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Abstract

Wavelet-type random series representations of the well-known Frac-
tional Brownian Motion (FBM) and many other related stochastic pro-
cesses and fields have started to be introduced since more than two decades.
Such representations provide natural frameworks for approximating al-
most surely and uniformly rough sample paths at different scales and for
study of various aspects of their complex erratic behavior.

Hermite process of an arbitrary integer order d, which extends FBM,
is a paradigmatic example of a stochastic process belonging to the dth
Wiener chaos. It was introduced very long time ago, yet many of its
properties are still unknown when d > 3. In a paper published in 2004,
Pipiras raised the problem to know whether wavelet-type random series
representations with a well-localized smooth scaling function, reminiscent
of those for FBM due to Meyer, Sellan and Taqqu, can be obtained for
a Hermite process of any order d. He solved it in this same paper in the
particular case d = 2 in which the Hermite process is called the Rosenblatt
process. Yet, the problem remains unsolved in the general case d > 3.
The main goal of our article is to solve it, not only for usual Hermite
processes but also for generalizations of them. Another important goal of
our article is to derive almost sure uniform estimates of the errors related
with approximations of such processes by scaling functions parts of their
wavelet-type random series representations.

Keywords: High order Wiener chaos, self-similar process, multiresolution anal-
ysis, FARIMA sequence, wavelet basis.
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1 Introduction and background

Fractional Brownian Motion (FBM) with Hurst parameter h € (0,1), denoted
{Bn(t) }+cr, was introduced by Kolmogorov, in 1940, to generate Gaussian “spi-
rals” in Hilbert spaces [15]. Its first systematic study was carried out in the
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famous paper [18] by Mandelbrot and Van Ness, in 1968. It is the unique Gaus-
sian process with Bp(0) = 0, mean zero and covariance function

E[By(t)Bn(s)] = %’l (1" + [s]?" — |t — s"), for all (t,s) € R?,
where ¢), := Var(Bp(1)) is a positive constant only depending on the Hurst
parameter h (when ¢;, = 1 then FBM is said to be standard). Among its
most fundamental properties, FBM has stationary increments and is h-self-
similar, meaning that, for all fixed a > 0, the processes {a~"Bj(at)}+cr and
{Bn(t) }+cr have the same finite-dimensional distributions. When h = 1/2, the
process {B1/2(t) }+er is a usual Brownian motion. We refer for instance to the
monograph [21] for a clear and concise presentation of various fundamental facts
concerning FBM.

FBM appears naturally in many real-life applications in various domains,
such as telecommunications, biology, finance, image processing, and so on. We
refer for instance to [11] for a monograph with an overview of its different
areas of applications. Thus, study of FBM and related processes has become
a crucial issue since a long time. To this end, it is very useful to construct
well appropriate representations for these processes. An important class of such
representations consists of wavelet-type random series representations. More
than two decades ago, they were introduced in the framework of FBM in sev-
eral articles. We focus on the Meyer, Sellan and Taqqu seminal article [20]
whose main goal was to obtain representations which clearly separate the low
frequency part of FBM from its high frequency part, and, more importantly,
to express the low frequency part in terms of a well-localized smooth scaling
function. For a better understanding of our paper, we believe it useful to pre-
cisely present in our introduction the most classical one of these wavelet-type
representations of FBM due to [20], since one of our principle aims is to extend
it to Generalized Hermite process. The article [20] made use of the well-known
class of the Meyer orthonormal wavelet bases of L?(R) as the main ingredient
for constructing wavelet-type random series representations for FBM. Some fun-
damental properties of the two functions ¢ and ¢ (scaling function and mother
wavelet) generating such a basis are given the following remark.

Remark 1.1. The precise definitions of univariate scaling function and mother
wavelet ¢ and 1) associated with a Meyer orthonormal wavelet basis of L?(R)
can for instance be found in [8, p. 137-138]. These two functions ¢ and v belong
to the Schwartz class S(R) of infinitely differentiable functions whose derivatives
of any order rapidly decay at infinity. Moreover, their Fourier transforms qAS and
1 are infinitely differentiable compactly supported functions satisfying
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Notice that throughout our article, we use the rather common convention that
F(f) = f, the Fourier transform of an arbitrary function f € S(R) is defined,
for all £ € R, as F(f)(&) = f(&) := (2m) Y2 [, e7"" f(2) dx, while F~1(f), the
inverse Fourier transform of f, is defined, for every x € R, as F~1(f)(x) :=

(2m) 712 [ e f(2) dE.

The article [20] also made an extensive use of the notion of fractional prim-
itive and derivative, which can be defined as follows:



Definition 1.2. Let f be an arbitrary function of the Schwartz class S(R). For
all h € (1/2,1) (resp. h € (0,1/2]), the fractional primitive of f of order h —1/2
(resp. the fractional derivative of f of order 1/2 — h) is the function denoted by
fn, which generally speaking belongs to L?(R), and which is defined through its
Fourier transform fh by:

Fn(&) = GOY2IF(E),  for almost all € € R. (1.1)

One mentions that, using the common convention that, for all (y, a) € R?, when
y > 0 one has y¢ = y* and otherwise one has y¢ = 0, then, for any h € (1/2,1),
the fractional primitive f, can be expressed as:

1 _

Jn(s) = Th—1/2) /R(s - :c)}fr 3/Qf(x) dzx, forall s eR, (1.2)
where T is the usual "Gamma" Euler function defined, for all z € (0,+c0), as
T(z) := f0+°° u?*~le~* du. Also, one mentions that, when the Fourier transform

f of f vanishes on a neighbourhood of 0 (notice the univariate Meyer mother
wavelet 1 satisfies this property), then one can drop the restriction h € (0,1)
and may allow h to be any real number. In the latter case, for all h € (1/2,+00)
(resp. for all h € (—o0,1/2]) the fractional primitive (resp. derivative) fj, can
still be defined through its Fourier transform as in (1.1), and the equality (1.2)
for fractional primitive remains valid. Moreover, for every h € R, one can easily
check that fj, belongs to the Schwartz class S(R).

Unfortunately, since for a univariate Meyer scaling function ¢ the Fourier
transform ¢ does not vanish on a neighbourhood of 0, for all h € (0,1), the
fractional primitive or derivative ¢y, of ¢, fails to be a smooth well-localized
function. In order to overcome this serious difficulty, a clever idea of [20] was to

(%)
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"replace" ¢p by the so called fractional scaling function ®,’, which belongs to

S(R) and which was defined in [20] as follows:

Definition 1.3. The fractional scaling function of order § € R of a univariate

Meyer scaling function ¢ is the function @Xg) € S(R) defined through its Fourier
transform by:
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Similarly to (E, the function f/IS(Aé) has a compact support satisfying
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Remark 1.4. Let § and h be two arbitrary and fixed real numbers. One can
check, from elementary properties of the Fourier transform (see e.g. the seminal
book [26]), that the fractional scaling function fb(g) and the fractional primitive
or derivative 1y, of the univariate Meyer mother wavelet v, belong to S(R),
which means that they are infinitely differentiable functions whose derivatives
of any order rapidly decay at infinity, in other words one has, for all fixed m € Ny
and L € (0, +00),

sup {(3+ ) (‘ d <I)(6)(x)‘ + ]$¢h(x)])} < too. (1.4)

zeR dz™ A



Apart from the fact that <I>(A5) is a very smooth and very well-localized func-
tion, another major advantage in expressing the low frequency part of FBM
in terms of it is to draw connections between the latter process and FARIMA
random walk time series (i.e. partial sums of FARIMA sequence (see Definition
1.6 below)), as shown by the following theorem of [20] which provides the most
classical wavelet-type random series representation of FBM clearly separating
its low and high frequency parts.

Theorem 1.5 (Meyer, Sellan and Taqqu). For each fized J € Z, the FBM
{B1(t)}ter can be expressed as the following random series, which converges
almost surely and uniformly in t on each compact interval of R,

Bu(ty=Y 277"s) (cpg’”l/ D@27~ k) - @XI““M-@)
keZ

“+oo
3D 2 gl (Una (2P — ) = Ynia (—R)), (1.5)
j=J keZ
where:

. (ka)(j,k)ez"‘ is the sequence of the i.i.d. N(0,1) Gaussian random vari-
ables defined, for all (j,k) € Z2, by the Wiener integral (with respect to a
Brownian motion {B(x)}zer)

gy = 2j/2/R'L/)(2jx — k)dB(z); (1.6)

e given the sequence (g?,k)kez of the i.i.d. N(0,1) Gaussian random vari-

ables defined, for all k € Z, by

=2 [ o2’z ) dB(a), (1.7)
° (557;2)kez is the Gaussian FARIMA random walk time series defined, for
every k € Z, by
S, 20 k>0
s = 0 if k=0

0 (h—3) .
— > vki1Zys : if k<0

—1
with (Z.(]TLZ 2))geN the Gaussian FARIMA (0,h — %,0) sequence associated

to (gik)kez, see the next definition.

Definition 1.6. Let (gi)rez be an arbitrary sequence of i.i.d. centred Gaussian

random variables (for instance the sequence (gf? «)kez in the previous theorem).
For each fixed 6 € (—1/2,1/2), the Gaussian FARIMA (0, 6,0) sequence associ-

ated to (gr)rez is denoted by (Zl(é))lez and defined, for all [ € Z, as:

7 =g+ iov(‘”gz with 7 i= 1 and 70 = - TP E0)
= ©g = ) = .
< T(p+ 1T +1)

(1.8)




Remark 1.7. Observe that, for the constant as := 6/I'(0+1), it can be derived
from the Stirling’s formula that

'yz(f) ~asp’"t, when p goes to 400, (1.9)
which implies that the random series in (1.8) is convergent in L?(Q), where Q
is the underlying probability space. Also notice that the latter series is almost
surely convergent as well, thanks to the Kolmogorov’s Three-Series theorem.

Remark 1.8. The FBM {Bj(t) }+cr can also be expressed as

Bi(t) =33 27ihg, (@[J;Hl(?jt k) - ¢h+1(—k)), (1.10)

JEL KEL

where the series is convergent almost surely and uniformly in ¢ on each compact
interval of R. Representations of the type (1.10) have turned out to be very use-
ful in the study of local and global sample path behavior of various stochastic
processes and fields extending FBM. Also it is worth mentioning that, even in
the case of the FBM itself, whose sample path behavior was widely studied in
the literature prior to wavelet theory, in the very recent article [12] the repre-
sentation (1.10) has allowed to show that FBM sample paths have dense subsets
of R of slow points and rapid points.

However, as explained in [20, 1, 25], the representation (1.5) is much more
convenient than (1.10) for approximating the FBM { By, (t) }+cr. Indeed, accord-
ing to (1.5), when J is large enough, {Bj(t)}+cr can be approximated by its
low frequency part

Byy(t) = > 278 (@42 27t — k) — oD (k) )
k€EZ

whose coeflicients ngb,z, k € Z, can be rather easily obtained from the coefficients

53@1 v k€ Z, of {By y_1(t)}ier by induction (pyramidal Mallat-type scheme);
roughly speaking, this is due to the fact that the fractional scaling function
@XLH/ 2) generates a multiresolution analysis of L%(R) (see [20]).

In fact, FBM belongs to a much larger class of chaotic processes, the so-called
Hermite processes. They are self-similar with stationary increments possessing a
long-range dependence property. They first appeared in a natural way as limits
of normalized partial sums of "strongly" correlated stationary Gaussian random
sequences, in the so-called Non-Central Limit theorems established a long time
ago by Taqqu, Dobrushin and Major [27, 28, 10]. Apart from the FBM, which
is the Hermite process of order 1, any other Hermite process of arbitrary integer
order d > 2 is non-Gaussian; in fact it belongs to the dth Wiener chaos, and it
is even considered to be a paradigmatic example of a stochastic process in this
chaos whose many properties are still unknown, though the second order chaos
has turned out to be less difficult to study than the higher order chaoses. This
fact have motivated many authors, interested in "conquering" non-Gaussian
Wiener chaoses, to explore various issues related with them, we refer for instance
to [5, 6, 7, 16, 24, 29, 30] to cite but a few works in this area.

By the end of the introduction of the paper [24] (see page 602 in it) published
in 2004, Pipiras raised the problem to know whether wavelet-type random series



representations with a well-localized smooth scaling function, reminiscent of
the representation (1.5) of FBM, can be obtained for a Hermite process of any
order d. He solved it in this same paper in the particular case d = 2 in which
the Hermite process is called the Rosenblatt process. Moreover, some further
advances have recently been made in this particular case d = 2 in the article [2]
in which a rather sharp estimate of the almost sure uniform rate of convergence
of the wavelet-type random series representing the Rosenblatt process has been
obtained, and has even been shown to be valid in the extended framework of
the generalized Rosenblatt process. For deriving this sharp estimate, the article
[2] has introduced a new strategy which basically consists in expressing in a
non-classical new way the approximation errors related with the approximation
spaces of a multiresolution analysis of L?*(R?), namely in terms of bivariate
wavelet functions having two distinct dilation indices j; and js (see Section 2
for more details).

So far, the challenging problem presented in the previous paragraph has
remained completely open in the general case d > 3. In fact, for solving it, one
has to face at least the following two major difficulties:

(a) To find in which way the low frequency part of an arbitrary Hermite
process can be expressed in terms of FARIMA sequences and fractional
scaling functions belonging to the Schwartz class.

(b) To show that a wavelet-type random series representation of any arbi-
trary Hermite process is almost surely uniformly convergent on compact
intervals, and to estimate its almost sure uniform rate of convergent; the
method introduced in [2] for reaching such a goal in the particular case of
the generalized Rosenblatt process seems to be also useful in the general
case of a Hermite process, yet some parts of it need to be significantly
modified, in particular the crucial equality (2.33) in [2] fails to be true in
the general case since, for d > 3, as far as we know, there is no gener-
alized Plancherel formula which, loosely speaking, would be of the type:
Jza [TL, filz)de = by Jza [T, fi(€) dé, where by is a universal constant

only depending on d, and f; is the Fourier transform of the function f;.

The main aim of our present article is to propose a solution for this open
problem, not only for usual Hermite processes but also for the generalized Her-
mite processes, of any integer order d > 3, which were introduced by Bai and
Taqqu in [4] and which extend the generalized Rosenblatt processes (d = 2)
due to Maejima and Tudor [17]. Also, with this article, we hope to open the
door to future development of simulation methods for such generalized chaotic
processes for which no simulation method is available so far. We hope as well to
open the door to that of new strategies allowing to study in depth their erratic
local sample path behavior, as for instance to show the existence of slow points
and rapid points, in the same spirit of what has been very recently done for
FBM in [12] and for generalized Rosenblatt process in [9].

The generalized Hermite process of an arbitrary integer order d > 2 is de-
noted by {Xl(ld) (t)}ter, , because it depends on a vector-valued Hurst parameter
h:= (hy,..., hq) whose coordinates h; satisfy

d
1
hi,--+ ,hq € (1/2,1) and Zhg>d—§. (1.11)
=1



This process belongs to the non-Gaussian dth Wiener chaos since it is defined,
for each t € R, through the multiple Wiener integral:

/

X\ () = ) Dt ar,...,24)dB(x1) - - - dB(xq), (1.12)
R

where {B(z)},cr is a usual Brownian motion on the underlying probability

space (£, F,P), and where the deterministic kernel function Kl(ld) is given, for

every t € R, and for Lebesgue almost all (z1,...,14) € R% by

1 t e he—3/2
KDty xg) = / (s — )y’ ds.  (1.13)
[Ty D(he = 1/2) Jo 13

Observe that the symbol fﬂéd in (1.12) denotes integration over R? with diag-
onals {zy = xp}, £ # ¢, excluded. Also observe that when all the coordi-
nates hi,...,hq of the vector-valued parameter h are equal, then the process
{Xl(ld) (t)}ter, reduces to usual Hermite process.

The remaining of our article is organized as follows. In Section 2, we present
the main lines of our strategies as well as some major ingredients in them includ-
ing some preliminary proofs, and we state our three main theorems. Sections
3, 4 and 5 are completely devoted to the proofs of our three main theorems.
Some important results on multiple Wiener integrals, which are very useful for
us, are given in Appendix A. At last the statements of some technical Lem-
mas, borrowed from the article [2] and used in many our proofs, are recalled in
Appendix B.

2 Strategies, main results and some major ingre-
dients

Let us start by briefly recalling some fundamental definitions and facts from
wavelet analysis in L?(R?) which will be useful for justifying our strategies.

Definition 2.1. A multiresolution analysis of the Hilbert space L?(R?) is a
sequence (de) jez of closed linear subspaces of L?(R?) satisfying the following
four properties:

(a) forall j € Z, VA C VA
(®) Njez de ={0} and U, ¢y V}d is dense in L?(R%);
(c

(d

) for all j € Z, Vi = {f(29) : f e Vilhs

) there exists a function ® € Vod, called scaling function, such that the se-
quence (®(- — k))kezd is an orthonormal basis of V. Notice that in the
univariate case d = 1, this function ® is denoted by ¢ as in the previous
Section 1.

Remark 2.2. It clearly results from (c) and (d) in Definition 2.1, that, for all
fixed j € Z, the sequence (2jd/2(I>(2j . _k))kezd is an orthonormal basis of V;-d.



Usually, one denotes by W}i the orthogonal complement of VJd in VfH.
Then, it follows from (a) and (b) in Definition 2.1 that, for all fixed J € Z, the
following very important equalities hold:

N 1 1
1
Vi= @ Wwlad ’®RY=Via| @ wi|=Pw. (@1
—oco<j<J J<j<+oo JEL

Using (2.1), with d = 1 and an arbitrary J, one can derive from the following
fundamental theorem (see e.g. |8, 19]) orthonormal bases for the subspace V} C
L?(R) and for the whole space L?(R).

Theorem 2.3. There is a function 1 € W, called mother wavelet, such that,

for all fixed j € Z, the sequence of functions (2j/2¢(2j - —k))keZ s an orthonor-

mal basis of le. Then, the important equalities (2.1), imply, for all fived J € Z,

that:

(a) the sequence of functions (29/%1p(27 - —k‘))j<J7k€Z is an orthonormal basis
for the space V};

(b) the sequences of functions (2J/2¢(2J~—k))k€ZU (29/24p(27 - _k))jZL ez and

(29/24)(27 - —k))(jkyez2 are two orthonormal bases for the space L*(R).
Such bases are called orthonormal wavelet bases.

Thanks to the tensor product method (see e.g. [8, 19]), for any integer
d > 1 one can construct from a multiresolution analysis (V}')jcz of L*(R) a
multiresolution analysis (de) jez for L>(RY). Namely, for each j € Z, the space
de is defined as de = (Vj1)®d the tensor product of the space le, d times with
itself. Then a scaling function ®, which can be associated in a natural way to
such a multiresolution analysis (de)jez, is ® := ¢®4, the tensor product of the
univariate scaling function ¢, d times with itself. In such a setting, it is well

known that, for any fixed J € Z, an orthonormal wavelet basis of the space
(V)L (the orthogonal complement of V¢ in L2(R)) is:

d
{2J’d/2 [T¢™ @2 k) : jeZand j>J,
=1

(M- oma) € {0,134\ {0V, (ky,. .. kq) € zd},

where ¥(©) and () respectively denote the univariate scaling function and
mother wavelet ¢ and 1) (see Theorem 2.3). Nevertheless, a major ingredient of
strategies of our article consists in making use of another much less classical or-
thonormal wavelet basis of (V¢)1. This idea comes from the article [2] in which
d = 2 and whose main goal was to estimate almost sure rate of uniform conver-
gence of wavelet-type random series representation of the generalized Rosenblatt
process.

In order to precisely define the non classical orthonormal wavelet basis of
(V)L we intend to use, we need to introduce some further notations. For all
multi-indices j = (j1,...,754) € Z% and k = (k1,...,kq) € Z%, we denote by



1j,x the multivariate wavelet function belonging to L?(RY) defined as the tensor
product:

d
Vjk = ® Vje,kes
{=1

where the univariate wavelet functions 1;, i, are defined, for every € R, as:
V), ki () 1= 291/29p(2712—k;). Observe that the previous definition of V¢ through
tensor product, and the point (@) in Theorem 2.3 imply that the collection of
functions

{@[Jj’k : j, ke Z% and L/Q[?fi]]jé < J} ,

where [1,d] := {1,2,...,d}, is an orthonormal basis of the subspace le -
L?(R9); while the point (b) in this same theorem entails that the collection of
functions {¢j,k i ke Zd} is an orthonormal basis of the whole space L?(R%),

since L?(R?) = (L? (R))®d. Combining these two results, it turns out that the
collection of functions

{wj,k : j,k ez and zgﬁ?fiﬂ Je > J} (2.2)
is an orthonormal basis of the subspace (V)1 € L?(R?) which is the orthogonal
complement of V¢ in L?(R?).

Let us now precisely explain the connection between the latter basis and the
error of approximation of a generalized Hermite process by the scaling function
part of its wavelet-type random series representation. For each fixed t € R, and

integer J > 1, the two functions of L2(RY) (z1,...,24) — Kfld)J(t,zl, %))
and (21,...,24) — Kf](fbl) (t,z1, -+ ,xq) respectively denote the two orthogonal
projections of the function (x1,...,24) — Kl(ld)(t,xl, <+ ,xq) (see (1.12) and

(1.13)) onto V¢ and (V#)L. One clearly has that
d d d, L
Kl& )(t7 .) - Kﬁ)}(t, .) = Kl(l,J )(ta .)7
which leads us to define the approximation and details processes associated with
the generalized Hermite process {X}(ld) (t)}ter, in the following way:

Definition 2.4. Let d € N and h satisfying the conditions (1.11). For all
J € N, the approzimation process at scale J of the generalized Hermite process

{Xl(ld) (t)}ter, is the process defined, for all £ € Ry, by the multiple Wiener
integral:

/
X0 () = i Ky (8@, 2a)dB(2y) .. dB(xq); (2.3)
R(

in fact {X}(lil}(t)}teﬂg . can be viewed as the scaling function part of the wavelet-

type random series representation of {X}(ld) (t)}ter, . The details process at scale
J is defined, for all t € R, as:

!
X0 ) = X0 - X\ () = / ) K5 (ta, 2a)dB(ay) . dB(xg);
R

(2.4)
in fact {X]Eld’f)(t)}teﬂg . can be viewed as the error stemming from the approxi-

mation of {X\” () }er, by (X7 () hiew. .



Observe that combining (2.3) with the Wiener isometry and the fact that
(2‘7 %@(2‘7 . fk)) . 1s an orthonormal basis of le, one gets, for each fixed
t € Ry, that

keZ

d d,h
X0 = > nkSi (@), (2.5)
kez?

where the sequence (ftjx)keza of random variables in the dth order Wiener

chaos and the deterministic sequence (R(J"il’(h) (t)))keza of €2(Z%) are given, for
all k € Z4, by:

pr=2"% | ¢ — k1) (2724 — k) dB(a1) . .. dB(zy) (2.6)
Rd

and

R () =278 ) KDtz xa)p(2 e — ki) - ¢(27 24 — kg) day - - dag.
R

(2.7
Also observe that combining (2.4) with the Wiener isometry and the fact that
the collection of functions in (2.2) is an orthonormal basis of (V¢#)1, one obtains,

for each fixed t € Ry, that

o= Y gRkiPe), (2.8)

(G.k)ez?)?
maxyeqy,a] je=>J

where the dth order Wiener chaos random variables ¢; x and the deterministic
coefficients ICﬁ(’h)(t) are given by:

!/
Ejk ‘= /d 7/1j,k(1'1; RPN ,md) dB(l‘l) ‘e dB(Id) (29)
R
and
K (1) = ) KDty e s(@, ... 2q) day - - - dag. (2.10)
R

One mentions in passing that, so far, one only knows that the random series in
(2.5) and (2.8) are unconditionally convergent in L?(2), for each fixed t € R,.

Remark 2.5. Similarly to the article [20], from now and till the end of our
article we always assume that the univariate scaling function and mother wavelet
¢ and 1 are associated with an orthonormal Meyer wavelet basis of L?(R) (see
Remark 1.1). Then, it results from (1.2), (1.13), (2.10), Fubini theorem and the
changes of variable y, = 29¢x, — k; (for all £ € [1,d]), that

t d
ch(ih) (t) — 9i1(I=h1)+-+ja(1=ha) / H Un, (2j23 _ ]w) ds, (2_11)
0 ¢=1

where 1)y, is the fractional primitive of order h; —1/2 of ¢). Also, one can derive
from (2.7) and similar arguments that

t d
ﬁgdl,{h) (t) — 2—J(h1+-..+hd—d) / H ¢h£ (2J8 _ k‘[) dS, (212)
0 =1

10



where ¢p, is the fractional primitive of order h; — 1/2 of ¢. Notice that one
knows from (1.1) that the Fourier transform of ¢y, satisfies

bn, (&) = (i)Y/>7Mg(€),  for almost all £ € R. (2.13)

In view of the fact that the functions ¢y, fail to belong to the Schwartz
class S(R) and are even badly localized functions, one of the main goal of our
article will be to introduce, in the same spirit of what has been done for the
approximation process of FBM in [20] and for that of Rosenblatt process in [24],
a modified version of the random series representation (2.5) in which the deter-
ministic coefficients are expressed in terms of "nice" fractional scaling functions
(see Definition 1.3) belonging to the Schwartz class. In order to adapt ideas
of [20, 24] to the framework of the generalized Hermite process {Xl(ld) (t)}eer,
which is much more complex than those of FBM and Rosenblatt process, we need
to introduce, for each fixed J € Z, the sequence of random variables (agf'lz)kezd,
defined, for all k € Z¢, as

d
SRS (Hvﬁ?“l/z))m,kfp, (2.14)

peNd =1

where the deterministic coefficients 7(’” 12 are given by the third and the
second equalities in (1.8) with p = p; and 6 = h; — 1/2. Notice that the
following Proposition 2.7 shows, among other things, that the definition (2.14)
makes sense. Roughly speaking, the sequence (O'E(I}’IIZ)kezd can be viewed as a
generalized FARIMA sequence. In fact, it can be expressed in terms of usual
FARIMA sequences (see Proposition 2.7 below). In order to provide the latter
expression of 05{2, we need the following definition:

Definition 2.6. Let S be an arbitrary finite subset of N whose cardinality is
denoted by #S. Then, for any integer m such that 0 < m < |#S5/2], one
denotes by P the finite set of the partitions of S with m (non ordered) pairs
and #S — 2m singletons. Moreover, for the sake of simplicity, when S = [1,n]
with n € N being arbitrary, one sets P'r():,l) = 737[[,%’”]].

Proposition 2.7. For all fived (J, k) € Z x Z¢, the random series in (2.14) is
convergent almost surely and in LY(Q), for any v € (0,400). Moreover, one
has that

Ld/2] d—m

(h) (h r—1/2) (her—1/2) (hgr—1/2)

O-Jﬂk - Z Z H ]E ZJ kfz Jk:k“ ] H ZJ,/C%‘/ ’ (215)
m=0 PE'P(d) r=1 s=m-+1

where the indices £, £ and ¢! are such that

= {{Elaéll}a R {gmaan} {E// —0—1}7 s 7{ g—m}}a
and where, for all 6 € (0,1/2), (Z ];)qu, is the FARIMA (0,6,0) sequence (see

Definition 1.6) associated with the sequence (gﬁk)kez of i.i.d. N'(0,1) Gaussian
random variables introduced in (1.7).
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We mention in passing that, in the particular case d = 2, 031:112 = Jghlilh,jg

reduces to

hi,h hi1—1/2 ho—1/2 hi1—1/2 ho—1/2
A o A G ) VA Lo A}

Also, we mention that, in the particular case d = 3, 092 = af,h,ilh,fzh,f; reduces
to
(h1,h2,h3)
Jk1,k2 ks
_ o (h1=1/2) y(ha=1/2) ,(hs—1/2) (h1=1/2) ,(ha=1/2)1 ,(hs—1/2)
=25k Zake |l Bl T gk g
h1—1/2) (hs—1/2)7 ,(ha—1/2 h2=1/2) (hs—1/2)] ,(h1—1/2
B2y Nz - B 2

Before proving Proposition 2.7, let us state the first main theorem of our
article which provides a modified version of the random series representation
(2.5) obtained through the generalized FARIMA sequence (Ugflﬁ)kezd (see (2.15)
and (2.14)) as well as "nice" fractional scaling functions (see Definition 1.3)
belonging to the Schwartz class.

Theorem 2.8. The approxzimation process {X}(ld)J(t)}teR+, defined in (2.3), can
be expressed, for allt € Ry, as:

t d
X0 () = g7t ethad) §7 < [Tol "2 ’s - kz)ds) o5, (2.16)
kezd \"0 (=1

where the series is convergent in L?(Q). Moreover this series is also almost
surely uniformly convergent in t on each compact interval of R .

Remark 2.9. Let f be an arbitrary function in the Schwartz class S(R) and let
(ap)pez be an arbitrary slowly increasing sequence of real numbers, that is we
have, for some constants x > 0 and g > 0 and for every p € Z, |a,| < w(1+4|p|)*.
It is known (see for instance [20]) that, if we set Ag = 0 and A; — A4;—1 = a4

fi)r all ¢ € Z\ {0} and f(y) = ;_1 f(v)dv for all y € R, then the function
f belongs to S(R) and the sequence {Ag}rez is slowly increasing. Moreover,

using an Abel transform, for all t € R, we have
t ~ ~
o [ flo-Bdv= Y A(Ft-a) - F-a). (2.17)
kEZ 0 q€Z

In order to apply (2.17) in the framework of Theorem 2.8, we define, for each
(J,¢,n) € N x Z x Z2!, the random variable S*)  as:

J,q,n
q (h) ;
p=19J,(p.n+p) if¢>0
st = 0 ifg=0 (2.18)

0 (h) .
o Zp:qﬂ 7 J.(p.n+p) if ¢ <0,

with the convention that n + p := (ny + p,...,ng—1 + p). Also, for every
n=(ny,...,ng_1) € Z!, we define the function @gﬂn, belonging to S(R), as:

)

_ y d—1
<I>(Ah)n(y) = / 1 (ID(A}”*UQ) (v) H @Xl”l_lﬂ) (v—mnyg)dv, forallyeR.
y= =1

12



Then, using Theorem 2.8, Fubini theorem, the change of variable v = 27u, the
change of indices ky = p and n;_1 = k; — ky (for all I € [2,d]), the slow increase

property for the sequence (O'L(]h()p n+p))p€Z provided by (3.22), (2.17), a slow

increase property (derived from (3.22) and (2.18)) for the sequence (Sf,z)m)q .

with a random constant® x(n) = O(log??(3 + |n)), and the inequality

sup sup {(3 + [pl + |n|)L|<T>(£)n(y)|} < oo, forall fixed Y,L >0,
y€[0,Y] (¢,n)€Zx 71 ,

we obtain that

X\ (1) = 277 Gerhari=d) N7 NGO (S, (27t - q) — 3(-0))
nezi-1 q€Z

(2.19)
where the convergence of the random series holds almost surely and uniformly in
t on each compact interval of R+ Notice that the random series representation
(2.19) for the approximation {Xh J( )}ter, of the generalized Hermite process
is reminiscent of that of the low frequency part (that is the scaling function
part) in the representation of FBM in (1.5).

The proof of Theorem 2.8 will be given in Section 3. Let us now focus on
the proof of the fundamental Proposition 2.7. Its starting point consists in an
expression of the dth order Wiener chaos random variable pyx (see (2.6)) in
terms of the i.i.d Gaussian random variables gi . and Hermite polynomials H,,.
We mention in passing that a rather similar expression also holds for the dth
order Wiener chaos random variable €5 (see (2.9)); it will be useful for us
later. For giving these expressions for y17x and €j x it is convenient to make use

of the very common notation for multiple Wiener integral: for any n € N and
fe 2R,

I.(f) = - flx1,...,xn)dB(z1)...dB(zy).

It is known (see e.g. equation (1) in [14]) that, for any univariate functions
©1,--.,pp of L*(R) which are orthonormal and for every ni,...,n, € N, one
has

Lnvtotm, (g@?M ® .- ) HHW (/ () dB(x )) (2.20)

where we recall the following definition.
Definition 2.10. For alln € Z, , the nth Hermite polynomial is the polynomial
of degree n denoted by H,, and defined, for every = € R, as:

d’n.
Hy(x) = (~1)"e" 2 e /2.

For instance, the first four Hermite polynomials are Hy(z) = 1, Hy(x) = z,
Hy(z) = 2® — 1 and H3(z) = 2% — 3x.

LAll along this paper, if n € Z¢, we use the notation |n| = 2221 [ngl.

13



The equality (2.20) will play a crucial role in the sequel; for the sake of com-
pleteness its proof is given in Appendix A. In order to apply it to the multiple
Wiener integrals in (2.6) and (2.9), we need to introduce some notations. In
fact, any (j,k) € (Z%)? can be viewed as a finite sequence ((jm’km))1gmgd
whose d terms (jn, km) belong to Z2 and some of them can be equal to each
other. The positive integer p(j, k) < d denotes the number of the distinct terms

of the sequence (j, k) = ((jm, km))1<m<d, and the latter terms are denoted by
(jNZ,IZZL 1 <1< p(j, k); moreover the notation (j}, kNg)W, where ny € {1,...,d},

means that (jNg, k¢) has the multiplicity ng, that is there are exactly n, terms

of the sequence ((jm, km)) which are equal to (ﬁ, k?) At last, it is clear

1<m<d
that Z’Z(:j’lk) ng = d. Using these notations and (1.6), we can derive from (2.9)
and (2.20) that, for all (j, k) € (Z2)?,

p(j.k)

e = T Hu (o0 ) (2.21)

=1
Similar arguments and (1.7) allow to shown that, for all J € Z and k € Z¢,

{7}k
o= [ Hu (5555 (2.22)
=1

observe that the positive integer ng in (2.22) is the multiplicity of k¢ in k. In
order to connect the random variables 1171 to FARIMA sequences (see Definition
1.6), we have to rewrite the expression (2.22) in a way that gives us an easier
"access" to the i.i.d Gaussian random variables g? i in it. To this end, we recall
that, for any n € N, the nth Hermite polynomial Hn satisfies, for all x € R, the
equality:

Ln/2]
Hy(z) = > (~1)™alpa"—2m, (2.23)
m=0

where a't) is the number of partitions of [1,n] with m (non ordered) pairs and

n — 2m singletons.

Lemma 2.11. Using notations already introduced in Definition 2.6, for all
J € Z and k € Z%, the random variable pyy in (2.22) can be rewritten as:

ld/2] m d—m
Hik = Z (=™ Z H E[Qﬁ,kzrgik“] H Q?JW/? (2.24)
m=0 PE'P,(,f) r=1 ! s=m+1 °

where the indices £, L. and {? are such that

P= {00} (s G} ) (L} -

Proof. Let us proceed by induction on the positive integer d. It easily follows
from (2.22) and Definition 2.10 that the equality (2.24) is satisfied in the two
particular cases d = 1 and d = 2. In the sequel, one assumes that d > 2 and
that (2.24) holds for any positive integer n such that n < d. Let us first show

14



that these assumptions allow to prove (2.24) when the d indices forming the
multi-index k are all equal together, that is k = (k1,...,k1). Indeed, the latter

equality implies, for all ¢,,¢,. € [1,d], that E[g?},% gf?:’%/,,] = 1, which in turn
entails that
Ld/2] m d—m ld/2]
Z G Z HE[ijergjkz,} H gikw = Z( nm (d)(gjkl)dizm
m=0 pep(® r=1 T os=m41 f o m=0

= Hd(g?kl) = UJk,

where the second and the third equalities respectively follow from (2.23) and
(2.22). From now on, we focus on the case in which the d indices forming
the multi-index k are not equal together. Thus, there exists a unique integer
a satisfying 1 < a < d such that one has k = (k1,..., k1, kat1,-..,kq) with
k1 # ke, for all @ < ¢ < d; in fact a is nothing else than the multiplicity of
the first index of k. Then, one can derive from (2.22), (2.23) and the induction
hypothesis that

P la/2] P
s = Halgy) TT Hooliyz) = | 32 (<1al® (6%, )% | T Hoolra,7,)
=2 m=0 =2
la/2] m a—m
— ¢ ¢ ¢
= Z (=™ Z HE[gJ,kKTgJ,k[(] H 9T kg
m=0 P, 67;7(;:) r=1 " s=m+1 °
L(d—a)/2] d—a—n
- X Z (=" Z H ngthke, H ng@,,
n=0 P2€73[[a+1 dl t=1 u=n+1
|d/2] v d—v
— ¢ ¢ ¢
= Z (=1)° Z Z HE[gJ,k/g,,,gJ,k,y] H 93k |
v=0 m,n: m4+n=v PGP(d[’a) ] r=1 " s=v41 °
where 73’( [m n) 18 the subset of P of the partitions of [1,d] with m (non

ordered) pairs of integers in [1,a] and n (non ordered) pairs of integers in
[a + 1,d]; notice that when |a/2] + [(d —a)/2] < m+n < |d/2] then P(d[sl)n
becomes an empty set, therefore the sum over it reduces to zero.

Finally, notice that when P’ € P is a partition with at least a (non

ordered) pair {¢, ¢'} such that ¢ € [1,a] and ¢ € [a+1,d], then ]E[g?,lwg?,kg,] =0,

thus, using the fact that P(d a), N P(d[sl),, ) = () when (m/,n') # (m”,n"),
one gets that

L4/2] v d—v
¢ @ @

Z (=1)° Z Z H El95 k. 97k, ] H 9 ko

v=0 m,n:m+n=v PE'P(d a) : r=1 " s=v+1 °
Ld/2]
Z Z H ng:zTng:[/ H ngZ//’
v=0 PEP(d) r=1 s=v+1

which shows that (2.24) is valid. O
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We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. Combining Lemma 2.11 with Remark 1.7, it can easily
be shown that, when the integer n goes to +oo, the partial sum of order n of
the random series in (2.14), that is the dth order Wiener chaos random variable

Z (H7phl 2 )ﬂlk—pa

pe[0,n]? I=1

converges almost surely to

s (o —172) (e —1/2), T8 (i —1/2)

. .- o=
Z Z H E ZJ /f[ ZJ,k)g/ ] H ZJ,k)g// .
m=0 PePff) r=1 " s=m+1 °

The fact that the convergence also holds in LY(Q2), for any v € (0, +00), can be
derived from a general result in [13] according to which any sequence of random
variables belonging to a finite order Wiener chaos converges in L7 (2) as soon
as it converges in probability. O

The following theorem, which provides, for || - ||7,00 the uniform norm on any
compact interval I C R, an almost sure estimate of the error stemming from
the approximation of {Xl(ld) (t)}eer by {Xﬁd}(t)}te 1 is the second main result of
our article. This theorem will be proved in Section 4.

Theorem 2.12. For any compact interval I C Ry, there exists an almost surely
finite random variable C' (depending on I) for which one has, almost surely, for
each J € N,

1657 = X{D 1100 = IXA5 1,00 < QBRI atethamdb1/2) (9.5

Before stating the third and the last main result of our article, let us explain
the motivation behind it. As the collection of functions {7,/1371( s ke Zd} is
an orthonormal basis of L?(R%), one can also wish to give a random series rep-
resentation for the generalized Hermite process {Xl(ld) (t)}ter, using this basis.
Indeed, similarly to (2.8), it can be shown that

xPm= Y gk, (2.26)
(k)€ (24)?

where the random series is unconditionally convergent in L?(Q), for each fixed
t € R;. Roughly speaking, our third main result shows that when the partial
sums of the random series in (2.26) are well-chosen, then its convergence holds
in a much stronger sense: almost surely for the uniform norm || - ||, 7],0c, Where
the fixed real number T > 2 is arbitrary. Also, our third main result provides
an almost sure estimate of the rate of convergence of the series for the uniform
norm || - ||jo,7],00- In order to precisely explain how the partial sums have to be
chosen, we need the following definition:

Definition 2.13. Let T > 2,5 > 0, b > 0 and g > 0 be four fixed arbitrary
real numbers. For all N € N, we define the two disjoint finite subsets of (Z¢)?

St ={G,k) € (z%)? : —2"* < min j,, 0 < <N, kel < 2NFIT
v =10,k) € (Z%) _Zg[ﬁ’rb]] eIer[l[a}fz]]] lrenax |k }
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and

v =10,k Zd2:72Nb< < kol < 2NV9
Sy = 1{(,k) € (Z%) in jo < max, jo <0, max, |Fee 2

We are now in position to state our third and last main result.

Theorem 2.14. Let T >2,b> 0,V > 0 and g > 0 be four fixed arbitrary real
numbers. For allt € RT and N € N, let X}(IdN( t) be the dth order Wiener chaos
random variable defined by

Xhm= 3 gxiMe. (2.27)

(Gkestusy

There exists an almost surely finite random variable C (depending on T, b,V , g)
for which one has, almost surely, for all N € N,

1% = X\ Nlo11.00 < ON B2 Nrtothamdi/2), (2.28)

To prove Theorems 2.12 and 2.14, we will need a logarithmic bound for the
the sequence of random variables (¢ k) j,k)e(ze)2- We get it from the following
lemma which is a straightforward consequence of Lemma 2 in [3] and of the fact
that the g;’/’k =11 (Yk), (4, k) € Z*, are N'(0,1) Gaussian random variables.

Lemma 2.15. There are Q* an event of probability 1 and C} a positive random
variable of finite moment of any order, such that, for all w € Q* and for each
(4, k) € Z?, one has

|97 ()| < Cf(w \/log (34 14] + |&]). (2.29)

Next, observe that, for any n € N, there exists a constant «,, > 0 such that,
for all z € R
|Hp(2)] < an (14 [2]") 5 (2.30)

the latter inequality is a straightforward consequence of the fact that H, is a
polynomial function of degree n. Then, combining (2.21) with (2.29) and (2.30),
one obtains the following lemma.

Lemma 2.16. Let Q* be the same event of probability 1 as in Lemma 2.15.
There is C} a positive random variable of finite moment of any order, such
that, on *, one has, for all (j, k) € (Z2)?,

k) — ng d
(wogm el +1ED) =G TT vioaG+ il + o).
/=1 m=1
(2.31)

To prove Theorem 2.12, we will also need to know precisely when two random
variables €; x and e, s are correlated. For this purpose, it is useful to define the
set 2(j, k).

Definition 2.17. Using the same notations as in (2.21), for all (j, k) € (Z4)?,
the set Z(j, k) is defined as:

2(5.k) = { (e, ke)n, 1 <1< p(G, k) } -
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Remark 2.18. For any arbitrary two elements (j, k) = ((jm, km))1§m§d and
(r,;8) = ((Fm,8m)) 1, <y OF (Z%)?, a necessary and sufficient condition for hav-
ing 2(j,k) = 2(r,s) is that there exists a permutation o of the set {1,...,d}
for which one has (jm, km) = (To(m)s So(m)), for all m € {1,...,d}. Thus, being
given an arbitrary element (j, k) of (Z9)2, there are at most d!—1 other elements
(r,s) of (Z%)? which satisfy 2(j, k) = 2(r,s). Notice that, in this case, as a
consequence of equality (2.21), one has €jk = &rs.

Let us also recall that, if G is any arbitrary A/ (0, 1) Gaussian random variable
then, one has

E[H’"L(G)HIL(G)} = 6m,nm! s for any m,n € Z+7 (232)

where 0, , = 1 when m = n and §,,,, = 0 otherwise. A straightforward
consequence of (2.32) is that

E[H,(G)] =0, for all integer n > 1. (2.33)
Relation (2.32) is the keystone of the proof of the following proposition.
Proposition 2.19. For every (j, k) € (Z?)? and (r,s) € (Z?)4, one has

p(.k)
El2)= [[ m!<d! if 26.k) = 2(r9),
Elej ker,s] = t=1 (234

0 otherwise.

Proof. First notice that, in view of Remark 2.18, (2.21), the independence of the
N(0,1) Gaussian random variables g%’z 9 with £ € {1,...,p(j,k)} and (2.32),
the equality (2.34) is clearly satisfied when 2(j, k) = 9(r,s). So, from now
on, one assumes that Z(j,k) = {(j1,k1)n, .- (Jp: kp)n,} (Where p = p(j,k))
is not equal to Z(r,s) = {(71,51)ms-- -, (Tq; 8¢)m, } (Where ¢ = p(r,s)) which
happens in two different cases.
_The first case consists in the situation where one has

{1, k1)s -+, Ups kp)} # {(71,51), .., (T, S¢)}, which implies that there exists
at least one element of one of these two sets which does not belong to the other

set. For sake of simplicity, one assumes that (j1,k1) ¢ {(71,51),. .., (rg,5¢)}-

Then, using (2.21), the fact that the A(0,1) Gaussian random variable g’;/_’ <
1,Rk1

iq i ; » ¥ ¥ W

is independent of the Gaussian vector (9327—]52, 85w 9mE ’qu,Ziq)’ and

(2.33), one gets that

p q

Elej ker,s] = E[Hm(g?l;,gl)}ﬂz HHW (9?@@@) H Hp, (gqf
—_—————

-~ =0.
s et Jerker

=0

The second case consists in the situation where one has p = g,

{(ﬂ,kl),...,(ﬁ,@)} = {(r1,81),.-.,(7p, $p)} and ng, # my, for some ¢y €
{1,...,p}. For sake of simplicity, one assumes that £y = 1. Then, using (2.21),
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the fact that the A(0,1) Gaussian random variable g%’ E is independent of the
1,

1

Gaussian vector (g’f ~ ,...,glﬁ ~ ), and (2.32), one obtains that
]2;k72 ]p7kp
P P 2 P P
E[gjvkgrus:l = E[HTM (9317E1)Hm1 (g;h’lgl)]]E anz (g;b”;é)Hm( (QL’E{) =0.

3 Proof of Theorem 2.8

In this section, we aim at proving Theorem 2.8. The main four steps of the
proof are the following.

In the first step, we show that, for each fixed J € N, the generalized FARIMA
sequence (Ugflﬁ)kezd, defined through the random series in (2.14), can be repre-
sented through multiple Wiener integral. To this end, for any fixed 6 € (0,1/2),
we introduce, via the sequence of coeflicients (’yz(,‘s))peNo (see Definition 1.6) and

the univariate Meyer scaling function ¢ (see Remark 1.1), the real-valued func-
tion ®(~9) defined as

“+o0
o0 (z) = > 4V ¢(x + p),

p=0

where the convergence of the series holds in L?(R). Then, using the isometry
property of multiple Wiener integral, it turns out that one has almost surely,
for all J € N and k € Z¢,

/ d
o) = /R 27% T @27 (27 ug — ky) dB(uy) - - dB(uq).
(=1

Also, in the first step, we prove that the Fourier transform of ®(=9) is given, for
almost all & € R, by (9 (&) = (1 — ¢€) ~° §(¢).
In the second step, we show that, for each fixed t € R4 and J € N, the series

of deterministic functions of the variable u = (uy, ..., uq) € RY
t d 4 d
V)= Y (/ [To% "2 @s k) ds) 2758 TT @0/ (27 uy — ky)
kezd \70 =1 =1

is convergent, and even normally convergent, in L2 (R?). Then, using the isom-
etry property of multiple Wiener integral, it turns out that the random series
in the right-hand side of (2.16) is, for each fixed t € Ry and J € N, convergent
in L?(Q) and satisfies almost surely

t d ’
3 < H@X’f””@%—k@@) o—f,‘}Z:/ VD (t,u) dB(uy) - - - dB(uyg).
k= L,V

kezd \70 ¢=1

In the third step, we show that, for each fixed t € R} and J € N, the two
functions u Kﬁ?}(tu) (see (2.3)) and u — 2_J(h1+"'+hd_d)V£il}(t,u) are
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equal for almost all u € R?; this result is obtained by showing that their Fourier
transforms are equal almost everywhere in R?. Then combining it with (2.3)
and the previous equality, we obtain, almost surely, that

t d
i =zt 3 ([ Lot 2t - ) o)
kezd \’0 ¢=1

Finally, in the fourth step we show that the series in the right-hand side of
the last equality is almost surely uniformly convergent in ¢ on each compact
interval of R.

3.1 First step of the proof of Theorem 2.8

Definition 3.1. Recall that {¢(- — k) : k € Z} is an orthonormal basis of
the subspace V' of the multiresolution analysis of L?(R) associated with the
univariate Meyer scaling function ¢. Let § € (0, 3) be arbitrary and fixed. The
function ®(=%) € V! is defined as

+o00
(@) =) 4V +p).

p=0

The latter series of functions is convergent in L?(R) since the sequence of coef-
ficients (71(,6))1)@\;0 belongs to ¢2(Ng) (see (1.9)).

The following proposition easily results from Definition 3.1, the isometry
property of multiple Wiener integral and (2.14).

Proposition 3.2. One has almost surely, for all J € N and k € Z¢,

/ d
o) = / 27% T] V2" (27 ug — k) dB(uy) - - dB(uq). (3.1)
’ Re =1
For later purposes, one needs to determine the Fourier transform of the
function ®(~9). The following lemma provides it.

Lemma 3.3. For all 6 € (0, %), the Fourier transform of the function ®(=%) s
given, for almost all £ € R, by

-5~

I (g) = (1— )" 9(9).

From now on, for the sake of convenience, for all p € N, we set 'y(_é; = 0.
In fact, Lemma 3.3 is mainly a consequence of the following lemma showing
that the sequence (’7;()6));;62 is nothing else than the sequence of the Fourier
coefficient of the function £ — (1 — e’f)ﬂS which belongs to L?([0,27]). Recall
that L2([0,27]) is the space of the complex-valued functions defined on the real
line which are 27-periodic and Lebesgue square-integrable on the interval [0, 27].

Lemma 3.4. For all 6 € (0,1/2) and p € Z, we have

1 27 ) )
8 _ —ipt £y—6
%(7)_277/0 e (1 —e*) 70 d¢E.
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A straightforward consequence is that
+oo
(L=e) 70 = 3 a e,
p=0

where the series is convergent in L*([0,27]).

Proof. Let C be set of the complex numbers and let C \ [1,400) be the open
subset of C formed by the complex numbers which are not real numbers greater
than or equal to 1, that is C\ [1,+00) := {z € C: z ¢ [1,+00) }. We denote by
Fs the continuous function on C \ [1,4+00), defined for all z € C\ [1,+00) as

Fs(z) := (1—2)7°.

Recall that Fjs is analytic on the open unit disk {z eC: |zl < 1} with Taylor
expansion given by

“+o0
Fs(z) =Y {02, (3.2)
p=0

where the series is uniformly convergent on each closed disk {z eC:lz| < p},
with p € (0,1).

Next, observe that using the continuity property of the function Fj, for any
¢ € R\ 27Z, the quantity (1 — €*€)~° = Fs(e®) can be expressed as:

(1—e®)0=Fs(e®)= lim Fs(re’®)= lim (1 —re)™?.

reR, r—1- reR, r—1-

Thus, denoting by (7;),en an arbitrary increasing sequence of real numbers in
the open interval (0,1) which converges to 1, one has, for all p € Z, that

2 2
/ e PE(1 — )0 de = / e lim (1 —r;e) 70 de.
0 0 Jj—+oo

Let us now show that one can interchange the limit and integration symbols.
To this end, we need to introduce, for all j € N, the subset A; of [0, 27] defined
as

Aj = {§ S [0,27{'] : |1 —€i£| < 2(1 —Tj)} .

Note that, for all j large enough, if £ € A;, then
£€0,4(1 —rj)]uU2m —4(1 —ry),27].

Therefore, we can derive from the inequality |1 — r;e%| > (1 —r;) that

/ e PE(1 — rje’®) 70 de
A

J

<= [ L@

< 8(1—r;)'0.

Since 1 — § > 0, the latter inequality entails that

lim e PE(1 — )70 d¢ = 0.
i [ e e g
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On another hand if £ € A§ := [0,27] \ A, then we have that
1= 7] = |1 = €€ o (1= rg)efé] 2 1= €] = (1= ) > S]1 = €,
which implies that
|efip£(1 - Tjei5)76| < 20|11 — €70,
As 6 € (0,1/2), the function ¢ — |1 — €*|~% is integrable on [0, 2n], and since,

forall £ € (0,27), 1 A¢ (&) — 1, we conclude, by dominated convergence theorem,
that, for all p € Z,

o 2
/ TP (1= )T dg = lim [ €71 re€) 70 e

0 j—+oo Jo

Moreover, for any arbitrary fixed j € N, using the uniform convergence property
of the series in (3.2), we have

27
/ e PE(1 — T e Z 7(5)7' / e PEIME ¢ — 27rr§"yz()‘s).
0

The conclusion follows immediately. O
We are now in position to prove Lemma 3.3.

Proof of Lemma 3.3. On one hand, it follows from Definition 3.1 and classical
properties of Fourier transform that

() - (quv;é)eipf)&f)
p=0

On the other hand, using Remark 1.1 and the fact that the two functions £ —
(1—¢e*)7% and € — > 71(,6)6”’5 are 2m-periodic, one has, for all ¢ € N, that

/R (1— e (Z”Yw) zps)
4n/3
B /—471'/3

~2 27 e i
§2||¢>||Loc(R)/O ‘(1—e€) P (3o e)

p=0

2
I dg = 0. 3.3
S § (3:3)

d€

(1-e (ZW) ) ‘ [6(e)"de
q

2

de.

Thus, one can derive from Lemma 3.4 that

lim
=+ Jp

q 2
(1—¢€)726(¢) - (Zvé‘”e"”f)q?(f)] =0 (34)

Finally, combining (3.3) and (3.4), one obtains that (=9 (6) = (1—e%)7? ngS({),
for almost all ¢ € R%. O
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Before ending the present subsection, let us make the following remark,
which is interesting in its own right even though it plays no role in the proof of
Theorem 2.8.

Remark 3.5. Lemma 3.3 shows that the expectations involved in the expression
(2.15) of the random variables Jgh), (J,k) € ZxZ%, are rather easily computable.

Indeed, for all J € Z and k,p, k', p’ € Z, the expectation E[gikfp,gik_p,] does
not vanish only when k — p = k/ — p’ and, in this case, it is equal to 1. Thus,
we can write

1 27 . . , ,
fol ¢ _ i(k— —i(k"—
]E[gJ,k_p,gJ,k,_p,] =5 /0 et (k—p)¢ ,—i(k'—p")¢ de.

Then, using Definition 1.6 and Remark 1.7, we obtain, for all §,6" € (0,1/2),
JeNand k, k' € Z, that

2
5 5/ 1 i(k— 5/ — )
= o [ (e ) (e e a

2m 0 pEL p' €L
2
_ QL ¢t [ 3t | [ 30,000 ) ge
T Jo pEL p' €L
1 27 . , . . ,
- ez(k—k )5(1 _ 6—15)—6(1 _ ez&)—& d§
271— 0

In particular, if § = ¢’, a fact that always occurs when we restrict to usual
Hermite processes, we get that

2
8) (8 1 Y g
]E[Za(',k)zy(',k)'] = %/0 R R a3
1 27 . , —26
= — !Bk 19 gin (£> dg.
27T 0 2

3.2 Second step of the proof of Theorem 2.8

Definition 3.6. Recall that L?([0, 27]?) is the space of the functions from R?
to C which are 2m-periodic with respect to each one of their d variables and
Lebesgue square-integrable on the cube [0,27]%. The Fourier transform of any
arbitrary sequence 6 = (0 )eze € (2(Z?) is the function of L?([0,27]%) denoted

by 9 and defined as
Bor) = 3 i),

kezd

where the series is convergent in L*([0, 27]?) and (-, -) is the usual inner product
on R4,

Definition 3.7. For any fixed h = (hq,. .., hq) satisfying (1.11), the sequence
T = (Yq)qezae, which depends on h and belongs to (%(7%), is defined, for all
qeZ4 as

d
Tq:= yhe=1/2), (3.5)

—4qe
=1
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(7 (he— 1/2)) cz is the sequence of
z)\)l/2 hy

Recall that, one knows from Lemma 3.4 that

the Fourier coefficients of the function \ — (1 —
L2([0,27]).

which belongs to

Remark 3.8. One knows from (3.5), Definition 3.6 and Lemma 3.4 that the
Fourier transform of the sequence Y satisfies, for almost all € R?,

d 1/2—h
:H — eim) /2 (3.6)

Lemma 3.9. For any fixed h = (hy,...,hq) satisfying (1.11), and for each
fired t € Ry and J € N, the series of deterministic functions of the variable
u=(uy,...,ug) € R?

t d
Vgt = 3 (/0 [[of @ - k>d)2J [[ 02402 us — ko)

kezd =1 =1
(3.7)
is normally convergent in L2(R®). Thus, the function® V = Vﬁd}(t7 o) belongs
to L?(R%). Moreover, its Fourier transform satisfies, for almost every & € R?,

d

V) = B o2li[[etr e (3.8)

{=1

(Bt e)2 gﬁ 277¢),

where E is the Fourier transform of the sequence f = (Bk)xeze defined, for all
k € Z¢, as

B ;:/ ch(’” V2975 — k) ds. (3.9)

Notice that the sequence 8 depends on t, J and h = (hq,...,hq). Also, notice
that the second equality in (3.8) results from Lemma 3.3 and (3.6).

Remark 3.10. Since the functions @X”*lm, ¢ € [1,d], belong to Schwartz
class S(R), one can easily derive from (3.9) that, for any fixed arbitrarily large
positive real number p, one has

sup <|ﬁk|H (1 + [Ke) ) (3.10)

kezZd =1

The latter fact implies that the sequence 8 = (By)keze belongs to (1(Z?) C
(?(Z*). Therefore, its Fourier transform f3 is a well-defined function of L2 ([0, 27]¢)
which is continuous and bounded on R? and satisfies

LT

lk|<N

lim sup
N—+oo EGRd

2We denote the function V]S)d)J (t, ®) by V for the sake of simplicity.
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Proof of Lemma 3.9. The normal convergence in L2(R%) of the series in (3.7)
easily follows from (3.10), (3.9) and the straightforward equality, for all k € Z4,

Let us now show that (3.8) holds. For all N € N, we denote by Vy the finite
sum, defined, for each u € R?, as:

d
= | Byl H ||q)(1/27h£)||L2(]Rd)~

L2(R4) (=1

d
ﬁk2.7% H (I)(l/27h£)(2jll,[ _ k@)
(=1

=Y B2t H@W he) (27 ug — k). (3.12)

k| <N

We already know that Vy — V in L2(R%) as N — 4o00. Therefore, the isometry
property of Fourier transform entails that Vy — V in L?(R?%) as N — +o00. One
can derive from the latter fact that there exists a subsequence (N,.),en such that

one has R
lim Vy, (&) =V(€), for almost every £ € RY. (3.13)

r——400

Moreover, it follows from (3.12) and basic properties of Fourier transform that,
for all N € N and ¢ € R,

d

Vn(€) = | D Buem et | 2773 H U2k (277 ¢y). (3.14)
Ik|<N =1
Finally, putting together (3.11), (3.13) and (3.14), one obtains (3.8). O

Before ending this subsection, let us point out that:

Remark 3.11. Using Proposition 3.2, Lemma 3.9 and the isometry property
of multiple Wiener integral, it follows that the random series in the right-hand
side of (2.16) is, for each fixed ¢t € Ry and J € N, convergent in L?(Q) and
satisfies almost surely

!
</ [Tok "2 kg)dS) af,hlzf/ VI (t,0) dB(u1) - dB(uq).
kezd R

0 ¢=1
(3.15)
Thus, in view of (2.3) and (3.15), in order to show that, for each fixed ¢ € Ry
and J € N, the equality (2.16) holds almost surely, it is enough to prove that

the two functions K}(Iil?](t7o) tu Klgil?,(t,u) and Z_J(hl“‘“""hd_d)vl(i)](t,o) :
u s 277 (nttha=d YD ¢ 4y are equal for almost all u € R, which amounts
to proving that their Fourier transforms are equal almost everywhere in R?.

3.3 Third step of the proof of Theorem 2.8

The goal of this subsection is to show that the following lemma holds.

Lemma 3.12. For any fized h = (hy,..., hq) satisfying (1.11), and for each
fizedt € Ry and J € N, the Fourier transforms of the two functions, of L?(R%),

K}(:l)J(t7 o) and 2_J(h1+"'+hd_d)vl(17‘)](t, o) are equal almost everywhere in R?.
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For proving Lemma 3.12 we need some preliminary results.
Lemma 3.13. For any fized h = (hy,..., hq) satisfying (1.11), and for each
fizedt € Ry and J € N, the Fourier transform of the function Kl(f’l‘)](t7 ) can be
expressed, for almost all £ € R?, as

—J(hi+-+hg—d) ~ 2 Jf J5 2 sz

il ERQ.

where @ denotes the Fourier transform of the sequence o = (oug)geza of £2(Z%)
defined, for all k € 72, as

o 7/0 Hqshg (275 — k¢) ds. (3.16)

Recall that ¢p, is the fractional primitive of order hy — 1/2 of the Meyer uni-
variate scaling function ¢. Notice that the sequence o depends on t, J and
h=(hy,..., hq).

Proof. Since Kl(;i)](t, o) is the orthogonal projection Kl(qd) (t,) on the space V¢

(see the beginning of Section 2), and (2Jg¢>(2‘] : _k))kezd is an orthonormal
basis of this space, one has that

d
(d) Z ﬁ (d h) H ¢(2J’Iw _ kl)7
/=1

kezd

where R%’(h)(t) is as in (2.7) and the convergence of the series holds in L2 (R%).
Then combining the last equality with (2.12) and basic properties of Fourier
transform, one obtains the lemma. O]

Remark 3.14. It follows from Lemmas 3.9 and 3.13 that for proving Lemma
3.12 it is enough to show that

a(n) = B(n)'/f(n), for almost all n € R%. (3.17)

In fact, since the sequence 3 belongs to £*(Z?) (see Remark 3.10), the function
n B(n)f(n), which belongs to L?([0,27]¢), is nothing else than the Fourier
transform of the convolution product 8 % Y. The latter sequence g * T =
(B = T)k)kGZd of (2(Z%) is defined, for all k € Z4, as

BxTh:= Y TqBrq (3.18)
qezd

Thus, in view of (3.18), it turns out that for proving (3.17), it is enough to show
that, for all k € Z%, one has

=Y Tqbrq (3.19)

q€zZd

Lemma 3.15. The equality (3.19) holds for all k € 7.
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Proof. First notice that one can derive from Remark 1.1, Definition 1.3 and

(2.13) that the two functions n He . @ h’ 1/2)( 7¢) and n H‘Z:l :é\hz (1¢)
belong to L'(R?) N L2(R%). Therefore, usmg inverse Fourier transform, one
gets, for all (vy,...,v4) € R?, that

d d
H <I>(h’Z 1/2 = (2m)~ B /]Rd exp (z Z'U[f]f) H (he— 1/2 )dn  (3.20)

and

d d
g¢hg(v£) = (2m)” Q/Rd exp( ZWW)H he (n0)d (3.21)

N

d

= (QW)*% /d exp( ZWW) H (he= 1/2 (ne)dn,
R

where the last equality follows (3.6), (2.13) and Definition 1.3. Next, let N be
an arbitrary positive integer. One can derive from (3.16), (3.9), (3.20), (3.21),
standard calculations, (1.3) and Cauchy-Schwarz inequality that, for all k € Z4,
one has

‘Oék - Z Tqﬁqu’
la|<N
t d
Jg — k Tq 1<qn>
< /0 /]Rd exp (zz; 2 s g)ﬁg)( qlz<:N e

ds

d
x [ToR 2 (ne)dn
=1

d
[T 1% (ne)|dn

[\V)
U
3
N—
N

=1 il lal<N
L 2\ 2
d ~(he—1/2 2 i
<ot [T ([T~ 5t )
=1 [0,2m) lal<N

where the last inequality results from the fact that the function n — 'Y‘(n) -
>lal<n Ta e~am) is 27-periodic in each one of its d variables. Moreover, since

the function T is the Fourier transform of the sequence T = (Tq)qeza, one has

that )
lim = ) Tqe M| dp=0.
oo Jio,2e lal<N
Therefore, using the previous bound for |ay — ZI al<N Tq Bx—q|, One gets that

A I SR T )

qezd lal<N
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which shows that the equality (3.19) holds for all k € Z<. O

Proof of Lemma 3.12. This lemma is a straightforward of Remark 3.14 and
Lemma 3.15.
O

3.4 Fourth step of the proof of Theorem 2.8

So far, we have shown that, for each fixed t € Ry and J € N, the equality
(2.16) holds almost surely, and that the random series in its right-hand side
is convergent in L?(Q2). The goal of the present subsection is to complete the
proof of Theorem 2.8 by showing that the latter random series is almost surely
convergent uniformly in ¢ on any compact interval of R ;. To this end, we need
to bound, for all J € N, the generalized FARIMA sequence (U(Jlflz)kezd in a
convenient way.

Remark 3.16. Thanks to the representation (3.1), using Theorem 6.7 in [13],
the isometry property of multiple Wiener integral and arguments similar to
those in the proofs of Lemmas 1 and 2 in [3], it can be shown that there exist

Ca positive finite random variable and Q an event of probability 1, such that,
one has on €, for all J € N and k € Z¢,

o< C (1og (3 +J+ |k|))d/2 . (3.22)

End of the Proof of Theorem 2.8. For showing that the random series in the
right-hand side of the equality (2.16) is almost surely convergent uniformly in
t on any compact interval of R, it is enough to prove that on the event Q of
probability 1, introduced in Remark 3.16, one has, for each fixed J € N and
positive real number T,

( sup / H <I>(Ah"'71/2)(2‘]s —ke)ds
kezd te[0,T]

0 =1
In fact, using (3.22) and easy calculations, it turns out that (3.23) can be ob-
tained by showing that

3 < sup H|<1>”“~’ Y2 (g k)|> (log (3+J+|k|))d/2<+oo. (3.24)
keza

x€[0,27T] ;1

) o] < +oo. (3.23)

Finally, since the functions <I>(Ahe_1/2), £ € [1,d], belong to Schwartz class S(R),
it is clear that (3.24) holds. O

4 Proof of Theorem 2.12

In this section, we aim at proving Theorem 2.12. We will need a number of
intermediary results which mainly consist in bounding in convenient ways well-
chosen parts of the random series in (2.8). We mention in passing that the event
Q* of probability 1 (see Lemmata 2.15 and 2.16) will appear in the statements
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of many of them. Also, we mention that we will frequently use the fact that
(see (2.11)) the deterministic coefficients K}i’h)(t) in (2.8) can be expressed as

ICJgi’h)(t) _ 2j1(1—h1)+"'+jd(1_hd)Aj,k(t)7 (4.1)

where, for all (j, k) € (Z4)? and t € Ry,

.AJ k / H ¢}L[ QJ S — k‘g) d (4.2)

0 y—=1

Recall that each function vy, is the fractional primitive of order hy —1/2 of the
univariate Meyer mother wavelet 1 (see Remark 1.1 and Definition 1.2). Also,
recall that 1y, satisfies the very nice localization property (1.4) which implies
that, for any fixed arbitrarily large positive real number L, one has, for some
finite constant ¢ (only depending on L) and for all (j, k) € (Z4)? and t € R,

|4 k(1) <c/ H 3—|—|2”8—]€g|) (4.3)

Our study of the random series in (2.8) is to certain extent inspired by the
methodology which was introduced in [2]| in the framework of the generalized
Rosenblatt process. In this respect, the first thing to do is to express the max-
imum maxyep qp je (see (2.8)) in a way which is convenient to handle. To this
end, for each n € [1,d] and J € N, we introduce the infinite subset ®,, ; C Z%.
defined as

N, g = { €74 j,>Jand rrﬁaﬁﬂ o= jn} . (4.4)

Observe that the indexation set in the sum in (2.8), can then be expressed as

the union UZ:l N, 7 x Z%. Thus, it results from (2.8), the triangle inequality
and (4.1) that, for any fixed positive real number T,

d
X o rh00 < 3 A,
where, for all n € [1,d],

Ay, g = Z 271 (1=hi)+tja(l=ha) gyp ‘ZEJ kA k(1) ‘ (4.5)

JER, s e[0Ty eza

From now on, we focus on the positive random series A,, s, for any arbitrary
and fixed n € [1,d]. We will show that it is formed by a main part Al > and
three other parts A% g A2 7. and A3 s which are negligible for our purposes;
namely, on the event * of probablhty 1, when J goes to 400, they converge
to zero more quickly than the rate JE2~ T+ ha—d+1/2) targeted in Theorem
2.12. The definitions of AJ ;,..., A} ; are closely connected with the nth axis
of Z¢. We are now going to give them and to motivate them.

The negligible part A?%J is defined by replacing in (4.5) the sum ), .4 by
the sum Zke:ﬁ% where

Vrp={kezl kyez; 30e[l,d\{n}, |k|>2"+T}.  (4.6)
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Thus, one can derive from the triangle inequality that

A’I(’)L,J S H?],)J7 (47)
where
H?LJ — Z 9d1(1=h1)+++ja(1=ha) Z lesa] sup [ Aj(t)]. (4.8)
JER, g ke:lfij te€[0,T]

For understanding the motivation behind the definition of :l{l’fT, one has to relate
it to the inequality (4.3). Indeed, when |k¢| > 21T then using the inequality
Ji < jn (since j, = maxeq qpje), it can easily be shown that the quantity
(341275 — k:g|)_L in the right-hand side of (4.3) satisfies (3 + [27¢s — k4|)_L
2L (3+ |]€g|)7L. The latter inequality, combined with (4.8) and (2.31), allows to
show that, on the event Q*, when J goes to +o0, 7—[" ; (and consequently An I
see (4.7)) converges to zero at a very fast rate, see Lemma 4.2 in Subsection 4.1
below.

For defining the main part A} s as well as the two other negligible parts Ai’ J
and A3 s of the random series in (4.5), we need to introduce some additional
sets of 1ndlces

Definition 4.1. Let a be a fixed real number satisfying 1/2 < a < 1. For all
(j,k) € Zy x Z, we denote by B, the compact interval of the real line R

Bjy = [k279 — 279 k279 4 2799], (4.9)

Then, for all j € N and ¢ € Ry, the three disjoint subsets Djl- (t), D3(t), and
D]3- (t) of Z, which depend on j, t and a, are defined as

Dj(t):={k € Z: Bj; C[0,1]}, (4.10)
D3(t) == {k € Z\ D}(t) : B;x N[0,1] # 0}, (4.11)
D3(t) :=={k € Z: B;, N0, t] = 0}. (4.12)

They clearly form a partition of Z, that is Z = U?:1 D‘f (t).

We denote by flfl"T = 77 \Dii‘T the complement in Z?¢ of the set Df:T
introduced in (4.6). For each t € R+ and £ € {1,2, 3}, the subset flzl”qf(t) - iZL"T

is defined as Jfl"gp ={ke 3 :kn € DS (1)}, that is
() = {k €2 ky € DL (t); VOE[Ld]\{n}, |k < 2T}
(4.13)
Then, for every £ € {1,2,3}, we set
AfL I Z 971 (1=h1)++ja(1—ha) sup ’ Z Ej,kA',k(t>‘- (4.14)

A€Rn, s S 0
Observe that, one can derive from (4.14), (4.13) and the triangle inequality that

Ai,J < HZ,J and A 7 < Hn 79 (4.15)
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where

,Hi,J — Z 9i1(1=h1)+-+ja(1=ha) o
jeNn,J

. X sup Z Z ‘Ej)k| |.Aj7k(t)‘ (4.16)

t€[0,T] kneD 2 )
fe[[l d]]\{n}

and
Hi,] — Z 9i(1=hi)++ja(l=ha) o

jeNn,J
X sup Z > OIS (4.17)
t€[0,T) (t) kel
Le[1, d]]\{n}

On one hand using (4.11), (4.10) and (4.9), it can be shown D3 (t) is a rather

small finite set with cardinality bounded from above by ¢ 2/»(1=@)  for some
finite constant ¢’ not depending on t € [0,7] and j,,. The latter fact, combined
with (4.3) and (2.31), is the main ingredient for proving, on the event Q*, that,
when J goes to 400, H%,J (and consequently Ai“], see (4.15)) converges to zero

more quickly than the rate J&2-J(hit+ha=d+1/2) tareeted in Theorem 2.12,
see Lemma 4.5 in Subsection 4.1 below.

On another hand, Lemma B.3 in Appendix B, combined with (4.3) and
(2.31), is the main ingredient for proving, on the event Q*, that, when J goes to
~+00, Hn J (and consequently An 7, see (4.15)) converges to zero more quickly

than the rate J&2~7(h+-+ha=d+1/2) tareeted in Theorem 2.12, see Lemma 4.4
in Subsection 4.1 below.

So far, we have reached the conclusion that the main part of the random
series in (4.5) is A}L’J defined through (4.14) with ¢ = 1. For the sake of
simplicity in notation, we set

(1) = () = {k € Z% ¢ ky € D} (8); VL€ [1,d] \ {n}, |ke| < 27T

(4.18)
We are now going to introduce a simplified version of An 7, denoted by M,, s,
in which the coefficients A; x (t) (see (4.2)) are replaced by the coefficients Fj .,
not depending on ¢, defined, for all ( i, k) € (29?2,

Fix = Hwh (27¢s — k) ds. (4.19)
Ry=1
Thus, in view of (4.18) and (4.14) (with ¢ = 1), M,, ; can be expressed as
Moyi= 3 oil-mtoisi=nn gy |3 FJ ;. k‘ (4.20)
jeRn.y te[0,T] ke (¢

The advantage in working with M,, ; instead of A}, ; is that the random func-
tion Mn’j defined, for all ¢ € [0,T], as

Y. Bk (4.21)

ke (t)
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is in fact a step function whose jumps occur at the deterministic finite set of
points {m279» + 279 : € N (200 — 1,297 — 20(=9)]} " Thus, the
supremum in (4.20) reduces to the supremum on this finite set, which makes
the study of its asymptotic behavior, when j, goes +o0o, much more accessible
and doable thanks to Borel-Cantelli Lemma, see the Subsection 4.3 below.
Yet, for showing that it is possible to approximate A}% j by My, ; without

altering the rate of convergence J&2~7(hi++ha=d+1/2) taroeted in Theorem
2.12, one has to prove that, on the event Q*, the error of approximation |A}L’J —

Mn7J| converges to zero at a faster rate, when J goes +oc0. Notice that, it can
be derived from (4.14) with £ = 1, (4.18), (4.20) and the triangle inequality that

ALy = Mug| <H g, (4.22)

where

ML m 3 gnlhs
jENn,J

... X sup Z Z |5j,k| |A_j7k(7f) — Ei7k| . (4.23)
LEOT] | ) eDt (1) keeZ
0 ee1,d]\ {n}

Also notice that one knows from (4.10) and (4.9) that, for some finite constant
¢’ not depending on ¢ € [0,T] and j,, the cardinality of the finite set D; (t)
is bounded from above by ¢’ 2, and that any k, € D} (t) satisfies 2in(1=a) <

kp < 2int — 2in(1=9) These two facts, combined with (4.3), (2.31), Lemma B.3
and (B.1) in Appendix B, are the main ingredients for proving that, when J
goes to +o0, 7—[711] (and consequently |A}L’J — Mn’]|, see (4.22)) converges to

zero more quickly than the rate J&2-7/(hit+ha=d+1/2) taroeted in Theorem
2.12, see Lemma 4.6 in Subsection 4.2 below.
We complete the proof of Theorem 2.12 in Subsection 4.4 below.

4.1 Rates of convergence to zero of H) ;, H2 ; and 3

The goal of this subsection is to show that, on the event Q* of probabil-
ity 1 (see Lemmata 2.15 and 2.16), when J goes to +o00, the three random
variables ’H% T Hfl ; and "HfL ; converge to zero more quickly than the rate

J&2~J (it Fha=d+1/2) tareeted in Theorem 2.12.

Lemma 4.2. Let T > 2 and L > 3/2 be two fized real numbers. There exits
a positive almost surely finite random variables C' such that, for all m € [1,d]
and J € N, on Q*, the random variable ’H?L’J, defined in (4.8), is bounded from

above by CJ2 (log(3 + J))d%1 2~ J(hatethatl—d-1)
Proof. The set B,, of d-dimensional boolean vectors is defined as

B, = {U = (Ul)ée[[l,d]] € {0, l}d : v, =1 and 3¢ 7& n : vy = O}

Moreover, for all v € B,, and j € R,, ; (recall that j,, denotes the nth coordinate
of j), the set /"7 is defined as

:liﬂzj ={ke 7% ky € Zif vy =1 and |kg| > 29T otherwise} .
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Then, it can easily be derived from (4.6) that

> |5Jk| sup |‘AJk N< > Y |€Jk| sup \AJk()l (4.24)

kel vEBn keI

Using, the inequality (B.1), the triangular inequality, the fact that the func-

tion y — (2 + y)~F/log(2 + ) is decreasing on R, and the inequality (B.2),
we have, for all v € B,,, j € N,y and s € [0,T],

3 H V1og (3 + [j¢] + [ke])

ke (=1 (3412705 — ke )"
< I V10g(3 + [je| + [kel) ) y
Lvg=1ky€ZL 3+|2N8_k£‘)
Viog(3 + [je] + [ker])
T Z

vao o ey B 2 —ke])E

< 2t ( H V1og(3 + |4 +2j€T)> X

Livg=1

11 3 Viog(3 + [je])/1og(3 + [ke])

L
g =0 kg |>29n 1T 3+ |ke])

< ( H V1og(3 + || +2jnT)> x

Lvp=1

«/1 (2
. X H Viog(3 + |jer]) / og +9) dy

2 Vyr = =0 2]7;+1T )
d d .
< ¢y H log(3—|— |]ZD X j2 X 9—dn (L=1)(#{t" : v,y =0})
t=1,0#n
d d .
<cpy | [T log(3+ lel) x g3 x 2791, (4.25)
(=1,4#n

with ¢y, ¢; and co positive deterministic constants not depending on n, j, v
nor J. Then, the expression (4.2), the bound (2.31), the inequality (4.3) and
inequality (4.25) give

d
d .
> lesud sup [Agu(®] < oy TT loa(3 4 lil) x g 270,
ke:fl"‘T” t€[0,T] {=1,0#n

(4.26)

with C7 a positive almost surely finite random variable not depending on n, j,
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v nor J. Then, using (4.8), (4.24), (4.26) and the triangular inequality, we get

d d

d . .
Hy <Co Y > [ log(3 + [el) x jiz x 277 E=D T 29¢C=he)

jnZJ Zéjn £=1 =1
te1,d]\{n} \ ¢#n

d
) d .
=, Z Z H /log(3 + |jg‘)2”(1_h€) X j2 X 9—Jn(hn+L—2)

Jn>J Je<jn =1
te1,d]\{n} \t#n

d  jn
4 _
=Cy E j2 9—dn(hn+L=-2) H § : log(3 + |jé|)2]1{(17h14)
Jn2>J 5;1 je=—00
CFN

and since, by inequality (B.1), we have

d in _
II > Vies+ 12 ="

i de=m>
d +oo
=TI X Viog(3+ T — ph20 2071
=1 p=0
b#n

I
z&

+oo
log(3 + [jn[)27" (1) (Z log(3 + pl)2p(1hn)>
p=0

S
I
3=

d
< c(log(3+ [jal)) T [ 200",
n

for a deterministic constant ¢ > 0, we conclude that

d
d d—1 . .
HO ;< Co 3 G (log(3 + [ju])) T 277n Ot B T 710

Jn>J it
l#n
4 -1 .
=Cy Z 32 (10g(3 + |jn])) Z 2 In(hrtrthatl=d=1)
Jn>J

< CyJ% (log(3 + J)) 7 2t thatL—d-1)
where C5 and Cj are positive almost surely finite random variables. O

Remark 4.3. One knows from Definition 4.1, that D?(t) is always an infi-
nite countable set while D?(t) and Dj(t) are two finite sets, possibly empty.
Moreover, for all strictly positive real number 7" and all j € Z,, we have

sup {Card(D3(t))} < 27079, (4.27)
te[0,T]
sup {Card(Dj(t))} < "2/, (4.28)
t€[0,T)

where ¢ > 1 and ¢’ > 1 are two finite positive constants not depending j. One
mentions in passing that ¢’ does not even depend on T.
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Lemma 4.4. Let T > 2 and L > 27Y(1 —a)™! + 1 be two fized real num-
bers, where a € (1/2,1) is as in Definition 4.1. There exists a positive al-
most surely finite random variable C such that, for all n € [1,d] and J € N,
on Q* the random variable Hn 7, defined in (4.17), is bounded from above by

I (10g(3+J)) =J(hi+-+ha+(L-1)(1-a)—d)

Proof. Let t € [0,T] and j € X, ;. Using together the expression (4.2), the
inequality (4.3), the bound (2.31) as well as Lemmata B.2 and B.3, we get

> > leind 4]

kn€D3 (1) k(€L

te[1,d]\{n}
V10g(3 + [l + [ke])
< d
ST IDS /On Ea
k,€D? (¢ ke€Z
n cel1,d]\ {n}
T d
log(3 n kn, log(3 k
:CO/ 3 V108 (3 + [jn] + [al) HZ\/Og +|Jz|+\z\)ds
0 (34 |27ms — ky|)E (34 |27es — ky|)E
kn€D? (1) (ZLkez

d 1 \/10 3+ +
< | I lo + + 27 E d
< Ch \/ g(3 “]d ‘ )/ (3+‘23”3—k D ’

i © kneD3 (o
d .
< Cy [ Viog(3 + Lol + 20 T)(1 + jin)2~7nE- D), (4.29)
/=1
l#n

Next, notice that using the triangular inequality and (B.1), we obtain that

Z H (\/log (3 + [je| + 27¢T)29¢ (1~ hg))

le [[1 d]]\{n} é;én

jn
- Viog(B+ [ie] + 2 T)2 0

Je=—00

Il
S
=

Il
i~

400 _
(Z V10g(3 + [jn — [ + 2jn—pT>2<ﬂn—p><1-hf>>

p=0

S
I
3=

/

d—1
< (\/log(3 + 2i-T) log(3 + |jn|)) X ...

Y H 9dn(1=he) (Z mz—p(l—h2)>

p=0

(\/log B+ 2T)10g(3 + |jn] ) H 9in(1=he) (430
Z;én

where ¢ > 0 is a deterministic constant. Next, putting together (4.17), (4.4),
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(4.29) and (4.30), it follows that

Moy < Oy 3 (1 )2 et tha (L=

Jn=>J
X <\/10g (34 2inT) log(3 + IJn\))

<Ci Y dnt (0g(3 + [fa]) T g Inlhat oD () )

]n>J
< C’5J 5 (log(3 + |J|)) —J(hi++hg+(L—1)(1—a)—d)
where Cs, Cy and C5 are positive almost surely finite random variables. O

Lemma 4.5. Let a € (1/2,1) be as in Definition 4.1 and let T > 2 be a fized
real number. There exists a positive almost surely finite random variable C' such
that, for alln € [1,d] and J € N, on Q*, the mndom variable "Hn 7, defined in

(4.16), is bounded from above by C.J% (log(3 + J)) T 9t thata—d),
Proof. let L > 1 be a fixed real number, ¢t € [0,7] and j € X, ;. Using the
definition (4.2), the inequalities (4.3) and (2.31), Lemma B.2, the inequality

[kn| < 2in(1=a) L 9inT for all k,, € DJQ-n (t), the change of variable z = 2975 — k,,,
the bound (4.27) and the inequality (B.2), we have
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Z Z k(1)

2

B P TV
V1og(3 + [je] + [ke)

< C d

[L2, £ IR

WO ety
:00/T Y V0B bl + [k H DR AR TIPS
O k.eD? () (34 [27ms — k)" (51 ke (341275 = kel)®

d T \/10 3
< 1 20¢T
_CIH\/Og(g—’—UZ‘J’_ ¢ )/ Z (3+|2]”S—]€ |) ds

_ 0
f;rll kn€D? (1)
d
< C1\fog(3 + [jul + 202 -0) - 2uT) [ V/Iog(3 + [je] + 27T x
/=1
l#n
T
ds

X > /O (3 + 2975 — kn]) L

kneD2. (1)
dz
-G (/ > 10g(3 + [jn| + 27n(1=0) 4 20nT) x
(3+\ e \/

% H V1og(3 + [je| + 29¢T) Card (D3 (t))277"
(Zn

d
< 03270 \/log(3 + |fn| + 29n(1=a) 4 2inT) H V10g(3 + |je| + 29¢T)

(=1
L#n

d
< o277 T+ iy [ ] V103 + el + 2T,
tn

where Cy, Cq, Cy, C5 and C} are positive almost surely finite random variables
not depending on n, ¢, j and J. Then, combining the (4.16) and (4.4) with the
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inequalities (4.30), a > 1/2 and Z‘Z:l he > d—1/2, we get

d d
M2, <0 Y (H 2”(1“)) 27T+ jin [ [ V1og(3 + liiel + 27¢T)

jeEN,, 5 =1 (=1
J \J iZn

< C5 Y 27 ntam D) /T (flog(3 + 20 T) log(3 + [7a )T x ..
Jn2Jd

d
Lox [
=1
l#n
, .4 oy 4ot
<G Yy 27t thata=d) ik (1og(3 4 [ )2
Jn2Jd

< Cp2~ I (tthata=d) 15 (16g(3 4 J))

d—1
2
K
where C5, Cg and C7 are positive almost surely finite random variables. L]

4.2 Rate of convergence to zero of A, ;

The goal of this subsection is to show that, on the event Q* of probability 1
(see Lemmata 2.15 and 2.16), when J goes to 400, the random variable ’H}%J

converges to zero more quickly than the rate J&2= (it Fha—d+1/2) targeted
in Theorem 2.12.

Lemma 4.6. Let T > 2 and L > d+ 2 be two fixed real numbers. There exits a
positive almost surely finite random variable C' such that, for allm € [1,d] and
J €N, on Q, the random wvariable H}LJ, defined in (4.23), is bounded from
above by OJd—l 2—J((L—2)(1—a)+h1+~--+hd—d+1)'

Proof. Let us fix t € [0,T] and j € N,, ;. Using the definitions (4.2), (4.19),

(4.9) and (4.10), the inequality (4.3), the bound (2.31), the inequality |ky| <
2T, for all k, € D]l" (t), the inequality 2/»T > j,, Lemma B.2, the fact that
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In = érr[l[a}ccl]] Jje, the triangular inequality and finally inequality (B.1), it comes
e[t

> Z el [Aj () — B,

kn€D] (1)
le[[l d]]\{n}

1
10g3+23n+1T/ . = | x...

R\0,8] \ ) eDl © (34 |20ns — ky|)

d -
V4og(3 + [5e] + [ke])
. X H <Z (3+|2jzs_kz|)L > ds

{=1;0#n \k,€Z

d . .
1. log(3 + + |2des
log 3 + 23n+1T / He_l,e;én \/ g( |J€| | |) ds
B+ [2ms — ko)

\[O t]k €D1 (t)

d , 4
_1; log(3 + [j¢] + 2775
log(3 + 29 +1T)) / Hl_l,lyén\/ g( el + | Dds

R\[04] 5 GDI ® (3 + [29ns — ky|)L

<C / Hf:l;fsén V1og(3 + [je| + 2775 — kyl)
<G R\[0,4] (34 |2ms — k)T

ds X ...
) 1
kn€D} (1)

4
2

x (log(3 4 27~ T1T)) 2, (4.31)

where Cy and C are positive almost surely finite random variables not depend-
ing on n, t, j and J. Let us estimate the last integral in (4.31). First we bound
it by the sum of the two integrals Ij{k(t) and IjQ)k where

S

oo IT; VIog(3+ [je| + 27s — ky,)
{=1;l#n n
1L (1) ;:/ Z 1o
t

5 2ing — k, )L
kp<2int—2in(l—a) (3 + n)

and

d : -
/ H[:l;[;ﬁn \/log(?’ + |j€| + kn - 2‘]"8)
e = >

(3+ kn — 20ns)L 5

kyp>2in(1—a)

Next, for bounding Ij{k(t), we use the change of variable y = 2/ (s —t) and the
fact that, for all j € Z, the function y — (2 + y)~L/(@=1 /log(2 + |j| + y) is
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decreasing on R . By this way we get that

IV log(3 + [je| + y + 29nt — Ky,
() =2 an/ 3 H V- |jel )dy
0

nt — L/(d—1
ky <29nt—2in(1— a)é 1 3+y+2] ¢ k”) ) )

oo+oo d A Jn(l—a)
<9 .771/ \/IOg(3+‘JE|+y+2 +p) dy

o M 1 (3+y+2jn(1*a)+p)L/(d*1)

< 9 in /+°° /*00 T Vog2 + [jel +y + 2079 1 2)
0 0

Gtyto -5 i@ |

(=1
l#n

Py /+oo </+oo Hg:l;é;én \/log(Q + jel +y+ 2in(1—a) 4 2)
B 0

2+y+2n0-a) 4 )L

dz | dy.

(4.32)

Now, we are going to estimate the integral over z in (4.32). To this end, we will
make an integration by parts. Notice that there is no restriction to assume that
J is large enough so that the inequality d — 1 < log(24 27(1=%)) holds. Then, it
follows from the inequality j, > J that, for all (y, z) € Ri and for every j, € Z
(with [ # n), one has

d—1
Vi9og(2 + [je +y +2(1=0) + 2))

Thus, denoting by D, the partial derivative operator with respect of the variable
z, one can derive from the latter inequality that

< \Jlog(2 + [jel +y + 271 + 2).

d
D. H \/log(Z + je| +y + 29n(1=a) 4 2)
{=1;L#n
_ : H?:l;i;ﬁn.l V9og(2 + [7i] +y + 20:(-a) 4 2)

ten 201082+ el + y + 297070 4 2)(2 4 [jo| + y + 20n (=) 4 2)

He 1 e;én\/log 2+ |je|l +y+20(0=a) 4 2)
2(2 +y+2n(1-0) 4 2)

and consequently that

dz

/*0" TT¢ 1 gin V1082 el +y + 270-a)  2)
2+y+ 2044 2)k
He 1; 04n V10g(2 + [je] + y + 20n(1-9))
(2+y+ 2n(1-a))L-1 )

<2x

This leads to

, oo T4, log(2 + |4, + y + 29n(1—a)
<21_jn/ HZ:I,Z;&n\/ g2+ ljel +y )dy

1
Ij,k(t) = (2+y+2jn(17a))L71

[T, n V/108(2 + [je] + 27 (=)
(2 + 29n(1=a))L—2 .

< 92=Jn %

(4.33)

40



where the last inequality is obtained through an integration by parts and the
same arguments as before. Observe that, by using the definition of I j%k one can
show, as we already did it for deriving (4.33), that

d . —q=
y TTo—1: en V/108(2 + [je] + 27 0=))

2 92-jn
I <2 (2 + 29n(1—a))L—2

(4.34)

Next, it follows from the definition (4.4), the inequalities (4.31), (4.33) and
(4.34), the triangle inequality, the inequalities (B.1) and (B.2) and the assump-
tions (1.11) that

H}l,J — Z 9d1(1=h1)+-+ja(l1=ha) o
jeNn,J

... X sup Z Z |5j,k| |Aj,k(t) - FJk|

tEOT] | Dt (1)  keeZ
In e 1,d]\{n}
—+oo
< Oy Z (jn + 1)% 9=in((L=2)(1=a)+hn) o
Jn=J

d Jn
s T | 26079 flog(2 + L] + 20 01-0))
{=1;0#n \ je=—00
+oo

<Co Y (Ju+ 18 27 (EmD At hattha—diD) o
Jn=J

d +o0o
il (22”“h”\/log(2+jn+2jn<1a>+p)>

{=1;L#n \p=0
“+ o0
S 03 Z ]g—l 2—jn((L—Q)(1—a)+h1+~~+hd—d+1)
Jn=J
< C4Jd—l 2—J((L—2)(1—a)+h1+'“+hd—d+1)

where Cy, C3 and Cj are positive almost surely finite random variables not
depending on n, t and J large enough. O

4.3 Rate of convergence to zero of M,, ;

The goal of this subsection is to show, by making use of Borel-Cantelli Lemma,
that, on some event Q** of probability 1, when J goes to +00, the random vari-
able M,, ;, defined in (4.20), converges to zero at the rate J 27 (hit-+ha—d+1/2)
targeted in Theorem 2.12.

We start by giving a useful upper bound for (Fj x)?, the square of determin-
istic integral Fjx defined in (4.19).

Lemma 4.7. There exists a deterministic constant cy > 0 such that for all
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(G, k) € (292, with j, = enﬁfli);]] Jje, the following inequality holds:
S

d
. , : 2
(Fjx)? < cp27n / |n, (275 — k)| T |0n, (275 — k)| ds.
R =
iZn
Proof. Let IP;_ . be the absolutely continuous probability measure on the Borel

o-algebra of R whose density is the function s — 277 |4y, ||211(R) [n,, (297 s —ky)|.
We clearly have that

d _ 2
(Fjx)? < (/R 1T [en, (275 — ko) dS)
=1

— 97 2jn

d

o ey / TT [6n 275 — k)| dP;, s, (5)
Rp—q
{#n

Then, it results from Jensen’s inequality that

d
_o9; ; 2
(Fy)? < 272 [, |2 / IT [6n. (275 — k)| dB;, ., (5)
R,
Zn

d
=2 lexy | [, 2s = k)| T [ine (25 = k) s
(=1
l#n

Then, setting ¢, := gn[l[a};]] 1¥n || 1 () one obtains the lemma. O
€[1,

In order to bound in a convenient way the random variables ./K/lvn,j (t), defined
in (4.21), we will combine some Borel-Cantelli arguments with the following
fundamental result [13, Theorem 6.7].

Lemma 4.8. For any fized integer d > 1, there exists a (strictly) positive
finite universal deterministic constant cq such that, for every random variable
X belonging to the Wiener chaos of order d and for each real number y > 2,
one has

P(X > y||X | 12(0)) < exp (—cay®?).

We will apply Lemma 4.8 to the random variable Mvnj(t) This is why it is
useful to control its L?(Q) norm uniformly in ¢ € [0, T].

Lemma 4.9. There exists a finite constant ¢ > 0, depending on T, such that,
for alln € [1,d] and j € Ry, 1, we have

sup Mo 3 ()] 2oy < 27972, (4.35)
t€[0,T]

Proof. Throughout the proof ¢ € [0,7] and j € R,, ; (recall that j, denotes the
nth coordinate of j) are arbitrary and fixed. The equivalence relation ~ on the
set TTn(t) is defined as:

V(k,K) €T (t) x W (t), kK <= e =ejw

42



Let us emphasize that, we know from Remark 2.18 and Proposition 2.19 that
V(k, k') € Tr(t) x Tr(t), k~k < Elgjxejw] # 0. (4.36)

Since T (t) is a finite set, the equivalence classes for the equivalence rela-
tion ~ are in finite number denoted by M. Let us then denote them by

(), T (t). Then using a well-known result on equivalence relations,
the set 71 (t) can be expressed as:

M
TV (t) = U -Iﬁl”l(t) (disjoint union). (4.37)

=1

Also we mention that, we know from Remark 2.18 that, for each i € [1, M], we
have

Card(7T";(t)) < d! (4.38)
Next, observe that it follows from (4.36) that
Cov< > FaEic, Y. Fj,kej,k) =0, wheni #i".  (4.39)
ke‘l{fi,(t) ke‘lf;}i,,(t)

Then, one can derive from (4.21), (4.37), (4.39), Proposition 2.19 and the tri-
angular inequality, that

2 2
N M
Mo s(ONI72 0y = Z > Fisix =S D Fex
=1 keTn, (1) L2(Q) =1k, (t) L2@)

M
:Z Y. DL BuBiwElEeiw]

-‘JIL (t) k/ -‘JTL (t)

S0 3D SRS S

=lkeTr (1) ke (1)

u 2
= X [h

= A\keTL®)

| Fae

Then using the convexity of the function x + 22, the inequality (4.38) and the
equality (4.37), we get that

M
IMag®) 320 < @Y ST Fho=@n?* Y F (4.40)

=1 ke, (1) ke (t)

Moreover, putting together Lemma 4.7, (4.18), the fast decay property (1.4)
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with L > 1, and the inequality sup Z (3+ |z — k\) < oo we get that

z€R keZ
d 2
S resarn 3 [kl [ (3 et s o
ke (¢ kn€D] (1) 5;711 ke€Z
d L
<27y /ywh s — k H (Z (34275 — k)~
kn€D} () =1 \ko€Z
i#n
< 9279 /’g/}h 23"57 )| ds
kn€D} (1)
= ca|vbn,, || 1) 27 ¥ Card(D] (1)), (4.41)
where ¢; and ¢y are finite positive constants not depending on n, ¢ and j. Then,
(4.40), (4.41), and (4.28) entail that (4.35) is satisfied. O

The following remark shows that the supremum in (4.20) is in fact a supre-
mum on a well-chosen finite set.

Remark 4.10. For each fixed j € N and ¢ € R, we denote by m;; the integer

part of the real number 27t — 27119 that is m;, := [2/t — 2/(1=9) |, Thus, in
view of the definition (4.10) of the set Dj(t), it turns out that

1 0 if t € [0,21799)
D;(t) = { Dj(my;277 +279%) if t € [2!77%, 00). (4.42)
Then, we can derive from (4.42) that, for all n € [1,d] and j € N, 1,
sup [Mo (1) = sup [Myj(m2 = +2770)], (4.43)

t€[0,7] meLj,
where the arbitrary real number 7" > 2 is fixed and Z; stands for the finite set
Z; :=Nn (2009 1 97 — 2i(1=a)], (4.44)

Lemma 4.11. Let T > 2 be a fixed real number. There exist Q** an event of
probability 1 and a positive almost surely finite random variable C** such that,
for alln € [1,d] and j € Xy, 1, on Q**, we have

sup | M, j(t)| < C**279/2 log(3 + |j| + 2" T)%.
te[0,T]

(4.45)

Proof. Let us first show that if (X;),;en is an arbitrary sequence of random
variables in the Wiener chaos of order d, there exist €21, an event of probability
1, and a positive almost surely finite random variable C7 such that, for all j € N,
on 21, we have

1X;] < Crlog(3 + 1) 21X, | 120 (4.46)

Let x > 2 be a constant which will be precisely defined later. Applying, for any
j € N, Lemma 4.8 to the random variable X, we get that

N 2 2 .
P (1] = wlog(3 + )* | X;llpa(oy ) < exp (— canf log(3 + 1)),
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where cg4 is the same universal positive constant as in Lemma 4.8. Thus, assum-

_d
ing that the constant x satisfies x > ¢, *, it turns out that the series

A
Sp (|Xj| > klog(3+ )2 ||Xj||L2<Q>)
JEN

is convergent; then, the existence of 2; and C; follows from Borel-Cantelli
Lemma. Next, notice that, thanks to an indexation argument, the result ob-
tained in (4.46) can be applied to the sequence of random variables

{Mnyj(mrjn +270y s e [1,d], € N, 1,m € Ijn} .

By this way, we can show that there are 2** an event of probability 1 and a
positive almost surely finite random variable Cy (depending on T') such that,
on Q**, we have, for all n € [1,d], j € 8,1 and m € Z;_, that

| My j(m279n 4 2779)| < Cylog(3 + |j| + m) 2 [| M5 (m27n 4 279n)[| 12 (.
(4.47)

Then, putting together (4.47), (4.35), (4.44) and (4.43), we obtain (4.45). O

Lemma 4.12. Let T > 2 be a fized real number. There exists a positive almost
surely finite random wvariable C' such that, for all n € [1,d] and J € N, on
O** (see Lemma 4.11), the random variable M,, j (see (4.20)) is bounded from
above by C.J52~7 (hit+ha—d+3)

Proof. Let us fix J € N, using (4.20), (4.4), (4.45), (B.1), the triangular inequal-
ity, (B.2) and (1.11), we obtain that

+oo
Mn,J S CO Z 2j’L(%7h") 10g(3 + d]n + 2j"T)

Jn=4J

d
2 X ...

d Jn
X H Z 29¢1=he) 100(3 + |5, — je|)
=1

Je=—00

vl

+oo
<Oy Y it tha=d ) 10g(3 4 dj, + 27 T)
Jn=J

d +oo
—p(1— o d
Co X H <ZQ r ’“)log(3+p+23"T)2>

p=0

d
2 X...

. a
< Oy Z 2—]7z(h1+"-+hd—d+%)jrff
Jn=

< 02t tha—dtd) 73

where Cy, C1, Co and Cj are positive almost surely finite random variables not
depending on n and J. O
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4.4 End of the proof of Theorem 2.12

We are now in position to complete the proof of Theorem 2.12.

End of the Proof of Theorem 2.12. Without loss of generality, one can assume
that the compact interval I in the statement of the theorem is of the form
I =10,T] for a fixed real number T > 2. Let 2 be the event of probability 1
defined as: Q := Q* N O, where Q* and Q** are as in Lemmata 2.16 and 4.11.

First, we will show that, for each fixed w € Q and j € Z%, the series of
continuous function ), ;4 Ajkejx(w) is normally convergent with respect to
the uniform norm || - ||;,0c. Using the inequality (4.3), the bound (2.31) and
the triangular inequality, one gets, for some positive finite random variable Cf,
depending on T and j € Z¢, that

D Al o0 €5 (@)

kezd

T d -
SCI(W)Z/ H \/IOg(3+|jZ|+‘kfl) ds

= Jo A O+ 20T+ 20 — Rel)?

< Ch(w) Z /TH V10g(3 + [je] + [ke])

(T4 2T+ Tkl — [275])2

V1og(3 + [je] + [kel) < o0,
(1 + |Ke|)?

S Cl (w)T Z

kezd

which shows that the normal convergence holds.
Next, for each j € Z?, we denote by {Xj(t)}icr the stochastic process with

continuous paths vanishing outside of Q and defined on I x Q as

Xj(t,w) = Y Ajr(t)eju(w). (4.48)

kezd

Observe that in order to complete the proof of the theorem, it is enough to show
that there exists a positive finite random variable C' such that, for every J € N,
the following inequality holds on €:

S 2nOmhresh ) < Gttt (4.49)

(G.X)ez?)
maxyeqy,a] je=>J

Indeed, assuming that (4.49) is true, then it clearly entails that, for all fixed
J € N and every w € €, one has

SO 2 (Eh) R X W)l 0 <, 00,

jez?
maxgeqr,a) je=>J

which means that the series of continuous function
Xp(w)e= Y 2RO X (w) (450)

jez?
maxgequ,a] je=>J
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is normally convergent with respect to the uniform norm || - ||7,c and thus
X;(-,w) is a continuous function on I. Then, we denote by {X;(t)}ies the
stochastic process with continuous paths vanishing outside of Q and defined on
I x Q by (4.50). Thus, (4.49) and the triangular inequality imply that, for all
J € N, the following inequality holds on Q:

X5l 1,00 < CTE2™Iattha=dt3) (4.51)

On another hand, we know from the equality (2.8) that, for all fixed J € N and
t € I, the random series

Z 2j1(1—h1)+-~+jd(1—hd)Xj (t)

jez?
maxee[1,d] je>J

converges to Xl(f’f) (t) := X}(ld) (t)— Xl(i)](t) in L?(Q). Combining this fact with
(4.50) one concludes that, for all ¢ € I, almost surely,

Xyt = X7 (t) - X\ 0).

This latter equality and the fact that the two stochastic processes {X j(t)}ier
and {X}(ld) (t) — Xf:?,(t)}te 1 have continuous paths imply that these two pro-
cesses are indistinguishable. Thus, the inequality (4.51) is nothing else than the
inequality (2.25).

It remains us to show that (4.49) holds. In fact, it results from Lemmata
4.2, 4.4, 4.5, 4.6, 4.12 and the inequality:

d 3
Z 2j1(1_h1)+m+jd(1_hd)||Xj||I,oo < Z (Mn,J + Z H?,J) ,
n=1 m=0

(k)e@?)?
maxgequ,a] je=>J

which is obtained by using (4.48), the triangular inequality, standard com-
putations, and the definitions of the random variables M,, ;, and H}'; with
m € [0, 3]. O

5 Proof of Theorem 2.14

The real number T° > 2 is arbitrary and fixed. Let Q be the same event of
probability 1 as in the proof of Theorem 2.12; recall that it is defined as € :=
Q* N QO where the two events Q* and Q** of probability 1 are as in Lemmata
2.16 and 4.11. Next, observe that for proving Theorem 2.14 it is enough to show
that there exists a positive finite random variable C' such that, on 2, we have,
for all N,P € N,

||)~(1(1{,11)V+P - )N(lgjl)v ” [0,T],00

< CNg2 Nt tha=d+1/2) (5.1)
where, for all fixed w € €2, the continuous function )Z'}gdj)\,(, w) is defined through
(2.27). Indeed, assuming that (5.1) is true, then it turns out that, for each

fixed w € Q, the sequence of functions ()Z'}(ldj)v(~, w)) Nen 182 Cauchy sequence in
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the Banach space of the real-valued continuous functions over [0, T], equipped
with the uniform norm || - [|o,77,00. Therefore, it converges, for this norm, to a
continuous function over [0, 7] denoted by )Z'l(ld)(o,w). On another hand, when
w e 0\ Q we set X’}(ld) (t,w) =0, for all t € [0,T]. Next, observe that, in view of
the previous definition of the stochastic process {X'}(ld) (t) }tefo,r) We have, for all
t € 0,7, almost surely,

X0 =% @), (5:2)
since we know from (2.27) and (2.26), that, for each fixed ¢ € Ry (and in par-
ticular for ¢ € [0,T7]), the sequence of random variables ()Z'}(ld])\,(t)) NeN converges

to Xl(ld)(t) in L?(Q). Next, using the fact that the two stochastic processes
{Xfld) (t)}tepo, ) and {)Zéd)(t)}te[o’ﬂ have continuous paths, we can derive from
the almost sure equality (5.2) that these two processes are indistinguishable.
Thus, letting P in (5.1) tends to +00 , we obtain (2.28).

From now on, we focus on the proof of the inequality (5.1). Let us explain its
main lines. Observe that we know from Definition 2.13 that the two sequences
of subsets of Z¢ (S};)nven and (Sy)nen, which are related to ()?}(f])\,(-,w))NeN
(see (2.27)), are increasing in the sense of the inclusion, and one has, for all
N’,N" € N, that Sy, NSy, = 0. Thus, one can derive from (2.27) that, for
every N € N, P e Nand ¢ € [0,7],

> (d > (d dh d,h

Xiep) = X3 (1) = > e () + > ek (1),
(.K)eSEH p\SK (.k)ESy L p\Sy

(5.3)

The first step of the proof of (5.1) consists in showing that, on ﬁ, one has,
for some positive finite random variable denoted by C* and for all N, P € N,

d,h d —
H > 32k )H[O,T],oc < OF NNz, (5-4)

GR)ESH, p\SH

Observe that, in view of Definition 2.13, the the set SX,JFP \S]T, can be expressed
as

SHap \ St = p x I p ) URY p x IV p ) U p x IV p ), (5.5)

where

R0 ;:{- 74 . _9WN+P)b < pnin i and N < i< N P} 5.6
Ypi=1ic€ [min je and N < max je <N+ Py, (5.6)

Rl ;:{' 74 . —9N% < min j, and 0 < ; N} 5.7
NP =] E < join je and 0 < max jo <Ny, (5.7)
N2 ::{'ezd;—2<N+P>b< in j, < —2% and 0< '<N}
Nop =1 < min ji and 0 < max jo
(5.8)
and .
u U {k ez i [ < 2N+P+1T}, (5.9)
= {k €7 ; oN+IT < e k| < 2N+P+1T}. (5.10)
o el1,
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Then, it results from (5.5), the triangular inequality and (4.1) that

2
d,h L
H > ey >H[O - <> Vi (5.11)
(GK)EST, p\SF oY =0
where
v?\’,P = Z 91 (1=h1)+++ja(l—ha) sup Z g Ay K(t)],
JEN T e,
V}V,P — Z 91 (1=h1)+++ja(l—ha) sup Z Ej,kAj,k(t) ,
JeNkp O en,
and

Vipi= S 200-mtetiatoh g |30 Ej,k-Aj,k(t)’-

. te[0,T
Jeny p [0.7] k€W p o

Observe that, we know from (4.10) that the inclusion Dj(t) C {k € Z : |k| <
2N+PH+1T holds for all t € [0,7] and 1 < j < N+ P+1. Thus, putting together
(5.6), (5.9), (4.4), (4.23), (4.16), (4.17), (4.8) and (4.20), we obtain that

d 3
Vr<y (M ZH::,N).
n=1 m=0

Then, it results from Lemmata 4.2, 4.4, 4.5, 4.6, and 4.12 that, on the event
Q = Q*NQ** of probability 1, one has, for some positive finite random variable
CS‘ and for all N, P € N,

V& p < CF N22Nhattha=dt1/2) (5.12)

On another hand, we can derive from (5.7) and (5.10) and the triangle inequality
that

d
Vie £ Lo (5.13)
n=1
where, for all n € [1,d],

Chym 37 2Oehtotialons o

Je<N
Le[1,d]

DY > el sup {lAk(®)]} (5.14)
[kn|>2N+1T k€L te[0,T7]
Le1,d]\{n}

Moreover, we can derive from (5.8) and (5.9) and the triangle inequality that

d
Vi< L, (5.15)
n=1
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where, for all n € [1,d],

DD D ()]
Jn<—2Nb <N kezd te0,T
- Le[1,d]\{n}
(5.16)

In Subsection 5.1, it is shown that, on the event 2* of probability 1, for some
positive finite random variables Cy and Co, one has, for alln € [1,d] and N € N,
that

Ll < G2 NOutthatlod=D) N5 10g(34 N)2 = o(N 22~ N(uttha=dt1/2))
’ (5.17)
the real number L > 3/2 being arbitrary and fixed, and that

L2 < CyN#oN(Eewn(1=h0) =2 (A=hn) _ o(N g2~ Nt tha=d+1/2))

’ (5.18)
where b > 0 is as in Definition 2.13. Then, putting together (5.11), (5.12),
(5.13), (5.15), (5.17) and (5.18), we obtain (5.4). We mention in passing that
the inequalities (4.3) and (2.31), as well as the inequalities (B.1) (B.2) and (B.3)
in Appendix B, are the main ingredients for proving (5.17) and (5.18).

The second step of the proof of (5.1) consists in showing that, on 2*, one has,
for some positive finite random variable denoted by C'~ and for all N, P € N,

H Z Sk Jk )H[OT] (5.19)

(GK)ESy, p\Sy
< - (2—N(L—l)g\/ﬁ n N%2_2Nb,(1_hn)> _ O(N%2_N(h1+m+hd_d+1/2))7
where g > 0 and b’ > 0 are as in Definition 2.13 and the real number L > 1+2g~!

is arbitrary and fixed. Observe that, in view of Definition 2.13, the the set
Syip \ Sy can be expressed as

Snip \Sy = (Ni)’V,P X 35\7,21) (le\, p X :]\ZIU})9T> (5.20)
where
N po={je —N?: =2V < min j,}, (5.21)
’ €[L,d]
NZJLV,P ={jez?:je-N: 2W+PW < in j, < —2N'Y (5.22)
T ee[1,d]
and
200 = {k ez : 2V9 < max |k < 20VHP)9}, (5.23)
P e[L.d)
) o~ (kezd . < 9(N+P)g 24
Invpri={ke : Zfélﬁfﬂ\ke\ hS I (5.24)

It results from (5.20), the triangular inequality and (4.1) that

| S k™| <VRe+Vhe  (629)
[0,T],00 ’ ’
(.K)ESy 4 p\Sx
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where

V?VP Z 9d1(1=h1)+++ja(1=hq) sup Z Ej,kAj,k(t)’

te[0,T]

JENN,P ke:%f?,T
and
4 I 1—h1)+-+ja(l1—h
VN,P = E 271( 1) ja(1=ha) sup ‘ Ej,kAjyk(t)’.
. t€[0,T]
JGNAILV,P ke :(1.1))

Then, notice that (5.21), (5.23) and the triangle inequality imply that

d
Z v (5.26)
where, for all n € [1,d],

3 _ -(17h1)+---+jd(17hd)
= 21 gjxl sup |A;k(t)].
. S %kl b

je—Nd |kn|>2N9  ke€Z telo,
Le(1,d] ,¢#n

(5.27)
Also, notice that (5.22), (5.24) and the triangle inequality entail that
d
Ve <D Lo (5:28)
n=1

where, for all n € [1,d],

'C;lz,N = Z Z ghli=h)teFia(i=ha) Z €5l bup |AJ k(t)]-

jn<—2N 5e<0 kezd tefo,T
B Le[1,d]\{n}

(5.29)

In Subsection 5.2, it is shown that, on the event 2* of probability 1, for some
positive finite random variables C3 and Cjy, one has, for alln € [1,d] and N € N,
that

L3y < C27NEDayN, (5.30)
and that R

LYy < CyNE2 2" (b, (5.31)

Then, putting together (5.25), (5.26), (5.28), (5.30) and (5.31), we obtain (5.19).
We mention in passing that the inequalities (4.3), (2.31) and (B.1) in Appendix
B, are the main ingredients for proving (5.30) and (5.31).

Finally, combining (5.3) with (5.4) and (5.19), it follows that (5.1) is satisfied.

5.1 Rates of convergence to zero of L} nn and ﬁnN

Lemma 5.1. Let T > 2 and L > 3/2 be two fized real numbers. There exits a
positive almost surely finite random variables C such that, for alln € [1,d] and
N € N, on Q*, the random variable E}L_’N, defined by (5.14), is bounded from

above by €2~ Nt FhatL—d=1) N5 |og(3 + N)Z.

o1



Proof. Let usfixn € [1,d], N € Nand j € (—oo, N)?. Using the definition (4.2),
the inequality (4.3), the bound (2.31), the triangular inequality, inequalities

(B.1) and (B.3) and the fact that the function y — (2 + y)~Ly/log(2 +y) is
decreasing on R, we get

> > ekl sup [Ajk(d)]
t€[0,T]

llin|>2N+H1T  ke€Z

Le[1,d]\{n}

<C/T V10g(3 + [jn| + [kn])
=7 (3+ [20ns — k)T

|kp|>2N+1T
d
1 k
A (5 SR -
5L \keeZ B+ [2es — k)"
’ VIog(B+ [jul + [kal) 1-
<C n ( o231 572 )d
B 1/0 Z (34 |kn| — 29ns)L 1:[ V10g(3 + [je| + 27¢s) ) ds
|kp|>2N+1T 5;2711
d
< 172" /log(3 + |jal) H\/Iog(3+|jé|+2j’~’T) X ...
Zn
V1og(3 + [knl)
| B
|kn|>2N+1T n

d
< 1 T2 1og(3 + [jn]) | [ Vios(3 + ljel + 2¢T) | x ...
(Zn
><< oo \/log(2+y)>
2

var (2+y)*

d

< Oy | [ 1og(3 + ljel) N 227N ED), (5.32)
=1

where Cy, C; and C5 are positive almost surely finite random variables not
depending on j and N. It follows from (5.32) that

N-1 N-1 d
g}hNgCQN%Q*N(Lfl) Z z 9J1(1=h1)+-+ja(1—-ha) Hlog(3+|je|)

ji=—o00 Jd=—00 =1
< 03N % log(3 + N)#2 Nt thatL—d—1)

where C3 is a positive almost surely finite random variable not depending on
N. O

Lemma 5.2. Let T > 2 and b > 0 be two fized real numbers. There exits a
positive almost surely finite random variable C' such that, for alln € [1,d] and
N €N, on Q*, the random variable L, , defined in (5.16), is bounded from

above by CN§2N(Ze¢n(1 he)) =2 (1=hn)
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Proof. Let us fix n € [1,d] and N € N and j € Z? such that j, < —2"% and,
for £ € [1,d] \ {n}, je < N . Using the definition (4.2), the inequality (4.3), the
bound (2.31), the inequality (B.1), the triangular inequality and the inequalities
(B.3) and (B.2), we get

> lesxd sup. IAJk()\
tel0, T

kezd

T
SCO/ <
0
d

T H Z V/1og(3 + [je] + [ke]) ds

(34 |27es — ky|)?

3 (¢log<3+ ] £ TFa ] ) y

kn€Z 3+ T+ [2ns — kal)?

t=1,64n \tezd
V10g(3 + |k, )

Cor/10g(3 + |jnl) / (Z )
2 B

d

H V1og(3 + |je| + 27¢s) ds
0=1,0#n

d
C1\1ogB+14al) [] Viog(Bd+ [iel + 2¢T), (5.33)

0=10%#n

where Cy and C are positive almost surely finite random variables not depend-
ing on j and N. It follows from (5.33) that

=2V

Loy<C| Y 2007 /log(3+ [jn]) | x -+
Jn=—00
d N

o T [ D0 270V iogB + el +204)

l=1,0#n \je=—00
d

< I

0=1,04n
< CQN%QN(Ze;én(lfhe))72Nb(17hn),

where C5 is a positive almost surely finite random variable not depending on
N. O

5.2 Rates of convergence to zero of £}  and L y

Lemma 5.3. Let T > 2, g >0 and L > 1+ 29! be three fized real numbers.
There ezits a positive almost surely finite random variable C' such that, for all
n € [1,d] and N € N, on Q*, the random variable £i7N, defined by (5.27), is

bounded from above by C2~N(L—13g/N

Proof. Let us fix n € [1,d] and N € N and j € —N?. Using the definition
(4.2), the inequality (4.3), the bound (2.31), the inequality (B.1), the triangular
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inequality and the fact that the function y — (2+y)~L+/log(2 + y) is decreasing
on R, we get

> > ekl sup [Ajx(t)]
€[0,7]

lkn|>2N9  ke€Z telo,
ee1,d]\ {n}

<C°/o s VosC TR FTED

Ko, |>2Ng B+ T+ [2rs — kn|)F

B L {5 SR LT ERAERLTIR PN
(B+T + |25 — k| )T

*1 ke€Z
#n

log 3+ k:

|kn|>2N9
d
I (Z V1083 [ke]) > i
0=1 \k€Z (3 + [kel)
l#n
\/log (3 + [knl)
Hlog 3+1ie) Y
P e B IRDE
teo /log(2 + v)
ove (24 Y)E
d
< Coy | [J1og(3 + ljel)2 V- VIVN, (5.34)

=1

where Cjy, C; and C5 are positive almost surely finite random variables not
depending on j and N. It follows from (5.34) that

d
Ei,N < OQQ*N(L*UQ\/N Z 971 (1=h1)+++ja(1—ha) Hlog(g + [je])
je—Nd =1

< 0327 NETDgY/N,

where Cj3 is a positive almost surely finite random variables not depending on
N. O

Lemma 5.4. Let T > 2 and V' > 0 be two fized real numbers. There exits a
positive almost surely finite random variable C' such that, for alln € [1,d] and
N €N, on Q*, the random variable L;, , defined in (5.29), is bounded from

above by C’N%272Nb (=hn),

Proof. Let us fix n € [1,d] and N € N and j € —N¢ such that j, < —2N7"
Using the definition (4.2), the inequality (4.3), the bound (2.31), the inequality
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(B.1) and the triangular inequality, we get

T d
Z lej x| SUPT] |Ajk(t)] < Co/O H (

tefo 3+ T+ |27ts — kel)?

5 (wog(?) T Lgel + ke ) s

keZzd =1 ke€EZ
T d \/10 "
2(3 + [je])/1og(3 + [ke)
<
<o [ 11 VgD ) o

d
< & [ Vios® + il (5.35)
/=1

where Cy and C are positive almost surely finite random variables not depend-
ing on j and N. It follows from (5.35) that

|2 |

Liy<Ci| > 270\ logB+jnl) | x ..

Jn=—00

d

-1
o I | D2 20 Vi3 + 1ie)

l=1,0#n \jr=—00

< CpN#2-2" Ak

where C5 is a positive almost surely finite random variable not depending on
N. O
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A Some facts concerning multiple Wiener inte-
grals

In this section, we mainly give the proof of the crucial equality (2.20). This
proof relies on some fundamental facts concerning multiple Wiener integrals.
We refer to the two books [22, 23] for detailed presentations of such stochastic
integrals and many other related topics (Wiener chaoses, Malliavin calculus, and
so on). We recall that a function f € L*(R™) is said to be symmetric if, for all
o € 6, (the set of permutations of [1,n] = {1,...,n}) and for Lebesgue almost
every (21,...,2,) € R", one has f(2,(1),...,2Ze(n)) = f(21,...,2,). In other
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words, f € L?(R") is symmetric if and only if it is almost everywhere equal to

its canonical symmetrization fdeﬁned, for all (z1,...,2z,) € R", as:
~ 1
Flreoswn) = =0 3 Flaoyse s o). (A1)
ceS,

We point out that a very fundamental property of multiple integrals is that
L(f) = L,(f), forall f e L%(R"). (A.2)

For proving the equality (2.20), we will make use of the so-called product
formula for multiple Wiener integrals [23, Proposition 1.1.3]. In order to give
this important formula, first we need the following definition: let m and n be
two arbitrary positive integers, if f € L?(R™) and g € L?(R") are symmetric
functions and r € [0, mAn], the contraction f®, g is the L2(R™*"~2") function
defined, for all (21, ..., ZTmin_2,) € R™T"=2" through the Lebesgue integral

(f Qr g)(xla oo 7xm+n72r)

= f(xla'~-7xnzfr781>~"7ST)g(xnvfr+17~-~>xnv+n42r781>~-78r)d51'~~d8r7
R'r‘

with the convention that f ®q ¢ := f ® g, which means that f ® g is the usual

tensor product of f and g; also notice that when m = n, then f®, g is identified

with the Lebesgue integral fRn fg. Using, the previous definition, one can write

the product formula for multiple Wiener integrals in the following way: for each

positive integers m and n, and for every symmetric functions f € L2(R™) and
g € L?(R™), one has

T = S (") () te-arts 1.0, (A3)

T r
r=0

where, for p = m or p = n, the quantity (ff) is the usual binomial coefficient

@ - r!(ppi -

For proving the equality (2.20), we will also make use of the following fun-
damental result, which, for instance corresponds to [22, Theorem 2.7.7].

Theorem A.l. Let f € L*(R) be such that ||f| 2wy = 1. For all positive
integer n, let H, the Hermite polynomial of degree n. Then, one has

Hy (Ii(f)) = Ln(f%).
We are now in position to prove the equality (2.20)

Proof of the equality (2.20). It follows from Theorem A.1 that

I Hn (i) = lg[fm (@2@”) ,
=1

=1



and thus, it remains to show

p P

Qn Qn
1. (w e) S <®W e>. (A.4)
/=1 =1

We proceed by induction on the positive integer p. It is clear that (A.4) is
satisfied when p = 1. So from now on, we assume that p > 2 and that

p—1 p—1

®n ®n
H In, (‘Pz 2) = dnatotny g <® Pe é) .
=1 =1

Then, settingn =ny +---+np_1 and d = ny +---+n, = n+n,, we can derive
from the product formula (A.3) that

p p—1

®n ®n
HInz (@[ Z) =1I, <® Pe E) Inp ((pp)
(=1 {=1

nAng p—1
n\ (n On ®Onp
=2 (7‘) ( rp) Lnin,—2r | Q00" @1 0
r=0 {=1
p—1 p—1
®n ®np ®n Qnp
=L | Qe @ | =1 | Qe @ep™ | (AD)
(=1 (=1

Notice that the third equality in (A.5) results from the equality

p—1
Rt o0 i —0, o allre [l
=1

which is a consequence of the orthonormality of the system (¢¢)}_,. Also notice
that the last equality in (A.5) results from (A.2). Next observe that, in view of
(A.5) and (A.2), in order to show that (A.4) holds, it remains us to prove that

—_—

p—1 ® d

QOn n Qn
®SDZ 2®<Ppp:®90g ‘.
=1 =1

Notice that any arbitrary permutation ¢ € &,, can be extended in a natural way
into a permutation & € &, defined, for all i € {1,...,n}, as (i) = o(i), and
for, each i € {n+1,...,d}, as 6(i) = i. Thus, using (A.1), the latter notation
and the fact that the composition map v — vo & is a bijection from S, to itself,
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one gets, for all (z1,...,14) € R that

p—1

®Qn
®S0g [®@p .1'17...,
(=1

_ o
n! Z Z ® ml, (e(1))s -+~ >xV(o(n))) @ pp (%(nﬂ), e 7961/(51))

€S, vEGy =

dl nl Z Z ®<Pe o xUOé’(l)v"'7xV06(d))

€S, veEGy =1

dlnl Z Z ®‘p£ @y @)s o Tor(a)

eSS, VECdZ 1

|Z ®‘Pe (@), Tor(a))

'uecde 1
,—

On
®§D ¢ (.’L‘l,...,l'd).

B Some useful lemmata

The proofs of the following lemmata, which are extensively used in our articles,
can be found in [2].

Lemma B.1. For all (z,y) € R%, we have
log(3+ = +y) <log(3+ x)log(3 + y). (B.1)

Moreover, for each fized positive real number T, there exists a constant ¢ > 0
such that, for every x € Ry, we have

log(3 +z +2°T) < ¢(1 + ). (B.2)

Lemma B.2. For each fized real number L > 1, there exists a constant ¢ > 0
such that, for all j € Z and for all s € R, we have

Z\/log 3+ 15| + |&|) <e

kez (3+27s— |)

\/log (3 + |7] + 27]s]). (B.3)

Lemma B.3. For each fized real number L > 1, there exists a constant ¢ > 0
such that, for allt € Ry, for all s € [0,t] and for all j € N, we have

Z Vi9og(3 + 14| + |k) j)2-iE=D0-a)

(3+ |25 — k)L

log(3 +1),
keD3(t)

where D;-’(t) is the infinite subset of 7 defined through (4.12).
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