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Polymorphism in fine-grained parallel FE assembly for multidomain and
multiphysics simulation.
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1. Fine-grained parallel FE assembly
= Gather-fill-scatter approach
= Polymorphism patterns
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Gather-fill-scatter approach
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Polymorphism patterns |

> Kokkos parallel region: parallel pattern, policy, functor:

parallel for (

RangePolicy (numWorkItems) , functor

)

» Pattern 1: polymorphic functor (device virtual calls):

struct FunctorInterface

Gather
P o KOKKOS_FUNCTION
uncror virtual void operator ()(

const ordinal_t elemID
) const = 0;
parallel for ( 1

A
policy /
struct FunctorImplementation
); : public FunctorInterface
{
KOKKOS_FUNCTION
- void operator () (
const ordinal_t elemID
) const override { ... };
ETI, .so };
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Polymorphism patterns |l

» Pattern 2: polymorphic driver (host virtual call):

struct NodeBase

virtual void execute() const = 0;
};
functor template <
Gather I
typename Policy ,
parallellfor () typename FunctorImplementation
= >
policy struct Node
)5 public NodeBase
’ {
\\_/ void execute() const override {
parallel for (
. policy , functor

ETI, .so Policy policy;

FunctorImplementation functor ;
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2. Virtual functions on device
= Implementation aspects
= Performance evaluation
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How do virtual functions work?

Class B

/ Vtable of class B

bar
qux
wponter _— Vtable of class C o0

vpointer

» Virtual function calls work by using a layer of indirection. A call
through an interface pointer results in a lookup in a virtual function
table (vTable) to determine the implementation function to run.

» For virtual function calls to work on device, the vTable must be set up

properly, i.e., point to device code. Achieved by constructing derived
class instances on device.

[AFI17] P. Arias. Understanding Virtual Tables in C++. 2017.
[BCH+19] V. Brunini et al. Runtime polymorphism in Kokkos applications. Sandia, 2019.
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Virtual functions on device

local memory load

global memory loads

IMAD.MOV.U32
MoV
IMAD.MOV.U32
MoV
IMAD.MOV.U32
MOV

IMAD.MOV.U32 R21, RZ, RZ, constant memory load
, clex2][R14]

CALL.REL.NOINC indirect function call
BSYNC B6

Generated using Nsight Compute
on Nvidia V100 using Cuda 12.2.2.

» Direct overhead of virtual function calls on device:

- Loads from memory for vTable lookups.
- Indirect function call.

» Indirect effects of virtual function calls on device:
- Loss of opportunities for optimization by the compiler.

[ZAR21] M. Zhang et al. Characterizing Massively Parallel Polymorphism. IEEE, 2021.
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Performance of virtual functions on device

parallelism | =f332
Y+ = alx]
+=a
[X],[Y] € Mmxa(R)
m =217 = 131072,
> .
n=16,32,64,...,4096. compute/memory intensity per call
size of vTable
template <int Idx> parallel_for(
struct Implementation<Idx> RangePolicy <ExeSpace>(0,m),

: public Interface KOKKOS_LAMBDA (const int i) {
KOKKOS_FUNCTION objects_dptr[(i % divergence_level)]
void operator () ( ->operator () (1, 3

const int i, }
);
) const override {
for (int j = 0; j < n; ++j) View<
y(@i,j)+=a*xx(i,j); PointerWrapper<Interface>*, ExeSpace
} > objects_dptr;

Implemented in Kokkos and adapted from: [ZAR21] M. Zhang et al. Characterizing Massively
Parallel Polymorphism. IEEE, 2021.
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Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
Number of derived classes: N = 1,2,8,32 (increasing size of vTable).
Divergence level: D = 1 (no warp-level divergence).
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Performance of virtual functions on device

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
Number of derived classes: N = 32 (fixed size of vTable).
Divergence level: D = 1,2, 8,32 (increasing warp-level divergence).
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Performance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
Number of derived classes: N = 1,2, 8,32 (increasing size of vTable).
Divergence level: D =1 (no warp-level divergence).
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More significant overhead per virtual call on device on AMD MI250X than on Nvidia V100.
No clear impact of differences in compiler optimization.
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ormance of virtual functions on device

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
Number of derived classes: N = 32 (fixed size of vTable).
Divergence level: D =1,2,8,32 (increasing warp-level divergence).
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3. Application
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Application
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Application

Generated on Nvidia V100 using Cuda 12.2.2 and Kokkos 4.3.
“Dynamic”: Polymorphic functor pattern with virtual calls on device.
“Static”: Polymorphic driver pattern with static calls on device.
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Virtual calls on device entail significant overhead for low-order FE.
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Application

Generated on AMD MI250X using ROCm 6.0.1 and Kokkos 4.3. Blocksize 256.
“Dynamic”: Polymorphic functor pattern with virtual calls on device.

“Static”: Polymorphic driver pattern with static calls on device.
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Clearer impact of differences in compiler optimization on AMD MI250X than on Nvidia V100.
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4. Conclusion and outlook
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Conclusion

» We compared two polymorphism patterns for fine-grained parallel FE
assembly for multi-domain multi-physics simulation.

» Polymorphic functor: Polymorphism is expressed by using a base type
for the functor. Virtual calls inside the parallel region on device.

» Polymorphic driver: Polymorphism is expressed by using a base type
for the . The functor is wrapped into a larger type that
keeps the pattern, policy and functor together. Virtual call on host.

Take-home message

Prefer a polymorphic driver pattern over a polymorphic functor pattern:
» Avoid vTable lookup overhead on device. Significant for low-order FE.

> Keep compiler optimization opportunities open.
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Directions for future work

» Explore mechanism of virtual dispatch on AMD GPUs.
» Explore effect of enabling relocatable device code.
» Performance evaluation in application in 3D.

» Graph-based assembly.

DBC

72772777 72727777,
77777777 77777777,

[ y substrate i GAAFET GAAFET GAAFET
S 3 S

parallel for (

policy = functor

);

PBC PBC

[TA24] R. Tomasetti and M. Arnst. Efficiently implementing FE boundary conditions using
stream-orchestrated execution on GPU. SIAM PP2024.
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