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Abstract—This paper presents a new model of textures, ob-
tained as realizations of a new class of fractional Brownian fields.
These fields, called weighted tensorized fractional Brownian fields,
are obtained by a relaxation of the tensor-product structure that
appears in the definition of fractional Brownian sheets. Statistical
properties such as self-similarity, stationarity of rectangular
increments and regularity properties are obtained. An operator
scaling extension is defined and we provide simulations of the
fields using their spectral representation.

Index Terms—Brownian fields, texture synthesis, stationary
rectangular increments, self-similarity, anisotropy.

I. INTRODUCTION

Classical extensions of the fractional Brownian motion
in higher dimension. The modelization of phenomena, in
particular textures, by random objects has led to the in-
troduction of numerous stochastic processes and fields. The
most famous and historically the first one is the well-known
Brownian motion, which has been extended to fractional
Brownian motions by Kolmogorov in the famous paper [1]
from 1940, to define “Gaussian spirals” in Hilbert spaces.
The first systematic study of fractional Brownian motion
goes back to the article [2] from Mandelbrot and Van Ness.
Given a Hurst parameter H ∈ (0, 1), the fractional Brownian
motion BH is the unique Gaussian process with stationary
increments satisfying the self-similarity relation BH

at

(d)
= aHBt

for any a, t > 0, where
(d)
= means that the equality holds

in the sense of finite-dimensional distributions. The fractional
Brownian motion BH can be characterized as the unique
centered Gaussian process with covariance given by

∀s, t ∈ R+, E(BH
s BH

t ) =
1

2
(|s|2H + |t|2H − |s− t|2H).

The later process can also be defined via a moving average
formula or via its harmonizable representation :

∀t ∈ R+, B
H
t =

∫
R

eitξ − 1

|ξ|H+1/2
dŴ(ξ), (1)

see e.g. the monograph [3] for a precise definition of this last
stochastic integral.

Several extensions have been proposed in higher dimen-
sions. In particular two natural generalizations are provided.
The first one is the Levy fractional Brownian motion (LFBM)
of Hurst index H ∈ (0, 1), also called fractional Brownian
field (see e.g. [4]). It is the unique real-valued isotropic

Gaussian field Y H with stationary increments satisfying the
similarity property Y H

ax

(d)
= aHY H

x , where “isotropic” means
that the field is invariant in law by rotation. Again, it can be
defined using its harmonizable representation:

Y H
x =

∫
RN

ei⟨x,ξ⟩ − 1

∥ξ∥H+N
2

dŴ(ξ) (2)

where ⟨·, ·⟩ denotes the standard scalar product in RN .
A second famous extension is given by the fractional

Brownian sheet (fBs) studied in [5], [6]. For a given vector
H = (H1, ...HN ) ∈ (0, 1)N , the fBs of Hurst index H
is a real-valued centered Gaussian random field SH with
covariance function given by

E(SH
x SH

y )=

N∏
m=1

1

2

(
|xm|2Hm + |ym|2Hm − |xm − ym|2Hm

)
.

for all x,y ∈ RN
+ . The fBs has the following harmonizable

representation

SH
x =

∫
RN

N∏
m=1

eixmξm − 1

|ξm|Hm+ 1
2

dŴ(ξ). (3)

Setting Hm = 1
2 for each m ∈ {1, . . . , N} yields to the stan-

dard Brownian sheet. While LFBMs are isotropic, fBs exhibit
a strong “tensor-product” structure even when Hm = H for
all m ∈ {1, . . . , N} and no longer have stationary increments
but only rectangular stationary increments (see Definition
III.2 below). Nevertheless, this field has been widely studied
for its interesting mathematical aspects, including asymptotic
properties [7], fractal dimensions [7], [8], geometric properties
[9], local times [10], [11], stochastic differential equations
[12], and many more.

Further developments. Focusing on the class of Gaus-
sian fields, the two previously mentioned extensions of the
fractional Brownian motions can be seen as particular cases
of more general models. Important properties have been in-
troduced in these models, such as anisotropy with different
properties along directions [13], [14].

The Operator Scaling Gaussian Random Fields (OSGRF,
also defined for α-stable fields) introduced in [15], [16] satisfy
a matricial self-similarity condition, which is given by

∀a > 0, ZaEx
(d)
= aHZx



for some H > 0, where E is a N × N matrix
with eigenvalues having positive real parts, and where

aE = exp(E ln(a)) =
∑
k≥0

lnk(a)Ek

k!
. These fields have been

shown to exhibit anisotropic regularity properties [17], [18],
which offer strategies for numerical estimations of the param-
eters of the model [19], [20].

Other extensions provide models with local changes in the
Hurst parameter [21], [22], or changes in the local direction
of anisotropy [23], [24], for example. For an overview of the
various models, we refer to [24].

Goals, contribution and outline. The contribution of the
paper is to provide a new class of fields called Weighted
tensorized fractional Brownian fields (WTFBFs). They are
defined through their harmonizable representation in (4). The
importance of the “tensor-product” effect emerges as the
parameter α goes from 1 to 0, yielding the fractional Brownian
sheet for α = 0 and a field closer to an LFBM in terms
of regularity for α = 1. The introduction of the WTFBFs
is detailed in Section 2, and the fundamental properties of
self-similarity and rectangular stationary increments are estab-
lished in Section 3. Section 4 is dedicated to estimating the
variance of the rectangular increments, leading to deductions
regarding regularity properties. An operator-scaling extension
is presented in Section 5, along with simulations of the fields
obtained via the spectral representation.

II. DEFINITION OF THE FIELDS

Let α ∈ [0, 1] and H ∈ (0, 1), we set

H+
α := (1 + α)H and H−

α := (1− α)H

and we define the Gaussian field {Xα,H
(x1,x2)

}(x1,x2)∈R2 by

Xα,H
(x1,x2)

:=

∫
R2

(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H(ξ1, ξ2)
dŴ(ξ) (4)

where the function

ϕα,H(ξ1, ξ2) = min(|ξ1|, |ξ2|)H
−
α + 1

2 max(|ξ1|, |ξ2|)H
+
α + 1

2

denotes the square root of the inverse of the spectral density
of the field. In the sequel, we also use the notation

Kα,H
(x1,x2)

(ξ1, ξ2) :=
(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H(ξ1, ξ2)

for the kernel in the stochastic integral (4). Note that the field
(4) is well-defined since this last kernel belongs to L2(R2).
Note furthermore that the Fourier transform of Kα,H

(x1,x2)
is real.

Indeed, one has

ℑ
(
e−i(t1ξ1+t2ξ2)(eix1ξ1 − 1)(eix2ξ2 − 1)

)
=sin((x1 − t1)ξ1 + (x2 − t2)ξ2)− sin(−t1ξ1 + (x2 − t2)ξ2)

− sin((x1 − t1)ξ1 − t2ξ2) + sin(−t1ξ1 − t2ξ2)

which is an odd function in (ξ1, ξ2). It follows that∫
R2

ℑ
(
e−i(t1ξ1+t2ξ2)(eix1ξ1 − 1)(eix2ξ2 − 1)

)
ϕα,H(ξ1, ξ2)

dξ = 0.

It implies that K̂α,H
(x1,x2)

is real, hence so is the field

Xα,H
(x1,x2)

=

∫
R2

Kα,H
(x1,x2)

(ξ1, ξ2)dŴ(ξ)

=

∫
R2

K̂α,H
(x1,x2)

(ξ1, ξ2)dW(ξ).

III. BASIC PROPERTIES

Proposition III.1. For all α ∈ [0, 1] and H ∈ (0, 1),
the process Xα,H is self-similar : for all a > 0,
{Xα,H

(ax1,ax2)
}(x1,x2)∈R2

(d)
= {a2HXα,H

(x1,x2)
}(x1,x2)∈R2

Proof. For all (x1, x2) ∈ R2 and a > 0, we have

Xα,H
(ax1,ax2)

=

∫
R2

(eiax1ξ1 − 1)(eiax2ξ2 − 1)

ϕα,H(ξ1, ξ2)
dŴ(ξ)

(d)
=

∫
R2

(eix1η1 − 1)(eix2η2 − 1)

ϕα,H(η1

a , η2

a )
a−1dŴ(η)

= a2H
∫
R2

(eix1η1 − 1)(eix2η2 − 1)

ϕα,H(η1, η2)
dŴ(η)

= a2HXα,H
(x1,x2)

,

where we used the change of variables (η1, η2) = (aξ1, aξ2)
in the stochastic integral.

Classically, the stationarity of increments is a too strong
property for stochastic fields, and it is preferable to use the
following property of stationarity for rectangular increments
[22], [25]–[27].

Definition III.2. If {X(x1,x2)}(x1,x2)∈R2 is a field and if
(x1, x2), (y1, y2) ∈ R2, we set

∆X(x1,x2);(y1,y2)

:= X(x1+y1,x2+y2) −X(y1,x2+y2) −X(x1+y1,y2) +X(y1,y2).

We say that {X(x1,x2)}(x1,x2)∈R2 has stationary rectangular
increments if, for any (y1, y2) ∈ R2, we have

{∆X(x1,x2);(y1,y2)}(x1,x2)∈R2

(d)
= {X(x1,x2)}(x1,x2)∈R2 .

Proposition III.3. For all α ∈ [0, 1] and H ∈ (0, 1), the field
{Xα,H

(x1,x2)
}(x1,x2)∈R2 has stationary rectangular increments.

Proof. First, we remark that for any (x1, x2), (y1, y2) ∈ R2,
we get from (4)

∆Xα,H
(x1,x2);(y1,y2)

=

∫
R2

ei(y1ξ1+y2ξ2)Kα,H
(x1,x2)

(ξ1, ξ2)dŴ(ξ).

Thus, recalling [28, Corollary 6.3.2], we have

E

exp

i

n∑
j=1

t(j)∆Xα,H

(x
(j)
1 ,x

(j)
2 );(y1,y2)


= exp

−c0

∫
R2

∣∣∣∣∣∣
n∑

j=1

t(j)ei(y1ξ1+y2ξ2)Kα,H

(x
(j)
1 ,x

(j)
2 )

(ξ1, ξ2)

∣∣∣∣∣∣
2

dξ


= E

exp

i

n∑
j=1

t(j)Xα,H

(x
(j)
1 ,x

(j)
2 )

 ,



(a) α = 0 (b) α = 0.5 (c) α = 1 (d) α = 0 (e) α = 0.5 (f) α = 1

Fig. 1. Weighted tensorized fractional Brownian fields simulated using a spectral representation approximation method, with parameters (a-c) H = 0.3 or
(d-f) H = 0.7 and (a,d) α = 0, (b,e) α = 0.5 or (c,f) α = 1.

for any (x
(1)
1 , x

(1)
2 ), . . . , (x

(n)
1 , x

(n)
2 ), (y1, y2) ∈ R2 and any

t(1), . . . , t(n) ∈ R, with

c0 :=
1

2π

∫ π

0

cos(θ)2 dθ.

The conclusion follows directly.

It is also noteworthy that, for all α ∈ [0, 1] and H ∈ (0, 1),
the field {Xα,H

(x1,x2)
}(x1,x2)∈R2 does have some stationary in-

crements, namely the horizontal and vertical ones.

Definition III.4. A field {X(x1,x2)}(x1,x2)∈R2 has stationary
horizontal increments if, for any y1 ∈ R,

{X(x1+y1,x2) −X(y1,x2)}(x1,x2)∈R2

(d)
= {X(x1,x2)}(x1,x2)∈R2 .

Similarly, {X(x1,x2)}(x1,x2)∈R2 has stationary vertical incre-
ments if, for any y2 ∈ R,

{X(x1,x2+y2) −X(x1,y2)}(x1,x2)∈R2

(d)
= {X(x1,x2)}(x1,x2)∈R2 .

Proposition III.5. For all α ∈ [0, 1] and H ∈ (0, 1), the field
{Xα,H

(x1,x2)
}(x1,x2)∈R2 has stationary horizontal and vertical

increments.

Proof. For any x1, x2, y1, y2 ∈ R, we have, on one hand,

Xα,H
(x1+y1,x2)

−Xα,H
(y1,x2)

=

∫
R2

eiy1ξ1Kα,H
(x1,x2)

(ξ1, ξ2)dŴ(ξ)

and, on the other hand,

Xα,H
(x1,x2+y2)

−Xα,H
(x1,y2)

=

∫
R2

eiy2ξ2Kα,H
(x1,x2)

(ξ1, ξ2)dŴ(ξ).

Then, we conclude the proof in exactly the same way as in
the proof of Proposition III.3.

IV. VARIANCE OF RECTANGULAR INCREMENTS AND
REGULARITY PROPERTIES

Proposition IV.1. For all α ∈ [0, 1] and H ∈ (0, 1), there
is a constant c1 > 0 such that the rectangular increments of
{Xα,H

(x1,x2)
}(x1,x2)∈R2 satisfy

E(|∆Xα,H
(h1,h2);(x1,x2)

|2)

≤ c1
(
max{|h1|, |h2|}1−α min{|h1|, |h2|}1+α

)2H

for all (x1, x2), (h1, h2) ∈ R2.

Proof. The isometry property of the stochastic integral gives

E
(
|∆Xα,H

(h1,h2);(x1,x2)
|2
)

=

∫
R2

|ei(x1+h1)ξ1 − eix1ξ1 |2|ei(x2+h2)ξ2 − eix2ξ2 |2

(ϕα,H(ξ1, ξ2))2
dξ

=
1

|h1| |h2|

∫
R2

|eiη1 − 1|2|eiη2 − 1|2

(ϕα,H( η1

h1
, η2

h2
))2

dη

using the change of variables (η1, η2) = (h1ξ1, h2ξ2). Notice
now that if |h1| ≥ |h2|, one has

(ϕα,H( η1

h1
, η2

h2
))2 ≥ min(|η1|, |η2|)2H

−
α +1|η2|2H

+
α +1

|h1|(2H
−
α +1)|h2|(2H

+
α +1)

.

This implies E
(
|∆Xα,H

(h1,h2);(x1,x2)
|2
)
≤ c1|h1|2H

−
α |h2|2H

+
α

where

c1 =

∫
R2

|eiη1 − 1|2|eiη2 − 1|2

min(|η1|, |η2|)2H
−
α +1|η2|2H

+
α +1

dη (5)

if |h1| ≥ |h2|. The same argument for |h1| < |h2| leads to the
conclusion.

Similarly, we obtain the following result regarding the
horizontal and vertical increments.

Proposition IV.2. For all α ∈ [0, 1], H ∈ (0, 1) and
every compact subset K ⊂ R, there is a constant cK > 0
such that the horizontal and vertical increments of the field
{Xα,H

(x1,x2)
}(x1,x2)∈R2 satisfy

E
(
|Xα,H

(x1+h1,x2)
−Xα,H

(x1,x2)
|2
)
≤ cK |h1|2H

+
α

for all x1 ∈ R, x2 ∈ K and h1 ∈ R such that |h1| ≤ |x2|,
and

E
(
|Xα,H

(x1,x2+h2)
−Xα,H

(x1,x2)
|2
)
≤ cK |h2|2H

+
α

for all x1 ∈ K, x2 ∈ R and h2 ∈ R such that |h2| ≤ |x1|.

Proof. It suffices to proceed as in the proof of Proposition
IV.1 to write

E
(
|Xα,H

(x1+h1,x2)
−Xα,H

(x1,x2)
|2
)

=

∫
R2

|ei(x1+h1)ξ1 − eix1ξ1 |2|eix2ξ2 − 1|2

(ϕα,H(ξ1, ξ2))2
dξ

≤ c1 max{|h1|, |x2|}2H
−
α min{|h1|, |x2|}2H

+
α

≤ cK |h1|2H
+
α



where c1 is the constant given in Equation (5) and where we
set cK = c1 supy2∈K |y2|2H

−
α .

The result indicates that the regularity along the axes is
governed by H+

α . Regarding the rectangular increments, a
generalization of Kolmogorov’s continuity theorem allows
us to assert that there exists a modification of the field
{Xα,H

(x1,x2)
}(x1,x2)∈R2 which is locally (H+

α , H−
α )-rectangular

Hölder. This means that for every bounded intervals I, J of R,
every x1 ∈ I , x2 ∈ J and every ε > 0, there exists a positive
finite random variable C > 0 such that almost surely

|∆Xα,H
(h1,h2);(x1,x2)

|

≤ C
(
max{|h1|, |h2|}(1−α) min{|h1|, |h2|}(1+α)

)H−ε

for all h1, h2 ∈ R such that x1+h1 ∈ I and x2+h2 ∈ J . This
relation will be further investigated in an upcoming paper.

V. ANISOTROPIC EXTENSION AND SIMULATIONS

A. Anisotropic extension

The model introduced in the previous sections can be
extended to provide anisotropic textures by imposing an op-
erator scaling property. These fields then satisfy anisotropic
properties of regularities that will be explored in a forthcoming
work.

We consider β1, β2 ∈ (1/2, 3/2) such that β1+β2 = 2, and
we set

Xα,H,β1,β2

(x1,x2)
:=

∫
R2

(eix1ξ1 − 1)(eix2ξ2 − 1)

ϕα,H,β1,β2
(ξ1, ξ2)

dŴ(ξ) (6)

where

ϕα,H,β1,β2(ξ1, ξ2) = ϕα,H

(
|ξ1|

1
β1 , |ξ2|

1
β2

)
.

If max(β1, β2) − 1 < 2H < 3min(β1, β2) − 1, the corre-
sponding field is well-defined and satisfies

Xα,H,β1,β2

aDx

(d)
= a2HXα,H,β1,β2

x (7)

with D = diag(β1, β2) and aDx = (aβ1x1, a
β2x2).

B. Simulation

Several strategies have been developed to simulate Gaussian
random fields, as reviewed in [24]. Methods based on an
explicit expression for the covariance of the field allow for
exact simulations that preserve statistical properties such as
stationarity. These methods have been used in [29] and [30].
When the covariance is not explicitly known but is known
along radial directions, the turning-bands method introduced
in [31], [32] can be employed, as done in [33] to simulate
some anisotropic fields.

Using the spectral density of the field, approximations of
AFBF have been obtained in [34], [35]. Since we only have
an integral expression of the covariance, we employ the later
strategy to generate a WTFBF. It relies on a discretization of
the field in the Fourier domain. Its main drawbacks include
the difficulty in obtaining results on the convergence of the
approximation. There is also a possibility that the inverse

Fourier transform “breaks” the statistical properties of the
field. However, it is very fast and easy to perform as it involves
fast Fourier transforms. Approximations based on wavelet
methods could be used, but they are known to be quite slow
in practice even if they provide the best approximation rate by
a series in the case of FBF [36].

The results presented in Figures 1 and 2 are generated using
a spectral representation approximation on a discrete grid of
size (M +1)× (M +1), with M = 512. For a given WTFBF
{Xα,H

(x1,x2)
}(x1,x2)∈R2 , the strategy involves generating W , a

collection of independent standard complex Gaussian variables
of size (2M × 2M). These variables are then multiplied by a
function g. Next, in both directions successively, a 1D Fourier
transform is applied, followed by subtracting the value of the
field at the origin.

If we set g(x, y) = (ϕα,H(x, y))−11{x ̸=0,y ̸=0} for (x, y) ∈
R2, the generated field xα,H is given, for all k1, k2 ∈
{0, . . . ,M}, by

xα,H
(
k1

M , k2

M

)
= R

(
y2

(
k1

M , k2

M

)
− y2

(
0, k2

M

))
,

where for any n1 ∈ {−M + 1, . . . ,M}

y1
(
n1,

k2

M

)
=

M∑
n2=−M+1

W (n1, n2)g (πn1, πn2) e
− 2iπn2k2

2M ,

and

y2
(
k1

M , k2

M

)
= π

M∑
n1=−M+1

(
y1

(
n1,

k2

M

)
− y1(n1, 0)

)
e−

2iπn1k1
2M .

The same method is used to simulate the anisotropic extension.
Figure 1 presents synthesized WTFBFs with various parame-
ters H and α. Figure 2 shows anisotropic WTFBF. These fields
Xα,H,β1,β2 produce anisotropic textures, where the highest β
determines the dominant direction. The images (a-f) illustrate
the effects of the parameters α, β and H on the fields.

VI. CONCLUSION AND PERSPECTIVES

A new class of fractional Brownian fields has been defined
using a tensor-product structure. These fields are indexed by
two parameters: a Hurst index H ∈ (0, 1) and a parameter α ∈
[0, 1] which measures the “deviation” of the corresponding
field from the fractional Brownian sheet with the same Hurst
index, obtained with α = 0. These fields are demonstrated to
be self-similar and to possess stationary rectangular, horizontal
and vertical increments. The variance of these increments has
been bounded to have a glimpse of the regularity of these
fields. An anistropic extension has been proposed. Finally,
simulations have been provided, for various values of the
parameters H and α as well as for the anisotropic extension.
In a forthcoming work, we aim at providing function spaces
which are well-suited to consider the rectangular regularity of
such fields. An analysis of these spaces, based on hyperbolic
wavelet transform should be performed. Further development
concerning the anisotropic extension could also be considered,
as well as a N -dimensional definition of the weighted ten-
sorized fractional Brownian textures.



(a) α = 0 (b) α = 0.5 (c) α = 1 (d) α = 0 (e) α = 0.5 (f) α = 1

Fig. 2. Anisotropic weighted tensorized fractional Brownian fields simulated using a spectral representation approximation method, with parameters (a-c)
H = 0.4, β1 = 0.7, β2 = 1.3 and α = 0, α = 0.5 or α = 1, and (d-f) H = 0.6, β1 = 0.85, β2 = 1.15 and α = 0, α = 0.5 or α = 1.
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