GÉOMÉTRIE ALGÉBRIQUE. — Adjutant Lucien Godeaux, Recherches sur les surfaces de genres un (troisième note). Note présentée par M. Hepites, M.A.R., dans la séance du 22 octobre 1915.

Dans deux premières notes publiées sous le même titre (1), j'ai commencé la détermination des surfaces de genres un $(p_a=P_4=1)$, possédant trois transformations birationnelles involutives en elle-même. J'ai précisément déterminé les cas qu' l'une au moins des involutions engendrées par ces trois transformations, est de genres un, et possède par suite 8 points de coïncidence. Dans cette troisième note, je vais considérer le cas où l'une des involutions, et de genres zéro et de bigenre un $p_a=P_3=0$, $P_2=1$.

⁽⁾ Ce Bulletin, tomes II et III.

Une quatrième note sera consacrée au ca où les trois involutions sont rationnelles.

1. — Soit F une surface de genres un $(p_a=P_4=1)$ qui soit transformée en elle-même par trois transformations birationnelles involutives T_1 , T_2 , T_3 . On suppose de plus que ces trois transformations sont telles que

$$T_3 = T_1 T_2 = T_2 T_1$$
.

Les transformations T₁, T₂, T₃ engendrent des involutions d'ordre deux que nous désignerons respectivement

par I'₂, I''₂, I'''₂.

Nous supposerons que l'une de ces involutions, I_2 , est de genres zéro et de bigenre un $(p_a=P_3=0, P_2=1)$. Nous connaissons déjà deux cas où cela se présente; on a alors I_2^r de genres un et I_2^{rr} rationnelle, ou I_2^r de genres un et I_2^{rr} de genres zéro et de bigenre un (1). Nous aurons donc à considérer trois cas:

1°. I'₂ et I''₂ sont toutes deux de genres zéro et de bi-

genre un;

2°. l'2 de genres zéro et de bigenre un, l'2 rationnelle;

3°. I₂ et I₂ toutes deux rationnelles.

2. — Examinons le premier cas, celui où les trois involutions engendrées par T_1 , T_2 , T_3 sont de genres zéro et de bigenre 1 ($p_a=P_3=0$, $P_2=1$). Désignons, comme nous l'avons déjà fait dans nos notes précédentes, par Φ_1 , Φ_2 , Φ_3 des surfaces (dans le cas présent de genres $p_a=P_3=0$, $P_2=1$) images respectivement des involutions I_2' , I_2'' , I_3'' ; par Φ une surface image de l'involution d'ordre 4 engendrée par T_1 , T_2 et T_3 .

La surface Φ ne peut être que rationnelle $(p_a=P_2=0)$ ou de genres zéro et de bigenre un $(p_a=P_3=0, P_2=1)$. Dans les deux cas, l'involution d'ordre deux existant sur

⁽¹⁾ Voir notre deuxième note.

 Φ_1 et dont Φ est une image (par construction), possède des points de coïncidence (une infinité ou quatre suivant les cas). À un de ces points corespondent deux points A_1 , A_2 de F, car l'involution I_2 ne peut avoir de points de coïncidence (1). T_1 transforme donc A_1 en A_2 . Mais, par construction, il faut que l'une des transformations T_2 , T_3 , T_2 par exemple, change également A_1 en A_2 . Mais alors, ces point sont invariants pour T_3 , c'est-à-dire que l'involution I_2 possède des points de coïncidence. Cela est impossible, donc le premier cas ne peut se présenter.

3. — Le même raisonnement conduit à exclure le deuxième cas, celui où I_2' , I_2'' , Φ_1 , Φ_2 sont de genres $\rho_a = P_3 = 0$,

 $P_2=1$, I_2''' , Φ_3 et par suite Φ rationnelles.

Il y a certainement des points de diramation pour la correspondance (1,2) entre Φ et Φ_3 . À un de ces points correspond, sur F, un couple de points. Ces points sont nécessairement invariants pour l'une des transformations T_1 , T_2 , ce qui est imposible.

4. — Il nous reste à étudier le troisième cas, celui où \mathbf{l}_2' , \mathbf{l}_2'' , Φ_2 , Φ_3 et pour suite Φ sont rationnelles, \mathbf{l}_2' et Φ_1 de genres zéro et de bigenre un.

Le problème posé ici se ramène à un a autre de la

manière suivante:

Considérons, dans le plan (x, y), deux courbes,

$$\varphi_1(x,y)=0, \qquad \varphi_2(x,y)=0,$$

et les plans doubles

$$z_1^2 = \varphi_1(x, y), \qquad z_2^2 = \varphi_2(x, y), \qquad (1)$$

Sur la surface F', d'equations

$$z_1^2 = \varphi_1, \qquad z_2^2 = \varphi_2,$$

⁽¹⁾ Enriques et Severi, Acta Mathematica, vol. 32, 1909.

il existe trois involutions d'ordre deux, engendrées respectivement par les transformations

$$(\underline{\mathbf{T}}_{1}')$$
 $x' = x$, $y' = y$, $z'_{1} = -z_{1}$, $z'_{2} = -z_{2}$

L'involution engendrée par T₁ a pour image le plan double

$$z^2 = \varphi_1(x, y). \ \varphi_2(x, y).$$
 (2)

Si les courbes $\varphi_1 = 0$, $\varphi_2 = 0$ n'ont aucune partie commune, à chaque point commun à ces deux courbes, qui n'est pas de multiplicité paire pour l'une d'elles, correspond, sur F', un point de coïncidence de l'involution engendrée par T₁.

Dans le cas actuel, c'est-à-dire si F coïncide avec F', la surface (2) doit être de genres $p_a = P_3 = 0$, $P_2 = 1$, et les surfaces (1) rationnelles. Par suite, les courbes

 $\varphi_1 = 0$, $\varphi_2 = 0$ satisfont aux conditions suivantes:

1°. La courbe $\varphi_1(x, y)$. $\varphi_2(x, y) = 0$ se compose de deux droites et d'une sextique (décomposée éventuellement) possédant deux couples de points doubles infiniment voisins sur les deux droites et un point double ordinaire à l'intersection de ces droites;

2°. Un point d'intersection des courbes $\varphi_1 = 0$, $\varphi_2 = 0$ est de multiplicité paire pour l'une d'elles au moins;

3°. Les courbes $\varphi_1=0$, $\varphi^2=0$ sont des courbes de diramation de plans doubles rationnels.

Un examen de ces conditions conduit à trois couples

de courbes $\varphi_1 = 0$, $\varphi_2 = 0$:

a. La courbe $\varphi_1 = 0$ se compose d'une conique C et de deux droites d₁, d₂ tangentes à C en A₁, A₂ respectivement. La courbe $\varphi_2=0$ se compose d'une droite d passant par le point (d_1, d_2) et d'une cubique C' passant par (d_1, d_2) , par les points (d, C) et touchant d_1, d_2 en A₁, A₂ respectivement. Par exemple,

$$\varphi_1(x, y) \equiv x. \ y. \ (xy-1),$$

 $\varphi_2(x, y) = (x-y) \ (a_1 \ x^2 \ y + a_2 \ x \ y^2 + a_3 \ x + a_4 \ y),$
 $(a_1 + a_2 + a_3 + a_4 = 0).$

 $b. \varphi_1=o$ se compose d'une conique C et de deux droites d_1 , d_2 la touchant en A_1 , A_2 , $\varphi_2=o$ d'une quartique touchant d_1 en A_1 , d_2 en A_2 et ayant trois points doubles, l'un en (d_1, d_2) , les autres sur C.

c. $\varphi_1 = 0$ se compose d'une cubique C_1 ayant un point double A_1 et d'une droite d_1 touchant C_1 en B_1 . $\varphi_2 = 0$ se compose d'une cubique C_2 ayant un point double en un point A_2 de C_1 , passant par A_1 , touchant d_1 en B_1 , et d'une droite d_2 trouchant C_1 , C_2 en un même point et rencontrant d_1 ou troisième point commun aux courbes C_1 , C_2 et à cette droite.

5. — En résumé: Si une surface de genres un possède trois transformations birationnelles involutives en elle-même, deux-à-deux permutables, dont l'une engendre une involution de genres zéro et de bigenre un, les deux autres engendrent des involutions rationnelles ou des involutions dont l'une est de genres un.