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Summary 
In this chapter, the natural neighbours method is extended to the domain of 2D Linear Elastic 
Fracture Mechanics (LEFM) using an approach based on the FRAEIJS de VEUBEKE 
variational principle which allows independent assumptions on the displacement field, the 
stresses filed, the strain field and the surface distributed support reactions field. 

The 2D domain contains N nodes (including nodes on the domain contour and nodes located 
at each crack tip) and the N  Voronoi cells corresponding these nodes are built.  

The cells corresponding to the crack tip nodes are called Linear Fracture Mechanics Voronoi 
Cells (LFMVC). The other ones are called Ordinary Cells (OVC). 

A node is located at the crack tip and, in the LFMVC containing this node, the stress and the 
strain discretizations include not only a constant term but also additional terms corresponding 
to the solutions of LEFM for modes 1 and 2 [WESTERGAARD, H.M. (1939)]. 

The following discretization hypotheses are admitted: 

1. The assumed displacements are interpolated between the nodes with the Laplace 
interpolation function. 

2. The assumed support reactions are constant over each edge K of Voronoi cells on 
which displacements are imposed  

3. The assumed stresses are constant over each OVC   

4. The assumed strains are constant over each OVC     

5. The assumed stresses are assumed to have the distribution corresponding to modes 1 
and 2 in each LFMVC 

6. The assumed strains are assumed to have the distribution corresponding to modes 1 
and 2 in each LFMVC 

Introducing these hypotheses in the FdV variational principle produces the set of equations 
governing the discretized solid. 

In this approach, the stress intensity coefficients are obtained as primary variables of the 
solution. 

These equations are recast in matrix form and it is shown that the discretization parameters 
associated with the assumptions on the stresses and on the strains can be eliminated at the 
Voronoi cell level so that the final system of equations only involves the nodal displacements, 
the assumed support reactions and the stress intensity coefficients. 

These support reactions can be further eliminated from the equation system if the imposed 
support conditions only involve displacements imposed as constant (in particular 
displacements imposed to zero) on a part of the solid contour. 

The present approach has also the following properties. 

In the OVCs 

1. In the absence of body forces, the calculation of integrals over the area of the domain 
is avoided: only integrations on the edges of the Voronoi cells are required.  

2. The derivatives of the Laplace interpolation functions are not required. 
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In the LFMVCs,  

1. Some integrations on the area of the LFMVCs are required but they can be calculated 
analytically. 

2. The other integrals are integrals on the edges of the LFMVCs 

3. The derivatives of the Laplace interpolation functions are not required 

Several applications are used to evaluate the method. 

Patch test, translation test, mode 1 tests, mode 2 tests and single edge crack test confirm the 
validity of this approach. 
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V.1. Introduction 
In chapter III, starting from the Fraeijs de Veubeke (FdV) variational principle, a new 
approach of the natural neighbours method has been developed for problems of linear 
elasticity. 

It has been extended, in chapter IV, to materially non linear problems.  

In the absence of body forces ( 0=iF ), it has been shown that for both cases: 

• the calculation of integrals of the type dA
A
∫ •  can be avoided; only numerical 

integrations on the edges of the Voronoi cells are performed;  

• the derivatives of the Laplace interpolation functions are unnecessary;  

• boundary conditions of the type ii u~u =  on uS can be imposed in the average 
sense in general and exactly if iu~  is linear between two contour nodes, which 
is obviously the case for 0=iu~ ; 

• incompressibility locking is avoided. 

The motivation of the present study is to explore if this approach can be extended to solve 
problems of Linear Elastic Fracture Mechanics (LEFM).  

Indeed, in Linear Elastic Fracture Mechanics, the stress intensity factors play a central role 
and, since the FdV variational principle allows discretizing the stresses and the strains 
independently of the assumptions on the displacement field, it seems logical and elegant to 
take advantage of this flexibility and to introduce, near the crack tips, stress and strain 
assumptions inspired from the analytical solution provided by the Theory of Elasticity 
[WESTERGAARD, H.M. (1939)]. 

However, the properties that the numerical calculation of integrals of the type dA
A
∫ •  could be 

avoided, that the derivatives of the Laplace interpolation functions were unnecessary and that 
incompressibility locking was also avoided resulted from the assumption of a constant stress 
field and a constant strain field in each of the Voronoi cells.  

It is not obvious that these properties still hold with the non constant assumptions on the 
stresses and the strains near the crack tips.  

These points are carefully examined in the present chapter. 

On the other hand, thanks to the stress and strain assumptions used near the crack tips, the 
stress intensity factors corresponding to fracture modes 1 and 2 become primary variables of 
the numerical solution which is normally an advantage. However, it must be verified that 
good precision and convergence are obtained. 

This is also considered in the present chapter. 

It is worth recalling that the basic notions of LEFM used in the present chapter were briefly 
introduced in chapter II, section II.4. 
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V.2. State of the art 
There are many numerical approaches currently available to solve problems of LEFM and, in 
particular, to calculate the stress intensity factors. 

Research in this domain has produced a very large number of papers and it would be 
extremely difficult, and perhaps useless in the frame of this thesis, to extensively review the 
literature on this subject. 

Therefore, the following state of the art only briefly mentions some of the basic references 
and proposes a classification of the methods in 4 categories.  

V.2.1. Finite element method 
Usually, displacement-type finite elements (based on the virtual work principle) are used. 

Two main categories of approaches are used [INGRAFFEA A.R. and WAWRZYNEK P. 
(2003)] 

In the “direct approach”, the stress intensity factors are deduced from the displacement field. 
This is the case of the Crack Opening Displacement method [CHAN S.K. et al. (1970)]. 

In some cases, the formulation of finite elements at the crack tip can be adapted to improve 
the displacement field [BARSOUM R.S. (1977)]. 

In the “energy approach” which is generally more precise, the stress intensity factors are 
deduced from the energy distribution in the vicinity of the crack tip, either from the energy 
release as in the method of the Virtual Crack Extension [HELLEN T.K. and BLACKBURN 
W.S. (1975)] or from the J-integral as in the Equivalent Domain Integral Method [MORAN 
B. and SHIH C.F. (1987-a) & (1987-b)]. 

V.2.2. Boundary elements method 
In this method, only the boundaries of the solid are discretized. The partial differential 
equations of the Theory of Elasticity are transformed into integral equations on the boundaries 
of the domain. Basically, the primary unknowns of the numerical problem remain the 
displacements. 

This is the case for the “crack Green’s function method” [SNYDER M.D. and CRUSE T.A. 
(1975)], the “displacement discontinuity method” [CROUCH S.L. (1976)] and the 
“subregions method” [BLANFORD G.E. et al. (1991)] 

But a dual method using also the surface tractions as primary unknowns has also been 
developed [PORTELA A. et al.(1991)]. 

V.2.3. Meshless method 
This method has been applied to fracture mechanics since 1994 [BELYTCHKO T. et al. 
(1994-b)] and, subsequently, different improvements have been introduced, for example to 
couple it with the finite element method [BELYTCHKO T. et al. (1996-b)], to ensure the 
continuity of displacements in the vicinity of the crack [ORGAN D. et al.(1996)], to improve 
the representation of the singularity at the crack tip [ FLEMING M. et al. (1997)], to use an 
arbitrary Lagrangian-Eulerian formulation [PONTHOT J.P. and BELYTCHKO T. (1998)], to 
enrich the displacement approximation near the crack tip [LEE S.H. and YOON Y.C. (2003)] 
or to enrich the weighting functions [DUFLOT M. and NGUYEN D.H. (2004-a) and (2004-
b)]. 

These approaches share the usual advantages and drawbacks of the meshless methods already 
mentioned in chapter II, section II.2. 
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V.2.4. Extended finite element methods 
The extended finite element method (XFEM) [MOES N. et al. (1999)] allows discontinuities 
in the assumed displacement field. The discontinuities can be due to the presence of cracks 
and do not have to coincide with the finite element edges: they can be located anywhere in the 
domain independently of the finite element mesh. 

Since chapter VI of this thesis will deal with a an extended natural neighbours method 
(XNEM) which is somehow inspired from the XFEM, we will not go further in the 
presentation of the XFEM here and come back on this subject in chapter VI. 
 

V.3.  Domain decomposition 
In the natural neighbours method, the domain contains N nodes and the N Voronoi cells 
corresponding to these nodes are built. 

At each crack tip, a node is located (figure V.1). 

The cells corresponding to the crack tip nodes are called Linear Fracture Mechanics Voronoi 
Cells (LFMVC). The other ones are called Ordinary Voronoi Cells (OVC). 

 
 

 

 

 

 

 

 

 

 

 

 

Figure V.1. A Linear Elastic Fracture Mechanics Voronoi cell (LFMVC) at a 
crack tip. 
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The area of the domain is: 

∑
=

=
N

I
IAA

1
               (V.1) 

with IA the area of Voronoi cell  I. 

We denote  IC  the contour of Voronoi cell  I. 

We start from the FdV variational principle introduced in chapter II and we recall its 
expression for completeness (we keep the equation numbers of chapter II).  
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For the linear elastic case, the stresses are given by: 
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and 

klijijklij εεCεW
2
1)( =                   (II.35) 

where Cijkl  is the classical Hooke’s tensor. 

 

In (II.29) and (II.30), the integrals are computed along the domain contour. This contour is the 
union of some of the edges of the exterior Voronoi cells. These edges are denoted by KS  and 
we have 
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where M is the number of edges composing the contour, Mu the number of edges on which 
displacements iu~  are imposed and Mt the number of edges on which surface tractions iT  are 
imposed. 

Using the above domain decomposition, these terms become: 
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V.4. Discretization 

We make the following discretization hypotheses in the OVCs: 
1. The assumed strains  ijε  are constant over each Voronoi cell I:  

I
ijij εε =                                (V. 9) 

2. The asumed stresses ijΣ  are constant over each Voronoi cell I:  
I
ijij Σ=Σ                               (V.10) 

3. The assumed support reactions ir  are constant over each edge K of Voronoi cells on 
which displacements are imposed: 

K
ii rr =                              (V. 11) 

4. The assumed displacements iu are interpolated by Laplace interpolation functions:  

∑
=

Φ=
N

J

J
iJi uu

1
                             (V. 12) 

where J
iu  is the displacement of node J (corresponding to the Voronoi cell J). 

For the LFMVCs we use the results of Linear Elastic Fracture Mechanics. 
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The stress fields near the crack tip (figure V.2, <<<r )  are given in the local reference system 
),( 21 YY  by  Westergaard [WESTERGAARD, H.M. (1939)]. 

for mode 1:  

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

θθ

θθ
+

θθ
−

θ

π
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

τ
τ
τ

2
3

2

2
3

2
1

2
3

2
1

22
1

12

22

11

cossin

sinsin

sinsin

cos
r

K
             (V.13) 

for mode 2:  
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1K  and 2K  are the stress intensity factors of modes 1 and 2 respectively. 

In the simple loading cases of figure V.2, they are given by: 

aK πσ= ∞1                     (V.15) 

aK πτ= ∞2                     (V.16) 

These stresses are valid for both plane stress and plane strain conditions. 

 

  

 

 

 

 

 

 

a. Mode 1: simple tension b. Mode 2: pure shear 
Figure V.2. Modes 1 and 2 of fracture mechanics. 

Crack tip coordinates (one quarter of the plate represented) 
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The LFMVCs are discretized as follows: 

The assumed displacements iv are interpolated in the local reference system )Y,Y( 21  by the 
Laplace interpolant as in the OVCs:  

∑
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iJi vv

1
                   (V.17) 

where 21 v,v  are the components of the displacement at a point in the LFMVC with respect to 
)Y,Y( 21 . 

The assumed stresses are interpolated in the local reference system )Y,Y( 21  shown on figure 
V.1. by: 
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with 
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1ΣK  and 2ΣK  can be considered as generalized stresses (or stress parameters) associated with 
the considered  LFMVC. 

The assumed strains are interpolated in the local reference system )Y,Y( 21  by: 
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with       
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The assumed support tractions ir  are constant over each edge K of Voronoi cells on which 
displacements are imposed: 

K
ii rr =                         (V.26) 

Usually, the lips of the fracture are not submitted to imposed displacements. In such a case, 
(V.26) is useless in a LFMVC. 

The assumption (V.25) implies a priori that, in the LFMVC, ijij Σ=σ . 

In a given problem, there could be CN  crack tips.  

For the sake of simplicity, the LFMVCs will be numbered from 1 to CN  and the OVCs are 
numbered from 1+CN  to N . 

The introduction of these assumptions in the FdV variational principle (II.31) leads to the 
equations of table V.2 with the notations of table V.1.  

The details of the calculations are given in annex 2. 
 

 
Table V.1. Matrix notations for the Linear Elastic Fracture Mechanics case 
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Table V.2. Discretized equations in matrix form for the linear elastic fracture mechanics 

case. 

Equations Comments  
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equations for the 
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(V.27) 
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II 1+=Σ=σ  

Constitutive stresses 
in OVCs (V.28) 
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Constitutive stresses 
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Equilibrium equation 
for each Voronoi cell (V.31) 
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Compatibility 

equation on edge K (V.33) 

 

It is seen that, in the absence of body forces, the only terms that require an integration over 

the area of a LFMVC are { }IJw1 , { }IJw2 , [ ]IV , [ ]IH  and
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1
in (V.32). 

In order to avoid the calculation of the derivatives of the Laplace interpolation function in 
{ }IJw1 and { }IJw2 , an integration by part is performed. 
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(V.36) 

where IM1  and IM 2  are the 2 components of the outside normal to the contour of the LFMVC 
with respect to  the local reference system )Y,Y( 21 ,. 

However, since the stresses (V.13, V.14) introduced in the assumption (V.18) constitute a 
solution of the Theory of Elasticity, they satisfy the equilibrium equations: 
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Consequently 
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This eliminates the integration over the area of the LFMVC as well as the calculation of the 
derivatives of the Laplace function. 

Similarly, an integration by parts in (V.32) gives: 
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and 
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Using the definition of [ ]IJA  in table V.2 and introducing the angle Iα  between the global 
and the local frames (figure V.1), we get: 
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                     (V.44) 

Hence, the only terms requiring integration over a cell are [ ]IV  and [ ]IH . 

However, these terms can be integrated analytically as explained in annex 3. 

Consequently, in the present theory, none of the terms requires numerical integration over the 
area of a cell. The only numerical integrations required are integrations over edges of the 
Voronoi cells. 

This shows that the benefits obtained by this approach in the linear elastic domain and in the 
case of materially non linear problems remain valid for applications in Linear Elastic Fracture 
Mechanics. 

 
V.5. Solution of the equation system 

Since we consider a linear elastic material, the constitutive equation for a Voronoi cell J  is: 

{ } [ ] { }JJJ C ε=σ                    (V.45) 

where [ ]JC is the Hooke compliance matrix of the elastic material composing cell J. 

Introducing this in (V.31), we get:  
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           (V.46) 

with  

[ ] [ ]I
I

I* C
A

C 1
=                    (V.47) 

The term [ ] [ ] { } I
A

IT,JT,I dAPR
I

∫ Φ∂ 0  of (V.46) is integrated by parts and then, the term { }I
IA ε  

given by (V.30) is introduced in (V.46). This gives: 



Extension to Linear Elastic Fracture Mechanics 
 

Chapter V  Page 125 
 

[ ] [ ] { } [ ] [ ] { } [ ] [ ] [ ] { }L
N

L

N

NI

T,ILI*IJ
N

I

IIJT,IIIJT,I uACAPLARKWR
C

C

  
1 11

0 ∑ ∑∑
= +==

Σ ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

⎭
⎬
⎫

⎩
⎨
⎧ +

 

        { } { } { } { }N,J,N,J,rBT~F~ K
M

K

KJJJ u

110  
1

⊂==−−− ∑
=

             (V.48) 

If we use the notation  
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this result takes the form: 
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              (V.50) 

On the other hand, we have 
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With this, the compatibility equation in the LFMVC (V.27) becomes:  
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This equation provides the stress intensity factors { }IKΣ  for crack tip I: 
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Introducing, from table V.2,  

{ } [ ] { }0γ=γ II
IHe                    (V.54) 

in the above equation and combining with (V.39, V.40), we can get after some manipulations:  
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with 

[ ] [ ] [ ] [ ] [ ] T,III

I

II IHDIH
A

VVD 1
−=                 (V.57) 

[ ] [ ] [ ] [ ] [ ] [ ]IT,IJI

I

IT,IJJ RLAIH
A

RWWR 1
−=                (V.58) 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]J,IT,II

I

IT,IJ

I

IJ
WRVDIHD

A
RLA

A
B   11 10 −−=              (V.59) 

Introducing this in (V.50) yields, after some calculations: 
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            (V.60) 

with 

[ ] [ ] [ ] [ ] [ ] [ ]IT,IL,IIJT,IJL RWVDWRRW 1−=                 (V.61) 
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then (V.60) becomes: 
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with 

[ ] [ ] [ ] N,L,N,J,MMAM JLJLJL
W 1    1    ==+=                (V.69) 

Equations (V.33) and (V.69) constitute an equation system of the form:   



Extension to Linear Elastic Fracture Mechanics 
 

Chapter V  Page 127 
 

[ ] [ ]
[ ] [ ]

{ }
{ }

{ }
{ }⎭⎬

⎫

⎩
⎨
⎧

−
=

⎭
⎬
⎫

⎩
⎨
⎧
⎥
⎦

⎤
⎢
⎣

⎡
−

−

U~
Q~

r
q

B
BM

T
W

0
                 (V.70) 

which is similar to the one obtained in linear elasticity (III.60). 

The matrix [ ]WM  is symmetric. 

Equations (V.33) which, in matrix form, become [ ] { } { }U~qB T =  constitute a set of constraints 
on the nodal displacements { }q . They can be used to remove some imposed displacements 
from the unknowns { }q as detailed in chapter III. 

This leads to an equation system of the classical form [ ]{ } { }Q~qM = . 

After solving this system, the displacements are known and (V.55) is used to compute the 
stress intensity coefficients { }IKΣ  at each crack tip. 

V.6. Applications 
V.6.1. Patch tests 
In Linear Elastic Fracture Mechanics, it is possible to perform a patch test by loading a 
rectangular plate as shown on figure V.3. The crack thickness is assumed to be infinitely 
small. 

 

 

 

 

 

 

 

 

Figure V.3. Patch test loading in Linear Elastic Fracture Mechanics. 

 

Before performing numerical patch tests, it is interesting to note that, for the loading of figure 
V.3, the displacement field is of the form: 

222

111

Yav
Yav

=
=

                    (V.71) 

if it is expressed in the local reference system at the crack tip ( 21 Y,Y ). 

1000.N/m 1000.N/m 

1Y

2a

2Y  

b

b
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In such a case, we must find 021 == ΣΣ KK  

More generally, if we consider a displacement field like  

22122

11211

YaXv
YaYv

+β−α=
+β+α=

                  (V.72) 

combining the patch test loading with the 3 rigid body modes (translations 1α  and 2α  plus 
rotation β ), we also expect that 021 == ΣΣ KK . 

Below, it is proved analytically that it is the case with the present numerical approach. 

The compatibility equations (V.27) for the LFMVCs can be written:  

{ } { } { } [ ] { } [ ] { } C
N

J

T,IJIIII N,IvWKVeee 1   , 2 J

1

0 =−++= ∑
=

Σ
γ                (V.73) 

with 

{ } [ ] { }JuRv IJ =                     (V.74) 

Introducing (V.18) in the definition of  { }Ie given in table V.2, we get: 

{ } [ ] [ ] { } [ ]
⎭
⎬
⎫

⎩
⎨
⎧

+=
Σ

Σ

2

10
K
K

VPDIHe T,IIIII                 (V.75) 

With this result, we get: 

{ } { } { } [ ] { } [ ] { }00 γ−=−− Σ
γ IT,IIII IHKVeee                (V.76) 

Combining (V.73) and (V.76), we get: 

[ ] { } [ ] { } [ ] { } [ ] { } C

N

J

T,IJIIT,I N,IvWKVIHKV 1   , 2 J

1

0 =−=γ− ∑
=

ΣΣ    

Taking account of the symmetry of  [ ]IV  , the following equation is obtained: 

[ ] { } [ ] { } [ ] { } C
I

N

J

T,IJI N,IIHvWKV 1    0J

1
=γ−= ∑

=
Σ               (V.77) 

With the definition of [ ]W in table V.2 and (V.39, V.40), we get: 
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Now, we can calculate:  

[ ] { }J

1
vW

N

J

T,IJ∑
=
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Integrating by parts yields: 
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For the particular case of the displacements (V.74), (V.80) becomes 
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On the other hand, equation (V.32) gives: 
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If we pre-multiply by [ ]IIH , (V.83) becomes : 



Extension to Linear Elastic Fracture Mechanics 
 

Chapter V  Page 130 
 

[ ] { } [ ] [ ] [ ] [ ] { }IT,III

I

A A
II

A
I

A
I

I

I

II KIHDIH
A

dA
Y
v

dA
Y
v

dA
Y
v

dA
Y
v

IH
A

IH

I I

I

I

Σ−

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

∂
∂

+
∂
∂

∂
∂

∂
∂

=γ

∫ ∫

∫

∫

1

1

1

1

2

2

2

2

1

1

0            (V.84) 

For the particular case of the displacements (V.74), (V.84) becomes 

 [ ] { }
( )
( ) [ ] [ ] [ ] { } C

IT,III

I
A

I

A
I

II N,I,KIHDIH
AdAHaHa

dAHaHa

IH

I

I 11
2

222
2

111

1
222

1
111

0 =−

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

+

+

=γ ΣΣΣ

ΣΣ

∫

∫

          

(V.85) 

Replacing (V.85) and (V.81) in (V.77) gives :  

[ ] [ ] [ ] [ ] { } C
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I N,IKIHDIH
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It is easy to see that, in this equation, the matrix [ ] [ ] [ ] [ ] ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− T,III

I

I IHDIH
A

V 1  is regular.  

This proves that { } 0=ΣK  if the displacement field is a rigid body mode or corresponds to a 
patch test loading. 

It must be noted that the analytical development above implies the exact evaluation of all the 
terms involved in the equations used.  

This is the case for [ ]IV  and [ ]IIH  which are calculated analytically (annex 3) but not for the 
other terms that imply a numerical integration on the contours or the edges of the Voronoi 
cells. 

Consequently, in practice, { }ΣK  will be only approximately equal to zero, the degree of 
approximation depending on the precision of the numerical integration scheme. 

To evaluate this, a number of numerical patch tests (figure V.3) are performed. The Voronoi 
cells are shown in figure V.4 where only a quarter of the domain is studied by symmetry. The 
crack is represented by a thick red line but, in the computations, its thickness is equal to zero. 

The results in figures V.5, V.6, V.7 show the evolution of { } { } { }σΣ ,P,K 0  for different 
numbers of integration points (nb of IP) on the edges of the LFMVC located at the crack tip 
and on the edges of the OVCs. This evolution is expressed with the help of the following 
variables: 
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Case 1: 5 cells 

Crack length: a=400mm;  

Domain size: b=800mm;  

Case 2: 116 cells 

Crack length: a=5mm;  

Domain size: b=100mm 
Figure V.4. Numerical patch tests 

 

Figure V.5. Patch tests: convergence of 1ΣK  
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Figure V.6. Patch tests: convergence of 0P  

 

 
Figure V.7. Patch tests: convergence of σ  

 

V.6.2. Translation tests 
If we impose    in (V.72), the displacement field reduces to a translation. 

Introducing these conditions in (V.81), we get: 

[ ] 0
1

=∑
=

N

J

T,IJW             (V.89) 

Again, this is valid if all the integrations are performed exactly but is only an approximation if 
numerical integration is used. 
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A series of translation tests ( mmu;mmu yx 01 ==  on all the nodes) with different numbers 
of cells are performed to evaluate the performance of the numerical integration. 

Figure V.8 shows the configuration with 12 cells. Figure V.9 illustrates the models with 196 
and 316 nodes. 

Figures V.10 and V.11 show the evolution of 1ΣK  and [ ]∑
=

N

J

T,IJW
1

 for different numbers of 

nodes and different numbers of integration points respectively. 

Some results are extremely close to each other so that it is hard to see the difference between 
the curves.  

For all the cases, 2ΣK  is equal to zero within machine presicion. 

 

 

Figure V.8. Geometry and Voronoi cells for 12 nodes 
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Detail of the crack  
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crack 

10 mm 

0.001 mm 

LFMVC OVC 



Extension to Linear Elastic Fracture Mechanics 
 

Chapter V  Page 134 
 

 

Figure V.9. Voronoi cells for 196 and 316 nodes 

 

 

Figure V.10. Convergence on 1ΣK  for translation  

 

 

316 nodes 196 nodes 
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Figure V.11. Convergence on [ ] [ ]∑
=

=
N

J

T,IJWWSum
1

 for translation  

V.6.3. Mode 1 tests 
With the same models as in the translation case, we can perform numerical tests for mode 1 as 
shown in figure V.12. 

Theoretically, aK πσ= ∞Σ1  and 02 =ΣK  with 21000 mm/N=σ∞  and mma 10= . 

For the numerical calculations, plane stress state was assumed and the values of Young’s 
modulus and Poisson’s ratio were: 

 
but these assumption have no influence on the values of the stress intensity coefficients. 

Figure V.13 shows the convergence on 1ΣK  with different numbers of nodes and 2 Gauss 
integration points on the edges of the Voronoi cells. Figure V.14 shows the convergence on 

1ΣK  for 12 nodes using the trapeze integration scheme on the edges of the LFMVC and 2 
Gauss points on the edges of the OVCs 

The superiority of the Gauss scheme over the trapeze scheme is obvious from figure V.14. 
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Figure V.12.Mode 1 test loading in linear fracture mechanics. The details of crack 
geometry are given in figure V.8. 

 

 

Figure V.13. Convergence on 1ΣK  for mode 1  
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Figure V.14. Convergence on 1ΣK  for mode 1 (12 nodes)  

V.6.4. Mode 2 tests 
With the same models as in the translation case, we can perform numerical tests for mode 2 as 
shown in figure V.15. 

The values of Young’s modulus and Poisson’s ratio are the same as for mode 1 patch test. 

Plane stress state was also assumed. 

Theoretically, aK πτ= ∞Σ2 and 01 =ΣK  with 21000 mm/N=τ∞   and mma 10= . 

Figure V.16 shows the convergence on 2ΣK  with different numbers of nodes and different 
numbers of Gauss integration points on the edges of the Voronoi cells. 
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Figure V.15. Mode 2 test loading in Linear Elastic Fracture Mechanics. The details of 
crack geometry are given in figure 8 

 

 

Figure V.16. Convergence on 2ΣK  for mode 2 
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V.6.5. Bar with a single edge crack 
The problem of figure V.17 is treated as a last example. 

 

 

 

 

 

Figure 17. Bar with a single edge crack (not at scale) 

The crack (in red) has no thickness and is located at mid span. 

The values used for the computations are: 

 

 
Plane stress state is considered.  

The theoretical value of the stress intensity coefficient is given in [MIANNAY D. P. (1998)] 
for : 

             (V.90) 

The computations were performed for different numbers of nodes and different numbers of 
integration points on the edges of the LFMVC. 

Figure V.18 shows the Voronoi cells for 17 nodes and 316 nodes. 

 
 
 

 
  

Figure V.18. Voronoi cells for 17 nodes and 316 nodes 
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The values of the stress intensity coefficient obtained are collected in table V.3. 

 

Table V.3. Stress intensity coefficient for the single edge crack problem 

Nb of IP 17 nodes 116 nodes 352 nodes 718 nodes Theory 

2 156 743 1038 1503 6344 

9 2201 5124 5288 5560 6344 

32 3630 5569 5886 6056 6344 

The convergence on the stress intensity coefficient is summarized in the diagram of figure 
V.19. 

It is seen that the number of Gauss integration points on the edges of the LFMVC plays a 
significant role on the accuracy of the stress intensity coefficient. 

Since the number of edges of the LFMVC is rather small, using a large number of integration 
points is not a real problem for the computation time. 

 

 

 

Figure V.19. Convergence of the stress intensity factor 
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V.6.6. Nearly incompressible material 

It has been shown in chapter III that incompressibility locking is avoided in the OVCs;  

In order to check that incompressibility locking is also avoided in the present case, the mode 1 
test (figure V.12) has been performed for a Poisson’s ratio close to 0.5. 

The results for 196 nodes are summarized in figure V.20. 

It is seen that there is no incompressibility locking. 
 

 

Figure 20. Mode 1 test for a nearly incompressible material 

 

V.7. Remark 
All the tests above have been performed using the discretization proposed in section V.4. 

In particular, the interpolation of the displacements is given by (V.17) 
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An attempt has been made to enrich the discretization of the displacements near the crack tip 
nodes by terms of the form: 
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corresponding to the solution of LEFM in the vicinity of the crack tip. 

Unfortunately, this enrichment does not provide significant improvement of the results while 
the development of the equations of this method becomes much more complex. 

In some tests cases where the LFMVC is large (as, for example, in figure V.8), the quality of 
the results was even lower, probably because the above enrichment is only valid for small 
values of the polar coordinate r. 

Consequently, this approach was abandoned.   

V.8. Conclusion 
The Fraeijs de Veubeke variational principle has been used to develop a constraint natural 
neighbours method in which the displacements, stresses, strains and surface support reactions 
can be discretized separately. 

The additional degrees of freedom linked with the assumed stresses and strains can be 
eliminated at the level of the Voronoi cells, finally leading to a system of equations of the 
same size as in the classical displacement-based method. 

In the application to linear fracture mechanics, in the Voronoi cells at the crack tip, an 
assumption on the stresses deduced from the exact solution of Westergaard 
[WESTERGAARD, H.M. (1939)] has been introduced by which the stress intensity 
coefficients become primary variables of the method. In this case, some integrals over the 
area of this crack tip cell remain but they can be calculated analytically so that, in the 
formulation, only numerical integrations on the edges of the Voronoi cells are required. 

In all the cases, the derivatives of the nodal shape functions are not required in the resulting 
formulation. 

As same as in the problems of linear elasticity and elasto-plasticity, the displacements can be 
imposed in 2 ways in the linear fracture problems. 

• In the spirit of the FdV variational principle, boundary conditions of the type ii u~u =  
on uS can be imposed in the average sense; hence, any function )s(u~u~ ii =  can be 
accommodated by the method; 

• However, since the natural neighbours method is used, the interpolation of 
displacements on the solid boundary is linear between 2 adjacent nodes. So, if the 
imposed displacements iu~ are linear between 2 adjacent nodes, they can be imposed 
exactly. This is obviously the case with 0=iu~ . In such a case, it is equivalent to 
impose the displacements of these 2 adjacent nodes to zero. 

Patch tests, translation tests, mode 1 tests, mode 2 tests and single edge crack tests confirm the 
validity of this approach. 

 


