

Sur les variétés algébriques à trois dimensions de pentagenre un

Lucien Godeaux

Résumé

Étude d'une variété algébrique à trois dimensions privée de surfaces canonique, bicanonique, tricanonique, tétracanonique, mais possédant une surface pentacanonique, image d'une involution cyclique de période cinq, appartenant à une variété dont les surfaces canonique et pluricanoniques sont d'ordre zéro.

Citer ce document / Cite this document :

Godeaux Lucien. Sur les variétés algébriques à trois dimensions de pentagenre un. In: Bulletin de la Classe des sciences, tome 51, 1965. pp. 944-955;

doi: https://doi.org/10.3406/barb.1965.65314;

https://www.persee.fr/doc/barb_0001-4141_1965_num_51_1_65314;

Fichier pdf généré le 22/02/2024

COMMUNICATIONS DES MEMBRES

GÉOMÉTRIE ALGÉBRIQUE

Sur les variétés algébriques à trois dimensions de pentagenre un

par Lucien GODEAUX, Membre de l'Académie.

Résumé. – Étude d'une variété algébrique à trois dimensions privée de surfaces canonique, bicanonique, tricanonique, tétracanonique, mais possédant une surface pentacanonique, image d'une involution cyclique de période cinq, appartenant à une variété dont les surfaces canonique et pluricanoniques sont d'ordre zéro.

La recherche des variétés à trois dimensions sur lesquelles l'opération d'adjonction est périodique nous a conduit à l'étude des involutions cycliques d'ordre premier p n'ayant qu'un nombre fini de points unis appartenant à une variété algébrique sur laquelle tout système linéaire de surfaces est son propre adjoint, c'est-à-dire dont les surfaces canonique et pluricanoniques sont d'ordre zéro. Nous avons établi le théorème suivant $\binom{1}{2}$:

⁽¹⁾ Variétés à trois dimensions sur lesquelles l'opération d'adjonction est périodique (Bulletin des Sciences Mathématiques, 1944, pp. 147-152). Voir aussi notre note Observations sur les variétés algébriques à trois dimensions sur lesquelles l'opération d'adjonction est périodique (Bulletin de la Société roy, des Sciences de Liége, 1940, pp. 2-11) et une conférence faite à la Réunion internationale des Mathématiciens organisée par la Société Mathématique de France en 1937. Sur les variétés algébriques à trois dimensions de genre I contenant des involutions cycliques (Paris, Gauthier-Villars, 1938, pp. 65-86).

Si une variété algébrique à trois dimensions dont les surfaces canonique et pluricanoniques sont d'ordre zéro contient une involution cyclique d'ordre premier p n'ayant qu'un nombre fini de points unis, dont l'image est une variété privée de surface canonique mais possédant une surface p-canonique d'ordre zéro, p est au plus égal à cinq.

Nous avons antérieurement considéré un cas particulier (¹), celui où la variété V est l'hypersurface du cinquième ordre d'un espace à quatre dimensions. L'intérêt de celui-ci réside dans le fait que parmi les conditions pour qu'une variété à trois dimensions soit rationnelle figure $P_5 := 0$.

Dans ce travail, nous considérons le cas général. Conune nous l'avons démontré (²), on peut construire une variété V pour laquelle la transformation T est déterminée par une homographie de période cinq de l'espace ambiant, possédant cinq axes ponctuels, les points unis de l'involution appartenant à un seul d'entre eux. Le système |F| des sections hyperplanes de V contient cinq systèmes linéaires partiels appartenant à l'involution I, l'un d'eux étant dépourvu de points-base. Nous prenons comme modèle projectif de l'image Ω de l'involution I la variété dont les sections hyperplanes correspondent aux surfaces de ce dernier système. La variété Ω est dépourvue

⁽¹⁾ Construction d'une variété algébrique à trois dimensions possédant une surface pentacanonique d'ordre zéro (BULLETIN DE L'ACADÉMIE ROY, DE BELGIQUE, 1961, pp. 982-994). Voir aussi notre ouvrage Théorie des involutions cycliques appartenant à une surface algébrique et applications (Rome, Ed. Cremonese, 1963).

⁽²⁾ Théorie des involutions... (loc. cit.).

de surfaces canonique, bicanonique, tricanonique, tétracanonique, mais possède une surface pentacanonique d'ordre zéro. Il convient de faire sur ce point une observation.

La variété Ω possède cinq points de diramation qui sont singuliers pour la variété. Chacun d'eux est équivalent, au point de vue des transformations birationnelles, à un ensemble de surfaces rationnelles ; appelons-les les composantes du point de diramation. Et bien, la variété Ω possède comme surface pentacanonique une certaine combinaison de composantes des points de diramation. Elle est donc bien d'ordre zéro. Dans cette note, nous établissons d'ailleurs que les cinq points de diramation ont la même structure.

Nous utilisons des résultats que nous avons obtenus sur les involutions cycliques appartenant à une surface ou à une variété algébrique; ils sont exposés dans un ouvrage que nous avons récemment publié (1).

- 1. Soit V une variété algébrique à trois dimensions satisfaisant aux conditions suivantes :
- a) Elle possède une surface canonique d'ordre zéro et par suite tout système linéaire de surfaces tracé sur la variété est son propre adjoint.
- b) Elle contient une involution cyclique I d'ordre cinq possédant un nombre fini et précisément cinq points unis.

Nous avons montré que l'on peut construire sur la variété V un système linéaire simple et complet de surfaces |F|, de dimension r aussi grande que l'on veut, contenant cinq systèmes linéaires partiels $|F_0|$, $|F_1|$, $|F_2|$, $|F_3|$, $|F_4|$ composés au moyen de l'involution I, l'un de ces systèmes, par exemple $|F_0|$ étant dépourvu de points-base et les autres ayant pour points-base les points unis de l'involution.

Rapportons projectivement les surfaces F aux hyperplans d'un espace linéaire S_r à r dimensions. Il correspond à V une variété que nous désignerons toujours par V sur laquelle l'involution I est engendrée par une homographie cyclique H de S_r . Cette homographie possède cinq axes ponctuels ξ_0 , ξ_1 , ξ_2 , ξ_3 , ξ_4

⁽¹⁾ Théorie des involutions... (loc. cit.).

et les surfaces F_i sont découpées sur V par les hyperplans passant par les quatre axes de H distincts de ξ_i . L'espace ξ_0 coupe V aux points unis de l'involution et les autres axes ne rencontrent pas la variété.

Nous désignerons par Ω une variété image de l'involution I et par Φ_0 , Φ_1 , Φ_2 , Φ_3 , Φ_4 les surfaces qui correspondent sur Ω respectivement aux surfaces F_0 , F_1 , F_2 , F_3 , F_4 . Les systèmes linéaires $|\Phi_0|$, $|\Phi_1|$, $|\Phi_2|$, $|\Phi_3|$, $|\Phi_4|$ sont complets et distincts.

Nous ferons l'hypothèse que la variété Ω ne possède pas de surfaces canonique, bicanonique, tricanonique, tétracanonique mais possède une surface pentacanonique.

Rappelons qu'il résulte de la construction du système ${}^+F^+$ que l'on peut supposer aussi grande que l'on veut la dimension du système ${}^+F_0$, de sorte que l'on peut prendre pour modèle projectif de Ω une variété dont les sections hyperplanes sont les surfaces Φ_0 .

2. Soit \overline{F}_0 une surface du système $|F_0|$. Sur cette surface, le système canonique est découpé par les surfaces F et contient cinq systèmes linéaires $|(\overline{F}_0, F_0)|$, $|(\overline{F}_0, F_1)|$, $|(\overline{F}_0, F_2)|$, $|(\overline{F}_0, F_3)|$, $|(\overline{F}_0, F_4)|$ composés avec l'involution I. Nous avons démontré que le transformé du système canonique de la surface $\overline{\Phi}_0$ homologie de \overline{F}_0 était celui des systèmes précédents ayant la dimension minimum, les autres ayant cette dimension augmentée d'une unité. Si ce système était $|(\overline{F}_0, F_0)|$, l'adjoint au système $|\Phi_0|$ serait $|\Phi_0|$ lui-même et Ω posséderait une surface canonique, contrairement à l'hypothèse.

Nous supposerons donc que l'adjoint à $|\Phi_0|$ est par exemple $|\Phi_1|$. Désignons par p_a le genre arithmétique des surfaces Φ_0 et par p'_a celui des surfaces. F Le système $|F_0|$ étant dépourvu de points-base, on a entre les genres p_a et p'_a la relation.

$$p'_a + 1 = 5(p_a + 1),$$

d'où $p'_a = 5(p_a + 1) - 1$.

Il résulte de nos recherches antérieures (1) que l'on a

$$r = p_a' - 5(p_a + 1) - 1$$

⁽¹⁾ Sur les variétés algébriques à trois dimensions possédant une surface canonique d'ordre zéro (Bulletin de l'Académie roy, de Belgique, 1965, pp. 863)

Le système $|\overline{F}_0, F_1\rangle$ et par conséquent le système $|F_1|$ ont la dimension $p_a - 1$. Le système $|F_0|$ a la dimension $p_a + 1$ et les systèmes $|F_2|$, $|F_3|$, $|F_4|$ ont tous trois la dimension p_a . On retrouve la formule liant les dimensions des axes ponctuels de l'homographie H.

3. Désignons par A_0 un des points unis de l'involution I. Ce point appartient à l'axe ξ_0 de H et est un point-base des systèmes $|F_1|$, $|F_2|$, $|F_3|$, $|F_4|$.

L'espace à trois dimensions α tangent à V en A_0 est transformé en soi par H et dans la gerbe de rayons de sommet A_0 dans α cette homographie détermine une homographie non homologique, ou une homologie, ou l'identité. Nous avons démontré que le dernier cas ne pouvait se présenter.

Dans le premier cas, l'espace α s'appuie en un point sur trois des axes ξ_1 , ξ_2 , ξ_3 , ξ_4 et deux hypothèses peuvent être faites :

- a) L'espace a s'appuie en un point Λ_2 sur ξ_2 , en un point Λ_3 sur ξ_3 , en un point Λ_4 sur ξ_4 .
- b) L'espace α s'appuie en un point A_1 sur l'espace ξ_1 et en un point sur deux des espaces ξ_2 , ξ_3 , ξ_4 .

Dans le second cas, l'espace α s'appuie en un point sur un des espaces ξ_1 , ξ_2 , ξ_3 , ξ_4 et suivant une droite sur un autre de ces espaces.

4. Plaçons-nous dans le premier cas et dans la première hypothèse.

Si ϵ désigne une racine primitive cinquième de l'unité, on peut attacher aux axes ξ_0 , ξ_1 , ξ_2 , ξ_3 , ξ_4 de H respectivement les nombres 1. ϵ^3 , ϵ , ϵ^4 , ϵ^2 .

Cela étant, considérons une surface \overline{F}_2 de $|F_2|$. Cette surface est découpée par un hyperplan passant par ξ_0 , ξ_1 , ξ_3 , ξ_4 et a par conséquent en A_0 le plan tangent $A_0A_0A_4$.

Dans ce plan, l'homographie H détermine l'homographie non homologique

$$\mathcal{X}_0^{'} : \mathcal{X}_3^{'} : \mathcal{X}_4^{'} = \mathcal{X}_0 : \epsilon^4 \! \mathcal{X}_3 : \epsilon^2 \! \mathcal{X}_4.$$

Sur la surface \overline{F}_2 , le point uni A_0 est donc caractérisé par les nombres $\alpha=3$, $\beta=2$. Les courbes $(\overline{F}_2, |F_0)$ passant par A_0

acquièrent en ce point un point triple auquel sont infiniment voisins sur la droite $\Lambda_0\Lambda_4$ un point double uni de première espèce et d'autre part deux points unis dont le premier est situé sur la droite $\Lambda_0\Lambda_3$ et dont le second, infiniment voisin du premier, est uni de première espèce.

Sur la surface $\bar{\Phi}_2$, homologue de $\bar{\mathrm{F}}_2$, le point de diramation correspondant à Λ_0 est équivalent à une courbe rationnelle de degré virtuel — 3 et à une seconde courbe rationnelle de degré virtuel — 2, se rencontrant en un point. Les courbes canoniques de $\bar{\Phi}_2$ doivent rencontrer la première de ces courbes en un point, et les courbes qui leur correspondent sur $\bar{\mathrm{F}}_2$ doivent donc toucher la droite $\Lambda_0\Lambda_4$ en Λ_0 .

Les courbes (\bar{F}_2, F_3) se comportent en A_0 comme les courbes

$$x_0^4x_3 + \lambda x_0^3x_4^2 + \dots = 0$$

dans le plan $A_0A_3A_4$; elles touchent la droite A_0A_4 en A_0 . On en conclut que les courbes (\overline{F}_2, F_3) sont les transformées des courbes canoniques de $\overline{\Phi}_2$.

5. Considérons maintenant une surface \bar{F}_3 de $|F_3|$. Cette surface touche en A_0 le plan $A_0A_2A_4$ et H détermine dans ce plan une homographie qui peut être représentée par

$$x_0': x_2': x_4':=x_0: \epsilon x_2: \epsilon^2 x_4$$

Les nombres qui caractérisebt le point uni A_0 de \overline{F}_3 sont donc $\alpha=2,\ \beta=3.$

Les courbes (\overline{F}_3, F_0) passant par A_0 ont la multiplicité trois en ce point et possèdent un poinr double infiniment voisin sur A_0A_2 , uni de première espèce, et deux points simples infiniment voisins successifs dont le premier se trouve sur A_0A_4 , le second étant uni de première espèce.

Sur la surface $\overline{\Phi}_3$ homologue de \overline{F}_3 , le point de diramation correspondant à A_0 est équivalent à deux courbes rationnelles, la première de degré virtuel — 3, la seconde de degré virtuel — 2, ces courbes se rencontrant en un poinr. Les courbes canoniques de $\overline{\Phi}_3$ doivent rencontrer en un point la première courbe.

Les courbes (\overline{F}_3, F_4) se comportent en A_0 comme les courbes

$$x_0^4 x_3 + \lambda x_0^3 x_2^2 + \dots = 0$$

dans le plan $A_0A_2A_4$; elles touchent donc la droite A_0A_2 en A_0 . Ces courbes correspondent donc aux courbes canoniques de la surface $\overline{\Phi}_3$.

6. Soient \overline{F}_4 une surface de $|F_4|$, $\overline{\Phi}_4$ la surface qui lui correspond sur Ω .

La surface \vec{F}_4 touche le plan $A_0A_2A_3$ en A_0 . Dans ce plan, H détermine l'homographie non homologique

$$x_0': x_2': x_3' = x_0: \epsilon x_2: \epsilon^4 x_3$$

Au point uni A_0 sur la surface \overline{F}_4 sont donc attachés les nombres $\alpha = \beta = 4$. C'est ce que nous avons appelé un point uni symétrique et on sait qu'un tel point est sans influence sur le transformé du système canonique de la surface $\overline{\Phi}_4$.

Ce transformé du système canonique de $\bar{\Phi}_4$ sur \bar{F}_4 est découpé par l'un des systèmes $|F_0|$, $|F_1|$, $|F_2|$, $|F_3|$ et ses courbes ne passent pas par le point A_0 . C'est donc le premier $|F_0|$ de ces systèmes. On en conclut que $|\Phi_0|$ est l'adjoint à $|\Phi_4|$.

De plus, il résulte de ce qui précède que les cinq points unis de l'involution I ont le même comportement.

Un point de diramation de Ω est singulier pour cette variété et est équivalent, au point de vue des transformations birationnelles, à un ensemble de surfaces rationnelles, les composantes de ce point. De ce qui précède, on conclut que l'on a

$$|\Phi_{0}'| = |\Phi_{1} + X_{1}|, |\Phi_{2}'| = |\Phi_{3} + X_{3}|, |\Phi_{3}'| = |\Phi_{4} + X_{4}|,$$
 $|\Phi_{4}'| = |\Phi_{0} + X_{0}|;$

où X_1 , X_3 , X_4 , X_6 sont des expressions formées de composantes des points de diramation, puisque les surfaces Φ_1 , Φ_2 , Φ_3 , Φ_4 passent par ces points.

On a nécessairement $|\Phi_1'| = |\Phi_2 + X_2|$. Avant de vérifier ce point, nous ferons quelques constatations.

7. Si sur une surface nous avons une involution cyclique du cinquième ordre possédant m points unis symétriques et n points unis caractérisés par les nombres a=2, $\beta=3$, ou a=3, $\beta=2$, entre le genre arithmétique p'_a de la surface

support de l'involution et celui p_a de l'image de l'involution, nous avons la relation

$$12(p'_a + 1) = 5.12(p_a + 1) - 24m - 12n \tag{1}$$

Considérons la relation entre les surfaces F_2 et Φ_2 correspondantes. Le genre arithmétique de la première est $p'_a := 5(p_a + 4) - 4$ et celui de la seconde est $p_a + 4$ puisque $|F_3|$ a la dimension p_a . Sur F_2 , les points unis sont de caractéristiques a = 3, $\beta = 2$, donc m = 0 et n = 5. La relation (1) donne

$$12(p_a'+1)=5.12(p_a+2)-5.12$$
,

ce qui est une identité.

On arrive à la même conclusion lorsque l'on considère la correspondance entre deux surfaces \mathbb{F}_3 et Φ_3 homologues. On a aussi m=0 et n=5.

Considérons ensuite deux surfaces F_4 et Φ_4 homologues. La surface Φ_4 a le genre arithmétique $p_a + 2$ puisque $|\Phi_0|$ a la dimension $p_a + 1$. Une surface F_4 possède cinq points unis symétriques, donc m = 5, n = 0 et la relation (1) donne

$$12(p_a' + 1) = 5.12(p_a + 3) - 5.24.$$

ce qui est une identité.

Observons que les axes ξ_0 , ξ_1 , ξ_2 , ξ_3 , ξ_4 de l'homographie H ont respectivement les dimensions $p_a + 1$, $p_a - 1$, p_a , p_a , p_a et d'après la théorie des homographies, on a bien

$$r + 1 = 5p_a + 5$$
,

d'où $r := p'_a$.

8. Revenons à la relation entre les surfaces F_1 et Φ_1 homologues.

Une surface \overline{F}_1 de $|F_1|$ est découpée sur V par un hyperplan contenant les axes ξ_0 , ξ_2 , ξ_3 , ξ_4 de H et par conséquent l'espace α tangent à V en A_0 . Par conséquent la surface \overline{F}_1 a un point double en A_0 . Le cône tangent à cette surface en ce point est transformé en soi par H et contient donc deux droites unies, c'est-à-dire deux des droites A_0A_2 , A_0A_3 , A_0A_4 .

Dans l'espace tangent a, II détermine l'homographie qui peut être représentée par les équations

$$x_0':x_2':x_3':x_4' \implies x_0: \epsilon x_2: \epsilon^4 x_3: \epsilon^2 x_4$$

et la surface \vec{F}_1 se comporte en Λ_0 comme la surface

$$x_0^3(\lambda_0 x_3^2 + \lambda_1 x_2 x_4) + x_0^2(\lambda_2 x_3 x_4^2 + \lambda_3 x_2^3)$$
;

$$+ x_0(\lambda_4 x_4^4 + \lambda_5 x_2 x_3^3 + \lambda_6 x_2^2 x_3 x_4) + x_2(\lambda_7 x_3^2 x_4^2 + \lambda_8 x_2 x_4^3 + \lambda_9 x_2^3 x_3) = 0$$

Le cône tangent en A_0 à la surface \overline{F}_1 passe donc par les droites A_0A_2 , A_0A_4 . De l'équation précédente, on déduit que la surface \overline{F}_1 coupe la droite A_0A_2 en trois points confondus en A_0 et la droite A_0A_4 en quatre points confondus en A_0 . Or, en examinant le comportement des surfaces F_2 en A_0 , on a vu qu'au point de A_0A_4 infiniment voisin de A_0 correspondait dans la singularité du point de diramation correspondant une courbe rationnelle de degré virtuel — 3. Les courbes canoniques de Φ_1 doivent rencontrer cette courbe en un point et les courbes qui leur correspondent sur \overline{F}_1 doivent toucher A_0A_4 en A_0 . Ce sont donc les courbes découpées par les surfaces \overline{F}_2 .

Les points doubles de la surface \overline{F}_1 sont unis pour H et n'ont aucune influence sur la valeur p'_a du genre arithmétique de cette surface. Le genre arithmétique de $\overline{\Phi}_1$ est $p_a = 1$ et on a

$$12(p_a'+1) = 5.12(p_a+2) - 5.12,$$

ce qui est une identité. On a donc bien

$$\Phi_1' = \Phi_2 + X_2,$$

 X_2 étant formée de composantes des points de diramation de Ω .

9. Des relations fonctionnelles établies,

$$oldsymbol{\Phi_0'} = oldsymbol{\Phi_1} + \mathrm{X}_1, oldsymbol{\Phi_1'} = oldsymbol{\Phi_2} + \mathrm{X}_2, oldsymbol{\Phi_2'} = oldsymbol{\Phi_3} + \mathrm{X}_3, oldsymbol{\Phi_3'} = oldsymbol{\Phi_4} + \mathrm{X}_4, \ oldsymbol{\Phi_4'} = oldsymbol{\Phi_0} + \mathrm{X}_0,$$

on déduit successivement

$$\begin{split} &\varPhi_0''=:\varPhi_1'\ +\ X_1\ =\ \varPhi_2\ +\ X_1\ +\ X_2,\\ &\varPhi_0'''=:\varPhi_2'\ +\ X_1\ +\ X_2\ =\ \varPhi_3\ +\ X_1\ +\ X_2\ +\ X_3,\\ &\varPhi_0^{(4)}=\varPhi_3'\ +\ X_1\ +\ X_2\ +\ X_3\ =\ \varPhi_4\ +\ X_1\ +\ X_2\ +\ X_3\ +\ X_4,\\ &\varPhi_0^{(5)}=\varPhi_4'\ -\ X_1\ +\ X_2\ +\ X_3\ -\ X_4\ =\ \varPhi_0\ +\ X_1\ +\ X_2\ +\ X_3\ -\ X_4\ +\ X_0. \end{split}$$

ďoù

$$\Phi_0^{(5)} = \Phi_0 := X,$$

X étant une combinaison de surfaces équivalentes aux points de diramation de la variété Ω , c'est-à-dire une surface d'ordre zéro qui constitue la surface pentacanonique de la variété Ω .

Observons que l'on trouve également

$$\Phi_1^{(5)} = \Phi_1 \equiv X, \dots, \Phi_4^{(5)} = \Phi_4 = X$$

40. Nous allons maintenant supposer que l'homographie déterminée par H dans la gerbe des tangentes en A_0 à V tout en étant non homologique, a une droite unie s'appuyant sur ξ_1 en un point A_1 , les deux autres droites unies s'appuyant en un point sur deux des axes ξ_2 , ξ_3 , ξ_4 , par exemple sur les deux premiers.

Dans ces conditions, les surfaces F_1 ont un point simple en A_0 leur plan tangent en ce point étant $\Lambda_0 A_2 \Lambda_3$.

L'examen de l'homographie déterminée dans ce plan par H montre que les surfaces F_0 passant par A_0 découpent sur une surface F_1 ayant un point simple en A_0 , une courbe ayant un point double en A_0 , les tangentes étant les droites A_0A_2 et A_0A_3 . On voit de plus que les courbes (F_1, F_2) et (F_1, F_3) ont un point simple en A_0 , les tangentes étant respectivement A_0A_3 et A_0A_2 . Les courbes (F_1, F_1) , (F_1, F_4) ont des points doubles en A_0 , à tangentes confondues, celles-ci étant respectivement A_0A_2 et A_0A_3 . Pour l'involution appartenant à une surface F_1 , le point A_0 est un point uni symétrique. Les autres points unis doivent avoir le même comportement et par suite les courbes canoniques d'une surface Φ_1 sont découpées par les surfaces Φ_0 .

Or, les courbes canoniques d'une surface Φ_0 sont découpées par les surfaces Φ_1 . On en conclut que la variété Ω possède une surface bicanonique d'ordre zéro, contrairement à l'hypothèse.

Si l'homographie déterminée par H dans la gerbe des tangentes à V en un point uni de l'involution est non homologique, l'espace tangent en ce point à V ne peut s'appuyer sur l'axe ξ_1 de H.

11. Supposons maintenant que l'homographie H détermine dans la gerbe des tangentes à V en un point uni de l'involution I une homologie h.

Les courbes découpées par les surfaces F_0 sur une surface F_1 , ou F_2 , ou F_3 , ou F_4 sont privées de point-base, et il existe parmi les surfaces Φ_1 , Φ_2 , Φ_3 , Φ_4 des surfaces sur lesquelles le système

canonique est découpé par les surfaces Φ_0 . Ce ne peut être les surfaces Φ_1 , car alors Ω posséderait une surface bicanonique contrairement à l'hypothèse. Supposons pour fixer les idées que ce soit une surface Φ_4 .

Le point A_0 doit être sans influence sur les courbes canoniques d'une surface \overline{F}_4 de $|F_4|$ transformées des courbes canoniques de la surface $\overline{\Phi}_4$ homologue. C'est par conséquent un point uni symétrique et il doit en être de même des autres points unis de l'involution.

Le système $|F_0|$ ayant la dimension $p_a + 1$, le genre arithmétique de la surface $\bar{\Phi}_4$ homologue de \bar{F}_4 est $p_a + 2$. On a bien la relation

$$12(p_a'+1)=5.12(p_a+3)-5.24$$

Les courbes $(\overline{\mathbb{F}}_4, \mathbb{F}_0)$ passant par A_0 y acquièrent un point double à tangentes fixes. Cela n'est possible que si le plan de l'homologie h s'appuie sur l'axe Φ_4 suivant une droite a. L'axe de l'homologie h est la seconde tangente aux courbes considérées. Supposons qu'il s'appuie sur l'un des axes ξ_2 , ξ_3 par exemple sur ξ_3 .

Dans ces conditions, les surfaces F_3 touchent en A_0 le plan A_0a et sur une surface F_3 , le point A_0 est uni de première espèce. Il en est de même des autres points unis de l'involution.

Le genre arithmétique d'une surface F_3 est p'_a . Appelons p_a^+ celui de la surface Φ_3 correspondante. Entre ces genres, on a la relation (1)

$$p_a' + 1 = 5(p_a^+ + 1),$$

d'où $p_a^+ - p_a$. Parmi les systèmes $|\Phi_0|$, $|\Phi_1|$, $|\Phi_2|$, $|\Phi_4|$ un seul, $|\Phi_1|$, a la dimension $p_a - 1$, donc les parties variables du système adjoint à une surface Φ_3 sont les surfaces Φ_1 .

$$12(p_a + 1) = 12p(p'_a + 1) + k(p - 1)(p - 5)$$

Pour p = 5, le dernier terme disparaît.

⁽¹⁾ Si sur une surface de genre arithmétique p_a on a une involution cyclique d'ordre premier p possédant k points unis tous de première espèce, le genre arithmétique p'_a de la surface image de l'involution est donné par la formule

à trois dimensions de pentagenre un

En représentant par X_1 X_3 des sommes de composantes des points de diramation de Ω , on a

$$\Phi_0' \equiv \Phi_1 + X_1 \ \Phi_3' \equiv \Phi_1 + X_3$$

ďoù

$$\Phi_0 + X_3 = \Phi_3 + X_0.$$

ce qui est impossible puisque les systèmes $|\Phi_0|$, $|\Phi_3|$ sont distincts.

L'axe de l'homologie h ne peut donc s'appuyer sur ξ_3 ni, pour la même raison sur ξ_2 . Supposons qu'il s'appuie sur ξ_1 . En répétant le même raisonnement, on trouverait que les courbes canoniques d'une surface Φ_1 sont découpées par les surfaces Φ_0 et que par conséquent Ω possède une surface bicanonique, contrairement à l'hypothèse. Par conséquent

Dans la gerbe des tangentes à la variété V en un point uni de l'involution, l'homographie H détermine une homographie non homologique.

Liége, le 10 août 1965.