
Efficient and Reliable Service Detection on Bitcoin
Vincent Jacquot∗, Nada Hammad‡, Benoit Donnet∗

∗Université de Liège, Montefiore Institute, Belgium
‡TRM Labs

Abstract—The rise of cryptocurrencies has created new
avenues for criminal money exchanges. Among various
techniques, Bitcoin address clustering plays a crucial role in
detecting and grouping addresses owned by the same entity.
This fundamental step is essential for deanonymizing addresses
and analyzing the flow of funds in the blockchain. This
advancement contributes to the battle against illicit commerce,
money laundering, fraud, scams, and similar activities.

In this paper, we introduce two new heuristics, NSS and PEKET.
NSS leverages Bitcoin non-standard scripts, while PEKET exploits
the re-use of public keys to establish connections controlled by
the same entity. Our contributions encompass (i) the detailed
explanation of these two novel methods; (ii) the open-source
publication of the tools we developed; and, (iii) the assessment
of these heuristics using a proprietary extensive dataset of
labeled addresses, which achieve precision levels of 1.0 and 0.979
respectively.

I. INTRODUCTION

In recent years, the rise of cryptocurrencies has
revolutionized the global financial landscape, offering new
opportunities for secure and decentralized transactions [1].
The first of these digital assets, Bitcoin [1] was quickly
adopted by criminals due to its pseudonymous nature [2].
Law enforcement agencies are facing new challenges to
detect illicit activities such as money laundering, terrorism
financing, drug trafficking, and cybercrime [3]. Although
there has been a noticeable shift of criminals from Bitcoin
to other cryptocurrencies, billions of illicit funds continue to
flow through Bitcoin [4].

When a Bitcoin address (i.e. unique identifier for a sender
or a recipient of funds) is known to be associated with illicit
activities, two common questions arise: Who is the entity
responsible for the address, and which other addresses are
under the control of this entity? Clustering heuristics delve
into the public blockchain data to identify transaction patterns,
address characteristics, unique transaction behaviors, and other
elements that might inadvertently reveal information about
the true owner of these addresses. By grouping together
related addresses that are likely controlled by the same entity,
clustering heuristics have emerged as a powerful tool for law
enforcement agencies in their pursuit of combating financial
crimes.

Numerous heuristics have already been established [5], [6],
[7], [8], [9], [10], [11], [12], [13]. Regrettably, it seems that
for every heuristic developed, a set of counter-techniques
exist [14], [15], [16], [17]. This dynamic underscores the
necessity for ongoing efforts to innovate and create new
strategies. This paper introduces the implementation and
evaluation of two novel Bitcoin address clustering heuristics:

the Non-Standard Scripts (NSS) heuristic and the Public
Elliptic-curve Key re-Employment (PEKET) heuristic.

Bitcoin relies on a script language named SCRIPT to
specify the conditions under which an expense can be made
from an address [18]. NSS will expose how some services
can be detected by analyzing the scripts on Bitcoin. Apart
from SCRIPT, Bitcoin makes use of asymmetric cryptography.
Despite the recommendation to utilize a public key only
once [1], this practice is far from being widely implemented.
This paper demonstrates how services that reuse their public
keys can be targeted by PEKET, which can unveil the service
addresses.

This paper also evaluates the performance of both NSS and
PEKET by relying on a ground truth dataset made of a set of
addresses labeled with their true owners. Both our heuristics
scope services’ activity with great precision. Specifically, NSS
achieves a precision of 1.0, while PEKET’s precision can reach
a maximum of 0.979. Moreover, the tools we developed to
parse the scripts and extract the public keys will be released
upon paper acceptance.

This paper is structured as follows: Sec. II introduces the
fundamentals needed to understand the remainder of this
paper; Sec. III positions our work with respect to the state
of the art in Bitcoin clustering; Sec. IV introduces the two
new clustering heuristics; Sec. V-A discusses our ground
truth and the accuracy metrics used to assess our heuristics;
Sec. V-B evaluates them; finally, Sec. VI concludes this paper
by summarizing its main achievements.

II. BACKGROUND

This section provides the required background for
the remainder of this paper. In particular, Sec. II-A
clarifies the term Bitcoin (peer-to-peer network vs. protocol
vs. cryptocurrency). Sec. II-B focuses on the language
implemented in the Bitcoin protocol to verify the transactions’
validity.

A. The Bitcoin Protocol

The Bitcoin Protocol (BTC) implements a public,
decentralized, and immutable ledger of financial
transactions [1]. Contrary to the conventional banking
system, its decentralized nature permits people to transfer
funds without the involvement of a trusted third party entity.
Money is represented by a virtual currency called bitcoin
(B), which equals one hundred million satoshis (the smallest
subdivision of a B).

......

...

Transaction hash: 204f7034...
Transaction fee: 0.00004761 BTC

 0.1 btc

 0.09096749 btc

...

BLOCK 783,041
2023-03-29 15:31:19 UTC

BLOCK 783,019
2023-03-29 11:42:22 UTC

BLOCK 783,014
2023-03-29 10:58:07 UTC

Transaction hash: 4bf54ef80...

 0.05685600 btc

 0.13218618 btc

...

Transaction hash: 2edbcbed...

 0.05882892 btc

 0.01152482 btc

...

Fig. 1: The satoshis unlocked by the two inputs in the right-
most transaction are split between two outputs. The transaction
fee is attributed to the miner who includes the transaction into
the block.

The Bitcoin network is a peer-to-peer network of nodes
running the same consensus algorithm to relay transactions
and update the ledger. The ledger is made of blocks, each of
which contains up to 4MB of transactions [19]. These blocks
are chained together to form the blockchain. The process of
creating new blocks is called mining. The nodes participating
in that process are thus called the miners. The BTC protocol
is tuned to produce a block every 10 minutes, on average [20,
Chapter 10]. Every miner has a probability of being chosen
to produce the next block containing the latest transactions
broadcast on the network that is proportional to the computing
resources they allocate [20, Chapter 10].

In order to incentivize people to participate and to remove
the presence of a central authority responsible for printing
money, a given number of B is created and rewarded to the
nodes creating new blocks. The initial reward was set at 50 B
and is halved every 210,000 blocks [20, Chapter 10].

A transaction is made up of one set of inputs, one set of
outputs, an optional data structure called the witness [19], and
a few metadata fields, e.g., the version, the flags, etc [21].
An example of three transactions in three distinct blocks is
provided in Fig. 1. An output represents some unspent money.
It is defined by a value in satoshis and a script that defines the
conditions for the money to be spent. On the other hand, an
input refers to an output in a previous transaction and carries
the data that is supposed to fulfill the conditions. When a new
transaction is published and broadcast over the network, the
miners are in charge of verifying, for every input, that the
conditions are satisfied and that it does not point to an already
spent output. In our example, the right-most transaction spends
two outputs, respectively worth 0.05685600 B and 0.13218618
B. This money is split over two new outputs, containing 0.1 B
and 0.09096749 B. The miners also ensure that the sum of the
input values is greater than or equal to the sum of the output
values. The difference between the two is the transaction fee,
which is attributed to the node that has mined the block.

B. The Bitcoin Script Language

BTC supports its own programming language called
SCRIPT. While it is not possible to write loops in this
language [18], it still supports a range of arithmetic,
cryptographic, and hash functions. Code written in SCRIPT
can also contain conditional branches thanks to the operators:
OP_IF, OP_NOTIF, OP_ENDIF, OP_ELSE, OP_RETURN, etc.

Stack

3045[...]1501

1. CONSTANTS: The constants are pushed onto the stack.
2. OP_CHECKSIG: The operator pops a public key and a signature from the stack.
 If the signature is valid for the public key and the transaction, True is pushed onto the stack. Otherwise, False is pushed.

Stack

True

483045[...]1501 Input Script Output Script 410428[...]de20ac

3045[...]1501 0428[...]de20 OP_CHECKSIG

Stack

0428[...]de20

3045[...]1501

Parsing & concatenation:

Execution:

Raw Hexadecimal Scripts:

Fig. 2: Claim of a PUBKEY output.

This stack-based language is employed to define the
conditions under which an input is allowed to spend an output.
Every output and input contain a script. These two scripts are
concatenated and executed. The input is allowed to redeem
the output if the execution terminates without any errors and
returns True. Again, the miners are in charge of running the
code and verifying the validity of the inputs.

A very simple example is provided in Fig. 2. Starting with
the input script, the first hex byte (48 – 72 in decimal) indicates
the presence of a 72-byte constant. The decoding of the output
script remains simple, the first hex byte (41 – 65 in decimal)
indicates the presence of a 65-byte constant. The second hex
byte (ac) represents the operator OP_CHECKSIG.

The execution is straightforward: the two constants are
pushed onto the stack, then the operator OP_CHECKSIG is
executed. The two constants are popped from the stack. The
top constant, the one that was in the output script, is a public
key. Then, the operator checks that the constant that was in
the input script is a valid digital signature with respect to the
current transaction and public key.

Programming skills are not required to use BTC as a
set of secured script patterns are defined: PUBKEY (PK),
PUBKEYHASH (PKH), MULTISIG (MS), SCRIPTHASH (SH),
WITNESS V0 KEYHASH (WKH), WITNESS V0 SCRIPTHASH
(WSH), WITNESS V1 TAPROOT (WTR) [22], [23], [19]. These
scripts are said to be standard.

As these standard scripts do not cover exhaustively all
the potential use cases, some users prefer to conceive their
own scripts to lock their money [24], despite the associated
risks [25].

While Fig. 2 shows that a PUBKEY script defines one owner
and requires its signature, SCRIPTHASH and WITNESS V0
SCRIPTHASH scripts are different in the sense that they do not
define the conditions for the output to be unlocked. Instead, a
second script, called the redeem script, is involved in the input
side and defines the requirements for the output to be spent.
This redeem script can be either standard or non-standard.

C. Bitcoin Address

Finally, it is essential to provide the formal definition of a
BTC address.

A BTC address is the textual representation of all the
information required to create an output locked with a standard
script. Consequently, non-standard outputs and inputs do not
have an address. It is worth mentioning that both SCRIPTHASH
and WITNESS V0 SCRIPTHASH have an address even if their
redeem script is non-standard. Thanks to BTC addresses, Alice

https://www.blockchain.com/explorer/transactions/btc/42b11aeb827fefeb847db81d463ad4739233f9a3181ed22a47c9ae4fb8edc320
https://www.blockchain.com/explorer/transactions/btc/5a4ebf66822b0b2d56bd9dc64ece0bc38ee7844a23ff1d7320a88c5fdb2ad3e2

can communicate to Bob how he should build the output to
send her money. Thus, the address denotes all the outputs
protected with this script and the inputs spending them.

III. RELATED WORK

This section aims at discussing the clustering heuristics
state of the art according to a taxonomy. The transaction-
scoped heuristics (in Sec. III-A) comprise heuristics designed
to cluster outputs or inputs that pertain to a single transaction.
Conversely, agnostic heuristics (in Sec. III-B) encompass
heuristics that do not necessarily take into account a single
transaction, including NSS and PEKET. Lastly, in Sec. III-C,
we outline prior research relevant to this manuscript, although
these studies do not present a heuristic approach.

A. Transaction Scoped Heuristics

1) The Co-Spending Clustering Heuristic: Because BTC
users spend some of their outputs to buy services or goods
and collect the change in new outputs, the average value of
their outputs necessarily diminishes. They eventually need to
use several inputs within the same transaction to collect all
the small change outputs.

This has been the foundation stone of the co-spending
heuristic, which is probably the most frequently cited
heuristic in the literature [5], [6], [7], [8](a.k.a. common-
input-ownership, a.k.a. multi-input heuristic, a.k.a. cospend
heuristic). As a rule of thumb, the inputs’ addresses within
the same transaction can be assumed to be controlled by the
same entity. Satoshi himself mentioned this privacy issue [1].

To mitigate this leak of information, there exist obfuscation
techniques such as coinjoin transactions or mixers.

A coinjoin transaction is a transaction in which the
inputs are controlled by distinct entities [20, Chapter 6].
Some services simplify and automate the process for entities
to pool their funds together into one transaction, thereby
creating a coinjoin transaction [15], [16], [17]. Detecting those
transactions is crucial because ingesting them would cluster
addresses controlled by distinct entities.

Mixing services, on the other hand, act as intermediaries to
make it difficult for observers to establish direct links between
sender and receiver. They collect coins from users and send
them coins that were deposited by other users [26, Chapter 6].

Failing to detect mixing and coinjoin transactions leads to
the production of superclusters [9], i.e., clusters with a large
number of addresses belonging to distinct entities. Thus, to be
effective, the co-spending heuristic requires a lot of upstream
work in order to analyze and filter the transactions being used
by the heuristic.

2) The Change Output Clustering Heuristics: While the
co-spending heuristic aims at grouping input addresses, the
change output heuristics try to identify which output addresses
correspond to the change outputs.

The one-time change heuristic supports that in transactions
with two outputs on and oe, with on being a new address (i.e.,
not linked to any past activity) and oe being an address used in
the past, the new address on is likely to be the change output

address [5]. Being known to produce false positives [7], this
heuristic has been refined multiple times [6], [7].

Many other heuristics have been proposed in the literature.
The optimal change heuristic [10] claims that if a transaction
has a unique output with a smaller value than any of the
inputs, it is very likely to be the true change output. The
round number heuristic [11] assumes that payment amounts
are round numbers and that the leftover change amount would
then be a non-round number. Finally, wallet fingerprinting
heuristics [11], [12], which aim at identifying which wallet
software was used to produce a transaction, can be used to
detect change outputs because a change output is the one spent
with the same wallet fingerprint.

Kalodner et al. [12] provide evidence of the privacy-
infringing side-effect of multisig scripts use. In transactions
where exactly one output matches the type of all input
addresses, they tag this output as the change output. They
evaluate the scope, i.e., the number of transactions and B
volume, of this change output heuristic but do not provide any
metrics about the clusters that would be produced. Similarly,
they implement deduplication based on underlying keys, they
but did not quantify the impact of this approach.

B. Agnostic Heuristics

Strehle and Steinmetz [13] exploit the information in
NULLDATA (ND) outputs, i.e., outputs which are provably
unspendable and whose only purpose is to store data, to
detect services’ activity. They were able to link almost 32.4M
transactions published between September 14, 2018, and
December 31, 2019 to 37 distinct blockchain services.

C. Other

Bistarelli et al. [24] parse the blockchain up to block number
550,000 and analyze the non-standard scripts. They report
statistics about their use and discuss their semantics. However,
there is no proposal to exploit this form of intelligence to
cluster addresses.

IV. NSS & PEKET HEURISTICS

We have seen in Sec. III that many heuristics already exist
and cover a substantial part of the blockchain. However, they
tend to generate false positives and negatives as effective
obfuscation techniques exist. In the case of the co-spending
heuristic, many techniques need to be implemented in order
to detect coinjoin or mixing transactions [15], [16], [17].

This paper introduces two innovative clustering heuristics
with very high precision for BTC. The first one, NSS, targets
the use of non-standard scripts (Sec. IV-A). Their limited
utilization allows for the accurate detection of services that
operate on top of BTC. PEKET is more broadly applicable to
the transaction history (Sec. IV-B). We will show how the
reuse of the same public key can degrade privacy. Both of
them belong to the category of agnostic heuristics defined in
Sec. III.

pkh sh wkh nd wtr wsh pk ns ms
Output Type

103

105

107

109

R
a
w

N
u

m
b

e
r

Total output count

Volume (in bitcoins)

Fig. 3: Output count and total value locked per type. All
acronyms are synthesized in the Appendix A.

A. Non-Standard Scripts Heuristic: NSS

As a reminder from Sec. II, non-standard (NS) scripts can
be found in two places. Firstly, in non-standard outputs, and
secondly, as redeem scripts in SCRIPTHASH and WITNESS
V0 SCRIPTHASH inputs. Fig. 3 illustrates the distribution of
the output types over two dimensions (see Sec. V-A for our
dataset description): the number of occurrences and the total
value that has been locked. In total, 3.9M instances of distinct
non-standard scripts have been found in the blockchain. These
scripts were extracted from 1.1M non-standard outputs and
4.4M SCRIPTHASH and WITNESS V0 SCRIPTHASH inputs
which are using non-standard redeem scripts.

In comparison, there are 2.4B outputs in BTC. This clearly
shows that non-standard scripts are not widely spread and
triggers questions about their usage, such as the possibility
of linking their use to the activity of some entities.

In fact, some services are known to use non-standard
scripts. For example, the company CHECKSIG provides a list
of transactions as proof of reserve [27]. We have randomly
selected and analyzed five of their WITNESS V0 SCRIPTHASH
addresses:

• bc1qp5w9z6v6ljw00wqn[...]3y0v;
• bc1qak8fvqzkzqq0wg4a[...]mhmv;
• bc1q0wk2apulgmd982ss[...]vyjn;
• bc1qqst9un5sz8576fy2[...]resu;
• bc1qmqsa9cfxntlslru8[...]7snh.
All their redeem scripts share the same structure and

opcodes. The difference resides in the constants being
employed. We can define a script pattern as the script where
all the constants are replaced with the same placeholder. Their
common non-standard pattern is illustrated in Fig. 5.

This pattern is composed of two branches, with each part
outlining a distinct method to access the funds. The first one
includes six public keys. To unlock the money, three signatures
are required. The second part includes three public keys and
defines a second option for unlocking the money. It can be
unlocked with two signatures if enough time separates the
output and the input [18].

From the 3.9M distinct non-standard scripts, less than 800
different patterns are being used. Some patterns have been used

100 101 102 103

Pattern identifiers (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

v
e

D
is

tr
ib

u
ti

o
n

Total script count

Volume (in bitcoins)

Actual value locked (in bitcoins)

Fig. 4: CDF of multiple metrics for the script patterns ordered
by frequency of use: x = 1 being the most frequently used
pattern.

OP_IF

OP_3 6 CONSTANTS OP_6 OP_CHECKMULTISIG

OP_ELSE

1 CONSTANT OP_CHECKSEQUENCEVERIFY OP_DROP
OP_2 3 CONSTANTS OP_3 OP_CHECKMULTISIG

OP_ENDIF

- 3 signatures required out of 6 owners.

- Some time has elapsed;
- 2 signatures required out of 3 owners.

Script Pattern Logic

OR

Fig. 5: Non-standard script pattern used by CHECKSIG.

once; the most frequently used pattern was used by 1.65M
scripts. Fig. 4 shows the CDF of patterns. We observe that the
first patterns are the most frequent ones. Additionally, some of
them historically locked up a large amount of B (also shown
on Fig. 4). The second most frequent pattern used to secure
a bit less than 200k B. From this volume, 384 B are still
currently protected with this pattern.

The volume and number of scripts could indicate that these
patterns are or were being used by services.

The first heuristic we propose, NSS, is to cluster all the
addresses that are protected with the same pattern. The
heuristic is described by Algorithm 1. Since non-standard
outputs and inputs lack an address, we assign them one in
a manner that ensures multiple non-standard outputs that are
locked with the same script would share the same address.

B. Public Elliptic-curve Key re-Employment Heuristic: PEKET

Satoshi recommends using a different key pair for each
transaction to keep them from being linked to a common
owner [1].

However, this advice is far from being applied by
everyone. For example, considering the activity of this
address 1HckjUpRGcrrRAtFaaCAUaGjsPx9oYmLaZ, the
owner’s public key, 030651e1[...]359d, has been used
millions of times. In total, 9.4% of all BTC addresses have
been used more than once and represent more than 54% of
all BTC outputs (see Fig. 6).

In the remainder of this section, we will demonstrate how
the activity of services can be exposed through the reuse of
their public keys.

1) Shared ownership outputs: BTC also supports outputs
whose control is shared among N participants by using
MULTISIG scripts [22]. Similarly to non-standard scripts,

https://blockstream.info/address/bc1qp5w9z6v6ljw00wqn3vzzvvx0ttg25gkag08rnenvlw8c3geajaesmp3y0v
https://blockstream.info/address/bc1qak8fvqzkzqq0wg4aym59p0nasrey696040hlnzawl9nnyh3tt2rqzgmhmv
https://blockstream.info/address/bc1q0wk2apulgmd982ssqyxuq4vhhxrzrgg4qdynqkz7yhw4sqq62gqqcpvyjn
https://blockstream.info/address/bc1qqst9un5sz8576fy2nnqkpm4rpfh0weveqwtt8zxgjp02g2mx5q7s2vresu
https://blockstream.info/address/bc1qmqsa9cfxntlslru8n8gesp8tzn5033sudtzsv7fr6sgafsg22xvsry7snh
https://blockstream.info/address/1HckjUpRGcrrRAtFaaCAUaGjsPx9oYmLaZ

100 101 102 103 104 105 106

Output Count per Address (log scale)

0.5

0.6

0.7

0.8

0.9

1.0
C

u
m

u
la

ti
v
e

D
is

tr
ib

u
ti

o
n

Address

Output

Fig. 6: Cumulative distribution of the addresses and outputs
based on the frequency of use of the addresses. Frequency of
use is expressed in terms of number of outputs per address.

MULTISIG can be found in two places: in MULTISIG outputs
or in SCRIPTHASH and WITNESS V0 SCRIPTHASH inputs. We
found that 9% of all BTC addresses involve multiple owners.
The logic remains the same whether they are used as output
scripts or redeem scripts.

This script defines N participants, and each participant
includes its public key in the script. The script also includes
an integer M with M ≤ N . In order to spend the money, M
out of the N participants need to include their signatures in
the input.

This mechanism allows for several use cases. For example,
escrow payments can be implemented by using a 2-3
MULTISIG (N = 3,M = 2). Two participants, let us call them
Alice and Bob, and a third party, Carole, include their keys in
the script. As the script requires two signatures, no participant
can spend the money without the authorization of the others.
In case of a dispute, Carole can sign a transaction with Alice
to send the money to an address she fully controls [28].

These scripts can also be used by a single entity to
increase security. The Bitmex company is known to use 3-4
MULTISIG redeem scripts in SCRIPTHASH addresses [29]. All
their MULTISIG redeem scripts include the same three public
keys. The fourth key is always different. Three signatures
out of these four keys are required. The reuse of the same
three public keys allows for the detection of all the addresses
(thus all the outputs) the company handles, although Bitmex’s
concern is not privacy.

In clustering, we generally do not care about the individuals,
and we focus on detecting services. For example, if a
darknet market DM is using 2-3 MULTISIG to provide escrow
payments between sellers and buyers, it is generally accepted
to cluster all the addresses in the same cluster and tag them
as managed by the darknet market.

2) Sole ownership outputs: The standard scripts PUBKEY,
PUBKEYHASH, and WITNESS V0 KEYHASH define one owner
by including their public key in the script. They can also be
used as redeem scripts. In that case, the SCRIPTHASH and
WITNESS V0 SCRIPTHASH are also controlled by a single pair

Service X Service Y

Shared
Ownership
Addresses

Cluster 2

Alice Bob Carole

Public Keys
Extraction

Public
Keys

Sole
Ownership
Addresses

Clustering
Process

Cluster 1 Cluster 3

Fig. 7: An example of the clusters produced by PEKET.

of keys. Finally, MULTISIG scripts with M = 1 and N = 1
also define one owner.

It is evident that when multiple outputs share the same
address, they also share the same owner(s) since the conditions
to access the funds remain unchanged. However, the same
public key can be included in different standard script types,
e.g., the public key 0291a14d[...]f30b is being used in a
PUBKEYHASH and a WITNESS V0 KEYHASH output script.
The logic of these two scripts is the same: it defines one owner
and requires their signature to move the funds. But these two
situations lead to two distinct addresses:

• 1MWhpubGujF7QUUzsdwey3gFrbz9qY7PRa
• bc1quyq23zmnnj8j2wpxyzpwyzr3ej6hugx5kdzf7z

As a result, these two addresses are owned by the same
entity as they are entirely controlled by the identical pair of
private and public keys. BTC addresses that involve a single
owner represent 91% of all addresses.

3) The Heuristic: Algorithm 2 in the appendix expresses
in pseudocode how to extract the public keys from any pair
of input and output. We restrict the scope of this heuristic to
standard scripts. Non-standard scripts are not widely adopted,
as seen in Sec. IV-A, and the extraction of the public keys
requires more work. It must be noted that we also exclude
the public keys from WITNESS V1 TAPROOT outputs, which
account for 1.4% of all outputs, because these keys result from
the aggregation of the participants’ public keys [30]. Thus,
they do not reveal participants’ identities.

The proposed heuristic is illustrated in Fig. 7.

• The addresses A1 and A2 should be clustered together as
the public key PX2 is involved in both addresses;

• The addresses A3 and A4 should be clustered together
as the public keys PY 1 and PA1 are involved in both
addresses;

• The addresses A5 and A6 should be clustered together as
Carole’s public key PC1 is involved in both addresses.

However, clusters 2 and 3 should not be merged because
cluster 3 groups Carole’s addresses, while the second cluster
groups the addresses resulting from the activity of service Y.
Hence, sole ownership and shared ownership outputs should
be treated separately.

https://blockstream.info/address/1MWhpubGujF7QUUzsdwey3gFrbz9qY7PRa
https://blockstream.info/address/bc1quyq23zmnnj8j2wpxyzpwyzr3ej6hugx5kdzf7z

Service X Service Y

Shared
Ownership
Addresses

Public Keys
Extraction

Public
Keys

Clustering
Process

Cluster 1

Fig. 8: A collision when 2 services share an address.

Service X Service Y

Shared
Ownership
Addresses

Alice Bob Carole

Public Keys
Extraction

Public
Keys

Clustering
Process

Cluster 1

Fig. 9: A collision under the existence of a chain of user shared
addresses.

While the clustering of the sole ownership addresses is safe,
the clustering shared addresses can still create collisions. We
are able to forecast two scenarios.

• The first scenario, depicted in Fig. 8, represents a
situation in which two services share at least one address.
For instance, if Bitmex were to utilize one of the public
keys typically designated for securing their proof of
reserves with a darknet market service, all the proof of
reserve addresses and the darknet market addresses would
be grouped together in the same cluster.

• The other plausible scenario involves individuals and
potential chains of shared addresses and is presented in
Fig. 9. Suppose we have the following situation. Alice’s
and Carole’s public keys are respectively used in two
distinct services X and Y . Moreover, Bob shares an
address A2 with Alice and A3 with Carole. Thus, the
services’ addresses A1 and A4 would end up in the same
cluster. Fortunately, it would be easy to mitigate these
collisions caused by individuals by discarding their public
keys. One can distinguish services’ and individuals’
public keys based on the flat number of outputs in which
the public key is involved. Indeed, a public key being
used thousands of times requires some automation. As
creating outputs requires money, it is likely that these
outputs are part of a service that generates income. For it
to be considered a service public key, it has to be involved
in N distinct addresses. This threshold N can easily be

Local group A Local group CLocal group B

Cluster 1 Cluster 2

Fig. 10: An example of the clusters produced by a distributed
connected component algorithm on a graph whose vertices are
BTC addresses.

tuned to reach the desired precision. The downside of this
approach is the inability to detect services that frequently
change their set of keys.

To sum up, the clustering heuristic can be formulated as:
1) For every public key pk:

a) If pk is involved in more than 1 distinct sole ownership
address,
• Then, group all the sole ownership addresses

controlled with pk.
• Otherwise: no action required.

b) If pk is involved in more than N distinct shared
addresses,
• Then, group the shared addresses.
• Otherwise: no action required.

V. EVALUATION

A. Ground Truth and Method

This paper relies on the BTC data and infrastructure
provided by TRM Labs. They provided us access to BTC
history from block 0 to block 795,000. The data originates
from full BTC nodes [31] that they run. They parse the raw
data and ingest it into their data warehouse, which is hosted
by a cloud service provider.

No additional information besides what the nodes provide
is used during that process. Thus, all experiments made in this
paper can be reproduced by anyone running a BTC node.

The construction of clusters is achieved through
the utilization of a distributed connected components
algorithm [32, Chapter 21]. The process is illustrated in
Fig. 10. First, we build a graph for which the nodes are
the BTC addresses. An edge is created between two nodes
whenever there is a desire to group these two addresses
together within a cluster, regardless of the specific reason.
For example, we aim to cluster addresses A1,A2, and A3 for
reason A and addresses A3, A4, and A5 for reason B. As a
result, the final cluster comprising addresses A1,A2,A3,A4,
and A5 is generated.

Our experiments were conducted on a cluster of four
machines, each equipped with 4 vCPUs and 15 GB of RAM.
Less than one hour was necessary to produce the clusters for
the heuristics described in Sec. IV.

Additionally, our industrial partner provided us access to a
table of high-confidence labels. A label is the identifier of the
entity that owns a specific BTC address. Different sources are
used to obtain these labels, such as their investigations team
or various web scraping tools that they developed. Thereafter,

the validity of these labels is checked by cross-checking the
sources of information, collaborating with big actors in the
industry and the implementation of automatic processes to
double-check them. These labels were used solely in order
to evaluate the correctness of our heuristics and were not
involved in the development and tuning of our heuristics.

A collision is defined as the presence of different entities
within the same cluster. Considering a clustering heuristic H
producing a set of N clusters CH = {ci|0 ≤ i ≤ N} with |ci|
being the number of addresses in the cluster ci, we can also
define two subsets:

• Clabeled: a subset of CH , defined as the set of clusters
for which we have at least one label;

• Ccollision: a subset of Clabeled, defined as the set of
clusters in which there is a collision.

Consequently, precision expresses the ratio of addresses that
are in clusters that do not have any collisions and is defined
as:

∀cl ∈ Clabeled,∀cc ∈ Ccollision :

precision =

∑
|cl| −

∑
|cc|∑

|cl|
⇒ precision ∈ [0, 1]

Additionally, the ground truth coverage (GTCov) expresses
the ratio of addresses that are in clusters for which we have
at least one label and is defined as:

∀cl ∈ Clabeled,∀c ∈ CH :

GTCov =

∑
|cl|∑
|c|

⇒ GTCov ∈ [0, 1]

B. Results

With our ground truth, we are able to evaluate the precision
of the two heuristics proposed in Sec. IV. We also ran the
co-spending heuristic [7] in order to compare it with our
heuristics. This version runs without any mixing or coinjoin
detection mechanisms.

For NSS, no collisions were found over the seven hundred
clusters. The precision of this heuristic based on the provided
data is thus 1.0. However, the coverage of this heuristic is
quite limited. It only clusters 3.9M addresses out of 1.1B BTC
addresses and accounts for 0.03% of the total B volume. Out
of these 3.9M addresses, 57.4% are in clusters for which we
have at least one label (GTCov = 0.574). The size of the
NSS clusters (in Fig. 12) can be taken as an indicator of the
services’ activities. Conversely, the patterns that are not in
wide use could be the result of services’ bugs that have been
fixed or could be used by individuals.

On the other hand, PEKET is able to cluster up to 18M
addresses (1.6% of all the addresses), which account for 5.6%
of the total B volume as illustrated in Fig. 11. This clearly
shows that public key reuse is not a limited phenomenon. The
precision increases with the threshold N, but at the cost of the
volume and address coverage, as seen in the top half of Fig. 11.
The heuristic with N = 103 managed to cluster 11M addresses
in 91k clusters with a precision of 0.978 and a ground truth
coverage of 0.482. Moreover, N has a limited impact on the

2

4

C
o
v
.

in
% address coverage

volume coverage

100 101 102 103 104

N (log scale)

0.50

0.75

1.00

S
co

re precision

GTCov

Fig. 11: Effect of N on the PEKET heuristic.

[100, 101[[101, 102[[102, 103[[103, 104[[104, 105[[105, 106[[106, 107[

Cluster Size

100

101

102

103

104

105

106

C
lu

st
e
r

C
o
u

n
t

(l
o
g

sc
a
le

) nss

peket: N=1

peket: N=101

peket: N=102

peket: N=103

peket: N=104

Fig. 12: Sizes of the clusters produced by PEKET and NSS.

clusters containing less than 10 addresses (see Fig. 12), as
these clusters include mostly single ownership addresses.

These results have to be put in comparison with the co-
spending heuristic, which reaches an address coverage of
63.5%, but at the detriment of a poor precision of 0.55.
As discussed earlier, precision can be bumped up with the
implementation of techniques to detect and discard coinjoin
and mixing transactions, but at the cost of lower coverage.

Overall, these heuristics have proven to be reliable and can
be easily combined with existing heuristics in order to detect
services’ activities.

VI. CONCLUSION

To conclude, the paper’s two innovative Bitcoin address
clustering heuristics have proven effective in detecting
services with exceptional precision. Our research has made
a contribution to the field of cryptocurrency investigations
through the successful implementation and evaluation of these
advanced techniques.

The importance of efficient Bitcoin address clustering
cannot be underestimated, particularly in the context of
combating financial crimes and detecting illicit activities
within the cryptocurrency landscape. With the rising adoption
of cryptocurrencies for both legitimate and criminal purposes,

the need for robust investigative methodologies has become
increasingly critical. Our heuristics offer a substantial step
forward in this direction, enabling law enforcement agencies
to detect services’ activities and cluster their addresses.

Looking ahead, there is room for further enhancements,
including extending the application of these techniques
to other blockchains resembling BTC. Notably, certain
blockchains such as DOGE [33], ZEC [34], etc, are based
on forks from BTC source code. Additionally, exploring the
extraction of public keys from non-standard scripts could
expand the scope and capabilities of PEKET.

In closing, we firmly believe that the integration of these
new Bitcoin address clustering heuristics into the toolkit of
law enforcement agencies will enhance their capabilities of
investigating and combating financial crimes.

ACKNOWLEDGMENTS

This work is supported by the CyberExcellence project
funded by the Walloon Region, under number 2110186.

APPENDIX A
ABBREVIATIONS & ACRONYMS

The following list synthesizes all the abbreviations and
acronyms defined and used in the paper.

• PKH: PUBKEYHASH.
• SH: SCRIPTHASH.
• WKH: WITNESS V0 KEYHASH.
• ND: NULLDATA.
• WTR: WITNESS V1 TAPROOT.
• WSH: WITNESS V0 SCRIPTHASH.
• PK: PUBKEY.
• NS: NON-STANDARD.
• MS: MULTISIG.

APPENDIX B
NSS HEURISTIC PSEUDOCODE

The following algorithm expresses in pseudocode the
process used to group addresses that are secured with the same
non-standard script pattern.

The main function CLUSTER_NSS groups addresses based
on their pattern. The expected argument, scripts, contains all
the outputs and redeem scripts extracted from the blockchain.

Three auxiliary functions are being used and their python
implementation is available on gitlab.uliege.be.

Firstly, because the patterns of standard scripts are fixed and
well-known, it is possible to determine the type of a script
and implement a function CHECKTYPE, which takes as an
argument a script and returns its type. If the script does not
match any known standard pattern, its type is said to be non-
standard.

Then, REPLACECONSTANTS takes a script as an argument,
parses it, and replaces the constants with the same placeholder.

Finally, COMPUTEADDRESS derives an address from a
script. For the redeem scripts, the process is already defined in
the BTC protocol [19], [35]. Contrarily, non-standard outputs
do not have an address, but it is possible to assign them a
unique identifier based on the script by using a similar process.

Algorithm 1 NSS Heuristic

1: function CLUSTER_NSS(scripts: list[array[bytes]])
2: clusters = dict<str, list[str]>()
3: for script in scripts do
4: type = CheckType(script)
5: if type == "NON STANDARD" then
6: pattern = ReplaceConstants(script)
7: address = ComputeAddress(script)
8: clusters[pattern].append(address)
9: return clusters

APPENDIX C
PUBLIC KEYS EXTRACTION ALGORITHM

The following algorithm expresses in pseudocode the
process of extracting the public keys from any address. The
data required to extract the public key varies from one type to
another. This algorithm assumes access to one output and the
input spending it. In particular, the expected inputs are:

• scriptPubKey: The output script.
• scriptSig: The input script.
• witness: The witness data in the input side.
Finally, our Python implementation of CHECKTYPE and

EXTRACT is available on gitlab.uliege.be.

Algorithm 2 Public Keys Extraction

1: function EXTRACT(scriptPubKey:array[bytes],
scriptSig:array[bytes], witness:array[bytes])

2: type = CheckType(scriptPubKey)
3: if type == ”PUBKEY” then
4: return scriptPubKey.const[0]
5: else if type == ”PUBKEYHASH” then
6: return scriptSig[1]
7: else if type == ”MULTISIG” then
8: return scriptPubKey.const[1 : −1]
9: else if type == ”SCRIPTHASH” then

10: if witness.size() == 0 then
11: rdmScr = scriptSig[−1]
12: return Extract(rdmScr, scriptSig[: −1], []])
13: else if scriptSig[1].size() == 20 then
14: return witness[1]
15: else if scriptSig[1].size() == 32 then
16: rdmScr = witness[−1]
17: return Extract(rdmScr, witness[: −1], [])
18: else if type == ”WITNESS V0 KEYHASH” then
19: return witness[1]
20: else if type == ”WITNESS V0 SCRIPTHASH” then
21: rdmScr = witness[−1]
22: return Extract(rdmScr, witness[: −1], [])
23: return null

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” October
2008. [Online]. Available: http://www.bitcoin.org/bitcoin.pdf

https://gitlab.uliege.be/blockchains/bitcoin/script_parser
https://gitlab.uliege.be/blockchains/bitcoin/script_parser
http://www.bitcoin.org/bitcoin.pdf

[2] Wikipedia Community, “Silk road (marketplace),” last Accessed:
29.08.2023. [Online]. Available: https://en.wikipedia.org/wiki/Silk_
Road_(marketplace)

[3] Europol, “Cryptocurrencies: Tracing the evolution of criminal
finances.” last Accessed: 24.07.2023. [Online]. Available:
https://www.europol.europa.eu/cms/sites/default/files/documents/
Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%
20the%20evolution%20of%20criminal%20finances.pdf

[4] TRM Labs, “Trm labs’ illicit crypto ecosystem report shows crime
moving beyond bitcoin,” last Accessed: 29.08.2023. [Online]. Available:
https://www.trmlabs.com/report

[5] E. Androulaki, G. O. Karame, M. Roeschlin, T. Scherer, and S. Capkun,
“Evaluating user privacy in bitcoin,” in Proc. Financial Cryptography
and Data Security (FC), April 2013.

[6] D. Ermilov, M. Panov, and Y. Yanovich, “Automatic bitcoin address
clustering,” in Proc. IEEE International Conference on Machine
Learning and Applications (ICMLA), December 2017.

[7] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M.
Voelker, and S. Savage, “A fistful of bitcoins: Characterizing payments
among men with no names,” Communications of the ACM, vol. 59, no. 4,
pp. 86–93, March 2016.

[8] H. Xi, H. Ketai, L. Shenwen, Y. Jinglin, and M. Hongliang, “Bitcoin
address clustering method based on multiple heuristic conditions,” in
IET Blockchain, vol. 2, June 2022, pp. 44–56.

[9] M. Möser and A. Narayanan, “Resurrecting address clustering in
bitcoin,” in Proc. Financial Cryptography and Data Security (FC),
October 2022.

[10] D. N. Jonas, “Data-driven de-anonymization in bitcoin,” Master Thesis,
ETH, August 2015.

[11] Bitcoin Community, “Privacy,” last Accessed: 04.07.2023. [Online].
Available: https://en.bitcoin.it/Privacy#Change_address_detection

[12] H. Kalodner, M. Möser, K. Lee, S. Goldfeder, M. Plattner, A. Chator,
and A. Narayanan, “BlockSci: Design and applications of a blockchain
analysis platform,” in Proc. USENIX Security Symposium, August 2020.

[13] E. Strehle and F. Steinmetz, “Dominating op returns: The impact of omni
and veriblock on bitcoin,” in Journal of Grid Computing, December
2020.

[14] Belcher, C., “Design for a coinswap implementation for
massively improving bitcoin privacy and fungibility,” last Accessed:
07.09.2023. [Online]. Available: https://gist.github.com/chris-belcher/
9144bd57a91c194e332fb5ca371d0964

[15] Samourai Wallet, “Whirlpool,” last Accessed: 20.07.2023. [Online].
Available: https://samouraiwallet.com/whirlpool

[16] zkSNACKs, “Wasabi wallet,” last Accessed: 20.07.2023. [Online].
Available: https://wasabiwallet.io/

[17] Samourai Wallet, “Joinmarket-org/joinmarket-clientserver,” last
Accessed: 20.07.2023. [Online]. Available: https://github.com/
JoinMarket-Org/joinmarket-clientserver

[18] Bitcoin Community, “Script,” last Accessed: 27.06.2023. [Online].
Available: https://en.bitcoin.it/wiki/Script

[19] E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness (consensus
layer),” Bitcoin, BIP 141, December 2015. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

[20] A. Antonopoulos, Mastering Bitcoin. O’Reilly Media, Inc., 2014.
[21] Bitcoin Community, “Transaction,” last Accessed: 27.06.2023. [Online].

Available: https://en.bitcoin.it/wiki/Transaction
[22] G. Andresen, “M-of-n standard transactions,” Bitcoin, BIP 11,

December 2015. [Online]. Available: https://github.com/bitcoin/bips/
blob/master/bip-0011.mediawiki

[23] ——, “Pay to script hash,” Bitcoin, BIP 16, January
2012. [Online]. Available: https://github.com/bitcoin/bips/blob/master/
bip-0016.mediawiki

[24] S. Bistarelli, I. Mercanti, and F. Santini, “An analysis of non-standard
bitcoin transactions,” in Proc. Crypto Valley Conference on Blockchain
Technology (CVCBT), June 2018.

[25] V. Jacquot and B. Donnet, “Chaussette: A symbolic verification of
bitcoin scripts,” in Proc. International Workshop on Cryptocurrencies
and Blockchain Technology (CBT), September 2023.

[26] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder,
Bitcoin and Cryptocurrency Technologies: A Comprehensive
Introduction. Princeton University Press, 2016.

[27] Checksig Company, “Proof of reserves,” last Accessed: 20.07.2023.
[Online]. Available: https://www.checksig.com/por

[28] S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan, “Escrow
protocols for cryptocurrencies: How to buy physical goods using
bitcoin,” in Financial Cryptography and Data Security, April 2017, pp.
321–339.

[29] Bitmex Company, “Proof of reserves & liabilities,” last Accessed:
20.07.2023. [Online]. Available: https://www.bitmex.com/app/porl

[30] P. Wuille, J. Nick, and A. Towns, “Base32 address format for native v0-
16 witness outputs,” Bitcoin, BIP 341, January 2020. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki

[31] Bitcoin Community, “Running a full node,” last Accessed: 20.07.2023.
[Online]. Available: https://bitcoin.org/en/full-node

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[33] Dogecoin Developers., “Dogecoin,” last Accessed: 26.07.2023. [Online].
Available: https://github.com/dogecoin/dogecoin

[34] Zerocash Developers., “Zerocashd,” last Accessed: 26.07.2023. [Online].
Available: https://github.com/Zerocash/Zerocashd

[35] P. Wuille and G. Maxwell, “Base32 address format for native v0-16
witness outputs,” Bitcoin, BIP 173, March 2017. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://en.wikipedia.org/wiki/Silk_Road_(marketplace)
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.europol.europa.eu/cms/sites/default/files/documents/Europol%20Spotlight%20-%20Cryptocurrencies%20-%20Tracing%20the%20evolution%20of%20criminal%20finances.pdf
https://www.trmlabs.com/report
https://en.bitcoin.it/Privacy#Change_address_detection
https://gist.github.com/chris-belcher/9144bd57a91c194e332fb5ca371d0964
https://gist.github.com/chris-belcher/9144bd57a91c194e332fb5ca371d0964
https://samouraiwallet.com/whirlpool
https://wasabiwallet.io/
https://github.com/JoinMarket-Org/joinmarket-clientserver
https://github.com/JoinMarket-Org/joinmarket-clientserver
https://en.bitcoin.it/wiki/Script
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://en.bitcoin.it/wiki/Transaction
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0011.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://www.checksig.com/por
https://www.bitmex.com/app/porl
https://github.com/bitcoin/bips/blob/master/bip-0341.mediawiki
https://bitcoin.org/en/full-node
https://github.com/dogecoin/dogecoin
https://github.com/Zerocash/Zerocashd
https://github.com/bitcoin/bips/blob/master/bip-0173.mediawiki

	Introduction
	Background
	The Bitcoin Protocol
	The Bitcoin Script Language
	Bitcoin Address

	Related Work
	Transaction Scoped Heuristics
	The Co-Spending Clustering Heuristic
	The Change Output Clustering Heuristics

	Agnostic Heuristics
	Other

	nss & peket Heuristics
	Non-Standard Scripts Heuristic: nss
	Public Elliptic-curve Key re-Employment Heuristic: peket
	Shared ownership outputs
	Sole ownership outputs
	The Heuristic

	Evaluation
	Ground Truth and Method
	Results

	Conclusion
	Appendix A: Abbreviations & Acronyms
	Appendix B: nss Heuristic Pseudocode
	Appendix C: Public Keys Extraction Algorithm
	References

