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Policy Gradient Theorem

Theorem (Policy Gradient Theorem)
For any differentiable policy πθ, the policy gradient of J(πθ) is

∇θJ(πθ) = E
s0∼p0(·)

at∼πθ(·|st)
st+1∼T(·|st,at)

[
∞∑

t=0
γtQπθ (st, at)∇θ log πθ(at|st)

]
.

Theorem (Policy Gradient Theorem 2)
For any differentiable policy πθ, the policy gradient of J(πθ) is

∇θJ(πθ) =
1

1 − γ
E

s∼dγ,πθ (·)
a∼πθ(·|s)

[Qπθ (s, a)∇θ log πθ(a|s)] ,

where dγ,πθ is the discounted state visitation probability.
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Advantage Actor Critic

Actor update direction:

∇̂θJ(πθ) =

⟨T−1∑
t=0

γt

(
(

T−1∑
t′=t

γt′−trt′ + γTVϕ(sT))− Vϕ(st)

)
∇θ log πθ(at|st)

⟩
n

.

Critic update direction:

∇̂L(ϕ) =

⟨(T−1∑
t=0

Vϕ(st)−
T−1∑
t′=t

γt′−trt′ − γT−tVϕ(sT)

)(T−1∑
t=0

∇ϕVϕ(st)

)⟩
n

.
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Natural Policy Gradient

• The gradient ∇θJ(θ) gives the direction of greater increase of the function J
for a small vectorial variation dθ.

• What does small mean... for a norm |dθ| → 0

max
dθ

J(θ + dθ)
s.t. |dθ|2 = ε2

• How do we compute the norm of a vector in a Euclidean space (with the
usual scalar product) in an orthonormal basis?

|dθ|2 = dθTIdθ = dθTdθ

But how does a parameter change influence the distribution πθ?
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Natural Policy Gradient

• Natural gradients are gradients accounting for small variation of the
(functional) distribution.

• Let us change the norm of dθ such that it accounts for changes in the
underlying distribution.

|dθ|2f = dθTF(θ)dθ

F(θ) = E
s∼dπθ (·)
a∼πθ(·|s)

[
(∇θ log πθ(a|s))(∇θ log πθ(a|s))T

]

• In fact, we work in a Riemannian space where the manifold is the set of
distributions...
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Natural Policy Gradient

We get the natural policy gradient by finding the direction of greater increase of
J with the new norm

max
dθ

J(θ + dθ)
s.t. |dθ|2f = ε2

This optimization problem has a closed form for small ε:

dθ = aF(θ)−1∇θJ(θ)

a =
ε√

(∇θJ(θ))TF(θ)−1∇θJ(θ)
.
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Natural Policy Gradient

Theorem (Natural Policy Gradient)
The natural policy gradient is given by [Kakade, 2001]

∇̃θJ(θ) = F(θ)−1∇θJ(θ) ,

where F(θ) is the expectation of the Fisher information matrix of the conditional
distribution πθ.

• Natural policy gradient ascent is more stable.
• Nevertheless computing F(θ)−1∇θJ(θ) is expensive !
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NPG in practice – Naive approach

Natural policy gradient needs to (1) estimate the (expected) Fisher information
matrix and (2) solve a linear system.

• The matrix is estimated based on samples and can be singular or ill-defined...
• Compute the Moore–Penrose (pseudo) inverse with, e.g., singular value

decomposition.

F(θ) = U diag(σ) VT

F(θ)−1 = V diag(σ)−1 UT

• We can afterwards solve the linear system by matrix multiplication.

As such the method is inefficient and prone to numerical errors.
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NPG in practice – Efficient solution 1

Approximate the linear system solution with the conjugate gradient method.

Can be further accelerated in practice, see readings.
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NPG in practice – Efficient solution 2

The natural policy gradient can be found by solving directly a least-squared
minimization problem, typically by stochastic gradient descent.

Theorem (Natural Policy Gradient)
The natural policy gradient can be computed as

∇̃θJ(θ) = argmin
w

E
s∼dπθ (·)
a∼πθ(·|s)

[(
wT(∇θ log πθ(a|s))− Qπθ (s, a)

)2
]
.

Proof. We write the first-order condition of the problem.

∇w E
s∼dπθ (·)
a∼πθ(·|s)

[(
wT(∇θ log πθ(a|s))− Qπθ (s, a)

)2
]
= 2wTF(θ)− 2(∇θJ(θ))T = 0

Knowing F(θ) is symmetric, the condition is satisfied for w = F(θ)−1∇θJ(θ).
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Trust Region Methods

• Trust region optimization implements a very similar idea to natural policy
gradient.

• We add an explicit constraint on the distance between the new policy and
the previous one.

• Typically on the KL-divergence.

max
dθ

J(θ + dθ)
s.t. Es∼dπθ (·) [KL (πθ(·|s), πθ+dθ(·|s))] ≤ δ

• The problem now consists in iteratively finding dθ and updating the policy.
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Trust Region Policy Optimization

Let us approximate the constraint to the second order (for small dθ)

DKL(dθ) = E
s∼dπθ (·)

[KL (πθ(·|s), πθ+dθ(·|s))]

DKL(dθ) =
Taylor

DKL(dθ = 0) + dθT∇dθDKL(dθ = 0) + 1
2dθT∇2

dθDKL(dθ = 0)dθ .

This expression simplifies as:

DKL(dθ) =
Taylor

0 + 0 +
1
2dθTF(θ)dθ

=
Taylor

1
2dθTF(θ)dθ .

To the second order, the problem boils down to computing the natural gradient !
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Trust Region Policy Optimization

TRPO [Schulman et al., 2015] follows the natural gradient with the largest step
respecting the KL-constraint...

dθ = αj

√
2δ

(∇θJ(θ))TF(θ)−1∇θJ(θ)F(θ)−1∇θJ(θ),

where α is the step size, δ is an hyperparameter, and j is found by line search.

This algorithm is computationally inefficient... Why ?
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Readings

Approximate trust region methods:

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 .

Generalized method for the critic:

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015).
High-dimensional continuous control using generalized advantage estimation.
arXiv preprint arXiv:1506.02438.
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Off-Policy Algorithms

The algorithms relying on the policy gradient theorem are on-policy... and thus
sample inefficient.

Let us change the objective function and maximize

Jβ(πθ) =
1

1 − γ
E

s∼dγ,β(·)
a∼πθ(·|s)

[Qπθ (s, a)] .

Maximizing Jβ(πθ) looks like a policy improvement step in policy iteration...
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Off-Policy Algorithms

Theorem (Off-Policy Policy Gradient Theorem)
For any differentiable policy πθ, the off-policy policy gradient direction is [Degris
et al., 2012]

∇θJβ(πθ) ≈
1

1 − γ
E

s∼dγ,β(·)
a∼β(·|s)

[
πθ(·|s)
β(·|s) Qπθ (s, a)∇θ log πθ(a|s)

]
,

where dγ,β is the discounted state visitation probability of the behaviour policy.

For a sufficiently small update step, the return of πθ is guaranteed to improve.
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Reading

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... &
Wierstra, D. (2015). Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.
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