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Summary 
It is assumed that the reader is familiar with the classical notions of Solid Mechanics, 
Plasticity and Finite elements. These notions will not be recalled here. 

This chapter briefly introduces some of the less classical notions that will be used throughout 
this thesis. 

The most important are:  

• the notions of Delaunay tessellation, Voronoi cells and natural neighbours that 
constitute the basic tools of the Natural Neighbours Method, also called the Natural 
Elements Method (NEM); 

• the classical approach of the NEM based on the virtual work principle; 

• the Fraeijs de Veubeke functional and variational principle. 

We do not intend to cover these subjects in a very detailed manner. 

The purpose is to provide the reader with some basic information in a simple didactic way and 
to examine the state of the art on these aspects.  

For more information, a fairly complete presentation of the NEM is available in a recent 
monography [CHINESTA et al.,2009]. 

On the other hand, although Linear Elastic Fracture Mechanics (LEFM) is a basic science that 
can be considered as a part of Solid Mechanics, since chapters V and VI of this thesis propose 
new approaches for problems of LEFM, some of the basic ingredients of this science are also 
briefly recalled.  
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II.1. The tools of the Natural Neighbours Method (NEM) 
 
II.1.1. Delaunay tessellation, Voronoi cells and natural neighbours 
II.1.1.1. Delaunay tessellation 
Consider a 2D domain containing a set of nodes, some of which can be located on the domain 
contour. 

A Delaunay triangle is a triangle the corners of which are 3 nodes of the set and has the 
property that its circumcircle does not contain any other node than the 3 nodes defining its 3 
corners. 

The Delaunay tessellation of the domain is the set of the Delaunay triangles constructed with 
the nodes of the domain. 

There are many methods to construct the Delaunay tessellation on a given set of nodes. 

An excellent review of these methods is given in [SHEWCHUK J. R. (1996)]. 

Free software for the construction of a Delaunay tessellation is available on Internet.  

As an example, figure II.1 shows a domain with a set of nodes and figure II.2 gives the 
corresponding Delaunay tessellation. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.1. 

Domain contour and nodes 

 

In this example, the interior 
nodes are randomly distributed. 

There are 10 nodes on the 
contour and 15 nodes inside. 
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Figure II.2. 

Delaunay tessellation 
constructed on the domain of 
figure II.1 

 

There are 38 Delaunay triangles. 

 

II.1.1.2. Voronoi polygons, Voronoi cells and natural neighbours 
a. Case of a convex domain 

For simplicity, consider the case of figure II.2. 

The edges of the Voronoi polygon associated with a node I are simply the segments joining 
the successive centers of the circumcircles of the Delaunay triangles sharing node I. 

The Voronoi cells are the parts of the Voronoi polygons inside the domain contour. 

TheVoronoi cell associated with a given node I  has the following property:  

for any point ),( 21 XXX =  inside this cell, we have:   

IJJXdIXd ≠∀< ),(),(          (II.1) 

where ),( BAd  is the distance between 2 points A and B. 

Figure II.3 shows the Voronoi polygons associated with the nodes of the domain of figure 
II.1. 

Figure II.4 shows the corresponding Voronoi cells. 

A Voronoi cell having at least 1 edge belonging to the domain contour is called an exterior 
Voronoi cell.  

A Voronoi cell no edge of which belongs to the domain contour is called an interior Voronoi 
cell. The corresponding node is inside the domain.  

Figure II.5 shows this classification for the treated example. 
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Figure II.3 also introduces the notion of natural neighbours. 

The k corners of the Voronoi polygon associated with a node I are the centers of the 
circumcircles of k Delaunay triangles sharing node I.  

The k other nodes of these triangles are defined as the natural neighbours of node I  because 
no other node of the domain is closer to node I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.3.   Voronoi polygons associated with the nodes of figure II.1. 

 

Example of a Voronoi 
polygon associated with a 
node   : the 5 edges are the 
segments joining the 5 
centers of the circumcircles 
of the 5 Delaunay triangles 
having  node     in common. 
The other nodes      of these 
5 triangles are called the 
natural neighbours of node  
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Figure II.4.   Voronoi cells associated with the nodes of figure II.1. 

 

The Voronoi polygon 
associated with this node is 
a triangle. The Voronoi 
cell associated with the 
same node is the shaded 
quadrilateral, i.e. the part 
of the triangle inside the 
domain contour. 
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               10 exterior Voronoi cells corresponding to the 10 contour nodes 

                7 exterior Voronoi cell corresponding to 7 of the 15 interior nodes 

                8 interior Voronoi cell corresponding to 8 of the 15 interior nodes 

Figure II.5.   Classification of the Voronoi cells associated with the nodes of figure II.1. 
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b. Case of a non convex domain 

Let us consider the example of figure II.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.6. 

This example differs from that 
of figure II.1 by the addition of 
the 2 nodes       , which makes 
the domain non convex. 

 

For the case of non convex domains (or discontinuous domains or multi-connected domains), 
the definition of a Voronoi cell is extended as follows: 

TheVoronoi cell associated with a given node I  has the following property:  

for any point ),( 21 XXX =  inside this cell, we have:   

IJ)J,X(d)I,X(d ≠∀< , 0=∩→ SS IX   , 0=∩→ SS JX     (II.2) 

where BAS →  means the segment going from A to B and S is the contour of the domain. 

Note that for discontinuous or multi-connected domains, there are several domain contours 
iS , i=1,m  but we continue using the symbol S  to denote the set of all these contours:  

mS.....SSS ∪∪∪= 21  

For the example treated, figure II.7 shows the Delaunay triangulation obtained. 

Note that the circumcircle of triangle “ni-nj-nk” includes node “s”, which is valid because of 
the properties of the Voronoi cells in the case of a non convex domain. 

The Voronoi cells for the example treated are shown on figure II.8. 
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Figure II.7. 

The Delaunay tessellation of the 
non convex domain. 

There are 40 Delaunay triangles. 

 

 

 

 Figure II.8. 

The Voronoi cells of the non 
convex domain 

                

               12 exterior Voronoi cells 
corresponding to the 12 contour 
nodes 

 

               7 exterior Voronoi cells 
corresponding to 7 of the 15 
interior nodes 

 

                8 interior Voronoi cells 
corresponding to 8 of the 15 
interior nodes 

ni 
nk 
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II.1.1.3. Uniqueness 
For a given domain and a given set of nodes, the Delaunay tessellation may be not unique. 

As an example, for the rectangular domain with 4 nodes of figure II.9, we have 2 possible 
Delaunay tessellations as shown in figure II.10. 

However, for a given domain and a given set of nodes, the set of Voronoi cells is unique. 

For the present example, it is illustrated on figure II.11. 

 

 

 

 

 

 

 

 

 

Figure II.9. 

Rectangular domain with 4 
nodes 

 

 

 

 

 

 

 

 

 

 

 

Figure II.10.a. 

Rectangular domain with 4 
nodes. 

First solution for the Delaunay 
tessellation. 

 

 

 

 

 

 

 

 

 

 

Figure II.10.b. 

Rectangular domain with 4 
nodes. 

Second solution for the 
Delaunay tessellation. 
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Figure II.11. 

Rectangular domain with 4 
nodes. 

Unique solution for the set of 
Voronoi cells. 

 

 
II.1.2. Laplace interpolation 
II.1.2.1. Definition 

Let J
iu be the displacement components of node J. 

As usual, the displacement field in the domain can be interpolated by 

∑
=

Φ=
N

J

J
iJi uu

1
           (II.3) 

where JΦ  is an interpolation function associated with node J. 

It can be defined in many different ways. 

In the finite element method, the various choices for JΦ  use both the notion of nodes and the 
notion of sub-domains (the finite elements).   

In this thesis, we use the Laplace interpolation function [BELIKOV V. V. et al. (1997), 
HIYOSHI H. and SUGIHARA K. (1999)] that only uses the notion of nodes. For the 
calculation of this function, the Voronoi cells are used and it could be argued that these cells 
constitute a division of the domain into sub-domains. However, these cells are uniquely 
defined by the nodes, which is not the case with finite elements. 

II.1.2.2. Laplace interpolation function for a point X  inside the domain 

The Laplace interpolation function )X(JΦ associated with a node J  is positive if point X is 
close to node J and is equal to 0 if point X is far enough from J.  

More precisely, the domain on which 0>Φ )X(J  is explained on figure II.12. 

It consists of the union of the circumcircles of the Delaunay triangles sharing node J. 

To calculate the Laplace interpolation functions JΦ , we use the Bowyer-Watson algorithm 
[BOWYER A.(1981), WATSON D.F. (1981)]. 

It consists of the 4 steps described below and illustrated by figures II.13a to d.  
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         Node J 

                        Domain on which the Laplace function JΦ is non zero 

                        If )X,X(X 21  is inside this domain, 0)( >Φ XJ  

                                                                          else, 0)( =Φ XJ  

Figure II.12.   Definition domain of the Laplace interpolation function. 
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Bowyer-Watson algorithm: Step 1 

Find the circumcircles inside which point ),( 21 XXX  is located. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Point ),( 21 XXX  

                        The 3 circumcircles inside which point ),( 21 XXX  is located 

                         

Figure II.13.a.   Bowyer-Watson algorithm: step 1. 
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Bowyer-Watson algorithm: Step 2 
Find the corresponding Delaunay triangles and delete the internal edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Point ),( 21 XXX                    The natural neighbours of point ),( 21 XXX  

                        The 3 triangles corresponding to the 3 circumcircles found in step 1  

                         

Figure II.13.b.   Bowyer-Watson algorithm: step 2. 
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Bowyer-Watson algorithm: Step 3 

In the set containing the initial nodes plus point ),( 21 XXX , construct the Voronoi polygon 
associated with point ),( 21 XXX . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Point ),( 21 XXX                    The natural neighbours of point ),( 21 XXX  

                        The Voronoi polygon associated with point ),( 21 XXX  

                         

Figure II.13.c.   Bowyer-Watson algorithm: step 3. 
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Bowyer-Watson algorithm: Step 4 

Compute 
)(
)()(

Xh
XsX

I

I
I =α            (II.4) 

where Ih  is the distance between point X  and its natural neighbour I and Is  is the length of 
the edge of the Voronoi polygon perpendicular to X-I. 

Then 

∑
=Φ

)(
)()(
X

XX
I

I
I α

α               (II.5)       

is the value of the Laplace interpolation function associated with node I computed at point X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         Point ),( 21 XXX                    The natural neighbours of point ),( 21 XXX  

                        The Voronoi polygon associated with point ),( 21 XXX  

                         

Figure II.13.d.   Bowyer-Watson algorithm: step 4. 
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II.1.2.3. Laplace interpolation function for a point X on the domain contour 
Consider point X belonging to the contour, for example between nodes 14 and 16 of figure 
II.14, such that its natural neighbours are nodes 14, 15, 16.  The Voronoi polygon associated 
with X is indicated on figure II.14. 

It is seen that s14 = s16 = ∞ . From the definition of the Laplace interpolation function, it is 
easy to show [CUETO E. et al. (2003)] that: 

         ξ)X( −= 1Φ14                   ξ)X( =16Φ                             16140Φ ,K,)X(K ≠=  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.14.   Laplace interpolation functions for point X 
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Consider now the case of figure II.15. 

For the point X       on a boundary near a non convex region, the natural neighbours can be the 
points     . 

Points 6, 7, 26 are natural neighbours for any ξ . 

Points 25, 27 are natural neighbours or not according to the value of ξ  (for the particular 
position of X on the figure, they are not). 

Note that, although the circumcircle of triangle 3-4-6  includes point X,  points 3 and 4 are not 
natural neighbours of X. 

Figure II.16 shows the Delaunay triangles in the vicinity of X. Point X has been added to the 
points of the domain to construct these triangles. The Voronoi polygons associated with this 
Delaunay triangulation are also shown. 

It is seen that, for the chosen position of X, the polygon associated with X has common edges 
with the Voronoi polygons associated with points 6, 7, 26. This simply means that, for the 
chosen position of X,  its natural neighbours are points 6, 7, 26 . 

It is also seen that the Voronoi polygon associated with X is unbounded. 

Using the same arguments as above, it is easy to show that the Laplace interpolation functions 
are: 

ξ)X( −=1Φ26  

ξ)X( =6Φ  

2660Φ ,K,)X(K ≠=  

So, even in the case of a non convex domain boundary, the Laplace interpolation functions for 
a point X on this boundary are linear functions of the position ξ  of the point. 

II.1.2.4. Properties of the Laplace interpolation function 
It is easily verified that the Laplace interpolation functions have the following properties: 

Kronecker delta property   

1Φ0 ≤≤ J ,   IJ
II

J δ)X,X( =21Φ         (II.6) 

Partition of unity property 

∑ =
=

N

J
J )X,X(

1
21 1Φ           (II.7) 

Linear completeness 

i

N

J
J

J
i XXXX∑

=

=Φ
1

21 ),(          (II.8) 
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Figure II.15. Interpolation on a boundary near a non convex region. 
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Figure II.16. Interpolation on a boundary near a non convex region. 
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II.1.2.5. Example of Laplace function 

For the domain of figure II.17, the Laplace function JΦ  associated with node J is illustrated 
at figure II.18 (from ILLOUL A. L. , 2008). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure II.17. A simple domain to illustrate a Laplace function. 

 

 
 

Figure II.18. Laplace function associated with node N of figure II.17. 
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Definition domain of JΦ  
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II.2. The classical Natural Element Method 
The natural neighbours method or natural element method (NEM) [SAMBRIDGE M. et 
al.(1996), SUKUMAR N. (1998), CUETO E. et al. (2003)] can be considered as one of the 
many variants of the meshless methods [NAYROLES B. et al. (1992), BELYTCHKO T. et 
al.(1996-a), LI K. and LIU W.K. (2002)]. 

Classically, the development of these methods is based on the virtual work principle.  

A set of nodes are distributed over the domain to be studied and the displacement field is 
discretized with the help of interpolation functions that are not based on the finite element 
concept but only based on the nodes.  

Typically, for a 2-dimensional elastic solid occupying the domain A , one has the following 
steps. 

II.2.1. Virtual work principle 

0=δ−δ−δεσ ∫∫∫ dSuTdAuFdA i
S

ii
A

i
A

ijij
t

       (II.9) 

)
X
u

X
u(

i

j

j

i
ij ∂

∂
+

∂
∂

=
δδ

2
1δε                   (II.10)  

are the virtual strains associated with the virtual displacements iuδ  

ijσ  are the Cauchy stresses deduced from the actual displacements iu  by Hooke’s law: 

klijklij C ε=σ                       (II.11) 
with  

)
X
u

X
u(ε

k

l

l

k
kl ∂

∂
+

∂
∂

=
2
1 .                   (II.12) 

iT  are the surface tractions and iF  the body forces applied to the solid. 

tS is the part of the boundary where surface tractions are applied. 

Usually, displacements  iu~   are imposed on the part uS  of the solid boundary. 
 
II.2.2. Approximation of the displacement field 

∑
=
Φ=

N

J

J
iJi uu

1
                    (II.13) 

)X,X(JJ 21Φ=Φ   are the approximation functions 
J
iu are the nodal displacements 

There are many different methods to choose this approximation.  

Sometimes, it can be an interpolation as in the natural element method, i.e. the functions 
JΦ satisfy the Kronecker delta property (II.6), the partition of unity property (II.7) and the 

linear completeness property (II.8). 

But in some cases, as for the moving least square approximation [LANCASTER P. and 
SALKAUSKAS K. (1990)], the partition of unity property is not fulfilled so that the 
approximate nodal values are not equal to the exact nodal values: 
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K
i

N

J

J
i

JJ
J

KK
i uu)X,X()X,X(u ≠∑=

=1
2121 Φ                  (II.14) 

 
II.2.3. Discretized virtual work principle 
Introducing the discretized displacement field in the virtual work principle leads to the 
following classical development:  

0
11

=δ−σδ ∫ ∑∑
== A

J
i

N

J

J
i

J
jij

N

J

J
i PudABu   ⇒   ∫ =σ

A

J
i

J
jij PdAB                (II.15) 

 
dSTdAFP J

S
iJ

A
i

J
i

t

Φ+Φ= ∫∫                    (II.16) 

are the approximate (discretized) nodal loads; 
J
jB  is the matrix relating the virtual strains to the virtual nodal displacements: 

∑
=

δ=δε
N

J

J
i

J
jij uB

1
                    (II.17) 

This eventually leads to an equation system in which the nodal displacements are the 
unknowns. 

With this approach, two points deserve special attention in meshless methods: the numerical 
evaluation of the integrals over the domain A  [GONZALEZ D et al. (2004)] and the 
enforcement of boundary conditions of the type ii u~u =  on uS . 

For the numerical integration, the most common practice is to use a “background mesh”, that 
is to divide the domain A  in sub-domains of simple shape (usually triangles and quadrangles) 
in which classical numerical quadrature rules can be applied. Usually, this requires a large 
number of integration points. 

More sophisticated methods [ATLURI S.N. et al.(1999), ATLURI S.N. and ZHU T. (2000), 
CUETO E. et al. (2003)] take account of the shape of the support of the approximation 
function, i.e. of the area where this function is not equal to zero.  

Generally, such methods do not give excellent results for the patch test [CUETO E. et al. 
(2003)]. 

On the other hand, a “stabilized conforming nodal integration for Galerkin meshfree methods” 
[CHEN J. S. et al. (2001), YOO J. et al. (2004)] has been proposed, the basic idea of which 
consists in averaging the strains klε  in the vicinity of a node I over the Voronoi cell IA  
associated with this node: 

∫∫ +=ε=ε
II C

Ikllk
I

I
A

kl
I

kl dC)uNuN(
A

dA
A 2

11                 (II.18) 

where IC  is the contour of the Voronoi cell IA  and )N,N(N 21= is the unit outward normal 
to IC . 

This idea has been successfully used [CUETO E. et al. (2003), YOO J. et al. (2004), 
YVONNET J. (2004), YVONNET J et al.(2004)]. Excellent results were obtained. 
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In particular, in [YVONNET J et al.(2004)], the stresses in the Voronoi cells are deduced 
from the averaged strains and the application of the divergence theorem allows avoiding 
numerical integration on the Voronoi cell and replaces it by an integral on its contour.  

In [YAGAWA G. and MATSUBARA H. (2006)], an “enriched free mesh method” based on 
Heilinger-Reissner principle is proposed in which an hypothesis on the strains in a cluster of 
triangular finite elements surrounding a node is made. To some extend, this approach is also a 
kind of strain averaging procedure in the vicinity of a node. 

For the enforcement of boundary conditions of the type ii u~u =  on uS , there is a basic 
problem if the approximation functions JΦ  do not possess the linear completeness property. 
Indeed, in such a case, the approximated nodal displacements at a node K  

∑=
=

N

J

J
i

KK
J

KK
i u)X,X()X,X(u

1
2121 Φ                  (II.19) 

cannot be equal to a displacement K
iu~  imposed to this node. 

Nevertheless, in [NAYROLES B. et al. (1992)], the condition K
i

N

J

J
i

JJ
J u~u)X,X( =∑

=1
21Φ  is 

imposed as an approximation. 

Many different solutions have been proposed to remedy this difficulty: connexion with finite 
elements [KRONGAUZ Y. and BELYTCHKO T. (1996), BELYTCHKO T. et al.(1996)], 
modified variational principle with penalty [BELYTCHKO T. et al. (1994-b), GAVETTE L., 
et al. (2000)], modified variational principle with [BELYTCHKO T. et al. (1994-a)] or 
without [LU Y. et al.(1994)] Lagrange multipliers, introduction of singular weighting 
functions [KALJEVIC I. and SAIGAL S. (1997)], … 

On the other hand, the difficulty disappears if )X,X( 21Φ varies linearly when point  
)X,X(X 21=  moves between 2 neighbour nodes belonging to the contour. 

We have seen in section II.1.2.2. above that it is the case when the Laplace interpolation 
function is adopted for )X,X( 21Φ . 

It is also the case if the Sibson interpolation function [SIBSON R. (1980)] is used. 
 
II.2.4. Conclusion 
The classical natural element method based on the virtual work principle is a powerful tool 
that has been developed initially in the domain of 2D linear elastic problems and subsequently 
extended to most domains of Solid Mechanics: non linear materials and large strains 
[YVONNET J. (2004), LORONG PH. et al. (2006), ILLOUL A. L. (2008)], 3D problems 
[ILLOUL A. L. (2008)], … 
Its main advantages are [CHINESTA F. et al, 2009]: 

• the quality of interpolation is optimal for a given distribution of nodes: indeed, this 
interpolation, via the Delaunay triangles and the Voronoi cells, is based on the notion 
of natural neighbours, which means that the interpolation function associated with a 
given node takes account in the best possible way of the distribution of the other nodes 
in its vicinity; 

• the interpolation functions become piecewise linear between the nodes of the domain 
contour, which provides the possibility to impose boundary conditions in the same 
way as with the finite element method; 
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The NEM can be extended to 3D problems.  

In particular, in [ILLOUL A. L. (2008)], it is shown that for 3D linear elastic problems,  

• this method gives better results than the finite element method (same quality of results 
with shorter computation time or results of better quality with same computation 
time); 

• this method gives results of the same quality as the stabilized finite element method 
[LIU G. R. et al, 2007-a, 2007-b] 

 
II.3. The Fraeijs de Veubeke (FdV) variational principle 

II.3.1 Historical note 
In his original paper of 1954 [HU H. C. (1954)], HU Hai Chang proposed the following 
functional for linear elasticity problems: 
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with A the area of the domain (i.e. the 2D solid),  S the contour of the domain, jN  the 
outward normal to this contour, tS  and uS  the parts of S on which surface tractions iT  and 
displacements iu~  are respectively imposed. 

This functional has 3 fields: 

),,u( ijiji εΣΠΠ =  

iu  : the displacement field 

ijΣ  : the stress field 

ijε  : the strain field 
The variable )(W ijε  is the energy density function from which “constitutive stresses” can be 
deduced by 
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It is easy to show that (II.20) is equivalent to: 
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In 1955, this functional was also proposed independently by [WASHIZU K. (1955)]. 

It is generally known as the HU-WASHIZU functional. 
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However, an article published in 2000 [FELIPPA C. A. (2000)] shows that a more general 
functional had been proposed as early as 1951 by FRAEIJS de VEUBEKE [FRAEIJS de 
VEUBEKE B. M. (1951)]. 

This functional can be written as follows. 
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It has an additional independent field ir  that can be identified as assumed surface support 
reactions on uS . 

It is this functional that will be used in the present thesis as the starting point of an original 
approach of the natural elements method. 

If it is assumed a priori that the surface support reactions on uS  are in equilibrium with the 
assumed stresses ijΣ , the HU-WASHIZU functional is recovered as a particular case of the 
FRAEIJS de VEUBEKE functional.  

 
II.3.2. The Fraeijs de Veubeke variational principle 
 
The variation of  )r,,,u( iijiji εΣΠ=Π can be written as follows: 
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The FdV variational principle simply postulates that the stresses, strains, displacements and 
support reactions that actually appear in the solid (loaded by the surface tractions iT , the body 
forces iF  and submitted to the imposed displacements iu~ ) make the FdV functional 
stationary. 

Hence, these stresses, strains, displacements and support reactions are the solution of the 
equation: 
  

0654321 =Π+Π+Π+Π+Π+Π=Π δδδδδδδ                 (II.31) 
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The first term of (II.26) can be integrated by parts: 
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with 
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For the linear elastic case, the following classical equations are used: 
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and 
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where Cijkl  is the classical Hooke’s tensor. 

Introducing these results in (II.31), we get: 
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which constitutes the FdV variational principle. 

The corresponding Euler equations are summarized in table II.1. 

 

Table II.1. Euler equations of the FdV variational principle 

Variation Equation Comments 

ijδε in A ijij Σ=σ  The assumed stresses are identified as the 
constitutive stresses inside the domain 

ijΣδ in A ij
i

j

j

i )
X
u

X
u( ε

2
1

=
∂

∂
+

∂
∂  

Compatibility between the assumed strains 
and the assumed displacements inside the 
domain 

irδ on Su ii uu ~=  
Compatibility between the assumed 
displacements and the displacements 
imposed on the part Su of the domain contour 

iuδ  in A 0
Σ

=+
∂
∂

i
j

ji F
X

 Equilibrium inside the domain between the 
assumed stresses and the body forces 

iuδ  on St ijij TN =Σ  Equilibrium on the part St  of the domain 
contour where surface tractions are imposed 

iuδ  on Su ijij rN =Σ  Equilibrium on the part Su  of the domain 
contour where displacements are imposed 
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This table shows that all the pertinent equations of linear elastic Solid Mechanics are 
recovered as the solution of (II.31). 

Obviously, this validates the FdV variational principle. 

 
II.4. Linear Elastic Fracture mechanics (LEFM) 

II.4.1. Introduction 
The elements of fracture mechanics recalled hereafter are classical and can be found in any 
textbook on fracture mechanics. 

The goal of this section is just to present the notions and formulae that will be used in 
chapters V and VI of this thesis to make their redaction simpler and allow the reader to 
concentrate on the original approaches developed in those chapters. 

The presentation is limited to the 2D case for brittle materials that are elastic up to fracture. 

II.4.2. Total potential energy 
The notions of energy play an important role in LEFM. The following ones are used: 

Potential energy of the applied forces:  dSuTdAuFV i
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Total potential energy :     dSuTdAuFdAVW i
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II.4.3. Energy release rate 
In a solid in which a crack is present, the energy release rate G is defined by 

cdA
dG Π

−=                      (II.40) 

where cA  is the cracked area. It is an expression of the decrease of the potential energy when 
the area of the crack increases.  

The example of figure II.19 shows that G is a function of the crack area, of the loading and of 
the elastic properties of the material. 
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The dimensions of the plate are very big with respect 
to the crack dimension 2a. 

Its thickness is: t 

The material is linear elastic with: 
       Young’s modulus   E 
        Poisson’s ratio       ν   

It is loaded by stresses ∞σ  as indicated. 
In plane stress state, it can be shown that: 

E
σaπG

22 ∞=   (for the 2 crack tips), that is 

E
σaπG

2
∞=  for each crack tip 

In plane strain state, one has 
E

σaπ)ν(G
221 ∞−

=  

 

Figure II.19. Infinite elastic plate with a crack 

II.4.4. Fracture modes 
In 2D, there are 2 main fracture modes shown in figure II.20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.20.a. Mode I: opening mode Figure II.20.b. Mode II: sliding mode 
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II.4.5. Stress intensity factors 
The stress distribution near the crack tip can be expressed in a local reference system )θ,r(  
shown on figure II.21. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure II.21.a. Mode I: crack tip coordinates Figure II.21.b. Mode II: crack tip coordinates 

 

We consider a crack of length 2a (on figure II.21, only a quarter of the domain is represented) 
submitted either to mode I loading or to mode II loading. 

The stress fields near the crack ( <<<r ) tip are approximately given by [WESTERGAARD, 
H.M. (1939)]: 
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for mode II:  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

θθ
−

θ

θθθ

θθ
+

θ
−

π
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

σ
σ
σ

)sinsin(cos

cossincos

)coscos(sin

r
K II

2
3

2
1

2

2
3

22

2
3

2
2

2

2
12

22

11

             (II.42) 

These stresses are valid for both plane stress and plane strain conditions. 

The displacement fields near the crack tip are given by: 
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for mode I:  
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for mode II:  
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IK  and IIK  are the stress intensity factors of modes I and II respectively. They are given by: 

aπσKI ∞=                      (II.47) 

aπτKII ∞=                      (II.48) 

So, the general expression of stresses near the crack tip is: 
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It is also possible to calculate the energy release rate for the 2 modes. 

The results are: 
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These results are based on the hypothesis that the crack grows in its own direction.  
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II.4.6. The J integral 
Let Ω  be a domain enclosed in a contour Γ  around the crack tip as indicated on figure II.22. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure II.22. The J integral 

 

The total potential energy corresponding to this domain is: 
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It can be shown that 
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ΩG  is the release rate of the potential energy ΩΠ . 

If: 

• the lips of the crack are not loaded 

• the crack is straight between points 1 (beginning and end of Γ ) and 2 (crack tip) 

then, it can be proven that ΩJ  is independent of the chosen contour Γ . 

Consequently, we may write: 
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So, the J integral can be used to calculate the energy release rate and, subsequently, the stress 
intensity factors. 
 
 
II.5. Conclusion 
The 2 basic tools presented above, i.e. the Natural Element Method (NEM) and the FRAEIJS 
de VEUBEKE (FdV) variational principle will appear in each subsequent chapter of the 
present thesis. 

The starting point of the thesis is the observation that the FdV variational principle, with its 4 
independent fields iijiji r,,,u εΣ , offers a lot of flexibility to choose discretization hypotheses 
on these fields for the numerical solution of Solid Mechanics problems.. 

Hence, an original approach of the NEM will be developed on the basis of the FdV variational 
principle instead of the virtual work principle. 

This approach will be first explored for linear elastic problems (chapter III). 

Then, it will be extended to materially non linear problems (chapter IV) and to linear fracture 
mechanics problems (chapter V). 

Finally, in chapter VI, by analogy with the eXtended Finite Element Method (XFEM), an 
eXtended Natural Element Method (XNEM) will be proposed for linear fracture mechanics. 

 

 


