

Sur une surface représentée par une matrice de formes linéaires

Lucien Godeaux

Résumé

Étude de la surface de l'espace à quatre dimensions représentée par l'égalité à zéro d'une matrice à quatre lignes et cinq colonnes de formes linéaires.

Citer ce document / Cite this document :

Godeaux Lucien. Sur une surface représentée par une matrice de formes linéaires. In: Bulletin de la Classe des sciences, tome 51, 1965. pp. 519-524;

doi: https://doi.org/10.3406/barb.1965.65237;

https://www.persee.fr/doc/barb_0001-4141_1965_num_51_1_65237;

Fichier pdf généré le 22/02/2024

COMMUNICATIONS DES MEMBRES

GÉOMÉTRIE ALGÉBRIQUE

Sur une surface représentée par une matrice de formes linéaires,

par Lucien GODEAUX, Membre de l'Académie.

Résumé. — Étude de la surface de l'espace à quatre dimensions représentée par l'égalité à zéro d'une matrice à quatre lignes et cinq colonnes de formes linéaires.

La surface dont nous allons nous occuper se rencontre lorsque l'on étudie la correspondance birationnelle entre deux espaces à quatre dimensions où deux points homologues sont conjugués par rapport à quatre réciprocités entre ces espaces. La surface que nous étudions est précisément la surface fondamentale de la correspondance dans chacun des espaces. Elle est du dixième ordre, ses sections hyperplanes ont le genre onze et ses genres sont $p_a = p_a = 1$, $p^{(i)} = 1$, $p^{(i)} = 1$, Nous montrons qu'elle contient plusieurs systèmes linéaires de courbes ayant les mêmes caractères que le système linéaire des sections hyperplanes.

1. Représentons par φ_{ik} une forme linéaire en x_0 , x_1 , x_2 , x_3 , x_4 et considérons les équations

$$\| \varphi_{1k} \varphi_{2k} \varphi_{3k} \varphi_{4k} \varphi_{5k} \| = 0,$$

$$(k = 1, 2, 3, 4),$$
(1)

où le premier membre représente une matrice à quatre lignes et cinq colonnes.

Les équations (1) représentent dans l'espace à quatre dimensions S_4 une surface F d'ordre dix. Si nous désignons par Δ_i le déterminant tiré de la matrice (1) en suprimant la i^{me} colonne, les équations $\Delta_4 = 0$, $\Delta_5 = 0$ représentent deux hypersurfarces du quatrième ordre passant par la surface F et dont l'intersection est complétée par une surface F_1 du sixième ordre représentée par les équations

Les surfaces F et F_1 se rencontrent suivant une courbe D d'ordre vingt.

2. Coupons la surface F par un hyperplan, par exemple par l'hyperplan $x_4 = 0$. Les équations (1) représentent une courbe C d'ordre dix et de genre onze et les sections hyperplanes de la surface F sont des courbes C de genre onze.

Les équations (2) représentent une courbe C_1 d'ordre six et de genre trois rencontrant C en vingt points. La surface F_1 a des sections hyperplanes C_1 de genre trois.

La série canonique de la courbe C est découpée par les surfaces du quatrième ordre passant par la courbe C_1 . On vérifie d'ailleurs que ces surfaces rencontrent C en vingt points et sont en nombre ∞^{10} .

Les quadriques découpent sur la courbe C une série d'ordre vingt et de dimension neuf qui est donc une série paracanonique de la courbe C.

Les surfaces du quatrième ordre passant par la courbe C découpent sur la courbe C_1 la série canonique, d'ordre quatre et de dimension deux.

3. Retournons à la surface F. le système |C'| adjoint au système |C| des sections hyperplanes de F est découpé par les hypersurfaces du quatrième ordre passant par la surface F_1 . On a donc, sur F,

$$4C \equiv D + C' \tag{3}$$

et par conséquent, si l'on désigne par K les courbes canoniques de F, on a

$$3C \equiv D + K. \tag{4}$$

Les courbes canoniques de F sont donc découpées sur cette surface par les hypersurfaces cubiques passant par F₁, c'est-à-dire par les hypersurfaces

Le système canonique |K| a donc la dimension trois et on a $p_g = 4$.

Observons que l'adjoint |C'| à |C| a la dimension 14 et découpe sur une courbe C la série canonique complète. La surface F est donc régulière et on a $p_a = p_g = 4$.

Éliminons les x entre les équations

$$y_1\varphi_{i1} + y_2\varphi_{i2} + y_3\varphi_{i3} + y_4\varphi_{i4} = 0,$$

 $(i = 1, 2, 3, 4, 5).$

Nous obtenons une équation du cinquième degré en y représentant dans S_3 une surface F' du cinquième ordre birationnellement identique à F. Aux courbes canoniques K correspondent les sections planes de F' et par conséquent le système canonique |K| de F a le degré cinq et le genre six. On a donc $p^{(1)} = 6$.

La relation (4) nous donne alors, en coupant par K et en observant que les courbes K sont d'ordre dix, le nombre des points d'appui, 25, d'une courbe K sur la courbe D.

La surface F a les genres
$$\phi_a = \phi_a = 4$$
, $\phi^{(1)} = 6$.

4. Le système |C| des sections hyperplanes de F a le degré dix et le genre onze. Les hyperquadriques de S₄ découpent sur une courbe C une série d'ordre 20 qui coïncide avec la série découpée par les quadriques de l'hyperplan contenant la courbe, c'est-à-dire une série paracanonique de C. Il en résulte que le système |2C| n'est pas l'adjoint au système |C|.

Il en résulte encore que, la surface F étant dépourvue de points singuliers, les courbes canoniques K ne peuvent appartenir à des hyperplans.

5. Les hypersurfaces cubiques

$$\begin{vmatrix} \varphi_{11} & \varphi_{21} & \varphi_{31} \\ \varphi_{12} & \varphi_{22} & \varphi_{32} \\ \varphi_{13} & \varphi_{23} & \varphi_{33} \end{vmatrix} = 0, \quad \varphi_{12} & \varphi_{22} & \varphi_{32} \\ \varphi_{14} & \varphi_{25} & \varphi_{33} \end{vmatrix} = 0$$
 (5)

ont en commun la surface F_1 et une surface du troisième ordre V_2^3 représentée par les équations

$$\begin{bmatrix} \phi_{11} & \phi_{21} & \phi_{31} \\ \phi_{12} & \phi_{22} & \phi_{32} \end{bmatrix} = 0.$$

Si l'on coupe par un hyperplan, on obtient une courbe C_1 et une cubique gauche s'appuyant en huit points sur C_1 . La surface V_2^8 coupe donc la surface F_1 suivant une courbe D_1 du huitième ordre. Les hyperquadriques passant par la surface V_2^3 découpent sur F_1 , en dehors de la courbe D_1 , les adjointes C_1' aux courbes C_1 . Ces adjointes sont des courbes du quatrième ordre.

Observons qu'une hyperquadrique passant par la surface V_2^3 coupe chacune des hypersurfaces (5) suivant un plan et que ces deux plans se coupent en un point qui appartient à la courbe C_1' découpée par l'hyperquadrique. Il en résulte que les courbes C_1' forment un réseau homaloïdal et sont rationnelles.

Rapportons projectivement les courbes C_1' aux droites d'un plan σ . Aux courbes C_1 correspondent dans ce plan des quartiques passant par dix points $A_1, A_2, ..., A_{10}$, puisque F_1 est d'ordre six.

Les hypersurfaces du quatrième ordre passant par F découpent sur F_1 les adjointes aux courbes C_1 , c'est-à-dire le système $|C_1|$. Il en résulte qu'à la courbe D correspond sur σ une courbe du quinzième ordre passant quatre fois par chacun des dix points A. La courbe D a donc le genre 31.

De la relation (4) on déduit que la courbe D appartient à un système linéaire | D | de degré trente-cinq.

6. Le système bicanonique |2K| a le degré 20, le genre 16 et est régulier. Ce système a donc la dimension 9 et le bigenre de F est $P_2 = 10$.

Les courbes 2K découpent, sur une courbe C, une série d'ordre 20 qui ne peut être la série canonique, car alors la courbe 2K - C

serait une courbe canonique. La série considérée sur C est donc paracanonique et a la dimension 9. On en conclut qu'il n'y a pas de courbe bicanonique 2K contenant une courbe C comme partie. On peut écrire

$$+4K+\pm^{\frac{1}{2}}C+C_{0}-.$$

De cette relation, on déduit que les courbes C_0 rencontrent les courbes C et K en 30 et 40 points et que le système $|C_0|$ a le degré 10, le genre 11 et la dimension quatre.

Le système $|C_0|$ peut-il coïncider avec |C|, c'est-à-dire peut-on avoir |2C| = |4K|? Dans ce cas, il existerait dans le système |2C| une courbe formée de deux courbes C distinctes qui devrait coïncider avec une courbe 4K. Or, une courbe K ne peut appartenir à un hyperplan et la courbe 4K devrait dégénérer en quatre courbes K_0 telles que $2K = 2K_0$, $C = 2K_0$ et les degrés de |K|, |C| devraient être multiples de quatre, ce qui est absurde.

Le système $|C_0|$ est donc distinct du système |C| et les courbes 2K découpent sur une courbe C_0 une série paracanonique.

7. Les courbes du système |2C| ne peuvent découper sur une courbe K la série canonique, car alors les courbes C seraient des courbes canoniques. Il en résulte que cette série est paracanonique et a la dimension 9. Comme |2C| a la dimension 14, il existe ∞^4 courbes K_1 telles que

$$2C \ll K + K_{\tau}$$

On déduit de cette relation que le système $|K_1|$ a le degré 10, le genre 11, la dimension 4 et que les courbes K_1 rencontrent les courbes C et K en 10 points.

Les courbes 2C découpent sur une courbe K_1 la série canonique, car si c'était une série paracanonique, il existerait ∞^4 courbes canoniques K. L'adjoint $|K_1|$ à $|K_1|$ est donc le système |2C|, ce qui résulte d'ailleurs de la relation fonctionnelle précédente.

De la relation (4), en remplaçant 2C par K + K $_{1}$, on déduit

$$D = C + K_1.$$

Le système | D | a lui aussi la dimension 9.

Lucien Godeaux

Le système $\mid C_0 \mid$ est analogue au système $\mid C \mid$ et il existe une courbe D_0 telle que

$$3C_0 := D_0 := K.$$

Elle donne lieu à la relatiin

$$10K = D + D_0$$
.

Sur la surface F existent donc des systèmes linéaires ayant même degré, même genre et même dimension que le système des sections hyperplanes |C|. On pourrait d'ailleurs définir une autre système $|K_2|$ tel que

$$2C_0 \equiv K + K_2$$
.

En rapportant projectivement les courbes C_0 aux hyperplans d'un espace à quatre dimensions, on obtiendrait une surface analogue à F.

Liège, le 23 avril 1965.