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Notations

In this course, we use the classic reinforcement learning notations:

• s ∈ S for the states,
• a ∈ A for the actions,
• V(s) for the state value function,
• Q(s, a) for the state-action value function,
• π(a|s) for the stationary stochastic policy,
• µ(s) for the stationary deterministic policy,
• argmax gives a subset or a single value depending on the context.

2/27



Direct Policy Search



Markov decision process

An MDP is represented by its model M = (S,A,T,R, p0, γ):

• States st ∈ S,
• Actions at ∈ A,
• Transition distribution T(st+1|st, at),
• Reward function rt = R(st, at),
• Initial distribution p0(s0),
• Discount factor γ ∈ [0, 1[.

In MDPs, states satisfy the Markov property:

p(st+1|s0, a0, . . . , st, at) = p(st+1|st, at)

= T(st+1|st, at).
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Stochastic policies in MDPs

Definition (Stationary stochastic policy)
A stationary stochastic policy π ∈ Π = S → ∆(A) is a mapping from a state to
a distribution over the actions, whose density writes π(at|st).

Vπ(s) = E
at∼π(·|st)

st+1∼T(·|st,at)

[
∞∑

t=0
γtR(st, at)

∣∣∣∣∣s0 = s
]

Theorem (Optimality of stationary stochastic policies in MDPs)
There exists an optimal stationary stochastic policy.

4/27



Direct Policy Search

Do not solve a more general problem as an intermediate step.
— Vladimir Vapnik, 1998

As we care about optimal behaviour, why not directly learning a policy ?
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Direct Policy Search – Objective Function

Definition (Problem Statement)
In Direct Policy Search we look for a policy π∗ ∈ Π maximizing the expect
discounted sum of rewards (i.e., the expected return of the policy):

J(π) = E
s0∼p0(·)

at∼π(·|st)
st+1∼T(·|st,at)

[
∞∑

t=0
γtR(st, at)

]
.

Questions :

1. Is this policy optimal in the sense of Bellman ?
2. Is a Bellman optimal policy optimal for DPS ?
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Direct Policy Search – Advantages

Policy-based RL has several advantages compared to value-based RL:

1. We optimize the true control objective.
2. It extends to continuous state-action spaces.
3. Sometimes simple behaviours are optimal while value functions are complex.

We will focus on stochastic policies as their expected return is usually smoother
than deterministic policies.
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Policy-Gradient Methods



Policy Gradient Methods – Recipe

Direct policy search is usually solved with policy-gradient methods.

1. We represent the policy with a differentiable parametric function πθ.
2. We perform stochastic gradient ascent on the expected return.

8/27



Policy Gradient Methods – Policy Parameterization

We commonly use Gaussian policies in which actions are draw as

at ∼ N (·|µθ(st),Σθ(st)).

How to represent such a distribution with a neural network ?
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Policy Gradient Theorem

∇θJ(πθ) = ∇θ E
s0∼p0(·)

at∼πθ(·|st)
st+1∼T(·|st,at)

[
∞∑

t=0
γtR(st, at)

]

1. How to compute the gradient ?
2. Gradient of a Monte-Carlo estimates of J will not work... Why?
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Policy Gradient Theorem

Theorem (Policy Gradient Theorem)
For any differentiable policy πθ, the policy gradient of J(πθ) is [Sutton et al.,
1999]

∇θJ(πθ) = E
s0∼p0(·)

at∼πθ(·|st)
st+1∼T(·|st,at)

[
∞∑

t=0
γtQπθ (st, at)∇θ log πθ(at|st)

]
,

where

Qπθ (s, a) = E
at∼πθ(·|st)

st+1∼T(·|st,at)

[
∞∑

t=0
γtR(st, at)

∣∣∣∣∣s0 = s, a0 = a
]
.

• How to approximate the state-action value function Qπθ ?
• How to approximate the expectation ?
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Likelihood Ratio PG – REINFORCE

Using Monte-Carlo over n i.i.d. trajectories, we get

∇̂θJ(πθ) =

〈T−1∑
t=0

γtQ̂t∇θ log πθ(at|st)

〉
n

Q̂t =

T−1∑
t′=t

γt′−trt .

• Is this estimate unbiased when T→∞, why ?
• What is the influence of the horizon T on the gradient ?
• In practice we neglect the γt in the gradient expression...
• Show that ∥Qπθ − E[Q̂t]∥ ≤ γT−t

1−γ
maxs,a R(s, a).
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Proof Property
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REINFORCE algorithm

In summary, the REINFORCE algorithm writes as follows.

Algorithm 1: REINFORCE algorithm
1 Initialise θ randomly.
2 for k← 1, . . . ,K do
3 Sample n trajectories with the current policy in the MDP
4 Update θk = θk−1 + αk∇̂θJ(πθ)

The policy gradient is usually computed by automatic differentiation on the loss

L(θ) = −

〈T−1∑
t=0

γtQ̂t log πθ(at|st)

〉
n

.
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Variance Reduction and Actor-Critic Methods



Baseline

• The gradient estimate can be subject to a large variance !
• Subtracting a baseline from the cumulative reward can decrease the variance.

∇̂θJ(πθ) =

〈T−1∑
t=0

γt
(

Q̂t − bt

)
∇θ log πθ(at|st)

〉
n

• In practice, it is common to choose the mean cumulative reward

bt =

〈T−1∑
t′=t

γt′−trt

〉
n

.
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Baseline in General

Baselines keep the gradient estimate unbiased !

Theorem (Policy Gradient Theorem with Baseline)
For any differentiable policy πθ, for any function of the state f, the policy
gradient of J(πθ) is

∇θJ(πθ) = E
s0∼p0(·)

at∼πθ(·|st)
st+1∼T(·|st,at)

[
∞∑

t=0
γt(Qπθ (st, at)− f(st))∇θ log πθ(at|st)

]
.

When we use the mean cumulative rewards as baseline, we use an approximation
of the state value function !
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Proof Theorem
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Advantage Actor Critic

• Actor-Critic Algorithms use a function approximator (the critic) when
estimating Qπθ (st, at)− f(st) !

• Advantage Actor-Critic (A2C) learns the value function Vϕ of the current
policy [Mnih et al., 2016]

∇̂θJ(πθ) =

〈T−1∑
t=0

γt

(
(

T−1∑
t′=t

γt′−trt′ + γTVϕ(sT))−Vϕ(st)

)
∇θ log πθ(at|st)

〉
n

.

How to learn the parameters of Vϕ ?
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Value Function Evaluation with Monte-Carlo

The first approach is Monte-Carlo Learning !

min
ϕ

Vϕ(s)− E
at∼πθ(·|st)

st+1∼T(·|st,at)

[
∞∑

t=0
γtR(st, at)

∣∣∣∣∣s0 = s
]

2

∀s

In practice we perform gradient descent on the empirical estimate for each state
encountered:

L(ϕ) =

〈T−1∑
t=0

(
Vϕ(st)−

T−1∑
t′=t

γt−t′rt′

)2〉
n

.

This approach is unbiased but subject to high variance !
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Value Function Evaluation with TD-Learning

The second approach is Temporal-Difference (TD) Learning !

min
ϕ

Vϕ(s)− E
at∼πθ(·|st)

st+1∼T(·|st,at)

[R(st, at) + γVϕ(st+1)|st = s]


2

∀s

In practice we perform (quasi) gradient descent on the empirical estimate for
each state encountered:

L(ϕ) =

〈T−1∑
t=0

(Vϕ(st)− rt − γVϕ(st+1))
2

〉
n

.

This approach is more stable but provides biased value functions !
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Value Function Evaluation with Multi-step TD learning

We usually combine both worlds with multi-step TD-learning and solve

min
ϕ

Vϕ(s)− E
at∼πθ(·|st)

st+1∼T(·|st,at)

[T−1∑
t=0

γtR(st, at) + γTVϕ(sT)

∣∣∣∣∣s0 = s
]

2

∀s

In practice, the update direction is computed differentiating

L(ϕ) =

〈T−1∑
t=0

(
Vϕ(st)−

T−1∑
t′=t

γt′−trt′ − γT−tVϕ(sT)

)2〉
n

.
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A2C algorithm

In summary, the A2C algorithm writes as follows.

Algorithm 2: A2C algorithm
1 Initialise θ randomly.
2 for k← 1, . . . ,K do
3 Sample n trajectories with the current policy in the MDP
4 Update ϕk = ϕk−1 − αk∇̂θL(ϕ)
5 Update θk = θk−1 + βk∇̂θJ(πθ)
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A2C algorithm

• This algorithm is more sample efficient... Why ?
• It is said to be an on-policy algorithm.
• As such, the algorithm is prone to converge towards local extrema...
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Entropy Regularization



Local Optimality

• Large variance decreases the expected return of the policy.
• In practice the gradient ascent thus tends to reduce the variance.
• The policy converges towards a deterministic policy.
• The policy has a larger but less concave return...

The gradient ascent converges to a locally optimal deterministic policy !
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Avoiding Local Optimality – Variance Control

A simple approach is to add a constant disturbance to the actions, a Gaussian
policy would provide actions distributed as

at ∼ N (·|µθ(st),Σθ(st) + Λk).

How to increase the variance of other distributions (e.g., mixture,
beta-distribution, normalizing flow) ?
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Avoiding Local Optimality – Entropy Regularization

The preferred approach is to provide an entropy bonus H(πθ) to the return.

H(πθ) = E
at∼π(·|st)

st+1∼T(·|st,at)

[
∞∑

t=0
γt log πθ(at|st)

]

The gradient can be estimated.

1. By automatic differentiation if (for each state) the conditional entropy of the
policy has a closed form.

2. By providing reward bonuses proportional to the log-likelihood of the
sampled actions otherwise.
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Avoiding Local Optimality – Algorithm

Algorithm 3: A2C algorithm with entropy regularization
1 Initialise θ randomly.
2 for k← 1, . . . ,K do
3 Sample n trajectories with the current policy in the MDP
4 Update ϕk = ϕk−1 − αk∇̂θL(ϕ)
5 Update θk = θk−1 + βk∇̂θJ(πθ) + λk∇̂θH(πθ)
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Conclusions



Conclusion

In summary:

• We introduced direct policy search.
• We saw how to optimize a policy with the PG Theorem.
• Variance reduction lead us to the A2C algorithm.
• Entropy regularization enhances the performance of A2C.

Next week:

• We will dive into more complex on-policy algorithms.
• We will see a first off-policy method.
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