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Abstract
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we obtain string attractors of prefixes of particular infinite words generalizing
k-bonacci words (including the famous Fibonacci word) and related to simple
Parry numbers. In fact, our description involves the numeration systems classi-
cally derived from the considered morphisms. This extends our previous work
published in the international conference WORDS 2023.

Keywords: String attractors, Numeration systems, Parry numbers, Automatic
sequences, Morphic sequences, Fibonacci word

MSC Classification: Primary: 68R15. Secondary: 05A05 , 11A67 , 68P05 , 68Q45.

1



1 Introduction

Introduced in the field of data compression by Kempa and Prezza [1] in 2018, the
concept of string attractor can be conceptualized as follows: within a finite word, it is a
set of positions that enables to catch all distinct factors. Since then, questions related to
string attractors have drawn the attention of many researchers from various scientific
fields. From the point of view of the theory of algorithmic complexity, the problem of
finding a smallest string attractor is NP-hard [1]. In parallel, string attractors also have
applications in combinatorial pattern matching [2]. In order to understand the best
way to measure data compressibility by exploiting repetitiveness in strings, measures
have recently been introduced in relation to string attractors [3].

Quickly after, combinatorics-on-words researchers have quite naturally seized the
notion and made a systematic topic of research out of it. String attractors have been
studied in the context of some (families of) sequences: automatic sequences [4] with
some focus on the ubiquitous Thue–Morse word [4–6] and the period-doubling word [4],
the famous Sturmian words [7–9] and their extension known as episturmian words [9],
the Tribonacci word [4] and more generally the k-bonacci words [10], some binary
generalized pseudostandard sequences [11], and bi-infinite words [12]. Besides analyz-
ing important families of words, another classical topic in combinatorics on words is
the study of complexity functions for infinite words, such as the distinguished factor
complexity function and the so-called abelian [13] and binomial [14] complexity func-
tions. A first complexity function based on string attractors was introduced in [4] and
considered for automatic sequences and linearly recurrent infinite words. In addition
to further studying such a complexity function, the authors of [8, 10] introduce and
examine two other string attractor-based complexity functions.

Historically, the bond between string attractors and numeration systems was
observed for the first time in [10]. There, the authors consider generalizations of the
Fibonacci word to larger alphabets (on k letters, the corresponding word is called the
k-bonacci word) and show that some of their strings attractors rely on the well-known
k-bonacci numbers. These infinite words are morphic, i.e., they are obtained as images,
under codings, of fixed points of morphisms. Consequently, we currently believe that
the link between string attractors and numeration systems can be adapted to other
morphic sequences and we therefore raise the following general question:

Question. Given a morphic sequence z, does there exist a numeration system S such
that z is S-automatic and (minimal) string attractors of the prefixes of z are easily
described using S?

In this paper, to support this question, we study a particular family of mor-
phic words. More precisely, given parameters in the shape of a length-k word c =
c0 · · · ck−1 ∈ Nk, we define the morphism µc such that µc(i) = 0ci · (i + 1) for all
i ∈ {0, . . . , k − 2} and µc(k − 1) = 0ck−1 . When it exists, we then look at the fixed
point of µc. From a combinatorics-on-words point of view, this family is interesting
as it generalizes the k-bonacci morphisms. However, their main interest stems from
numeration systems. Given a simple Parry number β (a real number for which the β-
expansion of 1 is of the form u0ω for some finite word u), Fabre [15] associated with it
a morphism µ which is strongly related to the automaton corresponding to the base-β
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numeration system (for real numbers), or alternatively to the greedy numeration sys-
tem associated with the sequence (|µn(0)|)n∈N (for integers) [16]. This morphism can
also be used to understand the base-β integers [15, 17]. It turns out that µ corresponds
to µc where c is the β-representation of 1. Note that, due to a result of Parry [18], not
every c corresponds to a simple Parry number. Combinatorially speaking, the fixed
points of these particular morphisms have been studied for instance in [19–22].

Furthermore, the techniques used so far to obtain string attractors of infinite words
do not apply to the words we consider. Indeed, on the one hand, they are not necessar-
ily episturmian, so we cannot use the approach from [9]. On the other hand, for some
parameter c ∈ Nk, the corresponding numeration system is not addable, meaning that
the addition within the numeration system is not recognizable by a finite automaton.
For example, this is the case of c = 3203 [23]. As a consequence, we cannot follow the
methods from [4]; in particular, we study words outside the framework needed to use
the software Walnut [24].

Under some conditions on the parameters, we show that the prefixes of the fixed
point admit string attractors strongly related to the associated numeration system.
Moreover, they are of size at most one more than the alphabet size, and are therefore
nearly optimal. Finally, we provide an infinite family of words for which these string
attractors have minimal size.

This work extends and completes some of the results presented in our first
exploratory paper on this topic [25]. In this version, we emphasize the link with
numeration systems and simple Parry numbers. We also provide new results, and as
a consequence, have restructured and simplified most of the proofs.

This paper is organized as follows. In Section 2, we first recall some classical notions
of combinatorics on words. In particular, we introduce the family of words that we
will focus on. We then show how these words are related to numeration systems in
Section 3, and we study some of their properties such as greediness. Section 4 is devoted
to the construction of string attractors of the words. More precisely, we give the precise
conditions under which every prefix admits a string attractor included in a particular
subset, and we exhibit such a string attractor when the conditions are met. Then in
Section 5, we analyze these conditions and give alternative formulations in terms of
the numeration system and of the parameters c0, . . . , ck−1. Finally, in Section 6, we
discuss the optimality of the string attractors that we obtained and describe an infinite
family of words for which they are optimal.

2 Preliminaries

2.1 Words

We start with the bare minimum on words and introduce some notations.
Let A be an alphabet either finite or infinite (for instance, we will consider words

over the set of non-negative integers N). The length of a word is its number of letters
and will be denoted with vertical bars | · |. We let ε denote the empty word, and A∗

denote the set of finite words over A. For any integer n ≥ 0, we let An be the set
of length-n words over A. If w = xyz for some x, y, z ∈ A∗, then x is a prefix, y is
a factor, and z is a suffix of w. A factor of a word is proper if it is not equal to the
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initial word. A word v is a fractional power of a non-empty word w if there exist ℓ ≥ 0
and x a prefix of w such that v = wℓx. Infinite words are written in bold and we start
indexing them at 0. We use classical notations of intervals to denote portions of words.
For a non-empty word u ∈ A∗, we let uω denote the concatenation of infinitely many
copies of u, that is, uω = uuu · · · .

Let ≤ be a total order on A. The lexicographic order on A∗ induced by ≤ is defined
as follows: for x, y ∈ A∗, we say that x is lexicographically smaller than y, and we
write x < y, if either x is a proper prefix of y, or x = zax′ and y = zby′ for some
letters a, b with a < b. We write x ≤ y if x is lexicographically smaller than or equal
to y. The genealogical order, also known as radix order, on A∗ induced by ≤ is defined
as follows: for x, y ∈ A∗, we say that x is genealogically smaller than y, and we write
x <gen y, if either |x| < |y|, or |x| = |y| and x = zax′ and y = zby′ for some letters a, b
with a < b. We write again x ≤gen y if x is genealogically smaller than or equal to y.

A non-empty word w ∈ A∗ is primitive if w = un for u ∈ A∗ \ {ε} implies n = 1.
Two words are conjugates if they are cyclic permutation of each other.

A word is Lyndon if it is primitive and lexicographically minimal among its con-
jugates for some given order. Defined in the 50’s, Lyndon words are not only classical
in combinatorics on words but also of utmost importance. See [26] for a presentation.
A celebrated result in combinatorics on words is that London words form a so-called
complete factorization of the free monoid.
Theorem 1 (Chen-Fox-Lyndon [27]). For every non-empty word w ∈ A∗, there exists
a unique factorization (ℓ1, . . . , ℓn) of w into Lyndon words over A such that ℓ1 ≥ ℓ2 ≥
· · · ≥ ℓn.

Several variations of Lyndon words have been considered lately: generalized Lyn-
don [28], anti-Lyndon [29], inverse Lyndon [30], and Nyldon [31]. In this text, we will
use the second.
Definition 1. Let (A,≤) be a totally ordered alphabet. We let ≤− denote the inverse
order on A, i.e., b <− a if and only if a < b for all a, b ∈ A. We also let ≤− denote
the inverse lexicographic order which is the lexicographic order induced by ≤−. A word
is anti-Lyndon if it is Lyndon with respect to the inverse lexicographic order.

Otherwise stated, a word is anti-Lyndon if it is primitive and lexicographically
maximal among its conjugates.
Example 2. Let A = {0, 1} with 0 < 1, so 1<− 0. The first few anti-Lyndon words,
ordered by length, are 1, 0, 10, 110, 100, 1110, 1100, and 1000.

2.2 Morphisms and fixed points of interest

A morphism is a map f : A∗ → B∗, where A,B are alphabets, such that f(xy) =
f(x)f(y) for all x, y ∈ A∗. The morphism f is prolongable on the letter a ∈ A if
f(a) = ax for some x ∈ A∗ and fn(x) ̸= ε for all n ≥ 0. In this section, we consider
a specific family of morphisms defined as follows. Note that they appear under the
name generic k-bonacci morphisms in [32, Example 2.11].
Definition 2. Let k ≥ 2 be an integer and let c0, . . . , ck−1 ≥ 0 be k parameters often
summarized in the shape of a word c = c0 · · · ck−1 ≥ 0k. The morphism µc : {0, . . . , k−
1}∗ → {0, . . . , k − 1}∗ is given by µc(i) = 0ci · (i + 1) for all i ∈ {0, . . . , k − 2} and
µc(k − 1) = 0ck−1 . For all n ≥ 0, we then define uc,n = µn

c (0) and Uc,n = |uc,n|.
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Table 1 Construction of the sequences (un)n≥0 and (Un)n≥0 for c = 102.

n 0 1 2 3 4 5

un 0 01 012 01200 012000101 012000101012012
fact. of un 0 u1

0 · 1 u1
1u

0
0 · 2 u1

2u
0
1u

2
0 u1

3u
0
2u

2
1 u1

4u
0
3u

2
2

Un 1 2 3 5 9 15

When the context is clear, we will usually omit the subscript c in Definition 2.
Example 3. When c = 1k, we recover the k-bonacci morphism and words. For k = 3
and c = 102, the first few iterations of the corresponding morphism µc : 0 7→ 01, 1 7→
2, 2 7→ 00 are given in Table 1. Some specific factorization of the words (uc,n)n≥0 is
highlighted in Table 1.

The factorization presented in the previous example can be stated in general. It
gives a recursive definition of the words (uc,n)n≥0 and can be proven using a simple
induction.
Proposition 4. For all c = c0 · · · ck−1 ≥ 0k, we have

un =



(
n−1∏
i=0

uci
n−i−1

)
· n, if 0 ≤ n ≤ k − 1;

k−1∏
i=0

uci
n−i−1, if n ≥ k.

As a consequence of Proposition 4, the sequence (Un)n≥0 respects the following
recurrence relation:

Un =

{
1 +

∑n−1
i=0 ciUn−i−1, if 0 ≤ n ≤ k − 1;∑k−1

i=0 ciUn−i−1, if n ≥ k.
(1)

In the rest of the paper, we will assume the following working hypothesis (WH) on
c:

c = c0 · · · ck−1 ≥ 0k with c0, ck−1 ≥ 1. (WH)

The condition ck−1 ≥ 1 ensures both that the recurrence relation is of order k and that
the morphism µc is non-erasing, which is a classical assumption in combinatorics on
words. Moreover, the condition c0 ≥ 1 guarantees that µc is prolongable. Under (WH),
the morphism µc has an infinite fixed point starting with 0 denoted u := limn→∞ un.

We make the following combinatorial observation.
Remark 5. Under (WH), using Proposition 4, a simple induction shows that the
letter i ∈ {1, . . . , k− 1} can only be followed by 0 and/or i+1 (and only 0 in the case
i = k − 1) in u and in uω

n.

3 Link with numeration systems

In this section, specific definitions will be recalled. For the reader unfamiliar with the
theory of numeration systems, we refer to [33, Chapters 2 and 3] for an introduction
and some advanced concepts.
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Table 2 Illustration of the numeration system Sc for c = 102.

n 0 1 2 3 4 5 6 7 8

u[0, n) ε 0 01 012 012 · 0 01200 01200 · 0 01200 · 01 01200 · 01 · 0
repSc

(n) ε 1 10 100 101 1000 1001 1010 1011

A numeration system (for natural numbers) can be defined as a triple S =
(A, repS , L), where A is an alphabet and repS : N → A∗ is an injective function such
that L = repS(N). The map repS is called the representation function and L is the
numeration language. If repS(n) = w for some integer n ≥ 0 and some word w ∈ A∗,
we say that w is the representation (in S) of n and we define the valuation (in S) of
w by valS(w) = n. Note that, when the context is clear, we omit the subscript S in
rep and val.

Any given prolongable morphism naturally gives rise to a numeration system that
we will call the associated Dumont-Thomas numeration system [34]. These are based
on particular factorizations of the prefixes of the fixed point. We only give here the def-
inition in the particular case of the morphisms studied in this paper but the interested
reader can find the general case in the original paper [34].
Proposition 6 (Dumont-Thomas [34]). Let c satisfy (WH). For all n ≥ 1, there
exist unique integers N, ℓ0, . . . , ℓN ≥ 0 such that ℓ0 ≥ 1, u[0, n) = uℓ0

N · · ·uℓN
0 , and

this factorization verifies the following: uN+1 is not a prefix of u[0, n) and, for all

0 ≤ i ≤ N , uℓ0
N · · ·uℓi−1

N−i+1u
ℓi+1
N−i is not a prefix of u[0, n).

Recall that a numeration system based on a suitable sequence of integers (Un)n≥0

is called greedy when, at each step of the decomposition of any integer, the largest pos-
sible term of the sequence (Un)n≥0 is chosen; formally, we use the Euclidean algorithm
in a greedy way. As the conditions on the factorization in Proposition 6 resemble that of
greedy representations in numeration systems, we will refer to it as being word-greedy.

For a given c satisfying (WH), we then let Sc denote the numeration system asso-
ciated with the representation function repSc

: N → N∗ mapping n to repSc
(n) =

ℓ0 · · · ℓN , where the integers ℓ0, . . . , ℓN verify the conditions of Proposition 6 for n. By
convention, we set repSc

(0) = ε.
Example 7. Using Example 3 for c = 102, the representations of the first few integers
are given in Table 2. The word-greedy factorization of each prefix is highlighted in the
second row, leading to the representation of the corresponding integer in the third row.
Remark 8. If repSc

(n) = ℓ0 · · · ℓN , then n = |uℓ0
N · · ·uℓN

0 | =
∑N

i=0 ℓiUN−i. In other
words, valSc

is given by the usual valuation function associated with the sequence
(Un)n≥0. Such a system is sometimes called a positional numeration system. Note that
this is not necessarily the case for the Dumont-Thomas numeration system associated
with some other morphism.

The Dumont-Thomas numeration systems are a particular case of abstract numer-
ation systems introduced in [35]. A numeration system S = (A, rep, L) is said to be
abstract if L is regular and rep(n) is the (n+1)st word of L in the genealogical order.
We have the following result.
Theorem 9 (Rigo [32, Section 2.2]). Let σ : {α0, . . . , αd}∗ → {α0, . . . , αd}∗ be a mor-
phism prolongable on the letter α0. We define the automaton Aσ for which {α0, . . . , αd}
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is the set of states, α0 is the initial state, every state is final, and the (partial) transi-
tion function δ is such that, for each α ∈ {α0, . . . , αd} and 0 ≤ i ≤ |σ(α)| − 1, δ(α, i)
is the (i + 1)st letter of σ(α). If S = (A, rep, L) is the Dumont-Thomas numeration
system associated with σ, then L = L(Aσ) \ 0N∗ and rep(n) is the (n+1)st word of L
in the genealogical order.
Example 10. For c = 102, the automaton Aµc of Theorem 9 is depicted in Figure 1
(details are left to the reader). The first few accepted words (not starting with 0) are,
in genealogical order, ε, 1, 10, 100, 101, 1000, 1001, 1010, and 1011, which indeed
agree with the representations of the first few integers in Example 7.

0 1 2

0

1 0

0, 1

Fig. 1 The automaton Aµc for c = 102.

As the automaton in Theorem 9 can be used to produce, for all n ≥ 0, the letter
un when reading repSc

(n) by [32, Theorem 2.24], we have the following.
Corollary 11. Let c satisfy (WH). Then the sequence u is Sc-automatic.

Similarly to what is usually done in real base numeration systems, we will let d⋆

denote the periodization of c, that is, d⋆ = (c0 · · · ck−2(ck−1− 1))ω. Using Theorem 9,
we deduce the next result.
Lemma 12. Under (WH), for all n ≥ 0, we have repSc

(Un) = 10n, the numbers
having a representation of length n+1 are those in [Un, Un+1), and repSc

(Un+1−1) =
d⋆[0, n]. In particular, Un+1 − 1 =

∑n
i=0 d

⋆
iUn−i.

Proof. The first claim directly follows by the definition of Sc, and the second one
by the genealogical order. The number Un+1 − 1 is then represented by the maximal
length-(n+1) word accepted by the automaton Aµc

, which is the length-(n+1) prefix
of d⋆.

Note that, if the numeration system Sc satisfies the greedy condition, this result
follows from the characterization of numeration systems in terms of dynamical systems
given by Bertrand-Mathis [16, 36]. However, even though the function repSc

is obtained
using the word-greedy factorization of prefixes of u, the numeration system Sc is not
necessarily greedy as the following example shows.
Example 13. In Example 3 for c = 102, we see that u[0, 14) = 012000101 ·012 ·01, so
repSc

(14) = 10110, while the greedy representation of 14 associated with the sequence
(Un)n≥0 is 11000.

In fact, we have the following two characterizations.
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Lemma 14. Let c satisfy (WH). The numeration system Sc = (A, repSc
, L) is greedy

if and only if, for all v ∈ L and for all i ≤ |v|, the suffix of length i of v is smaller
than or equal to d⋆[0, i). Moreover, we then have

L = {v = v1 · · · vn ∈ N∗ \ 0N∗ : ∀ 1 ≤ i ≤ n, vn−i+1 · · · vn ≤ d⋆[0, i)}.

Proof. Let us denote S = (A′, repS , L
′) the canonical greedy numeration system asso-

ciated with the sequence (Un)n≥0. In particular, by uniqueness, Sc is greedy if and
only if Sc = S. As Sc is an abstract numeration system, repSc

respects the genealog-
ical order, i.e., n ≤ m if and only if repSc

(n) ≤gen repSc
(m). So does repS by [33,

Proposition 2.3.45]. Hence, Sc = S if and only if L = L′. Moreover, for all n ≥ 0,
repS(Un) = 10n, so L and L′ contain the same number of length-n words by Lemma 12.
Thus L = L′ if and only if L ⊆ L′. By [37, Lemma 5.3], we have

L′ = {v = v1 · · · vn ∈ N∗ \ 0N∗ : ∀ 1 ≤ i ≤ n, vn−i+1 · · · vn ≤ repS(Ui − 1)},

so if Sc is greedy, then L = L′ and, by Lemma 12, repS(Ui − 1) = d⋆[0, i) so we
conclude. For the converse, let us proceed by contraposition and assume that Sc is not
greedy. Therefore, L ̸⊆ L′ and there exists v ∈ L and i ≤ |v| such that vn−i+1 · · · vn >
repS(Ui − 1). However, since d⋆[0, i) is also a representation of Ui − 1 associated with
the sequence (Un)n≥0, we have repS(Ui − 1) ≥ d⋆[0, i) (see [33, Proposition 2.3.44]
for example). Therefore, the length-i suffix of v is strictly greater than d⋆[0, i), which
ends the proof.

Theorem 15. Let c = c0 · · · ck−1 ≥ 0k with c0, ck−1 ≥ 1. The numeration system
Sc is greedy if and only if c0 · · · ck−2(ck−1 − 1) is lexicographically maximal among its
conjugates.

Proof. Using Lemma 14 and Theorem 9, Sc is greedy if and only if, for all n ≥ 0
and for all 0 ≤ i ≤ k − 1, any path ℓ0 · · · ℓn starting in state i in the automaton
Aµc

is such that ℓ0 · · · ℓn ≤ d⋆[0, n]. However, by definition of Aµc
, the lexicographi-

cally biggest path of length n starting in state i is given by the prefix of length n of
(ci · · · ck−2(ck−1 − 1)c0 · · · ci−1)

ω
. Therefore, we can conclude that Sc is greedy if and

only if ci · · · ck−2(ck−1 − 1)c0 · · · ci−1 ≤ c0 · · · ck−2(ck−1 − 1) for all 0 ≤ i ≤ k − 1, i.e.,
c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates.

Example 16. Let k = 4 and c = 1011. The sequence Un satisfies the recurrence
relation Un+4 = Un+3+Un+1+Un with initial conditions U0 = 1, U1 = 2, U2 = 3, and
U3 = 5. A simple induction shows that (Un)n≥0 is in fact the sequence of Fibonacci
numbers. As c0c1c2(c3 − 1) = 1010 is maximal among its conjugates, the numeration
system Sc then corresponds to the classical Fibonacci numeration system, which can
also be obtained with the parameter c′ = 11. In this case, c0c1c2(c3 − 1) = 1010 = v2

with v = 10 = c′0(c
′
1 − 1), which is anti-Lyndon (see Example 2).

The observation made in the previous example is more general, as we show below.
Recall that a real number β is Parry if the β-expansion dβ(1) of 1 is eventually
periodic. It is simple Parry if dβ(1) is finite, i.e., dβ(1) is of the form u0ω for some
finite word u. See [33, Chapter 2] for more details.
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Proposition 17. Let c satisfy (WH) and be such that c0 · · · ck−2(ck−1−1) is maximal
among its conjugates.

1. We have c0 · · · ck−2(ck−1 − 1) = (c′0 · · · c′j−2(c
′
j−1 − 1))ℓ where c′0 · · · c′j−2(c

′
j−1 − 1)

is an anti-Lyndon word.
2. There exists a simple Parry number β such that dβ(1) = c′0 · · · c′j−10

ω.
3. We have Sc = Sc′ .
4. If σ : i 7→ i mod j for all 0 ≤ i ≤ k − 1, then uc′ = σ(uc).

Proof. The first item directly follows from the definition of anti-Lyndon words.
Let us turn to the proof of the second item. As c′0 · · · c′j−2(c

′
j−1− 1) is anti-Lyndon

by assumption, c′0 · · · c′i−1 > c′j−i · · · c′j−2(c
′
j−1−1) for all i ∈ {1, . . . , j−1}. Therefore,

we obtain c′ > c′0 · · · c′i−1 ≥ c′j−i · · · c′j−1. By a result of Parry [18, Corollary 4], this
then implies that there exists some simple Parry number β such that c′0ω = dβ(1).

Let us turn to the proof of the third item. Write v = c′0 · · · c′j−2(c
′
j−1 − 1) (simply

put, to get c′, we add 1 to the last letter of v). By the first item, c = vℓ−1c′ is a
“partial” cyclization of c′. In particular, by definition, we obtain d⋆

c = d⋆
v′ (where

the dependence of d⋆ on the chosen parameters is emphasized via a subscript). The
numeration systems Sc and Sc′ thus coincide by Theorem 15 and Lemma 14.

Finally, let us show the fourth item. For all i ̸≡ j − 1 mod j, we have

µc′ ◦ σ(i) = 0c
′
i mod j ((i mod j) + 1) = 0ci(i+ 1 mod j) = σ ◦ µc(i).

Similarly, if i ≡ j − 1 mod j, then

µc′ ◦ σ(i) = 0c
′
j−1 =

{
0ci+1, if i ̸= k − 1;

0ck−1 , if i = k − 1;

= σ ◦ µc(i).

This shows that µc′◦σ = σ◦µc. By induction, we can then show that µn
c′(0) = σ(µn

c (0))
for all n ≥ 0. Hence, uc′ = σ(uc).

Combined with Corollary 11, this result implies that, if c0 · · · ck−2(ck−1 − 1) is
maximal among its conjugates, the word u is simple-Parry automatic in the sense that
it is automatic for the integer numeration system classically associated with a simple
Parry number.
Example 18. We illustrate Proposition 17 by resuming Example 16. We have
c0c1c2(c3 − 1) = 1010 = v2 with v = 10 and c′ = 11. The corresponding simple Parry
number is the Golden ratio φ. Moreover, if σ : i 7→ i mod 2, then

σ(µω
c (0)) = σ(0120301001201 · · · ) = 0100101001001 · · ·

is the Fibonacci word.
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4 String attractors of the prefixes

We now turn to the concept of string attractors in relation to the fixed points of
the morphisms µc, c ≥ 0k. A string attractor of a finite word y = y1 · · · yn is a set
Γ ⊆ {1, . . . , n} such that every non-empty factor of y has an occurrence crossing a
position in Γ, i.e., for each factor x ∈ Am of y, there exists i ∈ Γ and j such that
i ∈ {j, . . . , j +m− 1} and x = y[j, j +m).
Example 19. The set {2, 3, 4} is a string attractor of the word 0 1 2 0 0 1. Indeed, it
suffices to check that the factors 0, 1 and 01 have an occurrence crossing one of the
underlined positions. No smaller string attractor exists since at least one position in
the set is needed per different letter in the word.
Warning. We would like to stress the following crucial point: in this paper, the letters
of infinite words are indexed starting from 0 while the positions in a string attractor are
counted starting at 1. This could be seen as confusing, but we use the same notation as
the original paper on string attractors [1]. Where ambiguity may occur, we explicitly
declare how finite words are indexed.

The family of words uc contains the famous k-bonacci words (when c = 1k), and
it is known for these words that the positions in {Un : n ≥ 0} are sufficient to find
string attractors of minimal sizes [10]. It is thus natural to wonder if it is also the case
for each word uc. We first obtain the following result.
Proposition 20. Let c satisfy (WH). If every prefix of u has a string attractor made
of elements of {Un : n ≥ 0}, then u[0, Un+1 − 1) is a fractional power of un for all
n ≥ 0.

Proof. Assume to the contrary that there exists N such that u[0, UN+1 − 1) is not
a fractional power of uN . Therefore, let us denote uNxNbN , where xN is a possibly
empty word and bN is a letter, the shortest prefix of u[0, UN+1 − 1) that is not a
fractional power of uN . We show that xNbN is not a factor of uNxN , and therefore
that any string attractor of uNxNbN must contain a position in [UN + 1, UN+1 − 1],
which contradicts the assumption.

More generally, we show that, for all n, if unxnbn is the shortest prefix of u that
is not a fractional power of un, then either xn = ε or it is always followed in unxn by
the letter b ̸= bn such that unxnb is a prefix of uω

n . Observe that, in the first case, by
Proposition 4, c0 = 1 and ci = 0 for all 1 ≤ i ≤ n. In other words, un = 012 · · ·n and
bn = n + 1. Therefore we can indeed conclude that xnbn is not a factor of unxn in
both cases.

We proceed by induction on n. If n = 0, then un = 0 and unxnbn = 0c01, so
xn = 0c0−1 is always followed by b = 0 in unxn.

Assume now that the claim is true for n− 1 and let us prove it for n. If xn−1 = ε,
then, as above, un = 012 · · ·n. Therefore, un+1 = µ(un) = 012 · · ·nµ(n) and xn is
either ε (if µ(n) = (n + 1)) or 0. In the second case, we have bn ∈ {0, n + 1} and xn

is only followed by 1 ̸= bn in unxn so we conclude.
If xn−1 ̸= ε, then µ(un−1xn−1) is a prefix of u that is a fractional power of un, so

µ(xn−1) is a prefix of xn. Notice that xn−1 cannot end with (k−1). Indeed, this follows
from Remark 5 since un−1xn−1 is the longest common prefix between u and uω

n−1.
This implies that any non-suffix occurrence of xn in unxn comes from a non-suffix
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occurrence of xn−1 in un−1xn−1. By the induction hypothesis, such an occurrence of
xn−1 is always followed by b ̸= bn−1 such that un−1xn−1b is a prefix of uω

n−1. Therefore,
if 0ℓ is the longest common prefix between µ(b) (resp., µ(b0) if b = k− 1) and µ(bn−1)
(resp., µ(bn−10) if bn−1 = k − 1), then xn = µ(xn−1)0

ℓ and xn is always followed in
unxn by c ̸= bn such that µ(un−1xn−1)0

ℓc = unxnc is a prefix of uω
n .

Based on this result, we see that fractional powers of the word un will play a key
role in determining string attractors. We thus introduce some notations.
Definition 3. Let c satisfy (WH). For all n ≥ 0, we let qn denote the longest prefix
of u that is a fractional power of un, i.e., the longest common prefix between u and
(un)

ω. For all n ≥ 0, we also let Qn = |qn|.
Working with fractional powers also has another advantage from the string attrac-

tor point of view. Indeed, there is no trivial link in general between the string attractors
of the finite words w and wa, where a is a letter. However, we have the following result
which can be derived from the proofs of [7, Propositions 12 and 15].
Proposition 21. Let z be a non-empty word and let x and y be fractional powers of
z with |z| ≤ |x| ≤ |y|. If Γ is a string attractor of x, then Γ∪{|z|} is a string attractor
of y.

Motivated by this result, to describe string attractors of each prefix, it is now
sufficient to be able to describe, for all n ≥ 1, a string attractor of a prefix of length
mn for some mn ∈ [Un − 1, Qn−1]. This argument is the key in the proof of our main
theorem.

For n ≥ 0, we denote

Γn =

{
{U0, . . . , Un}, if 0 ≤ n ≤ k − 1;

{Un−k+1, . . . , Un}, if n ≥ k.

We also define

Pn =

{
Un, if 0 ≤ n ≤ k − 1;

Un + Un−k+1 − Un−k − 1, if n ≥ k.
(2)

The next lemma directly follows from the definition of Pn and from Proposition 4.
Lemma 22. Let c satisfy (WH). Then Pn ≤ Un+1 − 1 for all n ≥ 0.

To simplify the statement of the following theorem, we set Γ−1 = ∅.
Theorem 23. Let c = c0 · · · ck−1 ≥ 0k with c0, ck−1 ≥ 1 and such that u[0, Un+1 − 1)
is a fractional power of un, and let n ≥ 0.

1. If m ∈ [Un, Qn], then Γn−1 ∪ {Un} is a string attractor of u[0,m).
2. If m ∈ [Pn, Qn], then Γn is a string attractor of u[0,m).

Proof. Let us simultaneously prove the two claims by induction on n. If n = 0, then
1 ≤ m ≤ c0, so u[0,m) = 0m and the conclusion directly follows for both claims.
Assume now that the claims are satisfied for n − 1 and let us prove them for n. By
Lemma 22, Pn−1 ≤ Un − 1, and by hypothesis on c, Un − 1 ≤ Qn−1. Therefore,
by the induction hypothesis, Γn−1 is a string attractor of u[0, Un − 1). This implies
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that Γn−1 ∪ {Un} is a string attractor of un so, by Proposition 21, of u[0,m) for all
m ∈ [Un, Qn]. This ends the proof of the first claim.

Let us now prove the second claim. Observe that, using Proposition 21, it suffices to
prove that Γn is a string attractor of u[0, Pn). If 0 ≤ n ≤ k − 1, then Γn = Γn−1∪{Un}
so we can directly conclude using the first claim. Thus assume that n ≥ k. Then by the
first claim, Γn ∪ {Un−k} = Γn−1 ∪ {Un} is a string attractor of u[0, Pn). Therefore, it
remains to show that the position Un−k is not needed in the string attractor. In other
words, we prove that the factors of u[0, Pn) having an occurrence crossing position
Un−k (and no other position of Γn ∪ {Un−k}) have another occurrence crossing a
position in Γn. More precisely, we show that they have an occurrence crossing position
Un. To help the reader with the proof, we illustrate the situation in Figure 2.

As the smallest position in Γn is Un−k+1, we need to consider the factor occurrences
crossing position Un−k in u[0, Un−k+1 − 1). So, if we write u[0, Pn) = unw, it is
sufficient to show that un−k is a suffix of un and that w′ := u[Un−k, Un−k+1 − 1) is a
prefix of w. Observe that

|w| = Pn − Un = Un−k+1 − Un−k − 1 (3)

by definition of Pn, so |w′| = |w| and we actually show that w′ = w.

u[0, Pn) =

un w

un−k

Un−k

w′

Un−k+1

w′

un−k w′

Un

Fig. 2 Representation of the proof of the second claim of Theorem 23. As we warned the reader
before, elements in a string attractor are indexed starting at 1 (in red), while indices of letters in u
start at 0.

The fact that un−k is a suffix of un is a direct consequence of Proposition 4 as
ck−1 ≥ 1 by assumption. Since u[0, Un−k+1 − 1) is a fractional power of un−k by
assumption, w′ is a prefix of un. By Lemma 22 and by assumption, we also have
Pn ≤ Un+1 − 1 ≤ Qn, so u[0, Pn) is a fractional power of un. This implies that
w = w′.

5 Fractional power prefixes and anti-Lyndon words

In this section, we study the words qn and their lengths Qn. As we will show in
Proposition 31, these words have a particular structure related to (anti-)Lyndon words.
To prove this, we introduce some more notations. For all n ≥ 0, the pair {in, jn}
designates the two (distinct) letters following qn in u and in (un)

ω. Without loss of
generality, we always assume that in < jn.
Example 24. Set c = 102. Recall from Example 3 that the first few words in (un)n≥0

are 0, 01, 012, 01200, 012000101, 012000101012012. It is then easy to see that the first
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few words in (qn)n≥0 are 0, 01, 0120, 0120001, 0120001010120. So we conclude that
the first few pairs in ({in, jn})n≥0 are {0, 1}, {0, 2}, {0, 1}, {0, 2}, {0, 1}.

The following lemma gives a recursive construction for the sequences (in)n≥0 and
(jn)n≥0, as well as a first structure for the words qn.

Lemma 25. Let c satisfy (WH). For all n ≥ 0, we have qn = uℓ0
n uℓ1

n−1 · · ·u
ℓn
0 where

the sequences (ℓn)n≥0, (in)n≥0, (jn)n≥0 are recursively constructed as follows: ℓ0 = c0,
i0 = 0, j0 = 1, and for all n ≥ 0, if jn ≤ k − 2, we have

{ℓn+1, in+1, jn+1} =


{cjn , 0, jn + 1}, if cin > cjn ;

{cjn , in + 1, jn + 1}, if cin = cjn ;

{cin , 0, in + 1}, if cin < cjn ;

and if jn = k − 1, we have {ℓn+1, in+1, jn+1} = {cin , 0, in + 1}.

Proof. We prove the claimed structure for the sequences (ℓn)n≥0, (in)n≥0, (jn)n≥0

and also that c0 = max{c0, . . . , cjn−1} for all n ≥ 0 by induction.
For the base case n = 0, as u0 = 0 and u1 = 0c01 is a prefix of u, we directly have

ℓ0 = c0, i0 = 0, j0 = 1 and c0 = max{c0}.
Let us now move to the induction step: assume that both claims are satisfied for

n and let us prove them for n+ 1. For the first claim, by definition, µ(qn) is a prefix
of both µ(u) = u and µ(un)

ω = (un+1)
ω. Moreover, it is followed in one of them by

µ(in) = 0cin · (in + 1) and in the other by µ(jn). The image of jn under µ takes two
forms.

If jn ≤ k − 2, then µ(jn) = 0cjn · (jn + 1). Thus, as in + 1 ̸= jn + 1, we have
qn+1 = µ(qn)0

ℓn+1 where 0ℓn+1 is the longest common prefix between µ(in) and µ(jn).
We then have

{ℓn+1, in+1, jn+1} =


{cjn , 0, jn + 1}, if cin > cjn ;

{cjn , in + 1, jn + 1}, if cin = cjn ;

{cin , 0, in + 1}, if cin < cjn .

The conclusion of the first claim follows from the fact that µ(qn) = uℓ0
n+1 · · ·u

ℓn
1 by

the induction hypothesis.
If jn = k − 1, then by Remark 5, qn+1 is not only followed by µ(k − 1) but by

µ(k − 1)µ(0) = 0ck−1+c0 · 1. By the second claim, we have

cin ≤ max{c0, . . . , ck−2} = c0 < ck−1 + c0

as ck−1 ≥ 1 by assumption. We conclude that {ℓn+1, in+1, jn+1} = {cin , 0, in + 1}.
The second claim is also satisfied as max{c0, . . . , cjn+1−1} ≤ max{c0, . . . , cjn−1}.

Indeed, in all cases, either jn+1 ≤ jn, or jn+1 = jn + 1 and cjn ≤ max{c0, . . . , cjn−1}.

Example 26. Let us take c = 210221 for which k = 6. The first few elements of the
sequences (ℓn)n≥0, (in)n≥0, (jn)n≥0 are given in Table 3. We already observe that they
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Table 3 Illustration of the construction
of the sequences (ℓn)n≥0, (in)n≥0,
(jn)n≥0 in the case where c = 210221.

n Comparison ℓn {in, jn}
0 / c0 = 2 {0, 1}
1 c0 > c1 c1 = 1 {0, 2}
2 c0 > c2 c2 = 0 {0, 3}
3 c0 = c3 c3 = 2 {1, 4}
4 c1 < c4 c1 = 1 {0, 2}
5 c0 > c2 c2 = 0 {0, 3}
6 c0 = c3 c3 = 2 {1, 4}

are (eventually) periodic. Indeed, {i1, j1} = {0, 2} = {i4, j4} and, as {iN , jN} entirely
determines the rest of the sequences, (ℓn)n≥0, (in)n≥0, (jn)n≥0 are eventually periodic
of period length 3 starting from index 1 (and even from index 0 for (ℓn)n≥0).

From the recursive definition given in Lemma 25, we derive the following result.
Lemma 27. Let c satisfy (WH). For all n ≥ 0, the word c0 · · · cin−1 is a border of
the word c0 · · · cjn−1, i.e., c0 · · · cin−1 = cjn−in · · · cjn−1.

Proof. Once again, we prove the result by induction on n ≥ 0. Notice that, if in = 0,
then the word cjn−in · · · cjn−1 is empty, hence the conclusion. This is in particular the
case for n = 0. Assume now that the claim holds for n and let us prove it for n + 1.
By Lemma 25, we have in+1 = 0 unless cin = cjn . In this case, in+1 = in + 1 and
jn+1 = jn + 1 so, as c0 · · · cin−1 = cjn−in · · · cjn−1 by the induction hypothesis, we
directly have c0 · · · cin+1−1 = cjn+1−in+1

· · · cjn+1−1.

We now show the link with (anti-)Lyndon words. Before doing so, we recall some
famous properties of Lyndon words that will be useful. The first result is part of the
folklore, but a proof can be found, for instance, in [38].
Proposition 28. Lyndon words are unbordered, i.e., if w is a both a prefix and a
suffix of a Lyndon word v, then w = ε or w = v.

The next result is shown within the proof of the Chen-Fox-Lyndon Theorem
(Theorem 1). See, for instance, [26, Theorem 5.1.5].
Proposition 29. Let w ∈ A∗ be a non-empty word and let (ℓ1, · · · , ℓn) be its Lyndon
factorization as in Theorem 1. Then ℓ1 is the longest Lyndon prefix of w.

Duval provided an algorithm computing the Lyndon factorization of a word in
linear time [39]. It is based on a decomposition of the word into three parts xyz: we
already computed the Lyndon factorization of x and we are now looking at w = yz,
where y is a fractional power of a Lyndon word v and z is the part that we still need
to explore. We keep track of the position of the first letter of z with an index j, and
of the period of y (i.e., the length of v) using an index i such that j − i = |v|.
Algorithm 30 (Duval [39]). Let (A,≤) be an ordered set and let w = w0 · · ·wn be a
length-n word over A. We denote wn+1 a new symbol smaller than all the letters of
w. Set i = 0 and j = 1. While i ≤ n, compare wi and wj and do the following:

• if wi < wj, then set j = j + 1 and i = 0;
• if wi = wj, then set j = j + 1 and i = i+ 1;
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• if wi > wj, then output w0 · · ·wj−i−1 as the next element in the Lyndon factorization
and restart the algorithm with the word wj−i · · ·wn.

Using the notation of the paragraph preceding Algorithm 30, we explain the three
cases present in the algorithm. We want to compute the next Lyndon word in the
Lyndon factorization of a word, knowing that of some of its prefixes. By definition of
i and j, we compare the letter wj in z with the letter wi, spaced by |v| letters.
• If wi < wj , then ywj is a Lyndon word by [40, Lemme 2], so we update y to ywj

and v to y.
• If wi = wj , then ywj is still a fractional power of v, so we simply update y to ywj

without changing the length of v (that is, we do not modify j − i).
• If wi > wj , then ywj cannot be a prefix of a Lyndon word, so the longest Lyndon
prefix of w is v.

We are now ready to prove the structure of the words qn and its link with anti-
Lyndon words.
Proposition 31. Let c satisfy (WH). Define a as the infinite concatenation of
the longest anti-Lyndon prefix of the word c0 · · · ck−2. Then for all n ≥ 0, qn =
ua0
n ua1

n−1 · · ·u
an
0 . In particular, Qn =

∑n
i=0 aiUn−i.

Proof. By Lemma 25, the beginning of the construction of the sequences (ℓn)n≥0,
(in)n≥0, (jn)n≥0 corresponds exactly to the first application of Duval’s algorithm to
the word c0 · · · ck−2 with the order ≤−. More specifically, letting N denote the first
index n for which cin < cjn or jn = k − 1 and setting p = jN − iN , then Duval’s
algorithm for ≤− implies that the word ℓ0 · · · ℓp−1 is the first element in the Lyndon
factorization of c0 · · · ck−2 for the order ≤−. Therefore, ℓ0 · · · ℓp−1 = c0 · · · cp−1 is the
longest anti-Lyndon prefix of c0 · · · ck−2 by Proposition 29. Let us denote it v. As in
the statement, let a = vvv · · · .

Observe that, by definition of N and by Lemma 25, for all 1 ≤ n ≤ N , we have
jn = n + 1 as it is incremented at each step, and ℓn = cjn−1

= cn. In particular,
p = jN − iN = N + 1− iN .

We now prove that ℓn = an for all n ≥ 0. By definition of a, the equality holds for
0 ≤ n < p, so it is enough to look at all n ≥ p. We show by induction on n ≥ p that
ℓn = cn mod p, jn ≡ (n+ 1) mod p, and jn ≤ N + 1.

For p ≤ n ≤ N , we already have ℓn = cn, jn = n + 1, and jn ≤ N + 1 by
the observation made above. Moreover, Duval’s algorithm implies that c0 · · · cN is
periodic of period length p, so ℓn = cn = cn mod p. This is also true for n = N + 1 as
N + 1 = p + iN ≡ iN mod p. Indeed, by Lemma 25 and by definition of N , we have
ℓN+1 = ciN = cN+1 mod p and

jN+1 = iN + 1 ≡ N + 2 mod p. (4)

Assume now that the claim is true for indices up to n ≥ N + 1 and let us prove it
for n+1. By the induction hypothesis, we have jn ≤ N+1, so we distinguish two cases.

Case 1. If jn ≤ N , then jn ≤ k − 2 (as jN = N + 1 ≤ k − 1). By Lemma 27,
comparing cin and cjn is equivalent to comparing c0 · · · cin and cjn−in · · · cjn . As men-
tioned earlier in the proof, c0 · · · cN is a fractional power of v, so c0 · · · cin is a prefix
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of a power of v while cjn−in · · · cjn is a prefix of a power of a conjugate of v. As v
is Lyndon for ≤−, its powers are smaller than the powers of its conjugates for ≤−,
thus c0 · · · cin ≤− cjn−in · · · cjn and cin ≤− cjn , i.e., cin ≥ cjn . Using Lemma 25, we
conclude that ℓn+1 = cjn = cn+1 mod p as jn ≤ N is congruent to n+ 1 mod p by the
induction hypothesis and c0 · · · cN has period length p. We also have jn+1 = jn + 1
thus jn+1 ≤ N + 1 and jn+1 ≡ n+ 2 mod p.

Case 2. If jn = N+1, then using Lemma 27, we know that c0 · · · cN = c0 · · · cjn−1

has a border of length in so c0 · · · cN has period length N + 1 − in. Since it also has
period length p and c0 · · · cp−1 is anti-Lyndon thus unbordered by Proposition 28, we
must have that N + 1− in is a multiple of p = N + 1− iN . In other words,

in ≡ iN mod p. (5)

In particular, by periodicity, cin = ciN . Moreover, jn = N + 1 = jN so {cin , cjn} =
{ciN , cjN }. Therefore, by Lemma 25 and by definition of N , we have

ℓn+1 = ℓN+1 and jn+1 = in + 1 ≤ N + 1. (6)

By the induction hypothesis for n, we have

N + 1 = jn ≡ n+ 1 mod p. (7)

We conclude that

ℓn+1 = ℓN+1 = c(N+1) mod p = c(n+1) mod p,

where the first equality follows by (6), the second by the induction hypothesis for
N + 1, and the last by Congruence (7), and

jn+1 = in + 1 ≡ iN + 1 ≡ N + 2 ≡ n+ 2 mod p,

where the first equality follows from (6), the first congruence from (5), the second
by (4), and the last by Congruence (7). This ends the proof.

Example 32. Let us pursue Example 24 for which c = 102. The first few words
in (qn)n≥0 are 0, 01, 0120, 0120001, 0120001010120. The longest anti-Lyndon prefix of
c0c1 = 10 is 10 itself so a = (10)ω. We can easily check that the first few qn’s indeed
satisfy Proposition 31.

Now that we have a good understanding of the fractional powers of the words un, we
look for an equivalent description of the condition in Proposition 20 and Theorem 23.
This is the purpose of Proposition 34, but we first need the following technical lemma.
Lemma 33. Let c satisfy (WH) and let w denote the longest anti-Lyndon prefix of
c0 · · · ck−2.

1. Then c0 · · · ck−2 ≥ a[0, k − 2].
2. Moreover, c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates if and only if the

following three assertions hold:
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(a) We have c0 · · · ck−2 = a[0, k − 2].
(b) We have ck−1 − 1 ≤ ak−1.
(c) If ck−1 − 1 = ak−1, then c0 · · · ck−2(ck−1 − 1) is an integer power of w.

Proof. We show the first claim. Assume by contradiction that there exists a minimal
index i ∈ {|w|, . . . , k − 2} such that c0 · · · ci < a[0, i]. Then c0 · · · ci = wℓva with
a proper prefix v of w and a letter a such that va < w. So [40, Lemme 2] implies
that c0 · · · ci is an anti-Lyndon prefix of c0 · · · ck−2. As i ≥ |w|, this contradicts the
maximality of w.

We now turn to the second claim. Assume that c0 · · · ck−2(ck−1 − 1) is maximal
among its conjugates. We first show that c0 · · · ck−2(ck−1 − 1) ≤ a[0, k − 1]. If it is
not the case, there exist ℓ ≥ 1, a proper prefix u of w, a letter a and a word v such
that c0 · · · ck−2(ck−1 − 1) = wℓuav and ua > w. Then uavwℓ > c0 · · · ck−2(ck−1 − 1),
so c0 · · · ck−2(ck−1 − 1) is not maximal among its conjugates. This is a contradiction.
Therefore, we have c0 · · · ck−2(ck−1 − 1) ≤ a[0, k − 1]. Using the first claim, we get
c0 · · · ck−2 = a[0, k−2] and ck−1−1 ≤ ak−1, which gives Items 2a and 2b. Now if ck−1−
1 = ak−1, then c0 · · · ck−2(ck−1−1) is a fractional power of w. It is moreover maximal
among its conjugates by assumption so, since w is anti-Lyndon, c0 · · · ck−2(ck−1 − 1)
is in fact an integer power of w. This proves Item 2c.

Let us now suppose that Assumptions 2a, 2b, and 2c hold. Let us consider a
conjugate ci · · · ck−2(ck−1 − 1)c0 · · · ci−1 for some 1 ≤ i ≤ k − 1. We have

ci · · · ck−2(ck−1−1) = a[i, k−2](ck−1−1) ≤ a[i, k−1] ≤ a[0, k−1− i] = c0 · · · ck−1−i,

where the first and last equalities come from Assumption 2a, the first inequality comes
from Assumption 2b, and the second inequality comes from the fact that a = wω and
w is anti-Lyndon. Therefore, we have two cases. If ci · · · ck−2(ck−1−1) < c0 · · · ck−1−i,
then

ci · · · ck−2(ck−1 − 1)c0 · · · ci−1 < c0 · · · ck−2(ck−1 − 1),

which is enough in this case. Otherwise, we get ck−1−1 = ak−1, so c0 · · · ck−2(ck−1−1)
is an integer power of w by Assumption 2c. Hence it is maximal among its conjugates
since w is anti-Lyndon.

Proposition 34. Let c satisfy (WH). The following assertions are equivalent.

1. The word u[0, Un+1 − 1) is a fractional power of un, i.e., Un+1 − 1 ≤ Qn, for all
n ≥ 0.

2. We have d⋆[0, n] ≤ a[0, n] for all n ≥ 0.
3. The word c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates.
4. The numeration system Sc is greedy.

Proof. We prove that 1 implies 2 by contraposition. Let n ≥ 0 be the smallest integer
such that d⋆[0, n] > a[0, n]. Note that n ̸= 0 since d⋆

0 = c0 = a0. By minimality, we
have d⋆[0, n− 1] ≤ a[0, n− 1], so d⋆[0, n− 1] = a[0, n− 1] and d⋆

n > an Therefore, by
the last parts of both Lemma 12 and Proposition 31, we have Un+1 − 1 > Qn.

We show that 2 implies 1 by contraposition. Assume that there exists an integer n
such that Un+1 − 1 > Qn and let us show that d⋆[0, n] > a[0, n]. By Proposition 31,
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qn = ua0
n · · ·uan

0 is a proper prefix of u[0, Un+1− 1). By Lemma 12, repSc
(Un+1− 1) =

d⋆[0, n], so d⋆
0 is the largest exponent e such that ue

n is a prefix of u[0, Un+1−1). This
implies that d⋆

0 ≥ a0. Moreover, if a0 = d⋆
0, the same argument implies that d⋆

1 is the

largest exponent e such that u
d⋆

0
n ue

n−1 is a prefix of u[0, Un+1 − 1). In both cases, we
have d⋆

0d
⋆
1 ≥ a0a1. We may iterate the reasoning to obtain d⋆[0, n] ≥ a[0, n]. As qn is

a proper prefix of u[0, Un+1− 1), the inequality cannot be an equality so we conclude.
We prove that 2 implies 3. Assume that d⋆[0, n] ≤ a[0, n] for all n ≥ 0. Using the

first part of Lemma 33, this directly implies Items 2a and 2b of Lemma 33. Let us
show Item 2c to conclude that c0 · · · ck−2(ck−1 − 1) is maximal among its conjugates
by Lemma 33. Assume that ck−1 − 1 = ak−1. Therefore, c0 · · · ck−2(ck−1 − 1) = wℓv
for some proper prefix v of w and ℓ ≥ 1. Let u be such that w = vu. We then have

wℓvw = d⋆[0, (ℓ+ 1)|w|+ |v|) ≤ a[0, (ℓ+ 1)|w|+ |v|) = wℓvuv.

Since w is anti-Lyndon, the only possibility is to have v = ε and c0 · · · ck−2(ck−1 − 1)
is an integer power of w. This proves Item 2c.

We show that 3 implies 2. By Item 2b of Lemma 33, we have ck−1 − 1 ≤ ak−1. If
the previous inequality is strict, then the conclusion is direct by Item 2a of Lemma 33.
Otherwise, by Item 2c of Lemma 33, c0 · · · ck−2(ck−1−1) is an integer power of w and
we conclude that a = d⋆, which is enough.

Finally, the Assertions 3 and 4 are equivalent by Theorem 15. This ends the proof.

Remark 35. Examining the proof of 2 implies 3 of Proposition 34, we observe that
it is enough to know that d⋆[0, k − 1 + |w|] ≤ a[0, k − 1 + |w|], so Assertions 1 and 2
may be respectively replaced as follows.

1’. The word u[0, Un+1 − 1) is a fractional power of un, i.e., Un+1 − 1 ≤ Qn, for all
0 ≤ n ≤ k − 1 + |w|.

2’. We have d⋆[0, n] ≤ a[0, n] for all 0 ≤ n ≤ k − 1 + |w|.

From Proposition 20 and Theorem 23, we directly obtain the following corollary.
Corollary 36. Let c satisfy (WH). Every prefix of uc has a string attractor made of
elements of {Un : n ≥ 0} if and only if one of the four assertions of Proposition 34 is
satisfied.

6 Optimality of the string attractors

So far we were interested in obtaining a precise description (related to a specific numer-
ation system) of a string attractor for each prefix of the infinite word of interest. In
this section, we rather focus on the size of attractors and therefore recall the follow-
ing concept from [4, 8]. Given an infinite word x and any integer n ≥ 1, we let sx(n)
denote the size of a smallest string attractor for the length-n prefix of x. The function
sx : n 7→ sx(n) is called the string attractor profile function of x. As a consequence of
Theorem 23, we obtain the following.
Corollary 37. Let c satisfy (WH) and assume that one of the assertions of
Proposition 34 holds.
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1. For all n ≥ 0 and all m ∈ [Pn, Qn], su(m) = Card(Γn).
2. For all large enough m, k ≤ su(m) ≤ k + 1.

Proof. Using a simple induction, one can check that the positions in Γn all correspond
to different letters in u. As any string attractor must contain at least one position per
letter, we deduce the first claim from Theorem 23. The second part similarly follows
from Theorem 23 since, for all large enough n, Γn is of size k, and the intervals [Un, Qn]
cover N \ {0} by Proposition 34.

For some parameters c, the intervals [Pn, Qn] also cover N \ {0}, implying that a
string attractor of minimal size can always be given by some Γn. This is for example
the case of c = 211. We characterize these parameters c in the following result. Recall
the definition of the sequence (Pn)n≥0 given in Equation (2):

Pn =

{
Un, if 0 ≤ n ≤ k − 1;

Un + Un−k+1 − Un−k − 1, if n ≥ k.

Proposition 38. Let c satisfy (WH) and let w denote the longest anti-Lyndon prefix
of c0 · · · ck−2. Moreover assume that one of the assertions of Proposition 34 holds. The
inequality Pn − 1 ≤ Qn−1 holds for all n if and only if the following conditions are
satisfied:

1. we have ck−1 = 1;
2. the word c0 · · · ck−2 is an integer power of w.

Proof. Observe that, for all n ≤ k − 1, Equation (1) gives

Pn − 1 = Un − 1 = c0Un−1 + · · ·+ cnU0.

On the other hand, Lemma 33 implies that c0 · · · ck−2 = a[0, k − 2], so

Qn−1 = a0Un−1 + · · ·+ anU0 = Pn − 1

by Proposition 31. This shows that the inequality of the statement always holds for
all n ≤ k− 1. Let us now show that it is also satisfied for n ≥ k if and only if the two
conditions of the statement are satisfied.

For n ≥ k, we have

Pn − 1 = Un + Un−k+1 − Un−k − 2

= c0Un−1 + · · ·+ ck−2Un−k+1 + (ck−1 − 1)Un−k + Un−k+1 − 2,

where the second equality follows from Equation (1), and

Qn−1 = a0Un−1 + · · ·+ ak−2Un−k+1 + ak−1Un−k + · · ·+ an−1U0.

Therefore, by Lemma 33,

Pn − 1 ≤ Qn−1 ⇐⇒ (ck−1 − 1)Un−k +Un−k+1 − 2 ≤ ak−1Un−k + · · ·+ an−1U0. (8)
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Now, if the two conditions of the statement are fulfilled, i.e., if ck−1 = 1 and
c0 · · · ck−2 is an integer power of w, then ak−1+ℓ = aℓ for all ℓ ≥ 0, so

Pn − 1 ≤ Qn−1 ⇐⇒ Un−k+1 − 2 ≤ Qn−k.

Since Un−k+1−2 ≤ Pn−k+1−1, we can then conclude by induction that the inequality
of the statement is satisfied for all n ≥ 0.

Let us now prove the converse by a detailed case-analysis, and assume first by
contradiction that ck−1 ̸= 1. Since ck−1 ≥ 1, this in fact means that ck−1 ≥ 2. For
n = k, the right-hand side of (8) becomes

(ck−1 − 1)U0 + U1 − 2 ≤ ak−1U0,

which gives, since U0 = 1 and U1 = c0 + 1,

c0 ≤ ck−1 − 2 + c0 ≤ ak−1.

Since a is the infinite concatenation of an anti-Lyndon word, we have ak−1 ≤ a0 = c0.
Therefore, we deduce that ak−1 = c0 and ck−1 = 2. Now, if n = k + 1, the right-hand
side of (8) becomes

(ck−1 − 1)U1 + U2 − 2 ≤ ak−1U1 + akU0 ⇐⇒ c0 + 1 + (U2 − c0U1)− 2 ≤ ak.

This leads us to consider two cases depending on k. If k = 2, we get U2−c0U1 = c1 = 2
so c0 + 1 + 2 − 2 ≤ a2, but as a2 ≤ a0 = c0, this is impossible. If k ≥ 3, then
U2− c0U1 = c1+1, however since ak−1ak ≤ a0a1 = c0c1 and ak−1 = c0 as established
above, we must have c0 + 1 + c1 + 1− 2 ≤ ak ≤ c1 which is also impossible.

This shows that, if Pn − 1 ≤ Qn−1 for all n ≥ 0, then ck−1 = 1. Assume now by
contradiction that c0 · · · ck−2 is not an integer power of w. Therefore, by Lemma 33,
there exist ℓ ≥ 1 and a proper non-empty prefix x of w such that such that c0 · · · ck−2 =
wℓx. Let us denote w = xy for some (non-empty) word y.

For n = k + |w|, the right-hand side of (8) becomes

U|w|+1 − 2 ≤ ak−1U|w| + · · ·+ ak−1+|w|U0

⇐⇒ c0U|w| + · · ·+ (c|w| − 1)U0 ≤ ak−1U|w| + · · ·+ ak−1+|w|U0, (9)

where we used Equation (1) to develop U|w|+1 (recall that |w|+1 ≤ ℓ|w|+ |x| = k−1).
Notice that a[k − 1,+∞) = ywω, so a[k − 1, k − 1 + |w|] = yxy0. On the other hand,
c0 · · · c|w|−1(c|w| − 1) = w(w0 − 1) (recall that w0 ≥ 1). As w is anti-Lyndon, we have
w > yx so w(w0 − 1) > yxy0. To obtain a contradiction, let us go back to numeration
systems.

For all i ≤ |w|+1 ≤ k+1, the length-i suffix v of yxy0 (resp., w(w0− 1)) is (resp.,
is smaller than) a factor of a, so, since w is anti-Lyndon, v ≤ a[0, i) = d⋆[0, i) by
Lemma 33. Therefore, by Lemma 14 and Proposition 34, yxy0 (resp., w(w0 − 1)) is
in the numeration language of Sc. By Theorem 9, Sc respects the genealogical order,
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and by Remark 8, the valuation is given by the sequence (Un)n≥0. Therefore, the word
inequality w(w0 − 1) > yxy0 implies the (integer) inequality

c0U|w| + · · ·+ c|w|−1 + (c|w| − 1)U0 > ak−1U|w| + · · ·+ ak−1+|w|U0,

which contradicts Inequality (9). This ends the proof that, if Pn − 1 ≤ Qn−1 for all n,
then ck−1 = 1 and c0 · · · ck−2 is an integer power of w.

We immediately obtain the next result.
Corollary 39. Let c satisfy (WH). If c = wℓ1 for some ℓ ∈ N \ {0} and some
anti-Lyndon word w, then

su(m) =

{
i+ 1, if m ∈ [Ui, Ui+1) with 0 ≤ i ≤ k − 2;

k, if m ≥ Uk−1.

Remark 40. We note that the conditions of Proposition 38 are precisely those of [41,
Theorem 1.1.], which characterizes the words uc for which there exists a simple Parry
number β such that dβ(1) = c0ω and the factor complexity function of uc is affine.

However, Proposition 38 does not ban the existence of other parameters c for which
a string attractor of minimal size can always be given by some Γn. This follows from
the next remark.
Remark 41. The proof of Proposition 20 shows that the factor u[Un, Qn] does not
appear before. Therefore Γn cannot be a string attractor of u[0,m) if m ≥ Qn + 1; in
other words the upper bound Qn is tight in Theorem 23. However, the lower bound Pn

is not necessarily tight. For example, if c = 23, then Γ2 = {3, 9} is a string attractor
of the length-9 prefix u[0, 9) = 001001000, while P2 = 10. This is also the case for the
k-bonacci morphisms (c = 1k) where better bounds are provided in [10].

On the other hand, there exist parameters c satisfying the conditions of Proposi-
tion 34 but for which Γn is sometimes not sufficient. The simplest such example is the
period-doubling word corresponding to c = 12. Indeed, the length-8 prefix is given by
01000101 and the first few elements of the sequence (Un)n≥0 are 1, 2, 4, 8. One then eas-
ily checks that none of Γ1 = {1, 2}, Γ2 = {2, 4}, and Γ3 = {4, 8} is a string attractor.
However, this word admits the size-2 string attractors {3, 6} and {4, 6} for example.
In fact, Schaeffer and Shallit [4] proved that, if u is the period-doubling word,

su(n) =

{
1, if n = 1;

2, if n ≥ 2.

Based on this observation and our experiments, we state the following conjecture.
Conjecture 42. Let c satisfy (WH) and assume that one of the assertions of
Proposition 34 holds. Then,

su(m) =

{
i+ 1, if m ∈ [Ui, Ui+1) with 0 ≤ i ≤ k − 2;

k, if m ≥ Uk−1.
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Observe that, using the first part of Corollary 37, this equality is known to be true
for all m ≤ Uk − 1 and for infinitely many values of m.
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