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Abstract
The non-Gaussian nature of turbulent wind loading has been long accepted.

Nevertheless, although this might have significant influence on design quantities,
it seems to be very often ignored when it comes to practical applications, specially
when dealing with real civil engineering structures, ranging from medium to quite
large dimensions. Unfortunately, the need for significantly high computational
power has been the main challenge to overcome. However, things have evolved
quite fast in that domain over the last few years, possibly providing better tools
for its effective computation.

Proper Orthogonal Decomposition (POD) and Reduced Order Model (ROM)
techniques have also helped scientists and practitioners, in several fields including
Wind Engineering, to tackle the complexities of their problems. Using physical
and mathematical tools, POD can help at reducing the problem dimensionality,
and making it more affordable to be solved numerically, whenever analytical
formulations are not derivable.

This work aims at presenting a new framework for tackling the Bispectral
problem applied to large civil engineering structures, under non-Gaussian wind
loads. To do so, mathematical and numerical tools will be employed. A novel
formulation of application of POD techniques to the Bispectral problem will be
provided. Also, a novel algorithmic arrangement for tackling efficiently the com-
putation of non-Gaussian features of the wind load, i.e. the Bispectrum, will be
presented.

Coupling these two aspects, application of Bispectral analysis to real civil
engineering examples will be provided. This will lead to the final effort of provid-
ing a reasonable answer to a fundamental question: when exactly is a Bispectral
analysis needed?
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Nomenclature

αmIa = condensed modal wind coefficients

υ = matrix collecting all of wind components

q̈(t) = vector of modal accelerations

ẍ(t) = vector of structural accelerations

q̇(t) = vector of modal velocities

ẋ(t) = vector of structural velocities

γ = Euler’s constant

γ3 = skewness coefficient

γ4 = kurtosis coefficient

γe = excess kurtosis coefficient

ΓuIJ
(ω) = spatial coherence function of u(t)

AmI = vector of condensed modal wind coefficients

ω = circular natural frequency

U = meand wind speed
−→
V = spatial wind velocity vector

ρ = air volumic mass

σ = standard deviation

gG = Gaussian peak factor

gNG = non-Gaussian peak factor
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i = imaginary number

i(t) = wind incidence angle

Iu, Iv, Iw = turbulence intensities

K2(ω1, ω2) = second-order Volterra kernel

mk = k-th order statistical moment

Rxxx(τ1, τ2) = Bi-correlation function

Rxy(τ) = Cross-correlation function

Rx(τ) = Auto-correlation function

Sxy(ω) = Cross Power Spectral Density function

Sx(ω) = Auto Power Spectral Density function

µk = set of elementary wind turbulent components

Φ = Modal matrix

Aµk = matrix of wind wind coefficients, for k-th elementary wind turbulent
component

Bf (ω1, ω2) = 3D-tensor of bispectra of nodal loads

Bp(ω1, ω2) = 3D-tensor of bispectra of modal loads

Bq(ω1, ω2) = 3D-tensor of bispectra of modal responses

Bx(ω1, ω2) = 3D-tensor of bispectra of response

Bυ(ω1, ω2) = tensor of bispectra of wind components

C = Damping matrix

C⋆ = Modal damping matrix

E = transformation matrix of wind forces from aerodynamic to structural
nodes

F(ω) = vector of Fourier transforms of applied loads

f(t) = vector of applied forces

fse(t) = vector of self-exciting forces
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H(ω) = nodal Frequency Response Function (FRF)

H⋆(ω) = modal Frequency Response Function (FRF)

K = Stiffness matrix

K⋆ = Modal stiffness matrix

L = matrix of wind turbulence scales

M = Mass matrix

M⋆ = Modal mass matrix

P(ω) = vector of Fourier transforms of modal loads

p(t) = vector of modal loads

Q(ω) = vector of Fourier transforms of modal responses

q(t) = vector of modal responses

Rυ(∆t) = tensor of correlation functions of wind components

Rυ(∆t1,∆t2) = tensor of Bi-correlation functions of wind components

Sυ(ω) = tensor of PSD functions of wind components

T = transformation matrix of wind forces at aerodynamic nodes to forces at
all structural degrees-of-freedom. Combination of E and X

X = transformation matrix of wind forces at structural nodes to forces at all
structural degrees-of-freedom

X(ω) = vector of Fourier transforms of structural responses

x(t) = vector of structural displacements

E[·] = mathematical expectation operator

NDEGW = number of wind components resulting from the degree of the wind model
transformation

NDOFs = number of structural degrees-of-freedom

NM = number of structural vibration modes

NNa = number of aerodynamically loaded nodes
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NNs = number of structural nodes

NN = number of aerodynamically loaded nodes that match with structural
ones

CD(t) = Drag force coefficient

CL(t) = Lift force coefficient

CM(t) = Pitching moment coefficient

FD(t) = Drag force

FL(t) = Lift force

FM(t) = Pitching moment

ABL = Atmospheric Boundary Layer

CCC = Complete Cubic Combination

CFD = Computational Fluid Dynamics

CQC = Complete Quadratic Combination

CRSC = Cubic Root of Sum of the Cubes

CSD = Cross Spectral Density

CWE = Computational Wind Engineering

GRS = Global Reference System

HPC = High-Performance Computing

ICA = Independent Component Analysis

KLD = Karhunen-Loève Decomposition

MDOF = Multi Degree-of-Freedom

PCA = Principal Component Analysis

POD = Proper Orthogonal Decomposition

PSD = Power Spectral Density

SDOF = Single Degree-of-Freedom
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SPOD = Spectral Proper Orthogonal Decomposition

SRSS = Square Root of Sum of the Squares

SVD = Singular Value Decomposition

THPC = Tail-Head-Previous-Current

VIV = Vortex Induced Vibrations

WRS = Wind Reference System

While this list of notations tries to be as exhaustive as possible, specially in
reporting those symbols related to the most important concepts introduced in
this Work, some of them might be missing. Nonetheless, they all are also well
explained throughout the manuscript, whenever first introduced. As a general
rule of tumb, lowercase and capital bold letters and symbols are used to denote
vectors and matrices, respectively, except where explicitly stated. Superscripts
[·]T and [·]∗ denote transpose and complex conjugate transpose (Hermitian) oper-
ators. Overhead bars denote mean values. Overhead hats are used to distinguish
grouping conventions in the matrix of wind components, at all structural loaded
nodes.
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Chapter 1

Introduction

1.1 Context
In Civil Engineering, when dealing with flexible structures, wind action is cer-
tainly among the most important factors that must be accounted for in the design
and verification stages.

When it comes to the dynamic effects of wind loads on flexible systems, a
wide range of meteorological phenomena can be identified, based on different
classifications. This work will exclusively focus on synoptic winds. This type of
wind corresponds to classical stormy winds in neutral atmospheric conditions [1].
The wind profile across the height of the atmospheric boundary layer assumes the
typical log law profile on average, but also some significant fluctuations around
this mean value. These fluctuations result from the turbulence of the flow.

A given type of wind might interact in several ways with a flexible structural
system. In particular, in the scientific community, a usual classification criterion
opposes steady and unsteady models. The former assumes that the turbulent flow
is unaffected by the structural motion, so that any fluid-structure interaction can
be safely neglected, while in the latter fluid-structure interactions such as flutter
are accurately modeled and can lead to aeroelastic instabilities. This work is
restricted to the former type of model, where aerodynamic loads are expressed
as memoryless transformations of the wind velocity field and of the structural
velocity. This will be extensively discussed in the following Chapters.

Buffeting refers to the turbulent component of synoptic wind flows over flex-
ible systems [1], and buffeting analysis refers to the structural analysis that de-
termines displacements, internal forces, and ground reactions of the structure
subjected to these turbulent wind actions. While unsteady phenomena such as
flutter or galloping are critical for safety reasons, buffeting analysis usually as-
sumes linear structural behavior and steady loading models. The aim of this
analysis is to verify that the structure doesn’t undergo excessively large internal
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forces or displacements during severe storms. It is also important to consider the
impact of these phenomena on comfort and fatigue issues in the long-term within
the structure’s lifetime [2].

Another important aspect of the dynamic wind action is its random character:
at any point in space and instant in time, it is impossible to predict the exact
value of the wind flow, even knowing all the values that were measured in the
past.

For a given dynamical system, buffeting analysis consists in quantifying the
variability in the structural response (the output), given the uncertainty of the
random wind flow (the input). This challenge can be tackled using two differ-
ent, but theoretically equivalent, approaches: either with a probabilistic analysis,
either with time domain simulations based on a collection of realizations of the
stochastic input, an approach that is also known under the terminology Monte
Carlo simulation.

min

max

mean

Figure 1.1: Example of a time series.

Time domain approach is likely to be chosen by practitioners. Indeed, a
time domain approach is the most natural way of tackling a dynamical problem
where loads, displacements and internal forces evolve with time. Time histories
of wind loads and structural responses are easier to understand and visualise, see
Figure 1.1. At any given time instant of the measuring window, both loading
and structural responses take deterministic values, which therefore situates the
problem in a comfortable deterministic setting. Deterministic is the opposite
of random, meaning that a deterministic entity is known with certitude, since
it comes from either measured or simulated values. With this approach, design
quantities are the result of a statistical treatment of these time series; for instance
the maximum displacement is simply obtained as the maximum value of the
corresponding time series.

This approach has the limitation of requiring wind field samples as input to
compute structural responses. Monte Carlo methods necessitate repeating time-
domain analyses multiple times with different loading time histories to obtain
statistically representative design quantities. Alternatively, a single, but very
long time series can be used to determine reliable statistical estimates of the
quantities of interest. In fact, a longer time series would more accurately encode
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statistical information of the physical process, as a direct consequence of the Law
of Large Numbers [3].

This concern was raised during the first half of the XX-th century by aerospace
engineers, who were analyzing the buffeting of airplane wings subjected to wind
turbulence and their resulting vibrations. They laid the foundations for the com-
plementary probabilistic approach that were adopted by civil, structural, and
bridge engineers in the early 1960s [1].

To overcome the limitations of Monte Carlo simulations, stochastic approaches
were then developed. The fundamental question in these methods is: given the
probabilistic description of the loading process, what is the resulting probabilistic
description of the structural responses? In other words, how to propagate the
stochastic input (wind loading) to the output of the structural system, without
recoursing to samples of the wind field.

This approach has two main advantages:

• repeating the same analysis twice with wind loading characterized by the
same statistical description yields identical responses (this property does
not hold in a Monte Carlo approach).

• it also avoids the simulation of synthetic wind loading samples, or perform-
ing statistics of the long generated time series, which can be both tedious
and expensive.

A probabilistic approach is an efficient way to solve problems without resorting
to the statistical estimation required by the Monte Carlo method. For example,
the probability of rolling a "6" on a standard six-sided die can be determined using
a probabilistic approach by computing the ratio of favorable outcomes to the total
number of equally probable results, yielding one out of six. In contrast, a Monte
Carlo simulation involves simulating the experiment of rolling the die numerous
times. The probability of obtaining a "6" is then statistically estimated by dividing
the number of times a "6" is rolled by the total number of repetitions. This simple
example demonstrates why avoiding Monte Carlo simulation is significantly faster.

Random processes like wind velocity or wind loads (input), and structural
displacements and internal forces (output), are characterized by several statistical
indicators. While a comprehensive description will be provided in Chapters 2 and
3, it is necessary to introduce some basic concepts here.

The mean and variance (square of standard deviation) represent the first two
statistical moments, see Figure 1.2-a. For a Gaussian process, these are suffi-
cient to fully describe the Probability Density Function (PDF). In non-Gaussian
cases, additional statistical moments are necessary. The third and fourth mo-
ments quantify the statistical asymmetry and the flatness of the distribution
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(b)

(a)

(c)

PSD of loading

Gaussian distribution

mean

standard deviation
(spread)

3rd moment = asymmetry
(skewness)

4th moment = tail �atness
(kurtosis)

Non-Gaussian distribution

PSD of response

area = 2nd moment = variance

2nd order kernel

Bispectrum of loading Bispectrum of response3rd order kernel
volume = 3rd moment

Figure 1.2: (a) illustration of the Gaussian distribution, and example of
a non-Gaussian distribution, (b) Schematic of the working principle of a
spectral analysis (2nd order), (c) Schematic of the working principle of a

bispectral analysis (3rd order)

tails, respectively [4]. The first three or four moments are sufficient to represent
a non-Gaussian process.

Furthermore, spectra of various orders are necessary to give an overview of
the distribution of the moments in the frequency domain.

In a Gaussian context, the variance of a structural response is obtained by
integrating the corresponding PSD, which is derived from the product of the input
PSD and a structural kernel, see Figure 1.2-b. As detailed later, this second-order
kernel is the squared norm of the frequency response function. Consequently, the
PSD of the structural response shows contributions in the frequency ranges where
the PSD of the loading is significant, as well as near natural frequencies, where
the kernel exhibits sharp, narrow resonance peaks [5]. Capturing these sharp



1.2. Motivation and objectives 5

peaks requires a fine mesh for the numerical integration of the response PSD.
Similarly, higher moments are obtained by integrating higher-order spectra,

see Figure 1.2-c. The third moment of a structural response represents a crucial
information for non-symmetrically distributed processes. It is obtained by inte-
grating the bispectrum, which exhibits several resonance peaks resulting from the
multiplication of the loading bispectrum by the third-order kernel. More details
about the specific features of these kernels and higher order spectra will be given
in the following Chapters.

This thesis mainly focuses on accurately integrating the third-order spectrum,
alias the bispectrum, to determine the third statistical moment of the response.
Increasing the order of the spectrum increases the problem’s dimensionality. Un-
like the PSD, that is distributed along the frequency axis, the bispectrum requires
integration in a 2-D frequency space.

The complexity of determining higher-order spectra and the challenges associ-
ated with their numerical integration, particularly due to sharp resonance peaks,
the probabilistic approach to non-Gaussian problems, such as buffeting analysis,
has received limited attention in the past.

Practitioners typically follow one of two approaches: if the problem can be as-
sumed to be Gaussian (both input and output), a simple probabilistic approach in
the frequency domain is used. This approach is straightforward as the frequency
space is only 1-D, and the variance of the response can be estimated by evaluating
an integral, with special attention paid to sharp resonance peaks. With today’s
computational resources, this is no longer problematic. Alternatively, if the prob-
lem is non-Gaussian (input or output), the common solution strategy used today
is a Monte Carlo simulation. This requires very long simulations, and often, the
confidence bounds of the results are not provided, nor are the sensitivity and
repeatability studies.

1.2 Motivation and objectives
In recent decades, various studies and scientists have begun to question the Gaus-
sian assumption of wind loading, demonstrating that in many situations it cannot
be considered as a Gaussian random process [6, 7, 8, 9, 10, 11].

In a Monte Carlo approach, abandoning the Gaussian assumption for the
loading requires much longer simulated time histories. This is because the sample
distributions of higher-order moments have larger standard errors.

Conversely, a stochastic approach requires evaluating higher-order spectra and
integrating them to determine the higher-order moments. Establishing and inte-
grating such spectra can be challenging in real-life applications due to numerical
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difficulties in managing complex functions in higher-dimensional frequency spaces
and the abstract nature of higher-order spectra concepts.

In this context, the main objective of this thesis is to provide a methodology
for the efficient computation of higher-order stochastic spectra and corresponding
moments. This work focuses on third-order statistics, specifically the integration
of the bispectrum. While this problem has been addressed before [12], this the-
sis introduces a completely novel approach aimed at enabling bispectral analysis
of large multi-degree-of-freedom (MDOF) structural systems subjected to non-
Gaussian buffeting wind loads. The goal is to extend bispectral analysis capa-
bilities to structures with several hundreds to thousands of degrees of freedom,
surpassing the current limitation of about a dozen.

The mathematical derivations and proposed numerical solutions discussed in
this work have a broader and more general scope. Although applied to third-order
statistics in this work, the proposed structure can be conceptually extended and
adapted to higher orders.

1.3 Manuscript structure
This thesis contains six chapters, structured as follows.

Chapter 2 introduces the Bispectral problem applied to a single-degree-of-
freedom system.

Chapter 3 follows, providing a comprehensive overview and extension of con-
cepts introduced in Chapter 2, as gradual introduction to the bispectral problem
applied to large structures.

Chapter 4 begins with a brief overview of the nature of wind action, its main
characteristics, and how they are considered in civil engineering applications.
The main focus is on the random turbulent wind dynamic loading. A general
overview of wind action is provided, followed by a discussion of current practices
in civil engineering. This serves as a basis for understanding and comparing the
generalized model of wind loading proposed in this thesis. A specialized version
of this general model is then presented to illustrate the practical implications of
different wind model choices on the resulting equations. The chapter concludes
with the introduction of the general dynamic equations of motion and a brief
discussion on extreme value theory. In this Chapter, the last Section is dedicated
to the principles of the Proper Orthogonal Decomposition (POD) techniques, and
how they are applied in Wind Engineering. Finally, its extension to Bispectral
problems is formulated.

Chapter 5 explores the numerical developments that have been carried in this
work. The first part focuses on discussing the problems intrinsic to a bispectral
analysis under a numerical point of view. This is important to understand and
gradually introduce the motivations that led to the conception and development
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of the Mesher algorithmic arrangement, which is thoroughly detailed in the
rest of the Chapter. In the last part, the algorithmic arrangement is discussed
under a different point of view: its The last part discusses how the algorithmic
arrangement is framed in the parallel computing framework: from current support
and integration, to its potential and future implementations.

Finally, Chapter 6 presents some practical applications of Bispectral analysis.
It discusses 3 applications: a first more academic example, useful for reproducibil-
ity, and two real applications, that aim at showing that bispectral analysis is not
only of theoretical but also of practical interest, which might prove crucial in
some circumstances.

The Thesis ends with Chapter 7, in which the findings are summarised and
possible improvements and extensions of this work are discussed.

1.4 Personal contributions
The primary objective of this work is to develop a novel and effective solution
for the bispectral problem, giving the opportunity to study large structures.
Nonetheless, several other innovations were established along the way as part
of the process of achieving the main goal.

In Chapter 4, two main contributions can be identified:

• a generalised formulation of wind forces model;

• a specialisation of such generalised model to a quadratic transformation,
including non-Gaussian features of the wind load.

Moreover, in Section 4.8 the main contribution stands in the novel formulation of
POD application to the non-Gaussian wind forces model. This extends current
practice of leveraging POD in a Gaussian context, involving only PSDs of the
wind loading.

The material presented in Chapter 5 is entirely a personal contribution, focus-
ing on the algorithmic aspects that were conceived and developed from scratch.
This includes the unified BsaLib library and its Mesher algorithm.

Finally, in Chapter 6, the main contribution lies in the derivation of the gener-
alized “SK2BR-curve”, which was found to be an effective means of rapidly esti-
mating the skewness of the structural response, given the background-to-resonant
ratio of the structural response.
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Chapter 2

Bispectral analysis of a single
degree-of-freedom structure

This chapter focuses on introducing the bispectral problem theoretically, with
consideration of its practical applications. It will cover in detail a straightforward,
academic example: a single degree-of-freedom (SDOF) structure. The aim of
this thesis is to develop the algorithmic framework that will allow extending the
concepts presented here to multi degree-of-freedom (MDOF) structures.

2.1 A simple introductory problem
The equation of motion of an SDOF system reads:

mẍ(t) + cẋ(t) + kx(t) = f(t) (2.1)

where m, c, k represent the structural characteristics (mass, damping, stiffness),
f(t) the applied load, x(t) the dynamic structural response. This system could
for instance represent the response in a single structural mode of vibration, a well-
known concept in structural engineering, which is however recalled in Chapter
3.

For now, it is assumed that the wind force acting on this SDOF system is
given by:

f(t) = 1
2ρcDΩ(U + u(t))2 (2.2)

where ρ = 1.225 kg
m3 is the air density, cD is a aerodynamic drag coefficient, Ω is

a tributary loaded area, U is the mean wind speed, and u(t) is the fluctuating
component of the wind velocity, resulting from turbulence.

Being a result of turbulence, the longitudinal fluctuation of wind velocity u(t)
is precisely a random process. It is characterized in a probabilistic manner by
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means of its variance and Power Spectral Density (PSD). As a result, the struc-
tural responses of interest, for instance the displacement x(t) or the internal forces
kx(t), are also random processes. The structural analysis consists in determining
them from a probabilistic point of view.

2.2 Statistics and Probability
Basic concepts related to the statistical treatment of random variables and ran-
dom processes are introduced in this section. These concepts will be extensively
used in later sections. The material presented here is available in many textbooks,
see e.g. [13]. Major concepts are summarized to introduce them with the same
notations as used later in this document. Advanced concepts related to MDOF
systems will be developed and introduced in more detail in Chapter 3.

A random variable is the scalar outcome of a random event. Rolling a die
or spinning a roulette wheel in a casino are typical examples of random events
that provide scalar outcomes, such as a number from 1 to 6 or a color (black or
red). Another example is the wind velocity at a given time and location, where
the scalar outcome is a continuous variable, unlike the discrete variables in the
previous examples.

A random process is a sequence of random variables with some neighbor-to-
neighbor correlation, allowing for discussions of smoothness and differentiability
in the continuous case. Simply put, a random process can be viewed as a random
function, similar to a time signal [14].

2.2.1 Random variables
A random variable is defined on a set S of possible experimental outcomes of a
random event [4]. When this set is discrete with a finite, countable, number of
items, for instance S = {1, · · · , 6} when rolling a die, it is possible to associate a
probability of occurence with each possible outcome:

PX(xi) ∀xi ∈ S (2.3)
where PX represents the probability function of the random variable X. It is also
convenient to deal with the Cumulative Density Function (CDF) FX defined as:

FX(x) = P (X ≤ x) =
∑
xi≤x

PX(xi) (2.4)

for a discrete random variable. It quantifies the probability of the random variable
to experience values lower than or equal to given threshold x. For example, the
probability of rolling a die giving a result lower than 3.25 is 50%, knowing that
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the favorable cases are 3 among 6 possible outcomes assuming that the die is not
biased. Interestingly, the CDF is defined for x ∈ R, while the probability function
PX is defined on S only.

For continuous random variables like those treated in this thesis, Equation
(2.4) takes the form

pX(x) = dFX(x)
dx

; FX(x) =
� x

−∞
pX(y)dy (2.5)

where pX(x) refers to the Probability Density Function (PDF), and pX(x)dx rep-
resents the probability that the outcome X of the random event takes place in
the interval [x, x+ dx].

Determining the PDF of a random variable from academic examples is rela-
tively straightforward. However, when it comes to characterizing a real physical
variable or process, it can be impractical to determine the complete PDF. Instead,
mathematical moments such as the mean and variance can be used. In experi-
mental testing, these moments are easier to determine than the entire PDF, which
is often constructed from these moments while assuming a specific distribution.

2.2.1.1 Average and statistical moments

The raw (statistical) moment of order n of the continuous random variable X is
defined as:

mn,X = E[Xn] =
� +∞

−∞
xnpX(x)dx (2.6)

where E[·] represents the mathematical expectation operator. The notation mn,X

will be simplified to mn in the following, when it does not lead to confusion.
The average or mean value of a continuous random variable X is the first

statistical moment, µX = m1, or:

µX = E[X] =
� +∞

−∞
xpX(x)dx. (2.7)

Similarly, the central (statistical) moment of order n is defined as the moment
of order n of the deviation of X with respect to its mean value µX :

m̃n,X = E[(X − µX)n] =
� +∞

−∞
(x− µX)npX(x)dx. (2.8)

The notation m̃n,X will be simplified to m̃n, when it is clear from the context
that it refers to X.
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2.2.1.2 Variance

The variance is the central moment of order 2, n = 2:

m̃2 = σ2
X = E[(X − µX)2] = E[X2]− µ2

X . (2.9)

It represents the spread of the distribution around the mean value. It is easier
to communicate with the standard deviation σX , defined as the square root of the
variance. Indeed, the standard deviation has the same units as variable X.

If the random variable X is zero mean, µX = 0, the second statistical mo-
ment m2 and the variance σ2

X (second central moment) are equal. This can be
generalised to any moment of order n.

2.2.1.3 Third moment and the skewness coefficient γ3

In the context of this thesis, it is important to introduce the third central moment
m̃3:

m̃3 = E[(X − µX)3] = m3 − 3m2µX + 2µ3
X . (2.10)

As seen from Equation (2.8), the third central moment translates the asym-
metry of the PDF around the mean value. This is a consequence of the oddness
of the power n used to compute this moment. Indeed, occurrences of the ran-
dom variable X beyond, and respectively below, the average µX contribute with
different signs (positively, resp. negatively) to this odd-order moment.

Also, to provide graspable information, it is common practice to normalize the
central moments with respect to the appropriate power of the standard deviation
σX , so that dimensionless normalized central moments are defined for each order
n:

γn = m̃n

σnX
. (2.11)

At third order, the normalized central moment, called skewness coefficient, is
defined as

γ3 = m̃3

σ3
X

. (2.12)

If the statistical distribution is symmetric around the mean value, γ3 = 0.
The reciprocal is not true.

2.2.1.4 Gaussian vs. non-Gaussian random variables

A Gaussian variable is a type of continuous random variable that is widely used
in probability theory and statistics. The wind velocity at a given time and space
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Figure 2.1: Example of distributions of Gaussian and non-Gaussian vari-
ables. For γ3 > 0, the tail extends more to the right than to the left; and

vice versa.

is typically modeled as a Gaussian variable. Its PDF is characterized by a bell-
shaped curve, given by

pX(x;µ, σ) = 1√
2πσ

e− (x−µ)2

2σ2 . (2.13)

Substituting this expression in Equations (2.6) and (2.8) results in m1 = µ and
m̃2 = σ2, which show that µ actually represents the mean value of the distribution
and σ represents the standard deviation. Furthermore, m̃3 = 0 for the Gaussian
variable, no matter the values of µ and σ.

The Gaussian distribution is important due to the Central Limit Theorem,
which states that the sum of a large number of independent and identically dis-
tributed random variables tends to be normally distributed, regardless of the
original distribution of the variables. This makes the Gaussian distribution a
fundamental concept in statistics and many applied fields. It is characterized by
only 2 parameters, µ and σ. It is also tempting to model a random variable as a
Gaussian variable, when it is only known by its first two moments. This choice
is supported by the maximum entropy principle [15].

Last but not least, the Gaussian distribution is always symmetrical, and there-
fore ceases to be appropriate as soon as the skewness of the random variable is
non zero. For instance, squaring a Gaussian variable like u(t), as in the right-hand
side of (2.2), (U + u(t))2, provides a non-Gaussian variable. It is asymmetrically
distributed around the mean value. The first and simplest way to account for
this non-Gaussianity is to represent the variable with its mean value, standard
deviation, and skewness coefficient.

As an example, Figure 2.1 shows the distribution of X with µX = 10 and
σX = 1.5, which is typical of an average wind speed (10 m/s) and fluctuation at
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a given time, as well as the distribution of Z = 0.15X2 which could mimic the
wind loading on the SDOF structure. By squaring the Gaussian wind velocity,
the wind loading (considered at a given time) turns out to be a non-Gaussian
random variable, with a skewness coefficient equal to γZ = 0.445. It is noticed
that this value was obtained by simulation; it is possible to prove [5] that the
skewness of the square of a Gaussian variable is asymptotically given by 3σX/µX
as σX/µX → 0, which would yield γZ = 0.45 in this case.

Several analytical methods exist to determine the entire PDF of the result Z
of a transformation of a random process, such as Z = 0.15X2. They are typically
limited to low-dimensional transformation and struggle to be generalized with
more complex transformations as those considered in the following chapters. The
actual PDF of the quantities of interest are therefore usually not completely
known. This is also the case for the structural responses, their randomness results
from the randomness coming from the turbulence and its propagation into the
dynamical systems. This is why current practice consists in estimating the first
few moments and reconstructing a PDF based on them only.

For continuous variables defined on R, when the first two moments only are
available, the Gaussian assumption can be formulated. When the first three
moments are known, 3-parameter distributions can be fitted, for instance the
skew-normal distribution. Another well-known option to build a PDF from the
first few moments is based on the Edgeworth expansion, which yields

pX(x) = 1√
2πσX

e
− (x−µX)2

2σ2
X

[
1 +

∞∑
n=3

γn
n!Hn

(
x− µX
σX

)]
. (2.14)

In this work, this series will be truncated after n = 3 since the statistics of the
structural responses will be determined up to that order.

2.2.2 Random processes
Unlike a random variable, a random process is a random sequence resulting from
an experiment whose outcome is not a scalar but a function, for instance of time,
as in the cases treated in this thesis. Wind turbulence velocity is an example
of a random process. At any given point in space, the random experiment of
measuring the wind velocity with an anemometer would lead to a function of time,
U + u(t), hence a random process. Figure 2.2 shows an example of wind velocity
where the average value U and the fluctuating component u(t) are separated.

It is natural to imagine that, like for random variables, random process are
best described by their first-rank Probability Density Function (PDF) pX(x1, t1),
which is identical to the definition given for continuous random variables in Equa-
tion (2.5).
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Figure 2.2: Example of wind turbulence velocity.

The quantity pX(x1, t1)dx1 represents the probability of finding the random
variable X(t1) in the interval [x1, x1 + dx]. This is a natural extension of the
definition given for a random variable since the random process X(t) becomes
a random variable as soon as time t is fixed. The first-rank probability density
function therefore describes the random process as a collection of random vari-
ables [13]. However, the first-rank PDF does not provide information about the
interdependence of values that can be taken by the random function at different
times. To address this, it is necessary to define higher-rank PDFs. In the most
general case, the rank-n Probability Density Function reads:

pX(x1, t1; . . . ;xn, tn). (2.15)

It is a joint PDF, and pX(x1, t1; . . . ;xn, tn)dx1 · · · dxn represents the probability
of jointly finding the random process X in the intervals [xi, xi +dxi], respectively
for each of the time instants ti (i = 1, · · · , n).

2.2.3 Moment functions of random processes
As for a random variable, statistical moments can be computed for a random
process as well. However, as per their fundamental definition, when computing
statistical moments of a random process, the result is also a function and not a
scalar. For this reason, they are referred to as moment functions.

2.2.3.1 1st order: mean function

The first order moment function of a random process is the mean function, fol-
lowing the definition of mean value of a random variable given in Equation (2.7).
As per the definition of a random process, in the most general case, the mean
function depends on time t1:

µX(t1) = E[X(t1)] =
� +∞

−∞
xpX(x, t1)dx (2.16)
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2.2.3.2 2nd order: autocorrelation function

The second order moment function of a random process is the autocorrelation
function. As the name suggests, the autocorrelation function quantifies the cor-
relation between values taken by a random process (and itself) at two different
time instants. Mathematically, it reads:

Rxx(t1, t2) = E[X(t1)X(t2)] =
� +∞

−∞
x1x2pX(x1, t1;x2, t2)dx1dx2 (2.17)

where pX(x1, t1;x2, t2) is the second-rank joint probability density function.
If the two time instants in Equation (2.17) are identical, t1 = t2, one obtains

the mean-square value at time t [13]:

Rxx(t1, t1) = E[X2(t1)] (2.18)

which resembles the definition of the second order moment of a random variable,
given in Equation (2.9), with the exception here that it might depend on time.

Gaussian stochastic processes are characterized by a first-rank PDF following
the Gaussian distribution given in Equation (2.13). They are therefore completely
characterized by their mean value and standard deviation, possibly varying with
time, which are related to µX(t1) and E[X2(t1)]. In stochastic design and mod-
eling, Gaussian processes play a central role because of this reason, and the
possibility to limit considerations at second rank, i.e. considering correlation of
values taken by the process at two different times.

2.2.3.3 3rd order: bicorrelation function

As soon as non-Gaussianity is considered in a mathematical modeling, third order
statistics at least need to be quantified. This requires the estimation of the third-
rank PDF which translates the interdependence of the values taken by the process
at three different times. As seen next, this will generalize the typical spectral
analysis for linear systems to higher order spectral analysis [16, 4, 17].

Since the main focus of this thesis is on the influence of non-Gaussian wind
loading on structures, it is necessary to define and make use of statistical mo-
ment functions higher than second. However, due to mathematical and numerical
complexity limits, which will be extensively discussed in the following chapters,
only moment functions up to third order will be treated, leaving higher orders to
future studies.
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The third order moment function of a random process is defined as

Rxxx(t1, t2, t3) = E[X(t1)X(t2)X(t3)]

=
� +∞

−∞
x1x2x3pX(x1, t1;x2, t2;x3, t3)dx1dx2dx3

(2.19)

It is called the bicorrelation function, and defines the correlation of values
taken by the random process at three different time instants. Considering the
three time instants to be equal, t1 = t2 = t3, the former equation specializes to
the third statistical moment:

Rxxx(t, t, t) =
� +∞

−∞
x3pX(x, t)dx = E[X3(t)]. (2.20)

Together with the average and the variance, this moment can be used to
obtain m̃3 and reproduce a non-Gaussian PDF, based on the known values of the
first few statistical moments, see Equation (2.14).

2.2.4 Stationary random processes
There are many kinds of random processes. In the context of this thesis, only
stationary and ergodic processes will be considered, as they correspond well to
synoptic winds.

A random process is said to be strongly stationary or stationary in the strict
sense if its probability description is not affected by a time shift of time origin.
This means that [13]

pX(x1, t1; . . . ;xn, tn) = pX(x1, t1 + a; . . . ;xn, tn + a) (2.21)

no matter the value of a ∈ R.
As a consequence, the first order density becomes independent of the time

variable (see Equation (2.22)), while all higher densities depend on differences
between the time arguments only. Mathematically, at first order, if the property
is valid no matter a, a could be chosen as a = −t1, so that

pX(x, t1) = pX(x, t1 + a) ∀a ∈ R → pX(x, t1) = pX(x, 0) ≡ pX(x). (2.22)

At second order, a could be chosen as a = −t1 again, so that

pX(x1, t1;x2, t2) = pX(x1, t1 + a;x2, t2 + a) = pX(x1, 0;x2, t2 − t1) ≡ pX(x1, x2, τ)
(2.23)

where τ = t2 − t1 is the time lag between the two time arguments.
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From Equations (2.22) and (2.23) it is straightforward to derive that the mean
of a stationary process is time independent

µX(t) = E[X(t)] =
� +∞

−∞
xpX(x, t)dx =

� +∞

−∞
xpX(x)dx = µX (2.24)

and that the autocorrelation function (see Equation (2.17)) will be a function of
the time lag τ = t2 − t1 only:

Rxx(t1, t2) = E[X(t1)X(t2)] =
� +∞

−∞
x1x2pX(x1, t1;x2, t2)dx1dx2

=
� +∞

−∞
x1x2pX(x1;x2, τ)dx1dx2 = Rxx(τ).

(2.25)

At third order, following similar arguments (choose a = −t1), the third-rank
probability density function is just a function of two time lags,

pX(x1, t1;x2, t2;x3, t3) = pX(x1, t1 + a;x2, t2 + a;x3, t3 + a) ≡ pX(x1;x2, τ1;x3, τ2).
(2.26)

As a consequence, the bicorrelation function of a stationary random process
is expressed as a function of two time lags τ1 = t2 − t1 and τ2 = t3 − t1:

Rxxx(τ1, τ2) = E[X(t1)X(t2)X(t3)] =
� ∞

−∞
x1x2x3pX(x1;x2, τ1;x3, τ2)dx1dx2dx3.

(2.27)

2.2.5 Ergodic random processes
The Ergodicity theorem allows determining the statistics of a random process
X(t) from a single, infinitely long, sample of the process. This theorem states
that, for an ergodic process, every ensemble average can be replaced by a time
average along a single sample [13]. Let x̂(t) be a sample of a given stationary
random process X(t). As such, one can make use of statistical treatment of
signals tools and compute the mean

µ̂ = lim
T→∞

1
T

� T/2

−T/2
x̂(t)dt, (2.28)

and the correlation integral [13]

R̂xx(τ) = lim
T→∞

1
T

� T/2

−T/2
x̂(t)x̂(t+ τ)dt, (2.29)
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Figure 2.3: Graphical representation of an ergodic random process. En-
semble mean (red box), sample mean (blue box). Base figure taken from

[14].

and the bicorrelation integral

R̂xxx(τ1, τ2) = lim
T→∞

1
T

� T/2

−T/2
x̂(t)x̂(t+ τ1)x̂(t+ τ2)dt. (2.30)

Then, the ergodicity property implies that

µ̂ = µX = E[X(t)] (2.31)
R̂xx(τ) = Rxx(τ) = E[X(t)X(t+ τ)] (2.32)

R̂xxx(τ1, τ2) = Rxxx(τ1, τ2) = E[X(t)X(t+ τ1)X(t+ τ2)]. (2.33)

Figure 2.3 shows a graphical representation of the ergodicity property. It
shows a collection of samples of a random process, which evolve in time along
the horizontal axis. The ensemble mean is obtained by averaging values in the
vertical direction, following a cut along the whole set of realizations, at a given
time instant t1 (red box in Figure 2.3). If the random process is ergodic, this
ensemble mean can be obtained from the expectation of any realizations of the
random process (blue box in Figure 2.3).

One important aspect to remark is that an ergodic process is also stationary
while a stationary process might not be ergodic. A practical implication of this
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Theorem relates to the fact that long time series used in Monte Carlo simulations
result in the same information as those provided by a probabilistic analysis.

2.2.6 The Power Spectral Density function
Let X(t) be a stationary, ergodic random process. The Power Spectral Density
(PSD) Sx (ω) is defined as the Fourier transform of the autocorrelation function:

Sxx (ω) = 1
2π

� ∞

−∞
Rxx(τ)e−iωτdτ. (2.34)

As a consequence, the autocorrelation function is given by the inverse Fourier
transform of the PSD, such that they form a Fourier pair:

Rxx(τ) =
� ∞

−∞
Sxx (ω) eiωτdω. (2.35)

Evaluating the autocorrelation function of a stationary random process for
zero time lag (τ = 0), i.e. identical time instants t1 = t2, returns the second
order moment, see Equation (2.18). If the random process is ergodic, this can be
translated in

Rxx(τ = 0) = lim
T→∞

1
T

� T/2

−T/2
x2(t)dt = m2,x. (2.36)

It follows, from Equations (2.36) and (2.35), that the integral of the Power
Spectral Density function of a random, stationary, ergodic process gives the sec-
ond order statistical moment:

m2,x = Rxx(τ = 0) =
� ∞

−∞
Sxx (ω) dω. (2.37)

For this reason, the PSD describes the distribution of the variance of the
process in the frequency domain [13].

It is possible to prove that

Sxx(ω) = lim
T→∞

2π
T

∣∣∣X̂T (ω)
∣∣∣2 = lim

T→∞

2π
T
X̂T (ω) X̂T (ω), (2.38)

that is, the PSD is related to the Fourier transform of a long realization of a real
ergodic process, defined as

X̂T (ω) = 1
2π

� T/2

−T/2
x̂ (t) e−iωtdt. (2.39)
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Indeed, substitution of this expression in the previous one yields

Sxx (ω) = lim
T→∞

1
2πT

� T/2

−T/2
x̂ (t1) e−iωt1dt1

� T/2

−T/2
x̂ (t2) eiωt2dt2

= lim
T→∞

1
2πT

+T/2�

−T/2

x̂ (t1) x̂ (t2) e−iω(t1−t2)dt1dt2.

(2.40)

Using the change of variable τ = t1 − t2, and recalling the definition of the
autocorrelation from long samples of an ergodic process, Equation (2.29), this
yields

Sxx (ω) = lim
T→∞

1
2πT

+T/2�

−T/2

x̂ (t2 + τ) x̂ (t2) e−iωτdτdt2

= lim
T→∞

1
2π

� +T/2

−T/2
Rxx (τ) e−iωτdτ.

(2.41)

After completion of the limit, assuming it exists, this is equivalent to the definition
(2.34) and validates therefore the relation (2.38).

2.2.7 The Bispectrum
The bispectrum Bx (ω) of a stationary stochastic process x(t) is defined as the
twofold Fourier transform of the bicorrelation function:

Bxx (ω1, ω2) = 1
4π2

∞�
−∞

Rxxx(τ1, τ2)e−iω1τ1e−iω2τ2dτ1dτ2. (2.42)

As a consequence, the bicorrelation function is given by the twofold inverse
Fourier transform of the bispectrum, such that they form a Fourier pair:

Rxxx(τ1, τ2) =
∞�

−∞

Bx (ω1, ω2) eiω1τ1eiω2τ2dω1dω2. (2.43)

Evaluating the bicorrelation function of a stationary random process for zero
time lags (τ1 = τ2 = 0), i.e. identical time instants t1 = t2 = t3, returns the third
order moment, see Equation (2.30). If the random process is ergodic, this can be
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translated in

Rxxx(τ1 = 0, τ2 = 0) = lim
T→∞

1
T

� T/2

−T/2
x3(t)dt = m3,x. (2.44)

The bispectrum is typically complex-valued, with the imaginary part often
being non-zero [18]. It is for instance the case for local wind pressures measured
on building facades [19]. Should these loads be used as an input in a subsequent
structural analysis, it is important to include the imaginary part of the bispec-
trum in the analysis, which can also contribute to the response [19]. Bispectra
are particularly useful in signal processing for analyzing non-Gaussian processes
and understand sources of nonlinearity in dynamical systems. Indeed, since the
bicorrelation encapsulates phase coherence between different frequency compo-
nents, the bispectrum captures the interactions between pairs of frequencies (or
their sum and difference) in the signal. These interactions inherently involve
phase shifts between components. In particular, the imaginary part of the bis-
pectrum arises due to the phase coupling between frequency components, which
has become a standard tool to detect nonlinearities in signal processing [20, 21,
22]. In the context of this thesis, following the quasi-steady approach, the load-
ing is considered as a polynomial transformation of a Gaussian process, and it
is possible to show that is it therefore a real quantity [5]. Cross-bispectra how-
ever are complex-valued quantities but featuring symmetry properties such that
their integral is actually a real quantity. This is expected since 3rd moments of
real processes are real. In the following, focus will be on the real parts of the
bispectrum and cross-bispectrum.

It follows, from Equations (2.43) and (2.44), that the integral of the bispec-
trum of a random, stationary, ergodic process gives the third order statistical
moment:

m3,x = Rxxx(τ1 = 0, τ2 = 0) =
∞�

−∞

Bx (ω) dω1dω2. (2.45)

For this reason, the bispectrum describes the distribution of the third statis-
tical moment of the process in the 2-D frequency domain. Similarly to what was
done at second order, it is possible to prove that

Bxxx (ω1, ω2) = lim
T→∞

4π2

T
X̂T (ω1) X̂T (ω2) X̂T (ω1 + ω2) (2.46)



2.2. Statistics and Probability 23

that is, the bispectrum is related to the Fourier transform of a long realization of
an ergodic process. Indeed, substitution of (2.39) in the previous one yields

Bxxx (ω1, ω2) = lim
T→∞

1
2πT

+T/2�

−T/2

x̂ (t1) x̂ (t2) x̂ (t3) e−iω1t1e−iω2t2ei(ω1+ω2)t3dt1dt2dt3

(2.47)
Using the unit-Jacobian change of variable τ1 = t1 − t3 and τ2 = t2 − t3, and re-
calling the definition of the bicorrelation from long samples of an ergodic process,
Equation (2.30), the previous expression becomes

Bxxx (ω1, ω2) = lim
T→∞

1
2πT

+∞�
−∞

x̂ (t3 + τ1) x̂ (t3 + τ2) x̂ (t3) e−iω1τ1e−iω2τ2dτ1dτ2dt3

= lim
T→∞

1
2π

+∞�
−∞

Rxxx (τ1, τ2) e−iω1τ1e−iω2τ2dτ1dτ2
(2.48)

which corresponds to the definition of the bispectrum, and validates therefore the
relation (2.46).

These concepts can be extended to higher orders to compute, for instance,
the tricorrelation and the trispectrum at fourth order. However, in this thesis,
discussions and developments will be limited to third-order statistics only, i.e.
bicorrelation and bispectrum at most, leaving higher orders for future studies.

2.2.8 System I/O relations
Let a deterministic causal Linear Time Invariant (LTI) dynamical system defined
by its impulse response function h(τ), in such a way that the random output
y(t) of this system is obtained as a convolution of the random input x(t) and the
deterministic impulse response function:

y(t) =
t�

−∞

h(τ)x(t− τ)dτ. (2.49)

The Fourier transform of this expression involves the Frequency Response Func-
tion (FRF) of this LTI system,

Y (ω) = H(ω)X(ω) (2.50)
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where H (ω) =
�∞

−∞ h(τ)e−iωτdτ is the Frequency Response Function (FRF), and
X(ω) and Y (ω) are the Fourier transforms of x(t) and y(t). Assuming that both
the input and the output are ergodic processes, applying (2.38), the PSD of the
output is given by

Syy (ω) = lim
T→∞

2π
T

∣∣∣ŶT (ω)
∣∣∣2 (2.51)

where ŶT (ω) = H(ω)X̂T (ω) idealizes the Fourier transform of a long sample of
the output. Substituting (2.50) in this expression, it is obtained

Syy (ω) = |H (ω)|2 lim
T→∞

2π
T

∣∣∣X̂T (ω)
∣∣∣2 = |H (ω)|2 Sxx (ω) . (2.52)

This important property of LTI systems indicates that the PSD of the output
Y (ω) = H(ω)X(ω) of a dynamical system is simply obtained by multiplying the
PSD of the input with the squared norm of the FRF. Equation (2.52) is is a
general form valid for SDOF and extendable MDOF systems.

The derivation is very similar at third order, although based this time on
Equation (2.46). It yields

Byyy (ω1, ω2) = H (ω1)H (ω2)H (ω1 + ω2)Bxxx (ω1, ω2) . (2.53)

showing that the bispectrum of the output is simply obtained by multiplication of
the bispectrum of the input and a kernel, H (ω1)H (ω2)H (ω1 + ω2), sometimes
called a Volterra kernel [23].

As a particular case, when the FRF is constant, e.g. H = a, the dynamical
system is said to be memoryless. The impulse response function is a Dirac delta
function, h(t) = a δ(t), and the system just corresponds to a static transformation
as y(t) = a x(t). In this case, the PSDs and bispectra of the input and output
are simply related by

Syy (ω) = a2Sxx (ω) ; Byyy (ω1, ω2) = a3Bxxx (ω1, ω2) (2.54)
which explicitly recalls that the PSD is a quadratic quantity and the bispectrum
a cubic quantity.

2.3 Fundamentals of the Spectral and
Bispectral Analyses

Section 2.2 reviewed the essential statistical concepts needed to address the in-
troductory problem presented in Section 2.1. The goal of a structural analysis



2.3. Fundamentals of the Spectral and Bispectral Analyses 25

is to determine the structural responses, which can include displacements, accel-
erations, internal forces, or ground reactions. Just as simulations of a random
experiment can be used to determine the probability of rolling a "6" on a die, the
statistics of structural responses can be studied using Monte Carlo simulations.
This method is demonstrated first in Section 2.3.1, providing an intuitive under-
standing of the problem. However, it is less efficient compared to spectral and
bispectral analyses, which are illustrated at the end of this section.

2.3.1 Monte Carlo solution of the problem
Monte Carlo simulations rely on numerical simulations of the problem, based on
samples of the relevant stochastic processes. In this case, samples of the random
fluctuations of the turbulent wind velocity u(t) are generated to correspond with
the known power spectral density (PSD) of the wind turbulence. The dynamical
system can then be simulated using time-domain integrators [24], resulting in time
series for the structural responses. These time series allow for the calculation of
several statistical indicators.

For the numerical analysis, it is necessary to provide numerical values for all
problem parameters. In this illustration, the parameters are chosen as follows:
mass m = 1000kg, natural frequency f0 = 1.5Hz, and damping ratio ξ = 3%.
The viscosity c and stiffness k can be determined using ω0 = 2πf0, k = mω2

0 =
88.826 · 103N/m, and c = 2mω0ξ. The drag coefficient cD and exposed area Ω
are chosen such that 1

2ρcDΩ = 15 kg/m. Lastly, the mean wind velocity is set to
U = 10 m/s, and the PSD of the wind turbulence u(t) follows the model proposed
by Von Karman:

Su (ω) = Lu
2π2U

σ2
u(

1 +
(
1.339Luω

2πU

)2
)5/6 (2.55)

where σu = 1.5m/s and Lu = 150m represent the standard deviation and length
scale of the wind turbulence respectively. This PSD is a function of the circular
frequency ω and such that its integral over the entire real axis corresponds with
the variance σ2

u.
Based on these numerical values, samples of the wind turbulence can be gen-

erated using standard approaches [25]. The equation of motion is integrated with
Newmark’s unconditionally stable algorithm [14], where the time step is chosen
as ∆t = 0.05s. The number N of considered time steps varies from 210 = 1024
to 220 ≈ 106.

Figure 2.4 shows an example of structural displacement. More precisely, the
dynamic response (in blue) is the output of the dynamical system, while the
quasi-static response (in red) consists of the generated loading f(t) divided by
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the structural stiffness. The dynamic response departs from the quasi-static one
due to inertial and viscous effects. A structural design would likely focus on
the maximum displacement, as this is the quantity of interest for an engineer.
However, deriving intermediate statistics is important as it provides a much better
understanding of the problem.
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Figure 2.4: Solution of the introductory problem with a Monte Carlo
approach : (top) time series of the displacement and its PDF, (middle)
PSD of displacement and bispectrum, (bottom) sensitivity of estimated

statistical indicators of the displacement.

Some additional basic statistics are provided in Figure 2.4. In the top right
corner, the normalized histograms of the structural displacement under the two
considered configurations (with and without dynamic effects) show that the struc-
tural response is non-Gaussian. The asymmetry in the dynamic response is less
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pronounced than in the quasi-static response as a result of the central limit the-
orem. Indeed, the dynamic response at a given time is the convolution result of
loads applied on the structure at several previous time instants, while the quasi-
static (memoryless) response depends only on the load applied at the same time.
Hence, the non-Gaussian nature of the quasi-static response is more pronounced.

The dashed curve represents the distribution of a hypothetical Gaussian re-
sponse with the same mean and standard deviation as the dynamic response. It
is observed that the actual PDF (in blue) extends more to the right than the
Gaussian distribution. This will significantly impact the extreme values used for
design.

The PSD of the response is another insightful quantity. It can be estimated
with a spectrogram approach by implementing Equation (2.38) and averaging
over several time windows. While the quasi-static response consists only of low-
frequency components, resulting from the memoryless transformation of the slow
turbulence, the dynamic response (in blue) also features a resonance peak near
the natural frequency f0 = 1.5 Hz. The labels "B" and "R" refer to the background
(quasi-static response) and resonant (dynamic response) contributions to the total
structural response.

Similarly, the bispectrum of the structural displacement can be computed
by implementing Equation (2.46) with a spectrogram approach. This results in
a background peak in the center of the frequency domain, plus six additional
resonance peaks located around the central background peak. The PSD and
bispectrum are insightful as they indicate that the response is approximately
equally split between the background and resonant components. In other words,
the dynamic amplification is roughly equal to two. However, this concept is
not emphasized in this thesis, as the important design quantity is the extreme
value (largest over a certain window), which results not only from an increase in
standard deviation but also from the non-Gaussianity of the response.

The Monte Carlo analysis was repeated 10 times for various values of the
number of time steps N . Results reported in the last line of Figure 2.4 illustrate
the variability of the estimated statistics of the structural response. The aver-
age displacement is 0.0173 m, and Figure 2.4 shows that this value is accurately
obtained with N ≳ 104. Using long time series, the standard deviation of the
displacement is evaluated at 0.0076 m, requiring a signal with about 5 ·104 points
to achieve significant accuracy. Lastly, the skewness coefficient of the displace-
ment is 0.31, necessitating a very long time series to mitigate issues related to
the larger standard error in the sampling distribution. The higher the order of
the statistical indicator, the longer the required time series.

In this simple introductory problem, it is not difficult to simulate N = 106

time steps. However, in more realistic civil engineering problems, structures are
modeled with thousands of degrees-of-freedom, responding in many structural
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modes and spanning several timescales. This is why using Monte Carlo simula-
tions to estimate higher-order statistics of structural responses is still not effective
today. Just as it is not difficult to numerically roll a die many times to estimate
the probability of getting a "6", but this is more expensive than simply dividing
1 by 6, the spectral and bispectral analyses avoid simulations and provide the
statistics of the result through algebraic computations.

2.3.2 Mean response
The computation of the mean displacement is the first and simplest task that can
be done in a probabilistic framework. It simply consists in averaging the equation
of motion (2.1). Considering that the average acceleration and average velocity
cannot be different from zero (otherwise this would result in a drift), averaging
the equation of motion yields:

kE [x(t)] = E [f(t)] → µx = µf
k
, (2.56)

so that the average displacement is just obtained as the ratio of the average
loading µf and the structural stiffness k. It has been considered here that the
loading is stationary so that the average loading is constant. It is obtained by
averaging Equation (2.2):

µf = E [f(t)] = 1
2ρcDΩE

[
(U + u(t))2

]
= 1

2ρcDΩ
(
U2 + σ2

u

)
= 1533.8N, (2.57)

and the average displacement, obtained by dividing by the stiffness, gives for the
chosen numerical values µx = 0.0173m. This result is consistent with the result
obtained with the Monte Carlo simulation. It is however obtained by means of a
simple algebraic equation.

2.3.3 Second order
The same approach can be developed at second order. Since the problem involves
a dynamical system, the filtering of the frequency content of the input plays
a major role and the memoryless derivation used for the determination of the
average requires adaptation.

Introducing the FRF of the problem H(ω) = (−mω2 + iωc + k)−1, the PSD
of the response is computed by application of Equation (2.52), and reads

Sx (ω) = |H (ω)|2 Sf (ω) . (2.58)
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It is possible to prove that the PSD of the applied loading is given by [26]:

Sf (ω) =
(1

2ρcDΩ
)2
4U2Su (ω) + 2

+∞�
−∞

Su (ω1)Su (ω − ω1) dω1

 . (2.59)

The second term in this expression is one order of magnitude smaller than the
first one and is usually neglected. Details on how to establish this expression will
be given in Chapter 4 for more advanced configurations, particularly in a 3-D
turbulence field and for realistic aerodynamic components.

Following (2.54), the expression Sf (ω) /k2 provides the PSD of the quasi-
static component of the response x(t)/k. It accurately matches the red curve in
the PSD plots of Figure 2.4, but is reported in Figure 2.5 in linear scales for better
readability. The PSD of the dynamic response Sx (ω) is also reported in blue in
Figure 2.5. The variance of the response is obtained by numerical integration of
Sx (ω):

σ2
x =

+∞�
−∞

Sx (ω) dω. (2.60)

In a simple implementation, integration can be performed by spreading Nf in-
tegration points uniformly from −20 rad/s to 20 rad/s (values chosen to go far
enough beyond the natural frequency of this particular example). This choice is
far from optimal as extensively discussed in this thesis. However, the number
Nf ∼ 100 of integration points required to provide a converged estimate of the
standard deviation of the response, 0.00755 m, is much lower than the number of
(yet more costly) time steps required in the Monte Carlo approach. Again, this
indicates that it is possible to provide a closed-form expression for the PSD of the
response, which provides the standard deviation of the response after numerical
integration.

One should not underestimate, though, the need to increase the number of
integration points as damping decreases. Indeed, this numerical integration re-
quires a large number of integration points in the neighborhood of the natural
frequency, where large contributions to the variance are expected, and where,
from standard structural dynamics, it is known that this peak is as sharp as the
damping ratio is small.

Last but not least, it should be mentioned that the spectral analysis of SDOF
systems has been applied since the mid-20th century. At times when computa-
tional power was less efficient than nowadays, integrating PSD with sharp peaks
could be approached in an approximate analytical manner by taking advantage
of the timescale separation and the sharpness of the peaks [27]. This has resulted
in the well-known Background/Resonant decomposition [28], which is behind the
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Figure 2.5: Second order solution of the introductory problem with a
spectral approach : PSD of displacement and sensitivity of estimated sta-

tistical indicators with respect to number of integration points.

national codes and standards. Application of this theory to the problem with the
notations at hand gives

σ2
x = 1

k2

(
σ2
f + Su (ω0)

πω0

2ξ

)
(2.61)

where σf = 2U
(

1
2ρcDΩ

)
σu is the standard deviation of the applied load. Ap-

plication of this equation with the considered numerical values provides σx =
0.00766 m, which is slightly larger than the actual value, obtained with accurate
numerical integration (0.00755 m).

2.3.4 Third order
It is already clear from the first two statistical orders that spectral analyses,
being non-sampling-based methods, offer a fast way to compute the statistics
of the response of a dynamical system subjected to a random input. This is
reinforced at higher orders, since as shown before, longer Monte Carlo simulations
are required to provide reliable estimates of higher order moments.

At third order, application of Equation (2.54) gives:

Bx (ω1, ω2) = H (ω1)H (ω2)H (ω1 + ω2)Bf (ω1, ω2) (2.62)

where the bispectrum of the loading Bf (ω1, ω2) is given by

Bf (ω1, ω2) = 8
(1

2ρcDΩ
)3

[Su (ω1)Su (ω2) + Su (ω1 + ω2)Su (ω1) +
+ Su (ω2)Su (ω1 + ω2)] .

(2.63)
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Figure 2.6: Third order solution of the introductory problem with a bis-
pectral approach : bispectrum of displacement and sensitivity of estimated

statistical indicator with respect to number of integration points.

This expression provides the leading order expression of the loading. Its es-
tablishment for this simple problem is available in the literature [29], and will be
developed in Chapter 3 for more advanced configurations. The third moment of
the response is obtained by numerical integration of Bf (ω1, ω2):

m3,x =
+∞�

−∞

Bx (ω1, ω2) dω1dω2. (2.64)

The first difficulty consists in integrating on a 2-D frequency space, which hints
at issues related to the curse of dimensionality. The background peak, located
in the neighborhood of the origin, as well as the six resonance peaks, need a
fine mesh to be accurately integrated. At this stage, a regular mesh is used
for illustration. A large number of sampling points can be used for an accurate
estimation of this integral, but also of the bispectrum of the response. With
Nf = 103 in each direction of the frequency space, a very accurate representation
of the bispectrum of the response can be obtained. It is shown in Figure 2.6 as
contour lines. The greyed contours in that figure correspond to equally spaced
values on a log scale (i.e., down to very small values) and the six-arm star shown
in the middle indicates where the bispectrum is large, and the most important
contributions are expected.

Using Nf sampling points for both independent variables, ω1 and ω2, results
in a meshing with N2

f integration points in total. The result of the numerical
integration, m3,x, is shown as a function of N2

f in Figure 2.6. Again, about
100 sampling points in each direction seem to provide an accurate estimate of the
skewness of the response, with a limiting value of γ3,x = 0.305. This, again, agrees
very well with the Monte Carlo simulation, and very significant discrepancies can
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be obtained if the meshing is too scarce, up to a factor 20 (!). Also, it is noticed
that the skewness of the response is directly obtained from the time series in the
Monte Carlo approach, while it is obtained as the integral of the bispectrum in
the bispectral approach.

2.3.5 Extreme response
The end scope of a structural analysis, in view of an engineering design, is to
provide the maximum values of the structural responses. These can indeed be
compared to acceptable limits to verify a design. Therefore, the final question
of the structural analysis consists in the determination of the statistics of the
extreme values of stochastic processes, that is, for a conventionally given period
of time (e.g., 600 seconds for wind generation), to determine the PDF of the
largest value which could be observed in the process.

This question is easily dealt with in a Monte Carlo simulation process, since
it requires the repeated simulation of samples of the responses. For each sample,
the maximum response can be identified in the time series, and the PDF of the
extreme value simply consists in the distribution of this collection of values.

In a spectral approach, several theories have been developed to approach the
PDF of extreme values of stochastic processes over a given time window [13].
The detailed establishment of these theories goes beyond the scope of this work,
but from a very practical point of view, they aim at estimating the maximum
response with a formulation such as:

xmax = µx + gxσx (2.65)

where gx is the so-called peak factor. It is a number, usually larger than 3 [30],
indicating how many standard deviations need to be added to the average re-
sponse in order to create a design quantity. The quantity xmax in fact represents
the average of the distribution of the extreme value of the process encountered
on a time window T . A commonly accepted model for Gaussian processes [31]
gives

gx = β + γ

β
(2.66)

where γ ≈ 0.5772 is Euler’s constant, and β =
√

2 ln ν0T , where ν0 is the so-
called zero-upcrossing frequency, i.e., the average frequency at which the random
process passes through its mean value. This frequency can be obtained from the
spectral moments of the PSD [13],

ν0 = 1
2π

� +∞
−∞ ω2Su (ω) dω� +∞

−∞ Su (ω) dω

1/2

. (2.67)
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Theories leading to the establishment of this simple formula are quite compli-
cated, even for Gaussian processes. The current state-of-the-art for non-Gaussian
processes is to model them as cubic transformations of some underlying Gaussian
processes. The idea is to determine the coefficients ai, i = 0, . . . , 3, of a cubic
(memoryless) transformation,

x(t) = a3u
3(t) + a2u

2(t) + a1u(t) + a0 (2.68)

in such a way that this transformation of the normalized centered Gaussian pro-
cess u(t) provides the actual statistical properties of the Gaussian process x(t).
Since this transformation is memoryless and restrained to be monotonic, there is
a one-to-one correspondence between the extreme values of u(t) and those of x(t).
As a consequence, the distribution of the extremes of the non-Gaussian process
x(t) can be expressed as a function of those of u(t). After detailed mathematical
derivations [30], another simple formulation is finally obtained for gx:

gNG = k

{(
β + γ

β

)
+ h3

[
β2 + (2γ − 1) + 1.98

β2

]

+ h4

[
β3 + 3β(γ − 1) + 3

β

(
π2

6 − γ + γ2
)

+ 5.44
β3

]} (2.69)

where
h3 = γ3

4 + 2
√

1 + 1.5γe
, h4 =

√
1 + 1.5γe − 1

18 , (2.70)

γ3 is the skewness coefficient of the process, and γe = γ4−3 is the excess coefficient
(4th order), and where k = 1/

√
1 + 2h2

3 + 6h2
4. This formulation degenerates into

the Gaussian formulation of Equation (2.66) when γ3 = γe = 0, in the case of a
Gaussian process. Since this work focuses on the determination of the skewness
coefficient γ3, linked to the second and third order statistical moments, there is
currently no access to the fourth moment, and to γe, which prevents the formal
application of this theory. However, Rigo et al. [32] and Denoël et al. [33]
have observed that the non-Gaussian processes encountered in wind engineering
applications where polynomial transformation of the wind turbulence velocity is
used, lie in the near vicinity of the so-called monotonic limit

γe ≃ (1.25γ3)2 (2.71)

limiting, in the (γ3, γe)-plane, the values corresponding to a monotonic cubic
transformation (allowing the one-to-one correspondence). Therefore, lacking in-
formation about γe, it will be assumed in the following that the problem sits on
this limit, and that the expression of γe is used in (2.69) to determine the peak
factor.
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Last but not least, non-Gaussian processes are characterized by (possibly)
asymmetric distributions. This hints that maximum and minimum extreme val-
ues are not located symmetrically around the mean value as soon as the skewness
coefficient γ3 ̸= 0. The formulation proposed in [30] therefore develops in two
versions,

xNG+ = x+ gNG+σx; xNG− = x− gNG−σx (2.72)
where the two non-Gaussian peak factors are obtained by considering the two
possible signs for the skewness coefficient in Equation (2.69).
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Figure 2.7: Illustration of the determination of extreme values (of non-
Gaussian processes). (Top) a time series segmented in several windows.
(Bottom) distribution of maximum and minimum values, and of peak fac-

tors.

Figure 2.7 illustrates these concepts with the considered problem. On the
top, a representative time series is shown. It was simulated long enough so that
8700 windows of 600 seconds each could provide one sample of the maximum
and minimum values of the displacement over each window. This collection of
8700 samples required the simulation of more than 108 time steps, but offered
the informative distributions of the extreme values shown for both the minimum
and maximum values. To guide the eye, the distribution of the displacement
is also represented (in black). This information was possible to obtain because
the considered problem is just an SDOF problem; this detailed information is
typically not affordable in a realistic application, by means of a Monte Carlo
approach.
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The bottom right plot shows the distributions of extreme values, but expressed
in terms of peak factors, positive and negative. The dashed line in the middle
provides the unique peak factor (same for min and max values) that would be
obtained in a Gaussian framework. Applying Equation (2.66), it has been found
gx = 3.77, which significantly differs from the mean peak factors obtained with
the long Monte Carlo simulations, namely 3.19 and 4.23, respectively, for both
negative and positive sides. These two values are represented by the thick col-
ored crosses located at the centroids of the distributions. Application of the cubic
translation model provides 3.21 and 4.51 (shown with dashed lines), while appli-
cation of the simplified proposition based on (2.71) for the estimation of γe yields
respectively 3.15 and 4.45 (shown with solid lines) for the two peak factors.

This illustration highlights several facts:

• The minimum and maximum responses observed over a given period of time
are random variables.

• So are the corresponding peak factors.

• The actual distribution of the peak factor is difficult to estimate for larger-
sized problems which cannot afford very long simulations.

• Non-Gaussian processes have different positive and negative peak factors,
while the Gaussian assumption provides an intermediate estimate.

• The cubic translation model is not perfect but performs better than the
Gaussian assumption (4.45 instead of 3.77 for gx).

• γ3 of about 0.3, yields a discrepancy of about 18% on the peak factor that
would be obtained with a Gaussian analysis.

2.4 Scalability
When the general equation of motion of a dynamic system is tackled in a stochas-
tic manner in the frequency domain, the analysis becomes significantly more com-
plex if the system responses are non-Gaussian due to non-Gaussian loading. This
complexity arises because each response (such as displacements, internal forces,
ground reactions, etc.) will have corresponding bispectra.

Each of these bispectra might exhibit very sharp peaks, making their accurate
capture challenging. Accurate capture is crucial because the bispectra must be
integrated over the frequency space to estimate the third statistical moments,
which in turn will provide information on the statistical asymmetry, and affect
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extreme values for design. Poor resolution of these peaks leads to inaccurate inte-
grals and, consequently, incorrect statistical moments, which result in erroneous
predictions of the system’s behavior.

The issue of scalability becomes particularly pressing as the system’s com-
plexity increases. When dealing with systems that have thousands of degrees of
freedom (DOFs), the computational effort required to establish and analyse the
high-order spectra, such as bispectra, becomes extremely time-consuming. This
is a significant challenge because the number of response bispectra increases with
the number of DOFs, and each one needs to be accurately resolved and integrated.

At the inception of this research, the largest problem that had been solved
involved only a system with 7 degrees of freedom [12]. Extending these methods
to systems with thousands of degrees of freedom presents a formidable challenge
due to the more-than-proportional increase in computational burden. The sheer
volume of data and the necessity for high-resolution spectral capture demand
substantial computational resources and sophisticated algorithms to manage the
workload efficiently.

To address these scalability issues, this thesis has contributed to the devel-
opment of more efficient computational methods and algorithms. These meth-
ods aimed at reducing the time and computational power required for bispectral
analysis while maintaining the precision necessary for reliable statistical moment
estimation. Developing efficient methods to tackle these challenges was crucial
for advancing the field and enabling accurate analysis of more complex structures.
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Chapter 3

Bispectral Analysis of multi
degree-of-freedom structures

3.1 The general equations of motion of a
multi-degree-of-freedom system

Chapter 2 tackled the Bispectral problem of a single-degree-of-freedom (SDOF)
system. Though one might argue that real civil structures have far more than a
single degree-of-freedom, it served to introduce the Bispectral problem and the
most important concepts related to it in the most simple but concrete possible
way.

This Chapter will extend the concept of Chapter 2 to multi degree-of-freedom
(MDOF) structures.

The equation of motion of a MDOF dynamic system reads

Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (3.1)

where M, C and K are the NDOFs× NDOFs structural matrices, f(t) the NDOFs×
1 vector of applied forces (wind forces) at time instant t, x(t), ẋ(t) and ẍ(t)
the NDOFs × 1 vectors of structural displacements, velocities and accelerations
respectively. NDOFs represents the total number of structural degrees-of-freedom.

Equation (3.1) and all following ones will assume a Finite Element Method
approach to the problem, where notably the continuous system is discretised using
nodes and elements [34, 35, 36].

In Civil Engineering, it is common practice to project the equations of mo-
tion in (3.1) onto a special, orthogonal basis, called modal basis, intrinsic to the
structural system. As such, the modal equations of motion read

M⋆q̈(t) + C⋆q̇(t) + K⋆q(t) = p(t) (3.2)
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where M⋆, C⋆ and K⋆ are the NM×NM modal mass, damping and stiffness matrices

M⋆ = ΦTMΦ; C⋆ = ΦTCΦ; K⋆ = ΦTKΦ (3.3)

Φ the NDOFs× NM structural modal matrix, i.e. the ensemble of the eigenvectors
of the orthogonal basis, p(t) = ΦT f(t) the modal loads and q(t) the modal
responses. NM represents the total number of structural modes (i.e. eigenvectors)
kept in the definition of this reduced modal basis. Generally NM≪ NDOFs, so that
the determination of such basis is convenient and the projection of Equation (3.1)
to obtain Equation (3.2) is accompanied by a substantial reduction of the size
of the subsequent problem. This is specifically true for very large structures, for
which the total number of degrees-of-freedom NDOFs can exceed tens of thousands,
while the usual number of kept vibration modes NM would limit to a maximum
of about one hundred. Moreover, another possible advantage of such projection
stands in the fact that, if the system is assumed with proportional damping (e.g.
the damping matrix is obtained as a linear combination of the mass and stiffness
matrices, also known as Rayleigh damping [14]),

C = αM + βK

so that not only M⋆ and K⋆ are diagonal (from the way Φ is defined), but also
C⋆. Equation (3.2) results into a set of NM independent differential equations.
This configuration is indeed much more optimal than having to solve a coupled
system of equations, since doing so numerically would involve matrix inversion
operations which are more expensive, specially when it comes to large MDOF
problems. Nonetheless, application of Equation (3.2) is valid in more general
cases, including those where non-proportional damping models are employed in
the structural system and the modal matrix Φ is obtained through the solution
of the generalised eigenvalue problem [37, 38].

In such context, solving Equation (3.2) can be generally done in (i) time
domain by means of classical time-stepping algorithms [24], or (ii) frequency
domain by means of Fourier Transforms, in which case Equation (3.2) reads

Q(ω) = H⋆(ω)P(ω) (3.4)

where H⋆(ω) is the complex modal Frequency Response Function (FRF)

H⋆(ω) =
(
−M⋆ω2 + iωC⋆ + K⋆

)−1
, (3.5)

P(ω) and Q(ω) being the Fourier Transforms of modal loads and responses re-
spectively. In the nodal basis, the Frequency Domain equations of motion read

X(ω) = H(ω)F(ω) (3.6)
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where
H(ω) =

(
−Mω2 + iωC + K

)−1
(3.7)

is the complex nodal Frequency Response Function.

3.2 Statistics and Probability
Section 2.2 covered the most important concepts of statistics and probability of
single random variables and processes. This Section will extend those concepts
to the cases of multiple random variables and processes.

3.2.1 Multiple random variables

3.2.1.1 Joint Probability Density Function

Let’s first consider two random variables X1 and X2. Each one of them can be
marginally characterised with the concepts discussed in Section 2.2.1. However,
doing so would not reveal any possible interrelationship between the two random
variables. This additional information is given by the joint distribution of X1 and
X2. The joint cumulative density function is defined as [13]

FX1X2(x1, x2) = P [{X1 ≤ x1} ∩ {X2 ≤ x2}] . (3.8)

Similarly, the joint probability density function is defined as

pX1X2(x1, x2) = ∂2

∂x1∂x2
FX1X2(x1, x2) (3.9)

and represents the probability that the two random variables X1 and X2 are
simultaneously in the ranges (x1;x1 + dx1] and (x2;x2 + dx2] respectively. The
reciprocal relationship is

FX1X2(x1, x2) =
� x1

−∞

� x2

−∞
pX1X2(y1, y2)dy1dy2. (3.10)

These concepts are easily extended to n random variables:

FX1...Xn(x1, . . . , xn) = P [{X1 ≤ x1} ∩ · · · ∩ {Xn ≤ xn}] , (3.11)

pX1...Xn(x1, . . . , xn) = ∂n

∂x1 . . . ∂xn
FX1...Xn(x1, . . . , xn). (3.12)
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3.2.1.2 Joint moments

In Section 2.2.1, Equation (2.6) provided the general definition of the n−th order
statistical moment of a random variable. When multiple random variables are
considered, one defines the so called joint moments. Considering the simple
example of two random variables X1 and X2, the joint moment of order n+m is
defined as [13]

E[Xn
1X

m
2 ] =

� ∞

−∞
xn1x

m
2 pX1X2(y1, y2)dy1dy2. (3.13)

Similarly, the joint central moment of order n+m is defined as

E[(X1 − µX1)n(X2 − µX2)m] =
� ∞

−∞
(x1 − µX1)n(x2 − µX2)mpX1X2(y1, y2)dy1dy2.

(3.14)
Specialising Equation (3.14) for n = m = 1, is what defines the covariance of

the two random variables X1 and X2:

σ2
X1X2 = E[(X1 − µX1)(X2 − µX2)] = E[X1X2]− µX1µX2 (3.15)

Equations (3.13) and (3.14) can be easily extended to the general case of n
random variables. For instance, later in this Work, third order cross moments
such as E[X1X2X3] or E[X1X

2
2 ] will be treated.

3.2.2 Multiple random processes
In this Section, the concepts introduced in Section 2.2.2 will be extended to the
case of multiple random processes. To give a concrete example of multiple random
processes, one might think of the measurements of the wind speed at different
points in space on a long-span bridge.

To be concise, only stationary, ergodic random processes will be treated, so
that focus is given to the mathematical concepts that will be extensively used
throughout this Thesis. As a consequence, any ensemble mean will be auto-
matically replaced by sample mean of any arbitrary realisation of the random
processes, as discussed in Section 2.2.5.

3.2.2.1 The Cross-Correlation function

The Cross-Correlation function of two stationary, ergodic, random processes X(t)
and Y (t) is defined as

Rxy(τ) = E[(X(t)−µX)(Y (t+τ)−µY )] = lim
T→∞

1
T

� T/2

−T/2
(x(t)−µX)(y(t+τ)−µY )dt.

(3.16)
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Like the Autocorrelation function (see Equation (2.29)), if evaluated at zero
lag τ = 0, the Cross-Correlation function returns the covariance of the two ran-
dom processes (normalised to their mean values):

m̃2,XY = σ2
XY = E[(X(t)− µX)(Y (t)− µY )]

=
� ∞

−∞
(x(t)− µX)(y(t)− µY )dt

= m2,XY − µXµY

(3.17)

where m2,XY = E[X(t)Y (t)] is the second order cross moment.
For zero-mean processes, the relation m̃2,XY ≡ m2,XY applies. To simplify

notations even further, in the following only zero-mean (yet stationary and er-
godic) random processes will be assumed, assuming the equivalence of normal
and centred statistical moments of any order.

3.2.2.2 The Cross Power Spectral Density function

The Cross Power Spectral Density function (CPSD) is defined as the Fourier
Transform of the Cross-Correlation function:

Sxy(ω) = 1
2π

� ∞

−∞

[
lim
T→∞

1
T

� T/2

−T/2
x(t)y(t+ τ)dt

]
e−iωτdτ

= 1
2π

� ∞

−∞
Rxy(τ)e−iωτdτ.

(3.18)

The Cross-Correlation and the CPSD also form a Fourier Pair, so that, the
integration of the CPSD gives the covariance of the two random processes:

σ2
XY =

� ∞

−∞
Sxy(ω)dω. (3.19)

3.2.2.3 The Cross-Bicorrelation function

If non-Gaussian random processes are considered, then mean and Autocorrela-
tion function are not sufficient anymore for a complete characterisation of the
processes.

Limiting discussions to third statistical order, the Cross-Bicorrelation function
of three stationary, ergodic, random processes X(t), Y (t) and Z(t) is defined as:

RXY Z(τ1, τ2) = E[X(t)Y (t+ τ1)Z(t+ τ2)] = lim
T→∞

1
T

� T/2

−T/2
x(t)y(t+ τ1)z(t+ τ2)dt.

(3.20)
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It translates the existing triple correlation between, for instance, wind pres-
sures at three different points in space, with time delays τ1 and τ2 from a reference
time instant t.

Evaluating the Cross-Bicorrelation at both zero time lags gives the third-order
cross moment

m3,XY Z = RXY Z(0, 0) = lim
T→∞

1
T

� T/2

−T/2
x(t)y(t)z(t)dt. (3.21)

3.2.2.4 The Cross-Bispectrum

The Cross-Bispectrum is derived taking the twofold Fourier Transform of the
Cross-Bicorrelation function:

BXY Z(ω1, ω2) = 1
4π2

� ∞

−∞
RXY Z(τ1, τ2)e−iω1τ1e−iω2τ2dτ1dτ2. (3.22)

It should be now easy to understand that Cross-Bicorrelation and Cross-
Bispectrum form a double Fourier Pair, and that integrating the Cross-Bispectrum
in the 2D frequency space estimates the third order cross moment:

mXY Z = RXY Z(0, 0) =
� ∞

−∞
BXY Z(ω1, ω2)dω1dω2. (3.23)

3.2.3 System I/O relations
In this Section, the concepts introduced in Section 2.2.8 will be extended to MD-
OFs systems. They constitute the essential steps to do simple linear mathematical
operations on vector processes. Let’s assume a deterministic causal Linear Time
Invariant (LTI) dynamical system defined by its Frequecny Response Function
H (ω) so that vectorial input x (t) and a vectorial output y (t) are related by

Y (ω) = H (ω) X (ω) (3.24)

where X (ω) and Y (ω) are respectively the Fourier transforms of x (t) and y (t).
Equation (3.24) can be specialised to any two components of Y (ω), for instance
Ym (ω) and Yn (ω). Extending the definition of the Cross Power Spectral Density
function (ese Eq. (3.18)) to ergodic processes, as it was done in Section 2.2.8, we
have

Symn (ω) = lim
T→∞

2π
T
Ŷm (ω) Ŷn (ω) (3.25)
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where Ŷm (ω) and Ŷn (ω) are the Fourier transforms of two idealized very long
samples of ym (t) and yn (t) defined on the window t ∈ [0;T ]. Substituting

Ŷm (ω) =
∑
i

Hmi (ω) X̂i (ω) ; Ŷn (ω) =
∑
j

Hnj (ω) X̂j (ω) (3.26)

in (3.25), where the sums extend to the number of input in x (t), we have

Symn (ω) =
∑
i

∑
j

Hmi (ω)Hnj (ω) lim
T→∞

2π
T
X̂i (ω) X̂j (ω)

=
∑
i

∑
j

Hmi (ω)Hnj (ω)Sxij
(ω) .

(3.27)

At second order, this expression can be written in the matrix format

Sy (ω) = H (ω) Sx (ω) H (ω) , (3.28)

which indicates that the CPSD matrix of the output is just expressed by left-
and right-multiplication of the CPSD matrix of the input by the FRF. This
expression extends to the MDOF case the relation (2.50) which had been obtained
in the scalar case. In case of a memoryless transformation, H (ω) ≡ A = cst,
y (t) = Ax (t), and

Sy (ω) = ASx (ω) A. (3.29)
This operation is central in the projection or combination operations that are
repeatedly used in the sequel.

At third order, following similar derivations, the cross-bispectrum of a triplet
of components (m,n, o) of the output y (t) reads

Bymno (ω1, ω2) =
∑
i

∑
j

∑
k

Hmi (ω1)Hnj (ω2)Hok (ω1 + ω2)

lim
T→∞

2π
T
X̂i (ω1) X̂j (ω2) X̂k (ω1 + ω2)

=
∑
i

∑
j

∑
k

Hmi (ω1)Hnj (ω2)Hok (ω1 + ω2)Bxijk
(ω1, ω2) .

(3.30)

This relation will prove helpful when establishing the cross-bispectra of modal
responses in different modes, or could be useful in other contexts where analysis
is performed in a nodal basis. This expression shows that the establishment of
a single triplet (m,n, o) of the response requires the combination of all cross-
bispectra of the input in all possible combinations. Repeating this operation
for all triplets and for many couples (ω1, ω2) shows why the analysis of large
structural systems is computationally challenging.
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In case of a memoryless system, H (ω) ≡ A = cst, the former becomes

Bymno (ω1, ω2) =
∑
i

∑
j

∑
k

AmiAnjAokBxijk
(ω1, ω2) . (3.31)

None of the two latter equations can be put in a simple matrix form. A tensor
notation would be required. In the rest of this document, a component-wise
notation similar to (3.31) will be used. Equations (3.29) and (3.31) extend to the
MDOF case the same equations derived in Section 2.2.8 in the SDOF case.

3.3 Stochastic dynamic analysis
The general equations of motion (3.1), or (3.2), can be solved in either time or
frequency domain, and each approach has its advantages and disadvantages. For
the time domain, if its range of applicability includes also nonlinear problems
(in both the loading process and/or the structural behaviour), its employment is
only possible when records, measurements or simulations of loading time series are
available. This is in some cases a limitation, either because of lack of measurement
instrumentation or because of limited computing power, specially for the most
complex (and scientifically interesting) applications. Nonetheless, if advances in
technology and computing power are making the latter issue almost completely
solved nowadays, the former is still a challenge in most cases, also considering the
costs that modern innovative monitoring instrumentation require, for both instal-
lation and maintenance. Moreover, as shown in Section 2.3.1 (see Figure 2.4), a
Monte Carlo approach to the problem carries an intrinsically high variability of
accuracy of results, due to its intrinsic deterministic nature. To avoid such issues
and increase the confidence interval, an optimal simulation/measuring time must
be chosen, which might in some cases be considerably long.

On the other hand, a frequency domain approach to the resolution of the
equations of motion is a serious alternative to these conventional time domain
solutions, in that it allows the quantification of the global structural response.
Besides, an advantage of such an approach stands in the fact that, if it can
be certainly seen as a deterministic approach (i.e. by direct application of the
Fourier Transform of a time series realisation), it has an (intrinsic) probabilistic
(i.e. stochastic) version as well.

In a stochastic dynamic analysis the equations of motion are solved in a prob-
abilistic sense. Knowing the probabilistic description of the loading, the aim is
to determine the one of the structural response, that is, solving Equation (3.1)
where the loading is known by means of probabilistic quantities, i.e. its CPSD
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and Cross-Bispectra matrices, and the objective is to compute the same quantities
for the structural responses.

Let’s momentarily assume that the average wind loading f is identified, and
that both the CPSD and Cross-Bispectra matrices of the wind loading fluctua-
tions around the mean are known.

3.3.1 First order
If the mean component of the wind load is identified, it can be taken out from
the general equation of motion (see Equation (3.1)), so that

Mẍ(t) + Cẋ(t) + K (x + x̃(t)) = f + f̃(t) (3.32)

where both the wind forces f(t) and the structural responses x(t) vectors have
been split into their mean component [·] and zero-mean fluctuating component
[̃·].

Applying the expectation operator on both sides:

E [Mẍ(t) + Cẋ(t) + Kx(t)] = E [f(t)] (3.33)

the governing equations of motion reduce to the static case:

Kx = f (3.34)

or
K⋆q = p (3.35)

in the modal basis, so that

µx := x = K−1f (3.36)
µq := q = K⋆−1p (3.37)

link the average structural responses average applied loads.

3.3.2 Second order
In Section 3.1, Equation (3.4) introduced the frequency domain dynamic modal
equation of motion of a MDOF system.

Considering Equation (3.4), and considering the mathematical relation be-
tween the Fourier Transform and the PSD of a random process

Sx(ω) = E
[
X(ω)X(ω)

]
(3.38)
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the CPSD matrix of modal responses reads

SQ(ω) = E
[
H⋆(ω)P(ω)H⋆(ω)P(ω)

]
= E

[
H⋆(ω)P(ω)P(ω)H⋆(ω)

]
= H⋆(ω)E

[
P(ω)P(ω)

]
H⋆(ω)

= H⋆(ω)SP(ω)H⋆(ω)

(3.39)

Equation (3.39) represents the second order Stochastic dynamic equations of
motion, for multi-degrees-of-freedom (MDOFs) systems.

Then, following Equation (2.37), integration along the 1D frequency space of
Equation (3.39) gives the second order statistical moments (i.e. variances and
covariances) of the resulting stochastic modal responses SQ(ω)

m2Q = ΣQ =
� ∞

−∞
SQ(ω)dω (3.40)

Finally, statistics of structural responses are obtained recombining the modal
responses obtained with application of Equation (3.39), that is

m2x = Φm2QΦT (3.41)

or in scalar version

mCQC
2xij

=
NM∑
m=1

ϕimϕjmm2Qmm
+

NM∑
m=1

NM∑
n=1,n̸=m

ϕimϕjnm2Qmn
(3.42)

and since in general only variances (i.e. auto-covariances) of structural responses
are of interest, Equation (3.42) reduces to

mCQC
2xi

=
NM∑
m=1

ϕ2
imm2Qmm

+
NM∑
m=1

NM∑
n=1,n̸=m

ϕimϕinm2Qmn
(3.43)

where m2xi
denotes the variance of the i-th structural degree-of-freedom’s re-

sponse.
Both Equation (3.42) and Equation (3.43) are the sum of two contributions:

(i) the contribution of modal variances (first sum), and (ii) the contribution of
the modal covariances to the structural responses (second term). When both
terms are considered, they represent the so-called Complete Quadratic Combi-
nation (CQC) of modal responses. While this indeed introduces an higher level
of complexity as well as numerical burden, it is the most accurate approach in
the determination of the second order statistics of resulting structural responses.
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Nonetheless, a simplified approach is available for the determination of statistics
of structural responses from the ones of the modal responses. It takes the name
of Square Root of the Sum of the Squares (SRSS), where statistics of the resulting
structural responses are obtained as a linear combination of auto-covariance of
modal responses only, that is

mSRSS
2xi

=
NM∑
m=1

ϕ2
imm2Qmm

(3.44)

which is clearly equal to considering only the first term in Equation (3.43).

3.3.3 Third order
Once the bispectra of nodal loads are determined, assuming to conduct the anal-
ysis in the modal basis (the advantages of adopting such an approach have been
discussed in the introductory part), the bispectra of the resulting modal forces
are directly defined as (see Equation (3.31))

BPmno (ω1, ω2) =
NDOFs∑
i=1

NDOFs∑
j=1

NDOFs∑
k=1

ϕimϕjnϕkoBfijk
(ω1, ω2) (3.45)

where ϕim is an element of the modal matrix Φ (i.e. the eigenvectors).
Then, in the same spirit of what has been seen at second statistical order, the

formulation of the third order stochastic dynamic equation reads:

BQmno(ω1, ω2) = K2mno(ω1, ω2)BPmno(ω1, ω2) (3.46)

where
K2mno(ω1, ω2) = H⋆

m(ω1)H⋆
n(ω2)H⋆

o (ω1 + ω2) (3.47)
represents the second Volterra Kernel. It is called second Volterra Kernel because,
in the time domain, for stationary processes it is function of two independent time
lags τ1, τ2 only.

Then, following Equation (2.45), the third order moments of the resulting
modal responses are the results of the double integration in the 2D frequency
space of the full 3D tensor matrix of bispectra of modal responses:

m3Qmno
=
� ∞

−∞
BQmno(ω1, ω2)dω1dω2 (3.48)
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Then, similarly to second order, also third moments of structural responses
are given by linear combination of the respective modal responses:

mCCC
3xijk

=
NM∑
m=1

ϕimϕjmϕkmm3Qmmm
+

NM∑
m=1

NM∑
n=1

NM∑
o=1

(n,o)̸=(m,m)

ϕimϕjnϕkom3Qmno
(3.49)

and, focusing on auto-moments only, Equation (3.49) becomes

mCCC
3xi

=
NM∑
m=1

ϕ3
imm3Qmmm

+
NM∑
m=1

NM∑
n=1

NM∑
o=1

(n,o)̸=(m,m)

ϕimϕinϕiom3Qmno
(3.50)

Both Equations (3.49) and (3.50) refer to the so-called Complete Cubic Com-
bination (CCC, along the same line of the well known CQC). Also in this case, the
simplified approach which considers auto- modal responses only is applicable. It
takes the name of Cubic Root of the Sum of the Cubes (CRSC), and reformulates
Equation (3.50) as

mCRSC
3xi

=
NM∑
m=1

ϕ3
imm3Qmmm

(3.51)

which consists in considering only the first sum in Equation (3.50).
One important remark has to be done at this point. The SRSS (simplified

second order) combination of modal responses has been widely adopted, specially
in the past, when computing power was nothing close to that of today’s ma-
chines. Nonetheless, it has been employed even up to recent years, since for what
concerned second order statistical moments (i.e. variances and covariances), the
discrepancies in resulting statistics of structural responses (see Equations (3.42)
and (3.44)) was (generally assumed) negligible. Some authors [39, 40] have al-
ready proved this common practice to be harmful (or uneconomical) in some
cases, showing that the two approaches can indeed lead to different results. How-
ever, it is nonetheless an acceptable assumption in most cases. The same cannot
be said when considering higher order statistics. In fact, if at second order, it
can be proved mathematically that in the 2D matrix of covariances of a given
random process, covariances (outer-diagonal elements) are almost always smaller
(in absolute value)1 with respect to variances, the same does not hold anymore
once considering higher order statistics (i.e. higher than second order). As a con-
sequence, CRSC (more than SRSS at second order) method is not recommended.
This implies the need to accurately estimate a proportionally large number of
outer-diagonal elements of a 3D matrix, rather than in a 2D case. Examples will
follow showing this aspect.

1This comes from the property that the correlation coefficients are scalar numbers at most
equal to unity, in absolute value, that is ρ =∈ [−1, 1].
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Chapter 4

Non-Gaussian buffeting analysis

This Chapter will focus on the wind loading. First, an overview of current prac-
tices will be provided. Then, a generalisation of the wind forces model will be
formulated, introducing the concept of elementary wind components, as a base
for computing the extended set of wind components. Then, a specialisation of
such generalised model for Bispectral analyses will be detailed. The final objec-
tive of this Chapter is: for a given FE structural model, provide the CPSD and
Cross-Bispectra matrices of wind loads.

4.1 Properties of the wind load
As a dynamic natural action, wind is a very complex physical phenomenon. It
involves many fields of study, such as fluid dynamics and meteorology, among
others [41]. Wind is a fluid flow generated by the temperature gradients in the
atmosphere, caused by a difference in solar heating of the Earth’s surface [42,
43]. Hence, there are infinite number of atmospherical configurations, each one
of them causing a unique turbulent wind flow within the atmospheric boundary
layer (ABL) (see for example [42] for detailed information). Figure 4.1 shows a
schematic representation of such boundary layer.

Being a fluid flow, wind is mainly characterised by its velocity, which together
with some other properties of the fluid (i.e. atmospheric air) such as density,
dynamic and kinematic viscosities, are at the base of the mathematical equations
that characterise viscous fluids, better known as the Navier-Stokes equations. As
it will also be briefly discussed in a later Section, Navier-Stokes equations are at
the core of fields such as Computational Fluid Dynamics (CFD) [44, 45], where
in Wind Engineering is often referred to as Computational Wind Engineering
(CWE) [46, 47].
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Figure 4.1: Schematic representation of the Atmospheric Boundary Layer
(ABL).

Figure 4.2: Example of terrain category exposure levels, in the ABL.
Source: https://cppwind.com/wind-profile-characterization/

Under a pure engineering point of view [48], wind flow mean velocity char-
acterisation is done based on what’s called the terrain category, referring to a
specific local terrain morphology and topography [49].

Figure 4.2 shows a graphical representation of such categorisation. The figure
extends in two directions: (i) along the vertical axis, referring to the altitude, the
wind velocity increases, mainly due to meteorological macro-effects (atmospheric
flows); (ii) along the horizontal axis, moving from left to right, the wind velocity
increases (at the same height) due to undisturbed flow conditions, where the fluid
flow is not interrupted or altered by any obstacle, keeping its kinematic energy.
This is contrary to what happens in urban areas (left-most side), where the high
concentration of buildings acts as a barrier to the natural wind flow.
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In practice, there are two main empirical laws to compute the mean wind
velocity at a given altitude U : (i) power law and (ii) logarithmic law:

U(z) =
(
z

zref

)α
; U(z) = 1

k

√
τ0

ρ
ln z

z0
. (4.1)

When dealing with turbulent flows, such as wind flow in the ABL, it is con-
venient to determine a local reference system (Wind Reference System, WRS in
this specific case), where at least one normal base vector of such reference system
is parallel to the mean flow. For the case of the WRS, it is common practice to
align the XWRS local axis to the mean flow direction, so that at each point (x, y, z)
in space, the local velocity vector can be split into three Cartesian components:

V (t) =


UXWRS(t)
UYWRS(t)
UZWRS(t)

 =


U + u(t)
v(t)
w(t)

 . (4.2)

Therefore, if U is the mean wind velocity component, (u(t), v(t), w(t)) are the
three spatial components of the turbulent part of the wind velocity. In Equa-
tion (4.2) direct dependence on spatial coordinates (x, y, z) of any wind velocity
component has been dropped for conciseness in notations.

In the following, the set (u(t), v(t), w(t)) of wind velocity turbulent compo-
nents will be referred to as set of elementary turbulent components. This nomen-
clature is adopted, as it will be clearer in the following sections, to distinguish
this base information from the set of wind components resulting from an arbitrary
wind model used for determining wind forces (or pressures).

Wind turbulent components are random by nature. It is well establish to
consider them as random Gaussian processes, having zero mean. Moreover, for
civil engineering purposes, usually wind action is usually defined on 10-minute
windows [48]. Turbulence intensity is defined as

Iu = σu
U

Iv = σv
U

Iw = σw
U

(4.3)

where σξ is the standard deviation of the turbulent component in the ξ−th di-
rection (x, y, z), in the WRS.

When it comes to model the spatial distribution of wind, two other important
properties are defined for each wind component υ ∈ {u, v, w}: the matrices of
Cross-Correlations Rυ(τ) and Cross-PSDs Sυ(ω).
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In a time domain approach, the Cross-Correlation of wind turbulent compo-
nents evaluated at two spatial points I and J is expressed as:

RυIυJ
(τ) = lim

T→∞

1
T

� T/2

−T/2
υI(t)υJ(t+ τ)dt. (4.4)

Note that in Equation (4.4), mean values are omitted since wind turbulence is a
zero-mean random process.

On the other hand, the cross-PSDs of wind turbulent components evaluated
at two points I and J are expressed as

SυIυJ
(ω) = ΓυIJ

(ω)
√
SυI

(ω)SυJ
(ω) (4.5)

where ΓυIJ
(ω) is the spatial coherence function of the wind turbulent component

υ(t).
In practice coherence is determined via site measurements. Turbulence is

measured at points I and J, and coherence is inferred through Cross-PSD of long
measured time series.

As one might compute the cross-spectrum of a given turbulent component
at two different points in space, one could also compute the same information
for two different turbulent components [50, 51], say u(t) and w(t) at either (i)
the same point in space, or more generally (ii) at two different spatial locations.
While this aspect is indeed of crucial importance, yet little is known about the
actual coherence between different turbulent components at different points in
space.

From a modelling point of view, current models for the cross coherence func-
tions are usually (simply) decreasing exponential functions [2], although nothing
justifies this choice from a physical standpoint [52]. It is recognised [52] that the
current models are not generic enough and should be significantly adapted, from
site to site.

For these reasons, while the author acknowledges the need of specific meteo-
rological studies to provide a better understanding of this phenomenon, in this
work, any possible correlation existing between different turbulent components
is discarded, as a neutrality choice: if on the one hand, this might signifies that
an important physical aspect is neglected, on the other, the introduction of (yet)
unquantifiable errors due to the lack of extensive studies able at providing reliable
models is avoided.
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4.2 The quasi-steady aeroelastic modelling in
Wind Engineering

Before proceeding to the details of the mathematical aspects of the buffeting
problem, two important concepts must be addressed, aerodynamic and aeroelas-
tic.

Fung in [53] defines aeroelasticity as:

‘ ‘the study of the effect of aerodynamic forces on elastic bodies.”

However, the specificities of such statement are much more complicated. In
fact, in this context, one major classification can be (and is practically) done:
(i) cases where the aerodynamic wind forces do not depend on the body mo-
tion, (ii) cases in which, instead, the body motion affects the determination of
the external loading. In the latter case, the wind forces are a function of the
body motion, which assumed the general equations of motion of a MDOF sys-
tem (see Equation (3.1)), means that the appplied wind forces are a function
of the structural displacements and velocities, i.e. f(t) ≡ g(x(t), ẋ(t)). These
configuration-dependent aerodynamic forces are often referred to as self-exciting
wind forces component.

There exist several physical phenomena that are studied considering these
self-exciting forces:

• the flutter instability phenomena, affecting historically mostly airplane wings
[54]. Now, in reality, a problem to be also accounted when designing very
slender structures, such as long span bridges. Very famous the collapse of
the Tacoma Bridge in 1940 [55, 56, 57, 58].

• vortex induced vibrations, which, as the name suggests, are vibrations in-
duced by the alternating wake generated by the flow around a bluff body
[59].

Contrarily, if the structural motion can be considered slow enough compared
to the flow speed, so that it does not affect the wind flow around the bluff body, it
is safe to neglect these self-exciting forces, and so consider that the global aerody-
namic forces acting on the structural system depend solely on the temporal (and
spatial) configuration of the incoming flow, relative to the structural configura-
tion. Aeroelastic problems where self-exciting forces are discarded are sometimes
referred to as simply aerodynamic problems, since the final loading depends only
on the aerodynamic features of both wind flow and structural shapes, without
accounting of any possible fluid-structure interaction. This naming can be jus-
tified to make clear the context, i.e. the assumption of undisturbed flow and so
consequent drop of any self-exciting aeroelastic effect.
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If unstable aeroelastic effects (e.g. those including unsteady self-exciting
aeroelastic forces, which are usually responsible of the destabilisation of the sys-
tem at a critical configuration) are to be avoided for safety reasons, buffeting
effects are to be controlled for human comfort and serviceability of the structural
system, but also for safety at the Ultimate Limit States (ULS) for which the
structure must be designed for following Standards requirements [48].

In the following, the assumption of undisturbed wind flow will be made, so that
to discard any self-exciting aeroelastic effects, and focus mainly on the buffeting
problem is allowed.

4.3 Wind buffeting forces & the set of
elementary wind components

When focus is made only on the family of quasi-steady aeroelastic models, result-
ing applied loads are obtained as memoryless transformations of the set of wind
turbulent components.

There exist several models to express the aerodynamic wind loads at DOF i
of node I of a finite element model, as a function of the average wind velocity
U I at that node and u(t), v(t), w(t), the elementary velocity components of wind
turbulence, at the same node only. Other more complex models can also express
the aerodynamic load at a given node I as the result of the interaction of the
flow turbulence along the entirety of the structural system, hence accounting for
possible interference specially with closely-spaced points. Details will be given in
the following.

In the following sections, a first discussion and overview of currently adopted
aerodynamic models will be given. Not only to present current practices, but
also to prepare the field for a more general formalisation of aerodynamic mod-
els, hence accounting for non-Gaussian intrinsic nature of aerodynamic loading.
Such generalised model is at the base of the new mathematical and numerical
developments discussed in this Thesis.

When dealing with buffeting loads on a line-like structure (i.e. bridge decks,
towers), three main forces can be defined:

• Drag (D) force, parallel to the mean wind flow direction;

• Lift (L) force, transversal to the mean wind flow direction;

• Pitching moment (M), turning moment around an axis perpendicular to
both the wind flow and the lift direction vector, by convention positive
when it tends to raise the leading edge of the body.

Mathematically, these aerodynamic forces are expressed as:
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U u(t)

v(t)
w(t)

V(t)

Figure 4.3: Schematic representation of the wind velocity vector (com-
posed from the mean and elementary wind turbulent components) acting
on a bridge deck, generating the 3 buffeting forces: drag, lift, and pitching

moment.

FD(t) = 1
2ρCD(i(t))BV 2(t)

FL(t) = 1
2ρCL(i(t))BV 2(t)

M(t) = 1
2ρCM(i(t))B2V 2(t)

(4.6)

where ρ is the air density, CD, CL, CM the drag, lift, moment aerodynamic
coefficients, B the characteristic length of the bluff body,

V 2 = ||−→V ||2 = (U + u(t))2 + v2(t) + w2(t) (4.7)

the square of the norm of the instantaneous wind velocity vector, as shown in
Figure 4.3. It is composed of three spatial components

−→
V (t) =


U + u(t)
v(t)
w(t)

 (4.8)

when expressed in the WRS, where the X axis is taken parallel to the mean wind
flow direction. This set of spatial turbulence components is at the base of the
following developments. Therefore, it will be referred to as the elementary set of
turbulence components, or shortly elementary wind components.

The aerodynamic coefficients CD, CL, CM are obtained by rewriting Equations
(4.6) as

CD(t) = FD(t)
1
2ρBV (t)2 ; CL(t) = FL(t)

1
2ρBV (t)2 ; CM(t) = FM(t)

1
2ρB

2V (t)2 . (4.9)

Aerodynamic forces FD, FL,M are computed or measured in a Wind Tunnel and
this allows for an estimate of the structural aerodynamic coefficients CD, CL and



56 Chapter 4. Non-Gaussian buffeting analysis

CM [60], which might then be used in a design procedure, to compute effective
aerodynamic forces, based on an accurate characterisation of the effective wind
flow.

Alongside, in the last decade, the numerical approach aimed at directly solving
the Navier-Stokes equations (Computational Fluid Dynamics (CFD), also named
Computational Wind Engineering (CWE) in such context) is increasingly used for
this purpose of estimating the aerodynamic coefficients, specially for very complex
body shapes, for which manufacturing scaled models can be a challenge. In that,
CWE is relatively cheap, since it only requires good computing power in order to
be operational. Nonetheless, for large simulations, the required computing power
might be considerable, such that its costs might be significant as well.

(a) (b)

Figure 4.4: Examples of wind forces estimation:
(a) Wind-Tunnel setup (Source1), (b) CFD model (Source2).

4.4 The intrinsic Non-Gaussian nature of the
aerodynamic load and the dimensionality
problem

The study of wind effects on structures involves the combination of structural
dynamics and loading models, concepts introduced in Sections 3.1 and 4.2.

As for the loading model, very general and complex formulations have been
formulated [61, 62], which consider the wind flow inclination and orientation in a
3D space. In this Thesis, only the so called normal winds will be considered. So
that, referring to the general nomenclature (see [62] for instance), the yaw angle
will be always 0, and the only wind incidence is the one lying in the cross-sectional
plane. This is represented in Figure 4.5.

1https://www.windtunnel.polimi.it/bridge-aerodynamics-and-aeroelasticity/
2https://www.fhwa.dot.gov/publications/research/infrastructure/hydraulics/09028/004.cfm
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Figure 4.5: Wind turbulence incidence angle. With structure still
(dashed line), and with structure moving [5].

Figure 4.5 also shows a schematic diagram where the elastic body has moved
from its initial (undisturbed, dashed line) configuration along all the degrees-of-
freedom in its plane, i.e. two in-plane displacements, vertical and horizontal, and
a rotation around the axis normal to the plane.

Such displaced configuration affects both the determination of the effective
incidence, as well as the effective norm of the wind velocity vector (see Equation
(4.8)):

ieff (t) = arctan
[
w(t)− ḣ(t)− rBα̇(t)
U + u(t)− ṗ(t)

]
− α(t) (4.10)

Veff
2 = (U + u(t)− ṗ)2 + v(t)2 + (w(t)− (ḣ+ rBα̇(t))2

= U
2 + u2 + ṗ2 + 2Uu− 2Uṗ− 2uṗ+ v2

w2 + ḣ2 + (rBα̇)2 − 2wḣ− 2wrBα̇ + 2ḣrBα̇
(4.11)

so that, generally, also the quasi-steady buffeting loading dependent on the in-
stantaneous system configuration, results in a nonlinear transformation of u(t),
v(t) and w(t).

It is widely accepted that the elementary wind turbulence components are
assumed to be Gaussian random processes [28, 63]. On the other hand, aero-
dynamic pressures and forces are in principle non-Gaussian [64, 65]. Inserting
Equations (4.10) and (4.11) into the formulation of aerodynamic wind forces
given in Equation (4.6) is what introduced the non-linearity and so the intrinsic
non-Gaussian nature of aerodynamic forces, due to the presence of powers higher
than 1 of turbulence components. In fact, squaring a Gaussian random process
results in a non-Gaussian process, since squaring is a nonlinear operator. So that,
even though the elementary wind turbulent components (u, v, w) are assumed to
be Gaussian random processes, the resulting wind forces do not necessarily have
the same property.
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Besides, with aid of advancing measurement devices, there have been evi-
dences which showed that measured wind turbulence in the Atmospheric Bound-
ary Layer (ABL) does not strictly follow a Gaussian distribution [63]. However,
these results were mainly obtained in measurements of exceptional winds scenar-
ios, such as typhoons and hurricanes, which fall outside the conditions in which
buffeting problem, treated in this context, may occur. Nonetheless, recently Li
et al. in [66] showed that even synoptic wind turbulence, category in which buf-
feting winds fall, might show non-Gaussianity due to the weak stationarity of the
randomly fluctuating wind turbulence velocities.

Other works [10] also tackle the problem of non-Gaussian turbulence in other
domains of application. For clarity, the possibility of non-Gaussian turbulence
is not explicitly considered in the presented work, so that elementary wind tur-
bulence velocity components are assumed to be random and Gaussian. This is
because a full aerodynamic model encompassing wind pressures and wind loads
is provided, and how PSDs and bispectra of wind loads can be obtained from
wind velocities is explained. In other words, a mathematical model based on the
quasi-steady approximation is developed, expressing other stochastic propoerties
of the non-Gaussian wind loads as a function of Gaussian turbulence. Alterna-
tively, any other loading model, e.g. with non-Gaussian wind turbulence, could
be studied too, provided that finally the PSDs and bispectra of wind loads are
obtained.

It is important to note that non-Gaussianity does not mean non-linearity of
the structural system, so that, a frequency domain approach to the solution of
equations of motion in Equations (3.1) or (3.2) is still valid. Hence, for the
frequency domain approach to the dynamic problem, the loading need not to be
necessarily Gaussian, as some authors have pointed out [11].

While in this work bispectral analysis will be applied in frameworks where
the non-Gaussianity comes from the input, applied to a linear dynamic system
(by means of some nonlinear transformations), some authors have used bispectral
analysis to identify light non-linearities of systems excited by some random Gaus-
sian white noise [67, 68, 16]. Other authors have extended these applications to
include stationary non-Gaussian inputs as well [69]. In [70], authors have inves-
tigated the stochastic response of a beam, assuming both linear and nonlinear
mechanical behaviours, under a non-Gaussian random excitation.

In the general case, accounting for the non-Gaussian nature of aerodynamic
forces brings a novel degree of complexity to the problem, for both time and
frequency domain.

If non-Gaussian properties are to be accounted when dealing with aerody-
namic forces (as it should per its natural definition), care has to be used in
properly characterising the underlying non-Gaussian process, so to avoid any sta-
tistical misrepresentation. And the need of dealing with very large time series,
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or spectra, hence calling for high-dimensional quantities, must be acknowledged.
This in part also explains why, up to current times, no real applications in which
this aspect has been concretely accounted for are found, at least to the author’s
knowledge [71].

This Thesis focuses on the non-Gaussian buffeting problem. This is done with
the final goal of firstly determining, and secondly proving, that neglecting this
important feature of the aerodynamic loading might potentially affect statistics
of the resulting structural responses, causing either (i) unsafe or (ii) uneconomi-
cal design solutions. In fact, if the loading process is non-Gaussian, the resulting
structural response could potentially be non-Gaussian as well, to the same de-
gree. However, there might actually be a second scenario where accountancy of
non-Gaussianity might play an important role in the problem under considera-
tion. This could include the aeroelastic phenomena introduced at the beginning
of this section. Clearly, in such cases, the response tends to a Gaussian har-
monic response, since the structure starts vibrating regularly at the frequency of
the targeted modal motion (depending on the effect). However, neglecting non-
Gaussianity of the aerodynamic loading only for the reason that it is expected
the response to be pure Gaussian, might in reality bias the effective energetic
content [6] (better visualised in the frequency domain) of the load, which might
finally affect the determination of the critical condition at which these unstable
effects are expected to happen.

4.5 Wind model: a general approach
The concept of wind model plays a fundamental role in the context of this Thesis.
A wind model is any mathematical relation that links the spatial wind field,
expressed in terms of velocities (U+u(t), v(t), w(t)), to aerodynamic forces (f(t))
that are applied on a body immersed in the field.

polynomial
transformation

linear
combination

Average wind velocity
Elementary components

Wind components Aerodynamic
loading

geometry & aerodynamics

I II III

Figure 4.6: Schematic representation of the general nonlinear polynomial
aerodynamic loading model.

Figure 4.6 shows a schematic representation of a wind model. It consists of
two steps:
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1. From elementary wind components (U + u(t), v(t), w(t)), which constitute
the three spatial components of the wind field at any given point in space,
to wind components υ(t) that represent the result of the basic interacting
components in the turbulent flow.

2. From wind components υ(t) to aerodynamic forces f(t).

While the second step which translates wind components to aerodynamic
forces is quite restrained, since it is heavily dependent on the aerodynamic fea-
tures of the body immersed in the wind flow, the first step that transforms the
elementary wind components into the final set of wind components is the primary
source of differentiation between wind models.

In essence, the first step is what establishes the complexity of a given wind
model. For instance, if the polynomial transformation in Step I-II is chosen to
obey to a linear relation, since the operations linked to step II-III in Figure 4.6
are also linear, then the overall mathematical relation between wind turbulence
and aerodynamic forces will be linear as well. On the contrary, any non-linear
relation that will reside in Step I-II, will be inevitably reflected in Step II-III,
resulting in wind forces that are a linear combination of possibly non-linear wind
components.

4.5.1 Linearisation of the buffeting forces & the
linearised quasi-steady aerodynamic wind model

Whenever a complex relation exists between input and output of a given problem,
the very first thing that is usually tried is to check whether any kind of simpli-
fication can be employed. Linearising a nonlinear problem is indeed one of such
approaches. In fact, linear relations are the most simple to be solved, at least as
a first approximation to understand the system’s response to a given input.

Because of its intrinsic non-linearity, the aerodynamic loading is usually lin-
earised.

In this regard, very few records of cases where the non-Gaussian nature of
the wind buffeting loading has been accounted are found in the literature, spe-
cially not considering only simple SDOF systems. Although some would justify
this linearisation approach by stating that the physical conditions would allow
for such simplification without distorting too much the (yet approximate) rep-
resentation of reality, the main reason is indeed its mathematical formulation
that is simple and easy to handle, even in the most complex applications. In
this regard, some work has been done by Gusella and Materazzi in [12] and [8],
where the authors mainly focused on comparing the along-wind response of a tall
and line-like structure in the two scenarios, i.e. with and without the Gaussian
loading assumption. Gioffrè and Gusella in [70] studied the stochastic response of
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a system under non-Gaussian wind loading, considering both scenarios of linear
and nonlinear mechanical behaviour.

Some authors did consider this non-linearity, but only in time domain appli-
cations [72, 7].

Linearisation of buffeting forces requires:

• Linearisation of the nonlinear arctan operator in the formulation of effective
incidence angle in Equation (4.10);

• Any quadratic term, as well as any term coupling turbulence and structural
velocities, to be neglected in the formulation of the effective wind velocity
norm in Equation (4.11).

This requires the formulation of two important assumptions:

• Turbulence velocities are small compared to the mean wind flow speed,
which is equivalent to having low turbulence intensities (see Equation (4.3));

• Induced rotations and velocities are small, so that their effect on the on-
coming flow can be neglected.

These lead to
ieff_lin(t) = w(t)

U
(4.12)

Veff_lin
2 = U

2 + 2Uu− 2Uṗ. (4.13)
Injecting Equations (4.12) and (4.13) in the definition of buffeting forces in

Equation (4.6), and after some mathematical simplifications, the final linearised
wind buffeting forces formulation reads:

FD(t) = 1
2ρBU

2
cd + 1

2ρBU
2
[
2cd

u

U
+ cd

′w

U

]
FL(t) = 1

2ρBU
2
cl + 1

2ρBU
2
[
2cl

u

U
+ cl

′w

U

]
M(t) = 1

2ρB
2U

2
cm + 1

2ρB
2U

2
[
2cm

u

U
+ cm

′w

U

] (4.14)

where cξ = Cξ(i0) and cξ ′ = dCξ

di

∣∣∣∣
i=i0

, ξ = {D,L,M}, i0 being the mean incidence
angle.
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In a more compact form, Equation (4.14) can be rewritten as:

FD(t) = cd0

[
1 + 2 u

U

]
+ cd1

w

U

FL(t) = cl0

[
1 + 2 u

U

]
+ cl1

w

U

M(t) = cm0

[
1 + 2 u

U

]
+ cm1

w

U

(4.15)

where cξ0 = 1
2ρB

βU
2
cξ and cξ1 = 1

2ρB
βU

2
c

′
ξ, β = 1 for drag and lift, β = 2 for

moment.
From the formulation in Equation (4.15) it is evident how, in the linearised

version of the buffeting forces, each force component depends only on a linear
combination of unitary powers of the elementary wind turbulence components at
most.

In most of today’s real applications, linear wind load models are considered,
particularly when a stochastic approach is adopted. When it comes to extending
such linearised aerodynamic wind model formulation to MDOF systems, in the
most general fashion the fluctuating component of the aerodynamic loads at all
structural DOFs are given by

f(t) = A0 + A(u)u(t) + A(v)v(t) + A(w)w(t) (4.16)

where f(t) is the NDOFs × 1 vector of wind loads at all DOFs of the structural
model, obtained as linear combinations of the wind components υ(t) = {u,v,w}
at all aerodynamic nodes NNa. In such models, the set of wind components is
composed of Gaussian processes only, and matches the set of elementary wind
components. The wind components are linearly combined by means of wind
coefficients (intrinsic to the wind transformation model and to the bluff body
characteristics), embedded in the NDOFs×NNa matrices of wind coefficients A(µk)

(µk ∈ {u, v, w}, k = {1, 2, 3}). In the simplest case, A(u) = diag(cξ0 2
U

) and
A(w) = diag(cξ1 1

U
) (see Equation (4.15)). However, they can assume more general

forms in case of 3D structures and oblique or yawed wind flows. Wind coefficients
are indeed the most important aspect of the quasi-steady family of wind models.
Moreover, in the most general case the wind coefficients actually embed two
transformation processes. Details are given in Appendix A.

Since the transformation from step II to III in Figure 4.6 is always linear, and
since the elementary wind turbulence components u(t), v(t), w(t) are assumed to
be zero-mean Gaussian random processes [1], resulting aerodynamic wind forces
expressed in Equation (4.15) will be Gaussian random processes as well [9].

As a consequence, the determination of the statistics of f(t) as a function of
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those of υ(t) is straightforward. In fact, the determination of the statistics of
υ(t) will automatically result in the determination of those of the aerodynamic
wind loading, as a linear combination of them.

To summarise, Equation (4.16) can be reformulated as (see Equation (A.7))

f(t) = X̂
(
a(u)u(t) + a(v)v(t) + a(w)w(t)

)
(4.17)

where X̂ is a NDOFs × NNa matrix which transforms wind forces applied at the
discrete nodes to forces at all DOFs of the structural model.

By explicitly taking out the sum over the set of the loaded aerodynamic nodes
NNa, Equation (4.17) reads

f(t) =
NNa∑
I=1

xI
(
a

(u)
I uI(t) + a

(v)
I vI(t) + a

(w)
I wI(t)

)
(4.18)

where xI if a NDOFs × 1 vector translating the effect of the force applied at the
I-th aerodynamic node (I = 1, . . . , NNa) to the whole set of structural DOFs.

In practice, the vector xI is mostly composed of zeroes since, in a finite element
approach, the resulting loads at the different DOFs of a given node I are obtained
by integration of the applied loads on elements connected to that node only. In
addition to this, in many wind models, the loads at the DOFs of a given node of
the finite elements model are expressed as a function of the components of wind
velocity υI,:(t) at the same node I (of the wind field)3. Or, in a more general
way, wind loads at the level of the set of aerodynamic nodes NNa (resulting from
the application of the wind model transformation) are the result of the wind flow
(i.e. wind speeds) at the corresponding node. This is reflected by the fact that
the wind coefficients a(µk)

I in Equation (4.18) are scalar entities, meaning that
they directly translate the wind field into wind force at that node I only. Some
more advanced models could result in forces at a given (aerodynamic) node that
are also expressed as a function of the wind velocity at neighboring nodes [73], in
which cases Equation (4.18) would be reformulated as

f(t) =
NNa∑
I=1

xI
(

a(u)
I

T
u(t) + a(v)

I

T
v(t) + a(w)

I

T
w(t)

)
(4.19)

where now the wind coefficients a(µk)
I are NNa × 1 vector entities which express

the effect that the wind flow at all NNa aerodynamic nodes has on the aerody-
namic node I. Additionally, by considering Equations (A.1), (A.2) and (A.3),

3This statement is true only under the assumption that aerodynamic and structural nodes
are the same.
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Equation (4.19) can be easily generalised to cases where aerodynamic nodes do
not completely match structural ones.

4.5.2 A general polynomial formulation of the
quasi-steady aerodynamic wind model

When referring to linear wind load model, it is meant that the smallness of the
turbulence components with respect to the average wind velocity is considered,
and a series expansion is developed to obtain a linear relation between turbulence
components and the wind loads [74].

So, the assumption of small turbulence has been greatly welcomed since it
allowed the full probabilistic description of the buffeting loading using the mean
and variance only. However, as soon as quadratic components are included (i.e.
d > 1) in the loading model as in Equation (4.27), some wind turbulence compo-
nents such as u2(t) are no longer Gaussian, and so is the resulting loading.

In such a context, Equation (4.18), can be further generalised by expressing
explicitly the sum over the set of wind turbulence components:

f(t) =
NNa∑
I=1

xI
NDEGW∑
a=1

aIaυIa(t) (4.20)

where NDEGW = 3 for now, or, in vectorial notation

f(t) =
NNa∑
I=1

xIaTI υI(t) (4.21)

where υI(t) represents the NDEGW×1 vector collecting the set of turbulent compo-
nents acting at node I, aTI the vector of relative wind model coefficients (evaluated
at the same I-th node).

The notation adopted in Equations (4.18) and (4.19) is at the same time
general and efficient, since it resembles the localization operation in a standard
finite element approach. To simplify notations, Equation (4.20) introduces υIa (t)
to refer to the ath element in the full set of the NDEGW wind fluctuating component,
at node I, where NDEGW refers to the number of elements in the set of turbulent
components υI,:(t). For instance, the first component in the set will refer to the
wind turbulent component parallel to the direction of the mean wind U , that
is υI1 (t) = uI (t). Clearly, in the hypothesis of linearised wind model, the set
of all possible wind turbulence components happens to coincide with the set of
elementary wind components {u,v,w}.

Besides, Equation (4.20) is usually written in a different notation by moving
the term xI inside the sum over the number NDEGW in the set of wind turbulent
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components

f(t) =
NNa∑
I=1

NDEGW∑
a=1

xIaIaυIa(t) =
NNa∑
I=1

NDEGW∑
a=1

aIaυIa(t) (4.22)

where aIa = xIaIa collects the NDOFs wind loading coefficients translating the
influence of the ath fluctuating component at aerodynamic node I on the load at
all DOFs. The summation on a, limited to NDEGW, is discussed in the sequel. In
vectorial notation, Equation (4.22) becomes

f(t) =
NNa∑
I=1

AIυI(t) (4.23)

where
AI = xIaTI (4.24)

is the NDOFs× NDEGW matrix of wind coefficients accounting for the contribution
of the entire set of wind turbulent components acting on node I υI on the load
at all structural DOFs.

In Equation (4.22) it is possible to see υIa as an element of matrix υ whose
size is NNa× NDEGW. This matrix can be partitioned in two different ways:

υ = (υ:,1,υ:,2, . . . ,υ:,a, . . . ,υ:,NDEGW) = (υ̂1, υ̂2, . . . , υ̂a, . . . , υ̂NDEGW) (4.25)

υ =
(
υT1,:,υ

T
2,:, . . . ,υ

T
I,:, . . . ,υ

T
NN,:

)T
= (υ1,υ2, . . . ,υI , . . . ,υNN) , (4.26)

i.e. by lines or columns. The symbol υ:,1 means all lines of the first column, while
υT1,: all columns of the first line. This distinction has been also marked with the
introduction of two different notations, υ̂a = υ:,a, as well as υI = υTI,:.

The wind loading coefficients aIa in Equation (4.22) are expressed as a func-
tion of the aerodynamic shape of the elements, as well as their orientation with
the mean wind flow [75, 76, 62] (see Equation (4.6) for the basic example). In
the following, no hypothesis is made on how aIa is constructed so that any mem-
oryless wind loading model can be considered. Along the same line, a possible
improvement of Equation (4.20) would be to use a low-pass filter corresponding
to the so-called numerical admittance, related to the discretisation of the pressure
field along elements into nodal values [73]. Although this is not included in the
following developments, nothing hinders its consideration. Based on these argu-
ments, the establishment of coefficients ai,I is more or less involved, depending on
the fact that the studied structure is a line-like structure [75], a large structure
in a 2-D plane or even a large 3-D structure [77, 62].

In more general models, the wind loading can be replaced by a polynomial
expression of any arbitrary degree d, after truncating the series after higher order
terms. For instance, when the quadratic nature [78, 74] of the loading is taken
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into account, d = 2, the set of wind components at a given node is extended to
[41]

υI(t) =
(
uI(t), vI(t), wI(t), u2

I(t), v2
I (t), w2

I (t), uI(t)vI(t), uI(t)wI(t), vI(t)wI(t)
)

(4.27)
where all possible combinations of the components of wind velocity up to sec-
ond degree have been considered, for a total of NDEGW = 9 wind components.
Higher degree models could also be envisaged by including turbulence loading
components such as u3

I(t).
The number of new elements when adding the terms of degree d is given by

(d+ 2) (d+ 1) /2 (3 new terms for d = 1, 6 new terms for d = 2, 10 new terms
for d = 3, etc.) so that, in total,

NDEGW = 1
6 (d+ 1) (d+ 2) (d+ 3)− 1 (4.28)

if terms up to degree d are kept.
All in all, in the most generic format, the aerodynamic loads on the structure

are therefore expressed by Equation (4.22), or Equation (4.23) in its vectorial
form, where summations are performed on all aerodynamically loaded nodes (I)
and all components of the wind load (a), which could be more than just three in
case of nonlinear aerodynamic models. Besides, by choosing to embed all possible
combinations of the various degrees of the elementary components, a very general
meaning to Equations (4.22) and (4.23) is given.

Indeed, although f(t) is written as a linear transformation of υ(t), it is possible
to include nonlinear memoryless transformations of the turbulence components
up to any desired order.

This model extends the linear formulation used by the scientific community so
far. This expression is however significantly different: it conserves the properties
of linear combinations (step II to III in Fig. 4.6), but of wind components that
are themselves obtained as (possibly nonlinear) polynomial transformations of
the elementary turbulence components (step I to II in Fig. 4.6) [41].

4.6 Generalised wind model: a stochastic
“block” representation

When the stochastic approach is applied to the buffeting analysis, the main ob-
jective is to derive the statistics of υ(t), knowing those of the wind velocities
u(t), v(t) and w(t) (e.g. the set of elementary wind turbulence components, at
all aerodynamic nodes), which are assumed to be zero-mean random Gaussian
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processes. In other words, the main goal is to determine the complete probabilis-
tic description of all wind components of υ(t) (see Equations (4.25) and (4.26))
expressed as a function of the statistical description of uI(t), vI(t) and wI(t) at
all aerodynamic nodes NNa.

So that, once probabilistic description of the buffeting load is available, rela-
tive statistical descriptors of the resulting structural responses can be easily ob-
tained solving the stochastic version of the general equation of motion of MDOF
systems (see Equations (3.39) and (3.46)). Besides, since the elementary wind
components are assumed to be zero-mean, stationary, ergodic random Gaussian
processes, this results in relating the probabilistic description of all wind com-
ponents in υ(t) to the (cross-)correlation functions of uI(t), vI(t) and wI(t) or,
alternatively, of their (cross-)power spectral densities. This allows then to easily
find the statistics of the resulting wind buffeting loading f(t) in Equation (3.1),
and finally those of the structural response x(t).

In particular, considering the block representation in Equation (4.25), the
(cross-)correlation matrix of the wind components takes the form

Rυ̂(τ) =


Rυ̂11(τ) Rυ̂12(τ) · · · Rυ̂1,NDEGW(τ)
Rυ̂21(τ) Rυ̂22(τ) · · · Rυ̂2,NDEGW(τ)

... ... . . . ...
Rυ̂NDEGW,1(τ) Rυ̂NDEGW,2(τ) · · · Rυ̂NDEGW,NDEGW(τ)

 (4.29)

where Rυ̂ab
(τ) represents the NNa × NNa (cross-)correlation matrix of wind com-

ponents υ̂a and υ̂b (evaluated at all aerodynamic nodes), that is

Rυ̂ab
(τ) = E

[
υ̂a(t)υ̂Tb (t+ τ)

]
(4.30)

or in its scalar version

RυaIbJ
(τ) = E [υaI(t)υbJ

(t+ τ)] (4.31)

where RυaIbJ
(τ) represents the (cross-)correlation between wind components a

and b at aerodynamic nodes I and J respectively.
It is noticed that the expressions of Rυ̂ab

(τ) can be obtained as a function of
Ru(τ), Rv(τ) and Rw(τ) no matter the degree of the polynomial transformation
used to express υ̂a and υ̂b in terms of powers of u, v, w [4]. Detailed examples
showing this aspect will be given in the following. In the frequency domain, the
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side-by-side Fourier transform of Equation (4.29) gives

Sυ̂(ω) =


Sυ̂11(ω) Sυ̂12(ω) · · · Sυ̂1,NDEGW(ω)
Sυ̂21(ω) Sυ̂22(ω) · · · Sυ̂2,NDEGW(ω)

... ... . . . ...
Sυ̂NDEGW,1(ω) Sυ̂NDEGW,2(ω) · · · Sυ̂NDEGW,NDEGW(ω)

 (4.32)

where, equivalently, all elements can be expressed as a function of Su(ω), Sv(ω)
and Sw(ω).

Some of these large block-matrices in both Equation (4.29) and Equation
(4.32) can vanish or be neglected, especially if the correlation between elementary
components of the turbulence are neglected (see Section 4.1), that is

E [ηI(t)µI(t+ τ)] = 0 η, µ ∈ {u, v, w}, η ̸= µ, ∀I = 1, . . . , NNa (4.33)

Though this is a quite restrictive condition, some more complex model accounting
for spatial and time interaction between elementary wind turbulent components
could be used [79].

As an example, Figure 4.7-a shows the possible structure of Rυ̂(τ) and Sυ̂(ω)
for d = 2, i.e. NDEGW = 9. The diagonal elements represent Su(ω), Sv(ω), · · · ,
Svw(ω) at all aerodynamic nodes of the model. The colored boxes indicate where
non-zero values can be found. Indeed, cross-correlation functions involving in to-
tal odd powers of Gaussian processes vanish. Among all these possible non-zeros
values, some might be neglected, especially in these two cases: (i) assuming the
wind turbulence components are uncorrelated would discard all elements but the
first six blocks of the main block-diagonal (i.e. assuming validity of Equation
(4.33)), (ii) assuming a small wind turbulence intensity (i.e. assuming the lin-
earised version of wind forces) would result in neglecting all elements except the
first three by three block (upper-left) ones.

Since not all wind components in Equation (4.27) (and so in Equation (4.25)
and Equation (4.26)) are Gaussian (as u2(t) for example), higher statistical mo-
ments are required for a full probabilistic description of the buffeting loading.
In particular, as soon as quadratic terms are considered (d ≥ 2), the third rank
statistical quantities (i.e. the bicorrelation and the bispectra) need to be es-
tablished. Thanks to the block matrix representation, the bicorrelation of wind
components Rυ̂(τ1, τ2) takes the form of a 3-D block-matrix composed of block-
tensors Rυ̂abc

(τ1, τ2). An equivalent representation at third order consists in the
bispectra of the loading, which is formally obtained by the two-fold Fourier trans-
form of the bicorrelation function (see Equation (2.42)). It is noted Bυ̂(ω1, ω2)
and is composed of the block-tensors Bυ̂abc

(ω1, ω2) corresponding to the bispectra
of a given triplet of components a, b, c of wind loading components.

The format of Rυ̂(τ1, τ2) and Bυ̂(ω1, ω2) is depicted in Figure 4.7-(b,c), for
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(a) (b) (c)

Figure 4.7: (a) Block matrix representation of Rυ̂(τ) and Sυ̂(ω); (b-
c) Block matrix representation of Rυ̂(τ1, τ2) and Bυ̂(ω1, ω2). Quadratic
model (d = 2). Colors (red, yellow, blue) refer to elementary components

u, v, w respectively.

d = 2, where the larger shadowed blocks indicate the possible non-zero elements.
It is interesting to notice that the first large block in Figure 4.7-c, that is the
only remaining block for d = 1, is exactly equal to zero. This translates the
fact that the loading is Gaussian in case of linearised model. Then, if the cross-
correlation between wind turbulence components u(t), v(t) and w(t) is neglected
(see Equation (4.33)), in the four large blocks with possible non-zero components,
the only ones that remain are the block-tensors colored in red, yellow and blue
in Figure 4.7-b.

Higher order statistics could also be developed following the same approach.
However, in the following, results will be limited to third order analysis only.

It is emphasised at this stage already that, as soon as d ≥ 2, the size of
matrices Rυ̂(τ), Sυ̂(ω) and tensors Rυ̂(τ1, τ2), Bυ̂(ω1, ω2) is much larger than
the size of the cross-correlation matrices (or cross-power spectral densities) which
constitute the minimum independent information for this problem. To construct
these full matrices before projecting them in a modal basis, as seen next, can
therefore already be seen as an inefficient approach.

Once the set of wind components (see Equation (4.25) or Equation (4.26))
are characterised in a stochastic manner (i.e. having defined Bυ(ω1, ω2)), then
also the resulting forces will be easily characterisable as well, since the relation
between them is linear (see steps II-III in Figure 4.6). That is, once Bυ(ω1, ω2))
is defined, the determination of the NDOFs × NDOFs × NDOFs tensor of bispectra
of buffeting loads Bf (ω1, ω2) is straightforward. For conciseness, each element of
such tensor will be denoted as Bfijk

(ω1, ω2), denoting the (ijk)-th element of the
3-D tensor, representing the bispectrum of the buffeting load evaluated at the
three i, j and k structural degrees of freedom, i.e. evaluating the bispectrum at
the i, j and k-th nodal degree-of-freedom of the I, J and K-th structural nodes
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(NNs) respectively. Appendix C provides a detailed mathematical formula.

4.7 Wind model: a specialised case
In Section 4.5.2, a new general nonlinear approach of definition of quasi-steady
wind model has been formulated, and the general framework of the nonlinear
wind loading model has been presented.

It is now assumed that the block-matrix representation of the PSDs and bis-
pectra of wind velocities are known (see Figure 4.7). In the following develop-
ments, only second and third orders will be treated so that these two pieces of
information are sufficient. Also, a quadratic loading model is considered (d = 2).
The small turbulence intensity approximation is formulated and turbulence com-
ponents are supposed to be uncorrelated so that : (i) only the first three blocks of
the main block-diagonal in Rυ(∆t) and Sυ(ω) remain, and (ii) only the colored
blocks in Figure 4.7-b are kept. To assume uncorrelated wind components is
a simplification made for this particular example of wind loading; this prevents
from having to choose among several existing cross-PSDs of turbulence com-
ponents, but also to avoid the modeling of the spatial cross-coherence between
various components of the wind turbulence. In any case, this simple choice is
sufficient to illustrate the concepts developed in this paper. Interested readers
could implement the same developments for the general nonlinear wind loading
model introduced in Section 4.5.

Under these assumptions, the developments of previous section to a quadratic
wind loading model are specialised. The discussion is organised with respect to
the modal wind loads, as introduced in Section 3.3. The wind forces at all DOFs
of a structural model, f(t), is given by Equation (4.22), so that the modal force in
mode m reads pm(t) = ϕTmf(t) where ϕTm is the mth mode shape. Alternatively,
it is also written

pm(t) =
NNa∑
I=1

NDEGW∑
a=1

α
(m)
Ia υIa (t) (4.34)

where
α

(m)
Ia = ϕTmaIa (4.35)

is a modal loading coefficient combining the influence of the wind loads in mode
m resulting from loads at all degrees-of-freedom resulting from wind load at
aerodynamic node I. This formulation takes the same linear combination as for
wind load at physical degrees-of-freedom, see Equation (4.20).

In vectorial form (i.e. considering Equation (4.23)) it reads:

pm(t) =
NNa∑
I=1
A(m)
I υI(t) (4.36)
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where
A(m)
I = ϕTmAI = ϕTmxIaTI = ψ

(m)
I aTI (4.37)

is a 1 × NDEGW vector grouping the set of modal loading coefficients in Equation
(4.35) for a given aerodynamic node I, AI is given in Equation (4.24).

4.7.1 Second order
At second order, statistical information is given either by the Autocorrelation
function in the time domain, either by the Power Spectral Density (PSD) function
in the frequency domain (see Section 3.2.2). In time domain, the cross-correlation
function of modal forces in modes m and n is obtained by considering Equation
(4.34), which gives

Rpmn(∆t) = E [pm(t)pn(t+ ∆t)] =
NDEGW∑
a=1

NDEGW∑
b=1

R(ab)
pmn

(∆t) (4.38)

where R(ab)
pmn

(∆t) = ∑NNa
I=1

∑NNa
J=1 α

(m)
Ia α

(n)
Jb E [υIa(t)υJb(t+ ∆t)] quantifies how the

cross-correlation between wind components a and b contributes to the total
amount of correlation between the two considered modal forces. Taking the
Fourier Transform of Equation (4.38):

Spmn(ω) =
NDEGW∑
a=1

NDEGW∑
b=1

S(ab)
pmn

(ω) (4.39)

in which S(ab)
pmn

(ω) = ∑NNa
I=1

∑NNa
J=1 α

(m)
Ia α

(n)
Jb SυIaυJb

(ω) represents the contribution of
the cross-PSD between wind components a and b to the cross-PSD of wind loads
in modes m and n.

Under the assumptions considered in this Section, the only components of the
wind loading that are necessary are (a, b) ∈ {(1, 1) , (2, 2) , (3, 3)}, so that, in a
general fashion,

S(ab)
pmn

(ω) =
NNa∑
I=1

NNa∑
J=1

α
(m)
Ia α

(n)
Jb SυIaυJb

(ω) (4.40)

In vectorial form:
S(ab)
pmn

(ω) = α(m)
a

TSυaυb
(ω)α(n)

b (4.41)
where

Sυaυb
(ω) = Γ(ω)SυaSυb

T (4.42)
is the NNa× NNa matrix of nodal cross-PSDs for wind components a and b, Γ(ω)
is the NNa × NNa relative nodal spatial coherence function matrix (see Equation
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(4.5) and related discussion), Sυa the NNa×1 vector of PSDs for wind component
a evaluated at all NNa nodes.

For example, considering a = b = 1, υIa = uI and υJb = uJ respectively
correspond to the longitudinal component of turbulence at nodes I and J , so
that E [υIa(t)υJb(t+ ∆t)] = RuIuJ

(∆t), but also

S(11)
pmn

(ω) =
NNa∑
I=1

NNa∑
J=1

α
(m)
I1 α

(n)
J1 SuIuJ

(ω) (4.43)

where SuIuJ
(ω) is the cross-PSD of the longitudinal turbulent component u(t) at

nodes I and J (see Equation (4.5))
Same developments apply for a = b = 2 and a = b = 3, noticing however

that the coherence function might be adapted for other elementary turbulence
components.

4.7.2 Third order
At third order, the bicorrelation function of modal forces m, n and o reads

Rpmno(τ1, τ2) = E [pm(t)pn(t+ τ1)po(t+ τ2)] . (4.44)

Similarly as in Equation (4.38),

Rpmno (τ1, τ2) =
NDEGW∑
a=1

NDEGW∑
b=1

NDEGW∑
c=1

R(abc)
pmno

(τ1, τ2) (4.45)

where

R(abc)
pmno

(τ1, τ2) =
NN∑
I=1

NN∑
J=1

NN∑
K=1

α
(m)
Ia α

(n)
Jb α

(o)
KcE [υIa(t)υJb(t+ τ1)υKc(t+ τ2)]

=
NN∑
I=1

NN∑
J=1

NN∑
K=1

α
(m)
Ia α

(n)
Jb α

(o)
KcR

(abc)
υIJK

(τ1, τ2)
(4.46)

represents the contribution of the bicorrelation function of elementary wind com-
ponents a, b and c to the bicorrelation of wind loads in modes m, n and o. Appli-
cation of the double Fourier Transform to Equation (4.45) gives the bispectrum
of modal loads

Bpmno (ω1, ω2) =
NDEGW∑
a=1

NDEGW∑
b=1

NDEGW∑
c=1

B(abc)
pmno

(ω1, ω2) (4.47)
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where B(abc)
pmno

(ω1, ω2) represents the contribution of triplet (a, b, c) to the total bis-
pectrum. This contribution can be expressed as a function of the power spectral
density of the turbulence components as discussed earlier. Under the assumptions
made in this Section, only some triplets (a, b, c) do contribute to the bispectrum
of wind loads, which are the 4 square boxes in a more dark grey colour in Figure
4.7-c

Example

For instance, for a = 4 and b = c = 1 (component involving u2
I(t), uJ(t) and

uK(t) in Equation (4.27)), the contribution R(abc)
pmno

(τ1, τ2) to the autocorrelation
becomes

R(411)
pmno

(τ1, τ2) =
NN∑
I=1

NN∑
J=1

NN∑
K=1

α
(m)
I4 α

(n)
J1 α

(o)
K1E

[
u2
I(t)uJ(t+ τ1)uK(t+ τ2)

]
. (4.48)

It can be proved that [5], after developing the expectation operator, Equation
(4.48) becomes

R(411)
pmno

(τ1, τ2) =
NN∑
I=1

NN∑
J=1

NN∑
K=1

α
(m)
I4 α

(n)
J1 α

(o)
K1

(
RuIuJ

(τ1)RuIuK
(τ2) + σ2

uRuJuK
(τ2 − τ1)

)
(4.49)

In the frequency domain, the important contribution of the triplet (u2, u, u)
to the total cross-bispectrum of the modal force (m,n, o) is

B(411)
pmno

(ω1, ω2) =
NN∑
I=1

NN∑
J=1

NN∑
K=1

α
(m)
I4 α

(n)
J1 α

(o)
K1SuIuJ

(ω1)SuIuK
(ω2) (4.50)

since the term depending on the single autocorrelation function RuJuK
(τ2 − τ1)

does not contribute to the cumulant (it actually provides a Dirac delta function
in the frequency domain).

Other triplets, expressed as similar combinations of u2
I(t), uJ(t) and uK(t)

(one squared and two original values) can be derived in the same way. In the
following, the mixed contributions coming from mixed combinations of u(t), v(t)
and w(t) at different nodes are disregarded. This is direct consequence of ne-
glecting any possible spatial (and temporal) coherence that might exist between
the elementary wind turbulence components [51, 52]. Similar formulations can be
retrieved for all the triplets (a, b, c) of wind components contributing, under the
considered assumptions, to the construction of the full 3D matrix of bispectra of
modal forces. They are not shown in detail. However, they are obtained with a
similar approach as shown above for deriving Equation (4.50).
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4.8 Proper Orthogonal Decomposition in
Wind Engineering

Wind Engineering, as it is known today, is a fairly young discipline born around
1950. First pioneering work in this matter is attributed to Alan G. Davenport
[28, 50, 80]. While still highly influenced by other disciplines such as aerospace,
climatology and meteorology, the main focus was (and still is) the quantification
of the wind action on slender structures (e.g. skyscrapers, long bridges, towers,
etc.). The configuration of these new kind of structural systems have shown to
be highly susceptible to the wind, so that the need of new engineering practices
arose to account for such wind-structure interactions. Not only under a safety
point of view, but also in terms of serviceability of structures with respect to
human comfort [51]

Application of POD techniques in Wind Engineering related fields has been
quite extensively resumed and discussed by Solari et. al in [43]. A brief his-
torical and mathematical overview of the different POD variants that have been
formulated over the last decades can be found in Appendix B.

In following sections, first a state of the art of use of POD techniques in
wind engineering practices is recalled. This will serve as an accompanying mean
to the novel formulation of the extension of POD techniques to non-Gaussian
buffeting analyses. Also, any mathematical development will be based on the
Spectral Proper Orthogonal Decomposition (SPOD) formulation. For details of
its mathematical formalism, see Appendix B.

4.8.1 Mathematical background
This section will shortly recall the mathematical developments involved in appli-
cations of POD to wind turbulence fields, and so to the solution of the general
dynamic problem discussed in Section 3.3, at second statistical order. This is
extensively discussed in [81] and [82].

It will also serve to extend its formulation to bispectral analyses.
Under a very general point of view, SuIuJ

(ω) might be seen as a single element
of the (possibly large) Cross Power Spectral Density Matrix (CPSDM) [81] of
wind turbulence at the (aerodynamic) nodes of the model (see Equation (4.5)).
As an example, the CPSDM for the longitudinal component u(t) is commonly
defined as Su(ω). The spectral decomposition of Su(ω), obtained by solving

[Su(ω)− λp(ω)I]ψp(ω) = 0 (p = 1, . . . , NN) (4.51)

reads
Su(ω) = Ψ(ω) Λ(ω) ΨT (ω) (4.52)
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where Λ(ω) and Ψ(ω) are the (frequency dependent) diagonal eigenvalues and
eigenvector matrices respectively, resulting from the eigenproblem in Equation
(4.51) (see Appendix B). It is assumed that the eigenvalues are sorted in de-
scending order in Λ(ω). All of them are positive because of the positivity of the
CPSDM Su(ω). Keeping only the first Np ≪ NN modes with significant eigenval-
ues, Equation (4.52) can be rewritten as

SuIuJ
(ω) =

Np∑
p=1

ψIp(ω)λp(ω)ψJp(ω). (4.53)

Injecting Equation (4.53) in Equation (4.40):

S(11)
pmn

(ω) =
Np∑
p=1

NN∑
I=1

NN∑
J=1

α
(m)
I1 α

(n)
J1 ψIp(ω)λp(ω)ψJp(ω) (4.54)

which could seem to be more involved but, swapping summations and writing
more generally, it becomes

S(ab)
pmn

(ω) =
Np∑
p=1

ζ(m)
pa (ω)λp(ω)ζ(n)

pb (ω) (4.55)

where
ζ(m)
pa (ω) =

NN∑
I=1

α
(m)
Ia ψIp(ω). (4.56)

The double sum over the number NN of loaded (aerodynamic) nodes as in Equation
(4.40) has dropped in place of a single sum over the Np ≪ NN kept modes of the
spectral decomposition of u(t).
Therefore, in general, a total of

Np · (NN · NDEGW · NM)

operations are needed to compute an element of the NM × NM matrix of PSDs of
modal forces Spmn(ω), compared to the

(NN× NDEGW)2

of the classic approach as of Equation (4.40). It just requires the prior computa-
tion and storage of ζ(m)

pa (ω) for a ∈ {1, . . . , NDEGW}, and m ∈ {1, . . . , NM}. Assum-
ing a quadratic wind model transformation (see Section 4.7), then NDEGW = 10
(9 if the constant term is not considered), and generally, for large structures,
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NM ≈ NN
100 or sometimes even less, so that in total

Np ·
(

NN · 10 · NN
100

)
= Np ·

(
NN2

10

)

which compared with the original number of operations, results in a saving factor
of around

10 · NDEGW2

Np
= 1000

Np
.

Hence Equation (4.55) is definitely much more efficient to implement than Equa-
tion (4.40), specially for those cases where using just a few wind modes Np is
enough to capture a good amount of energy of the original wind turbulent field,
say 90% of the total energy.

Then, by including common Stochastic Analysis introduced in Sections 3.2.3
and 3.3, the CPSDM of modal responses is computed as

Sqmn(ω) = H⋆
mm(ω)

NDEGW∑
a=1

NDEGW∑
b=1

Np∑
p=1

ζ(m)
pa (ω)λp(ω)ζ(n)

pb (ω)
H⋆

nn(ω) (4.57)

or in vectorial form

SQ(ω) =
Np∑
p=1

H⋆(ω)Zp(ω)λp(ω)Zp(ω)H⋆(ω) (4.58)

where Zp(ω) is a NM × NDEGW matrix grouping coefficients ζ(m)
pa (ω) for all modes

m and wind coefficients a.
The CPSDM of the resulting structural responses x(t) then reads:

Sx(ω) =
Np∑
p=1

ΦH⋆(ω)Zp(ω)λp(ω)Zp(ω)H⋆(ω)ΦT . (4.59)

Equation (4.59) formulates the relation (in a stochastic manner) between the
structural responses (the outcome of the equations of motion of the dynamic prob-
lem) and the POD decomposition of the base input, the spatial wind turbulent
field (u(t), v(t), w(t)).

4.8.2 Extension of POD formulation to bispectral
analyses

The assumption of Gaussian wind buffeting loading has been extensively used
across all practitioners in the wind engineering field. The reasons why this has
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been the daily practice have been discussed in previous sections (see Section
4.5), which to recall, stand in the fact the resulting wind loads are Gaussian
if turbulence is assumed to be a Gaussian process. As a consequence, in cases
of linear systems, the structural responses will be Gaussian too, for which only
the first two statistical moments (mean and variance) are needed for a complete
probabilistic description (see Section 2.2). Indeed, many are the cases where
this simplification is admitted by the physical configuration of the studied case.
However, not always this is a safe assumption to make, neglecting a priori the
intrinsic non-Gaussian nature of the wind buffeting loading (see Section 4.5.2).

It has also been mentioned that some authors have already done works in
which they did not neglected the non-Gaussian nature of wind loads, and com-
paring results with a Gaussian analysis [8, 12]. However, these applications were
limited to small systems, with less than a dozen degrees-of-freedom.

If the non-Gaussian nature of wind loads is considered and the PSD matrix
and the tensor of bispectra of modal wind loads are determined, the analysis can
follow the general steps described in Section 3.3, up to third statistical order.

Clearly, with today’s advancements in technological facilities, construction
and evaluation of the full matrix of cross-PSDs of nodal wind loads (see Equation
(4.42)) would not be a problem, even for large structural systems with more than
thousands degrees-of-freedom.

However, it is computationally demanding to construct such a huge amount
of information, based on the single PSD matrices of wind turbulence components.

The applied concepts are the same as in Equation (4.54), but their application
to third order statistics shows some substantial differences.

Following the concepts explained in detail for Eqs. (4.52) and (4.53), it is
possible to express the two PSDs of wind turbulence as a sum of some principal
components

SuIuJ
(ω1) =

Np∑
p=1

ψIp(ω1)λp(ω1)ψJp(ω1)

SuIuK
(ω2) =

Nq∑
q=1

ψIq(ω2)λq(ω2)ψKq(ω2).
(4.60)

Injecting Equation (4.60) into Equation (4.50) yields

B(411)
pmno

(ω1, ω2) =
Np∑
p=1

Nq∑
q=1

ζ
(n)
p1 (ω1) ζ(o)

q1 (ω2)χ(m)
pq4 (ω1, ω2)λp(ω1)λq(ω2) (4.61)

where
χ(m)
pqa (ω1, ω2) =

NN∑
I=1

α
(m)
Ia ψIp (ω1)ψIq (ω2) . (4.62)
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The most significant difference with respect to POD applied in a Spectral
analysis is the dependence to not just one but two frequencies, ω1 and ω2, as
a direct consequence of the definition of the bispectrum (see Equation (2.42)).
Moreover, the term χ(m)

pqa (ω1, ω2) detailed in Equation (4.62) and appearing in
Equation (4.61) couples the dependence on the two independent variables ω1 and
ω2, which prevents any mathematical simplification, for example by splitting the
dependence from the two independent variables ω1 and ω2.

There is no doubt that the double summation over loading modes in Equation
(4.61) is much more efficient than the three-fold summation over the total number
of aerodynamic nodes in Equation (4.50). The computational cost to estimate
each ζ(m)

pa (ω) requires a loop on all aerodynamic nodes, and this operation needs to
be done for combinations (m, p, a), i.e. NM× Np × NDEGW. The computational cost
to estimate each χ(m)

pqa (ω1, ω2) also requires a loop on all nodes, and this operation
needs to be done for combinations (m, p, q, a), i.e. NM× Np × Nq × NDEGW. As a
consequence, the computational intensity required to compute an element of the
3D matrix of modal forces bispectra Bpmno(ω1, ω2) amounts to NN3 × NDEGW3 in a
normal approach as of Equation (4.50), and to Np× Nq× NN× NDEGW× NM in case
of application of POD techniques. This leads to a potential iterations ratio of

(NN× NDEGW)3

Np × Nq × NN× NDEGW× NM
= (NN× NDEGW)2

Np × Nq × NM
= NN× 10000

Np × Nq

which can reach considerably high values if the required number of modes to be
kept Np and Nq are small with respect to the number of (aerodynamic) nodes NN.
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Chapter 5

Numerical Analysis &
Algorithmic Development

This Chapter is dedicated to the numerical side and algorithmic developments
that have been carried out in the context of this Thesis’ work.

5.1 Problem specificities

5.1.1 Morphology of the bispectrum of wind load
In the process of developing an algorithmic arrangement, the determination of
the specificities of the problem under investigation is indeed the starting point.

In Appendix C, Equation (C.1) details the complete mathematical formulation
of the bispectra of the quadratic non-Gaussian wind buffeting forces at the level of
aerodynamic nodes. It is a sum of many terms, each dependent on the product of
two PSDs of the elementary wind turbulent components (u(t), v(t), w(t)), which
are assumed to be low frequency Gaussian random processes (see Section 3.2.2).
Figure 5.1 reports a typical wind turbulence PSD, obtained from time records. It
clearly shows how most of the energy is contained in the lower range of frequencies,
while at medium-to-high ranges, the energy content drops quickly.

Since the determination of the bispectrum of non-Gaussian wind forces di-
rectly depends on a linear combination of products of turbulence PSDs (see
Equation C.1), it is expected that the bispectrum of wind loads shows a sim-
ilar behaviour, but in a two-dimensional frequency space. As a consequence, if
the PSDs of wind turbulence, and so the resulting wind forces, independently
to the degree of the translation model, show a major frequency content near
the origin ω = 0, the bispectrum shows a its frequency content near the origin
(ω1, ω2) = (0, 0) as well, where most of the energy (i.e. volume in this case) is
concentrated, as shown in Figure 5.2-a.
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Figure 5.1: Example of a common PSD curve of wind turbulence (log
scale).
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Figure 5.2: Example of common bispectrum of wind loads. (a) 3D view.
(b) Above (plane) view. Taken from [5].

Near the origin, the (bi-)spectra of buffeting forces exhibits a considerable
gradient. It is crucial, in a discretisation process, to use a right amount of points
to correctly capture and represent its sharp changes. On the other hand, as soon
as one starts to move far from the origin, the gradient significantly diminishes, up
to a point where the decaying is so small that it can be almost assumed constant.
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Looking atBf (ω1, ω2) illustrated in Figure 5.2-b, one notices that, on plane the
shape looks more as an ellipsis rather than a circle, with its strong axis coincident
with the bisect of 2nd and 4th quadrants. This is caused by the coupling terms,
i.e. the terms in Equation (C.1) that contain wind turbulence PSDs depending
either on the sum or on the difference of the two independent variables (ω1, ω2).

On the other hand, when close enough to the origin, great care must be
employed when discretising this fast varying function. The following sections will
further clarify this point, but for the sake of clarity, it must be stressed out that
a good representation of the probabilistic quantities of the loading is the most
important step when it comes to spectral analyses in general, and even more in
context of higher-order analyses such as bispectral analyses.

5.1.2 A problem of fundamental numerical nature
Having the best possible estimate of the statistical moments of the loading is
fundamental for a good estimate of the same moments of the resulting structural
responses (e.g. displacements, internal stresses, internal efforts, etc.), specially
in cases where the overall structural behaviour is dominantly quasi-static. Since
this estimate is the result of the numerical integration of some sharp functions
in the proximity of the origin, a good choice of discretisation points is the key
to achieve the desired precision limiting the computational burden. In fact, in
general spectral analyses fall in the category of those problems for which there
exists no closed-form solution. The only way to solve them is numerically, either
by means of approximations or by discretising its a-priori continuous domain,
transforming it into a large enough number of finite portions. Because an exact
reference solution may not be found, some techniques have been developed in
the past to quantify accuracy of the results (e.g. convergence methods, [83]).
Yet, all these numerical techniques exist as a way to possibly quantify and limit
the error in the estimate, but which are themselves affected by the same issues.
In such complex cases, where the result is of pure numerical nature, one has
to accept that the generated result can be at best very close to the theoretical
solution, but in most of the cases, it will be just close enough for the result to
be considered acceptable, particularly in engineering applications. Indeed, when
it comes to measurements, the sources of errors are various. If on one side, one
could not control the errors intrinsic to the tools used for the computation itself
(e.g. systematic environmental errors), on the other one should limit and possibly
avoid any induced gross error, i.e. errors due to wrong computations. The reasons
of such errors could be very wide, but in any case they can and must be avoided.
It is here were the engineering judgement is required.

It is interesting to note that the integral of a PSD or bipsectrum of wind load
is known analytically, for SDOFs at least. This is indeed a very important source
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of results verification, which has been extensively used in [5]. Such verifications
for SDOF systems will not be treated in this Work specifically, since the main
focus is to extend the Bispectral analysis to possibly large MDOF linear systems.

5.1.3 The loading and response scales: the different
morphology of the Frequency Response Functions

Bispectra of buffeting loading has a sharp peak around the origin (ω1, ω2) of the
2D frequency space, which gradually diminishes until it looks almost flat and
small. Equation (3.45) has then introduced the direct mathematical formulation
for computing the cross-bispectra of modal forces of the triplet of modes (m,n, o).
Basically, it shows that it is obtained as a linear combination of crossed-bispectra
of nodal loads, modulated by some linear functions, namely the natural mode
shapes of vibration of the system (e.g. structure). Consequently, the (bi-)spectra
of modal loads exhibits the same shape as those of nodal loads, simply rescaled.
This supposes that dynamic analysis is carried out in a modal basis, as it has
been extensively explained and justified in previous sections (see Section 3.1 for
instance). In such cases, once the modal loading has been characterised either
in a direct manner (time series) or in a stochastic fashion via its statistical mo-
ments, the general equations of motion (3.2) have to be solved, either directly
in time domain via time-marching algorithms such as Newmark [14], or in the
frequency domain by means of the stochastic dynamic equations formulation (see
for instance Equation (3.39) for a formulation at 2nd statistical order). In the
latter case, the Frequency Response Function H⋆(ω) detailed in Equation (3.5) is
also a function that varies with frequency. It has very sharp peaks in correspon-
dence of the natural frequencies (see middle image in Figure 1.2-b). In fact, the
FRF acts as a filter and amplifies the structural response subjected to a given
dynamic loading whenever the frequency content of both loading and dynamic
response are close enough. In the limit case when the two frequencies match, then
the generating phenomenon is called resonance. For bispectral analysis, thus at
third statistical order, the concepts are similar. Nonetheless, if at second order
the FRF has a single peak, at third order the 3rd order FRF, also called the 2nd

order Volterra kernel (see Equation (3.47)) shows six primary resonance peaks in
correspondence of points (0,±ωi), (±ωi, 0) and (±ωi,∓ωi). There are also other
six secondary peaks located at (±ωi,±ωi), (±2ωi,∓ωi) and (±ωi,∓2ωi).

In case of a MDOF system with NM modes of vibrations, if at 2nd order one
would expect at most NM + 1 peaks, at 3rd order the bispectra of structural re-
sponses can have up to (NM ∗ 6) + 1 peaks. However, in reality when it comes
to the morphology of cross-bispectra as presented in Section 3.2.2.4, things are
even more complex, with the appearance of some other bi- and tri-resonant peaks
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(see for instance [33]) alongside simple resonant ones, such as those shown in Fig-
ure 1.2-c. Figure 5.3 shows detailed graphical representation of such other peak
types, many of them are only found in cross-bispectra.

Background (1)
Background - BiResonant (6)
BiResonant (6)

Background (1)
Background - BiResonant (2)

Background - Resonant (8)
TriResonant (2)

BiResonant (4)

Background (1)
TriResonant (2)
Background - Resonant (12)
BiResonant (6)

Background (1)
Background - BiResonant (2)
Background - Resonant (8)
BiResonant (10)

Background (1)
Background - BiResonant (2)
Background - Resonant (8)
BiResonant (10)

Background (1)
Background - Resonant (12)
BiResonant (12)

Figure 5.3: Graphical representation of all types of peaks present in a
general bispectrum of modal responses in a triplet (i, j, k) of modes, with

natural frequencies ωi, ωj , ωk.

It should now be easy to understand and visualise the clear difference in shape
of spectra, at both second and third statistical orders, between the loading process
and the resulting structural response, after having introduced the influence of the
corresponding Volterra kernel spectra of each natural vibration mode illustrated
in Figure 1.2-c. In a general fashion, the spectra of the loading process contains
most of its energy close to the origin, where the kernel function is almost flat and
small. On the contrary, where the Volterra kernel function shows its resonant
peaks, the spectrum of the buffeting loading shows relatively reduced amplitudes
and varies little over the characteristic width of the resonant peaks. The combi-
nation of these two aspects result in a kind of cancellation of effects of the applied
load to the resulting structural response. On the contrary, for the cases where
the frequency contents of the load and that of the structure natural response get
close, resonance effects may arise, resulting in an important structural response.
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5.1.4 A unique solution that satisfies all cases?
Recalling the considerations made at the beginning of the Chapter, great care
has to be adopted when discretising these sharp functions. However, different
discretisations are needed for accurately capturing both the spectra of the loading
and the natural structural response. The spectra of the buffeting loading needs a
dense discretisation close to the origin, while the spectra of the natural structural
response require dense sampling close to the resonance peaks, that are close to the
natural frequencies of each vibration mode. These two conditions are essential to
avoid considerable representation errors. In fact, there are 3 possible scenarios:

1. Using the optimal discretisation of the loading spectra, which would cause
considerable errors in the discretisation of the Volterra kernels;

2. Using the optimal discretisation of the Volterra kernels, causing errors in
the discretisation of the spectra of the loading;

3. Using the union of the two optimal discretisation patterns to discretise both
the spectra of both the loading and the Volterra kernels.

If points 1 and 2 are clearly inefficient because of important loss of information
at the level of discretisation of either the loading or the structural Volterra kernel
spectra, point 3 is actually good under that point of view, since it would not
suffer from any information loss. However, in the context of higher order spectral
analyses, such as bispectral analyses, the FRF is characterised by more than
a single peak, meaning that there are multiple regions where the gradient is
important. They hence require more than a single dense discretisation zone to
be correctly represented. On the other hand, the spectra of the buffeting load
always have their peaks close to the origin, which is easily discretisable using a
single dense discretisation zone centred at the origin. Therefore, applying also the
discretisation pattern needed to correctly represent the structural Volterra kernels
spectra to the one of the loading process would enforce a considerable overhead,
that would significantly slow down computations, without much gain in terms of
accuracy. The slow down is mainly due to the numerical complexity in evaluating
the bispectral information of the wind load, by applying either Equation (3.45),
or Equation (4.61) if the POD formulation to bispectral analyses is considered.

It is clear that the best approach is having the optimal discretisation for each
of the spectra of loading and response to be represented to avoid any gross error in
their representation, as well as to ensure an appropriate balance between resources
and computational time on one side and gain in accuracy and efficiency on the
other. The unique features that characterise the Bispectral problem are the same
time a positive and negative aspect. Positive because it can allow for specific
simplifications, which might not be applicable in the general case. Negative
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because at the same time this might impose constraints on how the problem
must, or can, be tackled. In that, standard meshing approaches (and related
integration) process might have been used, at least in a first stage of developments.
There exists several good works on adaptive 2D/3D mesh generation, which are
well established on an International level [84, 85, 86]. However, considering the
specificities of the Bispectral problem, it has been decided to develop an ad-hoc,
optimal discretisation and integration scheme, instead of making use of already
existing, powerful meshing tools. The main reason is that they might be overshot
to tackle this problem, for which a possibly much simpler and direct solution can
suffice without requiring too much mathematical and computational complexity.
Discussions will follow to clarify and justify this choice, to prove that this was
indeed the best option for this specific problem. This implementation will have
strong focus on the two most important macro areas: (i) the background region,
close to the origin (i.e. 0 and (0, 0)), and (ii) all the resonance peaks.

5.2 The novel Mesher algorithmic
arrangement

In the following, an accurate but fast enough method is presented, for the de-
termination of bispectra and estimates of the third order statistical moment of
non-Gaussian wind loading and resulting non-Gaussian structural responses. This
algorithm constitutes the core of this Thesis. Most of the concepts that will be
discussed are formalised to 3rd-order analyses, but can be easily downgraded and
adapted to second statistical order by simply making the second spatial dimension
in the 2D frequency space collapse.

While the concept of discretisation is indeed very broad, in the context of
(bi-)spectral analyses it is mainly applied to lines (e.g. PSDs) and surfaces (e.g.
bispectra) elements. As quite extensively explained in previous section, an op-
timal discretisation of both (bi-)spectra of buffeting loading and resulting struc-
tural response would require a different optimal pattern. Indeed, once the domain
of existence of a given function is well defined, defining sub-parts of it is quite
straightforward. For this, the concept of a Mesher has been introduced in the
algorithmic arrangement. As the word semantic already suggests, its main goal
is that of meshing, i.e. creating a finite discretisation of a given domain. In this
specific case, the domain is represented by the 2D frequency space.

The projection of the spectra of loading in the modal basis is definitely the
most expensive operation. Therefore, this operation requires the greatest care in
minimising the impact on the overall computational cost, while maintaining the
desired level on overall precision.
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The mathematical side is provided by Section 4.8, which provided the novel
formulation of POD decomposition of the turbulent wind field generating non-
Gaussian wind forces. This significantly speeds up the computation, since it
allows dropping at least one sum operator over the ensemble of the number of
aerodynamic nodes NNa (see Equation 4.61), compared to the conventional ap-
proach.

The role of the next sections is to find a balance between two extreme and
unacceptable solutions: (i) very fast but inaccurate or (ii) very accurate but
extremely slow computations.

5.2.1 The concept of “zone”
The power of the Mesher approach stands in its elementary zones. In such
context, a zone represents an independent sub-part of the global domain hav-
ing a simple geometrical shape (for instance triangular, rectangular or circiular
shaped), having its own internal discretisation.

One might certainly ask the reasons behind the introduction of such concept
of zone. As per its conception and definition, each zone’s independence allows for
the maximum flexibility in terms of their internal discretisation, once each zone
has been uniquely placed within the global domain. In other words, once a zone
has been uniquely defined, it will have its own unique policies of internal defi-
nition and management, completely unaware of the possible existence of other
zones in the surroundings. Such zones could be theoretically placed anywhere
within the limits of the global domain, being it the vector (e.g. spectral, 1D)
or space (e.g. bispectral, 2D) of frequencies. Nonetheless, at the time of their
definition, the condition of non-overlapping should be ensured, to avoid (i) pos-
sible duplicate points and (ii) consequent overestimations (or underestimations)
in resulting statistical moments, which are the result of the integration of such
complex functions (i.e spectra and bispectra) evaluated at these points. This
aspect will be further discussed and explained in the next section. All in all,
this allows for great flexibility, specially useful in cases where within the global
domain some areas might be of higher importance than others, as for the peak
areas in a spectra or bispectra. The zones that will end up patching those impor-
tant areas will consequently have stricter internal policies with respect to those
located far from the peaks. Clearly, this would be hard to achieve with such a
degree-of-freedom other than splitting the global domain in some independent
sub-spaces (i.e. zones). Otherwise, one would end up in the situation where a
stricter condition of existence would be inevitably enforced to all other sub-parts
where in reality much lighter conditions would have already met the required
local accuracy criterion.
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However, some caution has to be employed in order to fully unlock its po-
tential. In fact, an important detail resides in the shapes that such elementary
zones are allowed to take. All in all, allowing the definition of zones with complex
shapes would automatically invalidate much of the reasoning that have brought
to the development of the Mesher algorithm. In fact, it is recalled that the
most important information when it comes to a bispectral analysis, is an accu-
rate representation of the bispectrum of the loading. This is crucial for ensuring
accuracy at the level of bispectra, and so third order statistical moments, of struc-
tural responses. A wrong choice of the basic shapes that these zones can take
could lead to an enormous amount of information (i.e. bispectra of the loading),
together with an algorithmic complexity, that would need to be stored to be able
to compute bispectra of structural responses. Possibly, allowing the use of simple
shapes for each zone could lead to a considerably less amount of information to
be stored, as well as a much simpler algorithmic complexity.

In this context, such basic shapes are chosen to be two in the Mesher ap-
proach: (i) triangles and (ii) rectangles. In that, it is know from other scientific
domains such as computer graphics (where spatial continuum discretisation is
at the core) that lines (2D) and triangles (3D) are the most basic geometrical
entities with which every other possible complex shape can be split into, and
represented with [87, 88, 89]. However, in the context of the Mesher algorithm,
rectangles are also considered as an independent basic zone shape, even though
they are representable by means of the union of two triangles. This has been
chosen on purpose since avoiding such 2-triangles representation of a rectangle
would considerably ease definition as well as treatment of such rectangular zones.
More explanations will follow in Section 5.2.1.2.

5.2.1.1 The triangular zone

A triangle is the most simple entity in which all kinds of (spatial) geometries can
be broken down into, when it comes to discretisation. Figure 5.4-a shows the
most generic way to represent and uniquely identify a triangle in a 2D planar
space.

Among all possible ways, a triangle could be uniquely defined1 by knowing:

• The three sides length;

• Two sides length and the angle in between; the third side is then determined
by means of the cosine rule;

• One side length and two angles;

• Coordinates of all three vertices.
1Assumed the conditions of existence are met.
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Figure 5.4: (a) Example of a generic triangle definition in plane.
(b) Example of isosceles right angle triangle definition. (c) Example of
internal regular discretisation pattern for an isosceles right angle triangle.

(d) Example of unoptimal discretisation pattern.

Additionally, for a unique localisation in the planar space, the coordinates
pair (x, y) of at least one vertex need to be known, together with a rotation
angle α with respect to the Global Reference System (GRS). By convention, this
rotation angle is defined as the angle formed between the y-axis of the GRS and
the (directional) vector −→PA joining vertexes P and A, as shown in Figure 5.4-a.

However, because of the geometrical regularities that one might visually ob-
serve in the bispectra of both loading and structural response, simplified triangle
configurations, i.e. isosceles triangles (see Figure 5.4-b) are chosen in place of
the more generic one. Indeed, this is a choice driven by the need and will of
simplifying the process of domain discretisation, which is yet permitted by the
problem specificities.

5.2.1.2 The rectangular zone

Together with triangles, rectangles have been chosen as the other basic shape
that meshing zones can take. A rectangle could certainly be made up from the
close union of two triangles. Nevertheless, explanations and motivations on why
such choice has been discarded will be given in the following.

In fact, most of the 2D frequency domain when looking at both the loading and
response bispectra can be directly subdivided into many rectangular-shaped sub-
parts, mainly centered in the most critical areas, where the gradient is important,
i.e. the quasi-static peak for the bispectra of loading, and the resonant peaks for
the bispectra of structural responses.

Considered the likelihood of having an important amount of rectangular shaped
zones in the process of their ensemble definition, allowing having their own dedi-
cated representation would avoid mainly two issues, that if repeatedly committed,
could lead to a significant loss of performance. The first issue appears evident by
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Figure 5.5: (a) Example of a generic rectangle definition in plane.
(b) Example of rectangle internal regular discretisation pattern.

(c) Example of rectangle internal regular discretisation pattern, if using 2
triangular shaped zones. (d) Example of two adjacent rectangular shaped

zones, sharing some discretisation points.

looking at Figure 5.5-c: because one of the main characteristics of a zone is that it
is independent from all the others once it is uniquely defined and located, the use
of two triangular zones to represent the equivalent rectangle would cause a rep-
etition of discretisation points lying on the two coincident hypotenuses, coloured
in red in Figure 5.5-c. Nonetheless, if such repetition could not be avoided for
adjacent zones sharing some discretisation points (see Figure 5.5-d), avoiding
such points duplication for the internal discretisation of rectangular zones would
certainly help having a much more effective algorithmic structure. The other
reason lies on how a triangular zone (e.g. isosceles right angle triangle) needs to
be internally discretised in order for the algorithmic points of strength could still
hold. In fact, because of the cut of the hypotenuse (with respect to the equiva-
lent rectangular zone) such shape would require an equal amount of discretisation
points lying on the two smaller sides catheti, see Figures 5.4-c and 5.5-c, hence
this symmetry results in the same number of discretisation points falling exactly
on the hypotenuse, thus generating an actual regular meshing. Forcing a dif-
ferent amount of discretisation points in the case of a triangle would cause the
generation of an uneven internal discretisation pattern, which would invalidate
the condition of a simple reconstruction policy without the need to actually save
the discretisation points themselves (see Figure 5.4-d).

Under these conditions, the number of discretisation points of a triangular
zone is

Nptriang = n2 + n

2 (5.1)

while for the rectangular one
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Nprect = ni ∗ nj (5.2)
where ni (nj) is the number of discretisation points along the side parallel to the
local i-th (j-th) axis, n = max (ni, nj) for the triangular zone.

For example, assuming that nj > ni, the number of points in a triangle-shaped
zone is Nptriang = nj

2+nj

2 , and the number of discretisation points of a rectangular
zone resulting from the combination of two triangular zones is

Nprect = n(n+ 1) = nj(nj + 1). (5.3)

The resulting discretisation points oversampling rate is Nprect
Nprect

= (nj+1)
ni

. Indeed,
at best it will hold a unitary value, meaning that either using a single rectangular
zone or two triangles would result in the same amount of discretisation points,
which is possible if and only if ni = nj in the rectangle discretisation. At worse,
this oversampling rate can reach values of orders of 10 to 50. Assuming an av-
erage oversampling rate of 2 to 5, multiplying this rate by the total number of
rectangular zones Nrz, which can easily reach values of hundreds or thousands for
the most complex cases, the total number of oversampled discretisation points
can quickly reach orders of hundreds of thousands. This is clearly an unwanted
side effect, considered that for each of these oversampled discretisation points, a
highly demanding mathematical operation concerning the projection of a big 3D
tensor of nodal loads bispectra onto the structural modal basis has to be per-
formed. It is important to keep in mind that this modal projection constitutes
the most expensive numerical operation in the context of (bi-)spectral analyses.

Moreover, the number of additional duplicate discretisation points added to
those already used when considering the possible sharing between adjacent zones,
as shown in Figure 5.5-d, is equal to

ndup =
Nrz∑
k=1

max (nik , njk). (5.4)

As the problem size increases, and the required number of rectangular zones Nrz

increases accordingly, the additional number of duplicates can reach significant
amounts, of even thousands of points, which, considering the workload associated
with the 3D projection of one bispectrum, could considerably degrade the overall
algorithmic performances.

Overall, the coupling effects of Equations (5.3) and (5.4) should explain and
justify why rectangular shaped zones have been introduced as a base shape type
instead of splitting them into two equivalent triangles.
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5.2.2 Zone localisation: “influence lines” and “influence
areas”

Previous sections discussed the concept of zone, and how it is defined in the
context of the Mesher algorithm. Moreover, the basic shapes that each zone is
allowed to take in order to ensure the simplest possible algorithmic complexity
have been detailed.

Nonetheless, together with how to define a zone, it is necessary to also estab-
lish an optimal criteria aimed at defining how to localise each zone within the
global domain, i.e. the 2D frequency space in the case of bispectra.

Figure 5.3 shows all 6 possible peaks configuration, for a pre-determined set
(triplet) of modal frequencies (ωi, ωj, ωk). Nonetheless, these 6 combinations are
to be drawn for all possibles ωi ∀i = 1, . . . , NM natural frequencies of the NM
retained structural vibration modes (see Section 3.1). Normally, for large-scale
projects, when performing a modal base analysis, one would usually keep some
dozens to few hundreds of vibration modes, so that in the most general fashion
there would be CNM

3 of peaks configurations. In these circumstances, the number
of all possible configurations that could be drawn as in Figure 5.3 grows very fast
with NM.

Background (1)
Background - BiResonant (6)
BiResonant (6)

Background (1)
Background - BiResonant (6)
BiResonant (6)

(a) (b)

Figure 5.6: Example of same peaks configuration, different vibration
modes (i.e. modal frequencies).

Figure 5.6 shows a graphical example of one of the 6 combinations of Figure
5.3, for two different values of modal frequencies. Each dashed line in Figure 5.6
represents an influence line, drawn based on the spatial location of their relative
primary resonant peak. Repeating this operation for all resonant peak present
in a bispectrum would define the whole set of influence lines, referring to that
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specific bispectrum only. Finally, determining the set of influence lines for all
bispectra finally leads to the determination of the whole set of influence lines
that characterise the specific problem, i.e. structural system in this specific case.

ωi

(a) (b) (c)

ωj ωi ωj ωiωj

Figure 5.7: Determination of influence areas from influence lines. (a) No
overlapping; (b) Partial overlapping; (c) Complete overlapping.

Nonetheless, influence lines alone are not sufficient for a proper and efficient
solution of the problem, that is, determining an optimal discretisation of the
two-dimensional frequency space. However, if to each influence line an influence
area is associated, then a finite set of influence areas can indeed fully represent a
2D space. There might be several ways in which the extension of each influence
area can be determined. For instance, the simplest would be to define a fixed
extension to be applied to all influence lines’ influence areas. However, this might
not be the best solution, specially in terms of efficiency and accuracy. In order to
determine the influence area extension so to balance both accuracy and efficiency,
the extension Li is computed based on the relative mode of vibration’s resonance
peak width wi:

Li = cst wi (5.5)
wi = 2ξiωi (5.6)

where cst is a tuning constant (freely definable by the user), ξi and ωi are the
damping and natural frequency of the structural system in its i-th mode of vi-
bration.

It is clear that, from Equations (5.5) and (5.6), an influence area extension
will be larger for modes at higher frequencies, but also for those modes for which
a specific (and higher) damping ratio is targeted.

This difference in influence area extensions can lead to three possible scenarios,
depicted in Figure 5.7:

(a) the influence lines are far apart and there is no overlapping between the
two influence areas;

(b) a partial overlap exists between the two influence areas. The left-border of
the influence line at a higher frequency value goes below the right-border
of the influence line at the lower frequency;
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(c) full overlap between the two influence areas. The left-border of the higher-
frequency influence line goes below the left-border of the lower-frequency
influence line.

In both cases (b) and (c), the resulting influence area will be the overlap of
the base influence areas, the black coloured filling in Figures 5.7-b and 5.7-c.

ωi ωj

Figure 5.8: Example of how intersection of influence lines defines meshing
zones, for case (a) of Figure 5.7. The resulting peak zones are those with

shaded filling.

By repeating this process for all set of influence lines and for both spatial
directions x and y, the resulting intersections between influence areas will auto-
matically define the Mesher zones. Figure 5.8 gives an example for two influence
lines, in the case (a) of Figure 5.7.

5.2.3 The Mesher as an optimal discretisation scheme

5.2.3.1 The “regular” scheme

The simplest and most direct meshing approach would be assuming a regular
meshing across the whole domain. That is, defining a finite delta ∆ω small
enough with which creating a regular 2D-grid of points covering the entire problem
domain, as Figure 5.9-a shows. It would then provide the points (ω1, ω2) where
to compute the loading and response bispectra, as of Equations (C.1), (3.45) and
(3.46). This approach clearly breaks the point of avoiding unnecessary as well as
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expensive discretisation, specially at the level of bispectra of the loading. Indeed,
the chosen grid step ∆ω needs to be small enough in order to properly capture
those zones where the gradient of the bispectra changes rapidly.

The choice of the grid step ∆ω is obviously governed by the most unfavourable
case. Nonetheless, this approach might be adopted for very small case studies,
for which the problem sizes would result in a fairly economical computation ex-
pense (in terms of running time) even ensuring a sufficiently small grid step ∆ω.
However, as soon as the problem size increases, this direct approach would start
to suffer significant computational time increases.

5.2.3.2 The “adaptive” scheme

Another possible solution is using an adaptive meshing scheme. By adaptive is
meant that discretisation points are added, either randomly or following a lo-
calisation scheme, until a given criterion is met. Figure 5.9-b shows a graphical
example. This approach is potentially much more efficient than the regular mesh
previously introduced. In fact, if one chooses both a proper localisation method
and the right criterion (e.g. policy) which drives the convergence of the refine-
ment process, this approach can result in a lower amount of discretisation points
while providing at the same time a more representative and accurate discretisa-
tion pattern. However, after careful reasoning, one can easily realise that this
approach, though promising, and surely powerful in many fields of applications,
is not very suited for bispectral analyses. In fact, this discretisation scheme would
have to face three major issues:

storage: The adaptive scheme requires to keep track of all the 2D frequency pairs
(ω1, ω2) for which a discretization point is added during the refinement.

efficiency: The convergence criterion must be checked at every iteration, for
each added point. This inevitably adds lots of operations to be executed,
which might lead to considerable algorithmic overhead, hurting overall per-
formances. Moreover, since each point might be added in a random fashion,
the determination of the set of encircling points against which asses the
convergence criterion might itself require a considerable amount of compu-
tational effort.

complexity: Another consequence of the random nature of each point localisa-
tion results in hard to determine influence areas (where in this case the con-
cept of influence area is not the same as that discussed in Section 5.2.2) to
attribute to each point (ω1, ω2), when integrating the bispectra to compute
the statistical moments. In fact, if this remains relatively easy at second
order for a 1D frequency space (i.e spectral analysis) where all points lie
on the same line, this process becomes cumbersome as soon as the domain
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extends to higher order spaces, e.g. planes, volumes etc. This aspect also
influences overall efficiency.

It remains important to note that, as for the regular meshing scheme, for
small problem sizes one could easily use the adaptive scheme without noticing
any hurt in performances, since all the mentioned drawbacks would be limited.
Nonetheless, these aspects would start to manifest their impact as soon as one
considers relatively big case studies. To illustrate this aspect quantitatively, the
number of discretisation points to be saved could easily exceed the order of 106

(×2 because they would carry a pair of frequencies (ω1, ω2)), and for which the
convergence criterion should be verified.

Adaptive MesherRegular

(a) (b) (c)

Figure 5.9: (a) Regular 2D mesh grid. (b) Adaptive scheme. (c) Meshing
zones.

5.2.3.3 The Mesher scheme

The Mesher is essentially based on a very simple concept: patching the 2D
frequency space by means of independent, elementary zones. The concept of a
Mesher zone has been discussed in Section 5.2.1.

In simple terms, the Mesher scheme can be seen as a combination of both
the regular and adaptive schemes. The adaptive is reflected in the accurate and
thoughtful positioning of such zones so that they correctly and optimally cover
the areas of a given common morphology (i.e. peaks, crests, basins, flat, etc.).
Then, the regular meshing scheme is used within each zone, but in a way that it
maximises the actual location of the zone it is going to discretise.

This also allows a clear separation between zone localisation, hence global
domain sub-division, to its actual discretisation, which is then done via each
zone’s internal discretisation policy, completely independent from all other zones.
Hence, in a first step, the global domain is split into the set of zones. Then,
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once the set is completely defined, the actual definition of the zones’ internal
discretisation can be deferred to a later stage, without loosing any important
information. This configuration, where zones localisation and zones’ internal
discretisation definitions are two separate concepts is extremely useful in cases
where, for instance, the definition of each zone internal discretisation depends
on some conditions that need to be verified during computation, but which do
not affect their localisation in the global domain. In this framework, the first
step consisting of determining the location of each zone can be done regardless
of the validation of such conditions. This algorithmic configuration is extremely
effective in the light of new researches carried on the hardware acceleration of
distributed memory communication frameworks with dedicated network hardware
facilities, where some independent computations can be interleaved with network
communications, increasing the computational efficiency [90, 91].

5.2.4 The two-stage discretisation process
The introduction of the Mesher and its zones allows for more flexibility in the
discretisation process. As discussed in the previous section, each zone can be
placed anywhere in the 2D frequency domain, as long as it does not interfere
with any other zone, up to the point in which the ensemble of zones patches
cover the entire 2D frequency domain.

Also, the conceptual separation between zone localisation and zone discreti-
sation has facilitated the implementation of a two-stage discretisation of the 2D
frequency space.

5.2.4.1 First stage: Pre-mesh

Once the ensemble of zones has been identified, the first stage consists in a
first optimal internal zone discretisation aiming at optimally representing the
bispectra of modal loads (see Equation (3.46)). This task is achieved by imposing
much stricter internal discretisation policies to those zones in the neighborhood
of the origin (ω1, ω2) = (0, 0) where the bispectra of buffeting loading has large
gradients. For each of the points defined in this first discretisation step, bispectra
of modal loads are computed. Once done, all the information is saved, together
with the reduced data needed to be able to fully reconstruct each zone in a
second phase of the computation. In fact, this represents the minimum amount
of data that needs to be saved in order for it to be usable in the following steps of
discretisation of structural responses bispectra. This first phase is also called the
pre-meshing phase, where all the zones covering the entire 2D frequency domain
are determined and a preliminary computation of the bispectra of modal loads is
done.
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5.2.4.2 Second stage: Post-mesh

Once the pre-meshing phase is completed and data is saved, the second stage of
post-meshing can then take place. It is named post-mesh since this meshing stage
builds upon the already existing one determined in the first pre-meshing stage.
The reason why data is saved, and not actually used on-the-fly (even though
this is actually possible) is to have the possibility to resume this second step of
the computation at any moment in time, even after having actually stopped the
computation right after the pre-meshing phase. As discussed, the most expensive
operation when it comes to bispectral analysis is the projection of the 3D matrix
of bispectra of nodal loads (see Equation (C.1)) which has dimensions of NDOFs×
NDOFs × NDOFs, onto the modal basis to recover the 3D matrix of modal loads
bispectra (see Equation (3.45)). Avoiding to repeat this expensive computation
would save lots of computational time, specially in tasks such as post-processing
for data visualisation, as well as reducing disk memory required to store this big
amounts of data.

After projecting, in the post-meshing phase the modal response bispectra
need to be determined and integrated, to recover the 3rd statistical moments,
using Equation (3.48). For the reasons explained at the beginning of Section 5.1,
many integration points are required in the neighborhood of the resonance peaks,
in order to ensure an accurate estimate of the statistical moments of structural
responses. On the other hand, due to the different topology between loading and
responses bispectra, all the zones that are placed in the neighborhoods of the
resonance peaks will have a fairly loose internal discretisation resulting from the
first pre-meshing stage, since this stage only focuses on accurately represent the
loading bispectra. In that, the Mesher algorithmic configuration allows for a
relatively simple and efficient refinement process. The following section explains
how this is achieved.

5.2.5 The Tail-Head-Previous-Current (THPC) method
In Section 5.2.1, the characterisation of both triangular2 and rectangular shaped
zones has been detailed. Their introduction, within the Mesher discretisation
scheme (see Section 5.2.3.3), has been justified, compared to the other consid-
ered approaches (see Sections 5.2.3.1 and 5.2.3.2) in the need of finding the best
solution in terms of memory occupancy and computational time (CPU time).

Indeed, from a memory management point of view, the conventional regular
meshing approach (discussed in Section 5.2.3.1) is the best, since very few infor-
mation is actually needed in order to fully characterise the entire discretisation
pattern. In fact, once the 2D domain boundaries and the grid step in the two

2In such context, triangular makes implicit reference to isosceles right angle triangle.
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main directions (∆ω1,∆ω2) are defined, the full discretisation pattern is uniquely
identified. Additionally, when adopting such an approach applied to bispectral
analyses, the mesh is ortho-tropic which means that the domain limits and the
grid step are equal in the two main domain directions. In such cases, the infor-
mation even reduces to two domain limits (lower and higher bounds), plus the
desired grid step ∆ω. From a numerical point of view, this translates into 3 float-
ing point numbers, for a total of 3∗8 = 24 bytes, assuming that each one of them
requires 8-bytes of memory, equal to 64-bit in common 8-bit processors, for their
double precision representation [92]. Moreover, if in place of the grid step ∆ω one
stores the desired number of discretisation points (per side) n > 0 ∈ N, the total
memory footprint would reduce to 2 ∗ 8 + 4 = 20 bytes. Then, quite intuitively,
the resulting grid step is given by the total domain extension divided by the total
number of segments, that is ∆ω = |ωmax−ωmin|

n−1 . Nonetheless, if it is extremely opti-
mal in terms of pattern representation memory footprint, it is quite the opposite
in resulting computational expenses. In fact, because of the need of ensuring an
adequate accuracy, this approach would enforce a very strict policy (i.e. a very
low grid step ∆ω, or equivalently a very high number of discretisation points per
side n), dictated by the high gradient peaks, across the whole domain, resulting
in an enormous amount of discretisation points, at which the costly operation of
projection of 3D tensors of bispectra needs to be performed.

On the contrary, the adaptive scheme introduced in Section 5.2.3.2 is memory
consuming since it stores each sampled point, in order to be able the retrieve the
discretisation pattern whose complexity is cause by the gradient guided random-
ness of the refinement strategy. It is straightforward to see that in this case, a
total number of b = N ∗ 2 ∗ 8 = N ∗ 24 bytes is necessary. Since for large scale
problems, N can reach values of the order of millions (i.e. 106 ≈ 220), b quickly
increases to orders of 224 bytes = 16 MB. While this amount of memory is indeed
not a real problem for current memory capacity (orders of some Gb), it is indeed
not an optimal scenario, also in terms of algorithmic efficiency. In fact, a related
problem for such an adaptive scheme is that, the final number of discretisation
points N is unknown, so that a fixed-size pre-allocation of memory is not possible.
If this pre-allocation cannot be done, then resizable-arrays must be used in order
to accommodate the increasing number of added points. Two main container
types are used for implementing resizable arrays:

• Lists;

• Array/Vector types.

Indeed, none of them is as effective as the case in which N is known beforehand,
allowing for the allocation of the right amount of memory needed to hold the
information. In fact, while the first method does ensure no waste of memory at all,
traversing a list (i.e. when needing to actually inquire the resulting discretisation
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pattern) accounts for a non-negligible overhead. In fact, main memory fetching
operations are expensive, of orders of ≈ 100 CPU cycles [93]. If this operation
has to be done for each element accessed, the slowdown might be considerable.
Discussion of this aspect can also be found in Section 1.1.4 of [94]. And chances
of cache misses are high, since memory is not laid down contiguously. On the
other hand, the second suffers two main issues:

(i) high likelihood of memory waste, depending on the growing policy. By
memory waste is meant memory that is allocated without ever being used,
so limiting the amount of residual memory that can be allocated for actual
use. In this regard, the concept of virtual memory [95] helps avoiding such
memory wastes.

(ii) considerable overhead at every memory re-allocation. In fact, every memory
re-allocation requires: (i) allocation of the new bigger memory segment,
(ii) old data transfer (copy) to new memory segment, (iii) and finally old
memory segment release.

In such a scenario, the Mesher scheme stands in the middle. As for the
regular scheme, it requires a limited amount of information in order to fully
reconstruct the internal discretisation pattern. In such case however, the simpli-
fications that could be made on the conventional regular meshing, assuming it is
determined as being symmetric in the two main domain spatial directions, do not
hold. In fact, having such a constraint in the discretisation pattern determination
would sometimes be opposed to the optimal scenario that the Mesher aims at
reaching. Consequently, basic information for both main (local) directions has
to be saved, which translates into 2 (local) domain extensions (∆ωi,∆ωj), 2 re-
finements (ni, nj), together with the minimum additional required information
needed for uniquely localising a zone in the 2D space of frequencies, which re-
duces to a rotation α and the pair coordinates (x, y) of a reference point, for a
total of 5∗8+2∗4 = 48 bytes. In modern x86-64 microprocessor architectures, it
is less than a cache line, usually of 64 bytes, which means that such an amount of
information can be loaded at once in cache memory and readily used, for an opti-
mal memory fetch to data usage ratio. However, this information has to be saved
for each independent zone. Considering that in the most complex case studies,
the total number of patching zones can reach the order of thousands (millions
would be quite unrealistic), the total amount of memory required to store the
base information for a full discretisation pattern reconstruction in the Mesher
case would amount to orders of 103 ∗ 48 ≈ 210 ∗ 48 ≈ 50 kB = 0.05 MB < 1 MB.
So it is clear how in this case, the amount of information is still relatively higher
compared to the conventional regular case, which required only 20 bytes, but yet
remains at the same time considerably smaller than the one needed in the adap-
tive scheme approach. And since the internal discretisation of each zone is based
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on the deterministic regular scheme, even if the total number of required meshing
zones is not known a priori, this would still guarantee that no memory is wasted,
since in such a case, every zone would treat its own information independently
from the others, saving it to memory for a later fetching and reconstruction.

However, this optimal discretisation representation pattern would be practi-
cally ineffective if not paired with an equally effective way to actually retrieve
it, minimising the impact that this reconstruction operation might theoretically
have on memory usage. To avoid this issue, a reconstruction scheme called the
Tail-Head-Previous-Current (THPC) method has been formulated. It hinges on
the use of 4 main reference pointers in the local domain, two per main direction
(i, j), where the local domain (i, j) directions emulate the global domain (x, y)
ones.
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Figure 5.10: Graphical representation of the THPC method. (a) Ex-
ample of the “sector” determined by the 4 THPC pointers. (b) Example
of the two free internal pointers moving within the localised sector. (c)
Example of the THPC method applied to a multilevel-refinement method

process.

The Head (h) and Tail (t) pointers move along the local j-th direction, while
the Previous (p) and Current (c) will instead cover the other i-th direction. They
are used to uniquely localise, within the local zone domain, a rectangular shaped
sector defined as having its four vertices 4 adjacent discretisation points deter-
mined by the initial local meshing established in the first pre-meshing phase.
Figure 5.10-a shows a graphical example in the most general case. This phase,
as a reminder, is basically the phase in which the Mesher focuses on finding
the optimal discretisation pattern to correctly represent the third order spectra
at the level of the wind buffeting loading. This is the minimum (and maximum
at the same time) required information that needs to be saved by the Mesher
in order to properly and optimally be able to operate in further steps, being the
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establishment of the optimal discretisation pattern at the level of the structural
response. Within the individualised sector, two additional local pointers pi and
pj are free to move, spanning along and across the discretisation points (coloured
in orange in Figure 5.10-b) that needs to be added with respect to the initial
discretisation for a better representation of the response bispectra. Clearly, the
amount of added points for this stage depends on the internal policy that the
zone holds, which depends on the actual area that it covers within the global
domain.

All in all, this methodology allows for additional precision, directly at the level
of loading bispectra, and so indirectly of structural responses. In fact, in the pro-
cess of initial discretisation pattern (on-the-fly) reconstruction, if requested by
the user, additional discretisation points referring to the correct representation
of the spectra at a loading level can be added, even if they were not planned
in the first stage. This means that these points are directly computed and not
otherwise retrieved. This feature is graphically detailed in Figure 5.10-c, where
the additional points are represented by the blue circles, which are then added to
the base discretisation pattern used to uniquely identify the sectors in which the
local pointers pi and pj are allowed to span. This has indeed many advantages.
Among all, it allows to clearly separate the desired precision and associated com-
putational times, between the actual estimation of the statistical moments, which
needs to be as accurate as possible as discussed at the beginning of Section 5.1,
and any possible post-processing data visualisation for which a reduced accuracy
is admissible, as long as the obtained graphical rendering do not distort their
interpretation from the theoretical behaviour.

5.3 BsaLib: numerical implementation of the
bispectral problem

Tackling the bispectral problem of MDOFs structural systems requires a numer-
ical approach. In a first state-of-the-art query, some existing code bases were
found [96, 97]. However, all of them tackle the problem from a signal theory
point of view, i.e. assuming a time domain, and hence computing the bispectrum
as of Equation (2.46). Under a pure stochastic approach, no existing code was
found. Therefore, a new development was initiated, that brought to the establish-
ment of BsaLib, acronym of Bispectral stochastic analysis Library. The code is
publicly available at https://github.com/miEsMar/BsaLib. For maximum per-
formances, its core has been written in Modern Fortran3 [98], a compiled language
that together with C and C++ is widely used in the realm of High-Performance
Computing (HPC) applications [94].

3https://fortran-lang.org/

https://github.com/miEsMar/BsaLib
https://fortran-lang.org/
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5.3.1 Code & Memory layout
BsaLib has been developed as a plug-in library component, to allow its easy
integration in every academic or commercial FEM software. As such, it requires
the hosting program unit to provide BsaLib with the required data in
order to function properly. This external data can be resumed into:

• Data related to the structural system, such as modal matrices, nodal coor-
dinates, vibration modes and frequencies;

• Wind data, such as the type of PSD of wind turbulence, the wind profile
type, among all;

• General setting options, to control the behaviour of BsaLib.

For an extended list of data that BsaLib requires, all the BsaLib public
Application Programming Interface (API) calls, grouped by macro category, are
reported in Appendix D, with detailed explanations.

Also, BsaLib follows the singleton design pattern [99]. However, unlike the
original formulation, in BsaLib this singleton pattern is practically achieved by
having a stateful machine implementation, where the correct functioning of the
whole infrastructure is provided by a correct setting of an internal and private
state. The launch of the main computations of BsaLib should be done in a
single-threaded execution, or multi-threaded provided that all other threads do
not modify any data to which BsaLib is linked, or issue API calls that might
alter the (singleton) state internal to BsaLib.

Figure 5.11 shows a graphical representation of the BsaLib framework infras-
tructure. The application framework can be split into two macro spaces:

• User space, which is the memory owned by the user hosting program or
library;

• BsaLib internal space, which refers to memory directly linked to BsaLib.

Regarding the internals of BsaLib, it can be split into two parts: (i) mutable
and (ii) immutable. The mutable part can be set via specialised BsaLib API
calls, meaning that the user has no direct access to the internal data. This is not
only for security reasons, but for ensuring compatibility and logic control over
the data that BsaLib receives from the outside. The immutable part is said so
because it cannot be modified via any API call. It however adapts to the mutable
part, based on how it is set.

However, the BsaLib memory space is in part tight to the user memory
space. This dependency is illustrated by the arrow in the left part of Figure 5.11.
The motivation lies in the fact that BsaLib tries to avoid any unnecessary and
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User program/interfacing library

BsaLib public API

BsaLib core

LAPACKIntel MKL

BsaCL public API

BsaCL core

CUDAOpenCL

OpenMP

BsaLib internals

User space

Figure 5.11: Graphical representation of the BsaLib application layers.
Top refers to memory space owned by the user. Bottom part refers to

memory directly linked to BsaLib.

duplicate memory allocations, not only to reduce the memory footprint of the
whole application, but also to increase performances, considered that memory
allocations are expensive operations. As a consequence, part of BsaLib memory
space directly references user memory space. This is specifically true for non-
scalar objects, such as vectors, matrices and tensors.

Looking closely to the BsaLib public API layer, several “categories” of API
calls can be defined. They are better illustrated in Figure 5.12. By category is
meant to API calls that should be made at a particular stage of the program
logic. They are, in order of executing logic:

Initialisation & setup: to ensure a correct and full setup of the internals,
BsaLib requires to be initialised (see Appendix D.1.6). After initialisa-
tion, several API calls allow the user to set up the various settings, before
issuing the main run.

Execution: this stage performs the actual computation (see Appendix D.1.7).
If execution is successful, meaning that input data was set up correctly and
coherently, results are returned to the user. To minimise the amount of in-
formation to be computed and avoid unnecessary costly computations, only
statistical information up to third order of modal responses (see Equations
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(3.40) and (3.48)) are provided. All in all, this information is the minimum
required for reconstructing statistical information of any other structural
response information (e.g. displacements, internal forces, stresses, etc.).

Post-processing: BsaLib offers some API calls to perform some basic post-
processing of results. In particular, it offers built-in procedures that inter-
nally implement, based on the user-specified options, the various kind of
modal recombinations techniques, SRSS or CQC at second order and CRSC or
CCC at third order, as discussed in Section 3.3. This stage is optional, or
can be replaced by user-defined procedures which might be better integrated
with the hosting environment.

Finalisation: finally, memory needs to be released (see Appendix D.1.8).

When interfacing with BsaLib, this logic ordering in API calls is fairly impor-
tant. It is crucial to ensure that any API call of a given category cannot happen
after an API call belonging to a following stage. At best, such calls would not
yield the desired effect (dead calls). At worse, they could lead to the crash of the
whole application. In this regard, BsaLib tries to handle all possible combina-
tions of errors related to a wrong order in API calls (among others), leading to
an anticipated program termination, with a proper error code and explanation.

Init. & Setup:
bsa_init()
bsa_enableVisualMode()
||.
bsa_setAnalysisType()

Execute:

bsa_Run()

Post:
bsa_computeBRdecomp()
bsa_exportModalData()
||.
bsa_exportSkewness()

Finalisation:

bsa_Finalise()

BsaLib public API:

Figure 5.12: Detailing of the BsaLib public API calls. All API calls can
be split into several “categories”, based on their purpose. Each category’s
API call must be placed after all API calls of the preceding one, following

the logic order that lies between each category.

An example of user program code structure is given hereafter, emphasising the
different logical structure when using with BsaLib, as also shown in Figure 5.12:
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! File: main.f90
program example

use , non_intrinsic :: BsaLib
implicit none (type , external )
! your declarations here

! your logic here

! initialise BsaLib
call bsa_Init ()

! set BsaLib internal state through its API

! once done , run BsaLib
call bsa_Run ( ... args ... )

! Eventually , post - process BsaLib results

! finally , release BsaLib memory
call bsa_Finalise ()

end program

5.3.2 A dual-core implementation
Not only BsaLib strives for optimal performances, but is also meant to be as
general as possible. To do so, the internal core of BsaLib is split into two main
sub-cores, as shown in Figure 5.13.

BsaLib core:

MesherClassic

2nd/3rd

scalar
2nd/3rd

vector
3rd

2nd

Figure 5.13: Representation of the dual-core implementation. The main
hidden core of BsaLib is split into two main sub-cores: (left) implementa-
tion of the “classic” approach; (right) implementation of the novel Mesher

approach.
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Classic: This core gathers the “naïve” implementation of the Spectral and Bis-
pectral problem. That is, equations are implemented assuming a regular
meshing of the 2D frequency domain. Details of this discretisation pattern
have been given in Section 5.2.3.1. Nonetheless, even if this is a trivial im-
plementation, several numerical optimisation measures have been taken into
account into their actual implementation, in particular to ensure memory
efficiency. This core is further split into two implementations:

• Scalar core implementation, in which equations are implemented for
each frequency or pair of frequencies individually.

• Vector core implementation, which makes use of explicit vector arith-
metic operations (additions, multiplications, etc.) that the compiler
can map to a set of vector instructions bound to the underlying hard-
ware [100, 101].

Mesher: This core implements all the algorithmic novelties and optimisations
that have been discussed throughout previous Chapters. In this case, unlike
the classic approach, there is no separation between a scalar and a vectorised
implementation in this case.

While indeed the vectorised approach is preferable for performances, it has
memory limitations since it treats the whole set of discretisation frequencies at
once. This is specially true for 3D tensor of bispectra, which, from an implemen-
tation perspective, end up being a 5D tensor, whose total size can easily reach
the order of tens of giga-bytes (Gb = 109).

The classic core implements both 2nd and 3rd orders, i.e. both Spectral and
Bispectral analyses, for both scalar and vectorised implementations. On the
other hand, the Mesher implementation, currently supports 3rd order only, hence
relying on the classic approach implementation for the 2nd order.

5.3.3 The two-stage Mesher implementation
Section 5.2.4 has introduced the concept of the two stages that characterise the
Mesher approach. They are:

Pre-mesh: This stage is the most important one. It provides:

1. Definition and localisation of all the meshing zones (see Section 5.2.1);
2. Definition of a first, high-level discretisation of each zone to achieve

better discretising modal forces bispectra.
3. Computation of bispectra information at all these discretisation points.

This information will be the starting point for the second stage.
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4. Saving the computed bispectra. This is made via I/O, writing data to
a binary file, since the saving must be consistent and durable, so that
data can be retrieved at any point in a future time.

Algorithm 1 shows a high-level overview of the structure of the Pre-Mesh
stage.

Post-mesh: This stage complements the Pre-mesh one, extending the discreti-
sation pattern defined in the first stage to better represent modal responses
bispectra. This is enabled by the THPC-method (see Section 5.2.5). First,
the bispectra information is read back from the binary file. Then, each
zone’s internal discretisation is refined, and third moments of modal re-
sponses are computed on the resulting refined pattern. This is the most
important information that needs to be computed, and from which statisti-
cal information of any other kind of structural response can be computed.
This is why, statistical moments of modal responses is what BsaLib returns
to the user.

Algorithm 1 Algorithmic structure of the PreMesh function.
function PreMesh

Mesher-specific data initialisation
nat_freqs← natural modal frequencies of the structural system
infl_areas← computeInflAreas(nat_freqs)
infl_areas← resolveOverlaps(infl_areas)
n_lims← getNumOfLimitsFromInflAreas(infl_areas)
bkg_zone← defineBkgZone()
computeZone(bkg_zone)
i_start← index of first influence area not covered by bkg zone
if i_start ≤ n_lims then

for i = i_start : n_lims do
zone← defineZoneFromLimitIndex(i)
computeZone(zone)

The distinction of Pre- and Post-mesh stages also allows for a better and
clear separation between actual computation of statistical moments, and possibly,
a simple post-process visualisation stage. In fact, if in the former case more
refined meshing patterns are required for a more accurate estimate of statistical
moments, in the latter a looser discretisation policy can be allowed, since it affects
visualisation only. This would indeed make post-processing for visualisation much
faster than in cases where actual statistical moments are to be computed. A
graphical representation of such structure is given in Figure 5.14.
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Figure 5.14: Logic flow for the two-stage implementation in the Mesher
approach.

If the post-mesh phase is done for visualisation purposes (i.e. visual_mode
ON), the Pre-mesh phase is skipped, provided that the binary file exists, oth-
erwise it is created by forcing the Pre-mesh phase to be executed. At the exit
of the Post-mesh phase, if visualisation is ON, control flow branches to a block
where data regarding bispectra of structural responses can be actually used and
post-processed. To keep things as general as possible, BsaLib provides a mean to
specify a user-specific procedure to be called when entering this branch, so that
the user can plug any desired post-processing facility directly into BsaLib (see
Section D.7.2.2). This procedure will be then called for each individual meshing
zone. If no user-specific procedure is provided, BsaLib still provides basic built-
in Post-mesh visualisation functionality, which currently only support writing the
requested data to file with the same format used in the Pre-mesh phase, so that it
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can be used in an external visualisation framework. Ideally, in future implemen-
tations, exporting formats compatible with some of the most used visualisation
frameworks [102] could be added.

5.4 Bispectral analysis in the Era of HPC
The formulation of the Mesher discretisation scheme was introduced with the
main goal of providing a way to efficiently determine the optimal discretisation
patterns of both buffeting loading and structural response bispectra, maximising
numerical precision while minimising computational time and complexity. This is
achieved by means of a two-stage discretisation process (see Section 5.2.4), where
in a first stage each zone internal discretisation is determined for an optimal rep-
resentation of the loading (bi-)spectra, and in a second stage, it is extended to
take into account the effects of the introduction of higher order Volterra kernels
(see Equation (3.47)), which affects morphology of (bi-)spectra of resulting struc-
tural responses. In addition, this clear separation is also made possible by the
meshing zones and their interdependence, with the THPC scheme (see Section
5.2.5), which allows for a flexible internal zone discretisation, easily adaptable
to the different requirements that the meshing of loading and response bispectra
need.

5.4.1 Mesher suitability to scalable parallel computing
Modern era computers inherit from John Von Neumann’s idea of electronic com-
puter, back in 1947 [103]. Over the years, technological advance and a higher
demand for more accessible supercomputers led to the development of modern
parallel systems, both at a hardware and software level [104].

Nowadays, every modern algorithm that is developed from scratch should
better account for the existence of all the parallel paradigms to be effective and
competitive on a technological level. Scalability is a common measure of how well
an algorithm adapts to parallel systems [105].

All these considerations have been well taken into account in the development
of the Mesher algorithmic arrangement. Specifically, each zone’s independence
is what makes it suitable for modern parallelisation techniques, which are vastly
used when developing highly performant algorithms. The two most important
complementary, cross-platform standardised parallel specifications are:

1. Open Multi-Processing (OpenMP) [106], which was initially conceived for
shared memory architectures [107, 108]. OpenMP follows a single instruc-
tion multiple data (SIMD) execution model.



110 Chapter 5. Numerical Analysis & Algorithmic Development

2. Message Passing Interface (MPI) [109], best suited for distributed memory
architectures [110] (i.e. multi-node clusters, servers, etc.). Nonetheless, it
might also be used in shared memory architectures. MPI follows a multiple
program multiple data (MPMD) execution model.

Regardless of the fundamental difference of the two specifications, nothing
avoids these two parallel specifications to be used together [111]. Indeed, the final
programming model should be well thought based on the problem specificities.

Another substantial difference between these two specifications is that, while
MPI is fully implemented with a proper API, OpenMP follows a directive based
programming model, where directives act as “suggestions” to the compiler on
how to treat the relative code block. These compiler directives are comment lines
with a specific format, understandable by compatible compilers. If a compiler
that does not support such programming paradigm is used, these directives are
ignored, and treated as a normal comment line.

1: <OpenMP parallel region directive >
2: for i = 1 . . . N do
3: i− independent instructions here ...
4: <OpenMP end parallel region directive >

Listing 5.1 shows an OpenMP example of summing two vectors in parallel,
for the Fortran language. The runtime then distributes the execution among a set
of threads, which are the base elements in parallel executions on shared memory
architectures.

Listing 5.1: Fortran example of OpenMP parallel vector sum.
!$omp parallel do
do i = 1, N

c(i) = a(i) + b(i)
enddo
!$omp end parallel do

Both OpenMP and MPI parallel paradigms are particularly suited in those
cases where one iteration does not depend on the outcome of previous ones. How-
ever, this optimality requirement does not apply to all scenarios, so that, in gen-
eral, some sort of synchronisation between execution cycles must be implemented
in order to guarantee correctness of results.

The proposed Mesher algorithmic structure can potentially benefit from
both. In fact, once the whole ensemble of meshing zones is uniquely determined,
such ensemble can be then split into an equally balanced set of subgroups, where
the number of subgroups is dictated by the number of available MPI processes
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(i.e. machines) in the distributed system, or cores if employed in a shared memory
environment.

Process
#1 ||.Process

#2
Process

#N

||.

Figure 5.15: Graphical example of splitting Mesher zones into balanced
subgroups, in a MPI compatible algorithmic implementation. Each sub-

group will be independently scheduled onto a single MPI process.

Figure 5.15 shows a graphical representation of such zones subsets distribution
across N processes, where each process could be seen as an independent machine.

Then, within each subgroup, OpenMP parallelism could be used for each
zone’s internal discretisation process, done using the THPC-scheme, discussed in
Section 5.2.5.

This enhanced parallelisation would considerably reduce the total required
computational time, specially when applying bispectral analyses to very large
(MDOFs) systems, as well as guarantee an optimal usage of memory without
too much overloads. Nonetheless, for small to medium sized problems (around
a thousand DOFs), even a single machine usage would keep computational time
within the order of a few hours at most.

5.4.2 GPU Offloading
Graphics Processing Units (GPUs) are specialised processors that were initially
developed to accelerate graphics rendering and geometry transformations [112],
using specialised pipelined computations [113, 114].
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Whereas Central Processing Units (CPUs) are designed to extract as much
parallelism as possible from sequential programs, modern GPUs, also referred
to as General Purpose GPUs (GPGPUs) [115, 116], are designed to efficiently
execute explicitly parallel programs, specially for programs that inherently have
data-level parallelism [117]. GPGPUs follow the single instruction multiple thread
(SIMT) execution model, where the (SIMD) model is combined with multithread-
ing [118].

For everyone willing to approach GPU programming, the first question that
might arise is: how, and with which tools? Since GPU programming paradigms
are fundamentally different with respect to those most suitable to CPU parallel
programming, it is crucial to select the right tools and to properly understand
how to use them to get the most performance benefit out of them. However,
transitioning from the most common CPU parallel paradigms to the new GPU
programming and memory models might be a significant challenge.

The two dominant GPU programming models established over the years are
Compute Unified Device Architecture (CUDA) and Open Computing Language
(OpenCL) [119]. CUDA is a programming and memory model [120] developed
by NVIDIA, firstly introduced in 2006 [112]. OpenCL [121, 122] is an open spec-
ification standard, originally developed by Apple with its first release in 2009, and
maintained by Khronos Group [123]. Nonetheless, trends from recent years show
that SYCL programming model is gradually replacing OpenCL [124, 125]. Also,
a programming model inspired on the OpenMP directive-based approach, named
Open Accelerators (OpenACC) [126] has been developed to overcome these pro-
gramming model complexity issues. Though such a programming model is very
easy to use, specially to those already familiar with OpenMP, it is not widely
supported by all major compiler vendors. Additionally, due to its consistently
increasing popularity, OpenMP has started to implement offloading directives
to directly integrate heterogeneous computing in its programming model [127].
Although these directive-based GPU programming models are quite easy to use
while still delivering good performances improvement specially in simple sce-
narios, they have not been included in the development of the GPU offloading
capabilities of BsaLib. On the other hand, BsaLib supports both CUDA and
OpenCL programming models in its core implementation. This choice has been
made in the light of the fact that, even though both OpenACC and OpenMP
are very powerful tools, more lower-level APIs such those provided by CUDA
and OpenCL specifications must be used to get the maximum performances from
these acceleration devices.

In the context of this Thesis’ work, GPU computing has been investigated and
implemented to tackle and solve the main computational bottleneck of Bispec-
tral analyses: the multi-dimensional projection of the 3D-tensor of nodal loads
bispectra onto the modal base (see Equation (3.45)).



5.4. Bispectral analysis in the Era of HPC 113

GPU offloading in BsaLib is implemented as an optional plug-in, which must
be included at compile-time via a dedicated compile-flag. This is done for max-
imum flexibility in code compilation, leaving space for automated GPU support
detection, and consequent switching-off of the feature whenever a suitable GPU
processor is not available in the target architecture. If a GPU processor is avail-
able, then GPU offloading can be effectively enabled at runtime, by invoking a
dedicated API call (see Section D.1.2). This plug-in is shown coloured in blue-sky
in Figure 5.11.

BsaCL public API

BsaCL_C core

GPU Offloading

Fortran/C ISO interop. layer

BsaCL_C public API

Figure 5.16: GPU Offloading BsaLib code layers.

Figure 5.16 shows a detailed view, where its internal layers are shown. These
layers serve as a stable, portable, and standard-conforming transition from the
Fortran programming language, in which BsaLib was originally written, and the
C programming language [128], from which both the CUDA and OpenCL lan-
guages have been developed [113, 122]. Specifically, the BsaLib GPU Offloading
integration consists in several layers:

Fortran public API to the BsaLib core: this layer provides direct access to
the BsaCL GPU C-core library from Fortran program unit entities, ab-
stracting the transition between the two language processors.
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Fortran-C transition layer: this layer implements the transition from a For-
tran calling side to the underlying C core library, using standard-conforming
processor implementations [129, 130].

BsaCL_C public API: this layer exposes the public API of the GPU C-core li-
brary.

GPU C-core library : this last layer implements the main core logic of GPU
integration, and directly integrates the lower level API of both CUDA and
OpenCL.

Figure 5.17 shows how the computational domain is split, before issuing the
execution of the GPU kernel code. The whole domain is taken as a 2D N2

f×NM3 set
of computational elements, split into a 2D grid of work-groups (or thread-blocks
in CUDA), each one of them split into a set of 32/64/128 × 1 work-items (or
threads in CUDA), which are assumed to be the basic execution elements from
a hardware point of view. Nonetheless, considering common GPU architectures,
GPU’s schedulers are built to issue at least 32 threads at a time, what’s in CUDA
terms is called a warp [131, 132, 133], reason for which it is highly suggested work-
groups of at least 32 work-items, or multiple of 32 otherwise. It is indeed possible
to have work-groups with less than 32 or a number not multiple of 32, which
would cause the issuing of an uneven warp, where part of the issued threads will
be shut off, reducing performances and throughput of the computation.

Considered the domain decomposition as shown in Figure 5.17, each work-
item treats (i) a unique pair of frequencies (ω1, ω2) and (ii) a unique triplet of
modal indexes (m,n, o) (see Equation (3.45)). Hence, each work-item iterates
over all possible combinations of nodal indexes (i, j, k). The choice of selecting as
2nd dimension the modal extent instead of the nodal, relies on how the memory
is managed and shared between work-groups. Figure 5.18 shows a graphical
representation of the memory model of modern GPUs.

Host memory is represented by CPU memory. Like CPUs, GPUs also have
their main global memory, which is accessible from anywhere inside the GPU.
When offloading computation to GPUs, data must be transferred to GPU’s main
memory so that it can be accessed by GPU’s processors. Conceptually, a GPU
processor is what a core is for a CPU, and is what is referred to a compute unit
(CU) in Figure 5.18 (OpenCL terms, or SM in CUDA terms). Nonetheless,
physically they are built considerably different. Finally, each CU is host of several
processing elements (PEs) (or threads in CUDA), which are conceptually similar
to CPU threads.

The reason why the second dimension has been taken as NM3, and not NN3 for
instance, stands in the memory model of GPUs. In fact, memory synchronisation
can happen only within the same work-group, while there is no way to synchronise
global memory across different work-groups. This is basically due to the fact that
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Figure 5.17: GPU 2D-domain decomposition into 2D work-groups, and
detailed work-group decomposition into single work-items.

Figure 5.18: Modern GPUs memory model. Image taken from [134].



116 Chapter 5. Numerical Analysis & Algorithmic Development

the scheduler has no requirements on the order of execution of each work-group,
and treats them independent from one another‘. Therefore, the only way to share
memory between work-groups is in fact to duplicate that memory across each
work-group. Only once the computation is done, and data is copied back to
the host, it can be processed to get the desired result. For large problems, this
issue can lead to a considerable amount of memory waste, certainly unwanted
especially when dealing with GPUs memory, which is less available than CPUs
ones.
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Chapter 6

Applications

In this Chapter, several applications of the bispectral analysis will be presented.

Before proceeding with conducting bispectral analyses on more complex ap-
plications, it is important to mention that during the whole development phase,
until this final stage, the algorithmic structure has been continuously tested and
validated against more conventional approaches. Specifically, the novel bispectral
analysis implementation of the proposed framework (Mesher algorithm + POD
formulation) has been compared to two different approaches:

• Bispectral analysis following the direct application and implementation of
the mathematical equations (see Equations (3.45) to (3.48)) on a regular
mesh (see Section 5.2), labelled as “classic”;

• Monte Carlo simulations in the time domain, by directly solving the equa-
tions of motion in Equation (3.1).

The first comparison was certainly useful to prove that, within the same
context (stochastic approaches) but using two different numerical approaches
(Mesher and “classic”), results were identical, proving the stability and reli-
ability of the novel algorithmic arrangement compared to a brute and direct
application of the mathematical concepts.

The second validation, against Monte Carlo simulations (in the time domain),
was also a crucial aspect to consider in order to prove the validity of spectral
approaches, in a Gaussian and, more so in a non-Gaussian framework. When
considering the non-Gaussian nature of the wind load, if a time domain approach
is desired, great care should be adopted regarding the temporal signals used as
input. In fact, when higher-order statistics are to be captured in a discrete signal,
measurements (or digital simulations) must be long enough in time to correctly
capture the statistical information, until convergence is reached. Shorter record-
ings will inevitably lead to computed statistics which will be highly dependent on



118 Chapter 6. Applications

the sample used for the analysis. Spectral and bispectral analyses provide instead
a stochastic approach, which is much more reliable once a proper probabilistic
description of the input is given, in the sense that a second run with the same
set of parameters would provide exactly the same results.

To do so, a test benchmark has been set up, simple enough not to require too
much of computational time, but at the same time to be as complete as possible
in order to highlight some important aspects, specially in a non-Gaussian context.
Figure 6.1 shows a schematic representation. It consists of a 3-DOFs cantilever
column, with idealised lumped masses concentrated at the level of the idealised
building’s floors to model the actual building’s mass.

��
�
���
��

���
���

��
��
�
���
��

���
���

��
��
�
���
��

���
���

��

����������

����������

����������

���

���

���

��

��

��

Figure 6.1: 3-DOF system configuration used to validate the Mesher
algorithm against conventional approaches.

Extensive information about the generation of wind data, analysis configura-
tion and results are given in the various technical reports that have been delivered
throughout the duration of the Finelg2020 Research Project [135] summing up
to almost a total of 200 pages [136, 137, 138]. In these reports, the Mesher ap-
proach is validated against the “classic” and Monte Carlo Simulations approaches,
with the three approaches showing identical results.

As illustrated in the introduction, these two methods (“classic” and Monte
Carlo simulations) require a significant number of sampling points for an ac-
curate estimation of higher moments. They could not be implemented in the
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following examples having many more degrees-of-freedom than in this simple 3-
DOF structure. The discussion is therefore mostly based on how the results are
obtained, and on the possible recombinations.

6.1 Quetzalapa Bridge: a simplified model
This section covers an academic application, though based on an existing struc-
ture. In fact, in this case, the interest was in applying the proposed methodology
to a flexible structure, with a simplified structural model, but for which some
wind tunnel testing was done, and aerodynamic wind coefficients (see Equation
(4.9)) were available. The choice has been made among bridge decks studied in
[139], where the authors compare and classify according to the bridge topologies
the wind force coefficients measured for 18 different cross-sections. The choice
has fallen on the twin-girder Quetzalapa Bridge, built in Mexico in 1993 on the
famous Mexico City-Acapulco highway, after the other famous Mezcala Bridge.
It is a two H-tower cable-stayed bridge, with main span of 213 meters, with
maximum height of 110 meters.

Figure 6.2: Photo of the Quetzalapa Bridge, Mexico. Source: http://
www.highestbridges.com/wiki/index.php?title=Quetzalapa_Bridge

Top part of Figure 6.3-a shows the simplified structural scheme. A 3-span
simply supported bridge model has been assumed, with main span of 150m, lateral
spans of 120m each. Each span has been modeled with 20 beam elements of equal
length. The value of the bending stiffness is chosen as EI = 2.785 · 1013 Nm2

and the mass per unit length is equal to 130000 kg/m. The deck width is 29.50
m. On the bottom part of Figure 6.3, the first 4 vibration modes, in the vertical
direction, are shown. In total, the model comprises 366 DOFs and seven modes
are used in the bispectral analysis. A damping ratio of 3% has been imposed to
all vibration modes. In addition to that, the aerodynamic damping has also been

http://www.highestbridges.com/wiki/index.php?title=Quetzalapa_Bridge
http://www.highestbridges.com/wiki/index.php?title=Quetzalapa_Bridge
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computed with a quasi-steady analysis, and taken into account. Table 6.1 lists
the damping ratios for the first 4 vibration modes as well as natural frequencies
and modal masses.

Table 6.1: Natural frequencies, damping ratios and modal masses for the
first four vibration modes.

mode [-] Natural frequency [Hz] Structural [%] Aero [%] Modal mass [to.]
1 0.952 3 % 0.45 % 26031
2 1.452 3 % 0.85 % 28973
3 1.788 3 % 0.48 % 38343
4 3.640 3 % 0.07 % 22075

Only the left-most span has been assumed loaded by the turbulent wind flow.
Indeed, in deep valleys, the wind flow attacking a bridge deck might be uneven
and sheltering effects might result in very unequal loads on the different parts
of the deck. This choice has also been made in this context for maximising
the asymmetry in the loading resulting therefore in a critical design situation.
Besides, with a wind load distributed along a shorter area, the modal loads and
therefore the modal responses too, tend to be more non-Gaussian. Indeed, in a
final structural design perspective, other load distributions should be considered
too.

Figure 6.3-b shows the variation of drag and lift wind coefficients measured in
the wind tunnel tests performed on the bridge model, tested at the CSTB, Nantes
[139], as well as CZ , the resultant along the vertical axis in the local element
reference system of the drag and lift coefficients, as depicted schematically in
Figure 6.3-b. This example has been chosen for the nonlinear nature of the
vertical coefficient with respect to the wind angle of attack. In order to simplify
the aerodynamic modeling, the vertical force coefficient has been approximated
by a quadratic which results in a non-Gaussian wind loading.

More specifically, the illustration focuses on the vertical vibrations of the
bridge resulting from this vertical wind load (per unit length), which is defined
as:

FZ(t) = 1
2ρCZ [β (t)]V 2 (t)B (6.1)

where CZ is the vertical wind force coefficient, measured in the wind tunnel.
In a quasi-steady approach, Equation (6.1) translates the influence of the wind
turbulence into forces applied to the structure, with which engineers can perform
usual static/dynamic analyses. The nonlinearity is hidden behind two factors in
Equation (6.1) (see Section 4.4): (i) V 2 which is the square of the norm of the
(instantaneous) wind speed vector

V 2 = U
2 + 2Uu+ u2 + v2 + w2 (6.2)
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(a)

(b)
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mode 4

Figure 6.3: (a) Sketch of the studied structure and mode shapes, (b) con-
ventions for aerodynamic loads, (c) considered aerodynamic coefficients.

and (ii) CZ = CZ [β(t)] the vertical wind force coefficient, which is a function of
β(t) the instantaneous incidence of the wind speed, see Figure 6.3-b. In spite of
existing more general 3-D models of wind loads [62], lacking modeling information,
here a 2-D model is assumed where the wind incidence fluctuates around its
mean value β(t) = β + ∆β(t), where ∆β(t) is the instantaneous fluctuation from
mean incidence angle at time t. Assuming this deviation to be small, the wind
force coefficient CZ is expressed via a Taylor series expansion around the mean
incidence angle β = −1◦:

CZ(β(t)) = CZ(β) + ∂βCZ(β)∆β(t) + 1
2∂

2
βCZ(β)∆β2(t) + . . . (6.3)

so that CZ
(
β
)

= −0.35, ∂βCZ(β) = 8.5 and ∂2
βCZ(β) = 72.5, see quadratic

approximation in Figure 6.3-c, and

∆β(t) = arctan
(
w(t)− ḣ(t)
U + u(t)

)
(6.4)

in a simplified scenario where the along-wind structural motion has not been
taken into account. Since vertical motion only is considered in this example, the
relative angle of attack is computed by subtracting the heaving velocity ḣ(t) to
the vertical turbulence component.
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Substitution of (6.2-6.4) into Equation (6.1), and series expansion for small
u, w and ḣ yields

FZ(t) =FZ + 1
2ρBU

(
2CZ

(
β
)
u+ ∂βCZ(β)

(
w − ḣ

))
+ 1

2ρBU
(
CZ

(
β
) (
u2 + w2

)
+ ∂βCZ(β)u

(
w − ḣ

)
+ 1

2∂
2
βCZ(β)

(
w − ḣ

)2
)

(6.5)

where FZ = 1
2ρCZ(β)U2

B is the average aerodynamic load (treated in a separate
static analysis, see Section 3.3.1), and the linear and quadratic loading terms
are readily identified. In this expression, the argument (t) has been removed to
simplify the notation and the transverse component of the wind v(t), parallel to
the bridge axis, has also been neglected. By keeping or discarding the second
line in Equation (6.5), the quadratic loading terms are kept or discarded. Table
6.2 lists all the relevant data regarding the wind turbulence, having a mean wind
speed of U = 38 [m/s].

Table 6.2: Summary of important wind turbulence properties.

turbulence Lengthscale [m] std [m/s] Coherence coeff. [-]
u(t) 250 6.5 12
w(t) 200 5.24 12

Concerning the spectral and bispectral analysis, several variants are consid-
ered. First, in order to evaluate the importance of the spatial coherence of wind
turbulence (and consequently buffeting loads), a variant of the original problem
with coherence coefficients for u and w tending toward infinity is simulated. This
variant is labelled “D-” in the following Figures, to highlight the fact that the
CPSD matrices of turbulence components are Diagonal in that case, i.e. POD
modes already correspond to the physical loads. This variant is not really phys-
ical but is a simple approach to reveal size effects of the structure. Second, for
each considered buffeting loading, either full or diagonal CPSD matrices, modal
responses are computed and recombined with the two recombination techniques
presented in Sections 3.3.2 and 3.3.3, namely an SRSS/CRSC or a CQC/CCC
approach.

Figure 6.4 shows the 2nd and 3rd order moments (in terms of variance/covari-
ance and skewness) of modal loads and modal responses, for the modes 1, 2, and
3, which respond the most to the considered loading. Figures 6.4-(a, b) refer
to covariances, while Figures 6.4-(c, d) show third order moments translated in
terms of skewness coefficients. Also, 6.4-(a, c) refer to modal loads while 6.4-(b,
d) to modal responses. Bars in blue refer to the moments obtained with the full
CPSD matrix of turbulence components, while orange bars correspond to the
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(a) (b)

(c) (d)

Figure 6.4: 2nd and 3rd order moments of modal forces and modal re-
sponses: (a-c) modal loads, (b-d) modal responses. Colors refer to the
approximation in spatial coherence: blue=full CPSD matrix of turbu-
lence components, orange=diagonal CPSD matrix of turbulence compo-

nents (variant D).

diagonal version (variant D). In the latter case, only diagonal elements of the
covariance matrix and of the triple correlation tensor are computed since only
the SRSS/CRSC combination is considered in that case.

It is observed that the diagonal elements of the covariance matrix and of
the triple correlation tensor of modal loads are much smaller in variant D than
in the original problem with the actual spatial coherence. At second order, this
translates the fact that the many aerodynamic forces distributed along the bridge
deck possess a certain coherence in space and little compensations are observed
during projection in the modal basis. However, for uncorrelated wind loads at
the different nodes of the model, such compensations dominate and the projected
wind field is consequently much smaller. At third order, the same reasoning
holds and explains why the third statistical moment also drops in variant D. In
fact, it drops more proportionally than the second moment since the skewness
coefficient (see Equation (2.12), γ3 = m3/m

3/2
2 ) also drops in the same variant.

This is explained by the central limit theorem stating that a linear combination of
independent processes tends to become Gaussian as the number of independent
processes tends to infinity. In variant D, the applied loads are fully independent
(uncorrelated), while there exists some partial correlation in the original problem.
It is therefore expected that the non-Gaussianity of the combination (i.e. of the
modal load) is smaller in variant D.

Figure 6.4 also shows that the skewness of modal responses are smaller than
the skewness of modal loads. This is also a consequence of the central limit
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A B C

Figure 6.5: Response PSDs, Ff-, at selected nodes, (A) node 10; (B)
node 31; (C) node 52.

theorem. Indeed, if the response was quasi-static (fully background), the modal
response at a given time would be dependent on the modal load at the same
time and there would be the same non-Gaussianity, i.e. the same skewness, in
the response and in the loading. As the dynamic (resonant) part of the response
becomes more important, for instance in case of small damping, the response at a
given time is obtained as a convolution of loads applied at many more instants in
the past. This means that there are more terms affecting the response at a given
time and the response tends to be more Gaussian, i.e. symmetric in distribution.
In the limit case of a fully resonant response, the skewness tends to zero and the
response process is statistically symmetric.

Examples of power spectral densities of the structural displacements are three
selection points of the bridge are shown in Figure 6.5. The location of points A,
B and C correspond to the midspans, see Figure 6.3-a. While the response at
node A exhibits a significant background contribution, the responses at nodes B
and C are mostly resonant. Similarly, the bispectrum of nodal displacements at
nodes A, B and C are reported in Figure 6.6, showing a significant background
for node A and resonant responses in modes 1 and 3 for nodes B and C. These
power spectral densities and bispectra are obtained with the full CPSD matrix
of wind turbulence and with the complete recombination of modal responses. On
the other hand, Figure 6.7 shows the same nodal power spectral densities as in
Figure 6.5, for the simplified variant “D-”. It shows two important points: (i)
energy in the response is lost with respect to the most general and complete
variant “Ff-”, coming from a loss of such energy at the level of modal loads; (ii)
the compensation problem discussed above, which results in the flattening of the
background (quasi-static) peak around the origin ω = 0, particularly noticeable
for the left-most midspan point (A).

In order to evaluate the influence of the modal correlation, two variants of the
case with the full CPSM matrix of wind turbulences are considered : in variant
“Ff-” modal recombinations are performed with the CQC and CCC (Ff standing
for Full-full), while in variant “Fd-” the modal correlations are neglected both at
second and third orders, which corresponds to the SRSS and CRSC combination
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Figure 6.6: Response bispectrum, Ff-, at selected nodes, (A) node 10;
(B) node 31; (C) node 52.

CA B

Figure 6.7: Response PSDs, variant D-, at selected nodes, (A) node 10;
(B) node 31; (C) node 52.
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Figure 6.8: Peak factors and fluctuating part of the extreme values of ver-
tical structural displacements. Variants of the structural analysis are: D-
(no coherence in wind loads, correlation of modal responses neglected), Ff-
(coherent wind loading + complete combinations) and Fd- (coherent wind
loading + SRSS/CRSC combinations). For each variant, the extreme val-
ues are computed with a Gaussian approach (-G), or with a non-Gaussian

approach (-NG+ and -NG−).

methods (in that case, Fd stands for Full-diagonal).
Finally, Figure 6.8 shows the peak factors as well as fluctuating parts of the

extreme values of the structural displacements in its transverse direction. This
Figure will serve for the discussion on the different modeling assumptions. It
shows three categories of curves, each one corresponding to a different variant
of modeling (D-, Fd- and Ff-). Then, for each variant, two different way of
computing the extreme values are shown : either with a Gaussian formulation
(based on Rice’s formula), either a non-Gaussian formulation (based on Kareem-
Zhao formula [30]), as explained in Sections 3.3.2 and 3.3.3. In the case of a non-
Gaussian peak factor, the upper and lower values might differ, so both the positive
and negative extreme values are reported. The extreme values represented in
Figure 6.8-b correspond to the peak factor multiplied by the standard deviation
for each node. To this value, the average displacement field should be added but
it is omitted here to ease the reading.

This illustration reveals several important points:

• the complete cubic combination is of primary importance in the determi-
nation of third statistical moments. Indeed, the maximum displacement in
the left-most span in the two scenarios Ff-NG and Fd-NG results in a differ-
ence of about 26% (maximum vertical displacement of 0.0094m vs. 0.007m
respectively). This is a consequence of the fact that there are proportionally
more elements in the third order moment tensor with respect to the number
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of elements on the diagonal, than the same ratio for the covariance matrix.
In other words, there are many more elements outside the main diagonal of
the third order moment tensor so that, even if the are relatively small, they
contribute to the third moment of structural responses.

• the simplified variant “D-” suffers a difference of more than 50% with respect
to the complete variant “Ff-”, and between 40-45% with the variant “Fd-” in
the maximum vertical displacement in the left-most span, which maximum
is of 0.004m.

• the comparison of Ff-G and Fd-G shows a small difference in terms of peak
factors but well in terms of extreme values (0.0082m vs. 0.0065m, i.e. a
difference of 20%). This indicates that the SRSS and CQC combinations
provide slightly different standard deviations.

• Figure 6.8 confirms that the loading case of variant D- results in a nearly
Gaussian process. This is observable since all three peak factors have very
similar values and all three eigen values are virtually superimposed. This
is explained by the central limit theorem as stated above.

• the analysis case that results in the largest peak factors is “Ff-”, with a
significant difference between the positive and the negative peak factors,
which indeed translates into significantly different envelopes of extreme val-
ues (17% difference in absolute values).

• additionally, for scenarios Ff-, the responses in the central and right-most
spans are also nearly Gaussian. This has already been underlined based on
the power spectral densities and bispectra of the displacements in the mid-
spans of those two spans. It is attributable to the fact that the response
is mostly background in the left span, while it is mostly resonant in the
two rightmost ones. This effect is slightly less remarked for the Fd- ones,
since in such case the use SRSS+CRSC modal recombinations (instead of
the CQC/CCC for Ff-, see Sections 3.3.2 and 3.3.3) is not sufficient for a
full compensation of effects.

All in all, this example shows the importance of a non-Gaussian (bispectral)
analysis in such a case where part of the structure responds in a quasi-static
manner. It also highlights the importance of a complete cubic recombination of
modal responses as soon as higher order moments are estimated.

In Section 5.1, the two possible extreme (and undesired) scenarios have been
presented regarding the proposed methodology; (i) fast but inaccurate, or (ii)
accurate but extremely slow. From the mathematical point of view, this is di-
rectly related to the kept number of wind modes Np (and equivalently Nq) when
appliying the POD to the incoming wind field, as of Equation (4.53). Indeed,
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Figure 6.9: Evolution of relative energy with frequency, with changing
number of kept POD modes.

use of dimensionality reduction techniques such as POD is of crucial interest
when a given phenomenon can be accurately represented by means of a reduced
number Np of independent elements. However, in the results presented so far,
all wind modes were considered, that is, Np ≡ NN. From a mathematical point
of view, this is indeed equivalent to no POD application at all, since consider-
ing all wind modes does lead to no information loss. Nevertheless, even without
any modal truncation, the computational cost decreases by a factor of order 10x,
which becomes more and more significant as soon as the absolute time (e.g. prob-
lem size) increases (i.e. 10days vs. 1day). This speedup is indeed justified by
the theoretical concepts that have been detailed in Section 4.8.2, which under
a computational point of view, results in the possibility of precomputing some
terms instead of having to compute them at each loop iteration. This alone has
considerably contributed to prove how POD application in such context is very
powerful. Specifically, for the problem considered here, CPU time has varied
from about 6 minutes for Np = 1, to 15 minutes for Np = 21. The computational
speedup does not increase linearly with the number of POD modes (i.e. around
9 minutes for the case with 9 POD modes). However, this saving might become
remarkable for much larger problems.

In practice, there’s no unique optimal value for the kept number of wind
modes Np. It is indeed case specific. Retaining between 80-90% of the wind
energy might offer a good compromise between speed and accuracy. These ratios
also seem to be current practice in other fields of application of POD.
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Figure 6.10: Influence of the number of POD modes used in the analysis,
on the maximum structural displacements. All curves superimpose for

Np ≥ 3.

Figure 6.9 shows the ratio of energy contained in the trace of the matrix
of eigenvalues of kept modes. Clearly, for the considered case, as soon as the
frequency of the load increases, a higher number of POD modes is necessary in
order to guarantee the same amount of energy with respect to lower frequencies.
This is indeed justified by the fact that, being large scale turbulence and slow-
varying process, the main frequency content is towards the lower spectrum of
frequencies. As a consequence, in this range, a small number of POD modes
already provide more than 70-80% of the total energy. This trend soon vanishes
as soon as this evaluation is done at higher frequencies, where in this case, all
modes tend to equally contribute to the representation of the loading field.

However, this concerns the wind loading only. Including the structure and
investigating the load-structure interaction, one might find that actually, even
less POD modes (or in some cases, not the most energetic ones) are the ones
actually contributing to the final structural response. This is discussed in details
in [81]. Figure 6.10 shows in fact how, for the studied example, already the
first POD mode is almost entirely sufficient for accurately reconstructing the full
structural response. From 3 to 18 POD modes, the resulting response does not
change, meaning that 3 POD modes are the actual only POD modes sufficient to
reconstruct the full structural response. Unfortunately however, this information
is hardly known beforehand, leading the practitioner to a choice which would, and
should, guarantee an adequate precision without having the need of performing
the reference case (which would indeed invalidate all this reasoning).
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The examples that will follow concern two projects from Bureau d’Étude
Greisch1, for which they provided their models to be used in the context of this
Work. The Author is thankful to Them for their kindness and availability.

6.2 Tennet: a transmission line pylon example
The first application concerns the highest among all the steel towers being part
of a project of electric network extension via a new 400km line running through
Netherlands and Germany, named Wintrack II [140]. It is important to remark
that the original design was made for a competition, even before the first pre-
design stage. Finally, the project was not selected, so that further, more detailed
and accurate studies were not carried by the design office Bureau d’Étude Greisch.

Figure 6.11 shows three representations of the structure: the leftmost is a
rendering showing the proposed real setup of the towers installation; the middle
is a drawing with relative dimensions in a front view; the rightmost shows the
beam model, done using their Finite Element software, Finelg. The structure
dimensions are: 71.2m of height; 2.5m base diameter, with 30mm thickness; 0.5m
diameter at the top, with 8mm thickness. The main structural material is steel
S235.

(a) (b) (c)

Figure 6.11: (a) Render of the two adjacent towers along the electric
line; (b) sketch of the two towers in a front view; (c) view in the X-Z plan
of the finite element model of the highest tower Tennet-W4S450 (71.2 m)

[140].

A modal analysis was conducted on the finite element model. Some values
are reported in Table 6.3 for the first 4 modes of vibration, which for the shape

1https://www.greisch.com/en/home/

https://www.greisch.com/en/home/
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of the considered structure, are (almost) symmetric along X and Y axes. A
damping ratio of 0.3% for all vibration modes has been assumed. In a first
global analysis, suitable for very early stages in the process of structural design,
the contribution to the total structural damping coming from the transmission
cables was not considered. If further, more detailed studies would have followed,
this was indeed a contribution that would have been accounted as well. Mode
shapes are normalized to a maximum unit displacement.

Table 6.3: Modal structural data for its first 4 modes of vibrations.

Mode Freq [Hz] Modal mass [kg] ξ [%]
1 0.8453 3302.7 0.3
2 0.8456 3315.4 0.3
3 2.3404 1547.1 0.3
4 2.3443 1572.9 0.3

(a) (b)

Figure 6.12: Mode shapes: (a) mode 1 (red), mode 2 (green); (b) mode
3 (green), mode 4 (red) [140].

Regarding wind turbulence data, since on-site measurements were not avail-
able, Eurocode recommended values were considered. Interested readers can refer
to [48] for detailed information. Table 6.4 shows detailed values of some quantities
of importance in such an approach.

Table 6.4: Wind turbulence data used for Eurocode approach.

vref [m/s] cprob [-] kr [-] α
27 1.12 0.21 0.59

A terrain roughness of category II with z0 = 0.2m and zmin = 4m were
adopted.

A common coherence coefficient C = 10 has been considered for all turbulence
components, in all spatial directions.
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Table 6.5: Standard deviation and wind scale values for spatial wind
turbulent components.

u(t) v(t) w(t)
σ [m/s] 6.34 4.76 3.17
Lx [m] 120 30 10
Ly [m] 40 30 7.5
Lz [m] 30 7.5 7.5

Original studies

Originally, the study was carried for comparing two types of wind analyses:

• Equivalent Static wind Loads approach from EN 1991-1-4 [48]. It cor-
responds to the results under mean wind speed multiplied by a factor
(1 + 7Iu)CsCd ≥ 1 which accounts for the wind turbulent component.
These values are computed at the pylon reference height zref = 0.6zmax =
0.6 · 71.2m. With a turbulence intensity of Iu = 0.186 (i.e. 18.6%),
CsCd = 0.9, the Eurocode extreme values correspond to the mean wind
speed values multiplied by 2.07.

• A turbulent wind analysis by means of a spectral method, as of Equations
(3.39) and (3.40).

Figure 6.13 shows the drag force coefficients, mean wind speeds, and the
resulting equivalent wind forces along the tower’s elevation.

Comparison with Bispectral Analysis

In this application, three different approaches were adopted:

1. Eurocode equivalent static loads;

2. Spectral analysis;

3. Bispectral analysis, as an extension of the spectral approach for non-Gaussian
winds.

As stated in previous sections, the first two were already object of study and
comparison of the design office. The third one is the new one proposed in this
Work.

In the following illustrations, some labels will be used in order to uniquely
identify results from each one of the approaches explored in this application. For
clarity, they are:

EC : Eurocode approach, equivalent static load method [48];
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(a) (b) (c)

Figure 6.13: Eurocode equivalent static load approach. Variation along
the tower height of: (a) Cf wind force drag coefficient; (b) Vm [m/s] mean

wind speed; (c) Fb [N/m] mean wind force (per unit length) [140].

ST : static mean contribution of the wind action, obtained through a static
analysis (see Section 3.1);

TU : turbulent (fluctuating) contribution, in both Gaussian and non-Gaussian
context (TUng).

Indeed, combining ST with TU results in the extreme values of the response
due to, Gaussian or non-Gaussian, wind action (see Equation (2.65)):

xmax = x+ g σx (6.6)

where x is the average response value (ST label), g the Gaussian (or non-Gaussian)
peak factor (see Equations (2.66) and (2.69), obtained from γ3, as explained in
Section 2.3.5), σx its standard deviation [30] (i.e. label TU refers, in general, to
gσx).

Figures 6.14 and 6.15 show the PSD and bispectrum of the nodal displace-
ments of (i) a point at around the mid height of the pylon, and (ii) its top.
Indeed, the amplitude (in absolute values) of both the spectrum and bispectrum
are greater for the top node. This is the consequence of the fact that the struc-
ture behaves as cantilever-beam-like, for which the first vibration mode (in the
along-wind direction) happens to be the most significant one. Nevertheless, sec-
ond mode of vibration also show some small contribution to the overall structural
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response. This effect is much clearer for power spectrum, while at third order,
this contribution almost flattens out.

(a) (b)

ω ω

Figure 6.14: PSDs of the displacement along X: (a) node around the mid
pylon height; (b) top node.

(a) (b)

Figure 6.15: Bispectrum of the displacement along X: (a) node around
the mid pylon height; (b) top node.

Figures 6.16 and 6.17 show the extreme values of bending moments and shear
forces, along the pylon’s height.

Table 6.6 finally compares the bending moment values at the bottom of the
mast, computed with the different approaches.

In the specific case of high-voltage pylons, when comparing results, it is found
that turbulent wind analysis using the Gaussian model results in approximately
30% higher responses compared to the Eurocode equivalent static load method.
This difference in results is unlikely to come from the main assumption made in
the Eurocode equivalent approach of first mode modal truncation [48], since as
also shown from the spectra (PSD and bispectra) from the more complete and
accurate stochastic analyses, response contribution come mainly from first vibra-
tion mode, with residual contributions coming from the second mode. Instead,
it might be the result of an underestimation of the cscd factor of the Eurocode
approach, specially if the structure exhibits a comparable amount of quasi-static
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Figure 6.16: Extreme values of bending moments: along-wind (left);
across-wind (right). EC = Eurocode approach; ST = Stationary (mean)
part; TU = Turbulent part (Gaussian peak factor); TUng = Turbulent

part (non-Gaussian peak factors) [140].

Figure 6.17: Extreme values of shear forces: along-wind (left); across-
wind (right). EC = Eurocode approach; ST = Stationary (mean) part; TU
= Turbulent part (Gaussian peak factor); TUng = Turbulent part (non-

Gaussian peak factors) [140].

Table 6.6: Resume of numeric results for bending moment and shear
force extreme values.

Bending moment Bending moment Shear force Shear force
along-wind across-wind along-wind across-wind

[kNm] [kNm] [kN] [kN]
EC 3855.6 0 112.29 0
ST 1857.7 0 53.44 0

ST - TU -1216.0 -1672.3 -33.11 -44.391
ST + TU 4931.4 1672.3 139.99 44.391
ST - TUng -676.5 -1753.1 -11.34 -38.814
ST + TUng 5858.8 1571.4 170.41 47.751

and dynamic response contributions, that is, a background-to-resonant ratio close
to unit value. Furthermore, considering the actual non-Gaussian nature of wind
effects increases the responses by an additional 20% (with respect to Gaussian
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ones). The extreme values obtained from a bispectral analysis are therefore ap-
proximately 50% higher of those estimated via the Eurocode approach. There-
fore, in this application, results show how neglecting the non-Gaussian nature
of wind loads, maximum (resp. minimum) responses are underestimated (resp.
overestimated) in the Gaussian assumption, yielding unsafe (resp. uneconomic)
structural design.

6.3 Bridge over the “Grande Ravine”

This case study involves another project conducted by Bureau d’Étude Greisch.
The technical and descriptive details here reported are taken from technical re-
ports They kindly provided [141, 142].

It is located in the Municipality of Trois-Bassins, Réunion Island (FR), along
the Route of Tamarins (Route des Tamarins) crossing the Valley of the Grande
Ravine river. Figure 6.18 shows two views of the area, taken from Google Maps.
In Figure 6.18-b, in red it is drawn the exact location of the bridge.

B

(a) (b)

Figure 6.18: Google Maps views of the site: (a) Macro view; (b) Close
view, with red highlights of the exact bridge location crossing the Grande

Ravine Valley.

It consists of a 2×2 lanes bridge, officially opened on June 2009, with the aim
of reducing the traffic load on the local roads along the west coast of the island.
Its main 288m span goes over a 160m deep valley. Figure 6.19 shows an above
view of the Bridge, and the Valley running under it.

The deck is made up of orthotropic steel plates, resting on two 20-degree tilted
counters, composed of prestressed concrete (see Figure 6.20).

Figures 6.21 and 6.22 show technical drawings of the bridge deck, in a planar
and lateral view, respectively.

The structure was designed following a stochastic analysis to turbulent winds,
assuming them as Gaussian processes (i.e. spectral analysis). Table 6.7 lists all
the relevant turbulence data used to characterise the wind action. Figure 6.23
shows the evolution of the bridge-deck aerodynamic coefficients, with varying
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Figure 6.19: Above view of the Bridge over the Grande Ravine river
Valley. Courtesy of Bureau d’Étude Greisch.

Figure 6.20: Image of the deck cross-section, during construction stage.
Courtesy of Bureau d’Étude Greisch.

incidence angles. For the design, a mean incidence angle i0 = −6◦ has been
assumed.
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Figure 6.24 shows the results obtained in terms of extreme values, comparing a
non-Gaussian stochastic analysis (green-positive, blue-negative) with a Gaussian
one (red color, original studies). Figure 6.24-a shows the vertical displacements
along the bridge deck. Figure 6.24-b the bending moment My. Figure 6.24-c the
vertical support reactions. Figure 6.24-d the base reaction moments around the
Y-axis.

The difference between non-Gaussian and Gaussian results is indeed small.
Being both the structure as well as the loading configuration symmetrical, any
possible non-Gaussian feature of the wind loading is smoothened out, causing lit-
tle effects on the overall structural behaviour, with respect to a Gaussian assump-
tion. Nonetheless, small differences can be clearly observed at midspan, where
the structure clearly vibrates the most. The highest vertical displacement with a
Gaussian assumption is computed at 0.132m, while assuming a non-Gaussian load
it increases to 0.139m, with almost a 6% increase (considering the positive for-
mulation of the peak factor). On the other hand, looking at the bending moment
across the bridge deck, the positive non-Gaussian formulation shows an overall
reduction of the effort at the lateral supports of the main span (while shows
an increase of bending moment in the center of the span), while is the negative
formulation provides inverted trends, with higher values at the span supports
(58200 kNm vs. 55400 kNm at the intermediate supports of the central span)
with an increase of 5%, while a decrease of effort in the centre of the span. Then
non-Gaussian and Gaussian assumptions provide comparable results in terms of
bending moment along the lateral spans. Looking at the results obtained for the
vertical support reactions, they understandably follow the considerations made
for the vertical displacements of the bridge deck. Finally, for the moment reac-
tion about the Y-axis, there is an inversion of magnitude between positive and
negative non-Gaussian formulation with respect to the Gaussian one. This effect
might be due to the small slope (0.5%) that the bridge has (from left to right,
see Figure 6.22).

Considered the complex morphology of the site (curved valley below, which
might affect the wind flow direction) where the bridge locates, it would be inter-
esting to test the structure with uneven turbulent loading, to see if asymmetry in
the loading could potentially result in more non-Gaussian features of the resulting
responses.
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Figure 6.21: In-plane detailed view of the bridge deck. Courtesy of
Bureau d’Étude Greisch.

Figure 6.22: Detailed lateral view of the bridge. Courtesy of Bureau
d’Étude Greisch.
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Figure 6.23: Aerody-
namic coefficients of the

bridge deck.

Table 6.7: Wind turbu-
lence characteristic values.

U u(t) v(t) w(t)
µ [m/s] 49.7 0 0 0
σ [m/s] - 8.4 6.72 5.88
Lx [m] - 100 50 15
Ly [m] - 30 30 10
Lz [m] - 25 20 10

Cx - 12 12 12
Cy - 6 6 6
Cz - 9 9 9
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(a) (b)

(c) (d)

Figure 6.24: Results of a bispectral analysis on the Grande Ravine bridge
under non-Gaussian turbulent wind loading. Comparison with previous
Gaussian results. Red - original Gaussian results (extreme values). Green
- non-Gaussian positive extremes. Blue - non-Gaussian negative extreme.

Images generation courtesy of Bureau d’Étude Greisch.
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6.4 The SK2BR-curve
In previous Sections applications of Bispectral Analysis to different cases, either
academic or real, have been presented and discussed.

They served us to outline how a bispectral analysis might sometimes lead to
different results, with respect to current practices, where a Gaussian assumption is
made. In some cases, these differences might affect the final design or verification
of the structure (as cases similar to the one discussed in Section 6.2). In others, the
differences are limited, so that effectively assuming Gaussian wind loads would
not harm the final structural design, but it might change some detailing (see
Section 6.3).

Also, the example presented in Section 6.1, even though of academic nature,
has helped us to show and understand how some simplifications, that are usually
made in a Gaussian context (i.e. neglecting the outer-diagonal elements when
recombining modal responses statistics), do not have the same mathematical
meaning, and so bear considerable different results, at statistical orders higher
than the second (i.e. when the Gaussian assumption is dropped).

One should now be able to understand “why” Bispectral analyses are (or might
be) important. Yet, all these examples could not give us a clear, general picture
of “when” they are actually important, and better not be avoided.

In fact, looking at the problem under an engineering point of view, what would
be really appealing is having means to roughly, but quickly, estimate the necessary
conditions for which an accurate Bispectral Analysis is strongly recommended,
knowing that the final results would be very much different, and when it can be
in fact avoided, preferring an easier Spectral (e.g. Gaussian) one (see Section
3.3.2).

Indeed, the source of all these considerations stands in the fact that, a pri-
ori, wind loads carry an intrinsic degree of non-Gaussianity, due to reasons
that have been extensively discussed in Section 4.4 and Chapter 4. However,
what matters the most (in our specific case) is that resulting responses are non-
Gaussian as well, so that the interest of using non-Gaussian Bispectral analyses
still holds. Nonetheless, as it has been briefly discussed in the introductory part,
non-Gaussian nature of wind loads might also be better accounted in those con-
texts where responses are expected to be Gaussian processes (due to resonance
effects, which make them act as undamped harmonic vibrations [14]), but which
are highly dependent on the energetic content of the loading process, such as
flutter aeroelastic instability phenomena (see Section 4.2).

There are two main factors that influence the resulting non-Gaussian degree
of the response of a given structure, undergoing non-Gaussian excitations:

• the degree of non-Gaussianity of the loading itself, e.g. the more non-
Gaussian the loading process, the higher the chance that resulting responses
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will be non-Gaussian as well;

• the ability of the structure to reduce non-Gaussianity of the loading process
through its FRF (Frequency Response Function, see Equation (3.5)) This
is directly linked to the frequency contents of both the loading and the
structure’s main vibration modes. The closer (but not identical) frequency
content, the lower the resulting reduction. So that if the loading carries
an important degree of non-Gaussianity, the responses will be more likely
non-Gaussian as well.

To verify this aspect, several bispectral analyses (for each of the three con-
sidered cases, Quetzalapa, Tennet and Grande Ravine) were performed consid-
ering different configurations. In this Work, the first source hes been kept fixed,
meaning that the wind characteristics and so its non-Gaussian degree were left
unchanged. This choice has been made since wind turbulence (and so wind loads)
is something intrinsic to the geographical site in which the structure is located,
data that is usually collected via on-site measurements. Altering this informa-
tion would automatically invalidate a fundamental (and physical) aspect of the
analysis. Therefore, it has been decided to only let the damping ratio vary, since
usually this is a structural parameter that is indeed dependent on the structural
system itself, but that can also be modified via external devices (dampers) based
on both structural and design requirements (serviceability, comfort criteria [48]).

Table 6.8 resumes all the different damping ratios used, for the three cases.

Table 6.8: Values of damping ratios used, for each case.

Quetzalapa (6.1) Tennet (6.2) Grande Ravine (6.3)
1 0.5% 0.3% [!] 0.3% [!]
2 1% 1% 0.4%
3 2% 1.5% 0.5%
4 3% [!] 2.2% 1%
5 5% 3% 1.5%
6 7.5% 5% 2%
7 10% 8% 2.5%
8 12% 13% 3%
9 15% 20% 5%
10 20% 25% 7.5%
11 25% 10%
12 15%
13 20%

Values marked with [!] are the damping ratio values used in the original
studied configuration.
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Figure 6.25 shows the resulting curves of skewness to background-resonant
ratios. On the abscissa, the background-resonant ratio reads [29]

BR = m2,b

m2,r
(6.7)

where
m2,b = m2,p

k∗2 (6.8)

and
m2,r = πω0Sp(ω0)

2ξk∗2 (6.9)

are the background (i.e. quasi-static) and resonant components of a given modal
response, being m2,p the second order moment (i.e. variance) of the relative modal
loading p(t), k∗ the modal stiffness, ω0 the modal natural circular frequency, ξ the
modal damping ratio and Sp(ω) the PSD of the modal load evaluated at modal
frequency ω0. Physically, the BR ratio quantifies how much the modal response
is background (i.e. quasi-static) with respect to its resonant component. Ratios
smaller than 1 would indicate that the modal response is mainly resonant, while
ratios greater than one would suggest that the dominant structural behaviour is
quasi-static.

On the other hand, the skewness ratio on the ordinate refers to the ratio of
skewness of modal response over skewness of the relative modal loading. That is:

SK = γ3,q

γ3,p
(6.10)

where γ3,q and γ3,p are the skewness of modal response and load respectively.
Figure 6.25 shows the resulting SK2BR curves (for each case, left to right)

for the principally contributing modal responses. In all cases, as soon as the
background-resonant (BR) ratio increases, the skewness (SK) ratio tends to the
limit case in which the SK ratio has unitary value, i.e. the skewness of the
modal response γ3,q is identical to the skewness of the modal load γ3,p (complete
conservation). Looking carefully, it might seem that some curves have been cut
(purposely) at the intersection with the horizontal asymptote. However, the
Author can prove that no cut was made. While it would be possible to have
those curves slightly surpass the horizontal asymptote, this is very unlikely to
happen (since a linear system has been assumed), and if so, under very special
conditions. Therefore, the unitary SK ratio is the ultimate case that one could
possibly reach in most cases, which is effectively reached under some (extreme)
large damping ratio configurations.

While some might argue that these curves have been drawn assuming some
damping conditions that would be extremely rare (if not impossible) to have in a
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Figure 6.25: Skewness to background-resonant ratios (SK2BR) curves,
for the main structural vibration modes.

Quetzalapa (Left); Tennet (Centre); Grande Ravine (Right).

real scenario, it is important to look at these results from a different perspective.
Figure 6.26 draws the same results, but grouped into the same, unified, figure. As
first observation, it can be noticed how for three different structural systems, not
only the trends are almost identical, but also the values are quite close. This is
of fundamental importance, proving how these curves are in effect consistent no
matter the structural/load characteristics. Moreover, for BR ratios smaller than
1 (i.e. more resonant than background, quasi-static behaviour), the SK ratio can
reach values as high as 0.5, which means that the modal responses could carry
up to half the total degree of non-Gaussianity of modal loads.

So that, neglecting the non-Gaussian nature of the wind loads could be harm-
ful if the skewness of the wind load (see Equation (6.11) for the analytical formula
at the level of nodal wind forces [5]) would be high enough (> 0.2) to result in
strong-to-medium non-Gaussian responses.
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in which small terms have been neglected with respect to the formulation given
in [5].

The SK2BR-curve in Figure 6.26 formalises an important, novel point of view
in regard to buffeting analyses. If the skewness of the wind load in Equation
(6.11) (proportional to 3Iu, where Iu is the turbulence intensity, see Section 4.1)
is high enough, then a quick assessment of the background-resonant BR ratio by
means of a spectral analysis (second statistical order, see Section 3.3.2) would
serve to estimate if a more accurate non-Gaussian bispectral analysis is required
for the case studied. In fact, for BR ratios > 0.5, if the wind load contains high
non-Gaussian features, then Figure 6.26 tells us that it is in fact recommended
to perform a bispectral analysis a since a considerable degree non-Gaussianity is
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expected at the level of modal responses, and so therefore structural responses
too.
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Chapter 7

Conclusions & further
developments

In this Thesis, the problem of Bispectral Analysis was covered.

Chapters 1 to 3 served at giving a complete introduction and overview of the
mathematical aspects involved in a Bispectral Analysis.

In Chapter 4, after having firstly outlined the mathematical reasons for which
the wind load carries an intrinsic degree of non-Gaussianity, a generalised wind
loading model has been formulated, that given the probabilistic description of the
wind turbulence, evaluates the stochastic quantities of interest of the resulting
wind load, regardless of the degree of the model of transformation. Then, in
the context of this Thesis, its specialisation to a quadratic (second) transforma-
tion has been detailed, from which PSDs and Bispectra of wind loads have been
derived.

In today’s current practice, while more and more authors in the scientific
community recognise the non-Gaussian nature of wind loading (from actual mea-
surements), very few authors do effectively account for this aspect of the buffeting
load. Also, many considering a time domain approach to the resolution of the
general equations of motion (see (3.1)) [72, 7]. In [70], authors have also ex-
tended the application of non-Gaussian wind loads to a system with nonlinear
mechanical behaviour.

In a spectral approach, currently, the practical design of structures is based
on a Gaussian assumption. There is no commercial software nor any research-
oriented Finite Element code able to deal with non-Gaussian analysis in the
frequency domain. In that, this Work aimed at encouraging the use of stochastic
approaches, extending to even more complex scenarios. In particular, the common
assumption that is made in practice of Gaussian wind loads is no longer kept valid
(i.e. linearisation of buffeting forces), and instead a non-Gaussian formulation is
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considered. This has also shown that this is not only doable, with the proposed
methodology, but sometimes strongly recommended.

In Section 4.8 Proper Orthogonal Decomposition (POD) was discussed. The
origins of such mathematical techniques go back to 19th-20th century. After a very
brief historical and mathematical recall of the most important concepts behind
such techniques, their leverage in Wind Engineering applications was recalled. In
that, Solari1 in [43, 82] has done a monumental work in collecting all the appli-
cations of POD-like techniques within the macro-areas influencing modern Wind
Engineering. Following, Carassale et al. in [81] detailed the application of POD
techniques to a spectral approach to the buffeting problem, with an approach
named “Double Modal Transformation”, in which they coupled POD techniques
intrinsically used to solve the Eigenvalue problem for the determination of the
modal matrix to a POD decomposition of the spatial wind field into a set of
principal components. Acknowledging the powerfulness of such an approach, in
Section 4.8.2 extension of POD to a non-Gaussian context was formulated, es-
tablishing a direct relation between the bispectra of non-Gaussian buffeting loads
and the POD modes of the PSDs of the base wind turbulence.

Then, Chapter 5 covered the numerical part, which is an important aspect
of this Work. The novel Mesher algorithm has been presented, and its core
features discussed. Combining both the theoretical benefits of POD and the
power and efficiency of the proposed algorithm, non-Gaussian buffeting analysis
of real (possibly large) civil engineering structures has been tackled, for the first
time.

Finally, in Chapter 6, a series of examples have been presented as a concrete
example of application of bispectral analyses. They covered both academic and
real examples. The academic ones, as the Quetzalapa Bridge example presented
in Section 6.1 are indeed a useful tool to provide, for anyone interested in repro-
ducing the results presented in this Work. On the other hand, the real examples
have served us to show that with the proposed methodology, accurate bispectral
analyses are now applicable to relatively large MDOFs structures, with close to
a thousand degrees-of-freedom actually loaded by non-Gaussian buffeting loads
(i.e. counting much more than a thousand in total). Moreover, in less than 6h
of computational time on a single machine, using only 4 cores. This hardware
configuration has been deliberately chosen in this first stage of developments as
a way to test the applicability of the novel algorithm even on older machines not
having all the physical cores that modern boards provide (8, 16 or more).

1Named amongst the Fathers of modern Wind Engineering.
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There are however several ways in which this Work can (and should!) be
improved. Starting from the last point, discussed in detail in Chapter 5, the nu-
merical side, which is indeed a huge part of this Work, has yet lots of improvement
space that must be covered, so to enhance even more the computational power
of the proposed methodology, and extend feasibility of bispectral analyses on a
single machine of even bigger models. Among the most important aspects, the in-
clusion of distributed memory architectures parallel paradigms (MPI) to leverage
execution of bispectral analyses on multiple machines (e.g. clusters), whenever
available. This is specially important (as per the current implementation) if tack-
ling very big models, with more than tens of thousands degrees-of-freedom which
are under the non-Gaussian buffeting action. Currently, these kinds of model
would exceed several days of computing time on a single machine. Also, improve
and extend GPU support, for both shared and distributed memory systems, in
case of single or multi-GPU hardware support. This is potentially what would
really provide massive scalability capabilities to the Mesher algorithm.

Another important aspect to further improve the numerical part, is a better
integration of the current algorithmic arrangement with a time domain approach.
Ideally, its ability to generate an optimal meshing pattern, based on all the aspects
discussed in detail in Chapter 5, provided discrete records of wind velocities
(or pressures), either measured or simulated [143]. This feature could be based
starting from the generation a discrete bispectrum from a time series (through
the use of Discrete Fourier Transform algorithms) (as it has been done in the
first developments of the Finelg2020 Research Project, for the validations with
a Monte Carlo approach [137, 138]), and building an optimised meshing pattern
on top of it, reconstructing the required information where missing.

On the mathematical side, while this Work aimed at establishing a general
framework for the analysis of structures under non-Gaussian wind loads, it spe-
cialised in the Bispectral analysis, therefore limited to third statistical order only.
Extension of this framework to even higher-order, to say at least fourth order with
explicit formulations of the trispectrum, could finally provide all the necessary
tools for better tackling the problem of extreme values computation, discussed in
Section 2.3.5. This would also allow the drop of the necessity of an assumed, fixed
relation between the skewness γ3 and the excess kurtosis γe coefficients, as it was
explained in Section 2.3.5 (see Equation (2.71)). Currently, without it one would
not be able to have estimates of non-Gaussian peak factors (see Equations (2.69)
and (2.65)), and so interest in Bispectral analyses in the first place. While it is
indeed a valid mathematical assumption in most of the cases to which common
Wind Engineering applications can be related to [32], having a way to directly
estimate fourth order statistics is indeed a preferred option, and something to
strive for.
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Another way of further generalising the proposed methodology is to include
other loading phenomena than the wind buffeting loading, such as wave loading
[144, 145, 146], or fatigue [147, 148]. Also, while in this Work only linear systems
have been considered, further research could include application of bispectral
analyses to cases where the loading is non-Gaussian and at the same time the
structure shows some nonlinear behaviour, which might introduce an additional
non-Gaussian degree to the resulting structural responses. This would be in
continuity of the work already done by other authors in this direction [70].

Last, but not least, the most important aspect, which is at the base of this
Work and many other applications in modern Wind Engineering to the general
aeroelastic problem (including the buffeting problem and all the aeroelastic unsta-
ble phenomena, discussed in the introductory part in Section 4.2): the assumption
that the base turbulence (i.e. what here has been referred to as the elementary
wind turbulent components) is a zero-mean, random, Gaussian process. While
this assumption has been proved by many authors, for which the full list of ref-
erences would cover at least half a page, in last the decade few authors ([10]
among others) have started claiming that in reality, under some cases, even the
base wind turbulence might show some degree of non-Gaussianity, and that the
most fundamental assumption of Gaussian turbulence does not hold in all circum-
stances. In this scenario, a completely new kind of research could investigate the
mathematical formulation of the generalised wind model presented in this Work,
but even more generalised, accounting for the possibility of the introduction of a
completely new concept: the Bispectrum of wind turbulence.

Indeed, from this enhanced generalised model formulation would certainly
benefit all those physical applications in which it is already known that the base
process is itself already a non-Gaussian random process, far beyond the realm of
Wind Engineering.
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Appendix A

A general transformation process
in a Finite Element model: from
wind turbulence to wind forces

The first concerns the transformation of the wind turbulent components (i.e.
turbulence velocities) into aerodynamic loads (i.e. forces), at the level of the
set of the aerodynamic nodes NNa1. Then, such resulting loads, applied at the
aerodynamic nodes, must be translated into aerodynamic loads directly applied
to the structural nodes NNs. Therefore, Equation (4.16) could be rewritten, in a
more general way, as:

f(t) = XEa(u)u(t) + XEa(v)v(t) + XEa(w)w(t) (A.1)
in which aµk is a NNa× 1 vector of wind model aerodynamic coefficients for each
one of the three elementary wind turbulent component µk (µk ∈ {u, v, w}, k =
{1, 2, 3}), E is a NNs × NNa matrix translating the forces at the aerodynamic
nodes to equivalent forces at the structural nodes (see Figure A.1), and X is a
NDOFs × NNs matrix accounting for the effect of each nodal force on the whole
structural system. So that, the general matrix of wind model coefficients can be
expressed as a composition of different transformations matrices:

A(µk) = Ta(µk), µk ∈ {u,v,w} , k = {1, 2, 3} (A.2)
where

T = XE (A.3)
1The concept of aerodynamic node embodies the simplest geometrical entity at which infor-

mation concerning the wind flow can be asserted (i.e. measured).
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is a NDOFs× NNa transformation matrix that groups the two transformation pro-
cesses independent from the wind model, that translates wind turbulence speeds
into wind forces.

(a) (b)

Figure A.1: Example of distribution of wind load. (a) Wind force at the
aerodynamic node (red). (b) Equivalent force transformed at the enclosing

structural nodes (blue).

The definition of E can be more or less intricate, based on the chosen interpolation
method [73]. This is however not explicitly tackled in this Thesis, since its choice
is simply a specialisation of more general concepts introduced in this section. To
be noted however that, while this interpolation procedure might be relatively easy
in a deterministic context (i.e. when finite realisation or generation of time series
are available), the same cannot be implied in a stochastic context, when loading
are only known in a probabilistic sense, hence the stochastic interpolation might
indeed require different considerations with respect to the classical deterministic
approach.
Nonetheless, most of the times, and for simplicity reasons, the set of aerody-
namic nodes NNa is assumed to be a subset of the set of structural nodes, that is
Na ⊂ Ns, where Ns and Na denote the set of structural and aerodynamic nodes
respectively. Therefore, hereafter, the set of aerodynamic (and structural under
such hypothesis) wind loaded nodes will be referred to as NN (i.e. dropping the a
in the proper notation NNa, since now every aerodynamic node is indeed a loaded
structural one). The set of all structural nodes will be still referred to as NNs2.
This implies that ultimately, the matrix translating forces at the level of aerody-
namic nodes into forces applied to structural nodes E can be split into two block
matrices: a first NN× NN block which equals the identity matrix I, and a second

2Since not all of them might possibly be under the wind action, e.g. a building with inner
columns, protected from the wind action.
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(NNs− NN)× NN block full of zeroes. In mathematical form:

E =
[
I
0

]
(A.4)

The same can be done with the matrix X extending the effects of structural nodal
forces to structural DOFs, so that Equation (A.3) can be rewritten as:

T =
[
Xa Xr

] [I
0

]
= Xa := X̂ (A.5)

since the remaining NNs−NN structural nodes are not loaded (by the wind action),
hence they will not contribute to the global forces applied to the set of structural
DOFs.
Therefore, in such context, Equation (A.2) could be rewritten as

A(µk) = Ta(µk) ≡ X̂a(µk) (A.6)

where X̂ is the reduced NDOFs × NN matrix translating applied nodal forces to
global structural DOFs actions (i.e. loadings). Finally, with these considerations
Equation (A.1) takes the form

f(t) = X̂
(
a(u)u(t) + a(v)v(t) + a(w)w(t)

)
(A.7)
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Appendix B

Proper Orthogonal
Decomposition: history and
mathematical aspects

B.1 A historical review of POD

Starting from the first decades of the 20th century, wind engineering as a branch
of fluid dynamics started to arise and establish on a global scale.
The main object of interest was the study and characterisation of turbulence
[149, 150]. In fact, even though the physical laws, the mathematical basis (in
the Navier-Stokes equation of fluid mechanics) and experiments were already
available, yet these tools were not enough for use in understanding this complex
phenomenon. Some difficulties were in the non-linearity of such Navier-Stokes
equations, and a very limited knowledge of their analytical solutions at high
Reynolds numbers (i.e. in turbulent flows) [149, 150]. Therefore, this brought
many authors at studying this phenomenon.
It is in such context that the Proper Orthogonal Decomposition (POD) arises.
The concept of POD is a very broad mathematical concept. As a consequence,
it goes under plenty of different names and acronyms. For example, POD can
be identified under several different, but similar, methods: Principal Component
Analysis (PCA), Karhunen-Loève Decomposition (KLD) and Singular Value De-
composition (SVD) [151], among all.
In wind related fields, many authors relate usage of POD techniques to the pi-
oneering work introduced by Lumley1 [152], with the goal of decomposing the

1Even though, such technique had been already proposed by many other authors in different
disciplines [149]. For example, Solari in [43] pointed out that POD was initially born in the
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random vector field representing a turbulent flow into a set of deterministic func-
tions, each one of them capturing a portion of the total fluctuating kinetic energy
in the flow. However, [150] points out that this misconception of POD being
the initial work proposed by Lumley is what had actually prevented the field of
turbulence studies evolve in the right direction, during second half of the 20th

century. Indeed, the two are somehow linked under certain assumptions.
To start simple, POD is a procedure that allows extracting a basis for a modal
decomposition from an ensemble of random signals. The hope of such an inno-
vative idea was in the fact that possibly a limited number of such deterministic
functions (called the POD modes) would provide a very representative idea of
the overall organisation of the turbulent flow. Moreover, POD would have helped
finding the coherent structures (organised spatial features which repeatedly ap-
pear in time. Usually appearing in flows dominated by local shear) that made
up the turbulent flow, but which were still hard to be found and observed. Such
concept of coherent structures was firstly introduced by Liepmann in [153], and
extensively used by Townsend in [154] ([149]), and later by Sirovich in [155]. The
POD would have offered a rational method for extracting such flow features. The
advantages in the development of such an approach were in the fact that, even
though other methods existed already, each one of them had non negligible is-
sues when applied to analytical studies of turbulence. Also, computational fluid
dynamics (CFD) was at the time starting to emerge, as an alternative to the
two conventional analytical approaches to the topic: statistical and deterministic
analyses. The strength point of CFD was that it offered a direct resolution of
the Navier-Stokes equations. However, the drawback was that such simulation
provided little understanding of the solution it would have produced [149].
In that, POD would have provided solutions to all of those approaches [149]:

• It is statistically based

• Its analytical bases would help understand the method’s strengths and lim-
itations

• It allows to extract spatio-temporal structures considered essential based on
some predetermined criteria, providing a rigorous mathematical framework
for their complete description.

An important point of POD stands in the fact that it is a linear procedure, both
in a positive and less positive view point. In fact, if in many applications POD
(or PCA) has proved to perform well in extracting such coherent structures that
resemble the observed physical phenomena, in some other applications it failed

XIX century under the name of Singular Value Decomposition (SVD), later transformed at the
beginning of the 20th century into PCA after Karhunen-Loève.
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at providing meaningful results, mainly due to the orthogonality of the result-
ing modes [156]. As a consequence, a method using non-orthogonal modes has
been formulated, named Independent Component Analysis (ICA). ICA assumes
that measured data is derived from a generative model in which unknown sources
(called Independent Components (IC)) are mixed, at each time instant, by an
unknown matrix (referred to as mixing matrix). While in the POD it is assumed
that modes (or PC in PCA) are orthogonal, ICA assumes that ICs are mutually
statistically independent2. ICA coincides with POD (or PCA) for Gaussian ran-
dom processes (or vectors) [43]. Nonetheless, linearity of POD does not imply
any linear assumption on the problem involved.
An important variant of POD takes the name of spectral POD (SPOD) [157] It
has been formulated after that it has been realised that classic POD applied to
turbulent flows is good at capturing large coherent structures, but less at the
micro structure (micro scale) level, since in such cases, these structures tend
to curl in small spaces, hence their low energy content makes it difficult to be
identified by POD [158, 159]. In this, SPOD is more advantageous since being
it carried in the frequency domain, both the most energetic modes as the small
scale turbulences (low kinetic energy, very localised in space) are identified at their
characteristic frequencies. Also, SPOD modes represent coherent structures that
evolve in space and time, while space-only POD modes generally do not [160, 161,
162]. Moreover, SPOD is in reality a special case of a more generalised spatio-
temporal decomposition [79] under the assumption that the random process is
statistically stationary [160], as it is the case of wind turbulence. So, if POD
modes are the eigenvectors of the two-point spatial correlation functions at each
time lag, SPOD modes are the eigenvectors of the cross-spectral density matrix
(or tensor, CSD) at each frequency. Therefore, even though the “POD” part of
SPOD is conceptually and algorithmically identical to the one of the classic POD
(eigenvectors of a matrix), the “spectral” part is much less relatable. In fact, if
one does not have already empirical methods for the estimation or evaluation of
such cross-spectral density matrix of the random process, one has to meticulously
use numerical methods for estimating it starting from time series realisations of
the same random process (for example, Welch’s method). This is what has been
extensively investigated in [160], where authors discuss the discrete form of the
SPOD (in the same spirit as the Karhunen-Loève decomposition is the discrete
version of the continuous POD formulation), estimated from time series records.
This is also what made SPOD gone a bit neglected in place of the classical space-
only POD [160, 161, 162], or other Reduced Order Models (ROMs), as dynamic
mode decomposition (DMD) [163, 164] and others, mainly due to the fact of (i)
lack of a considerable amount time-resolved data, and (ii) difficulties in obtaining

2NOTE: in POD, POD coefficients (i.e. eigenvalues) are uncorrelated instead, carrying the
total variance contribution of their relative POD mode (eigenfunctions, i.e. eigenvectors).
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the cross-spectral densities for a large number of spatial points using hot wires,
and large arrays of hot wires become intrusive, specially for small scale models
[161]. Besides, SPOD would require very long time series and time-integrations
that were almost prohibitive at the time of its formulation. Indeed, today things
have significantly improved in that matter, and SPOD has come back to being
used consistently in wind engineering applications.

It is in this light that the work carried in this Thesis is thought and developed.
In the following chapters, POD techniques will be applied in a frequency domain
approach, hence calling for SPOD. With the application of SPOD to the (PSDs
of) wind turbulence field, spectra (and bispectra) of the wind load and structural
responses will be found. Once these stochastic entities are computed, the relative
statistical information (statistical moments) can be evaluated (by integrating
these function in their domain of existence), finally leading to an estimate of
the probability density function of the random process (see Figure 2.1).

B.2 A mathematical perspective to POD
In the most general fashion, POD refers to a very broad mathematical context.
Indeed, POD is a well established and universal concept: find a set of ordered
orthonormal basis functions (or vectors) in a subspace where a random process
(vector) takes its values (i.e. its domain of existence), such that any sampled
function (vector) in such space can be optimally expressed using this reduced
subspace. The optimality is expressed in terms of least-square error on the vari-
ance, that is, the resulting variance is as close as possible to the exact one. To
better understand, let’s suppose to collect an ensemble of realisations of a given
function u(x) defined over a given domain X (i.e. x ∈ X). The problem stands
in seeking a deterministic function ϕ that is most similar, on average, to the
members of the ensemble. In mathematical terms, this reads

ψ = max
ψ

E [| ⟨u, ψ⟩ |2]
⟨ψ, ψ⟩

, (B.1)

where
⟨f, g⟩ =

�
X

f(x)g∗(x)dx

denotes the function inner product, such that ⟨f, f⟩1/2 =
√�

X
f(x)f ∗(x)dx = ||f ||

is the norm operator. To note that the average might be time, space, or ensemble
averaging. The function ϕ(x) is found as that maximising the normalised inner
product with the random function u(x). A unitary normalised product would
mean that the two functions are perfectly parallel in the function space.
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Besides, in any of its forms, it relies on the computation of the eigenvectors
and related eigenvalues of a given matrix, which usually goes under the name
of eigenvalue problem [165, 149]. It consists, given a real matrix A ∈ Rn×n, in
finding a n-set of pairs λ ∈ C and x ∈ Rn such that:

Axi = λixi ∀i = 1, . . . , n (B.2)

Clearly, the matrix A has to have some properties in order to ensure that Equation
(B.2) admits a unique solution for all i in {1, . . . , n}. Details on this aspect can
be found in [166]. In this Thesis, it is implicitly assumed that such mathematical
and geometrical conditions are met, for all matrices to which this methodology
is be applied.

B.2.1 Karhunen-Loève decomposition
The Karhunen-Loève decomposition is the original and continuous form of the
general POD concept. It was developed during the 1940s in the field of probability
theory, as an optimal series expansion of continuous-time stochastic functions, or
processes [151]. It states that a random function can be expanded as a series of
deterministic functions with random coefficients. It is important to underline that
it assumes the random function to be part of the L2 family of scalar functions,
i.e. it is square-integrable. Mathematically, it reads

u(x) =
∞∑
i=1

akϕk(x) (B.3)

where ak are the random coefficients also called modal amplitudes, given by

ak = ⟨ϕk(x)u(x)⟩ , (B.4)

with ϕk(x) referring to the deterministic empirical eigenfunctions of the Fredholm
integral equation �

X

R(x, x′)ϕk(x′)dx′ = λkϕk(x), (B.5)

where
R(x, x′) = E [u(x)u∗(x′)] (B.6)

is the two-point correlation tensor of the random function u(x), In other words,
from the Fredholm integral, it is clear that such eigenfunctions ϕ(x) are the
eigenfunctions of its kernel, i.e. two-point correlation tensor R. The Fredholm
equation formulation in Equation (B.5) is the continuous version of the eigenvalue
problem formulated in Equation (B.2), where the matrix A is represented by
the continuous two-point correlation function R(x, x′). To be noted that, the
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averaging operation in Equation (B.6) is done over a given statistical variable in
its probability space, in a general sense. The Karhunen-Loève decomposition can
be easily extended to discrete processes of the form x ∈ Rm.
To give more context, it might be thought that such statistical variable can be
time, space, or any other suitable variable related to the considered problem.

B.2.2 Space-only POD: vectorial form of the
Karhunen-Loève decomposition

The extension of the KL decomposition to vectorial functions or vectorial fields,
as for the case of wind turbulence, can be achieved by rewriting Equation (B.3)
with bold notations, signifying vectorial quantities instead of scalar:

u(x) =
∞∑
k=1

akϕk(x). (B.7)

To distinguish from the original formulation, it is referred to as space-only POD.
It is based on the concept of “snapshot” POD, where a snapshot can be seen
exactly as taking a picture of a moving target. In this POD formulation, each
snapshot is captured at a time scale distance such that two consecutive snapshot
(i.e. images) can be considered time independent. When applied to fluid flows,
POD provides some important properties, aside from the orthogonality of the
basis vectors [160]:

• the ensemble of eigenvalues (λk) sum to (in the infinite case) the total vari-
ance of the process, i.e. the total kinetic energy of the wind flow. Mathe-
matically: ∑

k

λk = E[⟨u,u⟩] = E[uTu]. (B.8)

• Optimality. Any truncation of such a decomposition with n terms, captures
more of the total variance than any other orthogonal expansion of the same
order. This property is due to the ordering of eigenfunctions with decreasing
eigenvalues λk > λk+1, such that any truncation will ensure keeping the first
n eigenfunctions with the highest variance contributions.

• The random coefficients are uncorrelated, meaning that the expectation
between any two different coefficients is zero

E[aiaj] = λiδij (B.9)

where δij represents the Kronecker delta. This comes from the orthogonality
property of the relative eigenfunctions, or eigenvectors.
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B.2.3 The Spatiotemporal Biorthogonal Decomposition
Introduced by Aubry in [167, 79], it extended the common practice of spatial-
only POD. His approach is based on a double decomposition, in both space and
time, whose resulting orthogonal modes are coupled: each space component called
topos is associated with a time component, called chronos. The latter is the time
evolution of the former, and the former is the spatial configuration of the latter.
Mathematically, the biorthogonal decomposition formulates:

u(x, t) =
∞∑
n=1

λnϕk
∗(x)ψk(t). (B.10)

One can clearly see the difference of Equation (B.10) with respect to Equation
(B.3). In this approach, ϕ(x) and ψ(t) are the eigenfunctions of two linear opera-
tors: for the former, the linear operator whose kernel is the two-point correlation
function �

T

R(x, x′)ϕ(x)dt = λϕ(x) (B.11)

where
R(x, x′) =

�
T

u(x, t)u∗(x′, t)dt (B.12)

while for the latter the linear operator whose kernel is the two-time (i.e. temporal)
correlation function: �

X

R(t, t′)ψ(t)dx = λψ(t) (B.13)

where
R(t, t′) =

�
X

u(x, t)u∗(x, t′)dx. (B.14)

The mathematical advantage of such bi-orthogonal decomposition is in the fact
that it can be applied even to statistically non-stationary flows, thanks to Equa-
tion (B.14).
Nonetheless, it still keeps the two correlation concepts (time and spatial correla-
tion) separate, not accounting for a possible unique correlation function account-
ing for both temporal and spatial shifts at the same time.

B.2.4 The revolutionising Lumley’s work
Before starting, it should be noted that while this paragraph is probably the
most important in the matter of POD introduction in turbulence fields, it is not
exhaustive for those willing to dig deeper in the subject. It is however treated
in this Thesis, not only for its fundamental importance, but also to ultimately
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clarify the possible confusion that all the numerous approaches discussed up to
now might have brought, recalling POD in one way or another.
In that, Lumley’s work provides a generalisation of POD in the most broad sense.
The work that he developed was based on a very simple and modest goal: find an
objective way to identify the coherent structures, what Townsend in [154] calls
“big eddy” [150].
The main question was: how could one chose a deterministic vectorial field that
best represents and follows a given random field changing in both space and time?
In mathematical terms, given a random vectorial field u(x, t) of space x and time
t, how to find a deterministic function ϕ(x, t) which optimally represents, in a
mean square sense, the random field. This is done by maximising the square of
their double inner product [150]:

⟨|u(x, t)ϕ(x, t)|⟩ =
〈
|α|2

〉
(B.15)

where
u(x, t)ϕ(x, t) ≡

�
X

· · ·
� +∞

−∞
u(x, t)ϕ(x, t)dxdt (B.16)

in which X denotes the entire spatial domain where the field is defined. Equation
(B.16) defines the inner product in two senses: first, as a usual scalar product of
two vectors, and secondly as a projection in Riemann space of two fields. This is
what George in [150] refers to as the great Lumley’s idea. From it, it would not be
difficult, applying variational calculus, to obtain the final Lumley’s formulation

�
X

· · ·
� +∞

−∞
R(x,x′, t, t′)ϕ(x′, t′)dx′dt′ = λϕ(x, t) (B.17)

where its kernel R(x,x′, t, t′) = ⟨u(x, t)u(x′, t′)⟩ is the two-point two-time cor-
relation, also called two-point two-time Reynolds stress tensor. Oftentimes,
Equation (B.17) is referred as to the POD integral, in an erroneous way [150].
In fact, Equation (B.17) might reduce to it, but under certain circumstances.
This happens only when the random process has the finite total energy prop-
erty along all its spatial dimensions and time. This signifies that the integral of
R(x,x, t, t) = ⟨u(x, t)u(x, t)⟩ is finite:

�
X

· · ·
� +∞

−∞
⟨u(x, t)u(x, t)⟩ dxdt <∞. (B.18)

Important to note that this concept of energy finiteness does not imply the field
to be finite, neither in space nor in time, just that its total energy is finite.
Indeed, if the field is limited in space or in time, the energy finiteness condition
would be automatically satisfied, as soon as u is a physical bounded process.
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So that is that only in such cases, results of Equation (B.17) can be referred to
as POD solutions, and the sum of the eigenvalues equals the total (finite) energy
in the field: �

X

· · ·
� +∞

−∞
R(x,x, t, t)dxdt =

∞∑
n=1

λn. (B.19)

Any random realisation of the field can then be represented as a linear combina-
tion of such eigenfunctions:

u(x, t) =
∞∑
n=1

anϕn(x, t) (B.20)

using some appropriate random coefficients given by projecting the field onto the
eigenfunctions

an =
�
X

· · ·
� +∞

−∞
ϕn(x, t)u(x, t)dxdt (B.21)

while the eigenvalues are given by

λn = ⟨anam⟩ δmn (B.22)

since the coefficients are uncorrelated.
However, there is one caveat. If each realisation of the instantaneous field can
be reproduced from its POD decomposition, determining the coefficients requires
the knowledge of the entire field at once, in space and at all times. This can be
quite demanding in terms of physical storage required for such task, even with
today’s storage capacity, and therefore even more decades ago. In fact, determi-
nation of the eigenfunctions by Equation (B.17) requires only statistics, i.e. the
determination of the two-point two-time correlation function R, which requires
measurements at two space-time points. On the other hand, to reconstruct the
instantaneous field from Equation (B.20), one needs the entire space-time field all
at once, as shown Equation (B.21). This issue is also present in the spatiotem-
poral biorthogonal decomposition formulated by Aubry [79].

B.2.5 Spectral Proper Orthogonal Decomposition
(SPOD)

Spectral proper orthogonal decomposition (SPOD) is one of the variants of POD
that try to overcome the known issue of classical POD of losing time related in-
formation (i.e. spatial only POD modes), In fact, the major problem of Lumley’s
approach is that, for solutions of Equation (B.17) to be considered as effective
POD solutions, the total energy of the process has to be finite (see Equation
(B.18)). However, very few real flows have this property. Therefore, applying
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this procedure to flows that are in reality of infinite energy, while ignoring this
finite energy hypothesis, would result in “POD modes” which would be highly
affected by such energy truncation, far from the real modes which would char-
acterise the physical process. This truncation is usually caused by limiting the
extents of the spatial domain, or by restricting simulation time.
There exists however a particular class of flow, which are homogeneous in space,
and statistically stationary in time. Indeed, the homogeneity features makes
them having an infinite energy, regardless of the time dimension. Therefore, as
a consequence, in such cases, application of Lumley’s integral would result in
solutions that would be highly affected by the imposed boundaries, unless there
exist some properties intrinsic to the kernel that make the integral to converge
[150].
For that, the simple case of a one-dimensional field of infinite energy will be
introduced first. Clearly, infinite energy is the result of fields being homogeneous
and stationary. The stationarity property makes that each statistical quantity
related to the process does not depend on the temporal origin at which it is
computed. Similarly, homogeneity is the same concept, but in a spatial domain.
Therefore, the two-time correlation function R(t, t′) will depend only on the time
lag τ = t′ − t. Hence, Lumley’s integral reduces to

� ∞

−∞
R(t, t′)ϕ(t′)dt′ =

� ∞

−∞
R(τ)ϕ(t+ τ)dτ = λϕ(t), (B.23)

� ∞

−∞
R(τ)

{
ϕ(t+ τ)
ϕ(t)

}
dτ = λ. (B.24)

Equation (B.24) implies that the eigenfunctions ϕ(t) for a 1D homogeneous sta-
tionary random process are harmonic functions, with eigenvalues being their
spectral energy content, given by the integration their Fourier transform in the
frequency space. Following Equation (B.21), the coefficients end up being the
Fourier transform of the field itself projected on the relative eigenfunction (i.e.
harmonic function with radial frequency ω)

û(ω) = 1
2π

� ∞

−∞
e−iωtu(t)dt. (B.25)

Finally, any realisation of the random field can be reconstructed via an inverse
Fourier transform

u(t) =
� ∞

−∞
eiωtû(ω)dω. (B.26)

Now, it is quite straightforward to extend this procedure to the more general case
of multiple spatial dimensions. The one dimensional two-time correlation function
R(τ) generalises to the stationary version of the two-point two-time correlation
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function
R(x,x′, t, t′)→ R(x,x′, τ)

, so that Equation (B.17) becomes
�
X

· · ·
� +∞

−∞
R(x,x′, τ)ϕ(x′, t+ τ)dx′dτ = λϕ(x, t). (B.27)

The cross-spectral density function (or matrix, or tensor) S can be defined as the
Fourier transform of the correlation function

S(x,x′, ω) = 1
2π

� +∞

−∞
R(x,x′, τ)e−iωτdτ (B.28)

while the correlation function is its inverse Fourier transform

R(x,x′, τ) =
� +∞

−∞
S(x,x′, ω)eiωτdω (B.29)

Applying the same mathematical concept as for the one-dimensional case, this
implies that, for any radial frequency ω the function

ϕ(x, t) = ψ(x, ω)eiωt

is a solution of the Lumley’s integral (B.17), with eigenvalue equal to λ(ω), where
functions ψ(x, ω) and λ(ω) are the solutions of the spectral eigenvalue problem

�
X

S(x,x′, ω)ψ(x′, ω)dx′ = λ(ω)ψ(x, ω). (B.30)

Equation (B.30) is the mathematical formulation of the spectral POD. The SPOD
modes are the eigenfunctions or eigenvectors of the cross-spectral density (CSD)
function or matrix of the random field.
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Appendix C

Detailed mathematical formula of
the bispectrum of a single
element of the 3D matrix of
bispectra of nodal forces

Following a detailed version [5] of the mathematical formula for the computation
of an element of the 3D matrix of bispectra of nodal forces (see Section 4.7 and
Equation (3.45)). It consists of a total of 27 terms, each one containing a product
of two PSDs of wind turbulence (see Section 4.1).
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Appendix D

Detailing of BsaLib public
Application Programming
Interface

This appendix details the public API (Application Programming Interface) of
BsaLib, the library code developed in this Thesis.
Its structure is inspired to that of OpenCL1, where each API call changes a
private internal state, to be set properly before the main API call that runs the
computational core is invoked. All BsaLib API calls can be grouped into these
macro categories:

1. Initialisation and state setting;

2. Main core run;

3. Post-processing.

A schematic representation of such grouping can be visualised in Figure 5.12.
Nonetheless, contrarily to OpenCL, all API calls are handled synchronously.
This is mostly due to the fact that in its interfacing layer, BsaLib tries to min-
imise any memory copy, hence only holding references (i.e. memory addresses)
to any data coming from the user. The only data that might be copied are
scalars, for which the copy is at most as expensive as taking a reference to the
original data. This choice not only guarantees fast API calls, but it also aims at
minimising the memory footprint, limiting any useless memory duplicates.
All API calls that are listed in this appendix can be found in the main interface
module file, BsaLib.F90. Some API calls have been omitted, specially those

1https://www.khronos.org/opencl/

https://www.khronos.org/opencl/
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whose interface is clear enough to state their purpose. For the full list of BsaLib
API call, visit the official repository documentation page2.

D.1 General purpose API calls

D.1.1 bsa_printBSAHeader

module subroutine bsa_printBSAHeader ()
end subroutine

Prints the B.S.A. ASCII logo to the console
____________________________________________

| _____ ____ |
| / \ / /\ |
| /____/ \___ / \ |
| / \ \ /____\ |
| /_____/ . _____/ . _/ \_ . |
| ____________________________________________ |

D.1.2 bsa_enableGPU

module subroutine bsa_enableGPU ()
end subroutine

Enables GPU offloading.

D.1.3 bsa_doValidateModalData

module subroutine bsa_doValidateModalData (bool)
logical , intent (in) :: bool

end subroutine

Controls modal data validation:

.true.: enables modal data validation. It consists of eliminating all those vibra-
tion modes that are not 1-normalised. This explains why BsaLib differ-
entiates between NM the total number of vibration modes (as per the user
provision) and NM_EFF, which is in fact the total number of vibration modes
kept after validation.

.false.: does nothing, and keeps modal data unchanged.

2https://html-preview.github.io/?url=https://github.com/miEsMar/BsaLib/blob/
main/doc/index.html

https://html-preview.github.io/?url=https://github.com/miEsMar/BsaLib/blob/main/doc/index.html
https://html-preview.github.io/?url=https://github.com/miEsMar/BsaLib/blob/main/doc/index.html
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☞ This API call was included in development stages, to separate verti-
cal/horizontal modes from torsional ones, which are usually normalised
differently (torsional modes are normalised based on unitary rotations,
not displacements). This API call has to be considered deprecated,
and will be eventually eliminated from future implementations.

D.1.4 bsa_generateBSAInputFiles

module subroutine bsa_generateBSAInputFiles (run)
logical , value :: run

end subroutine

Enables generation of the built-in BSA executable compatible input files. It takes
in input a logical variable, named run:

.false.: at run, generates BSA compatible files, and exits.

.true.: at run, generates files but continues normal execution.

D.1.5 bsa_forceBsaClsExecution

module subroutine bsa_forceBsaClsExecution (bool)
logical , intent (in) :: bool

end subroutine

If .true. is passed, enables the forces execution of the Classic approach.

D.1.6 bsa_Init

module subroutine bsa_Init ()
end subroutine

Initialises BsaLib internal state.

☞ This API call should be preferably come before every other BsaLib
related API call.

D.1.7 bsa_Run

module subroutine bsa_Run (m2mf_cls , &
m2mr_cls , m2o2mr_cls , m3mf_msh , m3mr_msh , m3mf_cls , m3mr_cls )

real( bsa_real_t ), target , allocatable , dimension (:) :: m2mf_cls
real( bsa_real_t ), target , allocatable , dimension (:) :: m2mr_cls
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real( bsa_real_t ), target , allocatable , dimension (:) :: m2o2mr_cls
real( bsa_real_t ), target , allocatable , dimension (:) :: m3mf_msh
real( bsa_real_t ), target , allocatable , dimension (:) :: m3mr_msh
real( bsa_real_t ), target , allocatable , dimension (:) :: m3mf_cls
real( bsa_real_t ), target , allocatable , dimension (:) :: m3mr_cls

end subroutine

D.1.8 bsa_Finalise

module subroutine bsa_Finalise ()
end subroutine

Cleans BsaLib internal memory.

☞ This API call should be the last of all the BsaLib API calls.

D.1.9 bsa_isCleaned

logical pure module function bsa_isCleaned ()
end function

Queries if BsaLib internal memory has been freed or not.

☞ Since this is query API call, it is safe to invoke it after bsa_Finalise.

D.2 API calls related to general BsaLib
settings

D.2.1 bsa_setAnalysisType

module subroutine bsa_setAnalysisType ( isuban )
integer ( bsa_int_t ), value :: isuban

end subroutine

Sets type of analysis. Valid value for suban:

1: Classic analysis (DEFAULT).

2: Mesher analysis.

3: both.
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D.2.2 bsa_setClassicMode

module subroutine bsa_setClassicMode ( i_mode )
integer ( bsa_int_t ), value :: i_mode

end subroutine

Sets computation mode for the Classic analysis type. Valid options for i_mode
are:

1 (BSA_CLASSIC_MODE_VECTOR): the vectorised implementation used. This is in-
deed the preferred option in terms of speed. There is however a limitation
of this approach: since it requires a considerable amount of allocated mem-
ory, and considered the limit of memory that is requirable to the runtime
(before going to unoptimised mechanisms, such swap partition) if a given
limit (≈ 8 Gb) is exceeded, the BsaLib runtime automatically switches to
a scalar implementation.

2 (BSA_CLASSIC_MODE_SCALAR): The internal scalar implementation is used. While
this implementation is slower than its vectorised counterpart, it is certainly
the one to be used to limit the memory footprint. Also, for very big cases,
the BsaLib runtime might automatically switch to this implementation is
too much memory allocation is required.

D.2.3 bsa_setScalingConv

module subroutine bsa_setScalingConv (iconv)
integer ( bsa_int_t ), value :: iconv

end subroutine

Sets the Spectra scaling convention. Valid values for iconv are:

1 BSA_PSD_CONVENTION_FREQ: The frequency convention is used. In this case,
the variance is given by the integration of the PSD over the positive range
of frequencies:

m2 = σ2 =
� +∞

0
S(f)df. (D.1)

2 BSA_PSD_CONVENTION_PULS: The circular frequency convention is used. In this
case, the variance is given by the integration of the PSd over the full range
of circular frequencies:

m2 = σ2 =
� +∞

−∞
S(ω)dω (D.2)
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☞ BsaLib by default uses the second convention over the circular fre-
quencies.

D.2.4 bsa_setSpectraComputation

module subroutine bsa_setSpectraComputation (ipsd , ibisp)
integer ( bsa_int_t ), value :: ipsd
integer ( bsa_int_t ), value :: ibisp

end subroutine

If any of the two inputs ipsd, ibisp is 1, activates computation of the relative
spectra (PSDs or bispectra).

D.2.5 bsa_setSpectraExtension

module subroutine bsa_setSpectraExtension ( ionlydiag )
integer ( bsa_int_t ), value :: ionlydiag

end subroutine

If ionlydiag is 1, only main-diagonal elements of both 2D and 3D tensors of PSDs
and bispectra are computed. Else, if 0 is passed, all elements are computed. This
is the default behaviour if this API call is not invoked.

☞ While computing only diagonal elements of the spectral tensors is in-
deed good in terms of computational performances (CPU time, since
much less arithmetic operations), precision of final results, i.e. statis-
tical moments, is highly affected, specially for higher (from third on)
moments. Hence, ONLYDIAG kind of analyses are strongly discouraged.

D.2.6 bsa_setupClassic

module subroutine bsa_setupClassic (nfreqs , df)
integer ( bsa_int_t ), value :: nfreqs
real( bsa_real_t ), value :: df

end subroutine

Provides main setting data for the Classic approach.

nfreqs: integer that specifies the number of discretisation points in the interval
[0, fmax], where fmax is determined as

fmax = (nfreqs− 1) ∗ df.
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Hence, if circular frequencies convention is used, this number will be inter-
nally actualised to the interval [−fmax, fmax]. The definition of fmax is done
before the actualisation.

df: delta frequency ∆f between each discretisation point.

D.2.7 bsa_setupMesher

module subroutine bsa_setupMesher (isvd , bkgrfmt , &
bkgaext , genpaext , maxaext , ifcov , idumpmod )

integer ( bsa_int_t ), value :: isvd
integer ( bsa_int_t ), value :: bkgrfmt
real( bsa_real_t ), value :: bkgaext
real( bsa_real_t ), value :: genpaext
real( bsa_real_t ), value :: maxaext
integer ( bsa_int_t ), value :: ifcov
integer ( bsa_int_t ), value :: idumpmod

end subroutine

Provides main setting data for the Mesher approach.

isvd: If 1, enables usage of POD. See Section 4.8.

bkgrfmt: specifies the base refinement (number of discretisation points, per side)
of the background zone.

bkgaext: Defines the factor by which the background zone is extended (or re-
duced). The computation of the background zone base width is discussed
in Section D.6.4. If a value > 1 is provided, this allows the user to extend
this zone, avoiding cutting the zone’s extensions where gradients might be
still important. If a value < 1 is provided instead, the zone extension is
reduced.

genpaext: Defines the factor by which the any peak zone is extended/reduced.

maxaext: Defines the factor by which the total covered area fmax is extended.
In this case, this is done to avoid loosing information coming from the
secondary peaks, which are usually placed at extensions up to 2 · fi, where
fi is the i−th modal frequency. Values < 1 should be strongly avoided.

ifcov: deprecated.

idumpmod: If set to 1, includes modal data in the dumpfile.
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D.3 API calls to control bispectral symmetries

D.3.1 bsa_setSpatialSymmetry

module subroutine bsa_setSpatialSymmetry (isym)
integer ( bsa_int_t ), value :: isym

end subroutine

Controls the spatial symmetry of a bispectrum in the 2D frequency space. Valid
values for isym are:

0: the full spatial information is computed. Reference case.

2: only half of the spatial information is computed.

4: only 1-fourth of the information is computed.

D.3.2 bsa_setSpectraSymmetries

module subroutine bsa_setSpectraSymmetries ( ispctrsym )
integer ( bsa_int_t ), value :: ispctrsym

end subroutine

Controls whether Spectra and Bispectra tensor symmetries are exploited or not.
Valid values for ispctrsym are:

0: no symmetry used, all tensor elements are computed (see Figure D.1-a).

1: only symmetric elements are computed (see Figure D.1-b).

D.4 API calls related to wind data

D.4.1 bsa_setWindTurbComps

module subroutine bsa_setWindTurbComps (tc , ntc)
integer ( bsa_int_t ), intent (in) :: tc (:)
integer ( bsa_int_t ), value , optional :: ntc

end subroutine

Specifies which turbulent components, among {u, v, w}, should be considered in
the definition of wind loads (and for which turbulence PSDs will be computed).

tc: Array of components. Each array element value should be equal to one of
{1 : u, 2 : v, 3 : w}.

ntc: total n. of turbulent components to consider.
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(a) (b)

Figure D.1: (a) case where all the elements of the 3D tensor of bispectra
are computed; (b) only the elements under the main diagonal are com-

puted, the missing are inferred from symmetric elements.

D.4.2 bsa_setWindVertProf

module subroutine bsa_setWindVertProf ( iwprof )
integer ( bsa_int_t ), value :: iwprof

end subroutine

Sets the wind vertical profile. Valid options for iwprof:

1 BSA_WIND_VERT_PROFILE_POWER Mean wind speed is computed via a power
law

U(z) =
(

z

zref

)α
(D.3)

where z indicates the altitude, zref the reference altitude, α the power profile
coefficient.
NOTE: in most cases (see [48]), if z < zref , the value of U is taken equal
to the value measured at the reference height.

2 BSA_WIND_VERT_PROFILE_LOG: A logarithmic law is used:

U(z) = 1
k

√
τ0

ρ
ln z

z0
(D.4)
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D.4.3 bsa_setPSDType

module subroutine bsa_setPSDType (ipsd)
integer ( bsa_int_t ), value :: ipsd

end subroutine

Sets type of turbulence PSD. Valid options are:

BSA_WIND_PSD_VONKARMAN

BSA_WIND_PSD_KAIMAL

BSA_WIND_PSD_DAVENPORT

D.4.4 bsa_setAirDensity

module subroutine bsa_setAirDensity (aird)
real( bsa_real_t ), value :: aird

end subroutine

Sets the value of the air density ρ. By default, 1.225 kg
m3 .

D.4.5 bsa_setWZMeanWindVel

module subroutine bsa_setWZMeanWindVel (ubwz)
real( bsa_real_t ), target , intent (in) :: ubwz (:)

end subroutine

Sets the mean wind speeds U , measured at the reference heights, for each wind
zone.

D.4.6 bsa_setWZRefAlt

module subroutine bsa_setWZRefAlt (Zref)
real( bsa_real_t ), target , intent (in) :: Zref (:)

end subroutine

Sets the reference altitude zref for each wind zone.

D.4.7 bsa_setTurbWindScales

module subroutine bsa_setTurbWindScales (L)
real( bsa_real_t ), target , intent (in) :: L(3, 3, *)

end subroutine



D.4. API calls related to wind data 193

Sets the 3× 3 matrix of wind turbulence scales L

L =


Lux Lvx Lwx
Luy Lvy Lwy
Luz Lvz Lwz


for each wind zone.

D.4.8 bsa_setTurbWindSDT

module subroutine bsa_setTurbWindSDT (sigma)
real( bsa_real_t ), target , intent (in) :: sigma (3, *)

end subroutine

Sets the wind turbulence standard deviation σ (i.e. turbulence intensity, I = σ
U

),
for each wind zone.

D.4.9 bsa_setWindCorrCoeffs

module subroutine bsa_setWindCorrCoeffs ( ccoeffs )
real( bsa_real_t ), target , intent (in) :: ccoeffs (3, 3, *)

end subroutine

Sets the 3× 3 matrix of coefficients

C =


Cux Cvx Cwx
Cuy Cvy Cwy
Cuz Cvz Cwz


used in the decreasing-exponential formulation of wind spatial coherence [2].

D.4.10 bsa_setWindCorrExpnts

module subroutine bsa_setWindCorrExpnts (cexpn)
real( bsa_real_t ), target , intent (in) :: cexpn (3, 3, *)

end subroutine

Sets the 3× 3 matrix of exponent coefficients

P =


pux pvx pwx
puy pvy pwy
puz pvz pwz


used in the decreasing-exponential formulation of wind spatial coherence.
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D.4.11 bsa_setNodalVel

module subroutine bsa_setNodalVel (Unod)
real( bsa_real_t ), target , intent (in) :: Unod (:)

end subroutine

Sets the mean wind speeds U for all structural nodes.

☞ As it has been extensively explained and discussed in Chapter 4, there
is a distinction between structural and aerodynamic nodes. Structural
nodes are the nodes used to model (e.g. FEM) the system. Aero-
dynamic nodes are the most basic entity at which information about
wind flow (i.e. velocity) can be discretised. Theoretically, they are two
separate concepts. However, most of the times, all aerodynamic nodes
are structural nodes as well. Nonetheless, not all structural nodes are
forcefully loaded by the buffeting action, so that usually NN refers to
the whole set of structural nodes, while NNL to the subset of those
effectively loaded. As per the current implementation, this API call
requires the mean wind speed to be computed at all structural nodes
(NN). In a future implementation, mean wind speeds at only the effec-
tively loaded nodes (NNL) will be required, for optimality, and avoid
any confusion in the internal implementation.

D.4.12 bsa_setNodalWindZones

module subroutine bsa_setNodalWindZones (NodWZ)
integer ( bsa_int_t ), target , intent (in) :: NodWZ (:)

end subroutine

Sets the index of wind zone to which every structural node belongs to.

D.4.13 bsa_setNodalWindAltitudes

module subroutine bsa_setNodalWindAltitudes ( WnodAlt )
real( bsa_real_t ), target , intent (in) :: WnodAlt (:)

end subroutine

Sets the altitude z of each structural node.

D.4.14 bsa_setSpatialNodalCorr

module subroutine bsa_setSpatialNodalCorr ( nodCorr )
real( bsa_real_t ), target , intent (in) :: nodCorr (:, :)

end subroutine
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Sets the matrix of spatial coherence between structural nodes. The dimensions
are (NN2 +NN/2)×3, where NN is the number of structural nodes, 3 the number of
spatial turbulence components (i.e. elementary turbulence components) u, v, w.

☞ This API requires a specific format for the memory layout of the corre-
lation coefficients. In fact, NN2 + NN/2 is the number of elements in the
lower-triangular part of a square matrix, diagonal elements included.
Moreover, elements must be contiguous in memory following the For-
tran convention, which orders multi-dimensional arrays starting from
the leading dimension.

D.4.15 bsa_setWindFCoeffs

module subroutine bsa_setWindFCoeffs (wfc)
real( bsa_real_t ), target , intent (in) :: wfc (:, :, :)

end subroutine

Sets the multi-dimensional array of wind coefficients (see Equation (4.24)). For
memory access optimality patterns, the dimensions should be NNDOFs× NDEGW×
NNL.

D.5 API calls related to structural data

D.5.1 bsa_setTotalNumOfDOFs

module subroutine bsa_setTotalNumOfDOFs (ndofs)
integer ( bsa_int_t ), value :: ndofs

end subroutine

Sets the total number of structural degrees-of-freedom NDOFs.

D.5.2 bsa_setNumOfNodalDOFs

module subroutine bsa_setNumOfNodalDOFs ( nndofs )
integer ( bsa_int_t ), value :: nndofs

end subroutine

Sets the number of total degrees-of-freedom per node NNDOFs.

D.5.3 bsa_setTotalNOfNodes
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module subroutine bsa_setTotalNOfNodes (nn)
integer ( bsa_int_t ), value :: nn

end subroutine

Sets the total number of structural nodes NN.

D.5.4 bsa_setLoadedNodalDOFs

module subroutine bsa_setLoadedNodalDOFs (libs_l , nlibs_l )
integer ( bsa_int_t ), intent (in), target , allocatable :: libs_l (:)
integer ( bsa_int_t ), value , optional :: nlibs_l

end subroutine

Sets the list of node loaded degrees-of-freedom.

☞ Usually, all nodal degrees-of-freedom NNDOFs should be considered loaded,
once a node is loaded itself. However, this API call gives the possibility
to set a custom list of values in the range [1, . . . , NNDOFs].

D.5.5 bsa_setLoadedNodes

module subroutine bsa_setLoadedNodes (nodes_l , nn_l)
integer ( bsa_int_t ), intent (in), target , allocatable :: nodes_l (:)
integer ( bsa_int_t ), value , optional :: nn_l

end subroutine

Sets the list nodel_l of loaded nodes, of length nn_l.

☞ This API call is optional. If not called, BsaLib automatically sets the
list of loaded nodes to match the set of all structural nodes NN.

D.5.6 bsa_setModalInfo

module subroutine bsa_setModalInfo (ndofs , nm , Phi , natf)
integer ( bsa_int_t ), value :: ndofs , nm
real( bsa_real_t ), intent (in), target :: Phi(ndofs , nm), natf(nm)

end subroutine

Sets modal info. Specifically, sets the NDOFs × NM modal matrix Φ and array of
modal natural frequencies f .

☞ This API call (as others) requires to explicitly pass arrays dimensions,
as a way to check correctness and coherence of the homogeneous data
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passed to BsaLib.

D.5.7 bsa_setKeptModalShapes

module subroutine bsa_setKeptModalShapes (modes)
integer ( bsa_int_t ), intent (in) :: modes (:)

end subroutine

Allows to set a custom list of modes to be kept in the analysis. This API call is
complementary to the one discussed in Section D.1.3

D.5.8 bsa_setModalMatrices

module subroutine bsa_setModalMatrices (nm , Mgen , Kgen , Cgen)
integer ( bsa_int_t ), value :: nm
real( bsa_real_t ), intent (in), target , dimension (nm) :: Mgen , Kgen
real( bsa_real_t ), intent (in), target :: Cgen(nm , nm)

end subroutine

Sets modal mass, stiffness, and damping matrices respectively.

☞ As per the current implementation, only symmetric modal mass and
stiffness matrices are considered, meaning that in fact, the modal ma-
trix Φ given in is obtained by solving the following Eigenvalue problem:

KΦ = MΦΛ

where K and M are the structural stiffness and mass matrices, Λ a
diagonal matrix containing the coefficients of the characteristic poly-
nomial equation. In such cases, the resulting modal mass and stiffness
matrices

K⋆ = ΦTKΦ; M⋆ = ΦTMΦ

will be diagonalised by Φ. Therefore, only the diagonal elements are
required by BsaLib. On the other hand, the whole NM× NM matrix of
modal damping C⋆ is required.

D.5.9 bsa_setTotDamping

module subroutine bsa_setTotDamping (xsi)
real( bsa_real_t ), target , intent (in) :: xsi (:)

end subroutine

Sets array of modal total damping ratios ξ.
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D.5.10 bsa_getUsedModeShapes

pure module function bsa_getUsedModeShapes () result (modes)
integer ( bsa_int_t ), allocatable :: modes (:)

end function

Helper function that returns the list of modes effectively used within BsaLib.

D.6 API calls related to the Mesher algorithm

D.6.1 bsa_enableOnlyPremesh

module subroutine bsa_enableOnlyPremesh ()
end subroutine

If called, exits after Pre-Meshing phase, skipping the Post-Meshing phase.

D.6.2 bsa_doValidateZoneDeltas

module subroutine bsa_doValidateZoneDeltas (bool)
logical , intent (in) :: bool

end subroutine

If a .true. value is passed, enables validation of zone’s frequency deltas (i.e.
local zone refinement) to adhere to zone’s policy. To control policies of zone
types, see Section D.6.3.

☞ This API call has effect only in the Post-Meshing phase.

D.6.3 bsa_setPolicyIDValidationValues

module subroutine bsa_setPolicyIDValidationValues (id , &
i_bfm , j_bfm , i_brm , j_brm)

integer (int32), value :: id
integer (int32), value :: i_bfm
integer (int32), value :: j_bfm
integer (int32), value :: i_brm
integer (int32), value :: j_brm

end subroutine

id: built-in policy index for which setting custom values.
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i_bfm - j_bfm: factors representing the number of segments in which dividing
local i− and j− zone sides (segments), determined in the first Pre-Meshing
phase, for the bispectra of modal forces Bp(ω1, ω2).

i_brm - j_brm: factors representing the number of segments in which dividing
local i− and j− zone sides (segments), determined in the first Pre-Meshing
phase, for the bispectra of modal responses Bq(ω1, ω2).
NOTE: this refinement process strictly follows the one on the (modal)
loading points. After that is done, and refined segments are defined, then
this refinement can occur.

D.6.4 bsa_setMaxBkgPeakRestriction

module subroutine bsa_setMaxBkgPeakRestriction (bool)
logical , intent (in) :: bool

end subroutine

The width of the background (i.e. quasi-static) peak is equal to:

Wbkg = U

L
[Hz] (D.5)

where U is the mean wind speed, L the turbulence length scale. This information
is crucial for determining the width of the main background zone, from which
the definition of many other zones is based. In a 3D-spatial turbulence, there are
in total 9 turbulence scales (lengths), organised in a 3 × 3 matrix of turbulence
scales:

L =
{
l1 l2 l3

}
=


Lux Lvx Lwx
Luy Lvy Lwy
Luz Lvz Lwz

 (D.6)

By default (bool = .false.),

L = maxval(L).

If .true. is passed instead, then the maximum value of the matrix is reduced to
the maximum value along the first column:

L = maxval(l1),

that is turbulence scales along only the principal wind direction (X in the WRS)
is considered.
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D.6.5 bsa_setPODTruncationThreshold

module subroutine bsa_setPODTruncationThreshold (rval)
real( bsa_real_t ), value :: rval

end subroutine

Sets the total amount of energy to be kept from POD modes to rval. The value
can be specified either in percentage ([0, . . . , 100]), or absolute values ([0, . . . , 1]).

D.6.6 bsa_setPODNOfModesKept

module subroutine bsa_setPODNOfModesKept ( nmodes )
integer ( bsa_int_t ), value :: nmodes

end subroutine

Sets desired number of POD modes to be kept. nmodes is a number between
[1, . . . , NNL], where NNL is the total number of loaded nodes.

☞ Since bsa_setPODTruncationThreshold has higher precedence, to make
this API call effective, be sure not to invoke
bsa_setPODTruncationThreshold as well.

D.7 API calls related to post-process

D.7.1 bsa_enableVisualMode

module subroutine bsa_enableVisualMode ()
end subroutine

If this API procedure is called, enables visual mode. Visual mode allows the user
to export (modal or nodal) bispectra to file, to be used in a post-processing (e.g.
visualisation) stage.
When in visual mode, Pre-Meshing phase is skipped, and data is read from
dumpfile.

☞ At the moment, this API call has effects only for the Mesher algo-
rithm.

☞ This API call allows the exporting of one single bispectra only. In a
future implementation, multiple bispectra must be allowed. See next
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section D.7.2 for details on how the final index is computed.

D.7.2 bsa_setVisualIndexes

module subroutine bsa_setVisualIndexes (indexes , modal)
integer ( bsa_int_t ), intent (in) :: indexes (3)
logical , value :: modal

end subroutine

If bsa_enableVisualMode is called (see Section D.7.1), specifies base indexes
from which computing the final index of the single bispectra to export.
It accepts 2 inputs:

indexes: array of 3 integers, denoting the base indexes from which computing
the final index of the bispectra to export. This is computed differently
whether is a bispectra of modal or nodal responses is desired.
If modal:

id = indexes(1) + indexes(2) ∗ M + indexes(3) ∗ M2 (D.7)

where each element of indexes is contained in the range [1, . . . , M], where M
is the number of effective modes (NM_EFF) used within BsaLib.
If nodal:

id = (indexes(1)− 1) ∗ NNDOFs + indexes(2) (D.8)
where indexes(1) refers to the node index, NNDOFs the number of degrees-
of-freedom per single node, indexes(2) the nodal DOF for which extracting
the bispectral information.

modal: logical that specifies if the indexes refer to modal (.true.), or nodal
(.false.).

☞ If only main-diagonal elements are computed, then the index is simply
taken as the first index in the indexes array, that is:

id = indexes(1) (D.9)

for both modal and nodal cases.

D.7.2.1 bsa_setBRMExportDefaultMode
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module subroutine bsa_setBRMExportDefaultMode (imode)
integer ( bsa_int_t ), value :: imode

end subroutine

Valid values for imode:

• BSA_EXPORT_BRM_MODE_NONE: exporting disabled

• BSA_EXPORT_BRM_MODE_BASE: using built-in exporting functionality.

• BSA_EXPORT_BRM_MODE_USR using custom user-specific exporting method.

☞ In such case, the actual procedure callback must be provided by
calling bsa_setBispExportCallback (see Section D.7.2.2).

☞ Unlike other post-processing API calls, this procedure enables post-
processing of structural data when visual_mode is OFF, i.e. when
doing actual computation of statistical moments (see Section 5.3.3).
Use with care, since this might considerably slow down even further
execution time.

D.7.2.2 bsa_setBispExportCallback

module subroutine bsa_setBispExportCallback (fptr)
procedure ( exportInterf_vect_ ), pointer , intent (in) :: fptr

end subroutine

where fptr is a function pointer with the following interface
abstract interface

subroutine exportInterf_vect_ (f1 , f2 , brm , pdata)
import :: bsa_real_t
real( bsa_real_t ), intent (in) :: f1 (:)
real( bsa_real_t ), intent (in) :: f2 (:)
real( bsa_real_t ), intent (in) :: brm (:, :)
class (*), pointer , intent (in) :: pdata

end subroutine
end interface
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