
Virtual dispatch on GPUs
Design Patterns and Performance Analysis of Polymorphism

in Multiphysics FE Assembly on GPU

Arnst Maarten Tomasetti Romin

University of Liège, Belgium

March 7th, 2024

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs



Motivation

Stokhos

Amesos2, Belos, Muelu

Tpetra

Kokkos

=.. .
...

...

Polymorphism in fine-grained parallel FE assembly for multidomain and
multiphysics simulation.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 1 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 2 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 3 / 21



Gather-fill-scatter approach

local
data

. . .element
data

for all elements

. . .element
matrices

. . .element
rhs

for all elements

local
matrix

local
rhs

. . .

Gather

Fill

Scatter

Example of Fill operation:

f Ki =

∫
K

f (x)φi (x)dx

≈
∑
q

f
(
gK (x̂q)

)
φ̂i (x̂q)detJK (x̂q)wq.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 4 / 21



Polymorphism patterns I

▶ Kokkos parallel region: parallel pattern, policy, functor:

parallel for (

RangePolicy(numWorkItems) , functor

);

▶ Pattern 1: polymorphic functor (device virtual calls):

ETI, .so

Gather

parallel for (

policy , functor

);

Scatter

functor

struct FunctorInterface

{

KOKKOS_FUNCTION

virtual void operator ()(

const ordinal_t elemID

) const = 0;

};

struct FunctorImplementation

: public FunctorInterface

{

KOKKOS_FUNCTION

void operator ()(

const ordinal_t elemID

) const override { ... };

};

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 5 / 21



Polymorphism patterns II

▶ Pattern 2: polymorphic driver (host virtual call):

ETI, .so

Gather

parallel for (

policy , functor

);

Scatter

functor

struct NodeBase

{

virtual void execute () const = 0;

};

template <

typename Policy ,

typename FunctorImplementation

>

struct Node

: public NodeBase

{

void execute () const override {

parallel for (

policy , functor

); }

Policy policy;

FunctorImplementation functor ;

};

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 6 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 7 / 21



How do virtual functions work?

▶ Virtual function calls work by using a layer of indirection. A call
through an interface pointer results in a lookup in a virtual function
table (vTable) to determine the implementation function to run.

▶ For virtual function calls to work on device, the vTable must be set up
properly, i.e., point to device code. Achieved by constructing derived
class instances on device.

[Ari17] P. Arias. Understanding Virtual Tables in C++. 2017.

[BCH+19] V. Brunini et al. Runtime polymorphism in Kokkos applications. Sandia, 2019.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 8 / 21



Virtual functions on device

Generated using Nsight Compute
on Nvidia V100 using Cuda 12.2.2.

local memory load

global memory loads

constant memory load

indirect function call

▶ Direct overhead of virtual function calls on device:

- Loads from memory for vTable lookups.
- Indirect function call.

▶ Indirect effects of virtual function calls on device:

- Loss of opportunities for optimization by the compiler.

[ZAR21] M. Zhang et al. Characterizing Massively Parallel Polymorphism. IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 9 / 21



Performance of virtual functions on device

[Y ]+ = α[X ]

[X ], [Y ] ∈ Mm×n(R)
m = 217 = 131 072,

n = 16, 32, 64, . . . , 4 096.

parallelism

compute/memory intensity per call

+ = a

template <int Idx >

struct Implementation <Idx >

: public Interface

KOKKOS_FUNCTION

void operator ()(

const int i,

...

) const override {

for (int j = 0; j < n; ++j)

y(i,j)+=a*x(i,j);

}

parallel_for(

RangePolicy <ExeSpace >(0,m),

KOKKOS_LAMBDA (const int i) {

objects_dptr(i % divergence_level)

->operator ()(i, ...);

}

);

View <

PointerWrapper <Interface >*, ExeSpace

> objects_dptr;

size of vTable

Implemented in Kokkos and adapted from: [ZAR21] M. Zhang et al. Characterizing Massively

Parallel Polymorphism. IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 10 / 21



Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

Number of derived classes: N = 1, 2, 8, 32 (increasing size of vTable).

Divergence level: D = 1 (no warp-level divergence).

0 100 200
Number of columns

0.0

0.5

1.0

1.5

2.0

2.5
Ti
m
e 
[n
s]

1e6
DynamicN1D1
StaticN1D1
DynamicN2D1
StaticN2D1
DynamicN8D1
StaticN8D1
DynamicN32D1
StaticN32D1

102 103
Number of columns

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ra
tio

 o
f d

yn
am

ic 
an

d 
st
at
ic 
tim

e

N1
N2
N8
N32

loss of
compiler
optim.

size of vTable

amortize
virtual call
overhead

higher compute/memory
intensity per call

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 11 / 21



Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

Number of derived classes: N = 32 (fixed size of vTable).

Divergence level: D = 1, 2, 8, 32 (increasing warp-level divergence).

0 100 200
Number of columns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ti

m
e 

[n
s]

1e6

DynamicN32D1
StaticN32D1
DynamicN32D2
StaticN32D2
DynamicN32D8
StaticN32D8
DynamicN32D32
StaticN32D32

102 103

Number of columns

1

2

3

4

5

6

7

8

9

10

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

D1
D2
D8
D32

divergence
level

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 12 / 21



Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

Number of derived classes: N = 1, 2, 8, 32 (increasing size of vTable).

Divergence level: D = 1 (no warp-level divergence).

0 100 200
Number of columns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
[n

s]
1e6

DynamicN1D1
StaticN1D1
DynamicN2D1
StaticN2D1
DynamicN8D1
StaticN8D1
DynamicN32D1
StaticN32D1

102 103

Number of columns

1

2

3

4

5

6

7

8

9

10

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

N1
N2
N8
N32

More significant overhead per virtual call on device on AMD MI250X than on Nvidia V100.

No clear impact of differences in compiler optimization.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 13 / 21



Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

Number of derived classes: N = 32 (fixed size of vTable).

Divergence level: D = 1, 2, 8, 32 (increasing warp-level divergence).

0 100 200
Number of columns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
[n

s]
1e6

DynamicN32D1
StaticN32D1
DynamicN32D2
StaticN32D2
DynamicN32D8
StaticN32D8
DynamicN32D32
StaticN32D32

102 103

Number of columns

1

2

3

4

5

6

7

8

9

10

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

D1
D2
D8
D32

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 14 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 15 / 21



Application

{
−△xΦ = f in Ω,

Φ = 0 on ∂Ω.

f = −2k2π2 sin(kπx1) sin(kπx2)

100× 100 TRI3 elements

AK
ij =

∫
K

∇xφi ·∇xφjdx ≈
∑
q

J−T
K (x̂q)∇x̂ φ̂i (x̂q) · J−T

K (x̂q)∇x̂ φ̂j(x̂q)detJK (x̂q)wq

Finite elements of degree p: φ̂0, φ̂1, . . . in Pp
2 with card(Pp

2) =
(p + 1)(p + 2)

2
.

compute/memory intensity per call

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 16 / 21



Application

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.

0 2 4 6 8
Basis degree

105

106

107

108
Ti

m
e 

[n
s]

Dynamic
Static

0 2 4 6 8
Basis degree

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

Virtual calls on device entail significant overhead for low-order FE.

amortize
virtual call
overhead

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 17 / 21



Application

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.

0 2 4 6 8
Basis degree

105

106

107

108
Ti

m
e 

[n
s]

Dynamic
Static

0 2 4 6 8
Basis degree

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

Clearer impact of differences in compiler optimization on AMD MI250X than on Nvidia V100.

loss of
compiler
optim.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 18 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 19 / 21



Conclusion

▶ We compared two polymorphism patterns for fine-grained parallel FE
assembly for multi-domain multi-physics simulation.

▶ Polymorphic functor: Polymorphism is expressed by using a base type
for the functor. Virtual calls inside the parallel region on device.

▶ Polymorphic driver: Polymorphism is expressed by using a base type
for the parallel region. The functor is wrapped into a larger type that
keeps the pattern, policy and functor together. Virtual call on host.

Take-home message

Prefer a polymorphic driver pattern over a polymorphic functor pattern:

▶ Avoid vTable lookup overhead on device. Significant for low-order FE.

▶ Keep compiler optimization opportunities open.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 20 / 21



Directions for future work

▶ Explore mechanism of virtual dispatch on AMD GPUs.

▶ Explore effect of enabling relocatable device code.

▶ Performance evaluation in application in 3D.

▶ Graph-based assembly.

PML

PML

Substrate

Air

CD

P
B
C

P
B
C

DBC

DBC

PML

G

airsubstratePMLPML GAAFET GAAFET GAAFET

S S S S S S S

DBC DBC

PBC PBC

[TA24] R. Tomasetti and M. Arnst. Efficiently implementing FE boundary conditions using

stream-orchestrated execution on GPU. SIAM PP2024.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 21 / 21



References

P. Arias, Understandig virtual tables in C++, 2017.

V. Brunini, J. Clausen, M. Hoemmen, A. Kucala, C. Trott, and
M. Howard, Runtime polymorphism in Kokkos applications,
https://www.osti.gov/biblio/1592283, 2019, Presentation at the
2019 Exascale Computing Project Annual Meeting.

R. Tomasetti and M. Arnst, Efficiently implementing FE boundary
conditions using stream-orchestrated execution on GPU, 2024,
Presentation at the 2024 SIAM Conference on Parallel Processing.

M. Zhang, A. Alawneh, and T. Rogers, Characterizing massively
parallel polymorphism, IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 21 / 21

https://www.osti.gov/biblio/1592283

	Fine-grained parallel FE assembly
	Gather-fill-scatter approach
	Polymorphism patterns

	Virtual functions on device
	Implementation aspects
	Performance evaluation

	Application
	Conclusion and outlook

