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Abstract: Whether China can achieve the United Nations’ Sustainable Development Goals (SDGs) largely
depends on the ability of main food-producing areas to cope with multiple land use change challenges.
Despite the fact that the Yangtze River basin is one of the key regions for China’s food security, the
spatiotemporal dynamics of cropland abandonment and recultivation remain largely unexplored in this
region. The present study assesses the evolution of the agricultural system within the Yangtze River
basin between 2000 and 2020 by mapping cropland abandonment and recultivation using MODIS time
series and multiple land cover products. The results highlight a widespread cropland abandonment
process (i.e., 10.5% of the total study area between 2000 and 2020), predominantly in Western Sichuan,
Eastern Yunnan, and Central Jiangxi. Although 70% of abandoned cropland is situated in areas with
slopes less than 5◦, the highest rates of abandonment are in mountainous regions. However, by 2020,
74% of this abandoned cropland had been recultivated at least once, whereas half of the abandoned
croplands got recultivated within three years of their initial abandonment. Hence, as this is one of the
first studies that unravels the complex interaction between cropland abandonment and recultivation
in a spatiotemporal explicit context, it offers (i) scientists a novel methodological framework to assess
agricultural land use issues across large geographical entities, and (ii) policy-makers new insights to
support the sustainable transition of the agricultural sector.
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1. Introduction

Scientific interest in cropland abandonment and recultivation has increased due to
concerns about food, feed, fiber, biofuel security, and environmental sustainability [1,2].
Since the 1950s, a substantial expanse, encompassing hundreds of millions of hectares
worldwide, has undergone this transition. For example, satellite imagery revealed that
approximately 78.5 ± 16.4 million hectares (Mha) of cropland was abandoned between
2003 and 2019, either permanently or temporarily (of which 18.5 ± 3.9 Mha, or 24%, is
now forested) [3–6]. This trend is particularly pronounced in regions such as Europe,
North America, East Asia, and Latin America [7–11], and can be linked to drivers like
urbanization and environmental degradation [12–15]. Furthermore, local and distant socio–
economic factors (e.g., migration and rural labor dynamics) are important drivers of land
abandonment, even in areas with sustainable agriculture [16].

Cropland abandonment impacts both the environment and society, notably by affecting
the delivery of multiple ecosystem services, including biodiversity, climate regulation, and
food security [17–20]. Despite it posing challenges for food security, it also offers an
opportunity to restore natural ecosystems [3,21]. However, the benefits, particularly carbon
sequestration, depend on the abandonment duration, with long-term duration offering
greater climate regulation potential [22]. It has been recently reported that abandonment can
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be ephemeral [23], particularly in cropland-scarce regions. Hence, obtaining an improved
understanding of the dynamics of cropland abandonment and recultivation is crucial in
order to assess its impact on the delivery of multiple ecosystem services and support
policy-makers in developing sustainable solutions for the future [24,25].

The definition of cropland abandonment is broad, not only considering the temporal
aspect of it, but also from a of land use type/intensity point of view. Generally, cropland
abandonment can be defined as the cessation of the use of existing cropland by farmers
on their own initiative. However, there is no consensus as regards the duration [26]. For
example, the Food and Agriculture Organization (FAO) considers a duration of two to
five years, whereas, in some studies conducted in China, cropland abandonment could be
defined as “cropland left idle for a year or even a season” [27]. In recent years, geographers
have developed a new definition of cropland abandonment from the perspective of land use
type/intensity of use, focusing on the ecological evolution of abandonment. They analyzed
the dynamics of cropland in Europe and pointed out that cropland abandonment is “the
replacement of anthropogenic farmland by early successional natural vegetation” [28,29].
As such, complex land use activities and long-term monitoring methods are needed to
identify cropland abandonment over time at the regional scale.

Spatial data covering vast geographical entities are essential for in-depth analyses
of the spatial and temporal dynamics of pattern as well as for assessing the associated
interaction between cropland abandonment and recultivation. The latter will facilitate the
identification of driving forces and environmental impacts of agricultural land dynamics.
Although this research is of great societal importance, collecting accurate spatiotemporal
explicit data remains one of the main challenges. Statistical data from traditional land use
surveys, such as from the China Household Finance Survey (CHFS) from the Southwestern
University of Finance and Economics [30], do not provide us with the required quality
due to the lack of spatial detail (typically providing average values at regional, provincial,
or municipal level), hindering the detection of the rather complex spatiotemporal trends
determining the interplay between cropland abandonment and recultivation.

Over the last two decades, important advances have been made in the context of crop-
land abandonment monitoring by using a variety of new satellite-derived data [31–33]. For
instance, the fusion of Sentinel-1 (synthetic aperture radar sensors) and Sentinel-2 (optical
sensors) imagery helped in cropland abandonment monitoring in tropical areas [34]. How-
ever, due to the first launch of the Sentinel satellite being in 2014, it is impossible to achieve
long time series monitoring. As such, Landsat is considered to be an important data source
for long-term cropland abandonment detection [35,36]. For example, Xiao, et al. [37] moni-
tored cropland abandonment between 1990 and 2017 in counties of the Shandong Province
using Landsat and HJ1A imagery. However, obtaining accurate data over brief intervals
using Landsat poses challenges, mainly due to cloud interference [38]. As such, previous
efforts to map cropland abandonment indicated the complexity of Landsat-based analyses
due to difficulty in extracting reliable and sufficient data when considering relatively short
periods of time across large areas [39]. Moreover, the varying definitions of “abandonment”
hinder its identification and mapping. Cropland abandonment is commonly defined as
agricultural land that remains unused for at least two to five years [40,41]. However, the
prevalence of short cultivation periods introduces challenges in differentiating abandoned
cropland from fallow cropland [36]. In contrast to other land use/land cover classifica-
tions, considering crop rotation cycles and/or farming practices is crucial to distinguish
cropland abandonment from fallow cropland [38]. Given that cropland abandonment
entails a longer cessation period than when land is lying fallow, ascertaining whether
the land use transition duration exceeds a crop rotation cycle is essential. Consequently,
intervals between temporal snapshots exceeding a typical crop rotation cycle may lead to
the misidentification of many fallow areas as abandoned croplands. Therefore, assessing
multiple consecutive years is critical to accurately determine whether a field has indeed
been abandoned [7,42,43]. Using regular, consecutive time series data, like those provided
by The Moderate Resolution Imaging Spectroradiometer (MODIS), will be key to minimiz-



Remote Sens. 2024, 16, 1052 3 of 27

ing the risk of misclassification of temporarily fallow land within a crop rotation as being
abandoned cropland.

MODIS offers comprehensive observations for assessing regional cropland change as
it effectively minimizes the impacts of viewing geometry, cloud cover, and aerosol loading
while maintaining a suitable temporal resolution for consistent large-scale abandoned
cropland monitoring [44]. A study utilized MODIS normalized difference vegetation index
(NDVI) products to map abandoned agricultural land across Eastern Europe, achieving an
overall classification accuracy of 65% [38]. A similar study identified active and fallow land
in Europe using MODIS-NDVI time series to subsequently map the extent of abandoned
croplands [7]. A recent study in China combined MODIS data with phenological metrics to
map land use change dynamics between 2001 and 2015, which enabled the identification of
a remarkable cropland abandonment process across the mountainous region of Southwest
China [45]. The results of the study highlighted that the mapping accuracy of abandoned
cropland is significantly influenced by the quality of the data retrieved from the selected
samples. The current methods of sample collection may not keep pace with the rapidly
evolving requirements of monitoring, and this especially becomes an issue when consider-
ing large areas [46]. This challenge underscores the need for more diversified and rapid
sample collection strategies to enhance monitoring efficiency and accuracy.

Indeed, collecting reliable sample points, especially across vast regions, is labor in-
tensive [47]. Although the quality of spectral reflectance data obtained from the remote
sensing imagery is vital to set-up a thorough land use classification, this reflectance, and its
relation to various land uses, may change yearly depending on, for example, inter-annual
variation in meteorological conditions. This is particularly true for cropland dominated
areas. As such, annual training, linking spectral information to a set of given land use
classes, is essential. Furthermore, automating reference data generation, accounting for
spatial and field attributes, is a key methodological procedure [48]. A pragmatic solution
combines established land use classification products, such as MCD12Q1 and GlobeLand30.
This approach allows for the extraction of pixels from identical positions across two or
more products that have been classified under the same land cover categories, thereby
enabling the accumulation of sufficient samples. Using this methodological approach for
annual land cover mapping based on Landsat has proven to be effective [49], suggesting
its potential efficacy for annual cropland mapping. The latter highlights the importance
of setting up a robust land use classification approach using a variety of reliable public
datasets in order to facilitate an efficient sample collection procedure and obtain reliable
cropland abandonment maps covering vast geographical entities.

The Yangtze River basin is important in global food production, and food production
is highly sensitive to changes in cropland area. However, since 2000, the region has seen
dramatic changes in cropland area and a significant decline in cropping intensity [50]. The
Yangtze River basin in China is a focal point for the nation’s strategic development, as
was highlighted in the “Guiding Opinions on Promoting the Development of the Yangtze
River Economic Belt Relying on the Golden Waterway” released by the China State Council
in 2014 (http://www.gov.cn/, accessed on 1 December 2022). Since 2003, the basin has
experienced increasing migrant wages and rural outmigration, resulting in a widespread
agricultural abandonment [51]. The “Yangtze River Economic Belt Development Plan”
(https://cjjjd.ndrc.gov.cn/, accessed on 1 December 2022) predicts increased urbanization
in the next two decades, possibly exacerbating cropland abandonment [52,53]. As this
cropland abandonment process poses threats to food security, recent studies and land
management projects in China have underlined the potential for recultivating abandoned
croplands to support food production in dominant crop production regions such as the
Yangtze River plain [54–56]. The region’s total nature-based carbon sequestration potential
is 15 million tons, and, therefore, may make a significant contribution to climate mitigation
efforts at the national scale [57,58]. Quantifying cropland abandonment impacts on climate
mitigation and food security is important to assess the trade-off between these two vital
ecosystem services. As such, accurate data on abandonment and recultivation patterns are

http://www.gov.cn/
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crucial to conduct this research. Currently, the remote sensing based studies for monitoring
of cropland in the Yangtze River basin are diverse and cover various aspects of land use
and environmental monitoring, including urbanization [59], water and soil monitoring [60],
and crop patterns [61]. However, studies focusing on the spatiotemporal dynamics of the
interaction between cropland abandonment and recultivation in this region are lacking.

In this study, we define ”cropland abandonment” as the conversion of agricultural
land from cropland to natural vegetation after two consecutive years of non-cultivation.
This definition facilitates the distinction between short-term fallowing and long-term aban-
donment, which is crucial when examining crop rotation cycles and/or farming practices.
This definition is in line with previous studies of cropland abandonment monitoring carried
out across the Yangtze River basin [45,62,63]. Our aim is to map the extent and timing of
abandoned and recultivated cropland at the watershed scale using MODIS time series data,
and to reveal the spatial and temporal interactions between these processes in order to
obtain a more comprehensive understanding of the complex land use dynamics across this
study area. To do so, we proceeded as follows:

(1) We used a strategy to quickly generate classifier sample data based on existing land
use products, and created annual land cover maps suitable for a large scale area.

(2) We mapped the extent and timing of cropland abandonment and recultivation based
on continuous time series land cover data.

(3) We analyzed the cropland abandonment intensity (i.e., frequency and duration) and
the spatial and temporal interaction with recultivation.

2. Materials and Methods
2.1. Study Areas

The Yangtze River basin is located in Southern China, and includes nine provinces and
two municipalities (Figure 1). Covering 21.3% of China’s territory, it houses 599 million
people. The basin is a major grain producer, accounting for 36.2% of China’s grain output
in 2019 (China statistical yearbook, 2019, http://www.stats.gov.cn/sj/ndsj/2019, accessed
on 1 November 2022). Economic activities within the basin have shown remarkable growth,
contributing 46.3% to China’s GDP in 2018 (China statistical yearbook, 2019). However, this
growth has long-term negative environmental consequences, as the region faces habitat
loss, biodiversity decline, pollution, and severe soil erosion issues. Consequently, notable
reductions in cropland area have been observed in some parts of the region [64], threatening
food security at the national level.

Given the extended growing seasons resulting from the warm and wet climate in the
study region, crop rotation and continuous monocropping emerge as the two predominant
cropping systems. Dryland crops such as wheat, oilseed rape, and maize often yield two
harvests per year, illustrated by common rotations like “fallow–wheat–wheat”, “rice–rice”,
“cole–corn”, “wheat–corn”, “wheat–corn–sweet potato”, and “rice–winter crop”. These
crop rotation schemes are frequently modified to improve the sustainability of agricultural
systems; as such a fallow period of one to two years is common.

2.2. Definition of Cropland Abandonment and Recultivation

Taking into account the FAO definition, cropland abandonment is a result of a lack
of management for at least two to five years [41,65]. We characterized cropland as being
abandoned if it had not been cultivated for at least two consecutive years. However, when
these abandoned croplands were converted back into cropland, we identify this process as
“recultivation” (Figure 2).

http://www.stats.gov.cn/sj/ndsj/2019
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Figure 2. Detection of cropland abandonment and recultivation. The solid green line represents
natural vegetation and the solid brown line represents cropland.

2.3. Data Preprocessing for Classification

Figure 3 outlines our five-step methodological framework. Step A, NDVI (Normalized
Difference Vegetation Index) maps were produced from MODIS imagery. NDVI, calculated
as (NIR − Red)/(NIR + Red), where NIR is near-infrared band reflectance and Red is red
band reflectance, serves as a crucial tool for differentiating land covers and assessing cropland
productivity. Step B, sample data were collected from locations consistently classified across
multiple products. To ensure accuracy, at least 10% of these samples were manually verified
using high-resolution images. These samples were then divided into training datasets and
datasets for accuracy qualification. Employing the Random Forest algorithm (RF) with annual
training data, we produced annual land cover maps, whose accuracy was evaluated using
overall accuracy, kappa, and F1 metrics [66,67]. Steps C and D, spatiotemporal patterns
of cropland abandonment and its intensity (i.e., frequency and duration) were mapped by
considering the trajectory of change in this land cover class. Step E, annual recultivation maps
were produced based on abandoned cropland and annual land use data. All data analyses
were conducted by using Google Earth Engine (GEE) cloud computing platforms and ArcGIS
10.2 ESRI (Environmental Systems Research Institute, 2013).

In this study, a smoothing function was applied to the NDVI time series to counteract
noise from clouds, soil, and snow in order to better characterize the growth curve. Initially,
pixels labeled as poor quality, snow/ice, or cloud in the QA layer were filtered out from
the original NDVI time series. Subsequently, the NDVI profiles were reconstructed for each
year of the time series using a weighted Whittaker smoothing algorithm [68,69].

2.4. Annual Land Cover Mapping and Accuracy Assessment

We obtained an extensive dataset covering our entire study area to collect classification
samples. Our sample data were produced based on two data sources: (1) Dense time
series land cover products for sample collection, including GlobeLand30 (http://www.
globallandcover.com, accessed on 1 November 2022), China’s National Land Use and
Cover Change (CNLUCC) dataset (http://www.resdc.cn, accessed on 1 November 2022),
MCD12Q1 global land cover maps (https://lpdaac.usgs.gov/products/mcd12q1v006/,
accessed on 1 November 2022), ESA-CCI (https://www.esa-landcover-cci.org/, accessed
on 1 November 2022), and GlobCover maps (http://due.esrin.esa.int/page_globcover.php,
accessed on 1 November 2022) (Table 1). (2) Dense time series of high-resolution images,

http://www.globallandcover.com
http://www.globallandcover.com
http://www.resdc.cn
https://lpdaac.usgs.gov/products/mcd12q1v006/
https://www.esa-landcover-cci.org/
http://due.esrin.esa.int/page_globcover.php
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like Google Earth Pro© and CLCD for sample correction (Supplementary Information S1.2).
Initially, a nearest neighbor resampling technique was applied to MCD12Q1, GlobCover,
CNLUCC, and ESA-CCI, and a majority filtering technique was applied to GlobeLand30 so
that the resolution of all datasets was consistent with the 250 m resolution of the MODIS-
NDVI dataset. We generated random points to obtain land cover from at least 3 out of 5 of
these land cover products each year (the distance between all random points generated was
set to 500 m to avoid saturation sampling). Random points with high feature consistency
are considered to be consensus samples. As a minimum threshold, there should have been
an agreement on at least two-thirds of the land cover products each year. These consensus
samples, exceeding 10,000 in number, demonstrated stable land cover types and high
consistency across various maps, especially in mountainous regions (Tables S2 and S3).
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Subsequently, we selected random points with high feature consistency and manually
corrected a 10% random sample for each land cover class. For less represented classes
like shrubs and wetlands, we increased the random sampling to 15%. Sampling ratios
were based on established methodologies [10], with random screening conducted through
ArcGIS 10.2. The correction consisted of two methods using Google Earth and CLCD.
(1) Visual interpretation using historical Google Earth imagery was performed as a mini-
mum if the corresponding data existed. If these data were not available, (2) the correction
was based on the CLCD land cover product. First, the relative surface cover of each land
cover class was calculated within a 250 m resolution grid consistent with our MODIS-NDVI
pixel, and classes with more than 50% cover within the grid cell were designated as cor-
rection land cover (Figure S1). However, if no land cover category had 50% coverage, the
point was discarded from the analysis.

Finally, approximately 70% of the total consensus sample points were allocated to the random
forest classifier for training, and the remaining 30% were used for quantifying the accuracies. This
allocation ratio has been demonstrated to enhance classification robustness [70–72].

Table 1. Auxiliary dataset used for collecting annual samples. Our selected datasets have been shown
to have high accuracy in terms of land cover classification across China [73].

Year GlobeLand30 CNLUCC MCD12Q1 ESA-CCI GlobCover

2000 2000 2000 2001 2000
2001 2000 2000 2001 2001
2002 2000 2000 2002 2002
2003 2005 2003 2003 2005
2004 2005 2004 2004 2005
2005 2005 2005 2005 2005
2006 2005 2006 2006 2005
2007 2005 2007 2007 2005
2008 2010 2010 2008 2008 2009
2009 2010 2010 2009 2009 2009
2010 2010 2010 2010 2010
2011 2010 2010 2011 2011
2012 2010 2010 2012 2012
2013 2015 2013 2013
2014 2015 2014 2014
2015 2015 2015 2015
2016 2015 2016 2015
2017 2018 2017 2015
2018 2020 2018 2018
2019 2020 2018 2019
2020 2020 2020 2019

We used the RF in GEE for annual land cover classification. RF implementation in
GEE enables large-scale classification at the pixel level. Similar to many other models,
RF’s effectiveness is sensitive to the selection of hyperparameters and the training data
employed [74]. To date, RF is considered to be the most widely used algorithm for land
cover classification using remotely sensed data [75], due to the fact that only two parameters
(number of trees: ntree and maximum number of features to try: mtry) need to be optimized.
In GEE, mature RF algorithms have been included for direct use.

We included three key parameters in our random forest model: the smoothed MODIS-
NDVI dataset (46 images per year), the number of filtered sample points, and the random
forest parameters (ntree and mtry). Based on the recommendations of previous studies [76]
and our large sample data, we first select 120 trees (ntree = 120) while setting mtry as the
default value. We will adjust the number of trees several times according to the classification
results in order to achieve the best classification results.
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For classification accuracy qualification, we generated annual confusion matrices,
calculating overall accuracy (OA), producer’s accuracy (PA), user’s accuracy (UA), and the
kappa index. We also used the F1 score for each class accuracy assessment.

OA =
Number o f correctly classi f ied samples

Total number o f samples
(1)

PA =
Number o f correctly classi f ied samples o f the category

Total actual samples o f the category
(2)

UA =
Number o f correctly classi f ied samples o f the category

Total samples classi f ied into the category
(3)

F1 = 2 × UA × PA / (UA + PA) (4)

where F1 score, a harmonic mean of user’s and producer’s accuracy, is advantageous when
learning from imbalanced data. F1 score ranges from 0 to 1 with higher score indicating
better classification performance.

2.5. Annual Cropland Abandonment and Recultivation Mapping

We conservatively classified a cropland pixel as abandoned only if it changed into
natural cover (Figure 3). We excluded lands converted into wetlands, impervious surfaces,
or water bodies. Additionally, forested areas were omitted from our analysis, as two years
is insufficient for abandoned cropland to change into mature forest ecosystems.

There have been concerns about the overestimation of abandoned croplands in some
parts of the world, e.g., due to the large-scale intentional afforestation, such as “Grain for
Green” program in China (known as “GGP”, which converted croplands located on slopes of
more than 25◦ into grassland/forest [77]). Such overestimation may result in wrong projections
of the amount of land available for carbon sequestration, nature restoration, or afforestation
projects through cropland abandonment, as intentional afforestation already represents the
shift in land use [14,78]. To distinguish our cropland abandonment from GGP, we used a
Digital Elevation Model (DEM, 250 m resolution based on SRTM 90 m, https://www.resdc.cn,
accessed on 1 November 2022) to restrict our study area to slopes under 25◦.

Upon detecting cropland abandonment, we created annual maps covering the period
from 2002 to 2020. This enabled the computation of annual relative cropland abandonment
area proportion to cropland area (RCAP), frequency, and duration. Frequency indicates how
often a specific area was identified as abandoned from 2002 to 2020, while duration measures
the time span from a site’s initial abandonment identification to either recultivation or 2020.

RCAPT+2 = AreaT+2
CA /AreaT

C (5)

where RCAPT+2 denotes relative cropland abandonment area proportion in the given
region, AreaT+2

CA (103 ha) is the cropland abandonment area which included cropland
identified in year (T) that is considered abandoned after two years (T + 2) in the given
region, and AreaT

C (103 ha) represents the total cropland area in the given region in year (T).
In this study, T ranges between 2000 and 2018 when considering cropland.

A pixel reverted from abandoned to cropland was classified as recultivated. This
method helped track the change in the proportion of abandoned land over time, offering
more precise insights than average abandonment duration.

3. Results
3.1. Land Cover Maps and Accuracy

Throughout all our land cover maps of the Yangtze River basin (from 2000 up to 2020),
cropland, forest, and grassland are covering c. 35%, c. 40%, and c. 20% of the total area,
respectively (Figure 4). More precisely, cropland is mainly found in the agriculturally
favorable flat terrains of Eastern Sichuan, Anhui, and Jiangsu. Forests, on the other hand,

https://www.resdc.cn
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are mainly found in the western areas, especially in Yunnan and Guizhou. Meanwhile,
grasslands are chiefly located in the northwestern part of Sichuan and Yunnan.
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Figure 4. Annual land use classification across the Yangtze River basin. Eight types of land use cover
were considered, i.e., cropland, grassland, forest, shrubs, impervious surface, wetland, and water.

The sequence of land use change maps from 2000 to 2020 revealed a significant
decrease in cropland. For instance, certain regions of Yunnan changed from cropland to
grassland over these two decades (Figure 5), in addition to the encroachment on cropland
by the development of the Yangtze River urban agglomeration.

Our validation of the 2000–2020 classifications (Figures 6 and 7) revealed an
OA ranging between 0.82 and 0.85. The years 2018–2020 had the lowest average OA at
0.82 ± 0.02 (95% confidence interval), while 2009–2011 had the highest OA at
0.85 ± 0.002. The kappa index follows this trend in accuracy. Land cover specific
F1 scores were highest for forest (0.90 ± 0.01), followed by water (0.89 ± 0.02), cropland
(0.84 ± 0.01), grassland (0.84 ± 0.01), and impervious surface (0.83 ± 0.03). Significantly
lower F1 scores were observed for wetland (0.41 ± 0.1) and shrubs (0.47 ± 0.03).
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Figure 7. Accuracy estimation of classes (i.e., user’s accuracy, producer’s accuracy, and F1).
F1 highlights the classification accuracy of each class. The bar charts correspond to the average
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We compared our cropland classification results with the CLCD [79] classification
for each individual province. Although this has been performed annually, in Figure 8,
we presented the results for the years 2000, 2005, 2010, 2015, and 2020 as examples. Our
analysis revealed a strong correlation between our maps and the CLCDcropland layer for
the majority of provinces. 
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Figure 8. Province wise cropland area comparisons between the present study and CLCDcropland
layer considering five points in time (a) 2000, (b) 2005, (c) 2010, (d) 2015, and (e) 2020.
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3.2. Spatiotemporal Analysis of Cropland Abandonment

The annual cropland abandonment map illustrates widespread abandonment through-
out the entire study region (Figure 9). However, the high-altitude agricultural zones in
Sichuan and Yunnan as well as some distinct areas in Jiangxi and Zhejiang experienced the
highest rate of abandonment. About 60% of these abandonments lie between longitudes
99◦ and 104◦E, and another 25% between 113◦ and 117◦E (Figure 9b). When consider-
ing latitudinal spread, 88% of abandoned croplands are positioned between latitudes
25◦ and 33◦N, as depicted in Figure 9d.
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Figure 9. The spatial pattern of cropland abandonment and distribution across the Yangtze River basin.
(a) The spatiotemporal pattern of cropland abandonment from 2002 to 2020. The red colors represent
pixels that were abandoned earlier, while the blue colors are pixels that have been abandoned more
recently. (b,d) Accumulated abandoned area (green bar) along longitudinal and latitudinal gradients
(0.5◦). The orange line represents the proportion of cropland abandonment area as compared to the
total land area at the corresponding latitude/longitude. (c) Annual cropland abandonment area and
RCAP in the period 2002–2020.



Remote Sens. 2024, 16, 1052 14 of 27

Analyzing the annual rate and magnitude of abandonment reveals a fluctuating
trend from 2002 to 2020 (Figure 9c). An increasing trend was observed from 2002 to
2005, followed by a sharp decrease in 2006. Then, a gradual rise from 2006 to 2012 was
seen, ending with a remarkable decline post-2012. Throughout this period, an estimated
21,490 × 10³ ha of cropland were abandoned. The annual figures varied between
526 × 10³ ha and 2104 × 10³ ha, with the relative cropland abandonment area propor-
tion (RCAP) fluctuating between 0.68% and 3%. Notably, 2005 has been characterized by
the highest abandonment rate, while 2002 had the lowest.

The abandonment frequency map in Figure 10 shows varied patterns of abandon-
ment across the region. The abandonment was categorized into three frequency types: low
(1–2 times), moderate (3–4 times), and high (5–6 times). The low-frequency abandonment is
widespread, especially in Western Sichuan and Yunnan as well as Eastern Jiangxi and Zhejiang.
Conversely, the moderate frequency follows a similar distribution, albeit less pronounced in
areas such as Sichuan and Eastern Yunnan. High-frequency abandonment is chiefly found in
the mountainous regions of Sichuan and Yunnan, accounting for a mere 0.4% (or 82 × 10³ ha)
of the total abandonment over the study period. A remarkable 76% (or 16,310 × 10³ ha) of the
total area experienced low-frequency abandonment, as highlighted in Figure 10c.
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Figure 10. The spatial pattern of frequency of cropland abandonment and distribution from 2002
to 2020 across the Yangtze River basin. (a) The spatial pattern of cropland abandonment frequency.
Cropland remaining cropland (green) represents pixels that remain cropland continuously until 2020.
The color-coded frequency scale represents low frequency in shades of yellow (1—light yellow and
2—dark yellow), medium frequency in shades of orange (3—light orange and 4—dark orange), and
high frequency in shades of purple (5—light purple and 6—dark purple). (b) Partially enlarged view,
legend as in (a). (c) Histogram of abandonment frequency.

Our analysis determined how long a specific pixel of abandoned cropland remained aban-
doned before being changed into another form of land cover (Figure 11). The abandonment
durations ranged from 1 to 19 years. Although the region’s average abandonment duration
is relatively short, i.e., averaging around 5.5 years, in regions like Sichuan and Yunnan, the
abandonment often surpassed 15 years. The central provinces like Hubei and Hunan typically
saw abandonment durations between 5 and 13 years. In terms of the overall landscape,
about 25% of the abandoned land reverted after a year, and only 1% remained abandoned for
19 years. Furthermore, there was a 61% probability of the cessation of cropland abandonment
if it lasted for five years. Conversely, areas abandoned for over 13 years saw a sharp decline in
recultivation likelihood, with only 10% undergoing this process.
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Figure 11. The spatial pattern of cropland abandonment duration (in years) across the Yangtze River
basin. The color bar graph in the lower right corner represents the area of cropland abandonment
with different abandonment durations.

Figure 12 shows the proportion of abandoned cropland remaining abandoned de-
pending on the initial abandonment date (i.e., considering periods of three years). This
figure illustrates a general trend of fairly rapid recultivation of abandoned cropland. More
precisely, over half of the abandoned croplands got recultivated within just three years.
This curve indicates that the loss pace tends to slow down as the abandonment duration
extends. Yet, a more detailed look highlights an increasing trend in recultivation rates, with
the most recently abandoned croplands (e.g., initial abandonment period 2017–2019) being
recultivated faster compared to croplands that was abandoned in the early 2000s.

3.3. Spatiotemporal Analysis of Recultivation

Our study indicates that the spatial patterns of cropland recultivation mirror those of
cropland abandonment, with both being predominantly concentrated in the western part
of the study area (Figure 13). The process of recultivation predominantly occurred between
the longitudes of 99◦E to 105◦E and the latitudes of 25◦N to 33◦N (Figure 13b,d). By 2020’s
end, 15,857 × 103 ha of abandoned cropland had been recultivated, accounting for 74% of
the total abandoned area. In 2006, recultivation peaked with 1475 × 103 ha of land, while
2003 saw the least at about 190 × 103 ha (Figure 13c).
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Figure 13. The spatiotemporal pattern of cropland recultivation from 2003 to 2020 across the Yangtze River
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4. Discussion

This study mapped the spatiotemporal dynamics of cropland abandonment and
recultivation across the Yangtze River basin. Compared to previous macro-analyses with
a particular focused on China, this study offers an in-depth understanding of the spa-
tiotemporal interplay between abandonment and recultivation. The outcomes provide
policymakers with new insights that can be used to develop a balanced policy-making
strategy which aims at optimizing the balance between agricultural productivity on the one
hand and ecological conservation on the other hand. As such, it offers a scientific basis to
improve the management of abandoned croplands considering the unique environmental
land socio–economical context of the Yangtze River basin. Additionally, the novel method-
ology and insights from this study may serve as a model for analogous research in other
regions, contributing to the development of sustainable land management strategies.

4.1. Comparison with Other Studies

Due to the significant interannual variability in the cropland spectrum, mapping
abandoned land via cropland dynamic maps is challenging [80]. An overall land use
classification accuracy of 0.82–0.85 was achieved through the rapid collection of high-
precision samples. Recent studies on mapping abandoned cropland in China achieved
a land use classification accuracy exceeding 0.75, with classification accuracies of more
than 86% for some large-scale areas [10,81], which is similar to our results, and as such
the efficacy of our classification method and its suitability for cropland abandonment
detection is comparable. However, the average F1 score for our cropland classification was
0.84 (Figure 7), slightly lower than that in the study by [70], potentially due to the lower
resolution of data used in our study compared to theirs.

The comparative analysis reveals both similarities and differences in the definitions of
abandonment in these studies. A consensus is the cessation of agricultural activities and
management, which is recognized in all studies. This definition leads to different potential
outcomes, ranging from ecological impacts [82] to land use changes [83], which reflects a
different research focus concerning the process of land abandonment, i.e., considering either
(i) the transitional nature and potential outcomes or (ii) the associated policy implications
and opportunities. However, some studies consider both, recognizing the complex and
multifaceted nature of abandonment [84,85]. Our research adds a specific, measurable
definition to this spectrum, enriching the understanding of land abandonment from a
temporal and ecological perspective.

Notably, the current study found that at least 19% of cropland in China has been aban-
doned at least once (ranging from 19% to 28%) [45,81,86]. Compared to our study, this
proportion is slightly lower, i.e., 30%. This difference may be related to the length of the
study and the methodology. For instance, Li, et al. [87] estimated the extent of abandoned
cropland across mountain areas based on household survey data. Their results showed that
the abandonment rate of cropland in mountainous areas was about 28% during 2000–2010,
including during the Grain for Green Program. This value is notably higher than our findings
(i.e., 13%), which is not a surprise as Li, Li, Sun, Cao, Fischer, and Tramberend [87] also in-
cluded afforestation, which is not the case in the present study. Similarly, Xu, Deng, Guo, and
Liu [30] used data from the China Household Finance Survey (CHFS) to conduct household
surveys across 29 out of 34 provinces of China, finding that the abandonment rate of cropland
in 2011 and 2013 was 13% and 15%, respectively, which is similar to our findings. In a global
context, the abandonment proportion in the Yangtze River basin aligns with figures from
Eastern Europe, the former Soviet Union, and Chile (16% to 42%) [11,80,88], but is higher than
those reported for Central Asia (approximately 13%) [43].

Our abandonment durations were much shorter than those found in a global average
(=14 years [89]), but our abandonment duration was similar to Song [90] (3.5 years). At
the same time, studies in the tropics have shown that the duration of secondary forest
recultivation is usually short [91–94]. In the Brazilian Amazon, secondary forests are cleared
and recultivated much more rapidly (50% within 5 to 8 years), resulting in 80% of secondary
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forests being ≤20 years old. In contrast, across the tropics, only 33% of forests that had
been regenerated on recently cleared sites were ≥10 years old.

However, it is important to emphasize that caution is needed when directly comparing
these regions. Variations in the definitions of “cropland abandonment” across studies
can impact the comparability of these rates. For instance, one study in China estimated
that the area of cropland abandonment for five years accounted for 19% of China’s total
cropland [86]. However, this definition ignores different farming systems across different
regions, and, therefore, may result in a misclassification of short-term cropland abandon-
ment (i.e., non-fallow), and as such underestimate the area of abandonment. Another
study in Central Asia, which defined abandonment as three consecutive years of non-use
of cropland, estimated that abandonment in northern Kazakhstan is equal to 40.5% [88], a
figure which is higher than that presented by our results. However, one study used the
same definition, but found the proportion of abandoned areas in the Guizhou–Guangxi
karst mountain area of China to be around 16%, which is lower than our findings [45].

4.2. Cropland Abandonment and Recultivation Drivers

Cropland abandonment across the Yangtze River basin became progressively more ap-
parent at the beginning of this century, although there were annual and regional variations.
The implementation of the Rural Land Contracting Law and the abolition of agricultural taxes in
2006 might lead to restricted areas of abandonment across our study area (Figure 9c) [95].
The shift away from agriculture, induced by increasing farming costs and the appeal of
non-agricultural sectors, was especially noticeable near urban areas in the Yangtze River
delta region (Figure 9a,b). Similar trends have been observed in parts of Western Europe
and America [63,96–98].

Our research has identified a notable increase in recultivation, a trend that has become
increasingly prominent over time (Figure S4). This phenomenon potentially elucidates the
observed, albeit statistically non-significant, decline in both the extent of cropland abandonment
and its corresponding rate (Figure S3). Concurrently, this trend underlines the extensive adoption
of recultivation policies strategically aimed at diminishing potential food security threats. As
the decade progressed into the mid-2000s, a transition towards the recultivation of previously
abandoned croplands began to emerge. This shift was mainly influenced by policy adjustments,
particularly the reduction in GGP subsidies, motivating farmers, especially those enrolled
before 2007, to reengage with their initial agricultural activities, and, therefore, recultivate
their lands [99]. Governmental directives in 2004 and 2014, focusing on food security (e.g.,
Emergency Circular on Restoring Abandoned Cropland Production), further fueled the recultivation
momentum in our area. In addition, The policy National Land Consolidation and Rehabilitation
Plan (2011–2015) aimed to counteract abandonment by consolidating fragmented cropland and
modernizing infrastructure in mountainous areas [100], which resulted in a noticeable decrease
in the abandonment rate.

Concurrent socio–economic upheavals, like the economic crises of 2008, resulting in urban
unemployment, prompted a rural return [101,102], aligning with the observed increase in
recultivation area during this period (Figure 13c). Additionally, region-specific agricultural
strategies, such as the minimum purchase price for grain products in provinces like Jiangxi,
Anhui, and Jiangsu, contributed to the post-2009 surge in recultivation [103,104].

When looking to the absolute total cropland abandonment areas, slopes less than 5◦

have been characterized by the largest abandonment area (Figure 14a), e.g., ranging between
192 × 10³ ha and 852 × 10³ ha from 2002 to 2020. However, when considering RCAP
(Figure 14b), this increases with increasing slope steepness, reaching a maximum value of
11% for slopes of 20–25◦ in the year 2005. Soil degradation processes on these steeper slopes,
mainly due to soil erosion, leads to higher management costs and reduced crop yields [105].
Furthermore, in mountainous areas, greater distances between homes and croplands
increases the likelihood of abandonment, particularly on steeper terrains [106,107]. While
GGP was not the focus of this study, the increased wildlife crop raiding associated with
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forest expansion due to GGP could raise production costs [108]. This may be another major
reason for cropland abandonment in mountainous areas.
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4.3. Policy Implications

Accurate assessment of the spatial and temporal distribution of abandoned cropland is
essential for assessing the ecological and environmental effects of land use in mountainous areas.
As mountainous croplands are often abandoned due to a variety of reasons and conditions, this
land may provide valuable environmental benefits to society. For example, when considering
the international literature, an extensive body of research has investigated the carbon storage
potential from this kind of cropland abandonment across China [109–111]. However, our
study highlights the importance of incorporating time series data for accurate estimations of
abandoned croplands, because without accurate annual land use maps we may miss out the
process of recultivation leading to a considerable over-estimation of the associated total soil
organic carbon (TOC) sequestration potential [89]. Indeed, understanding the precise duration
of cropland abandonment is essential, especially when assessing the associated impact on the
delivery of ecosystem services.

In comparison to other regional studies in China, this study highlights the relatively short
duration of cropland abandonment in the Yangtze River basin. The majority of abandoned
land is typically recultivated within three years, indicating intense utilization of cropland and
that increased food production based on cropland area growth can significantly alleviate the
food shortage. However, prioritizing ecological benefits is imperative: overlooking the transient
nature of agricultural abandonment risks can lead to sacrificing considerable ecological gains.
For example, recultivation could inadvertently impact biodiversity and carbon sequestration
adversely [112]. Additionally, large-scale cropland recultivation projects, designed to benefit local
communities’ livelihoods, may be unsuccessful due to inefficient use of new croplands [113,114],
especially when local socio–economic contexts are disregarded [115]. Hence, crafting policies with
local communities is crucial to balance biodiversity, carbon storage, and livelihoods. Nevertheless,
this nexus requires further research.

4.4. Limitations and Future Perspectives

In this study, we explored the spatiotemporal variation in cropland abandonment and
recultivation. Our research provided spatiotemporal explicit information regarding cropland
abandonment and recultivation and the associated trade-off between both. As such, our
study makes an important contribution to the understanding of the complex system of rapidly
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changing agricultural landscapes in one of the key areas of China. However, there are some
limitations to this study, and, hence, interesting perspectives for future research.

Firstly, defining cropland abandonment remains a challenge. In our methodology,
croplands left uncultivated for two years were classified as abandoned. We acknowledge
that large-scale studies of cropland abandonment, including ours, do not provide insights
into seasonal abandonment and fallow patterns. Despite these methodological differences
between our study and that of Li, Pan, Zheng, and Liu [27], both studied identified the
same regions, i.e., Sichuan mountains and the plains of the middle and lower reaches
of the Yangtze River, as important land abandonment areas. Nevertheless, our findings
suggest that the duration of abandonment in these areas is shorter, indicating a dynamic
cropland abandonment process, which partly could be the seasonal lying fallow. We
recognize that our methodology may underestimate to some extent cropland abandonment
because some areas identified as cropland in the annual land use data may contain seasonal
abandonment. This indicates the need for methodological improvements in future studies
in order to capture the spatiotemporal dynamic of both long-term and seasonal cropland
abandonment across large study areas. Although it inherently lacks the level of detail
to identify seasonally fallow land, our method effectively captures long-term cropland
abandonment trends across a vast area, contributing valuable knowledge to the fields of
agricultural sustainability and environmental management.

Differentiating between “permanently abandoned cropland” and temporarily fallow
land is challenging due to their similar spectral characteristics in the initial stages. However,
fallowed land is characterized by continuous herbaceous vegetation cover, which increases
in density as the fallowing period extends [116,117], yet these areas still exhibit clear signs
of human management to facilitate rapid resumption of agricultural production. In contrast,
abandoned land shares similar spectral characteristics with fallowed land, especially in its
initial stages of fallowing. To more precisely differentiate between these two types of land
use, future studies will need to integrate time series multispectral remote sensing imagery
with high-resolution images to analyze surface texture features.

Given the differences between farming systems, the usage of the same threshold
duration value may result in a non-detection of abandonment within farming systems
characterized by relatively short abandonment periods across vast areas. Similarly, our
study used the same definition of recultivation across the entire study area, which may
overestimate the extent of recultivation of abandoned cropland. Although future research
could improve this particular element of assessing the spatiotemporal dynamics within
vast agricultural landscapes, we are convinced that the definitions of abandonment and
recultivation used in this study are meaningful across the Yangtze River basin. Our research
focuses on the inter-annual spatial and temporal patterns of cropland abandonment, which
are critical for understanding wider issues related to food and ecological security (e.g.,
impacts on carbon sinks and water resources).

Secondly, we combined several public land cover datasets to obtain classification samples.
However, differences in dataset classification schemes may introduce errors [73,118]. As such,
the land cover classes from different datasets were unified to meet our requirements, and land
cover with the same class exceeding two-thirds was defined as the dominant one. This approach
is considered to be an effective method for obtaining classification samples, and, therefore, can
be considered as a promising sampling method for future studies.

Thirdly, although the random forest algorithm is the most commonly used land
use classification algorithm, the most challenging task remains to distinguish between
cropland and natural vegetation. Our classification results similarly show poor accuracy in
classifying shrubs (Figure 7), for example. Our analysis revealed that the area of shrubs
constitutes only about 0.5–0.7% of the total land cover in our results (Figure 4), with slight
variations across different years. In comparison, shrub cover accounts for around 1% in
the CLCDand 1.5% in the GlobeLand30 datasets. Given this relatively low proportion
of shrub cover in the Yangtze River basin, we assert that the lower precision in shrub
identification has a minimal impact on the overall accuracy of our analysis regarding land
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abandonment. Overall, the results of our study mainly reflect the general trend of land use
change, and the impact of shrubland misclassification is relatively minor. Additionally, the
use of MODIS-NDVI data in combination with vegetation phenology metrics can improve
land cover classification in coarse resolution satellite imagery.

Fourthly, MODIS satellite data were chosen as the primary source for mapping crop-
land abandonment at large scale due to its coverage of extensive areas and more frequent
data observations. The abundant spectral information and high temporal resolution of
MODIS enable better distinction between cropland and natural vegetation. However, the
usage of 250m resolution MODIS imagery could be challenging to map cropland in the
southern region of China, as the fragmentation of land patches tends to bring significant
“mixed pixels” [119], potentially leading to an underestimation of cropland abandonment.
Consequently, we believe that articulating our rationale for selecting MODIS, combining
MODIS with other high-resolution satellite data (e.g., Landsat and Sentinel) in order to
create series of satellite data with higher spatial and/or temporal resolution, and/or devel-
oping sub-pixel land classification methods will be an interesting methodological approach
to enhance the effective monitoring of cropland abandonment in highly heterogeneous
landscapes [120,121]. As such, the freely available Sentinel-2 optic data at a resolution of
10 m could be an interesting future database to perform this kind of analyses. However, as
Sentinel-2 has only been available since 2015, it is currently unable to cover the time span
required to detect long-term temporal changes (e.g., 20 years, as being considered in this
study). Furthermore, our previous analyses, which focused only on abandoned cropland
with slopes below 25◦, showed that the majority of abandoned land was concentrated in
areas with slopes below 5◦, and was less affected by topographic errors than expected.
Therefore, given the temporal coverage (20 years) and large-scale applicability, MODIS
data remain the most suitable available data for our study.

5. Conclusions

Cropland abandonment is of wide concern in China as it may endanger the nation’s
food security. Using MODIS data on the GEE platform, we employed the RF algorithm
to map LULC across the Yangtze River basin from 2000 to 2020. Additionally, we under-
took spatial–temporal analyses to assess spatiotemporal interactions between cropland
abandonment and recultivation.

Our LULC maps achieved an accuracy ranging between 0.82 and 0.85 throughout
the study period. We observed widespread cropland abandonment, particularly in areas
with slopes under 5◦, but overall rates remained low. Abandonment was most notable
in Sichuan, Yunnan, and specific urbanized areas in the East. The total abandoned crop-
land covered an area of 21,490 × 10³ ha, with yearly fluctuations (e.g., a maximum of
2104 × 10³ ha in 2005 and a minimum value of 526 × 10³ ha in 2002). By 2020, 15,857 × 10³ ha
(or 74% of total abandoned area) had been recultivated, reflecting that cropland abandon-
ment in the basin occurs less frequently and for shorter durations (about 5.5 years on
average). Changing agricultural policies, economic dynamics, and increased urbanization
and food needs led to more than half of the abandoned cropland being recultivated within
the timespan of three years.

This study highlights the dynamic nature of land use within agriculture landscapes
and the urgent need for long-term high-resolution regular monitoring. The present method-
ology and the resulting maps of cropland abandonment provide the basis for a balanced
policy considering both ecological conservation and food security. Abandoned cropland
can be a promising avenue for unlocking additional land resources in a world where land
scarcity remains a major hindrance to sustainable development. The potential benefits of
strategically recultivating abandoned cropland and/or reforesting it are in line with global
initiatives such as the Paris Agreement and the United Nations’ Sustainable Development
Goals (SDGs), particularly Zero Hunger (SDG 2) and Life on Land (SDG 15), which focus
on restoring degraded land and increasing afforestation. Therefore, we identified a future
research direction that explores the trade-offs and potential benefits between different uses
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of abandoned cropland. This direction is particularly important for understanding the
synergistic effects of land use decisions on climate goals and sustainable development.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16061052/s1, Figure S1: Sample point correction based
on CLCD. The black grid in the figure has a resolution of 250 m, which reflects the resolution of
the MODIS. The random points come from samples that we need to manually correct; Figure S2:
Cumulative cropland abandonment area. The solid black line represents the total cumulative reality
area of abandoned cropland, and the dashed black line represents the cumulative scenario area of
abandoned cropland, assuming a scenario without recultivation; Figure S3: Trends in (a) cropland
abandonment area and (b) rate (2002–2020). The blue and green lines respectively depict the trends in
cropland abandonment area and rate over time. The gray shaded areas represent the 95% confidence
intervals; Figure S4: Trends in recultivation area (2003–2020). The blue line depicts the trends in
recultivation area over time. The gray shaded areas represent the 95% confidence intervals; Table S1:
Descriptions of land use/land cover classes used in our time-series maps; Table S2: The number of
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