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Summary 
In this chapter, linear elastic problems in 2D are treated with a new approach of the natural 
neighbours method (NEM) based on the FRAEIJS de VEUBEKE (FdV)  variational principle. 

In the spirit of the NEM, the domain is decomposed into N Voronoi cells corresponding to the 
N nodes distributed inside the domain and on its boundary.  

The following discretization hypotheses are admitted: 

1. The assumed displacements are interpolated between the nodes with the Laplace 
interpolation function. 

2. The assumed support reactions are constant over each edge K of Voronoi cells on 
which displacements are imposed.  

3. The assumed stresses are constant over each Voronoi cell.   

4. The assumed strains are constant over each Voronoi cell.     

Introducing these hypotheses in the FdV variational principle produces the set of equations 
governing the discretized solid. 

These equations do not require the calculation of the derivatives of the Laplace interpolation 
functions and, in the absence of body forces, they only involve numerical integrations on the 
edges of the Voronoi cells.  

These equations are recast in matrix form and it is shown that the discretization parameters 
associated with the assumptions on the stresses and on the strains can be eliminated at the 
Voronoi cell level so that the final system of equations only involves the nodal displacements 
and the assumed support reactions. 

These support reactions can be further eliminated from the equation system if the imposed 
support conditions only involve displacements imposed as constant (in particular 
displacements imposed to zero) on a part of the solid contour. 

Several applications are used to evaluate the method. 

A set of patch tests are performed and show that this approach can pass the patch test up to 
machine precision and that there is no incompressibility locking. 

Convergence studies are also made for the case of pure bending of a beam and the numerical 
solution is compared to the analytical solution of the Theory of Elasticity. 

Finally, the case of a square membrane with a hole is also used for convergence evaluation 
and for comparison with the finite elements solution. 

With the present approach, in the absence of body forces, the calculation of integrals over the 
area of the domain is avoided: only integrations on the edges of the Voronoi cells are required, 
for which classical Gauss numerical integration with 2 integration points is sufficient to pass 
the patch test. In addition, the derivatives of the nodal shape functions are not required in the 
resulting formulation. 
The present method also allows solving problems involving nearly incompressible materials 
without locking. 
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III.1. Introduction 
The present chapter develops a new numerical approach for the solution of 2D linear elastic 
problems. 

The data and unknowns are summarized in figure III.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                          A : area of the domain in which body forces F are imposed  
Data                   : boundary on which surface tractions T are imposed 
                                       :  boundary on which imposed displacements  are imposed                       
                            with N the unit outside normal to the domain contour    

                          u : the displacement field 
 Unknowns              : the strain field 
                                         : the stress field 

Figure III.1. The 2D linear elastic problem 

 

In chapter II, section II.2, the classical approach of the natural neighbours method has been 
introduced. 
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The domain contains N nodes (including nodes on the contour) and the N Voronoi cells 
corresponding to these nodes are built. 

 We have seen that: 

• the enforcement of boundary conditions of the type ii u~u =  on uS poses no difficulty if 
the displacements are interpolated by the Laplace interpolation functions; 

• the numerical evaluation of the integrals over the area A of the domain (or, 
equivalently on the area of the Voronoi cells) deserves special attention; 

• the “stabilized conforming nodal integration” provides an efficient solution for 
avoiding numerical integration on the Voronoi cells and replaces it by an integral on 
their contours. 

In the present chapter, we will start from the FRAEIJS de VEUBEKE (FdV) variational 
principle (chapter II, section II.3) to develop a new approach of the natural neighbours method 
(NEM).  

With this approach, we will see that: 

• the derivatives of the Laplace interpolation functions are not necessary 

• only numerical integration on the edges of the Voronoi cells are required 

• incompressibility locking is avoided 

 
III.2. Domain decomposition 

Since we use the NEM, the domain is decomposed into the N  Voronoi cells corresponding to 
the N nodes of the domain, including the nodes on the contour. 

The area of the domain is: 

∑
=

=
N

I
IAA

1

                     (III.1) 

with IA the area of Voronoi cell I. 

We denote  IC  the contour of Voronoi cell I. 

The domain contour is the union of some of the edges of the exterior Voronoi cells. These 
edges are denoted by KS  and we have 

∑
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where M is the number of edges composing the contour, Mu the number of edges on which 
displacements iu~  are imposed and Mt the number of edges on which surface tractions iT  are 
imposed. 
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We start from the FdV variational principle introduced in chapter II and we recall its 
expression for completeness (we keep the equation numbers of chapter II).  
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For the linear elastic case, the stresses are given by: 
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and 
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where Cijkl  is the classical Hooke’s tensor. 

Using the above domain decomposition, these terms become: 
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III.3. Discretization 

We make the following discretization hypotheses: 

1. The assumed strains  ijε  are constant over each Voronoi cell I:  

I
ijij εε =                              (III. 9) 

2. The asumed stresses ijΣ  are constant over each Voronoi cell I:  

I
ijij Σ=Σ                            (III.10) 

3. The assumed support reactions ir  are constant over each edge K of Voronoi cells on 
which displacements are imposed: 

K
ii rr =                            (III. 11) 

4. The assumed displacements iu are interpolated by Laplace interpolation functions:  

∑
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Φ=
N

J

J
iJi uu

1
                           (III. 12) 

where J
iu  is the displacement of node J (corresponding to the Voronoi cell J). 

Some details on the Laplace interpolation functions were given in chapter II, section II.1.2. 

As a consequence of (II.34) and (III. 9), the stresses ijσ  are constant over each Voronoi cell I: 

I
ijij σσ =                             (III. 13) 

 

The variations of the independent variables are: 
I
ijij δεδε =                             (III. 14) 
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Introducing these assumptions in (III. 3) to (III. 5), and integrating by parts, we get: 

∑
=

=Π
N

I
I

I
ij

I
ij A

1
1 δεσδ                                     (III. 18) 

∑ =−∑ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

=
==

N

I
I

I
ij

I
ij

N

I
I

A i

j

j

iI
ij AδεdA)

X
uδ

X
uδ

(δ
I

11
2 Σ

2
1ΣΠ   

∑−∑ ∫
==

N

I
I

I
ij

I
ijI

N

I C
i

I
j

I
ij AdCuN

I 11
δεΣδΣ                      (III. 19) 

=∑−∑ ∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

∂
∂

=
==

I
I
ij

N

I

I
ij

N

I
I

A i

j

j

iI
ij AεδdA)

X
u

X
u

(δδ
I

11
3 Σ

2
1ΣΠ  

∑−∑ ∫
==

N

I
I

I
ij

I
ijI

N

I C
i

I
j

I
ij AdCuN

I 11
εΣδΣδ                      (III. 20) 

∑ ∫∫
= ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
δ−−δ=Πδ

u

KK

M

K S
Ki

K
i

S
Kii

K
i dSurdS)uu~(r

1
6                        (III. 21) 

where I
jN is the unit outward normal to the contour of Voronoi cell I.  

Introducing in (II.31), we get: 

0=Π+Π+Π+Π=Π EFDCVCVA δδδδδ                         (III. 22) 

with 

∑∑
==

Σ−Σ−=Π
N

I
I

I
ij

I
ij

N

I
I

I
ij

I
ij

I
ijVA AA

11
)( εδδεσδ                        (III. 23) 

I
N

I C

I
j

I
ijI

N

I C
i

I
j

I
ijVC dCuNdCuN

II

∑ ∫+∑ ∫=
== 11
ΣδδΣΠδ                        (III. 24) 

∑ ∫∫
= ⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡
δ−−δ=Πδ

u

KK

M

K S
Ki

K
i

S
Kii

K
iDC dSurdS)uu~(r

1
                       (III. 25) 



A natural neighbours method for linear elastic problems based on Fraeijs de Veubeke 
principle. 

 

Chapter III  Page 50 
 

∑ ∫∑ ∫
==

−−=Π
t

KI

M

K S
Ki

K
i

N

I
I

A
iiEF dSuTdAuF

11

δδδ                         (III. 26) 

In (III. 24) to (III. 26), the displacements and virtual displacements are interpolated by (III. 12) 
and (III. 17) respectively.  Substituting in (III. 24), we get: 
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Finally, since the edges of Voronoi cell are straight lines, the outer normal jN  to edge KS  is 

constant along this edge and is denoted K
jN  

Now, using the discretization (III. 12), we get: 
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Similarly, (III. 26) becomes: 
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Collecting all the results, we obtain the discretized FdV variational principle. 
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III.4. Equations deduced from the FdV variational principle 

Let us reorganize the terms of (III. 30) 
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In this result, the following notations have been used. 
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Equation (III.32) involves the integration on the contour IC  of Voronoi cell I. 

Equations (III.33) and (III.34) involve the integration on the edge KS  (belonging to the 
domain contour) of an exterior Voronoi cell.  
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We are now able to deduce the Euler equations. 

 

1. In all the Voronoi cells I 
I
ij

I
ij Σ=σ       for    NI ,1=                (III.37) 

These equations identify the assumed stresses I
ijΣ  as the constitutive stresses I

ijσ  deduced 

from the assumed strains I
ijε  in each Voronoi cell. 

 

2. In all the Voronoi cells I  
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This is a compatibility equation linking the assumed strains I
ijε  in Voronoi cell  I  with the 

assumed nodal displacements  J
iu . 

 

3. On the edges K of Voronoi cells submitted to imposed displacements 

K
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These are also compatibility equations taking account of the imposed displacements iu~ along 
the domain contour. 

 

4. In all the Voronoi cells J 

0BrT~)F~A(
ut M

1K

KJK
i

N

1I

M

1K

KJ
i

IJ
i

IJ
j

I
ij =−−− ∑∑ ∑

== =

Σ    for    NJ ,1=           (III.40) 

These are equilibrium equations taking account of the body forces iF , the surface tractions iT  
and the assumed support reactions K

ir . 

We note that, in the developments above, the only term that implies an integration over the 
area of the Voronoi cells is I

A
Ji

IJ
i dAFF

I

∫ Φ=~ . 

Hence, if there are no body forces, the problem of choosing integration points is simplified: 
there are only integrations along the straight edges of Voronoi cells. A classical Gauss 
integration scheme can be used. Some tests (see section III.6 below) show that 2 integration 
points give enough precision. 
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This property of the present approach eliminates the need for special integration schemes 
[ATLURI S.N. et al. (1999), ATLURI S.N. and ZHU T. (2000), CUETO E. et al. (2003)] over 
the area of the domain.  

Furthermore, this formulation does not require the derivatives of the shape functions. 

So, using the FdV functional as starting point, we obtain the same advantages as with the 
stabilized conforming nodal integration [CHEN J. S. et al. (2001), YOO J. et al. (2004)]. 

We also remark that, from the definition of 
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where ∑
)( IKall
means the sum over all the edges )(IK of the Voronoi cell I and )( IK

jN is the 

outward unit normal to that edge. 

From this, we see that the calculation of the coefficients IJ
jA  and KJB  only implies the 

calculation of integrals of the type ∫Φ
KS

KJ dS  along edges of Voronoi cells. 

Finally, in the approach developed here, it is possible to impose displacements iu~ on any edge 
of any Voronoi cell. From (III.34) and (III.39), it is clear that the imposed displacements are 
respected in a weighted average sense. 

 

III.5. Matrix notation 
We introduce the following matrix notation. 
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Then, we get successively: 

{ } { }III
ij

I
ij Σ=⇒Σ= σσ                     (III.44) 

[ ] { }IIJIJ
j

I
ij AA Σ⇒Σ  ; { }IJIJ FF ~~ ⇒ ;   { }IJIJ TT ~~ ⇒              (III.45) 

[ ] { } { } { } { }JJK
M

K

KJI
N

I

IJ

M

K

KJ
i

N

I

IJ
i

N

I

M

K

KJK
i

IJ
j

I
ij

T~F~rBA

T~F~BtA

u

tu

+=−Σ⇒

+=−Σ

∑∑

∑∑∑ ∑

==

=== =

11

111 1

 

  
          (III.46) 

The term [ ] { } { }K
M

K

KJI
N

I

IJ rBA
u

∑∑
==

−Σ
11

 is the interior nodal force at node J, i.e. in cell J. It is the 

sum of the contributions [ ] { }IIJA Σ  of the stresses that are present in all the Voronoi cells I and 

of the contributions { }KKJ rB  of the support reactions K
ir existing on the contour edges K 

where displacements are imposed. 

The term  { } { }JJ
T~F~ +  is the exterior nodal force at node J, i.e. in cell J. It is the sum of : 

• the contributions { }IJ
F~ of the body forces iF existing in all the Voronoi cells I  

• the contributions { }IJ
T~ of the surface tractions iT  applied on the part St of the domain 

contour. 

Now, consider equation (III.38), it can be written  

{ } [ ] { }J
N

J

TIJI
I uAA ∑

=

=
1

,ε                   (III.47) 

where [ ] TIJA ,  is the transpose of [ ]IJA . 

Note that in { }Iε , the third component is I
122ε . 

The compatibility equation (III.47) defines the strain { }Iε in a Voronoi cell I  as the sum of the 
contributions [ ] { }JTIJ uA ,  of all the nodes J. 

On the edges K submitted to imposed displacements, we must consider (III.39) that becomes 

{ } { }KN

J

JKJ U~uB =∑
=1

                 (III.48) 

The tables III. 1 and III. 2 below collect all the results in matrix form.  

In these tables, taking account of (III.37), { }IΣ  is replaced by { }Iσ . 
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Table III. 1. Matrix notations for the linear elastic case 

Notations and symbols Comments  

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

2ε
ε
ε

ε  Strains in cell I 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

σ
σ
σ

σ  Stresses in cell I 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= I

I
I

u
u

u
2

1  Displacements of node I belonging 
to cell I 

{ }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= K

K
K

r
rr
2

1  Support reactions on edge K 
submitted to imposed displacements 

IA  ; IC  Area and  contour of cell I 

SK Length of edge K of a cell 

JΦ  Interpolant associated with node J 

I
A

Ji
IJ

i dAFF
I

∫ Φ=~  ; { }
⎭
⎬
⎫

⎩
⎨
⎧

=
IJ

IJ
IJ

F
F

F
2

1~
~~ ; 

{ } { }∑
=

=
N

I

IJJ
FF

1

~~  

{ }J
F~ is the nodal force at node J 

equivalent to the body forces iF  
applied to the solid 

K
S

Ji
KJ

i dSTT
K

∫ Φ=~  ; { }
⎭
⎬
⎫

⎩
⎨
⎧

=
KJ

KJ
KJ

T
T

T
2

1~
~

~ ; 

{ } { }∑
=

=
tM

K

KJJ
TT

1

~~  

{ }J
T~ is the nodal force at node J 

equivalent to the surface tractions iT  
applied to the contour of the solid 

∫=
KS

Ki
K
i dSu~U~  ;  { }

⎭
⎬
⎫

⎩
⎨
⎧

= K

KK

U~
U~U~

1

2  
{ }K
U~ is a generalized displacement 

taking account of imposed 
displacements iu~  on edge K  

∫Φ=
KS

KJ
KJ dSB  Integration over the edge K of a cell 

∫=
IC

IJ
I
j

IJ
j dCNA Φ ;  [ ] ⎥

⎦

⎤
⎢
⎣

⎡
= IJIJ

IJIJ
IJ

AA
AA

A
12

21

0
0

 
IJ
jA can also be computed by 

JIK

IKall

IK
j

IJ
j BNA )(

)(

)(∑=  
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Table III. 2. Discretized equations in matrix form for the linear elastic case 

Equations Comments  

[ ] { } { } { } { }T~F~rBA JK
M

K

KJI
N

I

IJ u

+=−Σ ∑∑
== 11

 Equilibrium equation of cell J (III.49) 

{ } [ ] { }J
N

J

TIJI
I uAA ∑

=

=
1

,ε  Compatibility equation for cells I  (III.50) 

{ } { }KN

J

JKJ U~uB =∑
=1

 
Compatibility equation on edge K 

submitted to imposed displacements (III.51) 

 

If we consider a linear elastic material, the constitutive equation for a Voronoi cell J is 
 

{ } [ ] { }JJJ C εσ =                  (III.52) 
 

where [ ]JC is the Hooke compliance matrix of the elastic material composing cell J. 

Introducing (III.50) in (III.52), we get 

{ } [ ] { } [ ] [ ] { }JN

J

T,IJJ*JJJ uACC ∑==
=1

εσ               (III.53) 

with 

[ ] [ ]JJ

J* C
A

C 1
=                  (III.54) 

Then 

[ ] { } [ ] [ ] [ ] { } [ ] { }∑=∑ ∑=∑
== ==

N

L

LJLN

L

LT,ILIN

I

IJIN

I

IJ uMu)AA(A
11

*

11
C Σ            (III.55) 

with 

[ ] [ ] [ ] [ ] T,ILIN

I

IJJL AAM *

1
C  ∑=

=
                (III.56) 

Replacing in (III.49), we obtain: 

[ ] { } { } { } { }T~F~rBuM JK
M

K

KJ
N

L

LJL u

+=− ∑∑
== 11

              (III.57) 

[ ] { } { } { } { }T~F~rBuM JK
M

K

KJ
N

L

LJL u

++= ∑∑
== 11

              (III.58) 
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{ } { }KN

J

JKJ U~uB =∑
=1

                 (III.59) 

Equations (III.58) and (III.59) constitute an equation system of the form:  

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }⎭⎬

⎫

⎩
⎨
⎧

−
=

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−

U~
Q~

r
q

B
BM

T 0
               (III.60) 

with 

{ }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

Nu

u
u

q
.
.

2

1

;   { }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

NF

F
F

F

~
.
.

~
~

~
2

1

;   { }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

NT

T
T

T

~
.
.

~
~

~
2

1

;   { } { } { }T~F~Q~ +=            (III.61) 

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

MMM

MMM
MMM

M

..
.....
.....

..

..

21

22221

11211

;  [ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

u

u

u

NMNN

M

M

B..BB
.....
.....

B..BB
B..BB

B

21

22221

11211

               

(III.62) 

 

It can be easily verified that matrix [ ]M is symmetric. 

Equations (III.51) that, in matrix form, become [ ] { } { }U~qB T =  constitute a set of constraints on 
the nodal displacements { }q . 

In particular, if displacements 0=iu~  are imposed on the segment AB joining 2 nodes A and B 

on the domain contour, it is easy to show that (III.51) leads to 0=A
iu  and 0=B

iu . 

In such a case, the displacements A
iu  and B

iu can be removed from the unknowns { }q . 

This reasoning can be extended to the case of displacements imposed to 0 on any number of 
similar segments belonging to the contour. 

This shows that, despite of the fact that in the initial assumptions (III.9) to (III.12) many 
discretization parameters appear, most of them are eliminated at the Voronoi cell level, which 
finally leads to an equation system of the classical form [ ]{ } { }Q~qM =  with the same 
characteristics as in the classical approach based on the virtual work principle. 
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III.6. Numerical integration 
For the numerical integration of integrals of the type ∫Φ

KS
KJ dS ,  Gauss method is used.  

Using a local coordinate 11 +≤ξ≤−  along edge KS , such an integral takes the form: 

( ) ( ) ( )∑∫
=

−
ξ=ξξ

NP

IP
IP IPWfdf

1

1

1
               (III.63) 

in which IP denotes the integration point, NP the number of integration points, IPξ  the 
coordinate of integration point IP and W(IP) the weight of integration point IP. 

The precision of the scheme has been tested from one to ten integration points. To achieve 
this, advantage is taken from the fact that the calculation of ∫=

IC
IJ

I
j

IJ
j dSnA φ  can be performed 

analytically for a regular distribution of nodes on a square pattern as developed in annex 1.  

Table III.3 gives the results for  ∫ φ=
IC

IJ
IIJ dSNA 11  ; ∫ φ=

IC
IJ

IIJ dSNA 22  

 

Table III. 3. Tests for the numerical integration along an edge of a Voronoi cell. 

Integration 
points 

NP=1 NP=2 NP=3 NP=4 NP=5 NP=6 NP=7 NP=8 NP=9 NP=10

Relative 
error on 

IJA1 (%) 
30.13 0.77 4.52 2.62 0.75 0.99 1.72 0.59 0.24 0.57 

Relative 
error on 

IJA2 (%) 
12.82 0.32 1.85 1.08 0.31 0.41 0.71 0.24 0.10 0.24 

 

It is seen that the precision does not necessarily increase with the number of integration points. 

From table III.3, it was decided to use NP=2 in all the subsequent calculations. 

 

III.7. Applications 
III.7.1. Patch tests 
A set of patch tests in simple tension and in pure shear are performed to validate the method. 

Unit thickness and plane strain conditions are assumed. 
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The domain, the loading, the nodes and the Voronoi cells for the 5 case studies are given in 
figures III.2 and III.3 

The results are given in tables III.4 and table III.5 for two different Poisson’s ratios: 0ν = . 
and 30ν .= . They are expressed with the help of the following variables. 

N

σ
Average

N

K

K∑
== 1  ;    

∑∑

∑∑

==

==

−−
= N

K
K

exact
ij

exact
ij

N

K
K

N

K
K

exact
ij

K
ij

exact
ij

K
ij

N

K
K

A/)A

A/))((A
normL

11

11 2
σσ

σσσσ
           (III.64) 

 
Case number 

and 
configuration 

Loadings and boundary conditions 

 

Case 1: 
square 

 

Case 2: 
rectangular 

 

  Case 3: 
rectangular 

 

 

 

 

 

 

Case4: 
square 

 

Case 5: 
rectangular 

 

 
 

Figure III.2. Loadings and boundary conditions for the patch tests. 

0== yx u~u~

21000 mm/Nty −=  

21000 mm/Ntx −=  

21000 mm/Nt y =  

0=yu~

21000 mm/Nt =  

0=xu~

y 

x
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Case number 

and number of 
nodes 

Voronoi cells 

 

Case1: 4 nodes 

 

Case 4: 4 nodes 

                   

 

 

Case2: 45 nodes 

                      
 

 

 

Case3: 38 nodes 

 

Case 5: 38 nodes 

 

                            

Figure III.3. Voronoi cells for the patch tests 
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Table III.4. Results of the 5 patch tests with 28 /10 mmNE =  and  30.=ν  

Case Configu- 
ration Loading N 

11σ  
average 

)/( 2mmN  

22σ  
average 

)/( 2mmN  
12σ  average 

)/( 2mmN  L2 norm 

1 Square Simple 
tension 4 1000 -4.42E-12 1.11E-11 2.87E-16 

2 Rectangular 
regular cells 

Simple 
tension 45 2.94E-13 1000 -3.67E-12 5.11E-17 

3 Rectangular 
irregular cells 

Simple 
tension 38 -7.44E-12 1000 2.16E-11 9.97E-16 

4 Square Pure 
shear 4 1.88E-12 -3.99E-17 -1000 3.77E-16 

5 Rectangular 
irregular cells 

Pure 
shear 38 8.85E-12 7.13E-12 -1000 7.43E-16 

  

 

Table III.5. Results of the 5 patch tests with 28 /10 mmNE =  and  30.=ν  

Case Configu- 
ration Loading N 

11σ  
average 

)mm/N( 2

22σ  
average 

)mm/N( 2

12σ  average 

)mm/N( 2  
L2 norm 

1 Square Simple 
tension 4 1000 -4.42E-12 1.11E-10 2.87E-16 

2 Rectangular 
regular cells 

Simple 
tension 45 2.94E-12 1000 -3.67E-12 5.11E-17 

3 Rectangular 
irregular cells 

Simple 
tension 38 -1.44E-12 1000 5.16E-11 3.10E-16 

4 Square Pure 
shear 4 1.92E-12 -1.74E-13 -1000 1.77E-16 

5 Rectangular 
irregular cells 

Pure 
shear 38 1.37E-12 -4.64E-12 -1000 7.43E-16 

 

These results are computed with 2 integration points on each edge of the Voronoi cells 
(NP=2). 

Results with NP=9 were also computed but are not significantly different.  

It is seen that the patch tests are satisfied up to machine precision. 

For case 3, results for a nearly incompressible material with 490ν .= , 4990ν .= , 49990ν .=  
have also been computed. They are summarized in table III.6 that shows some decrease in the 
precision of the results. 
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Table III.6. Results of patch tests (case 3)  
for a nearly incompressible material 

ν  L2 norm 
0.3 3.10E-16 

0.49 5.14E-15 

0.499 1.95E-14 

0.4999 4.70E-13 

 

In fact, this is a problem linked with the deterioration of the conditioning of matrix [ ]M  in 
(III.60) [WILKINSON, JH. (1965), FRIED I. (1973)]. 

If there is a small error [ ]eM  on [ ]M  because of machine precision, the solution is modified 
and becomes{ } { }eqq + . 

According to [WILKINSON, JH. (1965)]: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−≤

M
M

C/
M
M

C
q
q eee 1                 (III.65) 

in which  is the L2 norm. 

If MM e << , this result becomes approximately: 

M
M

C
q
q ee ≤                   (III.66) 

where C  is the condition number of [ ]M . 

For a 3D solid discretized in tetrahedral finite elements of size h , it has been shown in 
[FRIED (1973)] that :  

( )( )νν 211

2

−+
=

−hcC                   (III.67) 

where c is a constant and h  is the size of  the elements. 

Althought this result has not been established in the frame of the natural neighbours method, a 
simple calculation shows that, when ν  changes from 490.  to 4990.  or 49990. , the error on 
the solution is multiplied by 10  or 100or 1000, which explains the results observed in table 
III.6. 

This shows that the patch tests can be passed also for nearly incompressible materials. 
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III.7.2. Pure bending 
Unit thickness and plane strain conditions are assumed. 

The loading and boundary conditions are shown on figure III.4. 

The left side is fixed horizontally by symmetry. 

In order to prevent the rigid body motion in the vertical direction, a small appendix is added to 
the left side and fixed both in the horizontal and the vertical directions. 

Figure III.5 illustrates the Voronoi cells. 

 

 

 

 

 

 

 

 

 

Figure III.4. Geometry and loading for the pure bending application 

 

Figure III.5. Voronoi cells for the pure bending application (222 nodes, random=3) 

This is a classical problem of the Theory of Elasticity, the analytical solution of which is 
known. The strain energy stored in the deformed beam is given by: 

dAUW
A

I ∫= 0                    (III.68) 

With 

I
h

YdAM
A

maxσ
σ == ∫   ;  

3
2 3

2 hdAyI
A

== ∫    ;  Y
I

Mσxx = ,           (III.69) 

the theoretical value of the stored energy becomes: 

0== yx u~u~  
0=xu~

0=xu~

h=50 mm 

y 

x 

mmL 500=  21000 mm/Nmin −=σ  

21000 mm/Nmax =σ  
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EI
)(LMdAtheory_W

A
ijijI

22 ν1
2
1εσ

2
1 −

=∫=               (III.70) 

On the other hand, from the numerical calculation, we get  

{ } { }∑=
=

N

K
K

KTK
I Anum_W

1
εσ

2
1                 (III.71) 

With MPaE 810= , 30ν .=  and the values of  Lh,,maxσ  (figure III.4), we get: 
JtheoryWI 8.75_ =  

In order to study the influence of the number of nodes and of their distribution, the following 
procedure has been developed: 

a. create a regular pattern of nodes with (nX+1) nodes in direction X and (nY+1) nodes in 
direction Y;  
the spacings of the nodes in directions X and Y are respectively:  

XX nL=Δ   ;  YY nh2Δ =  

b. move the interior nodes randomly about their previous position by the quantities: 

XrX drandomd Δ
5

=   ;  YrY drandomd Δ
5

=  where 5050 .d. r +≤≤−  is a uniformly 

distributed random number and 50 ≤≤ random is a user defined value.  

Nodes moving outside the domain are removed. 

The results of different calculations are given in table III.7 and summarized in figure III.6 
which shows that, with the same random value, the results of cases with a more regular 
Voronoi cell pattern are closer to the theoretical value. 

For the case 8,20,1.0 === nynxrandom , figure III.7 shows the stresses xσ  in the different 
Voronoi cells. 

 
Table III.7. Energy results for the pure bending test 

random = 0.1 
nX nY N (nb. of nodes) num_WI  (J) 
10 4 76 76.9 
15 6 140 76.5 
20 8 244 76.3 
20 16 399 76.0 

random = 3 
nX nY N (nb. of nodes) num_WI (J) 
10 4 78 80.7 
15 6 140 78.9 
20 8 222 77.8 
20 16 398 76.7 
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Figure III.6. Energy convergence curves for pure bending. 
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Figure III.7. Stresses xσ  ( 2mm/N )  in the different Voronoi cells. 

 

To study the effect of near incompressibility, the calculations have also been performed for 
4999.0 and 499.0 ,49.0=ν . 

In addition to the convergence on the energy, the convergence on the displacements has also 
been considered. 

To this end, the following norm has been used: 

 

random=3 

random=0.1 

theory 
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N*f

)uu(*)uu(
normL

max

N

i

num
i

analy
i

num
i

analy
i∑ −−

= =12              (III.72) 

where analy
iu  are the nodal displacements computed from the analytical solution while num

iu   
are the nodal displacements obtained by the present numerical method. 

2
2

2
2

2
ν1σ

2
ν1 L

Eh
)(

L
EI

)(Mf max
max

−
=

−
=  is the maximum theoretical displacement of the beam 

axis. 

N is the number of nodes. 

Figures III.8 and III.9 show the convergence curves of the displacements and of the energy for 
the different values of Poisson’s ratio. 

Although there is no formal proof, the results obtained in this section and in the preceding one 
tend to show that incompressibility locking is avoided in the present formulation. 

 

Convergence on displacements (random=3)

0.00E+00

5.00E-04

1.00E-03
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2.50E-03
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N
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nu=0.49
nu=0.499
nu=0.4999

 
Figure III.8. Displacements convergence for a nearly incompressible material. 
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Convergence of energy (random=3)
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error on 
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nu=0.4999

Figure III.9. Energy convergence for a nearly incompressible material. 

 
 

III.7.3. Square membrane with a circular hole 
The material parameters are:    2/200000 mmNE =  and  30.=ν  

The geometry and the loading conditions are defined in figure III.10. 

Unit thickness and plane strain conditions are assumed. 

The strain energy convergence has been studied for different numbers of integration points on 
the edges of the Voronoi cells (NP) and different numbers of nodes (N). 

It has been compared with the results of the finite elements method (FEM). 

For the finite element analyses, classical 4 nodes isoparammetric elements have been used 
with 4 Gauss integration points for the numerical integrations on the area of the elements. The 
numbers of nodes used (Nel) are approximately the same as for the calculations performed with 
the present approach. 

Table III.8 gives the results. 
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The corresponding curves are drawn on figure III.11. 

  

 

 

 

 

 

 

 

 

 

 

 

Figure III.10.a. Square membrane with a circular hole: geometry and loading.  

 

 

 

 

 

 

Figure III.10.b. Square membrane with a circular hole: studied model. 
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Table III.8. Strain energy (J) for the square membrane with a circular hole 

Present method Finite elements 

N NP=1 NP=2 NP=10 Nel NP=4 
36 290614 285524 286084 33 238823 

121 284496 282707 282874 119 276975 

441 281741 281070 281146 445 279986 

1681 280715 280517 280542 1645 280100 

 

 

Figure III.11. Square membrane with a circular hole.  
Strain energy convergence. 

It is clearly seen that the present approach converges from above while the finite element 
method converges from below in the present case. It is also made clear that, for the same 
number of nodes, the present approach is closer to the converged value. 

The convergence of the stress concentration coefficient is also studied. It is defined as: 

 
     where        
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The values are given in tables III.9 and III.10. Figure II.12 illustrates the convergence of k. 
 

Table III.9. Square membrane with a circular hole 
Maximum stress near the hole )mm/N(max,x

2σ  

N NP=1 NP=2 NP=10 
36 3663.72 3577.28 3559.7 
121 3815.36 3749.17 3751.61 
441 3910.19 3891.34 3890.16 

1681 3993.57 3995.68 3993.17 
 

Table III.10. Square membrane with a circular hole 
Stress concentration coefficient 

N NP=1 NP=2 NP=10 
36 2.4425 2.3849 2.3731 
121 2.5436 2.4994 2.5011 
441 2.6068 2.5942 2.5934 

1681 2.6624 2.6638 2.6621 
 

 
Figure III.12. Square membrane with a circular hole. 

Stress concentration coefficient. 
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Finally, figure III.13 illustrates the evolution of the stress distribution with the number of 
nodes. 
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Figure III.13. Square membrane with a hole : stress distribution 
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III.8. Conclusion 
The Fraeijs de Veubeke variational principle has been used to develop a natural neighbours 
method in which the displacements, stresses, strains and surface support reactions can be 
discretized separately. 

It has been shown that the additional degrees of freedom linked with the assumed stresses and 
strains can be eliminated at the level of the Voronoi cells, finally leading to a system of 
equations of the same size as in the classical displacement-based method. 

With the present approach, in the absence of body forces, the calculation of integrals over the 
area of the domain is avoided: only integrations on the edges of the Voronoi cells are required, 
for which classical Gauss numerical integration with 2 integration points is sufficient to pass 
the patch test. In addition, the derivatives of the nodal shape functions are not required in the 
resulting formulation. 

Hence, the properties of the “stabilized nodal integration method” are recovered using a 
different approach. 

These two methods present a clear advantage over more classical methods using integrations 
over the area of the domain with the help of a sometimes very high number of integration 
points. 

Concerning the boundary conditions, displacements can be imposed in 2 ways. 

• In the spirit of the FdV variational principle, boundary conditions of the type ii u~u =  
on uS can be imposed in the average sense; hence, any function )s(u~u~ ii =  can be 
accommodated by the method; 

• However, since the natural neighbours method is used, the interpolation of 
displacements on the solid boundary is linear between 2 adjacent nodes. So, if the 
imposed displacements iu~ are linear between 2 adjacent nodes, they can be imposed 
exactly. This is obviously the case with 0=iu~ . In such a case, it is equivalent to 
impose the displacements of these 2 adjacent nodes to zero. 

On the other hand, the patch tests and the calculations on the bending case tend to show that 
the present method allows solving problems involving nearly incompressible materials 
without locking. 

 
 


