
tion or integration and integrating by parts with respect to time, the variational
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equations are obtained:

δuL+ δuW = −
∫ t2

t1

∫

Ω

[ρüiδui + σijδεij] dΩdt +

∫ t2

t1

∫

S∗
tiδuidS∗dt,

+

∫

Ω

ρu̇iδui|t2t1dΩ

= 0, (4.14)

δΦL+ δΦW =

∫ t2

t1

∫

Ω

DiδEidΩdt +

∫ t2

t1

∫

S∗
qeδΦdS∗dt,

= 0, (4.15)

δθL+ δθW =

∫ t2

t1

∫

Ω

[
qiδei + ṠT0δθ

]
dΩdt +

∫ t2

t1

∫

S∗
qsδθdS∗dt

−
∫

Ω

ST0δθ|t2t1dΩ

= 0, (4.16)

where ti, qe and qs respectively represent the components of the traction vector,
the charge density and heat �ux.

As each variation vanishes at times t = t1 and t = t2 and recalling Equations
(4.8) and (4.9), the governing equations of the coupled thermopiezoelectricity
take the �nal form:

δuL+ δuW = −
∫ t2

t1

∫

Ω

[ρüiδui + σijδεij] dΩdt +

∫ t2

t1

∫

S∗
tiδuidS∗dt

= 0, (4.17)

δΦL+ δΦW = −
∫ t2

t1

∫

Ω

DiδΦ,idΩdt +

∫ t2

t1

∫

S∗
qeδΦdS∗dt

= 0, (4.18)

δθL+ δθW =

∫ t2

t1

∫

Ω

[
−qiδθ,i + ṠT0δθ

]
dΩdt +

∫ t2

t1

∫

S∗
qsδθdS∗dt

= 0. (4.19)

Equations (4.17)-(4.19) involve the coupling between temperature, electric
and mechanical �elds simultaneously and they are based on the assumption of no
body force or heat source.

4.2 Finite Element Formulation
In the �nite element formulation, the three continuous physical �elds are dis-
cretized. The displacement �eld u, the electric potential Φ and the temperature
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increment θ are related to the corresponding node values uu, uΦ and uθ by means
of shape function matrices Nu, NΦ and Nθ:

u = Nuuu, (4.20)
Φ = NΦuΦ, (4.21)
θ = Nθuθ. (4.22)

Therefore, the strain �eld ε, the electric �eld E and the thermal �eld e are related
to the degree of freedom vector, i.e. to the nodal values, by the shape function
derivative matrices Bu, BΦ and Bθ:

ε = DNuuu = Buuu, (4.23)
E = −∇NΦuΦ = BΦuΦ, (4.24)
e = −∇Nθuθ = Bθuθ, (4.25)

where ∇ is the gradient operator and D is the derivation operator de�ned so that
ε = Du according to Equation (4.7).

Equations (4.3)-(4.6) can be rewritten in vector form:

σ = Qε−PE− kθ, (4.26)
D = PTε + BE + dθ, (4.27)
S = kTε + dTE + aT θ, (4.28)
q = κe, (4.29)

where σ and D are respectively the stress vector and the electric displacement
vector and ε and E are respectively the strain vector and the electric �eld vector.
Matrices Q, B, P, k, d and κ respectively denote the matrix forms of elastic con-
stant, dielectric permittivity, piezoelectric constant, thermo-mechanical coupling
constant, thermopiezoelectric coupling constant and thermal conductivity.

The introduction of Equations (4.20)-(4.29) in Equations (4.17)-(4.19) yields
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the following relations:

δuL = −
∫ t2

t1

∫

Ω

δuT ρüdΩdt−
∫ t2

t1

∫

Ω

δεT σdΩdt

= −
∫ t2

t1

∫

Ω

[δuT ρü + δεT (Qε−PE− kθ)]dΩdt

= −
∫ t2

t1

∫

Ω

δuu
T [Nu

T ρNuüu + Bu
T (QBuuu −PBΦuΦ − kNθuθ)]dΩdt

= −δuu
T

∫ t2

t1

(Muuuu + Kuuuu + KuΦuΦ + Kuθuθ)dt, (4.30)

δΦL =

∫ t2

t1

∫

Ω

δETDdΩdt

=

∫ t2

t1

∫

Ω

δET (PTε + BE + dθ)dΩdt

=

∫ t2

t1

∫

Ω

δuΦ
TBΦ

T (PTBuuu + BBΦuΦ + dNθuθ)dΩdt

= −δuΦ
T

∫ t2

t1

(KΦuuu + KΦΦuΦ + KΦθuθ)dt, (4.31)

δθL =

∫ t2

t1

∫

Ω

(δeTq + ṠT0δθ)dΩdt

=

∫ t2

t1

∫

Ω

(δeT κe + T0δθ(k
Tε̇ + dTĖ + aT θ̇))dΩdt

=

∫ t2

t1

∫

Ω

δuθ
T (Bθ

T κBθuθ + T0Nθ
T (kTBuu̇u + dTBΦu̇Φ + aTNθu̇θ))dΩdt

= −δuθ
T

∫ t2

t1

(Kθθuθ + Cθuu̇u + CθΦu̇Φ + Cθθu̇θ)dt. (4.32)

The variation of the terms involving the external contributions are written as
follows

δuW =

∫ t2

t1

∫

S∗
δuT tdS∗dt

=

∫ t2

t1

∫

S∗
δuu

TNu
T tdS∗dt

= δuu
T

∫ t2

t1

Fudt, (4.33)
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δΦW =

∫ t2

t1

∫

S∗
δΦT qedS∗dt

=

∫ t2

t1

∫

S∗
δuΦ

TNΦ
T qedS∗dt

= δuΦ
T

∫ t2

t1

FΦdt, (4.34)

δθW =

∫ t2

t1

∫

S∗
δθT qsdS∗dt

=

∫ t2

t1

∫

S∗
δuθ

TNθ
T qsdS∗dt

= δuθ
T

∫ t2

t1

Fθdt. (4.35)

Hence, the discretized dynamic equilibrium equation governing the ther-
mopiezoelectric problem is obtained:




Muu 0 0

0 0 0

0 0 0







üu

üΦ

üθ


 +




0 0 0

0 0 0

Cθu CθΦ Cθθ







u̇u

u̇Φ

u̇θ


 +




Kuu KuΦ Kuθ

KΦu KΦΦ KΦθ

0 0 Kθθ







uu

uΦ

uθ


 =




Fu

FΦ

Fθ


 , (4.36)

where Muu is the mass matrix, Cθu and CθΦ are respectively the damping
matrices due to thermo-mechanical and thermo-electric coupling e�ect and Cθθ

is the damping matrix due to the thermal �eld. Matrices KuΦ and KΦu are the
sti�ness matrices due to piezoelectric-mechanical coupling e�ect. Kuθ and KΦθ

are the sti�ness matrices due to thermo-mechanical and thermo-electric coupling
respectively. Kuu, KΦΦ and Kθθ are the sti�ness matrices due to mechanical,
electric and thermal �elds, respectively. Fu, FΦ and Fθ are the force vectors due
to mechanical, electric and thermal �elds, respectively.

Elementary matrix expressions can be identi�ed from Equations (4.30)-(4.32):

Muu =

∫

Ω

Nu
T ρNudΩ, (4.37)

Kuu =

∫

Ω

Bu
TQBudΩ, (4.38)
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KuΦ = −
∫

Ω

Bu
TPBΦdΩ, (4.39)

Kuθ = −
∫

Ω

Bu
TkNθdΩ, (4.40)

KΦu = −
∫

Ω

BΦ
TPTBudΩ, (4.41)

KΦΦ = −
∫

Ω

BΦ
TBBΦdΩ, (4.42)

KΦθ = −
∫

Ω

BΦ
TdNθdΩ, (4.43)

Kθθ = −
∫

Ω

Bθ
T κBθdΩ, (4.44)

Cθu = −
∫

Ω

T0Nθ
TkTBudΩ, (4.45)

CθΦ = −
∫

Ω

T0Nθ
TdTBΦdΩ, (4.46)

Cθθ = −
∫

Ω

T0Nθ
T aTNθdΩ. (4.47)

Note that those elementary matrices are not independent since following
relations exist:

KΦu = KuΦ
T , (4.48)

Cθu = T0Kuθ
T , (4.49)

CθΦ = T0KΦθ
T . (4.50)

Despite relations (4.48)-(4.50), the structural sti�ness and damping matrices are
not symmetric.

4.3 Formulation of the Thermopiezoelectric Eigen-
value Problem

As shown by Lifshitz and Roukes [91] and discussed in Section 3.4, the ther-
moelastic coupling induces damping and its e�ect can also be characterized by
a resonance frequency shift. Therefore, it is necessary to compute the eigenval-
ues of the coupled problem and to derive the quality factor associated with each
eigenvalue pair:

Q =

∣∣∣∣
ωi

2ωr

∣∣∣∣ , (4.51)
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where ωi and ωr are the real and imaginary parts of the conjugate complex eigen-
value.

The generalized quadratic eigenvalue problem to solve results from the gov-
erning di�erential equation (4.36) written in compact form:

Mq̈ + Cq̇ + Kq = 0, (4.52)

where C and K are non-symmetric matrices by construction.
Therefore, the homogeneous system has a right-handed and a left-handed

solutions of the form:

qRHS = eλtΦ and qLHS = eλtΨ, (4.53)

where Φ is the right eigenvector, Ψ is the left eigenvector and λ is the eigenvalue,
which is the same for the left and the right eigensolutions. When these solutions
are substituted into the di�erential equation (4.52), the right-handed and the
left-handed characteristic equations are obtained:

(Mλ2 + Cλ + K)Φ = 0 and ΨT (Mλ2 + Cλ + K) = 0. (4.54)

In the following, the resolution method is exposed for the right eigenvalue
problem but the same procedure could be applied to the left eigenvalue prob-
lem. A linearization transformation [17] is �rst performed to convert the original
quadratic problem of size n into a �rst order problem of size 2n. Therefore, the
characteristic equations are written in the state-space form using the following
relation:

q̇RHS = λqRHS (4.55)
= eλtλΦ, (4.56)

which leads to
[
−K 0

0 I

](
Φ

Φ̇

)
= λ

[
C M

I 0

](
Φ

Φ̇

)
. (4.57)

This equation has the form of a generalized linear eigenvalue problem: Ax =

λBx. However, the matrix B is singular due to the massless degrees of freedom
Φ and θ. In order to circumvent this problem, Equation (4.57) is repartitioned
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between the mechanical, electric and thermal degrees of freedom leading to this
eigenvalue problem formulation:



−Kuu −KuΦ −Kuθ 0 0 0

−KT
uΦ −KΦΦ −KΦθ 0 0 0

0 0 −Kθθ 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I







xu

xΦ

xθ

ẋu

ẋΦ

ẋθ




=

λ




0 0 0 Muu 0 0

0 0 0 0 0 0

Cθu CθΦ Cθθ 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0







xu

xΦ

xθ

ẋu

ẋΦ

ẋθ




. (4.58)

Due to the block triangular structure of this equation, the eigenvalues associated
with the �fth and sixth matrix equations are independent of the four other ones.
Indeed, the time derivatives of the electric and thermal degrees of freedom are ar-
ti�cial variables which can be eliminated from the problem so that the eigenvalue
problem to solve is




−Kuu −KuΦ −Kuθ 0

−KT
uΦ −KΦΦ −KΦθ 0

0 0 −Kθθ 0

0 0 0 I







xu

xΦ

xθ

ẋu




=

λ




0 0 0 Muu

0 0 0 0

Cθu CθΦ Cθθ 0

I 0 0 0







xu

xΦ

xθ

ẋu




. (4.59)

If the numbers of mechanical, electric and thermal degrees of freedom are
denoted nu, nΦ and nθ, respectively, the eigenvalue problem (4.59) has 2nu con-
jugate complex eigenvalues, nΦ in�nite eigenvalues and nθ real eigenvalues. The
2nu eigenvalues correspond to the mechanical eigenfrequencies and the nθ ones
to the thermal eigenfrequencies. The nΦ in�nite values correspond to the electric
degrees of freedom which do not have any dynamics but respond statically.
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In practice, the matrices are scaled before solving the eigenvalue problem.
This operation allows to eliminate numerical errors due to the fact that the ele-
ments of the submatrices are not of the same order of magnitude. As example,
for the thermoelastic beam element of the model used in the next chapter, the
diagonal elements of the mechanical sti�ness matrix are of the order of 1016, the
diagonal elements of the thermal sti�ness matrix are of the order of 1018 and
the diagonal elements of the mass matrix are of the order of 10−4 (the units are
chosen to be adequate for a micro-problem, i.e. µm, µg and s). The scaling con-
sists in left and right multiplying matrices A and B by a diagonal matrix whose
elements are the inverse of the square root of the diagonal elements of A, so that
the diagonal elements of the scaled matrix A are equal to 1.

4.4 Non-symmetric Real Block Lanczos Method
The thermopiezoelectric eigenproblem (4.59) is a generalized non-symmetric right
eigenproblem:

Aq = ωBq, (4.60)

where the matrices A and B are non-symmetric real matrices, ω is the eigenvalue,
which can be complex, and the vector q is the right eigenvector, which is complex
if ω is complex. To this eigenvalue corresponds a left eigenvector r which satis�es
the eigenproblem:

r∗A = ωr∗B, (4.61)

where r∗ is the conjugate transpose vector of r.
The generalized right eigenproblem (4.60) can be transformed to a standard

eigenvalue problem:
A−1Bq =

1

ω
q, (4.62)

which can be directly resolved by the QZ algorithm [13]. However, this method
is only adequate for small size problems. For large size problems, an iteration
method such as the Lanczos method [83] is more adequate. Making use of the
speci�city of the eigenproblem (non-symmetric real matrices leading to complex
eigenvalues), a non-symmetric real block Lanczos method is developed. This
method is a two-sided iterative method based on real subspace oblique pro-
jections. It allows the approximation of the complex eigenpairs of a real non-
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symmetric matrix by the complex eigensolutions of the real non-symmetric tridi-
agonal matrix of the Lanczos coe�cients.

With two starting real block vectors X0 and Y0, the Lanczos method builds
a pair of biorthogonal bases for the Krylov subspaces Kj(A−1B,X0) and
Kj(A−TBT ,Y0):

Kj(A−1B,X0) =
[
X0,A

−1BX0,
(
A−1B

)2
X0, . . .

]
, (4.63)

Kj(A−TBT ,Y0) =
[
Y0,A

−TBTY0,
(
A−TBT

)2
Y0, . . .

]
, (4.64)

which are biorthogonalized via a two-sided Gram-Schmidt procedure.
The two sequences of block vectors Kj(A−1B,X0) and Kj(A−TBT ,Y0) are

generated using two three-term recurrences:

Xj+1Cj+1 = A−1BXj −XjAj −Xj−1Bj−1, (4.65)
Yj+1Fj+1 = A−TBTYj −YjDj −Yj−1Ej−1, (4.66)

where matrices Cj+1, Aj, Bj−1, Fj+1, Dj and Ej−1 are such that the bi-orthogonality
relations are satis�ed:

Yj+1
TBXi = 0, for i = 1, . . . , j (4.67)

Yi
TBXi = I, for i = 1, . . . , j + 1. (4.68)

Therefore, the matrices are given by

Aj = Yj
TBA−1BXj, (4.69)

Bj−1 = Yj−1
TBA−1BXj, (4.70)

Cj+1 = Yj+1
TBA−1BXj, (4.71)

Dj = Xj
TBTA−TBTYj, (4.72)

Ej−1 = Xj−1
TBTA−TBTYj, (4.73)

Fj+1 = Xj+1
TBTA−TBTYj. (4.74)

From these expressions, it can be shown that the matrices corresponding to the
left and right recurrences are not independent:

Aj = Dj
T , Cj = Ej−1

T and Fj = Bj−1
T . (4.75)

It can be observed that the orthogonality of the new iterates with respect to the
previous ones is automatically obtained by recurrence.
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In matrix notation, at the jth step, the Lanczos method generates two ma-
trices X and Y:

X = [X0, . . . ,Xj] , (4.76)
Y = [Y0, . . . ,Yj] , (4.77)

which satisfy the Lanczos factorizations:

A−1BX = XTR + Xj+1Cj+1ej
T , (4.78)

A−TBTX = YTL + Yj+1Fj+1ej
T , (4.79)

where matrices TR and TL are tridiagonal block matrices:

TR =




A0 B0 · · · 0 0

C1 A1 · · · 0 0
... ... . . . ... ...
0 0 · · · Aj−1 Bj−1

0 0 · · · Cj Aj




(4.80)

and

TL =




D0 E0 · · · 0 0

F1 D1 · · · 0 0
... ... . . . ... ...
0 0 · · · Dj−1 Ej−1

0 0 · · · Fj Dj




, (4.81)

so that taking into account relations (4.75), matrices TR and TL are such that

TR = TL
T . (4.82)

The interaction problem is obtained at step j by premultiplying Equation
(4.78) by YTB:

YTBA−1BX = YTBXTR + YTBXj+1Cj+1ej
T

= TR, (4.83)

due to the biorthogonality relations (4.67) and (4.68). This shows that the tridi-
agonal block matrix TR results from the oblique projection of A−1B onto the left
and right real Lanczos bases. It has thus the same eigensolutions as the oblique
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projection of A−1B onto the left and right real Lanczos bases. Indeed, starting
from the initial inverse right eigenproblem:

A−1BQ = QΩ−1 (4.84)

and writing Q as a linear combination of the right Lanczos vectors Q = XZ, the
eigenproblem is expressed as follows

A−1BXZ = XZΩ−1, (4.85)

which, premultiplied by YTB, gives

YTBA−1BXZ = YTBXZΩ−1. (4.86)

Using the biorthogonality relations and Equation (4.83), it comes that

TRZ = ZΩ−1. (4.87)

Eigensolutions Z and Ω−1 of matrices TR are called the right Ritz vectors
and values, respectively and can be calculated via a QZ algorithm. Ritz vectors
and values can be complex while TR is real. As the Lanczos bases become larger,
the Ritz values and vectors converge to the eigenvalues and eigenvectors of the
original matrix A−1B. This convergence can be evaluated by comparing the
norms of the complex eigenvalues to those obtained at the previous step. Hence,
if the condition:

|Ωi,j| − |Ωi,j−1| < ε, (4.88)

where Ωi,j is the ith Ritz value calculated at step j and ε is the required precision,
is satis�ed for i = 1 to i = Nval, the Nval �rst eigenvalues are converged and the
Nval �rst right complex eigenvectors can be calculated from the right Ritz vectors:

Q = XZ. (4.89)

Analogously, the left eigenvectors can be calculated. Firstly, the solutions of
the projected problem:

TL
TT = TΩ−1 (4.90)

are calculated. Note that the left Ritz values are the same as the right ones,
while the left Ritz vectors T are not equal to the right ones Z. Then, the left
eigenvectors are calculated from the left Ritz vectors once convergence is satis�ed:

R = YT. (4.91)
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Note that the proposed algorithm allows to determine complex eigensolu-
tions of a non-symmetric real generalized problem via oblique projections onto
real Lanczos bases. Hence, all algebraic operations deal with real vectors and
matrices. The complex computational framework is only required at the stage of
the convergence checking and at the �nal step of the calculation of the converged
eigenvectors. This procedure provides a less computationally expensive algorithm
than the classic non-hermitian block Lanczos method that uses complex Lanczos
bases.

4.5 One-Dimensional Thermopiezoelectric Prob-
lem

In order to validate the �nite element formulation, a simple test case is considered.
It consists in an axially vibrating bar of length l �xed at its middle and free at
both ends. The thermal boundary conditions, which are in agreement with the
mechanical boundary conditions, �x the temperature at both ends. The L-e�ect
coupling is considered for the piezoelectric coupling, which means that the electric
condition is given by [71]

dD

dx
= 0. (4.92)

In the following, two-�eld coupling analyses are �rstly carried out. Ther-
moelastic and piezoelectric couplings are studied via analytical models as well
as �nite element models. Pyroelectric coupling is not considered in this study.
Finally, the three �eld coupling is modeled analytically and numerically. This
approach allows the e�ects of the di�erent couplings on the frequency and the
quality factor of the bar to be identi�ed and physically interpreted.

4.5.1 Thermoelastic Coupling
Analytical Model

The quality factor of a bar in axial vibrations can be approximated by Zener's
model (Equation (3.19)). If it is assumed that the relaxation occurs only through
the �rst longitudinal thermal mode, parameter k is given by k = l/π where l

is the bar length. Moreover, assuming that the thermoelastic frequency can be
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approximated by its isothermal value, the quality factor of the bar is expressed
as

Q−1 =
Eα2To

Cv

2ζ2/π2

1 + (2ζ2/π2)2
, (4.93)

where ζ = l
√

ωo

2χ
with ωo = π

l

√
E
ρ
.

The complex pulsation of an axially vibrating bar can be assessed from the
linear thermoelastic equations [84] which involve:

- the equation of motion with no thermoelastic coupling but with the modi�ed
thermoelastic strain

−ρü + E
d2u

dx2
− Eα

dθ

dx
= 0, (4.94)

where u is the longitudinal displacement and θ is the temperature increment,

- the heat equation with thermoelastic coupling

k
d2θ

dx2
= EαT0

d

dt

(
du

dx

)
+ Cv

dθ

dt
. (4.95)

The harmonic solutions of the linear thermoelastic equations are considered:

u = U0e
iωt and θ = θ0e

iωt. (4.96)

It is assumed that the mechanical and thermal mode shapes are not modi�ed by
the thermoelastic coupling, i.e. the �rst mechanical mode is given by

U0 = A sin
(πx

l

)
(4.97)

and the �rst thermal mode is given by

θ0 = B cos
(πx

l

)
, (4.98)

where the constants A and B are dependent. Indeed, substituting Equations
(4.97) and (4.98) in the �rst linear thermoelastic equation (4.94) gives the follow-
ing relation:

B = A

(
π

l

1

α
− ω2 l

π

ρ

Eα

)
. (4.99)

Hence, substituting the mechanical and thermal harmonic solutions in the second
linear thermoelastic equation (4.95) gives that the thermoelastic pulsation ω of
the bar satis�es the following equation:

− ρ

E

(
l

π

)2

iω3 − ρ

E

k

Cv

ω2 +

(
1 +

Toα
2E

Cv

)
iω +

k

Cv

(π

l

)2

= 0. (4.100)
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It should be noted that the thermal mode given by Equation (4.98) considers that
the temperature is �xed at both ends, which is in agreement with the mechanical
boundary conditions.

Moreover, the thermal eigenvalues can be estimated by analytical solutions
in the case of 1-D conduction. Indeed, the method of separation of variables can
be used to solve the transient heat conduction equation for a one-dimensional
problem:

∂2θ

∂x2
=

Cv

k

∂θ

∂t
. (4.101)

It is assumed that the spatial and temporal dependence of the temperature can
be separated as follows

θ(x, t) = θo(x)T (t). (4.102)

Hence, the heat conduction equation can be written as
1

θo

∂2θo

∂x2
=

Cv

kT

∂T

∂t
. (4.103)

This equation is of the form f(x) = g(t) = −(λ)2 so that after integration it gives

θo(x) = Acos(λx) + Bsin(λx) (4.104)

and
T (t) = e−

Cv
k

λ2t, (4.105)

where A and B depend on the boundary conditions. If the temperature of both
ends of the bar is �xed, the boundary conditions are expressed as follows

θo(0) = 0, (4.106)

θo(l) = 0. (4.107)

Introducing these boundary conditions in Equation (4.104) induces that A = 0

and B cos(λl) = 0 for which the non-trivial solution is λn = nπ/l. Hence, the nth

thermal mode can be expressed

θo,n = cos(nπ
x

l
) (4.108)

and it temporally varies as

T (t) = e−
Cv
k (nπ

l )
2
t. (4.109)

Hence, the thermal eigenvalues are real negative and are given by

ωth,n = −Cv

k

(nπ

l

)2

. (4.110)
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Finite Element Model

Based on the thermopiezoelectric �nite element formulation where the electric
degrees of freedom are deleted, a thermoelastic bar element can be developed. The
degrees of freedom of the bar element correspond to the temperature increment
and to the axial displacement at the end nodes of the element. It uses linear
shape functions for the longitudinal variation of both the displacement and the
temperature.

The considered material is silicon, as it is largely used in micro-technology.
Its thermal and mechanical properties are: E = 1.581011 N/m2, ρ = 2300 kg/m3,
cv = 711 J/kgK, α = 2.510−6 K−1 and k = 170 Wm−1K−1 [62].

According to Equation (4.93), the in�uence of the thermoelastic coupling on
the quality factor is maximum when 2ζ2/π2 = 1. Hence, the importance of the
thermoelastic e�ects depends on the material thermal and mechanical properties
as well as on the dimensions of the structure. For a bar in silicon �xed at its center
and free at its ends, the thermoelastic e�ects are maximum when its length is
3.9 10−8 m. Usually, in practice, bars are largely longer than 3.9 10−8 m so that
they are in adiabatic regime. However, in order to study the one-dimensional
thermoelastic coupling, hypothetical bar lengths from 10−9 m to 10−6 m are
considered.

In order to determine the number of elements that are required to model
accurately the thermoelastic e�ects in the bar, a convergence analysis is carried
out for a bar of 3.9 10−8 m. Figure 4.1 shows the variation of the calculated
quality factor with respect to the number of elements. Models with more than 20
elements are �ne enough in order to determine the thermoelastic quality factor.

Result Discussion

Figure 4.2 shows the variation of the quality factor with the bar length. The
analytical models as well as the �nite element method give similar results. The
quality factor reaches its minimum value of 11304 for a bar length of 3.9 10−8 m.
For bar lengths largely lower than 3.9 10−8 m, the thermoelastic damping can be
neglected and the regime is isothermal. For bars largely longer than 3.9 10−8 m,
which is usually the case in practice, the thermoelastic damping is negligible and
the bars are in adiabatic regime.
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Figure 4.1: Quality factor variation with the number of elements of the �nite
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Figure 4.2: Quality factor variation with the bar length.

Figures 4.3 and 4.4 represent the variation of the frequency shift, <(ω)/ω0−
1, and the amplitude attenuation, =(ω)/ω0, with the bar length. Due to the
thermoelastic e�ects, the frequency becomes larger than the isothermal frequency.
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The frequency shift increases with the length of the bar and reaches an upper
limit of 8.9 10−5 for bar lengths larger than 0.5 µm, which corresponds to the
adiabatic regime. The attenuation exhibits a maximum value of 4.42 10−5 for
the bar length of 3.9 10−8, which also corresponds to the minimum of the quality
factor. Both the analytical and �nite element methods give similar results.
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Figure 4.3: Variation of the frequency shift with the bar length.

Thermoelastic e�ects introduce complex natural frequencies and complex
thermoelastic natural modes. The thermal and mechanical degrees of freedom
are out of phase, so that the maximum of the temperature increment does not
occur when the deformation is maximum. This is due to the relaxation which
occurs through conduction. The di�erence of phase between the thermal and
mechanical degrees of freedom depends on the importance of the thermoelastic
e�ects.

The phase lag between the thermal and mechanical degrees of freedom can
be quanti�ed by plotting the components of the mode in the complex plane.
Figure 4.5 shows that for a bar length of 3.9 10−8 m, the di�erence of phase
between the mechanical and thermal degrees of freedom is equal to 45◦. Figure
4.6 gives the variation of the di�erence of phase with the bar length. As the
bar length increases, the di�erence of phase decreases. The di�erence of phase is
of 45◦ when the bar length is equal to 3.9 10−8 m, i.e. when the thermoelastic
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Figure 4.4: Variation of the amplitude attenuation with the bar length.

coupling has the greatest in�uence. For long bars, the thermal and mechanical
degrees of freedom tend to be in phase. Indeed, as the bar length increases,
the natural frequencies decrease but the thermal frequencies (Equation (4.110))
decrease faster so that the relaxation does not have the time to occur through
conduction. When a bar part is extended, it is cooled and this temperature
variation is not transmitted to the neighbor parts. The oscillations are adiabatic.
On the other hand, when the length is small, the thermal and mechanical degrees
of freedom tend to be in quadrature of phase since the longitudinal conduction
plays an important role. Indeed, as the natural frequency increases slower than
the thermal frequency when the length decreases, the longitudinal conduction
occurs and the temperature di�erence along the bar vanishes. Hence, for a small
bar length, the oscillations can be considered as isothermal.

Figures 4.7 and 4.8 represent the shape of the mechanical and thermal modes,
respectively, for a bar of 3.9 10−8 m. These �gures show clearly that the assump-
tions made in analytical model are adequate. Indeed, the thermoelastic coupling
does not a�ect the shape of the thermal and mechanical modes.



68 Chapter 4. Thermopiezoelectric Finite Element Formulation

−600 −500 −400 −300 −200 −100 0

−250

−200

−150

−100

−50

0

50

100

150

200

250

Real axis

Im
ag

in
ar

y 
ax

is

Mechanical dof
Thermal dof

bar length: 3.9e−8 m

Figure 4.5: Complex representation of the thermoelastic extension mode of a bar.
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4.5.2 Piezoelectric Coupling
Analytical Model

The equation of motion of the bar is

ρ
d2u

dt2
=

dσ

dx
, (4.111)
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where σ takes into account the piezoelectric coupling. The linear piezoelectric
constitutive equations (4.3) and (4.4) are

σ = Eε− eEx, (4.112)
D = eε + bEx. (4.113)
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Eliminating Ex gives

σ = (E +
e2

b
)ε− e

b
D. (4.114)

The equation of motion leads to

ρ
d2u

dt2
= (E +

e2

b
)
d2u

dx2
(4.115)

since the electric condition (4.92) imposes dD/dx = 0. Hence, due to the piezo-
electric coupling, the bar behaves as if its Young's modulus were changed from
E to E + e2

b
.

Finite Element Model

Based on the thermopiezoelectric �nite element formulation, a piezoelectric bar
element can be developed by deleting the thermal degrees of freedom. The degrees
of freedom of the bar element are the electric potential and the axial displacement
at the end nodes of the element. It uses linear shape functions for the longitudinal
variation of both the displacement and the electric potential.

A hypothetical material is considered in order to illustrate the method. Its
mechanical properties are equal to those of silicon: E = 1.581011 N/m2, ρ = 2300

kg/m3, whereas its piezoelectric constant is e = 0.1711 Cm−2 and its dielectric
modulus is b = 3.992 10−11 Fm−1. The bar length is set to 3.9 10−8 m. The
model consists of 40 elements.

Result Discussion

According to the analytical model, the natural pulsation varies from its mechan-
ical value 6.6765 1011 rad/s to its piezoelectric value 6.6923 1011 rad/s. The
�nite element model gives a similar variation, i.e. from 6.6768 1011 rad/s with-
out the piezoelectric coupling to 6.6925 1011 rad/s with the piezoelectric coupling.
Clearly, the piezoelectric e�ects induce an hardening of the bar, and the frequency
shift due to the piezoelectric coupling is equal to 2.36 10−3.
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4.5.3 Thermopiezoelectric Coupling
Analytical Model

The equation of motion of the bar is

ρ
d2u

dt2
=

dσ

dx
, (4.116)

where σ takes into account the piezoelectric coupling:

σ = (E +
e2

b
)ε− e

b
D − αEθ. (4.117)

Substituting the stress by its expression and taking into account the electric
condition, the equation of motion becomes

ρ
d2u

dt2
= (E +

e2

b
)
d2u

dx2
− αE

dθ

dx
. (4.118)

As the pyroelectric coupling is neglected, the heat equation with thermopiezo-
electric coupling is the same as the thermoelastic one (Equation (4.95)):

k
d2θ

dx2
= EαT0

d

dt

(
du

dx

)
+ Cv

dθ

dt
. (4.119)

In order to obtain an expression of the complex pulsation, it is proceeded as
for the thermoelastic coupling. The harmonic solutions of the linear thermopiezo-
electric equations are considered:

u = U0e
iωt and θ = θ0e

iωt. (4.120)

It is assumed that the mechanical and thermal mode shapes are not modi�ed
by the thermopiezoelectric coupling, i.e. the �rst mechanical mode is given by

U0 = A sin
(πx

l

)
, (4.121)

and the �rst thermal mode is given by

θ0 = B cos
(πx

l

)
, (4.122)

where the constants A and B are dependent. Indeed, substituting Equations
(4.121) and (4.122) in the �rst linear thermopiezoelectric equation (4.118) gives
the following relation:

B = A

(
π

l

1

α

(
1 +

e2

Eb

)
− ω2 l

π

ρ

Eα

)
. (4.123)
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Hence, substituting the mechanical and thermal harmonic solutions in the
second linear thermopiezoelectric equation (4.119) gives that the thermopiezo-
electric pulsation ω of the bar satis�es the following equation:

− ρ
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(
l
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iω3 − ρ

E

k
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ω2 +
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2E

Cv

)
iω +

k

Cv

(π

l

)2
(

1 +
e2

bE

)
= 0.

(4.124)

Finite Element Model

Based on the thermopiezoelectric �nite element formulation, a thermopiezoelec-
tric bar element is developed. The degrees of freedom of the bar element cor-
respond to the temperature increment, the electric potential and the axial dis-
placement at the end nodes of the element. It uses linear shape functions for the
longitudinal variations of the displacement, the temperature increment and the
electric potential.

A hypothetical material is considered in order to illustrate the method. Its
mechanical properties are equal to those of silicon: E = 1.581011 N/m2, ρ = 2300

kg/m3, whereas its piezoelectric constant is e = 0.1711 Cm−2 and its dielectric
modulus is b = 3.992 10−11 Fm−1. The model consists of 40 elements when the
bar length is set to 3.9 10−8 m.

Note that as pyroelectricity is disregarded, the corresponding matrices Kφθ

and Cθφ are equal to zero.

Result Discussion

Figure 4.9 shows the variation of the quality factor with the bar length. The
analytical model as well as the �nite element method give similar results. The
quality factor reaches its minimum value of 11362 for a bar length of 3.9 10−8 m.
For bar lengths largely lower than 3.9 10−8 m, the thermoelastic damping can be
neglected and the regime is isothermal. For bars largely longer than 3.9 10−8 m,
which is usually the case in practice, the thermoelastic damping is negligible and
the bars are in adiabatic regime.

Figure 4.10 compares the variation of the thermoelastic and thermopiezo-
electric quality factor. The thermopiezoelectric analyses give the same kind of
variation of the quality factor with the bar length as the thermoelastic ones.
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The thermopiezoelectric values of the quality factor are slightly larger than the
thermoelastic ones and the quality factor is minimum at the same bar length.
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Figure 4.9: Quality factor variation with the bar length (Analytical and FEM
thermopiezoelectric results).
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In order to understand the e�ect of thermopiezoelectricity on the quality
factor, the frequency shift and the amplitude attenuation are studied. Figure 4.11
represents the variation of the frequency shift, <(ω)/ω0− 1, with the bar length.
The thermopiezoelectric frequency shift increases with the length of the bar and
reaches an upper limit of 2.445 10−3 for bars longer than 0.5 µm. Compared
to the thermoelastic problem (Figure 4.3), the shape of the curve is similar but
the order of magnitude of the upper limit is strongly di�erent, i.e. 2.445 10−3

for the thermopiezoelectric problem and 4.42 10−5 for the thermoelastic problem.
As explained previously, piezoelectricity induces an hardening e�ect, leading to a
frequency shift of 2.36 10−3. The piezoelectric shift is the same whatever the bar
length, it only depends on the material data. If the e�ects of piezoelectricity and
thermoelasticity were decoupled, the thermopiezoelectric frequency shift would
be equal to the sum of the piezoelectric and thermoelastic frequency shifts. A
zoom (Figure 4.12) shows that the thermopiezoelectric frequency shift is lower
than the sum of the piezoelectric and thermoelastic frequency shifts so that the
e�ects of thermoelasticity and piezoelectricity on the frequency shift are coupled.

Figure 4.13 represents the variation of the amplitude attenuation, =(ω)/ω0,
with the bar length. The attenuation exhibits a maximum value of 4.42 10−5 for
the bar length of 3.9 10−8 m, to which also corresponds the minimum of the quality
factor. Piezoelectricity by itself does not induce damping but as piezoelectric and
thermoelastic e�ects are coupled, the thermopiezoelectric attenuation curve is not
exactly the same as the thermoelastic one. The thermopiezoelectric attenuation
is lower than the thermoelastic one.

The di�erence between the thermoelastic and thermopiezoelectric analytical
models comes from the factor e2/b between the amplitude of the thermal and me-
chanical modes (Equations (4.99) and (4.123)). Hence, the piezoelectric constant
e directly in�uences the thermopiezoelectric quality factor. Table 4.1 presents
the thermopiezoelectric quality factor and complex frequency for di�erent values
of the piezoelectric constant e. The quality factor increases with the piezoelec-
tric constant. This quality factor augmentation is due to two contributions: the
increase in the frequency shift (mainly due to the piezoelectric frequency shift)
and the decrease in the attenuation.

The thermopiezoelectric complex modes are also in�uenced by the value of
the piezoelectric constant. The thermal and mechanical degrees of freedom are out
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Figure 4.11: Variation of the thermopiezoelectric frequency shift with the bar
length.
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Figure 4.12: Variation of the thermopiezoelectric frequency shift with the bar
length (Zoom).

of phase. Figure 4.15 shows the complex representation of the thermopiezoelectric
mode for the values of e listed in Table 4.1 for a bar length of 3.9 10−8 m. The



76 Chapter 4. Thermopiezoelectric Finite Element Formulation

0 0.2 0.4 0.6 0.8 1

x 10
−6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−5

Bar length [m]

Q
ua

lit
y 

fa
ct

or
 [−

]

TP ana
TE ana
TP FEM

Figure 4.13: Variation of the amplitude attenuation with the bar length.
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Figure 4.14: Variation of the amplitude attenuation with the bar length.

mechanical degrees of freedom have the same amplitude whatever the value of
e, while the thermal degrees of freedom are modi�ed. Figure 4.16 shows that
as e increases, the relative amplitude of the thermal mode with respect to the
mechanical one increases while the di�erence of phase decreases.
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Table 4.1: E�ect of the piezoelectric constant.

e [Cm−2] Q [-] ω [rad/s]
0 11305 6.6768 1011 + 2.9531 107i

0.172 11358 6.6925 1011 +2.9462 107i

0.3 11469 6.7251 1011 +2.9320 107i

Physically, piezoelectricity modi�es the stress and consequently the strain, so
that the induced temperature changes are also modi�ed and hence, the relaxation
process is di�erent leading to a di�erent quality factor. In particular, for a bar
in extension, piezoelectricity increases the relative temperature increment and
decreases the phase lag between the thermal and mechanical degrees of freedom
leading to a higher quality factor.

4.6 Concluding Remarks
In this chapter, the thermopiezoelectric �nite element formulation has been de-
rived from a uni�ed variational principle taking into account the mechanical, ther-
mal and electric �elds. In order to solve the thermopiezoelectric eigenproblem,
an iteration method has been selected and a real non-symmetric block Lanczos
method has been developed.

In order to validate the �nite element formulation, a simplistic one-dimensional
thermopiezoelectric problem has been investigated. This problem, which consists
in the longitudinal vibrations of a bar, has been studied analytically and nu-
merically, taking into account successively the thermoelastic, piezoelectric and
thermopiezoelectric couplings. This procedure has allowed to understand the
in�uence of the di�erent couplings on the quality factor. It has shown that
the thermopiezoelectric coupling leads to a higher quality factor than the ther-
moelastic one in the case of a vibrating bar. This increase is not only due to the
piezoelectric hardening resulting in a higher resonant frequency but also to the
decrease in damping induced by the e�ect of piezoelectricity on the temperature
gradients.
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As the thermopiezoelectric �nite element formulation and the method of
resolution have been validated on a simple analytically tractable case, real 3-D
problems can now be numerically studied using the developed thermopiezoelectric
�nite element method.
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Figure 4.15: Complex representation of the thermopiezoelectric extension mode
of a bar (3.9 10−8 m).
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Chapter 5

Numerical Applications

The thermopiezoelectric �nite element formulation developed
in the previous chapter is used in order to quantify the quality
factor of two structures. Firstly, a clamped-clamped silicon
beam is modeled with various kinds of thermoelastic �nite
elements. The e�ects of the anchor and the residual stress
are studied on this test case. Secondly, the vibrating beam
of the VIA presented in Chapter 2 is analyzed. In particular,
the in�uences of thermopiezoelectricity, the trapezoidal cross-
section and the electrodes on the quality factor are highlighted.

5.1 Clamped-clamped Silicon Beam

In numerous micro-resonators, the vibrating part consists in a clamped-clamped
silicon beam. In this section, the test case beam has the following dimensions: a
length L of 90 µm, a height h of 4.5 µm and a width w of 4.5 µm (Figure 5.1).
The thermal and mechanical properties of silicon at To = 298 K are: E = 1.58

1011 N/m2, ρ = 2300 kg/m3, ν = 0.2, cv = 711 J/kgK, α = 2.510−6 K−1 and
k = 170 Wm−1K−1. The contribution of the piezoelectric e�ect is not considered
for this example and the thermoelastic quality factor is determined for the �rst
bending mode in plane OY Z.

81
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Figure 5.1: Beam geometry.

5.1.1 Hexahedral Finite Element Model
Based on the thermopiezoelectric �nite element formulation developed in Chapter
4, thermoelastic quadratic 3-D elements are derived by disregarding the electric
degrees of freedom. In this analysis, 20-node hexahedral elements are used. Each
node i has three mechanical degrees of freedom (ui, vi, wi), the displacements of
node i along the three directions (X, Y , Z). At each node, a thermal degree of
freedom represents the temperature increment θi. The displacement �eld and the
thermal �eld use tri-quadratic interpolation functions as shape functions.

Making use of the symmetry planes of the problem (dashed lines in Figure
5.1), only one quarter of the beam is modeled. The mesh comprises 40 elements
along the half length, 4 elements along the vibrating height and 2 elements along
the half width. The boundary conditions are such that one of the extremity is
clamped and the symmetry conditions are imposed on the symmetry planes. The
temperature increment of the central node of the clamped extremity is �xed to
zero.

Figure 5.2 represents the thermoelastic mode. The temperature increment
�eld is coherent with the strain �eld:

- The temperature does not vary along the width which does not undergo
any deformation except those induced by the Poisson e�ect.

- The lowest and highest temperature increments are observed at the clamped
extremity where the strain maxima are located.

- The temperature of the neutral �ber does not vary.
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- The middle of the beam shows local extrema of temperature increments.

The corresponding quality factor is equal to 12 767. The frequency shift due to
the thermoelastic damping is equal to 2.2203e-5 and the attenuation is equal to
3.9162e-5.

Figure 5.2: Thermoelastic mode of the hexahedral �nite element model (White:
temperature increase, Black: temperature decrease).

5.1.2 Quadrilateral Finite Element Model
Based on the thermopiezoelectric �nite element formulation developed in Chapter
4, thermoelastic quadratic 2-D elements are derived by disregarding the electric
degrees of freedom. In this analysis, 8-node quadrilateral plane stress elements are
used. Each node i has two mechanical degrees of freedom (vi, wi), the displace-
ments of node i along the two directions (Y , Z). At each node, a thermal degree
of freedom represents the temperature increment θi. The displacement �eld and
the thermal �eld use bi-quadratic interpolation functions as shape functions.

Making use of the symmetry of the problem, only one half of the beam is
modeled. The mesh comprises 80 elements along the half length and 8 elements
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along the vibrating height. The boundary conditions are such that one of the
extremity is clamped and the symmetry conditions are imposed on the symmetry
plane. The temperature increment of the central node of the clamped extremity
is �xed to zero.

Figure 5.3 represents the thermoelastic mode. The temperature increment
�eld is coherent with the strain �eld:

- The maxima of the temperature decrease and increase are located at the
clamped extremity where the strain maxima are located.

- The temperature of the neutral �ber does not vary.

- The middle of the beam shows local maxima of the temperature decrease
and increase.

The corresponding quality factor is equal to 13 258. The frequency shift due to
the thermoelastic damping is equal to 2.2169e-5 and the attenuation is equal to
3.7713e-5.

Figure 5.3: Thermoelastic mode of the quadrilateral �nite element model (White:
temperature increase, Black: temperature decrease).
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5.1.3 Beam Finite Element Model
Based on the thermoelastic �nite element formulation, a speci�c beam element
may be developed in order to simulate the thermoelastic behavior of vibrating
beams. For the displacement �eld, a classical Bernoulli-Euler beam model is
assumed. For the sake of simplicity, a plane beam element is considered here
although the following developments may be extended to a more general 3-D
beam element. The motion of a beam in the (x, y) plane is described by the
axial u(x, y) and transverse v(x, y) displacement components. The motion in z-
direction, which is primarily due to Poisson's ratio e�ects, can be neglected. The
classical Bernoulli-Euler beam model assumes that

u(x, y) = −y
∂v(x)

∂x
= −yϑ, (5.1)

v(x, y) = v(x). (5.2)

A Bernoulli-Euler plane beam element has two end nodes, i and j, and four
degrees of freedom collected in the node displacement vector uu:

uu = [ vi ϑi vj ϑj ]T . (5.3)

Figure 5.4 shows the degrees of freedom of a node j of a Bernoulli-Euler plane
beam element.

x
, u


y, v
 ϑ

j
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j


i
 j


Figure 5.4: Bernoulli-Euler plane beam element.

Using Hermitian cubic shape functions, the transverse displacement is expressed
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as follows

v = [ Nvi
Nϑi

Nvj
Nϑj

][ vi ϑi vj ϑj ]T = Nuuu. (5.4)

The shape functions are conveniently expressed in terms of the dimensionless
coordinate:

ξ =
2x

`
− 1 (−1 ≤ ξ ≤ 1), (5.5)

where ` is the element length. The shape functions are explicitly given by

Nvi
=

1

4
(1− ξ)2(2 + ξ), (5.6)

Nϑi
=

1

8
`(1− ξ)2(1 + ξ), (5.7)

Nvj
=

1

4
(1 + ξ)2(2− ξ), (5.8)

Nϑj
= −1

8
`(1 + ξ)2(1− ξ). (5.9)

Knowing the expression of the shape functions, the strain can be calculated:

ε =
∂u

∂x
= −y

∂2v

∂x2
= Buuu, (5.10)

where
Bu = −yN′′

u = −y

`
[ 6 ξ

l
3ξ − 1 −6 ξ

l
3ξ + 1 ]. (5.11)

As the transverse variation of the temperature plays a key role in the ther-
moelastic behavior of vibrating beams, the temperature has to be modeled by
at least two values at each node. It is important to note that although a lin-
ear temperature �eld, with only θ0 as degree of freedom, can address the axial
temperature distribution, it cannot satisfy the top and bottom surface thermal
boundary conditions:

−κyy
∂θ

∂y
= 0, y = ±b/2, (5.12)

where κyy is the heat conduction coe�cient in y-direction and b is the height of the
beam. Therefore, temperature variations through the height, which produce the
most important bending deformation, cannot be modeled accurately by the linear
temperature �eld. Therefore, for each beam element, the two nodes have two
thermal degrees of freedom: θ0 and θ1. θ0 represents the neutral �ber temperature
and θ1, the temperature variation on the height of the beam. In particular, the
temperature �eld:

θ(x, y, z, t) = θ0(x, t) + g(y)θ1(x, t), (5.13)
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where the function g(y) takes the following form:

g(y) = y − 4

3b2
y3, (5.14)

automatically satis�es the thermal boundary conditions. θ0 and θ1 are approxi-
mated using linear interpolation functions:

(
θ0

θ1

)
=

(
N1 0 N2 0

0 N1 0 N2

)



θi
0

θi
1

θj
0

θj
1




, (5.15)

where

N1 = 1− x

`
, (5.16)

N2 =
x

`
. (5.17)

Therefore, the temperature increment θ is expressed in term of the node value
vector uθ:

θ =
(

1 g(y)
) (

θ0

θ1

)
(5.18)

=
(

1 g(y)
) (

N1 0 N2 0

0 N1 0 N2

)



θi
0

θi
1

θj
0

θj
1




(5.19)

=
(

N1 g(y)N1 N2 g(y)N2

)



θi
0

θi
1

θj
0

θj
1




(5.20)

= Nθuθ. (5.21)

In order to determine the thermal �eld, the shape function derivative matrix Bθ

has to be de�ned:

Bθ = −∇Nθ (5.22)

= −
(
−1/` −g(y)/` 1/` g(y)/`

0 g′(y)(1− x/`) 0 g′(y)x/`

)
, (5.23)
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where
g′(y) = y − 4

b2
y2. (5.24)

The beam is modeled using 50 thermoelastic beam �nite elements. Both ends
are clamped and the temperature increment at both extremities is �xed to zero.
Figure 5.5 represents the �rst thermoelastic bending mode of a clamped-clamped
beam. The variation of temperature is given for a maximum displacement of
the neutral �ber of 1 µm. The mechanical deformation is similar to the usual
isothermal natural mode. As expected from the transverse temperature pro�le,
the upper and lower surfaces exhibit opposite temperature increments: when a
point located on the upper side is heated, the corresponding lower point is cooled,
and conversely. Moreover, along the longitudinal direction, the middle part is
heated when both ends are cooled, and conversely. The neutral �ber does not
experience any change of temperature. All these observations are in agreement
with the mechanical deformation of the mode. Indeed, when the upper part of the
beam is compressed, the corresponding lower part is stretched, and conversely,
but the neutral �ber remains unstrained. When the middle part of a longitudinal
surface is compressed, both ends are stretched, and conversely. The resulting
quality factor is equal to 12 967. The frequency shift due to the thermoelastic
damping is equal to 1.8827e-5 and the attenuation is equal to 3.6326e-5.

5.1.4 Result Discussion
Table 5.1 compares the quality factor and the real and imaginary parts of the
frequency for the di�erent models, i.e. the analytical models of Zener and Lifshitz-
Roukes explained in Chapter 3 and the �nite element models exposed above. The
maximum relative di�erence in the quality factor between all the models is about
4 %. As explained in details in Chapter 3, the di�erence between Zener and
LR models resides in the di�erent approximation for the transverse temperature
pro�le. Beam �nite elements use a cubic approximation for the transverse temper-
ature pro�le. As showed in Figure 5.6, the BFEM (Beam Finite Element Model)
pro�le is comprised between Zener and LR ones as well as does the quality factor.

The di�erence between the hexahedral and quadrilateral models comes from
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Figure 5.5: Mechanical deformation and temperature variation of the �rst ther-
moelastic bending mode.

Table 5.1: Quality factor of a 4.5 x 4.5 x 90 [µm] silicon C-C beam.

Model Quality factor [-] ωr [rad/s] ωi [rad/s]
Zener 12729 N/A N/A
LR 13112 1134 2.974e7

Hexa20 12767 1149 2.934e7
Quad8 13258 1104 2.929e7
Beam 12967 1146 2.974e7

Poisson's e�ects in the direction orthogonal to the vibration direction, which are
only considered in the hexahedral model. A priori, these Poisson's e�ects could
be considered negligible referring to the thermoelastic mode (Figure 5.2), where
it seems that no deformation or temperature variation occurs along the width
. Table 5.2 shows that if Poisson's e�ects are completely disregarded (ν = 0),
the hexahedral and quadrilateral models gives exactly the same values for the
quality factor and the complex frequency. Taking into account Poisson's e�ects
decreases the quality factor from 13351 to 12767, i.e. 4.6 %. Poisson's e�ects in
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the vibration plane induces a variation from 13351 to 13258 while adding Poisson's
e�ect in the width direction implies another decrease from 13258 to 12767.

Table 5.2: Variation of the quality factor of a 4.5 x 4.5 x 90 [µm] silicon C-C
beam with Poisson's ratio.

Model Poisson's ratio Quality factor [-] ωr [rad/s] ωi [rad/s]
Hexa20 0.2 12767 1149 2.934e7
Hexa20 0 13351 1098 2.934e7
Quad8 0.2 13258 1104 2.929e7
Quad8 0 13351 1098 2.934e7
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Figure 5.6: Transverse temperature pro�le at the clamped extremity of a C-C
beam for di�erent models.

The di�erence between the beam and the two other �nite element models has
three main causes. Firstly, the models are not exactly the same mechanically. A
di�erence of 1 % is observed between the mechanical frequencies of the beam and
the two other models. This leads to slight di�erences in the strain �eld, which
in�uence the temperature distribution and hence, the quality factor. Secondly,
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due to the choice of the thermal degrees of freedom in the thermoelastic beam
element, when the temperature increment is �xed at one end of the neutral �ber,
the beam model does not take into account the longitudinal conduction and
consequently, neglects the longitudinal thermal relaxation. In order to study the
e�ect of the longitudinal thermal relaxation, the thermal conductivity is decreased
in the direction of the length in the quadrilateral model (ν = 0). Figure 5.7 shows
that if the longitudinal thermal conductivity (kl) is decreased with respect to the
transverse one (kt), the quality factor decreases. Note that kl can not be decreased
inde�nitely because the eigenvalue problem becomes badly conditioned and some
spurious thermal rigid modes appear. Thirdly, in the beam �nite element model,
the transverse temperature pro�le is imposed to be the same along the length,
while a slight variation is observed in hexahedral and quadrilateral �nite element
models.
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Figure 5.7: Variation of the quality factor when the longitudinal thermal conduc-
tivity (kl) is decreased with respect to the transverse one (kt).
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5.1.5 E�ect of Beam Height
As predicted by the analytical models, the thermoelastic e�ects on the behavior of
an oscillating beam depend on the aspect ratio of the beam. For a beam of a �xed
length of 90 µm, the �rst natural frequency is calculated using the thermoelastic
models as a function of its height. Figure 5.8 represents the frequency shift, which
is given by <(ωn)/ωo,n − 1, and the attenuation, =(ωn)/ωo,n, where ωo,n is the
isothermal natural frequency. The frequency shift increases with the height of
the beam, but the slope decreases so that the frequency shift tends to reach an
upper limit. The attenuation exhibits a maximum for a beam height of 5.3 µm.
The analytical and �nite element models give similar results. As the beam height
to length ratio increases, Poisson's e�ect is reinforced, leading to larger errors in
the beam �nite element model and LR models. Indeed, when the beam is not
slender enough, Euler-Bernoulli assumption becomes too restrictive. Figure 5.9
shows the variation of the quality factor with the height of the beam. The quality
factor reaches its minimum for a beam height of 5.3 µm.
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Figure 5.8: Variation of the frequency shift and attenuation versus the beam
height (beam length: 90 µm).

Thermoelastic e�ects introduce complex natural frequencies and the corre-
sponding thermoelastic natural modes are also complex. Due to the relaxation
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Figure 5.9: Variation of the quality factor versus the beam height (beam length:
90 µm).

through conduction, the thermal and mechanical degrees of freedom are out of
phase. Hence, the maximum of the temperature increment does not occur when
the deformation is maximum. The di�erence of phase between the thermal and
mechanical responses depends on the importance of the thermoelastic e�ects.

The phase lag between the thermal and mechanical degrees of freedom can
be quanti�ed by plotting the components of the mode in the complex plane.
This is done for the modes obtained by the beam �nite element models. Figure
5.10 shows that for a beam height of 4.5 µm the di�erence of phase between the
mechanical and thermal degrees of freedom is equal to 60◦. Figure 5.11 gives
the variation of the di�erence of phase for di�erent beam heights. As the beam
height increases, the di�erence of phase decreases. The di�erence of phase is
of 45◦ when the beam height is equal to 5.3 µm, i.e. when the thermoelastic
coupling has the greatest in�uence. For a large beam height, the thermal and
mechanical degrees of freedom tend to be in phase. Indeed, as the beam height
increases, the natural frequencies increase and the relaxation does not have the
time to occur through conduction. When a �ber is extended, it is cooled and this
temperature variation is not transmitted to the neighbor �bers. The oscillations
are adiabatic. On the other hand, when the height is small, the thermal and
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mechanical degrees of freedom tend to be in quadrature of phase. The transverse
conduction plays an important role. Indeed, as the natural frequency is relatively
small, the transverse conduction occurs and the oscillations can be considered as
isothermal.
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Figure 5.10: Complex representation of the �rst thermoelastic bending mode.

5.1.6 In�uence of Anchor
Anchors are added to the clamped-clamped beam in order to understand their
in�uence on the thermal and mechanical �elds. The anchor dimensions are such
that they include most of the stress and temperature distribution that extend into
the anchor structure [59]. The width w of the anchor is the same as the beam
one, its height is equal to three times the height h of the beam and its length is
equal to two beam heights (Figure 5.12). The three sides of the anchor rectangle
which are not attached to the beam (delimited by bold lines in Figure 5.12) are
clamped. Due to the symmetry plane (represented by dotted lines in Figure 5.12),
one half of the structure is modeled using quadrilateral �nite elements.

The e�ects of anchor are studied on two test cases. One is located on the
isothermal side of the quality factor curve. The beam height is set to 4.5 µm.
The other one is located on the adiabatic side of the quality factor curve. The
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h


2h


3h


w


Figure 5.12: Geometry of the half beam with anchor.

beam height is equal to 7 µm. For both cases, the beam width is set to 4.5 µm

and the beam length is equal to 90 µm. Table 5.3 compares the quality factor,
the damping and the resonant frequency with and without anchor for both cases.
In both cases, the addition of the anchor decreases the resonant frequency due
to an e�ective lengthening of the beam and decreases the damping due to the
reduction of strain and temperature gradients near the anchor to beam interface.
Relaxing the strain near the ends of the beam increases the performance of the
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resonator. In the isothermal case, the decrease in damping is more important
than the decrease in resonant frequency, ultimately raising the quality factor. On
the other hand, the decrease in damping does not overcome the decrease in the
resonant frequency for the adiabatic case, leading to a smaller quality factor.

Table 5.3: E�ect of anchor on the quality factor of C-C silicon beams.

Height [µm] Anchor Q [-] ωr [rad/s] ωi [rad/s]
4.5 Yes 14553 939 2.7317e7
4.5 No 13258 1104 2.9296e7
7 Yes 14296 1406 4.0210e7
7 No 14942 1493 4.4629e7

Fillets are added to the geometry to smooth out the intersection between
the beam and the anchors. To study their e�ect on thermoelastic damping, the
quality factor is calculated for two �llet sizes; the radius is successively set to 10
% and 20 % of the beam height. Figures 5.13 and 5.14 compare the temperature
distribution for the isothermal con�guration with a �llet of 0.45 µm and 0.9 µm.
The con�guration with the larger �llet presents higher temperature gradient at
the beam to anchor junction. Table 5.4 shows the in�uence of the �llet radius on
the quality factor, damping and resonant frequency for both the isothermal and
adiabatic cases. A larger �llet induces an increase in the resonant frequency as
the beam becomes e�ectively shorter. As the e�ective beam height increases near
the beam to anchor junction, the e�ective relaxation time for damping in that
region increases. In the isothermal case, the increase in the damping outpaces the
increase in the resonant frequency, decreasing the quality factor. Conversely, in
the adiabatic case, the increase in the resonant frequency outpaces the increase
in the damping, giving a higher quality factor. Globally, increasing the �llet has
similar consequences than increasing the e�ective height of the beam. In the
adiabatic side, an increase in the height yields a larger quality factor, whereas in
the isothermal side, it yields a lower quality factor.
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Table 5.4: E�ect of �llet on the quality factor of C-C silicon beams.

Height [µm] Fillet radius [µm] Q [-] ωr [rad/s] ωi [rad/s]
4.5 0 14553 939 2.7317e7
4.5 0.45 14351 960 2.7569e7
4.5 0.9 14166 984 2.7879e7
7 0 14296 1406 4.0210e7
7 0.7 14312 1425 4.0786e7
7 1.4 14417 1438 4.1463e7

5.1.7 E�ect of Residual Stress
The e�ect of residual stress on the quality factor is studied. In order to take into
account the e�ect of an initial stress �eld σ0

ij, the following term has to be added
to the total free energy B (Equation (4.1)) [52]:

Bg = σ0
ijε

(2)
ij , (5.25)

where ε
(2)
ij is the quadratic part of the strain tensor:

ε
(2)
ij =

1

2

∂uk

∂xi

∂uk

∂xj

. (5.26)

Therefore, the mechanical sti�ness matrix becomes

Kuu
∗ = Kuu + Kg, (5.27)

where Kg is the geometric sti�ness matrix which satis�es
∫

Ω

BgdΩ =
1

2
uu

TKguu. (5.28)

For a beam element of length ` and cross-section area A, the geometric
sti�ness matrix is expressed as follows

Kg =
σ0A

30`




36 3` −36 3`

3l 4`2 −3` −`2

−36 −3` 36 −3`

3` −`2 −3` 4`2




, (5.29)
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Figure 5.13: Temperature distribution for the isothermal case with the anchor
and �llet (radius=0.45 µm).

Figure 5.14: Temperature distribution for the isothermal case with the anchor
and �llet (radius=0.9 µm).
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where σ0 is a constant axial initial stress.

The e�ect of residual stress is studied on a beam of length 90 µm, height 4.5
µm and width 4.5 µm. Figure 5.15 represents the variation of the quality factor
with the residual stress (solid line). It shows that the quality factor grows linearly
with the residual stress. This in�uence is not only explained by the increase in
the resonant frequency (this e�ect is represented by the dotted line in Figure
5.15), but also by the decrease in the damping as shown in Figure 5.16.

Figure 5.17 compares the temperature increment distribution near the clamped
end for the unstressed con�guration and the con�guration with a residual stress
of 200 MPa. The temperature gradient in the longitudinal direction is larger in
the unstressed con�guration than in the the stressed one. The tensile residual
stress reduces the strain concentration at the clamping and hence, the quality
factor is improved.

0 50 100 150 200
1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

1.44

1.46
x 10

4

Residual stress [MPa]

Q
ua

lit
y 

fa
ct

or
 [−

]

Figure 5.15: Variation of the quality factor with the residual stress (solid line:
actual variation, dotted line: variation due to the variation of the resonant fre-
quency).
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Figure 5.16: Variation of the damping with the residual stress.

Figure 5.17: E�ect of residual stress on the temperature distribution near the
clamped end (above: σ0 = 0 MPa, below: σ0 = 200 MPa).

5.2 Vibrating Inertial Accelerometer Beam
In order to quantify the performance of the VIA (presented in Chapter 2), the
thermoelastic quality factor of its sensitive part, a clamped-clamped beam, has to
be determined. The beam is made of quartz, which is anisotropic and moreover,
piezoelectric. Figure 5.18 shows the geometry of the beam. In this �gure, the
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scale in the direction of the beam length is ten times smaller than the one in the
other two directions. The cross-section of the beam is a right trapezoid. Due to
chemical anisotropic etching of quartz during the manufacturing of transducers,
some crystalline planes appear and modify the beam geometry, so that the real
cross-section of VIA beams is trapezoidal. The beam vibrates along the direction
of the largest sides of the trapezoid. The dimensions are given in Table 5.5.
Figure 5.18 also illustrates the con�guration of the electrodes, which are made of
a 200 nm thick layer of gold.

Figure 5.18: VIA beam geometry with electrode position.

Table 5.5: Dimensions of VIA vibrating beam.

Data Dimension [µm]
Height 33

Large base 59
Small base 54
Length 2260

Experiments show that the quality factor of the VIA is around 13000 at a
resonant frequency of about 62 kHz [98]. However, using equivalent isotropic ma-
terial data and a resonant frequency of 62 kHz, Zener's model (Equation (3.19))
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gives a quality factor of 16576, which is nearly 30 % higher than the experimen-
tal value. LR model (Equation 3.52) gives 14763, which is 12 % di�erent from
Zener's quality factor. The di�erence between the two analytical models, which
has been explained in Chapter 3, is large when the dimensionless frequency is
high. In order to check the in�uence of the dimensionless frequency, the can-
tilever con�guration, for which the beam is clamped at one end and free at the
other one, is considered. In terms of parameters involved in the analytical mod-
els, the cantilever con�guration di�ers from the clamped-clamped one only in its
frequency, which is lower. For the cantilever con�guration, Zener's quality factor
is 2712 while LR model gives 2620, and as expected, the di�erence between the
two values is smaller.

Mathematically, the di�erence is explained by the inherent approximations
assumed for the transverse temperature pro�le. In the �nite element method,
no approximation is made about the transverse temperature pro�le, so that the
�nite element results can be considered as a reference solution. Finite element
analyses of both con�gurations are carried out using exactly the same rectangu-
lar geometry and material data as in the analytical models. The �nite element
quality factors di�er from a few percents from LR results, i.e. the �nite element
quality factor is equal to 2640 for the cantilever con�guration and 14111 for the
clamped-clamped con�guration. Figure 5.19 represents the transverse tempera-
ture pro�le assumed in the two analytical models as well as the �nite element
pro�les. For both con�gurations (cantilever and clamped-clamped), LR curve
gives a better approximation than Zener's curve. As expected, the two �nite
element curves are di�erent. Indeed, the deformations induced by the bending
mode are di�erent in the two cases, so that the thermo-mechanical coupling leads
to di�erent distributions of the induced temperature variation.

Even if LR model gives a better approximation than Zener's one, LR quality
factor is still more than 10 % higher than the experimental value. This overes-
timation can be due to the inability of LR model to take into account the real
geometry and material behavior of the VIA beam, in particular the trapezoidal
cross-section and the anisotropic material. Moreover, piezoelectricity as well as
the electrodes can also in�uence the quality factor. In order to study these addi-
tional factors, di�erent �nite element analyses are carried out.

Firstly, the e�ect of anisotropy is taking into account. Tables 5.6 and 5.7
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Figure 5.19: Transverse temperature pro�le.

Table 5.6: Rectangular cross-section con�guration resonant frequency.

Con�guration FEM Fr. [Hz] Ana. Fr. [Hz]
Iso cantilever 9751 9682
Ani cantilever 9724 9682

Iso clamped-clamped 61871 61949
Ani clamped-clamped 61607 61949

Table 5.7: Rectangular cross-section con�guration quality factor.

Con�guration FEM Q LR Q Z Q
Iso cantilever 2640 2620 2712
Ani cantilever 2649 2620 2712

Iso clamped-clamped 14 111 14763 16576
Ani clamped-clamped 14 157 14763 16576
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summarize the results for the clamped-clamped and cantilever con�gurations.
They show that anisotropy slightly increases the quality factor while it lowers the
resonant frequency. However, the anisotropy e�ect cannot explain the di�erence
from the experimental results.

Trapezoidal cross-section �nite element models are investigated. Table 5.8
lists the results for trapezoidal cross-section con�gurations. As before, anisotropy
decreases the resonant frequency while it increases the quality factor. However,
as for rectangular cross-section con�gurations, quality factors are still 10 % larger
than the experimental results.

Table 5.8: Trapezoidal cross-section con�guration results.

Con�guration FEM Fr. [Hz] FEM Q LR Q Z Q
Isotropic 61992 14236 14763 16576

Anisotropic 61626 14644 14763 16576

Table 5.9: VIA structure results.

Con�guration FEM Fr. [Hz] FEM Q
TE w/o elec 61830 15125
TP w/o elec 62117 14363
TE w/ elec 60815 13700
TP w/ elec 61111 13090

Two e�ects are still to be investigated: piezoelectricity and the in�uence of
the electrodes. Piezoelectricity is known to increase the resonant frequency, what
could also a�ect the quality factor. The electrodes made of gold, which is a really
good thermal conductor compared to quartz, will perturb the thermal �eld and
hence, modify the quality factor. Table 5.9 gives the quality factor of the VIA
for four di�erent models: thermoelastic analysis without the electrodes, ther-
mopiezoelectric analysis without the electrodes, thermoelastic analysis with the
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electrodes and thermopiezoelectric analysis with the electrodes. It can be seen
that the electrodes decrease the quality factor but also the resonant frequency.
Figures 5.20 and 5.21 show the temperature increment magnitude distributions
corresponding to the bending mode of the VIA beam with and without the elec-
trodes, respectively. The electrodes modify the temperature distribution on the
surface of the beam creating a temperature gradient through the height of the
beam so that the quality factor decreases signi�cantly. Piezoelectricity increases
the resonant frequency as well as it also slightly lowers the quality factor.

Figure 5.20: Temperature increment magnitude distribution of the VIA beam
bending mode without the electrodes.

Figure 5.21: Temperature increment magnitude distribution of the VIA beam
bending mode with the electrodes.
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Therefore, when taking piezoelectricity into account, the quality factor as
well as the resonant frequency correspond to the experimental values. These
analyses show that the electrodes play an important role in the quality factor, so
that this e�ect is further investigated in the next section.

5.2.1 E�ect of Electrodes

Among all the speci�cities of the VIA beam, the presence of the electrodes implies
the most important change in the quality factor. In order to study their e�ects
in more details, a purely thermoelastic test case is considered. It consists in a
clamped-clamped beam with a length of 2.26 mm, a vibrating thickness of 56.5
µm and a height of 30 µm. Four 200 nm thick gold electrodes are deposited on
this beam near the clampings. The length of the electrodes is equal to one quarter
of the beam length and their width is equal to one half of the vibrating thickness
of the beam. The electrode position is such that the structure is symmetric
with respect to Y and Z axes, so that only one quarter of the structure has
to be modeled. The material data are the same as those used for the isotropic
quartz in the previous section. The beam is modeled using quadratic hexahedral
�nite elements. There are 2 elements along the half height, 8 elements along
the vibrating thickness and 15 elements along the half length. The electrode is
meshed using quadratic quadrilateral plane stress �nite elements, which match
the beam mesh. Figure 5.22 shows the model with the electrode position.

Table 5.10 compares the quality factor Q, the damping ωr, the thermoelastic
resonant frequency ωi and the isothermal resonant frequency ω0 of the con�gu-
rations without and with electrodes. The electrodes decrease the isothermal as
well as the thermoelastic resonant frequency, but they also increases the damp-
ing. Both e�ects lead to a reduction in the quality factor. Figure 5.23 shows
the temperature increment distribution at the clamped end for the con�guration
with electrodes. The electrode induces a temperature gradient into the height of
the beam and it also modi�es the longitudinal temperature distribution.
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Figure 5.22: Mesh of one quarter of the beam with electrodes.

Figure 5.23: Temperature increment distribution at the clamped end for the
con�guration with electrodes.
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Table 5.10: In�uence of the electrodes.

Con�guration ωr [rad/s] ωi [rad/s] Q [-] ω0 [rad/s]
w/o electrodes 13.63 388554 14249 388130
w/ electrodes 15.51 388497 12521 388060

5.3 Concluding Remarks
This chapter has presented several applications of the �nite element formulation
for the thermoelastic and thermopiezoelectric couplings. Two test cases have been
studied.

Firstly, a clamped-clamped silicon beam has been modeled. Its quality fac-
tor has been quanti�ed using di�erent methods: analytical methods (Zener and
Lifshitz-Roukes) and �nite element methods (hexahedral FE model, quadrilat-
eral FE model and beam FE model). All these models have intrinsic assumptions
and their comparison allows to highlight the in�uence of di�erent phenomena
(Poisson's e�ect, longitudinal thermal relaxation,...) on the quality factor. The
in�uence of the length to height ratio has been investigated. The e�ect of an-
chor and �llet has also been analyzed. It is shown that a tensile residual stress
increases the quality factor.

Secondly, the vibrating beam of the VIA presented in Chapter 2 has been
analyzed. The speci�cities of VIA beams, which are not taken into account in
analytical models, are the material behavior (anisotropic and piezoelectric), the
trapezoidal cross-section and the presence of electrodes. Among these speci�ci-
ties, the electrodes have the most important in�uence on the quality factor and
their e�ect has been more deeply studied. The �nite element results have been
compared to the experimental data. When taking into account a model actuated
by piezoelectricity, the quality factor as well as the resonant frequency are in
agreement with the experimental values. The analyses show that the electrodes
play an important role in the quality factor and that piezoelectricity has to be
considered in order to accurately determine the resonant frequency.
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Chapter 6

Uncertainty Treatment in Finite
Element Analysis

This chapter reviews the basics of stochastic �nite element
methods. Firstly, the uncertainty de�nition is clari�ed. The
concept of random �eld, which allows the spatial variability
modeling of parameters, is exposed as well as methods for
its discretization. Second moment stochastic �nite element
methods are then reviewed. Finally, the most suitable sto-
chastic �nite element method and random �eld discretization
method are selected for the modeling of multiphysic problems,
and in particular, for thermopiezoelectric eigenproblems.

6.1 Uncertainty De�nition
The non-deterministic �nite element approaches have received an increasing at-
tention over the last decade. Non-deterministic methods intend to assess the e�ect
of uncertainties on the response or performance of systems. In non-deterministic
�nite element methods, uncertainty sources are of various types:

- When modeling a system, assumptions are made and a source of uncer-
tainty resides in the mathematical models that are used to describe physi-
cal phenomena. One example of this kind of uncertainty is the modeling of
damping in materials.

- Numerical errors introduced by the computational implementation of the

111
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mathematical models are another source of uncertainty. In the �nite el-
ement method, the discretization error is an illustration of this kind of
numerical uncertainty.

- The model parameters do also show uncertainty. Many design parameters
that describe the geometry, material and environmental e�ects on the de-
sign are subject to uncertainty. These parameters can scatter intrinsically
as well as because of the uncontrollable random e�ects that a�ect the re-
sults of experimental measurements. Moreover, production inaccuracy and
design tolerances introduce variability which inevitably leads to a scattering
around the nominal behavior of the design.

This work focusses on the third source of uncertainty. It is assumed that
the variability of the design parameters has the most important in�uence on the
response variability and that other sources of uncertainty can be disregarded.

Uncertainty can be characterized in di�erent ways. In the literature, un-
certain parameters are modeled by probabilistic or possibilistic approaches. In
this work, probabilistic uncertainty is considered and any uncertain parameter is
represented by a random variable X. The probability that the value of X lies
within the interval [a, b] is given by

P (a ≤ X ≤ b) =

∫ b

a

fX(x)dx, (6.1)

where fX(x) is the probability density function (PDF) of X. The expectation of
the function g(X) is de�ned by

E[g(X)] =

∫ ∞

−∞
g(X)fX(x)dx. (6.2)

If g(X) = Xn, one obtains the moments of the random variable X. The �rst
moment (n = 1) is the mean or the expectation of X. The central moments of
X are obtained by taking g(X) = (X − E[X])n. While the �rst central moment
is zero, the second central moment is by de�nition the variance of X, denoted
V ar(X). The square root of the variance, σ, is the standard deviation of X,
which is a common measure for the dispersion of the distribution about the mean
value.

For multiple probabilistic variables (X1, X2, . . . , Xn), the concept of the prob-
ability density function is extended to dimension n using the joint probability
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density function fX1,X2,...,Xn(x1, x2, . . . , xn). The multivariate expectation is de-
�ned analogously to the univariate one. In order to quantify the interdependence
between the variables, the covariance of two variables Xi and Xj is de�ned as the
expectation of the product of the deviations from their respective means, mi and
mj:

Bij = Cov(Xi, Xj) = E[(Xi −mi)(Xj −mj)] = E[XiXj]−mimj, (6.3)

and the covariance matrix B containing all individual variances and covariances
is constructed:

B =




V ar(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X2, X1) V ar(X2) · · · Cov(X2, Xn)
... ... ... ...

Cov(Xn, X1) Cov(Xn, X2) · · · V ar(Xn)




. (6.4)

The main property of B is that it is positive de�nite.

6.2 Discretization Methods for Random Fields
Random �eld concept allows the continuous spatial variability of parameters to
be taken into account in stochastic modeling. This means that instead of dealing
with a discrete set of random variables (X1, X2, . . . , Xn), the random �eld formal-
ism can deal with a distributed random variable X = X(x) which takes one value
for any x located in the parameter space. For example, Young's modulus E of a
solid can be modeled as a random �eld in order to take into account its spatial
variation and at any point x of the solid, the value of Young's modulus E(x) is a
random variable. Vanmarcke [144] provides extensive details on the analysis and
synthesis of random �elds. Random processes are analogous to random �elds in
the way they allow the time variability of parameters to be modeled.

The complete description of a random function is generally too complex, so
that the description is usually based on just the �rst two moments of the proba-
bility distribution, which is a complete description for a Gaussian function. The
�rst and second moments are also referred as the mean and covariance functions,
respectively. In this work, homogeneous Gaussian random �elds are considered,
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meaning that probabilistic properties remain the same when the spatial coordi-
nates are translated and a second order description is complete. The mean of the
random �eld at location x is

E[X(x)] = mX(x) = m (6.5)

and the variance of X(x) is

V ar[X(x)] = E[(X(x)−m(x))2] = σ2
X(x) = σ2, (6.6)

where σ is the standard deviation. Note that the mean m and the variance σ2

are constant as the random �eld is homogeneous. In order to characterize the
random �eld, the covariance function, which gives the covariance of the values of
the random �eld at two di�erent locations x1 and x2, is to be de�ned:

BX(x1,x2) = Cov[X(x1), X(x2)] (6.7)
= E[X(x1)X(x2)]−mX(x1)mX(x2) (6.8)
= E[X(x1)X(x2)]−m2. (6.9)

Likewise the correlation function can be de�ned as

ρX(x1,x2) =
BX(x1,x2)

σX(x1)σX(x2)
(6.10)

=
BX(x1,x2)

σ2
. (6.11)

Considering that the random �eld is homogeneous and isotropic, the covariance
and correlation functions only depend on the distance τ between points x1 and
x2: τ = |x1 − x2|.

The most common correlation functions for random �elds are [80, 144]:

- the triangular correlation function that decreases linearly from 1 to 0 as τ

goes from 0 to a:

ρ(τ) =

{
1− τ

a
, τ ≤ a,

0, τ ≥ a.
(6.12)

- the exponential correlation function associated with a �rst-order autore-
gressive (or Markov) �eld, which is one of the most commonly applied in
engineering:

ρ(τ) = e−τ/b, (6.13)
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- the Gaussian (squared exponential) correlation function used when the cor-
relation decreases rapidly with τ :

ρ(τ) = e−(τ/d)2 , (6.14)

- the correlation function associated with a second-order autoregressive process:

ρ(τ) =
[
1 +

τ

c

]
e−τ/c. (6.15)

In Equations (6.12) to (6.15), coe�cients a, b, c and d are in�uence lengths. In
particular, b is also called the correlation length. The scale of �uctuation θF

characterizes the decreasing behavior of the covariance with the distance inde-
pendently of the character and shape of the correlation function and is related to
the in�uence lengths as follows

θF = a, θF = 2b, θF = 4c and θF =
√

π/d. (6.16)

Figure 6.1 represents the above correlation functions against the normalized dis-
tance τ/θF .

Due to the lack of experimental data, some assumptions have to be made
regarding the homogeneity, isotropy and Gaussianess of the random �eld and
the expression of the correlation function. In particular, the in�uence of the
correlation function assumption on the stochastic response has to be highlighted.

A discretization procedure is the approximation of the random �eld X(.) by
X̂(.) de�ned by means of a �nite set of random variables. Some partial literature
reviews are available in the following references [97, 99, 128, 137, 142]. The
discretization methods can be divided into three groups:

- point discretization methods,

- average discretization methods,

- series expansion methods.

6.2.1 Point Discretization Methods
The point discretization methods consist in modeling the random �eld X(.) by
its values at some given points xi, so that the number of points determines the
number of random variables bi = X(xi) required to represent the random �eld.
The advantages of these methods are that:
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Figure 6.1: The triangular (tri), exponential (exp), squared exponential (exp2)
and autoregressive (auto) correlation functions ρ(τ) plotted against the normal-
ized distance τ/θF .

- the covariance matrix of the random variables can easily be computed,

- the covariance matrix is positive de�nite,

- the discretization of the random �eld has the same distribution function
as the initial random �eld, so that these methods are not restricted to the
discretization of Gaussian random �elds.

The midpoint discretization method is the most widely used point discretiza-
tion method. It consists in discretizing the random �eld on a mesh (i.e. the �nite
element mesh or any other one) using its values at the center points xc

i of the
mesh elements Ωi:

X̂(x) = X(xc
i) = bi, x ∈ Ωi. (6.17)

The �rst two statistical moments of the random variables bi are directly obtained
from the �rst two statistical moments of the random �eld:

E[bi] = E[xc
i ] = m (6.18)
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and

Bij = Cov(bi, bj) (6.19)
= BX(xc

i ,x
c
j). (6.20)

The drawback of this method is that its performance is directly related to the
mesh characteristics. The size of the mesh elements has to be small with respect
to the correlation length, so that the modeled random properties can be consid-
ered as constant within each element. Moreover, the shape and size of all these
elements should be the same in order to reduce the discretization error. In terms
of computational cost, if a �ne mesh is required (e.g. due to a small correlation
length), the number of random variables can become excessive. Note that if the
�nite element mesh is used for the generation of the random �eld mesh and is �ner
than the required random �eld mesh, the random �eld elements can be blocks
of several �nite elements. This allows not only the reduction of the number of
random variables but also numerical instability caused by near perfect correla-
tion between variables to be avoided [40]. It is shown in [40] that the midpoint
method tends to over-represent the variability of the random �eld within each
element. This method can be used in Monte-Carlo simulations as well as in the
perturbation Stochastic Finite Element Method [49].

Other less known examples of point discretization methods are the nodal
point method [99], the integration point method [99], the interpolation method
(or shape function method) [93] and the optimal linear estimation method (or
Kriging method) [90].

6.2.2 Average Discretization Methods

In average discretization methods, the random variables are weighted integrals
of X(.) over a domain. The Local Average method consists in approximating
the �eld in each element Ωi of a mesh (e.g. �nite element mesh or any other
one) as a constant being computed as the average of the original �eld over the
element [144]:

X̂(x) =

∫
Ωi

X(x)dΩ∫
Ωi

dΩ
= bi, x ∈ Ωi. (6.21)
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The �rst two statistical moments of the random variables are expressed in terms
of the statistical moments of the random �eld:

E[bi] = E

[∫
Ωi

X(x)dΩ∫
Ωi

dΩ

]
(6.22)

=

∫
Ωi

E[X(x)]dΩ

|Ωi| (6.23)

= m (6.24)

and

Bij = Cov(bi, bj) = Cov

(∫
Ωi

X(x)dΩ∫
Ωi

dΩ
,

∫
Ωj

X(x)dΩ∫
Ωj

dΩ

)
(6.25)

=

∫
Ωi

∫
Ωj

BX(x, s)dΩidΩj

|Ωi||Ωj| . (6.26)

Comparison of Equations (6.20) and (6.26) clearly shows that the computation
of the covariance matrix is easier for the midpoint method than for the local
average method. Vanmarcke [144] gives analytical expressions for 1-D and 2-D
homogeneous �elds discretized on a regular mesh. For example, the covariance
between two elements U and U ′ in 1-D is given by

Cov(U,U ′) =
σ2

2UU ′ [U
2
o γ(Uo)− U2

1 γ(U1) + U2
2 γ(U2)− U2

3 γ(U3)], (6.27)

where Uo, U1, U2 and U3 are distances as illustrated in Figure 6.2 and γ(.) is the
variance function which measures the reduction of the point variance σ2 under
local averaging. It is de�ned by

V ar(XL) = γ(L)σ2, (6.28)

where XL is the local average of the random �eld X over an element of size L.
The variance function is related to the correlation function ρ(τ) as follows

γ(L) =
2

L

∫ L

0

(
1− τ

L

)
ρ(τ)dτ, (6.29)

so that the variance function corresponding to the above expressed correlation
functions (Equations (6.12)-(6.15)) are expressed as:

- the triangular variance function

γ(L) =

{
1− L

3a
, L ≤ a,

a
L

(
1− a

3L

)
, L ≥ a,

(6.30)
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- the exponential variance function

γ(L) = 2

(
b

L

)2 (
L

b
− 1 + e−L/b

)
, (6.31)

- the squared exponential variance function

γ(L) =

(
d

L

)2 (√
π

L

d
E

(
L

d

)
− 1 + e−(L/d)2

)
, (6.32)

where E(.) is the widely tabulated error function,

- the autoregressive variance function

γ(L) = 2
( c

L

)2 (
2 + e−L/c − 3

c

L
(1− e−L/c)

)
. (6.33)
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Figure 6.2: De�nition of the distances used in the expression of the covariance
between local averages in 1-D.

Compared to the midpoint method, the local average method leads to more
accurate results, but the accuracy still depends on the mesh re�nement. The
number of random variables corresponds to the number of elements, so that a �ne
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mesh requires more computational e�orts than a coarse one. According to [40] and
Equation (6.28), this method tends to underrepresent the variability within each
element, so that bounds can be given for the actual variability using the midpoint
and local average methods. When the number of elements increases with respect
to the correlation length, both methods converge to the same covariance, which
they bracket. In 2-D cases, non-rectangular elements can be used, but they may
lead to a non-positive covariance matrix.

The weighted integral method [39, 60, 61] can also be considered as an av-
erage discretization method. In this method, the random and �nite element
meshes have to be identical since the random �eld is projected onto the space of
polynomials involved in the shape function derivative matrices of the elementary
structural matrices. The number of random variables is related to the order of
these polynomials.

6.2.3 Series Expansion Methods

Series Expansion Methods consist in approximating the random �eld X(.) by a
truncated series involving random variables and deterministic spatial functions:

X̂(x, ξ) =
N∑

i=1

ζi(ξ)φi(x), (6.34)

where φi(x) are deterministic functions and ζi(ξ) are random variables. The
dependence of the variable on ξ explicitly expresses its random characteristic,
ξ is a value of the sample space, which is the set of all possible outcomes of
a random experiment. The discretization occurs through the truncation of the
series and the number of random variables is equal to the order of the expansion,
so that it can be much lower than in other methods.

The midpoint and local average methods can also be expressed as series
expansion methods:

X̂(x, ξ) =
N∑

i=1

bi(ξ)gi(x), (6.35)

where N is the number of elements and gi(x) = 1 if x ∈ Ωi and gi(x) = 0 if
x /∈ Ωi.

Karhunen-Loeve expansion [58] is based on the spectral decomposition of the
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covariance function:

X̂(x, ξ) = X̄(x) +
N∑

k=1

√
λkfk(x)ζk(ξ), (6.36)

where X̄(x) is the expected value of the random �eld, ζk are random variables
independent of x, λk and fk are the eigenvalues and eigenfunctions of the covari-
ance kernel, respectively, which can be obtained as the solutions of the eigenvalue
problem: ∫

Ω

BX(x1,x2)fk(x2)dx2 = λkfk(x1). (6.37)

This is an homogeneous Fredholm integral equation of the second kind. The
random variables have the following properties:

E[ζk] = 0 and E[ζkζl] = δkl. (6.38)

For an exponential covariance kernel, Karhunen-Loeve expansion has ana-
lytical solutions for 1-D and 2-D exponential correlation functions. For a 1-D
random �eld de�ned on a domain of length L, the eigenvalues are given by

λk =
2σ2a

1 + a2ωk

, (6.39)

where a is the correlation length, σ is the standard deviation and ωk is the kth

root of the following transcendental functions:

f(ω) = ω − cos(ωL)− 1

a sin(ωL)
for k even (6.40)

and
f(ω) = ω − cos(ωL) + 1

a sin(ωL)
for k odd. (6.41)

Similarly, the eigenfunctions are expressed as functions of ωk:

fk(x) =

√
2ωk

ωkL− sin(ωkL)
sin

(
ωk(x− L

2
)

)
for k even (6.42)

and

fk(x) =

√
2ωk

ωkL + sin(ωkL)
cos

(
ωk(x− L

2
)

)
for k odd. (6.43)

Figure 6.3 shows the �rst �ve eigenfunctions of a random �eld with an exponential
correlation function (a = 5 and L = 10).
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Figure 6.3: First �ve eigenfunctions of an exponential covariance kernel.

In more general situations, a numerical procedure, such as the �nite element
method, has to be used to solve the eigenvalue problem (6.37). The resulting basis
is not exactly optimal, but may still lead to a su�ciently good approximation X̂.

The orthogonal series expansion method [159] avoids solving the eigenvalue
problem (6.37) by selecting ab initio a complete set of orthogonal functions, e.g.
Legendre polynomials. The orthogonal series expansion approximates the random
�eld by

X̂(x, ξ) = X̄(x) +
M∑
i=1

hi(x)ζi(ξ), (6.44)

where ζi are the components of a zero-mean Gaussian vector, whose covariance
matrix component Bkl are de�ned by

Bkl =

∫ ∫
σ2ρ(x,x′)hk(x)hl(x

′)dxdx′ (6.45)

and hi(x) are orthogonal functions.
The orthogonal series expansion method involves the following steps:

- construct a complete set of orthogonal deterministic functions hi, for exam-
ple, this set can be based on the Legendre polynomials [159],
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- calculate the covariance matrix according to Equation (6.45) using for ex-
ample a Gaussian integration procedure.

The Polynomial Chaos expansion [58, 76] is based on the expansion of the
random �eld on the subspace de�ned by a set of orthogonal polynomials Γp not
exceeding the order p, called the polynomial chaos of order p, in terms of a set of
orthogonal Gaussian random variables {ζi}∞i :

X = a0Γ0 +
∞∑

i1=1

ai1Γ1(ζi1) +
∞∑

i1=1

i1∑
i2=1

ai1i2Γ2(ζi1 , ζi2)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(ζi1 , ζi2 , ζi3)

+
∞∑

i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ai1i2i3i4Γ4(ζi1 , ζi2 , ζi3 , ζi4) + . . . , (6.46)

where Γp are successive polynomial chaos and ai1...ip are deterministic constants.
Truncating after the Jth polynomial, the random �eld series expansion reads

X̂ =
J∑

i=1

κiΨi[{ζr}], (6.47)

where κi and Ψi[{ζr}] are identical to ai1...ip and Γp(ζi1 , . . . , ζip), respectively.
The spectral decomposition of a random �eld can also be considered as a

series expansion method. Applying the Fast Fourier Transform Method to the
generation of a random �eld gives

X(xj) =
K∑

k=0

Ckcos(xjωk + Φk), (6.48)

where Φk is a random phase angle uniformly distributed on [0, 2π] and Ck follows
a Rayleigh distribution. Once the upper frequency ωu is speci�ed, the frequency
discretization step is given by ∆ω = ωu/K and ωk is equal to (k − 0.5) ∗∆ω.

Shinozuka [133, 135] takes Ck =
√

2G(ωk)∆ω where G(ω) is the one-sided
spectral density function, but this gives an upper bound on X over the space of
outcomes of X ≤ ∑K

k=0

√
2G(ωk)∆ω, which may be an unrealistic restriction.

Fenton [48] proposed the following strategy in order to avoid this upper
bounding:
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1. generate independent, normally distributed realizations of Ak and Bk with
a zero mean and a variance given by

E[A2
k] =





0.5G(ωk)∆ω, if k = 0

0.25(G(ωk) + G(ωK−k))∆ω, if k = 1, ..., K/2− 1

G(ωk)∆ω, if k = K/2

(6.49)

and

E[B2
k] =

{
0, if k = 0 or K/2

0.25(G(ωk) + G(ωK−k))∆ω, if k = 1, ..., K/2− 1
(6.50)

and set B0 = BK/2 = 0. Note that these variances have only to be calculated
once,

2. use the symmetry relationships: Ak = AK−k and Bk = −BK−k,

3. produce the �eld realization by fast Fourier transform using
Xj =

∑K−1
k=0 Zke

i2πjk/K where the Fourier coe�cient Zk = Ak − iBk.

The shortcomings of this method are that:

- the covariance function is always symmetric about the midpoint of the �eld.
This can be avoided by modeling twice the size of the physical �eld.

- the relationship between the spatial and frequency discretization ∆ω should
be small enough to catch the variation of G(ω) and the frequency content
above 2π/∆ω should be negligible.

6.2.4 Method Comparison
An e�cient method for discretizing a random �eld requires the smallest number
of random variables to describe the �eld within a given level of accuracy. In order
to illustrate the performance of the di�erent methods, a 1-D random �eld charac-
terized on the domain [0, 10] by an exponential correlation function, a mean of 0,
a standard deviation of 1 and a correlation length of 5 is discretized using succes-
sively the Midpoint method (MP), Local Average method (LA), Karhunen-Loeve
expansion method (KL) and the Orthogonal series expansion method (OSE). For
each method, 2000 realizations of the random �eld are generated and the following
analyses are carried out:
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- the mean and variance are computed and compared to exact ones,

- the run time is estimated (even if usually the time taken to generate the
�eld is dwarfed by the time taken to subsequently process or analyze the
�eld),

- the upper and lower 90 percents quantiles of estimated mean and variance
�elds are calculated. Firstly, the mean and variance �elds, i.e. the mean
and variance of the realizations at each discretization point, are estimated.
Then, the upper and lower bounds, such that 5 percents of the �eld exceeds
the bounds above and below, respectively, are found.

Additionally, for series expansion methods, the point-wise error is estimated by

εrr(x) =
V ar

[
X(x)− X̂(x)

]

V ar [X(x)]
. (6.51)

For the Midpoint and Local Average methods, a mesh has to be de�ned and
the domain is divided into 50 equal elements (number of elements, N = 50). The
random �elds are generated in three basic steps:

- A random uncorrelated Gaussian vector Z [size: N ] is generated with a zero
mean and a variance equal to one, e.g. using randn Matlab function,

- The covariance matrix [size: N x N ] is obtained by calculating the correla-
tion function at the middle of every element for the Midpoint method and
using Equation (6.27) for the Local Average method.

- The correlated vector X̂ of the random variable which approximate the
random �eld is obtained by one the two following transformations:

� the Cholesky transformation:

X̂ = X̄ + LZ, (6.52)

where L is a lower triangular matrix obtained by the Cholesky decom-
position of the covariance matrix, which is positive de�nite,

� the spectral transformation:

X̂ = X̄ + Zvals0.5vects′, (6.53)
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where vals0.5 is a diagonal matrix whose elements are the square root
of the eigenvalues of the covariance matrix and vects is a matrix whose
columns are the eigenvectors of the covariance matrix.

Both methods give the same results. However, the eigensolution transfor-
mation is more adequate when the size of the covariance matrix is large.
Indeed, for large covariance matrix, only the r �rst dominant eigensolutions
(r < N) can be used, while Cholesky decomposition can be very CPU time
consuming if the matrix is large.
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Figure 6.4: Mean and variance �elds estimated over 2000 Midpoint realizations.
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Figure 6.5: Mean and variance �elds estimated over 2000 Local Average realiza-
tions.
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Figures 6.4-6.5 show the mean and variance �elds estimated over 2000 real-
izations for the midpoint and the local average methods, respectively. The mean
and variance are close to their target value (0 and 1) for both methods. The vari-
ance is slightly lower for the Local Average method than for the Midpoint one in
agreement with [40]. Both methods bracket the variance of the 2000 random �eld
samples. If the element size were larger with respect to the correlation length,
this underestimation would be larger. The mean seems to diverge in the right
part of the domain (x > 6), but it is only due to the random set. If the random
set were di�erent, the behavior would be di�erent. In order to ensure that the
mean has the same behavior all along the �eld domain, the random set size (i.e.
the number of samples) should be increased.

If the spectral transformation (6.53) is used, the random basis can be trun-
cated since only a few modes of the covariance matrix are su�cient to capture
the major characteristics of the probabilistic distribution by analogy to modal
structural problems. Since the truncation error decreases as the sum of the con-
sidered eigenvalues increases (Section 7.8), the highest eigenvalues are employed
in contrast to the modal structural problems wherein the lowest eigenvalues are
used. Figure 6.6(a) gives the eigenvalues of the covariance matrix for the mid-
point method. Only the �rst six eigenvalues are signi�cantly larger than the
other ones. If the relative contribution of the �rst n eigenvalues to the trace of
the covariance matrix is plotted (Figure 6.6(b)), it can be seen that the �rst eight
eigenvalues contribute to 95 % of the covariance trace. Hence, when the �rst eight
eigenmodes instead of all 50 modes are used in Equation (6.53), the generated
correlated vectors are characterized by a really good approximation of the �rst
and second probabilistic moments (Figure 6.7). When using an incomplete modal
basis, the size of the uncorrelated vector is equal to the size of the modal basis.
Hence, the random �eld is represented with less random variables. Truncating
the modal basis becomes advantageous for large size covariance matrices, which
are obtained if the number of elements is large. Then, the calculation of all the
eigenmodes is no more possible, but an iteration method such as the Lanczos
method (Section 4.4) is still able to calculate the highest eigenvalues and the
corresponding modes.

For the Karhunen-Loeve (KL) expansion method, the random �elds are given
by Equation (6.36), where the eigenvalues and eigenfunctions are determined by
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Figure 6.6: Eigenvalues of the covariance matrix and their contribution to the
trace of the covariance matrix (Midpoint method).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

x (50 elements)

C
or

re
la

tio
n

MP (all modes)
Exact covariance
MP (8 modes)

Figure 6.7: Correlation function over 2000 midpoint realizations using only 8
modes to characterize the covariance matrix.

Equations (6.39-6.43). In series expansion methods, the approximation comes
from the truncation of the sum at the order r. The error introduced by this
truncation decreases when r increases, as illustrated in Figure 6.8. When the
order of expansion is larger than eight, the mean of the variance error is less than
5 %.
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Figure 6.9: Mean and variance �elds estimated over 2000 Karhunen-Loeve real-
izations.

Figure 6.9 presents the mean and variance �elds of 2000 KL realizations for
an expansion order of 10. Figure 6.10 shows that the point wise variance error is
larger on the boundary of the discretization domain, which is also illustrated in
Figure 6.9(b). This is a characteristic of truncated series expansion representa-
tions.

The Midpoint and Local Average methods can also be considered as series
expansion methods when the mesh is regular, i.e. all the elements are the same



130 Chapter 6. Uncertainty Treatment in Finite Element Analysis

0 2 4 6 8 10
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

x

V
ar

 (
X

(x
) 

−
 X

ap
p(x

))

Discretization scheme : KL
Order of expansion : 10

Min : 0.029851
Mean : 0.043527
Max : 0.084618

Figure 6.10: Error variance along the discretization domain (OrderExp=10).

[142]. The midpoint and local average methods can be written in the same for-
malism as the Karhunen-Loeve expansion method (This procedure is exposed in
details in Section 7.8). Table 6.1 compares the eigenvalues for the three meth-
ods, while Figure 6.11 compares the �rst eigenfunction. The �rst eigenfunction is
similar for the three methods. The eigenvalues are very close. It can be noticed
that the local average method gives larger values than the midpoint ones whose
eigenvalues are also higher than the Karhunen-Loeve expansion ones. If the num-
ber of elements on the correlation length were smaller, the di�erences would be
larger.

Figure 6.12 represents the mean and variance �elds of 2000 realizations using
the Orthogonal Series Expansion with an expansion order of 10. As for the
Karhunen-Loeve expansion, Figures 6.12(b) and 6.13 show that the error on the
variance is larger on the boundaries of the domain. Compared to the Karhunen-
Loeve expansion, the error on the variance is larger since the Legendre functions
are only approximations, while analytical eigenvalues and eigenfunctions are exact
solutions in the Karhunen-Loeve method. This approximation does not a�ect the
mean.

Table 6.2 compares the CPU time and the mean and variance lower and
upper 90 percents bounds. The CPU time measure starts at the setting of the
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Table 6.1: Comparison between the eigenvalues in the Karhunen-Loeve, Midpoint
and Local Average methods.

Mode λKL λMP λLA

1 5.7466 5.7483 5.7491
2 1.9547 1.9564 1.9567
3 0.78525 0.78676 0.78686
4 0.39778 0.39922 0.39927
5 0.23563 0.23703 0.23706
6 0.15466 0.15604 0.15606
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Figure 6.11: Comparison of the �rst eigenfunction used in the Karhunen-Loeve,
Midpoint and Local Average methods.

parameters (mean, standard deviation, correlation type, correlation length,...)
and stops after 2000 realizations of the random �eld.

The CPU times are larger for the series expansion methods than for the mid-
point and local average methods. The orthogonal series expansion is the most
time consuming method. This is due to the fact that the eigenfunctions are ex-
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Figure 6.12: Mean and variance �elds estimated over 2000 Orthogonal Series
Expansion realizations (Expansion order=10).
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pressed as a sum of orthonormal functions (e.g. based on Legendre polynomials).
Hence, the evaluation of the random �eld requires two successive sums over the
order of expansion. Of course, when the order of expansion increases, the CPU
time increases.
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Table 6.2: CPU time and mean and variance bounds for di�erent methods.

Method CPU time [s] Mean bounds Variance bounds
Midpoint 1.79 (-0.0377, 0.0108) (0.9630, 1.0144)

Local Average 1.87 (-0.0337, 0.0108) (0.9361, 1.0146)
KL (OrderExp=5) 20.34 (0.0087, 0.0283) (0.8157, 0.9366)
KL (OrderExp=10) 37.61 (0.0112, 0.0493) (0.9357, 1.0384)
OSE (OrderExp=5) 222.51 (0.0048,0.0260) (0.8047, 1.1274)
OSE (OrderExp=10) 1453.5 (0.0183,0.0479) (0.9455,1.0168)

The Midpoint and Local Average methods give similar results because the
element size is small (25 elements per correlation length). Di�erences would
occur if fewer elements (less than 2 [40]) per correlation length were taken. The
Midpoint and Local Average bounds are centered on the exact values (Mean=0
and Variance=1) while the others are close but not centered on it.

Based on these analyses, the most appropriate method(s) of random �eld
discretization in order to study the thermoelastic damping can be selected. Since
MEMS are manufactured by thin �lm processes, their material structure does
not exhibit 3-D heterogeneity, but 1-D or 2-D variations are expected in their
properties. Therefore, if the correlation function is assumed to be exponential,
the Karhunen-Loeve method is the �rst choice since analytical solutions are then
available for the eigenvalue problem. Moreover a series expansion method can be
more useful when used in a stochastic �nite element method since it takes into ac-
count the properties variations inside the �nite element formulation and requires
less random variables than the midpoint or local average methods. However, in
order to study the e�ects of other correlation functions, the local average method
is also considered as analytical expressions are available for the covariance of dif-
ferent correlation function kinds and it is superior to the midpoint method [40].
Moreover, as the local average method has a series expansion expression, it has
also the advantage of the reduced number of required variables. For both chosen
methods, the CPU time remains relatively small compared to methods such as
the Orthogonal Series Expansion. Of course, this criterion is not the most criti-
cal one since the time taken to generate the random �eld is dwarfed by the time
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taken to subsequently process or analyze it.

6.3 Stochastic Finite Element Methods
Stochastic �nite element methods can be classi�ed with respect to the kind of
results they yield. Two main categories can be distinguished. Firstly, reliability
methods aim at calculating the failure probability and hence, focus on the tails
of the probability density function of the response. Secondly, other methods
aim at calculating the probabilistic characterization of the response. In this
category, it exists particular methods that determine only the �rst two statistical
moments of the response. This work focuses on these second moment methods,
which are brie�y reviewed hereafter. For more details, the reader should refer to
[97, 128, 129, 137, 142].

6.3.1 Monte-Carlo Simulations
Monte-Carlo simulations have the major advantage that accurate solutions can be
obtained for any problem whose deterministic solution is known, since it statisti-
cally converges to the correct solution provided that a large number of simulations
is employed. Indeed, the basic principles of Direct Monte-Carlo Simulations is to
generate a sampling of the input parameters accordingly to their probability dis-
tributions and correlations. For each input sample, a deterministic �nite element
analysis is carried out, giving an output sample. Finally, a response sampling is
obtained, from which the mean and the standard deviation of the response can
be derived.

The estimator of the response ȳ is de�ned by

ȳ =
1

n

n∑
i=1

y(i), (6.54)

where n is the number of samples and y(i) is the response corresponding to the ith
input sample [127]. The estimator is a random variable whose mean and variance
are given by

E[ȳ] = µy (6.55)

and
V ar(ȳ) = E[(ȳ − E[ȳ])2] =

σ2
y

n
, (6.56)
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where µy = E[y] and σ2
y = E[(y − µy)

2] denote the unknown mean and variance
of the response. Tchebychev's inequality provides a basis for error assessment,
i.e.

P (|ȳ − µy| < ε) ≥ 1− 1

ε2

σ2
y

n
, (6.57)

where ε denotes a tolerance. A con�dence level 1 − δ can be de�ned where
δ = 1

ε2
σ2

y

n
. Due to the central limit theorem, the distribution of ȳ is normal and

the con�dence interval corresponding to the con�dence level δ is

µy,1−δ = [ȳ − Φ−1(1− δ/2)
σ2

y√
n

, ȳ + Φ−1(1− δ/2)
σ2

y√
n

], (6.58)

where Φ is the normal cumulative distribution function. This shows that the
Direct Monte-Carlo method has an absolute estimation error that decreases as
n−1/2 when n increases, independently of the dimension of the system. Increasing
the number of samples improves the estimation of the mean value at a convergence
rate of n−1/2.

The disadvantage of the Direct Monte-Carlo method is that it is usually
extremely computationally demanding due to the repeated analyses that have
to take place. In order to enhance the computational e�ciency of the method,
di�erent techniques are developed in the literature. The reduction of the size
of the problems (e.g. by phase space reduction [129]) and parallel processing
[118, 129] appear to be promising for this purpose.

Another way to reduce the CPU time is to increase the e�ciency of the gener-
ation of the response samples. Since the solutions for di�erent input samples are
close to each other, a reference solution is calculated around which the solutions
vary. The Neumann expansion technique in static stochastic structural analysis
and the solution of random eigenvalue problems in linear stochastic structural
dynamics are based on this concept. The Neumann expansion technique [26] al-
lows the repeated inversions of the random sti�ness matrix to be avoided and
hence, saves a lot of computation time. In modal analyses of large models, the
computation of the frequencies and modes uses subspace iteration methods such
as Lanczos methods and it is not e�cient to independently determine the modal
properties for each sample. Taking the eigenvectors of the �rst calculated sample
as start-vector subspace for the other samples allows a signi�cant reduction in
the computational time [139].
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The convergence rate of the estimator does not only increase by increasing
the number of samples but also by decreasing the variance σ2

y. Variance reduction
techniques (VRT) exploit additional a priori information to reduce the necessary
sample size n for a speci�ed con�dence level. Strati�cation techniques (e.g. Latin
hypercube sampling [103]), which are widely used in practice, use conditional ex-
pectations to reduce the variance of the estimator. The Importance Sampling
[130] and Controlled Monte-Carlo simulation [121] are designed to increase the
sampling density in domain zones of interest, e.g. low probability domain zone in
reliability analyses. This is done by modifying the weights associated with the re-
alizations. Controlled Monte-Carlo Simulations di�er from Importance Sampling
in the way the weights are determined; in Controlled Monte-Carlo Simulations,
the weights are modi�ed dynamically in an adaptive manner contrary to Impor-
tance Sampling where the weights are speci�ed a priori.

Monte-Carlo simulations deal with random variables as well as random �elds.
Random �elds can be characterized by a �nite number of random variables as
explained in the previous section so that their sampling generation is similar to
the generation of random variable samples. Moreover, Monte-Carlo simulations
are applicable to any kind of probability density functions. It should be noted
that the distribution law of highly variable parameters has to be chosen carefully
since the response variability largely depends on the distribution law [143].

Monte-Carlo simulations can be coupled with other stochastic �nite element
methods, leading to hybrid stochastic �nite element methods. Ghanem [53] cou-
ples the spectral stochastic �nite element method with Monte-Carlo simulations
while Van den Nieuwenhof couples it with the perturbation stochastic �nite ele-
ment method [143]. Mixing two methods allows the advantages and capabilities
of each method to be combined and their drawbacks to be circumvented.

6.3.2 Spectral Stochastic Finite Element Method

The Spectral Stochastic Finite Element Method (SSFEM) [55, 57, 58] is based
on the spectral discretization along the random dimension. The discretization
process occurs at two levels in stochastic problems. The �rst level concerns the
representation of the random �eld inputs, e.g. the spatial variation of the material
properties. The random distribution of these input variables is known a priori and
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it is modeled by a Karhunen-Loeve expansion for a Gaussian distribution or by
a Polynomial Chaos expansion for a non-Gaussian distribution. The second level
concerns the discretization of the response �eld. As the response distribution is
unknown, a generic discretization method such as the Polynomial Chaos has to
be used. For linear systems, Neumann expansion can also be used [58] even if
numerical applications show that the terms required in the expansion to achieve
a certain accuracy are higher for the Neumann procedure.

The main advantages of the Spectral Stochastic Finite Element Method is its
easiness to handle large uncertainties and the evaluation of the response statistical
moments of order higher than two. However, its performance is somewhat poor for
problems with strong nonlinearities and discontinuities where potential divergence
in higher order moments may be observed [76].

The Stochastic Spectral Finite Element Method is used to model uncer-
tainty in a variety of problems. Ghanem and Spanos use SSFEM in linear elastic
problems in [55, 57, 58]. Ghanem and co-workers apply it to protein labeling
reactions [37], transport in random media [53], structural dynamics applications
[56] and heat conduction problems [54]. Karniadakis and co-workers apply a gen-
eralized polynomial chaos expansion to model uncertainty in di�usion [151], �uid
�ow applications [153] and transient heat conduction problems [152]. An inverse
heat conduction problem using this method is presented in [145]. A variational
multiscale stochastic approach to advection-di�usion problems using SSFEM is
introduced in [146]. A SSFEM based on a bounding body approach for small de-
formation elasto-plastic bodies is presented in [12]. SSFEM is used for modeling
uncertainty propagation in �nite deformation problems in [2].

Ostoja-Starzewski and Woods [116] develop spectral �nite elements for vi-
brating rods and beams with random �eld properties. They describe the material
variabilities by random Fourier series with a typical average characteristic size of
inhomogeneity and investigate the relative e�ects of random noises in all the
material parameters on the spectral sti�ness matrices.

6.3.3 Perturbation Stochastic Finite Element Method

Basics of the Perturbation Stochastic Finite Element Method (PSFEM) are ex-
posed in [79]. This method consists in a deterministic analysis complemented by
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a sensitivity analysis with respect to the random parameters. This permits the
development of a Taylor series expansion of the response, from which the mean
and variance of the response can be derived knowing the mean, variance and cor-
relation structure of the random parameters. Depending on the expansion order
(1 or 2) of the Taylor series expansion, the response statistical moments of the
response are �rst or second order accurate and the method is respectively named
�rst-order second moment (FOSM) and second-order second moment (SOSM)
method.

The main advantage of the PSFEM is its simplicity and applicability to a
wide range of problems at low cost. For example, it is used in static and dynamic
elastic analyses [64, 79], buckling analyses [10], composite ply failure problems
[113], inelastic deformation studies [43], linear transient heat transfer problems
[65], the analysis of free vibration of composite cantilevers [111], nonlinear dy-
namics [88] and the study of eigenvalues of structures with uncertain boundary
conditions [69].

PSFEM can also be adapted to take into account the spatial variability of
parameters. PSFEM is successfully coupled with the midpoint method [49], the
shape function [93], the local average method [27, 28, 29, 61], the Kahurnen-
Loeve expansion [143] and the weighted integral method [39, 60, 61, 117]. All
but the last two methods involve a large number of random variables and induce
a high computational cost to calculate the derivative of structural matrices with
respect to each random variable. The concept of variability response functions is
derived from the coupling of the perturbation stochastic �nite element method
with the weighted integral representation of the random �eld, which is also sim-
ply called the weighted integral method in the literature. Variability Response
Functions allow to determine a spectral-distribution-free upper bound for the re-
sponse variance [38, 39, 60, 61, 117]. Spectral Stochastic Finite Element Method
based on Neumann expansion [58] is in fact a Perturbation Stochastic Finite Ele-
ment Method coupled with a Karhunen-Loeve or Polynomial Chaos random �eld
discretization method.

Due to the Taylor series expansion, accurate results are expected only in
case of small variability of the parameters and for nearly linear problems. The
derivatives of the structural matrices have to be calculated with respect to the
random variables. This can be done analytically, semi-analytically or by �nite
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di�erence. These computations can be time-consuming, particularly when the
second order terms are included.

6.4 Method Selection
The selection of the method relies on the kind of analysis that has to be performed.
In order to investigate the e�ects of uncertainty on the thermoelastic quality
factor, a stochastic non-symmetric eigenvalue problem has to be solved:

A(α(x, ξ))q(x, ξ) = λ(ξ)B(β(x, ξ))q(x, ξ), (6.59)

where A(α(x, ξ)) and B(α(x, ξ)) are stochastic di�erential operators de�ned on
the domain Ω; x ∈ Ω denotes a point in the domain; ξ is a value of the sample
space; α(x, ξ) and β(x, ξ) are second moment random �elds describing the coef-
�cients of the stochastic di�erential operators, λ(ξ) and q(x, ξ) are the random
eigenvalues and eigenfunctions, respectively.

The random �elds describing the coe�cients of the di�erential operators
have to be discretized using techniques that have been reviewed in this chapter.
From the method comparison, two discretization methods have been selected: the
Local Average method and the Karhunen-Loeve expansion series method. After
the discretization of the spatial and random spaces, the stochastic �nite element
eigenproblem has the form:

[
A0 +

p∑
i=1

bi(ξ)Ai

]
x(ξ) = λ(ξ)

[
B0 +

p∑
i=1

bi(ξ)Bi

]
x(ξ), (6.60)

where A0, Ai, B0 and Bi are deterministic matrices while λ(ξ) and x(ξ) de-
note the random eigenvalue and eigenvector, respectively. bi(ξ) are the random
variables representing the random �elds.

As reviewed in [97], the �rst order perturbation method is the most widely
used approach for approximating the statistics of eigenparameters. The popular-
ity of this method can be essentially attributed to the ease of its implementation
and its computational e�ciency. For example, in [163], the �rst order PSFEM is
used with the Local Average and Midpoint methods to study the variability of the
eigenvalues of beams. Graham and Deodatis [61] use the �rst order PSFEM with
the Local Average method and the Weighted Integral method to compute the
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mean and variance of the eigenvalues of beam and plate structures with stochas-
tic material and geometric properties. The second order method is also used to
study the eigenvalue statistics [69, 72, 111]. Since the computation of the higher
order perturbation terms can be computationally expensive, �rst order PSFEM
can be modi�ed in order to increase its accuracy. This can be done using a per-
turbation method based on an optimal point or an asymptotic approximation
[5, 6] or using the two terms of the �rst order perturbation for the eigenvector as
basis vectors for Ritz analysis of the governing random eigenvalue problem [105].
However, these methods involve additional computations, i.e. several sensitivity
and deterministic analyses have to be carried to �nd the optimal point [5, 6] or
Monte-Carlo simulations for the approximation of the statistical moments [105].
All above analyses assume a symmetric problem without damping. Adhikari [4]
proposes a �rst order PSFEM for symmetrical damped problems, which have
complex modes and frequencies, but PSFEM can be extended to non-symmetric
damped problems whose eigenvalue sensitivity analyses are studied in the litera-
ture [32].

Monte-Carlo approach is adequate for any problem with a deterministic solu-
tion procedure; in particular it is commonly used for the prediction of the eigen-
values of structures. Shinozuka and Astill [134] propose Monte-Carlo simulations
for calculating the statistical properties of the eigenvalues of a spring supported
beam-column whose spring supports and axial force are treated as random vari-
ables while material properties are considered as random �elds. However, it is
a computationally expensive way and procedures to reduce the computational
e�orts have to be adopted, e.g. a subspace Lanczos iteration scheme with opti-
mally selected start-vectors [122, 139]. Monte-Carlo simulations are also coupled
with SSFEM [123].

In this work, the perturbation method is selected since it requires low com-
putational e�ort and is e�cient for treating problems with low variability levels.
Since Monte-Carlo simulations are computationally too expensive for large sys-
tems, Monte-Carlo results are only calculated for small test cases and are then
used as reference solutions due to the absence of inherent assumptions.
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6.5 Concluding Remarks
This chapter has focussed on the review of the random �eld discretization methods
and the second moment stochastic �nite element methods. Firstly, the concept of
uncertainty has been clari�ed. In this work, uncertainty concerns the probabilistic
variation of the model parameters, e.g. material properties or geometric parame-
ters. Moreover, due to the lack of experimental data and for the sake of simplicity,
the spatial variation of the parameters is assumed to be isotropic, Gaussian and
homogeneous. Based on these restrictions, the most adequate methods for the
discretization of random �elds have been selected, namely, the Local Average and
Karhunen-Loeve expansion methods. Concerning the selection of the stochastic
�nite element method, it has been decided to extend the Perturbation Stochastic
Finite Element Method to the study of non-symmetrically damped eigenprob-
lems since it is e�ciently and with low computational e�ort applied to diverse
eigenproblems with low variability level. For small test cases, the Perturbation
Stochastic Finite Element Method results will be compared to the Monte-Carlo
simulation ones, which will be considered as reference solutions due to the absence
of inherent assumptions in Monte-Carlo simulations.
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Chapter 7

Perturbation Stochastic Finite
Element Method

In this chapter, the perturbation stochastic �nite element
method is extended to the resolution of non-symmetrically
damped eigenproblem. Firstly, the stochastic thermopiezo-
electric �nite element equations are derived. The �rst two
statistical moments of the quality factor are approximated by
a second order perturbation method, which requires the de-
termination of the �rst and second order sensitivities of the
eigenpairs of the problems. Secondly, the connections between
the random �eld discretization methods (i.e. the Local Aver-
age method and the Karhunen-Loeve expansion) and the per-
turbation stochastic �nite element method are investigated.
Finally, methods to enhance the performance of the pertur-
bation stochastic �nite element method are exposed.

7.1 Stochastic Thermopiezoelectric Finite Element
Equations

In order to obtain the stochastic thermopiezoelectric equations, the dependence
on the uncertainty ξ for each parameter that may exhibit a random variation is

143
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introduced in the weak form of the thermopiezoelectric equations (4.17-4.19):

∫

Ω(ξ)

[ρ(ξ)üi(ξ)δui(ξ) + σij(ξ)δεij(ξ)] dΩ =

∫

S∗(ξ)
ti(ξ)δui(ξ)dS∗, (7.1)

∫

Ω(ξ)

Di(ξ)δΦ,i(ξ)dΩ =

∫

S∗(ξ)
qe(ξ)δΦ(ξ)dS∗, (7.2)

∫

Ω(ξ)

[
qi(ξ)δθ,i(ξ)− Ṡ(ξ)T0δθ(ξ)

]
dΩ =

∫

S∗(ξ)
qs(ξ)δθ(ξ)dS∗. (7.3)

From these equations, the random variables can be divided into two categories:

- the variables that only appear under the integration sign,

- the variables that introduce variability on the integration domains Ω and
S∗.

The �rst category includes the material parameters (e.g. the density, Young's
modulus, the thermal conductivity, the electric conductivity,...) and the pseudo-
geometric variables, which are geometric variables that due to particular kine-
matic assumptions are removed from the expression of the integration domain
(e.g. the height and width of Euler-Bernoulli beams, the thickness of plane stress
or strain structures,...). The second category concerns the shape design vari-
ables acting directly on the integration domains Ω and S∗. Both categories are
considered in this work.

The stochastic thermopiezoelectric dynamic equation is obtained from Equa-
tion (4.36):




Muu(ξ) 0 0

0 0 0

0 0 0







üu(ξ)

üΦ(ξ)

üθ(ξ)


 +




0 0 0

0 0 0

Cθu(ξ) CθΦ(ξ) Cθθ(ξ)







u̇u(ξ)

u̇Φ(ξ)

u̇θ(ξ)




+




Kuu(ξ) KuΦ(ξ) Kuθ(ξ)

KΦu(ξ) KΦΦ(ξ) KΦθ(ξ)

0 0 Kθθ(ξ)







uu(ξ)

uΦ(ξ)

uθ(ξ)


 =




Fu(ξ)

FΦ(ξ)

Fθ(ξ)


 .(7.4)
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Therefore, the stochastic �nite element eigenproblem to be solved is obtained
introducing the uncertainty dependence in Equation (4.59):




−Kuu(ξ) −KuΦ(ξ) −Kuθ(ξ) 0

−KuΦ(ξ)T −KΦΦ(ξ) −KΦθ(ξ) 0

0 0 −Kθθ(ξ) 0

0 0 0 I







xu(ξ)

xΦ(ξ)

xθ(ξ)

ẋu(ξ)




=

λ(ξ)




0 0 0 Muu(ξ)

0 0 0 0

Cθu(ξ) CθΦ(ξ) Cθθ(ξ) 0

I 0 0 0







xu(ξ)

xΦ(ξ)

xθ(ξ)

ẋu(ξ)




, (7.5)

which is a generalized non-symmetric stochastic �nite element eigenproblem:

A(ξ)x(ξ) = λ(ξ)B(ξ)x(ξ). (7.6)

In practice, the uncertainty is represented by a �nite set of random variables:

b = {b1, b2, . . . , bn}, (7.7)

so that the dependence on ξ is replaced by the dependence on the vector b.
Note that this set includes the random variables resulting from the random �eld
discretization.

The perturbation method considers that the random design variables bi are
perturbed from their expectation b̄i, so that the random variables bi are written
as the sum of a deterministic value b̄i and a zero mean random variable ∆bi:

bi = b̄i + ∆bi. (7.8)

The covariance matrix B of the random variables bi is related to the zero mean
random variables as follows

Bij = Cov(bi, bj) (7.9)
= E[∆bi∆bj]. (7.10)

The perturbation method consists in expanding the random quantities in Equa-
tions (7.1-7.3) about their expectation via a truncated Taylor series expansion.
For instance, the mass density ρ is approximated by

ρ(b1, . . . , bn) ≈ ρ(b̄1, . . . , b̄n) +
n∑

i=1

ρ,i∆bi +
1

2

n∑
i=1

n∑
j=1

ρ,ij∆bi∆bj, (7.11)
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where the subscripts , i and , ij respectively denote the �rst and second order
partial derivative with respect to bi and bj computed at the nominal value b̄.

Substituting the truncated Taylor series expansion into the �nite element
formulation leads to the following eigenproblem:


Ā +

n∑

i=1

A,i∆bi +
1
2

n∑

i=1

n∑

j=1

A,ij∆bi∆bj





x̄ +

n∑

i=1

x,i∆bi +
1
2

n∑

i=1

n∑

j=1

x,ij∆bi∆bj


 =


λ̄ +

n∑

i=1

λ,i∆bi +
1
2

n∑

i=1

n∑

j=1

λ,ij∆bi∆bj





B̄ +

n∑

i=1

B,i∆bi +
1
2

n∑

i=1

n∑

j=1

B,ij∆bi∆bj





x̄ +

n∑

i=1

x,i∆bi +
1
2

n∑

i=1

n∑

j=1

x,ij∆bi∆bj


 , (7.12)

where (̄.) denotes that the quantity (.) is computed at the nominal value b̄.
Grouping the terms of the same order in ∆bi gives the following equations:

- zeroth order:
Āx̄ = λ̄B̄x̄, (7.13)

- �rst order (i = 1, . . . , n):

(
Ā− λ̄B̄

)
x,i =

(
λ̄B,i + λ,iB̄−A,i

)
x̄, (7.14)

- second order (i, j = 1, . . . , n):

(
Ā− λ̄B̄

)
x,ij =

(
λ̄B,ij + λ,ijB̄ + 2λ,iB,j −A,ij

)
x̄+2

(
λ̄B,i + λ,iB̄−A,i

)
x,j.

(7.15)

The zeroth-order equation is nothing other than the deterministic eigenproblem
at the nominal value b̄, so that the zeroth order eigenpairs λ̄ and x̄ are obtained
using the Lanczos method as exposed in Chapter 4. In contrast to the zeroth-
order eigenproblem, the solution procedures given by Equations (7.14-7.15) for
the �rst and second derivatives of eigenvalues and eigenvectors with respect to
the random variables are not so straightforward. Indeed, these systems are non-
homogeneous and the coe�cient matrix on the left-hand side, Ā−λ̄B̄, is singular.
The �rst and second order derivatives of the eigenpairs have to be computed by
a speci�c method, which is exposed in Section 7.3.



7.2 Statistical Moments of the Quality Factor 147

7.2 Statistical Moments of the Quality Factor
The quality factor corresponding to the rth mode of the eigenproblem (7.5) is a
stochastic quantity expressed as

Q(ξ) =
1

2

∣∣∣∣
=(λ(ξ))

<(λ(ξ))

∣∣∣∣ . (7.16)

The second order Taylor expansion about the nominal value b̄ with respect to
the random variables bi is given by

Q(b̄) ≈ Q̄ +
n∑

i=1

Q,i∆bi +
1

2

n∑
i=1

n∑
j=1

Q,ij∆bi∆bj. (7.17)

Since the random variables ∆bi are zero-mean random variables of known covari-
ance, the expectation of the quality factor is

E
[
Q(b̄)

] ≈ Q̄ +
n∑

i=1

Q,iE [∆bi] +
1

2

n∑
i=1

n∑
j=1

Q,ijE [∆bi∆bj] (7.18)

= Q̄ +
1

2

n∑
i=1

n∑
j=1

Q,ijCov(bi, bj), (7.19)

while the variance of the quality factor has the following expression:

V ar
(
Q(b̄)

)
= E

[(
Q(b̄)− E

[
Q(b̄)

])2
]

(7.20)

≈
n∑

i=1

n∑
j=1

Q,iQ,jE [∆bi∆bj] (7.21)

=
n∑

i=1

n∑
j=1

Q,iQ,jCov(bi, bj). (7.22)

The mean is second-order accurate, while the variance is �rst-order accurate
since the second-order terms vanish. The �rst and second order derivatives of the
quality factor are expressed in terms of the �rst and second order derivatives of
the eigenvalue:

Q,i = sign(<(λ̄),=(λ̄))
1

2

=(λ,i)<(λ̄)−=(λ̄)<(λ,i)

<(λ̄)2
(7.23)

and

Q,ij = sign(<(λ̄),=(λ̄))
1

2<(λ̄)3
(=(λ,ij)<(λ̄)2 −=(λ,i)<(λ,j)<(λ̄)

− =(λ,j)<(λ,i)<(λ̄)−<(λ̄)<(λ,ij)=(λ̄) + 2<(λ,j)<(λ,i)=(λ̄)). (7.24)
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If only the �rst order derivatives of the eigenvalue are known, a pseudo
second order approximation of the statistical moment of Q can be carried out
by neglecting the second order derivative of λ in Equation (7.24). This pseudo
second order approximation is of course less accurate than a second order one,
but it is also computationally less demanding.

7.3 First and Second Order Eigenpair Derivatives
The sensitivity of eigensolutions or more precisely the derivative of the eigensolu-
tions with respect to the design parameters has an important role in the studies of
design process and the eigensensitivity analysis has been an important research
topic over the last past four decades. Di�erent eigensensitivity methods have
been developed depending on the characteristics of the eigenproblem (symmetry
or asymmetry, real or complex eigenvalues, with or without multiple eigenvalues,
standard or generalized eigenproblem...). In the earliest work, Fox and Kapoor
[50] give exact expressions for the derivative of eigenvalues and eigenvectors with
respect to any design parameter for symmetric real-valued matrices without re-
peated eigenvalues. For these kind of systems, Nelson [107] proposes an e�cient
method to calculate the eigenvector derivative, which requires only the eigenvalue
and eigenvector under consideration. Ojalvo [112] and Dailey [36] extend Nelson's
method to the multiple eigenvalue problem.

The aforementioned methods can be applied to damped systems. However,
almost eigensensitivity methods have to use state space equation based on 2N-
space to solve problems with damping. These methods require more CPU time
and storage capacity because of the larger size of the state-space matrices. In
order to overcome these drawbacks, Zimoch [165] presents a direct method for
the eigenpair derivatives of damped systems without use of state space equation.
However, this method is restricted to discrete systems because the sensitivities
are calculated with respect to the components of the structural matrices and not
to design parameters. Adhikari [3] also proposes an eigensensitivity method based
on N-space. However, it does not give exact solution and is only applicable to
small sized damped systems.

Many eigenpair sensitivity methods are restricted to systems whose charac-
teristic matrices are symmetric. However, the thermoelastic damping and sti�ness
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matrices are asymmetric and the eigenpair sensitivity analysis can not be carried
out using the previous methods. Many authors [120, 125, 51] extend the method
of Fox and Kapoor to asymmetric matrices. Murthy and Haftka [104] expose
an excellent review on the calculation of the eigenpair sensitivity of asymmetric
systems. Brandon [23] presents the modal method for asymmetric damped sys-
tems. This method solves the problems due to asymmetric matrices by using the
left eigenvector. However, it has disadvantages in CPU time and storage capacity
because it uses state space form to consider damping of systems and requires a lot
of eigenpair information to �nd eigenpair sensitivity. In [32], a N-space method
is exposed where the �rst order eigenvalue and eigenvector sensitivities are simul-
taneously obtained from one single equation, which is therefore very e�cient in
CPU time and storage capacity.

In order to calculate the �rst order perturbation of the thermoelastic quality
factor according to Equation (7.23), only the eigenvalue derivatives are to be
calculated. The derivative of the eigenvector are useless. Hence, the method
exposed in [32] is computationally too expensive. For �rst order sensitivities, the
state space method is used in order to solve the damped problem and the Fox
and Kapoor method is modi�ed in order to take into account the asymmetry of
the matrices. The generalized eigenvalue problem for damped systems can be
written as follows (

λ2M + λC + K
)
u = 0, (7.25)

where λ is the eigenvalue, u is the right eigenvector, M is the mass matrix,
C is the damping matrix and K is the sti�ness matrix. As the matrices are
asymmetric, there is also a left eigenvalue problem:

vT
(
λ2M+ λC+ K

)
= 0, (7.26)

where v is the left eigenvector.
In order to determine the eigenvalue sensitivity with respect to a random

variable bi, the derivative of the eigenvalue with respect to bi is calculated using
Equation (7.25). The di�erentiation of Equation (7.25) with respect to bi gives

(
λ2M+ λC+ K

)
u,i = −(2λM + C)uλ,i −

(
λ2M,i + λC,i + K,i

)
u, (7.27)

where (•),i represents the derivative of (•) with respect to the variable bi. The
norm of the left and right eigenvectors are set so that vT (2λM + C)u = 1. Pre-
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multiplying Equation (7.27) by vT allows the eigenvalue derivative to be expressed
as follows

λ,i = −vT
(
λ2M + λC+ K

)
u,i − vT

(
λ2M,i + λC,i +K,i

)
u. (7.28)

The use of the left eigenvector allows the dependence in u,i to be eliminated. The
�rst term of the right hand side of Equation (7.28) is equal to zero as a result
of Equation (7.26). Therefore, the eigenvalue sensitivity for asymmetric damped
systems is expressed as follows

λ,i = −vT
(
λ2M,i + λC,i + K,i

)
u. (7.29)

As the left and right eigenvectors are both computed when Lanczos analysis is
carried out in order to calculate the eigenvalues, the calculation of the eigenvalue
sensitivity only requires the computation of the sensitivity matrices.

If a second order perturbation analysis has to be performed, the second order
derivative of the eigenvalue has to be computed. Di�erentiating Equation (7.29)
with respect to the variable bj gives

λ,ij = −vT
,j

(
λ2M,i + λC,i + K,i

)
u− vT

(
λ2M,i + λC,i + K,i

)
u,j

−vT
(
λ2M,ij + λC,ij + K,ij

)
u− λ,jvT (2λM,i + C,i)u, (7.30)

which requires the computation of the sensitivities of the left and right eigenvec-
tors.

In order to avoid the computation of the left and right eigenvector derivatives,
Choi's method [32] for the �rst order eigensensitivity is extended in order to get
the second order eigensensitivity. For the �rst order problem, Choi's method is
based on a modi�ed expression of Equation (7.27):

(
λ2M+ λC+ K

)
u,i + (2λM +C)uλ,i = − (

λ2M,i + λC,i +K,i

)
u. (7.31)

The right eigenvector is normalized as follows

uT (2λM + C)u = 1 (7.32)

and di�erentiating this normalization condition gives

uT
,i (2λM + C)u+ uT (2λM+ C)u,i + 2uTMuλ,i = −uT (2λM,i + C,i)u. (7.33)
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Transposing the �rst term of the sum in Equation (7.33) gives an equation whose
unknowns are λ,i and u,i:

uT (2λM+C+ 2λMT +CT )u,i + 2uTMuλ,i = −uT (2λM,i +C,i)u, (7.34)

where MT 6= M and CT 6= C due to their asymmetry. Equations (7.31) and (7.34)
form a system of two equations with two unknowns, λ,i and u,i, which can be expressed
as a linear algebraic equation:

[
λ2M+ λC+K 2λM+C

uT (2λM+C+ 2λMT +CT ) 2uTMu

][
u,i

λ,i

]
= −

[
(λ2M,i + λC,i +K,i)u
uT (2λM,i +C,i)u

]
.

(7.35)
From the resolution of this equation, the �rst order sensitivities of the eigen-
value and the right eigenvector are obtained simultaneously without requiring
the knowledge of the left eigenvector. This method is thus advantageous in terms
of CPU time and storage.

Choi's method has been extended to the computation of second order sensi-
tivities of symmetric damped systems in [31]. In this work, it is further general-
ized to asymmetric damped systems. Firstly, the following matrices are de�ned
in order to simplify the expression of the equations:

F = λ2M + λC+ K, (7.36)
F,i = λ2M,i + λC,i + K,i, (7.37)
F,ij = λ2M,ij + λC,ij + K,ij, (7.38)
G = 2λM + C, (7.39)

G,i = 2λM,i + C,i, (7.40)
G,ij = 2λM,ij +C,ij. (7.41)

The di�erentiation of Equation (7.31) with respect to variable bj leads to

Fu,ij + Guλ,ij = −(F,iu,j + F,ju,i + Gu,jλ,i + Gu,iλ,j

+G,juλ,i + G,iuλ,j + 2Muλ,iλ,j + F,iju). (7.42)

The second order derivative of the normalization condition (Equation (7.33)) with
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respect to variables bi and bj gives

uT
,ijGu + uTGu,ij + 2uTMuλ,ij = −uT

,i (G + GT )u,j − uT (G,i + GT
,i )u,j

− 2uT
,i (M + MT )uλ,j − 2uT

,j(M + MT )uλ,i

− 2uTM,iuλ,j − 2uTM,juλ,i − uTG,iju.

(7.43)

Equations (7.42) and (7.43) can be combined in one linear algebraic equation:

[
F Gu

uT (GT + G) 2uTMu

][
u,ij

λ,ij

]
= −




F,iu,j + F,ju,i + Gu,jλ,i

+Gu,iλ,j + G,juλ,i + G,iuλ,j

+2Muλ,iλ,j + F,iju

uT
,i (G + GT )u,j

+uT (G,i + GT
,i )u,j

+2uT
,i (M + MT )uλ,j

+2uT
,j(M + MT )uλ,i

+2uTM,iuλ,j + 2uTM,juλ,i

+uTG,iju




.

(7.44)
The second order derivatives u,ij and λ,ij are found by solving Equation (7.44),
which requires the �rst-order derivatives u,i, u,j, λ,i and λ,j obtained by the
resolution of Equation (7.35). The coe�cient matrix of the left hand side is
the same in both Equations (7.35) and (7.44) so that the LU decomposition in
the Gaussian elimination has to be done only once. This method allows for the
N-space to be maintained without use of the state space equation and requires
only corresponding right eigenpair information without use of the left eigenvector
information.

Note that the coe�cient matrix of the left hand side of Equations (7.35) and
(7.44) has to be scaled in order to avoid the decomposition of a badly conditioned
matrix and hence, to insure the numerical stability of the procedure.

7.4 Structural Matrix Sensitivity
A numerical procedure can be used in order to determine the sensitivity matrices.
In order to obtain the �rst and second order sensitivities of the structural matrix
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S with respect to the variable b, it has to be calculated for three values of the
random variable: its nominal value b̄, the upper perturbed value b+ = b̄ + ε and
the lower perturbed value b− = b̄− ε, where ε is the perturbation. The �rst and
second order derivatives of S are approximated by �nite di�erences:

∂S

∂b
≈ S(b+)− S(b−)

2ε
(7.45)

and
∂2S

∂b2
≈ S(b+)− 2S(b̄) + S(b−)

ε2
. (7.46)

Whenever it is possible to calculate analytically the elementary sensitivity
matrices, it would be preferable to use the analytical method instead of the
numerical one because of the accuracy dependence on the value of the pertur-
bation ε. The method used to analytically compute the elementary sensitivity
matrices depends on the nature of the random variable: physical and pseudo-
geometric variables and geometric variables. Once the elementary sensitivity
matrices are determined, the structural sensitivity matrices are assembled using
the same scheme than for structural matrices.

7.4.1 Physical and Pseudo-geometric Variables
If the random variable is a variable of physical or mechanical nature (e.g. Young's
modulus, thermal conductivity, density,...) or a pseudo-geometric variable, the el-
ementary sensitivity matrices can be analytically computed and the conventional
�nite element assembly procedure can be used to obtain the system sensitivity
matrices.

For example, the sensitivity with respect to the mass density ρ of the ele-
mentary mass matrix is

M(e)
uu,ρ =

∂

∂ρ

∫

Ω

Nu
T ρNudΩ (7.47)

=

∫

Ω

Nu
TNudΩ. (7.48)

7.4.2 Geometric Variables
For shape design variables, the procedure is di�erent. The thermopiezoelectric
elementary matrices (Equations (4.37-4.47)) can be written in a general form:

S(e) =

∫

Ω

LTARdΩ, (7.49)
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where L and R are either shape function matrices or shape function derivative ma-
trices, A is a material constitutive matrix. Considering isoparametric elements,
the elementary matrix is given by

S(e) =

∫

Ωref

LTARζdΩref , (7.50)

where Ω = ζΩref with ζ = |J| is the Jacobian determinant and J is the Jacobian
matrix of the isomorphism. The di�erentiation with respect to b yields

∂S(e)

∂b
=

∫

Ωref

∂LT

∂b
ARζdΩref +

∫

Ωref

LTA
∂R

∂b
ζdΩref +

∫

Ωref

LTAR
∂ζ

∂b
dΩref .

(7.51)
If matrices L and R and the Jacobian determinant ζ are explicit functions of
the nodal coordinates of the element X(e), their derivative can be calculated as
follows

∂Lij

∂b
=

(
∂Lij

∂X(e)

)T
∂X(e)

∂b
, (7.52)

∂Rij

∂b
=

(
∂Rij

∂X(e)

)T
∂X(e)

∂b
, (7.53)

∂ζ

∂b
=

(
∂ζ

∂X(e)

)T
∂X(e)

∂b
, (7.54)

where ∂X(e)

∂b
is the nodal velocity �eld V(e) associated to geometric variable b:

V(e) = NT
uv. (7.55)

The velocity �eld v parameterizes the random geometry by linearly relating the
coordinate �eld of the mean geometry to a realization of the random geometry:

x(b) = x̄ + (b− b̄)v. (7.56)

For example, a bar with a random length L is considered. The coordinate x∆L of
the bar of length L̄ + ∆L can be related to the coordinate x of the nominal bar
of length L̄ by this relation:

x∆L = x +
x

L̄
∆L. (7.57)

Therefore, the velocity �eld is x/L̄.
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7.5 Random Field Discretization

In Chapter 6, two random �eld discretization methods have been selected: the
Local Average method and the Karhunen-Loeve expansion series method. In or-
der to use them in the framework of the perturbation stochastic �nite element
method, the �rst and second order derivatives of the structural matrices with
respect to the random variables, which model the random �eld, have to be de-
termined. In this section, the considered random �elds represent the spatial
variability of material or pseudo-geometric parameters.

7.5.1 Local Average Method

In the Local Average method, the random variables are the mean of the random
�eld over each element of the random mesh, which is in theory not necessarily
equivalent to the �nite element mesh. In this work, the same mesh is used for the
�nite element and random �eld discretizations, so that the random variables are
the average of the random �eld over each �nite element. The �rst and second order
derivatives of the elementary matrices with respect to the parameter, which is
modeled by the random �eld, can be calculated analytically as exposed in Section
7.4.1 or numerically by replacing the global structural matrix S by the elementary
one S(e) in Equations (7.45-7.46). The components of the �rst order derivative of
the global structural matrices with respect to the ith variable are all zero except
for those corresponding to the degrees of freedom of the ith element. Analogously,
the components of the second order derivative of the global structural matrices
with respect to the ith and jth variables are all zero but those corresponding to
the degrees of freedom of the ith and jth elements.

If due to the correlation length, the random mesh has to be coarser than the
�nite element mesh, the random mesh can be constructed so that each random
element includes several �nite elements and the derivative matrices with respect
to the ith variable are calculated considering the components of the elements
included into the random element i. If the random mesh has to be �ner than the
�nite element, the �nite element mesh has to be re�ned to match the random
mesh and if needed, a multiscale procedure should be applied.
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7.5.2 Karhunen-Loeve Expansion Method
The Karhunen-Loeve expansion method (Equation (6.36)) can be used in the
framework of the perturbation stochastic �nite element method. The �rst and sec-
ond order derivatives of the structural matrices with respect to the random vari-
ables ζk have to be calculated. Generally, material variables (ρ, E, k, . . .) appear
as a �rst degree multiplicative factor in the expression of the Lagrangian (Equa-
tion (4.11)), so that the structural matrices depend linearly on them. Therefore,
if the random �eld X is approximated by its Karhunen-Loeve expansion:

X̂(x, ξ) = X̄(x) +
N∑

k=1

√
λkfk(x)ζk(ξ), (7.58)

the �nite element stochastic eigenproblem takes the form:
[
A0 +

n∑
i=1

ζi(ξ)Ai

]
x(ξ) = λ(ξ)

[
B0 +

n∑
i=1

ζi(ξ)Bi

]
x(ξ), (7.59)

where A0, Ai, B0 and Bi are deterministic matrices while λ(ξ) and x(ξ) de-
note the random eigenvalue and eigenvector, respectively. ζi(ξ) are the random
variables representing the random �elds. The random characteristic is explicitly
expressed by the dependence on ξ, which represents a value of the sample space.

Therefore, the �rst and second order derivatives of matrices A and B with
respect to the random variables are easily obtained:

A,i = Ai and B,i = Bi, (7.60)
A,ij = 0 and B,ij = 0. (7.61)

In order to illustrate the computation of matrices Ai and Bi, the mass density
ρ is modeled by a random �eld and the mass matrix Muu is constructed:

Muu =

∫

Ω

ρNu
TNudΩ (7.62)

=

∫

Ω

ρ̄Nu
TNudΩ +

N∑

k=1

ζk

∫

Ω

√
λkfk(x)Nu

TNudΩ (7.63)

= M̄uu +
N∑

k=1

ζkMuuk. (7.64)

Since the random variables ζk have the following statistic properties (Equa-
tion (6.38)):

E[ζk] = 0 and E[ζkζl] = δkl, (7.65)
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the expectation and variance (Equations (7.19) and (7.21)) of the quality factor
take a simpli�ed expression:

E
[
Q(b̄)

] ≈ Q̄ +
1

2

n∑
i=1

Q,ii (7.66)

and

V ar
(
Q(b̄)

) ≈
n∑

i=1

Q,iQ,i. (7.67)

For random �elds which do not appear linearly in the Lagrangian expression,
either the Taylor series expansion or the polynomial chaos decomposition scheme
can be employed to arrive at a form similar to Equation (7.59) as it is done in
the spectral method [58].

7.6 Variability Response Function
In the absence of experimental data on the correlation characteristics of material
properties, some assumptions have to be made on the correlation function and
arbitrary values have to be used for data like the in�uence lengths. However, the
statistics of the response depend on these correlation characteristics. The vari-
ability response function allows the determination of a response variance upper
bound, which is independent on the correlation data.

Deodatis and al. [38, 39, 60, 61, 117] introduce the concept of the variability
response function (VRF) in order to establish spectral-distribution-free upper
bounds of the response variability. The basic idea associated with the VRF is
to express the variance of the response (i.e. the quality factor) in the following
integral form:

V ar(Q) =

∫ +∞

−∞
V RF (κ)S(κ)dκ, (7.68)

where V RF (.) is a function depending on the deterministic parameters related
to the geometry, boundary conditions, material properties and loading of the
nominal (mean) structure, S(.) is the spectral density function of the random
�eld modeling the uncertain properties and κ is the wave number. The response
variance is upper-bounded as follows

V ar(Q) ≤ V RF (κmax)σ
2, (7.69)
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where κmax is the wave number at which the VRF is maximum and σ2 is the
variance of the random �eld.

Using PSFEM, a �rst order approximation of the VRF can be determined.
In Equation (7.21), the expectation E [∆bi∆bj] is the only unknown quantity,
which depends on the correlation function and hence, on the assumptions made
on the correlation length and correlation function.

(j)
(i)
 x


y

i


y

j


∆
x

ij


Figure 7.1: Relative positions of elements (i) and (j).

For the local average method in 1-D, the zero mean variable ∆bi is the average
of the zero mean random �eld ∆X on the element i of length Li:

∆bi =

∫ Li

0

∆X(x)dx, (7.70)

so that the expectation E [∆bi∆bj] has the following expression:

E [∆bi∆bj] =
1

4

∫ +1

−1

∫ +1

−1

B∆X

(
∆xij +

Ljyj

2
− Liyi

2

)
dyjdyi, (7.71)

where B∆X is the covariance function of the homogeneous random �eld ∆X,
Li and Lj are the lengths of elements (i) and (j), respectively, and ∆xij is the
distance between the center points of elements (i) and (j), as shown in Figure 7.1.
Using the Wiener-Khinchine relation [144]:

B∆X(τ) =

∫ +∞

−∞
S∆X(κ) cos(κτ)dκ, (7.72)

where S∆X(.) is the spectral density function of ∆X, the expectation becomes

E [∆bi∆bj] =
1

4

∫ +1

−1

∫ +1

−1

∫ +∞

−∞
S∆X(κ) cos

(
(∆xij +

Ljyj

2
− Liyi

2
)κ

)
dyjdyidκ

=
1

4

∫ +∞

−∞
S∆X(κ) cos (κ∆xij) Qi(κ)Qj(κ)dκ, (7.73)

where
Qi(κ) =

4

κLi

sin

(
κLi

2

)
. (7.74)
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From Equations (7.21), (7.68) and (7.73), the variability response function of
the quality factor for a 1-D homogeneous random �eld discretized via the local
average method is expressed as

V RF (κ) =
1

4

n∑
i=1

n∑
j=1

cos(κ∆xij)Qi(κ)Qj(κ)Q,iQ,j. (7.75)

Note that in the Karhunen-Loeve expansion method, the generation of the
random variables depends on the correlation function so that the decomposition
of the variance into its deterministic and stochastic parts is not possible.

7.7 Random Variable Decorrelation
Due to the correlation of the random variables, a double summation has to be
carried out in order to determine the mean and variance of the quality factor
(Equations (7.19) and (7.21)). Moreover, the computation of the mixed second
order derivatives Q,ij demands a huge computational e�ort. Indeed, for n ran-
dom variables, n(n+1)/2 derivatives have to be computed since the mixed partial
derivatives commute: Q,ij = Q,ji (Clairaut's theorem). If the number of random
variables is large, which is generally the case when random �elds are considered,
the computation of the statistical moments of Q requires an important compu-
tational time due to the correlation of the random variables. A decorrelation
procedure can be applied in order to avoid the double summations and hence,
the computation of the mixed second order derivatives. Note that the random
variables associated to the Karhunen-Loeve expansion method are uncorrelated.

The decorrelation procedure consists in diagonalizing the covariance matrix
B. As B is real and symmetric by construction, it is diagonalized by the following
orthogonal transformation:

D = VTBV, (7.76)

where D is a diagonal matrix whose components are the eigenvalues of B and V

is the matrix formed by columns from the corresponding eigenvectors. Therefore,
the vector c, de�ned as

c = VTb, (7.77)

is the vector of the uncorrelated random variables ci corresponding to the corre-
lated random variables bi. The �rst two statistical moments of c are related to
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those of b:
E[c] = VT E[b] (7.78)

and
Cov(c) = VTBV = D. (7.79)

The mean and variance of the quality factor can be approximated using the
uncorrelated variables ci in the second order perturbation approach:

E [Q(c̄)] ≈ Q̄ +
1

2

n∑
i=1

Q∗
,iiV ar(ci) (7.80)

= Q̄ +
1

2

n∑
i=1

Q∗
,iiD(i, i) (7.81)

and

V ar (Q(c̄)) ≈
n∑

i=1

Q∗2
,i V ar(ci) (7.82)

=
n∑

i=1

Q∗2
,i D(i, i), (7.83)

where Q(c̄) = Q(b̄), Q∗
,ii = ∂2Q/∂c2

i and Q∗
,i = ∂Q/∂ci. In order to determine

the derivative with respect to the decorrelated variables ci, the corresponding
structural matrix sensitivities have to be computed from the sensitivities with
respect to the correlated random variables bi:

∂S

∂ci

=
n∑

j=1

∂bj

∂ci

∂S

∂bj

(7.84)

=
n∑

j=1

V(j, i)
∂S

∂bj

(7.85)

and

∂2S

∂c2
i

=
n∑

j=1

n∑

k=1

V(j, i)V(k, i)
∂2S

∂bj∂bk

, (7.86)

where S represents any structural matrix.
The drawback of the random variable decorrelation is that one part of the

saved CPU time obtained from the transformation of the double summations to
simple ones in Equations (7.81) and (7.83) has to be used for the computation
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of the structural matrix sensitivities. Moreover, the decorrelation procedure may
only be used for random variables characterized by a de�nite positive correlation
matrix. Indeed, a negative eigenvalue of B would lead to a negative variance in
Equation (7.79), which would not make any sense. Therefore, this technique can
not be applied in conjunction with the local average discretization based on an
irregular mesh.

7.8 Random Basis Truncation
Using the decorrelation procedure described in the previous section, the random
�eld modeled by the local average method can be written as a series expansion
starting from Equation (6.35):

X̂(x, ξ) = X̄(x) +
n∑

r=1

(
n∑

k=1

gk(x)Vkr

)
cr(ξ), (7.87)

where n is the number of elements of the random mesh, Vkr is the component
kr of matrix V and gk(x) = 1 if x ∈ Ωi and gk(x) = 0 if x /∈ Ωi. In order
to have a similar expression to Karhunen-Loeve one, random variable cr(ξ) and
spatial functions fr(x) = (

∑n
k=1 gk(x)Vkr) have to be orthonormalized, so that

fr(x)fk(x) = δrk. The Local Average series expansion expression is then written

X̂(x, θ) = X̄(x) +
n∑

r=1

√
λLA,rfLA,r(x)ζr(ξ), (7.88)

where ζr(ξ) = cr(ξ)/
√

V ar(cr), fLA,r(x) = (
∑n

k=1 gk(x)Vkr) /
√
|Ω|/n and λLA,r =

V ar(cr)|Ω|/n. Note that this orthonormalization is possible only if the mesh
elements are identical.

In Equations (7.58) and (7.88), the number of random variables is equal to
the expansion order. For the Karhunen-Loeve expansion, the number of random
variables should be in�nite in order to avoid a truncation error and for the local
average method, this number should be equal to the number of elements of the
random mesh. For the purpose of decreasing the computational cost, the ran-
dom basis can be truncated and the expansion order is set to n∗ < n giving an
approximation X̌(x) of X̃(x), which is the random �eld modeled by a complete
random basis. Note that in the case of the Karhunen-Loeve expansion method
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X̃(x) = X(x), while for the Local Average method, X̃(x) = X̂(x). The induced
truncation error on the variance of the random �eld can be estimated by

εrr =
V ar(X̃(x)− X̌(x))

V ar(X̃(x))
= 1− V ar(X̌(x))

V ar(X̃(x))
. (7.89)

As V ar(X̃(x)− X̌(x)) is always positive because of the de�nition of the variance,
the truncation of the random basis always yields a reduction of the variance.

From series expansions (7.58) and (7.88) truncated at order n∗, the variance
of X̌(x) is expressed

V ar(X̌(x)) = E

[
n∗∑

r=1

n∗∑
s=1

√
λr

√
λsfr(x)fs(x)ζrζs

]
. (7.90)

Integrating this equation over the de�nition domain Ω and using the orthonor-
mality of the random variables ζr and of the eigenfunctions fr(x) gives

∫

Ω

V ar(X̌(x))dΩ =
n∗∑

r=1

λr (7.91)

and the mean of the variance error over the domain Ω is equal to

εrr = 1−
∑n∗

r=1 λr

|Ω|V ar(X̃(x))
, (7.92)

if X̃(x) has a constant variance over the domain. Therefore, the truncation error
can be evaluated by the sum of the eigenvalues considered in the expansion.

Note that this error estimator allows the determination of the variance error
on the truncated random �eld, but not on the response. The number of random
variables required for a certain accuracy level is dependent on the characteristic of
the random �eld, especially on the correlation length. This dependence is studied
in numerical applications analyzed in Chapter 8.

7.9 Concluding Remarks
This chapter has presented the application of the perturbation stochastic �nite
element method for the determination of the �rst two statistical moments of the
thermoelastic quality factor. The particularity of this problem is that it requires
the determination of the �rst and second order sensitivities of the eigenpairs of
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an asymmetric damped eigenproblem. The structural sensitivity matrices are
computed for material variables and pseudo-geometric ones as well as for shape
design variables. For material and pseudo-geometric parameters, the concept of
random �eld is used in the framework of the perturbation stochastic �nite ele-
ment method. The number of random variables induced by the discretization of
a random �eld can be high, leading to a high computational cost. In order to
improve the e�ciency of the method, the decorrelation procedure of the random
variables is introduced. Moreover, an estimator of the error induced by the trun-
cation of the random basis is investigated. All these features are illustrated on
a test case in Chapter 8. Figure 7.2 sums up the di�erent computational steps
involved in the proposed methodology.
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Figure 7.2: Computational steps involved in the second order perturbation sto-
chastic �nite element method.



Chapter 8

Application of the PSFEM on
Quality Factor Analyses

In this chapter, the methods exposed in Chapter 7 are applied
to a simple test case, i.e. the analysis of the thermoelastic
quality factor of a clamped-clamped silicon beam modeled us-
ing thermoelastic beam �nite elements. Firstly, deterministic
sensitivity analyses are carried out in order to determine the
most interesting material random parameter. This parame-
ter, Young's modulus, is then modeled as a random variable
as well as a random �eld. The results obtained using the per-
turbation stochastic �nite element methods are compared to
the Monte-Carlo ones. The in�uence of the correlation data
is also studied. Finally, the variability of the quality factor
is studied with respect to a geometric random parameter, i.e.
the beam length.

8.1 Clamped-Clamped Silicon Beam
The e�ect of uncertainty on the quality factor of a clamped-clamped silicon beam
is studied. The test case beam has the following dimensions: a length L of 90 µm,
a height h of 4.5 µm and a width w of 4.5 µm (Figure 8.1). The thermal and
mechanical properties of silicon at To = 298K are: E = 1.581011 N/m2, ρ =

2300 kg/m3, ν = 0.2, cv = 711 J/kgK, α = 2.510−6 K−1 and k = 170 Wm−1K−1.
The contribution of the piezoelectric e�ect is not considered for this example and

165
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the thermoelastic quality factor is determined for the �rst bending mode in plane
OY Z. The structure is modeled using 50 thermoelastic beam �nite elements.
Note that a stochastic thermopiezoelectric eigenproblem has exactly the same
computational speci�cities and hence, uses the same resolution methodology as
a stochastic thermoelastic eigenproblem.

X


Y


Z


0


w


L

h


Figure 8.1: Beam geometry.

8.2 Deterministic Sensitivity Analysis
In this section, the sensitivity analysis of the resonant frequency and the quality
factor is carried out using the thermoelastic �nite element method. The sensi-
tivities with respect to Young's modulus have been computed according to the
proposed analytical method and to a forward �nite di�erence method, and the
results are compared in Table 8.1. These results correspond to the con�gura-
tion that has the smaller quality factor, i.e. the height is equal to 5.3 µm. For
the �nite di�erence sensitivities, a variation of ±1% of Young's modulus is used.
Hence, it is required to solve twice the eigenproblem. The sensitivities are similar
for both methods. However, the analytical method is more advantageous compu-
tationally than the �nite di�erence method as it requires only one resolution of
the eigenproblem.

In order to compare the sensitivities associated with di�erent variables, the
normalized sensitivity can be used:

QN,β = Q,β
β

Q
, (8.1)
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Table 8.1: Comparison of the analytical and �nite di�erence sensitivities.

Method Analytical method Finite Di�erence
λ [rad/s] −1.5540e3± 3.5028e7i −1.5540e3± 3.5028e7i

λ,E [rad/sPa] −1.5046e−11± 1.1086e−7i −1.5099e−11± 1.1086e−7i

Q,E [1/Pa] −7.3453e−11 −7.3843e−11

where β is the considered parameter (E, k, ρ,...). Table 8.2 compares the normal-
ized sensitivities for the beam with a 5.3 µm height. The normalized sensitivities
are computed with respect to the di�erent material parameters: Young's modulus
E, mass density ρ, thermal conductivity k, thermal expansion coe�cient α and
volumetric heat capacity CE and two pseudo-geometric parameters: height h and
width w. As expected, the beam width does not in�uence the quality factor and
its sensitivity is nearly zero. The parameter for which the sensitivity is the high-
est is the thermal expansion coe�cient. The sensitivities with respect to Young's
modulus and volumetric heat capacity are also important.

Table 8.2: Comparison of the normalized sensitivities of the quality factor with
respect to di�erent variables (h=5.3 µm).

Variable Analytical method Finite Di�erence
E -1.0297 -1.0352
ρ 0.0297 0.0292
k 0.0594 0.0578
α -2.0000 -2.0081

CE 0.9407 0.9407
w -4.8154e-5 8.221e-5
h -0.1756 -0.1861

Table 8.3 compares the sensitivity for di�erent beam heights. The 4.5 µm

con�guration is on the isothermal side of the peak, while the 6 µm one is on the
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adiabatic side of the peak. 5.3 µm is the height for which the thermoelastic losses
are maximum. All parameters except the thermal expansion coe�cient and beam
width in�uence di�erently the quality factor depending on the regime.

Table 8.3: Comparison of the normalized sensitivities of the quality factor for
di�erent regimes.

Q sensitivity wrt h = 4.5µm h = 5.3µm h = 6µm

E -1.2487 -1.0299 -0.8505
ρ 0.2487 0.0297 -0.1492
k 0.4973 0.0594 -0.2985
α -2.0000 -2.0000 -1.9996

CE 0.5027 0.9407 1.2983
w 3.2617e-6 -4.8154e-5 -1.0123e-4
h -1.4801 -0.1756 0.8846
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Figure 8.2: Variation of the quality factor sensitivity with the beam height.

Figure 8.2 shows the variation of the quality factor sensitivity with the beam
height. When going from the isothermal side to the adiabatic side, sensitivity
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changes of sign for the thermal conductivity, mass density and beam thickness.
Sensitivities with respect to the thermal expansion coe�cient and beam width do
not depend on the beam height. On the isothermal side, the quality factor does
not depend on the volumetric heat capacity. Whatever the thermoelastic regime,
the sensitivity with respect to Young's modulus is always negative which means
that an increase in Young's modulus induces a decrease in the quality factor.
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Figure 8.3: Variation of the imaginary eigenvalue sensitivity with the beam
height.

The study of the sensitivity of the real and imaginary eigenvalue for the
di�erent parameters is also interesting. Indeed, some parameters do not in�uence
the imaginary eigenvalue, i.e. the vibrating pulsation. Figure 8.3 shows that only
three parameters, i.e. ρ, E and h, in�uence the vibrating pulsation and that this
in�uence does not depend on the thermoelastic regime. Note that the pulsation is
only sensitive to mechanical parameters. Hence, except for these parameters, the
in�uence on the quality factor is only due to the in�uence on the real eigenvalue
(Figure 8.4).

These analyses show that the quality factor is very sensitive to the beam
height except when the thermoelastic losses are maximum. The thermal expan-
sion coe�cient is also an important parameter even if usually this parameter do
not vary a lot. Young's modulus is a very important parameter as the sensitivity
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Figure 8.4: Variation of the real eigenvalue sensitivity with the beam height.

of the quality factor but also of the pulsation is never zero whatever the regime.
For these reasons, the e�ect of the variability of Young's modulus on the quality
factor is selected to illustrate the performances of the perturbation stochastic
�nite element method.

8.3 Material Random Variable
Young's modulus is considered as a Gaussian random variable. Its mean is equal
to 158 GPa and its coe�cient of variation, i.e. the ratio between the standard
deviation and the mean, is set to 6 %, which is a typical value encountered in
polysilicon [132]. Direct Monte-Carlo simulations are carried out in order to
get a reference solution. 2000 samples are generated. Figure 8.5 represents the
evolution of the mean and the variance of the quality factor with respect to the
number of samples calculated. The mean of the 2000 samples of the quality factor
is equal to 13035 and their coe�cient of variation is equal to 7.52 %.

Table 8.4 lists the means and standard deviations of the quality factor ob-
tained by di�erent methods. Monte-Carlo results, denoted MC, are considered as
reference solutions. First and second order perturbation stochastic �nite element
methods, denoted PSFEM 1st and PSFEM 2nd, are applied to study the ther-
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Figure 8.5: Evolution of the mean and coe�cient of variation of the quality factor
with the number of samples (RV:E).

moelastic quality factor of the test case. Since the determination of the second
order derivative of the eigenvalue can be too computationally demanding, a sec-
ond order PSFEM in terms of the quality factor but only taking into account the
�rst order derivative of the eigenvalue in Equation (7.24), denoted PSFEM p2nd,
is also investigated. The CPU times for each method are normalized with respect
to the CPU time required for one deterministic �nite element resolution and are
presented in Table 8.4. MC simulations are a lot more CPU time costly than
PSFEM and as the order of PSFEM increases, the CPU time increases. Since
the approximation of the standard deviation of the quality factor is �rst order
accurate (Equation (7.21)), the standard deviation has the same value whatever
the order of the PSFEM and the relative error with respect to MC standard
deviation is less than 1 %. The �rst order PSFEM gives a mean equal to the de-
terministic quality factor, i.e. 12967, while MC simulations yield a higher mean.
This is due to the fact that the quality factor is a non-linear function of Young's
modulus as shown in Figure 8.6(b). Moreover, due to this non-linear variation,
the probability density function of the quality factor is not strictly Gaussian as
shown in Figure 8.6(a). In this �gure, the bars represent the distribution of the
output samples obtained by MC simulations and the solid line plots the Gaussian
distribution with a mean and a standard deviation equal to the values of the MC
samples. The second order PSFEM approximation of the mean is really good
(0.02 % relative error) and the pseudo second order PSFEM approximation has
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also a good accuracy (0.026 % relative error) at a less computational e�ort.

Table 8.4: Comparison of mean and standard deviation of the quality factor
obtained by di�erent methods.

Method Mean(Q) [−] σ(Q) [−] t∗CPU [−]

MC 13035 980 2005
PSFEM 1st 12967 971 1.02
PSFEM 2nd 13037 971 1.16
PSFEM p2nd 13069 971 1.04
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Figure 8.6: (a) Probability density function of the quality factor (CoV(E)=0.06),
(b) Variation of the quality factor with respect to Young's modulus.

Table 8.5 compares the means and standard deviations of the quality factor
corresponding to three di�erent coe�cients of variation of Young's modulus, i.e.
6 %, 10 % and 20 %. As the coe�cient of variation of Young's modulus increases,
the approximations of the mean and standard deviation of the quality factor by
PSFEM become less accurate. The second order PSFEM is more accurate than
the pseudo-second order PSFEM at the price of a considerably larger compu-
tational e�ort. Figure 8.7 shows that as the coe�cient of variation of Young's
modulus increases, the probability density function drifts away from the Gaussian
distribution and PSFEM approximations get worse.
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Table 8.5: Variation of the mean and coe�cient of variation of the quality factor
with respect to the coe�cient of variation of Young's modulus.

Method CoV(E) [%] Mean(Q) [−] σ(Q) [−] CoV(Q) [%]

MC 6 13035 980 7.52
PSFEM 1st 6 12967 971 7.49
PSFEM 2nd 6 13037 971 7.45
PSFEM p2nd 6 13069 971 7.43

MC 10 13 181 1720 13.05
PSFEM 1st 10 12967 1619 12.49
PSFEM 2nd 10 13161 1619 12.30
PSFEM p2nd 10 13250 1619 12.22

MC 20 13895 4313 31.05
PSFEM 1st 20 12967 3238 24.97
PSFEM 2nd 20 13744 3238 23.56
PSFEM p2nd 20 14099 3238 22.97
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Figure 8.7: Probability density function of the quality factor (CoV(E)=10 % (a)
and CoV(E)=20 % (b)).

These analyses show that the perturbation stochastic �nite element method
is adequate in order to determine the mean and standard deviation of the quality
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factor when Young's modulus variation is small (i.e. in this application, a coef-
�cient of variation lower than 10 %). The second order and the pseudo-second
order perturbation stochastic �nite element methods provide more information
than the �rst order one. Indeed, the �rst order method does not take into account
the variation of the mean due to the non-linear characteristic of the response with
respect to the random variable. Moreover, the increase in accuracy from PSFEM
p2nd to PSFEM 2nd is not su�cient to justify the increase in computational
e�ort.

8.4 Material Random Field
In this section, the spatial variation of Young's modulus is considered by modeling
it as a 1-D isotropic homogeneous Gaussian random �eld. Its mean and coe�cient
of variation are set to 158 GPa and 6 %, respectively. The aim of this section is
to highlight the in�uence of the random �eld discretization method as well as its
correlation data on the statistical moments of the quality factor. The correlation
function is assumed to be exponential and the correlation length is set to an
arbitrary value of 45 µm.

8.4.1 Random Field Discretization Method
Local Average Method

The random mesh is chosen to be the same as the �nite element mesh, so that
the number of random variables is equal to the number of �nite elements, i.e. 50.
Firstly, reference solutions are generated using Monte-Carlo simulations, following
the computational steps of Figure 8.8. Random �eld samples b are generated in
two basic steps:

- The covariance matrix B is generated using Equation (6.27).

- The uncorrelated vectors c with a variance equal to one, generated by a
random number generator, are transformed to correlated vectors b using
the Cholesky factorization of the covariance matrix B = LLT :

b = Lc. (8.2)
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Young's modulus value of element i is the ith components of vector b. 10000 ran-
dom �eld samples are generated and 10000 deterministic �nite element analyses
are carried out resulting in 10000 quality factor samples. Figure 8.9 represents
the evolution of the mean and the standard deviation of the quality factor with
respect to the number of samples calculated. The mean of the 10000 samples of
the quality factor is equal to 13022 and their coe�cient of variation is equal to
5.47 %.
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Figure 8.8: Monte-Carlo steps with a Local Average discretization of the random
�eld.
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Figure 8.9: Evolution of the mean and standard deviation of the quality factor
with the number of samples (RF:E, `c = 45 µm, LA Cholesky factorization).

As explained in Section 7.5.1, the perturbation stochastic �nite element
method can be applied in conjunction with the local average discretization of the
random �eld. Table 8.6 compares Monte-Carlo results with �rst, pseudo-second
and second order PSFEM results. The pseudo-second and second order PSFEM
give results close to the MC ones. The CPU times required for each method are
also listed in Table 8.6. The CPU times are normalized with respect to the CPU
time required for one deterministic �nite element resolution. Hence, MC simu-
lations are 10500 times longer than one deterministic �nite element resolution,
while the most expensive PSFEM is only 20 times longer. Compared to the �rst
order PSFEM, the 2nd order PSFEM is nearly 20 times slower. The increase in
CPU time is mainly due to the fact that n(n + 1)/2 second order derivatives of the
eigenvalue λ,ij have to be determined (i = 1, . . . , 50 and j = 1, . . . , i). One way
to reduce the CPU time is to transform the random variables into uncorrelated
variables as explained in Section 7.7. The results obtained using the decorrela-
tion procedure (noted PSFEM d2nd) are the same as for the classic PSFEM but
thanks to the decorrelation procedure, the CPU time is reduced by 15 %. Figure
8.10 compares the CPU time with and without decorrelation of the random vari-
ables as a function of the number of random variables. As the number of random
variables increases, the CPU time becomes larger and the CPU time saved using
a decorrelation procedure increases.
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Table 8.6: Comparison of mean and standard deviation of the quality factor
obtained by di�erent methods (RF:E, `c = 45 µm, LA).

Method Mean(Q) [−] σ(Q) [−] t∗CPU [−]

MC LA Chol 13022 712 10500
PSFEM 1st 12967 706 1.25
PSFEM 2nd 13010 706 20.24
PSFEM p2nd 13021 706 1.27
PSFEM d2nd 13010 706 17.54
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Figure 8.10: Variation of the CPU time for the standard and decorrelated 2nd
order PSFEM with respect to the number of random variables.

Karhunen-Loeve Expansion Method

The Karhunen-Loeve expansion method is used to discretize the random �eld, so
that the number of random variables is equal to the expansion order. In order to
chose the adequate expansion order, the mean over the domain of the variance
point-wise error due to the truncation is plotted as a function of the expansion
order (Figure 8.11). The higher the expansion order, the lower the error but
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also the larger the number of random variables. A compromise has to be found
between the accuracy and the computational cost. An expansion order of 10 is
chosen as the corresponding error is relatively small (i.e. less than 5 %) and it is
an easily manageable number of random variables.
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Figure 8.11: Variation of the mean over the domain of the variance point-wise
error due to the truncation.

Firstly, Monte-Carlo simulations are carried out, following the computational
steps of Figure 8.12. The generated random �elds are continuous, so that inside
each �nite element, Young's modulus varies. However, for the sake of simplicity
in the �nite element analysis, Young's modulus is considered as constant in each
�nite element and is set to the value of the random �eld at the middle point of
the element. Figure 8.13 represents the evolution of the mean and the standard
deviation of the quality factor with respect to the number of samples calculated.
The mean of 10000 samples of the quality factor is equal to 12989 and their
standard deviation is equal to 711.

As explained in Section 7.5.2, the perturbation stochastic �nite element
method can be applied in conjunction with the Karhunen-Loeve expansion of the
random �eld. The sensitivity matrices with respect to the random variables have
to be computed as exposed for the mass matrix (Equation (7.62)). Appendix A
gives the expression of these matrices for thermoelastic beam �nite elements. Ta-
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Figure 8.12: Monte-Carlo steps with a Karhunen-Loeve expansion of the random
�eld.

ble 8.7 compares Monte-Carlo results with �rst, pseudo-second and second order
PSFEM results. The results are similar to those obtained using the local average
discretization (Table 8.6). However, the CPU time for the second order PSFEM
is largely lower when using the Karhunen-Loeve expansion than the local average
method. This lower required CPU time can be explained by two advantages of
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Figure 8.13: Evolution of the mean and standard deviation of the quality factor
with the number of samples (RF:E, `c = 45 µm, KL).

the Karhunen-Loeve expansion. Firstly, the number of random variables is lower
than for the local average method, i.e. in this case, nKL = 10 and nLA = 50.
Secondly, the random variables associated with the Karhunen-Loeve expansion
are uncorrelated.

Table 8.7: Comparison of mean and standard deviation of the quality factor
obtained by di�erent methods (RF:E, `c = 45 µm, KL).

Method Mean(Q) [−] σ(Q) [−] t∗CPU [−]

MC 12989 711 10600
PSFEM 1st 12967 706 1.18
PSFEM 2nd 13008 706 1.44
PSFEM p2nd 13020 706 1.21

8.4.2 E�ect of the Correlation Data
In order to investigate the in�uence of the correlation length of the random �eld on
the response statistics, the pseudo-second order PSFEM is used to calculate the
quality factor of structures whose Young's modulus is a random �eld for di�erent
correlation length values. In these simulations, the random �eld is modeled using
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the local average method since it easily allows di�erent correlation functions to be
taken into account. Figure 8.14 shows the in�uence of the correlation length on
the mean and variation of the quality factor. As the correlation length decreases,
the mean and the variance decrease. For high correlation length, the mean and
variance values tend to the values obtained by considering Young's modulus as a
random variable, i.e. as being spatially uniform. The reduction of the variance
due to the fact that the random parameter is modeled by a random �eld instead
of a random variable is also called the compensation e�ect on the variability.
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Figure 8.14: In�uence of the correlation length on the mean and standard devi-
ation of the quality factor (RF:E, LA PSFEM p2nd).

Figure 8.15 studies the in�uence of the correlation function on the mean
and variance of the quality factor. The exponential, triangular, squared expo-
nential and autoregressive correlation functions are compared. For each of these
functions, the statistics of the quality factor is calculated as a function of the
�uctuation scale. The relative di�erence in the variance can reach a value of 10
% depending on the correlation function.

8.4.3 Random Basis Truncation
As exposed in Section 7.8, the random basis can be truncated in order to re-
duce the computational e�ort. However, this truncation induces an error. The
truncation error on the variance of the random �eld can be easily estimated us-
ing Equation (7.92) but the error induced on the response statistics has to be
investigated through numerical applications.
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Figure 8.15: In�uence of the correlation function type on the mean and standard
deviation of the quality factor (RF:E, LA PSFEM p2nd).

Firstly, the statistics of the quality factor are studied using the second order
perturbation stochastic �nite element method with a Karhunen-Loeve expansion
of Young's modulus. Figure 8.16 shows the variation of the mean and standard
deviation of the quality factor as the expansion order increases. While the stan-
dard deviation is a monotonically increasing function of the expansion order, the
mean shows a decreasing behavior when the expansion order goes from 2 to 4.
This is due to the contribution of the second order sensitivity of the eigenvalues.
Indeed, if a pseudo-second order PSFEM is used, the mean is a monotonically
increasing function of the expansion order (Figure 8.17). For the variance and
the mean obtained by the pseudo-second order PSFEM, the contribution of ex-
pansion terms of order larger than 10 is negligible. However, the terms of order
higher than 10 have a noticeable contribution on the mean obtained by a complete
second order approximation (Figure 8.16(a)).

Figure 8.18 shows the variation of εrr as a function of the expansion order
for di�erent correlation lengths, where εrr is the average over the domain of the
random �eld variance truncation error given by Equation (7.92). As the corre-
lation length decreases, the required expansion order to reach a given level of
accuracy increases. This illustrates the so-called spectral convergence phenom-
enon. For example, the spectral convergence also governs the convergence of the
modal expansion in mechanics, where the required number of modes depends on
the frequency content of the excitation. Figure 8.19 shows the relative contri-
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Figure 8.16: In�uence of the expansion order on the mean and standard deviation
of the quality factor (RF:E, KL PSFEM 2nd).
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Figure 8.17: In�uence of the expansion order on the mean of the quality factor
(RF:E, KL PSFEM p2nd).

bution of the �rst r expansion terms on the �rst two statistical moments of the
quality factor for di�erent correlation lengths. Whatever the correlation length,
the standard deviation of Q is a monotonically increasing function of the expan-
sion order and the mean is an increasing function except for expansion orders
from 2 to 4. As for the variance of the random �eld, the required number of
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Figure 8.18: Variation of the mean over the domain of the random �eld variance
truncation error for di�erent correlation lengths.
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Figure 8.19: In�uence of the expansion order on the mean and standard deviation
of the quality factor for di�erent correlation length (RF:E, KL PSFEM 2nd).

the expansion terms to reach a given level of accuracy becomes larger when the
correlation length is smaller.

Using the decorrelation procedure when the random �eld is modeled by the
local average method allows the expression of the random �eld as a series ex-
pansion, so that the number of random variables can be reduced by truncation.
The error due to the truncation of the expansion to order r is directly related
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Figure 8.20: Relative contribution of the r �rst eigenvalues to B trace (RF:E,
LA).
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Figure 8.21: In�uence of the number of modes on the mean and standard devia-
tion of the quality factor (RF:E, LA PSFEM d2nd).

to the contribution of the �rst r eigenvalues (sorted in descending order) of the
covariance matrix to its trace, see Figure 8.20. Figure 8.21 shows the in�uence
of the expansion order on the mean and standard deviation of the quality factor.
The curves are similar to those obtained with the Karhunen-Loeve expansion of
the random �eld (Figure 8.16).

These numerical applications show that the required number of random vari-
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ables depends on the correlation length but also on the order of the perturbation
stochastic �nite element method. Therefore, the expansion order can be based on
the study of the random �eld truncation error but this has to be done carefully
since a small error on the random �eld does not warranty a small error on the re-
sponse statistic moments. In practice, the number of random variables is chosen
after the study of the random �eld truncation error and this choice is validated
by checking that increasing the number of random variables does not signi�cantly
in�uence the response statistics.

8.4.4 Variability Response Function
As observed previously, the correlation characteristics have an in�uence on the
response statistics. In order to get a free-distribution upper bound of the response
variance, the variability response function can be calculated. The variability
response function is plotted in Figure 8.22. The VRF is a non-negative function
of κ possessing the following symmetry:

V RF (κ) = V RF (−κ), (8.3)

as given by Equation (7.75). The variability response function behaves similarly
to the frequency response function in linear random vibration analyses. For ex-
ample, knowing the form of the power spectral density function of the exponential
correlation function for a given correlation length (Figure 8.23), the analysis of
Figure 8.22 allows the explanation of the evolution of the response variance with
the expansion order (Figures 8.21(b) and 8.16(b)). Each peak on Figure 8.22
represents an eigenmode of the covariance contributing to the response variance
(analogous to resonating mode in mechanical vibrations) and each drop to zero
corresponds to an eigenmode that does not contribute to the response variance
(analogous to antiresonating mode in mechanical vibrations). Due to the form
of the spectral density function, the higher modes have less importance than
the lower ones. From the VRF, after a contributing mode, there is always a
non-contributing mode. This phenomenon is illustrated in Figures 8.21(b) and
8.16(b), where modes with an even number do not contribute to the response
variance while modes with an odd number does. It is also shown on these �gures
that mode 5 is more signi�cant in the response variance than mode 3 conform-
ingly to the peak height of the VRF. Due to the evolution of the form of the
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spectral density function, when the correlation length increases, the importance
of higher order modes decreases, so that the lower the correlation length, the
higher the number of contributing modes to reach a given level of accuracy. This
is in agreement with the curves plotted in Figure 8.19(b).
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Figure 8.22: Variability response function of the quality factor.

From the maximum value of the VRF (Equation (7.69)), the upper bound
of the standard deviation can be obtained, i.e. 969 in this case. Whatever the
correlation length and correlation function, this upper bound has the same value.
Note that this upper bound is close to the value of the standard variation of the
quality factor when Young's modulus is considered as a random variable, i.e. 971.

8.5 Geometric Random Variable
The length, which is the only non-pseudo-geometric variable in this application,
is considered as a random variable. It is modeled as a Gaussian random variable
with a mean of 90 µm and a coe�cient of variation of 5 %. 10000 Monte-Carlo
samples are generated, which gives a mean of 13 008 and a standard deviation of
636 for the quality factor (Figure 8.24).

In order to use the perturbation stochastic �nite element method, the sensi-
tivity with respect to the length of the structural matrices has to be determined.
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Figure 8.23: Variation of the form of the exponential power spectral density
function with the correlation length.
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Figure 8.24: Evolution of the mean and standard deviation of the quality factor
with the number of samples (RV: length).

The velocity �eld is easily identi�ed in this case:

x∆L = x + vx∆L, (8.4)

where the velocity vx is given by x
L
. The second order PSFEM gives a mean of

13076 and a standard variation of 637 for the quality factor, which is similar to
Monte-Carlo results.
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8.6 Concluding Remarks
Through the application of the perturbation stochastic �nite element method on
the determination of the �rst two statistical moments of the quality factor, it
is shown in this chapter that this method is adequate for a low variability of
the random parameter, e.g. a coe�cient of variance less than 10 % for Young's
modulus, which is typically the kind of variation observed in MEMS.

These analyses also show that the pseudo-second order PSFEM gives excel-
lent approximations for a considerable lower CPU time than the second order
one. When applying a random basis truncation, it is shown that this procedure
does not only a�ect the random �eld variance but also the response variance and
mean. Indeed, the minimum required random basis for a certain level of accuracy
depends on the random �eld and its in�uence length as well as on the PSFEM
order. In practice, the number of random variables is based on the study of
the random �eld truncation error and this choice is validated by checking that
increasing the number of random variables does not signi�cantly in�uence the
response statistics.

Using a random �eld model for Young's modulus shows the e�ect of com-
pensation that occurs when a random variable is replaced by a random �eld.
Moreover, the in�uence of the correlation data (in�uence length and correlation
function) on the response statistics is not negligible, requiring accurate estima-
tions or measurements of these data. Therefore, when no experimental correlation
data are available, an upper bound of the response variance can be obtained by
modeling the random parameter as a random variable or using the variability
response function.

Due to its advantage in terms of CPU time over Monte-Carlo simulations,
the perturbation stochastic �nite element method is well suited for the study of
complex cases such as the Vibrating Inertial Accelerometer developed at ONERA.
Carrying out a stochastic �nite element analysis allows the prediction of the
performance range of the device by providing con�dence intervals for its quality
factor or its resonant frequency.
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Chapter 9

Introduction to a Stochastic
Micro-meso-macro Approach

The objective of this chapter is to pave the way to the de-
�nition of the stochastic macroscale variation of the struc-
ture properties on the basis of material properties at the mi-
croscale. It gives an overview rather than a detailed analysis,
which is out of the scope of the present work.

9.1 General Methodology
The aim of the micro-meso-macro approach is to characterize the random �eld
properties used in the stochastic macro-model via a stochastic micromechanical
model of the continuum as proposed in the work of Ostoja-Starzewski [114, 115]
and Huyse [70]. This approach is based on three scales: the microstructure scale d

(i.e. the characteristic size of a grain, a �bre, a crystal,...), the mesoscale Lm (i.e.
the characteristic length of the �nite elements used to discretize the macrostruc-
ture) and the macroscale L (i.e. the characteristic length of the macrostructure).
The scales satisfy the following relation:

d < Lm < L. (9.1)

The methodology consists in three main steps:

- the generation of the microstructure model, which is based on the micro-
geometry of the heterogeneous material,

191
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- the characterization of consistent random �eld properties at the mesoscale
from a stochastic microstructure model using homogenization techniques,

- the determination of the response statistics using the stochastic �nite ele-
ment model of the macrostructure.

When using a microstructure based framework, it is required to estimate the
impact of each assumption made at the microlevel on the macro-response:

- The microgeometry of a material is fully described when the shape, size
and location of each constituent are de�ned. These data can be obtained
from Transmission Electron Microscope (TEM) or Scanning Electron Mi-
croscope (SEM) images. To generate a stochastic microstructure model,
the microgeometry data are to be modeled to generate samples from which
the statistics of the random �eld are derived. For example, Voronoi model
[15] can be used.

- Stochastic homogenization aims at relating the stochastic characteristics
of a homogenized continuum to those of a discrete microstructure. Di�er-
ent homogenization techniques are distinguished according to the boundary
conditions on which they rely: essential or natural boundary conditions.
Techniques based on essential boundary conditions give upper bounds for
the actual property, while using natural boundary conditions provide lower
bounds.

Once the microstructure model and homogenization technique are selected,
Monte-Carlo simulations of the microstructure, followed by subsequent homog-
enization allows the estimation of the mean, variance and covariance of the
mesoscale properties for a given �nite element mesh size. Since the homogenized
properties samples can be considered as averages of the microstructure properties
over the �nite elements, their variance reduces as the size of the �nite element
increases. This variation of the variance is expressed by the variance reduction
function (γ) in the Local Average method (Section 6.2.2) for homogeneous random
�elds. Therefore, �tting the curve of the variance variation with respect to the
�nite element size to an analytical expression of the variance reduction function
allows the estimation of the correlation function as well as the in�uence length.
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Finally, the required stochastic data are available to carry out a stochastic �nite
element analysis of the macrostructure.

9.2 1-D Application
In order to illustrate the proposed methodology, a 1-D case is considered in which
Young's modulus is a stochastic variable. It aims at determining the characteris-
tics of the random �eld consistent with a two-phase material microstructure with
the following properties:

- the volume fraction of each phase = 50%,

- a contrast level between Young's modulus of both phases equals to
E(2)/E(1) = 130/170,

- a microscale d of 200 nm.

Figure 9.1 shows a realization of a bi-phase material with a 1-D microgeometry
of a total of 100 grains. It illustrates also the macroscale L and mesoscale Lm

when �ve �nite elements discretize the bar.
In order to determine the homogenized Young's modulus over a �nite element,

a spring network is used. The equivalent Young's modulus E(e) is calculated as
the equivalent sti�ness of a series of springs:

n(1) + n(2)

E(e)
=

n(1)

E(1)
+

n(2)

E(2)
, (9.2)

where n(1) and n(2) are respectively the number of springs of sti�ness E(1) and
E(2) in the �nite element.

A bar of length L equal to 90 µm is considered, which means that there
are 450 grains along the length. Several mesocales Lm (i.e. lengths of the �nite
elements) are considered. For each mesoscale, the mean and variance of E(e) are
computed from 500 samples of the microstructure.

Figure 9.2 shows the variation of the mean of the equivalent Young's modulus
as the size of the �nite elements increases. The mean of E(e) depends on the
mesoscale for small �nite elements but tends rapidly to a constant value when
the mesoscale increases. Indeed, for small �nite elements, the mesoscale is too
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Lm

L

d

Figure 9.1: A realization of a bi-phase material with a 1-D microgeometry of
a total of 100 grains (black: phase (1), E(1) = 170 GPa; white: phase (2),
E(2) = 130 GPa).

close to the microscale so that the mean is a�ected by the averaging position
because of the heterogeneity of the material.

Figure 9.3 shows the variation of the variance of the equivalent Young's as the
�nite element size increases. The variance reduction function γ can be modeled
by [144]

γ(Lm) =

(
1 +

(
Lm

θF

)n)−1/n

, (9.3)

where the model parameters θF and n are estimated by �tting γ model (solid line
in Figure 9.3) to the data obtained from Monte-Carlo samples (crosses in Figure
9.3). In this case, the model parameters are θF = 0.3 µm and n = 0.6.

Therefore, the 1-D microstructure analysis provide the stochastic data re-
quired for a stochastic �nite element analysis where Young's modulus random
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Figure 9.2: Mean of the equivalent Young's modulus as a function of the mesoscale
Lm.
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Figure 9.3: Variance reduction function of the equivalent Young's modulus.
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�eld is discretized by the Local Average method:

- a mean of 147 GPa,

- a standard deviation of 20 GPa,

- a variation reduction function γ given by

γ(Lm) =

(
1 +

(
Lm

0.3

)0.6
)−1/0.6

, (9.4)

which is used to get the covariance matrix via Equation (6.27).

9.3 Concluding Remarks
This chapter has introduced a multiscale method to model the microstructural
disorder, the mesoscale �nite elements and the macroscopic response. Using this
micro-meso-macro approach, the spatial variation of heterogeneous properties
at the mesoscale can be characterized using a microscale model and then, the
stochastic �nite element method can use these data to compute the macroscale
variation of the structure response. The feasibility of this micro-meso-macro
approach has been illustrated on a 1-D case.



Conclusion

Due to the importance of the interaction between several physical �elds in MEMS
design, numerical multiphysic simulations are required. In particular, the pur-
pose of this work was to develop a numerical method to analyze the in�uence
of random variations of geometric and material properties on the thermoelastic
quality factor of micro-resonators. The dissertation was divided into two main
research tasks: the development of a computational framework to determine the
thermoelastic quality factor of micro-resonators, and the modeling of uncertainty.
The speci�c conclusions associated with each of these two parts are drawn here-
after.

Thermoelastic Quality Factor Determination
Since existing analytical models are limited to simple cases due to their restrictive
assumptions, a numerical method has been developed in order to study real 3-D
structures. The development of the computational framework relies on several
strategic choices and personal contributions:

- The �nite element method has been chosen to discretize the mechani-
cal, thermal and electric �elds. A uni�ed variational principle describing
the fundamental equations of thermopiezoelectricity has lead to the ther-
mopiezoelectric �nite element formulation. Bar and beam �nite elements
have been developed in order to validate the methodology after comparing
�nite element and analytical results. 2-D and 3-D �nite elements have also
been implemented for the purpose of the analysis of real micro-structures.

- The quality factor is determined from the complex frequency obtained by a
modal analysis of the thermopiezoelectric system. The discretized dynamic
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equilibrium equation governing the thermopiezoelectric problem has been
transformed into a real generalized non-symmetric eigenproblem using a
state-space formulation and eliminating the time derivatives of the electric
and thermal degrees of freedom, which are massless arti�cial variables.

- In order to solve large-scale eigenproblems that are inherent to �nite ele-
ment analyses, an iterative method has to be used. Due to the presence
of conjugate eigenvalues, a block Lanczos method has been selected. A
non-symmetric real block Lanczos method has been developed based on the
approximation of the complex eigenvalues and eigenvectors of a real non-
symmetric matrix by the complex eigensolutions of the real non-symmetric
tridiagonal matrix of the Lanczos coe�cients. This extension of the classic
Lanczos method is particulary e�cient to solve real non-symmetric eigen-
problems since using real vectors subspaces, the iterative algebraic opera-
tions are real.

The application of the �nite element method to di�erent test cases makes
possible the determination of the quality factor of these structures, and it allows
a better understanding of the phenomena occurring in thermopiezoelectric vibra-
tions. Due to the strong interaction between the thermal, electric and mechanical
�elds, the in�uence of a parameter on the multiphysic behavior of a MEMS is not
straightforward. The e�ects of residual stress and non-perfect clamping condi-
tions, which are well known for purely mechanical vibrations, have been studied
for thermoelastic vibrations.

All the exposed developments have been implemented in Oofelie, an object
oriented �nite element software commercially available. Thanks to this software
integration, the proposed methodology has been successfully applied on complex
cases provided by ONERA. In the interesting case of the Vibrating Inertial Ac-
celerometer, �nite element analyses have shown the importance of the in�uence of
the gold electrodes on the quality factor and the e�ect of piezoelectric actuation on
the resonant frequency. Therefore, compared to experiments, a thermopiezoelec-
tric �nite element analysis taking into account the gold electrodes gives similar
results in terms of the quality factor and the resonant frequency, but has also
permitted a more in-depth understanding of the involved phenomena.
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In conclusion, thanks to the developed �nite element approach, the di�erent
factors that in�uence the behavior of the micro-resonator can be identi�ed, so
that the physical phenomena are better understood and the design of the micro-
resonator can be modi�ed in order to improve its quality factor and hence, its
performances.

Uncertainty Modeling
Micro-resonators are subject to inevitable and inherent uncertainty in geometric
and material parameters, that lead to variability in their performances and in
particular, in their quality factor. Due to the small dimensions and high feature
complexity, manufacturing processes leave substantial variability in the shape
and geometry of the device, while the material properties of a component are
inherently subject to scattering. The stochastic �nite element method has been
selected to study the uncertainty e�ect on the quality factor of micro-structures.

The originality of this work is the application of the stochastic �nite element
method to the analysis of strongly coupled multiphysic phenomena. From exist-
ing stochastic �nite element methods, the Perturbation Stochastic Finite Element
Method has been selected as the most adequate method to study the thermoelas-
tic quality factor. This method consists in a deterministic analysis complemented
by a sensitivity analysis with respect to the random parameters. Personal de-
velopments were carried out for its extension to the thermoelastic quality factor
study:

- From the second order Taylor series expansion of the stochastic thermopiezo-
electric �nite element eigenproblem, the zeroth, �rst and second order equa-
tions in the eigenpairs are obtained. While the zeroth order equation allows
the determination of the eigenpair mean, the �rst and second order deriva-
tives of the eigenpair cannot be obtained through the resolution of the �rst
and second order equations.

- The second order Taylor series expansion is performed on the quality factor
expression in order to relate its mean and variance to the zeroth, �rst and
second order derivatives of the eigenvalues, and to the mean, variance and
correlation structure of the random parameters. Moreover, a pseudo-second
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order expression of the quality factor mean and variance has been derived,
in which the second order derivatives of the eigenvalues do not appear.

- An e�cient method to compute the �rst and second order sensitivities of
the eigenpair of a non-symmetric damped problem has been developed based
on Choi's method [31].

The random �eld concept has been used to take into account the spatial
variability of material and pseudo-geometric parameters. The Local Average and
Karhunen-Loeve expansion methods have been chosen as random �eld discretiza-
tion methods. Since the random �eld discretization involves a quite large number
of random variables, a decorrelation procedure and a random basis truncation
procedure have been proposed to enhance the performance of the Perturbation
Stochastic Finite Element Method. The Variability Response Function has been
introduced in order to get a spectral-distribution-free upper bound when the cor-
relation data are unknown.

From the application of the developed Perturbation Stochastic Finite Ele-
ment Methodology on the determination of the �rst two statistical moments of
the quality factor, it can be concluded that:

- This method is adequate for a low variability level of the random parameter,
which is typically encountered in MEMS.

- The pseudo-second order Perturbation Stochastic Finite Element Method
gives excellent approximations for a considerable lower CPU time than the
second order Perturbation Stochastic Finite Element Method.

- The random basis truncation does not only a�ect the random �eld variance
but also the response variance and mean. Therefore, the minimum required
random basis for a certain level of accuracy depends on the random �eld and
its in�uence length as well as on the order of the Perturbation Stochastic
Finite Element Method.

- A compensation e�ect occurs when a random variable is replaced by a ran-
dom �eld.

- The in�uence of the correlation data (i.e. in�uence length and correlation
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function) is not negligible, so that accurate estimations or measurements of
these data are required.

- An upper bound of the response variance can be obtained by modeling the
random parameter as a random variable or using the Variability Response
Function.

- The study of the Variability Response Function coupled to the analysis of
the spectral density function allows the identi�cation of the in�uence of the
covariance eigenfunctions on the response variance.

The stochastic methodology has been applied to one-dimensional analyses,
but it could be easily applied to 2-D and 3-D cases. Therefore, using the proposed
Stochastic Finite Element Method, a numerical method is available to quantify
the in�uence of uncertain geometric and material property variations on the ther-
moelastic quality factor of micro-resonators.

Perspective and Closure
Any stochastic simulation method requires information on the stochastic proper-
ties of the input data. In this work, due to the lack of data, roughly estimated
values have been used for the correlation of the uncertain parameters. The exper-
imental determination of these stochastic data would require a large and costly
measurement campaign. Alternatively, using a micro-meso-macro approach, the
random �eld properties of the stochastic macro-model can be characterized via
a stochastic micromechanical model of the continuum. Chapter 9 has given a
general overview of the feasibility of this micro-meso-macro approach.

The proposed methodology could also �nd some applications in the quan-
ti�cation of damping in laminated and particulate composite structures. Indeed,
several studies show that thermoelastic damping in this kind of composite is
important [82, 95] and till now, can only be approximated using restricted an-
alytical models. On top of that, using the stochastic approach, the e�ects of
random imperfections could be quanti�ed.

MEMS technology is rapidly growing. In order to improve MEMS design and
performances, complex multiphysic phenomena have to be clearly identi�ed and
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understood. Extending modeling techniques available in classical mechanics to
multiphysics appears as a fruitful strategy to o�er new e�cient numerical tools
to MEMS designers.
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Appendix A

Thermoelastic Beam Finite
Elements

A.1 Elementary Structural Matrices
The elementary structural matrices of a thermoelastic beam �nite element are
obtained using the shape function matrices and their derivatives derived in Section
5.1.3 in Equations (4.37-4.47). The material properties are denoted as follows:
Young's modulus E, mass density ρ, thermal conductivity k, thermal expansion
coe�cient α and volumetric heat capacity CE.

The mass matrix Muu is expressed for an element of length `, vibrating height
h, width b and inertia I = bh3/12 by

Muu = b hρ `




13
35

11
210

` 9
70

− 13
420

`

11
210

` 1
105

`2 13
420

` − 1
140

`2

9
70

13
420

` 13
35

− 11
210

`

− 13
420

` − 1
140

`2 − 11
210

` 1
105

`2




. (A.1)

Sti�ness matrices Kuu, Kuθ and Kθθ are expressed:

Kuu =
EI

`3




12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4 `2




, (A.2)
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Kuθ =
α Eb h3

15`




0 −1 0 1

0 −` 0 0

0 1 0 −1

0 0 0 `




, (A.3)

and

Kθθ =




− b kh
`

0 b kh
`

0

0 K
(22)
θθ 0 K

(42)
θθ

b kh
`

0 − b kh
`

0

0 K
(42)
θθ 0 K

(44)
θθ




, (A.4)

where

K
(22)
θθ = b

(
− 1

252

h3k

`
+

(
−1/15

`k

h4
+ 1/30

k

h2`

)
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(
2/9
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)
, (A.5)

K
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h3k

`
+

(
−1/30

`k

h4
− 1/30

k

h2`

)
h5

+

(
1/9

`k

h2
+ 1/12

k

`

)
h3 − 1/6 `kh
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, (A.6)

and

K
(44)
θθ = b

(
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h3k
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−1/15
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h4
+ 1/30
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h2`

)
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(
2/9
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− 1/12

k

`
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h3 − 1/3 `kh
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. (A.7)

Damping matrices Cθθ and Cuθ are

Cθθ = bCE`h




−1/3 0 −1/6 0

0 − 17
945

h2 0 − 17
1890

h2

−1/6 0 −1/3 0

0 − 17
1890

h2 0 − 17
945

h2




(A.8)

and
Cθu = T0K

T
uθ, (A.9)

where T0 is the reference temperature.
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A.2 Elementary Structural Matrix Derivatives
If Young's modulus is considered as a random �eld, the derivative of the elemen-
tary structural matrices with respect to the corresponding random variables have
to be determined and are used in Chapter 8.

A.2.1 Local Average Method
When the Local Average method is used, the derivative of the elementary struc-
tural matrices of element i are given by

Kuu,Ei
=

I

`3




12 6` −12 6`

6` 4`2 −6` 2`2

−12 −6` 12 −6`

6` 2`2 −6` 4 `2




, (A.10)

Kuθ,Ei
=

α b h3

15`




0 −1 0 1

0 −` 0 0

0 1 0 −1

0 0 0 `




(A.11)

and
Cθu,Ei

= T0K
T
uθ,Ei

. (A.12)

All other elementary structural matrix derivatives are equal to zero.

A.2.2 Karhunen-Loeve Expansion Method
Using Karhunen-Loeve Expansion for the discretization of Young's modulus, E

(Equation (7.58)), the expression of Kuu is written

Kuu =

∫

Ω

EBu
TBudΩ (A.13)

=

∫

Ω

ĒBu
TBudΩ +

N∑
i=1

ζi

∫

Ω

√
λifi(x)Bu

TBudΩ (A.14)

= K̄uu +
N∑

i=1

ζiKuui, (A.15)
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where λi and fi(x) are given for a 1-D exponential correlation function by Equa-
tions (6.39), (6.42) and (6.43).

Kuu,i, the derivative of Kuu with respect to ζi is given by

- for i odd

Kuu,i(k, l) =
bh3

24`a+2ω4
i

√
λi√

0.5L + sin(Lωi)

[
akl(ωi`)

2 sin (f1 ) + bklωi` cos (f1 )

+ckl sin (f1 ) + dkl(ωi`)
2 sin (f2 ) + eklωi` cos (f2 )− ckl sin (f2 )

]
,

- for i even

Kuu,i(k, l) =
−bh3

24`a+2ω4
i
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0.5L− sin(Lωi)

[
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2 cos (f1 ) + bklωi` sin (f1 )

+ckl cos (f1 ) + dkl(ωi`)
2 cos (f2 ) + eklωi` sin (f2 )− ckl cos (f2 )

]
,

where
f1 = −ωide − ωi` +

1

2
ωiL, (A.16)

f2 = −ωide +
1

2
ωiL, (A.17)

and constants a, akl, bkl, ckl, dkl and ekl are listed in Table A.1. de is the abscise
of the �rst node of the element, ` is the length of the element and L is the length
of the domain.

Note that since Kuu is symmetric, the derivatives are also symmetric.
The expression of Kuθ is written

Kuθ = −
∫

Ω

EαBu
TNθdΩ (A.18)

= −
∫

Ω

ĒαBu
TNθdΩ +

N∑
i=1

ζiα

∫

Ω

√
λifi(x)Bu

TNθdΩ (A.19)

= K̄uθ +
N∑

i=1

ζiKuθi. (A.20)

Kuθ,i, the derivative of Kuθ with respect to ζi is given by

- for i odd

Kuθ(k, l) =
1

c

αbh3

`bω4
i

√
λi√

0.5L + sin(Lωi)
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2 + jkl cos (g2 ) ωi`− hkl sin (g2 )

]
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Table A.1: Values of a, akl, bkl, ckl, dkl and ekl.

k l a akl bkl ckl dkl ekl

1 1 4 −36 144 288 36 144

1 2 3 12 60 −144 −24 84

1 3 4 −36 −144 288 36 −144

1 4 3 24 84 −144 −12 60

2 2 2 4 24 −72 −16 48

2 3 3 −12 −60 144 24 −84

2 4 2 8 36 −72 −8 36

3 3 4 36 144 −288 −36 144

3 4 3 −24 −84 144 12 −60

4 4 2 16 48 −72 −4 24

- for i even

Kuθ(k, l) = −1

c

αbh3

`bω4
i

√
λi√

0.5L− sin(Lωi)

[
fkl cos (g1 ) (ωi`)

2 − gkl sin (g1 ) ωi`

+hkl cos (g1 ) + ikl cos (g2 ) (ωi`)
2 − jkl sin (g2 ) ωi`− hkl cos (g2 )

]
,

where
g1 =

1

2
ωi (2de + 2`− L) , (A.21)

g2 =
1

2
ωi (2de − L) , (A.22)

and constants b, fkl, gkl, hkl, ikl, jkl and c are listed in Table A.2.
Note that the derivative of Kuθ is not symmetric and that the components

of its �rst and third columns are equal to zero. The derivatives of Cθu are given
by

Cθu,i = T0Kuθ,i
T . (A.23)
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Table A.2: Values of b, fkl, gkl, hkl, ikl, jkl and c.

k l b fkl gkl hkl ikl jkl c

1 2 4 0 −1 4 1 −3 5
1 4 4 1 3 −4 0 1 5
2 2 3 0 −1 6 2 −5 15
2 4 3 1 4 −6 0 2 15
3 2 4 0 −1 4 1 −3 -5
3 4 4 1 3 −4 0 1 -5
4 2 3 0 −2 6 1 −4 15
4 4 3 2 5 −6 0 1 15


