Maintaining Constant Tiller and Spike Fertility to Achieve Stable Grain Yield of *Thinopyrum intermedium*.

FAGNANT L., DUCHÊNE O., CELETTE F., DUMONT B.

- Newly developed perennial grain crop (Kernza®) (DeHaan *et al.*, 2018)
 - Perenniality → Ecosystem services
 - Dual production \rightarrow Grain and forage

- Newly developed perennial grain crop (Kernza®) (DeHaan *et al.*, 2018)
 - Perenniality → Ecosystem services
 - Dual production \rightarrow Grain and forage
- Nascent stage of domestication:
 - Promising progress
 - Low and variable resource allocation to grains

(Culman et al., 2013; Newell & Hayes, 2017; Zhang et al., 2015)

- Perenniality induces ...
 - Variable and low proportion of **fertile tillers** as crop ages: \searrow grain yield

(Fulkerson, 1980; Jungers et al., 2017)

- Perenniality induces ...
 - Variable and low proportion of fertile tillers as crop ages: ↘ grain yield (Fulkerson, 1980; Jungers et al., 2017)
 - Influence of the **period of appearance of tillers** on their reproductive potential

(Rouet et al., 2021)

- Perenniality induces ...
 - Variable and low proportion of fertile tillers as crop ages: ↘ grain yield (Fulkerson, 1980; Jungers et al., 2017)
 - Influence of the **period of appearance of tillers** on their reproductive potential

(Rouet et al., 2021)

• Variability in floret site utilization

(Elgersma, 1985; Altendorf et al., 2021)

- Perenniality induces ...
 - Variable and low proportion of fertile tillers as crop ages: ↘ grain yield (Fulkerson, 1980; Jungers et al., 2017)
 - Influence of the **period of appearance of tillers** on their reproductive potential

(Rouet et al., 2021)

• Variability in floret site utilization

(Elgersma, 1985; Altendorf et al., 2021)

- Potential competition between **several sink organs** at the end of the growing season
 - (i.e., grains, rhizomes, deep root system or dormant buds)

(Hay & Porter, 2006; Lafarge & Durand, 2011)

- Lack of understanding of crop development and the resulting grain yield:
 - Importance of reproductive tiller density and floret site utilization (Altendorf et al., 2021)
 - Strong trade-off between tiller density and fertility (Jungers et al., 2017; Hunter et al., 2020)
 - Yield decline as stand ages: > HI up to 50% (Culman et al., 2023; Duchene et al., 2023)
 - → 31% of global yield increase would be linked to better management in fields (Bajgain et al.; 2022)

- Objectives:
 - Understand:

- The developmental traits influencing grain yield and elucidate their interrelations
- The influence of autumn defoliation, N fertilization and stand age on crop growth and yield
- → Provide additional support for the design of adapted crop management strategy for Th. intermedium.

Material & Method

Management treatments			
(A) N fertilization			
Total N dose	Splitti	Splitting (kg N ha ⁻¹)	
(kg N ha⁻¹)	Early-spring (tillering)	Autumn Vegetative stage	
0	0	0	
50	50	0	
100	50	50	
100	100	0	
(A) Forage harvest			
	Summer straw harvest + Autumn defoliation		
Summer straw harvest			

- Belgian field experiment
 - Deep and fertile soil conditions
 - Four grain production years (i.e., establishment year + three regrowing years)
 - Various N treatments
 - Autumn defoliation compared to the only summer defoliation
- Various measurments
 - During the growing season: tiller density, aboveground biomass
 - At grain harvest: grain yield, TKW, spike density, grain density, spike fertility, plant height, harvest index, nitrogen harvest index, ...

Fagnant et al., major revision – European J. of Agronomy.

Results

- **7** Tiller density during the **establishment**
- Overproduction of tillers in 2019 => strong mortility
- Unique **positive** influence of N in the establishment year 12

Results

Results & Discussion

- Grain yield explained by:
 - Spike density \times spike fertility
- Optimal spike density: ~= 400spikes m⁻²
- Low spike fertility BUT constant as the crop ages:
 - Floret fertility <49% (larson et al, 2019)
 - ightarrow Limitation for seed production

Results & Discussion

- Compensation mechanisms:
 - Between yield per spike and yield per plant
- When early biomass is peaking:
 - Inhibition of reproductive growth of tillers: $\mathbf{\hat{v}}$ Yield per spike
 - Tillers mortality (~=50%)
- Probable optimal tiller and spike density:

Hunter et al., (2022) : [620 – 2730]tillers m⁻² & [370 – 960] spikes m⁻²

Results & Discussion

- Impact of agronomic management:
 - 1) N fertilization:
 - Positive effect on spike density and spike DM
 - Negative effect on grain yield when excessive aboveground biomass

2) Autumn defoliation:

- \mathbf{v} Biomass in the next growing season
- 7 Yield per spike through TKW
- 3) Exportation and shredding of post-harvet residues
 - Light perception of early *Th. intermedium* tillers (present since early autumn) maybe the future reproductive tillers (Langer, 1979)

Conclusions

- How agronomic management can help maintain constant grain?
 - 1) Avoid early excessive biomass and tiller density:
 - Reduce N fertilization at tillering (>1000tillers m⁻² at BBCH30)
 - Autumn defoliation
 - 2) Maintain reproductive potential of tillers:
 - Early autumn tillers maybe the future reproductive tillers (Langer, 1979)
 - ightarrow Favor light perception through exportation and shredding of post-harvet residues
 - ightarrow Potential positive effect of autumn N fertilization
 - Support of spike density and spike DM with an early spring N fertilization

➔ 100kg N ha⁻¹ splitted between autumn and early spring seemed optimal

Maintaining Constant Tiller and Spike Fertility to Achieve Stable Grain Yield of Thinopyrum Intermedium.

THANKS FOR YOUR ATTENTION !

FAGNANT L., DUCHÊNE O., CELETTE F., DUMONT B. QUESTIONS ? LAURA.FAGNANT@ULIEGE.BE

spike fertility =
$$\frac{grain \ yield}{spike \ density. \frac{TKW_{un}}{1000}}$$

grain density = spike fertility.spike density