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Polymorphism in fine-grained parallel FE assembly for multidomain and
multiphysics simulation.
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Gather-fill-scatter approach

local
data

. . .element
data

for all elements

. . .element
matrices
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rhs
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rhs
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Gather

Fill

Scatter

Example of Fill operation:

f Ki =

∫
K

f (x)φi (x)dx

≈
∑
q

f
(
gK (x̂q)

)
φ̂i (x̂q)detJK (x̂q)wq.
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Polymorphism patterns I

▶ Kokkos parallel region: parallel pattern, policy, functor:

parallel for (

RangePolicy(numWorkItems) , functor

);

▶ Pattern 1: polymorphic functor (device virtual calls):

ETI, .so

Gather

parallel for (

policy , functor

);

Scatter

functor

struct FunctorInterface

{

KOKKOS_FUNCTION

virtual void operator ()(

const ordinal_t elemID

) const = 0;

};

struct FunctorImplementation

: public FunctorInterface

{

KOKKOS_FUNCTION

void operator ()(

const ordinal_t elemID

) const override { ... };

};
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Polymorphism patterns II

▶ Pattern 2: polymorphic driver (host virtual call):

ETI, .so

Gather

parallel for (

policy , functor

);

Scatter

functor

struct NodeBase

{

virtual void execute () const = 0;

};

template <

typename Policy ,

typename FunctorImplementation

>

struct Node

: public NodeBase

{

void execute () const override {

parallel for (

policy , functor

); }

Policy policy;

FunctorImplementation functor ;

};
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How do virtual functions work?

▶ Virtual function calls work by using a layer of indirection. A call
through an interface pointer results in a lookup in a virtual function
table (vTable) to determine the implementation function to run.

▶ For virtual function calls to work on device, the vTable must be set up
properly, i.e., point to device code. Achieved by constructing derived
class instances on device.

[Ari17] P. Arias. Understanding Virtual Tables in C++. 2017.

[BCH+19] V. Brunini et al. Runtime polymorphism in Kokkos applications. Sandia, 2019.
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Virtual functions on device

Generated using Nsight Compute
on Nvidia V100 using Cuda 12.2.2.

local memory load

global memory loads

constant memory load

indirect function call

▶ Direct overhead of virtual function calls on device:

- Loads from memory for vTable lookups.
- Indirect function call.

▶ Indirect effects of virtual function calls on device:

- Loss of opportunities for optimization by the compiler.

[ZAR21] M. Zhang et al. Characterizing Massively Parallel Polymorphism. IEEE, 2021.
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Performance of virtual functions on device

[Y ]+ = α[X ]

[X ], [Y ] ∈ Mm×n(R)
m = 217 = 131 072,

n = 16, 32, 64, . . . , 4 096.

parallelism

compute/memory intensity per call

+ = a

template <int Idx >

struct Implementation <Idx >

: public Interface

KOKKOS_FUNCTION

void operator ()(

const int i,

...

) const override {

for (int j = 0; j < n; ++j)

y(i,j)+=a*x(i,j);

}

parallel_for(

RangePolicy <ExeSpace >(0,m),

KOKKOS_LAMBDA (const int i) {

objects_dptr(i % divergence_level)

->operator ()(i, ...);

}

);

View <

PointerWrapper <Interface >*, ExeSpace

> objects_dptr;

size of vTable

Implemented in Kokkos and adapted from: [ZAR21] M. Zhang et al. Characterizing Massively

Parallel Polymorphism. IEEE, 2021.
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Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

Number of derived classes: N = 1, 2, 8, 32 (increasing size of vTable).

Divergence level: D = 1 (no warp-level divergence).
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Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

Number of derived classes: N = 32 (fixed size of vTable).

Divergence level: D = 1, 2, 8, 32 (increasing warp-level divergence).
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Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

Number of derived classes: N = 1, 2, 8, 32 (increasing size of vTable).

Divergence level: D = 1 (no warp-level divergence).
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More significant overhead per virtual call on device on AMD MI250X than on Nvidia V100.

No clear impact of differences in compiler optimization.
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Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

Number of derived classes: N = 32 (fixed size of vTable).

Divergence level: D = 1, 2, 8, 32 (increasing warp-level divergence).

0 100 200
Number of columns

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ti
m

e 
[n

s]
1e6

DynamicN32D1
StaticN32D1
DynamicN32D2
StaticN32D2
DynamicN32D8
StaticN32D8
DynamicN32D32
StaticN32D32

102 103

Number of columns

1

2

3

4

5

6

7

8

9

10

Ra
tio

 o
f d

yn
am

ic 
an

d 
st

at
ic 

tim
e

D1
D2
D8
D32

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 14 / 21



Outline

1. Fine-grained parallel FE assembly
Gather-fill-scatter approach
Polymorphism patterns

2. Virtual functions on device
Implementation aspects
Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 15 / 21



Application

{
−△xΦ = f in Ω,

Φ = 0 on ∂Ω.

f = −2k2π2 sin(kπx1) sin(kπx2)

100× 100 TRI3 elements

AK
ij =

∫
K

∇xφi ·∇xφjdx ≈
∑
q

J−T
K (x̂q)∇x̂ φ̂i (x̂q) · J−T

K (x̂q)∇x̂ φ̂j(x̂q)detJK (x̂q)wq

Finite elements of degree p: φ̂0, φ̂1, . . . in Pp
2 with card(Pp

2) =
(p + 1)(p + 2)

2
.

compute/memory intensity per call
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Application

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.

“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.
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Virtual calls on device entail significant overhead for low-order FE.
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Application

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.

“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.
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Clearer impact of differences in compiler optimization on AMD MI250X than on Nvidia V100.

loss of
compiler
optim.
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Conclusion

▶ We compared two polymorphism patterns for fine-grained parallel FE
assembly for multi-domain multi-physics simulation.

▶ Polymorphic functor: Polymorphism is expressed by using a base type
for the functor. Virtual calls inside the parallel region on device.

▶ Polymorphic driver: Polymorphism is expressed by using a base type
for the parallel region. The functor is wrapped into a larger type that
keeps the pattern, policy and functor together. Virtual call on host.

Take-home message

Prefer a polymorphic driver pattern over a polymorphic functor pattern:

▶ Avoid vTable lookup overhead on device. Significant for low-order FE.

▶ Keep compiler optimization opportunities open.
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Directions for future work

▶ Explore mechanism of virtual dispatch on AMD GPUs.

▶ Explore effect of enabling relocatable device code.

▶ Performance evaluation in application in 3D.

▶ Graph-based assembly.
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[TA24] R. Tomasetti and M. Arnst. Efficiently implementing FE boundary conditions using

stream-orchestrated execution on GPU. SIAM PP2024.
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