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Nomenclature 

δ Approximation error for FCM 
APDL ANSYS Parametric Design Language 
BESO Bi-directional Evolutionary Structural Optimization 
C Strain energy 
Cij Strain energy of the jth element dominated by the ith density points
E Elastic modulus 
ESO Evolutionary Structural Optimization 
f Load vector 
FCM Finite-circle Method 
GA Genetic Algorithms 
J Moment of inertia 
K Global stiffness matrix 
Kij the jth element stiffness matrix dominated by the ith density points 
Oεϛ Center of the ϛth circum-circle attached to the εth component 
Oτ Center of the τth circle describing the edge of the design domain 
P(ηi) Penalty function 
RAMP Rational Approximation of Material Properties 
Rεϛ Radius of the ϛth circum-circle attached to the εth component 
Rτ Radius of the τth circle describing the edge of the design domain 
SIMP Solid Isotropic Material with Penalty 
TDF Topology Description Function 
u Nodal displacement vector/vibration shape vector 
V Total volume of the material 
ΓD Global design domain 
Γε Area occupied by the εth component 
ηi Value of the ith pseudo-density 
ν Poisson’s ratio 
ρ Density 
M Global mass matrix 
Mij The jth element mass matrix dominated by the ith density points 
ω Circular natural frequency 
p Penalty factor 
G Gravity/inertial load vector 
g Gravity acceleration 
RMK Ratio of the pseudo-density to the interpolation functions 
xG, yG Location of the gravity center 
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Chapter 1 Introduction 

 
 
 
 

Chapter 1 
 
Introduction 
 
 
Overview 
 
The purpose of the multi-component system layout design and state of the art 
are introduced in this chapter. The related studies as packing optimization, 
topology optimization, shape optimization etc are also reviewed here. An 
overview of the entire thesis is presented at last. 
 
 
 
 
 
Contents              
 
1.1  Basic concept of multi-component systems 
1.2  Related studies 
1.3  Overview of the thesis 
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1.1 Basic concept of multi-component systems 

A multi-component system consists of numbers of components, a container specifying the 
entire design domain and the supporting structures that interconnect the components and 
the container, e.g. an aircraft devices configuration as shown in Figure 1.1, is a basic form 
of structural systems. 

   

Figure 1.1: A multi-componnet system 

According to the description, most of the industrial products like mechanism, automotive, 
marine, aeronautics and aerospace systems, as shown in Figure 1.2, can be regarded as 
different kinds of multi-components systems. The concerned problem is especially critical 
for aerospace engineering. On the one hand, different functional devices are required for 
the flight mission and should be installed in proper positions satisfying various design 
requirements. On the other hand, the structures supporting the devices have to be 
designed as a lightweight one and coordinate with the aircraft major airframe.  

Airframe and components of Airbus A400M Cargo plane

 

“Rolling cage” of Thinkpad T61 laptop, Lenovo 

Figure 1.2: Typical industrial multi-component systems 

In the structural design of typical aerospace products, e.g. the satellite systems shown in 
Figure 1.3, the devices and the outer enclosure are modeled as the components and the 
container, respectively. To satisfy geometrical, physical needs and electromagnetic 
performances etc, the traditional approach is to carry out the packing design for which the 
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supporting structures and the locations of the components established are designed in a 
trial-and-error way to fix the components inside the container.  

 
This is the satellite of the mission EXIST (Energetic X-ray Imaging Survey Telescope) of NASA. The total combined 
field of view of the HETs and LETs are almost identical. Ideally the HET and LETs can be arranged along the field of 
view of each telescope as shown below (left). In order to package both HETs and LETs inside the shroud of launching 
vehicle (possibly Delta IV-H or Altas V), the instruments are rearranged as shown below (right) and the fully coded 
field of view of each telescope is not interrupted. (http://exist.gsfc.nasa.gov/design/)  

    

The structure and package design of the NanoSat by The University of Texas at Austin (http://artemis.ae.utexas.edu/) 

Figure 1.3: Satellite systems configuration design 

Since the mechanical performances of a multi-component system depend upon the layout 
of the components and the pattern of the structures, the drawbacks of the traditional 
design procedure are obvious, when the designs of the component layout and the 
structural pattern are separated as different stages. Actually, varieties of geometrical 
packing optimization techniques are developed. Meanwhile, more structural optimization 
techniques are oriented to sizing, shape and topology designs from concepts to details. 
But none has studied the multi-component system design as an integration of the 
components’ layout design and the structural design.  

In view of the common design requirements of aerospace structure systems, the integrated 
design of the component packing and the structural topology is studied as a simultaneous 
optimization procedure in this work. As shown in Figure 1.4, an illustrative 
multi-component system design is presented. A predefined design domain and several 
components to be located inside are firstly provided with all the loads and boundary 
conditions assigned. The design procedure consists of two general aspects: the packing 
optimization to find a proper layout of the components and the topology optimization to 
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generate a structural pattern ensuring the support and interconnection of the components, 
loads and the boundary conditions in the design domain.  

Accordingly, the main topic of this thesis is the simultaneous packing optimization and 
topology optimization. Some related techniques, such as packing optimization, topology 
optimization and shape optimization are discussed in the following section. 

  

Figure 1.4: An illustrative multi-component system design 

 

1.2 Related studies 

Structural optimization and its multidisciplinary integrations are always active topics 
especially in the last two decades. More and more practical applications and 
improvements of structural performances can be found nowadays in engineering research 
and advanced industries like aerospace and aeronautics. However, more difficulties are 
involved in the integration of the packing optimization and topology optimization. The 
multi-component system design is still a challenging job. 

In this section, the most related studies are introduced and discussed.  

1.2.1 Packing optimization 

In the field of aeronautics, aerospace and electronic engineering, it is essentially 
important to have a proper packing configuration. Packing optimization, also referred to 
as layout optimization and configuration optimization, deals with the configuration design 
of the multi-component system consisting of a number of components and a container 
which is also mentioned as a design domain or a packing area. Normally, by choosing the 
location and orientation of the components as design variables, the system compactness, 
center of gravity, configuration cost, etc are designed with respect to some geometrical 
constrains such as non-overlap and some functional and performance requirements (see 
Cagan et al. 2002, Blouin et al. 2004, Aladahalli et al. 2007 and Zhang et al. 2008). 

However, the packing problem was still limited to a CAD-based design because some 
difficulties are generally involved, e.g., the modeling of the design constrains and 
objective function, the searching strategy for the optimization problem (see Cagan et al. 
2002) etc. Among others, one of the key difficulties lies in that the geometry constraints 
have to be properly specified in order to avoid the components overlap and also the 
overlap with the design domain boundary. Although nonlinear programming was applied 
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to solve layout problems in some works (see Fujita et al 1991, Landon and Balling 1994), 
different shapes of components and design domain boundaries will lead to extreme 
nonlinearity and even discontinuity of the constraint functions, that limit the application 
of the gradient based optimization algorithms and the traditional formulation of packing 
problems. Therefore, non-deterministic gradient-free computational approaches such as 
Genetic Algorithms (GA), Simulated Annealing and some other extended patterns are 
mostly used in packing optimization problems, as shown in Figure 1.5 and 1.6. 

A Pareto front of two conflicting objectives, vehicle 
dynamics and ground clearance, is obtained through a 
single execution of the genetic algorithm to allow the 
decision-making process. The goal is to find optimal 
vehicle component configurations that achieve good 
vehicle performance behavior and satisfy design 
constraints. (Blouin et al. 2004)

Figure 1.5: Configuration design of a truck 

   
The design objective here is to optimize the inertia performance of the whole module, subjected to the 
following constraints: (1) all the objects should be contained within the module, with no overlap among the 
objects and no clash between the module wall and each object; (2) the centroid position error of the whole 
system should not exceed an allowable value, as small as possible; (3) equilibrium error of the system should 
be permissible and, of course, the smaller the better. (Zhang et al. 2008)

Figure 1.6: Layout optimization of satellite module 

Theoretically, it is proved that the packing optimization is a kind of NP-hard problem (see 
De Bont et al. 1988). Much effort has been focused on the study of searching strategies by 
using the components of exact shapes. Among others, 2D rectangular and 3D cubic 
components layout problems which are also known as the bin-packing problems are 
mostly concerned, e.g., multichip module (MCM) layout design for circuit board, metal 
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cutting and product arrangement in containerized transport. To generate reasonable 
solutions, some heuristic rules were particularly applied together with the searching 
strategies as Genetic Algorithm and Simulated Annealing (see Pál 2006 and Huang et al 
2007). Branch & bound methods and their improved versions were developed as well to 
solve the 2D bin-packing problem (Clautiaux et al. 2007). Miyazawa and Wakabayashi 
(2007) also presented an asymptotic approximation method for the packing optimization 
to find the maximum area usage, when numbers of rectangle or cubic components are 
placed vertically or horizontally in a larger rectangle area.  

The packing space is subdivided by the 
tree method. If there are more than one 
component overlaps with one of the 
subspaces, there are possible collisions 
here and the subdivision will be carried 
on. The iterative subdivision will not 
stop until there is no possible overlap, 
which indicates no collision is found. If 
the possible overlap still appears when 
the space is subdivided to a predefined 
precision, the collision of the 
components is concluded. (An octree 
based collision detection ←) 

Different tree methods are defined 
depending on the shape used in the 
subdivision. Alternatively, the 
components can also be subdivided 
with some tree methods. (An entity and 
3 levels of its sphere-trees, 
http://isg.cs.tcd.ie/spheretree/ ↓) 

 

Figure 1.7: Collision detections using the tree methods 

However, for a general packing problem, the shape of the components and the container 
are always more complex than rectangles, cubes or other regular shapes. Even for the 
simplest bin-packing problem with rectangular components, different overlapping cases 
are involved and should be considered respectively. Therefore, the overlap detection and 
avoidance between different components with arbitrary shapes are the key issues to be 
solved. To tackle this difficulty, numbers of methods were proposed as typical CAD 
modeling techniques to detect the collision between the components. Typically, some tree 
methods like octrees (see Meagher 1982 and Samet 1989), sphere-trees (Moore 2002 and 
2003, O'Sullivan and Dingliana 1999, Hubbard 1993 and Quinlan 1994), S-bounds based 
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trees (Cameron 1991) and their variants have been developed. These techniques detect the 
overlaps by approximating the components with various levels of cubes or spheres and 
refining the model partition in an iterative way, as shown in Figure 1.7. Moreover, Cagan 
et al. (1998) proposed a collision detecting method based on octrees to solve the 3D 
packing optimization problems. More collision detecting methods have been reviewed by 
Lin and Gottschalk (1998).  

The overlap detecting methods mentioned above can only detect whether the components 
overlap with each other or not. More information about the design sensitivities indicating 
the searching direction, in which the components shall move to escape from or avoid the 
overlap, cannot be obtained. As a result, typical packing optimization problems shall be 
solved with the gradient-free methods.  

However, within the framework of the packing design integrated with topology 
optimization, although some gradient-free methods as Genetic Algorithm (see Missoum et 
al. 2000) are used to solve topology optimization problems, these methods are still not 
preferred due to their low efficiency.  

1.2.2 Topology optimization 

 

 

Figure 1.8: A typical topology optimization problem (Bendsøe and Sigmund 2003) 

Topology optimization is originally considered as a 0-1 discrete problem. The major 
challenge is the solution of a large-scale integer programming problem. The high 
computing cost of function calls for these problems typically precludes the use of gradient 
free algorithms. The only successful application of Lagrangian duality to the large scale 
integer problem is found in the work of Beckers (1997, 1999) who proposed a dual 
method solving the topology optimization with discrete design variables. However, most 
of the approaches have been proposed to deal with the problem as a continuous one since 
Bendsøe and Kikuchi (1988) introduced the homogenization method into topology 
optimization. Now, topology optimization is developed as an effective technique for the 
concept design of material layout. Overviews were given by Bendsøe (1995, 2002), 
Eschenauer and Olhoff (2001) Bendsøe and Sigmund (2003). The basic approach is that 
the design procedure will start with a meshed design domain with given boundary 
conditions as shown in Figure 1.8. The structural topology will be optimized iteratively 
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with the proposed techniques. 

Several typical topology optimization methods are proposed so far. For example, the 
homogenization based method (see Bendsøe and Kikuchi 1988, Guedes and Kikuchi 1990, 
Suzuki and Kikuchi 1991, Allaire et al. 2004) describes the structural material layout with 
different patterns of microstructures, as shown in Figure 1.9. The structural layout is 
actually built up with porous unit cells. The equivalent material properties of each unit 
cell e.g. the elastic modulus etc will be calculated using homogenization method. And the 
optimization is processed by modifying the porous size of each unit cell iteratively. 
However, the mathematical complexity of the homogenization calculation prevents the 
general application of this method. 

 

Figure 1.9: Material layout described with homogenization method 

 

Figure 1.10: SIMP interpolation with different penalty factors 

Among others, SIMP (Solid Isotropic Material with Penalty, see e.g., Bendsøe 1989, 
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Bendsøe and Sigmund 1999, Zhou and Rozvany 1991, Rozvany 2001) is the most 
popular method in topology optimization. Instead of the homogenization, it proceeds by 
penalizing exponentially isotropic material in terms of element density variables. The 
power law can be expressed as 

 0
p

i iE E η=  (1-1) 

where Ei is the elastic modulus of the ith element. E0 is the elastic modulus of the solid 
material. ηi and p are the so-called pseudo-density and penalty factor, respectively. 
Compared with the amount of material for each element, a very low stiffness will be 
obtained even when element density variables take intermediate values between 0 and 1, 
as shown in Figure 1.10. The effect of penalization will drive the pseudo-densities vary 
towards 0 and 1 during the optimization. In the work of Bendsøe and Sigmund (1999), by 
comparing the interpolation scheme with the effective material properties of 
microstructures, the reliability of the power-law approach was proved theoretically 
provided that the power term satisfies the Hashin-Shtrikman bounds. 

Normally, with the SIMP interpolation model, the topology optimization problems are 
non-convex. There will be possibly large number of local minima involved. To obtain a 
pure 0-1 or nearly a pure 0-1 optimal material layout, it is suggested to use stronger 
penalty, i.e. to use a greater exponent. Unfortunately, this leads to numerical instabilities 
due to the tiny values when the pseudo-densities vary towards zero.  

 

Figure 1.11: RAMP interpolation with different penalty factors 

To ensure the numerical stability when a stronger penalty is used, the RAMP (Rational 
Approximation of Material Properties) was proposed by Stolpe and Svanberg (2001) as 
an alternative model 

 
( ) 01 1

i
i

i
E E

q
η

η
=

+ −
 (1-2) 

where q is the penalty factor of the RAMP model. The interpolation is shown in Figure 
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1.11. The curves of SIMP and RAMP are similar to each other, but the RAMP model 
performs more stable when q takes a large value. Nevertheless, it proved theoretically that 
when q is greater than a certain value, the structural compliance becomes concave. 

The evolutionary method is an engineering approach based on the simple concept that 
inefficient materials are gradually removed from the design domain to approach the 
optimal topology. Hard killing and soft killing methods discussed by Hinton and Sienz 
(1995). Mattheck (1997) realized the removal process by assuming a functional 
relationship between the elastic modulus and the strain energy density. Elements with the 
lowest level of the strain energy density will be killed iteratively.  

ESO (Evolutionary Structural Optimization) described by Xie and Steven (1997), Kim et 
al. (2003) is another typical evolutionary approach. In most cases, optimal topologies are 
generated by deleting the group of elements with low strain energy values from the entire 
design domain systematically. The element efficiency evaluated from sensitivity analysis 
is used as an index for the determination of the element deletion. As the ESO method is 
devised as a unidirectional scheme only for removing elements, the restitution of the 
removed elements will be however unallowable during the iteration. Later, an improved 
bi-directional procedure named BESO was proposed by Querin and Yang (2000) and 
Yang et al. (1999a and 1999b). Materials are allowed to be added in those void areas with 
the highest efficiency, but it is required that an initial design configuration connecting the 
boundary conditions and loading locations shall be specified a priori. 

Both ESO and BESO have the advantage of conceptual simplicity. Moreover, Tanskanen 
(2002) proved that, in some particular situations, these approaches basically correspond to 
a sequential linear programming approximate method. However, Sigmund (2001) 
believed that it is questionable to extend these approaches to other design cases such as 
multi-physics problems and those with multiple constraints. A critical view given by Zhou 
and Rozvany (2001), Rozvany (2001) also indicated some numerical failures. In fact, 
neither the stress level nor the sensitivity values of an element used till now has been able 
to describe exactly the criterion of the element deletion/growth, especially when the value 
of objective function varies significantly (see Zhu et al. 2007). Some papers are published 
to defend the ESO method from the criticism (Edwards 2007, Huang and Xie 2008, 
Tanskanen 2002, Rozvany and Querin 2002a and b, 2004). But this type of methods is 
still questionable.  

Some other topology optimization methods were also proposed. Bubble method 
developed by Eschenauer et al. (1994) introduces new holes (or bubbles) into the design 
domain. The contour and position of the holes are optimized like a shape optimization 
problem. In the TDF (Topology Description Function) or Level Set Method (see De 
Ruiter and Van Keulen 2004, Mei and Wang 2004), the structural topology is described as 
a high dimension level set function, which is more flexible in describing some complex 
outer boundaries of the material layout.  

It should be mentioned that in topology optimization, the presence of alternating solid and 
void elements over the design domain often occurs in a checkerboard-like fashion. The 
reason given in the theoretical framework of Jog and Haber (1996) is seemingly due to 
the finite element approximation or design optimization criteria. From this viewpoint, 
Rodrigues and Fernandes (1995) improved the interpolation accuracy by means of 
high-order elements in thermo-elastic optimization problems. However, the computing 
cost increases dramatically as the number of degrees of freedom of the structural system 
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expands. Later, Sigmund and Petersson (1998) developed the filtering scheme by 
smoothing the sensitivities of objective functions over the considered element and its 
eight neighbors based on image filtering techniques. Haber et al. (1996) proposed the 
perimeter control method to control the checkerboard pattern and some detailed structures 
between solid and void elements. Zhang and Duysinx (2003) also proposed a quadratic 
form of the improved perimeter control operational with the dual approach. Some detailed 
discussions of checkerboard control in the framework of ESO/BESO can be found in the 
paper by Yang and Xie (2003). 

The idea of topology optimization has been extended to different territories. Numerical 
results show that a variety of problems including maximization designs of structural 
stiffness (Sigmund 2001), natural frequency (Pedersen 2000), buckling loads (Zhou 2004), 
thermal conduction (Gersborg-Hansen et al. 2006), CFD channel flow (Gersborg -Hansen 
et al. 2005) etc. can be solved. Furthermore, the concept of topology design domain is 
extended by introducing structural supports and joints modeled with spring elements. 
Some numerical examples of this type were presented by Jiang and Chirehdast (1997), 
Buhl (2001), Zhu and Zhang (2006) to solve structural stiffness, compliant mechanism 
and natural frequency problems. Other extended patterns of topology optimization are 
developed to solve the layout design of the microstructures (see Sigmund and Torquato 
1999, Zhang and Sun 2006), and those with design-dependent loads (Chen and Kikuchi 
2001, Bruyneel and Duysinx 2004). 

When the eigenvalue problems like natural frequencies and buckling loads of considered 
structures are maximized with SIMP or some other similar material interpolation model, 
another important issue is on the artificial modes or localized deformations. These 
phenomena take place in areas where elements take the minimum density values. 
Compared with the solid region, these areas are too compliant to support themselves, 
which will then take the lowest vibration mode shape of the structure. Neves et al. (1995) 
investigated this phenomenon when optimizing the structural buckling loads. Pedersen 
(2000) and Bruyneel and Duysinx (2004) gave some improved SIMP interpolation 
models after analyzing the artificial modes numerically in natural frequency 
maximization and self-weight loading problems, respectively. By analyzing the material 
properties of the elements in low-density areas, Zhu et al. (2006 and 2007) gave the 
equivalent material properties of the orthotropic cellular microstructures that could be 
effective in avoiding the artificial modes. Detailed discussions of this problem can be 
found in Chapter 4 of this thesis. 

More complexities are brought into the topology optimization by solving 
multi-component problems or multi-domain problems. For example, Ma et al. (2006) 
subdivided the design domain into several separated area with multiple material 
properties. Furthermore, in the works of Chickermane and Gea (1997), Li et al. (2001) 
and Qian and Ananthasuresh (2004), numbers of parts including the spring elements that 
interconnecting these parts are treated as different sub-domains for topology optimization. 
These sub-domains are defined with different volume fractions and evolved to the optima 
simultaneously.  

The topology optimization with embedded rigid components was also discussed by Qian 
and Ananthasuresh (2004), which is the only paper we have found solving the similar 
problems with this thesis. They introduced some movable rigid components into the 
design domain and try to find their proper position and the supporting structures 
simultaneously. The exact shapes of the components are actually not included in the 
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design domain. They are simulated with a predefined material interpolation model, i.e., 
the geometrical movement of a component is actually simulated as a physical variation of 
the material properties. Elements with intermediate stiffness are found on the boundary of 
the components to interpolate the variation of the material properties. However, the 
authors were not aware of the meanings of the integration with the packing optimization. 
Only one component is taken into account in most of their tested examples. When the 
problem of more than one component was mentioned, the suggestion of avoiding the 
overlap was to use a single circle for the approximation of each component. 

Topology optimization of 
Airbus A380 leading edge 
droop nose ribs. 
http://www.altairproductdesig
n.com/CaseStudy_Airbus.aspx 
← 

 

Combined bracket for 
alternator, air-conditioning 
compressor, and steering pump 
of Volkswagen. 
http://ak.fe-design.de/fileadmi
n/akweb/docs_meetings_publi
c/2007-12-_MeyerPruessner_
VW_BS_TopoOpt.pdf ↓ 

 

Figure 1.12: Practical design examples of topology optimization 

Nowadays, numbers of practical applications of topology optimization can be found in 
the industrial field. Figure 1.12 shows two important examples. More manufacturing 
constrains for casting, forging, stamping, extrusion and specified symmetry shall be 
considered. More descriptions of topology optimization can be referred to the work of 
Rozvany (2001), Bendsøe and Sigmund (2003). 

1.2.3 Shape optimization 

Shape optimization techniques are developed maturely in recent years. By modifying the 
structural boundaries, e.g., detailed designs of notches, holes, and fillets etc., concerned 
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mechanical performances are improved during the optimization procedure, as shown in 
Figure 1.13.  

Although Genetic algorithms, Simulated annealing etc. (see Rajan 1995, Atiqullah and 
Rao 1995) are sometimes used to deal with the shape optimization problem, the 
deterministic gradient-based methods associated with FE method are the most widely 
used algorithms (Bennet and Botkin 1985, Chen and Tortorelli 1997, Lindby and Santos 
1997). The designable shape is multiform and the updating of the shape parameters 
probably leads to the remeshing of the FE model, which constituted one of key problems 
in the automatic computing of the design sensitivities. Therefore, much effort has been 
made to derive the efficient schemes of sensitivity analysis. So far, two approaches, i.e., 
the discretized method (Belegundu and Rajan 1988, Olhoff et al. 1993) and the 
continuum method (Belegundu and Rajan 1988, Tortorelli and Wang 1993) have been 
used to determine the response sensitivities. In fact, these two approaches are unified by 
their dependence on the velocity field. Accordingly, Laplacian smoothing was used to 
find the velocities of interior nodes (see Zhang 1991 and Kodiyalam et al. 1992). Later, 
profiting from the application of the Newton-Raphson method, Zhang et al. (1995) 
established a semi-analytical method for sensitivity analysis of independent shape 
variables. 

    

Figure 1.13: Typical shape optimization (Zhang 1991) 

 

1.3 Overview of this thesis 

In Chapter 2, the Finite-circle method is introduced to solve the packing problems. Some 
detailed discussions are made about the geometrical approximation, improved definition, 
local minimum and some numerical examples. 

In Chapter 3, packing design and topology optimization are integrated in the standard 
compliance minimum problems. New techniques like density points and embedded 
meshing are proposed there. Several testing examples are solved and reasonable solutions 
are presented to illustrate the effect of integrated design. 

In Chapter 4, discussions are made about localized phenomena in the low-density areas 
like localized modes and localized deformations which will lead to the numerical errors in 
eigenvalue maximization problems and design-dependent body load problems. Several 
material interpolation models are evaluated there. And a new effective model is presented. 
Meanwhile, we also find the interesting break-down problems of the ESO method can be 
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likely avoided when the low-density areas are properly treated. 

In Chapter 5, the results from Chapter 4 are applied and the proposed integrated layout 
optimization is extended to problems with design-dependent inertial forces and natural 
frequency maximization. More constraints on the location of gravity center and moment 
of inertia are introduced to make the problems more practical.  

In Chapter 6, boundary conditions related to the support layout and the surface loads are 
taken into account as design dependent items in the topology optimization, the proposed 
techniques of density points and embedded mesh are implemented. 

In Chapter 7, the overall conclusion of the thesis is given. Some extended technical 
discussions are provided. 
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Chapter 2 Finite-circle Method 

 
 
 
 

Chapter 2 
 
Finite-circle Method 
 
Overview 
 
To integrate the packing optimization into the layout design of 
multi-component systems, the Finite-circle Method (FCM) is developed to 
adapt gradient-based algorithms to the packing design. The definition of the 
circum-circles, the geometrical constrains, different kinds of objectives are 
presented here. More discussions are presented about the advantages and the 
disadvantages of this method. 
 
 
 
Contents              
 
2.1  Basic formulation of FCM 
2.2  Circle discretization 
2.3  Packing examples 
2.4  Local minima in FCM 
2.5  Conclusion 
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2.1 Basic formulation of FCM 

Pure geometrical packing optimization is discussed in this chapter. As introduced 
previously, one of the key difficulties during the process of packing optimization is the 
collision detection and avoidance (Cagan et al. 2002). Most of the existing methods e.g. 
the category of the tree methods can only detect whether two components overlap with 
each other, rather than evaluating the overlap. 

 

Figure 2.1: A 2D packing problem 

 

Figure 2.2: Components approximation 
with single circle 

Consider a 2D packing problem as shown in Figure 2.1. Suppose several components will 
be located inside the design domain and no overlapping shall be found between different 
components. Mathematically, following conditions should be retained 
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where Γε and ΓD denotes the area occupied by the εth component and the global design 
domain, respectively. Γε is described as the function of the location and orientation of the 
component, i.e. (xε, yε, θε). nc is the number of the components. ε1 and ε2 denotes two 
different components. However, Equation (2-1) is a symbolic presentation. When 
gradient-based algorithms are applied, it is further necessary to understand how much the 
components are overlapped with each other, in which direction they should move to 
escape from the overlap or how far the component is from the current position to the 
situation of overlap and in which direction they should move to avoid the overlap. 

In most cases, it is possible to detect the overlapping with some proposed methods like 
the trees listed in Chapter 1. Due to the geometric complexity of boundaries of the 
components and design domain, it is difficult to describe the exact Γε in terms of (xε, yε, θε) 
and ΓD with some simple and explicit functions, This is one of the key reasons why only 
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some gradient-free methods like Genetic Algorithm, Simulated Annealing are mostly 
applied in the packing optimization problem. 

2.1.1 Approximation of components 

Although it is too difficult to describe the overlap for the components with arbitrary 
shapes, the overlap between circles and spheres can be easily calculated by comparing the 
distances of the centers to the summation of the radii. This is the idea of approximating 
all the components of arbitrary shapes with circles or spheres. 

        

Figure 2.3: The FCM approximation of the components 

For the clarity of presentation, only the formulation related to 2D components is 
discussed here. If only one single circle is used for the approximated definition of each 
component as shown in Figure 2.2, the approximation error will be large. Consequently, 
the two components are still far away from each other but the circles have already 
overlapped. Here, the idea similar to the sphere-trees is used. The components and the 
design domain are approximately modeled with numbers of circum-circles (2D) or 
spheres (3D) as shown in Figure 2.3. For each component, a family of circles may have 
different radii and be placed at different locations to cover the boundary of the 
components approximately. Clearly, the approximation accuracy can be properly 
improved by refining the FCM definition (locations, radii of the circles) or using more 
circum-circles. 

 

Figure 2.4: The global coordinate system and the local coordinate system of the 
component 
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In this way, the complex geometrical design constraints can be transformed and 
simplified into a standard form of non-overlap between the circles 

 1 1 2 2 1 1 2 2O O R Rε ς ε ς ε ς ε ς≥ +  (2-2) 

where Oε1ϛ1 is the center of the (ϛ1)th circum-circle attached to the (ε1)th component, 
Rε1ϛ1 is the corresponding radius. This relation refers to the distance condition between the 
circle centers.  

In the global coordinate system shown in Figure 2.4, suppose the local coordinate system 
attached to the εth component is defined by (xε, yε, θε) and the center of a certain 
circum-circle Oεϛ is located at (x'εϛ, y'εϛ) in the local coordinate system. The corresponding 
global coordinate can be calculated as 
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The distance ||Oε1ϛ1Oε2ϛ2|| is then calculated as 

 ( )2
2 2

1 1 2 2 1 1 2 2 1 1 2 2( ) ( )O O x x y yε ς ε ς ε ς ε ς ε ς ε ς= − + −  (2-4) 

which can be expressed as explicit and differentiable functions according to Equation 
(2-3). The design constraint of the non-overlap between the components can be thus 
written as  

 22 2
1 1 2 2 1 1 2 2 1 1 2 2( ) ( ) ( ) 1x x y y R Rε ς ε ς ε ς ε ς ε ς ε ς− + − + ≥  (2-5) 

With this kind of formulation, the gradients with respect to the involved design variables 
can be easily calculated by differentiating the equation. From this viewpoint, FCM can be 
seen as a unified approach for packing optimization problems with components and 
design domain of arbitrary shapes.  

Compared with the sphere-trees methods, the iterative approximation refinements of the 
circles discretization are not employed in FCM, which implies that the FCM uses a fixed 
number of design constraints during the packing optimization. In fact, FCM is more than 
a collision detection method. It finds out how to relocate the components to avoid the 
overlap by calculating the sensitivities of the distances between the circles with respect to 
the location and orientation of the components. Note that although FCM is proposed to 
favor the gradient-based algorithms, it doesn’t limit the application of the gradient-free 
methods.  

2.1.2 Approximation of design domain 

Another kind of geometrical constraints is the overlap avoidance between the components 
and the boundaries of the design domain, i.e. the container’s constraints. Since the 
components are approximately defined by the families of circles, the design domain shall 
be described properly for the easy definition of the container’s constraints and ensuring 
all the circles belonging to a component are located inside the design domain. To simplify 
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the illustration, the design domains of arbitrary shapes are described with polygons.  

Actually, different methods are available to define the container’s constraints. Here we 
just use one circle approximating the components for easy illustration. 

The first version of the constraints definition is based on the exact polygon shape of the 
design domain. As shown in Figure 2.5, the direction of the contour is defined 
anticlockwise. Any point located always on the left side of each edge of the contour can 
be proved to be located inside a convex polygon design domain. 

Accordingly, the following two different kinds of constraints must be satisfied to keep the 
circle inside the design domain. 

y the circle center is kept on the left side of each edge of the design domain; 

y the distance between the circle center and any contour edge is greater than the radius 
of the corresponding circle. 
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Now there are two groups of design constraints defining each pair of circle center and 
edge of design domain. Obviously, such a definition is still too complex and too many 
constrains are involved.  

Figure 2.5: Direction of the contour Figure 2.6: Container’s constraints with an 
inner contour 

To reduce the constraint number, an inner contour of the design domain can be introduced, 
whose distance to the real contour of the design domain is assigned as the radius of the 
corresponding circle. As shown in Figure 2.6, the constraints expressed in Equation (2-6) 
can be simplified in such a way that the center of the circle is limited inside the inner 
contour. 
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Although the number of constraints is reduced, the problem definition becomes complex. 
As the radii of the circles are not the same, inner contour segments would be defined by 
different radii of the circles.  

 

Figure 2.7: Relaxed approximation of the design domain with big circles 

 

Figure 2.8: Conservative approximation of the design domain with big circles 

Since the circle approximation can simplify the non-overlap constraints between the 
components, it can also be used to approximate the contour of the design domain. As 
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shown in Figure 2.7 and 2.8, the design domain is approximated by several big circles in 
two different ways. Now the container’s constraints are also transformed into the distance 
constraints between the circle centers.  

With the relaxed approximation, the components are located in all the big circles so that 
we have 

 O O R Rες τ τ ες≤ −  (2-8) 

where Oτ is the center of the τth circle describing the edge of the design domain and Rτ is 
the corresponding radius. 

With the conservative approximation, the components are located outside all the big 
circles so that we have 

 O O R Rες τ τ ες≥ +  (2-9) 

The conservative approximation provides a general way of avoiding the overlap. The 
approximation error is easily adjusted by changing the radii and centers of the big circles. 
It is thus used in this thesis.  

For the circles approximating the components, two situations that satisfy the Equation 
(2-9) may exist. As shown in Figure 2.9, although the dark circle is far away from the 
design domain, practically in the optimization, the design constraints are functional with 
the lower and upper bounds of the design variables. The movements of the components 
are actually limited in a rectangle like areas which is just a little bigger than the design 
domain. 

The component is totally located inside the design domain if all the circles describing it 
are kept inside. However, this is not a necessary condition. It can be proved that in a 
convex polygon design domain, we only have to keep some selected circles inside, e.g. 
the circles located at the vertices of a polygon component, which can further reduce the 
number of the design constraints. 

Figure 2.9: Two situations of the 
component’s location  

and the bounds of the design 
variable 
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2.1.3 Non-convex polygon design domain 

 

Definition with exact shape of design domain; ↑ 

Approximation with relaxed approximation method; 
→↑ 

Approximation with conservative approximation 
method. → 

 

Figure 2.10: Non-convex design 
domain approximation with different 

methods  

Figure 2.11:  
Introduction of the artificial 

components and their 
approximations 

Although the approximation methods proposed above work well for the convex polygon 
design domain, they fail to describe the non-convex packing area shown typically in 
Figure 2.10. For this reason, new ideas are proposed to work with the conservative 
approximation of the design domain. As shown in Figure 2.11, artificial components are 
introduced as fixed ones to convexify the area and only those edges of the artificial 
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components that contact the design domain will be approximated in a conservative way to 
avoid the overlap. During the collision detection, the artificial components are considered 
as non-designable ones with fixed positions and orientations. 

Thus, for the non-convex design domain, the geometrical design constraints are generally 
formulated as 
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where the circles of the artificial components are included in the group of circles Oτ 
approximating the edges. 

 

2.2 Circle discretization 

2.2.1 Uniform discretization 

As mentioned already, the refinement of the circle discretization can improve the 
approximation precision of the Finite-circle Method. The simplest way is to discretize the 
contour of the component uniformly. A simple packing problem consisting of six identical 
equilateral triangle components and an equilateral hexagon design domain is illustrated in 
Figure 2.12. The characteristic length l is now assigned as the edge length of the 
triangular component and each component is approximated with nine identical circles 
with a maximum approximation error of 7.22%l. Likewise, the design domain is 
approximated with six big circles and the maximum error is 3%l. The problem is now to 
find the optimal locations of all components inside the design domain with a minimum 
packing area. Mathematically, the problem can be stated as the height minimization of the 
equilateral hexagon. 
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Finally, 1215 constraints are retained to avoid the overlap between the components and 
324 constraints to keep all the components inside the design domain. Based on the initial 
configuration shown in Figure 2.13(a), the optimization problem is programmed and 
sensitivity analysis is carried out in the framework of Boss-QuattroTM, the design process 
converges to the configuration shown in Figure 2.13(d) after 13 iterations. Because of the 
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conservative approximation of the design domain, there is always a safety gap between 
the domain contour and the circles of the components. 

 

Figure 2.12: The triangle component and the design domain 

(a) The initial configuration 

 

(b) Iteration 4 

 

(c) Iteration 8 

 

(d) The final configuration 

Figure 2.13: The design iteration and the optimal result 

To improve the approximation accuracy, more circles are used as shown in Figure 2.14 
with the uniform discretization. Although the approximation error is reduced, the great 
number of the circles leads to a large number of design constrains which cost tremendous 
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computing time.  

 

Number of circles 1 3 6 9 12 15 18 21 

Number of 
constraints 51 243 756 1539 2592 3915 5508 7371 

Computing time 
for one iteration 

(s) 
4.906 6.688 19.483 24.718 158.797 216.462 232.828 335.281

Figure 2.14: Effects of circle and constraint numbers upon the computing time for one 
single iteration 

2.2.2 Improved component discretization 

The uniform discretization is easily performed and the refinement is very convenient to 
be carried out because of the identical circles, but a huge computing cost is obviously 
needed for an acceptable approximation precision when the packing optimization problem 
is solved iteratively. It is therefore necessary to use fewer circum-circles while 
maintaining the approximation precision.  

 

Figure 2.15: The approximation error and the circle definition by uniform discretization 
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In this section, some semi-heuristic rules are used to reduce the number of circles with a 
satisfactory approximation error by adjusting the radii and positions of circles. For the 
purpose of comparison, an illustrative component is shown in Figure 2.15. Suppose the 
approximation error is predefined as δ, all the circles have to be located in the area 
delimited by the dashed line referred to as the tolerance contour. The uniform 
discretization leads to 13 circles is used for this component. 

Figure 2.16: The corner 
approximation 

(a) The first step of edge 
approximation 

(b) Circle definition 
covering all sections 

Figure 2.17: The edge approximation 

The improved semi-heuristic discretization method proceeds as follows.  
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1) The corner approximation. As shown in Figure 2.16, the circle definition starts from 
each convex vertex of the component. The circle center is located on the bisector of this 
corner angle and the circle is tangent with the tolerance contour on both sides of the 
corner. The radius of each circle will be defined as big as possible to cover more parts of 
the contour. For example at the 2nd and 6th corner, circles with large radii are used here as 
long as the circles will not exceed the tolerance contour. Sometimes, the circle at one 
corner is big enough to cover another corner. For example, the 4th corner is covered by the 
circle at the 3rd corner and no more circles are needed. 

2) The edge approximation. Uncovered sections of the contour are identified and then 
approximated with circles. If the considered section cannot be covered by one single 
circle, it will be subdivided into 2 or even more sections from one end until each of them 
can be covered by one circle. Note that all the circles will be defined as large as possible 
to cover more sections. When all the sections are covered, the circles will be checked to 
avoid the duplicated coverage.  

Now the circle definition is shown in Figure 2.17. Only 8 circles are used with the 
approximation error satisfied. Normally, this kind of definition can be used in the FCM 
right now.  

Figure 2.18: The critical situation and the maximal gap estimation 

3) Circle shrink. In fact, the approximation error of the current circle definition in Figure 
2.17 can be further reduced. As shown in Figure 2.18, because the circles do not need to 
be distributed one after another, a small gap is allowed between two circles on the section. 
The critical condition is that the minimum circle from other components is tangent to the 
gap. Therefore, when the radius of the minimal circle, Rmin, and the approximation error, δ, 
are given, the maximum gap can be estimated.  

Based on the current discretization, some circles will be removed when the contour 
section to be covered is shorter than the critical maximum gap. Meanwhile, the rest 
circles will shrink until the critical situation is reached. For the circles at the corner, the 
radii are reduced by moving the center towards the corner along the angle bisector. For 
other circles on the edges, the radii shrink directly without moving the center as shown in 
Figure 2.19. The final improved circle is shown in Figure 2.20.  
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The introduction of the gap is proved to be effective in improving the approximation and 
reducing the number of circles. However, it is still heuristic and when the approximation 
becomes more and more rigorous, the gap becomes less useful (See Fang 2008). 

 

Figure 2.19: Circle shrink 

Figure 2.20: Finial circle 
discretization after the circle 

shrinking 

 

Figure 2.21: Circle discretization for the components with arbitrary shapes 
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2.2.3 Design domain discretization 

Figure 2.22: Design 
domain discretization 

The circle definition of the design domain is much easier. A design domain and its 
acceptable approximation error are shown in Figure 2.22. As indicated before, the edges 
of the design domain except those situated in the non-convex part of the design domain 
can be approximated with one big circle. The centers of the circles are located on the 
perpendicular bisectors of the edges. The approximation error can be adjusted by 
modifying the distances between the center of the circle and the edge of the design 
domain. The concave parts of the design domain are filled with the artificial components 
that are in turn approximated except the unconcerned edges.  

2.3 Packing examples 

Several 2D and 3D examples are tested here to evaluate the FCM for pure geometrical 
packing problems.  

2.3.1 Equilateral hexagon 

The example tested in Section 2.2.1 is further designed here. As shown in Figure 2.23, 
suppose the proposed discretization rule generates only 4 circles for the triangle with the 
approximation error of 6.11%l. Consequently, 240 constraints are generated to avoid the 
component overlap and 144 constraints to keep the components inside the design domain. 

 
Figure 2.23: The improved circum-circle approximation with 4 circles 

With the initial configuration shown in Figure 2.24(a), the optimization is carried out with 
the same design objective. The final configuration figured out in Figure 2.24(d) is 
obtained after 13 iterations. The packing layout is identical to the previous solution 
although a simplified discretization is used. However, due to the circle approximation, it 
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is impossible to find an ideal packing design without gap between components.  

 
(a) The initial configuration (b) Iteration 4 

 
(c) Iteration 8 

 
(d) The final configuration 

Figure 2.24: The design iteration and the optimal result 

 

Figure 2.25: Equilateral hexagon packing with more precise approximation 
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Figure 2.26: Number of the circles versus the approximation error 

If the approximation error is further reduced by using more circles for the components, 
the final design is nearly compact. As shown in Figure 2.25, 22 circles are used for one 
single component and the approximation error is 0.62%. The approximation errors are 
plotted in Figure 2.26 versus the circle number. More and more circles are needed if a tiny 
approximation error is required. 

2.3.2 Packing with more components 

Another 2D packing problem is tested with more complex components. As shown in 
Figure 2.27, 14 components of 7 different shapes need to be located in a hexagonal design 
domain. The problem is to minimize the area of the design domain in 4 different ways of 
compactness as shown in Figure 2.28. Firstly, suppose components having the same shape 
are overlapping with each other and are located outside the design domain. Different 
layouts of the components are obtained to adapt to the outer contour of the design 
domain. 

 

Figure 2.27: Different shapes of the components and the design domain 
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(a) The design domain remains to be a 
equilateral hexagon (b) Compact in vertical direction 

 

(c) All vertexes move freely 
(d) All edges vary in parallel with the initial 

ones 

Figure 2.28: Packing with different kinds of compactness 

2.3.3 Packing in a cube 

In this example, a 3D packing optimization problem is tested. 4 identical cubic 
components and 2 cuboids shown in Figure 2.29 will be located into a bigger cube. 21 
and 35 spheres are used to approximate each cube and cuboid, respectively. 6 big spheres 
are used to define the cubic design domain. 

With the FCM approximation, the 3D packing problem is just an extended version of the 
2D one. Both the location and orientation of a 3D component are described by 6 design 
variables indicating 6 degrees of freedom. Initially, suppose the components are located 
freely outside the design domain as shown in Figure 2.30(a). The optimization will find a 
minimum cubic container to envelop the components inside. Finally, the optimization 
process takes 23 iterations to reach the convergence and the 6 components are located as 
shown in Figure 2.30(b). Obviously, with the gradient-based algorithm, this is a typical 
local minimum rather than the most compact design. 
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Figure 2.29: The cubic and cuboid components and their finite-circle definition 

 
(a) The initial configuration 

      
(b) The optimal configuration 

Figure 2.30: Design iteration and the optimal result 
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Figure 2.31: A loose packing 
configuration   Figure 2.32: The optimal configuration 

If we start from a different initial design as shown in Figure 2.31, the optimization will 
lead to another local optimum. Here, the cubic components are firstly relocated as a loose 
packing that can be obtained by starting from a packing design maximizing the 
summation of all distances between spheres with the non-overlap constraints.  

Obviously, the benefit of a loose packing configuration is twofold. First, the initial design 
is a feasible one with all the design constraints satisfied. Second, a loose packing actually 
forms a larger searching space. Both are favorable for the optimum searching with 
gradient-based algorithms. In this example, a new packing configuration is obtained with 
25 iterations as shown in Figure 2.32. It is more compact than the previous one.  

2.3.4 Packing design with moment of inertia  

Figure 2.33: Dimensions and the FCM definition of the components 

In aerospace structural systems, e.g., rockets and satellites, it is a critical subject to design 
the moment of inertia for the system stability. Illustrative examples are tested here to 
show how the packing optimization is performed with FCM method. Suppose 4 
components with different shapes are located in a cylinder. Dimensions of the 
components and their sphere definition are shown in Figure 2.33. 

Suppose the components are composed of solid material of density ρ. By calculating the 
integral moment of inertia of each component and then using the parallel axis theorem, 
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the global moment of inertia with respect to the system axis, i.e. the central axis of the 
cylinder can be obtained and assumed as the objective function to be minimized here.  
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where J is the global moment of inertia and Δd is the distance between the current particle 
and the central axis of the system. It should be noted that the sphere approximations are 
only used to define the geometrical constraints while the moment of inertia is calculated 
with the exact body shape of the components.  

    

Figure 2.34: Initial configuration of the components 

       

Figure 2.35: Final configuration with minimal moment of inertia 

The components are first located outside the design domain that has a radius of 2.13 and a 
height of 14.14 as shown in Figure 2.34. For the purpose of a clearer view, half of the 
design domain is transparent and the spheres for the components are hided. 

The global moment of inertia is minimized. The final configuration is shown in Figure 
2.35. As expected, all the components are finally located along the central axis of the 
cylinder with the optimal moment of inertia being 4.229ρ.  
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Another test is carried out here with the same components but a different cylinder design 
domain. As shown in Figure 2.36, the radius and height of the cylinder are set to be 2.6 
and 3.5, respectively. And the components are initially located outside the design domain 
as well. The final result is shown in Figure 2.37 with the moment of inertia being 25.157ρ. 
Although the design domain is not high enough to locate all the components on the 
central axis of the cylinder, all of them crowd into the cylinder as close as possible to the 
axis.  

      

Figure 2.36: Initial configuration of the components 

              

Figure 2.37: Final configuration with minimal moment of inertia 

 

2.4 Local minima in FCM 

 

(a) The initial configuration (b) 4th iteration  
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(c) 8th iteration (d) The final configuration 

Figure 2.38: The design evolution of the local minimum 

 

(a) Distance between two circle centers 

 

(b) Reverse convex constraint 

   

(c) Possible local minima 

Figure 2.39: Non-overlap constraints with single circles 

The reason is analyzed based on the non-overlap constraint functions. Suppose only two 
circular components are concerned and the design variables are assigned to the center 
positions of the circles as shown in Figure 2.39(a), the non-overlap constraint is expressed 
as 

 ( ) ( )2 2
1 2 1 2 1 2 1 2O O x x y y R R= − + − ≥ +  (2-13) 
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where O1 and O2 are the centers of two different circles with the coordinates (x1, y1) and 
(x2, y2), respectively. R1 and R2 are the radii of both circles. As the square root brings 
more complexities in calculation, the expression can be equivalently simplified as  

 ( ) ( ) ( )2 2 22
1 2 1 2 1 2 1 2O O x x y y R R= − + − ≥ +  (2-14) 

The Hessian matrix of the squared distance with respect to the design variables (x1, x2, y1, 
y2) is calculated as 
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 (2-15) 

which can be easily proved to be positive semi-definite. This implies that the distance 
function between two single circles is always convex. But the constraint itself is actually 
non-convex as shown in Figure 2.39(b) because of the sign of the inequality. As shown in 
Figure 2.39(c), if the two circles are put into a corner to minimize geopotential energy, 
several local minima may exist for the final design.  

  

Figure 2.40: Feasible design space for multiple reverse convex constraints 

In fact, this problem is rather complicated when more constraints are involved. This 
situation can be explained in Figure 2.40. These constraints create a non-convex or even 
discontinuous feasible design space. The design point will not be changed from one local 
minimum to another one unless it goes across the infeasible design space, which is not 
allowed by the gradient based algorithms. Some examples of circle packing can be found 
in the work of Fang (2008). 

Unfortunately, a single circle cannot approximate the component of arbitrary shape very 
well. In FCM, the centers of the circles have to be calculated by the coordinate 
transformation by Equation (2-3). As a result, the Hessian matrix of the original Equation 
(2-5) with respect to the locations and orientations of the components becomes too 
complex to be expressed. To makes things clear, consider a simplified FCM example 
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shown in Figure 2.41. Two identical components are located into a rectangle design 
domain. Each of the components is composed of 2 circles with the same radius R=1. And 
the design objective is to find a minimal height of the rectangular design domain.  

Figure 2.41: A simplified FCM 
packing problem 

Here, the centers of the four circles are calculated as the functions of the locations and 
orientations of the components and the non-overlap constraints are formulated. For 
example,  
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For simplicity, suppose only the 1st component is movable while the 2nd one is fixed. 
Consequently, (x2, y2, θ2) are set to be (0, 0, 0) and the Hessian matrix of one of the 
constraint functions with respect to the design variables (x1, y1, θ1) can be written as 
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 (2-18) 

This matrix is much more complex than that in Equation (2-15) due to the non-convex 
trigonometric functions. As (x1, y1, θ1) is involved, it can be easily proved that the matrix 
is not always positive semi-definite. The situation will be even more complicated than 
those shown in Figure 2.40, which indicates that the constraint functions will lead to 
extremely non-convex problems and local minima may most likely take place.  

We can also draw the 3D surface of the equation (2-17) with (x2, y2, θ2) to be (0, 0, 0), 
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Note that the function has a form of circle with its center varying with θ1 and radius equal 
to 2, and the surface is actually a pipe with circular cross sections. It is also found that  

 2 2 2 2
1 1 2 1 1 1( ) 1 ( ) cos sin 1f fθ θ θ θ⎡ ⎤⎣ ⎦+ + = + =  (2-20) 

which denotes that the centers of the cross sections compose a spiral going up with θ1. As 
shown in Figure 2.42(a), a single constraint of Equation (2-19) is drawn. The constraint is 
satisfied only if (x1, y1, θ1) are located outside the pipe.  

  

(a) A single distance constraint (b) Multiple distance constraints 

Figure 2.42: Surfaces of distance constraints 

Surfaces of all the 4 non-overlap constraints are put together in Figure 2.42(b). More 
complex details are found on the multiple surfaces which make the design space 
extremely non-convex. Design variables (x1, y1, θ1) have to be located outside all of the 
surfaces to satisfy the 4 constrains, which makes the gradient based algorism easily fall 
into the local minimum. 

Besides, it is also possible that the packing optimization problems have multiple solutions 
with identical values of objectives, which bring more difficulties in packing design. As 
shown in Figure 2.43, this is due to the symmetry or the local incompactness of the design 
domain. Maybe several or even infinite numbers of optimal solutions exist in the packing 
problems. These multiple solutions can be global minima local minima. Therefore, for 
most of the packing problems, it is not sure that the solution is globally optimal. 

Furthermore, the number of the constraints will increase tremendously as more 
components and circum-circles are used. And the design space will be indescribably more 
complex. Incredible difficulties will be involved in gradient-based algorithms which are 
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not preferred in solving these problems. Until now no methods can guarantee global 
optima for packing problems. To make the gradient-based algorithms more applicable, 
more improvements have to be carried out and probably some ideas of the gradient free 
methods shall be implemented in a mixed way.  

 

 

     

Figure 2.43: Multiple solutions for packing problems 

As a result, the FCM technique of the current state is not effective in solving a pure 
compactness packing optimization. However, it was not developed for the pure packing 
optimization at the very beginning. In this work, its implementation with the 
gradient-based algorithms is a basic support technique to avoid the component overlap in 
the integrated layout design to be discussed in the following chapters.  

 

2.5 Conclusion 

The Finite-circle Method (FCM) is presented in this chapter. To generate an optimal 
packing solution, the overlap of the components shall be avoided. Because of the shape 
complexity of the components and design domain, many difficulties are involved in the 
definition and sensitivity analysis of geometrical constraints. Therefore, numbers of 
circles are used in FCM to approximate their contours and the constraints are now 
transformed into the distances limitations between the circles’ centers. Meanwhile, some 
semi-heuristic rules are presented to find a better circum-circle approximation with fewer 
circles and better precision, which will improve the quality of the optimization and reduce 
the number of constraints. With the simplified design constraints, gradient-based 
algorithms are applied in some 2D and 3D packing design examples. Reasonable local 
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minimum are found with different design objectives.  

However, the FCM is still a primary method suffering from the local minimum when the 
gradient-based algorithms are used. Therefore, improvements have to be carried out for 
practical packing problems. 
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Chapter 3 Integrated Packing and Topology 

Design 

Chapter 3 
 
Integrated Packing and 
Topology Design 
 
Overview 
 
The components packing and structural topology are designed 
simultaneously in this chapter. By studying the standard minimal compliance 
topology design, the components are embedded into the design domain and 
the problems are solved as an integrated optimization. More techniques as 
density points and embedded meshing are proposed to avoid the conflictions 
involved in the simultaneous design. 
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3.1 Problem statement  

The problem can be introduced with a practical example. As shown in Figure 3.1, the 
pylons on the wing are used to hang the turbine engine. Pipes, control mechanisms and 
some other devices are located inside the shrouds.  

 

Figure 3.1: Pylon on the wing and the handed turbine engine (Airbus 380)  

 

(a)                          (b) 

Figure 3.2: Pylon model in Samcef FieldTM and the topology optimization  
(Remouchamps et al. 2007) 

A typical layout design of the pylon structure is carried out as follows. The global design 
domain is assigned firstly, which indicates the feasible design space for the structural 
layout, as shown in Figure 3.2(a). The design domain is then discretized into finite 
elements. The weight and thrust of the engine are assigned to the joint points as the 
external loads. The global structure is clamped at the fixation to the wing. As introduced 
in Chapter 1, the topology optimization results in a clear structure pattern (Remouchamps 
et al. 2007) with a proper set of 0/1pseudo-densities, as shown in Figure 3.2(b).  

Suppose the equipments will be further arranged as numbers of components into the pylon 
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structure. In this packing design process, the location and orientation of the components 
are assigned as geometrical design variables. The final configuration is required to satisfy 
the geometrical and other functional requirements. Finally, structural supports and 
fixations of the components are designed in details. 

The integrated packing and topology design is to put two steps together. In fact, the 
layouts of both the structure and the components can impact the mechanical performances 
of structural system significantly. Here, the mechanical properties of the pylon may be 
degraded when the equipment is assembled inside it. The structural patterns obtained by 
the topology optimization are probably not optimal any more. 

The purpose of this section is to carry out the integrated layout design of the components 
and structures. As shown in Figure 3.3, a simplified pylon model is presented for 
illustration. A rectangle design domain is defined and meshed with finite elements. The 
loads and boundary conditions are assigned to the proper positions. Till now, a standard 
topology optimization problem is to minimize the global compliance.  

 

Figure 3.3: Problem illustration of the simplified pylon 

Then, two rectangle devices, referred to as the components in this thesis, are involved in 
the integrated layout design. To carry out the packing design and the topology design 
simultaneously, the location and orientation of the components are assigned as the 
geometrical design variables while the pseudo-densities describing the material 
distribution are assigned as the density variables. Both kinds of variables can be 
expressed as 

 
find : 0 1, 1,2,..., ;              
          ( , , ),  1,2,..., .

i d

c
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x y nε ε ε

η
θ ε
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 (3-1) 

where ηi is the pseudo-density variables describing a solid or a void finite element when it 
is 1 or 0 respectively. nd is the number of density variables. Meanwhile, the minimization 
of the global compliance is set as the design objective function in this chapter. The design 
constrains which will limit the total cost of the material and avoid the geometrical overlap 
are included. The mathematical formulation can be written as 
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where C is the strain energy calculated by the load vector f and the nodal displacement 
vector u. V is the total volume of the material used for the supporting structure with a 
prescribed upper limit. To make sure all the components are located inside the design 
domain and no overlap is found during the optimization, the geometrical constraints 
defined by the FCM have to be satisfied. 

If the above optimization problem is solved right now, it can be imagined that the two 
components will move inside the design domain to find proper positions and the 
supporting structure will be figured out with a clearer and clearer pattern as in a classical 
topology optimization. However, as seen below, the integrated layout design is much 
more sophisticated than a mathematical formulation. More difficulties are involved in the 
simultaneous design and more techniques have to be proposed. 

 

3.2 Density points 

In topology optimization, the material distribution is mostly described by pseudo-density 
variables related to the elements in the design domain. Based on the interpolation models 
of material properties, the distribution can be updated by modifying the density variables. 

Like the SIMP method, the pseudo-densities are attributed to each finite element in the 
design domain and the finite element mesh is fixed during the iteration. Therefore, the 
number of the elements and the number of the pseudo-density variables are always kept 
identical.  

 

Figure 3.4: Element mesh embedding the components inside the design domain 

However, in the integrated layout design, the first encountered problem is the confliction 
between the geometrical variables and the density variables. As shown in Figure 3.4, 
when the components are fully embedded in the design domain, the finite element mesh 
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shall be properly generated to join the components and structure together as a whole 
system. 

Suppose an intermediate topology pattern is generated as shown in Figure 3.5. The black 
and white colors denote the solid and void material properties, respectively. The 
optimization is to update the geometrical variables and pseudo-densities simultaneously. 
The problem occurs when the locations and orientations of the components are changed 
during the iteration. A new finite element mesh has to be generated to make sure the 
components are still embedded and joint with the structure in the model. However, after 
the remeshing, the total element number may be changed. The pseudo-densities cannot 
find the previous corresponding elements. As a result, the structural material layout 
cannot be further updated.  

 

Figure 3.5: Layout updating with illustrative design patterns 

 

Figure 3.6: Definition of the density points 

Accordingly, the method of density points is proposed here to solve this confliction. The 
idea is to relate the pseudo-densities with the location points rather than elements. To do 
this, some fixed points named density points are firstly defined in the design domain and 



 

48 
 

the pseudo-densities are then attributed to these points. The material properties will be, in 
turn, spread out from these points to the neighborhood elements. 

The method is practically as follows. Firstly the density points are defined in the design 
domain to dominate the overall area. As shown in Figure 3.6, four density points are 
defined to describe the four material properties in this square area.  

Later, the design domain is meshed with elements of proper sizes as shown in Figure 3.7. 
By calculating the distance between each density point and the centroids of the 
corresponding elements, each element will find the nearest density point and receive the 
information of the material properties. Note that several numbers of elements may share 
the same material property. The material layout is actually approximated by the density 
points if it is compared with the original one in Figure 3.6. 

 

Figure 3.7: Material properties received from the density points 

Several material layout patterns are shown in Figure 3.8, which are described with 
original fine element mesh and density points, respectively. The design domain is first 
meshed by 25×25 fine quadrangular elements with the size 0.04m×0.04m. The original 
material layout is shown in Figure 3.8(a). Later, the density points are defined according 
to the original layout as shown in Figure 3.8(b) while the design domain is meshed freely 
with triangular elements of two different sizes, respectively in Figure 3.8(c and d). 

Globally, the density points can describe approximately the original layout with 
acceptable precision as shown in Figure 3.8(c and d). The precision of the material layout 
can be improved by refining the finite element mesh. 

However, slight changes of the element mesh sometimes cause the variation of the 
material layout. As shown in Figure 3.9, a one-node connection is found in the original 
layout. But with the density points, the two solid parts are totally connected in one of the 
layouts while disconnected in the other one. This will cause incorrect calculations of the 
design sensitivities during the perturbation of geometrical variables. Although the refined 
mesh can be used to improve the precision, it costs much more computing time. As a 
result, the element mesh has to be further improved with some restriction. 
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(a) Fine quadrangular mesh 

 

(b) Definition of density points 

 

(c) Material layout with density points, 
element size 0.04m 

 

(d) Material layout with density points, 
element size 0.01m 

Figure 3.8: Material layout description with density points 

As shown in Figure 3.10, for a typical 2D problem, the finite element mesh is restricted 
inside numbers of small square areas corresponding to the density points and the original 
material layout. In this way, the material layout will be always identical with the one 
shown in Figure 3.6 regardless of the mesh. Clearly, the shape of the restricted areas 
depends on the problem. For a 3D problem, the elements dominated by a single density 
point will be restricted inside a small cube. 

Obviously, the number of the elements used in the design domain has to be much larger 
than the number of the pseudo-density variables i.e. the number of the density points. If a 
fixed mesh of quadrangular elements is used, the method of density points will be 
identical with the ordinary topology optimization. The method of density points is thus 
effective to solve some special topology optimization problems with mesh variation like 
multi-component system design discussed in this thesis.  
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 (a) Original material layout 

 
(b) Two different material layouts with the same density points 

Figure 3.9: An incorrect material layout description with density points 

 

Figure 3.10: Material layout described by density points with mesh restriction 
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3.3 Embedded meshing 

With the proposed technique of density points, the finite element mesh can be updated 
during the iteration of topology optimization. As shown in Figure 3.11, a structural 
system consisting of a square design domain and a rectangle component is meshed here. 
With the Boolean operation employed, the component is embedded in the design domain.  

 

(a) The original element mesh 

 

(b) An updated element mesh 

Figure 3.11: Element mesh with density points and restriction 

 

Figure 3.12: Basic mesh with density points and the component mesh 

To ensure the element quality at the interconnection interface between the component and 
the surrounding structure, a proper element size control has to be specified, i.e. normally 
less than 1/4 of the distance between the adjacent density points. The domain is meshed 
as shown in Figure 3.11(a), where 336 elements are generated and restricted in the small 
squares. Later when the location and orientation of the component are updated, the same 
process of the Boolean operation and element mesh will be carried out, as shown in 
Figure 3.11(b), where 324 elements are included, 20 times more than the number of 
density points defining design variables. 

The drawbacks of this kind of element mesh are however twofold. On the one hand, a 
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large quantity of elements will be generated in the finite element model. On the other 
hand, the whole system has to be remeshed along with the perturbations of the 
geometrical variables and the design iteration. Both of them will cost much more 
computing time and resources. 

For this reason, the technique of embedded meshing is introduced to embed the 
components of designable locations and orientations in the design domain with fewer 
elements and easier mesh updating. As shown in Figure 3.12, similarly to the mesh 
restriction and the definition of the density points, the initial mesh of the design domain 
referred to as the basic mesh is firstly created by fine quadrangular elements. The 
components are also meshed with refined element size.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.13: Process of embedded meshing 

When the component is located in the design domain, as shown in Figure 3.13(a), 
Boolean operations have to be carried out in such a way that some elements of the basic 
mesh overlapping with the component, as indicated with gray color, will be refined 
locally to ensure the elements of the component are embedded in the design domain. And 
the modified elements belonging to the design domain will also be restricted in the small 
square elements of the basic mesh as shown in Figure 3.13(b). The modified elements are 
generated by the free mesh of ANSYS (ANSYS Release 9.0 Documentation) with refined 
element size. Material properties of these elements will still be dominated by the proper 
density points except those belonging to the components. In this way, only a few density 
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points that are located around the component have more than one dominated elements, 
which avoids using a large number of the elements to mesh the whole structural system. 
Furthermore, when the component changes its location and orientation as shown in Figure 
3.13(c), the basic mesh is simply restored and only the Boolean operations and 
modification of the affected elements will be repeated at the new position, rather than 
remeshing the global system. The final element mesh is shown in Figure 3.13(d).  

Figure 3.14: Basic mesh of an irregular 
design domain 

 

According to our numerical tests, the embedded meshing reduces the number of the 
elements significantly and thus saves much computing time in mesh generation and FE 
analysis when large quantities of density points are defined in a topology optimization.  

The basic mesh with fine quadrangular elements is easily conducted. Furthermore, only 
slight modifications have to be made for the irregular design domains. For example, the 
gray areas as shown in Figure 3.14 have to be refined to ensure the precision of the 
elements generated on the irregular boundaries. It should be noted that, the modified basic 
mesh still complies with the mesh restriction and remains unchanged during the 
optimization iteration. 

 

3.4 Sensitivity analysis 

The key to the application of gradient-based algorithms is the derivation of the design 
sensitivities with respect to the design variables. Here, sensitivity analysis consists of 
evaluating the gradient of the global strain energy with respect to the shape parameters of 
the components and the pseudo-density design variables.  

For a static FE model, the static equation of the structure is 

 =f Ku  (3-3) 

where f is the load vector. And the global strain energy is calculated as  

 1 1
2 2

T TC = =f u u Κu  (3-4) 
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3.4.1 Geometrical design variables 

Suppose sε is one of the three geometrical parameters (xε, yε, θε). Considering the 
complexities of the geometrical design variables related to the different shapes and finite 
element models, it is difficult to derive an analytical form of the sensitivities. As a result, 
the sensitivities of the global strain energy with respect to the geometrical design 
variables are calculated by finite difference 

 C C
s sε ε

∂ Δ≈
∂ Δ

 (3-5) 

The perturbed step size of sε is chosen to be 

 5 ( ) ( )10 U Ls s sε ε ε
−Δ = −  (3-6) 

where sε(U) and sε(L) are the upper and lower bounds of sε, respectively.  

However, in some simple problems, the geometrical parameters (xε, yε, θε) can be 
considered as special geometrical design variables in shape optimization. The gradients 
can be derived with a semi-analytical sensitivity form as presented by Zhang et al. (1995) 
to avoid the finite difference calculation.  

The differentiation of the above equation with respect to sε leads to  

 0
s sε ε

∂ ∂+ =
∂ ∂
K uu K  (3-7) 

While the derivative of the global strain energy with respect to sε can be put down as  

 1 1 1
2 2 2

T T TC
s s s sε ε ε ε

∂ ∂ ∂ ∂= = = −
∂ ∂ ∂ ∂

u u Kf u K u u  (3-8) 

Here, the derivative of the global stiffness matrix is approximated by finite difference 
calculations. 

 
*

s sε ε

∂ −≈
∂ Δ
K K K  (3-9) 

where K* is the structural stiffness matrix after the perturbation. Therefore, the final 
semi-analytical shape sensitivity scheme can be written as 

 
* *1 2

2 2

T
TC C

s s sε ε ε

∂ − −≈ − = −
∂ Δ Δ

K K u K uu u  (3-10) 

In this method, the stiffness matrices K* and K are in the same order. This implies that 
both the number of degrees of freedom and the mesh topology of the structural system are 
unchangeable after the perturbation.  

Similarly to the shape optimization as well, the requirement of identical number of 
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degrees of freedom can be satisfied by implementing the perturbation of the geometrical 
parameters as the slight movement of the related nodes in the model, i.e. the Morphing 
technique. The global mesh remains unchanged. However, the movements of the 
components are much more complex than the contour perturbations in the standard shape 
optimization. The material layout described by the pseudo-densities shall not be affected 
by the shape perturbation, which makes the modification of the nodal positions strictly 
limited in the affected areas i.e. the gray area in Figure 3.13. Although the perturbation of 
the stiffness matrix avoids the finite difference calculation and saves the computing time 
significantly, it brings more complexity into the modeling of the embedded meshing. 
Much effort is needed in this study. 

3.4.2 Pseudo-density variables 

Sensitivities with respect to the pseudo-density variables which are now defined at the 
density points are derived analytically. Suppose ηi is the pseudo-density at the ith density 
point, which dominates a number of surrounding elements at the neighborhood. The 
elastic modulus and the element stiffness matrix attached to ηi can be written as 

 0 0( ) p
ij i iij ijE P E Eη η= =  (3-11) 

 0 0( ) p
ij i iij ijP η η= =K K K  (3-12) 

where ( ) ( ) ( ){ }1 1 2 ( 1) 01, 2,..., , 1,..., ,..., 1,..., ... ,  0,  1, 2,...e e e e i ei e dj n n n n n n i n−∈ + + = = identify 

each element of the supporting structure. p is the penalty factor set to be 3 in this thesis. Eij 
and Kij are the elastic modulus and stiffness matrix of the jth element dominated by the ith 
density point, while Kij0 and Eij0 are the stiffness matrix and elastic modulus when it is 
solid. 

Likewise, the sensitivity is also formulated by differentiating the static equation.  

 0
i iη η

∂ ∂+ =
∂ ∂
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The derivative of the strain energy can be expressed as 
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Bacause only the stiffness matrices of the elements dominated by the ith density point are 
related to ηi, this equation can be further developed as 
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where Cij is the strain energy of the jth element dominated by the ith density point.  

Meanwhile, the technique of mesh-independency filter (see Sigmund and Petersson 1998) 
is applied here to avoid the checkerboard problem. But the filter is carried out with 
respect to the density points rather than the elements in the following way.  

The sensitivities obtained are modified with the weighted average of the neighborhood 
density points.  
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 { }mindis( , )l l l i rη η∈ ≤  (3-17) 

where dis(l,i) indicates the distance between the lth and ith density points. All the density 
points located within the predefined distance rmin are accounted in the filter scheme.  

However, the filter on the sensitivities is not appropriate for the current searching 
strategies because the modified sensitivities do not completely correspond to the objective 
function, which may lead to some divergence problems. As a result, further developments 
are made on the density filter by Bruns and Tortorelli (2001) and Bourdin (2001). The 
modifications are directly implemented on the updated design variables. More 
descriptions and improvements on the topic of density filter can be found in the works of 
Wang and Wang (2005), Sigmund (2006), Sigmund (2007) and Lemaire et al. (2007). But 
this is not the problem mainly concerned in this thesis. As we are using the sensitivity 
filter technique, the convergence difficulties are only reported in a few tested examples in 
Chapter 6. 

 

3.5 Iteration control 

3.5.1 Problem modeling 

Now, the proposed density points and embedded meshing techniques are programmed and 
integrated in the software platform to perform the packing and the topology design 
simultaneously. Take the simplified pylon shown at the beginning of this chapter as an 
example. The geometrical model shown in Figure 3.15 is composed of numbers of 
circum-circles approximating the components and the design domain. Only the 
geometrical design variables i.e. the locations and orientations of the components are 
imported in the model to compute all the geometry constraints. 

The finite element model is the second model used to calculate the mechanical and 
physical responses, e.g. the strain energy, natural frequencies, position of the gravity 
center, moment of inertia with respect to a prescribed axis etc. The meshed components 
and design domain with the applied loads and boundary conditions will be properly 
modeled. All the pseudo-densities and geometrical variables have to be imported by using 
the techniques of density points and the embedded meshing to describe the layout of 
structure and the components, as shown in Figure 3.16.  
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Figure 3.15: Geometrical model of the pylon 

 

Figure 3.16: Finite element model of the pylon 

3.5.2 Software platform 

The global analysis and optimization processes are programmed within the platform of 
ANSYSTM (ANSYS Inc) and Boss-QuattroTM (Samtech Inc), as shown in the flowchart of 
Figure 3.17. Although the programming is essential and time-consuming, this thesis will 
be focused on the methods developed for the integrated layout design. Only a brief 
description of the software and programming is presented here.  

The modeling, solving and post-processing are mostly programmed using the ANSYS 
command lines and the language APDL (ANSYS Parametric Design Language). APDL is 
a scripting language that enables the batch execution of the finite element analysis by 
automating common tasks of the model built in terms of parameters. Since APDL 
encompasses a wide range of other features such as repeating a command, macros, 
if-then-else branching, do-loops, scalar, vector and matrix operations and text file 
processing etc, it provides more flexibilities and conveniences in complex system 
modeling and analysis. However, the command line and the APDL are inefficient for 
scientific computing. Some tasks, e.g. the sensitivity filtering, are programmed 
alternatively and compiled in the language C++. Furthermore, the data exchanging 
between different executions is realized by writing and reading ASCI files or binary files. 
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Figure 3.17: Flowchart and platform of the integrated layout optimization 

Boss-Quattro is an open optimization platform that works with executable analysis. 
Normally, the analysis procedure will be run automatically in batch by inputting a 
parametric model and then results or responses yield. As described in the documentation 
of Boss-Quattro 5.0, Boss-Quattro can be viewed as an application manager: it builds and 
runs chains of tasks involving different applications, and collects results automatically. 
Actually, more utilities are offered. Besides some available interfaces for the parameter 
and result files with MSC-NastranTM, SamcefTM etc, it is easy to integrate external 
programs by programming user’s customized scripts. Furthermore, the neutral form of the 
parameters’ definition, results and sensitivities list makes it possible to realize the deep 
customization of external software without further development of interface.  

To have a full control of the iteration, three interfaces connecting Boss-Quattro and 
ANSYS are built, i.e. the parameter driver, execution driver and the response driver.  

The parameter driver is dedicated to read and edit the definition of design variables at the 
beginning of the optimization. The initial value, lower and upper bounds of the design 
variables are introduced here with a prescribed form which can be recognized by both 
Boss-Quattro and ANSYS.  

The two models, i.e. the geometrical model and the finite element model are sent to 
ANSYS and the calculations are carried out respectively within the control of the 
execution driver. The first analysis is to generate the responses that will be defined later 
as the objective function and constraints by the response driver. Meanwhile, the analytical 
sensitivities with respect to the pseudo-density design variables are calculated within the 
first analysis. Later, the finite difference is carried out to obtain the sensitivities with 
respect to the geometrical design variables, as shown in the flowchart of the execution 
diver in Figure 3.18.  

When the objective function and constraints are defined, all the values of the responses 
and the corresponding sensitivities are asked to be output in a specified form which will 
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be received by Boss-Quattro. According to these data, values of design variables will be 
updated and transferred to the parameter driver to modify the two design models.  

 

Figure 3.18: Flowchart of the execution diver 

Finally, the optimization process will stop if the selected convergences test is satisfied. In 
Boss-Quattro, three convergence tests are provided, i.e. 

1) On the variation of design variables. The process will stop if the maximum variation of 
all design variables is less than the prescribed precision; 

2) On the variation of objective function. The process will stop if the maximum variation 
of the objective function is less than the prescribed precision; 

3) Find admissible point. The process will stop when all constraints are satisfied. 

For all the examples shown in this thesis, the convergence tests on objective variation and 
variable variation are applied simultaneously with the convergence precision to be 0.1%. 

 

3.5.3 Note on the optimization algorithms 

To choose a proper optimization algorithm for the integrated layout design, several 
popular algorithms are evaluated in this section. 

In fact, most of the functions e.g. the strain energy, natural frequencies etc involved in the 
optimization are neither linear non explicit with respect to the design variables. Only the 
values and sometimes the derivatives of the responses are available at the current design 
point. Therefore, it is necessary to build approximated expressions of explicit form, e.g. 
the Taylor expansion, for the gradient based algorithms. The general strategy is to expand 
the objective function and the constraint functions approximately with the current values 
of the functions and their derivatives obtained. Then, a series of sub-problems are solved 
iteratively to find the next design point until the convergence is reached.  
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Conlin (See Fleury and Braibant 1986, Fleury 1989) is a first order method based on the 
convex linearization. The approximation of a given function g(x) can be expressed as 
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where x(k) is the current design point at the kth iteration. The terms of direct linearization 
or inverse linearization are used when the gradient is positive or negative respectively. By 
evaluating the second order derivatives, it can be easily demonstrated that the 
approximated function is always convex and conservative compared with the direct 
linearization.  

Conlin is suitable to sizing optimization and standard topology optimization minimizing 
the structural compliance because the design functions are monotonous. However, for 
non-monotonous functions, the oscillation may occur iteratively. As a result, 
unconstrained problems cannot be solved by Conlin. 

Another monotonous approximation is the standard MMA (Method of Moving 
Asymptotes, see Svanberg 1987) inspired by Conlin. The approximation function is 
expressed as 
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where the parameters pi
(k) and qi

(k) are determined by the first order derivatives as in 
Conlin. ui

(k) and li
(k) indicate the upper and lower asymptotes, respectively. They are 

introduced to further ensure the convexity of the approximation functions. Obviously, 
under the assumption of li=0 and ui to ∞, MMA is reduced to the convex linearization 
scheme. 

In addition, a move-limit strategy proposed by Svanberg (1987) is needed to restrict the 
variation range of the design variables during the optimization process. Similarly to 
Conlin, MMA is widely used in topology optimization problems.  
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As shown above, the same asymptotes are used for different functions in MMA. In fact, 
each function may have its own proper moving asymptotes ui and li with respect to each 
design variable xi. A modified version named GMMA (Generalized Method of Moving 
Asymptotes, See Zhang et al. 1996) was developed. The GMMA proved to be more 
flexible.  

The SQP (Sequential Quadratic Programming) (see Nocedal and Wright 1999) is a basic 
second order* algorithm that builds up each subproblem using the Hessian matrix of the 
Lagrangian function and linear approximations of the constraints. This yields a sequence 
of QP (Quadratic Programming) problems that are solved iteratively until the 
convergence.  

With a proper definition of the subproblem, SQP can be viewed as an extension of the 
Newton method. Both share some common characteristics, i.e. rapid convergence when 
the iteration is near the final solution but the iteration may be erroneous when it is far 
from the solution. Moreover, the initial design does not have to be necessarily feasible.  

Since the first order derivative of the quadratic approximation may be negative or positive 
with respect to the design variables, non-monotonous problems e.g. some shape 
optimization problems may be well dealt with.  

MDQA (Method of Diagonal Quadratic Approximations, see Zhang and Fleury 1997) is 
another algorithm in which the diagonal terms of the Hessian matrix i.e. the second order 
derivatives are approximated using the preceding iteration result. With the curvature of 
the functions obtained, the approximations of the functions are generally better. This 
benefits the optimization iteration when it is near the final solution.  

The global convergent version of MMA (GCMMA) is further proposed by Svanberg 
(1995). More discussions on this method can be found in Bruyneel et al (2002), Svanberg 
(2007). Each function can be approximately expressed as 
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Although the approximation function looks like the standard MMA and GMMA, both of 
the asymptotes are always strictly positive. Both the parameters pi

(k) and qi
(k) are 

computed based on the first-order derivatives, the asymptotes ui
(k) and li

(k) and another 
non-monotonic factor ρ(k) which will is updated on the basis of a rule proposed by 
Svanberg (1995) to ensure the globally convergent character of the approximation. 
Therefore, the approximation functions of GCMMA are now non-monotonous.  

The benefits of GCMMA are obvious. It inherits the property of stability from the family 
of MMA and the non-monotonous approximation is helpful in solving some optimization 

                                           
* The so-called “second order” here is an engineering concept. The diagonal terms of the Hessian matrix are not directly 
obtained by computing the second order derivatives but approximated based on the information from the precedent 
iteration (See Boss-Quattro Documentation, Samtech). 
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problems with non-monotonous functions. 

As the component layout will be designed simultaneously with the structural topology, 
the problem with movable components inside the design domain is similar to a shape 
optimization design. Non-monotonous approximations have to be used to generate 
reasonable component layout. 

Furthermore, it should be mentioned that the comparison between the algorithms with 
non-monotonous approximation has shown the iteration stabilities are in conflict with the 
convergence speed. As indicated by Samtech who has plenty of experience in testing 
these algorithms, a rough rule is: the GCMMA holds more stability in finding the final 
solution than SQP that is, in turn, more stable than MDQA. But if all of them can find a 
solution, MDQA is faster than SQP that is, in turn faster than GCMMA (See Radovcic 
and Remouchamps 2002 and Boss-Quattro Documentation, Samtech).  

As a result, considering the characteristics of the integrated layout design and ignoring the 
drawback of slow convergence, GCMMA is generally used in solving the examples in 
this thesis.  

 

3.6 Numerical examples 

Several examples are presented here to illustrate the integrated layout optimization. As 
the first step into the multi-component system design, the global strain energy is chosen 
as the design objective like the simplest standard topology optimization. 

3.6.1 Simplified pylon 

As shown in Figure 3.3, the basic mesh of the design domain (0.6m×1.8m) is discretized 
with 30×90 quadrangular elements. The size of the components is 0.16m×0.32m.  

The material properties of the supporting structures are set to be: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 
And the material properties for the components are: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3. 

A standard topology optimization without components is firstly solved with classic SIMP 
method to obtain a first impression of the structural layout.  

The volume fraction is prescribed as 50% of the total material cost. The checkerboard 
problem is avoided by applying the sensitivity filter by Sigmund (1998). After 32 
iterations, the optimization converges quickly. The final structural pattern and the 
convergence history of the objective function are shown in Figure 3.19.  

Later, the components are put back into the design domain. The integrated layout 
optimization starts from the initial design as shown in Figures 3.15 and 3.16, where the 
components are firstly located horizontally in the design domain. Five circles are used to 
approximate each of them.  

The global strain energy is chosen as the design objective as well. 50% of the total 



 

63 
 

material cost is used for the supporting structure. The iteration history of the structural 
and components layout is shown in Figure 3.20.  

 

 
Figure 3.19: A standard topology design without components and the convergence history 

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 
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(c) 20th 
iteration 

(d) The 
final 

design 
C=0.074J 

Figure 3.20: Iteration history of the design patterns 

Because more complexities are involved with the introduction of the movable 
components in the design domain, the optimization costs 65 iterations and finally 
converges. This consumes much more computing time than the pure structural topology 
design without components. During the iteration, the components move inside the design 
domain and try to find the proper positions. Meanwhile, the structural layout generated by 
the topology optimization becomes clearer and clearer.  

 

Figure 3.21: The convergence history of the objective function 

Although introducing the components brings more limitations to the material layout 
design, the components material is much stronger than that of the structure in this 
example. That’s the reason why the final strain energy is lower than that without 
components. In the final design, the two components are finally found to be embedded in 
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the design domain as some key parts of the loading structure. The convergence of the 
objective function is plotted in Figure 3.21. 

The structural pattern in Figure 3.20 is not completely identical with that in Figure 3.19 
where no component is involved. Obviously, the integrated layout design for structure and 
components is not a method simply embedding the components into the optimal structural 
topology. The simultaneous updating of the components’ positions and structural patterns 
implies their coupled effects on the design objective.  

3.6.2 Effect of component material 

Practically, the equipments assembled in a structural system are not always stronger than 
the supporting structure. Therefore, the integrated layout optimization of the pylon is 
further discussed by exchanging the material properties of the components and the 
supporting structures, i.e. 
for the components: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3; 
for the structures: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3. 

The same loads and boundary conditions as the previous ones are used here. By removing 
50% of the total material cost, the iteration of the topology design is shown in Figure 
3.22.  

During the iteration, the optimizer also tries to find proper positions for the two 
components. But they are not strong enough to be located at the main load path of the 
structure.  

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 
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(c) 20th 
iteration 

(d) The 
final 

design 
C=0.030J 

Figure 3.22: Iteration history of the design patterns 

After 41 iterations, the optimization converges to the final design configuration. 
Compared with the previous design, the structural layout is similar. The relatively weaker 
components are also embedded as parts of the loading structure, but the positions are not 
as critical as before. The iteration history of the objective function is shown in Figure 
3.23. The strain energy is quite lower in this example because stronger material properties 
are used for the supporting structure. 

 

Figure 3.23: The convergence history of the objective function 

In the extreme case when the equipments are easily broken or too weak to carry some 
loads, some void areas of the design domain have to be reserved for their protection. 
Actually, we just need to assign rather weak material properties to the components, e.g., 
for the components: 
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    elastic modulus, E0=1pa, density ρ0=1kg/m3 and Poisson’s ratio ν=0.3; 
and for the structures: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

The components are now rectangular holes reserved in the design domain. Iterative 
design patterns are shown in Figure 3.24. These holes occupy proper positions which 
should not affect the main load path while the structural layout has to avoid passing 
through the locations of the components. When the void components break the structural 
layout instantaneously, unsatisfactory instabilities occur in the convergence history shown 
in Figure 3.25.  

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 

 
(c) 20th 
iteration 

 

(d) The 
final 

design 
C=0.098J 

Figure 3.24: Iteration history of the design patterns 
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Figure 3.25: The convergence history of the objective function 

The optimization takes about 52 iterations to reach the convergence. The material layout 
and the configuration of the components are actually rather different from the previous 
designs.  

3.6.3 Non-convex design domain 

In this section, two examples with solid components are tested to illustrate how the 
integrated layout design works with a non-convex design domain. The material properties 
are defined as follows: 
for the components: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3; 
and for the structures: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

 

(a) Dimension, load and boundary 
conditions 

(b) FCM approximation for the design 
domain 

Figure 3.26: The definition of the design domain 
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The components are much stronger than the supporting structure. The design domain and 
its dimension are shown in Figure 3.26(a). An L-shaped beam is modeled with its upper 
side fixed and one concentrated force assigned at the right side. The basic mesh consists 
of quadrangular elements with a size of 0.1m×0.1m. 1200 density points are defined in 
total. The design domain is shown in Figure 3.26(b) where the concave part is modeled as 
a fictive triangular component approximated with 5 circles.  

Figure 3.27: The definition of the component 

 
(a) The initial design 

 
(b) 10th iteration 

 
(c) 25th iteration 

 
(d) The final design C=0.050J 

Figure 3.28: Iteration history of the design patterns 

In the first case, one component is concerned and is approximated with 8 circles as shown 
in Figure 3.27. By minimizing the strain energy and constraining the volume of the 
supporting structure to 50% of the total volume, several iterations of the configurations 
and the convergence history of the design objective are shown in Figures 3.28 and 3.29, 
respectively. The component is finally located as a part of the structure after 58 iterations.  
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Figure 3.29: The convergence history of the objective function 

 
(a) The initial design 

 
(b) 10th iteration 

 
(c) 25th iteration 

 
(d) The final design C=0.046J 

Figure 3.30: Iteration history of the design patterns 

The second case is about two identical components in the same design domain. Figure 
3.30 shows the iteration histories. And the objective function converges as shown in 
Figure 3.31. It is also found that both two components are now integrated as parts of the 
structure and demonstrate their existence for the rigidity maximization of the system.  

In both tests, the complexity of the components shape and the design domain are 
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considered. Although more geometrical design constraints are involved in the iteration 
process, the optimization gives rise to a reasonable design pattern. 

 

Figure 3.31: The convergence history of the objective function 

3.6.4 An aircraft structure 

In this problem, an illustrative part of an aircraft structure is designed. As shown in Figure 
3.32, two identical groups of holes with thick edges are defined as components in the 
original design. Therefore, both solid and void material properties are employed in the 
components which are more complex than previous examples. Material properties of 
aluminum are assigned to both components and the structure: 
    elastic modules E0=7×1010pa; Poisson’s ratio ν = 0.3. 

 

Figure 3.32: Original design of the part, 
28.7kg, C=0.0826J(3D) C=0.0938J(2D) 

Figure 3.33: Component with a 
group of holes and its circles 

Different thicknesses are assigned to the components and the structure as shown in 
different colors. The part is supported at the left side and a pressure 2.87×105pa is applied 
on the upper bound. The original design is meshed with 3D solid elements and then 
simplified into 2D membrane elements and analyzed for the purpose of comparison. The 
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strain energies as well as the total mass including the mass of the structure and the 
components are also shown in Figure 3.32. 

 
Figure 3.34: Initial design configuration 

 
Figure 3.35: A regular topology 

optimization, 28.7kg, C = 0.0636J(2D) 

 
(a) 3rd iteration 

 
(b) 10th iteration 

 
(c) 25th iteration 

 
(d) The final design 28.0kg 

C=0.0730J(2D) 

Figure 3.36: Iteration history of the design patterns 
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The 2D model is adopted in the integrated layout optimization. 6 circles are used to 
approximate the geometry of each component as shown in Figure 3.33. The design 
domain, loads and boundary conditions can be found in Figure 3.34. The element size is 
0.02m and the basic mesh of the design domain is discretized into 50×50 elements.  

A standard topology optimization without any components is carried out first. The 
material cost is set to the total mass of the original part. The optimal result is shown in 
Figure 3.35. The optimal structural layout is rather different from the original design. 
Most of the material is distributed on the left side near the fixation. However, we don’t 
know where to locate the two groups of holes yet. 

 
Figure 3.37: The convergence history of the objective function 

Figure 3.38: The redesigned optimal part. 
28.7kg C=0.0511J (3D) 

 

In the integrated design, the same design objective and constraint of material cost are 
assigned. The two components find the optimal positions very quickly but it takes much 
more iterations to reach the convergence. The iteration history and the final design are 
shown in Figure 3.36. Two components are finally located as a part of the structure after 
76 iterations. The convergence of the objective function is shown in Figure 3.37. 

In comparison, it is found the optimal structure obtained by the integrated design have a 
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similar structural configuration to the result without component. However, the latter has a 
smaller value of objective function because all materials are freely distributed. 
Furthermore, the optimal result in Figure 3.36 saves 2.5% of the weight and reduces the 
strain energy by 22% compared with the 2D solution of the original structure.  

Finally, the refined design of the part is shown in Figure 3.38 according to the optimized 
design pattern. Compared with the original one with 3D analysis, the optimal part reduces 
the strain energy by 38% and the maximum von-mise stress by 27% while holding the 
same weight. 

3.6.5 Partially supported components 

 

Figure 3.39: A power facility and its fixation positions 

Figure 3.40: Definition of the partially 
supported component  Figure 3.41: Definition of the component

In most of the practical cases, only some specified sections and flanges on the contour of 
the components are allowed to be supported by the structure. For example, the power 
facility as indicated in Figure 3.39 can only be fixed at the two ends.  

This is the situation of partially supported components that can be modeled by employing 
two different material properties in one component like in section 3.6.4. As shown in 
Figure 3.40, the fixation positions of the component are directly in contact with the 
surrounding elements of the supporting structure, while the rest parts of the component 
are cut apart from the supporting structure with a small gap defined with a thin layer of 
void area. However, both the solid and void areas belong to the component and will move 
together with the attached local coordinate system during the iteration. 
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Here, the example of the pylon is further tested with partially supported components. 
Suppose the two components have 4-supported positions as shown in Figure 3.41. The 
circles have to cover both the solid and void areas of the components. The material 
properties of the solid parts are defined as: 
for the components: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3; 
for the structures: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 

 
(c) 25th 
iteration 

 

(d) The 
final 

design 
C=0.078J 

Figure 3.42: Iteration history of the design patterns 

The two components are initially located horizontally in the design domain. The same 
loads and boundary conditions are used here. The optimization converges at the 42nd 
iteration. The convergence history of the objective function is shown in Figure 3.43.  



 

76 
 

The two components are now located directionally in the structure to make sure the 
supporting structure is connected at the specified fixation positions. Compared with the 
optimal design in Figure 3.20, the strain energy is higher here because the partially 
supported components bring more constraints to material layout design. Further 
comparisons of the detailed structural layout are carried out with the optimal design 
without component, as shown in Figure 3.44. The structural layouts are generally similar. 
The components are not wide enough to be located on the main loading structure as in 
Figure 3.20. As a result, the structure on the left side has to be slightly modified to create 
a section long enough for one component. Meanwhile, some of the structure members on 
the right side are replaced by the other component.  

 

Figure 3.43: The convergence history of the objective function 

 

Figure 3.44: Comparison of the standard topology optimization and integrated layout 
design with partially supported components 
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Finally, components of a cross shape that are partially supported at the four ends are 
further tested. As shown in Figure 3.45, the void areas are defined at the four concave 
parts and 8 circles are used to approximate the contour of each component. 

Figure 3.45: Definition of the 
component 

The design domain, material properties and boundary conditions are the same as used 
above. The optimization consumes 78 iterations as shown in Figure 3.46. However, the 
design process costs more computing time because it is rather difficult to find proper 
locations of the components that have four fixation positions.  

The convergence of the objective function is plotted in Figure 3.47. Much more 
instabilities are found during the iteration history when the void areas cut the loading path. 
In the final solution, only three of the four fixation positions are firmly supported. In this 
design, although the component has a material stronger than that in Figure 3.42, the strain 
energies in both final designs are close to each other.  

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 
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(c) 25th 
iteration 

(d) The 
final 

design 
C=0.079J 

Figure 3.46: Iteration history of the design patterns 

 

Figure 3.47: The convergence history of the objective function 

 

3.6.6 Pylon with three components 

The purpose of the final example in this chapter is to demonstrate the integrated layout 
optimization with one more component and more convergence details. The definitions of 
the design domain, components, material properties, loads and boundary conditions are 
identical with those in the Section 3.6.1.  
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Figure 3.48: Initial configuration of the pylon with three components 

 
(a) 5th 

iteration 

 
(b) 10th 
iteration 

 
(c) 25th 
iteration 

 

(d) The 
final 

design 
C=0.069J 

Figure 3.49: Iteration history of the design patterns 
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The initial configuration is shown in Figure 3.48, where the three components are located 
horizontally in the design domain. These components in the figure are marked as A, B 
and C to be identified.  

The optimization process converges at the 84th iteration as shown in Figure 3.49. 50% of 
the structural material is distributed similar to the previous examples. Three components 
are located on the main loading structure as expected. However, the integrated layout 
design still suffers from the problem of local minima inherited from the packing 
optimization with FCM. On the one hand, the components can hardly exchange their 
positions all through the entire iteration. On the other hand, when the structural layout 
becomes clearer, the components will be clamped by the structure and never move far 
away.  

 

(a) Design configuration obtained at 25th iteration when the geometrical constraints are 
disabled at the 20th iteration 

 

(b) Design configuration obtained at 17th iteration when the geometrical constraints are 
disabled at the 10th iteration 

Figure 3.49: Design configurations obtained without geometrical constraints 

The geometrical constraints are normally not active in the final design because in the 
feasible design space the objective functions are non-monotonous with respect to the 
geometrical design variables. But these constraints are still necessary to prevent the 
possible overlapping during the design iteration. Figure 3.49 shows two design 
configurations obtained without geometrical constraints. In Figure 3.49(a), two of the 
components are found located partially outside the design domain. This situation is not 
fatal to the optimization procedure because it is still a correctly defined FE model. But 
when the components overlap with each other as shown in Figure 3.49(b), we have no 
idea to define the elements and their material properties in the overlapped area. The 
optimization procedure will be terminated.  
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To have a global view of the detailed convergence process, the convergence histories of 
the objective function and maximum variations of the design variables are shown in 
Figure 3.50. The optimization design will be converge when all these values below 0.1%.  

 

Figure 3.47: The convergence history of the objective function and maximum variation of 
the design variables 

The objective function trend to steady very quickly but it takes more iterations for the 
design variables especially the geometrical variables to reach the convergence.  

Introducing more components into the integrated layout design brings problems in two 
fold. Firstly, more geometrical design variables have to be defined for new introduced 
components, which further need more computing time consumed by large numbers of 
geometrical constraints and FE analysis involved in finite difference. Secondly, if the 
components take up much space in the design domain, they cannot move in the design 
domain as free as in a loose package. Some less optimal configuration may be obtained. 

 

3.7 Conclusion 

In this chapter, components and their supporting structure are simultaneously designed 
with the proposed layout design method that integrates the FCM, density point and 
embedded meshing techniques. The FCM aims at simplifying the complex overlap 
constraints involved in a pure geometry model. The technique of density points is used to 
avoid the conflict between the geometrical design variables and pseudo-densities. 
Meanwhile, the combination of density point and embedded meshing techniques can save 
the computing cost of the remeshing procedure. Several compliance minimization 
examples are tested. Components with different shapes, material properties and partially 
supported positions are taken into account. Numerical results show that integrated layout 
design is efficient to achieve reasonable design configurations. Compared with the 
traditional topology optimization, the introduction of the components into the layout 
design brings more complexities but also demonstrates more practical significance in 
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multi-component system design. 
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Chapter 4 Low-density Areas in Topology 

Optimization 

Chapter 4 
 
Low-density Areas in 
Topology Optimization 
 
Overview 
 
Several interesting problems involved in low-density areas of topology 
optimization are discussed in this chapter, which will benefit the extension of 
the integrated layout optimization. The phenomena of localized deformations 
occurring in topology optimization with eigenvalue maximization or design 
dependent body loads are firstly analyzed here. It is shown that these 
problems will numerically lead to an erroneous solution and undesired 
results. Then, from the viewpoint of low-density elements, the breakdown 
problem of the Evolutionary Structural Optimization (ESO) is also 
discussed.  
 
Contents              
 
4.1  Localized modes 
4.2  Localized deformations 
4.3  Modified interpolation model 
4.4  Break-down in ESO 
4.5  Conclusion 
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4.1 Localized modes 

The localized modes are found in the eigenvalue optimization problems e.g. maximizing 
the natural frequencies or buckling loads in topology optimization (see Neves 1995, 
Pedersen 2001 and Zhou 2004). It is generally recognized that this phenomenon is 
actually a numerical error due to the improperly defined material properties for the void 
elements, especially in the popularly used SIMP model.  

When the localized modes appear, the vibration or buckling takes place only in the 
low-density areas which are actually supposed to be void areas without mechanical 
effects. As a result, this problem will probably lead to the incorrect calculation of the 
design response, sensitivities and further the iteration failure of the design optimization. 

4.1.1 Sensitivity analysis 

The sensitivities used in topology optimization of eigenvalue maximization are firstly 
derived here. The problem is described as the solution of the general eigenvalue problem 

 ( )2- 0ω =K M u  (4-1) 

where K and M are the stiffness matrix and mass matrix of the structural system, 
respectively. ω is one of the circular natural frequencies and u is the corresponding mode 
shape. This equation can be transformed to a buckling problem by replacing ω2 with the 
buckling eigenvalue that indicates the minimum buckling load, M with the geometric 
stiffness matrix which depends on the displacement vector of a given unified static load 
case. However, due to the similarity, only the natural frequency maximization is discussed 
here. 

Based on the interpolation model, the stiffness and mass matrices can be related to the 
pseudo-densities. 

 0

0( )
i i i

i i iP
η
η=

M = M
K K

 (4-2) 

where Mi and Ki are the mass matrix and stiffness matrix of the ith element, respectively. 
Mi0 and Ki0 are the corresponding mass and stiffness matrices, respectively when the 
element is solid. P(ηi) is the penalty function. A topology optimization problem of 
maximizing the natural frequencies is defined as 

 2

( )

Find: 0 1
max :  
s.t.: 

i

UV V

η
ω
< ≤

≤
 (4-3) 

It should be noticed that the eigenvalue maximization problems are actually 
non-differentiable because the eigenmodes may switch the modal order during the 
optimization. In such a case, the sensitivities of the objective function become 
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discontinuous which may cause oscillation and divergence in the iterative optimization 
process. In order to overcome this problem, several mean-eigenfrequency functions, e.g. 
the max-min formulation, weighted formulation, reciprocal formulation, Euclidean norm 
formulation etc are introduced to smooth out the frequency objective (See Seyranian et al 
1994, Lund 1994 and ANSYS 9.0 Documentation, ANSYS Inc). However, this is not the 
topic concerned in this thesis.  

The sensitivities are then derived by differentiating the eigenequation: 

 ( )
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2 2 0
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ω ω ω
η η η η

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂ ∂ ∂ ∂− − + − =
∂ ∂ ∂ ∂

K M uM u K M  (4-4) 
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Note that the second term of Equation (4-6) is zero. With the introduction of the 
interpolation model, the sensitivities can be further derived as 
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 (4-6) 

4.1.2 Problem occurrence 

A simple example of a cantilever beam clamped at the left end is analyzed here to explain 
the occurrence of the localized modes. As shown in Figure 4.1, the beam is meshed with 
two elements. Typical material properties are assumed according to the SIMP 
interpolation model as 
    Element №1: elastic modulus E1=η1

p×106pa, density ρ1=η1×100kg/m3 and Poisson’s 
ratio ν=0.3 
    Element №2: elastic modulus E2=η2

p×106pa, density ρ1=η2×100kg/m3 and Poisson’s 
ratio ν=0.3. 

 

Figure 4.1: A cantilever beam with two elements 

The cross section of the beam is a square with the size 0.05m×0.05m. Suppose the 
element №1 is solid with the pseudo-density η1=1.  

The first analysis is carried out by assuming element №2 to be solid as well, i.e. η2=1 and 
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p=3. Only the nodes A and B are free and 4 degrees of freedom are taken into account 
altogether, i.e. the vertical displacement and the rotation of the two nodes (uA, θA, uB, θB).  

The global stiffness and mass matrices are assembled and put down here 

 

0.1000 0 0.0500 0.1250
0 0.8333 0.1250 0.2083

0.0500 0.1250 0.0500 0.1250
0.1250 0.2083 0.1250 0.4167
0.9286 0 0.1607 -0.1935

0 0.5952 0.1935 -0.2232
0.1607 0.1935 0.4643 -0.3274
-0.1935 -0.2232 -0.3274 0.2976

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
−

=
− − −

−

=

K

M

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (4-7) 

By solving the eigenequation, the first 4 eigenvalues and their corresponding eigenvectors 
can be obtained as 

 2 2 2 2
1 2 3 4, , , 0.0026 0.1029 1.1768 9.9134ω ω ω ω⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦ =  (4-8) 

 1 2 3 4

0.3395 0.7194 0.1017 0.2531
0.1163 0.0433 0.7647 0.5204

, , ,
1 1 1 1

0.1377 0.4799 0.9644 1.9329

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

−
−

=u u u u  (4-9) 

The eigenvectors are normalized by assuming the vertical displacement of node B to be 1. 
According to the eigenvectors, the 1st to 4th order vibration shapes can be drawn as shown 
in Figure 4.2. Nothing abnormal is found in obtained natural frequencies and vibration 
shapes.  

 

Figure 4.2: 4 Mode shapes of the cantilever beam 
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Now modify the material property of element №2 by setting η2=0.01 and p=3, which 
simulate a void element in topology optimization. The global stiffness and mass matrices 
are  

 

8 7

7 7

8 7 8 7

7 7 7 7

0.0500 0.1250 5.0 10 1.3 10
0.1250 0.4167 1.3 10 2.1 10

5.0 10 1.3 10 5.0 10 1.3 10
1.3 10 2.1 10 1.3 10 4.2 10
0.4689 0.3241 0.0016 0.0019
0.3241 0.3006 0.0019 0.0022

0.

− −

− −

− − − −

− − − −
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K
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0016 0.0019 0.0046 0.0033

0.0019 0.0022 0.0033 0.0030

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

−
− − − −

 (4-10) 

The absolute values of terms in the stiffness matrix of element №2 are found decreasing 
much faster than those in mass matrix because of the power-law penalization. Then the 
eigenequation are solved. The eigenvalues and the eigenvectors are obtained as 

 2 2 2 2 6
1 2 3 4, , , 4.2 10 0.0004 0.0411 3.7938ω ω ω ω −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦= ×  (4-11) 

 

6 5

6 5

1 2 3 4

3.31 10 7.29 10 1.5345 0.7839
1.14 10 2.37 10 0.4234 1.2158, , ,

1 1 1 1
0.2755 1.5245 2.4250 2.5214

− −

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

× − ×
× − ×

=u u u u  (4-12) 

 

Figure 4.3: 4 Mode shapes of the cantilever beam including localized modes 

Small values are significantly found for the 1st and 2nd eigenvalues because of the great 
difference between the stiffness and mass matrices. Meanwhile in the 1st and 2nd 



 

88 
 

eigenvectors, the values of displacements of node A are very small as well, which 
indicates that the node A stops vibrating and the total mode shapes are concluded as 
localized modes, as shown in Figure 4.3. 

The 1st and 2nd order vibration shapes in the modal analysis results are typical localized 
modes, where the natural frequencies are rather low and the vibration takes place only in 
the low density area. The great difference between the stiffness and mass matrices due to 
the material interpolation model is concluded as the reason of this phenomenon.  

To have a detailed view of the occurrence of the localized modes, the material property of 
the element №2 is modified step by step between η2=1 and η2=0.01. The modal analysis is 
carried out iteratively to show the variation of the eigenvalues and the mode shapes.  

Since the localized modes appear in the 1st and 2nd order, only these two modes are 
analyzed. As shown in Figures 4.4 and 4.5, the variation of the two eigenvectors and 
eigenvalues are plotted in the curves versus the pseudo-density of element №2.  

 

Figure 4.4: Displacement of Node A versus the material property of element №2 

As shown in Figure 4.4, the vibrations of element №1 gradually stop when the material 
property of element №2 tends towards void. Meanwhile, although the eigenvalues are 
found decreasing quickly in Figure 4.5 as the pseudo-density decreases, the occurrence of 
the localized mode is actually continuous.  

It is obvious that the curves will be divided into three sections from right to left, i.e. the 
normal modes, the generation of localized modes and completely localized modes. 
However, no clear bounds can be defined for these sections. Since there is no explicit 
form for the solution of eigenequation, it is difficult to describe the variation of the 
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eigenvalues and eigenvectors in a closed form. 

Moreover, it is found that for the completely localized modes, which decreases of the 
eigenvalues depend on the material interpolation model. When the elements in the 
low-density area are compliant enough, the solid elements stop their vibration and act as 
approximately a rigid part which can be removed from the stiffness and mass matrices 
like the boundary conditions. Thus in this problem the eigenequation can be expressed as 

 ( )2
2 2- 0ω =K M u  (4-13) 

 ( ) 12 1 3
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M K u
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where K2 and M2 are the stiffness matrices of the element №2, K20 and M20 are the 
corresponding stiffness and mass matrices when it is solid. The equation (4-15) shows   
the eigenvalues decrease in a parabolic way because of the SIMP interpolation. As shown 
in Figure 4.6, the refined variations of the eigenvalues in the completely localized modes 
and the interpolated parabolas are plotted.  

 

Figure 4.5: 1st and 2nd eigenvalues versus the material property of element №2 

The 1st and 2nd eigenvalues and the interpolated parabola start to coincide at around 
η2=0.12~0.15 and η2=0.04~0.06, respectively. It is further validated by the variation of 
vibration shape in Figure 4.4, where the node A stops vibrating around these values.  

According to the analysis, the lower bound of the pseudo-density design variables in 
SIMP must be greater than 0.1 or ever higher to ensure the stiffness of the low-density 
areas. But the low-density areas will not be void at all. Alternatively, although the 
difference between the stiffness and mass matrices can be controlled by using a lower 
penalty factor in SIMP, this will unfortunately weaken the penalty effect which is the key 
of SIMP method in generating clear black and white structural patterns. As a conclusion, 
the standard SIMP interpolation model with the power-law penalization cannot be used in 
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the topology optimization of eigenvalues maximization. 

 

 

Figure 4.6: Variation of the eigenvalues versus the interpolated parabola 

4.1.3 Numerical test with localized modes 

A test of maximizing the fundamental frequency is carried out here to show how the 
localized modes influence the design. As shown in Figure 4.7, a 4m×4m square plate is 
divided into 40×40 fine quadrangular shell elements. A 0.8m×0.8m square area at the 
center of the plate is assigned as the non-designable part. All the four edges are 
completely clamped. 

The material properties for the solid structure and the non-designable part are defined as: 
    elastic modulus E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3 

The SIMP model with the penalty factor p=3 is used here and 50% of the material is to be 
removed. The localized modes start to appear at the 8th iteration with the objective 
function decreases sharply. Later at the 16th and 17th iterations, some unsupported 
materials appear near the right corners on the top and bottom as shown in Figure 4.8. 

The vibration shape at the 16th iteration is shown in Figure 4.9, where localized modes are 
obviously seen at the two corners. This will lead to high sensitivities of the neighborhood 
elements and create the unsupported material at the 17th iteration. Due to the incorrect 
calculation of the design objective and its sensitivities, these iterations are actually 



 

91 
 

meaningless. 

 

Figure 4.7: Design domain of the square plate 

   

Figure 4.8: The material layout at the 16th (left) and 17th (right) iteration 

 

Figure 4.9 Vibration shape at the 16th iteration 

Figure 4.10 shows the variation of the 1st natural frequency during the iteration. A sudden 
decrease of the frequency value occurs at the 8th iteration. Meanwhile the vibration mode 
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occurs in local areas, which is very different from the normal shape. The low-density 
areas are so compliant that rather low frequencies are obtained and the vibration takes up 
the lowest orders of the modes. Therefore, the phenomenon of localized modes is an 
ill-posed problem caused by the improperly defined material models. More discussions 
will be presented in section 4.3 to show the improved material interpolation models. 

 

Figure 4.10: The iteration history of the 1st natural frequency 

 

4.2 Localized deformation 

In topology optimization with design dependent loads, the localized deformation is 
similar to the localized modes in eigenvalue problems. But this problem is easily 
understood and more descriptions can be found in Bruyneel and Duysinx (2004). Here, 
design dependent loads are those that change with respect to the variation of design 
variables, e.g. body force and pressure loads on a moving surface. Due to their existence, 
the low-density parts are too weak to support themselves. Consequently, deformations in 
the low-density areas become much larger than those in the solid parts. Here, new 
formulations are derived and numerical tests are made to address the problem.  

4.2.1 Sensitivity analysis 

With design dependent body forces, the design sensitivities of the strain energy with 
respect to the pseudo-densities are calculated on account of the derivatives of the loading 
vector. The finite element equation is expressed as 

 + =f G Ku  (4-15) 

And the total strain energy is 

 ( )1
2

TC = +f G u  (4-16) 
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where G is the inertial load vector that distributes and assembled to each node in the 
design domain with the inertial acceleration applied. A single load vector on the Ith node 
belonging to the ith element is expressed as  

 ( )I i
i iI I

i
N dxdy N

S
= ⋅ ⋅ =∫∫

GG G  (4-17) 

where NI is the shape function at the Ith node of the ith element, Si is the area of the 
element. Gi is the vertical and negative gravity vector of the ith element which can be 
written as 

 
0

0
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i igVη ρ
⎡ ⎤
⎢ ⎥
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=
−

G  (4-18) 

where ρ0 is the density of the solid material. g is the acceleration. Vi is the volume of the 
ith element. The global gravity load vector G is assembled at each node as  

 ( )I
i

i I
=∑∑G G  (4-19) 

The derivative of the strain energy is put down as 
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η η η
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The derivative of G with respected to ith pseudo-density can be transformed to the 
derivative of the corresponding Gi as 

 iI

Ii i

N
η η

∂∂ =
∂ ∂∑ GG  (4-21) 

Note that the derivative of the displacement vector can be found in the last chapter when 
we derive the design sensitivity with respect to the pseudo-densities defined at the density 
points. The final sensitivity is very similar to that in the eigenvalue maximization 
problems.  

4.2.2 Problem occurrence 

The same beam in section 4.1.2 is used here with a vertical gravity acceleration g=10m/s2 
applied. Suppose the material properties of the solid element are 

    Elastic modulus E= 1011pa, density ρ= 1000kg/m3 and Poisson’s ratio ν=0.3 

The gravity of the beam is discretized into nodal loads as shown in Figure 4.11. 

The material properties of the element №2 is interpolated with the SIMP model and the 
penalty factor is set to be p=3. Although the gravity of the element №2 decreases linearly 
with the value of η2, the elastic modulus decreases much faster. As shown in Figure 4.12, 
the nodal displacement is plotted versus the decreasing of η2.  
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Figure 4.11: The equivalent nodal loads when gravity is applied 

 

Figure 4.12: Nodal displacements versus the pseudo-density of element №2 

Both nodal loads vary linearly with η2. As the material properties of element №1 remain 
unchanged, a linear relation is obtained between the displacement of node A and η2. 
Comparatively, as the stiffness of element №2 varies with the cubic exponent of η2, the 
absolute displacement of node B increases sharply around η2=0.05, which generates a 
relatively large localized deformation. 

Unlike the vibration shapes obtained in localized modes, the localized deformation of the 
solid area is actually correct. However, the incredibly large displacements may cause 
erroneous design sensitivities which will further lead to the non-preferred topology design 
solution.  

4.2.3 Numerical test with localized deformations 

A test problem of topology optimization with inertial loads is firstly carried out. The 
standard SIMP model is used here. The penalty factor p is set to be 3. The design domain 
as shown in Figure 4.13 consists of 50×100 quadrangular finite elements. Only half of the 
area is taken into account because of the symmetry. The material properties are defined as 
    elastic modulus E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3 

Problems occur at the 13th iteration as shown in Figure 4.14. Because of the power-law 
interpolation for the material properties, the low density areas are too compliant to 
support themselves. Localized deformations appear at the bottom center as shown in 
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Figure 4.14(b). And the result of the calculation has shown that the most sensitive 
elements are located around the area with large deformation, which further generates 
some unconnected structures in the following iterations. As a result, the optimization 
stops at the 19th iteration with an ill-posted pattern as shown in Figure 4.14(c). 

     

Figure 4.13: Design domain of the test example 

(a) Material layout at 13th 
iteration 

(b) Localized deformation at 
13th iteration 

(c) Material layout at 19th 
iteration 

Figure 4.14: Solutions obtained with standard SIMP model 
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4.3 Modified interpolation model 

The most popular power-law interpolation of SIMP for the stiffness and mass matrix is 
expressed as 
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where the stiffness matrix and the mass matrix are proportional to the elastic modulus and 
material density, respectively. As analyzed in the last section, the SIMP interpolation 
model is not proper in topology optimization of maximizing the eigenvalues or those with 
design dependent loads.  

To evaluate the difference between the stiffness and mass, a ratio of the pseudo-density 
value to the penalty function (also seen in Pedersen 2000) is introduced as 
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Figure 4.15: Interpolation model and ratio of the penalty functions of standard SIMP 

Both the SIMP interpolation model with the penalty factor p=3 and the ratio RMK are 
plotted with respect to the pseudo-density as shown in Figure 4.15. The value of the ratio 
trends towards infinity when the pseudo-density goes to zero, which indicates a great 
difference between the stiffness and mass matrices. 

As indicated before, this difference can be partially improved by using a higher value for 
the lower bound of the pseudo-density or assigning a weaker penalty factor. However, 
these implementations bring more problems in topology optimization and are not 
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preferred here. More improvements on the penalty function have to be proposed.  

The first improved model discussed here was presented in Pedersen (2000), which 
constrains the lower bound of the elastic modulus to be 1/1000 of the solid one, i.e.  
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 (4-24) 

A cubic function is built accordingly as 

 ( ) ( )3 30.001 1i i iP η η η= + −  (4-25) 

 

Figure 4.16: Improved model constraining the lower bound of the elastic modulus 

This function and the ratio RMK are plotted in Figure 4.16. Although only a slight 
modification is made to the penalty function, the value of the ratio will not trend towards 
infinity when the pseudo-density goes near zero.  

This interpolation model can be used to solve some eigenvalue maximization problems 
and avoid the localized modes. However, there is still an unsatisfied peak value of the ratio 
around ηi = 0.1, which will possibly lead to localized modes in some cases.  

Later, it is found that the low-density material properties described by the microstructures 
can retain more stiffness than those by the SIMP model. Take the “□” shape 
microstructure for example, the equivalent tensile stiffness is calculated here with the 
strain energy based method (see Pedersen and Tortorelli 1998, Zhang et al. 2007), which 
was proved to be equivalent to the homogenization method in predicting the effective 
elastic material properties (Hori & Nemat-Nasser 1999). The boundary conditions are 
defined as shown in Figure 4.17. The horizontal displacements on the left edge are 
constrained. A uniform horizontal displacement u is assigned on the right edge. The 
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volume fraction of the microstructure is calculated as 
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Figure 4.17: Definition of the microstructure and the boundary conditions 

 

Figure 4.18: The horizontal tensile elastic modulus versus the volume fraction of the “□” 
shaped microstructure 

After the finite element analysis, the horizontal tensile elastic modulus is calculated as 
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 RfE
ut

=  (4-28) 

where E is the equivalent tensile elastic modulus, fR is the summation of the nodal 
reaction forces on the left edge. t is the thickness of the microstructure. We assume 
l1=u=t=1 and l2 varies from 0.005 to 0.995 in the test. The relation between the horizontal 
tensile elastic modulus and the volume fraction are plotted in Figure 4.18. And the ratio 
here just corresponds to the ratio RMK in the pseudo-density interpolation models. 

Compared with the curves of SIMP in Figure 4.15, apparently when η = 0, the slope of 
the tensile elastic modulus is positive and the ratio of the volume fraction to the tensile 
elastic modulus is limited to a small value which is approximately equal to 2.  

The maximum value of the ratio can be proved by ignoring the two vertical edges of the 
microstructure when η is rather small. As a result, the summation of nodal reaction forces 
is approximately calculated as the inner tensile forces of the two horizontal edges.  
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where E0 is the elastic modulus of the solid material forming the microstructure. The 
equivalent tensile elastic modulus is then calculated by  
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And the ratio of the volume fraction to the tensile elastic modulus is expressed as  
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where E0 is predefined as 1 in this example. At η = 0, it is further derived that the 
derivative of E with respect to η is 0.5, which makes the curve so different from that of 
the SIMP model. 

However, the computational complexities of homogenization are involved when the 
microstructures are used as the equivalent elements in topology optimization. It is better 
to construct new simplified interpolation models according to the analysis result of 
microstructure.  

The RAMP (Stolpe and Svanberg 2001) presented in Chapter 1 is an interpolation model 
of this kind. It controls the derivative of the penalty function when the pseudo-density 
nears zero.  

The penalty function and its derivative at ηi = 0 can be expressed as 
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where q is the penalty factor of RAMP, which is always positive. The penalty function 
and the ratio RMK are plotted in Figure 4.19, where we set q=5. It is obvious that the ratio 
RMK is actually linear with respect to the pseudo-density.  

 

Figure 4.19: Interpolation model and ratio of the penalty functions of RAMP 

With the RAMP model, it is theoretically proved that the design objective function of 
structural compliance is concave when q is greater than a certain value. More numerical 
examples of compliance minimization, compliant mechanisms and natural frequency 
maximization problems using RAMP can be found in Luo et al. (2004). However, a 
strong penalty, e.g. q can be greater than 100, which will generate a large value of the 
ratio.  

Another improved interpolation model presented by Pedersen (2000), Bruyneel and 
Duysinx (2004) is defined as a modification of the SIMP model 
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where the interpolation model is composed of two sections, i.e. a linear penalty with a 
slope 1/α and the standard SIMP model with a power law interpolation. The linear penalty 
is defined to ensure the positive derivative near ηi=0. Two parameters α and p are 
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independent, which can separate the modification of the ratio RMK and the penalty effect.  

As shown in Figure 4.20, the penalty function and the ratio RMK are plotted, respectively. 
The linear penalty actually has the ratio RMK cut at the value α, which limits the maximum 
value. 

 

Figure 4.20: Improved SIMP model with linear penalty 

The improved interpolation model is effective for topology optimization problems with 
self-weight or natural frequencies maximization. However, critical comments are received 
that the design sensitivities are discontinuous at ηi = α1/(1-p). 

Therefore, further improvements are carried out in this work. Based on the SIMP model 
and the derivative control at ηi=0, a penalty function has to satisfy the following 
requirements: 

1) The value at two end points 

 ( ) ( )0 0,  1 1;P P= =  (4-36) 

2) The derivative value at ηi=0 
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3) To ensure a convex penalty function, the 2nd derivatives shall also satisfy 

 ( ) 0,   0< 1i iP η η′′ > ∀ ≤  (4-38) 

4) The 1st derivative continuity will be guaranteed at least  
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Obviously, only the 2nd condition i.e. the control of the derivative value at ηi=0 is different 
from the standard SIMP. That’s why only a slight change has to be made. The modified 
function can be expressed as 

 ( ) 1 1p
i i iP αη η η

α α
−= +  (4-39) 

As shown in Figure 4.21, the new penalization function and its ratio RMK are plotted, 
respectively. It takes a simple form of polynomial function and satisfies all the required 
conditions. The ratio RMK is limited to the value α, and the derivative of the penalty 
function is continuous everywhere. Moreover, compared with the function presented by 
Pedersen (2000) and Bruyneel and Duysinx (2004), it is more convenient to program and 
to evaluate material properties and the design sensitivities because no if-else condition is 
included. 

In Figure 4.21, the two examples given in Sections 4.1 and 4.2 are tested here with such a 
new polynomial interpolation model. For the vibrating square plate, the optimization is 
carried out by removing 50% of the material. One intermediate iteration of the material 
layout as well as the corresponding vibration shape are shown in Figure 4.22(a) and 
Figure 4.22(b), respectively. It is obvious that the vibration shape is a global deformation 
and the problem of localized modes is avoided. 

The optimization is further processed and the convergence attains at the 42nd iteration. 
The non-designable area is finally supported as shown in Figure 4.22(c). Similar topology 
design problem and optimal material layout can be found in Pedersen (2000). The 
convergence history of the objective function is rather stable as shown in Figure 4.23.  

 

Figure 4.21: Further improved polynomial interpolation model based on SIMP 
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(a) Material layout at 30th Iteration (c) Material layout at 42nd Iteration 

(b) Vibration shape at 30th iteration  

Figure 4.22: Layout 
design of the square 
plate with the new 
interpolation model

 

Figure 4.23: Convergence history of the 1st natural frequency 

Again, the topology optimization problem with inertial loads is tested here. One 
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intermediate solution and the corresponding deformation shape are shown in Figures 
4.24(a) and (b), respectively. There is no localized deformation found in the design 
domain. By continuing the design iteration, the final optimal material layout is obtained at 
the 38th iteration, which is a typical arc. Similar topology optimization problems can be 
found in Bruyneel and Duysinx (2004). 

(a) Material layout at 16th 
iteration 

(b) Global deformation at 
16th iteration 

(c) Material layout at 38th 
iteration 

Figure 4.24: Solutions obtained with new improved interpolation model 

The convergence history of the global train energy is shown in Figure 4.25, which is also 
rather stable.  

According to the two new numerical results, the new polynomial interpolation model is 
effective in avoiding the problems of localized modes and localized deformations, which 
will benefit the integrated layout design of the multi-component systems with vibrations 
and design-dependent body loads to be discussed in the following chapters. 
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Figure 4.25: Convergence history of the global strain energy 

 

4.4 Break-down in ESO 

The topic discussed in this section has no direct relation with the integrated layout 
optimization. However, it is an interesting numerical problem involved in the family of 
Evolutionary Structural Optimization (ESO) method which can be discussed from the 
viewpoint of low-density areas.  

The ESO approach is easily understood and implemented with less mathematical rigor. 
Based on the heuristic engineering concepts and sensitivity results, the optimal structural 
layout is achieved by removing inefficient elements systematically from the ground 
structure. Numerical results have shown that a variety of problems, e.g., maximal design 
of structural stiffness (Xie and Steven 1994a), natural frequency (Xie and Steven 1994b, 
1996) and buckling load (Rong and Xie 2001) can be dealt with by this method. However, 
the breakdown problem of ESO discovered by Zhou and Rozvany (2001) is still a fatal 
drawback of this method.  

4.4.1 Limitations of current ESO/BESO methods 

In ESO/BESO method, the problem can be basically expressed as a topology optimization 
with discrete design variables. With the volume constraint assumed, the design objective is 
to minimize the global strain energy or maximize the natural frequencies etc.  

In the framework of ESO/BESO, element deletions and recoveries are carried out in virtue 
of the element efficiency which is measured by the sensitivity values or stress level. 
Conventionally, the commonly used sensitivity value of the global strain energy with 
respect to the density of ith element is approximated by 
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where Ci is the strain energy of the ith element.  

For a dynamic problem, the sensitivity value is approximated by 
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In both of the sensitivity derivations, Δηi is always set to be -1 indicating that element i is 
completely removed from the design domain.  

In fact, the sensitivity values used here are approximated because we cannot directly 
obtain all the sensitivity values of the finite difference with only one finite element 
analysis. Sensitivity values of (4-41) and (4-42) used in the hard-killing scheme of 
ESO/BESO are nothing but the analytical sensitivities. 
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which can be derived by supposing a linear interpolation model for Ki and Mi as a function 
of ηi with 
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Figure 4.26: Comparison of two kinds of sensitivities 

Ki0 and Mi0 denote the stiffness and mass matrices of the ith element when it is solid. It is 
obvious that the analytical sensitivities are unable to represent the real change of the 
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objective function whenever the inefficient element i is directly removed from the design 
domain (Δηi=-1). To figure out the problem, consider two kinds of sensitivities shown in 
Figure 4.26. 

The solid curve in Figure 4.26 represents the objective function versus ηi. This is typically 
the case for the structural compliance with values of other design variables being 
invariable. ΔC1 corresponds to the change of C evaluated with the analytical sensitivity 
value when the ith element is removed by ESO/BESO from the design domain, whereas 
ΔC2 represents the exact change of C after the removal of the ith element. Clearly, both are 
quite different from each other. 

The change of the objective function will be overestimated when ΔC1>ΔC2. This is a 
conservative situation so that some inefficient elements are retained in the actual iteration. 
In contrast, as ΔC1<ΔC2, particularly when a sharp difference exists, this is the danger if 
related elements could be erroneously considered to be inefficient, removed and no longer 
recoverable during the iterations. 

Although lots of existing results have shown that the convergence of the iteration 
procedure is not deteriorated by ESO/BESO, the understanding of the nature of the solid 
curve in Figure 1 is essential to reveal the underlying trouble of ESO/BESO. 

To illustrate the phenomenon and reasons for the failure of ESO, a test example from 
Zhou and Rozvany (2001) is analyzed here in detail. The FE model shown in Figure 4.27 
consists of a 32m×3m horizontal beam and a 1m×4m vertical link meshed with 
0.25m×0.25m 4-node quadrangular elements. The material properties are 
    Elastic modulus E0=1pa, Poisson’s ratio v=0 

 

Figure 4.27: A test example for the failure of ESO 

To figure out the difficulty, the initial distribution of the element strain energies which 
indicate the absolute sensitivity values is firstly evaluated and shown in Figure 4.28(a). It 
is found that the elements on the vertical link take the lowest strain energy and should be 
removed in the ESO procedure. When the updated model is reanalyzed, a new 
distribution of the element strain energies is shown in Figure 4.28(b) with a sudden 
augmentation of the structural compliance C to more than 10 times. This implies that a 
fatal iteration is generated. Unfortunately, the elements with the maximum strain energies 
are now relocated at the left bottom corner of the horizontal part so that the erroneously 
removed elements on the vertical link are no longer recovered by BESO. 



 

108 
 

 

(a) Layout of the element strain energy for the full structure (C=194.9J) 

 

(b) Layout of the element strain energy by removing the vertical link (C=2306.1J)  

Figure 4.28: Layout of the element strain energy in the design patterns by ESO 

To find out the reason for this sudden variation of the objective function, the strain energy 
of the total structure C is drafted versus the variation of the elastic modulus of elements E 
on the vertical link from 1pa to 10-7pa in Figure 4.29 where the axis of E is logarithmic.  

In Figure 4.29, very small derivatives on the curve are obtained near E=1 and E=0, 
respectively. This indicates that the elements are not so sensitive when it is solid or void. 
As a result, these elements are removed firstly in ESO and cannot be recovered by BESO.  

Furthermore, a significant change of C can be observed for values of E between 10-2pa to 
10-5pa. But as discussed before, the sensitivities used in ESO cannot detect the sharp 
variation of the global strain energy. Thus, the vertical link is apparently considered to be 
inefficient and completely removed. This is the fatal error which leads to the design 
failure.  

 

Figure 4.29: Global strain energy versus elastic modulus on the vertical link 
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4.4.2 Check position 

 

Figure 4.30: Strain energy summation on the vertical link versus its elastic modulus  

According to the above discussions, the standard ESO/BESO approach cannot detect the 
sharp increase of the strain energy that corresponds to high absolute sensitivity values 
when E varies between 10-2pa and 10-5pa in Figure 4.30. This means that the elements on 
the vertical link should take the maximum strain energies of all the elements for a wide 
range of E. To understand well, the variation of the strain energy summation on the 
vertical link is shown in Figure 4.31 for its elastic modulus varying from 1pa to 10-7pa.  

 

Figure 4.31: Layout of the element strain energy at the check position 

Accordingly, the so-called check position method is proposed to identify and remedy the 
erroneous element deletion. The key idea is to introduce moderate low-density elements 
with the elastic modulus set to 0.01%-0.1% of the initial value, i.e., 10-4-10-3pa in this 
problem. These elements are able to capture the sharp variation of the objective function. 
Compared to solid elements, moderate low-density elements will act as compromising 
elements between void and solid elements but they are not compliant enough to be treated 
as removed ones. This makes it possible to pick out the elements that were erroneously 
removed and to recover them in the design procedure. 

In the test example, elements on the vertical link are now replaced with the moderate 
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low-density elements of equivalent elastic modulus 10-3pa. The corresponding 
distribution of the element strain energy is shown in Figure 4.30. It is seen that vertical 
link substituted with the moderate low-density element not only takes an extremely high 
value but also the maximum value of the element strain energies, which is easily 
identified in the design domain. 

In this way, a modified ESO/BESO design procedure can be resumed as  

1) Calculate the design sensitivities and remove the inefficient elements. 

2) If a sharp degradation of the objective function is detected against a specified threshold, 
e.g. the structural compliance increases to more than 5 times or the natural frequency 
decreases to less than 1/5, the removed elements in the last step will be further recovered 
with the moderate low-density elements. This is referred to as the check position. 
Otherwise, a normal ESO/BESO procedure of element removal and growth is carried out. 

3) Based on the FE reanalysis of the updated model at the check position, moderate 
low-density elements having the maximum strain energies will be recovered and marked 
as non-designable, while the other moderate elements will be removed again. But the 
mark of non-designable elements only stays for a few steps. These elements will be 
designable again later on. 

4) Standard ESO/BESO element removal and growth procedure is carried out by ignoring 
the non-designable elements. 

Now the test example is carried on with this procedure. With the vertical link recovered 
and marked as non-designable, the elements removed in the first effective step are 
presented in Figure 4.32.  

 

Figure 4.32: Structural topology generated by the first effective iteration 

However, after several iterations, when the elements on the vertical link are reclaimed 
designable, the elements can be removed again. The check position may be reintroduced 
depending on the objective degradation. After 61 iterations, the final design of the 
structure is shown in Figure 4.33 with an amount of 40% of the total material.  

 

Figure 4.33: Optimal structural topology (C=509.8J) 
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4.4.3 Dynamic design of a bi-clamped beam 

Another topology design is to maximize the 1st natural frequency. As shown in Figure 
4.34, a 2m×12m beam supported at both ends is meshed with 20×120 quadratic elements. 
The non-designable area consists of 2×20 elements at the center. 50% of the total material 
is allowed. And the material properties are 
    elastic modulus E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3 

 

Figure 4.34: Design domain of the bi-clamped beam 

Problems are detected at the 4th iteration where the non-designable area is unsupported 
and the objective function decreases to 0Hz, as shown in Figure 4.35. 

 

(a) Layout of the sensitivities at the 3rd iteration (64.17Hz) 

 

(b) Structural topology at the 4th iteration (0Hz) 

Figure 4.35: Erroneous design iteration 

The removed elements in the last iteration are then recovered with the moderate 
low-density elements with 10-3 of the solid elastic modulus and density. The updated 
structure is analyzed again and the layout of sensitivity values is shown in Figure 4.36. It 
is observed that some of the moderate low-density elements are taking the maximum 
values and will be recovered as the solid elements as shown in Figure 4.37.  

 

Figure 4.36: Layout of sensitivity values at the check position (59.19Hz) 

68 iterations are consumed and the optimal design is shown in Figure 4.38. The proposed 
ESO/BESO design procedure with check position can be used to avoid some erroneous 
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design iterations. However, this method is still based on some heuristic rules.  

 

Figure 4.37: The effective structural topology at the 4th iteration (64.27Hz) 

 

Figure 4.38: The final design of the bi-clamped beam (71.18Hz) 

 

4.5 Conclusion 

To benefit the extensions of the integrated layout design, some problems involved in the 
low-density areas in topology optimization are discussed in detail. By observing the 
phenomena of the localized modes in eigenvalue maximization problems and localized 
deformations in problems with design dependent body loads, the reasons of these 
numerical failures are concluded as the improperly defined material properties and their 
interpolation models. The great difference between mass and stiffness of the low-density 
elements will be thus limited to avoid these problems. Several existing methods based on 
different ideas, e.g. limiting the minimum value of the elastic modulus or the derivative of 
the interpolation, are presented and evaluated. A new proposed polynomial interpolation 
model is also presented and discussed through numerical tests.  

Finally, the break-down of the ESO/BESO family method is discussed. These methods 
are considering the material layout updating as a discrete procedure by directly removing 
or adding elements in the design domain. In fact, the design sensitivities used actually 
cannot correctly describe the practical operations on the elements. This is the reason of 
the break-down problems. The check position scheme is then proposed by introducing 
moderate low-density elements into the intermediate design iterations to identify and to 
recover the erroneously removed elements. Two typical questionable examples can be 
solved to achieve reasonable results. 
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Chapter 5 Inertial Forces and Natural 

Frequencies 

Chapter 5 
 
Inertial Forces and Natural 
Frequencies  
 
Overview 
 
A Multi-component system is actually an integrated system of mass and 
stiffness. With the new presented material interpolation model for topology 
optimization in the previous chapter, the integrated layout designs with 
design-dependent inertial forces and natural frequencies maximization are 
taken into account in this chapter. More constraints on the location of the 
center of gravity and moment of inertial are included in the design. The idea 
is further verified with some numerical tests. 
 
 
 
Contents              
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5.1 Problem statement  

5.1.1 Inertial forces 

The inertial forces like gravity etc commonly exist in aerospace design. But in Chapter 3 
of this thesis, these loads are approximately ignored by assuming that the applied external 
loads are much stronger than the inertial loads. This is reasonable in some cases e.g. some 
aircraft or automobile structures are designed to carry heavy loads but the structures are 
lightweight or in small-dimension and work in low accelerations.  

However, the self-weight loadings of some heavy structures commensurate with or are 
even much greater than the applied loadings. For example, as shown in Figure 5.1, a 
wheel loader with the rated load 15000N is as heavy as 60000N, which is 4 times of the 
rated load. 

Figure 5.1: A wheel loader 
(XGMA Machinery XG916T) Figure 5.2: Reentry of a spacecraft 

There is another possible case when the inertial forces cannot be ignored. For example, 
during the launch or reentry of the recoverable satellites, the spacecrafts or space shuttles, 
great acceleration or deceleration are applied on the structural systems, as shown in 
Figure 5.2. The acceleration rate can be 8g~10g or ever greater, where g is the 
acceleration of gravity. 

The multi-component systems in this thesis are actually integrated systems of mass and 
stiffness, because both the components and structures are composed of materials with 
mass and stiffness properties. The integrated layout design will be finally concluded as a 
coupled mass and stiffness layout design.  

When the accelerations are applied to the structural systems, the loading conditions will 
be composed of two different parts, i.e. the design independent loads and design 
dependent inertial loads. The equation of finite element can be expressed as 

 + =f G Ku  (5-1) 
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where f and G indicate the design independent loads and design dependent inertial loads 
respectively. And the integrated layout optimization problems can be formulated as 
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The only difference from the problem stated in Chapter 3 is that the effect of the mass 
layout to the objective function is implied by including the inertial forces. However, 
during the optimization iteration, the heavy movable components will always try to be 
located near the boundary fixations to obtain better and stronger supports against the 
inertial forces. This is reasonable, but to generate more practical solutions, more 
engineering constraints should be introduced.  

5.1.2 Natural frequencies 

Besides the compliance minimization, the maximization of natural frequencies is one of 
the most important applications of topology optimization. In these problems, the natural 
frequencies are designed away from the solicitation frequency from the external cyclical 
loads or attached vibrating parts to avoid any structural damage due to the resonance. In 
some specific cases, the fundamental natural frequency is designed to be 3~5 times of the 
possible disturbance frequencies. 

 

Reinforcement topology design with a concentrated 
mass at the center (Pedersen 2000)

Engine enclosures of the automobiles are designed with 
a minimum thickness. (http://www.pcauto.com.cn)

Figure 5.3: Typical reinforcement design 

As indicated previously, the layout of mass will be designed simultaneously with the 
layout of stiffness in the multi-component system design. The eigenvalue equation of the 
natural frequency problems can be expressed as 

 ( )2- 0ω =K M u  (5-3) 

The stiffness matrix K and the mass matrix M imply the layout of stiffness and mass 
respectively.  



 

116 
 

However, trivial solutions will be obtained in topology optimization of maximizing the 
natural frequencies. Infinite values of the natural frequencies will be generated by 
removing all the materials in the design domain. As a result, reinforcement problems are 
always solved in topology optimization. Some parts of the design domain are chosen as 
the non-designable areas as described in the previous chapter. Or in some cases a 
minimum thickness is used as the reinforcement as shown in Figure 5.3.  

In the integrated layout design, the components are defined as some movable areas inside 
the design domain. The optimization problem can be formulated as 

 2

( )

find : 0 1, 1,2,..., ;              
          ( , , ),  1,2,..., .
max :
s.t.: Eq.(2-10);  
          

i d

c

U

i n
x y n
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ε ε ε

ω

η
θ ε

< ≤ =
=

≤

 (5-4) 

Likewise, the integrated layout optimization of maximizing the natural frequencies will be 
defined as a reinforcement design as well. Similarly to those with inertial forces, the 
components are found to move always towards the boundary fixations and more additional 
constraints will be introduced. 

5.1.3 Physical constraints 

 

Space mission Shengzhou-VI, China 

Figure 5.4: Physical constraints are introduced in the spacecraft design to ensure the 
stability of the flight 

Since the layout of mass is taken into account in the integrated layout design, some other 
important properties of the multi-component systems have to be considered, e.g. the 
location of the center of gravity and the moment of inertia. In most of the industrial 
applications especially in aeronautics and aerospace engineering, as shown in Figure 5.4, 
it is critical to ensure proper positions of the gravity center for the structural systems of the 
products or even single parts. Moreover, to guarantee the stability of the flight, more 
benefits are obtained when minimizing the moment of inertia during the aerospace 
structures design.  

For a normal 2D structural system with regular size, the center of gravity is located 
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identically with the centroid, which can be calculated as  
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where ρ(x, y) denotes the material density at the position (x, y), t is the thickness of the 
plate. While in a multi-component system with finite element mesh, the center of the 
gravity of the system can be calculated as  
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indicate the elements of 

supporting structure and the components. (xGij, yGij) and (xGεj, yGεj) are the gravity centers 
of the corresponding element belonging to the ith density point or the εth component, 
respectively. Then the moment of inertia is calculated as 

 ( ) ( )2 ,J d x y tdxdyρ= Δ ⋅∫∫  (5-7) 

where Δd indicates the distances between the current positions and the reference rotation 
axis. According to the parallel axis theorem, the moment of inertia of the global 
multi-component system can be calculated by summating the moments of inertia of all 
elements, which can be expressed as 
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where ηiJij0 and Jεj are the moment of inertia of the jth element belonging to the ith density 
point and εth component, respectively. Note that the corresponding rotation axis goes 
through the centroid of each element and is parallel to the global rotation axis. 

Furthermore, since the structural materials and the components tend to be located near the 
boundary fixations for maximizing the natural frequencies or problems with inertial forces, 
additional constraints on the center of gravity and moment of inertia will be helpful to 
relocate the materials and components. 

 

5.2 Sensitivity analysis 

The design sensitivities of the strain energy with inertial forces, natural frequency, location 
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of the center of gravity and the moment of inertia with respect to the pseudo-density 
variables are derived here. While the finite difference scheme is used to calculate 
approximately the derivatives of the functions with respect to the location and orientation 
of the components.  

Besides, we use the following polynomial interpolation model for pseudo-density 
variables. 
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where Ei0 and ρi0 are the elastic modulus and density, respectively when the elements 
controlled by the ith density point are solid, i.e. ηi =1. In P(ηi), α and p are usually set to be 
16 and 3, respectively. 

5.2.1 Strain energy with inertial forces 

Compared with the original standard topology optimization, the derivative of the nodal 
load vector with respect to the pseudo-densities is no longer zero here. The design 
dependency of the inertial forces will be revealed in the derivation.  

The derivative of the strain energy can be written as 
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Then the both side of the finite element equation are differentiated and written as 
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With the substitution of Equation (5-12) into (5-10), now the derivative of the strain 
energy is derived as 
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According to the linear interpolation model for the densities, the gravity of each element is 
calculated by 
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The corresponding element is the jth element either dominated by the ith density point or 
the jth element that belongs to the εth component. At node I, the gravity force vector, Gj

(I) , 
contributed from element j is then expressed as 
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j jI I

j
N dxdy N
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G
G G  (5-15) 
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j
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where NI is the value of the shape function at the node I. Sj is the area of the element. As a 
result, for a specified design variable ηi, only a few of the nodal items of G are related to 
the ith density point. And the derivative of G with respect to each pseudo-density is easily 
calculated with the derivative of Gij. 
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The global stiffness matrix is assembled with the elements’ stiffness matrices, which can 
be further expressed as  
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where Kij is the stiffness matrix of the jth element dominated by the ith density point, Kij0 
is its stiffness matrix when it is solid. Kεj is the stiffness matrix of the jth element 
belonging to the εth component. We have then 
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The derivative of K with respect to ηi can be finally evaluated by summing derivatives of 
Kij from all elements dominated by the ith density point. 

5.2.2 Natural frequency  

By differentiating the eigenequation of the free vibration problems, the sensitivities are 
derived as 
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Note that the second term of Equation (5-21) is zero. With the definition of the 
interpolation model, the sensitivities can be further derived as 
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where the stiffness and mss matrices related to the ith density points can be further derived 
as 
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The derivative of the mass matrix is substituted back into Equation (5-22). The design 
sensitivity is finally expressed as 
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which is composed of the strain energy and the kinetic energy of the elements.  

5.2.3 Center of gravity and moment of inertia 

Here the design sensitivities of the physical properties of the structural system, i.e. the 
center of gravity and the moment of inertia are derived with respect to the 
pseudo-densities.  

The differentiation of the both sides of Equation (5-6) is written as 
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The design sensitivities of the center of gravity with respect to a certain pseudo-density 
can be derived as 
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Then the moment of inertia is differentiated and the design sensitivities are easily obtained 
as 
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5.3 Numerical examples 

Several related examples are tested here. For all the examples, the material properties are 
as follows 
for the components: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3; 
and for the structures: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

5.3.1 Pylon with gravity 

The pylon presented in Chapter 3 is further designed here including the self-weight 
loading. An acceleration of 10m/s2 is applied vertically to the global structural system. 
Meanwhile, the rest of the loads and boundary conditions remain identical as shown in 
Figure 5.5. 

 

Figure 5.5: Design domain of the pylon with self-weight loading 

The optimization is implemented with 50% of the material removed. At the beginning of 
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the optimization, the two components move towards the fixations very quickly. Because 
of the topology optimization with design dependent loads, the total weight of the system 
decreases from 34382.4N to 19802.4N. And the layout of the inertial forces is also 
changed along with the material layout.  

However, the strain energy obtained here is much higher than those obtained in Chapter 3 
because of the gravity force. Several design patterns from the design iteration are 
presented in Figure 5.6. The optimization converges at the 82nd iteration. The objective 
function converges in a rather stable way as shown in Figure 5.7. 

(a) 5th 
iteration 

(b) 15th 
iteration 

(c) 25th 
iteration 

(d) The 
final 

design 
C=0.146J 

Figure 5.6: Iteration history of the design patterns 

In Figure 5.8, comparisons are made with the design pattern obtained in Figure 3.20 of 
Chapter 3. It is obvious that the two components are located close to the two fixations 
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because they are much heavier than the surrounding structures. Although the loading 
structures are generally similar, most materials are distributed on the right side. The 
structure on the left side that transfers the concentrated loads becomes much weaker than 
before.  

 

Figure 5.7: The convergence history of the global strain energy 

 

 

Figure 5.8: Comparisons of the two optimal designs with and without gravity 

The constraints on the location of the gravity center are applied to the global system as 
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which is only a narrow area located at the center of the design domain as shown in Figure 
5.9.  

 

Figure 5.9: Initial design and the location of the center of gravity 

The optimization stops at the 102nd iteration. Several design patterns are selected and 
presented as shown in Figure 5.10. The components are no longer found to move directly 
towards the fixations but stay at the center of the design domain to satisfy the constraint 
on the center of gravity. Thus, the structural layout changes a lot. However, most of the 
structural material is still located on the right side of the design domain.  

(a) 4th 
iteration 

(b) 15th 
iteration 

(c) 25th 
iteration 
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(d) The 
final 

design 
C=0.201J 

Figure 5.10: Iteration history of the design patterns 

 

Figure 5.11: Convergence history of the objective function 

The iteration history of the objective function is shown in Figure 5.11. The locations of 
centers of gravity obtained without and with constraints are presented in 5.12. The center 
of gravity moves leftwards by more than 0.101m horizontally and downwards 0.029m 
vertically with the cost of the strain energy increasing by 37.7%.  

Figure 5.12: Comparison of the 
locations of centers of gravity 

With respect to the bottom left 
corner of the design domain, the 

two centers of gravity are 
(1.050m, 0.326m) and (0.949m, 

0.297m), respectively 
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5.3.2 An aerospace structural system 

A test example of an aerospace structural system is designed here with different definitions 
to verify the proposed ideas. As shown in Figure 5.13, the structural system is to support a 
heavy device located at the center. Three identical plates with two components are placed 
symmetrically around the center and supported at the corner. Globally, an acceleration rate 
100m/s2 (10g) is applied to the whole system. 

The system is simplified as shown in Figure 5.13. Only one of the plates is designed due 
to the symmetry and the supported equipment is equivalently defined as a vertical force of 
18000N applied at the top right corner. Suppose the two components are initially located 
in the design domain. To avoid the possible overlap during the iteration, each component 
is described with 5 circles. 

 

Figure 5.13: Structural system illustration with the design domain and the components 

35% of the total material cost for the structure will be assumed to the topology 
optimization problem. As a result, the system weight is equal to 35% of the total 
structural weight in the design domain plus the weight of two components, where all the 
weights are evaluated with the current acceleration 100m/s2. The concentrated force 
18000N related to the weight of the central equipment is about 15% of the system weight. 
A nodal vertical fixation is assumed at the left bottom corner and more horizontal 
fixations are assumed at the right edge of the plate.  

For the purpose of comparison, suppose the plate and the layout of the components are 
firstly designed without acceleration applied to the system. This means that an acceleration 
of g=0 is simply assigned in the model just like that presented in Chapter 3. This problem 
is presently like a standard MBB beam.  
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Initial values are set to be 0.35 for the pseudo-densities of the density points. The 
objective is to minimize the global strain energy. As shown in Figure 5.14, the positions of 
the components and the layout of the structure update simultaneously during the 
optimization. Since the components’ material is much stronger than the structural material 
and no clear structural patterns are figured out to support the components at the beginning, 
the components firstly move around the design domain in a large range to find a proper 
position. Thereafter, the supporting structure becomes clearer and clearer. The components 
reach the optimal positions and are integrated as a part of the loading structure at the 82nd 
iteration.  

(a) 5th iteration (b) 15th iteration 

(c) 25th iteration (d) The final design C=0.231J 

Figure 5.14: Iteration history of the design patterns without inertial forces 

 

Figure 5.15: Convergence history of the global strain energy 
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As shown in the final design pattern, the two components are embedded in two crucial 
positions of the structure. The iteration history of the global strain energy is shown in 
Figure 5.15. 

Comparatively, the problem without component is carried out here. The same design 
domain, load and boundary conditions are used. The material cost is limited to 50%, 
which is 15% higher than previous, to compensate the difference of the material cost when 
the components are removed.  

 

Figure 5.16: Topology design without component 

As shown in Figure 5.16, the optimal structure is a typical topology optimization design. 
Differences between the two structural patterns are found in Figure 5.14 and Figure 5.16. 
It is sure that the stronger material introduced with the components has a great effect on 
the mechanical performances of the structure. 

(a) 5th iteration 

 

(b) 15th iteration 

(c) 25th iteration 

 

(d) The final design C =4.698J 

Figure 5.17: Iteration history of the design patterns 

Instead, the next test is to take an acceleration rate 100m/s2. The optimization starts with 
an initial design and a volume fraction of 35% is used. The loads consisting of the 
design-independent concentrated force and the design-dependent inertial forces are 
applied to the system. Now the components have material properties that are not only 
much stronger but also much heavier than the structure. Thus, the two components try to 
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locate as close as possible to the vertical support at the bottom left corner and reach the 
proper positions in a few iterations. Later, a clearer structural topology will be generated 
against the gravity.  

As shown in Figure 5.17, the iteration history reaches the convergence at 86 iterations. 
Because the total weight of the system is much greater than the concentrated force, the 
structural has a much higher value of strain energy. In Figure 5.18, it is seen that the two 
components find their locations very quickly at the beginning. The convergence is rather 
stable. In contrast, the problem without component is also tested here. The optimal 
structure is shown in Figure 5.19 where 50% of the total material is used. 

 

Figure 5.18: Convergence history of the global strain energy 

 

Figure 5.19: Topology design without component 

As expected, most of the structural materials are distributed on the left side in Figure 5.17 
and Figure 5.19 because of the existence of self-weight load. Significant differences from 
the results without gravity can be found. Therefore, the self-weight loading is essential for 
topology optimization design of heavy structures.  

Now, suppose rigorous constraints are introduced to make sure that the center of gravity is 
located at the center of the plate.  
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Numerically, both conditions are little relaxed to transform the equality constraints into 
inequalities 
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(a) 5th iteration 
 

(b) 15th iteration 

(c) 30th iteration 
 

(d) The final design C =6.928J 

Figure 5.20: Iteration history of the design patterns 

 
Figure 5.21: Convergence history of the global strain energy 
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As shown in Figure 5.20, the movements of the components and the layout of the structure 
are totally different from the previous one in order that the new added constraints are 
always satisfied. In the final design, although the two components are still embedded into 
the structure, they are separated to the two sides of the plate to keep the center of gravity 
unmovable. The convergence history of the design objective is shown in Figure 5.21. 
Besides, centers of gravity of both results given in Figures 5.17(d) and 5.20(d) are 
indicated by the arrows and compared in Figure 5.22. The center of gravity now locates at 
the center of the plate at the cost of increasing the strain energy by 34%. 

 

Figure 5.22: Comparison of locations of 
the centers of gravity 

(a) 5th iteration (b) 15th iteration 

(c) 30th iteration (d) The final design C =9.212J 

Figure 5.23: Iteration history of the design patterns 

Note that the moment of inertia of the initial design with a uniform structural material 
layout is 616.98kg·m2 while in the final design shown in Figures 5.17 and 5.20, the 
moments of inertia are 1049.59 kg·m2 and 703.88 kg·m2, respectively. If the design 
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optimization is to constrain the moment of inertia to be less than 500kg·m2 instead of the 
constraints on the center of gravity, four intermediate design patterns are presented in 
Figure 5.23. It costs much more iterations to reach the convergence. The final moment of 
inertia is 499.6 kg·m2 that is significantly less than the previous designs. The two 
components are now located on the right side near the rotation axis. The convergence 
history is plotted in Figure 5.24.  

 

Figure 5.24: Convergence history of the global strain energy 

5.3.3 Vibrating cantilever 

 

Figure 5.25: Design domain and the two components 

Consider here the natural frequency maximization problems. As shown in Figure 5.25, a 
cantilever beam is fixed at the left side and discretized with 30×60 quadrangular elements. 
Suppose areas with 2 layer element thickness on the other three edges are non-designable 
parts to be reinforced by the inner structure. Two rectangle components will be located in 
the design domain. 

Firstly, topology optimization is performed to maximize the 1st natural frequency without 
component. A 50% of the total material cost is used. The final structural layout and the 
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convergence history of the objective function are shown in Figure 5.26.  

 

 
Figure 5.26: Topology optimization without component.  

The 1st natural frequency is 29.69Hz 

Then the two components are located at the center of the design domain initially. The 
integrated layout design is processed to maximize the 1st natural frequency as well. 45% 
of the structural material is used here. The two components move towards the fixation on 
the left side. When the components occupy the proper positions after dozens of iterations, 
the structural layout converges steadily as shown in Figure 5.27. However, due to the 
finite difference calculation of the sensitivities with respect to the geometrical design 
variables, we cannot ensure the symmetry of the layout design until now even we have 
symmetrical design domain and boundary conditions. The convergence history of the 1st 
natural frequency is plotted in Figure 5.28. 104 iterations are used in total. 

(a) 5th iteration (b) 15th iteration 



 

134 
 

(c) 30th iteration (d) The final design 

Figure 5.27: Iteration history of the design patterns, 
The 1st natural frequency is 29.71Hz finally 

 
Figure 5.28: The convergence history of the 1st natural frequency 

Then, the constraints are imposed to locate the center of gravity at the center of the design 
domain. 
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(a) 5th iteration 

 

(b) 15th iteration 
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(c) 45th iteration (d) The final design 

Figure 5.29: Iteration history of the design patterns, 
The 1st natural frequency is 28.19Hz finally 

Several structural patterns of the intermediate designs are presented as shown in Figure 
5.29. At the beginning of the design procedure, the two components have the tendency of 
moving on the left side of the design domain just like in the previous one. But the 
structural materials have to be located on the right side to satisfy the constraints to the 
center of gravity. Later, the two components are push rightwards by the constraints. They 
are finally located near the center of the design domain and a clear structural 
configuration is obtained. 

 

Figure 5.30: The convergence history of the 1st natural frequency 

The optimization procedure costs 124 iterations and the convergence history of the 1st 
natural frequency is shown in Figure 5.30. In reference to the bottom left corner of the 
design domain, the center of gravity of the final design is located at (6.00, 3.01) whereas 
the optimal design without constraint on the center of gravity has the center of gravity 
located at (5.30, 2.98), Thus, the center of gravity moves rightwards by 0.7m with the 
cost of a reduction in the 1st natural frequency by 1.52Hz.  
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5.4 Conclusion 

In this chapter, design dependent body loads and natural frequency maximization are 
addressed for multi-component systems. The polynomial material interpolation model 
proposed in Chapter 4 is used to avoid the localized deformations and localized modes in 
the low-density area. 

Although reasonable results can be obtained with the presented methods, the heavy 
components are always located as close to the fixations as possible, which restricts the 
layout of the components in a limited area. To solve this problem, more practical physical 
constraints i.e. the center of gravity and moment of inertia are introduced.  

Several tests are carried out and some results are obtained as expected. Compared with 
the examples given in Chapter 3, more complexities are included here because of the 
problems definition and the new introduced constraints. As a result, much more 
computing time is usually needed to reach the convergence. 
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Chapter 6 Design-dependent Boundary 

Conditions 

Chapter 6 
 
Design-dependent 
Boundary conditions 
 
Overview 
 
More flexibilities on the boundary definition of topology optimization 
problems are addressed in this chapter. The different boundary conditions, i.e. 
surface loads and fixations are considered to be designable. Integrated layout 
design techniques are utilized here to find proper configurations of the 
boundary conditions. Moreover, the simultaneous design of the structural 
layout and boundary conditions are successfully carried out. 
 
 
 
Contents              
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6.2  Support positions 
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6.4  Coupled shape and topology optimization 
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6.1 Problem statement 

In practice, the designs of structural supports or fixations are of great importance for the 
structural mechanical properties. This may arise in most structural engineering designs, as 
shown in Figure 6.1, especially in building constructions, workpiece machining fixture, 
welding or rivet joints of marine and aircraft structures. It is well-known that the support 
conditions play a crucial role in structural analysis. A small amount of adjustments in 
support positions can influence the structural performance significantly and should be 
designed carefully in favor of structural performances. 

 
Fixtures in machining http://www.kefanjidian.com/ 

Figure 6.1: Typical structural supports and fixations 

Previously, Rozvany (1974), Mroz and Rozvany (1975), Prager and Rozvany (1975), 
Szelag and Mroz (1979) discussed the issue of optimal support locations for elastic and 
plastic responses of beams. Rozvany and Mroz (1977), Olhoff and Taylor (1978), Olhoff 
and Akesson (1991) discussed the column support optimization for buckling load 
maximization. Akesson and Olhoff (1988) investigated the minimum stiffness design of 
the accessional supports to maximize the fundamental natural frequency. Hou and Chuang 
(1990) derived the sensitivity of the natural frequency to support positions where the 
concept of material derivative was used to find the optimal support position of a cantilever 
beam. Later, Wang (1993) derived the frequency sensitivity of closed-form to a support 
position by means of the classical normal modal method for an Euler-Bernoulli beam. A 
support force is treated as an external excitation imposed on a restrained structure. Wang 
and Chen (1996) employed the genetic algorithm to determine optimal support positions 
of beam structures for a wide variety of boundary conditions. Liu et al. (1996, 2000) 
derived the frequency sensitivity of closed-form by using the Rayleigh quotient in 
conjunction with the Lagrange multiplier based on Rayleigh’s principle of stationary 
values. Bojczuk and Mroz (1998) provided an optimization procedure dealing with the 
number, position and stiffness of the supports. Sinha and Friswell (2001) applied the 
element shape function to formulate the global stiffness matrix of the beam including a 
support located on the beam element. Won and Park (1998) illustrated that the optimal 
support position relies greatly on the support stiffness. In many cases, it was found that the 
optimal support position is not unique for plate structures when supports are stiff enough. 
Recently, Wang (2003) developed an evolutionary shift method for support position 
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optimization in both static and dynamic applications. 

In fact, the idea of topology optimization can also be extended to the support position 
design. Pedersen (1993) dealt with topology optimization of 3D truss structures with 
support variables involved in the optimization problems. Similarly, Jiang and Chirehdast 
(1997) designed the structural connections simulated with spring elements. Buhl (2001) 
designed the structure and supports simultaneously to find the efficient compliant 
mechanism or to maximize the global stiffness. Meanwhile, spring elements are used to 
fix the nodes in supported areas. 

In this chapter, the structural boundary conditions are defined as some movable 
components along the boundary of the design domain, which generates a quasi-shape 
optimization problem. The idea will be verified first by comparing the optimization of 
support positions with topology optimization. Later the quasi-shape optimization is 
integrated with the topology optimization similar to the integrated layout design discussed 
previously. The structural layout and the layout of the boundary conditions are then 
designed simultaneously. Finally, coupled shape and topology optimization problems are 
dealt with on account of design dependent surface loads on the moving boundary. 

6.2 Support positions 

The pure support design problems are firstly discussed here. As shown in Figure 6.2, 
support component is defined on the boundary and fixations are assigned to the 
component. 

    

Figure 6.2: Illustration of embedded meshing in the support design 

The component is embedded using the embedded meshing technique proposed in Chapter 
3. The positions of the components are assigned as the geometrical design variables. 
During the optimization procedure, the design sensitivities of the objective functions with 
respect to the support positions are calculated with the finite difference. The layout of the 
boundary conditions as well as the positions of the components is updated. 

The first example is a cantilever beam with one single designable support which will be 
compared with the existing design obtained by the topology optimization. The problem is 
illustrated in Figure 6.3. The optimal support position is to maximize the fundamental 
natural frequency of the structure. 
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Figure 6.3: Problem definition of the cantilever beam 

6.2.1 Simplified model with spring supports 

A simplified model is shown in Figure 6.4. The cantilever beam has a length of 10m and a 
square cross section 0.2m×0.2m. It is modeled with 24 beam elements. 24 springs are 
attached to the nodes of the beam except the one which has been clamped on the left end. 
A non-structural mass 100kg is attached at the center of the beam. The material properties 
of the beam is set to be 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3. 

 

Figure 6.4: Full structural system of the cantilever beam in topology optimization 

The pseudo-densities related to the stiffness factors of the springs are assigned as the 
design variables. Only the nodes that are connected to strong springs can be equivalently 
considered as fixed. A power-law penalty of SIMP is used approximately to yield a pure 
0-1design.  

 0
p

i i ik kη=  (6-1) 

where ki and ki0 denote the current stiffness factor of the ith spring and the stiffness factor 
when it is of full stiffness. The penalty factor here is set to be 3. Because there is no mass 
property defined for the springs, no problem of localized modes occurs in natural 
frequency maximization design. 

The design sensitivities with respect to the spring stiffness are easily obtained by simply 
setting the mass properties of the elements derived in Chapter 4 to be 0, which can be 
expressed as 
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The maximum stiffness factors of the springs are set to be ki0=2.8×106N/m. Only one 
spring will be retained to support the beam. After 6 iterations, the optimal result is that the 
20th spring is retained as shown in Figure 6.5. This can be easily confirmed to be the 
global optimum.  
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Figure 6.5: The final optimal design, the 1st natural frequency is 7.1092Hz 

Besides, it is interesting to understand the effects of spring stiffness upon the support 
design. By changing the stiffness value of k0 between 5×105N/m and 2.5×107N/m, optimal 
positions and the 1st natural frequencies are shown in Table 6.1.  

Table 6.1 Optimal results with different support stiffness factors 
Support 
stiffness 
(106N/m) 

Optimal support position 
19 20 21 22 23 24 

1st natural frequency (Hz) 
0.50      3.9930 
0.89      4.7935 
1.20     5.2779  
1.70    5.9376   
2.00   6.3059    
2.80  7.1092     
4.00  8.0832     
8.00 9.9975      
15.0 10.115      
25.0 10.129      

 

(a) 1st natural frequency 10.129Hz 

 

(b) 2nd natural frequency 10.177Hz 

Figure 6.6: Comparison between the 1st vibration shape with spring support  
and 2nd vibration shape without spring support 

It is found that the spring stays at position numbered 24 only if the support is compliant 
enough. When the spring is stiffened, the optimal position will move towards the clamped 
edge and stop at position numbered 19 as long as the spring reaches the so-called critical 
stiffness. Similar discussions can be found in the work of Akesson and Olhoff (1988) and 
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Won and Park (1998). 

According to Courant’s maximum-minimum principle, a structure with n additional 
supports will raise its jth natural frequency whose value is between the jth and the (j+n)th 
frequencies of the original strucutre. Similarly, once the elastic support becomes a rigid 
one in this example, the optimal support position that maximizes the 1st natural frequency 
(see Figure 6.6(a)) turns out to be the nodal position of the 2nd mode (Figure 6.6(b)) of the 
unsupported beam where the vibration displacement is zero. And the optimal 1st frequency 
shifts to the 2nd frequency of the unsupported beam. This phenomenon can be illustrated 
with following figures and we can also refer to the work by Akesson and Olhoff (1988), 
Olhoff (1976) and Szelag and Mroz (1979). 

In Figures 6.6, the 1st vibration mode of the optimal design with k0=2.5×107N/m and the 
2nd vibration mode of the clamped beam without spring support are compared.  

6.2.2 Support component 

 

Figure 6.7: Cantilever beam with a support defined as a component 

Here, the cantilever is built as a refined model meshed with 6×300 2D quadrangular 
elements. As shown in Figure 6.7, a small component is defined with its bottom edge 
fixed. It is partially embedded into the beam where the surrounded elements are modified 
to ensure the connection.  

The material properties of the beam are set to be 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3 
No mass property is defined for the material of the component. Its elastic modulus is 100 
times of that of the beam to simulate a rigid support. 

In this example, only one design variable, i.e., the horizontal position of the support 
component exists. It is initially located at the left end of the beam. The final position is 
obtained at the 8th iteration. The fixation is located 4.71m far from the left end as shown 
in Figure 6.8(a), which is almost identical with the nodal position of the 2nd order 
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vibration shape of the unsupported beam as shown in Figure 6.8(b). Although the 
component is not an ideal nodal fixation, the final 1st natural frequency is very close to 
the 2nd one of the unsupported beam. 

 

(a) 1st natural frequency 17.15Hz 

 

(b) 2nd natural frequency 17.17Hz 

Figure 6.8: 1st vibration shape with optimal support position  
and 2nd unsupported vibration shape  

 

(c) 1st natural frequency 47.84Hz 

 

(b) 3rd natural frequency 47.89Hz 

Figure 6.9: 1st vibration shape with two optimal support positions  
and 3rd unsupported vibration shape 

The cantilever beam is further designed by introducing two identical support components, 
as shown in Figure 6.7. Meanwhile, one simple geometrical constraint is introduced to 
avoid the overlap between the two components. However, FCM is not needed here since 
both the components are only allowed to move horizontally.  

The two components are located initially at the two ends of the beam. By carrying out the 
optimization, the optimization converges at the 20th iteration and the components are 
located at 3.01m and 5.18m, respectively.  

In Figure 6.9, the vibration shape with the optimal support positions and the 3rd vibration 
shape of the unsupported cantilever are compared. The two support components are now 
located near the two nodal positions of the unsupported cantilever shown in Figure 6.9(b). 
The obtained optimal 1st natural frequency is still very close to the 3rd natural frequency 
of the unsupported cantilever.  
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In fact, the optimization of the support locations presented here is a quasi-shape 
optimization problem. Compared with the topology optimization of the support design, 
the actual strategy is not to find a support layout from a great quantity of candidate 
support positions. This is the case when the number of fixations on each supported 
boundary and detailed shapes of the support components are prescribed a priori.  

 

6.3 Coupled support and structural layout design 

 
(a)            (b) 

 

Figure 6.10: Concept of the coupled support and structural layout design 

Inspired by the simultaneous topology design presented by Buhl (2001), the proposed 
integrated layout design techniques are used to solve the coupled support and structural 
layout optimization. Unlike the topology optimization used in Buhl (2001), the fixations 
are defined as movable support components that are partially embedded into the design 
domain. Meanwhile, the material layout of the design domain is described with density 
points. And the structural layout is designed with topology optimization. The problem can 
be illustrated in Figure 6.10. 

Several examples are discussed here to show the effect of the coupled design. The 
material properties are as follows 
for the components and non-designable areas: 
    elastic modulus, E0=2×1011pa, density ρ0=7800kg/m3 and Poisson’s ratio ν=0.3; 
and for the structures: 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

6.3.1 Bridge problem 1 

The design domain of the first example is shown in Figure 6. The basic mesh is composed 
of 30×120 quadrangular finite elements. The road on the bridge is the non-designable area. 
As the movable fixations, four support components with the size 0.6m×1m will be located 
symmetrically on the boundary of the design domain. Considering the symmetry, only 
two geometrical design variables are involved for the four components. 

A uniform surface load 10000N/m is applied on the top of the road. The final volume 
fraction for the topology optimization of the structure in the design domain is set to be 
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40%. Several intermediate layout design patterns are presented in Figure 6.12. The 
material layout and the locations of the components are updated simultaneously. But 
when a clear structural layout is obtained e.g. at the 25th iteration as shown in Figure 
6.12(c), the components are still moving slightly and the structure pattern are modified 
accordingly in the following iterations. The optimization converges at the 138th iteration. 

 
Figure 6.11: The design domain and the support components of the bridge problem 

 
(a) 5th iteration 

 
(b) 10th iteration 

 
(c) 25th iteration 
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(d) The final design C =0.1298J 

Figure 6.12: Iteration history of the design patterns 

 

Figure 6.13: The convergence history of the global strain energy 

In fact, the design is very sensitive to the support components. A slight change of the 
support locations will lead to significant variation of the structural configuration.  

The convergence history of the objective function is shown in Figure 6.13. At the 
beginning, the supporting components may be located away from the main loading 
structure. As a result, some instability is found in the convergence of the objective 
function. In the final design, the four components find their proper positions and 
structures are generated to interconnect the components and the road.  

 
(a) 5th iteration 
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(b) 10th iteration 

 
(c) 25th iteration 

 
(d) The final design C =0.1467J 

Figure 6.14: Iteration history of the design patterns 

 
Figure 6.15: The convergence history of the global strain energy 

Now, the example is further tested with only two of the components allowed on the 
bottom edge, while the other two have to be located on the left and right sides of the 
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design domain. With the structural volume fraction constrained to 40%, several structural 
patterns are shown in Figure 6.14. The structural layout becomes clear very quickly. But it 
costs much more iterations to find proper positions for the support components. The final 
optimal design is obtained at the 74th iteration. The convergence history of the objective 
function is shown in Figure 6.15.  

 
(a) 5th iteration 

 
(b) 10th iteration 

 
(c) 25th iteration 

 
(d) The final design C =0.8781J 

Figure 6.16: Iteration history of the design patterns 

Sometimes the supports are only allowed on the two ends of the bridge. With the same 
definition as previous one, the problem is further designed by locating all the four support 
components on the left and right sides of the design domain. 

By using 40% of the total material, several iterations are presented as shown in Figure 
6.16. Similarly, the structural pattern evolves quickly but the locations of the support 
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components move rather slowly during the design procedure. 124 iterations are used to 
reach the final convergence.  

 

Figure 6.17: The convergence history of the global strain energy 

Two support components are always located at the two bottom corners, which provide 
strong supports for the global structure from the beginning to the end, no instability is 
found during the iteration history.  

6.3.2 Bridge problem 2 

Figure 6.18: The design domain 
and the support components of 

the bridge problem 

Another bridge problem is tested here with the design domain shown in Figure 6.18, 
where the six support components and the structures are allowed both below and above 
the road. The basic mesh consists of 45×80 quadrangular finite elements. The components 
with the size 0.6m×0.6m are located symmetrically on the boundary of the design domain. 
A uniform surface load 10000N/m is applied on the road, which is located at the 5m 
height from the bottom. 

Firstly, two of the support components are located on the bottom, the rest four of them are 
located on the left and right sides, above and below the road, respectively. Only 30% of 
the total material cost is allowed for the structure. During the optimization procedure, the 
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structure is growing up from each support component to support different sections of the 
road. The components find their locations rapidly. As a result, the final design is obtained 
at the 62nd iteration which converged rather faster than the previous designs. The 
convergence history is shown in Figure 6.20. 

(a) 5th iteration 

(b) 10th iteration 

(c) 25th iteration 

(d) The final design  
C =0.0511J 

Figure 6.19: Iteration history of the design patterns 
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Figure 6.20: The convergence history of the global strain energy 

Similarly, another test is carried out without component allowed on the bottom of the 
design domain. The material cost is also restricted to 30%. Several structural patterns are 
presented in Figure 6.21. Because the design space for the components is rater limited in 
this example, they move slightly until they find their proper locations. Finally, the optimal 
structure connecting the different sections of the road and the support components is 
obtained. The convergence is achieved at the 45th iteration as shown in Figure 6.22.  

(a) 5th iteration 

(b) 10th iteration 
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(c) 25th iteration 

(d) The final design 

Figure 6.21: Iteration history of the design patterns, C =0.1774J finally 

 

Figure 6.22: The convergence history of the global strain energy 

6.3.3 Conclusion 

Since the components are limited on the boundary of the design domain, the distance 
constraints avoiding the overlaps can be easily defined. As a result, the global definition 
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of these problems is actually less complex than the integrated layout design discussed in 
the previous chapters. Although all the tested examples with support components generate 
reasonable structural designs, the introduction of the movable support positions brings 
more difficulties in the optimization procedure, especially when we have a relatively large 
design space, e.g. the bridge examples in section 6.3.1. 

 

6.4 Coupled shape and topology optimization 

Besides the design dependent body loads as discussed in Chapter 4 and 5, another kind of 
design dependent loads involved in topology optimization is the pressure load on the 
variable surface, as shown in Figure 6.23. 

 

Figure 6.23: Illustration of the topology optimization with design dependent surface load 

 

Figure 6.24: The pressure loads on the interface between the solid and void elements 
Fuchs and Shemesh (2004) 

Similar problems are discussed in detail by Hammer and Olhoff (1999 and 2000), Chen 
and Kikuchi (2001), Du and Olhoff (2004a and b), Fuchs and Shemesh (2004), Gao and 
Zhang (2007), Sigmund and Clausen (2007). In all of these previous works, the variable 
boundaries are still described by the interfaces between the solid and void elements as 
shown in Figure 6.24. Normally it is complex to identify the interface especially when 
there are a lot of elements with intermediate pseudo-densities nearby. Since the interface 
is not a real line (2D) or a real surface (3D) in the structure, the pressure should be 
equivalently applied on the neighboring nodes. In this way, the shape of the design 
domain as well as its element mesh can remain unchanged.  
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An alternative method is presented here by using the proposed techniques of density 
points and embedded meshing. As shown in Figure 6.25, the pressure is applied on a 
curved surface which may be built as a spline with several interpolation points to be 
optimized. The embedded meshing is employed by subtracting the white area using the 
Boolean operation and the elements around the spline are modified. The rest dark area 
denotes the actual design domain, where the structural layout will be designed with 
topology optimization. As the density points fully located in the white area will lose their 
controlled elements, they are actually useless and the corresponding pseudo-densities will 
take zero values. Besides, since the shape and the topology of the design domain are 
optimized simultaneously, this is a kind of coupled shape and topology optimization 
problems.  

 

Figure 6.25: Illustration of the curve loading surface and the basic mesh 

Consider the test shown in Figure 6.26 to illustrate the coupled shape and topology 
optimization. The design domain is a 6m×24m rectangle plate with the basic mesh 
consisting of 30×120 quadrangular elements. The top surface is considered as a thin band 
modeled by 2 symmetrical spline segments with 11 interpolation points altogether. 6 
vertical coordinates of these interpolation points are thus assigned as the geometrical 
design variables because of the symmetry. The material properties are defined as 
    elastic modulus, E0=7×1010pa, density ρ0=2700kg/m3 and Poisson’s ratio ν=0.3. 

 

Figure 6.26: Design domain of the simply supported beam 
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Suppose a pressure of 10000N/m is applied on the top surface. 50% of the total material 
cost is allowed in the design domain. The iteration history is shown in Figure 6.27. After 
15th iteration, the loaded surface evolves to a smooth arch like a MBB beam. Although the 
shape of the loaded surface reaches the optimum very quickly, but the structural layout 
converges rather slowly. Therefore, when the global structural pattern is almost clear at 
the 66th iteration, the sensitivity filter is manually shut down to accelerate the 
convergence process. Consequently, the elements with intermediate pseudo-densities 
vanish very quickly. Two new structural branches are generated near the center of the 
design domain. 

 
(a) 5th iteration 

 
(b) 12th iteration 

 
(c) 25th iteration 

 
(d) The final design 

Figure 6.27: Iteration history of the design patterns, C =3.494J finally 

The optimization totally takes 102 iterations. The convergence history of the objective 
function is shown in Figure 6.28.  
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Figure 6.28: The convergence history of the global strain energy 

 

6.5 Conclusion 

Different problems with design dependent boundary conditions are considered in this 
chapter. The fixations are firstly defined as the support components, which are partially 
embedded into the design domain. The layout of the fixations is to determine the 
positions of these components on the boundary. Firstly, spring elements are used to 
perform the supports layout design for vibration problems. Secondly, the positions of the 
support components and the structural layout are optimized simultaneously. Several 
bridge problems are designed and reasonable numerical results are obtained.  

Then the topology design with pressure loads on the movable surface is considered. The 
shape of the loaded surface and the structural layout are designed simultaneously without 
component. But the techniques of density points and the embedded meshing are used as 
well. The loaded surface is modeled as a spline and the neighboring elements are 
modified and adapted to the spline. Numerical example is carried out. The loaded surface 
quickly evolved to a reasonable shape and finally a clear structural layout is obtained.  
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Chapter 7 Conclusion 

 

Chapter 7 
 
Conclusion 
 
 
Overview 
 
The final conclusion of this thesis is provided in this chapter. In addition, 
more technical extensions and perspectives of the related ideas and methods 
are discussed. 
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7.1 Achievements 

This work was started in the spring festival of 2006 in China, when engineers from 
Chinese Academy of Engineering Physics (CAEP) were interested in our research on 
structural topology optimization. The potential applications of the related techniques in 
aerospace structural systems were discussed in detail. Thus such subject was proposed 
accordingly. The aim was to develop a systematic method for the topology design of 
structural and support layout of the multi-component systems based on my work.  

With the academic supports from the cooperative platform between the Northwestern 
Polytechnical University (NPU) and the University of Liège (Ulg), and the technical 
suggestions received from the CAEP, the achievements and accomplishments of this work 
are fruitful.  

1) The method of FCM is developed based on the idea of the sphere-trees to solve the 
packing problems.  

a) Using certain numbers of circum-circles to describe the contour of the 
components and the design domain approximately, the complex geometry 
constraints are transformed into some distance functions of explicit form, the 
gradient-based algorithms can be applied accordingly.  

b) Normally in FCM, great quantities of circles are needed to generate fine 
approximations for the contours of the components and the design domain, 
which will lead to huge numbers of design constraints in the optimization and 
unaffordable computing time. Semi-heuristic rules using relocated circles of 
variant radii are proposed to improve the approximation. 

2) The idea of integrating the packing and topology optimization is proposed.  

a) The location and orientation of the components defined as the geometrical design 
variables, proper layout of the components are found by the optimization 
procedure and FCM is used to avoid the overlap. Simultaneously, the topology 
optimization is carried out to generate structural layout supporting the 
components.  

b) Due to the updating of the geometry variables as well as the element mesh, the 
pseudo-densities describing the material layout in topology optimization can be 
no longer defined with respect to the elements. The density points are predefined 
and located in the design domain with fixed positions. Each element is supposed 
to receive its value of the pseudo-density from the nearest density point.  

3) By means of the derived design sensitivities, the integrated layout design is carried 
out for the multi-component systems with self-weight loadings and problems of 
maximizing the fundamental natural frequencies.  

a) SIMP-like material interpolation models may lead to the phenomena of localized 
modes and localized deformations, which are the key difficulties involved in 
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topology optimization of maximizing natural frequencies and those with design 
dependent body loads. These problems are effectively avoided by applying a new 
interpolation model of polynomial function. 

b) Physical constraints such as the limitation to the center of gravity and the 
moment of inertia are further introduced in the layout design to satisfy practical 
requirements of the aerospace systems.  

4) The break-down problem of the ESO family methods is revealed by treating it as 
some phenomena appearing in low density areas. Meanwhile, the technique of check 
position is proposed with a certain intermediate material property defined to replace 
the removed elements. Thus, the erroneously removed elements will be identified and 
then recovered back into the design domain. 

5) The simultaneous layout design of the designable boundary conditions and supporting 
structures are implemented with the proposed techniques. 

a) The layout of the fixations is designed by introducing the support components 
where the fixations are defined. These components are partially embedded into 
the design domain and movable on the boundary. The simultaneous optimization 
is carried out to find proper layout of the support components and the material 
layout of the design domain. 

b) Topology optimization is carried out for the problem with pressure loads on the 
movable design domain. In view of the shape variation of the loaded surface, the 
embedded meshing is implemented to remesh the area locally and the material 
layout is described with the technique of density points. In this way, the shape of 
the loaded surface as well as the optimal layout of the design domain can be 
designed in a reasonable way. 

 

7.2 Additional discussions 

Before the closure of the thesis, it is important to notice that this does not imply the end 
of the work on this subject. Much more complexities are actually involved in a practical 
application of the aerospace structural system design. On the one hand, we can foresee 
some possible technical extensions or more applications. On the other hand, the 
multi-component system layout design may be achieved alternatively. Therefore, some 
additional technical discussions are presented here. 

7.2.1 Computing time 

In Chapter 3 we have mentioned the problem of computing time when the software 
platforms using in this work are introduced. Although the program code was optimized as 
much as possible, the optimization procedure still costs tremendous computing time when 
relatively complex multi-component systems are designed, Therefore, it should be 
emphasized once more.  

As indicated before, for the purpose of developing new ideas rapidly and conveniently, 
the problem definitions and the iteration control are mainly programmed in the ANSYS 
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APDL language. However, it is a programming language skilled in operating the 
command lines of ANSYS rather than numerical computation. A single design loop of the 
optimization design is detailed as a flowchart in Figure 7.1, where the white box and the 
gray box indicate the operations of ANSYS command lines and numerical computing, 
respectively. The most time consuming parts are also indicated with dashed boxes.  

In the embedded meshing, although this procedure costs less time than regenerating the 
element mesh, there is still much of the computing time consumed in the Boolean 
operations. This is due to the low efficiency of the geometrical operation in ANSYS, as 
well as large numbers of elements are involved. So far, there is no better and convenient 
way to improve the situation. Fortunately, the computing time consumed in the embedded 
meshing does not increase significantly whenever the complexity of the problem rises. 

 

Figure 7.1: A single design loop of the integrated layout design 

The rest parts consuming a lot of computing time depend greatly upon the number of the 
density points and the element number. The remedy is to use high efficient programming 
languages, e.g. C/C++ or Fortran instead of APDL to calculate the results.  

This idea is partially implemented in the sensitivity filter. The calculated sensitivities as 
well as the pseudo-densities, the coordinate of the density points are written into a text 
file which will be read into the filter process programmed with C++. Later, the filtered 
sensitivities are written into another text file. The APDL main process will read the file 
and receive the updated sensitivities. Compared with the purely APDL programming, the 
computing time is reduced from 2 minutes to less than 2 seconds for 2500 sensitivities 
including reading and writing the text files.  

7.2.2 Note on the 3D problems 

As a single 3D component has 6 geometrical design variables to describe the location and 
orientation, a 3D multi-component system may have much larger quantities of elements 
and design variables. Besides, the technique of 3D embedded meshing becomes also 
complicated. Consider a meshing example of a small part near one component. As shown 
in Figure 7.2, the basic mesh consists of 125 (5×5×5) hexahedral elements and each 
density point is assigned at the center of each element. A big cubic component intersects 
with the basic mesh.  

If the intersection part of the basic mesh is subtracted through Boolean operation, some 
irregular volumes are created and some tetrahedral elements have to be used to modify 
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the elements around the component. Likewise, the added elements are also restricted 
inside each cube of the basic mesh.  

    

Figure 7.2: The basic mesh and the component 

    
(a)                                  (b) 

Figure 7.3: Different element mesh of the structure 

The difficulties are however encountered when hexahedral elements and tetrahedral 
elements are uses together. As shown in Figure 7.3(a), the final finite element mesh 
consists of 5056 elements and is manually generated. To ensure the quality of the element 
mesh, we have to use some pyramid elements as the transition interface between the 
hexahedrons and tetrahedrons in the structure (See Owen and Saigal 2001). However, the 
elements In Figure 7.3(a) are generated by picking and inputting parameters interactively 
in the graphic user’s interface whereas an automatic approach is needed during the design 
iteration.  

The problem can be solved if the tetrahedral elements are used uniformly for both basic 
mesh and the component mesh, as shown in Figure 7.3(b). Here, 6690 elements exist. 
There are no pyramid elements for the interface and the free mesh is generated 
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automatically by ANSYS. However, this is only a small part of the structure. The total 
number of the elements will be tremendously large if the hexahedral elements are not 
used for the basic mesh.  

7.2.3 Note on the gradient free algorithms  

Considering the fact that local optima exist in the integrated layout design of the 
multi-component systems, an alternative approach may use the gradient free methods e.g. 
Genetic Algorithm to solve the problems. However, it seems not to be a very practical 
approach so far. As is known, the gradient free algorithms are mostly employed to 
problems for which it is difficult or impossible to derive the design sensitivities. This is 
not the case for topology optimization using structural compliance as objective function.  
Besides, due to the random search strategy, there is no way to verify rigorously the 
optimality and the iteration may lead to strange design patterns. Furthermore, such an 
optimization procedure has a low efficiency when solving large-scale problems. 
Therefore, even in a simple topology optimization problem with only hundreds of 
elements, thousands of finite element analyses are normally needed.  

Finally, the random search strategies cannot guarantee the feasibility of intermediate 
designs, e.g., the appearance of the overlap between components. This is still tolerable in 
the pure packing optimization since the computing is purely geometrical. But in the 
integrated design, the overlap of the components will become fatal for finite element 
analysis.  

In topology optimization, applications of gradient free methods can refer to the works of 
Missoum et al. (2000), Aguilar Madeira (2002), Kim and De Weck (2004) and Tai and 
Akhtar (2005).  

7.2.4 The level set method 

http://www.ariser.info/img
/levelset.jpg 

Figure 7.4: Topology 
description of the 
level set method 

The level set method was proposed recently for structural topology optimization (Sethian 
1999). As shown in Figure 7.4, the contour of the topology is described as the curve 
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where the level set function equals 0. The topology optimization with level set method is 
more like a generalized shape optimization (Duysinx et al 2006, Wang and Wang 2004). It 
is basically a steepest descent method by combining the shape sensitivity analysis with 
the Hamilton-Jacobi equation for modifying the level-set function, as show in Figure 7.5.  

 

Figure 7.5: Typical topology design with level set method (Park and Youn 2008) 

Here, we just discuss the possibility of using level set method to deal with the integrated 
layout optimization of the multi-component systems. Firstly, the different components 
and the structural layout have to be modeled with multiple level set functions. Although 
two level set functions can describe four material phases in the design domain as 
indicated by Wang and Wang (2004), it would be better to describe each component and 
the structural layout by means of respective level set functions to maintain the exact form 
and the free movement of the components. Secondly, level set functions of priority have 
to be used for the components in order that the intersection areas should be applied as the 
material properties of the components when the supporting structure and the components 
are overlapping with each other.  

Finally, the overlap will be avoided as well. One possibility is to obtain the minimum 
distances between different contours described by the level set functions. There will be 
only one design constraint for each pair of the components. But complex computing of 
the level set functions will be involved. And the constraints would be highly non-linear. 
Another way of avoiding the overlap is to use the proposed FCM. Similarly, a pure 
geometrical model is defined with FCM. Meanwhile, the finite element model will be 
defined by the level set function instead of the techniques of density points and the 
embedded meshing. 

 

7.3 Conclusion 

Many significant contributions to the layout optimization of multi-component systems 
have been provided in this thesis. In view of the achievements outlined in Section 7.1, a 
number of conclusions can be made on the techniques involved, their applicability and on 
the work presented.  

1) In packing optimization with FCM 

a) The complex overlap detection and evaluation can be transformed into a simple 
and explicit formulation of the FCM. The definition of the circum-circles for 
each component is essential in reducing the approximation error and saving the 
computing time. With the proposed semi-heuristic rules, the circle approximation 
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can be improved significantly.  

b) Both 2D and 3D packing optimization problems can be solved by FCM. 
Although local minima are always obtained in the optimization of complex 
packing problems, the FCM is suitable to the integrated layout design. 

2) In integrated layout design for components and supporting structure 

a) The technique of density points is actually an extension of the traditional 
element-based material layout description. Identical topology patterns can be 
mapped between different element meshes of the structure. The remeshing of the 
design domain with embedded components is carried out with the technique of 
embedded meshing. Since only the elements in a small part of the global system 
have to be modified, the computing time is saved. 

b) The integrated layout design strategy consisting of the FCM, the techniques of 
density points and embedded meshing makes it possible to find proper positions 
of the components. Meanwhile, the optimal positions of the components depend 
upon the relative material properties of the components and the supporting 
structure. 

c) Components with complex shapes and multiple material properties can be 
employed in the integrated layout design. Similarly, partially supported 
components are defined and the corresponding optimal supporting structure is 
adapted to the components. 

d) In the integrated layout design with inertial forces and natural frequency 
maximization, the components and the structural materials always trend towards 
the boundary fixations. Introducing more design constraints on the center of 
gravity or the moment of inertia can help to relocate the structural layout. Using 
the proposed material interpolation model can effectively avoid the localized 
modes and the localized deformations in the topology optimization maximizing 
natural frequencies and those with design dependent body loads. 

3) In the coupled layout design of structures and boundary conditions 

a) By utilizing the support components, the layout design of the structures and the 
boundary conditions can be implemented simultaneously with the proposed 
techniques of density points and the embedded meshing.  

b) The proposed techniques in this thesis provide the possibility of topology 
optimization with variable element mesh. Therefore, shape optimization can be 
integrated with the topology optimization. Topology optimization problems with 
design dependent pressure loads are easily implemented by introducing a 
variable loading surface.  
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