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Summary 
In this chapter, the natural neighbours method (NEM) based on the FRAEIJS de 
VEUBEKE (FdV) variational principle is extended to materially non linear solids in 2D. 

Considering a solid of unit thickness in plane strain state, the material has a non linear 
constitutive equation but the displacements of the solid are assumed to be very small.  

Hence, the problem considered in this chapter is geometrically linear and materially non 
linear. 

The FdV variational principle for linear elasticity (chapter II) is extended to the elasto-
plastic case in which the assumed velocity, stresses, strain rates and surface support 
reactions are discretized separately. 

The domain is decomposed into N Voronoi cells corresponding to the N nodes distributed 
inside the domain and on its boundary. Since the displacements are assumed to be 
infinitesimal, there is no need to update this decomposition as the solid deforms. 

The following discretization hypotheses are admitted: 

1. The assumed velocities are interpolated between the nodes with the Laplace 
interpolation function                                                                                                                               

2. The assumed strain rates are constant over each Voronoi cell I 

3. The assumed stresses are constant over each Voronoi cell I 

4. The assumed support reactions are constant over each edge K of Voronoi cells on 
which displacements are imposed. 

Introducing these hypotheses in the extension of the FdV variational principle produces 
the set of equations governing the discretized solid. 

The advantages of this method applied in linear elasticity remain valid in the extension to 
the elasto-plasticity problems: 

• The equations do not require the calculation of the derivatives of the Laplace 
interpolation functions. 

• In the absence of body forces, the equations only involve numerical integrations 
on the edges of the Voronoi cells. 

It is possible to impose displacements iu~  on any edge of any Voronoi cell in a weighted 
average sense.  

Recasting the equations in matrix form, it is shown that the discretization parameters 
associated with the assumptions on the stresses and on the strain rates can be eliminated 
at the Voronoi cell level so that the final system of equations only involves the nodal 
velocities and the assumed support reactions.  
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If the displacements are only imposed as constant, the support reactions can be further 
eliminated from the final equation system. 

This equation system can be solved step by step by integration on time and Newton-
Raphson iterations at the level of the different time steps. 

Using the von Mises elasto-plastic model with linear hardening, some applications are 
presented to evaluate the method. 

Some patch tests are performed and show that this approach can pass the patch test 
successfully. 

The method is then applied to the pure bending of a beam to study the convergence. The 
numerical solution is also compared to the results of another method based on the direct 
integration of the corresponding differential equations. 

A square membrane with a hole is also used for convergence evaluation and for 
comparison with the finite element solution. 
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IV.1. Introduction 

We consider a solid of unit thickness in plane strain state. The main notations are 
summarized in figure IV.1. 

The material has non linear constitutive equation but the displacements of the solid are 
assumed to be very small. 

Hence, the problem considered here is geometrically linear and materially non linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notations Initial 
configuration 

Deformed 
configuration 

Area of the domain A a 

Contour of the domain S s 

Outside normal to the contour N n 

Coordinates of material points X x 

Body force (per unit volume) F f 

Surface traction (per unit area) T t 
 

Figure IV.1. Conventions for the non linear theory 
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In chapter II, section II.2, the classical approach of the natural neighbours method (NEM) 
has been introduced and developed in chapter III for linear elastic problems. 

In this chapter, we will start from a rate form of the FRAEIJS de VEUBEKE (FdV) 
variational principle (chapter II, section II.3) to develop an extension of the NEM to 
materially non linear problems, i.e. problems in which the displacements remain very 
small but the material constitutive equation is non linear, for example elasto-platic or 
elasto-visco-plastic. 

Hence, referring to figure IV.1, the initial configuration Γ  and the deformed 
configuration γ  are very close to each other.  

The domain is decomposed into N Voronoi cells corresponding to N nodes distributed 
inside the domain and on its boundary. 

Since the problem is geometrically linear, the domain decomposition remains valid 
through the deformation process. 

After discretization of the velocity field, the stress field, the strain rate field and the 
support reactions field, we get an equation system that can be solved with the help of 
Newton-Raphson iterations at each time step.  

As an example of non linear constitutive equation, the elasto-plastic von Mises linear 
hardening model is used to perform some applications to evaluate the method.  

In the NEM for linear elastic problems (chapter III), we have seen that: 

• the derivatives of the Laplace interpolation functions are not necessary, 

• only numerical integration on the edges of the Voronoi cells are required, 

• incompressibility locking is avoided. 

In this chapter, we will see that these properties remain valid for non linear problems.  

IV.2. Non linear theory 

The following variational equations constitute the starting point of the approach. They are 
an extension of the variational approach proposed by FRAEIJS de VEUBEKE for linear 
elasticity. 
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0ΠδΠδΠδΠδΠδΠδΣεΠδ 654321 =+++++=)r,,,u( iijiji &&     (IV.7) 

with 

iu&  the assumed velocity field, 

ijε&  the assumed strain rate field, 

ijΣ the assumed stress field, 

ir  the assumed support reaction field. 

In (IV.1), ijσ are the constitutive stresses at the considered material point in the deformed 
configuration. 

For inelastic materials, these stresses are usually obtained by integration, along the strain 
path of the considered material point, of a system of equations of the type: 

),,( ijijijijij εqσfσ &=
∇

          (IV.8) 

),( ijijijij qσhq =
∇

          (IV.9) 

with ijq  a set of internal variables and where the superscript 
∇

 is the symbol for an 
objective derivative (in the particular case of a geometrically linear problem, a simple 
time derivative is sufficient) . 

In (IV.5) and (IV.6), some integrals are computed along the domain contour. This 
contour is the union of some of the edges of some Voronoi cells. These edges are denoted 
by Ks  and we have 
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where M is the number of edges composing the contour, Mu the number of edges on 
which displacements iu~  are imposed and Mt the number of edges on which surface 
tractions it  are imposed. 

The Euler equations corresponding to the variational equation (IV.7) are summarized in 
table IV.1. 
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Table IV.1. Euler equations deduced from the Fraeijs de Veubeke variational principle 

Variation Equation Comments 

ijεδ& in a ijij Σ=σ  The assumed stresses are identified as the 
constitutive stresses inside the domain 

ijΣδ in a )(
2
1
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j
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i
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∂
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∂
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&&
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Compatibility between the assumed strain 
rates and the assumed velocities inside the 
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Compatibility between the assumed 
velocities and the velocities imposed on 
the part su of the domain contour 

iu&δ  in a 0
Σ
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∂
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i
j

ji f
x

 Equilibrium inside the domain between the 
assumed stresses and the body forces 

iu&δ  on st ijij tn =Σ  
Equilibrium on the part st of the domain 
contour where surface tractions are 
imposed 

IV.3. Domain decomposition 
The domain contains N nodes (including nodes on the domain contour) and is 
decomposed into N Voronoi cells, each cell corresponding to a node. 

Since the problem is geometrically linear, the domain decomposition remains valid 
throughout the deformation process. 

The area of the domain is: 
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with Ia  the area of cell I. 

We denote Ic  the contour of Voronoi cell n° I. 

Then 
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IV.4. Discretization 

We make the following discretization hypotheses: 

1. The assumed strain rates  ijε&  are constant over each Voronoi cell I:  

I
ijij εε && =                             (IV.17) 

2. The assumed stresses ijΣ  are constant over each Voronoi cell I:  

I
ijij Σ=Σ                                (IV.18) 

3. The assumed support reactions ir  are constant over each edge K of Voronoi cells 
on which displacements are imposed 

K
ii rr =                    (IV.19) 

4. The assumed velocities iu& are interpolated by Laplace interpolation functions:  

∑
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Φ=
N

J

J
iJi uu

1
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where J
iu&  is the velocity of node J (corresponding to the Voronoi cell J). 

As a consequence of (IV.8, IV.9 and IV.17), the stresses ijσ  are constant over each 
Voronoi cell I: 

I
ijij σσ =                     (IV.21) 

The variations of the independent variables are: 
I
ijij εδεδ && =                     (IV.22) 

I
ijij ΣδΣδ =                     (IV.23) 

K
ii rr δδ =                     (IV.24) 
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Introducing these assumptions in (IV.11) to (IV.16), and integrating by parts, we get: 
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where I
jn is the outward normal to the contour of Voronoi cell I.  

Introducing in (IV.7), we get: 
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with 

∑−∑ −=
==

N

I
I

I
ij

I
ij

N

I
I

I
ij

I
ij

I
ijVA aa)(

11
εΣδεδΣσΠδ &&                 (IV.31) 

I
N

I c
i

I
j

I
ijI

N

I c
i

I
j

I
ijVC dcundcun

II

∑ ∫+∑ ∫=
== 11
ΣδδΣΠδ &&                 (IV.32) 

∑ ⎥
⎦

⎤
⎢
⎣

⎡
∫−∫ −=

=

u

KK

M

K s
Ki

K
i

s
Kii

K
iDC dsurds)uu~(r

1
δδΠδ &&&                (IV.33) 

∑ ∫−∑ ∫−=
==

t

KI

M

K s
Ki

K
i

N

I
I

a
iiEF dsutdauf

11
δδΠδ &&                 (IV.34) 

In (IV.32) to (IV.34), the velocities and virtual velocities are interpolated by (IV.20) and 
(IV.25) respectively.  Substituting in (IV.32), we get: 
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Finally, since the edges of the Voronoi cell are straight lines, the outside normal jn  to 

edge Ks  is constant along this edge and is denoted K
jn  

Now, using the discretization (IV.20), we get: 
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Similarly, (IV.34) becomes: 
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Collecting all the results, we obtain the discretized rate form of the FdV variational 
principle. 
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IV.5. Equations deduced from the FdV variational principle 

Let us reorganize the terms of (IV.38) 
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In this result, the following notations have been used. 
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Equation (IV.40) involves the integration on the contour Ic  of Voronoi cell I. 

Equations (IV.41) and (IV.42) involve the integration on the edge Ks  (belonging to the 
domain contour) of a Voronoi cell.  

We are now able to deduce the discretized Euler equations. 

1. In all the Voronoi cells I 
I
ij

I
ij Σ=σ       for    NI ,1=                   (IV.45) 

These equations identify the assumed stresses I
ijΣ  as the constitutive stresses I

ijσ  
deduced from the constitutive equations (IV.8) and (IV.9) and from the assumed 
strains rates I

ijε&  in each Voronoi cell. 

2. In all the Voronoi cells I  
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This is a compatibility equation linking the assumed strain rate I
ijε&  in Voronoi cell  I  

with the assumed nodal velocity J
iu& . 

3. On the edges uM,K 1= of Voronoi cells submitted to imposed velocities  
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These are also compatibility equations taking account of the imposed velocities iu~&  on 
the part us  of the domain contour. 
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These are equilibrium equations taking account of the body forces if , the surface 
tractions it  and the support reactions ir . 

We note that, in the developments above, the only term that implies an integration over 
the area of the Voronoi cells is I

a
Ji

IJ
i daff~

I

∫ Φ= . 

Hence, if there are no body forces, the problem of choosing integration points is 
simplified: there are only integrations along the straight edges of Voronoi cells. A 
classical Gauss integration scheme can be used. In chapter III, some tests have shown that 
2 integration points give enough precision. 

Furthermore, this formulation does not require the derivatives of the shape functions. 

In the linear elastic problem (Chapter III), using the FdV functional as starting point, we 
obtained the same advantages as with the stabilized confofming integration [CHEN J. S. 
et al. (2001), YOO J. et al. (2004)]. This property remains valid in non linear problem. 

Finally, in the approach developed here, it is possible to impose displacements iu~ on any 
edge of any Voronoi cell. From (IV.42) and (IV.47), it is clear that the imposed 
displacements are respected in a weighted average sense. 

IV.6. Matrix notation 

We introduce the following matrix notations. 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= I

I
I

u
u

u
2

1

&

&
& ;  { }

⎭
⎬
⎫

⎩
⎨
⎧

=
IJ

IJ
IJ

f~
f~f~

2

1 ;   { }
⎭
⎬
⎫

⎩
⎨
⎧

= KJ

KJ
KJ

t~
t~

t~
2

1 ;      (IV.49) 



Extension to materially non linear problems 

Chapter IV  Page 85 

 

{ } { }∑
=

=
N

I

IJJ
f~f~

1

;   { } { }∑
=

=
tM

K

KJJ t~t~
1

                 (IV.50) 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

2ε
ε
ε

ε
&

&

&

& ;   { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

σ
σ
σ

σ ;    { }
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
I

I

I

I

12

22

11

Σ
Σ
Σ

Σ                     (IV.51) 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
= IJIJ

IJIJ
IJ

AA
AA

A
12

21

0
0

;   { }
⎭
⎬
⎫

⎩
⎨
⎧

= K

K
K

r
r

r
2

1 ; { }
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
K

KK

U~
U~U~

1

2
&

&
&               (IV.52) 

Then, we get successively: 

{ } { }III
ij

I
ij Σ=⇒Σ= σσ                        (IV.53) 

[ ] { }IIJIJ
j

I
ij AA Σ⇒Σ  ; { }IJIJ f~f~ ⇒ ;   { }IJIJ t~t~ ⇒                 (IV.54) 

[ ] { } { } { } { }JJK
M

K

KJI
N

I

IJ
M

K

KJ
i

N

I

IJ
i

N

I

M

K

KJK
i

IJ
j

I
ij t~f~rBAt~f~BrA

utu

+=−Σ⇒+=−Σ ∑∑∑∑∑ ∑
===== = 11111 1

   

                     (IV.55) 

The term [ ] { } { }K
M

K

KJI
N

I

IJ rBA
u

∑∑
==

−Σ
11

 is the interior nodal force at node J,  i.e. in cell J.  

It is the sum of the contributions [ ] { }IIJA Σ  of the stresses I
ijΣ existing in all the Voronoi 

cells I and of the contributions { }KKJ rB  of the support reactions K
ir existing on the 

contour edges K where velocities are imposed. 

The term  { } { }JJ
t~f~ +  is the exterior nodal force at node J, i.e. in cell J. It is the sum of : 

• the contributions { }IJ
f~ of the body forces iF existing in all the Voronoi cells I  

• the contributions { }IJt~ of the surface tractions it  applied on the part st of the 
domain contour. 

Now, consider equation (IV.46). It can be written  

{ } [ ] { }J
N

J

T,IJI
I uAa && ∑

=
=ε

1
                    (IV.56) 

where [ ] TIJA ,  is the transpose of [ ]IJA . 

Note that in { }Iε& , the third component is I
122ε& . 



Extension to materially non linear problems 

Chapter IV  Page 86 

 

The compatibility equation (IV.56) defines the strain rate { }Iε& in a Voronoi cell I  as the 
sum of the contributions [ ] { }JT,IJ uA &  of all the nodes J. 

On the edges K submitted to imposed velocities, we must consider (IV.47) that becomes 

{ } { }KN

J

JKJ U~uB && =∑
=1

                   (IV.57) 

The tables IV.2 and IV.3 below collect all the results in matrix form.  

In these tables, taking account of (IV.53), { }IΣ  is replaced by { }Iσ  

 
Table IV.2 Matrix notations for the materially non linear case. 

Notations and symbols Comments 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

2ε
ε
ε

ε
&

&

&

&  Strains in cell I 

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
I

I

I

I

12

22

11

σ
σ
σ

σ  Stresses in cell I 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= I

I
I

u
u

u
2

1

&

&
&  Displacements velocity of node I 

belonging to cell I 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= K

K
K

r
r

r
2

1  Support reactions on edge K 
submitted to imposed displacements 

Ia  ; Ic  Area and  contour of cell I 

sK Length of edge K of a cell 

JΦ  Interpolant associated with node J 

I
a

Ji
IJ

i daff~

I

∫ Φ=  ; { }
⎭
⎬
⎫

⎩
⎨
⎧

=
IJ

IJ
IJ

f~
f~f~

2

1 ; 

{ } { }∑
=

=
N

I

IJJ
f~f~

1
 

{ }J
f~ is the nodal force at node J 

equivalent to the body forces if  
applied to the solid 
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K
s

Ji
KJ

i dstt~

K

∫ Φ=  ; { }
⎭
⎬
⎫

⎩
⎨
⎧

= KJ

KJ
KJ

t~
t~

t~
2

1 ; 

{ } { }∑
=

=
tM

K

KJJ t~t~
1

 

{ }Jt~ is the nodal force at node J 
equivalent to the surface tractions it  

applied to the contour of the solid 

∫=
Ks

Ki
K
i dsu~U~ &&  ;  { }

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
K

KK

U~
U~U~

1

2
&

&
&  

{ }K
U~& is a generalized displacement 

velocity taking account of imposed 
velocities iu~&  on edge K 

∫Φ=
Ks

KJ
KJ dsB  Integration over the edge K of a cell 

∫ Φ=
Ic

IJ
I
j

IJ
j dcnA ;  [ ] ⎥

⎦

⎤
⎢
⎣

⎡
= IJIJ

IJIJ
IJ

AA
AA

A
12

21

0
0

 
IJ
jA can also be computed by 

J)I(K

)I(Kall

)I(K
j

IJ
j BnA ∑=  

 
Table IV.3. Discretized equations in matrix form for the materially non linear case 

Equations Comments  

[ ] { } { } { } { }JJK
M

K

KJI
N

I

IJ tfrBA
u ~~
11

+=−∑∑
==

σ  Equilibrium equation of cell J (IV.58) 

[ ]
JN

J

TIJ
I

I uAa
⎭
⎬
⎫

⎩
⎨
⎧=

⎭
⎬
⎫

⎩
⎨
⎧ ∑

=

&&

1

,ε  Compatibility equation for cells I (IV.59) 

{ } { }KN

J

JKJ U~uB && =∑
=1

 Compatibility equation on edge K 
submitted to imposed velocities (IV.60) 

 

IV.7. Solution of the equations 

The equations to solve are: 

• The equilibrium equations for all the Voronoi cells J 

[ ] { } { } { } { }t~f~rBA
JK

M

K

KJI
N

I

IJ
u

+=−Σ ∑∑
== 11

               (IV.61) 

• The compatibility equations in all the Voronoi cells I 

 { } [ ] { }J
N

J

T,IJI
I uAa && ∑

=
=ε

1
                 (IV.62) 
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• The compatibility equation on edge K submitted to imposed velocities 

{ } { }KN

J

JKJ U~uB && =∑
=1

                  (IV.63) 

Integrating (IV.63) in time, we get 

{ } { }KN

J

JKJ )t(U~)t(uB =∑
=1

                  (IV.64) 

With the notations 

{ }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

Nu

u
u

q
.
.

2

1

;  { }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

Nf~
.
.

f~
f~

f~
2

1

;  { }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

Nt~
.
.

t~
t~

t~
2

1

;  { } { } { }T~F~Q~ +=     

equation (IV.64), in matrix form, becomes [ ] { } { })t(U~)t(qB T =  where { })t(U~ is a column 
matrix containing generalized displacements imposed to some nodes at time t. 

This constitutes a set of constraints on the nodal displacements { })t(q  deserving the same 
remarks as in the linear elastic case. 

In particular, if displacements 0=iu~  are imposed at any time t on the segment CD 
joining 2 nodes C and D of the domain contour, it is easy to show that (IV.64) leads to 

0=)t(uC
i  and 0=)t(u D

i  at any time t. 

In such a case, the displacements C
iu  and D

iu can be removed from the unknowns { }q . 

This reasoning can be extended to the case of displacements imposed to zero on any 
number of similar segments belonging to the contour. 

For the solution of the equations, a classical step by step procedure is used. 

Assume that (IV.61) and (IV.62) are satisfied at time At  so that we know exactly the 
values of: 

J
i

AJ
i

AJ
i

AJ
i

AJ
i

AJ
ij

AJ
ij

A u~,t~,f~,u,u,,           ε  σ && , J
i

Ar  

We want to calculate, at time ttt AB Δ+= , 

J
i

BJ
ij

BJ
ij

B u,, &&   ε  σ , J
i

B r  

and at time Bt , (IV.61) and (IV.62) must be satisfied. 

Let    J
ij

J
ij

AJ
ij

B σΔσσ +=                                                                                           (IV.65) 
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         J
i

J
i

AJ
i

B uuu Δ+=                                                                                               (IV.66) 

During the time interval tΔ , we assume the evolution of the displacements is a linear 
function of time:   

t
u

t
uu

u
J
i

J
i

AJ
i

B
J
i Δ

Δ
=

Δ
−

=&                                                                                             (IV.67) 

If J
i

Bu  is known, we can calculate J
iu&  by (IV.67) and J

ijε&  by (IV.62). 

Then we can calculate the stresses J
ij

B σ  in each Voronoi cell by integration of the 
constitutive equation.  

What we have to do is to find the value of J
i

Bu  such that (IV.61) can be satisfied. 

We proceed by iterations. 

Let ( )kJ
iuΔ  be the value of J

iuΔ  at iteration k  and ( ) 1+Δ k
J
iu  be the value of J

iuΔ  at 
iteration 1+k .  

Let ( ) ( ) J
ik

J
ik

J
i duuu +Δ=Δ +1                                                                                       (IV.68) 

After some developments, we get:  

( )[ ] ( ) ( ) 0σ
1

≠=−−−∑
=

k
J
ik

J
i

J
i

BJ
i

BN

I

IJ
jk

I
ij

B Rpf~t~A                 (IV.69) 

( )[ ] ( ) 0σ 1
1 1

=−−−∑ +
= + k

J
i

J
i

BJ
i

BN

I

IJ
jk

I
ij

B pf~t~A       (IV.70) 

where  { } { }K
M

K

KJJ rBp
u

∑
=

=
1

                   (IV.71) 

and k
J
i )R(   is the out of balance force at node J for iteration k.   

From (IV.69), (IV.70), we get: 

( ) ( ) ( ) 01
1

=−++ +
=
∑ k

J
ik

J
ik

J
i

N

I

IJ
j

I
ij ppRAdσ                  (IV.72) 

This equation gives the I
ijdσ  that we should have in order to ensure equilibrium at the 

end of the iteration. 

From the constitutive equations of the material and according to the integration scheme 
used to integrate them, we can write: 
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[ ] tC
d
d
d I

I
t

I

Δ
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

12

22

11

12

22

11

ε
ε
ε

σ
σ
σ

&

&

&

                  (IV.73) 

where [ ]I
tC  is the consistent compliance matrix which has to be calculated for each 

constitutive equation. 

Finally, from (IV.62) : 

∑
= Δ

=
N

J

IJ
j

J
i

I
I
ij t

Adu
ad

1
ε&                    (IV.74) 

Equation (IV.74) provides the link between the J
idu  that we want to compute and the 

I
ijdε& . 

From (IV.72), (IV.73) and (IV.74), we get the following equation system: 

[ ]{ } { }dQdqM =          (IV.75) 

with   

[ ] [ ] [ ] [ ]ILIN

I

IJJL AAM *

1
C  ∑=

=
                  (IV.76) 

[ ]

[ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ] [ ] ⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

MMM

MMM
MMM

M

..
.....
.....

..

..

21

22221

11211

 { }

{ }
{ }

{ } ⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

Ndu
.
.

du
du

dq

2

1

; { } { } { }k
J
i

J
i RdpQ~d +=     (IV.77) 

where  

( ) ( ) 11 ++ −= k
J
ik

J
i

J
i ppdp                   (IV.78) 

We remove all the known displacements from { }dq  and the corresponding terms from 
[ ]M  and { }dQ , then we get a new equation system:   

[ ]{ } { }ppp dQdqM =                    (IV.79) 

where all the terms in { }pdQ are known. 

From (IV.79) we can get { }pdq  and, consequently, all the variables at the end of iteration 
k+1. 

Iterations are performed until convergence is reached. The following convergence 
criterion is used. 

For iteration k, let 



Extension to materially non linear problems 

Chapter IV  Page 91 

 

( ) 21        σ1
1

,iA
N

REF
N

I

IJ
jk

I
ij

B
i =∑=

=
       

21 REFREFREF +=  

1,2i          1
1

=∑=
=

N

I
k

I
ii )R(

N
RES  

21 RESRESRES +=  

REF
RESRNORM =  

If RNORM is less than a user prescribed value, convergence is reached. 

If the errors are small, REF is of the order of the average stress level (in absolute value) 
in the solid. 

For some loading cases, this value can be zero or very close to zero. To avoid this 
problem, a user defined value USER is given and REF is calculated by 

)USER,REFREFmax(REF 21 +=  

IV.8. Applications 
IV.8.1. Plasticity and strain hardening in solids 
In many materials, such as steel, aluminium and copper, plasticity and strain hardening 
are observed. An example of stress-strain curve for an elasto-plastic material with 
hardening is given at figure IV.2. 

Unloading from a point B in the nonlinear zone, we find linear elastic behaviour with a 
modulus of elasticity equal to that experienced upon initial loading. Upon reloading, we 
find that the yield limit has increased. In rate-independent plasticity, the stress-strain law 
is independent of the rate of deformation but is dependent on the history of deformation. 

Once the initial yield limit Y0 has been passed, the total strain ε  consists of an elastic 

strain eε  and an inelastic strain pε  and we have pe εεε &&& +=     with    
Ee
σ

=ε . 

In visco-elasto-plastic materials, the stress-strain law also depends on the strain rate. 

These notions are classical in Solid Mechanics and are not recalled here. 

 

      



Extension to materially non linear problems 

Chapter IV  Page 92 

 

 

 

 

 

 

 

 

 

Figure IV.2. Stress-strain curve showing strain hardening 

IV.8.2. Elasto-plastic material with von Mises linear hardening 
As an example, we use the isotropic von Mises elasto-plastic model with linear hardening  
(figure IV.3) to calculate the matrix [ ]I

tC  . 

Von Mises postulated a yield criterion which states that yielding occurs when the second 
invariant of the stress deviator tensor equals to a certain value which ideally depends only 
on the material itself.  

The material parameters are: 

E: Young’s modulus. 

ν : Poisson’s ratio. 

ph : the plastic modulus.  

eR : the initial yield limit. 

 
 

 

 

 

 

 

Figure IV.3. Uniaxial tensile stress-stain curve for 
an elasto-plastic material with von Mises linear 

hardening 

σ  

ε  

Y0 

pε  eε  

tE  
eR  

ε  

σ  
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For the integration of the stress-strain law during a time step, a classical method is the 
radial return [KRIEG R.D. and KRIEG R.D. (1977)].  

We use the subscript A to denote the beginning of the time step and the subscript B for 
the end of the time step. 

In the radial return method, the deviatoric part of stress is: 

( ) e
ijij

B σβσ ˆ1ˆ −=          (IV.80) 

where e
ijσ̂ is the elastic trial stress given by  

tˆGˆˆ ijij
Ae

ij Δε+σ=σ &2          (IV.81) 

in which ( )ν+=
12
EG  is the shear modulus. 

The coefficient β  is computed as follows: 

G
h

J
R

p

e
e

3
1

3
1

2

+

−

=β           (IV.82) 

2

ˆˆ
2

e
ij

e
ijeJ
σσ

=           (IV.83) 

EEh tp

111
−=           (IV.84) 

where eR  is the initial yield limit, tE  the tangent modulus and ph  is the plastic modulus.  

After some developments, we get an equation of the form:  

{ } [ ]{ } [ ]{ } tˆdGˆdGˆd e Δ== εησησ &22        (IV.85) 

where  

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

eeeeee

eeeeee

eeeeee

pe

e

ˆˆˆˆˆˆ
ˆˆˆˆˆˆ
ˆˆˆˆˆˆ

)
G

h
()J(

R
)(

121222121112

122222221122

121122111111

3
2 σσσσσσ

σσ2σσσσ
σσ2σσσσ

3
132100

010
001

β1η  (IV.86) 

 

The volumetric part of stress is: 

tmm
A

m
B Δ+= εχσσ &3          (IV.87) 



Extension to materially non linear problems 

Chapter IV  Page 94 

 

in which ( )νχ
213 −

=
E   is the bulk modulus and ( )3322113

1
3
1 σσσσσ ++== iim  is the 

mean stress. 

From (IV.87), we get: 

tdd mm Δεχ3σ &=          (IV.88) 

Consequently  

{ } { } { }δσσσ mdˆdd +=   with  { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

0
1
1

δ  

Introducing (IV.85) and (IV.88) , we obtain:  

{ } [ ]{ } tdCd I
t Δεσ &=           (IV.89) 

in which, 

[ ] [ ] [ ] [ ]( ){ }{ }TI
t GIGC δδηχη 23

3
12 −+=        (IV.90) 

with [ ]I  the unit matrix. 

IV.8.3. Patch tests 

A set of patch tests in simple tension and in pure shear are performed to validate the 
method. 

All the information and results are collected in figures IV.4 to IV.7. 

For the case of figure IV.4, the stresses are within machine precision, no matter the value 
of the convergence criterion. Only one iteration is required to reach convergence since 
hardening is linear and the loading is a linear function of time. 

For the cases of figure IV.5 and IV.6, the loading is a combination of sine functions.  

For the calculation of RNORM, the value of USER = 20, that is equal to the maximum 
stress level imposed during the loading. 

The chosen convergence value is 810−≤RNORM .  

The following variable is defined to evaluate the computation error: 

∑∑

∑∑

==

==

σσ

σ−σσ−σ
=σ N

K
K

exact
ij

exact
ij

N

K
K

N

K
K

exact
ij

K
ij

exact
ij

K
ij

N

K
K

A/)A

A/))((A
)(normL

11

11 2  
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Figure IV.7 shows the evolution of  )(normL σ2 with time.  

Because the loading is not a linear function of time, we have more than one iteration in 
the plastic domain to reach convergence. 

From this figure we can see that, at some time steps, )(normL σ2  is not as small as for 
others. This is due to the fact that we define: 

REF
RESRNORM =  and )USER,REFREFmax(REF 21 += . 

Hence, according to the convergence criterion, we have 810−≤
REF
RES  , from which we 

can get 788 102201010 −−− =≤≤ **REF*RES  

This explains the observed result. 

 

 
Loading and boundary 

conditions Stress-strain curve 

 

 

 

 

 

 

 

sigma11=F(strain11)
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Case 1 (4 nodes): a square domain submitted to simple tension.  
The applied surface traction is given by tT =  

t  varies from 0 to 2 seconds by time steps s.t 050=Δ each. 

Figure IV.4. Patch test, case 1 
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Loading and boundary 

conditions Stress-strain curve 

 

 

 

 

 

 

 

 

 

sigma11=F(strain11)
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Case 2 (38 nodes): a rectangular domain submitted to simple tension.   
The applied surface traction is given by: 

( )t*sinT π= 5     when 10 ≤≤ t  
( )t*sinT π=10     when 21 ≤≤ t  
( )t*sinT π= 20     when 32 ≤≤ t  

t  varies from 0 to 3 seconds by time steps st 05.0=Δ  

Figure IV.5. Patch test, case 2 
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  Loading and boundary conditions Stress-strain curve 

 

 

 

 

 

sigma12=F(gama)
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Case 3 (4 nodes): a square domain submitted to pure shear.  
The applied surface traction is given by: 

( )t*sinT π= 5     when 10 ≤≤ t  
( )t*sinT π=10     when 21 ≤≤ t  
( )t*sinT π= 20     when 32 ≤≤ t  

t  varies from 0 to 3 seconds by time steps s.t 050=Δ  

Figure IV.6. Patch test, case 3 
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Figure IV.7. Patch test, case 3: evolution of )(normL σ 2  
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IV.8.4. Pure bending 

The material is that of figure IV.3.  

The material parameters are: 

=E 200000 MPa;  =ν 0.3;  =tE 1488.83 MPa;   =eR 300 Mpa;  =G 76923 MPa; 
=ph 1500 MPa 

The loading and boundary conditions are shown on figure IV.8. 

 

 

 

 

 

 

 

 

 

Figure IV.8. Geometry and loading for the elasto-plastic bending 

 

They are similar to the elastic case but the loading is obtained by imposing displacements 
to the right end of the beam as indicated on figure IV.8. 

We define the minu  and the maxu  as functions of time: 

t**.uu maxmin 33020==    if 10 ≤≤ t  

)t*(**.uu maxmin 2433010 −==   if 21 ≤≤ t  

The time step is: st 05.0=Δ . 

The curvature of the deformed beam is a function of time and is given by: 
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The bending moment of the deformed beam is related to its curvature by: 
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On the other hand, from the numerical calculation, we get  

3
2 2rhrydAM

h

h
num == ∫

−

 

where r  is the support reaction of the edges where the displacements are imposed. 

We can get the numerical value of the strain energy by: 

 { }∑ ∫ εσ=
I

t
II

Inum_I dtAW
0

&  

Results of different calculations are given in table IV.4 and summarized in figure IV.9. 

Another numerical solution for the plane strain case has been calculated by the method 
proposed in [ROSSI B. et al, (2007)]. It is based on the direct integration of the 
differential equations for the pure bending case in plane strain.  We denote the energy 
obtained from this method as 0W , and the moment as 0M . 

The error on the strain energy is calculated by: 
0

0

W
WW

Error num_I −
=  

The values of the strain energy at time st 2=  for different numbers of nodes N are given 
in table IV.4. 

Figure IV.9 shows the moment-curvature curves of the method proposed in this chapter 
and in [Rossi B. et al (2007)] by direct integration of the differential equations of Solid 
Mechanics..  

 
Table IV.4. Convergence on energy. 

J.W 1142650 =   at time st 2=  

N 
(random=0.1) numI _W    (J) 

76 4531.33 
140 4342.65 
244 4290.00 
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Figure IV.9. Comparison of the moment-curvature curves 

The L2 norm of the error on the displacements is defined by: 

NL

)uu(*)uu(

)u(normL

N

i

num
i

theory
i

num
i

theory
i∑

=

−−

= 12  

where theory
iu  are the nodal displacements computed from the analytical solution while 

num
iu   are the nodal displacements obtained by the present numerical method. N is the 

number of nodes. 

Figure IV.10 shows the convergence of the displacements at time st 2= . 

In addition, a case of cyclic loading is also performed with: 

)tsin(uu maxmin π==  10 <≤ t  s 

)tsin(uu maxmin π== 2  21 <≤ t  s 

)tsin(uu maxmin π== 4  42 <≤ t  s 

t varies from 0 to 3 seconds and s.t 010=Δ . 

Figure IV.11 shows the moment - curvature curve. 

NEM 

 Rossi et al. 
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Figure IV.10. Convergence of )u(normL2  
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Figure IV.11. Moment-curvature curve for cyclic loading. 
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IV.8.5. Square membrane with a circular hole 
The last application in the elasto-plastic domain is the square membrane with a circular 
hole, the geometry of which is defined in figure III.10 (chapter III). 

The material is elasto-plastic with von Mises linear hardening.  

The material parameters are: 

=E 200000 MPa;    =ν 0.3 ;    =tE 9523.81 MPa;   =eR 300 Mpa;   =G 76923 MPa; 
=ph 10000 MPa 

The loading  MPaT 3500 ≤≤ is a linear function of time. 

Unit thickness and plane strain conditions are assumed. 

The results for the strain energy convergence are summarized in table IV.5. 

 For the present method, 2 integration points per Voronoi edge are used. For the finite 
element method, classical 4 nodes isoparammetric elements have been used with 4 Gauss 
integration points for the numerical integrations on the area of the elements. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.10.a. Geometry and loading for the square membrane  
with a circular hole 

t=1000. N t=1000. N 
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Figure III.10.b. Square membrane with a circular hole: studied model 

 
Table IV.5. Strain energy (J) for the square membrane with a circular hole 

Elasto-plastic case 
Present method Finite elements 

N t=1s t=3.5s N t=1s t=3.5s 
36 2855 302707 33 2689 196815 

121 2837 297164 119 2770 247143 
441 2819 294086 445 2803 268669 
1681 2811 295292 5251 2811 278514 

At t=1s, the membrane is still in the elastic domain while it is well in the elasto-plastic 
range at t=3.5s. 

The strain energy convergence curves at t=1s and t=3.5s are presented in figure IV.12. 

It is clearly seen that the present approach converges from above while, as it is well 
known, the FEM converges from below in the present case. 

It is also observed that, for the same number of nodes, the present results are closer to 
convergence than the FEM results. 

The displacements of the right side of the membrane, i.e. of the line x=300 mm, are given 
in figures IV.13 and IV.14 at t=1s and t=3.5s  respectively. 

From figures IV.13 and 14, it is observed that, when the membrane  remains in the elastic 
domain (t=1s), the FEM and the NEM results practically coincide for a sufficient number 
of nodes. However, in the plastic range (t=3.5 s), there remains a slight difference even 
with the large numbers of nodes.  

300 mm

t=1000.N 

100

300 mm 
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Figure IV.12 a. Strain energy convergence: comparison of the present 
approach with FEM at time = 1s 

 

Figure IV.12 b. Strain energy convergence: comparison of the present 
approach with FEM at time = 3.5 s 
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Figure IV.13. Displacements ux  on the boundary x=300mm  at time  t=1 s   
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Figure IV.14. Displacements ux  on the boundary x=300mm  at time  t=3.5 s   

 

IV.9. Conclusion 
The Fraeijs de Veubeke variational principle has been used to develop a natural 
neighbours method in which the displacements, stresses, strains and surface support 
reactions can be discretized separately. 

This approach, which has been developed for linear elastic problems in chapter III is 
extended to the geometrically linear and materially non linear case in this chapter. 

With the present approach, the properties of linear elastic case remain valid in non linear 
case. That is, in the absence of body forces, the calculation of integrals over the area of 
the domain is avoided: only integrations on the edges of the Voronoi cells are required, 
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for which classical Gauss numerical integration with 2 integration points is sufficient to 
pass the patch test. 

In addition, the derivatives of the nodal shape functions are not required in the resulting 
formulation. 

This approach presents a clear advantage over more classical methods using integrations 
over the area of the domain with the help of a sometimes very high number of integration 
points. 

Exactly as in linear elastic problems, the same 2 ways can be used to impose 
displacements here.. 

• In the spirit of the FdV variational principle, boundary conditions of the type 
ii u~u =  on uS can be imposed in the average sense; hence, any function 

)s(u~u~ ii =  can be accommodated by the method; 

• However, since the natural neighbours method is used, the interpolation of 
displacements on the solid boundary is linear between 2 adjacent nodes. So, if the 
imposed displacements iu~ are linear between 2 adjacent nodes, they can be 
imposed exactly. This is obviously the case with 0=iu~ . In such a case, it is 
equivalent to impose the displacements of these 2 adjacent nodes to zero. 

The applications to an elasto-plastic model with von Mises linear hardening have shown 
that elasto-plastic patch tests in pure tension and in pure shear are successfully passed.  

Calculations for the elasto-plastic bending case show a good convergence to the solution 
based on the direct integration of the equations [ROSSI.B et al (2007)]. 

The example of the square membrane with circular hole has shown that the present 
approach compares favourably with the classical FEM. 

Although the presented applications have been developed for a von Mises linear 
hardening elasto-plastic model, the theory obviously applies also for all kinds of non 
linear material models. 

 


