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Abstract. Large-scale datasets for single-label multi-class classification,
such as ImageNet-1k, have been instrumental in advancing deep learn-
ing and computer vision. However, a critical and often understudied
aspect is the comprehensive quality assessment of these datasets, espe-
cially regarding potential multi-label annotation errors. In this paper, we
introduce a lightweight, user-friendly, and scalable framework that syner-
gizes human and machine intelligence for efficient dataset validation and
quality enhancement. We term this novel framework Multilabelfy. Central
to Multilabelfy is an adaptable web-based platform that systematically
guides annotators through the re-evaluation process, effectively leverag-
ing human-machine interactions to enhance dataset quality. By using
Multilabelfy on the ImageNetV2 dataset, we found that approximately
47.88% of the images contained at least two labels, underscoring the need
for more rigorous assessments of such influential datasets. Furthermore,
our analysis showed a negative correlation between the number of poten-
tial labels per image and model top-1 accuracy, illuminating a crucial fac-
tor in model evaluation and selection. Our open-source framework, Multi-
labelfy, offers a convenient, lightweight solution for dataset enhancement,
emphasizing multi-label proportions. This study tackles major challenges
in dataset integrity and provides key insights into model performance
evaluation. Moreover, it underscores the advantages of integrating human
expertise with machine capabilities to produce more robust models and
trustworthy data development.
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1 Introduction

Deep learning, the engine behind advanced computer vision, has been largely pro-
pelled by training on expansive resources like the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) dataset [1], commonly known as ImageNet-
1k. However, recent performance trends in deep neural network (DNN) models
trained on these datasets have shown top-1 and top-5 accuracy stagnation across
diverse DNN architectures and training techniques, irrespective of model com-
plexity and dataset size [2,3]. This performance plateau suggests that we may
be nearing the limits of model accuracy with the current ImageNet-1k dataset
using the top-1 accuracy.

A potentially overlooked factor contributing to the observed stagnation may
be attributed to the inherent multi-label nature of the dataset in question. It is
plausible that a substantial proportion of the images in the dataset are related
to more than a single ground truth label. However, the dataset only provides
labels for a singular ground truth, which may impose limitations [4–6]. This
single-label ground truth constraint could inadvertently lead to underestimating
the performance of DNN models, particularly when utilizing the top-1 accuracy
metric.

Furthermore, the performance of models significantly degrades when assessed
on newer but similar datasets, such as ImageNetV2 [7]. Despite being developed
following a similar protocol to the original ImageNet-1k dataset, ImageNetV2
exhibits unexplained accuracy degradation across various models, regardless of
model architecture, training dataset size, or other training configurations. While
efforts are being made to investigate this degradation [8,9], we found only one
work that partially studied this problem [10].

Prior work has acknowledged the need for more accurate dataset labels
and has published reassessed labels that reflect the multi-label nature of the
ImageNet-1k validation set [4]. However, label reassessment is not a trivial task.
It requires considerable resources and expertise, presenting a substantial chal-
lenge for smaller research groups. Given the vital role of the validation and
test sets in DNN model selection and benchmarking, meticulous analysis of the
ImageNet-1k validation set and its replicates remains indispensable. This crit-
ical importance highlights the necessity for accessible and effective frameworks
to scrutinize and tackle the multi-label nature of computer vision single-label
classification datasets. To address this, we propose an accessible and scalable
framework, termed Multilabelfy, that combines human and machine intelligence
to efficiently validate and improve the quality of computer vision multi-class clas-
sification datasets. Multilabelfy comprises four stages: (i) label proposal gener-
ation, (ii) human multi-label annotation, (iii) annotation disagreement analysis,
and (iv) human annotation refinement. It is designed with two primary objec-
tives: to strategically harness the capabilities of a diverse pool of annotators and
to seamlessly blend human expertise with machine intelligence to improve the
quality of a dataset. These objectives are made accessible through a user-friendly
interface.
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This research effort enriches existing literature by offering Multilabelfy for
improving the quality of computer vision multi-class classification datasets. Uti-
lizing Multilabelfy, we reassessed the labels for ImageNetV2, revealing that
47.88% of the images in this dataset could have more than one valid label.
We also identified other noteworthy dataset issues. Our work accentuates the
importance of recognizing and addressing the multi-label nature of ImageNet-1k
and its replicates. Our ultimate goal is to contribute towards developing robust
DNN models that can effectively generalize beyond their training data.

2 Related Work

2.1 Label Errors

Label errors have been identified within the test sets of numerous commonly
used datasets, including a 6% error rate in the ImageNet-1k validation set [11].
The importance of tackling the issue of label errors in test partitions of datasets
was further emphasized. It was found that high-capacity models are prone to
mirroring these systematic errors in their predictions, potentially leading to a
misrepresentation of real-world performance and distortion in model compar-
isons. In another work, an extensive examination of 13, 450 images across 269
categories in the ImageNet-1k validation set, which predominantly includes wild
animal species, was conducted [12]. Through collaboration with ecologists, it was
found that many classes were ambiguous or overlapping. An error rate of 12% in
image labeling was reported, with some classes being erroneously labeled more
than 90% of the time. Our work further accentuates the critical role of address-
ing label errors in datasets used for model evaluation. It underscores the need for
more precise and thorough dataset construction and assessment methodologies.

2.2 From Single-Label to Multi-Label

Single-label evaluation has traditionally served as the standard for assessing
models on the ImageNet-1k dataset. However, a reassessment of the ImageNet-
1k validation ground truth labels revealed that a good proportion of the images
could have multiple valid labels, prompting the creation of Reassessed Labels
(ReaL) [4], incorporating these multi-labels.

In a related study [6], the remaining errors that models made on the
ImageNet-1k dataset were examined, focusing on the multi-label subset of ReaL.
Nearly half of the perceived errors were identified as alternative valid labels,
confirming the multi-label nature of the dataset. However, it was also observed
that even the most advanced models still exhibited about 40% of errors readily
identifiable by human reviewers.

2.3 ImageNet-1k Replicates

When tested on replication datasets like ImageNetV2, DNN models have been
observed to demonstrate a significant, yet unexplained, drop in accuracy [7].
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Despite these replication datasets, including ImageNetV2, being created by fol-
lowing the original datasets’ creation protocols closely, the performance decline
raises significant questions about the models’ generalization capabilities or the
integrity of the datasets. The significant performance drop on ImageNetV2,
between 11% to 14% [7], was based on the conventional approach of evaluat-
ing model accuracy using all data points in the test datasets.

However, it has been argued that the conventional evaluation approach may
not fully capture the behavior of DNN models and may set unrealistic expecta-
tions about their accuracy [8,9]. A more statistically detailed exploration into
this unexpected performance degradation on ImageNetV2 found that standard
dataset replication approaches can introduce statistical bias [8]. After correcting
for this bias and remeasuring selection frequencies, the unexplained part of the
accuracy drop was reduced to an estimated 3.6%± 1.5%, significantly less than
the original 11.7%± 1.0% earlier reported in [7]. An alternative evaluation pro-
tocol that leverages subsets of data points based on different criteria, including
uncertainty-related information, provides an alternative perspective [9]. Through
comprehensive evaluation leveraging the predictive uncertainty of models, the
authors found that the degradation in accuracy on ImageNetV2 was not as steep
as initially reported, suggesting possible differences in the characteristics of the
datasets that warrant further investigation. A closely related research work stud-
ies various aspects of the ImageNet-1K and ImageNetV2 datasets using human
annotators. Using a sample of 1, 000 images from both datasets, the proportion
of images with multiple labels was estimated to be 30.0% and 34.4% for the two
datasets, respectively. This information is detailed in Section B.2 of the supple-
mentary material in [10]. The cited work suggested that the difference in the
multi-label composition between the two datasets could be a possible explana-
tion for the accuracy degradation.

2.4 Key Modifications to Existing Approaches

Our research expands upon a previous work [4] with several essential modifica-
tions:

Model Selection for Candidate Label Proposals. In contrast to the orig-
inal study’s use of a hand-annotated sample of 256 images from a 50,000-image
dataset to guide the selection of an optimal model ensemble, we built upon
their work, utilizing their generated multi-labels and proposed ReaL accuracy.
We selected the best-performing pre-trained model utilizing the ReaL accuracy
metric, designed to evaluate multi-class classification DNN models on a multi-
label test dataset. Further details on this process are provided in Sect. 3.2.

Image Pre-selection for Multi-label Annotation. The original study only
utilized an ensemble of pre-trained single-label models to generate eight can-
didate labels. In contrast, our approach extended the candidate proposals to
20, thereby decreasing the risk of omitting valid labels and increasing selection
accuracy (Sect. 3.2).
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Annotation Refinement. We introduced an additional stage, wherein the top
twenty model-proposed labels, alongside all human-selected labels, are presented
to an additional pool of experienced annotators for further refinement (Sect. 3.5).

Open-Source Platform. Recognizing that platforms like Mechanical Turk
might be inaccessible or not affordable for some research labs, we developed
Multilabelfy, an open-source alternative. This platform allows in-house dataset
quality improvement while maintaining a user-friendly interface.

Section 3 provides more comprehensive information regarding these contri-
butions.

3 Proposed Framework

3.1 Overview

Fig. 1. Overview of the proposed framework for enhancing computer vision datasets
from single-label to multi-label, enabling a more comprehensive capture of their descrip-
tions.

The proposed multi-label dataset enhancement framework (Fig. 1) comprises
four key stages: (i) label proposal generation, (ii) human multi-label annotation,
(iii) annotation disagreement analysis, and (iv) human annotation refinement.
The label proposal generation and annotation disagreement analysis can be auto-
mated using the appropriate algorithms while the human multi-label annotation
and human annotation refinement require the involvement of human annotators.
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3.2 Label Proposal Generation

Our qualitative analysis shows that pre-trained models, originally trained on
single-label computer vision datasets, can effectively rank the predicted proba-
bility vector. This capability is corroborated by the near-perfect top-5 accuracies
of state-of-the-art DNN classification models reaching approximately 99% [2].
For model selection, we utilize the ReaL accuracy metric, specifically designed
to assess the performance of single-label pre-trained DNN models in multi-label
scenarios. Under this metric, an image prediction is considered correct if the
prediction belongs to the set of ground truth labels assigned to the image. The
selected model is then used to generate the top-20 label proposals, an increase
from the eight proposals presented in previous work, to ensure broader coverage
of valid labels. Given the potential for information overload with many label
proposals, we designed the annotation user interface to mitigate this concern.
Additional details regarding the role of human annotators and the annotation
interface are discussed in Sect. 3.3.

3.3 Multi-label Annotation by Human Annotators

Multilabelfy incorporates a strategically designed web interface to alleviate the
workload of human annotators, with a screenshot provided in Fig. 2. This user
interface is characterized by several key features engineered to enhance the effi-
ciency and effectiveness of the annotation process. It facilitates the display of
label names, their corresponding synonyms, and representative images from the
pool of twenty potential labels systematically organized into four subgroups of
five labels each. In the event that the initial group does not sufficiently encom-
pass all visible objects, annotators have the option to navigate to other label
groups.

The design also incorporates a streamlined selection process facilitated by
a singular checkbox assigned to each proposed label. Moreover, ten exemplar
images are presented in a scrollable format for each proposed label, providing a
comprehensive view without overwhelming the annotator. Further attention to
detail is reflected in the feature that allows images to be clicked on, enabling
annotators to inspect these images at their original resolution. These elements
combined optimize the multi-label annotation process, yielding higher accuracy
and efficiency.

3.4 Annotation Disagreement Analysis

Single-label multi-class classification computer vision datasets often comprise
images featuring multiple objects. However, a prior research work [5] estimated
that about 80% of the ImageNet-1k images contain a single object. We also
expect some images with multiple labels to pose no challenges to the annotators.
Considering the aforementioned observations, our framework seeks to effectively
exclude such images from the pool intended for further refinement. We target
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Fig. 2. The user interface of the annotation platform. It showcases key features like
label presentation in groups of five, a single checkbox per proposed label, scrollable sam-
ple images, and click-to-enlarge functionality for detailed inspection of images. These
features are designed to streamline the annotation process and efficiently accommodate
multi-label data annotation.

images that require additional human annotation refinement during the anno-
tation disagreement analysis stage, as depicted in Fig. 1. Images are selected for
further annotation refinement if the labels generated by human annotators, as
discussed in Sect. 3.3, fail to meet a predefined annotation agreement condition.
This annotation agreement condition requires: complete consistency across all
labels identified by human annotators for a particular image and the inclusion of
the originally provided ground truth label within the array of labels selected by the
annotators. This strategic condition facilitates focused refinement of annotations
for the subset of images that pose more significant challenges to annotators. As
a result, we minimize the misuse of annotators’ time and provide an avenue for
a more detailed examination of the more complex images, ultimately fostering a
more thoroughly annotated dataset.

3.5 Refinement of Human Annotation

This stage follows the process described in Sect. 3.3 but with some critical dis-
tinctions. In the stage described in Sect. 3.3, annotators with varying degrees of
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experience with the dataset contribute to the labeling. However, the refinement
stage exclusively engages more experienced annotators. These experienced anno-
tators are provided with the labels previously selected, which are pre-checked for
the annotators to review: uncheck (to correct) or check additional missing labels.
Furthermore, the annotators are instructed to document any changes they make
to the labels using the comments section of the web interface. This provision
ensures that a clear record is maintained for each correction, which can be invalu-
able in resolving potential discrepancies in the annotations. It is important to
note that these annotators have undergone several tutorial sessions on the label
issues of the ImageNet-1k dataset. Additionally, they reviewed and summarized
related literature to ensure that they are aware of the nuanced issues that are
encountered when annotating images into 1, 000 categories, especially within the
fine-grained categories.

4 Results

4.1 Experimental Setup

Our goal is to re-assess the labels for the ImageNetV2 dataset to accommodate
and account for its multi-label nature. The four stages in Sect. 3 were carefully
followed. In the label proposal generation stage, the EVA-02 [13] model was used
to generate the proposal. It is one of the top performing models (90.05% top-1
accuracy [2]) on the ImageNet-1k dataset; additional details of the model can
be found in the cited paper. Subsequently, in the human multi-label annotation
stage, the 10, 000 images of the ImageNetV2 dataset were partitioned into seven
batches, and each batch was assigned to two human annotators. Fourteen human
annotators having varying experience levels with the ImageNet-1k dataset and
computer vision in general, participated during this stage. Upon the annotation
disagreement analysis (detailed in Sect. 3.4), the annotations for 6, 425 of the
10, 000 images fulfilled our disagreement criteria and were selected for subsequent
refinement by five more experienced annotators, four of whom were previously
referenced among the group of fourteen. Each annotator refined the annotations
for 1, 285 images. The refined annotations were then used to generate the results
presented and discussed in the following sections.

4.2 The Extent of ImageNetV2 Multi-Labeledness

Here, we provide visual statistics summarizing the multi-label nature of the labels
we generated for the ImageNetV2 dataset. Specifically, we show what percentage
of the dataset contains which label count, i.e., the number of ground truth labels
assigned to an image. As shown in the pie chart of Fig. 3, the annotation process
could not find labels for 1.29% of the images. Moreover, 50.83% of the images
contain one label, 23.85% contain two labels, and 24.03% contain more than two
labels.



Human-Machine Dataset Enhancement 303

Fig. 3. The distribution of images based on the number of labels assigned to them
during our annotation process.

4.3 Re-evaluation of Models on ImageNetV2 Improved Labels

Top-1 Accuracy Versus ReaL Accuracy. We provide a Scatterplot to under-
stand the relationship between ReaL and top-1 accuracy on our generated labels
(Fig. 4). Each dot in the plot represents a pre-trained model, and 57 models were
evaluated on the ImageNet-1k validation set and ImageNetV2. These models are
sourced from a publicly available GitHub repository [2] and represent state-of-
the-art models pre-trained either exclusively on the ImageNet-1k dataset, or on
additional external data. Details of these models can be found together with
the paper’s code at https://github.com/esla/Multilabelfy The regression anal-
ysis indicates a significant correlation between the two metrics. Specifically, for
every percentage point increase in top-1 accuracy, the ReaL accuracy rises by
approximately 0.5788 percentage points. The coefficient of determination, R2, is
75.69%, suggesting that 75.69% of the variation in ReaL accuracy is explained
by its linear relationship with top-1 accuracy. This result reflects a consistent
positive relationship: as the top-1 accuracy of models improves, there is a pro-
portional increase in ReaL accuracy. It is worth noting that four models visibly
diverge from the regression line; these models merit additional scrutiny to iden-
tify potential model-specific quirks or underlying reasons for their divergence. A
detailed investigation of these models will be addressed in future work.

https://github.com/esla/Multilabelfy
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Fig. 4. Scatterplot of ReaL accuracy versus top-1 accuracy for 57 top-performing DNN
models, pre-trained either exclusively on the ImageNet-1k dataset or additionally on
external datasets.

Visual Statistics of Top-1 Accuracy Versus Image Count. We inves-
tigate the relationship between top-1 accuracy and the variability in image
label assignments using heatmaps (Fig. 5). While we presented the results for
57 models in Sect. 4.2, for visual brevity, we randomly selected 5 models for
the heatmaps. We determine top-1 accuracy using ground truth labels from the
ImageNetV2 dataset, comparing them with our multi-label annotations. To this
end, we employ a heatmap (Fig. 5, top) that presents top-1 accuracies for each
evaluated model across different label count categories. While this heatmap is
informative, it does not factor in the variability stemming from different sam-
ple sizes across label counts. For instance, images with a single label may be
more prevalent than those with multiple labels, potentially leading to biases in
accuracy measurements.

To enhance our understanding of accuracy computations and account for
inherent uncertainties, we incorporate a secondary heatmap as shown in Fig. 5,
bottom. The margin of error related to the top-1 accuracy is denoted as U(i, j)
and is determined using the following formula: U(i, j) = 1.96×σ(i, j)/

√
n. Here,

σ(i, j) stands for the standard deviation stemming from the binary outcomes
of individual predictions for a specific model and label count. This standard
deviation for a binary variable is expressed as σ(i, j) =

√
p(1 − p)/n, where p

represents the proportion of correct predictions. The variable n symbolizes the
number of observations for the considered model-label count pairing. This margin
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Fig. 5. Heatmaps displaying top-1 accuracy (top) for five randomly selected models
evaluated on our multi-labeled ImageNetV2 dataset, and the half-width of the 95%
confidence interval (bottom) associated with these accuracies. Red cells without num-
bers represent NaN values due to sets with one or no images for a given label count.
(Color figure online)

of error, corresponding to half the width of the 95% confidence interval, offers
a gauge of uncertainty for each model-label count combination. Differences in
sample sizes across subsets can lead to variations in the width of the confidence
interval. This variance emphasizes the significance of jointly considering both
accuracy and its associated uncertainty when interpreting model performance
across different label counts.

In our analysis, while results for only five models are presented for clarity, the
observations are representative of numerous other models evaluated. A notable
observation is that models consistently exhibit higher top-1 accuracy for images
associated with a single label. However, as the number of potential labels expands,
a discernible decrease in accuracy is evident. This pattern potentially indicates
that models might be predicting alternative valid labels, and the top-1 accuracy
metric penalizes them for such predictions. Such a negative correlation warrants
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attention, as it hints at the possibility of underestimating model performance due
to potentially skewed dataset assumptions.

4.4 Analysis of Images with Zero Labels

Fig. 6. Example images where annotators did not find matching labels from the 20
proposed labels. The images are categorized based on possible explanations for not
finding matching labels in the labels proposed (see Sect. 4.4).

During our dataset annotation process, despite the meticulous efforts of fifteen
annotators, 1.29% (129 images) had no labels assigned to them at the completion
of human annotation refinement. Consequently, two of the experienced annota-
tors further scrutinized these images. They classified the images without valid
annotations into (i) clear images with no valid label proposals (21.79%), (ii)
images rendered ambiguous due to low resolution (10.26%), (iii) clear images
but challenging to label due to fine-grain similarities, thereby requiring addi-
tional expert review (38.46%), and (iv) images showcasing uncommon objects
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Fig. 7. Example images where annotators did not find matching labels from the 20
proposed labels. The images are categorized based on whether or not our two annotators
agree with the provided ImageNetV2 ground truth label (see Sect. 4.4).

or atypical viewpoints (29.49%). One example from each of these categories is
shown in Fig. 6.

While our finalized annotations did not provide labels for these images,
ground truth labels from the creators of the ImageNetV2 dataset existed for
reference. Using these, the annotators further categorized the images based on
their alignment with the ImageNetV2 ground truth as (i) those they agree with
(26.92%), (ii) those they disagree with (19.23%), and (iii) those they remain
uncertain about and highly doubt (53.85%). Examples of this type of catego-
rization are provided in Fig. 7.

5 Conclusions

Single-label multi-class classification datasets like ImageNet-1k are crucial for
advancing deep learning in computer vision. However, as the demand for reliable
DNN models grows, it is vital to examine these datasets for biases that could
impede progress. We provide a practical framework for smaller research groups
to enhance the quality of multi-class classification datasets, especially those that
could contain multi-labeled images. Furthermore, we introduce new labels for the
ImageNetV2 dataset to account for its multi-label nature. The purpose of our
dataset enhancement platform and the provided multi-labels for ImageNetV2
is to facilitate research on the performance degradation of ImageNet-1k-trained
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DNN models on the ImageNetV2 dataset. Interestingly, only about half of the
10, 000 images in the ImageNetV2 dataset can be confidently categorized as
having a single label, thereby underscoring the need for further investigation
into the impact of the multi-labeled images on ImageNet-based benchmarks and
their potential implications for downstream utilization. Such research endeavors
will help us better understand how models perform on complex vision datasets.
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