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Summary 
In chapter V, the natural neighbours method was extended to the domain of 2D linear elastic 
fracture mechanics (LEFM) based on the FRAEIJS de VEUBEKE variational principle which 
allows assumptions on the displacement field, the stresse field, the strain field and the surface 
distributed support reactions field. 

The basic idea is to take advantage of the flexibility of the FdV variational principle and to 
introduce, near the crack tips, stress and strain assumptions inspired from the analytical 
solution provided by the LEFM [WESTERGAARD, H.M. (1939)]. 

This has been done by introducing a node at each crack tip and by introducing these stress and 
strain assumptions in the corresponding Voronoi cell. In this approach, the crack lip has to be  
conformed to the edges of the Voronoi cell. 

The present chapter develops an eXtended Natural nEighbours Method (XNEM) to solve 2D 
problems of LEFM. 

In the proposed method, the crack is represented by a line that does not conform to the nodes 
or to the edges of the Voronoi cells. 

The 2D domain contains N nodes (including nodes on the domain contour) but there is no 
node at the crack tips. The N  Voronoi cells corresponding these nodes are built.  

Then the discretization of the displacement field is enriched with Heaviside functions but not 
with crack tip functions since the experience of chapter V (section V.7) has shown that such 
an enrichment does not significantly improve the solution. 

We have 3 types of cells: 

• cells of type O that do not contain a crack; 

• cells of type H that are divided into 2 parts by a crack; 

• cells of type C that contain a crack tip. 

We admit the discretization hypotheses separately in the 3 different types of cells. 

For ordinary cells: 
1. The assumed stresses are constant over an ordinary cell I. 
                  
2. The assumed strains are constant over an ordinary cell I.         

        
3. The assumed support reactions are constant over each edge of ordinary Voronoi cells 

on which displacements are imposed.       

For cells of type H that are cut into 2 parts by a crack: 

1. The assumed stresses are constant over each part of the cell. 

2. The assumed strains  are constant over each part of the cell. 
3. The assumed support reactions are piecewise constant over the edges on which 

displacements are imposed 

For cells of type C that contain a crack tip, the stress and strain fields are enriched in a similar 
way as the LFMVCs of chapter V, i.e. by introducing in the stress and strain discretizations 
the solutions of the LEFM [WESTERGAARD, H.M. (1939)] for mode 1 and mode 2. 
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Introducing all the assumptions and enrichments in the FdV variational principle produces the 
set of equations governing the discretized solid. 

As same as in the method developed in chapter V, the stress intensity coefficients are obtained 
as primary variables of the solution in the present method. 

These equations are recast in matrix form and it is shown that the discretization parameters 
associated with the assumptions on the stresses and on the strains can be eliminated at the 
Voronoi cell level so that the final system of equations only involves the nodal displacements, 
the assumed support reactions and the stress intensity coefficients. 

These support reactions can be further eliminated from the equation system if the imposed 
support conditions only involve displacements imposed as constant (in particular 
displacements imposed to zero) on a part of the solid contour. 

The following properties, already obtained for the method of chapter V, remain valid: 

In the cells of types O and H: 

1. In the absence of body forces, the calculation of integrals over the area of the domain 
is avoided: only integrations on the edges of the Voronoi cells are required.  

2. The derivatives of the Laplace interpolation functions are not required. 

In the cells of type C: 

1. Some integrations on the area of these cells are required but they can be calculated 
analytically. 

2. The other integrals are integrals on the edges of these cells 

3. The derivatives of the Laplace interpolation functions are not required 

Applications to the mode 1 test, mode 2 test and single edge crack test are performed. The 
results validate this method and nearly incompressibility locking is avoided.  
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VI.1. Introduction 
In chapter V, a new approach to solve problems of Linear Elastic Fracture Mechanics (LEFM) 
has been developed. 

The basic idea was to take advantage of the flexibility of the FdV variational principle and to 
introduce, near the crack tips, stress and strain assumptions inspired from the analytical 
solution provided by the Theory of Elasticity [WESTERGAARD, H.M. (1939)]. 

This has been done by imposing a node at each crack tip and by introducing these stress and 
strain assumptions in the corresponding Voronoi cell called Linear Fracture Mechanics 
Voronoi Cell (LFMVC). 

In the present chapter, a different approach is proposed in which it is not necessary to locate 
nodes at the crack tips. 

It is somehow inspired from the eXtended Finite Element Method (XFEM) that was initially 
developed by [MOES N. et al. (1999), DOLBOW J.E. (1999)] for  a single crack in 2D 
problems. 

The XFEM is an approach based on the virtual work principle and, consequently, the primary 
unknowns are the displacements.  

The fundamental idea is to define the crack by a line that does not conform to the finite 
element edges (figure VI.1) and to enrich the discretization of the displacement field. 
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Figure VI.1. Fundamental idea of the XFEM 
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Let Hλ  be the set of nodes the shape function support of which is cut by the crack. 

Let Cλ  be the set of nodes shape function support of which contains the crack tips. 

The displacement field is discretized by: 
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where 

JΦ  is the usual finite element  shape function associated with node J ; 

)X(H  is a Heaviside function : 
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)X(Fk is a set of 4 functions inspired by the displacement field near a crack tip for mode 1 

and mode 2: 
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with ),r( θ  the polar coordinates at the crack tip (see chapter II, section II.4.5). 

In addition to the usual degrees of freedom J
iu (the nodal displacements),  

• the J
ib are new displacement parameters taking account of the displacement 

discontinuity through the crack;  

• the J
kc are new displacement parameters taking account of the particular form of the 

displacement field near the crack tips. 

This type of enrichment is called a “topological enrichment”. 

This elegant approach simplifies the meshing operations since it is not necessary to make the 
crack lips coincide with element edges and, consequently, is well suited for the modelling of 
crack propagation without remeshing. 

Furthermore, it takes account of the particular form of the displacements near the crack tips 
which improves the quality of the results. 

The method has been extended to 3D cases [SUKUMAR N. et al. (2000)], to the modelling of 
cracks in plates [DOLBOW J. et al. (2000-a) and (2000-b)], to the case of branched and 
intersecting cracks [DAUX C. et al. (2000)], to the case of higher order elements [STAZI F.L. 
et al. (2003)], to the case of bimaterials interfaces [SUKUMAR N. et al. (2004)], … 

In [STOLARSKA M. et al. (2001)], it has been coupled with the “level set method” [OSHER 
S.A. (1999)] for representing and propagating the crack. 
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It has also been proposed [BECHET E. et al. (2005)] to replace the “topological” enrichment, 
in which only the elements touching the crack are enriched, by a “geometrical” enrichment in 
which a given domain size is enriched.  This improved the quality of the results. 

It is also worth mentioning that in [DOLBOW J. and DEVAN A. (2004)], an assumed strain 
enrichment is proposed in which the 2 parts of the finite elements cut by the crack are 
separately enriched by an assumed strain field. The development of the method relies on the 
HU-WASHIZU variational principle (chapter II, section II.3.1). In this paper, the enrichment 
of the displacement filed is limited to the first 2 terms of (VI.1), which means that the 
enrichment of the nodes of the set Cλ  is not included. 

The present chapter develops an eXtended Natural nEighbours Method (XNEM) to solve 2D 
problems of LEFM. 

In the proposed method, the crack is also represented by a line that does not conform to the 
nodes or to the edges of the Voronoi cells. 

Then the discretization of the displacement field is enriched with Heaviside functions as 
(VI.2) but not with crack tip functions of the type (VI.3) since the experience of chapter V 
shows that such an enrichment does not significantly improve the solution (see section V.7). 

On the other hand, the stress and strain assumptions in the cells cut by the crack are enriched 
by considering, in each of the two parts, different constant stresses and constant strains. 

Finally, for the cells containing the crack tips, the stress and strain fields are enriched in a 
similar way as the LFMVC cells of chapter V, i.e. by introducing in the stress and strain 
discretizations the solutions of the Theory of Elasticity [WESTERGAARD, H.M. (1939)] for 
mode 1 and mode 2. 

Since the purpose is to explore a new numerical method, the options retained for the 
development are the simplest ones: 

• there is a single crack with 1 or 2 tips; 

• it does not propagate; 

• the “topological” enrichment rather than the “geometrical” enrichment is chosen 

These limitations could obviously be eliminated taking advantage of the existing techniques 
used for the XFEM, but this is outside the scope of the present thesis. 

VI.2. Domain decomposition 
In the natural neighbours method, the domain contains N nodes (including nodes on the 
domain contour) and the N  Voronoi cells corresponding to these nodes are built.  

The area of the domain is: 

∑
=

=
N

I
IAA

1
                     (VI.4) 

with IA the area of Voronoi cell I.   

If cracks are present in the domain, we have 3 types of cells: 

 cells of type O (figure VI.3) that do not contain a crack; 

 cells of type H (figure VI.4) that are divided into 2 parts by a crack; 

 cells of type C (figure VI.5) that contain a crack tip. 
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Figure VI.2. Domain decomposition Figure VI.3. Cell of type O 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure VI.4. Cell of type H Figure VI.5. Cell of type C 
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Note that there may be several cells of type C if there are several cracks or even a single crack 
the 2 tips of which are inside the domain. 

We could also have a cell containing several crack tips (type C+C) or a cell divided into 
several parts by several cracks (type H+H) or a cell divided in 2 parts by a crack and 
containing a crack tip (type H+C). 

Here, we only consider cells of types O, H and C. 

In addition, for simplicity, we consider that there is only 1 crack and that, in each cell, the 
crack is straight. 

Let CHO N,N,N  be the numbers of cells of types O, H and C respectively with 

CHO NNNN ++=                       (VI.5) 

the total number of cells. 

 

VI.3. Discretization 
VI.3.1. Discretization of iijij r,,Σε  in cells of type O 

We admit the following discretization hypotheses for ordinary cells: 

1. The assumed stresses ijΣ  are constant over an ordinary cell I:  

I
ijij Σ=Σ  ON,I 1=                    (VI.6) 

2. The assumed strains  ijε  are constant over an ordinary cell I:  

I
ijij εε =  ON,I 1=                    (VI.7) 

3. The assumed support reactions it  are constant over each edge K of ordinary Voronoi 
cells on which displacements are imposed 

K
ii rr =                      (VI.8) 

 

VI.3.2. Discretization of iijij r,,Σε  in cells of type H 

As shown on figure VI.4, the cell is divided into 2 parts A and B by the crack. 

We admit the following discretization hypotheses for cells of type H: 

1. The assumed stresses ijΣ are constant over each part of the cell:  

I,A
ijij ΣΣ =  in part A of cell I     HN,I 1=              (VI.9-a) 

I,B
ijij ΣΣ =  in part B of cell I     HN,I 1=              (VI.9-b) 

2. The assumed strains  ijε  are constant over each part of the cell:  

I,A
ijij εε =  in part A of cell I     HN,I 1=            (VI.10-a) 
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I,B
ijij εε =  in part B of cell I     HN,I 1=            (VI.10-b) 

3. The assumed support reactions ir  are piecewise constant over the edges K on which 
displacements are imposed 

K
ii rr =  on the whole edge K if it is not cut by the crack              (VI.11-a) 

K,A
ii rr =  on part A of edge K if it is cut by the crack               (VI.11-b) 

K,B
ii rr =  on part B of edge K if it is cut by the crack               (VI.11-c) 

 

VI.3.3. Discretization of iijij r,,Σε  in cells of type C 

It was recalled in Chapter II, section II.4.5. that, in LEFM, the stress fields near the crack tip 
(figure VI.5) are given by: 
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⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

θθ
−

θθ
+

θθ
−

θ
π

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

τ
τ
τ

2
3

2

2
3

2
1

2
3

2
1

22
1

12

22

11

LL

LL

LL

L

L
cossin

sinsin

sinsin

cos
r

K            (VI.12) 

for mode 2:  
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These stresses are expressed in the local frame (Y1,Y2) attached to the crack tip (figure VI.5). 

1K  and 2K  are the stress intensity factors of modes 1 and 2 respectively.  

These stresses are valid for both plane stress and plane strain conditions. 

In order to have a better representation of the stresses in the vicinity of the crack tip, we admit 
the following discretization hypotheses for cells of type C: 

1. The assumed stresses are given in the local frame (Y1,Y2)L attached to the crack tip by: 

 

{ } { } { } C
LLOL

LL

O

O

OL

NLPPP

P

P

P

P

P

P

P
P
P

,1,    

12

22

11

12

22

11

12

22

11

=+=⇔
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
Σ

Σ

Σ

Σ

             (VI.14) 

with 
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{ } { })(g)r(fH LL
L θ11 = ;    { } { })(g)r(fH LL

L θ22 =              (VI.17) 
LK 1Σ  and LK 2Σ  , L=1,NC are stress parameters associated with the cells of type C. 

Of course, the stresses L
ijΣ  in the global frame (X1, X2) can be obtained by tensor rotation. 

2. The assumed strains are interpolated by: 
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These strains are also given in the local frame (Y1,Y2)L attached to the crack tip and can be 
rotated into the global frame if necessary. 

The elastic parameters LL ,E ν  can be different in different cells if necessary. 
LK 1Σ and LK 2Σ  constitute an additional set of displacement discretization parameters 

associated with the cells of type C. 

3. The assumed support reactions ir  are piecewise constant over the edges K on which 
displacements are imposed: 

K
ii rr =         on the whole edge K if it is not cut by the crack              (VI.21-a) 
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KA
ii rr ,=      on part A of edge K if it is cut by the crack           (VI.21-b) 

KB
ii rr ,=      on part B of edge K if it is cut by the crack              (VI.21-c) 

The situation corresponding to (VI.21-b) and (VI.21-c) is illustrated on figure VI.6. 

On parts A and B of the edge cut by the crack, it is possible to impose different 
displacements A

iu~ and B
iu~ . 

 

 

 

 

 

 

 

 

 

 

 
Figure VI.6. Crack cutting the domain contour 

 

VI.3.4. Discretization of the displacements 
Let us define the following sets. 

• Hλ : the set of nodes corresponding to all the cells of type H (i.e. cut by the crack).  
This set has NH elements. 

• Cλ : the set of nodes corresponding to all the cells of type C (containing a crack tip).  
This set has NC elements. In the present case, since we consider a single crack, NC =1 
or 2. 

• Λ : the union of the sets Hλ  and of the sets Cλ . Λ  is the labelled as the set of crack 
nodes. 

CH λλΛ ∪=                 
The discretization of the displacements is composed of two contributions 

J
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J
iJi aXCuu Φ+Φ= ∑∑
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                (VI.22) 

where: 
• J

iu  is the displacement of node J (corresponding to Voronoi cell J) 
• JΦ  is the corresponding Laplace interpolant 
• )X(C  is a function, labelled as the crack function, that will be defined precisely in 

section VI.3.5 

Part B of the edge 
cut by the crack 

Part A of the edge 
cut by the crack 
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• J
ia  is an additional set of displacement discretization parameters attached to the nodes 

belonging to the set Λ (the set of crack nodes) 

The first term is the usual interpolation of the natural neighbours method. 

The second term will be designed to allow a displacement discontinuity through the crack. 

VI.3.5. Definition of the crack function C(X) 
The idea is to make C(X) equal to +1 on one side of the crack and to -1 on the other side. 

However, care must be taken for its definition ahead of the crack tips where it can take 
different values.   

Let *CC 11 −  and *CC 22 −  be 2 straight lines having the same directions as the 2 crack ends 
(figure VI.7). They define 2 sub-domains AA  and BA  in which a function )X(H  is given by: 

AAXif)X(H ∈+= 1  

BAXif)X(H ∈−= 1  

Let 11 BA −  and 22 BA −  be 2 straight lines perpendicular to the 2 crack ends (figure VI.8).   

Let ** BA 11 −  and ** BA 22 −  be 2 straight lines parallel to  11 BA −  and 22 BA −  respectively.  
They are such that their points 1P  and 2P  are located on the crack at a user defined distance 
from the corresponding crack tips (figure VI.8). It is assumed that the crack is straight on 

11 PC −  as well as on 22 PC − . 

In the example of figure VI.8, points 1P  and 2P  are located at the intersection of the crack 
with the edge of the cell of type C. 

Figure VI.9 shows a zoom on crack tip 1. The subscript 1 is omitted for simplicity. 

Line BA−  is oriented by the abcissa s  such that 0=s  at point C and 0>s  as indicated on 
the figure (at 90° counterclockwise with respect to the direction of the crack tip). 

Any point X  inside the domain belongs to a line QXC −−  intersecting ** BA −  at point Q . 
This line is oriented by the abcissa ξ  such that 0ξ =  at point C and 1ξ =  at point Q .  

Hence, point X can be referred to by the skew coordinates ),s( ξ  attached to the crack tip. 
They can be deduced from its cartesian coordinates )X,X( 21  by simple geometrical 
considerations developed in annex 4.  

The same can also be done for crack tip 2. 

So, any point )X,X( 21  in the domain has skew coordinates ),s( 11 ξ  with respect to crack tip 
1 and ),s( 22 ξ  with respect to crack tip 2. 
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Figure VI.7. The two sides of a crack. Figure VI.8. The different zones for C(X). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure VI.9. Zoom on a crack tip 
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With the help of these skew coordinates, the crack function )X(C  is defined as follows: 
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              (VI.23) 

Examples of the crack function are given in annex 4. 

 

VI.4. Discretization of the FdV variational principle 
We start from the FdV variational principle introduced in chapter II and we recall its 
expression for completeness (we keep the equation numbers of chapter II).  
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or 
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For the linear elastic case, the stresses are given by: 
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where Cijkl  is the classical Hooke’s tensor. 

 

In (II.29) and (II.30), the integrals are computed along the domain contour. This contour is the 
union of some of the edges of the exterior Voronoi cells. These edges are denoted by KS  and 
we have 
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where M is the number of edges composing the contour, Mu the number of edges on which 
displacements iu~  are imposed and Mt the number of edges on which surface tractions iT  are 
imposed. 

Using the domain decomposition, these terms become: 
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Introducing the discretizations of section VI.3 in the FdV variational principle (II.31) leads to 
the equations of table VI.1. 

The details of the calculations are given in annex 5. 

The next section is devoted to the solution of these equations and will be concluded by a 
complete summary of the variables and notations used in this chapter. 

In particular, the different symbols and matrices appearing in table VI.1 are defined in tables 
VI.5 and VI.6.   

In these equations only the matrices [ ]LIH  and [ ]LHDH require an integration on the area of 
the cells of type C but these integrations can be performed analytically as in chapter V.
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Table VI.1. Discretized equations for XNEM 

Stress identification: the assumed stresses in cells of types O, H and C are equal to the 
constitutive stresses deduced from the assumed strains in those cells. 

{ } { } [ ] { } O
IIII NIC ,1, ===Σ εσ  (VI.31-a) 

{ } { } [ ] { } H
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{ } { } [ ] { } H
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{ } [ ] { } C
LLL LCP λγ ∈= ,00  (VI.31-d) 

{ } { } C
LL LKK λ∈= ΣΣ ,  (VI.31-e) 

Equilibrium equations associated with the degrees of freedom J
iu of the cells of type O 
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Equilibrium equations associated with the degrees of freedom J
ia  of the cells of type H, C 
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Compatibility equations in the cells of type O 
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Compatibility equations in the cells of type H. 

{ } [ ] { } [ ] { } H
J

JTIJ
AC

JTIJ
A

N

J

IA
IA IaAuAA λε ∈+= ∑∑

Λ∈=

,,
,

,

1

,
,  (VI.34-b) 

{ } [ ] { } [ ] { } H
J

JTIJ
BC

JTIJ
B

N

J

IB
IB IaAuAA λε ∈+= ∑∑

Λ∈=

,,
,

,

1

,
,  (VI.34-c) 

Compatibility equations in the cells of type C. 
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Compatibility equations with the imposed displacements on the boundaries on the edges of 
cells of type O. 
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Compatibility equations with the imposed displacements on the boundaries on the edges of 
cells of type H. 
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VI.5. Solution of the equations 
VI.5.1. Stresses in terms of the displacement discretization parameters 
Introducing (VI.34-a,b,c) in (VI.31-a,b,c), we get:  
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Then, we use (VI.31-d,e) to rewrite (VI.34-d,e): 
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From (VI.36-d,e), we can deduce { }LKΣ  and { }LP0 : 
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with 
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VI.5.2. Equilibrium equations in terms of the displacement discretization 
parameters 
VI.5.2.1. Equilibrium equations associated with the degrees of freedom J

iu of the cells of 
type O 
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Let us define the following sub-matrices 
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Hence, equations (VI.42-a,b,c,k) become 
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Then the equilibrium equation (VI.32) becomes 
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with  
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VI.5.2.2. Equilibrium equations associated with the degrees of freedom J
ia  of the cells of 

type H and C 
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Let us define the following sub-matrices 
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Hence, equations (VI.50) become 
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Then the equilibrium equation (VI.33) becomes 
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VI.5.3. Summary of the equations 
In order to summarize the results, several tables are given below. 

The main variables are collected in table VI.2. 

The degrees of freedom of the discretization are collected in table VI.3. 

The interpolation functions are collected in table VI.4. 

The scalars appearing in the equations are collected in table VI.5. 

The matrices appearing in the equations are collected in table VI.6. 

The discretized equations deduced from the FdV variational principle are collected in table 
VI.7. 

Table VI.2. Main variables 

Reference frames 
),( 21 XX  Global frame ),( 21 XX of the two-dimensional solid  

LYY ),( 21  , CL λ∈  Local frame associated with the crack tip L 

Variables associated with the cells 
,,, CHO NNN  Number of cells of types O, H and C respectively 
CHO NNNN ++=  Total number of nodes 

O
uM  Number of edges of cells of type O on which support 

reactions exist 
A
uM   or   B

uM  Number of edges A(K) or B(K), belonging to the parts A or 
B of a cell of type H, on which support reactions exist 

Hλ  The set of cells of type H 

Cλ  The set of cells of type C 

CH λλ ∪=Λ  The set of crack nodes 

IA ,  ONI ,1=   and   CI λ∈  Area of a cell I of type O or type C 

IAA ,    or   IBA , ,   HI λ∈  Area of the parts A or B of a cell I of type H 

IC  ,   ONI ,1=   and   CI λ∈  Contour of a cell I of type O or C, oriented clockwise 

)( IAC    or    )( IBC ,   HI λ∈  Contour of the parts A or B of a cell I of type H, oriented 
clockwise 

I
jN ,  ONI ,1=   and   CI λ∈  

Outside normal to IC  expressed in the global frame 
),( 21 XX  

L
jM ,   CL λ∈  

Outside normal to LC  expressed in the local frame 
LYY ),( 21  
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Table VI.3. Degrees of  freedom of the discretization. 

Assumed stresses 
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=
I

I

I

I
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Σ
Σ
Σ

Σ ,      ONI ,1=  
Stresses, expressed in the 

global frame ),( 21 XX , in the 
cells of type O  
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Σ
Σ
Σ

=Σ
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BI
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,
12

,
22

,
11

,    , HI λ∈  

Stresses, expressed in the 
global frame ),( 21 XX , in the 
parts A and B of the cells of 

type H 
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P
P

P
0
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0
22

0
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0    , CL λ∈  
Constant part of the stresses, 
expressed in the local frame 

LYY ),( 21 , in the cells of type C

Assumed strains 
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cells of type O  

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
AI

AI

AI

AI

,
12

,
22

,
11

,

ε
ε
ε

ε ,   { }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=
BI

BI

BI

BI

,
12
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ε    , HI λ∈  

Strains, expressed in the 
global frame ),( 21 XX , in the 
parts A and B of the cells of 

type H 
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L

L
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L

0
12

0
22

0
11

0

2γ
γ
γ

γ    , CL λ∈  
Constant part of the strains, 
expressed in the local frame 

LYY ),( 21 , in the cells of type C

Assumed displacements 

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= I

I
I

u
u

u
2

1    ,  NI ,1=  Displacements of a node I, 
expressed in ),( 21 XX  

{ }
⎭
⎬
⎫

⎩
⎨
⎧

= LI

LI
LI

v
v

v ,
2

,
1,    ,  NI ,1=  Displacements of a node I, 

expressed in LYY ),( 21  
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⎬
⎫

⎩
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= I

I
I

a
a

a
2

1 ,   Λ∈I  Additional DOF, expressed in 
),( 21 XX , of a node Λ∈I  
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⎫

⎩
⎨
⎧

= LI

LI
LI

b
b

b ,
2

,
1, ,   Λ∈I  Additional DOF, expressed in 

LYY ),( 21 , of a node Λ∈I  

Crack tip parameters 
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⎬
⎫

⎩
⎨
⎧

= L

L
L

K
KK

2Σ

1Σ
Σ    , CL λ∈  

Parameters (with the meaning 
of a stress intensity factor) 

associated with each crack tip 
Assumed support reactions 
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1 , 

B
uMK ,1=  

Support reactions on the edges 
A(K) or B(K) belonging to the 
parts A or B of a cell of type H

 
Table VI.4. Interpolation functions 

)X(C  Crack function 

JΦ ,        NI ,1=  
Laplace interpolant 

associated with node (or 
cell) J 

{ }

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

+

−

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

2
3cos

2
sin

2
3sin

2
sin1

2
3sin

2
sin1

2
cos

2
1

13

12

11

1

LL

LL

LL

L

LL

L

L

L

r
H
H
H

H

θθ

θθ

θθ

θ
π

,      CL λ∈  

{ }  

)
2

3sin
2

sin1(
2

cos
2

3cos
2

sin
2

cos

)
2

3cos
2

cos2(
2

sin

2
1

23

22

21

2

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

−

−

+

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

=

LLL
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L

L

L

r
H
H
H

H

θθθ

θθθ

θθθ

π
,      

CL λ∈  

Stress interpolation 
functions for mode 1 and 

mode 2 fractures 
associated with the crack 

tip L, expressed in the local 
frame 

LYY ),( 21  

 
Table VI.5. Scalars appearing in the equations 

Scalar Comments 

∫ Φ=
IC

IJ
I
j

IJ
j dCNA ,    ONI ,1= , NJ ,1=  IC  is the contour of cell I, 

oriented clockwise 

∫ Φ=
)(

)(

IAC
IAJ

I
j

IJ
jA dCNA ,  ∫ Φ=

)(

)(

IAC
IBJ

I
j

IJ
jB dCNA ,   

HI λ∈ , NJ ,1=  

)( IAC  and )( IBC are the 
contours of the parts A and B 
of cell I, oriented clockwise 

∫ Φ=
IC

IJ
I
j

IJ
jC dCXCNA )( ,   ONI ,1= , Λ∈J  IC  is the contour of cell I, 

oriented clockwise 

∫ Φ=
)(

)(, )(
IAC

IAJ
I
j

IJ
jAC dCXCNA , ∫ Φ=

)(

)(, )(
IBC

IBJ
I
j

IJ
jBC dCXCNA  

HI λ∈ , Λ∈J  

)( IAC and )( IBC are the contours 
of the parts A and B of cell I, 

oriented clockwise 

∫Φ=
KS

KJ
KJ dSB ,    NJ ,1=  

KS is an edge of a cell on 
which a support reaction exists∫=

KS
KJ

KJ
C dS)X(CB Φ ,    Λ∈J  
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IJ
A

i
IJ

i dAFF
I

Φ= ∫
~ ,    NI ,1= , NJ ,1=  

IA is the area of a cell I on 
which body forces iF  are 

imposed IJ
A

i
IJ

iC dAFXCF
I

Φ= ∫ )(~
, ,    NI ,1= ,  Λ∈J  

KJ
S

i
KJ

i dSTT
K

Φ= ∫
~ ,   tMK ,1= ,   NJ ,1=  KS is an edge of a cell on 

which surface tractions  iT  are 
imposed; 

tM  is the number of edges  
(of any type of cells) on which 

surface tractions  iT  are 
imposed  

KJ
S

i
KJ
iC dSTXCT

K

Φ= ∫ )(~
, ,     tMK ,1= ,  Λ∈J  

∫=
KS

Ki
K
i dSuU ~~    ONK ,1=  

KS is an edge of a cell of type 
O on which displacements  iu~  

are imposed 

∫=
K

i

S
K

KAKA
i dSuU )()( ~~ ;     ∫=

K
i

S
K

)K(B)K(B
i dSu~U~    HK λ∈  

KS is an edge belonging to part 
A or part B of a cell of type H 
on which displacements  A

i
u~  

or B
i

u~ are imposed 

 
Table VI.6. Matrices appearing in the equations 
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Table VI.7. Discretized equations in matrix form for the XNEM 

Equations Comments  

{ } { } [ ] { } O
IIII NIC ,1, ===Σ εσ  

Constitutive stresses 
in cells of type O (VI.31-a)

{ } { } [ ] { } H
JAJJAJA JC λεσ ∈==Σ ,,,,

Constitutive stresses 
in cells of type H  

(VI.31-b)

{ } { } [ ] { } H
JBJJBJB JC λεσ ∈==Σ ,,,, (VI.31-c)

{ } [ ] { } C
LLL LCP λγ ∈= ,00  

Constitutive stresses 
in cells of type C (VI.31-d)

{ } [ ] { } [ ] { } O
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C

JTIJ
N

J

I
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equation for cells of 
type O 

(VI.34-a)

{ } [ ] { } [ ] { } H
J

JTIJ
AC

JTIJ
A

N

J

IA
IA IaAuAA λε ∈+= ∑∑

Λ∈=

,,
,

,

1

,
,  Compatibility 

equation for cells of 
type H 

(VI.34-b)

{ } [ ] { } [ ] { } H
J

JTIJ
BC

JTIJ
B

N

J

IB
IB IaAuAA λε ∈+= ∑∑

Λ∈=

,,
,

,

1

,
,  (VI.34-c)

{ } [ ] [ ] { } [ ] { }

[ ] { } C
I

LITIL
C

N

I

LITILLLLL
L

LbW

vWKIHDA

λ

γ ε

∈+

=+

∑

∑

Λ∈

=

,,,

1

,,0

 

Compatibility 
equation for cells of 

type C 

(VI.34-d)

[ ] { } [ ] { } [ ] { }

[ ] { } C
I

LITIL
C

N

I

LITILLLLTL

LbV

vVKHDHIH

λ

γ ε

∈+

=+

∑

∑

Λ∈

=

,,,

1

,,0,

 (VI.34-e)

{ } { } { } O
u

KN

J

JKJ
C

N

J

JKJ MKUaBuB ,1,~
1

==+∑∑
Λ∈=

Compatibility 
equations with the 

imposed 
displacements on the 

edges of type O  

(VI.35-a)

{ } { } { } A
u

KAN

J

JKJ
C

N

J

JKJ MKUaBuB ,1,~ )(

1
==+∑∑

Λ∈=

Compatibility 
equations with the 

imposed 
displacements on the 

edges of type H 

(VI.35-b)

{ } { } { } B
u

KBN

J

JKJ
C

N

J

JKJ MKUaBuB ,1,~ )(

1

==+ ∑∑
Λ∈=

(VI.35-c)



Extended natural neighbours method 
 

Chapter VI  Page 171 
 

[ ] { } [ ] { }

{ } { } { } { }

N,J,

Q~rBrBrB

aMuM

J
M

K

M

K

)K(BKJ
M

K

)K(AKJKKJ

L

LJL
UA

N

L

LJL
UU

O
u

B
u

A
u

1
1 11

1

=

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++−

+

∑ ∑∑

∑∑

= ==

Λ∈=

 

 

Equilibrium equation 
for each Voronoi cell (VI.48) 
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Equilibrium equation 
for cells of type O 

and type H 
(VI.56) 

 

VI.5.4. Final equation system 
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Combining equations (VI.48), (VI.56), (VI.35) gives an equation system of the form: 
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with: 
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which is similar to the one obtained in linear elasticity (III.60). 

It is easily proved that: 

• [ ] [ ] NLNJMM TLJ
UU

JL
UU ,1,1,, ===  

• [ ] [ ] NLNJMM TLJ
AA

JL
AA ,1,1,, ===  

• [ ] [ ] Λ∈== LNJMM TLJ
AU

JL
UA ,1,,  

From the above equations, it is seen that the matrix [ ]KM  is symmetric. 

Equations (VI.35) which, in matrix form, become [ ] { } { }U~qB T =  constitute a set of constraints 
on the nodal displacements { }q . They can be used to remove some imposed displacements 
from the unknowns { }q as detailed in chapter III. 

This leads to an equation system of the classical form [ ]{ } { }Q~qM = . 

After solving this system, the displacements are known and (VI.38) is used to compute the 
stress intensity coefficients { }IKΣ  at each crack tip. 

VI.6. Applications 
VI.6.1. Mode 1 tests 
A simple tension case was performed for mode 1 as shown in figure VI.10. 

 

 

 

 

 

 

Figure VI.10. Mode 1 test loading in linear fracture mechanics.  
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In this case, plane stress state was assumed and the values of Young’s modulus and Poisson’s 
ratio were: MPaE 200000=  and 3.0=ν . 

The crack length is 120 mm. 

A model with 387 nodes (361 regularly spaced nodes + 26 nodes near the crack tips) was 
generated as shown in figure VI.11. 

Figure VI.12 shows a zoom near the crack tip. 

 

Figure VI.11. Short crack (120 mm) in tension : Voronoi cells 387 nodes   
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The following notations were defined in sectionVI.3.4: 
CH λλ ∪=Λ  

in which  
Hλ  is the set of nodes corresponding to all the cells of type H and Cλ  is the set of nodes 

corresponding to all the cells of type C. 

In this test, two different methods were used: method 0 and method 1. 

• In Method 0, the set of displacement jump parameter a  only takes account of Hλ . 
• In Method 1, the set of displacement jump parameters a  takes account of Λ , which is 

the union of Hλ  and Cλ .  

It is possible to use different numbers of integration points on cells of different types. 

Figure VI.13 shows the evolution of 1ΣK . 

• Figure VI.13.a shows the results of 1ΣK  for Method 0 and Method 1 with the same 
number of integration points used on all the cells. 

Figure VI.12. Short crack in tension : Voronoi cells with 387 nodes; zoom near the crack 
                 Type C cells                              2 parts of type H cells            crack tips 
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• Figure VI.13.b only keeps the curve of Method 1 and adds another curve showing the 
results of Method 1 with different numbers of integration points used on cells of type 
C and cells of type H and O separately. 

Figure VI.14 shows the evolution of the crack opening. The theoretical value is 1.20 mm. 

• Figure VI.14.a shows the results of crack opening for Method 0 and Method 1 with the 
same number of integration points used on all the cells. 

• Figure VI.14.b only keeps the curve of Method 1 and adds another curve showing the 
results of Method 1 with different numbers of integration points used on cells of type 
C and cells of type H and O separately. 

In the new curves of figure VI.13.b and VI.14.b, 1000 integration points are used on the edges 
of cells of type C, other numbers of integration points are used on the edges of cells of type H 
and O.  

For a number of integration points up to 32, Gauss integration scheme is used. For 1000 
integration points, the trapeze integration scheme is used. 
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Figure VI.13.a. Evolution of 1ΣK  for mode 1 with the same number of integration 

points on all the cells 
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Figure VI.13.b. Evolution of 1ΣK  for mode 1 with different numbers of integration 

points on cells of different types 
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Figure VI.14.a. Evolution of the crack opening for mode 1 with the same number of 

integration points on all the cells 
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Figure VI.14.b. Evolution of a  for mode 1 with different number of integration points 

on cells of different types 
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Figure VI.15 shows the crack opening (amplified by a factor 5).  

 

 

It must be noted that, to obtain good results, it is better to use 32 Gauss integration points on 
the edges of the crack tip cells (cells of type C). This can be attributed to the fact that the 
matrix [ ]CV (see table VI.6) computed by numerical integration on the edges of cells of type 
C, contains the functions { }1H and { }2H which are highly non linear.  

Since the other matrices containing these functions (namely [ ]HDH  and [ ]IH ) are computed 
analytically, [ ]CV must be obtained with sufficient precision. Indeed, all these matrices appear 
simultaneously in the equations (VI.38, 39) that allow calculating the stress intensity 
coefficients from the displacements { }v  and the displacement jumps { }b . 

It is important to remark that nodes density near the crack tips is increased. This is necessary 
since there is only one cell (the cell of type C) to obtain the stress intensity coefficient at the 
crack tip. In that cell, the near crack tip approximations { }1H and { }2H are used so that this 
cell should have a small size with respect to the crack length. In the surrounding cells, the 
hypotheses of constant stresses and strains are used. Hence, to reasonably approximate the 
stress evolution in the vicinity of the crack tip, one should also have ordinary cells of small 
size. 

Figure VI.15. Short crack in tension : crack opening (amplified by a factor 5)  
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An attempt to use large cells has been made but failed to produce acceptable results near the 
crack tip. 

For this attempt, the regularly spaced 361 nodes of the preceding mesh were used without 
increasing the node density near the crack tips. 

 

 

 

 
Figure VI.16. Short crack in tension: crack opening (amplified by a factor 5) with no  increase 

of the node density near the crack tips; result for Method 1. 

 
Figure VI.17. Short crack in tension: crack opening (amplified by a factor 5) with no  increase 

of the node density near the crack tips; result for Method 0. 
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Figure VI.16 shows the shape of the crack obtained with Method 1 and 1000 integration 
points on the edges of the crack tip cells. The crack opening at the middle of the cell is 1.87 
mm which is still acceptable considering the very rough approximation of the crack. 
However, the stress intensity coefficient is totally unrealistic: a negative value was obtained. 

For the calculations with Method 0, all the other parameters remaining the same, the shape of 
the crack is given by figure VI.17. The crack opening at the middle of the cell is 1.61 mm and 
the value of the stress intensity coefficient is 4924. These results are clearly better than with 
Method 1 but, unsurprisingly, still far from the theoretical values. 

VI.6.2. Mode 2 tests 
With the same mesh (387 nodes, figures VI.11 and VI.12) as in mode 1 test, we can perform 
numerical tests for mode 2 as shown in figure VI.18. 

The values of Young’s modulus and Poisson’s ratio are the same as for mode 1 test. 

Plane stress state was also assumed and Method 1 was used. 

Figure VI.19 shows the evolution of 2ΣK  with different numbers of integration points on the 
edges of the Voronoi cells of type C. 

Figure VI.20 shows the evolution of the displacement jump  1a  at the centre of the crack. 

 

 

 

Figure V.18. Mode 2 test loading in linear elastic fracture mechanics 
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Figure VI.19. Evolution of 2ΣK  for mode 2 with the number of integration points 
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Figure VI.20. Evolution of 1a  with the number of integration points 

 

The same remarks as for the mode 1 test apply. 
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VI.6.3 Single edge crack 
A rectangular model was built for the single edge crack problem shown in figure VI.21. 

 

 

 

 

 

Figure VI.21. Bar with a single edge crack (not at scale) 

The crack (in red) has no thickness and is located at mid span. 

The values used for the computations are: 

 

 
Plane stress state is considered.  

The theoretical value of the stress intensity coefficient is given in [MIANNAY D. P. (1998)] 
for : 

            (VI.58) 

The computations were performed for different numbers of nodes and different numbers of 
integration points 

Only Method 1 was applied in this case. 

Three different meshes were tested. 

Figure VI.22 shows the Voronoi cells for mesh n° 1 (322 nodes) and figure VI.23 shows a 
zoom near the crack.  

Figure VI.24 shows the Voronoi cells for mesh n° 2 (612 nodes) and figure VI.25  shows a 
zoom near the crack. 

Figure VI.26 shows the Voronoi cells for mesh n° 3 (612 nodes) and figure VI.27  shows a 
zoom near the crack. 

In mesh n° 2, the Voronoi cells corresponding to the contour nodes near the crack tip are large. 
This may have an influence on the results. Mesh n° 3 is obtained from mesh n° 2 by moving 
the contour nodes closer to the crack tip. With these two different meshes, we can see the 
dependency of the results on the mesh near the crack tip. 
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Figure VI.22. Single edge crack : mesh n° 1 (322 nodes) ; whole structure 

 
Figure VI.23. Single edge crack : mesh n° 1 (322 nodes) ; zoom near the crack 
                 Type C cell                              2 parts of type H cells            crack tip 

Figure VI.24. Single edge crack : mesh n° 2 (612 nodes) ; whole structure 
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Figure VI.25. Single edge crack : mesh n° 2 (612 nodes) ; zoom near the crack 
                 Type C cell                              2 parts of type H cells            crack tip 

Figure VI.26. Single edge crack : mesh n° 3 (612 nodes) ; whole structure 

 
Figure VI.27. Single edge crack : mesh n° 3 (612 nodes) ; zoom near the crack 
                 Type C cell                              2 parts of type H cells            crack tip 
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Figure VI.28 and VI.29 show the evolution of 1ΣK  and of the crack opening with the number 
of integration points. We can see that the quality of the Voronoi cells around the crack plays 
an important role. Large cells decrease the quality of the results. 

 

 
 

 
 

3000

3500

4000

4500

5000

5500

6000

6500

10 100 1000
nb of  IP

Theory value

mesh n° 1 (322 
nodes) 

mesh n° 2 (612 
nodes) 

mesh n° 3 (612 
nodes) 

 
Figure VI.28. Evolution of 1ΣK  for the single edge crack problem 
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Figure VI.29. Evolution of the crack opening for the single edge crack problem 
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VI.6.4 Nearly incompressible case 
In order to check that incompressibility locking is avoided in the present case, the calculations 
have been performed for the single edge crack problem (figure VI.21) with a Poisson’s ratio 
close to 0.5. 

The results are collected in figure VI.30. 

It is seen that there is no incompressible locking. 

 

 

0

1000

2000

3000

4000

5000

6000

7000

0.49 0.492 0.494 0.496 0.498 0.5
poisson ratio

Theory value

mesh n° 1 (332 
nodes)

mesh n° 2 (612 
nodes)

mesh n° 3 (612 
nodes)

Figure VI.30. Single edge crack test for  a nearly incompressible material with 1000 
integration points 
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VI.7. Conclusion 
The Fraeijs de Veubeke variational principle has been used to develop a constraint natural 
neighbours method in which the displacements, stresses, strains and surface support reactions 
can be discretized separately. 

By introducing a line to present the crack that does not confirm to the nodes or the edges of 
the Voronoi cells, an eXtended Natural nEighbour Method (XNEM) is developed to solve 2D 
problems of LEFM. 

We have 3 types of cells: 

• cells of type O that do not contain a crack; 

• cells of type H that are divided into 2 parts by a crack; 

• cells of type C that contain a crack tip. 

An assumption on the stresses deduced from the exact solution of Westergaard 
[WESTERGAARD, H.M. (1939)] has been introduced in the cells of type C by which the 
stress intensity coefficients become primary variables of the method. 

The assumed stresses, strains and support reactions are constant over the cells of type O and 
over each part of the cells of type H. 

Introducing all the assumptions and enrichments in the FdV variational principle produces the 
set of equations governing the discretized solid. 

The additional degrees of freedom linked with the assumed stresses and strains can be 
eliminated at the level of the Voronoi cells, finally leading to a system of equations of the 
same type as in the classical displacement-based method: 2 classical degrees of freedom are 
associated with each node but there is a set of additional parameters: displacement jump 
parameters that describe the discontinuity through the crack.  

In cells of type C, some integrals over the area remain but they can be calculated analytically 
so that, in the formulation, only numerical integrations on the edges of the cells of type C are 
required. 

In cells of type O and H, the calculations of integrals over the area is avoided: only 
integrations on the edges of the Voronoi cells are required.  

In all the cases, the derivatives of the nodal shape functions are not required in the resulting 
formulation. 

As in chapters III, IV and V,  the displacements can be imposed in 2 ways: 

• In the spirit of the FdV variational principle, boundary conditions of the type ii u~u =  
on uS can be imposed in the average sense; hence, any function )s(u~u~ ii =  can be 
accommodated by the method; 

• However, since the natural neighbours method is used, the interpolation of 
displacements on the solid boundary is linear between 2 adjacent nodes. So, if the 
imposed displacements iu~ are linear between 2 adjacent nodes, they can be imposed 
exactly. This is obviously the case with 0=iu~ . In such a case, it is equivalent to 
impose the displacements of these 2 adjacent nodes to zero. 
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Applications to the mode 1 test, mode 2 test and single edge crack test are performed. 

Two different methods are examined in mode 1 test: Method 0 and Method 1 

• In Method 0, no displacement jump parameters are associated with the cells of type C 

• In Method 1, the displacement jump parameters take account of the union of type C 
cells and type H cells  

 It is observed that these two methods don’t give significantly different results. 

Different meshes are generated to evaluate the dependency of the results on the meshes.  

The results of mode 1 test and single edge crack test show that the node density near the crack 
tip plays a central role. In cells of type C, the near crack tip approximations { }1H and { }2H are 
used so that this cell should have a small size with respect to the crack length. In the 
surrounding cells, the hypotheses of constant stresses and strains are used. Hence, to 
reasonably approximate the stress evolution in the vicinity of the crack tip, one should also 
have ordinary cells of small size. 

It is also worth mentioning that using 32 integration points of the Gauss integration scheme or 
1000 integration points of the trapeze integration scheme on the edges of type C cells makes 
the results much better. 

Running the single edge test with a Poisson’s ratio close to 0.5 proves that the nearly 
incompressibility locking is avoided. 

  

 

 

 
 
 
 
 
 
 
 
 
 
 


