
University of Liège

Faculty of Applied Sciences

Department of Electrical Engineering & Computer Science

S IMULATION -BASED INFERENCE FOR ROBOTIC GRASP ING

a PhD dissertation

by Norman Marlier

Advisor: Prof. Gilles Louppe

Co-Advisor: Prof. Olivier Brüls

March 2024

This dissertation has been submitted and accepted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy in Computer Science.

iii

JURY MEMBERS

Pierre Geurts, Professor at the Université de Liège (President);

Gilles Louppe, Professor at the Université de Liège (Advisor);

Olivier Brüls, Professor at the Université de Liège (Co-Advisor);

Pierre Sacré, Professor at the Université de Liège;

Renaud Detry, Professor at Katholieke Universiteit Leuven;

Estelle Massart, Professor at the Université Catholique de Louvain;

v

Robotic grasping is the task of picking up an object by applying forces and torques at a

set of contacts with a gripper. This well-known problem, with more than four decades of

research, still poses significant challenges mainly for three reasons: the rich nonsmooth

contact dynamics of grasping, the high dimensional search space of grippers, and the

sensor noise. Physical modeling provides a mathematical description of the contact dy-

namics, leading to the first approach in robotic grasping. Then, the profusion of data due

to the rapid progress of information technology has made machine learning, a sub-field

of artificial intelligence, an uncontested approach for solving real-world problems. It was

quickly applied to robotic grasping with incredible results. However, both approaches

neglect one of the most fundamental issues: dealing with uncertainties.

In this thesis, we aim to develop a general probabilistic framework, describing the

grasping problem with random variables, to infer the grasp pose thanks to the Bayes’

rule, which is a principled approach for dealing with uncertainties: our prior beliefs are

updated based on new available observations. To this end, we structure our work with

four contributions.

The first contribution is to lay down the foundation of our approach. We develop and

explain the key components. The first component consists of the probabilistic modeling

of the variables used in robotic grasping. We describe the quantities needed to solve the

task by incorporating human-based knowledge of grasping while being general enough to

make our modeling applicable in many situations. The second component is the method

used to carry out the inference. Due to the intractability of the likelihood function,

we use a family of methods known as simulation-based inference. These methods learn

a part of the Bayes’ rule using neural networks as surrogate models. However, they

typically require lots of data, which is very costly to gather in robotics. Therefore, we

leverage robotic simulators to generate samples representing the task of grasping. The

last component consists of using geometric methods to search for the grasp pose by

performing a Riemannian gradient descent scheme, which preserves the geometry of the

space of some variables.

The next three contributions consist of designing priors relevant to the constraints of

the task. While a very simple prior is used in the first contribution, bringing almost no

information about the task, we propose to use invariance as a good property to inject into

the prior in the second contribution. Thus, it becomes possible to complexify the task

by adding more unknown parameters. These priors, however, are based on the object.

To overcome this issue, we use implicit neural representations to model a prior based on

the scene in the third contribution, which allows one to reason about the environment

and not only one object. We extend these capabilities by providing a systematic way of

designing priors in the last contribution, thus achieving a high success rate on complex

tasks.

vii

ACKNOWLEDGMENTS

When my family asked me a long time ago if I would do a PhD, my answer was ”Certainly

not! I want to work in the industry!”. Then, I did my Master’s thesis in robotics and

machine learning and slowly my opinion changed to ”It may be great to do a PhD”.

And here I am, five years later, finishing my PhD thesis. This change in my mind was

possible thanks to my incredible advisors, Gilles and Olivier.

And for that, I would like to thank you. You both support and advise me along my

PhD journey. You both teach me a lot of things, with your different points of view.

Gilles, I like the conversations we had and the meetings which always started with ”I

have good news and a problem”. Thank you for challenging my ideas and supporting

my ideas. Olivier, I enjoyed the conversations we had as well as the BBQs in summer

and Christmas dinners. You bring me the hindsight needed in robotics to embrace the

whole problem. I feel fortunate to have you both as advisors, as you help me to grow as

a roboticist, a data scientist, and more importantly, as a researcher.

I would like to thank all the members of the lab, from the older to the latest. Arthur

and Robin, thank you for all the moments we shared. I miss all the small talks we had,

the conversions as well as the after works. Juliano, you bring with you the sun from

Brazil. I really appreciate all the conversations we had about mathematical tools while

drinking different beers. I would to thank the robotic team from Montefiore. Pierre, I

really appreciate giving the robotic courses with you, as well as all our conversions. Sven,

thank you for showing me the ping pong table! These matches were very enjoyable and

productive. Speaking about ping pong, I would like to thank Louis, for all the moments

we shared. The journey we had in New York with Tom, Audrey, and Löıc was memorable.

I would like to thank other members with whom I had the chance to spend lunch breaks:

Ghilsain, Gaetan, Martin, and Olivier. I really appreciate your friendship and support.

I would like to thank my oldest road partner, Nicolas, for all the moments we shared.

We achieved our bachelor’s together, we achieved our master’s together, we achieved our

second master’s together and we did our Ph.D. together. That was awesome!

I would like to thank my best friend, Guillaume. All the moments we had were greatly

enjoyable and helped me to balance my life during my PhD. Moreover, you made me

discover squash, which is by far the best sport I have done in my life. Thank you for all,

bro.

Even if they don’t fully understand all the insights of my research, I would like to

warmly thank all my family for supporting me and encouraging me throughout my PhD

journey. Special thanks to Isis, my little cat, who was an incredible source of warmth

by sitting on my knees and a source of distraction by tapping on my keyboard with her

little paws.

ix

Finally, I would like to thank you, Emilie, for all your love, support and motivation.

You help me to overcome so many challenges. Your daily presence is the best thing that

has happened in my life.

x

CONTENTS

1 introduction 3

1.1 Research question . 4

1.2 Outline and structure . 4

1.3 Publications . 5

i background 7

2 trajectory planning in robotics 11

2.1 Introduction . 11

2.2 Configuration space . 12

2.2.1 Degrees of freedom . 13

2.2.2 Topology of the configuration space 14

2.2.3 Task space and workspace . 16

2.3 Transformation Matrices . 17

2.4 Forward and inverse kinematics . 18

2.4.1 Forward kinematics . 18

2.4.2 Inverse kinematics . 19

2.5 Path planning . 21

2.5.1 Path planner methods . 22

2.5.2 Example: Rapidly exploring Random Tree 22

2.6 Summary . 23

3 probabilistic modeling 27

3.1 Introduction . 27

3.2 Probabilistic models . 28

3.2.1 Models . 28

3.2.2 Probabilistic graphical models . 29

3.3 Inference . 30

3.4 Simulation-based inference . 34

3.4.1 Context . 34

3.4.2 Machine learning in simulation-based inference 35

3.5 Summary . 36

4 optimization on manifolds 41

4.1 Introduction . 41

4.2 Manifolds . 42

4.2.1 Manifolds, charts, atlas . 42

4.2.2 Tangent vectors and differentiable maps 43

4.2.3 Riemannian metrics, distances, and gradients 45

4.3 First-order Optimization on Manifolds . 46

xi

xii contents

4.3.1 Retraction . 47

4.3.2 Line-search algorithms . 48

4.4 Summary . 51

ii robotic grasping: a review 57

5 robotic grasping: a review 59

5.1 Introduction . 59

5.2 Early days: analytical approaches . 60

5.3 The rise of machine learning: data-driven approaches 61

5.4 Deep learning for robotic grasping . 62

5.4.1 Sampling . 62

5.4.1.1 Generating samples . 62

5.4.1.2 Evaluating samples . 64

5.4.1.3 Optimizing sample . 64

5.4.2 Direct Regression . 64

5.4.2.1 Direct regression of the pose 65

5.4.2.2 Multi-stage approach . 65

5.4.3 Reinforcement Learning . 65

5.4.4 Large language models for robotics 66

5.5 Summary . 66

iii simulation-based inference for robotic grasping 67

6 hardware 69

6.1 Robotic arm . 69

6.2 Gripper . 69

6.3 Depth cameras . 70

6.3.1 Kinect . 71

6.3.2 Intel Realsense D435i . 71

7 grasping a single object in a fixed pose 73

7.1 Prologue . 73

7.2 The paper: Simulation-based Bayesian inference for multi-fingered robotic

grasping . 74

7.3 Epilogue . 89

7.3.1 Advantages . 89

7.3.2 Limitations . 89

7.3.3 Conclusion and opportunities . 89

8 grasping a single object in any pose 91

8.1 Prologue . 91

8.2 The paper: Simulation-based Bayesian inference for robotic grasping . . . 92

8.3 Epilogue . 98

8.3.1 Advantages . 98

contents xiii

8.3.2 Limitations . 98

8.3.3 Conclusion and opportunities . 98

9 grasping many objects in a restricted setup 99

9.1 Prologue . 99

9.2 The paper: Implicit representation priors meet Riemannian geometry for

Bayesian robotic grasping . 100

9.3 Epilogue . 109

9.3.1 Advantages . 109

9.3.2 Limitations . 109

9.3.3 Conclusion and opportunities . 109

10 grasping many objects in an unrestricted setup 111

10.1 Prologue . 111

10.2 The paper: Grasping under uncertainties: Sequential Neural Ratio Esti-

mation for 6-DoF robotic grasping . 112

10.3 Epilogue . 120

10.3.1 Advantages . 120

10.3.2 Limitations . 120

10.3.3 Conclusion and opportunities . 120

iv conclusion 121

11 conclusion 123

v appendix 127

a references 129

A robot may not injure a human being or, through inaction, allow a human being to

come to harm.

A robot must obey orders given it by human beings except where such orders would

conflict with the First Law.

A robot must protect its own existence as long as such protection does not conflict with

the First or Second Law.

Isaac Asimov

1
INTRODUCTION

Robots, in the collective imagination, are machines capable of performing tasks at a

superhuman level. In movies, robots are often depicted as entities that can surpass

humans in speed, strength, and precision, accomplishing tasks with unparalleled accuracy.

These remarkable capabilities stem from their possession of cybernetic brains, which

model the world from perception to action. These cybernetic brains are, in fact, powerful

algorithms that learn from their experiences of the world and rapidly adapt to novel

situations. Although some of these algorithms exist, they are still in their infancy. In this

context, this thesis aims to explore and contribute to modern techniques for enhancing

robots’ capabilities.

In the present day, robots find their primary applications in industrial production lines.

They excel at performing repetitive, straightforward tasks within highly structured envi-

ronments, leaving no room for uncertainties. These robots operate using a single program

that executes motion and waits for instructions in a continuous loop. This approach to

robotics originated during the third industrial revolution in the 1970s, improving manu-

facturing processes and enabling the mass production of various technological devices like

smartphones, monitors, personal computers, and more. However, despite their success

in industrial applications, robots face limitations when it comes to tasks with high com-

plexity and substantial potential value addition. The current programming paradigm

is inadequate to handle such intricacy, as there are countless possibilities, making it

challenging to select a single action from an infinity of options.

This is where machine learning comes into play, presenting a whole new paradigm

that enables us to construct programs that can automatically learn complex decision

functions without explicit programming. Through machine learning models, robots can

now extract valuable information from a diverse range of sensors, even those not directly

associated with a predefined physical variable. This breakthrough has led to successful

applications in various tasks, including autonomous driving, quadrupedal-legged robots,

navigation, grasping, and manipulation.

While machine learning has undoubtedly revolutionized the potential of robotics in

the future, there are still numerous challenges that remain unsolved. Machine learning

methods exhibit a strong dependence on data, which poses difficulties in acquiring suf-

ficient data for robotic tasks. In practice, gathering the necessary amount of samples

often demands hundreds of robots executing the same tasks for extended periods, ren-

dering them impractical for many industrial applications. Furthermore, these methods

still struggle with generalization capabilities, limiting their adaptability across varying

scenarios.

3

4 introduction

1.1 research question

The primary challenge in robotics lies in accomplishing complex tasks that demand

sophisticated algorithms. Robotic grasping exemplifies such a problem, warranting a

closer investigation due to its need to comprehend nonsmooth and nonlinear contact

mechanics. Moreover, the algorithm must adapt to a diverse array of objects, each varying

in shape and physical properties, often obscured by occlusions in perception. Additionally,

it must compute specific trajectories to avoid collisions between the robot and the objects.

The amalgamation of these requirements makes robotic grasping a compelling benchmark

in the field of robotics.

This thesis aims to address the research question: How can robots autonomously

grasp any objects in unstructured environments? To achieve this objective, we

explore innovative methods known as simulation-based inference. These methods leverage

physical simulators to generate data and use Bayes’ rule to reduce uncertainties about

the parameters of interest. We investigate the general applicability of these methods in

robotics by initially focusing on a simple grasping task and progressively increasing the

task’s complexity. Our approach begins with a modest level of prior knowledge, based

on object representation, and then advances to a more advanced prior, based on scene

representation.

1.2 outline and structure

This thesis is divided into three parts. Part i provides the necessary foundational knowl-

edge to understand the core contributions. Chapter 2 introduces fundamental notions

of robotic and more particularly robot trajectory planning. In Chapter 3, we delve into

probabilistic modeling and simulation-based inference methods. The background is fur-

ther enriched by exploring optimization methods on Riemannian manifolds in Chap-

ter 4. Part ii (Chapter 5) provides a comprehensive review of the different approaches

used in robotic grasping. Finally, Part iii (Chapters 7 to 10) contains all the contributions

of the thesis, explaining the framework, the modeling, and the results.

Moving forward, Chapter 7 focuses on object-based priors and introduces a straight-

forward grasping benchmark. We establish the fundamental basis of our framework by

elaborating on the modeling of the grasping problem, transforming it into a Bayesian in-

ference problem. Subsequently, in Chapter 8, we explore the utilization of various sensor

formats to enhance decision-making.

Advancing our framework, we extend its capabilities by improving the given building

blocks. In Chapter 9, we explore neural implicit representations and introduce a new

type of prior, enabling us to grasp a wide range of objects on a planar tabletop. In

Chapter 10, we demonstrate how our method can be sequentially enhanced, enabling its

utilization for new tasks.

1.3 publications 5

1.3 publications

While Part i and Part ii provide background content, the scientific content of this thesis

is limited to four papers, each with its original contribution. Each paper constitutes its

own chapter, supplemented with additional prologue and epilogue sections.

[Marlier et al., 2021] Simulation-based Bayesian inference for multi-fingered robotic

grasping, Marlier Norman, Brüls Olivier and Louppe Gilles.

Preprint on Arxiv

→ Chapter 7.

[Marlier et al., 2022] Simulation-based Bayesian inference for robotic grasping,

Marlier Norman, Brüls Olivier and Louppe Gilles.

International Conference on Intelligent Robots and Systems, Workshop on Proba-

bilistic Robotics at the Age of Deep Learning, 2022

→ Chapter 8.

[Marlier et al., 2023] Implicit representation priors meet Riemannian geometry for

Bayesian robotic grasping, Marlier Norman, Gustin Julien, Brüls Olivier and

Louppe Gilles.

International Conference on Robotics and Automation, Workshop on Geometric

Representations, 2023

→ Chapter 9.

Marlier Norman, Brüls Olivier and Louppe Gilles, (2024), Grasping under uncer-

tainties: Sequential Neural Ratio Estimation for 6 DoF robotic grasping [Manuscript

submitted for publication]

→ Chapter 10.

Marlier Norman, Brüls Olivier and Louppe Gilles, (2024), Riemannian optimiza-

tion for robotic grasping [Manuscript submitted for publication]

This scientific contribution is not included in this thesis but it feels for the author as a

starting point because several key ingredients exist: robots, real-world experiments, and

predicting a probability of success.

[Marlier et al., 2019] Robotic throwing controller for accelerating a recycling line,

Marlier Norman, Brüls Olivier, Dislaire Godefroid and Louppe Gilles.

Proceedings of the Robotix Academy Conference for Industrial Robotics (RACIR),

2019

Part I

BACKGROUND

Hands-on experience is the best way to learn about all the interdisciplinary aspects of

robotics.

Rodney Brooks

2
TRAJECTORY PLANNING IN ROBOTICS

Outline

This chapter provides an in-depth introduction to trajectory planning

in robotics. We begin with a description of kinematic variables, cover-

ing essential concepts such as configuration space, coordinate systems,

frames, and rotation representation. Building upon this understanding,

we progress to both forward and inverse kinematic analyses, exploring

methods dealing with kinematic variables. Concluding this chapter, we

showcase the synthesis of these fundamental tools in tackling trajectory

planning problems.

2.1 introduction

Robotic arms are mechanical machines composed of multiple bodies referred to as links,

interconnected by joints. The motion of these links is performed by actuators, typically

electrical motors, which generate forces and torques. In many cases, an end-effector is

attached to a specific link, often taking the form of a gripper for grasping and a hand

for manipulation.

Grasping vs Manipulation

The distinction between grasping and manipulating often arises in the robotic

community. In grasping, contact points between the gripper and the object will

not change during the motion. It acts like a rigid constraint between the grip-

per and the object. In manipulation, called dexterous manipulation to enhance

the level of accuracy needed, the robotic hand will apply new contact forces to

change the pose of the object with respect to its wrist. Furthermore, manipulat-

ing involves pushing, pulling, sliding, and so on, which is not the case in grasping.

The primary function of a robotic arm is to perform tasks by moving its body and, if

equipped, its end-effector. For instance, in a pick-and-place operation, the robot moves

toward an object, grasps it with its end-effector, and transports it to a different location.

Similarly, in a welding task, the robot follows a precise trajectory along the parts to join

the materials.

All these tasks are defined through trajectories, which describe how the position, and

possibly the orientation, of the end-effector vary with time. Most of the time, the trajec-

tories are generated by passing through specific locations, called via-points. It is more

11

12 trajectory planning in robotics

convenient to describe a motion relatively to accurate locations than computing by how

much the angle of the joints needs to be turned. Furthermore, these trajectories can

easily avoid collisions with the objects in the environment. However, motor torques are

the only variables we can control in a robotic arm. Mappings from positions to angles

are thus needed to describe trajectories in terms of motor positions.

Kinematics vs Dynamics

Kinematics describes the motion of points, bodies, and systems of bodies without

taking into account the forces to cause them to move.

Dynamics is the study of forces and their effect on motion.

To illustrate all the concepts explained in this chapter, we introduce a toy example,

which is a little robotic arm called Esbi-1 (Fig 2.1).

Figure 2.1: Esbi-1, our little robotic arm. We will progressively add description of this model

through this chapter, to illustrate important concepts in robotics.

2.2 configuration space

The configuration space is the set of all possible positions for points within the robot.

The minimum number of variables in this space corresponds to the degrees of freedom

(DoF) of the robot. For instance, a door has one degree of freedom, represented by the

rotation around its axis, while a point on a plane possesses two degrees of freedom (see

Figure 2.2). The configuration space is an n-dimensional space, where n denotes the DoF

of the robot, and it is referred to as the C-space.

In this section, we focus on the C-space and the degrees of freedom of robots. To begin,

we delve into the concept of degrees of freedom, discussing the general assumptions

made in robotics and exploring automated methods for computing them. Moving on, we

thoroughly examine the C-space and its representation. Additionally, we explore other

spaces that are closely related to the C-space, which plays a crucial role in robotics.

2.2 configuration space 13

ϕ

(a)

x̂

ŷ

(x, y)

(b)

Figure 2.2: The configuration space is the set of all possible positions for points within the system.

The minimum number of variables in this space corresponds to the degrees of freedom

(DoF) of the system. Example of configuration spaces (a) a door has one DoF (the

rotation) while (b) a point in a plane has 2 DoF.

2.2.1 Degrees of freedom

The rigid body assumption asserts that the distance between any two points in a rigid

body remains constant and unaffected by time or external forces. Based on this assump-

tion, a 2D rigid body possesses exactly 3 degrees of freedom (DoF), with 2 DoF allocated

to the position (x, y) of a reference point (most of the time, the center of gravity) and 1

DoF to its orientation ϕxy. Similarly, a 3D rigid body has 6 DoF, with 3 DoF pertaining

to its position (x, y, z) and the remaining 3 DoF related to its orientation. The former

is referred to as a planar rigid body, while the latter is called a spatial rigid body.

Since robots consist of rigid bodies, their degrees of freedom can be computed thanks

to the Grübler formula [Grübler, 1884] as

degree of freedom = sum of freedoms of the bodies −
number of independent constraints.

(2.1)

Constraints in a robot arise from the joints that connect its links. Various types of

joints exist, enabling different kinds of motions and degrees of freedom (see Table 2.1).

The revolute joint (R), also known as the hinge, allows rotational motion around the joint

axis, making it the most common joint in robotic arms. The prismatic joint (P) allows

translational motion along the joint axis. Additionally, the helical joint (H) enables both

translational and rotational motion along the screw axis. Notably, these three joints

possess only one degree of freedom each.

Joints can possess several degrees of freedom, offering diverse motion capabilities. The

cylindrical joint (C) allows independent translational and rotational motions along a

single fixed joint axis. The universal joint (U) consists of two revolute joints with orthog-

onal axes. Meanwhile, the spherical joint (S) offers three degrees of freedom, functioning

similarly to a shoulder joint.

14 trajectory planning in robotics

Joints Degree of Freedom Constraints

Planar Rigid Bodies Spatial Rigid Bodies

Revolute (R) 1 2 5

Prismatic (P) 1 2 5

Helical (H) 1 N/A 5

Cylindrical (C) 2 N/A 4

Universal (U) 2 N/A 4

Spherical (S) 3 N/A 3

Table 2.1: Joints with their respective degrees of freedom and constraints for planar and spatial

rigid bodies.

l1

τ1

l2
τ2

Figure 2.3: The robotic arm Esbi-1 has 2 two hinges which are revolute joints. Therefore, it

possesses 4 four constraints, leading to 2 degrees of freedom, which are the angles of

each hinge.

Our little robot Esbi-1 is a planar arm with two revolute joints as illustrated in Fig 2.3.

Because it has two hinges, the degree of freedom of its C-space is 2. Its joint configuration

is described by τ = [τ1, τ2].

2.2.2 Topology of the configuration space

While the degree of freedom determines the dimension of the C-space, another important

aspect is its topology.

Consider a sphere and a plane, both possessing two degrees of freedom. The plane can

be extended infinitely in all directions, whereas the sphere cannot. Consequently, they

have distinct topology. An oval-shaped American football exemplifies this concept, as

it warps the sphere, stretching it in one direction to form the ball’s unique shape. This

idea of different geometry for spaces is referred to as topology.

For instance, one-dimensional spaces include the line, the circle, and a closed interval of

a line. The circle is denoted by S1 or S since it represents a one-dimensional sphere. The

2.2 configuration space 15

(a) (b)

Figure 2.4: Topology concerns the study of properties of geometric object that are preserved un-

der continuous deformations. Examples of different topological spaces are the sphere

and the plane. It is not possible to continuously deform a plane to obtain a sphere

and vice versa.

line is denoted as E or E1, indicating a one-dimensional Euclidean space. Alternatively, it

can be represented as R or R1 using real numbers once an origin, a direction, and a length

scale is selected. A closed interval is written as [a, b] ∈ R. These spaces also exist in higher

dimensions, with En being an n-dimensional Euclidean space with the associated vector

space Rn, and Sn being an n-dimensional sphere embedded in an (n + 1)-dimensional

Euclidean space.

Spaces can be constructed by expressing them as a product of lower-dimensional spaces;

this is referred to as a Cartesian product and is denoted by ×. For instance, the

configuration space of a planar rigid body can be expressed as R2 × S1. In the case

of a spatial rigid body, the configuration space becomes R3 × S3. Furthermore, a torus

is an n-dimensional space obtained by the product of n circles, represented as Tn =

S1 × S1 × ...× S1.
It is important to note that the topology of a space remains independent of the choice of

coordinates used to represent points within that space. When the number of coordinates,

or parameters, is equal to the dimension of the space, we refer to this representation as

a minimal representation. For instance, using latitude and longitude to represent points

on a sphere is a minimal representation. However, such a representation can be unsatis-

factory for certain regions of the space. For example, in the case of S2 (the 2-dimensional

sphere), regions near the poles are highly sensitive. A small step in one direction results

in a significant change in coordinates. The poles themselves are singularities, as one co-

ordinate can take all possible values. These singularities can be problematic because the

time derivative of the coordinates becomes infinite near them while the physical quan-

tity is finite. To address this issue, one can use multiple coordinate charts, forming

an atlas. When near a singularity in one chart, switching to another chart can help

16 trajectory planning in robotics

avoid it. This solution reduces the number of parameters required, but it comes with the

drawback of having to keep track of all the charts.

Another solution is to use a redundant representation. In this approach, more than

n coordinates are used to describe an element of the space, which means that the space

is considered to be embedded in a higher-dimensional Euclidean space. For instance,

S2 is embedded in the three-dimensional Euclidean space R3 and can be described with

(x, y, z) coordinates, subject to a constraint : x2+y2+z2 = 1. This constraint reduces the

degrees of freedom to 2. Redundant representations have the drawback of having more

coordinates than needed. However, they do not suffer from singularities. For example,

small changes occur in coordinates around the North and South poles of the sphere.

Let’s take back our little robot, Esbi-1. It possesses two revolute joints, each joint

belonging to the unit circle. Thus, its C-space is equivalent to T2 = S1 × S1. The

minimal representation uses two real variables τ0, τ1 while the redundant representation

uses many. For example, two complex numbers can be used to represent the C-space.

In summary, the non-Euclidean shape of many C-spaces motivates the use of a redun-

dant representation. More information about manifolds, charts, and atlas can be found

in Chapter 4.

2.2.3 Task space and workspace

The task space is the space where the robot’s task can be naturally expressed and is

directly related to the end-effector. For instance, drawing on a sheet of paper with a

pen is expressed in R2, describing the position of the pen on the sheet. Grasping and

manipulating a spatial rigid body is expressed in R3 × S3, describing a combination of

three-dimensional positional space and three-dimensional orientation space. Moreover,

additional restrictions can be applied according to the specific task. For instance, the

task space for grasping may be confined to R3 × S1, thereby limiting the number of

degrees of freedom for the orientation.

The task space is chosen by the user to represent the desired task, and as such, it

may differ from the configuration space. It may not fully describe the robot’s entire

configuration. For instance, a 7-DoF robotic arm can have several configurations given

the position and orientation of its end-effector. Additionally, some points in the task

space may not be reachable by the end-effector due to physical constraints or limitations.

The task space is often confused with the workspace. Moreover, the workspace is a very

overloaded term nowadays, making the distinction even more difficult. Lynch and Park

[2017] define the workspace as a specification of the configurations that the end-effector

can reach. It is defined by the user but depends only on the robot structure and not the

task. Breyer et al. [2021] define the workspace as a 3D volume where the task happens.

It is more viewed as bounds for positions in the task space than a space related to the

robot itself. The definition used in the contributions of this thesis is the last one.

2.3 transformation matrices 17

2.3 transformation matrices

A transformation matrix is a 4× 4 matrix that provides a systematic representation of

the motion, translation, and rotation of a spatial rigid body about an inertial frame. It

serves as an implicit representation, comprising 16 parameters subject to 10 constraints.

These matrices are versatile tools capable of performing multiple functions: (1) trans-

lating and rotating a vector or frame and (2) expressing a vector or frame from one

coordinate frame to another. All of these operations can be accomplished using linear

algebra, which is the primary reason for utilizing this representation.

A transformation matrix consists of two key components: the translation part t and

the rotation part R. The translation component, denoted as t, is a vector in R3, repre-

senting the spatial displacement between two points. It is written as tAB to signify the

translation from point A to point B. Notably, this vector denotes a distance regardless of

the coordinate frame it is expressed in. For clarity, we include a subscript to indicate the

specific frame in which the vector is expressed, as WtAB, where W refers to the reference

frame F−→W. The rotation component, denoted as R, is a 3× 3 rotation matrix in SO(3),

the special orthogonal group. It is written as RAB representing the rotation from the

frame F−→A to the frame F−→B. The transformation matrix TAB can be built as

AtAB =



x

y

z


 RAB =



rxx rxy rxz

ryx ryy ryz

rzx rzy rzz


 TAB =

(
RAB AtAB

0 1

)
. (2.2)

Let us illustrate how to practically use transformation matrices. Let p = (px, py, pz) ∈
R3 be a point and let pA be the same point expressed in the coordinate system F−→A. We

can express p in F−→B using the transformation matrix TBA as pB = TBApA (Fig 2.5).

A

X
Y

Z

X ′

Y ′

Z ′

B

p

Figure 2.5: A point p exists independently of a coordinate system. Therefore, it can expressed in

any reference coordinate systems. For example, it can be described by F−→A or F−→B.

18 trajectory planning in robotics

2.4 forward and inverse kinematics

This section offers a brief introduction to forward and inverse kinematics for open-loop

kinematics chains. These concepts frequently emerge in robotics, particularly when deal-

ing with the positions and orientations of the end-effector. The configuration space does

not inherently share the same topology as Euclidean spaces. Challenges can arise when

transitioning between these spaces because the mappings between them are nonlinear,

as illustrated in Fig 2.6. These problems are called forward and inverse kinematics.

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

(a) Joint configuration

2 1 0 1 2
x

2

1

0

1

2

y reachable

(b) Positions in 2D

Figure 2.6: The mapping of a given trajectory for Esbi-1 between its joints (a) and its positions

(b) is nonlinear. The area inside the circle represents the reachable workspace of the

robot.

2.4.1 Forward kinematics

Forward kinematics, or direct kinematics, refers to the evaluation of the position and

orientation of the end-effector of a robot given its joint configuration. Formally, this can

be described as

TER = fkine(τ), (2.3)

with τ being the joint configuration, TER the end-effector pose E in the robot base

coordinate system F−→R. Forward kinematics can give the same position and orientation

for different joint configurations.

There are many ways to evaluate the mapping fkine. For simple cases, closed-form so-

lutions exist. The Danevit-Hartenberg matrices [Denavit and Hartenberg, 1955] provide

a systematic procedure to build transformation matrices between links and thus solve

equation (2.3). But most of the time, the kinematics chain of robots is too complex to

provide analytical solutions and requires numerical methods to solve (2.3).

2.4 forward and inverse kinematics 19

In the case of Esbi-1, closed-form solutions exist. We can expressed the position of the

end-effector (xE, yE) as

x

y

yE

xE

l1

τ1

l2
τ2 (

xE

yE

)
=

(
l1 cos(τ1) + l2 cos(τ1 + τ2)

l1 sin(τ1) + l2 sin(τ1 + τ2)

)
. (2.4)

2.4.2 Inverse kinematics

Inverse kinematics refers to the evaluation of the robot’s configuration given the position

and the orientation of the end-effector. Formally, this can be described as

τ = ikine(TD
ER), (2.5)

with τ being the joint configuration, TD
ER the desired end-effector pose E in the robot

base coordinate system F−→R. Inverse kinematics do not always have a solution or can have

more than one solution (see Fig 2.7). For example, asking for a position way too far from

the robot base will result in a nonreachable position and thus an empty solution. There

are two general approaches to solving equation (2.5): analytical ones and numerical ones.

Analytical approaches derive closed-form solutions through symbolic manipulations. This

approach is very fast and computes all the possible solutions. However, it can be hard to

derive and needs to be done for every robot that has different kinematic structures. In

some cases, an analytical solution may not be available. Numerical approaches compute

a sequence of configurations τ1, · · · , τn such that the error ∥TD
ER − fkine(τ)∥ decreases

to 0. They can be grouped based on the method used: Jacobian, Newton, or heuristic

methods [Aristidou et al., 2018].

Even if a closed-form solution exists for the forward kinematics, the inverse kinematics

may behave in an extremely complex manner and have many solutions. In the case of

Esbi-1, let xD ≂ TD
ER (no rotation goal). The point xD evolves on a circle centered at

the base of the robot and located at a distance ∥xD∥. Because we control the norm of

xD, we can set the condition ∥x(τ1, τ2)∥ = ∥x(0, τ2)∥ (see Fig 2.8). Using equation (2.3),

we have

∥xD∥2 = l21 + 2 cos(τ2)l1l2 + l22

cos(τ2) =
∥xD∥2 − l21 − l22

2l1l2

20 trajectory planning in robotics

yE

xE

(a) Solution with the elbow down

yE

xE

(b) Solution with the elbow up

Figure 2.7: Several solutions may exist for the inverse kinematic problem, even for simple cases.

Examples (a) and (b) show two different joint configurations leading to the same

position.

τ2 = ± arccos(
∥xD∥2 − l21 − l22

2l1l2
).

The positive and negative solutions come from the two positions (Fig 2.8a and 2.8b).

Moreover, if ∥xD∥2 − l21 − l22 > 2l1l2 ⇐⇒ ∥xD∥2 > (l1+l2)
2, the position is unreachable

and the inverse cosine has no solution. Otherwise, we note τk2 the two solutions with

k = {1, 2}. The solutions for τ1 are derived by introducing α = arctan(yD, xD) and

noticing that if τ1 = 0, then αk = arctan 2(l2 sin(τ
k
2), l1 + l2 cos(τ

k
2)). Therefore,

τk1 = α− αk,

showing that even for simple cases, inverse kinematics is quite complex.

(a) Configuration corresponding to the po-

sition solution of the inverse cosine for

τ2.

(b) Configuration corresponding to the

negative solution of the inverse cosine

for τ2.

Figure 2.8: Procedure for computing τ2. The robotic arm is put on the circle so that the radius

is equal to the distance to the desired point. Then, we adjust the position using τ1
to fit the corresponding point.

2.5 path planning 21

2.5 path planning

Path planning involves the task of finding trajectories within the C-space, connecting

an initial state to a desired goal state while avoiding obstacles in the environment and

adhering to various constraints, including joint limits. Formally, the problem can be

stated as searching τ(s), s ∈ [0, 1] with τ(0) = τstart and τ(1) = τgoal. Furthermore,

τ(s) ∈ Cfree, the set of configurations that avoid collisions. Path planning is about

geometric trajectories without concerns about dynamics. There exist other planning

problems in robotics such as motion planning, related to the dynamics of the robot.

(a) Workspace.

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

(b) Configuration space.

Figure 2.9: The configuration space exhibits black regions where an object is in the workspace.

This black region corresponds to collision with the object and must be avoided by

the path planner.

Path planners can have several properties. These are not always fulfilled with one path

planner. Some properties may be irrelevant depending on the application.

Completeness: A path planner is said to be complete if it is guaranteed to find a so-

lution in finite time if one exits, and can report failure if there is no feasible path. This

can be extended to probabilistic completeness if the probability of finding a solution

if one exists, tends to 1 as the planning time goes to infinity.

Computational complexity: The amount of time or memory requires to solve a prob-

lem as a function of the dimension of the problem.

”Anytime” planner: A planner which finds for a better solution once it has already

found one, such in [Likhachev et al., 2003].

There may exist other properties but they are not always relevant.

22 trajectory planning in robotics

2.5.1 Path planner methods

Several methods exist to find a valid path from an initial state to a goal state. They are

based on many different principles and they do not have all the same properties. The

library OMPL [Şucan et al., 2012], for Open Motion Planning Library, implements all

these planners in a unified framework.

Complete methods: These methods use an exact representation of the C-space, which

ensures to make the optimal decision. However, they are computationally or mathemat-

ically intractable.

Grid methods: These methods discretize the C-space into a grid for searching the best

path. Due to the discretization, searching is easier as well as the implementation. How-

ever, the discretization may introduce artificial issues and these methods require a big

memory cost for a fixed resolution. They are usually limited to low-dimensional spaces.

Sampling methods: These methods explore the C-space by sampling randomly from

one state to another one. Then, a function evaluates if the new state belongs to Cfree or

not. Finally, a kind of local planner tries to connect this new free state to the ”closest”

previous one. They often use a tree structure. These methods are easy to implement,

tend to be probabilistically complete and work well in high dimensions. The downside

is the optimality of the found path, which is most cases satisfying and not optimal.

Virtual potential fields methods: These methods create artificial forces that pull

the robot towards the goal state [Khatib, 1986]. Additional repulsive forces are created

near obstacles to avoid collisions. The advantages are an easy implementation and a low

computational cost allowing online evaluation even for high dimensional systems. The

major drawback is that local minima may appear in the potential function: the robot

gets stuck in configurations that are not the goal state.

Additionally to all these methods, some smoothing may be required at the post-

processing level because trajectories found by planners can be quite jerky.

2.5.2 Example: Rapidly exploring Random Tree

We illustrated the problem of path planning with Esbi-1. It must avoid an object in its

workspace. The algorithm used for the collision avoidance is a rapidly exploring random

tree (RRT) [LaValle, 1998; LaValle et al., 2001]. It starts from the initial state and ex-

plores the configuration space through random explorations. The complete algorithm is

depicted in 2.1. RRTs are easily implemented and work well for low-dimensional prob-

lems. In our problem, Esbi-1 has to avoid the square to go from its initial configuration

τinit to a target point xD ∈ R2. By using the inverse kinematic solver, we compute the

2.6 summary 23

target configuration τD = ikine(xD). These initial and target quantities are shown in

Fig 2.10a, 2.10b and 2.10c. The path planner has to find a path with no collisions in the

C-space. RRTs build a graph to generate a valid path (Fig 2.10d) and find among its

nodes the shortest path to the target configuration. Because RRTs work by using linear

interpolation, the paths found are straight lines in the configuration space (Fig 2.10e),

which is not ideal for motion constraints. Fig 2.10f illustrates the cartesian trajectory,

which is curved lines because of the nonlinear mapping between the configuration space

and the workspace.

Algorithm 2.1 BuildRRT

Input: Initial state τinit, number of vertices in the graph K, incremental distance ∆τ .

Output: RRT graph G.

1: G.append(τinit)

2: for k = 1, . . . ,K do

3: τrand ← RAND CONF()

4: τnear ← NEAREST VERTEX(τrand, G)

5: τnew ← NEW CONF(τnear, τrand, ∆τ)

6: G.add vertex(τnew)

7: G.add edge(τnear, τnew)

8: end for

return G

2.6 summary

This section has introduced basic notions of robotics. Notably, the configuration and the

workspace do have not the same topology and their topology is not necessarily vector

spaces, which will be relevant for this thesis. Moreover, we illustrated the nonlinear map-

ping between configuration space and workspace through forward and inverse kinematics

and introduced their intrinsic challenges. Finally, we showed an example of trajectory

planning with a simple planner to avoid collision with its environment.

This chapter is mainly based on the book [Lynch and Park, 2017], which introduces

robotics from a mechanical point of view. The notation of transformation matrices is

based on a talk from a workshop [Furgale, 2014], illustrating the problem of notations

in robotics where many authors have their own notations that are not enough accurate.

24 trajectory planning in robotics

(a) Robot initial and goal con-

figurations.

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

(b) Configuration space.

4 2 0 2 4
x

4

2

0

2

4

y reachable

(c) Workspace.

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

(d) Graph in the configuration

space.

3 2 1 0 1 2 3
1

3

2

1

0

1

2

3

2

(e) Trajectory in the configura-

tion space.

4 2 0 2 4
x

4

2

0

2

4

y reachable

(f) Trajectory in the

workspace.

Figure 2.10: Illustration of the path planning problem. (a) Initial and goal configurations. The

goal configuration is often computed from the position in the workspace via inverse

kinematics. It can be a position to grasp an object for example. (b) the two red

dots represent the initial and goal configurations. The black region represents the

collisions with the object. (c) the two configurations represented in the workspace,

computed via forward kinematics. (d) the graph generated by the RRT. (e) the

trajectory, which consists in linear interpolations, in the configuration space. (f) the

trajectory in the workspace, computed by forward kinematics.

The machine has no feelings, it feels no fear and no hope ... it operates according to the

pure logic of probability. For this reason, I assert that the robot perceives more accurately

than man.

Max Frisch

3
PROBABIL I ST IC MODEL ING

Outline

This chapter introduces concepts of probability theory with a focus on

methods applied in this thesis. We first start by briefly explaining random

variables and probability distributions. Then, we continue with inference

and learning, the key ingredients of all systems based on probability. This

leads to graphical models, which are convenient representations to per-

form inference with domain knowledge and therefore are very useful in

practical applications. We finish this chapter with simulation-based infer-

ence, the core family of methods of this thesis.

3.1 introduction

Robots are meant to perform complex tasks in unstructured environments, far from

the very predictable situation of assembly lines. Thus, it becomes critical to handle the

many challenges of these highly dynamic environments. Uncertainty is a key element in

robotics that arises from different sources. First, it comes from the environment. The

physical world is very complex and its dynamic can hardly be captured in a model.

Thus, it is nearly impossible to model all the phenomena. Sensors are also prone to

noise and do not provide perfect information about the parameters of interest. This

is problematic if the decision-making process of robots relies heavily on deterministic

models because small changes in input variables may result in a completely different

response. If uncertainty may come from the environment, it arises also from the robots

themselves. Motor actuation can result in inaccurate motion, due to friction or wear-or-

tear, leading to difficult control. While all these sources are mainly from hardware and

physical interactions, uncertainty arises also in the decision process. Robots are meant to

make fast decisions, as humans do when they move or grasp objects, to evolve in dynamic

environments. Therefore, decisions are mainly based on approximations, introducing

uncertainty and inaccuracy in the decision process. All these factors make uncertainty

very important for robots and cannot be ignored. Thus, it has to be properly modeled

in decision-making processes. This is achieved by using the laws of probability.

27

28 probabilistic modeling

3.2 probabilistic models

Before talking about probabilistic models, let us introduce first what a random variable

is. A random variable X is a function that maps possible outcomes x in the sample

space Ω to a measurable space E. The triple (Ω, F, P) is the probability space where Ω

is the sample space, F is a subset of possible outcomes from Ω and P is the probability

function which assigns values in [0, 1] for each possible outcomes. This triple satisfies the

three Kolmogorov’ axioms: non-negativity, unitarity, and σ-additivity. When the sample

space is discrete, we denote PX(x) = P (X = x) : Ω 7→ [0, 1] the probability function.

When the sample space is continuous, the probability function defines a probability that

the possible outcomes x lie in a subset A ⊂ Ω which is expressed as
∫
x∈A pX(x)dx. The

probability density function pX(x) = p(X = x) is a function that integrates to 1 if the

subset is the set itself. When it is possible, we omit the subscript X for more readability.

While the probability function P (x) is bounded by 1, the density function p(x) is not.

3.2.1 Models

Mathematical models are abstractions of real systems present in nature. They try to

capture their intrinsic properties and allow us to make predictions about them. Let’s

take our little robot, Esbi-1, as an example with its mathematical modeling [Lynch and

Park, 2017]

l1

τ1

l2
τ2

F = M(τ)τ̈+ C(τ, τ̇)τ̇+ g(τ) (3.1)

M(τ) =

[
m1l

2
1 +m2(l

2
1 + 2l1l2 cos(τ1) + l22) m2(l1l2 cos(τ2) + l22)

m2(l1l2 cos(τ2) + l22) m2l
2
2

]
(3.2)

C(τ, τ̇) =

[
−m2l1l2 sin(τ2)(2τ̇1τ̇2 + τ̇22)

m2l1l2τ̇
2
1 sin(τ2)

]
(3.3)

g(τ) =

[
(m1 +m2)l1g cos(τ1) +m2l2g cos(τ1 + τ2)

m2l2g cos(τ1 + τ2)

]
(3.4)

3.2 probabilistic models 29

describing how the system evolves with time and thus taking into account the dynamics

of the system. By giving the external forces F and the parameters of the system l1, l2,m1

and m2, we can predict the evolution of the positions of the joints τ.

These models rely on the strong assumption that parameters are known with infinite

precision to make predictions. They are deterministic. This is barely the case in practice

because measurement tools have always a finite accuracy with some noise. Therefore,

we need to consider the stochasticity or the randomness of the system by using proba-

bilistic models. They treat the variables of interest as random variables (e.g X,Y, Z) and

use probability distributions to describe phenomena; it can be joint distribution, e.g.,

P (X,Y, Z) or conditional distributions, e.g., P (X | Y, Z). Once the model is built, we

can perform inference and reason about the variables. For example, what is the proba-

bility of X given Y and Z? In our example, an inference problem can be: what is the

probability of the external forces F given an observation of the positions of the robot

τ, p(F | τ). In the deterministic case, the answer will be given by the equation (3.1),

which can be complicated to solve. However, the measured positions τ are not the true

ones because of the sensor noise. Then, we can put a probability distribution on the

plausible values of F . From that, deterministic models are a special case of probabilistic

models assuming a delta Dirac distribution for all the variables. Moreover, we may want

to sample from this distribution which is different from evaluating the probability. Then,

probabilistic models may handle different queries: evaluation, sampling, marginalization,

and conditioning.

3.2.2 Probabilistic graphical models

Probabilistic graphical models (PGM) are graph-based representations that compactly

encode complex probabilistic interactions between random variables [Koller and Fried-

man, 2009]. They take advantage of the fact that random variables interact directly with

only a few others in practice. This can simplify drastically the expression of the joint

distribution. The two main kinds of PGM are Bayesian Networks (BN) and Markov

Random Fields (MRF). Markov Random Fields can have cyclic dependencies whereas it

is not the case for Bayesian Networks. Because we will not use MRF in this thesis, we

only focus on BN for this subsection.

A Bayesian network is a directed acyclic graph (DAG) in which each node represents

a random variable and each edge represents the conditional dependencies between two

nodes or the absence of edge represents independence (Fig 3.1). Let Xi denotes the

random variable of node i. The full joint distribution in the Bayesian Network is encoded

as the product of the local distributions

P (x1, . . . , xn) = Πn
i=1P (xi | parents(Xi)) (3.5)

The structure of the network expresses the domain knowledge of the problem by stating

the causal dependencies between the variables. In Fig 3.1, x depends on z and θ so x can

30 probabilistic modeling

be sampled according to the conditional density x ∼ p(x | θ, z). The sampling can be done

through computer programs that define implicitly local probability densities. Evaluating

this conditional density can be done by using tables for simple random variables, such

as binary variables.

θ

z x

Figure 3.1: Example of a Bayesian network. White nodes are latent variables and grey nodes

are observed variables. The full joint distribution is computed via equation (3.5) as

p(x, θ, z) = p(θ)p(z | θ)p(x | θ, z).

3.3 inference

Inference is the problem of computing a marginal and/or a conditional probability dis-

tribution from a joint probability distribution. Bayesian inference treats parameters of

interest as random variables to capture subjective uncertainties. This method derives

the posterior distribution from a prior distribution and the likelihood of the observed

data. Formally, Bayesian inference uses Bayes’s rule to update the posterior distribution

p(θ | x) of parameters θ given a new observation x as

p(θ | x) = p(x | θ)
p(x)

p(θ), (3.6)

with p(x | θ) being the likelihood function or the conditional probability, p(x) being the

marginal distribution or the evidence and p(θ) being the prior. These four quantities are

essential in Bayesian inference which expressed probability distribution as a degree of

beliefs.

The prior express knowledge we have about parameters θ without observing x. Because

the Bayesian point of view assigns probability as a degree of beliefs, thus being subjective,

there are many ways to construct priors [Lemoine, 2019; Sarma and Kay, 2020]. It can be

an informative prior. For example, a Gaussian can be used with a mean and standard

deviation as prior distribution for the position of the center of mass of an object to

grasp. It can also be a weakly informative prior, which is much more permissive than

informative ones. In the example of a Gaussian as a prior, a weakly informative prior will

have a greater standard deviation than an informative prior, meaning that we are less

aware of the position of the object. Finally, it can be an uninformative prior which gives

little to no information about the parameters θ, or the object to grasp can be everywhere.

It mostly encodes information such as ”the variable is positive” or ”the variable is in

3.3 inference 31

the interval of values”. Practically, a uniform distribution with bounds is used for such

priors.

The likelihood is a special quantity. When it is viewed as a function of x with θ fixed,

it is a probability distribution. When it is viewed as a function of θ with x fixed, it

is the likelihood function, also noted L(θ | x). That is said, the likelihood function is

not a distribution probability of θ, which can lead to misleading conclusions. From a

Bayesian point of view, this quantity describes how much information is brought by the

observation x about parameters θ.

The marginal distribution is the prior predictive distribution of observation x. It can

also be viewed as the likelihood function integrated over the parameters space. The

distribution serves as a normalizing constant, making the integral of the posterior over

the parameters equals to 1. We can also note that Bayes’ rule constrains the marginal

distribution to be non-zero, which implies that x must be plausible.

The Bayes’ rule can be generalized to more than two random variables. This general-

ization will be useful for the understanding of the thesis. For example, with three random

variables A,B and C, the Bayes’ rule becomes

p(A | B,C) =
p(B | A,C)

p(B | C)
p(A | C). (3.7)

Posterior distribution modifies the prior distribution to take into account new informa-

tion from the observation. Once the posterior distribution is computed, we can extract

information of interest: credible intervals, Bayesian estimators, or maximum a posteriori.

Themaximum a posterior (MAP) is a point estimator, meaning we restrict our random

variable θ to a single value θ̂ = θ(x) of the parameter space. This contrasts with credible

intervals, which are regions of the parameter space. The MAP is the posterior mode and

is computed by

θ̂(x) = argmax
θ

p(θ | x) (3.8)

= argmax
θ

p(x | θ)p(θ) (3.9)

because the marginal distribution does not depend on θ. Other point estimators exist

such as the posterior mean or the posterior median.

All Bayesian inference methods aim to compute the posterior distribution. However,

except for simple tractable problems, the marginal distribution is intractable. Consider-

ing a simple PGM (Fig 3.2) with x ∈ X the observations and z ∈ Z the latent variables,

the marginal distribution is

p(x) =

∫

Z
p(x, z)dz. (3.10)

Equation (3.10) is often intractable because of the dimension of the latent space, which

is possibly very large. Thus, approximate inference methods are developed to carry out

32 probabilistic modeling

x

z

Figure 3.2: Latent variables model. It relates a set of observable variables x (in grey) to a set of

latent variables z (in white).

inference despite the intractability of the marginal distribution.

Example of intractable marginal We consider the problem of Bayesian mixture

of unit Gaussians. Let be µ ∈ RK and distributed as µ ∼ N (0, IK). To generate an

observation xi, we first sample a cluster assignment ci distributed as a categorical vari-

able with a one-hot encoding. We then draw xi from the tractable likelihood function,

corresponding to a Gaussian N (cTi µ, 1). The full model is

µ ∼ N (0, IK) (3.11)

ci ∼ Categorical(
1

K
, · · · , 1

K
) (3.12)

xi | ci,µ ∼ N (cTi µ, 1) (3.13)

For a sample of size n, the joint distribution of the latent and observation variables is

p(x, c,µ) = p(µ)

n∏

i

p(ci)p(xi | ci,µ) (3.14)

The latent variables are z = {µ, c}. Thus, the marginal distribution is

p(x) =

∫
p(µ)

n∏

i

∑

ci

p(ci)p(xi | ci,µ)dµ (3.15)

The integral in equation (3.15) is intractable because the time complexity is O(Kn). This

example is taken from [Blei et al., 2017] Section 2.1.

If we are only interested in the MAP, a common strategy is to drop the marginal

distribution term and thus using the product of the likelihood and the prior, p(θ | x) ∝
p(x | θ)p(θ) which will lead to the same parameters θ̂(x) as explained in equation (3.8).

If the full distribution is needed, several methods exist to approximate the posterior

distribution. We briefly introduce here two methods, one based on sampling, and the

other based on optimization.

3.3 inference 33

Markov chain Monte Carlo It formulates the Bayesian inference as a sampling

problem [Hastings, 1970; Geyer, 1992; Gilks et al., 1995; Neal et al., 2011]. This family

of methods aims to generate samples from a target density function, up to a constant,

and extract from these samples meaningful statistics such as mean, variance, and others.

There are no models of the posterior distribution leading to a low bias but a high vari-

ance of the estimators. Markov chain Monte Carlo uses two ingredients: (i) A proposal

distribution q(θ′ | θ) which proposes new states θ′ from current state θ, and (ii) an accep-

tance step which decides if the proposed state θ′ is accepted or not with the probability

to accept α(θ, θ′) = min{1, p(x|θ′)p(θ′)q(θ′|θ)p(x|θ)p(θ)q(θ|θ′) }. While Monte Carlo methods use indepen-

dent and identically distributed samples, Markov chain Monte Carlo use autocorrelated

samples, needing advance techniques to reduce the correlation between samples.

Variational inference It formulates the Bayesian inference as an optimization prob-

lem [Jordan et al., 1999; Wainwright et al., 2008; Blei et al., 2017]. The posterior dis-

tribution p(θ | x) is approximated by the variational distribution qϕ(θ) ≈ p(θ | x). The
distribution qϕ(θ) is chosen among a family of distributions simpler than the true poste-

rior, such as Gaussian. The notion of distance between these two distributions can be ex-

pressed by the Kullback-Leibler divergence, denoted byKL(P ||Q) =
∫
x∈X log p(x)

q(x)p(x)dx.

Then, we choose the parameters ϕ which minimize the KL-divergence of qϕ(θ) and

p(θ | x),
ϕ∗ = argmin

ϕ
KL(qϕ(θ)||p(θ | x)). (3.16)

Equation (3.16) is still complicated to evaluate because the evaluation of the posterior

density is required. It can be written as

KL(qϕ(θ)||p(θ | x)) = Eθ∼qϕ(θ)[log qϕ(θ)− log p(x, θ)] + log p(x). (3.17)

KL(qϕ(θ)||p(θ | x)) = −Eθ∼qϕ(θ)[log p(x, θ)− log qϕ(θ)] + log p(x). (3.18)

KL(qϕ(θ)||p(θ | x)) = −ELBO(x;ϕ) + log p(x), (3.19)

where ELBO is the evidence lower bound objective. Because p(x) does not depend

on ϕ, Equation (3.16) can be solved by maximizing the ELBO instead of minimizing the

KL-divergence. However, ELBO requires to evaluation of the likelihood function because

p(x, θ) = p(x | θ)p(θ).

All these methods require to evaluate the likelihood function, whether it is for the

MAP or the full distribution. However, real systems rarely exhibit simple dynamics such

as Gaussian, meaning that the likelihood function does not come in a closed-form. So, the

methods explained above can not be applied and we need new methods to approximate

the posterior distribution.

34 probabilistic modeling

3.4 simulation-based inference

3.4.1 Context

As explained in the previous section, Bayesian inference is computationally intractable

because of the marginal distribution so approximate methods are usually needed to carry

out inference. However, for an increasing range of scientific problems, the likelihood

function p(x | θ) is either computationally prohibitive to evaluate or intractable [Sisson

et al., 2018]. The first case arises when the observed dataset, xobs, is too big to evaluate

the likelihood function, which occurs a lot in the era of Big Data. The likelihood function

can be written as p(xobs | θ) = 1
Zθ

p̃(xobs | θ) where p̃(xobs | θ) is a function that can

be easily evaluated. The normalizing constant Zθ =
∑

X p̃(xobs | θ) cannot be evaluated

by brute-force enumeration due to the number of possible data configuration of X . The
second case arises when the likelihood function is defined implicitly, through quantile or

characteristic functions [Drovandi and Pettitt, 2011; Peters et al., 2012], or as a data

generation process [Cranmer et al., 2020]. This last case is the most interesting one for

robotics because robotic simulators work as a data generation process. Let the scenario

where θ ∈ Θ are the parameters of the model, z ∈ Z are the latent variables and x ∈ X
are the observations.

θ

z x

Figure 3.3: Bayesian network of the simulation-based inference setting. θ are the parameters of

the model, z are the latent variables, conditioned by the parameters and x is the

observation, conditioned by both the parameters and the latent variables.

The likelihood function and the marginal distribution are both intractable because

the latent variables z have potentially a very high dimension

p(x | θ) =
∫

Z
p(x, z | θ)dz (3.20)

p(x) =

∫

Θ

∫

Z
p(x, z | θ)dz p(θ)dθ. (3.21)

If the likelihood is intractable, it remains feasible to sample from it with the help of

computer simulators (see the definition below). They define implicitly the likelihood

function p(x | θ). For example, in the case of Esbi-1, the parameters θ are the forces F ,

the observations x are the positions of the joints τ and latent variables z are lengths and

the masses of the links l1, l2,m1 and m2. Equation (3.1) produces samples τ from F and

l1, l2,m1,m2 according to p(τ | F , l1, l2,m1,m2) while not providing direct evaluation

3.4 simulation-based inference 35

of p(τ | F , , l1, l2,m1,m2). Therefore, posterior inference is still complicated because we

only have access to samples of the likelihood function. Thus, we need new methods to

perform inference despite the intractability of the likelihood and the marginal distribu-

tion.

Simulators: A simulator is a computer program that takes as input a vector of pa-

rameters θ, samples a series of random latent variables z ∼ p(z | θ), and produces an

observation x ∼ p(x | θ, z).

3.4.2 Machine learning in simulation-based inference

The machine learning revolution has recently arisen over the last decade, showing incred-

ible performance on various tasks, such as classification or regression. It begins with the

use of neural networks, which are powerful and versatile parametric functions. Neural

networks can directly work with a variety of raw data and particularly high-dimensional

data, such as images. Their high capacity allows them to be trained on a huge amount

of data, which is available due to new capabilities of storage. Combining them with new

computation devices, such as GPU, makes neural networks the new pocketknife to solve

complex problems.

In particular, neural networks are universal approximator functions [Cybenko, 1989;

Funahashi, 1989], making them powerful tools for estimating probability densities. There-

fore, we can make use of these tools to learn the components of Bayes’s rule: it can be

the likelihood function, the posterior itself, or the likelihood-ratio function.

Learning the likelihood function The intractable likelihood function p(x | θ) can be

approximated by neural networks, which is called neural likelihood estimation (NLE) [Pa-

pamakarios et al., 2019]. For example, Synthetic Likelihood [Everitt, 2017; Ong et al.,

2018] use a Gaussian density for a observation x0 such that p(x0 | θ) ≈ N (x0 | mθ, Sθ)

where the mean mθ and the covariance matrix Sθ are estimated from a batch of data

xn ∼ p(x | θ) sampled at a given θ. Non-Gaussian likelihood approximations are also

possible [Fasiolo et al., 2018]. Once the likelihood function is approximated, we are in

the case where only the evidence is intractable so standard procedures such as MCMC

or VI can be used for posterior inference.

Learning the posterior Instead of learning the likelihood function, we can directly

learn the posterior density p(θ | x), which is called neural posterior estimation (NPE) [Pa-

pamakarios and Murray, 2016; Wehenkel and Louppe, 2019; Papamakarios et al., 2021].

Approximation models are based on normalizing flows [Rezende and Mohamed, 2015;

Kobyzev et al., 2020], a class of invertible neural networks, which provide density esti-

mation as well as sampling procedure.

36 probabilistic modeling

Learning the likelihood-ratio function Another possibility is learning the likelihood-

to-evidence ratio, called neural ratio estimation (NRE). NRE learn the likelihood-ratio

function [Cranmer et al., 2015; Tran et al., 2017; Hermans et al., 2020; Durkan et al.,

2020; Miller et al., 2021; Hermans et al., 2021; Miller et al., 2022; Thomas et al., 2022],

r(x | θ) = p(x | θ)
p(x)

(3.22)

by using the likelihood-ratio trick. A surrogate model, dϕ(x, θ), can be trained as a

classifier to distinguish samples coming from the joint distribution, or forward model,

x, θ ∼ p(x | θ)p(θ) labeled y = 1 against samples coming from the product of the

marginals x, θ ∼ p(x)p(θ) labeled y = 0. The binary cross-entropy (BCE) loss is

LBCE = −E[p(x, θ)log(d(x, θ)) + p(x)p(θ)log(1− d(x, θ))]. (3.23)

Therefore, the minimizer of the BCE is the optimal Bayes classifier d∗(x, θ) given by

∂L

∂d
= 0 ⇐⇒ p(x, θ)

d∗(x, θ)
− p(x)p(θ)

1− d∗(x, θ)
= 0 (3.24)

⇐⇒ d∗(x, θ) =
p(x, θ)

p(x, θ) + p(x)p(θ)
. (3.25)

The likelihood-ratio function (3.22) can be recovered from (3.25) by dividing the numer-

ator and the denominator with p(x, θ)

d∗(x, θ) =
1

1 + r(x, θ)−1
=

1

1 + exp− log r(x,θ)
= σ(log r(x, θ)) (3.26)

with σ being the sigmoid function. Neural networks can be used as surrogate models

of the likelihood-ratio function, providing a differentiable approximation of it. Moreover,

this approach is amortized, meaning that inference can be carried out for any observa-

tion x without retraining the network. This makes the inference very fast but needs a

larger dataset for training than non-amortized methods.

However, amortized approaches need a model with a large capacity to generalize well.

This is not always a viable strategy. To overcome this issue, a sequential ratio estimation

procedure can be used, in which the posterior for a given observation x = x0 will be

iteratively refined. The procedure starts with the prior p0(θ) =: p(θ), the posterior is

improved by setting it the prior at the next round, pt+1(θ) =: pt(θ | x = x0). Then, a

new ratio is trained at each round with data generated from the prior pt(θ).

3.5 summary

Dealing with uncertainty is a key issue in robotics. To this end, probabilistic modeling

is a formidable tool for managing unknowns and uncertainty. To effectively use the in-

formation contained in sensor data, Bayesian inference provides an update rule based on

3.5 summary 37

prior, likelihood function, and posterior. However, this is computationally intractable

in most cases and thus needs approximation methods. Machine learning algorithms

demonstrate their capabilities to perform complex tasks, particularly density estima-

tion. Among them, simulation-based inference methods arise and perform well even in

the most restricted settings, when the likelihood function is not available, which is always

the case in robotics.

True optimization is the revolutionary contribution of modern research to decision pro-

cesses.

George Dantzig

4
OPTIMIZAT ION ON MANIFOLDS

Outline

This chapter serves as an introduction to the fundamental concepts of

manifold optimization. Our exploration commences by establishing the

mathematical foundation of manifolds, delving into their definition, in-

cluding the concepts of tangent spaces and metrics, while also highlighting

their intrinsic relationship with Euclidean spaces. We present well-known

manifolds that are within the scope of robotics. Then, we explore opti-

mization algorithms specifically designed to deal with smooth manifolds.

4.1 introduction

Optimization problems are frequent in robotics. The problem of trajectory planning can

be formulated as an optimization problem using the method of virtual potentials where

the best path minimizes potential energy between the initial state and the final state. In

optimal control, the motor controls should minimize a cost function along a predefined

trajectory in the state space. The mechanical design of grippers and robotic arms may

be improved a lot with topology optimization to maximize the stiffness or the success

rate of a task given constraints.

Optimization involves the process of either maximizing or minimizing a real function

by identifying the optimal input value. However, real-world scenarios often give rise to

constrained optimization, where inputs must adhere to specific limitations, restricting

them to a finite subset of the input space. These constraints are often the driving factors

behind the existence of optimization problems. While navigating an unconstrained space

may be relatively straightforward, accommodating constraints can prove challenging,

contingent on their linearity or lack thereof. This complexity has given rise to a diverse

array of solvers tailored for handling constrained optimization.

In this chapter, we embark on an exploration of a family of numerical methods designed

to tackle optimization problems posed on smooth search spaces. These methods leverage

the symmetry and invariance inherent in the structure of the search space. To begin,

we delve into the concept of manifolds, which are topological spaces that bear local

resemblances to Euclidean spaces. Subsequently, we delve into optimization procedures

that intricately incorporate the geometrical characteristics of manifolds to effectively

conduct optimization.

41

42 optimization on manifolds

Non-Euclidean parameters spaces often arise in robotics, such as the stiffness matrix

or the orientation. As applications, Boumal [2013] obtain the best curve of rotations

which belong to the special orthogonal group to estimate a trajectory of poses of a

rigid body. Jaquier et al. [2020] use Bayesian Optimization [Shahriari et al., 2015] on

Riemannian manifolds to learn orientation and impedance parameters for manipulation

skills. Saveriano et al. [2023] learn stable dynamical systems that evolve on Riemannian

manifolds. Klein et al. [2023] use Riemannian methods for motion planning.

This chapter is mainly based on the reference book [Absil et al., 2008].

4.2 manifolds

4.2.1 Manifolds, charts, atlas

Informally, a manifold is a topological space with the property that each point has

a neighborhood that is homeomorphic to an open subset of n-dimensional Euclidean

space. For example, you can identify a portion of a circle to a segment of a line with

a one-to-one correspondence. However, it is not true for the whole circle because the

extremities identified on the segment of the line will lead to the same point, breaking

the one-to-one relation. To define a manifold formally, we have to introduce two more

concepts: charts and atlas.

Definition 4.1 (charts). Let M be a set. A chart φ of dimension d is a bijection of a

subset U ofM onto an open subset of Rd, denoted by (U , φ).

These charts make it possible to study objects associated with U by putting them to

the subset φ(U) of Rn. However, it is only a subset ofM. To cover entirelyM, several

charts have to be used. This collection of charts is called an atlas. These charts have to

be consistent, meaning if a real-value function f is defined on U1 ∩U2, then f ◦φ−1
1 and

f ◦ φ−1
2 should have the same differentiability properties on U1 ∩ U2.

Definition 4.2 (atlas). A (C∞) atlas A ofM into Rd is a collection of charts (Uα, φα)

of the setM such that

(a)
⋃

α Uα =M

(b) for any pair α, β with Uα ∩ Uβ ̸= ∅, the sets φα(Uα ∩ Uβ) are open sets in Rd and

the change of coordinates

φβ ◦ φ−1
α : Rd → Rd (4.1)

is C∞.

We need an additional property to define a manifold and its structure. Given an atlas

A, let A+ be the set of all charts (U , φ) such that A ∪ {(U , φ)} is also an atlas. This

atlas is called maximal atlas or complete atlas. We have now all the ingredients to define

properly a manifold

4.2 manifolds 43

Definition 4.3 (manifold). A d-dimensional manifold is a couple (M,A+), where M
is a set and A+ is a maximal atlas ofM into Rd, such that the topology induced by A+

is Hausdorff and second-countable.

Vector spaces

Every vector space is a linear manifold. Let E be a d-dimensional vector space.

Then, given a basis (ei), i = 1, ..., d of E , the function

φ : E → Rd : x 7→




x1

...

xd


 (4.2)

such that x =
∑d

i x
iei is a chart of the set E .

4.2.2 Tangent vectors and differentiable maps

A fundamental notion used in optimization algorithms is the idea of directional deriva-

tives

Df(x)[η] = lim
t→0

f(x+ tη)− f(x)

t
. (4.3)

However, nonlinear manifolds do not have a vector space structure. Thus, the generaliza-

tion of the notion of directional derivatives necessitates the development of new concepts.

LetM be a manifold. A smooth mapping γ : R→M : t 7→ γ(t) is named a curve inM.

One may define the derivative γ′(t) as

γ′(t) =: lim
h→0

γ(t+ h)− γ(t)

h
, (4.4)

requiring a vector space structure to compute the difference γ(t+h)−γ(t), which fails for

abstract nonlinear manifolds. By introducing a smooth real-value function f onM, the

function f ◦ γ : t 7→ f(γ(t)) is a smooth function from R to R with well-defined classical

derivatives. This property can be exploited in the following definition. Let x ∈ M and

γ a curve through x at t = 0. We denote Fx(M) the set of smooth real-valued functions

defined on a neighborhood of x. Thus, the mapping γ̇(0) from Fx(M) to R is defined by

γ̇(0)f =:
d(f(γ(t)))

dt

∣∣∣
t=0

, f ∈ Fx(M), (4.5)

and is called tangent vector to the curve γ at t = 0.

Definition 4.4 (tangent vector). A tangent vector ξx to a manifold M at a point x

is a mapping from Fx(M) to R such that there exists a curve γ on M with γ(0) = x,

satisfying,

ξxf = γ̇(0)f =:
d(f(γ(t)))

dt

∣∣∣
t=0

(4.6)

44 optimization on manifolds

for all f ∈ Fx(M). Such a curve γ is said to realize the tangent vector ξxf .

The tangent space to M at x, which is denoted by TxM, is the set of all tangent

vectors toM at x. An important feature of the tangent space is its vector space structure.

Indeed, given two tangent vectors γ̇1(0), γ̇2(0) ∈ TxM and two reals a, b ∈ R, the linear

combination (aγ̇1(0) + bγ̇2(0))f =: a(γ̇1(0)f) + b()γ̇2(0)f) belongs to the tangent space

TxM. This feature provides a local vector space approximation of the manifold, as the

derivative of a real-value function provides a linear approximation. Manifold optimization

algorithms are based on this vector space approximation which is more easily handled.

It is important to note that γ̇(0) is a mapping from Fx(M) to R and is not seen as a

time derivative γ′(0). However, for manifolds which are embedded manifolds of a vector

space, the mapping γ̇(0) from Fx(M) to R and the derivative γ′(0) =: limt→∞
1
t (γ(t)−

γ(0)) are closely related. For all functions f defined on subset U of E , we have:

γ̇(0)f = Df(γ(0))[γ′(0)], (4.7)

where f denotes the restriction of f on U ∩M and D denotes the differential of f(γ(0))

at γ′(0).

Most of the manifolds met in robotics are embedded manifolds of vector spaces. A

submanifold of a manifoldM is a subset S which itself has the structure of a manifold.

Thus, γ′(0) is well defined because γ(t) belongs to a vector space E for all t. Graphically,

this can be viewed as an ”arrow” tangent to the manifold. WhenM is defined as a level

set of a constant rank function F : E 7→ Rn, we have

TxM = ker(DF (x)), (4.8)

which correspond to the vectors ξ that satisfy DF (x)[ξ] = 0.

Tangent space to a sphere The n-dimensional sphere is the set Sn = {x ∈ Rn+1 :

∥x∥ = 1}. Thus, the sphere is defined through a level set of constant rank F : xTx−1 = 0.

Let t 7→ γ(t) a curve on the sphere through x at t = 0. Since γ(t) belongs to the sphere,

we have

F (γ(t)) = 0

γT (t)γ(t)− 1 = 0

for all t. We can obtain the kernel ker(DF (x)) by differentiating this equation with

respect to t (with γ(0) = x), which yields to

TxSn = ker(DF (x)) = {z ∈ Rn+1 : xT z + zTx = 0} = {z ∈ Rn+1 : xT z = 0}
which is the set of all vectors orthogonal to x in Rn+1.

To finish this section about tangent space, we introduce also the concept of tangent

bundle, which is the set of all tangent vectors toM:

TM =:
⋃

x∈M
TxM (4.9)

4.2 manifolds 45

4.2.3 Riemannian metrics, distances, and gradients

We have seen that tangent vectors on manifold generalize the notion of directional deriva-

tives. However, it is still needed to have the notion of distances and lengths to effectively

compute the steepest descent of an optimization problem. To do so, an inner product

⟨· , ·⟩x can be introduced on every tangent space TxM. This inner product is bilinear

and symmetric positive-definite. It induces a norm

∥ξx∥x =:
√
⟨ξx, ξx⟩x.

If the inner product varies smoothly, the manifold is said to be aRiemannian manifold,

and the inner product is said to be a Riemannian metric. We denote the Riemannian

metric with g(ξx, ζx) = ⟨ξx, ζx⟩x, ξx, ζx ∈ TxM. Thanks to this notion of distance, we

can compute the length of the curve γ : [a, b]→M by

L(γ) =

∫ b

a

√
g(γ̇(t), γ̇(t))dt. (4.10)

Therefore, the Riemannian distance on a connected Riemannian manifold (M, g) is

dist :M×M→ R : dist(x, y) = inf
Γ

L(γ),

where Γ is the set of all curves in M joining x to y. These new properties are very

important for optimization. Indeed, given a smooth scalar field f on a Riemannian

manifold M, the gradient of f at x, denoted by gradf(x), is defined as the unique

element of TxM that satisfies

⟨gradf(x), ξ⟩x = Df(x)[ξ], ξ ∈ TxM (4.11)

This gradient has several remarkable properties:

(a) The direction of gradf(x) is the steepest-ascent direction of f at x.

(b) The norm of gradf(x) gives the steepest slope of f at x.

Most of the Riemannian manifolds of interest for us are submanifolds of Euclidean spaces,

which are also Riemannian manifolds. Therefore, they inherit the Riemannian metric of

their ”parent” manifolds. LetM be an embedded submanifold of a Riemannian manifold

M. All the tangent spaces TxM are a subset of TxM (they are vector spaces). Thus, the

metric onM can be chosen as

gx(ξ, ζ) = gx(ξ, ζ), ξ, ζ ∈ TxM,

with gx(ξ, ζ) being the Riemannian metric ofM. This is possible because ξ, ζ ∈ TxM⊂
TxM. The difference TxM\ TxM is the orthogonal complement of TxM in TxM. It is

the normal space toM at x and is denoted by

(TxM)⊥ = {ξ ∈ TxM : gx(ξ, ζ) = 0 ∀ζ ∈ TxM}. (4.12)

46 optimization on manifolds

Therefore, any element ξ ∈ TxM can be uniquely decomposed into the sum of an element

of TxM and an element of (TxM)⊥

ξ = Pxζ + P⊥
x ζ (4.13)

where Px denotes the orthogonal projection onto TxM and P⊥
x denotes the orthogonal

projection onto (TxM)⊥. As an introduction to the next section, we can extend our

reflection from tangent spaces to functions. Let f be a cost function defined on a Rie-

mannian manifoldM and let f denote the restriction of f to a Riemannian submanifold

M. We can recover the gradient of f , grad f(x), by projecting the gradient of f onto

TxM:

grad f(x) = Pxgrad f(x). (4.14)

In fact, the orthogonal projection of the gradient of f , Pxgrad f(x) belongs to TxM and

satisfies (4.11) for all ζ ∈ TxM because ⟨Pxgrad f(x), ζ⟩x = ⟨grad f(x)−P⊥
x grad f(x), ζ⟩x =

⟨grad f(x), ζ⟩x = Df(x)[ζ] = Df(x)[ζ] using (4.12).

Example of the sphere The unit sphere Sn is a submanifold of Rn+1. Its inner

product, inherited from the standard inner product on Rn+1, is given by

∥ξ, η∥x =: ξT η. (4.15)

The normal space is

(TxM)⊥ = {xα : α ∈ R}
and projections are given by

Pxξ = (I − xxT)ξ, P⊥
x ξ = xxT ξ

for x ∈ Sn.

4.3 first-order optimization on manifolds

We consider the problem of minimizing a cost function f : S 7→ R with S being the

search space. The goal is to find x ∈ S such as

min
x∈S

f(x). (4.16)

In our case, S = M is a Riemannian manifold. First-order optimization algorithms in

Rn are based on gradients to make small steps to the local minimum of the function.

The general idea follows this update rule

xk+1 = xk + αkηk, (4.17)

where ηk ∈ Rn is the steepest direction and αk ∈ R is the step size or learning rate. The

generalization to a Riemannian manifold consists of selecting the steepest descent in the

tangent space and moving along a particular curve in M to search a local minimum.

This motion relies on the concept of retraction, a continuous mapping from a topological

space to a subspace of it.

4.3 first-order optimization on manifolds 47

4.3.1 Retraction

Optimizing a differentiable function on a manifold can be described as follows; we first

start from a point xk ∈M, take the steepest descent −grad f(xk) and move along it until

reaching a stationary point x where grad f(x) = 0. If in Rn, the concept of moving along

a curve is straightforward with a simple addition operation, in Riemannian manifold, this

is generalized with retraction. A retraction can be viewed as a mapping from a tangent

space TxM to a manifoldM.

Definition 4.1 (retraction). A retraction on a manifoldM is a smooth mapping R from

the tangent bundle TM with the following properties. Let Rx denote the restriction of R

to TxM.

(a) Rx(0x) = x, where 0x denotes the zero element of TxM.

(b) With the canonical identification T0x(TxM), Rx satisfies

DRx(0x) = idTxM, (4.18)

where idTxM denotes the identity mapping on TxM.

The curve γξ : t 7→ Rx(tξ) satisfies γ(0) = x and γ̇(0) = ξ. In other words, moving

along γξ can be viewed as moving in the direction ξ while staying on the manifoldM.

As we did for other concepts in manifolds, special properties hold for retractions on

embedded submanifolds. LetM be an embedded submanifold of a vector space E . The
tangent space ofM at x, TxM, is a subspace of TxE ≃ E . Therefore, we move along the

sum x + ξ, x ∈ M, ξ ∈ TxM. Then, we project this point from the tangent space back

to the manifold. This projection needs to be well-defined and computationally efficient

to be used in an optimization routine. A special retraction is the exponential map, noted

as

Expx : TxM 7→M : ξ 7→ Expxξ. (4.19)

If the exponential map is computationally intensive for general manifolds, it is very

straightforward to compute for most of the embedded manifolds met in robotics.

Retraction and Exponential map on the sphere

A retraction on Sn = {x ∈ Rn+1 : ∥x∥ = 1} is

Rx(ξ) =
x+ ξ

∥x+ ξ∥ , (4.20)

defined ∀ξ ∈ TxSn. This retraction minimizes the distance to x+ξ. The exponential map

on Sn is

Expx(ξ) = x cos(∥ξ∥2) + ξ

∥ξ∥2 sin(∥ξ∥
2). (4.21)

Fig 4.1 shows the retraction and the exponential map on the circle S1.

48 optimization on manifolds

x

x +

Rx()

Expx()

Figure 4.1: The retraction Rx(ξ) and the exponential map Expx(ξ) illustrated on S1. The retrac-
tion Rx(ξ) minimizes the distance to x+ ξ.

4.3.2 Line-search algorithms

Line-search algorithms on Riemannian manifolds are based on the update rule:

xk+1 = Rxk
(αkηk) (4.22)

where ηk ∈ TxM and αk ∈ R. R is a retraction from TxM to M. The two remaining

issues are (i) how to choose the right direction? (ii) how to choose the right step size?

For that, two definitions exist, providing rules to choose the direction and the step size.

Definition 4.2 (gradient-related sequence). Given a cost function f defined on a Rie-

mannian manifold M, a sequence {ηk}, ηk ∈ Txk
M, is gradient-related if, for any sub-

sequence {xk}k∈K of {xk} that converges to a noncritical point of f , the corresponding

subsequence {ηk} is bounded and satisfies

lim sup
k→∞,k∈K

⟨grad f(xk), ηk⟩ < 0. (4.23)

Regarding the stepsize, one possibility is to use the Armijo point.

Definition 4.3 (Armijo point). Given a cost function f defined on a Riemannian man-

ifold M with a retraction R, a point x ∈ M, a tangent vector η ∈ TxM, and scalars

t > 0, β, σ ∈ (0, 1), the Armijo point is ηA = αAη = βmtη, where m is the smallest

nonnegative integer such that

f(x)− f(Rx(β
mtη)) ≥ −σ⟨grad f(x), βmtη⟩x. (4.24)

The real αA is the Armijo step size.

4.3 first-order optimization on manifolds 49

Therefore, we can derive an accelerated Riemannian line-search Algorithm 4.1. In

practice, we can do the same as gradient descent without a line search in vector spaces,

that is the direction is given by the Euclidean gradient projected onto the tangent space

and the step size is constant for all the iterations. This procedure is Riemannian gradient

descent (Algorithm 4.2).

Algorithm 4.1 Accelerated Line Search (ALS)

Require: Riemannian manifoldM; continuously differentiable scalar field f onM;

retraction R from TM toM, scalars t > 0, c, β, σ ∈ (0, 1).

Input: Initial state x0 ∈M.

Output: Sequence of iterates xk.

1: for k = 0, 1, 2, . . . do

2: Pick ηk in Txk
M such that the sequence {ηi}i=0,1,... is gradient-related.

3: Select xk+1 such that

f(xk)− f(xk+1) ≥ c(f(xk)− f(Rxk
(αA

k ηk))), (4.25)

where αA
k is the Armijo step size for the given t, β, σ, ηk.

4: end for

Algorithm 4.2 Riemannian gradient descent

Require: Riemannian manifoldM; continuously differentiable scalar field f onM;

retraction R from TM toM, step size α, maximum number of iterations N .

Input: Initial state x0 ∈M.

Output: Sequence of iterates xk.

1: for k = 0, 1, 2, . . . , N do

2: Compute Euclidean gradients ∇f(xk).
3: Compute the Riemannian gradients gradf(xk) = Pxk

(∇f(xk)).
4: Set xk+1 = Rxk

(−αgradf(xk)).
5: end for

Example of optimization on manifold Let’s take the inverse kinematics of our

little robot Esbi-1. Instead of using an analytical solution as viewed in Chapter 2, we

can frame the problem as an optimization problem to find the joints. We first solve

this problem by considering the variables which belong to a vector space. The joints

50 optimization on manifolds

l1

τ1

l2
τ2

τ = [τ1, τ2] ∈ [0, 2π]2 and we would like to minimize the distance between the current

position of the end-effector and the target position

τ ∗ = argmin
τ

L(τ ,xtarget) (4.26)

= argmin
τ
∥fkine(τ)− xtarget∥2. (4.27)

This equation has two solutions because analytical solutions give two solutions. The

desired position is xtarget = [1., 1.5]. Analytical solution give

τ 1 = [5.35e−1, 8.96e−1]
τ 2 = [1.43, 5.39],

if we restricted the solutions to [0, 2π]. The loss function L(τ ,xtarget) can be depicted

in Fig 4.2. The analytical solutions are shown with a star marker in red. Depending

on the starting, gradient descent will eventually converge to one of the two optimal

solutions. However, if we choose a starting point from the bottom right area, we may

fail to converge to analytical solutions. If we choose a larger domain, for example [0, 4π],

a repeated pattern emerges (Fig 4.3). This is because torus T does not share the same

topology as R2 and cannot be parametrized with only two real numbers.

A solution will be to use a variable τ ∈ T and optimize the loss function LM(τ ,xtarget) :

T1 × R2 7→ R which has only two minimizers: the two solutions given by analytical

solutions. This loss function is illustrated in Fig 4.4. Therefore, we can use Riemannian

gradient descent to solve

τ ∗ = argmin
τ∈T

LM(τ ,xtarget). (4.28)

The algorithm converges toward one minimizer equivalent to one of the analytical solu-

tions. The solution obtained depends on the starting point because we use a gradient

descent-like scheme. Fig 4.5 illustrates an optimization trajectory on the torus while

Fig 4.6a shows the value of the components of τ ∈ T with respect to the number of iter-

ations. Fig 4.6b shows the converge toward the minimal value of LM(τ ,xtarget), which

is 0 leading to fkine(τ ∗) = xtarget.

4.4 summary 51

0 2
3
2

2
0

2

3
2

2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4.2: Value of the loss function L(τ) = ∥fkine(τ)−xtarget∥2 on the domain [0, 2π]. Optimal

solutions are depicted with a star marker in red. The red rectangle represents the

approximated region which leads to non-optimal solutions if the starting point is

chosen in.

4.4 summary

Manifold optimization extends gradient-based algorithms in Euclidean spaces to Rie-

mannian manifolds. It generalizes the notion of directional derivatives used in the opti-

mization scheme. As we have seen in Chapter 2, robots have variables that belong to

Riemannian manifolds such as tori or spheres. While Euclidean gradient descent can

be applied to these variables, it does not preserve their geometric properties. Therefore,

manifold optimization appears to be the proper way to optimize robotic variables.

52 optimization on manifolds

0 2 4 6
0

2

4

6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4.3: Value of the loss function L(τ) = ∥fkine(τ) − xtarget∥2 on the domain [0, 6π]. A

pattern emerges as the true domain is a torus T, leading to multiple minimizers.

4.4 summary 53

1.5 1.0 0.5 0.0 0.5 1.0 1.5 1.5
1.0

0.5
0.0

0.5
1.0

1.5

1.0

0.5

0.0

0.5

1.0

Figure 4.4: Loss function LM(τ ,xtarget) on the torus T. This loss function possesses only two

minimizers which correspond to analytical solutions.

54 optimization on manifolds

2
1

0
1

2

2
1

0
1

2

1.5
1.0
0.5

0.0
0.5
1.0
1.5

Figure 4.5: Optimization trajectory on loss function LM(τ ,xtarget) on the torus T. We perform

3000 iterations with a constant step size of α = 10−3. The retraction used is the

exponential map of the torus.

4.4 summary 55

0 500 1000 1500 2000 2500 3000
Iterations [-]

0.0

0.2

0.4

0.6

0.8

1.0

x

y

z

w

(a) Optimization trajectory of the vari-

able τ = [τx, τy, τz, τw].

0 500 1000 1500 2000 2500 3000
Iterations [-]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
st

 fu
nc

tio
n

[-]

(b) Optimization trajectory of the cost

function.

Figure 4.6: Manifold optimization on T. We perform 3000 iterations with a constant step size of

α = 10−3. The retraction used is the exponential map of the torus. The cost function

LM(τ ,xtarget) is the distance between the current position of the end-effector and

the target position.

Part II

ROBOTIC GRASP ING : A REVIEW

5
ROBOTIC GRASP ING : A REVIEW

Outline

This chapter provides a literature review of robotic grasping. Starting with

deterministic approaches based on Newtonian mechanics, we continue the

review of recent developments of machine learning-based approaches. Ba-

sic concepts and notations are described as well as the formulation of the

grasping problem.

5.1 introduction

Grasping is the process of picking up an object by applying forces and torques at a set of

contacts [Newbury et al., 2023]. It is a fundamental skill to control the object’s motion.

Humans can handle a large variety of objects and reach nearly perfect grasps at each

try.

While grasping is a natural skill for humans, this task is very difficult for robots.

Finding a good grasp pose is a high-dimensional search in the space of object-gripper

poses and gripper joint configurations. The complexity of the search increases with many

factors; the number of degrees of freedom of the pose (4 DoF or 6 DoF), the complexity

of the gripper (parallel jaw or multi-fingered grippers), the physical mechanism to apply

forces (friction, magnetism, etc.) but also the shape of the objects, the number of objects

to grasp and how the objects are placed in the scene (structured or cluttered scene).

Robotic grasping is a well-known problem in robotics with more than four decades of

research. We shall briefly present the evolution of methods to solve this problem.

Analytical approaches vs data-driven approaches

We denote approaches based on mechanical principles as analytical approaches

in contrast to data-driven approaches. While both use mathematical models and

analytical expressions, they differ in the sense that data-driven approaches are

mathematical models in which the relations between inputs and outputs are

based on the user’s choices while analytical approaches are based on physics

principles. While the term “physics-based approaches” is more appropriate, we

stick to “analytical approaches” because it is the more common term in the

literature.

59

60 robotic grasping: a review

5.2 early days: analytical approaches

In the early days of robotic grasping, a framework based on contact models was proposed

to form the basis of analytical approaches [Murray et al., 1994; Shimoga, 1996; Bicchi

and Kumar, 2000]. Let us introduce the framework. A force fi applied on an object at

the contact point pi by the fingertips generates a torque τi = pi × fi with respect to

the object’s center of mass (CM). Forces and torques can be concatenated into a wrench

wi = (fi,τi/ρ), ρ being a constant that defines the metric of the wrench space, allowing

to express a wrench as forces in Newton. There are several possible choices for ρ with

different implications [Roa and Suárez, 2009].

Figure 5.1: Model of the soft contact [de Souza et al., 2021]. Normal component fn, tangential

component due to friction ft = µfn and torque τ.

The components of the force applied at a contact point will depend on the contact

model. Frictionless contacts rely on the assumption that the force will always be normal

to the contact surface. Frictional contacts rely on the assumption that the force has a

normal component to the contact surface and may have a tangent component due to

friction. According to Coulomb’s dry friction model, the tangential force should belong

to the friction cone. In soft contacts, a torque around the direction normal to the contact

surface is included as a corrective term to better model the fact that contact points are

contact areas in practice (Fig 5.1). This model only applies to 3D objects. We can now

introduce the fundamental equation of grasping, which relates the forces applied at the

contact points to the total wrench applied at the object’s CM wo as

wo = Gf , (5.1)

5.3 the rise of machine learning: data-driven approaches 61

where f = [fT
1k, . . . , f

T
ik] with i the number of contact points and k = 1, . . . , r with r = 1

for frictionless contact, r = 2 and r = 3 for frictional contact in 2D and 3D space, r = 4

for soft contact. G is the grasp matrix or the grasp map. It is a fundamental quantity

because it allows us to directly compute the influence of a force applied at a contact point

to the wrench on the object’s CM. Equation (5.1) is the basis of analytical approaches.

We can choose the contact and thus the gripper configurations to maximize or minimize

quality metrics [Roa and Suárez, 2015] based on this equation. The most famous one is

the ε-metric [Canny and Ferrari, 1992], which measures the largest perturbation wrench

wext that the grasp can resist in any direction,

wo + wext = 0. (5.2)

and is directly related to the force-closure property.

Surprisingly, early work focused more on multi-fingered robotic hands than parallel-

jaw grippers. This choice is motivated by the fact that parallel-jaw grippers limit the

possibility of grasping objects with complex shapes [Shimoga, 1996].

While this approach is appealing because of the theoretical guarantees, it quickly shows

its limitations. These methods assume the perfect knowledge of objects, their geometrical

shape, and physical properties. However, these quantities are rarely directly observable

in practice and can only be inferred from partial observations. Moreover, quality metrics

are not good predictors for grasping success in the real world [Balasubramanian et al.,

2012; Weisz and Allen, 2012]. More specifically, Weisz and Allen [2012] show that quality

metrics perform poorly with grasp pose uncertainty. These limitations motivated the

development of new methods based on learning algorithms.

5.3 the rise of machine learning: data-driven approaches

Data-driven approaches, or empirical approaches, use data to construct object represen-

tations, and make processing such as feature extraction, similarity metrics, pose esti-

mation and so on [Bohg et al., 2013]. Because these methods require lots of data, they

were not so much popular until the release of the GraspIt! simulator in 2004 [Miller

and Allen, 2004]. For example, Miller et al. [2003] use grasp configurations that have

a good quality metric for an object with a given preshape and try to fit new shapes

into preshapes. Pelossof et al. [2004] use a support vector machine to estimate the grasp

quality from object shape parameters and grasp pose and optimize the learned function

to maximize the grasp quality metric given object shape parameters.

However, as said before, grasp quality metrics perform poorly in real-world setups.

Several researchers proposed to use empirical experience to learn how to grasp ob-

jects [Morales et al., 2004; Montesano et al., 2008; Detry et al., 2009]. The question

addressed in these studies was to determine the object features that are necessary to

infer accurately grasp poses. When the object to grasp is known, the goal is to estimate

the object pose and then find grasp poses by their reachability within a database. For ex-

62 robotic grasping: a review

ample, Detry et al. [2009] use human grasps to build object empirical grasp density from

which grasp poses can be sampled. After 2010, the progress of data-driven approaches

was also boosted thanks to developments in the area of 3D sensing. The Kinect [Zhang,

2012] was released in 2010 and became very popular in this field due to its low price

and simple usage. RGB-D images, color, and depth images started to be used in robotic

grasping [Jiang et al., 2011].

This period revealed methods that are capable of grasping unknown objects, which

was impossible for analytical approaches. These methods mainly use hand-crafted fea-

tures [El-Khoury et al., 2007; Kyota et al., 2005; Michel et al., 2006] and still have

some limitations: only one object can be grasped, the unknown object should remain

very similar to objects used for training, etc. In 2012, AlexNet [Krizhevsky et al., 2012]

was published, making deep learning [LeCun et al., 2015] the backbone of all machine

learning methods.

5.4 deep learning for robotic grasping

Deep learning has become a core method for robotic grasping. We can divide its use into

three methods: sampling, direct regression, and reinforcement learning [Newbury et al.,

2023].

5.4.1 Sampling

Sampling approaches use the information contained in a sample, i.e containing the ob-

servation, the grasp pose, and its quality(I, g, Q), to decide on the optimal grasp pose.

These methods typically work by predicting the quality of the grasp pose given an ob-

servation and then optimizing the quality with respect to the grasp pose. Thus, these

methods require (i) a sampling procedure (ii) a model to predict the quality (iii) an

optimization scheme. Then, the approach can be summarized with these three steps:

(a) Sample a grasp pose g ∼ p(g)

(b) Evaluate the quality of the grasp pose g given the observation I with the model

Q = fθ(g, I)

(c) Optimizing the quality g∗ = argmaxg fθ(g, I)

with g being the grasp pose, fθ being the function approximator (neural networks in

most cases), Q being the quality of grasp, and I being the observation.

5.4.1.1 Generating samples

Sampling grasp poses is mostly done in the workspace, meaning R3 × SO(2) or R3 ×
SO(3) [Eppner et al., 2019]. Grasping is complex because only a very small region of the

5.4 deep learning for robotic grasping 63

grasp space will lead to a successful grasp. Therefore, several sampling strategies were

used to generate quickly useful grasp poses and cover all successful grasp poses. Many

taxonomies exist to classify grasp sampling strategies. We split strategies into two main

categories: analytical ones, which provide the density of the grasp poses, and heuristic

ones, which use handcrafted procedures to generate samples.

Analytical samplers are mostly represented by uniform samplers. They sample from

the bounded R3 × SO(3) space uniformly. They are not effective in generating useful

samples but they cover all the space, making them unbiased.

Heuristic samplers are based on the surface information of the object. They param-

eterize the grasp pose with the hand’s approach vector. Eppner et al. [2019] show that

they are effective in generating useful samples but are biased, meaning that they do not

fully cover all possible grasps of an object.

In this category, we can again make a distinction between approach-based samplers and

antipodal samplers. Approach-based samplers work as follows: a point is sampled on the

object surface and the normal to this point is evaluated. This normal vector corresponds

to the approach vector of the gripper. From that, many variations exist [Diankov, 2010;

Kappler et al., 2015; Veres et al., 2017]. Antipodal samplers try to sample directly contact

points between the object and the hand as in [Smith et al., 1999; Mahler et al., 2017;

Ten Pas and Platt, 2018](Fig 5.2). They are effective in generating useful grasp poses

but they are biased. However, antipodal samplers do not scale well with multi-fingered

grasping.

Figure 5.2: Antipodal grasps [de Souza et al., 2021]. The line that connects the two contact

points must lay in both friction cones. It generates grasp poses from depth images,

as explained in [Mahler et al., 2017].

64 robotic grasping: a review

All these strategies became viable when robotic simulators became accessible. Com-

mon simulators are GraspIt! [Miller and Allen, 2004] and Simox [Vahrenkamp et al.,

2013]. Moreover, simulators may be used to test a new algorithm.

5.4.1.2 Evaluating samples

Sampling approaches use a function to evaluate the “quality” of the sampled grasp

poses. This grasp quality can be approximated by a grasp quality metric from analytical

approaches or the likelihood of a grasp being successful. Some approaches can directly

sample from a region with a high grasp quality while other approaches refine the solution

using optimization-based techniques.

Binary classification These methods predict the success of a grasp pose as a binary

problem, meaning that successful grasps are classified as 1 and failed grasps as 0. For

example, a Convolutional Neural Network [LeCun et al., 1995] can be trained to classify if

grasp parameters are successful or not [Aktaş et al., 2022; Kappler et al., 2015; Mousavian

et al., 2019].

Learning a metric Instead of predicting a probability of success, learning metrics

of a grasp allows one to have more information about the quality of the grasp. For

example, Varley et al. [2015] learn a series of heatmaps, in which each pixel represents

the quality of grasp.

5.4.1.3 Optimizing sample

Because deep neural networks are fully differentiable with respect to their inputs, the

gradient of the quality of grasps with respect to grasp poses can be computed effi-

ciently. Therefore, starting from an initial sample, we can maximize the quality of grasp

with gradient-based optimization and refine iteratively the grasp parameters. Zhou and

Hauser [2017] train a CNN to predict the grasp quality given the grasp poses and a depth

map and use a quasi-Newton method to optimize the grasp poses. Lu et al. [2020] find

the grasp pose that maximizes the probability of success, starting with a sample drawn

from the prior.

5.4.2 Direct Regression

Direct regression approaches tackle the problem of computing the optimal grasp by

directly outputting it from sensor data. They are often framed as an end-to-end solution.

Compared to sampling approaches, they are faster because they require only one forward

pass of the learned model. The downside is that they only provide point estimates for

the grasp pose and do not capture the full distribution. Thus, this approach can be

stuck if the outputted grasp pose leads to an unreachable pose. Most of the time, they

approximate the maximum likelihood estimate (MLE) of the probability of success given

a grasp pose and an observation p(S | g, I). Because it is a complex problem to infer

5.4 deep learning for robotic grasping 65

the optimal grasp pose for 6 DoF, these approaches tend to use multi-stage pipelines. In

contrast to sampling approaches, they required only one step:

(a) Compute g = fθ(I)

with g being the grasp parameters, fθ being the function approximator (neural networks

in most cases), and I is the observation.

5.4.2.1 Direct regression of the pose

These approaches output the 6 DoF grasp pose leading to a successful grasp. For exam-

ple, Schmidt et al. [2018] train a CNN to output the translation part and the rotation

part from depth images. Yang et al. [2021] train a neural network to estimate the end-

effector pose represented as a 4 × 4 transformation matrix. These approaches benefit

from pose estimation but face another problem: the multi-modality behavior of grasping.

Some authors try to avoid it by learning the best grasp poses which are the nearest from

the current output [Liu et al., 2019; Min et al., 2020].

5.4.2.2 Multi-stage approach

Multi-stage approaches split the problem of inferring the grasp parameters into several

stages. Each stage has its own loss function and processes one specific task. Most multi-

stage approaches consider three stages [Fang et al., 2020; Wang et al., 2021; Zhao et al.,

2021; Zhu et al., 2021] while Wei et al. [2021] consider only two stages.

The first stage aims at producing a first estimation of the grasp parameters by pre-

dicting grasp quality for subsampled points, estimating the grasp for each point, or

estimating reduced DoF. The middle stage creates grasp proposals or further estimates

a subset of the DoF. The last stage acts as a refinement stage which improves the grasps

generated at the previous stage.

5.4.3 Reinforcement Learning

Reinforcement learning (RL) aims at learning an optimal, or nearly optimal, policy

that maximizes a reward function. The policy π gives the best action to do in a given

state with a given observation. In robotics grasping, actions usually represent a relative

displacement for the end-effector. Moreover, the opening or closing of the gripper is also

predicted by the network. Some additional information such as contact points can also

be given to the network. RL completely differs from sampling and direct approaches

because it produces a trajectory of actions and not just the final state. A comprehensive

review of RL in grasping explaining its open challenges can be found in [Mohammed

et al., 2020] with notable works [Wu et al., 2020, 2019; Berscheid et al., 2021; Merzić

et al., 2019; Song et al., 2020; Tang et al., 2021].

66 robotic grasping: a review

5.4.4 Large language models for robotics

Language modeling is a widely used approach for language understanding and genera-

tion [Zhao et al., 2023]. Large language models (LLM) are very large neural networks

that are pretrained on large datasets. Research has shown that scaling the size of the

model leads to better performance as well as new capabilities exhibited by the model.

ChatGPT-3 [Brown et al., 2020] shows impressive in-context learning.

Because LLM encode semantic information, this can be used in robotics to perform

tasks expressed in a high-level language. Ichter et al. [2023] use such methods and achieve

a very high success rate for various tasks. Ichter et al. [2023] open the use of LLM in

robotics and are followed by [Singh et al., 2023; Huang et al., 2023, 2022; Zeng et al.,

2022]. This is still an active area of research.

5.5 summary

Robotic grasping has a rich history. Starting from analytical approaches, we showed that

these methods are not suitable for many practical applications due to their need for pre-

cise knowledge of the interactions between the gripper and the object. To overcome this

limitation, the community has explored data-driven approaches to replace deterministic

functions with approximations based on collected data. Then, deep learning turned out

to be very effective in performing some tasks and it became quickly a new standard in

robotic grasping. Today, two approaches coexist: deep learning approaches which predict

the final grasp pose, and reinforcement learning approaches, which provide a series of

actions to perform to grasp objects.

However, robotic grasping is not yet solved and there are still open questions. Deal-

ing with uncertainties becomes a major concern since the working environments of the

robots become more and more stochastic. While direct regression approaches are fully

deterministic and thus do not deal with uncertainties, sampling approaches model the

result of a grasp as a random variable. However, the grasp pose is still treated as param-

eters, which cannot capture the uncertainties about the grasp pose itself. This issue can

be overcome by modeling the grasp pose as a random variable and using Bayesian infer-

ence to propagate uncertainties while acquiring new observations. Furthermore, most of

the current works choose the parametrization of the orientation based on the DoF and

the type of their grippers, meaning that their method may be difficult to use with other

hardware. As a result, their modeling does not take into account the geometry of the

rotation space, leading to potential issues for learning surrogates of the likelihood and

difficulties in the optimization step.

Part III

S IMULATION -BASED INFERENCE FOR ROBOTIC
GRASP ING

6
HARDWARE

Outline

This chapter reviews and illustrates the hardware used in the contri-

butions. Hardware makes robotics a unique playground for researchers

because it integrates many different elements into one system: software,

sensors, communications, actuators, motion, and so on. While many al-

gorithms work in simulated environments, a percentage of them fail to

bridge the gap to the real world.

6.1 robotic arm

The robotic arm used in our setup is a Universal Robot 5, called the UR5 (Fig.6.1).

It has 6 degrees of freedom (DoF), like most industrial robots. The Universal Robots

company names their robots with a number corresponding to their payload capacity. In

our case, the UR5 has a payload of 5 kg. The reach of the UR5 is 850 mm when all the

links of the arm are aligned. Surprisingly, the arm only weighs 18.4 kg, which is quite

low given the payload of 5 kg.

The URScript Programming Language serves as an interface to code the robot through

a touchscreen teach pendant. The TCP/IP interface allows external programs to com-

municate with the controller and send instructions. This is particularly useful when the

application needs to access other devices or services. For example, the Robot Operating

System (ROS) communicates with Universal Robots through this channel.

6.2 gripper

In all our experiments, we used a Robotiq 3-finger adaptive robot gripper (Fig.6.2). This

gripper weighs 2.3 kg and has a large opening of 155 mm. It produces a grip force between

30 and 70 N, which helps to grasp heavy objects. This robotic hand has three fingers: a

thumb and two fingers. Each finger has three links but only one motor at the base to

close them, making them underactuated. While the thumb stays fixed, the two fingers

can move sideways, with the addition of one motor.

It is important to mention that the internal mechanism for closing the fingers makes

it very difficult to simulate the controller in virtual environments. This leads to poor

simulation fidelity and challenges in transferring from simulation to the real setup.

69

70 hardware

Figure 6.1: The UR5. It is a 6 DoF robotic arm with 5kg of payload and 850mm of reachability.

The gripper is controlled via ROS by a TCP/IP connection.

Figure 6.2: The Robotiq 3-finger adaptive robot gripper. It possesses several control modes such

as force, position and speed. This gripper provides a lot of flexibility and versatility.

6.3 depth cameras

Depth cameras are commonly used in robotics nowadays. They provide 3D information

presented as depth images and point clouds, and most of the time RGB images as well.

These features make them the perfect sensors for robots because segmentation, object

recognition, pose estimation, etc., are possible with this sensor data. In addition, depth

images are well simulated in virtual robotics environments, unlike RGB images.

We used two depth cameras in our experiments. We used the Kinect for the first

contribution and the Intel RealSense D435i for the next three contributions. In fact, the

Intel RealSense provides much more accurate depth images.

6.3 depth cameras 71

6.3.1 Kinect

The Kinect was first introduced by Microsoft in 2008 and released in Europe in 2010.

The Kinect was designed for video games but quickly attracted the interest of robotics

researchers. It provides depth images with a resolution of 640×480 at a rate of 30 images

per second. The range of the Kinect is about 1.5 to 3.5 meters. The Kinect is designed

to work indoor and not outdoor. Open-source drivers exist, notably used by ROS.

Figure 6.3: The Kinect. It produces 640× 480 depth images at the rate of 30 images per second.

6.3.2 Intel Realsense D435i

The Intel RealSense D435i (Fig.6.4) offers many new features compared to the Kinect.

An IMU is integrated into the camera to perform SLAM (simultaneous localization and

mapping) or tracking. This depth camera provides up to 1280× 720 depth images at a

rate of 60 images per second. Its range is about 0.3 to 3 meters. The software for the

Intel RealSense is well developed and integrated into ROS.

Figure 6.4: The Intel Realsense D435i. This depth camera provides accurate depth images at

higher resolution than the Kinect at a highest rate.

7
GRASP ING A S INGLE OBJECT IN A F IXED POSE

Outline

We demonstrate the usefulness of simulation-based inference algorithms in

robotics. We introduce our modeling of grasping and how to turn it into a

Bayesian posterior inference. While current approaches only approximate

the likelihood function, and thus do not put probability distribution on

the grasp pose, we model the grasp pose as a random variable and lever-

age robotics simulators to learn the likelihood-ratio function with fully

differentiable neural networks. We then compute the maximum a posteri-

ori (MAP) of the posterior distribution with gradient descent. However,

the search space is not a vector space because of the rotation component.

Therefore, we use Riemannian manifold optimization, thus preserving the

geometry of the rotation space. Experiments in simulation and a real

setup show promising results.

7.1 prologue

Machine learning in robotics has progressed a lot due to the recent development of

robotics simulators [Coumans and Bai, 2016–2023; Todorov et al., 2012; Liang et al.,

2018]. They allow practitioners to generate data and test their methods and algorithms

in simulation without risking hardware issues and costs. Reinforcement learning has also

pushed toward the development of benchmarks in simulation. This facilitates the use of

robotics simulators.

Simulation-based inference algorithms on the other hand have enhanced due to progress

in deep learning. It becomes possible to perform the full Bayesian posterior inference,

which contrasts with the most common approach, i.e. learning a surrogate of the likeli-

hood. Therefore, the maximum a posteriori can used as a point estimator instead of the

maximum likelihood estimator.

In robotics, rotations have been handled most of the time with Euler angles which

may lead to gimbal lock and singularities. Our method deals nicely with rotations and

does not assume that it is a 2D or 3D rotation.

We unified all these concepts into a global framework and demonstrated its usefulness

for robotic grasping.

Reading tips Section 2 may be skipped because most of the material was introduced

in the background part. The reader interested in the origin of the methodology should

73

74 grasping a single object in a fixed pose

look at Hermans et al. [2020] for the neural ratio estimation, Detry et al. [2017] for the

robotic modeling, and Boumal [2013] for manifold optimization.

7.2 the paper: simulation-based bayesian inference for multi-fingered

robotic grasping

SIMULATION-BASED BAYESIAN INFERENCE
FOR MULTI-FINGERED ROBOTIC GRASPING

Norman Marlier
University of Liège

norman.marlier@uliege.be

Olivier Brüls
University of Liège

o.bruls@uliege.be

Gilles Louppe
University of Liège

g.louppe@uliege.be

ABSTRACT

Multi-fingered robotic grasping is an undeniable stepping stone to universal picking and dexterous
manipulation. Yet, multi-fingered grippers remain challenging to control because of their rich nons-
mooth contact dynamics or because of sensor noise. In this work, we aim to plan hand configurations
by performing Bayesian posterior inference through the full stochastic forward simulation of the
robot in its environment, hence robustly accounting for many of the uncertainties in the system. While
previous methods either relied on simplified surrogates of the likelihood function or attempted to
learn to directly predict maximum likelihood estimates, we bring a novel simulation-based approach
for full Bayesian inference based on a deep neural network surrogate of the likelihood-to-evidence
ratio. Hand configurations are found by directly optimizing through the resulting amortized and
differentiable expression for the posterior. The geometry of the configuration space is accounted for
by proposing a Riemannian manifold optimization procedure through the neural posterior. Simulation
and physical benchmarks demonstrate the high success rate of the procedure.

Keywords Multi-fingered grasping, Bayesian inference, Robot learning

Two of the grand challenges for the deployment of robots in warehouses, assembly lines or homes are universal picking,
i.e the ability to robustly grasp a large variety of objects in diverse environments, and dexterous manipulation, i.e the
ability to manipulate objects to perform useful actions. Multi-fingered robotic grasping represents a promising avenue
towards these objectives and has the potential to greatly improve and facilitate human-machine interactions. However,
due to the wide variety of object shapes, sensor noise and nonsmooth contact dynamics, multi-fingered grippers remain
challenging to control. In addition, multi-fingered grasps entail high dimensional configuration spaces compared to
two-fingered grasps, making them difficult to optimize and plan.

Early analytical approaches [1, 2] for planning multi-fingered grasps rely on force analysis where a metric is optimized
based on the laws of mechanics and 3D models. These analytical methods require the accurate knowledge of many
model and world parameters, which is practically difficult to achieve in real settings. By contrast, learning-based
methods are getting more and more established because they can extract useful information from raw sensor data [3].
These methods typically make use of machine learning or deep learning models for learning a mapping between grasp
configurations and their success. This strategy has been applied on top-down grasping with a parallel jaw gripper and
has demonstrated excellent results [4, 5, 6, 7, 8], including its extension to 6 DOF [9, 10].

In this work, we consider the more challenging setting of robust multi-fingered grasping plans, including the 6 DOF grasp
poses and the finger configuration. By framing the problem as an inference task, we demonstrate the generic usefulness
and applicability of likelihood-free Bayesian inference algorithms to difficult robotic tasks such as multi-fingered
grasping considered here. We summarize our contributions as follow:

• We bring simulation-based Bayesian inference methods [11] to multi-fingered grasping. By learning a model
for the likelihood-to-evidence ratio and using an analytical prior, we derive an amortized and differentiable
posterior for the hand configurations.

• We make use of Riemannian manifold optimization to deal with the nonlinearity of the configuration space, in
particular of the 3D rotation group tied to the hand pose.

Simulation-based Bayesian inference for multi-fingered robotic grasping

i

x

z

y

FW

(x,R)

ϕz,O

(xO, yO)

(a) (b)

Figure 1: Our benchmark scene for multi-fingered grasping. The pose of the hand (x,R) is defined in the local object
frame. The depth camera produces an image i of the scene.

• We validate our approach on a realistic and challenging 3-finger gripper setup, through both simulation and
real-world physical benchmarks. Results demonstrate its high success rate.

1 Problem statement

Description We consider the problem of grasping a rigid and stable body with a multi-fingered gripper, as illustrated
in Fig. 1. The object O is modelled as a 3D surface mesh and its centroid stands on a table at a location (xO, yO, zO)
with a rotation ϕz,O around the z-axis in the world reference frame FW . We refer to its 2D pose (xO, yO, ϕz,O) as
pO ∈ R2 × SO(2). The hand configuration h ∈ H = R3 × SO(3) × G is defined as the combination of the pose
(x,R) ∈ R3 × SO(3) of the hand and the type g ∈ G = {basic,wide, pinch} of the grasp. The hand pose (x,R) is
defined with respect to the world frame coordinate. The robot evolves in a 3D workspace observed with a fixed depth
camera producing images i ∈ I . The goal is to find a robust hand configuration h∗ with respect to a given binary metric
S = {0, 1}, where S = 1 indicates a successful grasp.

Probabilistic modeling We model the scene and the grasping task according to the Bayesian network shown in
Fig. 2a. The variables S, i,h,O and pO are modelled as random variables in order to capture the noise in the robot or
in the depth camera, as well as our prior beliefs about the hand configuration, the object or its pose. The structure of the
Bayesian network is motivated by the fact that h, O and pO are independent, while S is dependent on h, O and pO
and i is dependent on O and pO. This structure also enables a direct and straightforward way to generate data: h, O
and pO are sampled from their respective prior distributions while S and i can be generated using forward physical
simulators for the grasping and the camera.

The prior distribution p(x) of the spatial position is uniformly distributed between the extreme values xlim =
(xlow, ylow, zlow, xhigh, yhigh, zhigh), chosen to be within the range of physical dimensions of the gripper and the
biggest object. It emphasizes our ignorance about interesting regions of space for grasping. The rotation R
is parameterized with a quaternion. A quaternion q is an element of the quaternion group H, in the form
q = q01 + q1i + q2j + q3k = (q0, q1, q2, q3)T with (q0, q1, q2, q3)T ∈ R4 and i2 = j2 = k2 = ijk = −1.
The conjugate q̄ of quaterion q is given by q̄ := q01− q1i− q2j− q3k. A unit quaternion, called versor, q1 ∈ H1 has
a unit norm defined as ‖q‖ =

√
qq̄ = 1. They give a more compact representation than rotation matrices and avoid

gimbal lock and singularities. Unit quaternions can be identified with the elements of a hyperspherical manifold S3
embedded into R4. Moreover, S3 is a double covering of SO(3), meaning that antipodal points ±q represent the same
rotation, which implies that p(q; ·) = p(−q; ·). We define the prior p(q) as a mixture of power-spherical distributions
[12] with 4 modes µi. Each mode is a mixture that satisfies p(q; ·) = p(−q; ·). In total, we have

p(q) =
1

N

N=4∑

i=1

PowerSpherical(q;µi, κ)

2
+

PowerSpherical(q;−µi, κ)

2
. (1)

These modes µi encode information about the orientation of the gripper and share the same concentration factor κ = 30.
To grasp an object, the gripper point toward the table and thus toward the object – an informed prior which indeed

2

Simulation-based Bayesian inference for multi-fingered robotic grasping

h

Rx g

pO

xO yO ϕz,O

O

Mesh β

S i

(a)

Variable Prior
x uniform(−0.15, 0.15)
y uniform(−0.15, 0.15)
z uniform(0.12, 0.34)
R mixture of power spherical(µi, κ)
g categorical({ 13 , 13 , 13})
xO uniform(−0.05, 0.05)
yO uniform(−0.05, 0.05)
ϕz,O uniform(−π, π)
Mesh uniform in the set of objects
β uniform(0.9, 1.1)

(b)

Figure 2: (a) Probabilistic graphical model of the environment. Gray nodes correspond to observed variables and white
nodes to unobserved variables. (b) Prior distributions.

results in sufficiently many successful grasps. We then define four rotations, separated by a rotation of π2 around the
z-axis (see Fig. 5 in Appendix B). In this way, our prior covers a large part of the rotation space and is sufficiently
informative by contrast to a uniform prior over the unit sphere S3. The grasp type g is uniformly distributed between
the three types basic, wide and pinch. These three modes modulates the spacing between the fingers in the opposite side
of the thumb. Finally, p(h) = p(x)p(R)p(g).

The prior p(O) = p(Mesh)p(β) is a discrete uniform distribution over a fixed set of object meshes and a uniform
distribution for the scaling factor β. Finally, the prior p(pO) captures our belief that the object can be everywhere
on the table with any rotation around the vertical axis. For this reason, uniform distributions are used for all three
parameters xO, yO, ϕz,O. Table 2b summarizes the prior distributions.

Given our probabilistic graphical model, we finally formulate the problem of grasping as the Bayesian inference of the
hand configuration h∗ that is a posteriori the most likely given a successful grasp and an observation i. That is, we are
seeking for the maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1, i). (2)

2 Likelihood-free Bayesian inference for multi-fingered grasping

2.1 Density ratio estimation

From the Bayes’s rule, the posterior of the hand configuration is

p(h|S, i) =
p(S, i|h)

p(S, i)
p(h). (3)

The likelihood function p(S, i|h) and the evidence p(S, i) are both intractable, which makes standard Bayesian inference
procedures such as Markov chain Monte Carlo unusable. However, drawing samples from forward models remains
feasible with physical simulators, hence enabling likelihood-free Bayesian inference algorithms.

First, we express the likelihood-to-evidence ratio as a product of two individual ratios,

r(S, i|h) =
p(S, i|h)

p(S, i)
=
p(S|h)

p(S)

p(i|S,h)

p(i|S)
= r(S|h)r(i|S,h). (4)

By adapting the approach described in [13, 14] for likelihood ratio estimation, we train two neural network classifiers
dφ and dθ that we will use to approximate r(S|h) and r(i|S,h). The first network dφ is trained to distinguish positive
tuples (S,h) (labeled y = 1) sampled from the joint distribution p(S,h) against negative tuples (labeled y = 0) sampled
from the product of marginals p(S)p(h). The Bayes optimal classifier d∗(S,h) that minimizes the cross-entropy loss is
given by

d∗(S,h) =
p(S,h)

p(S)p(h) + p(S,h)
, (5)

3

Simulation-based Bayesian inference for multi-fingered robotic grasping

C
oncatenate

FC
256,R

eL
U

FC
256,R

eL
U

log r̂(i|S = 1,h)

h

C
onv

3x3,32
Filters,R

eL
U

,/2

C
onv

3x3,32
Filters,R

eL
U

,/2

C
onv

3x3,32
Filters,R

eL
U

,/2

C
onv

1x1,8
Filters,R

eL
U

Flatten

FC
128,R

eL
U

i

FC
256,R

eL
U

FC
256,R

eL
U

log r̂(S|h)

S

h

Figure 3: Neural network architectures of the classifiers dφ and dθ used to respectively approximate the likelihood
ratios r(S|h) and r(i|S = 1,h).

which recovers the likelihood ratio r(S|h) as

d∗(S,h)

1− d∗(S,h)
=

p(S,h)

p(S)p(h)
=
p(S|h)

p(S)
. (6)

Therefore, by modelling the classifier with a neural network dφ trained on the binary classification problem, we obtain
an approximate but amortized and differentiable likelihood ratio

r̂(S|h) =
dφ(S,h)

1− dφ(S,h)
. (7)

The second network dθ is trained similarly, over positive tuples (i,h) (labeled (y = 1) sampled from the conditional
joint distribution p(i,h|S = 1) against negative tuples (i,h) (labeled y = 0) sampled from the product of marginals
p(i|S = 1)p(h|S = 1). Using the same likelihood ratio trick, we obtain

r̂(i|S = 1,h) =
dθ(i,h)

1− dθ(i,h)
. (8)

Finally, the likelihood ratios are combined with the prior to approximate the posterior as

p̂(h|S = 1, i) = r̂(i|S = 1,h)r̂(S = 1|h)p(h), (9)

which enables immediate posterior inference despite the initial intractability of the likelihood function p(S, i|h) and of
the evidence p(S, i).

The neural network classifiers dφ and dθ are architectured as in Fig. 3. In dθ, the camera image i of size 640× 480× 1
is pre-processed by scaling the depths in the interval {0} ∪ [0.45, 1] and resized to 256 × 160 × 1. Then, i is fed to
a convolutional network made of four convolutional layers followed by a fully connected layer and which goal is to
produce a vector embedding of the image. The image embedding and h are then both fed to a subsequent network made
of 2 fully connected layers. The hand configuration h enters the neural network as a 1× 13 vector where the rotation
matrix R is flattened [15, 16] and the grasp type g is passed through an embedding. In dφ, both S and h are directly
fed to a network made of 2 fully connected layers. The parameters φ and θ are optimized by following Algorithm 1
(Appendix A), using Adam as optimizer.

Finally, we note that the factorization of the likelihood-to-evidence ratio forces the two ratio estimators to focus their
respective capacity on the information brought by S and i. Because of the high discriminative power of S, training
instead a single ratio taking both S and i as inputs would indeed lead to an estimator that usually discards the smaller
information brought in i.

2.2 Maximum a posteriori estimation

Due to the intractability of the likelihood function and of the evidence, Eq. (2) cannot be solved analytically nor
numerically. We rely instead on the approximation given by the likelihood-to-evidence ratio r̂ to find an approximation
of the maximum a posteriori (MAP) estimate as

ĥ∗ = arg max
h

r̂(S = 1, i|h)p(h) (10)

= arg min
h

− log r̂(S = 1, i|h)p(h), (11)

4

Simulation-based Bayesian inference for multi-fingered robotic grasping

which we solve using gradient descent. For a given g, the gradient of Eq. (11) decomposes as

−∇(x,R) log r̂(S, i|h)p(h) = −∇(x,R) log r̂(S, i|h)−∇(x,R) log p(h). (12)

Our closed-form prior p(h) has analytical gradients. In fact, uniform distributions are set to have null gradient
everywhere in the domain. Therefore,∇xp(h) = 0. By contrast, p(R) is a weakly informative prior and has a non null
gradient from the power spherical distribution. Its derivative with respect to q is

∇qp(q;µ, κ) = C(κ)κ(1 + µTq)κ−1∇q(1 + µTq)

= C(κ)κµ(1 + µTq)κ−1,
(13)

where C(κ) is the normalization term. Since the likelihood-to-evidence ratio estimator r̂ is modelled by a neural
network, it is fully differentiable with respect to its inputs and its gradients can be computed by automatic differentiation.
However, not all variables of the problem are Euclidean variables and naively performing gradient descent would violate
our geometric assumptions. Let us consider a variable Z on the smooth Riemannian manifoldM = R3 × SO(3) with
tangent space TZM and a function f :M→ R. Since SO(3) is embedded in the set of 3× 3 matrices R3×3, f can
be evaluated on R3 × R3×3, leading to the definition of the Euclidean gradients∇f(Z) ∈ R3 × R3×3. In turn, these
Euclidean gradients can be transformed into their Riemannian counterparts gradf(Z) via orthogonal projection PZ
into the tangent space TZM [17, 18]. Therefore,

gradf(Z) = PZ(∇f(Z)) (14)

where the orthogonal projection onto R3 is the identity I3 and the orthogonal projection onto SO(3) at ξ ∈ SO(3) is
ξskew(ξT∇f(ξ)) where skew(A) := 1

2 (A−AT). Thus, we can solve Eq. (11) by projecting Euclidean gradients of
Eq. (12) to the tangent space TZM and plug them to a manifold optimization procedure. In our experiments, we use the
geometrical conjugate gradient method [17] implemented in Pymanopt [19] to perform 20 optimization steps and we
scan for the best value of g. For completeness, the full optimization algorithm is provided in Algorithm 2 (Appendix A).

3 Experiments

For training, we use 19 objects from the YCB data [20] (see Fig. 6 in Appendix C) together with 5 objects from the
ShapeNet dataset [21], for a total of 24 types of objects. We selected a diverse range of objects compatible with the
geometry of our gripper. In simulation, the success rate was evaluated on the 19 objects used for training, as well as on
5 new unseen objects from the YCB data (see Fig. 7 in Appendix C). Only the 19 objects from YCB are used in the real
setup.

3.1 Data generation

Grasp generative model A physical simulator is used to sample from p(S|h,O,pO). Hand configurations, objects
and object poses are sampled from their priors p(h), p(O) and p(pO), and are then submitted to a lift test. First, a
planner generates a trajectory in the joint space to bring the gripper to the hand configuration h. If the pose is not
reachable, the test fails. Otherwise, the gripper closes its fingers until contact with the object or the gripper itself.
Then, the robot lifts possibly the object to a given height. If the object is held in the gripper, the grasp is considered as
successful. Simulations are performed using Pybullet [22]. We use volumetric hierarchical approximate decomposition
to get convex meshes of objects from obj files for collision detection [23].

Sensor generative model The sensor generative model p(i|pO,O) is implemented in Pybullet, with an approach
similar to the Blensor sensor framework [24] used to render depth images from a Kinect model sensor. Simulating
a structured-light sensor allows a better transfer to the real setup. Objects and poses are sampled from their priors,
O ∼ p(O),pO ∼ p(pO). Then, the object is placed and an image i ∼ p(i|pO,O) is generated.

Domain randomization for sim-to-real transfer Generative models in simulation differ from their real world
counterparts due to incorrect physical modelling and inaccurate physical parameters. This reality gap may lead to
failures from our model because the synthetic data and the real data distributions are different. To overcome this issue,
we use domain randomization [25] with nuisance parameters on the position and the orientation of the camera, the
minimum and maximum distance of the depth, the field of view, and the coefficient of lateral and spinning frictions µ
and γ. Domain randomization avoids the precise calibration of both the grasp and the image simulators, which can
be very difficult and costly. We use uniform distributions for the nuisance parameters which are difficult to measure
with ±2% error and Gaussian distributions for easily measurable parameters. For the orientation of the camera, a
multivariate normal variable η ∼ N (0,Σ),Σ = diag(σα = 0.002, σβ = 0.01, σγ = 0.002) is drawn and then mapped
to SO(3) using the exponential map.

5

Simulation-based Bayesian inference for multi-fingered robotic grasping

Grasping inference strategy Success rate
Sim Real

Prior based h ∼ p(h) 0.8% -
h = arg max p(h) 0.6% -

Metric based h = arg maxh p̂(S = 1|h) 43% -
h = arg maxh p̂(h|S = 1) 44% 46%

Partial observation based h = arg maxh p̂(S = 1, i|h) 64%/71% -
h = arg maxh p̂(h|S = 1, i) 71%/75% 70%

Full observation based (ideal) h = arg maxh p̂(S = 1,O, µ, β|h) 80% -
h = arg maxh p̂(h|S = 1,O, µ, β) 85% -

Table 1: Grasping success rate for various inference strategies of the hand configuration. The success rate obtained
by performing Bayesian posterior inference through the full forward simulation reaches 71% for objects seen during
training and 75% for 5 new objects. In real experiments, the success rate reaches 70%.

3.2 Simulation benchmarks

We evaluate the performance of our approach incrementally, adding algorithmic components one by one to assess their
respective marginal benefits. For each inference strategy, we estimate the success rate over 1000 grasping attempts for
randomly sampled objects and camera images. Nuisances parameters are resampled in simulation when evaluating the
success. Our general results are summarized in Table 1, while supplementary results for each individual category of
objects can be found in Appendix D. We first report results for strategies maximizing the (conditional) densities p(h|·)
of hand configurations. Optimizing for the maximum a priori estimate h = arg max p(h), without conditioning on
success or an observation of the scene, leads to a very low success rate of 0.6%. As expected, these results are too poor
to be usable but they should underline the informativeness of the prior. Sampling hand configurations from a uniform
prior would instead result in a much smaller success rate, by about one order of magnitude (less than 0.1%). When
conditioning on the expected success S = 1, performance increases to 44%. Taking both the expected success S = 1
and the image i into account and following the inference methodology proposed in Section 2, leads to an even larger
success rate of 71% for the maximum a posteriori estimates. For the 5 new objects, we reach a comparable success rate
of 75%, which demonstrates the good generalization of the approach. In comparison, had the properties O, µ, and β
of the object been perfectly known, the success rate would reach 85%, which shows that the convolutional network
manages to extract most of the relevant information from the observation i. Table 1 also reports results for maximum
likelihood estimates, achieving success rates of 43%, 64% and 80% when maximizing the likelihoods p(S = 1|h),
p(S = 1, i|h), and p(S = 1,O, µ, β|h) respectively. Note that maximizing p(S = 1|i,h) and p(S = 1|O, µ, β,h)
would give the same result since i and O, µ, β are independent from h. Our informative prior can explain the difference
in success rates between the MAP and the MLE estimates and motivates the use of a Bayesian approach.

Not only our framework can be used for grasp planning, it also provides immediate access to the full posterior
p(h|S = 1, i) of hand configurations. As an illustrating example, we extract the marginal posterior densities p(x|S =
1, u), p(R|S = 1, i) and p(g|S = 1, i) for the simulated scene of Fig. 1a, with the box centered at (0, 0) without any
rotation. The resulting posterior is shown in Fig. 4. First, p(x|S = 1, i) shows the distribution in space of the hand
configuration h. The concentration along the x-axis and z-axis are high, meaning that high density regions are located
slightly behind and in front of the box, at a given height related to the geometrical dimensions of the box. Concerning
the y-axis, the posterior fails to capture the symmetry and places all the density at the right of the box. Overall, the
positions x which are the most likely to give a successful grasp are on the right corner of the box. This is underlined by
the posterior of p(R|S = 1, i). The red dots correspond to the density of the x-axis, the green dots to the y-axis and the
blue dots to the z-axis. The x-axis has one mode, directed toward the table, inherited from the prior and slightly deviates
to the right. The y-axis, however, has only two antipodal modes by contrast to the prior. These modes correspond to
the situation in which the fingers are placed on the front surface or the back surface. The z-axis can be constructed by
taking the cross product between x and y. Uncertainties from x and y are propagated, leading to two antipodal modes
with lower concentration than y. Finally, the posterior p(g|S = 1, i) for the grasp type indicates a preference towards
pinch and wide modes over the basic mode. Pinch mode is preferred when the position x is far from the right corner
while the wide mode is mainly used when x is located near the right corner.

3.3 Physical benchmarks

We carried out experiments with a Robotiq 3-finger gripper attached to a UR5 robotic arm, as shown in Figure 1b. A
Kinect v1 provides depth images and is rigidly linked to the robot base. The robotic arm is controlled in position in

6

Simulation-based Bayesian inference for multi-fingered robotic grasping

0.1

0.0

0.1

y

0.1 0.0 0.1
x

0.2

0.3

z

0.1 0.0 0.1
y

0.2 0.3
z

Pi
nc

h

Ba
sic

W
id

e0.0

0.2

0.4

Figure 4: Posterior p(h|S = 1, i) for the setup in Fig. 1a with the box centered at (0, 0). (Left) Posterior p(x|S = 1, i),
(Middle) Posterior p(R|S = 1, i), (Right) Posterior p(g|S = 1, i).

the joint space. Communications are performed within the ROS framework. We calibrate the centre of the table by
computing the trajectory in the simulator and then sending it to the real robot. We perform 10 trials per object, for a
total of 190 grasps. Objects are placed at best at (xO = 0, yO = 0, θO = 0). As shown in Table 1, our success rate of
70% is similar than in simulation, which indicates that the simulation-to-reality transfer works well, at least on average.
These results also demonstrate competitive performance with respect to related works (see Section 4), although this
remains difficult to establish because of the distinct hardware setups. We observe that failures are mainly behavioral
and geometric. Behavioral failures arise when the simulation does not model the physics correctly. For example, in the
real setup, the bowl slides on the table when the gripper closes its fingers, while in simulation, the bowl is just lifted.
We could reduce these errors by using a more accurate simulator. Geometric failures arise when there is a shift in the
location or in the orientation of the object. Most of the time, the robot either collides with the object or misses it for
smaller objects. These failures could be avoided using a more precise calibration, additional sensors, or more extensive
domain randomization. Finally, the time of computation is reasonable (from 5 to 10s), but could be decreased by tuning
the architecture of the neural network, lowering the number of optimization steps, or using more powerful hardware.
We leave this for future work.

4 Related work

Over the last decade, progress in multi-fingered robotic grasping has been steady [26, 27, 28, 29, 30, 31, 32] thanks
to differentiable models such as neural networks. Unfortunately, the variety of robotic hands, their actuation modes
and sensor inputs, and the lack of standard benchmarks, make it difficult to compare these advances fairly against one
another.

From early works, [26] identify poses and fingertip positions of stable grasps with a deep neural network from RGB-D
images and use a planner (GraspIt!) based on simulated annealing to determine the best hand configurations. They
reach a success rate of 75% over a set of 8 objects but suffer from slow execution times (16.6s on average). By contrast,
our method is faster and reaches comparable performance over a larger set of objects. [29] use generative adversarial
networks to sample both grasp poses and finger joints efficiently based on RGB-D images. While being a fast approach,
they reach only 60% of success rate in real experiments. The work of [27] is the most similar to ours. They perform
grasp planning as probabilistic inference via a classifier trained to predict the success of a grasp. They retrieve maximum
a posteriori estimates using gradient ascent and the fact that the classifier is fully differentiable. The prior distribution
is fitted with a Gaussian mixture model from the dataset. In contrast, our method uses an analytical prior based on
power-spherical distributions, does not require an external grasp sampler, and relies on a neural classifier to approximate
the likelihood-to-evidence ratio. Similarly, [28] compute maximum likelihood estimates of the hand configuration
by making use of gradients provided by a neural network. Finally, both of these works treat the rotations with Euler
angles and optimize them as real numbers with boundary constraints. This representation is not suitable for a neural
network according to [16]. Instead, our optimization relies on Riemannian conjugate gradients, which preserve the
geometrical structure of the rotation group. Other interesting approaches to multi-fingered grasping include the use of
deep reinforcement learning based on vision and tactile sensors [31], or the use of tactile information only for learning
a closed-loop controller [32].

7

Simulation-based Bayesian inference for multi-fingered robotic grasping

From a statistical perspective, several Bayesian likelihood-free inference algorithms [33, 34, 35, 36, 37, 38, 13] have
been developed to carry out inference when the likelihood function is implicit and intractable. These methods operate
by approximating the posterior through rejection sampling or by learning parts of the Bayes’ rule, such as the likelihood
function, the likelihood-to-evidence ratio, or the posterior itself. These algorithms have been used across a wide range of
scientific disciplines such as particle physics, neuroscience, biology, or cosmology [11]. To the best of our knowledge,
our work is one of the first to apply one of those for the direct planning successful grasps. More specifically, we rely
here on the amortized inference approach of [13] to carry out inference within seconds for any new observation i. In
contrast, an approach such as ABC [33, 34] could take up to hours to determine a single hand configuration h since data
would need to be simulated on-the-fly for each observation i due to the lack of amortization of ABC. Neural posterior
estimation [38] is also amortizable but would have required new methodological developments to be applicable on
distributions defined on manifolds, such as those needed here for the rotational part of the pose.

5 Summary and future work

We demonstrate the usefulness and applicability of simulation-based Bayesian inference to multi-fingered grasping.
The approach is generic yet powerful because it can work with any simulator, thereby incorporating from the simplest
to the more sophisticated piece of domain knowledge, while leveraging all recent developments from deep learning to
solve the Bayesian inference problem. Maximum a posteriori hand configurations are found by directly optimizing
through the resulting amortized and differentiable expression for the posterior. The geometry of the configuration
space is accounted for by proposing a Riemannian manifold optimization procedure through the neural posterior.
We demonstrate a working proof-of-concept achieving robust multi-fingered grasping, both in simulation and in real
experiments thanks to domain randomization. Our success rate is comparable to previous works.

Acknowledgments

Norman Marlier would like to acknowledge the Belgian Fund for Research training in Industry and Agriculture for its
financial support (FRIA grant). Computational resources have been provided by the Consortium des Équipements de
Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant
No. 2.5020.11 and by the Walloon Region. Gilles Louppe is recipient of the ULiège - NRB Chair on Big data and is
thankful for the support of NRB.

References

[1] Domenico Prattichizzo and Jeffrey C. Trinkle. Grasping, pages 671–700. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008.

[2] Carlo Ferrari and John F Canny. Planning optimal grasps. In ICRA, volume 3, pages 2290–2295, 1992.
[3] Kilian Kleeberger, Richard Bormann, Werner Kraus, and Marco F Huber. A survey on learning-based robotic

grasping. Current Robotics Reports, pages 1–11, 2020.
[4] Jeffrey Mahler, Jacky Liang, Sherdil Niyaz, Michael Laskey, Richard Doan, Xinyu Liu, Juan Aparicio, and Ken

Goldberg. Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics.
In Proceedings of Robotics: Science and Systems, Cambridge, Massachusetts, July 2017.

[5] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen, Ethan
Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning, pages 651–673, 2018.

[6] Ulrich Viereck, Andreas Pas, Kate Saenko, and Robert Platt. Learning a visuomotor controller for real world
robotic grasping using simulated depth images. In Conference on Robot Learning, pages 291–300. PMLR, 2017.

[7] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot
hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages 3406–3413. IEEE, 2016.

[8] Douglas Morrison, Peter Corke, and Jurgen Leitner. Closing the loop for robotic grasping: A real-time, generative
grasp synthesis approach. Robotics: Science and Systems XIV, pages 1–10, 2018.

[9] Andreas ten Pas, Marcus Gualtieri, Kate Saenko, and Robert Platt. Grasp pose detection in point clouds. The
International Journal of Robotics Research, 36(13-14):1455–1473, 2017.

[10] Arsalan Mousavian, Clemens Eppner, and Dieter Fox. 6-dof graspnet: Variational grasp generation for object
manipulation. In Proceedings of the IEEE International Conference on Computer Vision, pages 2901–2910, 2019.

8

Simulation-based Bayesian inference for multi-fingered robotic grasping

[11] Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference. Proceedings of
the National Academy of Sciences, 2020.

[12] Nicola De Cao and Wilker Aziz. The power spherical distribution. arXiv preprint arXiv:2006.04437, 2020.

[13] Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized approximate ratio
estimators. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International Conference on
Machine Learning, volume 119 of Proceedings of Machine Learning Research, pages 4239–4248. PMLR, 13–18
Jul 2020.

[14] Johann Brehmer, Siddharth Mishra-Sharma, Joeri Hermans, Gilles Louppe, and Kyle Cranmer. Mining for Dark
Matter Substructure: Inferring subhalo population properties from strong lenses with machine learning. Astrophys.
J., 886(1):49, 2019.

[15] Kieran Murphy, Carlos Esteves, Varun Jampani, Srikumar Ramalingam, and Ameesh Makadia. Implicit-pdf: Non-
parametric representation of probability distributions on the rotation manifold. arXiv preprint arXiv:2106.05965,
2021.

[16] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the continuity of rotation representations in
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
5745–5753, 2019.

[17] P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds. Princeton
University Press, 2009.

[18] Jiang Hu, Xin Liu, Zai-Wen Wen, and Ya-Xiang Yuan. A brief introduction to manifold optimization. Journal of
the Operations Research Society of China, pages 1–50, 2019.

[19] James Townsend, Niklas Koep, and Sebastian Weichwald. Pymanopt: A python toolbox for optimization on
manifolds using automatic differentiation. The Journal of Machine Learning Research, 17(1):4755–4759, 2016.

[20] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. The ycb object and model set: Towards
common benchmarks for manipulation research. In 2015 International Conference on Advanced Robotics (ICAR),
pages 510–517, 2015.

[21] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. ShapeNet: An Information-Rich 3D
Model Repository. Technical Report arXiv:1512.03012 [cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015.

[22] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games, robotics and
machine learning. http://pybullet.org, 2016–2020.

[23] Khaled Mamou and Faouzi Ghorbel. A simple and efficient approach for 3d mesh approximate convex decom-
position. In 2009 16th IEEE international conference on image processing (ICIP), pages 3501–3504. IEEE,
2009.

[24] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. Blensor: Blender sensor simulation
toolbox. In International Symposium on Visual Computing, pages 199–208. Springer, 2011.

[25] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomiza-
tion for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international
conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[26] Jacob Varley, Jonathan Weisz, Jared Weiss, and Peter Allen. Generating multi-fingered robotic grasps via deep
learning. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 4415–4420.
IEEE, 2015.

[27] Qingkai Lu and Tucker Hermans. Modeling grasp type improves learning-based grasp planning. IEEE Robotics
and Automation Letters, 4(2):784–791, 2019.

[28] Qingkai Lu, Kautilya Chenna, Balakumar Sundaralingam, and Tucker Hermans. Planning multi-fingered grasps
as probabilistic inference in a learned deep network. In Robotics Research, pages 455–472. Springer, 2020.

[29] Jens Lundell, Enric Corona, Tran Nguyen Le, Francesco Verdoja, Philippe Weinzaepfel, Gregory Rogez, Francesc
Moreno-Noguer, and Ville Kyrki. Multi-fingan: Generative coarse-to-fine sampling of multi-finger grasps. arXiv
preprint arXiv:2012.09696, 2020.

[30] Jens Lundell, Francesco Verdoja, and Ville Kyrki. Ddgc: Generative deep dexterous grasping in clutter. arXiv
preprint arXiv:2103.04783, 2021.

9

Simulation-based Bayesian inference for multi-fingered robotic grasping

[31] Bohan Wu, Iretiayo Akinola, Abhi Gupta, Feng Xu, Jacob Varley, David Watkins-Valls, and Peter K Allen.
Generative attention learning: a “general” framework for high-performance multi-fingered grasping in clutter.
Autonomous Robots, pages 1–20, 2020.

[32] Hamza Merzić, Miroslav Bogdanović, Daniel Kappler, Ludovic Righetti, and Jeannette Bohg. Leveraging contact
forces for learning to grasp. In 2019 International Conference on Robotics and Automation (ICRA), pages
3615–3621. IEEE, 2019.

[33] Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate bayesian computational
methods. Statistics and Computing, 22(6):1167–1180, 2012.

[34] Mark A Beaumont, Wenyang Zhang, and David J Balding. Approximate bayesian computation in population
genetics. Genetics, 162(4):2025–2035, 2002.

[35] George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free inference
with autoregressive flows. In The 22nd International Conference on Artificial Intelligence and Statistics, pages
837–848. PMLR, 2019.

[36] George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with bayesian conditional
density estimation. In Advances in Neural Information Processing Systems. 2016.

[37] Jan-Matthis Lueckmann, Pedro J. Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, and Jakob H.
Macke. Flexible statistical inference for mechanistic models of neural dynamics. In Advances in Neural
Information Processing Systems, 2017.

[38] David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for likelihood-
free inference. In International Conference on Machine Learning, pages 2404–2414. PMLR, 2019.

10

Simulation-based Bayesian inference for multi-fingered robotic grasping

A Algorithms

Algorithm 1: Training procedure for dφ(S,h) and dθ(i,h).

Input: Priors p(h), p(O), p(pO)
Sensor generative model p(i|O,pO)
Grasp generative model p(S|h,O,pO)
Criterion ` (e.g, the binary cross-entropy)

Output: Trained classifiers dφ(S,h), dθ(i,h)

1 while not converged do
2 Sample h← {hm ∼ p(h)}Mm=1

3 Sample h′ ← {h′m ∼ p(h)}Mm=1

4 Sample O,pO ← {Om,pO,m ∼ p(O)p(pO)}Mm=1

5 Simulate S ← {Sm ∼ p(S|hm,Om,pO,m)}Mm=1
6 L ← `(dφ(S,h), 1) + `(dφ(S,h′), 0)
7 φ← OPTIMIZER(φ,∇φL)
8 end
9 while not converged do

10 Sample h← {hm ∼ p(h|S = 1)}Mm=1

11 Sample h′ ← {h′m ∼ p(h|S = 1)}Mm=1

12 Sample O,pO ← {Om,pO,m ∼ p(O,pO|S = 1,h)}Mm=1

13 Simulate i← {im ∼ p(i|Om,pOm)}Mm=1
14 L ← `(dθ(i,h), 1) + `(dθ(i,h

′), 0)
15 θ ← OPTIMIZER(θ,∇θL)
16 end
17 return dφ, dθ

Algorithm 2: Manifold optimization procedure to obtain the MAP estimate ĥ∗

Input: Differentiable priors p(h)
Differentiable likelihood-to-evidence ratio r̂
Depth image i

Output: Approximate MAP estimate ĥ∗

1 MAP cost function f(i,h) = − log r̂(S = 1, i|h)− log p(h)

2 Sample an initial subset S = {x,q} ∼ {p(x)p(q)}10001

3 foreach gk ∈ G do
4 h = (x,R(q), gk)
5 Initial iterate h0 = arg minh∈S f(i,h)

6 x̂∗k, R̂
∗
k = Geometric CG method(f, i,h0)

7 ĥ∗k = (x̂∗k, R̂
∗
k, gk)

8 end
9 return arg minhk

f(i, ĥ∗k)

11

Simulation-based Bayesian inference for multi-fingered robotic grasping

B Prior Distribution

(a) (b)

(c) (d)

Figure 5: Prior distribution p(q). (a)-(d) correspond to the four modes of the mixture.

12

Simulation-based Bayesian inference for multi-fingered robotic grasping

C YCB objects

Figure 6: Objects from YCB used for training and testing.

Figure 7: Additional unseen objects from YCB used for testing in simulation.

13

Simulation-based Bayesian inference for multi-fingered robotic grasping

D Success rate by object category
pe

ac
h

ap
pl

e

to
m

at
o

so
up

 c
an

m
ug

po
we

r d
ril

l

wo
od

 b
lo

ck

cr
ac

ke
r b

ox

le
m

on

ba
na

na

po
tte

d
m

ea
t c

an

tu
na

 fi
sh

 c
an

st
ra

wb
er

ry

m
us

ta
rd

 b
ot

tle

pi
tc

he
r b

as
e

pl
um

su
ga

r b
ox

m
as

te
r c

he
f c

an

bl
ea

ch
 c

le
an

se
r

bo
wl

Objects

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s r

at
e

exp
sim
real

Figure 8: Success rate obtained from simulation and real experiments for each object.

14

7.3 epilogue 89

7.3 epilogue

7.3.1 Advantages

Our framework offers several advantages. The most notable one is treating the grasp pose

as a random variable, thus enabling uncertainty management which is barely the case

for other methods. Even if we use point estimates, we have access to the full posterior

distribution, understanding which regions are relevant to the task. Our modeling also

allows us to perform nearly all grasping tasks, thanks to the success variable. We can

change its definition to a specific goal, which will modify the posterior distribution of the

grasp pose. For example, we can condition the grasp to be successful only if the object is

grasped by the handle. Another advantage of Bayesian methods is that prior knowledge

is injected through the prior distribution. This can discard grasp poses that are not

relevant to a given task. Furthermore, our framework deals with rotations without any

problem of representation or singularities, thanks to the use of geometrical methods.

Finally, the sim-to-real gap is overcome without any drop in performances.

7.3.2 Limitations

Even if the experiments show promising results, we face some limitations. Bayesian infer-

ence makes use of priors, a very important component of the Bayes’s rule. Uninformative

priors are very ineffective in generating useful samples. In our case, the prior is split into

two parts: the position and the orientation. Our prior for the orientation is relevant be-

cause it is weakly informative but relies on the fact that objects in this paper are placed

at the same location in the same orientation. This limitation will be addressed in the

next papers. For the position, it is complicated. In this case, we use a uniform distribu-

tion over an important part of the workspace, which is very inefficient. We stressed out

that it is a fundamental limitation because this needs to be manually tuned. In the next

papers, we will see how to address and overcome this limitation.

7.3.3 Conclusion and opportunities

This first paper introduced simulation-based inference for robotic grasping. The results

demonstrate the usefulness of the method while the experiments remain in a restricted

setup. Opportunities for better priors will show that simulation-based inference methods

can perform well on more complex benchmarks.

8
GRASP ING A S INGLE OBJECT IN ANY POSE

Outline

We explore more complex prior distributions by conditioning them by the

observation. Chapter 7 has shown that uninformative priors are very ineffi-

cient in generating useful grasp parameters for simulation-based inference

algorithms. The observation gives prior information about the object, such

as its position and orientation. We exploit this information to scan inter-

esting areas near the object in the workspace of the robot. Experiments

show a high success rate in simulation and a real setup, demonstrating

the usefulness of the method.

8.1 prologue

Priors are fundamental components of simulation-based inference algorithms. In robotics,

priors can be inefficient in generating data or require procedures that do not provide

density estimation (see Chapter 5). In Chapter 7, we sample the position of the grasp

pose from a uniform distribution over the whole workspace, and this strategy turned out

to be inefficient, generating less than 1% of successful grasp poses.

In this chapter, we acquire 3D information about the scene through a truncated signed

distance function [Curless and Levoy, 1996], instead of using a single depth image. This

provides information about the position and 2D orientation of the object to grasp. There-

fore, we can define our prior in the local frame of the object and use the observation to

condition it, improving a lot the sampling efficiency. Furthermore, we design a specific

prior for the orientation, based on a mixture of simple distributions, to increase the

expressiveness of our prior.

While not mentioned in the paper, the formulation of our prior was guided by recent

work [Dax et al., 2022] on invariance and equivariance properties of probability distribu-

tions with respect to group action. Formally, a G-invariant element x ∈ X is such that

g · x = x, ∀g ∈ G. Thus, the probability density function has the following property:

p(g · x) = p(x). Equivariance is defined as follows: a function f : X 7→ Y is said to be

equivariant to the group G if f(g · x) = g · f(x), ∀g ∈ G. In our case, the prior defined

locally exhibits invariance properties with respect to a group action. Indeed, because

our prior of the position and orientation are defined in the local frame of the object, it

is invariant to any transformation g ∈ SE(2) applied to the object on the table.

91

92 grasping a single object in any pose

Update In the chapter Chapter 7, we expressed the posterior as

p(h | S, i) = p(i | S,h)
p(i | S)

p(S | h)
p(S)

p(h). (8.1)

The prior p(h) was proven to be inefficient to sample interesting grasp poses, i.e leading

to successful grasps. The first ratio p(S|h)
p(S) times the prior leads to the posterior distribu-

tion p(h | S). However, this posterior brings little information about interesting grasps

for a particular observation i, because it represents the most likely grasp pose given a

success, marginalized over all the objects. The ratio p(i|S,h)
p(i|S) is the only term that brings

information that linked the observation, the success and the grasp pose. But when ex-

pressed with this form, the learning is very difficult and may require a great amount of

data.

In this new contribution, we express the posterior as

p(h | S,V) =
p(S | h,V)

p(S | V)
p(h | V). (8.2)

In this form, the prior p(h | V) uses the information contained in the observation to

sample interesting grasp poses. In addition, the ratio p(S|h,V)
p(S|V) is more meaningful, because

it links the probability of success with the observation and the grasp pose. As results,

the success rate is highly increased.

Reading tips The reader should at least read the Chapter 7, to understand the whole

methodology as well as the contributions. The reader interested in invariant and equiv-

ariant properties should look at Dax et al. [2022].

8.2 the paper: simulation-based bayesian inference for robotic

grasping

Simulation-based Bayesian inference for robotic grasping

Norman Marlier1 Olivier Brüls2 Gilles Louppe3

Abstract— General robotic grippers are challenging to con-
trol because of their rich nonsmooth contact dynamics and the
many sources of uncertainties due to the environment or sensor
noise. In this work, we demonstrate how to compute 6-DoF
grasp poses using simulation-based Bayesian inference through
the full stochastic forward simulation of the robot in its environ-
ment while robustly accounting for many of the uncertainties
in the system. A Riemannian manifold optimization procedure
preserving the nonlinearity of the rotation space is used to
compute the maximum a posteriori grasp pose. Simulation and
physical benchmarks show the promising high success rate of
the approach.

I. INTRODUCTION

Industrial grasping works very well in highly structured
environments with few uncertainties. However, complex ap-
plications requiring great flexibility have recently gained a
lot of interest. For such tasks, dealing with uncertainties
becomes key to robust performance.

While previous methods relied on simplified surrogates of
the likelihood function, we bring a novel simulation-based
approach for full Bayesian inference based on a deep neural
network surrogate of the likelihood-to-evidence ratio. By
framing robotic grasping as an inference task, we demon-
strate the general applicability of simulation-based inference
algorithms to complex robotic tasks and their usefulness to
deal with uncertainties.

We summarize our contributions as follow:
• We bring simulation-based Bayesian inference meth-

ods [1] to robotic grasping.
• We make use of Riemannian manifold optimization to

deal with the nonlinearity of the rotation space.
• We validate our method on simulated and real experi-

ments. Results show promising grasping performances.

II. PROBLEM STATEMENT

We consider the problem of planning 6-DoF hand con-
figurations of a general robotic gripper for unknown rigid
objects placed on a table and observed through multi-view
depth images (Fig. 1).

A. Description

The robot arm (6 or 7 DoF) evolves in a cubic workspace
with a planar tabletop. It is equipped with a robotic gripper
and observes the scene with a depth camera mounted on its
flange. Depth images, captured along a predefined trajectory,
are fused into a Truncated Signed Distance Function (TSDF)

*The authors come from the Univeristy of Liège, Belgium
1norman.marlier@uliege.be
2o.bruls@uliege.be
3g.louppe@uliege.be

Fig. 1: Our benchmark scene. (left) The simulated environ-
ment. (right) The real setup.

voxel grid [2]. Then, we search for the most plausible hand
configuration given a successful grasp and the TSDF voxel
grid. Finally, a joint trajectory is computed by a path planner
based on the TSDF to reach the hand pose and grasp the
object in order to remove it from the table.

B. Notations

Frames We use several reference frames in our work.
The world frame F−→W and the workspace frame F−→S can be
choosen freely and are not tied to a physical location. F−→B,
F−→C, F−→F, F−→E correspond respectively to the robot base, the
camera, the flange and the tool center point (TCP).

Hand configuration The hand configuration h ∈ H =
R3×SO(3) is defined as the combination of the pose TSE=
(StSE,RSE) ∈ R3 × SO(3) of the hand, where StSE is the
vector ~SE expressed in F−→S. We parametrize the rotation
RSE with quaternions.

Binary metric A binary variable S ∈ {0, 1} indicates if
the grasp fails (S = 0) or succeeds (S = 1).

Observation Given the depth images Ik = {I0, ..., Ik}
with their corresponding transformations camera to world
Γk = {T0

WC, ...,T
k
WC} and camera intrinsic matrix K, we

construct a TSDF voxel grid V with N3 voxels, representing
the workspace of size l.

Latent variables Unobserved variables z capture uncer-
tainties about the nonsmooth dynamics of contact, the sensor
noise, as well as the geometry of the object (see Section.V-
A).

C. Probabilistic modeling

We model the scene and the grasping task according to the
Bayesian network shown in Fig. 2. The variables S,V and

h are modelled as random variables to capture the noise in
sensors, uncertainties in the dynamics, as well as our prior
beliefs about the hand configuration. The structure of the
Bayesian network is motivated by the fact that S is dependent
on h, V and z, h is dependent of V and V is dependent on z.
This structure also enables a direct and straightforward way
to generate data: h and z are sampled from their respective
prior distributions while S and V can be generated using
forward physical simulators.

h z

VS

Fig. 2: Probabilistic graphical model of the environment.
Gray nodes correspond to observed variables and white nodes
to unobserved variables.

D. Objectives

Given our probabilistic graphical model, we formulate the
problem of grasping as the Bayesian inference of the hand
configuration h∗ that is a posteriori the most likely given a
successful grasp and a TSDF voxel grid V. That is, we are
seeking for the maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1,V), (1)

from which we then compute the joint trajectory

τ1:m = Λ(τ0, IK(h∗),V) (2)

where IK is an inverse kinematic solver, τ1:m are waypoints
in the joint space, τm = IK(h∗) and Λ is a path planner.

III. RELATED WORK

Probabilistic approaches for grasping problems are usually
based on likelihood functions which model the probability
of success or a grasp quality metric with respect to an
observation and a grasp pose. Then, different methods can be
used to find the maximum likelihood estimate (MLE) which
corresponds to the final grasp pose. Numerical optimization
can be used when the likelihood is modeled by differentiable
models [3]. Direct regression of the MLE with a learnt
model generates quick output but without capturing the full
distribution [4]. Other approaches identify the maximum
likelihood estimate based on a list of candidates computed
through a grasp map on the sensor space [5], [6]. Similar
to our work, [7] learn models respectively for the likelihood
and the prior. Then, they can optimize via gradient descent
the posterior density. Contrary to our work, they use Euler
angles which can lead to gimbal lock and singularities. Our
method preserves the topology by using Riemannian gradient
descent.

From a statistical perspective, several Bayesian likelihood-
free inference algorithms [8], [9], [10], [11], [12], [13],
[14] have been developed to carry out inference when the
likelihood function is implicit and intractable. These methods
operate by approximating the posterior through rejection
sampling or by learning parts of the Bayes’ rule, such as
the likelihood function, the likelihood-to-evidence ratio, or
the posterior itself. These algorithms have been used across
a wide range of scientific disciplines such as particle physics,
neuroscience, biology, or cosmology [1]. To the best of our
knowledge, our work is one of the first to apply one of those
for the direct planning successful grasps. More specifically,
we rely here on amortized neural ratio estimation [14] to
carry out inference within seconds for any new observation
V. In contrast, an approach such as ABC [8], [9] could
take up to hours to determine a single hand configuration h
since data would need to be simulated on-the-fly for each
observation V due to the lack of amortization of ABC.
Neural posterior estimation [13] is also amortizable but
would have required new methodological developments to
be applicable on distributions defined on manifolds, such as
those needed here for the rotational part of the pose.

IV. LIKELIHOOD-FREE BAYESIAN INFERENCE FOR
MULTI-FINGERED GRASPING

From the Bayes’s rule, the posterior of the hand configu-
ration is

p(h|S,V) =
p(S | h,V)

p(S | V)
p(h | V). (3)

A. Priors

Position The prior over the position StSE := xE is a
uniform distribution over all the dimensions. We first use a
uniform distribution over the cube of length [−1, 1]3, called
p(u) and then use the bijection B(u;V) : [−1, 1]3 →
[xlow, xhigh]× [ylow, yhigh]× [zlow, zhigh] to compute xE, where
the bounds are chosen to be the dimensions of the object
voxel axis aligned bounding box. Then, p(xE | V) =
(B(V)◦p)(u). It ensures that the position and orientation are
within the same numerical values for estimating the density
and the bijection emphasizes our ignorance about interesting
regions of space for grasping.

Orientation The prior over the orientation RSE := qE
is defined as a mixture of power-spherical (PS) distribu-
tions [15] with 20 modes νi (Fig. 3). Each mode is itself
a mixture that satisfies p(qE; ·) = p(−qE; ·). In total, we
have

p(qE) =
1

20

20∑

i=1

PS(qE; νi, κ)

2
+

PS(qE;−νi, κ)

2
. (4)

This prior encodes a top-down approach as well as side
approaches by its 5 main modes νi. The 4 additional modes,
rotated by π

2 , allows us to explore various orientations. We
set the concentration factor κ = 8 for all modes, which keeps
the prior gradients low and not hightly regularizes the MAP.
In this way, our prior covers a large part of the rotation space

Fig. 3: The modes of the orientation distribution. (left)
Encode a top-down approach. (others) Encode side approach.

and is sufficiently informative by contrast to a uniform prior
over the unit sphere S3.

Finally, p(h | V) = p(xE | V)p(qE).

B. Density ratio estimation

The likelihood function p(S | h,V) and the evidence
p(S | V) are both intractable, which makes standard
Bayesian inference procedures such as Markov chain Monte
Carlo unusable. However, drawing samples from forward
models remains feasible with physical simulators, hence
enabling likelihood-free Bayesian inference algorithms.

First, we express the likelihood-to-evidence ratio as,

r(S | h,V) =
p(S | h,V)

p(S | V)
=

p(S,h | V)

p(S | V)p(h | V)
. (5)

By adapting the approach described in [14] for likelihood
ratio estimation, we train a neural network classifier dφ that
we will use to approximate r(S|h,V). The network dφ is
trained to distinguish positive tuples (S,h,V) (labeled y =
1) sampled from the joint distribution p(S,h | V) against
negative tuples (labeled y = 0) sampled from the product of
marginals p(S | V)p(h | V). The Bayes optimal classifier
d∗(S,h,V) that minimizes the cross-entropy loss is given
by

d∗(S,h,V) =
p(S,h | V)

p(S | V)p(h | V) + p(S,h | V)
, (6)

which recovers the likelihood ratio r(S|h) as

d∗(S,h,V)

1− d∗(S,h,V)
=

p(S,h | V)

p(S | V)p(h | V)
=
p(S|h,V)

p(S | V)
. (7)

Therefore, by modelling the classifier with a neural network
dφ trained on the binary classification problem, we obtain
an approximate but amortized and differentiable likelihood
ratio

r̂(S | h,V) =
dφ(S,h,V)

1− dφ(S,h,V)
. (8)

Finally, the likelihood ratio is combined with the prior to
approximate the posterior as

p̂(h|S = 1,V) = r̂(S = 1 | h,V)p(h | V), (9)

which enables immediate posterior inference despite the
initial intractability of the likelihood function p(S | h,V)
and of the evidence p(S | V).

Ensembles tend to produce more conservative posteri-
ors [16]. In our case, we take 4 models and compute the
ratio as

log r̂ = log
1

4
Σ4
i=1 exp log r̂i (10)

The neural network classifiers dφ is architectured as fol-
lows. The hand configuration h enters the neural network
as a tuple of (NB × 3,NB × 4) vector where NB is the
batch size. The position is rescaled into a cube of [−1, 1]
thanks to a bijection. In dφ, V is fed to a 3D convolutional
network made of four convolutional layers followed by a
fully connected layer, as in [5], and which goal is to produce
a vector embedding of the voxel grid. The voxel embedding,
the 4D pose (position and 2D rotation) of the object point
cloud p = f(V) obtained via the TSDF, S and h are then
fed to a subsequent network made of 2 fully connected layers
of 256 neurons. The parameters φ are optimized using Adam
as optimizer.

C. Maximum a posteriori estimation

Due to the intractability of the likelihood function and
of the evidence, Eq. (1) cannot be solved analytically nor
numerically. We rely instead on the approximation given by
the likelihood-to-evidence ratio r̂ to find an approximation
of the maximum a posteriori (MAP) estimate as

ĥ∗ = arg max
h

r̂(S = 1 | h,V)p(h | V) (11)

= arg min
h

− log r̂(S = 1 | h,V)p(h | V), (12)

which we solve using gradient descent. The gradient of
Eq. (12) decomposes as

−∇(x,q) log r̂(S | h,V)p(h | V) =−∇(x,q) log r̂(S | h,V)

−∇(x,q) log p(h | V).
(13)

Our prior p(h | V) has analytical gradients. In fact, uniform
distributions are set to have null gradient everywhere in the
domain. Therefore, ∇xp(h) = 0. By contrast, p(qE) is a
weakly informative prior and has a non null gradient from
the power spherical distribution. Its derivative with respect
to q is

∇qp(q; ν, κ) = C(κ)κ(1 + νTq)κ−1∇q(1 + νTq)

= C(κ)κν(1 + νTq)κ−1,
(14)

where C(κ) is the normalization term. Since the likelihood-
to-evidence ratio estimator r̂ is modelled by a neural net-
work, it is fully differentiable with respect to its inputs and
its gradients can be computed by automatic differentiation.
However, not all variables of the problem are Euclidean
variables and naively performing gradient descent would
violate our geometric assumptions. Let us consider a variable
Z on the smooth Riemannian manifold M = R3 × S3 with
tangent space TZM and a function f : M → R. Since S3
is embedded in R4, f can be evaluated on R3×R4, leading
to the definition of the Euclidean gradients ∇f(Z) ∈ R3 ×
R4. In turn, these Euclidean gradients can be transformed
into their Riemannian counterparts gradf(Z) via orthogonal
projection PZ into the tangent space TZM. Therefore,

gradf(Z) = PZ(∇f(Z)) (15)

where the orthogonal projection onto R3 is the identity I3
and the orthogonal projection onto S3 is Pξ(∇f) = (I4 −

ξξT)∇f at ξ ∈ S3. Thus, we can solve Eq. (12) by projecting
Euclidean gradients of Eq. (13) to the tangent space TZM
and use it in the following update rule

hk+1 = exphk
(−αkgradf(hk)) (16)

with expx(v) : TxM→M is the exponential map.

V. EXPERIMENTS

To validate our approach, we perform a series of experi-
ments in simulation as well as in the real setup. We evaluate
the performance of our method and determine the transfer
capabilities of our network without any fine-tuning.

A. Data generation

The data generating procedure is defined as follow:

z ∼ p(z) (17)

Ik ∼ p(I | z,Tk
WC) (18)

V = f(Ik,Γk) (19)
{h ∼ p(h | V)} (20)

{τ1:m ∼ Λ(τ0, IK(h),V)} (21)
{S ∼ p(S | τ1:m, z)} (22)

We use Pybullet [17] for implementing these functions.
We use the same object assets than VGN [5] for the training
and testing. The latent variables z are described as follow:

Object mesh We sample uniformly an object mesh from
an asset of objects.

Pose of the table TST We randomize the posi-
tion (x, y) ∼ N (0, 0.008) and the rotation qT =
(0., 0., sin(θTable

2), cos(θTable
2)), θTable ∼ U(−5, 5) of the table

with respect to F−→S.
Pose of the object TTO We randomize the posi-

tion (x, y) ∼ U(−l2 ,
l
2) and the orientation qO =

(0., 0., sin(θO
2), cos(θO

2)), θO ∼ U(0, 2π) of the object with
respect to F−→T.

Torque applied by the fingers We randomize the final
torque applied by the fingers τ ∼ U(35, 40).

Lateral friction coefficient We randomize the lateral
friction coefficient µ ∼ U(1, 2).

Spinning friction coefficient We randomize the spinning
friction coefficient γ = ηµ, η ∼ N (0.002, 0.0001).

Depth images We add noise to the rendered depth images
in simulation using the additive noise model of [18] with the
same parameters.

B. Simulated Experiments

We evaluate the performance of our method with the
success rate (%). For one round, procedures from (17) to (19)
are done. We find the MAP or the MLE by sampling 1000
initial hand configurations from the prior and we take the best
one. Then, we perform 300 optimization steps with a step
size of 0.005 for the orientation and 0.008 for the position.
Because of the stochastic nature of our MAP estimate, we
recompute the MLE/MAP at a maximum of 3 times if the
path planner fails to find a valid path. Our method reaches a
success rate of nearly 91% with the MAP, demonstrating the

Fig. 4: (left) Object assets used in the real setup. (right)
Example of side grasp.

capabilities to adapt to new objects and correctly lift object.
Moreover, the MLE performs slightly lower (87.3%) than the
MAP. Our weakly informative prior explains the difference in
success rates and motivates the use of a Bayesian approach.

C. Real Robot Experiments

We carry out experiments with a Robotiq 3-finger gripper
attached to a UR5 robotic arm, as shown in Fig. 1. A Intel
Realsense D435i depth sensor is mounted to the flange of
the robotic arm. It produces 848× 480 depth images which
are integrated into a TSDF with a resolution of N = 40
for the network and a resolution of N = 120 for collision
detection using Open3D [19]. The transformation TFC is
calibrated using hand-eye calibration from OpenCV [20].
All the devices are handled within the ROS framework. We
performs 100 rounds with a protocol similar to the simulation
experiments. We randomly select 1 object from the 10 test
objects and put it randomly on the table by hand. The objects
are chosen between seen and unseen objects during training
and for their availability in the lab. Our success rate of
90% is similar than in simulation, which indicates that the
simulation-to-reality transfer works well. Our approximate
ratio learnt successfully several modes to grasp an object
and can switch most of the time between them if the path
planner fails (Fig .4).

In simulation as well as in the real setup, half of the failure
cases are due to the path planner and half are due to wrong
hand configurations making the object slip. We leave the
improvement of these parts as future work.

VI. CONCLUSION

We demonstrate the usefulness and applicability of
simulation-based Bayesian inference to robotic grasping. Our
results show promising performance for determining 6 DoF
grasp poses. Nevertheless, our task is rather simple compared
to others benchmarks. In the next step, we plan to challenge
our method to more complex tasks such as grasping in
cluttered environments.

ACKNOWLEDGEMENT

Norman Marlier would like to acknowledge the Belgian
Fund for Research training in Industry and Agriculture for
its financial support (FRIA grant). Computational resources
have been provided by the Consortium des Équipements de
Calcul Intensif (CÉCI), funded by the Fonds de la Recherche
Scientifique de Belgique (F.R.S.-FNRS) under Grant No.
2.5020.11 and by the Walloon Region. Gilles Louppe is
recipient of the ULiège - NRB Chair on Big Data and is
thankful for the support of the NRB

REFERENCES

[1] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier of simulation-
based inference,” Proceedings of the National Academy of Sciences,
2020.

[2] B. Curless and M. Levoy, “A volumetric method for building complex
models from range images,” in Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques, 1996,
pp. 303–312.

[3] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans, “Planning
multi-fingered grasps as probabilistic inference in a learned deep
network,” in Robotics Research. Springer, 2020, pp. 455–472.

[4] J. Cai, J. Cen, H. Wang, and M. Y. Wang, “Real-time collision-
free grasp pose detection with geometry-aware refinement using high-
resolution volume,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 1888–1895, 2022.

[5] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan, “Volumetric
grasping network: Real-time 6 dof grasp detection in clutter,” in
Conference on Robot Learning, 2020.

[6] D. Morrison, P. Corke, and J. Leitner, “Learning robust, real-time,
reactive robotic grasping,” The International Journal of Robotics
Research, vol. 39, p. 027836491985906, 06 2019.

[7] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak, and T. Her-
mans, “Learning continuous 3d reconstructions for geometrically
aware grasping,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2020, pp. 11 516–11 522.

[8] J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder, “Approximate
bayesian computational methods,” Statistics and Computing, vol. 22,
no. 6, pp. 1167–1180, 2012.

[9] M. A. Beaumont, W. Zhang, and D. J. Balding, “Approximate bayesian
computation in population genetics,” Genetics, vol. 162, no. 4, pp.
2025–2035, 2002.

[10] G. Papamakarios, D. Sterratt, and I. Murray, “Sequential neural
likelihood: Fast likelihood-free inference with autoregressive flows,”
in The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019, pp. 837–848.

[11] G. Papamakarios and I. Murray, “Fast ε-free inference of simulation
models with bayesian conditional density estimation,” in Advances in
Neural Information Processing Systems, 2016.

[12] J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M. Nonnen-
macher, and J. H. Macke, “Flexible statistical inference for mechanistic
models of neural dynamics,” in Advances in Neural Information
Processing Systems, 2017.

[13] D. Greenberg, M. Nonnenmacher, and J. Macke, “Automatic posterior
transformation for likelihood-free inference,” in International Confer-
ence on Machine Learning. PMLR, 2019, pp. 2404–2414.

[14] J. Hermans, V. Begy, and G. Louppe, “Likelihood-free MCMC with
amortized approximate ratio estimators,” in Proceedings of the 37th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, H. D. III and A. Singh, Eds., vol.
119. PMLR, 13–18 Jul 2020, pp. 4239–4248. [Online]. Available:
http://proceedings.mlr.press/v119/hermans20a.html

[15] N. De Cao and W. Aziz, “The power spherical distribution,” arXiv
preprint arXiv:2006.04437, 2020.

[16] J. Hermans, A. Delaunoy, F. Rozet, A. Wehenkel, and G. Louppe,
“Averting a crisis in simulation-based inference,” arXiv preprint
arXiv:2110.06581, 2021.

[17] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2020.

[18] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, Y. Zhu, J. Tremblay, S. Birch-
field, G. Shi, F. Ramos, A. Anandkumar, et al., “Synergies between
affordance and geometry: 6-dof grasp detection via implicit representa-
tions,” in IEEE International Conference on Robotics and Automation
(ICRA), 2021.

[19] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern library for
3D data processing,” arXiv:1801.09847, 2018.

[20] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

98 grasping a single object in any pose

8.3 epilogue

8.3.1 Advantages

Our framework offers great flexibility through the prior. In this paper, we demonstrate

how a simple prior with invariant property can greatly increase the usefulness of our

method for some robotics applications. These properties help a lot in learning the pos-

terior because latent variables contain the position of the object on the table as well

as its orientation. Furthermore, by using invariant priors, we can learn an equivariant

posterior and thus reduce the amount of data needed to reach a high success rate. This

is a desirable property for limiting the time required to generate data. Contrary to the

benchmark used in Chapter 7, the object can be placed anywhere, making the task more

difficult, and yet our method overcomes the previous performance.

8.3.2 Limitations

While our prior is very effective for a single object on the table, this is complicated

to extend it to many objects. When several objects are placed on the table, our prior

cannot make the difference and consider all the objects as one. This implies that it will

put density where there is no object, thus dropping a lot the success rate of the method.

A clustering algorithm may be used to split objects into clusters of point cloud but this

is not accurate and may lead to errors. Furthermore, this prior is not flexible enough

to grasp objects in any 3D orientation. It works only for objects that are placed in an

upright configuration. This main limitation restraints the complexity of the robotic task,

which will be addressed in the next chapter.

8.3.3 Conclusion and opportunities

Our new contribution increases the success rate of the task by about 15%, which justifies

the use of a better prior. We further increase the complexity of the task, by grasping an

object in any 2D pose on the table while keeping the 6 DoF of the grasp pose. We will

see in the next chapter how to automate the building of prior useful for grasping several

objects.

9
GRASP ING MANY OBJECTS IN A RESTR ICTED SETUP

Outline

We automate the building of the prior by learning an implicit represen-

tation of the scene. While Chapter 8 used heuristic priors conditioned by

observation, we leverage the development of 3D reconstruction methods

to model accurately the scene. Furthermore, we use a point cloud repre-

sentation instead of a voxel one, decreasing the sensor data acquisition

time. We slightly modify the modeling of the grasping task to integrate

this learned prior. We validate the results on more complex benchmarks

while we keep the dimension of the search space lower, by computing a

top-down approach and not the full 6 DoF.

9.1 prologue

Machine learning brings a way to learn automatically how to perform robotic tasks.

However, as we saw in the two previous chapters, it is quite complicated to build an

efficient prior for robotics tasks. While keeping the prior simple for practitioners, we

can use neural networks to learn efficient priors by adding a new random variable to

our robotic modeling. By using the observation of the scene, we can improve a lot the

sample efficiency of our method, thus performing grasping in a cluttered environment,

with many objects.

Sampling from density estimators can be difficult, and even more so when the vari-

ables belong to Riemannian manifolds. To overcome this issue, we adapt the famous

Hamiltonian Monte Carlo sampling scheme to work with Riemannian manifolds. This

allows us to generate samples from the approximate posterior and thus visualize which

position and orientation will lead to a successful grasp.

Update In the chapter Chapter 8, we expressed the posterior as

p(h | S,V) =
p(S | h,V)

p(S | V)
p(h | V). (9.1)

However, the prior p(h | V) is based on a heuristic, meaning it is difficult to extend to

new tasks. More importantly, it cannot handle several objects being in the workspace

99

100 grasping many objects in a restricted setup

by assumption. Therefore, we introduce a new variable, the occupancy o, to be able to

grasp several objects. To do so, we express the posterior as

p(h | S, o,V) =
p(S | h, o,V)

p(S | o,V)
p(h | o,V). (9.2)

The occupancy removed the assumption of only one object standing on the table. Instead

of reasoning at the object level, we reason at position level, giving more flexibility because

several objects can be on the table.

Reading tips As this paper is more oriented toward probability density on manifolds

and sampling, the reader should read Chapter 3 and Chapter 4. The rest of the paper

should flow smoothly.

9.2 the paper: implicit representation priors meet riemannian

geometry for bayesian robotic grasping

Implicit representation priors meet Riemannian geometry
for Bayesian robotic grasping

Norman Marlier1∗ Julien Gustin2 Olivier Brüls3 Gilles Louppe4

Abstract— Robotic grasping in highly noisy envi-
ronments presents complex challenges, especially with
limited prior knowledge about the scene. In partic-
ular, identifying good grasping poses with Bayesian
inference becomes difficult due to two reasons: i) gen-
erating data from uninformative priors proves to be
inefficient, and ii) the posterior often entails a complex
distribution defined on a Riemannian manifold. In this
study, we explore the use of implicit representations
to construct scene-dependent priors, thereby enabling
the application of efficient simulation-based Bayesian
inference algorithms for determining successful grasp
poses in unstructured environments. Results from
both simulation and physical benchmarks showcase
the high success rate and promising potential of this
approach.

I. Introduction
Grasping is a fundamental skill for any robotic sys-

tem. While current methods are effective for highly
constrained tasks in structured environments, new and
complex applications require increased flexibility and
more advanced algorithms to account for the uncer-
tainties that emerge in unstructured and noisy environ-
ments. Bayesian inference offers a well-principled ap-
proach to address these uncertainties; however, robotic
tasks present unique challenges that make Bayesian
inference difficult to apply, particularly for sampling-
based algorithms. Firstly, many Bayesian approaches
assume that the likelihood is tractable and can be eval-
uated, which is seldom the case in robotics. Secondly,
parameters may span a vast space, leading to ineffi-
cient sampling strategies. Lastly, parameters of interest
often belong to smooth Riemannian manifolds, further
complicating the inference procedure. In this paper, we
address these challenges by designing informative scene-
dependent priors and using simulation-based inference
algorithms combined with geometric sampling methods.
Our contributions are summarized as follows:

• We integrate simulation-based Bayesian inference
methods [1] with 3D implicit representations for
robotic grasping.

• We adapt geodesic Monte Carlo [2] with a neural
ratio estimator to sample on Riemannian manifolds
with an intractable likelihood.

• We validate our method through simulated and
real experiments, demonstrating promising grasping
performance.

*The authors come from the University of Liège, Belgium
1norman.marlier@uliege.be

Fig. 1: Our benchmark scene. (left) The simulated envi-
ronment. (right) The real setup.

II. Problem statement
We consider the problem of planning 4-DoF hand

configurations for a robotic gripper handling various
unknown objects on a table, observed with a depth
camera. A benchmark scene is shown in Fig. 1.

A. Notations
Frames We use several reference frames in our work.

The world frame F−→W and the workspace frame F−→S
can be chosen freely and are not tied to a physical
location. The world frame is used for the robot and
the sensor, while the workspace frame is used for our
inference system. F−→C and F−→E correspond respectively
to the camera and the tool centre point.

Hand configuration The hand configuration h ∈
H = R3 × S1 is defined as the pose (x,q) ∈ R3 × S1

of the hand, where x is the vector S⃗E expressed in F−→S
and q is the planar rotation represented with complex
numbers defined in F−→S.

Binary metric A binary variable S ∈ {0, 1} indicates
if the grasp fails (S = 0) or succeeds (S = 1).

Observation Given the depth image I with its cor-
responding transformation camera to world TWC and
camera intrinsic matrix K, we construct a point cloud
P ∈ R2048×3 expressed in F−→S.

Occupancy A binary variable o ∈ {0, 1} indicates if
a point p ∈ R3 is occupied by any object of the scene.

Latent variables Unobserved variables z capture
uncertainties about the nonsmooth dynamics of contact,
the sensor noise, as well as the number of objects and
their geometry.

B. Grasping as inference
We formulate the problem of grasping as the Bayesian

inference of the hand configuration h∗ that is a posteriori
the most likely given a successful grasp, an occupancy
o and a point cloud P. That is, we are seeking the
maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1, o = 1,P), (1)

from which we then compute the joint trajectory

τ1:m = Λ(τ0, ik(h∗),P), (2)

where ik is an inverse kinematic solver, τ1:m are way-
points in the joint space, τm = IK(h∗) with h∗ expressed
in F−→W and Λ is a path planner.

III. Implicit representation of priors and
posteriors for robotic grasping

From the Bayes rule, the posterior of the hand config-
uration is

p(h|S, o,P) = p(S | h, o,P)
p(S | o,P) p(h | o,P), (3)

which can be rewritten as the product of the likelihood-
to-evidence ratio r and a scene-dependent prior

p(h|S, o,P) = r(S | h, o,P)p(h | o,P). (4)

A. Priors
Position The scene-dependent prior over the position

x is the distribution p(x|o,P) = p(o|x,P)
p(o|P) p(x), where

p(o|x,P) is the likelihood of the occupancy o, p(x) is
uniform over the workspace, and p(x|P) is simplified to
p(x) by independence.

We model the occupancy likelihood p(o|x,P) using
a Convolutional Occupancy Network [3]. This network
computes the occupancy by first producing three canon-
ical features planes cxy(P), cxz(P) and cyz(P). Then, the
bilinear interpolations of the three planes are used to
compute ψ(P,x) = cxy(P)(x) + cxz(P)(x) + cyz(P)(x).
These point-wise features at point x are finally processed
by a fully connected network, outputting the occupancy
probability.

This implicit representation allows us to sample inter-
esting grasping positions from p(x|o,P) ∝ p(o|x,P)p(x).
We use Hamiltonian Monte Carlo (HMC) to take advan-
tage of the differentiability of the occupancy network.

Orientation The prior of the orientation q is a uni-
form distribution over the unit circle S1. This prior is
invariant to any rotation R ∈ SO(2) applied to q, satis-
fying p(q) = p(Rq). This property enables free selection
of the reference frame on the table. Additionally, the
prior can be extended to SO(3) by using quaternions on
S3.

Hand configuration Finally, the prior of the hand
configuration is p(h | o,P) = p(x | o,P)p(q).

B. Ratio

The likelihood function p(S | h, o,P) and the evidence
p(S | o,P) are both intractable. However, drawing sam-
ples from forward models remains feasible with physical
simulators, hence enabling likelihood-free Bayesian infer-
ence algorithms. In particular, the likelihood-to-evidence
ratio r(S | h, o,P) (Eq. (4)) can be approximated by a
neural network rϕ(S | h, o,P) using amortized neural
ratio estimation [5]. Here, instead of using only point-
wise features ψ(P,x) as input for the ratio, we add a crop
of the features plane cxy(P), centred at x, sized by the
gripper and rotated by q. These features Ψ(P,h) local
in the neighbourhood of the grasping point are nearly
equivariant to a 2D transformation applied to the object,
i.e TΨ(P,h) ≈ Ψ(TP,h),T ∈ SE(2).

C. Posteriors

Given our scene-dependent prior and our likelihood-
to-evidence ratio, we approximate the posterior over the
hand configurations as

p̂(h | S, o,P) = rϕ(S | h, o,P)p(h | o,P). (5)

This approximation defines an implicit function [6]
on the product of manifolds R3 × S1 that is both fully
tractable and differentiable, allowing the use of gradient-
based methods for computing the MAP and sampling.
Therefore, we can use Markov Chain Monte Carlo meth-
ods to sample from our posterior approximation p̂(h |
S, o,P). In particular, based on [5], we use a likelihood-
free version of HMC by replacing the intractable like-
lihood with the ratio. The potential energy function is
defined as U(h) ≜ − log p(S | h, o,P) and its difference
is U(ht)−U(h′) = log r(S | ht,h′). The gradient used in
the integration step is given by ∇hU(h) = −∇h log r(S |
h, o,P). To account for the geometry of the parameter
space, we then further extend our likelihood-free HMC
with a geodesic integrator. The geodesic Monte Carlo
scheme uses geodesic flow to perform the integration
while staying on the manifold. To this end, orthogonal
projections and geodesics are needed in a closed form. Fi-
nally, geodesic Monte Carlo can be applied to a product
of manifolds M1 ×M2 : {(x1, x2) : x1 ∈M1, x2 ∈M2},
such as R3 × S1 in our specific case. Geodesic flow can
be executed in parallel; only the evaluation of the ratio
requires both variables x and q. In this manner, we can
sample from the posterior density defined on a smooth
manifold with closed-form geodesic. The full sampling
procedure is summarized in Algorithm 1 of Appendix A.

IV. Experiments

We assess our approach on a robotic grasping task
in both simulation and real-world settings. We generate
data in a packed scenario, as defined in [7]. Additional
experiments can be found in Appendix B and C.

U-Net

Homogeneous
transformation

PointNet Projection
Aggregation

x

y

z

Point cloud P

Ratio estimator

Occupancy network

h*

Riemannian optimizationy

z

x

Feature extractor

Gsize

G s
iz
e

y

q

x

Fig. 2: Our grasp inference pipeline, as run on the scene of Fig. 1. It begins with a noisy depth image of the scene, from
which we first separate the objects from the background using a U-Net [4]. We then generate three canonical feature
planes following the approach in [3]. To evaluate a given h, we extract point-wise ψ(P,x) and local Ψ(P,h) features
and feed them to the ratio and occupancy networks. Using the resulting differentiable posterior and Riemannian
optimization, we finally identify the most plausible hand configuration h∗.

A. Grasp inference pipeline
Starting from the depth image I, we remove the

background and extract only pixels of the objects with
a segmentation model based on a U-Net architecture [4].
Then, we convert I to a point cloud P with 2048 points,
which passes through an encoder and produces three
canonical feature planes. We then extract point-wise
ψ(P,x) and local Ψ(P,h) features to evaluate the occu-
pancy and the ratio networks. To smooth the posterior
approximation, we use an ensemble of 6 ratio models.
Finally, we compute the MAP by maximizing the log
posterior density [8]. To this end, we use a Riemannian
gradient ascent which preserves the nonlinearity of S1. A
visual summary of our method is given in Fig. 2.

Our likelihood-free geodesic Monte Carlo is used to
sample plausible hand configurations h ∼ p̂(h | S =
1, o = 1,P) for successful grasps, as shown in Fig. 3.
Although our conditional prior distributes density across
everywhere on the objects, the posterior assigns minimal
density to the bottom of objects when multiple objects
are present on the table. This occurs due to potential
collisions between the gripper and the table, or the grip-
per and other objects. Regarding rotation, the posterior
resembles the prior because multiple objects on the table,
some with axial symmetry, allow for a wide range of grasp
orientations. When only a single object is used, distinct
modes can be observed, indicating that our posterior
captures meaningful orientations, as shown in Fig. 4.

B. Simulation results
To compare our approach, we evaluated it against

Grasp Pose Detection (GPD) [9] and Volumetric Grasp-

0.4

0.2

0.0

0.2

0.4

y

0.4

0.2

0.0

0.2

0.4

z

1.0

0.5

0.0

0.5

1.0

q 0

0.4 0.2 0.0 0.2 0.4

x

1.0

0.5

0.0

0.5

1.0

q 1

0.4 0.2 0.0 0.2 0.4

y

0.4 0.2 0.0 0.2 0.4

z

1.0 0.5 0.0 0.5 1.0

q0

1.0 0.5 0.0 0.5 1.0

q1

Fig. 3: Estimated posterior distribution p̂(h | S = 1, o =
1,P) of plausible successful hand configurations, for the
scene shown in Fig. 1.

ing Network (VGN) [7] in terms of success rate and
percent cleared [7] using the same dataset and a similar
scenario (Table I). Our model achieved a high success
rate of 91.1%, which is very close to VGN’s best success
rate of 91.5%. However, our model operated in a more
constrained setup with 4 DoF instead of 6, limiting

1.0 0.5 0.0 0.5 1.0

q0

1.0

0.5

0.0

0.5

1.0

q 1

1.0 0.5 0.0 0.5 1.0

q1

Fig. 4: (left) Estimated posterior distribution of the
orientation p̂(q | S = 1, o = 1,P). (right) Single object.

TABLE I: Success rates (%) and % cleared for picking
experiments for the packed scenario with 5 objects over
200 rounds.

Method Success rate % cleared
Simulation results

GPD [9] 73.7 72.8
VGN (ε = 0.95) [7] 91.5 79
VGN (ε = 0.9) [7] 87.6 80.4
VGN (ε = 0.85) [7] 80.4 79.9
Ours 91.1 77

Real-world results
Ours 95.6 88

the gripper’s movement and increasing the risk of colli-
sions. This limitation resulted in a slightly lower percent
cleared compared to VGN. Furthermore, the gripper
used was primarily designed for larger objects, making
it challenging to handle smaller ones.

C. Real-world results
We adopt the setup from [8]. We perform 20 rounds

with 5 objects among 13 (see Fig. 5), using a protocol
similar to the simulation experiments. The objects are
chosen based on their availability in the lab and whether
they were seen or unseen during training. For novel
objects, we achieve a success rate of 95.6% and a percent
cleared of 88%, showing the strong adaptability and
performance of our approach. The discrepancy between
the simulation and real-world setup is overcome without
any decrease in performance. In both simulation and real-
world settings, the majority of failure cases are due to
insufficient friction forces, causing the objects to slip.

V. Related Work
Grasp sampling strategies that generate data for ma-

chine learning methods can be categorized based on their
coverage of the hand configuration space H [10]. Simple
strategies like uniform sampling provide direct density es-
timation but are highly inefficient. Heuristic methods, on
the other hand, mainly rely on object geometry. Notably,
the most efficient strategies [11], [12] are not suitable

Fig. 5: (left) Object assets used in the real setup. (right)
Successful grasp of a mug.

for complex settings such as multi-fingered grippers. Our
occupancy networks-based approach offers direct density
estimation, efficient sampling, and does not depend on
specific object or gripper assumptions.

Representing a 3D scene as a parameterized function
using neural networks has recently gained substantial
interest. Occupancy networks [13] determine whether a
point is occupied or not. However, they lack equivari-
ance for translations and rotations. To overcome this
limitation, translation-equivariant feature planes are de-
rived from convolutional networks, resulting in Convo-
lutional Occupancy Networks [3]. Achieving rotation-
equivariance is more challenging, but innovative solutions
have recently emerged [14], [15].

Various methods exist for sampling from a distribution
defined on a Riemannian manifold. Adapting Markov
Chain Monte Carlo methods [16] to Riemannian mani-
folds allows sampling from a differentiable and tractable
likelihood. Our approach eliminates the need for an
explicit likelihood. Normalizing flows [17] which target
density defined on manifolds can rapidly sample from
the posterior distribution. However, it remains unclear
how to use their gradients for Riemannian optimization.

Finally, probabilistic approaches for grasping problems
typically depend on explicit likelihood functions that
model the probability of success or a grasp quality metric
related to an observation and a grasp pose [7], [18]–[20].
Closer to our work, a similar study [8] uses simulation-
based inference to compute the maximum a posteriori
through Riemannian gradient ascent. However, this ap-
proach uses a heuristic prior and cannot accommodate
multiple objects.

VI. Conclusion

We have shown that Bayesian inference can be ef-
fectively applied to robotic grasping in complex and
noisy environments. Through innovative enhancements,
we have improved the sample efficiency of the inference
pipeline. Our approach can manage tasks with escalating
complexity and proves valuable for real-world robotic
applications. Future research will focus on controlling the
complete 6-DoF of the robotic hand.

Acknowledgement

Norman Marlier acknowledges the Belgian Fund for
Research training in Industry and Agriculture for its
financial support (FRIA grant). Computational resources
have been provided by the Consortium des Équipements
de Calcul Intensif (CÉCI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11 and by the Walloon Region.

References

[1] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier
of simulation-based inference,” Proceedings of the National
Academy of Sciences, 2020.

[2] S. Byrne and M. Girolami, “Geodesic monte carlo on embed-
ded manifolds,” Scandinavian Journal of Statistics, vol. 40,
no. 4, pp. 825–845, 2013.

[3] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and
A. Geiger, “Convolutional occupancy networks,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16. Springer,
2020, pp. 523–540.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolu-
tional networks for biomedical image segmentation,” 2015.

[5] J. Hermans, V. Begy, and G. Louppe, “Likelihood-free
MCMC with amortized approximate ratio estimators,” in
Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–
18 Jul 2020, pp. 4239–4248. [Online]. Available: http:
//proceedings.mlr.press/v119/hermans20a.html

[6] K. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and
A. Makadia, “Implicit-pdf: Non-parametric representation of
probability distributions on the rotation manifold,” arXiv
preprint arXiv:2106.05965, 2021.

[7] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan,
“Volumetric grasping network: Real-time 6 dof grasp detection
in clutter,” in Conference on Robot Learning, 2020.

[8] N. Marlier, O. Brüls, and G. Louppe, “Simulation-based
bayesian inference for robotic grasping,” arXiv preprint
arXiv:2303.05873, 2023.

[9] A. Ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp
pose detection in point clouds,” The International Journal of
Robotics Research, vol. 36, no. 13-14, pp. 1455–1473, 2017.

[10] C. Eppner, A. Mousavian, and D. Fox, “A billion ways to
grasp: An evaluation of grasp sampling schemes on a dense,
physics-based grasp data set,” in Robotics Research: The 19th
International Symposium ISRR. Springer, 2022, pp. 890–905.

[11] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu,
J. A. Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to
plan robust grasps with synthetic point clouds and analytic
grasp metrics,” 2017.

[12] X. Yan, J. Hsu, M. Khansari, Y. Bai, A. Pathak, A. Gupta,
J. Davidson, and H. Lee, “Learning 6-dof grasping interaction
via deep geometry-aware 3d representations,” 2018.

[13] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and
A. Geiger, “Occupancy networks: Learning 3d reconstruction
in function space,” in Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, 2019, pp.
4460–4470.

[14] Y. Chen, B. Fernando, H. Bilen, M. Nießner, and E. Gavves,
“3d equivariant graph implicit functions,” in Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part III. Springer,
2022, pp. 485–502.

[15] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasac-
chi, and L. J. Guibas, “Vector neurons: A general frame-
work for so (3)-equivariant networks,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision,
2021, pp. 12 200–12 209.

[16] C. Liua and J. Zhub, “Geometry in sampling methods: A
review on manifold mcmc and particle-based variational in-
ference methods,” Advancements in Bayesian Methods and
Implementations, vol. 47, p. 239, 2022.

[17] D. J. Rezende, G. Papamakarios, S. Racaniere, M. Albergo,
G. Kanwar, P. Shanahan, and K. Cranmer, “Normalizing flows
on tori and spheres,” in International Conference on Machine
Learning. PMLR, 2020, pp. 8083–8092.

[18] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans,
“Planning multi-fingered grasps as probabilistic inference in a
learned deep network,” in Robotics Research. Springer, 2020,
pp. 455–472.

[19] J. Cai, J. Cen, H. Wang, and M. Y. Wang, “Real-time collision-
free grasp pose detection with geometry-aware refinement us-
ing high-resolution volume,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1888–1895, 2022.

[20] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak,
and T. Hermans, “Learning continuous 3d reconstructions for
geometrically aware grasping,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 11 516–11 522.

Appendix
A. Likelihood-free geodesic Monte Carlo

Algorithm 1: Likelihood-free geodesic Hamiltonian Monte Carlo
Input: A Manifold M

Initial parameters h0
Prior p(h | P)
Momentum distribution p(v)
Trained classifier dϕ(S,h,P)
Observations S,P

Output: Markov chain h1:T

1 t← 0
2 ht ← h0
3 for t <T do
4 vt ∼ p(v)
5 vt ← πht

(vt)
6 k ← 0
7 vk ← vt

8 hk ← ht

9 for k <L do
10 vk ← vk + ϵ

2∇hk
log r(S | hk,P)

11 vk ← πhk
(vk)

12 hk ← γ(ϵ), γ(0) = hk

13 vk ← γ̇(ϵ), γ̇(0) = vk

14 vk ← vk + ϵ
2∇hk

log r(S | hk,P)
15 vk ← πhk

(vk)
16 k ← k + 1
17 end
18 λk ← log r(S | hk,P) + log p(hk | P)− 1

2 vT
k vk

19 λt ← log r(S | ht,P) + log p(ht | P)− 1
2 vT

t vt

20 ρ← min(exp(λk − λt), 1)

21 ht+1 ←
{

hk with a probability ρ
ht with a probability 1− ρ

22 t← t+ 1
23 end
24 return h1:T

B. Sampling the orientation: toy problem
Given a model parameter sample qθ ∈ Sd, the forward generative process is defined as:

ν = qθ (6)
κ = 20 (7)
qx ∼ exp(κνT qx) (8)

with the prior p(qθ) ∆= SphericalUniform(d). It follows the true posterior p(qθ | qx) ∝ exp(κqT
x qθ). We use a MLP

of 3 layers with 64 neurons to approximate the likelihood-to-evidence ratio. All the activation functions are ReLU
except the last one which is linear. We train the ratio with 1000000 samples with a batch size of 8000 for 50 epochs.
For the geodesic HMC, we use 100 chains and 2000 transitions with a burn in of 1000. The integration parameters
are ϵ = 0.01, L = 20. The approximate posterior shares the same structure that the true posterior, demonstrating
its accuracy (Fig. 6). Moreover, we conduct a quantitative analysis by computing the Maximal Mean Discrepancy
(MMD) for S1 and S3. We obtain respectively 0.0028± 5.84e−6 and 0.01± 3e−5 for an identity kernel between the
two geodesic means for 10 different observations qx.

1.0 0.5 0.0 0.5 1.0

x1

1.0

0.5

0.0

0.5

1.0

x 2

1.0 0.5 0.0 0.5 1.0

x2

Fig. 6: Posterior for S1. In blue, the distribution obtained through GMC with the ratio and in grey, the ground truth
posterior.

C. Sampling the position: multiple objects scene

0.4

0.2

0.0

0.2

0.4

Y

0.4 0.2 0.0 0.2 0.4

X

0.4

0.2

0.0

0.2

0.4

Z

0.4 0.2 0.0 0.2 0.4

Y

0.4 0.2 0.0 0.2 0.4

Z

Fig. 7: Approximate posterior p(x|o = 1,P) of a scene with 5 different objects.

In this experiment, we have a scene containing five objects with varying levels of difficulty, as shown in Fig. 2. We
use a convolutional occupancy network [3] that is trained for 120,000 iterations with a batch size of 32 samples. The
network has a resolution of 128 and a feature dimension of 32. To sample from the posterior p(x|o = 1,P) ∝ p(o =
1|x,P)p(x), as we previously explained, we employed HMC with specific hyper-parameters. These include 100 chains
of 5000 transitions and a burn-in of 1000. The integration parameters are ϵ = 0.01, L = 20. The chains’ initials
point are sampled uniformly in the bounding box of the objects. The corner plot in Fig. 7 illustrates the resulting
posterior, which aligns with the location and shape of four out of the five objects and the potential grasping point.
However, the occupancy of the fifth object cannot be recovered due to either being regarded as noise or having a
much smaller density compared to the other objects.

9.3 epilogue 109

9.3 epilogue

9.3.1 Advantages

Our new prior, which represents implicitly the scene, brings high flexibility to our frame-

work. By using a new variable in our modeling, the occupancy, we can integrate nicely

the occupancy network in our pipeline. The first requirement of neural ratio estimation is

that the prior can be evaluated to compute the posterior, which is possible because occu-

pancy networks are density estimators. They accurately localize the positions occupied

by the objects and put no restriction on the number of objects present on the table. The

second requirement necessitates sampling from prior to generate samples from the joint

distribution. Occupancy networks provide a target density and are fully differentiable,

thus providing gradients. Therefore, they can be plugged into a Markov Chain Monte

Carlo scheme to generate samples with respect to their density. The last requirement

requires gradients of the posterior with respect to the grasp pose to compute the maxi-

mum a posteriori, which is already the case. However, occupancy networks also possess

several advantages. Firstly, they are powerful feature extractors because they implicitly

represent the scene, while simpler networks can struggle for this task. These features can

be in turn used by the neural ratio estimator, facilitating the learning of the likelihood

ratio function. Secondly, only a single point cloud is needed to predict the occupancy

of the scene. This drastically reduces the sensor data acquiring time compared to the

truncated signed distance function used in Chapter 8.

9.3.2 Limitations

While our newly learned prior shows huge advantages compared to a heuristic prior, it has

some limitations and drawbacks. The first straightforward drawback is the computation

time. Using a big model requires more time for the optimization procedure and slows

down this part of the pipeline. Another limitation comes from the assumption that the

grasping contact point has to be inside the object. This strong assumption does not

take advantage of hanse or holes in object shapes, making the prior irrelevant for some

robotic tasks. Furthermore, the prior only applies to the position of the grasp pose and

not the orientation. Finally, sampling from this prior using MCMC is quite slow which

is not very interesting because simulation-based inference methods require a lot of data,

especially in the case of rare events (successful grasps in our case).

9.3.3 Conclusion and opportunities

Our newly learned prior increases the complexity of the task and still has a very high

success rate, about 95%. Even if the grasp pose has 4 DoF, we still improve the framework.

Moreover, because we developed an algorithm to sample from a distribution defined on

110 grasping many objects in a restricted setup

manifolds, we unlock new possibilities, such as sequential neural ratio estimation. We

leave this for the next chapter.

10
GRASP ING MANY OBJECTS IN AN UNRESTRICTED SETUP

Outline

We propose a sequential approach to approximate the posterior distribu-

tion. While Chapter 8 introduced a scene-based prior designed only to

capture relevant positions for grasping and simplifies the orientation by

limiting its DoF, this chapter takes a step further by sequentially refining

our posterior approximation, hereby releasing the constraints put on the

orientation. This allows us to explore the high-dimensional space of grip-

per poses. We validate the results on realistic benchmarks and show that

6 DoF approaches converge toward 4 DoF.

10.1 prologue

All the previous chapters of Part iii overcome the task of robotic grasping of increased

complexity by using new components in the framework. This complexity can be more

degrees of freedom to infer for the grasp pose or a larger diversity and variability for the

task itself: the object can be anywhere on the table or several objects can be present on

the table. This last chapter introduces a systematic method to learn the full grasp pose

with several objects present on the table.

Our method is based on Chapter 9 but instead uses a sequential approach to approxi-

mate the posterior density by sampling from a previous approximation of the posterior,

which acts as a new prior, and learned from the newly generated samples until the con-

vergence criteria are met. This sequential approximation allows us to refine the posterior,

by decreasing low-density areas and increasing high-density areas. This provides great

flexibility, compared to analytical densities. Among them, only the Bingham distribu-

tion [Bingham, 1974] for quaternion gives enough flexibility but comes with many issues

such as sampling or fine-tuning the parameters of the distribution. In conclusion, this

paper can be viewed as a synthesis of all the contributions.

Update For this contribution, there is no change in the modeling. However, the pre-

vious Section 9.3 only uses one degree of freedom for the orientation, thus staying on

S1, which facilitated the task. This contribution tackles the problem of inferring the full

grasp pose.

Reading tips In this article, we use different visualizations to represent distribution

over the rotation from the grasp pose. While we use the joint plot to illustrate the

111

112 grasping many objects in an unrestricted setup

distribution over quaternions, [Murphy et al., 2021] provides another visualization based

on the Mollweide projection.

10.2 the paper: grasping under uncertainties: sequential neural

ratio estimation for 6-dof robotic grasping

Grasping under uncertainties:
Sequential Neural Ratio Estimation for 6-DoF robotic grasping

Norman Marlier1∗ Olivier Brüls2 Gilles Louppe3

Abstract— We introduce a novel approach to 6-DoF
robotic grasping based on simulation-based inference.
Our approach combines sequential neural ratio esti-
mation with a neural implicit representation for the
Bayesian inference of hand configurations in cluttered
environments. We propose to compute the maximum
a posteriori by gradient descent, more specifically
using Riemannian gradient descent, to preserve the
geometry of the rotation space and capitalize on the
full differentiability of our model. We demonstrate the
capabilities of our approach on a grasping benchmark
both in simulation and on a real robot. Our per-
formance generalizes well across different scenarios,
achieving high success rates.

I. Introduction
Grasping is a fundamental skill for robots. While

industrial robots perform tasks in very controlled en-
vironments, novel applications require robots to adapt
to new unstructured environments. Determining robust
grasp poses from raw perception data is, for this rea-
son, essential to the wider deployment of robots in the
real world. However, dealing with uncertainties arising
from rich nonsmooth contact dynamics and sensor noise
is still an open problem. To address these challenges,
Bayesian inference provides a principled framework to
recast grasping as an inference problem under uncer-
tainties. The nature of robotic grasping, however, often
involves highly complex dynamics relating the tentative
grasp pose to the final outcome, making the necessary
likelihood function intractable. Additionally, grasp poses
in these tasks come with hard constraints from the
robot’s kinematics, further complicating the inference
procedure.

In this paper, we tackle the problem of generating
robust grasp poses by proposing an original approach
based on simulation-based inference algorithms [1], a
family of methods that learn a component of the Bayes
rule through stochastic forward simulations. Our contri-
butions are summarized as follows:

• We bring simulation-based Bayesian inference meth-
ods to robotic grasping. By sequentially learning
a model for the likelihood-to-evidence ratio and
using an implicit neural representation, we derive
an amortized and differentiable posterior for grasp
poses.

*The authors come from the University of Liège, Belgium
1norman.marlier@uliege.be
2o.bruls@uliege.be
3g.louppe@uliege.be

Fig. 1: Our benchmark scene. (left) The simulated envi-
ronment. (right) The real setup.

• We make use of Riemannian manifold methods to
sample from densities defined on smooth Rieman-
nian manifolds and optimize the grasp poses.

• We validate the effectiveness of our method through
both simulated and real experiments, demonstrating
remarkable grasping performance.

II. Problem statement
We consider the problem of planning 6-DoF hand

configurations for a robotic gripper handling various
unknown objects on a table, observed with a depth
camera. A benchmark scene is shown in Fig. 1.

A. Description
The robot arm, which consists of 6 or 7 DoF, operates a

gripper within a cubic workspace of size l, featuring a pla-
nar tabletop. The scene is observed with a depth camera
mounted on the robot flange. Our objective is to identify
the most plausible hand configuration conditioned by
a grasp success and the observed point cloud. Then, a
path planner computes a collision-free joint trajectory,
enabling the robot to reach the desired grasp pose and
safely remove the selected object from the tabletop.

B. Notations
Frames We use several reference frames. The world

frame F−→W and the workspace frame F−→S can be chosen
freely and are not tied to a physical location. The world
frame is used for the robot and the sensor, while the
workspace frame is used for our inference system. F−→C
and F−→E correspond respectively to the camera and the
end-effector frames.

q z

h S P

x o

Fig. 2: Probabilistic graphical model of the environment.
Gray nodes represent observed variables, white nodes
represent unobserved variables, and diamond nodes rep-
resent deterministic functions.

Hand configuration The hand configuration h ∈
H = R3 × S3 is defined as the pose (x,q) ∈ R3 × S3

of the hand, where x is the vector S⃗E expressed in F−→S
and q is the 3D rotation from F−→S to F−→E represented
using unit quaternions with scalar last format.

Binary metric A binary variable S ∈ {0, 1} indicates
if the grasp fails (S = 0) or succeeds (S = 1).

Observation Given the depth image I with its cor-
responding transformation camera to world TWC and
camera intrinsic matrix K, we construct a point cloud
P ∈ R2048×3 expressed in F−→S.

Occupancy A binary variable o ∈ {0, 1} indicates if
a point p ∈ R3 is occupied by any object of the scene.

Latent variables Unobserved variables z capture
uncertainties about the nonsmooth dynamics of contact,
the sensor noise, as well as the number of objects and
their geometry.
C. Probabilistic modelling

We model the scene and the grasping task according
to the Bayesian network shown in Fig. 2. This choice
of structure is motivated by the dependencies observed
in the system: S depends on z, P, and h; o depends
on P and x; and P depends on z. Such a structure
facilitates straightforward generation procedures: z and
h are sampled from their respective priors, while P and
S are obtained through forward physical simulations.
D. Grasping as inference

We formulate the problem of grasping as the Bayesian
inference of the hand configuration h∗ that is a posteriori
the most likely given a successful grasp, an occupancy o
at x and a point cloud P. That is, we are seeking the
maximum a posteriori (MAP) estimate

h∗ = arg max
h

p(h|S = 1, o = 1,P), (1)

from which we then compute the joint trajectory

τ1:m = Λ(τ0, ik(h∗),P), (2)

where ik is an inverse kinematic solver, τ1:m are way-
points in the joint space, τm = IK(h∗) with h∗ expressed
in F−→W and Λ is a path planner.

III. Simulation-based inference

From the Bayes rule, the posterior of the hand config-
uration is

p(h|S, o,P) = p(S | h, o,P)
p(S | o,P) p(h | o,P) (3)

A. Priors
The prior p(h | o,P) represents our domain knowledge

about the hand configuration without knowing if it leads
to a successful grasp or not (S is not observed).
Position Objects present in the workspace occupy a
small volume of the whole workspace. In order to facili-
tate the exploration of potential grasp poses, we make the
assumption that, at a successful grasp pose, the position
of the finger tips when the gripper is closed lies inside the
object. This information is modelled by the occupancy
variable o. Formally, we defined our prior as

p(x|o = 1,P) = p(o = 1|x,P)
p(o|P) p(x). (4)

Here, p(o|x,P) represents the likelihood of occupancy o,
p(x) denotes a uniform distribution over the workspace,
and p(x|P) simplifies to p(x) due to independence.

We model the likelihood of occupancy p(o|x,P) with a
convolutional occupancy network [2]. This network first
generates an embedding on the three canonical planes
cxy(P), cxz(P) and cyz(P). Subsequently, a feature vec-
tor is obtained by summing point-wise features computed
via bilinear interpolation at the desired position xD, i.e
ψ(P,xD) = cxy(P)(xD) + cxz(P)(xD) + cyz(P)(xD). Fi-
nally, this embedding is passed through a fully connected
network to produce the occupancy output.

We use a Markov chain Monte Carlo (MCMC) scheme
to sample from the position prior because we have access
to the target density p(x|o = 1,P) ∝ p(o = 1|x,P)p(x)
with the convolutional occupancy network. Furthermore,
it is fully differentiable, making possible the use of the
Hamiltonian Monte Carlo [3], a variant of MCMC using
gradients to efficiently explore the position prior space.
Orientation The prior of the orientation q is a uni-
form distribution over the hypersphere S3. This prior
is invariant to any rotation R ∈ SO(2) applied to
individual objects. This is a desirable property as it does
not assume any preferred orientation.

B. Neural ratio estimation
The likelihood function p(S | h, o,P) and the evidence

p(S | o,P) are both intractable because no closed-
form relations exist to express the success of a grasp as
it derives from nonsmooth contact dynamics. It makes
standard Bayesian inference procedures such as Markov
chain Monte Carlo unusable. However, drawing samples
from forward models remains feasible with physical sim-
ulators, hence enabling simulation-based Bayesian infer-
ence algorithms.

Se
gm

en
ta

tio
n

Tr
an

sf
or

m
at

io
n

Pr
oj

ec
tio

n

Ag
gr

eg
at

io
n

Unet

R
at

io
 e

st
im

at
or

O
cc

up
an

cy
ne

tw
or

k

Fe
at

ur
es

 e
xt

ra
ct

io
n

PointNet
Encoder

Fig. 3: Posterior inference. The depth image I (in green) passes through a segmentation model which extracts pixels
belonging to objects. Then, these pixels are transformed into point cloud P (in blue) with intrinsic and extrinsic
matrices of the depth camera. We then generate three canonical feature planes cxy(P), cxz(P) and cyz(P) and extract
for a given h point-wise ψ(P,x) and local Ψ(P,h) features. They are feed to the ratio and occupancy networks which
output the posterior density p̂(h | S, o,P).

First, we express the likelihood-to-evidence ratio as

r(S | h, o,P) = p(S | h, o,P)
p(S | o,P) (5)

= p(S,h | o,P)
p(S | o,P)p(h | o,P) (6)

By adapting the approach described in [4] for likelihood
ratio estimation, we train a neural network classifier dϕ

which approximates r(S|h, o,P). This network is trained
to distinguish tuples (S,h, o,P) (labeled y = 1) sampled
from the joint distribution p(S,h | o,P) and tuples
(S,h, o,P) (labeled y = 0) sampled from the product of
the marginals p(S | o,P)p(h | o,P). The Bayes optimal
classifier that minimizes the cross entropy is given by

d∗(S,h, o,P) = p(S,h | o,P)
p(S,h | o,P) + p(S | o,P)p(h | o,P)

(7)
which recovers the likelihood-to-evidence ratio as

d∗

1 − d∗ = p(S,h | o,P)
p(S | o,P)p(h | o,P) = p(S | h, o,P)

p(S | o,P) (8)

Therefore, by modelling the classifier with a neural net-
work dϕ trained on the binary classification problem, we
obtain an approximate but amortized and differentiable
likelihood ratio

rϕ(S | h, o,P) = dϕ(S,h, o,P)
1 − dϕ(S,h, o,P) . (9)

Finally, the likelihood ratio is combined with the prior
to approximate the posterior as

p̂(h|S, o,P) = rϕ(S | h, o,P)p(h | o,P), (10)

which enables immediate posterior inference despite the
initial intractability of the likelihood function p(S |
h, o,P) and the evidence p(S | o,P).

Instead of passing the raw point cloud into the ratio
estimator, we use the point-wise features vector from the
convolutional occupancy network ψ(P,x). Furthermore,
we extract local features centered around the point x,
cropped from the features planes cxy(P), cxz(P) and
cyz(P) and scaled to be within the gripper’s size. These
local features Ψ(P,x) bring information about collision
and objects present in the area targeted by x.

Using only a single neural network produces a posterior
with very high frequencies. Ensembles tend to produce
more conservative posteriors [5], making them suitable
for optimization purposes. In our case, we take 5 models
and compute the ratio as

r̂ = 1
5Σ5

i=1r̂i. (11)

The whole pipeline is illustrated in Fig 3.

C. Sequential neural ratio estimation
Despite the use of an informative position prior, the

success rate a priori remains below 1%, resulting in an
imbalanced dataset that favors failure grasps (S = 0).
To address this issue, we iteratively refine our ratio

estimator by using a sequential neural estimation scheme.
Starting with our prior p0(h | o,P) := p(h | o,P),
we refine the posterior from the previous iterate by
setting it as the prior for the next iteration, pt+1(h |
o,P) := p̂t(h|S = 1, o,P). In each iteration, we repeat
the training procedure described in [4].

Sampling from the new prior pt+1 poses significant
challenges because q is defined on a manifold. The
geodesic Monte Carlo scheme [6] generates samples sim-
ilarly to Hamiltonian Monte Carlo for distributions de-
fined on smooth manifolds. Furthermore, geodesic Monte
Carlo is applicable to a product of manifolds M1×M2 :
(x1, x2) : x1 ∈ M1, x2 ∈ M2, which, in our specific case,
corresponds to R3 × S3. It requires to have access to
closed-form expressions of the target density, orthogonal
projection and geodesics. While orthogonal projections
and geodesics are available in closed-form for R3 and
S3, the target density is intractable here. As described
in [4], a likelihood-free variant of Hamiltonian Monte
Carlo exists, where the intractable likelihood is replaced
by the ratio. Therefore, by replacing the likelihood by the
ratio in the geodesic Monte Carlo scheme, we can draw
samples from our posterior density p̂t(h|S = 1, o,P)
defined as a product of smooth manifolds.

D. Maximum a posteriori
Due to the intractability of the likelihood function and

of the evidence, Eq. (1) cannot be solved analytically nor
numerically. We rely instead on the approximation given
by the likelihood-to-evidence ratio r̂ to find an approx-
imation of the maximum a posteriori (MAP) estimate
as

ĥ∗ = arg max
h

r̂(S = 1 | h, o,P)p(h | o,P) (12)

= arg min
h

− log
(
r̂(S = 1 | h, o,P)p(h | o,P)

)
, (13)

which we solve using gradient descent. The gradient of
Eq. (13) decomposes as

−∇(x,q) log
(
r̂(S | h, o,P)p(h | o,P)

)

= − ∇(x,q) log r̂(S | h, o,P)
− ∇(x,q) log p(h | o,P).

(14)

Since the likelihood-to-evidence ratio estimator r̂ and
our informative prior p(h | o,P) are modelled by a neural
network, they are fully differentiable with respect to their
inputs and their gradients can be computed by automatic
differentiation. However, the orientation q belongs to a
Riemannian manifold. Thus, performing gradient descent
would violate our geometric assumptions (Fig. 4). Let
us consider a variable Z on the smooth Riemannian
manifold M = R3 × S3 with tangent space TZM and
a function f : M → R. Since S3 is embedded in
R4, f can be evaluated on R3 × R4, leading to the
definition of the Euclidean gradients ∇f(Z) ∈ R3×R4. In
turn, these Euclidean gradients can be transformed into

M

ThM ∇f

gradf

Exph(gradf)

h

Fig. 4: Sphere manifold S2. h and Exph(gradf(h)) are
points on the surface of the sphere. The red curve cor-
responds to the geodesic and the blue curve corresponds
to the straight line in Euclidean space.

their Riemannian counterparts gradf(Z) via orthogonal
projection PZ into the tangent space TZM. Therefore,

gradf(Z) = PZ(∇f(Z)) (15)

where the orthogonal projection onto R3 is the identity
I3 and the orthogonal projection onto S3 is Pξ(∇f) =
(I4 − ξξT)∇f at ξ ∈ S3. Thus, we can solve Eq. (13) by
projecting Euclidean gradients of Eq. (14) to the tangent
space TZM and use it in the following update rule [7]

hk+1 = Exphk
(−αkgradf(hk)) (16)

with Expx(v) : TxM → M is the exponential map and
αk is the step size.

IV. Experiments: Design and Setup
We assess our approach on a robotic grasping task in

both simulation and real-world settings. Specifically, we
investigate three questions: 1) Does the method transfer
well from simulation to real-world? 2) How the sequential
improvement impacts the grasping success rate? 3) What
kind of posterior distribution are learned?

A. Data generation
The data generating procedure is defined as follow:

z ∼ p(z) (17)
I ∼ p(I | z,TWC) (18)
P = f(I,TWC,K) (19)

{h ∼ p(h | o = 1,P)} (20)
{τ1:m ∼ Λ(τ0, ik(h),P)} (21)

{S ∼ p(S | τ1:m, z)} (22)

We use Pybullet [8] for implementing these functions.
We use the same object assets than VGN [9] for the
training and testing and we placed the objects in a packed
scenario, as defined in [9]. The latent variables z are
described as follow:

Number of objects We sample according to a Pois-
son law N ∼ Pois(4) + 1 [9]

Object mesh We sample uniformly an object mesh
from an asset of objects.

Pose of the table TST We randomize the po-
sition (x, y) ∼ N (0, 0.008) and the rotation qT =

Fig. 5: (left) Object assets used in the real setup. (right)
First object removed is often the tallest one.

(0., 0., sin(θTable
2), cos(θTable

2)), θTable ∼ U(−5, 5) of the
table with respect to F−→S.

Pose of the object TTO We randomize the po-
sition (x, y) ∼ U(−l

2 ,
l
2) and the orientation qO =

(0., 0., sin(θO
2), cos(θO

2)), θO ∼ U(0, 2π) of the object with
respect to F−→T.

Torque applied by the fingers We randomize the
final torque applied by the fingers τ ∼ U(35, 40).

Lateral friction coefficient We randomize the lat-
eral friction coefficient µ ∼ U(1, 2).

Spinning friction coefficient We randomize
the spinning friction coefficient γ = ηµ, η ∼
N (0.002, 0.0001).

Depth images We add noise to the rendered depth
images in simulation using the additive noise model of
[10] with the same parameters.

B. Robotic setup
We carry out experiments with a Robotiq 3-finger

gripper attached to a UR5 robotic arm, as shown in
Fig. 1. A Intel Realsense D435i depth sensor is mounted
to the flange of the robotic arm. It produces 848 × 480
depth images. The transformation TFC is calibrated
using hand-eye calibration from OpenCV [11]. All the
devices are handled within the ROS framework. The
objects, used for testing and unseen during training, are
chosen based on their availability in the lab (Fig 5).

V. Experiments: Results
A. Grasping results

We compared our results with [10], as they used also
an implicit representation and only one depth image.
However, we benchmark only on packed scenario because
our gripper is too big to fit small objects of the pile
scenario and our robotic arm has only 6 DoF and not
7, making harder to find a valid joint trajectory.

Because our modelling treats the rotation as a random
variable belonging to the n-sphere manifold, we also train
a neural ratio estimator to predict the 4 DoF pose (we
enforce a top-down approach) with q ∈ S1 but we only
use the cxy(P) features plane. We train 5 ratios on 7500
different scenes z and 4000 tuples (h, S).

We evaluate the grasp success rate (GSR), the ratio
of success grasp executions, and the declutter rate (DR),

the average ratio of objects removed. Results are reported
in Table I. To compute the MAP, we first take the 20
best candidates among 1800 hand configurations sampled
from the prior. Then, we perform 100 optimization steps
and keep the best candidate. If our method fails three
times in row to generate a reachable hand configuration,
we note it as a fail. Globally, our method performs
similar to or better than other approaches. Our 4 DoF
model performs better than the 6 DoF, mainly due to
the lower dimensional space. While DR of GIGA and
VGN are similar to their GSR, our DR is significantly
lower than our GSR, meaning that our model mostly
fails to pick the first object but once it is removed, it
can successfully grasp all the objects. The discrepancy
between the simulation and real-world setup is overcome
without any decrease in performance. In real-world set-
tings, the majority of failure cases are due to insufficient
friction forces, causing the objects to slip. We believe that
these failure scenario happen because the simulator used
to generate the training set does not accurately model
friction forces.

TABLE I: Grasp success rate and declutter rate for pick-
ing experiments for the packed scenario with 5 objects
over 100 rounds. Real-world results are performed with
5 objects over 15 rounds. Results of GPD [12], VGN [9]
and GIGA [10] are reported from [10].

Method GSR ↑ DR ↑
Simulation results

GPD [12] 35.4 30.7
VGN [9] 74.5 79.2
GIGA [10] 87.9 86
Ours (4DoF) 91.1 77
Ours (6DoF) 79.71 58.56

Real-world results
VGN [9] 77.2 81.3
GIGA [10] 83.3 86.6
Ours (4DoF) 95.6 88
Ours (6DoF) 86.3 62.1

B. Sample efficiency

We generate 2000 different scenes (z) and for each
scene, we sample 2000 tuples (h, S) from the prior and
the sequential posteriors, each one trained on 7500 dif-
ferent scenes z with 4000 tuples (h, S). We report the
results in Table II. With no surprise, sampling for the
sequential posteriors leads to an increasing GSR. The
use of an occupancy network as prior conditionned by
observation for the position increases the GSR by a factor
10. However, this rate is still far from an acceptable one,
mainly due to the orientation prior, which is uniform.
As shown in Fig 6, the distribution p(S) shifts from
a concentrated distribution near 0% (meaning that for
one scene z, the sampled hand configurations h will
lead to a very low grasping success rate in expectation)
and spreads toward higher grasping success rate areas,

meaning that each iteration of the sequential procedure
generalizes better than the previous one.

TABLE II: GSR of sampling strategies.

Sampling strategy GSR
Uniform prior 0.05

p0(h | o, P) 0.96
p1(h | o, P) 14
p2(h | o, P) 19.62

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Success rate (%)

0

1

2

3

4

5

6 p1

p2

Fig. 6: Empirical distribution p(S) evaluated on 10, 000
scenes z. Iterations of the sequential procedure shifts the
distribution from low grasping success rate regions to
higher grasping success rate regions.

C. Posteriors
Our method has the advantage to offer access to

the full posterior distribution over H. Thus, with our
geodesic Hamiltonian Monte Carlo scheme, we can sam-
ple hand configurations from the posterior h ∼ p(h | S =
1, o,P), as depicted in Fig 7. While our conditional prior
distributes density across everywhere on the objects, the
posterior assigns maximal density to the top of objects
and minimal density to the bottom of objects when
multiple objects are present on the table. This occurs
due to potential collisions between the gripper and the
table, or the gripper and other objects. In practice, our
method will first pick the tallest object present on the
table and then move to the next tallest object or to
an isolated object (Fig 5). Regarding orientation, the
posterior converges to a top-down grasping approach
while having some deviations from a strict 4 DoF setup.
In fact, top-down approaches seem optimal in our setup
(small workspace size and large gripper) because it avoids
many collisions between the gripper and the table or the
other objects.

VI. Related Work
A. Robotic grasping

Probabilistic approaches for grasping problems typi-
cally rely on likelihood functions that model the prob-
ability of grasp success or a grasp quality metric given
an observation and grasp pose. Various methods can be
employed to determine the maximum likelihood estimate

(MLE) corresponding to the final grasp pose. Numerical
optimization techniques can be utilized when the likeli-
hood is represented by differentiable models [14]. Direct
regression of the MLE using a learned model yields quick
output but fails to capture the complete distribution [15].
Other approaches determine the MLE based on a list
of candidates computed through a grasp map in sensor
space [9]. In a similar vein to our work, in [16], models for
the likelihood and the prior are trained and the posterior
density is optimized using gradient descent. However,
unlike our approach, they employ Euler angles, which
can be susceptible to gimbal lock and singularities. Our
method preserves the geometry of the rotation space by
performing Riemannian gradient descent.

B. Neural scene representation
Our work capitalizes on the latest advancements in

neural implicit representations, which parameterize a 3D
scene as a continuous function [17]–[19]. This represen-
tation has proven valuable in various domains, including
3D reconstruction. Implicit representations possess the
advantage of offering ’infinite resolution’ compared to
discrete approaches. Furthermore, their rich latent space
endows them with powerful feature extraction capa-
bilities for diverse purposes. Additionally, they exhibit
flexibility by being conditioned on different sensor inputs,
such as point clouds or voxel grids, thus making them
highly adaptable for robotic applications [10], [20], [21].

VII. Conclusion
We have shown that simulation-based Bayesian in-

ference can be applied effectively to robotic grasping
in complex and noisy environments. The proposed in-
novative method improves the sample efficiency of the
inference pipeline. Our approach can manage tasks with
escalating complexity and proves valuable for real-world
robotic applications. Future research will focus on the
real-time constraints for inferring the optimal grasp pose.

Acknowledgement
Norman Marlier acknowledges the Belgian Fund for

Research training in Industry and Agriculture for its
financial support (FRIA grant). Computational resources
have been provided by the Consortium des Équipements
de Calcul Intensif (CÉCI), funded by the Fonds de la
Recherche Scientifique de Belgique (F.R.S.-FNRS) under
Grant No. 2.5020.11 and by the Walloon Region.

References
[1] K. Cranmer, J. Brehmer, and G. Louppe, “The frontier

of simulation-based inference,” Proceedings of the National
Academy of Sciences, 2020.

[2] S. Peng, M. Niemeyer, L. Mescheder, M. Pollefeys, and
A. Geiger, “Convolutional occupancy networks,” in Computer
Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16. Springer,
2020, pp. 523–540.

[3] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Hand-
book of markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

−0
.50

−0
.25

0.0
0

0.2
5

0.5
0

y

−0
.50

−0
.25 0.0

0
0.2
5

0.5
0

x

−0
.50

−0
.25

0.0
0

0.2
5

0.5
0

z

−0
.50

−0
.25 0.0

0
0.2
5

0.5
0

y
−0
.50

−0
.25 0.0

0
0.2
5

0.5
0

z

−1
.0

−0
.5

0.0

0.5

1.0

q y

−1
.0

−0
.5

0.0

0.5

1.0

q z
−1
.0

−0
.5 0.0 0.5 1.0

qx

−1
.0

−0
.5

0.0

0.5

1.0

q w
−1
.0

−0
.5 0.0 0.5 1.0

qy

−1
.0

−0
.5 0.0 0.5 1.0

qz

−1
.0

−0
.5 0.0 0.5 1.0

qw

-150°-120°-90°-60°-30° 0° 30° 60° 90°120°150°

-75°
-60°

-45°
-30°

-15°
0°
15°
30°

45°
60°

75°

90°

180°

270°

0°

Tilt
-150°-120°-90°-60°-30° 0° 30° 60° 90°120°150°

-75°
-60°

-45°
-30°

-15°
0°
15°
30°

45°
60°

75°

90°

180°

270°

0°

Tilt

Fig. 7: Posterior distribution p̂(h | S = 1, o = 1,P) of the grasp pose estimated by geodesic Hamiltonian Monte
Carlo. The scene and thus the point cloud are the same as in Fig 3. (left) The marginal distribution of the position
p̂(x | S = 1, o = 1,P). (middle) The marginal distribution of the orientation p̂(q | S = 1, o = 1,P) in black compared
to a top-down approach in red by components of the quaternion. (right top) Distribution p(q) along a top-down
approach shown with a Mollweide projection as in [13]. (right bottom) The marginal distribution of the orientation
p̂(q | S = 1, o = 1,P).

[4] J. Hermans, V. Begy, and G. Louppe, “Likelihood-free
MCMC with amortized approximate ratio estimators,” in
Proceedings of the 37th International Conference on Machine
Learning, ser. Proceedings of Machine Learning Research,
H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–
18 Jul 2020, pp. 4239–4248. [Online]. Available: http:
//proceedings.mlr.press/v119/hermans20a.html

[5] J. Hermans, A. Delaunoy, F. Rozet, A. Wehenkel, V. Begy, and
G. Louppe, “A crisis in simulation-based inference? beware,
your posterior approximations can be unfaithful,” Transac-
tions on Machine Learning Research, 2022.

[6] S. Byrne and M. Girolami, “Geodesic monte carlo on embed-
ded manifolds,” Scandinavian Journal of Statistics, vol. 40,
no. 4, pp. 825–845, 2013.

[7] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization al-
gorithms on matrix manifolds. Princeton University Press,
2009.

[8] E. Coumans and Y. Bai, “Pybullet, a python module for
physics simulation for games, robotics and machine learning,”
http://pybullet.org, 2016–2020.

[9] M. Breyer, J. J. Chung, L. Ott, S. Roland, and N. Juan,
“Volumetric grasping network: Real-time 6 dof grasp detection
in clutter,” in Conference on Robot Learning, 2020.

[10] Z. Jiang, Y. Zhu, M. Svetlik, K. Fang, and Y. Zhu, “Synergies
between affordance and geometry: 6-dof grasp detection via
implicit representations,” arXiv preprint arXiv:2104.01542,
2021.

[11] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of
Software Tools, 2000.

[12] A. Ten Pas, M. Gualtieri, K. Saenko, and R. Platt, “Grasp
pose detection in point clouds,” The International Journal of
Robotics Research, vol. 36, no. 13-14, pp. 1455–1473, 2017.

[13] K. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and
A. Makadia, “Implicit-pdf: Non-parametric representation of
probability distributions on the rotation manifold,” arXiv
preprint arXiv:2106.05965, 2021.

[14] Q. Lu, K. Chenna, B. Sundaralingam, and T. Hermans,
“Planning multi-fingered grasps as probabilistic inference in a
learned deep network,” in Robotics Research. Springer, 2020,
pp. 455–472.

[15] J. Cai, J. Cen, H. Wang, and M. Y. Wang, “Real-time collision-
free grasp pose detection with geometry-aware refinement us-
ing high-resolution volume,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1888–1895, 2022.

[16] M. Van der Merwe, Q. Lu, B. Sundaralingam, M. Matak,
and T. Hermans, “Learning continuous 3d reconstructions for
geometrically aware grasping,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 11 516–11 522.

[17] J. J. Park, P. Florence, J. Straub, R. Newcombe, and
S. Lovegrove, “Deepsdf: Learning continuous signed distance
functions for shape representation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, 2019, pp. 165–174.

[18] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng, “Nerf: Representing scenes as
neural radiance fields for view synthesis,” Communications of
the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[19] A. Simeonov, Y. Du, A. Tagliasacchi, J. B. Tenenbaum, A. Ro-
driguez, P. Agrawal, and V. Sitzmann, “Neural descriptor
fields: Se (3)-equivariant object representations for manipu-
lation,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 6394–6400.

[20] K. Karunratanakul, J. Yang, Y. Zhang, M. J. Black, K. Muan-
det, and S. Tang, “Grasping field: Learning implicit represen-
tations for human grasps,” in 2020 International Conference
on 3D Vision (3DV). IEEE, 2020, pp. 333–344.

[21] D. Driess, J.-S. Ha, M. Toussaint, and R. Tedrake, “Learning
models as functionals of signed-distance fields for manipula-
tion planning,” in Conference on Robot Learning. PMLR,
2022, pp. 245–255.

120 grasping many objects in an unrestricted setup

10.3 epilogue

10.3.1 Advantages

Our sequential approach allows us to overcome the main issue arising in simulation-

based inference for robotics grasping: very few grasp poses sampled from the prior lead to

successful grasps. This sequential approach provides an automatic procedure to generate

data that will converge to an approximate posterior useful for robotics tasks. All the

previous chapters show that the prior plays an important role and it can be difficult

to handcraft a relevant prior to generate successful grasp poses. With the sequential

approach, even an inefficient first prior leads to an approximate posterior which reaches

a high success rate in practice.

10.3.2 Limitations

While our sequential approach showed significant performance on real benchmarks for

full DoF grasp pose estimation, it has some limitations and drawbacks. First of all, the

computation time is prohibitive, making it even slower than the 4 DoF. Furthermore, it

requires more memory because of the dimension of the grasp pose. Another limitation

concerns the data generation. While Chapters 7 to 9 generated only one dataset, the

sequential approach requires generating new samples for each iteration of the sequential

procedure. Because sampling from the manifold is quite slow, the whole procedure is

very time-consuming. Finally, the sequential approach shares the same limitations as

the previous work. We keep the assumption that the grasping contact point lies inside

the object which makes the approximation irrelevant for some robotics tasks.

10.3.3 Conclusion and opportunities

Our sequential approach to approximate the posterior reached a high success rate, about

85%, for the full grasp pose. It allows us to combine the high degree of freedom from Chap-

ter 8 and the high complexity of the task from Chapter 9. We can still improve the

framework by decreasing the computation time. It can be possible to train a model to

directly infer the maximum a posteriori by using the approximate posterior as a loss

function. Thus, only one forward pass will be needed which reduces the inference to less

than one second. We leave this for future work.

Part IV

CONCLUS ION

11
CONCLUS ION

Robotic grasping is a challenging task due to its intrinsic complexity: the wide variety

of object shapes, the nonsmooth and nonlinear contact mechanics, and the noise inher-

ent in the perception of the environment. Furthermore, the complexity comes from the

robot itself: the nonlinear mapping between configuration space and task space alongside

the high dimensional multi-DoF gripper. All these ingredients make robotic grasping a

perfect benchmark to exploit the power of simulation-based inference algorithms. This

thesis has demonstrated their usefulness and how to use them in practice.

In Part i, we motivated the use of probabilistic modeling to infer grasp poses and

we took into account the topology of the task space through manifold optimization. We

introduced notions of robotic trajectory planning in Chapter 2 and how to relate a robotic

task to an effective motion. Then, Chapter 3 discussed probabilistic modeling and why

it is useful for robotics applications. We showed how to use machine learning and neural

networks to perform approximate Bayesian posterior inference. Finally, in Chapter 4 we

introduced manifold optimization which links probabilistic modeling and the topology

of the robotic task space. This completed our framework for robotic grasping.

In Part ii, we provided a review of existing approaches for robotic grasping. We first

started with the approaches based on mechanical principles, called analytical approaches.

We showed why they are rarely used in practice because they do not deal with uncer-

tainties and require perfect knowledge of their environment, which is almost impossible

to achieve. Then, roboticists started to use more and more data-driven methods to over-

come the principal issue of analytical approaches. However, they continue to use quality

metrics from mechanical principles to assess the success or failure of grasps. During this

period, deep learning has appeared and shown incredible performance on complex tasks.

It became quickly the new state-of-the-art approach for robotic grasping. From this time,

novel deep learning methods found successful applications in the field of robotics.

Part iii explained all the contributions of the thesis. In Chapter 7, we started from

a simple robotic benchmark, which is the grasping of a single object with very few

non-observable variables. This prototype demonstrated the interest of simulation-based

inference methods for robotics. Then, in Chapter 8, we increased the complexity of the

task and overcame previous limitations by improving the prior and slightly incorporating

new properties in it. We moved a step further in Chapter 9 in the complexity of the

task by learning priors from observation while reducing the dimension of the search

space. These contributions unlock new possibilities used in Chapter 10, providing the

full benchmark without constraints on the DoF of the gripper.

123

124 conclusion

The use of probabilistic modeling in robotics is a central element in the evolution

of robotics. Over four decades of research in robotic grasping have led roboticists from

a deterministic approach to a stochastic one. Sensors always produce noisy observa-

tions of the environment, and dynamics is often stochastic, thereby complicating the

decision-making process. Although probabilistic modeling found its initial application in

localization and navigation tasks with linear approximations, the deep learning revolu-

tion has provided many tools to accomplish complex nonlinear tasks. Robotic grasping

is no longer a task requiring complex models with many equations to solve but rather

methods that exploit at best outcomes from experience to make decisions.

We bring one solution to the research question: How can robots autonomously

grasp objects in unstructured environments? By performing Bayesian posterior

inference with the posterior surrogate learned from stochastic simulations. While many

different possible solutions exist, our framework based on simulation-based inference

methods nicely handles the issues faced in the research question.

Our contributions offer original solutions to several challenges by bringing simulation-

based inference methods to robotic grasping. These methods offer numerous advantages.

Firstly, they allow us to perform Bayesian inference despite the intractability of both

the likelihood function and the marginal. Secondly, they leverage robotic simulators

to generate samples. They have gained widespread adoption due to extensive use in

research, thereby boosting simulation-based inference methods by bridging the gap be-

tween simulations and the real world. Thirdly, they provide amortized and differentiable

approximations, enabling to generalize well across a wide variety of situations encoun-

tered in robotic grasping without retraining for each new observation. Subsequently, we

introduce appropriate modeling of the task to perform Bayesian inference. This step is

crucial as it involves the design of a prior for the variables of interest, addressing the pri-

mary challenge encountered throughout our contributions. Each contribution overcomes

a more complex task by using a more sophisticated prior. Finally, we model the vari-

ables of interest by considering their geometry and enhancing the modeling with greater

generalization capabilities. The integration of learning and geometrical methods unlocks

novel possibilities for robotic applications.

Nevertheless, simulation-based inference methods do not solve all the problems faced

in robotics. First of all, simulation-based inference methods rely on simulations to learn a

surrogate of the posterior. However, robotics simulators may lack precision because of the

rich nonsmooth dynamics of contact. Thus, they can only simulate basic scenarios. This

discrepancy between the simulation and the real world may introduce some errors that

impact the success of the method. Secondly, amortized methods require a large amount of

data that can be very time-consuming, depending on the task, to generate a valid dataset.

These two issues may be solved by learning the posterior surrogate from a small bunch of

real demonstrations, made by an expert. Given that these demonstrations take place in

real-world settings, the surrogate posterior will closely approximate the actual posterior

distribution rather than its simulated counterpart. In addition, the expert efficiently

conclusion 125

explores the state space, thus providing very informative demonstrations. Lastly, the

inference time of our method can be long for robotic applications, due to the many

optimization steps we performed. Future solutions may come from hardware acceleration

but most likely from new methods discovered in machine learning, such as knowledge

distillation, that hold promise for quickly inferring commands transmitted to the robot.

Machine learning has changed many aspects of robotics. It has unlocked so many possi-

bilities that were unimaginable ten years ago. But as it is said in the robotic community,

robot learning is more about how a robot learns rather than applying naive machine

learning methods. This dissertation, along with its contributions, illustrates the multi-

disciplinary nature of robot learning, demonstrating the diverse array of tools necessary

for its efficacy.

The robotic revolution is underway, driven by progress in learning methods.

Part V

APPENDIX

A
REFERENCES

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds.

Princeton University Press, 2008.

Ü. R. Aktaş, C. Zhao, M. Kopicki, and J. L. Wyatt. Deep dexterous grasping of novel ob-

jects from a single view. International Journal of Humanoid Robotics, 19(02):2250011,

2022.

A. Aristidou, J. Lasenby, Y. Chrysanthou, and A. Shamir. Inverse kinematics techniques

in computer graphics: A survey. In Computer graphics forum, volume 37, pages 35–58.

Wiley Online Library, 2018.

R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith, and Y. Matsuoka. Physical hu-

man interactive guidance: Identifying grasping principles from human-planned grasps.

IEEE Transactions on Robotics, 28(4):899–910, 2012.

L. Berscheid, C. Friedrich, and T. Kröger. Robot learning of 6 dof grasping using model-

based adaptive primitives. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 4474–4480. IEEE, 2021.

A. Bicchi and V. Kumar. Robotic grasping and contact: A review. In Proceedings

2000 ICRA. Millennium conference. IEEE international conference on robotics and

automation. Symposia proceedings (Cat. No. 00CH37065), volume 1, pages 348–353.

IEEE, 2000.

C. Bingham. An antipodally symmetric distribution on the sphere. The Annals of

Statistics, pages 1201–1225, 1974.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for

statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

J. Bohg, A. Morales, T. Asfour, and D. Kragic. Data-driven grasp synthesis - a survey.

IEEE Transactions on robotics, 30(2):289–309, 2013.

N. Boumal. Interpolation and regression of rotation matrices. In International Confer-

ence on Geometric Science of Information, pages 345–352. Springer, 2013.

M. Breyer, J. J. Chung, L. Ott, R. Siegwart, and J. Nieto. Volumetric grasping network:

Real-time 6 dof grasp detection in clutter. In Conference on Robot Learning, pages

1602–1611. PMLR, 2021.

129

130

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,

P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances

in neural information processing systems, 33:1877–1901, 2020.

J. Canny and C. Ferrari. Planning optimal grasps. In Proc. Conf. on Robotics and

Automation (ICRA), volume 1992, pages 2290–2295, 1992.

E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games,

robotics and machine learning. http://pybullet.org, 2016–2023.

K. Cranmer, J. Pavez, and G. Louppe. Approximating likelihood ratios with calibrated

discriminative classifiers. arXiv preprint arXiv:1506.02169, 2015.

K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference.

Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

B. Curless and M. Levoy. A volumetric method for building complex models from

range images. In Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques, pages 303–312, 1996.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

control, signals and systems, 2(4):303–314, 1989.

M. Dax, S. Green, J. Gair, M. Deistler, B. Schölkopf, and J. H. Macke. Group equivariant

neural posterior estimation. In ICLR 2022, 2022.

J. P. C. de Souza, L. F. Rocha, P. M. Oliveira, A. P. Moreira, and J. Boaventura-

Cunha. Robotic grasping: from wrench space heuristics to deep learning policies.

Robotics and Computer-Integrated Manufacturing, 71:102176, 2021. ISSN 0736-5845.

doi: https://doi.org/10.1016/j.rcim.2021.102176. URL https://www.sciencedirect.

com/science/article/pii/S0736584521000594.

J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms based

on matrices. 1955.

R. Detry, O. Kroemer, M. Popovic, Y. Touati, E. Baseski, N. Krueger, J. Peters, and

J. Piater. Object-specific grasp affordance densities. In Proceedings of ICDL, vol-

ume 10, 2009.

R. Detry, J. Papon, and L. Matthies. Task-oriented grasping with semantic and geomet-

ric scene understanding. In 2017 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 3266–3273. IEEE, 2017.

R. Diankov. Automated construction of robotic manipulation programs. PhD thesis,

Carnegie Mellon University, The Robotics Institute Pittsburgh, 2010.

http://pybullet.org
https://www.sciencedirect.com/science/article/pii/S0736584521000594
https://www.sciencedirect.com/science/article/pii/S0736584521000594

131

C. C. Drovandi and A. N. Pettitt. Likelihood-free bayesian estimation of multivariate

quantile distributions. Computational Statistics & Data Analysis, 55(9):2541–2556,

2011.

C. Durkan, I. Murray, and G. Papamakarios. On contrastive learning for likelihood-free

inference. In International conference on machine learning, pages 2771–2781. PMLR,

2020.

S. El-Khoury, A. Sahbani, and V. Perdereau. Learning the natural grasping component

of an unknown object. In 2007 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2957–2962. IEEE, 2007.

C. Eppner, A. Mousavian, and D. Fox. A billion ways to grasp: An evaluation of grasp

sampling schemes on a dense, physics-based grasp data set. In The International

Symposium of Robotics Research, pages 890–905. Springer, 2019.

R. G. Everitt. Bootstrapped synthetic likelihood. arXiv preprint arXiv:1711.05825,

2017.

H.-S. Fang, C. Wang, M. Gou, and C. Lu. Graspnet-1billion: A large-scale benchmark

for general object grasping. In Proceedings of the IEEE/CVF conference on computer

vision and pattern recognition, pages 11444–11453, 2020.

M. Fasiolo, S. N. Wood, F. Hartig, and M. V. Bravington. An extended empirical

saddlepoint approximation for intractable likelihoods. 2018.

K.-I. Funahashi. On the approximate realization of continuous mappings by neural

networks. Neural networks, 2(3):183–192, 1989.

P. Furgale. Representing robot pose: The good, the bad, and the ugly. In workshop on

Lessons Learned from Building Complex Systems, IEEE International Conference on

Robotics and Automation (ICRA). http://paulfurgale. info/news/2, volume 14, page 9,

2014.

C. J. Geyer. Practical markov chain monte carlo. Statistical science, pages 473–483,

1992.

W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo in practice.

CRC press, 1995.

M. Grübler. Allgemeine Eigenschaften der zwangläufigen ebenen kinematischen Ketten.

L. Simion, 1884.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applica-

tions. 1970.

132

J. Hermans, V. Begy, and G. Louppe. Likelihood-free mcmc with amortized approximate

ratio estimators. In International conference on machine learning, pages 4239–4248.

PMLR, 2020.

J. Hermans, N. Banik, C. Weniger, G. Bertone, and G. Louppe. Towards constraining

warm dark matter with stellar streams through neural simulation-based inference.

Monthly Notices of the Royal Astronomical Society, 507(2):1999–2011, 2021.

W. Huang, P. Abbeel, D. Pathak, and I. Mordatch. Language models as zero-shot plan-

ners: Extracting actionable knowledge for embodied agents. In International Confer-

ence on Machine Learning, pages 9118–9147. PMLR, 2022.

W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng, J. Tompson, I. Mor-

datch, Y. Chebotar, et al. Inner monologue: Embodied reasoning through planning

with language models. In Conference on Robot Learning, pages 1769–1782. PMLR,

2023.

b. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz,

A. Irpan, E. Jang, R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao,

P. Sermanet, A. T. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown,

M. Ahn, O. Cortes, N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao,

P. Pastor, L. Luu, K.-H. Lee, Y. Kuang, S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J.

Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng, and C. K. Fu. Do as i can,

not as i say: Grounding language in robotic affordances. In K. Liu, D. Kulic, and

J. Ichnowski, editors, Proceedings of The 6th Conference on Robot Learning, volume

205 of Proceedings of Machine Learning Research, pages 287–318. PMLR, 14–18 Dec

2023. URL https://proceedings.mlr.press/v205/ichter23a.html.

N. Jaquier, L. Rozo, S. Calinon, and M. Bürger. Bayesian optimization meets riemannian

manifolds in robot learning. In Conference on Robot Learning, pages 233–246. PMLR,

2020.

Y. Jiang, S. Moseson, and A. Saxena. Efficient grasping from rgbd images: Learning using

a new rectangle representation. In 2011 IEEE International conference on robotics and

automation, pages 3304–3311. IEEE, 2011.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to

variational methods for graphical models. Machine learning, 37:183–233, 1999.

D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for grasp planning. In 2015

IEEE international conference on robotics and automation (ICRA), pages 4304–4311.

IEEE, 2015.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The

international journal of robotics research, 5(1):90–98, 1986.

https://proceedings.mlr.press/v205/ichter23a.html

133

H. Klein, N. Jaquier, A. Meixner, and T. Asfour. On the design of region-avoiding metrics

for collision-safe motion generation on riemannian manifolds. In 2023 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages 2346–2353.

IEEE, 2023.

I. Kobyzev, S. J. Prince, and M. A. Brubaker. Normalizing flows: An introduction

and review of current methods. IEEE transactions on pattern analysis and machine

intelligence, 43(11):3964–3979, 2020.

D. Koller and N. Friedman. Probabilistic graphical models: principles and techniques.

MIT press, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-

volutional neural networks. Advances in neural information processing systems, 25,

2012.

F. Kyota, T. Watabe, S. Saito, and M. Nakajima. Detection and evaluation of grasping

positions for autonomous agents. In 2005 International Conference on Cyberworlds

(CW’05), pages 8–pp. IEEE, 2005.

S. LaValle. Rapidly-exploring random trees: A new tool for path planning. Research

Report 9811, 1998.

S. M. LaValle, J. J. Kuffner, B. Donald, et al. Rapidly-exploring random trees: Progress

and prospects. Algorithmic and computational robotics: new directions, 5:293–308,

2001.

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series.

The handbook of brain theory and neural networks, 3361(10):1995, 1995.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

N. P. Lemoine. Moving beyond noninformative priors: why and how to choose weakly

informative priors in bayesian analyses. Oikos, 128(7):912–928, 2019.

J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and D. Fox. Gpu-

accelerated robotic simulation for distributed reinforcement learning. In Conference

on Robot Learning, pages 270–282. PMLR, 2018.

M. Likhachev, G. J. Gordon, and S. Thrun. Ara*: Anytime a* with provable bounds on

sub-optimality. Advances in neural information processing systems, 16, 2003.

M. Liu, Z. Pan, K. Xu, K. Ganguly, and D. Manocha. Generating grasp poses for a

high-dof gripper using neural networks. In 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pages 1518–1525. IEEE, 2019.

134

Q. Lu, M. Van der Merwe, B. Sundaralingam, and T. Hermans. Multifingered grasp

planning via inference in deep neural networks: Outperforming sampling by learning

differentiable models. IEEE Robotics & Automation Magazine, 27(2):55–65, 2020.

K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and K. Goldberg.

Dex-net 2.0: Deep learning to plan robust grasps with synthetic point clouds and

analytic grasp metrics. 2017.

N. Marlier, G. Louppe, O. Bruls, and G. Dislaire. Robotic throwing controller for ac-

celerating a recycling line. In Proceedings of the Robotix Academy Conference for

Industrial Robotics (RACIR) 2019. F.R.S.-FNRS - Fonds de la Recherche Scientifique

[BE], Robotix Academy, 2019.

N. Marlier, O. Brüls, and G. Louppe. Simulation-based bayesian inference for multi-

fingered robotic grasping. arXiv preprint arXiv:2109.14275, 2021.

N. Marlier, O. Brüls, and G. Louppe. Simulation-based bayesian inference for robotic

grasping. arXiv preprint arXiv:2303.05873, 2022.

N. Marlier, J. Gustin, G. Louppe, and O. Brüls. Implicit representation priors meet

riemannian geometry for bayesian robotic grasping. arXiv preprint arXiv:2304.08805,

2023.

H. Merzić, M. Bogdanović, D. Kappler, L. Righetti, and J. Bohg. Leveraging contact

forces for learning to grasp. In 2019 international conference on robotics and automa-

tion (ICRA), pages 3615–3621. IEEE, 2019.

C. Michel, V. Perdereau, and M. Drouin. An approach to extract natural grasping axes

with a real 3d vision system. In 2006 IEEE International Symposium on Industrial

Electronics, volume 4, pages 3130–3135. IEEE, 2006.

A. T. Miller and P. K. Allen. Graspit! a versatile simulator for robotic grasping. IEEE

Robotics & Automation Magazine, 11(4):110–122, 2004.

A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen. Automatic grasp planning

using shape primitives. In 2003 IEEE International Conference on Robotics and Au-

tomation (Cat. No. 03CH37422), volume 2, pages 1824–1829. IEEE, 2003.

B. K. Miller, A. Cole, P. Forré, G. Louppe, and C. Weniger. Truncated marginal neural

ratio estimation. Advances in Neural Information Processing Systems, 34:129–143,

2021.

B. K. Miller, C. Weniger, and P. Forré. Contrastive neural ratio estimation. Advances

in Neural Information Processing Systems, 35:3262–3278, 2022.

135

L. Min, P. Zherong, X. Kai, G. Kanishka, and M. Dinesh. Deep differentiable grasp

planner for high-dof grippers. CoRR, abs/2002.01530, 2020. URL https://arxiv.

org/abs/2002.01530.

M. Q. Mohammed, K. L. Chung, and C. S. Chyi. Review of deep reinforcement learning-

based object grasping: Techniques, open challenges, and recommendations. IEEE

Access, 8:178450–178481, 2020.

L. Montesano, M. Lopes, A. Bernardino, and J. Santos-Victor. Learning object affor-

dances: from sensory–motor coordination to imitation. IEEE Transactions on Robotics,

24(1):15–26, 2008.

A. Morales, E. Chinellato, A. H. Fagg, and A. P. Del Pobil. Using experience for assessing

grasp reliability. International Journal of Humanoid Robotics, 1(04):671–691, 2004.

A. Mousavian, C. Eppner, and D. Fox. 6-dof graspnet: Variational grasp generation for

object manipulation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 2901–2910, 2019.

K. A. Murphy, C. Esteves, V. Jampani, S. Ramalingam, and A. Makadia. Implicit-pdf:

Non-parametric representation of probability distributions on the rotation manifold.

In M. Meila and T. Zhang, editors, Proceedings of the 38th International Conference

on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pages

7882–7893. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/

murphy21a.html.

R. M. Murray, Z. Li, S. S. Sastry, and S. S. Sastry. A mathematical introduction to

robotic manipulation. CRC press, 1994.

R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte

carlo, 2(11):2, 2011.

R. Newbury, M. Gu, L. Chumbley, A. Mousavian, C. Eppner, J. Leitner, J. Bohg,

A. Morales, T. Asfour, D. Kragic, et al. Deep learning approaches to grasp synthesis:

A review. IEEE Transactions on Robotics, 2023.

V. M. Ong, D. J. Nott, M.-N. Tran, S. A. Sisson, and C. C. Drovandi. Variational bayes

with synthetic likelihood. Statistics and Computing, 28:971–988, 2018.

G. Papamakarios and I. Murray. Fast ε-free inference of simulation models with bayesian

conditional density estimation. Advances in neural information processing systems, 29,

2016.

G. Papamakarios, D. Sterratt, and I. Murray. Sequential neural likelihood: Fast

likelihood-free inference with autoregressive flows. In The 22nd International Con-

ference on Artificial Intelligence and Statistics, pages 837–848. PMLR, 2019.

https://arxiv.org/abs/2002.01530
https://arxiv.org/abs/2002.01530
https://proceedings.mlr.press/v139/murphy21a.html
https://proceedings.mlr.press/v139/murphy21a.html

136

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan.

Normalizing flows for probabilistic modeling and inference. The Journal of Machine

Learning Research, 22(1):2617–2680, 2021.

R. Pelossof, A. Miller, P. Allen, and T. Jebara. An svm learning approach to robotic

grasping. In IEEE International Conference on Robotics and Automation, 2004. Pro-

ceedings. ICRA’04. 2004, volume 4, pages 3512–3518. IEEE, 2004.

G. W. Peters, S. A. Sisson, and Y. Fan. Likelihood-free bayesian inference for α-stable

models. Computational Statistics & Data Analysis, 56(11):3743–3756, 2012.

D. Rezende and S. Mohamed. Variational inference with normalizing flows. In Interna-

tional conference on machine learning, pages 1530–1538. PMLR, 2015.

M. A. Roa and R. Suárez. Computation of independent contact regions for grasping 3-d

objects. IEEE Transactions on Robotics, 25(4):839–850, 2009.

M. A. Roa and R. Suárez. Grasp quality measures: review and performance. Autonomous

robots, 38:65–88, 2015.

A. Sarma and M. Kay. Prior setting in practice: Strategies and rationales used in choosing

prior distributions for bayesian analysis. In Proceedings of the 2020 chi conference on

human factors in computing systems, pages 1–12, 2020.

M. Saveriano, F. J. Abu-Dakka, and V. Kyrki. Learning stable robotic skills on rieman-

nian manifolds. Robotics and Autonomous Systems, 169:104510, 2023.

P. Schmidt, N. Vahrenkamp, M. Wächter, and T. Asfour. Grasping of unknown objects

using deep convolutional neural networks based on depth images. In 2018 IEEE

international conference on robotics and automation (ICRA), pages 6831–6838. IEEE,

2018.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human

out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):

148–175, 2015.

K. B. Shimoga. Robot grasp synthesis algorithms: A survey. The International Journal

of Robotics Research, 15(3):230–266, 1996.

I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox, J. Thomason,

and A. Garg. Progprompt: Generating situated robot task plans using large language

models. In 2023 IEEE International Conference on Robotics and Automation (ICRA),

pages 11523–11530. IEEE, 2023.

S. A. Sisson, Y. Fan, and M. Beaumont. Handbook of approximate Bayesian computation.

CRC Press, 2018.

137

G. Smith, E. Lee, K. Goldberg, K. Bohringer, and J. Craig. Computing parallel-jaw grips.

In Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat.

No. 99CH36288C), volume 3, pages 1897–1903. IEEE, 1999.

S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-

loop grasping from low-cost demonstrations. IEEE Robotics and Automation Letters,

5(3):4978–4985, 2020.

I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE

Robotics & Automation Magazine, 19(4):72–82, December 2012. doi: 10.1109/MRA.

2012.2205651. https://ompl.kavrakilab.org.

B. Tang, M. Corsaro, G. Konidaris, S. Nikolaidis, and S. Tellex. Learning collaborative

pushing and grasping policies in dense clutter. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 6177–6184. IEEE, 2021.

A. Ten Pas and R. Platt. Using geometry to detect grasp poses in 3d point clouds.

Robotics Research: Volume 1, pages 307–324, 2018.

O. Thomas, R. Dutta, J. Corander, S. Kaski, and M. U. Gutmann. Likelihood-free

inference by ratio estimation. Bayesian Analysis, 17(1):1–31, 2022.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.

In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages

5026–5033. IEEE, 2012.

D. Tran, R. Ranganath, and D. Blei. Hierarchical implicit models and likelihood-free

variational inference. Advances in Neural Information Processing Systems, 30, 2017.

N. Vahrenkamp, M. Kröhnert, S. Ulbrich, T. Asfour, G. Metta, R. Dillmann, and G. San-

dini. Simox: A robotics toolbox for simulation, motion and grasp planning. In Intel-

ligent Autonomous Systems 12: Volume 1 Proceedings of the 12th International Con-

ference IAS-12, held June 26-29, 2012, Jeju Island, Korea, pages 585–594. Springer,

2013.

J. Varley, J. Weisz, J. Weiss, and P. Allen. Generating multi-fingered robotic grasps via

deep learning. In 2015 IEEE/RSJ international conference on intelligent robots and

systems (IROS), pages 4415–4420. IEEE, 2015.

M. Veres, M. Moussa, and G. W. Taylor. An integrated simulator and dataset that

combines grasping and vision for deep learning. arXiv preprint arXiv:1702.02103,

2017.

M. J. Wainwright, M. I. Jordan, et al. Graphical models, exponential families, and

variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305,

2008.

https://ompl.kavrakilab.org

138

C.Wang, H.-S. Fang, M. Gou, H. Fang, J. Gao, and C. Lu. Graspness discovery in clutters

for fast and accurate grasp detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 15964–15973, 2021.

A. Wehenkel and G. Louppe. Unconstrained monotonic neural networks. Advances in

neural information processing systems, 32, 2019.

W. Wei, Y. Luo, F. Li, G. Xu, J. Zhong, W. Li, and P. Wang. Gpr: Grasp pose refinement

network for cluttered scenes. In 2021 IEEE International Conference on Robotics and

Automation (ICRA), pages 4295–4302. IEEE, 2021.

J. Weisz and P. K. Allen. Pose error robust grasping from contact wrench space metrics.

In 2012 IEEE international conference on robotics and automation, pages 557–562.

IEEE, 2012.

B. Wu, I. Akinola, and P. K. Allen. Pixel-attentive policy gradient for multi-fingered

grasping in cluttered scenes. In 2019 IEEE/RSJ international conference on intelligent

robots and systems (IROS), pages 1789–1796. IEEE, 2019.

B. Wu, I. Akinola, A. Gupta, F. Xu, J. Varley, D. Watkins-Valls, and P. K. Allen.

Generative attention learning: A ”general” framework for high-performance multi-

fingered grasping in clutter. Autonomous Robots, 44(6):971–990, 2020.

D. Yang, T. Tosun, B. Eisner, V. Isler, and D. Lee. Robotic grasping through com-

bined image-based grasp proposal and 3d reconstruction. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 6350–6356. IEEE, 2021.

A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker, F. Tombari,

A. Purohit, M. Ryoo, V. Sindhwani, et al. Socratic models: Composing zero-shot

multimodal reasoning with language. arXiv preprint arXiv:2204.00598, 2022.

Z. Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10, 2012.

B. Zhao, H. Zhang, X. Lan, H. Wang, Z. Tian, and N. Zheng. Regnet: Region-based grasp

network for end-to-end grasp detection in point clouds. In 2021 IEEE International

Conference on Robotics and Automation (ICRA), pages 13474–13480. IEEE, 2021.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang,

Z. Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223,

2023.

Y. Zhou and K. Hauser. 6dof grasp planning by optimizing a deep learning scoring

function. In Robotics: Science and systems (RSS) workshop on revisiting contact-

turning a problem into a solution, volume 2, page 6, 2017.

139

X. Zhu, L. Sun, Y. Fan, and M. Tomizuka. 6-dof contrastive grasp proposal network.

In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages

6371–6377. IEEE, 2021.

	Jury members
	Acknowledgments
	Contents
	1 Introduction
	1.1 Research question
	1.2 Outline and structure
	1.3 Publications

	Background
	2 Trajectory planning in Robotics
	2.1 Introduction
	2.2 Configuration space
	2.2.1 Degrees of freedom
	2.2.2 Topology of the configuration space
	2.2.3 Task space and workspace

	2.3 Transformation Matrices
	2.4 Forward and inverse kinematics
	2.4.1 Forward kinematics
	2.4.2 Inverse kinematics

	2.5 Path planning
	2.5.1 Path planner methods
	2.5.2 Example: Rapidly exploring Random Tree

	2.6 Summary

	3 Probabilistic modeling
	3.1 Introduction
	3.2 Probabilistic models
	3.2.1 Models
	3.2.2 Probabilistic graphical models

	3.3 Inference
	3.4 Simulation-based inference
	3.4.1 Context
	3.4.2 Machine learning in simulation-based inference

	3.5 Summary

	4 Optimization on Manifolds
	4.1 Introduction
	4.2 Manifolds
	4.2.1 Manifolds, charts, atlas
	4.2.2 Tangent vectors and differentiable maps
	4.2.3 Riemannian metrics, distances, and gradients

	4.3 First-order Optimization on Manifolds
	4.3.1 Retraction
	4.3.2 Line-search algorithms

	4.4 Summary

	Robotic grasping: a review
	5 Robotic grasping: A review
	5.1 Introduction
	5.2 Early days: analytical approaches
	5.3 The rise of machine learning: data-driven approaches
	5.4 Deep learning for robotic grasping
	5.4.1 Sampling
	5.4.1.1 Generating samples
	5.4.1.2 Evaluating samples
	5.4.1.3 Optimizing sample

	5.4.2 Direct Regression
	5.4.2.1 Direct regression of the pose
	5.4.2.2 Multi-stage approach

	5.4.3 Reinforcement Learning
	5.4.4 Large language models for robotics

	5.5 Summary

	Simulation-based inference for robotic grasping
	6 Hardware
	6.1 Robotic arm
	6.2 Gripper
	6.3 Depth cameras
	6.3.1 Kinect
	6.3.2 Intel Realsense D435i

	7 Grasping a single object in a fixed pose
	7.1 Prologue
	7.2 The paper: Simulation-based Bayesian inference for multi-fingered robotic grasping
	7.3 Epilogue
	7.3.1 Advantages
	7.3.2 Limitations
	7.3.3 Conclusion and opportunities

	8 Grasping a single object in any pose
	8.1 Prologue
	8.2 The paper: Simulation-based Bayesian inference for robotic grasping
	8.3 Epilogue
	8.3.1 Advantages
	8.3.2 Limitations
	8.3.3 Conclusion and opportunities

	9 Grasping many objects in a restricted setup
	9.1 Prologue
	9.2 The paper: Implicit representation priors meet Riemannian geometry for Bayesian robotic grasping
	9.3 Epilogue
	9.3.1 Advantages
	9.3.2 Limitations
	9.3.3 Conclusion and opportunities

	10 Grasping many objects in an unrestricted setup
	10.1 Prologue
	10.2 The paper: Grasping under uncertainties: Sequential Neural Ratio Estimation for 6-DoF robotic grasping
	10.3 Epilogue
	10.3.1 Advantages
	10.3.2 Limitations
	10.3.3 Conclusion and opportunities

	Conclusion
	11 Conclusion
	Appendix
	A References

