Virtual dispatch on GPUs

Design Patterns and Performance Analysis of Polymorphism
in Multiphysics FE Assembly on GPU

Arnst Maarten Tomasetti Romin

University of Liege, Belgium

March 7th, 2024

E.i.E.II'L Conference on « ’ L I EG E r
2@2 4 Parallel Processing for .L université
Scientific Computing FREEDOM TO RESEARCH

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Stokhos

Amesos2, Belos, Muelu

Tpetra
Kokkos
s

Polymorphism in fine-grained parallel FE assembly for multidomain and
multiphysics simulation.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

1. Fine-grained parallel FE assembly
= Gather-fill-scatter approach
= Polymorphism patterns

2. Virtual functions on device
= Implementation aspects
= Performance evaluation

3. Application

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

1. Fine-grained parallel FE assembly
= Gather-fill-scatter approach
= Polymorphism patterns

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 3/21

Gather-fill-scatter approach
local Gather
datahﬂ
—_\‘ Fill

element U
data
for all elements elemen Scatter

ﬂiﬂﬁ%ﬁéﬂﬂmﬂﬂ
element (| | ... [| % H

for all elements

local]
. . matrix
Example of Fill operation: local |
£ = / f(x)pi(x)dx
K

~ Y F(gk(Rq)) PiRq)det k(%)W

q

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 4/21

Polymorphism patterns |

> Kokkos parallel region: parallel pattern, policy, functor:

parallel for (

RangePolicy (numWorkItems) , functor

)

» Pattern 1: polymorphic functor (device virtual calls):

struct FunctorInterface

Gather
P o KOKKOS_FUNCTION
uncror virtual void operator ()(

const ordinal_t elemID
) const = 0;
parallel for (1

A
policy /
struct FunctorImplementation
); : public FunctorInterface
{
KOKKOS_FUNCTION
- void operator () (
const ordinal_t elemID
) const override { ... };
ETI, .so };

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Polymorphism patterns |l

» Pattern 2: polymorphic driver (host virtual call):

struct NodeBase

virtual void execute() const = 0;
};
functor template <
Gather I
typename Policy ,
parallellfor () typename FunctorImplementation
= >
policy struct Node
)5 public NodeBase
’ {
_/ void execute() const override {
parallel for (
. policy , functor

ETI, .so Policy policy;

FunctorImplementation functor ;

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Outline

2. Virtual functions on device
= Implementation aspects
= Performance evaluation

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

How do virtual functions work?

Class B

/ Vtable of class B

bar
qux
wponter _— Vtable of class C o0

vpointer

» Virtual function calls work by using a layer of indirection. A call
through an interface pointer results in a lookup in a virtual function
table (vTable) to determine the implementation function to run.

» For virtual function calls to work on device, the vTable must be set up

properly, i.e., point to device code. Achieved by constructing derived
class instances on device.

[AFI17] P. Arias. Understanding Virtual Tables in C++. 2017.
[BCH+19] V. Brunini et al. Runtime polymorphism in Kokkos applications. Sandia, 2019.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 8/21

Virtual functions on device

local memory load

global memory loads

IMAD.MOV.U32
MoV
IMAD.MOV.U32
MoV
IMAD.MOV.U32
MOV

IMAD.MOV.U32 R21, RZ, RZ, constant memory load
, clex2][R14]

CALL.REL.NOINC indirect function call
BSYNC B6

Generated using Nsight Compute
on Nvidia V100 using Cuda 12.2.2.

» Direct overhead of virtual function calls on device:

- Loads from memory for vTable lookups.
- Indirect function call.

» Indirect effects of virtual function calls on device:
- Loss of opportunities for optimization by the compiler.

[ZAR21] M. Zhang et al. Characterizing Massively Parallel Polymorphism. IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Performance of virtual functions on device

parallelism | =f332
Y+ = alx]
+=a
[X],[Y] € Mmxa(R)
m =217 = 131072,
> .
n=16,32,64,...,4096. compute/memory intensity per call
size of vTable
template <int Idx> parallel_for(
struct Implementation<Idx> RangePolicy <ExeSpace>(0,m),

: public Interface KOKKOS_LAMBDA (const int i) {
KOKKOS_FUNCTION objects_dptr[(i % divergence_level)]
void operator () (->operator () (1, 3

const int i, }
);
) const override {
for (int j = 0; j < n; ++j) View<
y(@i,j)+=a*xx(i,j); PointerWrapper<Interface>*, ExeSpace
} > objects_dptr;

Implemented in Kokkos and adapted from: [ZAR21] M. Zhang et al. Characterizing Massively
Parallel Polymorphism. IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
Number of derived classes: N = 1,2,8,32 (increasing size of vTable).
Divergence level: D = 1 (no warp-level divergence).

2528 5.0
—&— DynamicN1D1 —4— N1
-8~ StaticN1D1 a5 N2
DynamicN2D1 : —4— N8
2.0 StaticN2D1 o —4— N32
—8— DynamicN8D1 £ 4.0
-8~ StaticN8D1 L amortize
—#— DynamicN32D1 o 3.54 .
1.5 ; o= tual Il
— 157 —e~ staticN32D1 - virtual Ca
2 45 h d
n s | 230 overnea
£ 4 £
= c
1.0 , o
e 5
o
// loss of £ 20/
051 ,»~ compiler
. N
A optim. 1.5 =
¢ size of vTable
0.0 T T 1.0 T T
0 100 200 10? 10°
Number of columns Number of columns

higher compute/memory
intensity per call

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
Number of derived classes: N = 32 (fixed size of vTable).
Divergence level: D = 1,2, 8,32 (increasing warp-level divergence).

1e6 1
1
1.4 i 1 1 —4— D1
1 , 94 D2
: /, —4— D8
121 / o g —— D32
1 / €
1 J =
1.04 I % 74
! 3
— 1 °
Zosq | £ 61
] ©
£ é E .
= 064 —8— DynamicN32D1 g
' —e- StaticN32D1 3 di
« 44
DynamicN32D2 | S 4 Iivergence
0.4 8 o StaticN32D2 = level
{ ,® —# DynamicN32D8 < 34
024 / - StaticN32D8
' s —8— DynamicN32D32 2
¢ -8~ StaticN32D32
0.0 - . 1 - 4
0 100 200 102 103
Number of columns Number of columns

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
Number of derived classes: N = 1,2, 8,32 (increasing size of vTable).
Divergence level: D =1 (no warp-level divergence).

le6 10
1.4 —@~ DynamicN1D1 —4— N1
" | e~ staticN1D1 9 N2
DynamicN2D1 —4— N8
1.2 StaticN2D1 v g —4— N32
—8— DynamicN8D1 £
1.0 ~& StaticNsD1 2 4]
—&— DynamicN32D1 g
— -8~ StaticN32D1 °
2 S 67
£ 0.8 &
o Y
£ /‘ E 5|
IS . 5
0.6 4 ’ >
©
5 4
0.4 2
- < 34
0-21 »” 24
4
(]
[4
0.0 T T 1 " f
0 100 200 102 10°

Number of columns Number of columns

More significant overhead per virtual call on device on AMD MI250X than on Nvidia V100.
No clear impact of differences in compiler optimization.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

ormance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
Number of derived classes: N = 32 (fixed size of vTable).
Divergence level: D =1,2,8,32 (increasing warp-level divergence).

1e? ; 10
149 IT1! - D1
1! 94 D2
: ! —— D8
124 4|1 v g4 —— D32
! £
! o
1.0 + 2 74
- i 3
Los! | 5
o 9
£ i A E]
[1 -8~ DynamicN32D1 2
0.6 N >
] / -8~ StaticN32D1 3
V DynamicN32D2 | 5 41
0.4 StaticN32D2 =
—#— DynamicN32D8 < 39
021 -8~ StaticN32D8
) ,’-I— DynamicN32D32 21
',0 -~ StaticN32D32
0.0 v v 1
0 100 200 102 103
Number of columns Number of columns

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Outline

3. Application

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Application

"L L
—Ax®=Ff inQ, f = —2k?n? sin(kmxy) sin(kmxo) : : : :
$=0 on 0. 100 x 100 TRI3 elements LA

Al = /KV“"" Vapjdx &Y Jict (%) Vedi(Ra) - I (Rq) V) (Rq)det k() g
q

1 2
Finite elements of degree p: @o, $1,... in P with|card(P5) = %

compute/memory intensity per call

Gather Gather functor
functor
parallel for ()
parallel for (B EILE \
)
olic) /
policy beLm
); \
Scatter Scatter |
ETI, 50 ETI, 50

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Application

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
“Dynamic”: Polymorphic functor pattern with virtual calls on device.
“Static”: Polymorphic driver pattern with static calls on device.

5.0

10°] g Dynamic
-o~ Static

>
o
.

107 4

w
w»
s

amortize
virtual call
overhead

w
o
L

Time [ns]
=
o
>
s

N
5
s

Ratio of dynamic and static time

g
o
L

105 4

=
w»
s

Iy
o

T T T

0 2 4 6 8
Basis degree Basis degree

=}

Virtual calls on device entail significant overhead for low-order FE.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Application

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.

5.0

—#— Dynamic
-o~ Static

108 4
4.51

4.0 A
107 4

3.59

3.01

Time [ns]

loss of
compiler
optim.

2.59

Ratio of dynamic and static time

2.01

10° 4 1
! 1.5

T T T 1.0 T T T
0 2 4 6 8 0 2 4 6 8

Basis degree Basis degree

Clearer impact of differences in compiler optimization on AMD MI250X than on Nvidia V100.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Outline

4. Conclusion and outlook

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

Conclusion

» We compared two polymorphism patterns for fine-grained parallel FE
assembly for multi-domain multi-physics simulation.

» Polymorphic functor: Polymorphism is expressed by using a base type
for the functor. Virtual calls inside the parallel region on device.

» Polymorphic driver: Polymorphism is expressed by using a base type
for the . The functor is wrapped into a larger type that
keeps the pattern, policy and functor together. Virtual call on host.

Take-home message

Prefer a polymorphic driver pattern over a polymorphic functor pattern:
» Avoid vTable lookup overhead on device. Significant for low-order FE.

> Keep compiler optimization opportunities open.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs 20/21

Directions for future work

» Explore mechanism of virtual dispatch on AMD GPUs.
» Explore effect of enabling relocatable device code.
» Performance evaluation in application in 3D.

» Graph-based assembly.

DBC

72772777 72727777,
77777777 77777777,

[y substrate i GAAFET GAAFET GAAFET
S 3 S

parallel for (

policy = functor

);

PBC PBC

[TA24] R. Tomasetti and M. Arnst. Efficiently implementing FE boundary conditions using
stream-orchestrated execution on GPU. SIAM PP2024.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

References

[§ P. Arias, Understandig virtual tables in C++, 2017.

[§] V. Brunini, J. Clausen, M. Hoemmen, A. Kucala, C. Trott, and
M. Howard, Runtime polymorphism in Kokkos applications,
https://www.osti.gov/biblio/1592283, 2019, Presentation at the
2019 Exascale Computing Project Annual Meeting.

[3 R. Tomasetti and M. Arnst, Efficiently implementing FE boundary
conditions using stream-orchestrated execution on GPU, 2024,
Presentation at the 2024 SIAM Conference on Parallel Processing.

[M. Zhang, A. Alawneh, and T. Rogers, Characterizing massively
parallel polymorphism, |IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), IEEE, 2021.

Arnst Maarten, Tomasetti Romin Virtual dispatch on GPUs

https://www.osti.gov/biblio/1592283

	Fine-grained parallel FE assembly
	Gather-fill-scatter approach
	Polymorphism patterns

	Virtual functions on device
	Implementation aspects
	Performance evaluation

	Application
	Conclusion and outlook

