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 CURRENT
OPINION Persistent HIV-1 transcription during ART: time to

reassess its significance?
1746-630X Copyright © 2024 The A
a,b a b,c
C�eline Fombellida-Lopez , Ben Berkhout , Gilles Darcis
and Alexander O. Pasternaka
Purpose of review

Despite suppressive antiretroviral therapy (ART), HIV-1 reservoirs persist and reignite viral replication if
therapy is interrupted. Persistence of the viral reservoir in people with HIV-1 (PWH) is the main obstacle to
an HIV-1 cure. The reservoirs are not transcriptionally silent, and viral transcripts can be detected in most
ART-treated individuals. Here, we review the recent progress in the characterization of persistent HIV-1
transcription during ART.

Recent findings

Evidence from several studies indicates that, although cell-associated unspliced (US) HIV-1 RNA is
abundantly expressed in ART-treated PWH, intact full-length US transcripts are rare and most US RNA is
derived from defective proviruses. The transcription- and translation-competent defective proviruses,
previously considered irrelevant, are increasingly being linked to residual HIV-1 pathogenesis under
suppressive ART. Recent data suggest a continuous crosstalk between the residual HIV-1 activity under ART
and the immune system. Persistent HIV-1 transcription on ART, despite being mostly derived from defective
proviruses, predicts viral rebound upon therapy interruption, suggesting its role as an indicator of the
strength of the host antiviral immune response that is shaping the viral rebound.

Summary

In light of the recent findings, the significance of persistent HIV-1 transcription during ART for the long-term
health of PWH and the cure research should be reassessed.
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INTRODUCTION

In 2022, an estimated 39 million people worldwide
were living with the human immunodeficiency
virus type 1 (HIV-1). Among them, 29.8 million
people (76%) were accessing antiretroviral therapy
(ART) (Global HIV & AIDS statistics, Fact sheet,
UNAIDS; https://www.unaids.org/en/resources/
fact-sheet). By targeting essential stages of HIV-1
replication cycle, ART suppresses viral replication,
preserves immune function and prevents the devel-
opment of acquired immunodeficiency syndrome
(AIDS) [1]. People with HIV-1 (PWH) who adhere to
ART typically experience improved health and a life
expectancy that is only a few years shorter than that
of uninfected individuals [2]. Nevertheless, despite
the undeniable success of ART, it is not curative and
has to be taken lifelong. The primary challenge in
achieving a cure for HIV-1 lies in the establishment,
in the early course of infection, and lifelong persis-
tence of the viral reservoir, located in resting
uthor(s). Published by Wolters Kluwe
memory CD4þ T cells and other cell types, primarily
in peripheral blood and lymphoid organs [3–5]. The
HIV-1 reservoir decays so slowly over time [6,7] that
r Health, Inc. www.co-hivandaids.com
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KEY POINTS

� HIV-1 reservoirs in ART-treated people with HIV (PWH)
are not transcriptionally silent.

� Intact full-length HIV-1 unspliced transcripts are rare
under suppressive ART and most unspliced RNA is
derived from defective proviruses.

� The transcription- and translation-competent defective
proviruses, previously considered irrelevant, are linked
to residual HIV-1 pathogenesis under ART.

� Persistent HIV-1 transcription on ART predicts viral
rebound upon therapy interruption, suggesting its role
as an indicator of the strength of the host antiviral
immune response that is shaping the viral rebound.

� Both unspliced and multiply spliced RNA have to be
considered for a complete assessment of the functional
HIV-1 reservoir.

Strategies for targeting residual HIV infection
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its lifelong persistence is guaranteed in the absolute
majority of cases. Such long-term persistence is due
to integration of the viral genome into the host
chromosome as part of HIV-1 replication cycle.
Once integrated, the provirus persists for the life-
time of the cell, and division of an infected cell
provides each progeny cell with a copy of the inte-
grated provirus. The reservoir persists primarily
through cellular longevity and proliferation [8–
12], although replenishment by low-level residual
virus replication, for example due to limited pene-
tration of antiretroviral drugs into tissues, has been
suggested to contribute as well [13–15].

Several excellent reviews have summarized our
current knowledge of HIV-1 reservoirs in PWH on
ART [16–19]. Traditionally, the reservoir has been
viewed as integrated proviruses that are transcrip-
tionally silent and persist essentially as the viral
genetic code but can be reactivated to transcribe
viral RNA and produce infectious virus. In the
recent years, however, it has become clear that
transcriptional latency is not the only, and maybe
even not the main, mechanism of HIV-1 persis-
tence, as the reservoir is far from being silent
[20–24]. Multiple studies have detected cell-asso-
ciated (CA)HIV-1RNA in themajority of peripheral
blood and tissue samples from PWH on prolonged
ART in the absence of ex vivo stimulation [25–29].
Estimates of the relative size of the active reservoir
(percentage of persistent proviruses that transcribe
HIV-1 RNA) vary between studies [30,31,32

&&

,33
&&

],
but it is clear that a substantial part of the HIV-1
reservoir is not transcriptionally silent. Here, we
discuss some recent insights into the significance
of this persistent HIV-1 transcription during
2 www.co-hivandaids.com
ART and its potential implications for the
cure research.
HIV-1 TRANSCRIPTIONAL LANDSCAPE IN
ART-TREATED PEOPLE WITH HIV
HIV-1 infection produces more than 100 different
viral transcripts, all derived by alternative splicing
from the full-length unspliced (US) RNA that is tran-
scribed from the integrated provirus (Fig. 1) [34,35].
HIV-1 splicing has been covered in depth by recent
reviews [36,37]. Upon proviral integration, only short
(2kb) multiply spliced (MS) transcripts are initially
produced that encode the regulatory proteins Tat,
Rev, and Nef. As the infection progresses, a shift can
be observed towards the production of 9kb US and
4kb incompletely spliced transcripts that encode the
structural and accessory proteins Gag, Pol, Env, Vif,
Vpr, and Vpu [38,39]. This shift is dependent on a
threshold levelof theRevprotein,which facilitates the
export of the US and incompletely spliced RNA from
the nucleus by binding to the Rev response element
(RRE), a stem-loop structure located in the env open
reading frame of these RNAs [40,41]. Due to the rel-
ative inefficiency of HIV-1 splicing and to the mech-
anism of nuclear export of US RNA, US RNA
significantly outnumbers incompletely spliced and
MS RNA in PWH, in both untreated and treated infec-
tion [26,27,42,43,44

&&

,45,46]. Moreover, MS RNA
decays much faster and to a larger extent than US
RNAuponART initiation [44

&&

,47–49]. On top of this,
while almost every HIV-1 provirus can produce some
short abortive transcripts, the copy numbers of US
transcripts that are elongated, completed, and poly-
adenylated are much lower. In fact, the Yukl group
discovered a reverse correlation between the size of an
HIVUSRNAtranscript and its abundance [42,50]. This
can be due to specific latency blocks to transcriptional
elongation, completion, and splicing [42], premature
termination of RNA polymerase II transcription dur-
ing elongation [51,52], reduced stability of extended
transcripts, preferential immune clearance of cells
containing extended HIV-1 transcripts, or to a combi-
nation of these effects.

More than 90% of infected cells in ART-treated
PWH harbor genetically defective proviruses [53–
56,57

&

]. These proviruses exhibit various defects,
such as large internal deletions, hypermutation, or
mutation of essential motifs like the packaging sig-
nal/major splice donor, rendering them unable to
cause viral rebound. Despite this, some of these
defective proviruses can produce viral (or novel)
transcripts and sometimes viral proteins as well
[58

&

,59,60]. This is possible because ART only pre-
vents infection of new cells but does not inhibit viral
RNA transcription or translation in cells that were
Volume 19 � Number 00 � Month 2024
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FIGURE 1. A simplified schematic representation of HIV-1 splicing. Upper panels: HIV-1 open reading frames. Lower panels:
the main representatives of unspliced, incompletely spliced, and multiply spliced HIV-1 RNA classes. Gag and Pol proteins are
expressed from the 9 kb unspliced RNA. The other HIV-1 proteins are expressed from either incompletely (Vif, Vpr, Env, and
Vpu) or multiply (Tat, Rev, and Nef) spliced RNAs. Rev response element (RRE) is present in unspliced and incompletely spliced
RNAs but not in multiply spliced RNAs. Exons are shown by bars and introns by dashed lines. (Figure adapted from [37];
reproduced with permission from Elsevier.).
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infected prior to ART initiation, or in the progeny of
these cells.

As a result of the scarcity of genetically intact
HIV-1 proviruses, combined with the low abun-
dance of full-length US RNA, intact full-length US
transcripts are rare in ART-treated PWH.Martin et al.
[57

&

] recently developed a novel intact viral RNA
assay (IVRA), based on the principle of the intact
proviral DNA assay (IPDA) [61], to quantify likely
intact, 3’ defective, and 5’ defective HIV-1 RNA.
Using this assay, they detected a strong excess of
the 3’ defective over the 5’ defective transcripts,
confirming the previous finding that longer US tran-
scripts aremuch less abundant than the shorter [42].
Moreover, only a median of <1% of the total CA US
RNA was found to be intact in this assay [57

&

]. These
results were confirmed by two recent publications
from the Imamichi group that used near-full-length
(NFL) single-genome and single-transcript sequenc-
ing of CA DNA and US RNA from ART-treated PWH
[58

&

,62
&

]. In these studies, 99.8% and 100% of
amplified transcripts, respectively, were found to
be defective, with the defective phenotype being
nearly always due to large internal deletions. It must
be noted that NFL sequencing methods are notori-
ously inefficient and may miss the majority of full-
length proviruses (or transcripts arising from these
proviruses) due to frequent amplification failures, as
recently demonstrated [63]. In contrast, proviruses
or transcripts with large internal deletions are
1746-630X Copyright © 2024 The Author(s). Published by Wolters Kluwe
amplified much more efficiently, resulting in a
bias of NFL sequencing-based methods towards
amplification of short, defective proviruses or
transcripts. However, the proportions of intact pro-
viruses among total proviruses in these NFL studies
[58

&

,62
&

] were higher than the proportions of intact
transcripts among total transcripts, again in line
with the lower abundance of the longer transcripts
[42].

Importantly, these studies only assessed the
proportions of intact vs. defective transcripts,
but did not address the relative transcriptional
activity of intact vs. defective proviruses. Answer-
ing this question requires technically demanding
assays, as it necessitates a combined assessment
of proviral intactness and transcriptional activity
in the same single cell. A recent study used multi-
plexed single-cell RNAflow-fluorescence in situ
hybridization (FISH) to identify HIV-infected cells
that express viral RNA during ART [33

&&

]. They
found all HIV-1 proviruses sequenced from HIV
RNAþ cells to be defective, although the number
of sequenced NFL proviral amplicons in this study
was limited. This confirms the earlier data from the
same group, obtained using a similar methodol-
ogy, that intact proviruses are rarely present in
cells expressing viral RNA upon ex vivo stimulation
[64].

Einkauf et al. [32
&&

] developed PRIP-seq, a limit-
ing dilution-based assay that simultaneously
r Health, Inc. www.co-hivandaids.com 3
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captures the proviral sequence, the corresponding
chromosomal integration site, and the level of HIV-
1 RNA expression of in single infected cells. Overall,
they scored similar proportions (26.7% and 33.6%)
of intact and defective proviruses in ART-treated
PWH that were transcriptionally active. However,
these numbers only refer to the fractions of provi-
ruses that could transcribe “long LTR” HIV-1 RNA.
This “long LTR” assay detects all 5’ long terminal
repeat (LTR)-containing transcripts that are at least
�180 nt long, and considering the frequent termi-
nation of US RNA transcription in ART-treated PWH
[42], most of these transcripts are expected to be
short. Although the Einkauf study did not specifi-
cally report the frequencies of cells containing com-
pleted US RNA, it is plausible that full-length intact
US transcripts would be rare because in most cases,
transcription from an intact provirus is expected to
terminate prior to completion.

In summary, there is evidence from several
studies that, although US RNA is abundantly
expressed in ART-treated PWH and the rates of
transcription initiation and proximal elongation
seem to be similar between intact and defective
proviruses, intact full-length US transcripts are rare
and most US RNA is derived from defective provi-
ruses. Indeed, initiated, elongated, and completed
US transcripts have been shown to correlate with
total (which is mostly defective) but not with intact
HIV-1 DNA [65]. As the tat/rev coding region is
frequently deleted in defective proviruses [61],
these proviruses are not expected to transcribe high
levels of US RNA in the absence of the HIV-1 Tat
protein. Also, depending on the presence of splice
sites in the defective US transcript, its nuclear
export might be impeded due to the absence of
the viral Rev protein.

Onthe contrary,MSRNAproduction requires the
presence of several intact genomic regions, such as
splice sites or exonic splicing enhancers, and it is
challenging to detect MS RNA in PWH on long-term
suppressive ART without ex vivo cellular stimulation.
Therefore, it is plausible that US RNA is derived from
defective proviruses more frequently than MS RNA,
and MS RNA transcription competence may be a
more proximal surrogate of proviral replication com-
petence compared to US RNA transcription compe-
tence [20,66]. Indeed, MS RNAmeasured after ex vivo
stimulation of ART-treated PWH-derived CD4þ cells
correlated much stronger than US RNA with either
the virus release into culture supernatant or the
frequencyofCD4þ cells thatharbor replication-com-
petent HIV-1 measured by quantitative viral out-
growth assay (QVOA) [67,68]. However, MS RNA
did not correlate with intact HIV-1 DNA in the study
by Tumpach et al. [65].
4 www.co-hivandaids.com
THE ROLE OF PERSISTENT HIV-1
TRANSCRIPTION IN RESIDUAL VIRAL
PATHOGENESIS UNDER ART
It has been firmly established that ART-treated PWH
experience persistent inflammation and chronic
immune activation despite effective therapy, leading
to the development of non-AIDS co-morbidities,
mainly cardiovasculardiseaseormetabolic syndrome
[69]. The defective proviruses that are transcription-
and translation-competent, previously considered
irrelevant, are increasingly being linked to residual
HIV-1 pathogenesis under suppressive ART [70,71].
Several (but not all) studies indicated an association
between the CA RNA levels and residual immune
activation and inflammation in ART-treated PWH
[72–74]. We longitudinally measured more than 50
virological and immunological biomarkers during
the first 96weeks of ART and demonstrated that
theCAHIV-1US/MSRNAratio,measuredat 12weeks
of ART, was negatively predictive of the immunolog-
ical response to ART (normalization of the CD4þ T-
cell count) at 48 and 96weeks [44

&&

]. Moreover, the
US/MS RNA ratio was positively associated with
markers of CD4þ T-cell activation and apoptosis at
12weeks of ART, but still outperformed these host
markers in the prediction of immunological response
to therapy [44

&&

]. The fact that avirologicalbiomarker
performedbetter thanany immunological biomarker
in predicting an immunological outcome highlights
the importance of considering the residual HIV-1
activity on ART as a correlate and a possible cause
of the residual immune dysfunction that frequently
occurs despite virologically suppressive ART. Very
recently, the Imamichi group also evaluated the pre-
dictive markers of the immunological response
to ART [62

&

]. Confirming our observations, they
described an association between the US RNA copy
number (all sequenced US RNA was derived from
defective proviruses in their study) and the immuno-
logical nonresponse.As immunologicalnonrespond-
ers present ahigher riskof developingAIDS- andnon-
AIDS-related morbidity and mortality [75–77], these
results link the expression of the defective proviruses
to the residual HIV-1 pathogenesis under ART.

In another recent publication, the same group
[58

&

] demonstrated a strong association between CA
US RNA (which was overwhelmingly defective) and
the western blot score (measure of anti-HIV-1 anti-
bodies as a surrogate marker for viral protein expres-
sion). They also revealed the long persistence of
multiple transcriptionally active defective proviral
clones and reported a positive correlation between
either total HIV-1 DNA or US RNA and the CD8þ T-
cell count [58

&

], which is in line with the results of
an earlier study that demonstrated that production
of HIV-1 antigens from defective proviruses can be
Volume 19 � Number 00 � Month 2024
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recognized by CD8þ cytotoxic T lymphocytes [78].
In the same vein, two recent publications in Cell
Host & Microbe addressed the impact of persistent
HIV-1 transcription during ART on HIV-1-specific
CD4þ and CD8þ T-cell responses [33

&&

,79
&

]. Takata
et al. investigated a cohort of PWH after 2 years of
ART initiated during acute or chronic HIV-1 infec-
tion and found that the magnitude of CD8þ T cells
specific for HIV-1 Gag, Pol, Nef, and Vif proteins
positively associated with CA RNA and that high
total HIV-1 DNA levels strongly associated with the
maintenance of short-lived HIV-specific CD8þ T
cells. This suggests that persistent HIV-1 transcrip-
tion under ART maintains the magnitude of the
HIV-specific CD8þ T-cell response but prevents their
differentiation into functional cells. The authors
concluded that targeting the persistent transcrip-
tion could improve HIV-1-specific CD8þ T-cell
functionality needed for HIV-1 remission [79

&

].
Dub�e et al. found that, despite being derived from
defective proviruses, CA RNA under ART positively
correlated with total HIV-specific CD4þ and CD8þ

T-cell responses and with multiple HIV-specific T-
cell clusters, suggesting that the persistent HIV-1
transcription maintains the HIV-specific T-cell
responses during suppressive ART. These associa-
tions were particularly strong for the CA-p24-
expressing cells [33

&&

].
Taken together, these results add to the growing

body of evidence that persistent defective proviruses,
especially those that are transcriptionally active, are
not genetic ‘junk’ that is irrelevant for HIV-1 patho-
genesis and cure. Rather, these results suggest a con-
tinuous crosstalk between the residual HIV-1 gene
expression under ART and the immune system.
Recent studies suggest that transcriptionally active
intact proviruses are actively selected against, pre-
sumably by immune-mediated surveillance mecha-
nisms, during prolonged ART and natural HIV-1
control [32

&&

,80
&

,81]. In the recent years, it has
become clear that immune clearance plays a surpris-
ingly prominent role in shaping the reservoir [82]. It
is plausible that inmost PWH, the process of ‘natural
HIV cure’ starts from the first day of ART, as the
immune system is continuously removing the repli-
cation-competent proviruses and selecting for intact
proviruses that are in the state of ‘deep latency’ [23].
Interestingly, not only intact [56,83–85], but also
transcription-competent defective proviruses have
been shown to decay with time on ART [32

&&

], sug-
gesting that these proviruses are subject to the same
immune selection forces.Despite this, inmanyPWH,
expanded clones of transcriptionally active provi-
ruses persist for years andmay even cause a persistent
nonsuppressible plasma viremia [86,87]. Future
research should decipher the precise mechanisms
1746-630X Copyright © 2024 The Author(s). Published by Wolters Kluwe
that allow intact and defective proviruses expressing
HIV-1 RNA and proteins to avoid elimination by the
host immunity, but in the recent years it has become
clear that HIV-1 can persist not only by transcrip-
tional latency, but also by resistance to the immune
clearance of HIV-expressing cells [21,88,89,90

&

]. Pos-
sible mechanisms of this immune resistance include
the capability of the viral protein Nef, encoded by
many defective proviruses [56,58

&

], to downregulate
MHC-I [91

&&

].
SHOULD WE REASSESS THE
SIGNIFICANCE OF PERSISTENT HIV-1
TRANSCRIPTION UNDER ART?

Despite the effectiveness and improved accessibility
of modern ART, a quarter of PWH still do not have
access to the therapy. The lifelong treatment is also
not without its negative effects and complexities,
such as drug toxicities, medication interactions and
polypharmacy, adherence issues, stigma, and the
overall financial burden on PWH and the healthcare
system. Therefore, finding a cure for HIV-1 remains
a global priority. There are two main reasons why
persistent HIV-1 transcription under ART, despite
being mainly derived from defective proviruses, is
relevant for the long-term health of PWH and the
cure research. First, if transcriptionally active defec-
tive proviruses are indeed pathogenic, this should
change the concept of HIV-1 cure. The current
understanding of HIV-1 cure is eradication or sup-
pression of replication-competent proviruses only,
in order to prevent viral rebound upon stopping
ART. However, if transcriptionally active defective
proviruses can contribute to chronic immune acti-
vation, inflammation, and immunosenescence that
are frequently observed in PWH on suppressive ART
[92,93], then a broader definition of an HIV-1 cure
should include eradication, suppression, or inacti-
vation of all transcription-competent, including
genetically defective, proviruses.

A second reason why persistent HIV-1 transcrip-
tion is relevant for the cure research is because it
predicts viral rebound upon stopping ART. Post-
treatment controllers (PTCs), rare individuals who
can control HIV-1 replication after ART interrup-
tion, are considered a model for HIV-1 remission
[94–96], and the time to viral rebound after treat-
ment interruption (TI) has been proposed to corre-
late with the replication-competent reservoir size
[97]. Therefore, identifying robust predictors of time
to rebound is an important priority for the cure
research. Remarkably, a number of groups have
shown that CA US HIV-1 RNA, measured prior to
TI, is a powerful predictor of time to viral rebound
[98–102]. We demonstrated that US RNA was
r Health, Inc. www.co-hivandaids.com 5
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predictive not only of the time to viral rebound to
both >50 and >400 copies/ml but also of the mag-
nitude of the viral rebound, independently of pre-
ART virological biomarkers [100]. Recently, Wedry-
chowski et al. [103

&

] reported lower levels of initi-
ated, elongated, and completed US RNA (but notMS
RNA), measured pre-TI, in future PTCs, as compared
to noncontrollers. Taken together, these results cre-
ate an apparent paradox: why does US RNA predict
viral rebound if the majority of US transcripts is
derived from defective proviruses?

One possible answer to this question is that the
level of total (mostly defective) HIV-1 transcription
may correlate with the level of transcription from
intact proviruses. In individuals on prolonged ART
and elite controllers, intact HIV-1 proviruses are
enriched for nongenic chromosomal positions and
other features of ‘deep latency’ that suppress proviral
transcription [32

&&

,80
&

,81,104]. Therefore, for the
replication competence, the transcription compe-
tence of a provirus, influenced by its relative position
in the nuclear 3D chromatin architecture [105,106],
is likely as important as its genetic intactness.

Another possible explanation for the predictive
value of on-ART US RNA for the viral rebound upon
TI is that persistent HIV-1 transcription level in ART-
treated PWH reflects the host immune pressure that
shapes the viral rebound if ART is stopped. In the
recent years, it has become apparent that rebound
viruses detected in plasma post-TI are mostly phy-
logenetically distinct from preinterruption replica-
tion-competent or genetically intact proviruses
identified by QVOA or NFL sequencing, respectively
[107–109]. This suggests that the reactivation
potentials of individual proviruses may differ in vivo
and ex vivo, due to the immune-mediated selection
of rebound viruses in vivo. Two recent studies indi-
cated that not all replication-competent reservoirs
(as assayed by QVOA) are rebound-competent, as
both innate and adaptive immunitywere implicated
in the control of the rebound. Bertagnolli et al. [110]
demonstrated that the outgrowth of a substantial
fraction of reservoir viruses was blocked by autolo-
gous IgG antibodies against HIV-1 envelope, and
Gondim et al. [111] reported that HIV-1 isolates
detected during TI were resistant to type-I interfer-
ons. This suggests that the viral rebound is deter-
mined not only by the number of the intact
proviruses and their chromatin context, but also
by the strength of the anti-HIV host immune
response (innate and/or adaptive) that restricts
the rebounding virus.

The levelofUSRNA,despite itbeingmostlyderived
from defective proviruses, may also be influenced
by this immune response already under ART. There
is ample evidence that suggests that production of
6 www.co-hivandaids.com
HIV-1(ornovel) transcriptsandantigensfromdefective
proviruses can be recognized by both innate and
adaptive immunity [33

&&

,44
&&

,58
&

,78,79
&

,112,113].
Experimental depletion of CD8þ T cells in simian
immunodeficiency virus (SIV)-infected and ART-
treated rhesus macaques resulted in an increase in
plasma viremia in all animals and repopulation of
CD8þ T cells was associated with prompt reestablish-
ment of virus control [114]. These results suggest a role
of CD8þ T cells in controlling viral production during
ART. As CD8þ cell depletion did not induce any sig-
nificant change in the number of SIV DNA-positive
CD4þ T cells in that study, it is plausible that the effect
of thedepletiononplasmaviremiawasmediatedby an
increasedSIVtranscription levelperprovirus.Theeffect
of CD8þ T-cell depletion on the virus production was
recently confirmed by another study in SIV-infected
rhesus macaques and HIV-infected humanized mice
[115]. Apart from increased plasma viremia, this study
detected a statistically significant increase in the per-
centageofSIVRNAþ cellswithhigh levelsofSIVRNAin
the lymph node after CD8þ cell depletion.

Taken together, these results suggest that the
persistent HIV-1 transcription level under ART is an
indicator of the strength of the host antiviral
immune response that influences the viral rebound
upon TI. In particular, HIV-1 transcription levelmay
indicate the level of T-cell exhaustion. We recently
observed that HIV-1 US RNA and especially the level
of US RNA transcription per provirus (US RNA/total
DNA ratio) strongly positively correlated with the
percentages of CD4þ cells expressing exhaustion
markers CTLA-4 and PD-1 during ART [44

&&

]. As a
state of T-cell exhaustion is marked by an ineffective
antiviral immune response and exhausted T cells are
unable to exert antiviral effector functions [116],
this suggests one possible explanation for the pre-
dictive value of pre-TI US RNA for the time to
rebound. This and other recent findings discussed
above suggest that HIV-1 transcription should be
assessed in the cure-directed clinical trials [117]. For
example, it could be used as a marker to evaluate the
efficacy of immune interventions aimed at reducing
the reservoirs. In general, whereasMS RNA is a better
correlate of the replication-competent reservoir size
than US RNA, US RNA may be a better indicator of
the in vivo rebound competence that is shaped by
the antiviral immune responses. Thus, both US and
MS RNA have to be considered for a complete assess-
ment of the functional HIV-1 reservoir.
CONCLUSION

There is increasing evidence that persistent HIV-1
transcription may be a major contributor to chronic
inflammation and immune activation during ART
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and can therefore play an important role in the
pathophysiology of treated PWH. Further studies
should provide a definitive proof of the pathogenic-
ity of transcriptionally active defective proviruses
and inform the design of novel therapeutics to sup-
press their activity. In particular, the ‘block and lock’
approach [118,119] can be used as permanent adju-
vant therapy to conventional ART in order to coun-
teract residual HIV-1 pathogenesis. Obefazimod
(ABX464) was recently shown to reduce both total
HIV-1 DNA and the level of transcription initiation
per provirus [120]. However, another recent study
failed to confirm the effect of this drug on HIV-1
transcription, although the effect on total DNA was
still observed [121]. This andother recently identified
drugs that target viral transcription or RNA process-
ing [122,123] have the potential to suppress immune
activation anddysfunction, facilitate immune recon-
stitution onART, and possibly contribute to theHIV-
1 cure. The significance of persistentHIV-1 transcrip-
tion during ART for the cure research should be
reassessed in light of the recent data suggesting its
role as an indicator of the antiviral immune response
that is shaping the reservoir and rebound.
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