
Graph-based dispatching of FE compute workloads
Efficiently implementing FE boundary conditions using

stream-orchestrated execution on GPU

Tomasetti Romin Arnst Maarten

University of Liège, Belgium

March 7th, 2024

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads

Computational metrology in semi-conductor assembly lines

Optical metrology

Use light to gather data about the physical properties of objects.

Focus

Swift FEM computed samples are needed to train a probabilistic inverse
problem method.

GAAFET (forksheet) [BNG+24]

PML

PML

Substrate

Air

CD

P
B
C

P
B
C

DBC

DBC

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 1 / 18

Outline

1. Motivation

2. FE assembly conceived as a graph
Decomposition into sub-domains
Organize FE assembly as a DAG

3. Performance-portable dispatch of workloads DAG
Performance portability with Kokkos

Asynchronicity and streams
Benchmarking Kokkos::Graph

4. FE boundary conditions DAG implemented as Kokkos::Graph
Back-of-the-envelope calculation
Electromagnetic scattering in 2D

5. Conclusion and outlook

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 2 / 18

Outline

1. Motivation

2. FE assembly conceived as a graph
Decomposition into sub-domains
Organize FE assembly as a DAG

3. Performance-portable dispatch of workloads DAG
Performance portability with Kokkos

Asynchronicity and streams
Benchmarking Kokkos::Graph

4. FE boundary conditions DAG implemented as Kokkos::Graph
Back-of-the-envelope calculation
Electromagnetic scattering in 2D

5. Conclusion and outlook

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 3 / 18

FE assembly: build up a global system from elements

1. Decompose domain (different material properties, weak forms, ...)
2. Fill elemental matrices for every sub-domain
3. Scatter add elemental contributions into global DOFs (CRS) matrix
4. Apply boundary conditions (Dirichlet, ...)

Fill

Fill

Scatter add

CRS matrix

DBC

Critical memory region

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 4 / 18

Organizing (in)dependent computations as a DAG graph

Fill

Fill

Scatter add

CRS matrix

DBC

Critical memory region

▶ Dependencies between workloads are
clearly expressed.

▶ Once predecessor workloads are done,
child nodes can run concurrently, once
resources are available.

PML

PML

Substrate

Air

CD

P
B
C

P
B
C

DBC

DBC

PML

G

airsubstratePMLPML GAAFET GAAFET GAAFET

S S S S S S S

DBC DBC

PBC PBC

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 5 / 18

Outline

1. Motivation

2. FE assembly conceived as a graph
Decomposition into sub-domains
Organize FE assembly as a DAG

3. Performance-portable dispatch of workloads DAG
Performance portability with Kokkos

Asynchronicity and streams
Benchmarking Kokkos::Graph

4. FE boundary conditions DAG implemented as Kokkos::Graph
Back-of-the-envelope calculation
Electromagnetic scattering in 2D

5. Conclusion and outlook

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 6 / 18

Performance portable GPU workloads

▶ A functor encapsulates both data and methods applied to it.

▶ A parallel region executes the body of a computational pattern
following a given execution policy.

▶ A workload is thus defined by {pattern, execution policy, functor}.

Fill

Fill
template <...>
struct FillFunctor
{

... data ...

KOKKOS_FUNCTION
void operator()(const T ielem) const { ... }

};

template <typename execution_space, ...>
void execute work(const execution_space& space, ... data ...)
{

Kokkos::RangePolicy<execution space> policy(space, 0, num_elems);

FillFunctor<...> body(... data ...);

Kokkos::parallel for(policy, body);
}

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 7 / 18

Managing asynchronicity in a DAG using streams

Sequential

h

s1

launch A launch B fence

workload A workload B

Stream-based

manual

graph

h

s1

s2

launch A launch B fence

workload A

workload B

h

s1

s2

graph instantiate submit fence

workload A

workload B

Stream (a.k.a. space instance)

▶ queue of workloads defined by
{pattern, execution policy, functor}

▶ Several streams may run concurrently.

▶ Streams can be used to expose more
parallelism to saturate GPUs.

Observation

Manual stream management incurs
additional code clutter w.r.t. a graph.

Question 1

Efficiency of streams vs. sequential?

Question 2

Overhead of graph?

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 8 / 18

Benchmarking Kokkos::Graph (1/3)

Foretaste of Kokkos::Graph

▶ Portable wrapper around cudaGraph_t or hipGraph_t.

▶ Default sequential implementation for “unsupported” backends.

Iterated axpby distributed to nodes:(
(x←[αx+ βy), . . .

)
×100

x
subview1 subview2 subviewN

Questions

▶ Efficiency of streams vs. sequential?

- Interest of concurrency for maximizing occupancy.

▶ Overhead of graph?

- Cost of graph creation, instantiation, submission and destruction under
complex topologies.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 9 / 18

Benchmarking Kokkos::Graph (2/3)

2500 5000 7500 10000 12500 15000 17500 20000
20

30

40

50

60

70

Ti
m

e
pe

r r
ep

 [µ
s]

2500 5000 7500 10000 12500 15000 17500 20000
length

1.0
1.2
1.4
1.6
1.8
2.0

sp
ee

du
p

serial[250] graph[250] manual[250] graph[1] graph[15]

Generated on Ampere 86, using Cuda 12.2.2 (2 graph nodes; 30 SMs with 128 block size).

▶ Under-utilization: Partitioning of axpby yields fewer blocks than the
number of available compute units.

▶ Towards saturation: More than one block per compute unit improves
performance by hiding memory latency.

Assigning asynchronous workloads to streams is always beneficial!

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 10 / 18

Benchmarking Kokkos::Graph (3/3)

1x2 2x3 3x4 4x5 5x6

cudaGraphCreate (?) 1.9 2.6 3.7 6 11.1

cudaGraphAddDependencies 1.8 1.7 1.6 1.6 1.6

cudaGraphAddKernelNode 3.9 3.7 3.7 3.8 3.8

cudaGraphAddEmptyNode 3.8 3.6 3.6 3.6 3.6

cudaGraphInstantiate 26.8 70.6 155.1 320.9 589

cudaGraphLaunch 8.4 15.6 24.5 36.3 52.8

cudaGraphExecDestroy 7.4 12.6 20.9 34.9 58.1

cudaGraphDestroy 2.3 3 4.5 6.4 9.3

...

...

...

Generated with Nsight Systems on Ampere 86, using Cuda 12.2.2. Time in microseconds.

▶ Graph creation: Adding a node or an edge has a constant cost.

▶ Graph instantiation: Cost increases with graph complexity. It can be
amortized through re-issue.

▶ Graph launch: Cost grows with number of nodes. Potential launch
overhead reduction.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 11 / 18

Outline

1. Motivation

2. FE assembly conceived as a graph
Decomposition into sub-domains
Organize FE assembly as a DAG

3. Performance-portable dispatch of workloads DAG
Performance portability with Kokkos

Asynchronicity and streams
Benchmarking Kokkos::Graph

4. FE boundary conditions DAG implemented as Kokkos::Graph
Back-of-the-envelope calculation
Electromagnetic scattering in 2D

5. Conclusion and outlook

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 12 / 18

Is it worth bothering with asynchronicity for BCs?

Scenario

▶ LUMI-G, AMD MI250X with 64GB (1 die)

▶ 2D Laplacian on a rectangle (N by N/2 elements) (fp64)

▶ Mesh with TRI3 elements and HGRAD basis of degree 8
(45 dofs, 55 cubature points)

1

1

1

7
7

7

21

Intrepid2 Tpetra

QDR ϕ ∇ϕ mat. Mstacked
elem [bytes]

55 · 2 55 · 45 55 · 45 · 2 452 76 480

row offsets column indices values MCRS
dof [bytes]

1 O(6 · 45) O(6 · 45) 541

nodes edges faces dofs

(N + 1)
(

N
2

+ 1
)

3
2
N(N + 1) N2 32N2 + 12N + 1

▶ Allowable N due to global memory constraint: 856.

▶ This would allow for 8×856+1
1024 = 6.69 CUs to be occupied by a single

functor working on one side, from the 110 CUs available.

Expose BCs as asynchronous workloads to increase GPU utilization.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 13 / 18

Electromagnetic scattering in 2D (1/2)

Mie scattering

Scatter of Hz -polarized plane wave Hinc over a dielectric cylinder of
permittivity ϵc .

DBC 1

D
B
C
2

DBC 3

D
B
C
4

PML

ϵPML(x , y)

ϵAir

R

ϵc

Hinc

H total
real Hscattered

real

Focus

Currently DAG encompasses only boundary conditions.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 14 / 18

Electromagnetic wave scattering in 2D (2/2)

Mesh of 43 706 TRI3 elements with HGRAD basis of degree 5 (21 dofs, 25
cubature points), std::complex<double>.

API call Cost/call [µs] # [-]

cudaGraphCreate 4.6 1

cudaGraphAddDependencies 2.6 4

cudaGraphAddKernelNode 7.6 4

cudaGraphAddEmptyNode 12.3 1

cudaGraphInstantiate 116.3 1

cudaGraphLaunch 28.1 1

cudaGraphExecDestroy 31.2 1

cudaGraphDestroy 9.1 1

Kernel Launch grid Time [µs]

Fill (342, 1, 1) × (1, 128, 1) 5 · 105

DBC (4, 1, 1) × (1, 128, 1) 5 · 102

Generated using Nsight Systems and Nsight Compute on Ampere 86, using Cuda 12.2.2.

▶ Graph overhead (total of ∼ 240 µs):
- is negligible w.r.t. Fill.
- is acceptable w.r.t. DBC, given that it allows launching all 4 Dirichlet
workloads concurrently, and one workload runs in ∼ 5 · 102 µs.

▶ The compute/memory intensity per dof for Dirichlet is quite low. The
gain might become more significant for more complex BCs.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 15 / 18

Outline

1. Motivation

2. FE assembly conceived as a graph
Decomposition into sub-domains
Organize FE assembly as a DAG

3. Performance-portable dispatch of workloads DAG
Performance portability with Kokkos

Asynchronicity and streams
Benchmarking Kokkos::Graph

4. FE boundary conditions DAG implemented as Kokkos::Graph
Back-of-the-envelope calculation
Electromagnetic scattering in 2D

5. Conclusion and outlook

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 16 / 18

Conclusion

PML

G

airsubstratePMLPML GAAFET GAAFET GAAFET

S S S S S S S

DBC DBC

PBC PBC
▶ Organize FE assembly workloads as a DAG:

- Dependencies are semantically expressed.
- Enable concurrent execution when resources are available.

▶ Efficient implementation of workloads DAG using Kokkos::Graph:
- Assigning asynchronous workloads to streams improves performance.
- Graph overhead is negligible for heavy-weight workloads and can be
amortized with re-issue for light-weight workloads.

▶ Applied to a 2D wave scattering problem
- For Fill, graph overhead is negligible.
- BCs workloads generally under-utilize the GPU and hence benefit from
asynchronous dispatch.

Take-home message

Asynchronous FE assembly workloads can be efficiently dispatched with a
device DAG.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 17 / 18

Future work

Future directions for research:

▶ Explore more complex boundary conditions.

▶ Include bulk computations in the graph (Fill, Scatter, . . .).

▶ Dynamic update of kernel data within Kokkos.

▶ Explore performance on other GPU architectures.

▶ Handle multi-GPU with Kokkos::Graph.

▶ Set node priority (similar to stream priority).

▶ Add memory allocation/deallocation nodes.

▶ Add host nodes.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 18 / 18

References

Janusz Bogdanowicz, Thomas Nuytten, Andrzej Gawlik, Stefanie
Sergeant, Yusuke Oniki, Pallavi Puttarame Gowda, Hans Mertens, and
Anne-Laure Charley, Taming the Distribution of Light in
Gate-All-Around Semiconductor Devices, Nano Letters 24 (2024),
no. 4, 1191–1196.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 18 / 18

Acknowledgment

The first author, Tomasetti Romin, would like to acknowledge the Belgian
National Fund for Scientific Research (FNRS) for its financial support.

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 18 / 18

Architecture of a CUDA GPU

(a) Global view (b) Zoom on Hopper Streaming Multiprocessor (SM)

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 18 / 18

CUDA graph in details

▶ cudaGraph_t was introduced in CUDA 10.
▶ A graph groups a set of kernels and other CUDA operations (memory

and so on) together.
▶ Managing a DAG using cudaGraph_t can speed up a workflow by

combining the driver activities associates with kernel launches and
CUDA API calls.

▶ It enforces dependencies with hardware accelerations, instead of relying
solely on CUDA streams and events, when possible.

https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/

Tomasetti Romin, Arnst Maarten Graph-based dispatching of FE compute workloads 18 / 18

https://developer.nvidia.com/blog/constructing-cuda-graphs-with-dynamic-parameters/

	Motivation
	FE assembly conceived as a graph
	Decomposition into sub-domains
	Organize FE assembly as a DAG

	Performance-portable dispatch of workloads DAG
	Performance portability with cppKokkos
	Asynchronicity and streams
	Benchmarking cppKokkos::Graph

	FE boundary conditions DAG implemented as cppKokkos::Graph
	Back-of-the-envelope calculation
	Electromagnetic scattering in 2D

	Conclusion and outlook

