

Variétés algébriques généralisant la surface d'Enriques (seconde note)

Lucien Godeaux

#### Résumé

Construction de variétés algébriques dépourvues de système canonique mais possédant une variété bicanonique d'ordre zéro.

# Citer ce document / Cite this document :

Godeaux Lucien. Variétés algébriques généralisant la surface d'Enriques (seconde note). In: Bulletin de la Classe des sciences, tome 55, 1969. pp. 1034-1039;

doi: https://doi.org/10.3406/barb.1969.62497;

https://www.persee.fr/doc/barb\_0001-4141\_1969\_num\_55\_1\_62497;

Fichier pdf généré le 22/02/2024



## COMMUNICATION D'UN MEMBRE

### GÉOMÉTRIE ALGÉBRIQUE

## Variétés algébriques généralisant la surface d'Enriques

par Lucien GODEAUX

Membre de l'Académie

(seconde note)

Résumé. — Construction de variétés algébriques dépourvues de système canonique mais possédant une variété bicanonique d'ordre zéro.

La surface d'Enriques, d'ordre six, passant doublement par les arêtes d'un tétraèdre, est dépourvue de courbe canonique mais possède une courbe bicanonique d'ordre zéro. On peut l'obtenir de plusieurs manières (1):

Si l'on considère un système linéaire triplement infini de quadriques, dépourvu de points-base, les couples de points conjugués par rapport à ces quadriques forment une involution. La congruence des droites joignant les couples de points conjugués est représentée sur l'hyperquadrique de Klein de S<sub>5</sub> par une surface du dixième ordre à sections hyperplanes de genre six, birationnellement équivalente à une surface d'Enriques (Fano).

L'homographie biaxiale harmonique de S<sub>5</sub> ayant comme axes deux plans, transforme en elle-même la surface intersection de trois hyperquadriques ne passant pas par ses axes. L'involution déterminée sur cette surface par l'homographie a pour image une surface birationnellement identique à la surface d'Enriques.

<sup>(1)</sup> Pour la bibliographie, voir notre opuscule Les surfaces algébriques non rationnelles de genres arithmétique et géométrique nuls (Paris, Hermann, 1934). Consulter également BURNIAT, Recherches sur les surfaces de bigenre un (Mémoires de la Société des Sciences de Liège, 1936, pp. 1-104).

Nous avons dans une note récente (1) étendu le premier procédé pour construire des variétés à un nombre pair de dimensions dépourvues de variété canonique et possédant une variété bicanonique d'ordre zéro. Nous nous occuperons ici de généraliser le second procédé.

Nous démontrerons le théorème suivant:

L'involution du second ordre privée de points unis, déterminée sur la variété à n dimensions intersection de n+1 hyperquadriques d'un espace à 2n+1 dimensions, par une homographie biaxiale harmonique dont les axes, de même dimension, ne rencontrent pas la variété, a pour image une variété à n dimensions qui:

Si n est impair, possède des variétés canonique et pluricanoniques d'ordre zéro,

Si n est pair, est dépourvue de variétés canonique et pluricanoniques d'indice impair, mais possède une variété bicanonique et des variétés pluricanoniques d'indice pair d'ordre zéro.

Pour n impair, la variété a les genres

$$P_a, P_2, ..., P_k, ... = 1,$$

et pour n pair, les genres

$$P_q = P_3 = \dots P_{2k+1} = 0, P_2 = P_4 = \dots = P_{2k} = \dots = 1.$$

Nous construisons, dans un espace à n(n + 2) dimensions, un modèle projectif, d'ordre  $2^{2n}$ , de la variété image de l'involution.

1. Considérons dans un espace  $S_{2n+1}$  à 2n+1 dimensions, une homographie biaxiale harmonique H dont les axes sont deux espaces  $\sigma_1$ ,  $\sigma_2$  à n dimensions.

On peut choisir dans  $S_{2n+1}$ , n+1 hyperquadriques linéairement indépendantes ne passant pas par les axes de l'homographie H. Elles ont en commun une variété V à n dimensions sur laquelle l'homographie H détermine une involution I du second ordre privée de points unis (par un choix convenable des hyperquadriques).

Les variétés canoniques de V sont découpées par les hypersurfaces d'ordre 2(n + 1) - (2n + 1) - 1 = 0, c'est-à-dire que V possède une variété canonique et des variétés pluricanoniques d'ordre zéro.

<sup>(1)</sup> Variétés algébriques généralisant la surface d'Enriques (Bulletin de l'Académie roy, de Belgique, 1968, pp. 1401-1409).

Désignons par |W| le système des sections hyperplanes de V. Ce système est son propre adjoint. Nous désignerons par  $W_1$  les sections de V par les hyperplans passant par  $\sigma_2$  et par  $W_2$  celles qui sont découpées par les hyperplans passant par  $\sigma_1$ . Les systèmes  $|W_1|$  et  $|W_2|$  ont la dimension n et appartiennent à l'involution I.

Sur une variété  $W_1$ , le système canonique est découpé par les variétés W. Il comprend deux systèmes linéaires appartenant à l'involution I. L'un est le système  $|(W_1, W_1)|$  de dimensions n-1; l'autre,  $|(W_1, W_2)|$  a la dimension n.

Désignons par  $\Omega$  une variété à n dimensions image de l'involution I, par  $\Omega_1$  les variétés qui correspondent aux variétés  $W_1$ , par  $\Omega_2$  celles qui correspondent aux variétés  $W_2$ .

2. La variété V étant l'intersection complète de n+1 hyperquadriques est complètement régulière et il en est de même des variétés W,  $\Omega$ ,  $\Omega_1$ ,  $\Omega_2$ .

Une variété  $W_1$  appartient à un espace à 2n dimensions et a n-1 dimensions. Nous avons établi (¹) que si n-1 est pair, le système canonique de  $\Omega_1$  a pour correspondant sur la variété  $W_1$  homologue, celui des systèmes appartenant au système canonique et à l'involution I qui a la dimension minimum. Le système canonique d'une variété  $\Omega_1$  est donc le système |  $(\Omega_1,\Omega_1)$  | et |  $(\Omega_1)$  | est donc son propre adjoint. La variété  $\Omega$  possède une variété canonique d'ordre zéro.

Par contre, si n-1 est impair donc n pair, le transformé du système canonique de  $\Omega_1$  sur la variété  $W_1$  homologue est celui des systèmes  $|(W_1, W_1)|, |(W_1, W_2)|$  qui a la plus grande dimension. Le système canonique de  $\Omega$  est donc  $|(\Omega_1, \Omega_2)|$  et la variété  $\Omega$  est dépourvue de système canonique.

On a  $|\Omega_1'| = |\Omega_2|$  et de même  $|\Omega_2'| = |\Omega_1|$ , d'où  $|\Omega_1''| = |\Omega_1|$ . La variété  $\Omega$  possède donc une variété bicanonique d'ordre zéro.

On en conclut que si n est impair, la variété  $\Omega$  possède des variétés canoniques et pluricanoniques d'ordre zéro. Si n est pair, la variété  $\Omega$  est dépourvue de variétés canonique et pluricanoniques d'indice impair, mais possède des variétés bicanonique et pluricanoniques d'indice pair et d'ordre zéro.

<sup>(1)</sup> Involutions cycliques privées de points unis appartenant à une variété algébrique complètement régulière (Bulletin de l'Académie royale de Belgique, 1968, pp. 653-661).

3. La variété  $W_1$  appartenant à un espace à 2n dimensions, son genre géométrique est  $P_g = 2n + 1$ . Désignons par  $P'_g$  le genre géométrique des variétés  $\Omega_1$ .

Si n est impair, donc n-1 pair, on a (1)

$$P_a + 1 = 2(P'_a + 1),$$

d'où  $P'_a = n$ .

Si n est pair, donc n-1 impair, on a

$$P_a - 1 = 2(P'_a - 1),$$

d'où  $P'_{a} = n + 1$ .

Représentons par W<sup>k</sup> l'intersection de k variétés W, c'est-à-dire la section de V par un espace  $S_{2n-k+1}$  à 2n-k+1 dimensions. Le système canonique d'une variété W<sup>k</sup> est donc découpé par les variétés d'ordre 2n+2-(2n-k+2)=k de  $S_{2n-k+1}$ . Le genre géométrique  $p_g$  de W<sup>k</sup> est donc

$$p_g = \binom{n+1}{k} - (n+1) \binom{2n-1}{k-2}.$$

Si nous désignons par  $\Omega_1^k$  les variétés homologues des variétés  $W_1^k$  sur  $\Omega$ , le genre  $p_q^k$  de  $\Omega_1^k$  est donné par

$$p_a + 1 = 2(p'_a + 1)$$

si n-k est pair ou par

$$p_g - 1 = 2(p'_g - 1)$$

si n - k est impair.

Lorsque k = n - 2 ou k = n - 1, nous avons déterminé le genre géométrique de  $W_1^k$  par une autre méthode (1). On a pour le genre de  $W^{n-2}$ ,

$$p_a = (n^2 - 3n + 4) 2^{n-2} - 1,$$

d'où pour le genre géométrique  $p'_g$  de la surface  $\Omega^{n-2}$ ,

$$p'_{a} = (n^{2} - 3n + 4)2^{n-3} - 1.$$

<sup>(1)</sup> Involutions cycliques..., loc. cit.

<sup>(2)</sup> Sur les courbes et surfaces intersections d'hyperquadriques (Bulletin de l'Académie roy, de Belgique, 1944, pp. 262-269).

Lorsque k = n - 1, le genre de la courbe  $W^{n-1}$  est

$$p = (n-1) 2^n + 1$$

et par conséquent celui de la courbe  $\Omega^{n-1}$  est

$$p' = (n-1) 2^{n-1} + 1.$$

4. En rapportant projectivement les variétés  $\Omega_1$  ou  $\Omega_2$  aux hyperplans d'un espace à n dimensions, on obtient pour modèle projectif de la variété  $\Omega$  un espace multiple d'ordre  $2^n$  peu maniable. Nous obtiendrons un modèle projectif de  $\Omega$  sous une autre forme.

Les hyperquadriques de  $S_{2n+1}$  appartenant à l'involution engendrée dans cet espace par l'homographie H forment deux systèmes. L'un, formé des hyperquadriques ne contenant pas les axes  $\sigma_1$ ,  $\sigma_2$  de H a la dimension (n+1) (n+2)-1. Il y a n+1 de ces hyperquadriques qui contiennent V de sorte que ce système découpe sur V un système de dimension  $(n+1)^2-1=n(n+2)$ . Ce système contient les variétés  $2W_1$ ,  $2W_2$ . L'autre système est formé des hyperquadriques qui contiennent les axes  $\sigma_1$ ,  $\sigma_2$  de H. Il a la dimension  $(n+1)^2-1=n(n+2)$ . Il découpe sur V un système qui contient les variétés  $W_1+W_2$ . Nous le désignerons par  $|(2W)_2|$ , le premier étant désigné par  $|(2W_1)|$ .

Rapportons projectivement les variétés  $(2W)_1$  aux hyperplans d'un espace  $S_{n(n+2)}$  à n(n+2) dimensions. Il correspond à V une variété que nous désignerons par  $(2\Omega)$ , d'ordre  $2^{2n}$ . Ses sections hyperplanes seront désignées par  $(2\Omega)_1$ . Ce système  $|(2\Omega)_1|$  contient les variétés  $2\Omega_1$ ,  $2\Omega_2$ .

Aux variétés  $(2W)_2$  correspondent sur  $(2\Omega)$  des variétés formant un système  $|(2\Omega)_2|$  contenant les variétés  $\Omega_1 + \Omega_2$ .

Si n est impair, les systèmes  $|(2\Omega_1)_1|$  et  $|(2\Omega_2)_2|$  sont respectivement leurs propres adjoints et la variété  $(2\Omega)$  possède des variétés canonique et pluricanoniques d'ordre zéro.

Si n est pair, le système  $|(2\Omega)_2|$  est l'adjoint au système  $|(2\Omega)_1|$  et inversement. La variété est dépourvue de variété canonique et possède une variété bicanonique d'ordre zéro. C'est une extension de la surface d'Enriques.

On obtiendrait des résultats analogues en rapportant projectivement les variétés  $(2W)_2$  aux hyperplans d'un espace à n(n + 2) dimensions.

5. Observons qu'en rapportant projectivement les hyperquadriques de  $S_{2n+1}$  ne passant pas par les axes de l'homographie aux hyperplans d'un espace à (n+1) (n+2)-1 dimensions, on obtient une variété réglée définie de la manière suivante: Aux hyperquadriques de  $\sigma_1$ , correspond une variété de Veronese généralisée d'ordre  $2^n$ ,  $\psi_1$ , situés dans un espace  $\Sigma_1$  à n(n+3):2 dimensions. De même, aux hyperquadriques de  $\sigma_2$  correspond une variété de Veronese généralisée  $\psi_2$ , d'ordre  $2^n$ , située dans un espace  $\Sigma_2$  à n(n+3):2 dimensions, ne rencontrant pas  $\Sigma_1$ .

Aux couples de l'involution déterminée par H dans  $S_{2n+1}$  correspond la variété lieu des droites s'appuyant sur  $\psi_1$  et  $\psi_2$ . Cette variété est d'ordre  $2^{2n}$ . Aux hyperquadriques passant par V correspondent dans  $S_{(n+1)(n+2)-1}$ , n+1 hyperplans ayant en commun un espace linéaire à n(n+2) dimensions coupant la variété précédente suivant la variété  $(2\Omega)$ .

Liège, le 7 décembre 1969.