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Abstract

Wavelet-type random series representations of the well-known Frac-
tional Brownian Motion (FBM) and many other related stochastic pro-
cesses and fields have started to be introduced since more than two decades.
Such representations provide natural frameworks for approximating al-
most surely and uniformly rough sample paths at different scales and for
study of various aspects of their complex erratic behavior.

Hermite process of an arbitrary integer order d, which extends FBM,
is a paradigmatic example of a stochastic process belonging to the dth
Wiener chaos. It was introduced very long time ago, yet many of its
properties are still unknown when d ≥ 3. In a paper published in 2004,
Pipiras raised the problem to know whether wavelet-type random series
representations with a well-localized smooth scaling function, reminiscent
of those for FBM due to Meyer, Sellan and Taqqu, can be obtained for
a Hermite process of any order d. He solved it in this same paper in the
particular case d = 2 in which the Hermite process is called the Rosenblatt
process. Yet, the problem remains unsolved in the general case d ≥ 3.
The main goal of our article is to solve it, not only for usual Hermite
processes but also for generalizations of them. Another important goal of
our article is to derive almost sure uniform estimates of the errors related
with approximations of such processes by scaling functions parts of their
wavelet-type random series representations.

Keywords: High order Wiener chaos, self-similar process, multiresolution anal-
ysis, FARIMA sequence, wavelet basis.
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1 Introduction and background
Fractional Brownian Motion (FBM) with Hurst parameter h ∈ (0, 1), denoted
{Bh(t)}t∈R, was introduced by Kolmogorov, in 1940, to generate Gaussian “spi-
rals” in Hilbert spaces [15]. Its first systematic study was carried out in the
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famous paper [18] by Mandelbrot and Van Ness, in 1968. It is the unique Gaus-
sian process with Bh(0) = 0, mean zero and covariance function

E[Bh(t)Bh(s)] =
ch
2

(
|t|2h + |s|2h − |t− s|2h

)
, for all (t, s) ∈ R2,

where ch := Var(Bh(1)) is a positive constant only depending on the Hurst
parameter h (when ch = 1 then FBM is said to be standard). Among its
most fundamental properties, FBM has stationary increments and is h-self-
similar, meaning that, for all fixed a > 0, the processes {a−hBh(at)}t∈R and
{Bh(t)}t∈R have the same finite-dimensional distributions. When h = 1/2, the
process {B1/2(t)}t∈R is a usual Brownian motion. We refer for instance to the
monograph [21] for a clear and concise presentation of various fundamental facts
concerning FBM.

FBM appears naturally in many real-life applications in various domains,
such as telecommunications, biology, finance, image processing, and so on. We
refer for instance to [11] for a monograph with an overview of its different
areas of applications. Thus, study of FBM and related processes has become
a crucial issue since a long time. To this end, it is very useful to construct
well appropriate representations for these processes. An important class of such
representations consists of wavelet-type random series representations. More
than two decades ago, they were introduced in the framework of FBM in sev-
eral articles. We focus on the Meyer, Sellan and Taqqu seminal article [20]
whose main goal was to obtain representations which clearly separate the low
frequency part of FBM from its high frequency part, and, more importantly,
to express the low frequency part in terms of a well-localized smooth scaling
function. For a better understanding of our paper, we believe it useful to pre-
cisely present in our introduction the most classical one of these wavelet-type
representations of FBM due to [20], since one of our principle aims is to extend
it to Generalized Hermite process. The article [20] made use of the well-known
class of the Meyer orthonormal wavelet bases of L2(R) as the main ingredient
for constructing wavelet-type random series representations for FBM. Some fun-
damental properties of the two functions φ and ψ (scaling function and mother
wavelet) generating such a basis are given the following remark.

Remark 1.1. The precise definitions of univariate scaling function and mother
wavelet φ and ψ associated with a Meyer orthonormal wavelet basis of L2(R)
can for instance be found in [8, p. 137-138]. These two functions φ and ψ belong
to the Schwartz class S(R) of infinitely differentiable functions whose derivatives
of any order rapidly decay at infinity. Moreover, their Fourier transforms φ̂ and
ψ̂ are infinitely differentiable compactly supported functions satisfying

supp φ̂ ⊆
[
−4π

3
,

4π

3

]
and supp ψ̂ ⊆

[
−8π

3
,

8π

3

]
\
(
−2π

3
,

2π

3

)
.

Notice that throughout our article, we use the rather common convention that
F(f) = f̂ , the Fourier transform of an arbitrary function f ∈ S(R) is defined,
for all ξ ∈ R, as F(f)(ξ) = f̂(ξ) := (2π)−1/2

∫
R e
−iξxf(x) dx, while F−1(f), the

inverse Fourier transform of f , is defined, for every x ∈ R, as F−1(f)(x) :=
(2π)−1/2

∫
R e

ixξf(x) dξ.

The article [20] also made an extensive use of the notion of fractional prim-
itive and derivative, which can be defined as follows:
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Definition 1.2. Let f be an arbitrary function of the Schwartz class S(R). For
all h ∈ (1/2, 1) (resp. h ∈ (0, 1/2]), the fractional primitive of f of order h−1/2
(resp. the fractional derivative of f of order 1/2−h) is the function denoted by
fh, which generally speaking belongs to L2(R), and which is defined through its
Fourier transform f̂h by:

f̂h(ξ) = (iξ)1/2−hf̂(ξ), for almost all ξ ∈ R. (1.1)

One mentions that, using the common convention that, for all (y, α) ∈ R2, when
y > 0 one has yα+ = yα and otherwise one has yα+ = 0, then, for any h ∈ (1/2, 1),
the fractional primitive fh can be expressed as:

fh(s) =
1

Γ(h− 1/2)

∫
R
(s− x)

h−3/2
+ f(x) dx, for all s ∈ R, (1.2)

where Γ is the usual "Gamma" Euler function defined, for all z ∈ (0,+∞), as
Γ(z) :=

∫ +∞
0

uz−1e−u du. Also, one mentions that, when the Fourier transform
f̂ of f vanishes on a neighbourhood of 0 (notice the univariate Meyer mother
wavelet ψ satisfies this property), then one can drop the restriction h ∈ (0, 1)
and may allow h to be any real number. In the latter case, for all h ∈ (1/2,+∞)
(resp. for all h ∈ (−∞, 1/2]) the fractional primitive (resp. derivative) fh can
still be defined through its Fourier transform as in (1.1), and the equality (1.2)
for fractional primitive remains valid. Moreover, for every h ∈ R, one can easily
check that fh belongs to the Schwartz class S(R).

Unfortunately, since for a univariate Meyer scaling function φ the Fourier
transform φ̂ does not vanish on a neighbourhood of 0, for all h ∈ (0, 1), the
fractional primitive or derivative φh, of φ, fails to be a smooth well-localized
function. In order to overcome this serious difficulty, a clever idea of [20] was to
"replace" φh by the so called fractional scaling function Φ

(δ)
∆ , which belongs to

S(R) and which was defined in [20] as follows:

Definition 1.3. The fractional scaling function of order δ ∈ R of a univariate
Meyer scaling function φ is the function Φ

(δ)
∆ ∈ S(R) defined through its Fourier

transform by:

∀ ξ ∈ R \ {0}, Φ̂
(δ)
∆ (ξ) =

(
1− e−iξ

iξ

)δ
φ̂(ξ) and Φ̂

(δ)
∆ (0) = 1.

Similarly to φ̂, the function Φ̂
(δ)
∆ has a compact support satisfying

supp Φ̂
(δ)
∆ ⊆

[
−4π

3
,

4π

3

]
. (1.3)

Remark 1.4. Let δ and h be two arbitrary and fixed real numbers. One can
check, from elementary properties of the Fourier transform (see e.g. the seminal
book [26]), that the fractional scaling function Φ

(δ)
∆ and the fractional primitive

or derivative ψh, of the univariate Meyer mother wavelet ψ, belong to S(R),
which means that they are infinitely differentiable functions whose derivatives
of any order rapidly decay at infinity, in other words one has, for all fixedm ∈ N0

and L ∈ (0,+∞),

sup
x∈R

{
(3 + |x|)L

(∣∣∣ dm
dxm

Φ
(δ)
∆ (x)

∣∣∣+
∣∣∣ dm
dxm

ψh(x)
∣∣∣)} < +∞. (1.4)

3



Apart from the fact that Φ
(δ)
∆ is a very smooth and very well-localized func-

tion, another major advantage in expressing the low frequency part of FBM
in terms of it is to draw connections between the latter process and FARIMA
random walk time series (i.e. partial sums of FARIMA sequence (see Definition
1.6 below)), as shown by the following theorem of [20] which provides the most
classical wavelet-type random series representation of FBM clearly separating
its low and high frequency parts.

Theorem 1.5 (Meyer, Sellan and Taqqu). For each fixed J ∈ Z, the FBM
{Bh(t)}t∈R can be expressed as the following random series, which converges
almost surely and uniformly in t on each compact interval of R,

Bh(t) =
∑
k∈Z

2−JhS
(h)
J,k

(
Φ

(h+1/2)
∆ (2J t− k)− Φ

(h+1/2)
∆ (−k)

)
+

+∞∑
j=J

∑
k∈Z

2−jhgψj,k

(
ψh+1(2jt− k)− ψh+1(−k)

)
, (1.5)

where:

• (gψj,k)(j,k)∈Z2 is the sequence of the i.i.d. N (0, 1) Gaussian random vari-
ables defined, for all (j, k) ∈ Z2, by the Wiener integral (with respect to a
Brownian motion {B(x)}x∈R)

gψj,k := 2j/2
∫
R
ψ(2jx− k) dB(x); (1.6)

• given the sequence (gφJ,k)k∈Z of the i.i.d. N (0, 1) Gaussian random vari-
ables defined, for all k ∈ Z, by

gφJ,k := 2J/2
∫
R
φ(2Jx− k) dB(x), (1.7)

• (S
(h)
J,k)k∈Z is the Gaussian FARIMA random walk time series defined, for

every k ∈ Z, by

S
(h)
J,k :=



∑k
`=1 Z

(h− 1
2 )

J,` if k > 0

0 if k = 0

−
∑0
`=k+1 Z

(h− 1
2 )

J,` if k < 0

with (Z
(h− 1

2 )

J,` )`∈N the Gaussian FARIMA (0, h− 1
2 , 0) sequence associated

to (gφJ,k)k∈Z, see the next definition.

Definition 1.6. Let (gk)k∈Z be an arbitrary sequence of i.i.d. centred Gaussian
random variables (for instance the sequence (gφJ,k)k∈Z in the previous theorem).
For each fixed δ ∈ (−1/2, 1/2), the Gaussian FARIMA (0, δ, 0) sequence associ-
ated to (gk)k∈Z is denoted by (Z

(δ)
l )l∈Z and defined, for all l ∈ Z, as:

Z
(δ)
l := γ

(δ)
0 gl +

+∞∑
p=1

γ(δ)
p gl−p , with γ(δ)

0 := 1 and γ(δ)
p :=

δ Γ(p+ δ)

Γ(p+ 1)Γ(δ + 1)
.

(1.8)
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Remark 1.7. Observe that, for the constant aδ := δ/Γ(δ+1), it can be derived
from the Stirling’s formula that

γ(δ)
p ∼ aδ pδ−1, when p goes to +∞, (1.9)

which implies that the random series in (1.8) is convergent in L2(Ω), where Ω
is the underlying probability space. Also notice that the latter series is almost
surely convergent as well, thanks to the Kolmogorov’s Three-Series theorem.

Remark 1.8. The FBM {Bh(t)}t∈R can also be expressed as

Bh(t) =
∑
j∈Z

∑
k∈Z

2−jhgψj,k

(
ψh+1(2jt− k)− ψh+1(−k)

)
, (1.10)

where the series is convergent almost surely and uniformly in t on each compact
interval of R. Representations of the type (1.10) have turned out to be very use-
ful in the study of local and global sample path behavior of various stochastic
processes and fields extending FBM. Also it is worth mentioning that, even in
the case of the FBM itself, whose sample path behavior was widely studied in
the literature prior to wavelet theory, in the very recent article [12] the repre-
sentation (1.10) has allowed to show that FBM sample paths have dense subsets
of R of slow points and rapid points.

However, as explained in [20, 1, 25], the representation (1.5) is much more
convenient than (1.10) for approximating the FBM {Bh(t)}t∈R. Indeed, accord-
ing to (1.5), when J is large enough, {Bh(t)}t∈R can be approximated by its
low frequency part

Bh,J(t) =
∑
k∈Z

2−JhS
(h)
J,k

(
Φ

(h+1/2)
∆ (2J t− k)− Φ

(h+1/2)
∆ (−k)

)
,

whose coefficients S(h)
J,k , k ∈ Z, can be rather easily obtained from the coefficients

S
(h)
J−1,k, k ∈ Z, of {Bh,J−1(t)}t∈R by induction (pyramidal Mallat-type scheme);

roughly speaking, this is due to the fact that the fractional scaling function
Φ

(h+1/2)
∆ generates a multiresolution analysis of L2(R) (see [20]).

In fact, FBM belongs to a much larger class of chaotic processes, the so-called
Hermite processes. They are self-similar with stationary increments possessing a
long-range dependence property. They first appeared in a natural way as limits
of normalized partial sums of "strongly" correlated stationary Gaussian random
sequences, in the so-called Non-Central Limit theorems established a long time
ago by Taqqu, Dobrushin and Major [27, 28, 10]. Apart from the FBM, which
is the Hermite process of order 1, any other Hermite process of arbitrary integer
order d ≥ 2 is non-Gaussian; in fact it belongs to the dth Wiener chaos, and it
is even considered to be a paradigmatic example of a stochastic process in this
chaos whose many properties are still unknown, though the second order chaos
has turned out to be less difficult to study than the higher order chaoses. This
fact have motivated many authors, interested in "conquering" non-Gaussian
Wiener chaoses, to explore various issues related with them, we refer for instance
to [5, 6, 7, 16, 24, 29, 30] to cite but a few works in this area.

By the end of the introduction of the paper [24] (see page 602 in it) published
in 2004, Pipiras raised the problem to know whether wavelet-type random series
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representations with a well-localized smooth scaling function, reminiscent of
the representation (1.5) of FBM, can be obtained for a Hermite process of any
order d. He solved it in this same paper in the particular case d = 2 in which
the Hermite process is called the Rosenblatt process. Moreover, some further
advances have recently been made in this particular case d = 2 in the article [2]
in which a rather sharp estimate of the almost sure uniform rate of convergence
of the wavelet-type random series representing the Rosenblatt process has been
obtained, and has even been shown to be valid in the extended framework of
the generalized Rosenblatt process. For deriving this sharp estimate, the article
[2] has introduced a new strategy which basically consists in expressing in a
non-classical new way the approximation errors related with the approximation
spaces of a multiresolution analysis of L2(R2), namely in terms of bivariate
wavelet functions having two distinct dilation indices j1 and j2 (see Section 2
for more details).

So far, the challenging problem presented in the previous paragraph has
remained completely open in the general case d ≥ 3. In fact, for solving it, one
has to face at least the following two major difficulties:

(a) To find in which way the low frequency part of an arbitrary Hermite
process can be expressed in terms of FARIMA sequences and fractional
scaling functions belonging to the Schwartz class.

(b) To show that a wavelet-type random series representation of any arbi-
trary Hermite process is almost surely uniformly convergent on compact
intervals, and to estimate its almost sure uniform rate of convergent; the
method introduced in [2] for reaching such a goal in the particular case of
the generalized Rosenblatt process seems to be also useful in the general
case of a Hermite process, yet some parts of it need to be significantly
modified, in particular the crucial equality (2.33) in [2] fails to be true in
the general case since, for d ≥ 3, as far as we know, there is no gener-
alized Plancherel formula which, loosely speaking, would be of the type:∫
Rd
∏d
l=1 fl(x) dx = bd

∫
Rd
∏d
l=1 f̂l(ξ) dξ, where bd is a universal constant

only depending on d, and f̂l is the Fourier transform of the function fl.

The main aim of our present article is to propose a solution for this open
problem, not only for usual Hermite processes but also for the generalized Her-
mite processes, of any integer order d ≥ 3, which were introduced by Bai and
Taqqu in [4] and which extend the generalized Rosenblatt processes (d = 2)
due to Maejima and Tudor [17]. Also, with this article, we hope to open the
door to future development of simulation methods for such generalized chaotic
processes for which no simulation method is available so far. We hope as well to
open the door to that of new strategies allowing to study in depth their erratic
local sample path behavior, as for instance to show the existence of slow points
and rapid points, in the same spirit of what has been very recently done for
FBM in [12] and for generalized Rosenblatt process in [9].

The generalized Hermite process of an arbitrary integer order d ≥ 2 is de-
noted by {X(d)

h (t)}t∈R+ , because it depends on a vector-valued Hurst parameter
h := (h1, . . . , hd) whose coordinates hl satisfy

h1, · · · , hd ∈ (1/2, 1) and
d∑
`=1

h` > d− 1

2
. (1.11)
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This process belongs to the non-Gaussian dth Wiener chaos since it is defined,
for each t ∈ R+, through the multiple Wiener integral:

X
(d)
h (t) :=

∫ ′
Rd
K

(d)
h (t, x1, . . . , xd)dB(x1) · · · dB(xd), (1.12)

where {B(x)}x∈R is a usual Brownian motion on the underlying probability
space (Ω,F ,P), and where the deterministic kernel function K(d)

h is given, for
every t ∈ R+ and for Lebesgue almost all (x1, . . . , xd) ∈ Rd, by

K
(d)
h (t, x1, · · · , xd) :=

1∏d
`=1 Γ(h` − 1/2)

∫ t

0

d∏
j=1

(s− x`)h`−3/2
+ ds. (1.13)

Observe that the symbol
∫ ′
Rd in (1.12) denotes integration over Rd with diag-

onals {x` = x`′}, ` 6= `′, excluded. Also observe that when all the coordi-
nates h1, . . . , hd of the vector-valued parameter h are equal, then the process
{X(d)

h (t)}t∈R+
reduces to usual Hermite process.

The remaining of our article is organized as follows. In Section 2, we present
the main lines of our strategies as well as some major ingredients in them includ-
ing some preliminary proofs, and we state our three main theorems. Sections
3, 4 and 5 are completely devoted to the proofs of our three main theorems.
Some important results on multiple Wiener integrals, which are very useful for
us, are given in Appendix A. At last the statements of some technical Lem-
mas, borrowed from the article [2] and used in many our proofs, are recalled in
Appendix B.

2 Strategies, main results and some major ingre-
dients

Let us start by briefly recalling some fundamental definitions and facts from
wavelet analysis in L2(Rd) which will be useful for justifying our strategies.

Definition 2.1. A multiresolution analysis of the Hilbert space L2(Rd) is a
sequence (V dj )j∈Z of closed linear subspaces of L2(Rd) satisfying the following
four properties:

(a) for all j ∈ Z, V dj ⊆ V dj+1;

(b)
⋂
j∈Z V

d
j = {0} and

⋃
j∈Z V

d
j is dense in L2(Rd);

(c) for all j ∈ Z, V dj = {f(2j ·) : f ∈ V d0 };

(d) there exists a function Φ ∈ V d0 , called scaling function, such that the se-
quence

(
Φ(· − k)

)
k∈Zd is an orthonormal basis of V d0 . Notice that in the

univariate case d = 1, this function Φ is denoted by φ as in the previous
Section 1.

Remark 2.2. It clearly results from (c) and (d) in Definition 2.1, that, for all
fixed j ∈ Z, the sequence

(
2jd/2Φ(2j · −k)

)
k∈Zd is an orthonormal basis of V dj .
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Usually, one denotes by W d
J the orthogonal complement of V dJ in V dJ+1.

Then, it follows from (a) and (b) in Definition 2.1 that, for all fixed J ∈ Z, the
following very important equalities hold:

V dJ =

⊥⊕
−∞<j<J

W d
j and L2(Rd) = V dJ

⊥
⊕

 ⊥⊕
J≤j<+∞

W d
j

 =

⊥⊕
j∈Z

W d
j . (2.1)

Using (2.1), with d = 1 and an arbitrary J , one can derive from the following
fundamental theorem (see e.g. [8, 19]) orthonormal bases for the subspace V 1

J ⊂
L2(R) and for the whole space L2(R).

Theorem 2.3. There is a function ψ ∈ W 1
0 , called mother wavelet, such that,

for all fixed j ∈ Z, the sequence of functions
(
2j/2ψ(2j ·−k)

)
k∈Z is an orthonor-

mal basis of W 1
j . Then, the important equalities (2.1), imply, for all fixed J ∈ Z,

that:

(a) the sequence of functions
(
2j/2ψ(2j · −k)

)
j<J, k∈Z is an orthonormal basis

for the space V 1
J ;

(b) the sequences of functions
(
2J/2φ(2J ·−k)

)
k∈Z∪

(
2j/2ψ(2j ·−k)

)
j≥J, k∈Z and

(2j/2ψ(2j · −k))(j,k)∈Z2 are two orthonormal bases for the space L2(R).

Such bases are called orthonormal wavelet bases.

Thanks to the tensor product method (see e.g. [8, 19]), for any integer
d > 1 one can construct from a multiresolution analysis (V 1

j )j∈Z of L2(R) a
multiresolution analysis (V dj )j∈Z for L2(Rd). Namely, for each j ∈ Z, the space
V dj is defined as V dj := (V 1

j )⊗d the tensor product of the space V 1
j , d times with

itself. Then a scaling function Φ, which can be associated in a natural way to
such a multiresolution analysis (V dj )j∈Z, is Φ := φ⊗d , the tensor product of the
univariate scaling function φ, d times with itself. In such a setting, it is well
known that, for any fixed J ∈ Z, an orthonormal wavelet basis of the space
(V dJ )⊥ (the orthogonal complement of V dJ in L2(Rd)) is:

{
2jd/2

d∏
l=1

ψ(ηl)(2jxl − kl) : j ∈ Z and j ≥ J,

(η1, . . . , ηd) ∈ {0, 1}d \ {0}d, (k1, . . . , kd) ∈ Zd
}
,

where ψ(0) and ψ(1) respectively denote the univariate scaling function and
mother wavelet φ and ψ (see Theorem 2.3). Nevertheless, a major ingredient of
strategies of our article consists in making use of another much less classical or-
thonormal wavelet basis of (V dJ )⊥. This idea comes from the article [2] in which
d = 2 and whose main goal was to estimate almost sure rate of uniform conver-
gence of wavelet-type random series representation of the generalized Rosenblatt
process.

In order to precisely define the non classical orthonormal wavelet basis of
(V dJ )⊥ we intend to use, we need to introduce some further notations. For all
multi-indices j = (j1, . . . , jd) ∈ Zd and k = (k1, . . . , kd) ∈ Zd, we denote by
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ψj,k the multivariate wavelet function belonging to L2(Rd) defined as the tensor
product:

ψj,k :=

d⊗
`=1

ψj`,k` ,

where the univariate wavelet functions ψjl,kl are defined, for every x ∈ R, as:
ψjl,kl(x) := 2jl/2ψ(2jlx−kl). Observe that the previous definition of V dJ through
tensor product, and the point (a) in Theorem 2.3 imply that the collection of
functions {

ψj,k : j,k ∈ Zd and max
`∈[[1,d]]

j` < J

}
,

where [[1, d]] := {1, 2, . . . , d}, is an orthonormal basis of the subspace V dJ ⊂
L2(Rd); while the point (b) in this same theorem entails that the collection of
functions

{
ψj,k : j,k ∈ Zd

}
is an orthonormal basis of the whole space L2(Rd),

since L2(Rd) =
(
L2(R)

)⊗d . Combining these two results, it turns out that the
collection of functions{

ψj,k : j,k ∈ Zd and max
`∈[[1,d]]

j` ≥ J
}

(2.2)

is an orthonormal basis of the subspace (V dJ )⊥ ∈ L2(Rd) which is the orthogonal
complement of V dJ in L2(Rd).

Let us now precisely explain the connection between the latter basis and the
error of approximation of a generalized Hermite process by the scaling function
part of its wavelet-type random series representation. For each fixed t ∈ R+ and
integer J ≥ 1, the two functions of L2(Rd) (x1, . . . , xd) 7→ K

(d)
h,J(t, x1, · · · , xd)

and (x1, . . . , xd) 7→ K
(d,⊥)
h,J (t, x1, · · · , xd) respectively denote the two orthogonal

projections of the function (x1, . . . , xd) 7→ K
(d)
h (t, x1, · · · , xd) (see (1.12) and

(1.13)) onto V dJ and (V dJ )⊥. One clearly has that

K
(d)
h (t, •)−K(d)

h,J(t, •) = K
(d,⊥)
h,J (t, •),

which leads us to define the approximation and details processes associated with
the generalized Hermite process {X(d)

h (t)}t∈R+
in the following way:

Definition 2.4. Let d ∈ N and h satisfying the conditions (1.11). For all
J ∈ N, the approximation process at scale J of the generalized Hermite process
{X(d)

h (t)}t∈R+
is the process defined, for all t ∈ R+, by the multiple Wiener

integral:

X
(d)
h,J(t) :=

∫ ′
Rd
K

(d)
h,J(t, x1, . . . , xd)dB(x1) . . . dB(xd); (2.3)

in fact {X(d)
h,J(t)}t∈R+

can be viewed as the scaling function part of the wavelet-

type random series representation of {X(d)
h (t)}t∈R+

. The details process at scale
J is defined, for all t ∈ R+, as:

X
(d,⊥)
h,J (t) := X

(d)
h (t)−X(d)

h,J(t) =

∫ ′
Rd
K

(d,⊥)
h,J (t, x1, . . . , xd)dB(x1) . . . dB(xd);

(2.4)
in fact {X(d,⊥)

h,J (t)}t∈R+
can be viewed as the error stemming from the approxi-

mation of {X(d)
h (t)}t∈R+

by {X(d)
h,J(t)}t∈R+

.
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Observe that combining (2.3) with the Wiener isometry and the fact that(
2J

d
2 Φ(2J · −k)

)
k∈Zd is an orthonormal basis of V dJ , one gets, for each fixed

t ∈ R+, that
X

(d)
h,J(t) =

∑
k∈Zd

µJ,kK
(d,h)
J,k (t), (2.5)

where the sequence (µJ,k)k∈Zd of random variables in the dth order Wiener
chaos and the deterministic sequence

(
K

(d,h)
J,k (t)

)
)k∈Zd of `2(Zd) are given, for

all k ∈ Zd, by:

µJ,k := 2J
d
2

∫ ′
Rd
φ(2Jx1 − k1) · · ·φ(2Jxd − kd) dB(x1) . . . dB(xd) (2.6)

and

K
(d,h)
J,k (t) := 2J

d
2

∫
Rd
K

(d)
h (t, x1, . . . , xd)φ(2Jx1 − k1) · · ·φ(2Jxd − kd) dx1 · · · dxd.

(2.7)
Also observe that combining (2.4) with the Wiener isometry and the fact that
the collection of functions in (2.2) is an orthonormal basis of (V dJ )⊥, one obtains,
for each fixed t ∈ R+, that

X
(d,⊥)
h,J (t) =

∑
(j,k)∈(Zd)2

max`∈[[1,d]] j`≥J

εj,kK(d,h)
j,k (t), (2.8)

where the dth order Wiener chaos random variables εj,k and the deterministic
coefficients K(d,h)

j,k (t) are given by:

εj,k :=

∫ ′
Rd
ψj,k(x1, . . . , xd) dB(x1) . . . dB(xd) (2.9)

and

K(d,h)
j,k (t) :=

∫
Rd
K

(d)
h (t, x1, . . . , xd)ψj,k(x1, . . . , xd) dx1 · · · dxd. (2.10)

One mentions in passing that, so far, one only knows that the random series in
(2.5) and (2.8) are unconditionally convergent in L2(Ω), for each fixed t ∈ R+.

Remark 2.5. Similarly to the article [20], from now and till the end of our
article we always assume that the univariate scaling function and mother wavelet
φ and ψ are associated with an orthonormal Meyer wavelet basis of L2(R) (see
Remark 1.1). Then, it results from (1.2), (1.13), (2.10), Fubini theorem and the
changes of variable y` = 2j`x` − k` (for all ` ∈ [[1, d]]), that

K(d,h)
j,k (t) = 2j1(1−h1)+···+jd(1−hd)

∫ t

0

d∏
`=1

ψh`(2
j`s− k`) ds, (2.11)

where ψhl is the fractional primitive of order hl−1/2 of ψ. Also, one can derive
from (2.7) and similar arguments that

K
(d,h)
J,k (t) = 2−J(h1+···+hd−d)

∫ t

0

d∏
`=1

φh`(2
Js− k`) ds, (2.12)
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where φhl is the fractional primitive of order hl − 1/2 of φ. Notice that one
knows from (1.1) that the Fourier transform of φhl satisfies

φ̂hl(ξ) = (iξ)1/2−hl φ̂(ξ), for almost all ξ ∈ R. (2.13)

In view of the fact that the functions φhl fail to belong to the Schwartz
class S(R) and are even badly localized functions, one of the main goal of our
article will be to introduce, in the same spirit of what has been done for the
approximation process of FBM in [20] and for that of Rosenblatt process in [24],
a modified version of the random series representation (2.5) in which the deter-
ministic coefficients are expressed in terms of "nice" fractional scaling functions
(see Definition 1.3) belonging to the Schwartz class. In order to adapt ideas
of [20, 24] to the framework of the generalized Hermite process {X(d)

h (t)}t∈R+ ,
which is much more complex than those of FBM and Rosenblatt process, we need
to introduce, for each fixed J ∈ Z, the sequence of random variables (σ

(h)
J,k)k∈Zd ,

defined, for all k ∈ Zd, as:

σ
(h)
J,k :=

∑
p∈Nd0

( d∏
l=1

γ(hl−1/2)
pl

)
µJ,k−p, (2.14)

where the deterministic coefficients γ(hl−1/2)
pl are given by the third and the

second equalities in (1.8) with p = pl and δ = hl − 1/2. Notice that the
following Proposition 2.7 shows, among other things, that the definition (2.14)
makes sense. Roughly speaking, the sequence (σ

(h)
J,k)k∈Zd can be viewed as a

generalized FARIMA sequence. In fact, it can be expressed in terms of usual
FARIMA sequences (see Proposition 2.7 below). In order to provide the latter
expression of σ(h)

J,k, we need the following definition:

Definition 2.6. Let S be an arbitrary finite subset of N whose cardinality is
denoted by #S. Then, for any integer m such that 0 ≤ m ≤ b#S/2c, one
denotes by PSm the finite set of the partitions of S with m (non ordered) pairs
and #S − 2m singletons. Moreover, for the sake of simplicity, when S = [[1, n]]

with n ∈ N being arbitrary, one sets P(n)
m = P [[1,n]]

m .

Proposition 2.7. For all fixed (J, k) ∈ Z× Zd, the random series in (2.14) is
convergent almost surely and in Lγ(Ω), for any γ ∈ (0,+∞). Moreover, one
has that

σ
(h)
J,k =

bd/2c∑
m=0

(−1)m
∑

P∈P(d)
m

m∏
r=1

E[Z
(h`r−1/2)
J,k`r

Z
(h`′r
−1/2)

J,k`′r
]

d−m∏
s=m+1

Z
(h`′′s

−1/2)

J,k`′′s
, (2.15)

where the indices `r, `′r and `′′s are such that

P =
{
{`1, `′1}, . . . , {`m, `′m}, {`′′m+1}, . . . , {`′′d−m}

}
,

and where, for all δ ∈ (0, 1/2), (Z
(δ)
J,q)q∈Z, is the FARIMA (0, δ, 0) sequence (see

Definition 1.6) associated with the sequence (gφJ,k)k∈Z of i.i.d. N (0, 1) Gaussian
random variables introduced in (1.7).
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We mention in passing that, in the particular case d = 2, σ(h)
J,k = σ

(h1,h2)
J,k1,k2

reduces to

σ
(h1,h2)
J,k1,k2

= Z
(h1−1/2)
J,k1

Z
(h2−1/2)
J,k2

− E[Z
(h1−1/2)
J,k1

Z
(h2−1/2)
J,k2

].

Also, we mention that, in the particular case d = 3, σ(h)
J,k = σ

(h1,h2,h3)
J,k1,k2,k3

reduces
to

σ
(h1,h2,h3)
J,k1,k2,k3

= Z
(h1−1/2)
J,k1

Z
(h2−1/2)
J,k2

Z
(h3−1/2)
J,k3

− E[Z
(h1−1/2)
J,k1

Z
(h2−1/2)
J,k2

]Z
(h3−1/2)
J,k3

−E[Z
(h1−1/2)
J,k1

Z
(h3−1/2)
J,k3

]Z
(h2−1/2)
J,k2

− E[Z
(h2−1/2)
J,k2

Z
(h3−1/2)
J,k3

]Z
(h1−1/2)
J,k1

.

Before proving Proposition 2.7, let us state the first main theorem of our
article which provides a modified version of the random series representation
(2.5) obtained through the generalized FARIMA sequence (σ

(h)
J,k)k∈Zd (see (2.15)

and (2.14)) as well as "nice" fractional scaling functions (see Definition 1.3)
belonging to the Schwartz class.

Theorem 2.8. The approximation process {X(d)
h,J(t)}t∈R+

, defined in (2.3), can
be expressed, for all t ∈ R+, as:

X
(d)
h,J(t) = 2−J(h1+...+hd−d)

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
σ

(h)
J,k , (2.16)

where the series is convergent in L2(Ω). Moreover this series is also almost
surely uniformly convergent in t on each compact interval of R+.

Remark 2.9. Let f be an arbitrary function in the Schwartz class S(R) and let
(ap)p∈Z be an arbitrary slowly increasing sequence of real numbers, that is we
have, for some constants κ > 0 and µ > 0 and for every p ∈ Z, |ap| ≤ κ(1+ |p|)µ.
It is known (see for instance [20]) that, if we set A0 = 0 and Aq − Aq−1 = aq
for all q ∈ Z \ {0} and f̃(y) =

∫ y
y−1

f(v) dv for all y ∈ R, then the function

f̃ belongs to S(R) and the sequence {Ak}k∈Z is slowly increasing. Moreover,
using an Abel transform, for all t ∈ R, we have∑

k∈Z
ak

∫ t

0

f(v − k) dv =
∑
q∈Z

Aq(f̃(t− q)− f̃(−q)). (2.17)

In order to apply (2.17) in the framework of Theorem 2.8, we define, for each
(J, q,n) ∈ N× Z× Zd−1, the random variable S(h)

J,q,n as:

S
(h)
J,q,n =


∑q
p=1 σ

(h)
J,(p,n+p) if q > 0

0 if q = 0

−
∑0
p=q+1 σ

(h)
J,(p,n+p) if q < 0,

(2.18)

with the convention that n + p := (n1 + p, . . . , nd−1 + p). Also, for every
n = (n1, . . . , nd−1) ∈ Zd−1, we define the function Φ̃

(h)
∆,n, belonging to S(R), as:

Φ̃
(h)
∆,n(y) :=

∫ y

y−1

Φ
(h1−1/2)
∆ (v)

d−1∏
`=1

Φ
(h`+1−1/2)
∆ (v − n`) dv, for all y ∈ R.
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Then, using Theorem 2.8, Fubini theorem, the change of variable v = 2Ju, the
change of indices k1 = p and nl−1 = kl− k1 (for all l ∈ [[2, d]]), the slow increase
property for the sequence

(
σ

(h)
J,(p,n+p)

)
p∈Z provided by (3.22), (2.17), a slow

increase property (derived from (3.22) and (2.18)) for the sequence
(
S

(h)
J,q,n

)
q∈Z

with a random constant1 κ(n) = O
(

logd/2(3 + |n|)
)
, and the inequality

sup
y∈[0,Y ]

sup
(q,n)∈Z×Zd−1

{(
3 + |p|+ |n|

)L∣∣Φ̃(h)
∆,n(y)

∣∣} <∞, for all fixed Y,L > 0,

we obtain that

X
(d)
h,J(t) = 2−J(h1+...+hd+1−d)

∑
n∈Zd−1

∑
q∈Z

S
(h)
J,q,n

(
Φ̃

(h)
∆,n(2J t− q)− Φ̃

(h)
∆,n(−q)

)
,

(2.19)
where the convergence of the random series holds almost surely and uniformly in
t on each compact interval of R+. Notice that the random series representation
(2.19) for the approximation {X(d)

h,J(t)}t∈R+
of the generalized Hermite process

is reminiscent of that of the low frequency part (that is the scaling function
part) in the representation of FBM in (1.5).

The proof of Theorem 2.8 will be given in Section 3. Let us now focus on
the proof of the fundamental Proposition 2.7. Its starting point consists in an
expression of the dth order Wiener chaos random variable µJ,k (see (2.6)) in
terms of the i.i.d Gaussian random variables gφJ,k and Hermite polynomials Hn.
We mention in passing that a rather similar expression also holds for the dth
order Wiener chaos random variable εj,k (see (2.9)); it will be useful for us
later. For giving these expressions for µJ,k and εj,k it is convenient to make use
of the very common notation for multiple Wiener integral: for any n ∈ N and
f ∈ L2(Rn),

In(f) =

∫ ′
Rn
f(x1, . . . , xn) dB(x1) . . . dB(xn).

It is known (see e.g. equation (1) in [14]) that, for any univariate functions
ϕ1, . . . , ϕp of L2(R) which are orthonormal and for every n1, . . . , np ∈ N, one
has

In1+···+np

(
ϕ
⊗n1
1 ⊗ · · · ⊗ ϕ⊗npp

)
=

p∏
`=1

Hn`

(∫
R
ϕ`(x) dB(x)

)
, (2.20)

where we recall the following definition.

Definition 2.10. For all n ∈ Z+, the nth Hermite polynomial is the polynomial
of degree n denoted by Hn and defined, for every x ∈ R, as:

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2 .

For instance, the first four Hermite polynomials are H0(x) = 1, H1(x) = x,
H2(x) = x2 − 1 and H3(x) = x3 − 3x.

1All along this paper, if n ∈ Zd, we use the notation |n| =
∑d

`=1 |n`|.
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The equality (2.20) will play a crucial role in the sequel; for the sake of com-
pleteness its proof is given in Appendix A. In order to apply it to the multiple
Wiener integrals in (2.6) and (2.9), we need to introduce some notations. In
fact, any (j,k) ∈ (Zd)2 can be viewed as a finite sequence

(
(jm, km)

)
1≤m≤d

whose d terms (jm, km) belong to Z2 and some of them can be equal to each
other. The positive integer p(j,k) ≤ d denotes the number of the distinct terms
of the sequence (j,k) =

(
(jm, km)

)
1≤m≤d, and the latter terms are denoted by

(j̃`, k̃`), 1 ≤ l ≤ p(j,k); moreover the notation (j̃`, k̃`)n` , where n` ∈ {1, . . . , d},
means that (j̃`, k̃`) has the multiplicity n`, that is there are exactly n` terms
of the sequence

(
(jm, km)

)
1≤m≤d which are equal to (j̃`, k̃`). At last, it is clear

that
∑p(j,k)
`=1 n` = d. Using these notations and (1.6), we can derive from (2.9)

and (2.20) that, for all (j,k) ∈ (Z2)d,

εj,k =

p(j,k)∏
`=1

Hn`

(
gψ
j̃`,k̃`

)
. (2.21)

Similar arguments and (1.7) allow to shown that, for all J ∈ Z and k ∈ Zd,

µJ,k =

p({J}d,k)∏
`=1

Hn`

(
gφ
J,k̃`

)
; (2.22)

observe that the positive integer n` in (2.22) is the multiplicity of k̃` in k. In
order to connect the random variables µJ,k to FARIMA sequences (see Definition
1.6), we have to rewrite the expression (2.22) in a way that gives us an easier
"access" to the i.i.d Gaussian random variables gφJ,k in it. To this end, we recall
that, for any n ∈ N, the nth Hermite polynomial Hn satisfies, for all x ∈ R, the
equality:

Hn(x) =

bn/2c∑
m=0

(−1)ma(n)
m xn−2m, (2.23)

where a(n)
m is the number of partitions of [[1, n]] with m (non ordered) pairs and

n− 2m singletons.

Lemma 2.11. Using notations already introduced in Definition 2.6, for all
J ∈ Z and k ∈ Zd, the random variable µJ,k in (2.22) can be rewritten as:

µJ,k =

bd/2c∑
m=0

(−1)m
∑

P∈P(d)
m

m∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

d−m∏
s=m+1

gφJ,k`′′s
, (2.24)

where the indices `r, `′r and `′′s are such that

P =
{
{`1, `′1}, . . . , {`m, `′m}, {`′′m+1}, . . . , {`′′d−m}

}
.

Proof. Let us proceed by induction on the positive integer d. It easily follows
from (2.22) and Definition 2.10 that the equality (2.24) is satisfied in the two
particular cases d = 1 and d = 2. In the sequel, one assumes that d > 2 and
that (2.24) holds for any positive integer n such that n < d. Let us first show
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that these assumptions allow to prove (2.24) when the d indices forming the
multi-index k are all equal together, that is k = (k1, . . . , k1). Indeed, the latter
equality implies, for all `r, `′r ∈ [[1, d]], that E[gφJ,k`r

gφJ,k`′r
] = 1, which in turn

entails that
bd/2c∑
m=0

(−1)m
∑

P∈P(d)
m

m∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

d−m∏
s=m+1

gφJ,k`′′s
=

bd/2c∑
m=0

(−1)ma(d)
m (gφJ,k1)d−2m

= Hd(g
φ
J,k1

) = µJ,k ,

where the second and the third equalities respectively follow from (2.23) and
(2.22). From now on, we focus on the case in which the d indices forming
the multi-index k are not equal together. Thus, there exists a unique integer
a satisfying 1 ≤ a < d such that one has k = (k1, . . . , k1, ka+1, . . . , kd) with
k1 6= k`, for all a < ` ≤ d; in fact a is nothing else than the multiplicity of
the first index of k. Then, one can derive from (2.22), (2.23) and the induction
hypothesis that

µJ,k = Ha(gφJ,k1)

p∏
`=2

Hn`(µJ,k̃`) =

ba/2c∑
m=0

(−1)ma(d)
m (gφJ,k1)d−2m

 p∏
`=2

Hn`(µJ,k̃`)

=

ba/2c∑
m=0

(−1)m
∑

P1∈P(a)
m

m∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

a−m∏
s=m+1

gφJ,k`′′s

× . . .
. . .×

b(d−a)/2c∑
n=0

(−1)n
∑

P2∈P[[a+1,d]]
n

n∏
t=1

E[gφJ,k`t
gφJ,k`′t

]

d−a−n∏
u=n+1

gφJ,k`′′u


=

bd/2c∑
v=0

(−1)v
∑

m,n :m+n=v

 ∑
P∈P(d,a)

v,[m,n]

v∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

d−v∏
s=v+1

gφJ,k`′′s

 ,

where P(d,a)
v,[m,n] is the subset of P(d)

v of the partitions of [[1, d]] with m (non
ordered) pairs of integers in [[1, a]] and n (non ordered) pairs of integers in
[[a+ 1, d]]; notice that when ba/2c+ b(d− a)/2c < m+ n ≤ bd/2c then P(d,a)

v,[m,n]

becomes an empty set, therefore the sum over it reduces to zero.
Finally, notice that when P ′ ∈ P(d)

v is a partition with at least a (non
ordered) pair {`, `′} such that ` ∈ [[1, a]] and `′ ∈ [[a+1, d]], then E[gφJ,k`g

φ
J,k`′

] = 0,

thus, using the fact that P(d,a)
v,[m′,n′] ∩ P

(d,a)
v,[m′′,n′′] = ∅ when (m′, n′) 6= (m′′, n′′),

one gets that

bd/2c∑
v=0

(−1)v
∑

m,n :m+n=v

 ∑
P∈P(d,a)

v,[m,n]

v∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

d−v∏
s=v+1

gφJ,k`′′s


=

bd/2c∑
v=0

(−1)v
∑

P∈P(d)
v

v∏
r=1

E[gφJ,k`r
gφJ,k`′r

]

d−v∏
s=v+1

gφJ,k`′′s
,

which shows that (2.24) is valid.
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We are now in position to prove Proposition 2.7.

Proof of Proposition 2.7. Combining Lemma 2.11 with Remark 1.7, it can easily
be shown that, when the integer n goes to +∞, the partial sum of order n of
the random series in (2.14), that is the dth order Wiener chaos random variable

∑
p∈[[0,n]]d

( d∏
l=1

γ(hl−1/2)
pl

)
µJ,k−p ,

converges almost surely to

bd/2c∑
m=0

(−1)m
∑

P∈P(d)
m

m∏
r=1

E[Z
(h`r−1/2)
J,k`r

Z
(h`′r
−1/2)

J,k`′r
]

d−m∏
s=m+1

Z
(h`′′s

−1/2)

J,k`′′s
.

The fact that the convergence also holds in Lγ(Ω), for any γ ∈ (0,+∞), can be
derived from a general result in [13] according to which any sequence of random
variables belonging to a finite order Wiener chaos converges in Lγ(Ω) as soon
as it converges in probability.

The following theorem, which provides, for ‖ · ‖I,∞ the uniform norm on any
compact interval I ⊂ R+, an almost sure estimate of the error stemming from
the approximation of {X(d)

h (t)}t∈I by {X(d)
h,J(t)}t∈I is the second main result of

our article. This theorem will be proved in Section 4.

Theorem 2.12. For any compact interval I ⊂ R+, there exists an almost surely
finite random variable C (depending on I) for which one has, almost surely, for
each J ∈ N,

‖X(d)
h −X(d)

h,J‖I,∞ = ‖X(d,⊥)
h,J ‖I,∞ ≤ CJ

d
2 2−J(h1+···+hd−d+1/2). (2.25)

Before stating the third and the last main result of our article, let us explain
the motivation behind it. As the collection of functions

{
ψj,k : j,k ∈ Zd

}
is

an orthonormal basis of L2(Rd), one can also wish to give a random series rep-
resentation for the generalized Hermite process {X(d)

h (t)}t∈R+
using this basis.

Indeed, similarly to (2.8), it can be shown that

X
(d)
h (t) =

∑
(j,k)∈(Zd)2

εj,kK(d,h)
j,k (t), (2.26)

where the random series is unconditionally convergent in L2(Ω), for each fixed
t ∈ R+. Roughly speaking, our third main result shows that when the partial
sums of the random series in (2.26) are well-chosen, then its convergence holds
in a much stronger sense: almost surely for the uniform norm ‖ · ‖[0,T ],∞, where
the fixed real number T > 2 is arbitrary. Also, our third main result provides
an almost sure estimate of the rate of convergence of the series for the uniform
norm ‖ · ‖[0,T ],∞. In order to precisely explain how the partial sums have to be
chosen, we need the following definition:

Definition 2.13. Let T > 2, b > 0, b′ > 0 and g > 0 be four fixed arbitrary
real numbers. For all N ∈ N, we define the two disjoint finite subsets of (Zd)2

S+
N := {(j,k) ∈ (Zd)2 : −2Nb ≤ min

`∈[[1,d]]
j`, 0 ≤ max

`∈[[1,d]]
j` < N, max

`∈[[1,d]]
|k`| ≤ 2N+1T}
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and

S−N := {(j,k) ∈ (Zd)2 : −2Nb
′
≤ min
`∈[[1,d]]

j` ≤ max
`∈[[1,d]]

j` < 0, max
`∈[[1,d]]

|k`| ≤ 2Ng}.

We are now in position to state our third and last main result.

Theorem 2.14. Let T > 2, b > 0, b′ > 0 and g > 0 be four fixed arbitrary real
numbers. For all t ∈ R+ and N ∈ N, let X̃(d)

h,N (t) be the dth order Wiener chaos
random variable defined by

X̃
(d)
h,N (t) :=

∑
(j,k)∈S+

N∪S
−
N

εj,kK(d,h)
j,k (t). (2.27)

There exists an almost surely finite random variable C (depending on T, b, b′, g)
for which one has, almost surely, for all N ∈ N,

‖X(d)
h − X̃(d)

h,N‖[0,T ],∞ ≤ CN
d
2 2−N(h1+···+hd−d+1/2). (2.28)

To prove Theorems 2.12 and 2.14, we will need a logarithmic bound for the
the sequence of random variables (εj,k)(j,k)∈(Zd)2 . We get it from the following
lemma which is a straightforward consequence of Lemma 2 in [3] and of the fact
that the gψj,k := I1(ψj,k), (j, k) ∈ Z2, are N (0, 1) Gaussian random variables.

Lemma 2.15. There are Ω∗ an event of probability 1 and C∗1 a positive random
variable of finite moment of any order, such that, for all ω ∈ Ω∗ and for each
(j, k) ∈ Z2, one has ∣∣gψj,k(ω)

∣∣ ≤ C∗1 (ω)
√

log
(
3 + |j|+ |k|

)
. (2.29)

Next, observe that, for any n ∈ N, there exists a constant αn > 0 such that,
for all x ∈ R

|Hn(x)| ≤ αn
(
1 + |x|n

)
; (2.30)

the latter inequality is a straightforward consequence of the fact that Hn is a
polynomial function of degree n. Then, combining (2.21) with (2.29) and (2.30),
one obtains the following lemma.

Lemma 2.16. Let Ω∗ be the same event of probability 1 as in Lemma 2.15.
There is C∗d a positive random variable of finite moment of any order, such
that, on Ω∗, one has, for all (j,k) ∈ (Z2)d,

|εj,k| ≤ C∗d
p(j,k)∏
`=1

(√
log(3 + |̃j`|+ |k̃`|)

)n`
= C∗d

d∏
m=1

√
log(3 + |jm|+ |km|).

(2.31)

To prove Theorem 2.12, we will also need to know precisely when two random
variables εj,k and εr,s are correlated. For this purpose, it is useful to define the
set D(j,k).

Definition 2.17. Using the same notations as in (2.21), for all (j,k) ∈ (Zd)2,
the set D(j,k) is defined as:

D(j,k) :=
{

(j̃`, k̃`)nl : 1 ≤ l ≤ p(j,k)
}
.
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Remark 2.18. For any arbitrary two elements (j,k) =
(
(jm, km)

)
1≤m≤d and

(r, s) =
(
(rm, sm)

)
1≤m≤d of (Zd)2, a necessary and sufficient condition for hav-

ing D(j,k) = D(r, s) is that there exists a permutation σ of the set {1, . . . , d}
for which one has (jm, km) = (rσ(m), sσ(m)), for all m ∈ {1, . . . , d}. Thus, being
given an arbitrary element (j,k) of (Zd)2, there are at most d !−1 other elements
(r, s) of (Zd)2 which satisfy D(j,k) = D(r, s). Notice that, in this case, as a
consequence of equality (2.21), one has εj,k = εr,s.

Let us also recall that, ifG is any arbitraryN (0, 1) Gaussian random variable
then, one has

E
[
Hm(G)Hn(G)

]
= δm,nm! , for any m,n ∈ Z+, (2.32)

where δm,n = 1 when m = n and δm,n = 0 otherwise. A straightforward
consequence of (2.32) is that

E
[
Hn(G)

]
= 0 , for all integer n ≥ 1. (2.33)

Relation (2.32) is the keystone of the proof of the following proposition.

Proposition 2.19. For every (j,k) ∈ (Z2)d and (r, s) ∈ (Z2)d, one has

E[εj,kεr,s] =


E[ε2

j,k] =

p(j,k)∏
`=1

nl! ≤ d ! if D(j, k) = D(r, s),

0 otherwise.

(2.34)

Proof. First notice that, in view of Remark 2.18, (2.21), the independence of the
N (0, 1) Gaussian random variables gψ

j̃`,k̃`
with ` ∈ {1, . . . , p(j,k)} and (2.32),

the equality (2.34) is clearly satisfied when D(j,k) = D(r, s). So, from now
on, one assumes that D(j,k) = {(j̃1, k̃1)n1

, . . . , (j̃p, k̃p)np} (where p = p(j,k))
is not equal to D(r, s) = {(r̃1, s̃1)m1

, . . . , (r̃q, s̃q)mq} (where q = p(r, s)) which
happens in two different cases.

The first case consists in the situation where one has
{(j̃1, k̃1), . . . , (j̃p, k̃p)} 6= {(r̃1, s̃1), . . . , (r̃q, s̃q)}, which implies that there exists
at least one element of one of these two sets which does not belong to the other
set. For sake of simplicity, one assumes that (j̃1, k̃1) /∈ {(r̃1, s̃1), . . . , (r̃q, s̃q)}.
Then, using (2.21), the fact that the N (0, 1) Gaussian random variable gψ

j̃1,k̃1

is independent of the Gaussian vector
(
gψ
j̃2,k̃2

, . . . , gψ
j̃p,k̃p

, gψr̃1,s̃1 , . . . , g
ψ
r̃q,s̃q

)
, and

(2.33), one gets that

E[εj,kεr,s] = E
[
Hn1(gψ

j̃1,k̃1
)
]

︸ ︷︷ ︸
=0

E

[
p∏
`=2

Hn`(g
ψ

j̃`,k̃`
)

q∏
`′=1

Hm`′ (g
ψ

j̃`′ ,k̃`′
)

]
= 0.

The second case consists in the situation where one has p = q,
{(j̃1, k̃1), . . . , (j̃p, k̃p)} = {(r̃1, s̃1), . . . , (r̃p, s̃p)} and n`0 6= m`0 for some `0 ∈
{1, . . . , p}. For sake of simplicity, one assumes that `0 = 1. Then, using (2.21),
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the fact that the N (0, 1) Gaussian random variable gψ
j̃1,k̃1

is independent of the

Gaussian vector
(
gψ
j̃2,k̃2

, . . . , gψ
j̃p,k̃p

)
, and (2.32), one obtains that

E[εj,kεr,s] = E
[
Hn1

(gψ
j̃1,k̃1

)Hm1
(gψ
j̃1,k̃1

)
]

︸ ︷︷ ︸
=0

E

[
p∏
`=2

Hn`(g
ψ

j̃`,k̃`
)Hm`(g

ψ

j̃`,k̃`
)

]
= 0.

3 Proof of Theorem 2.8
In this section, we aim at proving Theorem 2.8. The main four steps of the
proof are the following.

In the first step, we show that, for each fixed J ∈ N, the generalized FARIMA
sequence (σ

(h)
J,k)k∈Zd , defined through the random series in (2.14), can be repre-

sented through multiple Wiener integral. To this end, for any fixed δ ∈ (0, 1/2),
we introduce, via the sequence of coefficients (γ

(δ)
p )p∈N0

(see Definition 1.6) and
the univariate Meyer scaling function φ (see Remark 1.1), the real-valued func-
tion Φ(−δ) defined as

Φ(−δ)(x) =

+∞∑
p=0

γ(δ)
p φ(x+ p),

where the convergence of the series holds in L2(R). Then, using the isometry
property of multiple Wiener integral, it turns out that one has almost surely,
for all J ∈ N and k ∈ Zd,

σ
(h)
J,k =

∫ ′
Rd

2J
d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`) dB(u1) · · · dB(ud).

Also, in the first step, we prove that the Fourier transform of Φ(−δ) is given, for
almost all ξ ∈ R, by Φ̂(−δ)(ξ) =

(
1− eiξ

)−δ
φ̂(ξ).

In the second step, we show that, for each fixed t ∈ R+ and J ∈ N, the series
of deterministic functions of the variable u = (u1, . . . , ud) ∈ Rd

V(d)
h,J(t,u) :=

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
2J

d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`)

is convergent, and even normally convergent, in L2
u(Rd). Then, using the isom-

etry property of multiple Wiener integral, it turns out that the random series
in the right-hand side of (2.16) is, for each fixed t ∈ R+ and J ∈ N, convergent
in L2(Ω) and satisfies almost surely

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
σ

(h)
J,k =

∫ ′
Rd
V(d)
h,J(t,u) dB(u1) · · · dB(ud).

In the third step, we show that, for each fixed t ∈ R+ and J ∈ N, the two
functions u 7→ K

(d)
h,J(t,u) (see (2.3)) and u 7→ 2−J(h1+···+hd−d)V(d)

h,J(t,u) are
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equal for almost all u ∈ Rd; this result is obtained by showing that their Fourier
transforms are equal almost everywhere in Rd. Then combining it with (2.3)
and the previous equality, we obtain, almost surely, that

X
(d)
h,J(t) = 2−J(h1+···+hd−d)

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
σ

(h)
J,k.

Finally, in the fourth step we show that the series in the right-hand side of
the last equality is almost surely uniformly convergent in t on each compact
interval of R+.

3.1 First step of the proof of Theorem 2.8
Definition 3.1. Recall that {φ(· − k) : k ∈ Z} is an orthonormal basis of
the subspace V 1

0 of the multiresolution analysis of L2(R) associated with the
univariate Meyer scaling function φ. Let δ ∈ (0, 1

2 ) be arbitrary and fixed. The
function Φ(−δ) ∈ V 1

0 is defined as

Φ(−δ)(x) =

+∞∑
p=0

γ(δ)
p φ(x+ p).

The latter series of functions is convergent in L2(R) since the sequence of coef-
ficients (γ

(δ)
p )p∈N0 belongs to `2(N0) (see (1.9)).

The following proposition easily results from Definition 3.1, the isometry
property of multiple Wiener integral and (2.14).

Proposition 3.2. One has almost surely, for all J ∈ N and k ∈ Zd,

σ
(h)
J,k =

∫ ′
Rd

2J
d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`) dB(u1) · · · dB(ud). (3.1)

For later purposes, one needs to determine the Fourier transform of the
function Φ(−δ). The following lemma provides it.

Lemma 3.3. For all δ ∈ (0, 1
2 ), the Fourier transform of the function Φ(−δ) is

given, for almost all ξ ∈ R, by

Φ̂(−δ)(ξ) =
(
1− eiξ

)−δ
φ̂(ξ).

From now on, for the sake of convenience, for all p ∈ N, we set γ(δ)
−p = 0.

In fact, Lemma 3.3 is mainly a consequence of the following lemma showing
that the sequence (γ

(δ)
p )p∈Z is nothing else than the sequence of the Fourier

coefficient of the function ξ 7→
(
1− eiξ

)−δ which belongs to L2([0, 2π]). Recall
that L2([0, 2π]) is the space of the complex-valued functions defined on the real
line which are 2π-periodic and Lebesgue square-integrable on the interval [0, 2π].

Lemma 3.4. For all δ ∈ (0, 1/2) and p ∈ Z, we have

γ(δ)
p =

1

2π

∫ 2π

0

e−ipξ(1− eiξ)−δ dξ.
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A straightforward consequence is that

(
1− eiξ

)−δ
=

+∞∑
p=0

γ(δ)
p eipξ,

where the series is convergent in L2([0, 2π]).

Proof. Let C be set of the complex numbers and let C \ [1,+∞) be the open
subset of C formed by the complex numbers which are not real numbers greater
than or equal to 1, that is C \ [1,+∞) :=

{
z ∈ C : z /∈ [1,+∞)

}
. We denote by

Fδ the continuous function on C \ [1,+∞), defined for all z ∈ C \ [1,+∞) as

Fδ(z) := (1− z)−δ.

Recall that Fδ is analytic on the open unit disk
{
z ∈ C : |z| < 1

}
with Taylor

expansion given by

Fδ(z) =

+∞∑
p=0

γ(δ)
p zp, (3.2)

where the series is uniformly convergent on each closed disk
{
z ∈ C : |z| ≤ ρ

}
,

with ρ ∈ (0, 1).
Next, observe that using the continuity property of the function Fδ, for any

ξ ∈ R \ 2πZ, the quantity (1− eiξ)−δ = Fδ(e
iξ) can be expressed as:

(1− eiξ)−δ = Fδ(e
iξ) = lim

r∈R, r→1−
Fδ(re

iξ) = lim
r∈R, r→1−

(1− reiξ)−δ.

Thus, denoting by (rj)j∈N an arbitrary increasing sequence of real numbers in
the open interval (0, 1) which converges to 1, one has, for all p ∈ Z, that∫ 2π

0

e−ipξ(1− eiξ)−δ dξ =

∫ 2π

0

e−ipξ lim
j→+∞

(1− rjeiξ)−δ dξ.

Let us now show that one can interchange the limit and integration symbols.
To this end, we need to introduce, for all j ∈ N, the subset Aj of [0, 2π] defined
as

Aj :=
{
ξ ∈ [0, 2π] : |1− eiξ| ≤ 2(1− rj)

}
.

Note that, for all j large enough, if ξ ∈ Aj , then

ξ ∈ [0, 4(1− rj)] ∪ [2π − 4(1− rj), 2π].

Therefore, we can derive from the inequality |1− rjeiξ| ≥ (1− rj) that∣∣∣∣∣
∫
Aj

e−ipξ(1− rjeiξ)−δ dξ

∣∣∣∣∣ ≤ (1− rj)−δ
∫
Aj

1Aj (ξ) dξ

≤ 8(1− rj)1−δ.

Since 1− δ > 0, the latter inequality entails that

lim
j→+∞

∫
Aj

e−ipξ(1− rjeiξ)−δ dξ = 0.
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On another hand if ξ ∈ Acj := [0, 2π] \Aj , then we have that

|1− rjeiξ| = |1− eiξ + (1− rj)eiξ| ≥ |1− eiξ| − (1− rj) >
1

2
|1− eiξ|,

which implies that ∣∣e−ipξ(1− rjeiξ)−δ∣∣ < 2δ|1− eiξ|−δ.

As δ ∈ (0, 1/2), the function ξ 7→ |1 − eiξ|−δ is integrable on [0, 2π], and since,
for all ξ ∈ (0, 2π), 1Acj (ξ)→ 1, we conclude, by dominated convergence theorem,
that, for all p ∈ Z,∫ 2π

0

e−ipξ(1− eiξ)−δ dξ = lim
j→+∞

∫ 2π

0

e−ipξ(1− rjeiξ)−δ dξ.

Moreover, for any arbitrary fixed j ∈ N, using the uniform convergence property
of the series in (3.2), we have∫ 2π

0

e−ipξ(1− rjeiξ)−δ dξ =

+∞∑
m=0

γ(δ)
m rmj

∫ 2π

0

e−ipξeimξ dξ = 2πrpj γ
(δ)
p .

The conclusion follows immediately.

We are now in position to prove Lemma 3.3.

Proof of Lemma 3.3. On one hand, it follows from Definition 3.1 and classical
properties of Fourier transform that

lim
q→+∞

∫
R

∣∣∣∣Φ̂(−δ)(ξ)−
( q∑
p=0

γ(δ)
p eipξ

)
φ̂(ξ)

∣∣∣∣2dξ = 0. (3.3)

On the other hand, using Remark 1.1 and the fact that the two functions ξ 7→
(1− eiξ)−δ and ξ 7→

∑q
p=0 γ

(δ)
p eipξ are 2π-periodic, one has, for all q ∈ N, that∫

R

∣∣∣∣(1− eiξ)−δφ̂(ξ)−
( q∑
p=0

γ(δ)
p eipξ

)
φ̂(ξ)

∣∣∣∣2dξ
=

∫ 4π/3

−4π/3

∣∣∣∣(1− eiξ)−δ − ( q∑
p=0

γ(δ)
p eipξ

)∣∣∣∣2∣∣φ̂(ξ)
∣∣2dξ

≤ 2
∥∥φ̂∥∥2

L∞(R)

∫ 2π

0

∣∣∣∣(1− eiξ)−δ − ( q∑
p=0

γ(δ)
p eipξ

)∣∣∣∣2dξ.
Thus, one can derive from Lemma 3.4 that

lim
q→+∞

∫
R

∣∣∣∣(1− eiξ)−δφ̂(ξ)−
( q∑
p=0

γ(δ)
p eipξ

)
φ̂(ξ)

∣∣∣∣2dξ = 0. (3.4)

Finally, combining (3.3) and (3.4), one obtains that Φ̂(−δ)(ξ) = (1− eiξ)−δ φ̂(ξ),
for almost all ξ ∈ Rd.
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Before ending the present subsection, let us make the following remark,
which is interesting in its own right even though it plays no role in the proof of
Theorem 2.8.

Remark 3.5. Lemma 3.3 shows that the expectations involved in the expression
(2.15) of the random variables σ(h)

J,k, (J,k) ∈ Z×Zd, are rather easily computable.
Indeed, for all J ∈ Z and k, p, k′, p′ ∈ Z, the expectation E[gφJ,k−p, g

φ
J,k′−p′ ] does

not vanish only when k − p = k′ − p′ and, in this case, it is equal to 1. Thus,
we can write

E[gφJ,k−p, g
φ
J,k′−p′ ] =

1

2π

∫ 2π

0

ei(k−p)ξe−i(k
′−p′)ξ dξ.

Then, using Definition 1.6 and Remark 1.7, we obtain, for all δ, δ′ ∈ (0, 1/2),
J ∈ N and k, k′ ∈ Z, that

E[Z
(δ)
j,kZ

(δ′)
j,k′ ] =

1

2π

∫ 2π

0

∑
p∈Z

γ(δ)
p ei(k−p)ξ

∑
p′∈Z

γ
(δ′)
p′ e

−i(k′−p′)ξ

 dξ

=
1

2π

∫ 2π

0

ei(k−k
′)ξ

∑
p∈Z

γ(δ)
p e−ipξ

∑
p′∈Z

γ
(δ′)
p′ e

ip′ξ

 dξ

=
1

2π

∫ 2π

0

ei(k−k
′)ξ(1− e−iξ)−δ(1− eiξ)−δ

′
dξ.

In particular, if δ = δ′, a fact that always occurs when we restrict to usual
Hermite processes, we get that

E[Z
(δ)
j,kZ

(δ)
j,k′ ] =

1

2π

∫ 2π

0

ei(k−k
′)ξ|1− e−iξ|−2δ dξ

=
1

2π

∫ 2π

0

ei(k−k
′)ξ

∣∣∣∣2 sin

(
ξ

2

)∣∣∣∣−2δ

dξ.

3.2 Second step of the proof of Theorem 2.8
Definition 3.6. Recall that L2

(
[0, 2π]d

)
is the space of the functions from Rd

to C which are 2π-periodic with respect to each one of their d variables and
Lebesgue square-integrable on the cube [0, 2π]d. The Fourier transform of any
arbitrary sequence θ = (θk)k∈Zd ∈ `2(Zd) is the function of L2

(
[0, 2π]d

)
denoted

by θ̂ and defined as
θ̂(η) :=

∑
k∈Zd

θke
−i〈k,η〉,

where the series is convergent in L2
(
[0, 2π]d

)
and 〈·, ·〉 is the usual inner product

on Rd.

Definition 3.7. For any fixed h = (h1, . . . , hd) satisfying (1.11), the sequence
Υ = (Υq)q∈Zd , which depends on h and belongs to `2(Zd), is defined, for all
q ∈ Zd, as

Υq :=

d∏
`=1

γ
(h`−1/2)
−q` . (3.5)
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Recall that, one knows from Lemma 3.4 that (γ
(h`−1/2)
p )p∈Z is the sequence of

the Fourier coefficients of the function λ 7→
(
1 − eiλ

)1/2−h` which belongs to
L2([0, 2π]).

Remark 3.8. One knows from (3.5), Definition 3.6 and Lemma 3.4 that the
Fourier transform of the sequence Υ satisfies, for almost all η ∈ Rd,

Υ̂(η) =

d∏
`=1

(
1− eiηl

)1/2−h` . (3.6)

Lemma 3.9. For any fixed h = (h1, . . . , hd) satisfying (1.11), and for each
fixed t ∈ R+ and J ∈ N, the series of deterministic functions of the variable
u = (u1, . . . , ud) ∈ Rd

V(d)
h,J(t,u) :=

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
2J

d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`)

(3.7)
is normally convergent in L2

u(Rd). Thus, the function2 V := V(d)
h,J(t, •) belongs

to L2(Rd). Moreover, its Fourier transform satisfies, for almost every ξ ∈ Rd,

V̂(ξ) = β̂(2−Jξ) 2−J
d
2

d∏
`=1

Φ̂(1/2−h`)(2−Jξ`) (3.8)

=
(
β̂(2−Jξ)Υ̂(2−Jξ)

)
2−J

d
2

d∏
`=1

φ̂(2−Jξ`),

where β̂ is the Fourier transform of the sequence β = (βk)k∈Zd defined, for all
k ∈ Zd, as

βk :=

∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds. (3.9)

Notice that the sequence β depends on t, J and h = (h1, . . . , hd). Also, notice
that the second equality in (3.8) results from Lemma 3.3 and (3.6).

Remark 3.10. Since the functions Φ
(h`−1/2)
∆ , ` ∈ [[1, d]], belong to Schwartz

class S(R), one can easily derive from (3.9) that, for any fixed arbitrarily large
positive real number µ, one has

sup
k∈Zd

(
|βk|

d∏
`=1

(
1 + |k`|

)µ)
<∞. (3.10)

The latter fact implies that the sequence β = (βk)k∈Zd belongs to `1(Zd) ⊂
`2(Zd). Therefore, its Fourier transform β̂ is a well-defined function of L2

(
[0, 2π]d

)
which is continuous and bounded on Rd and satisfies

lim
N→+∞

sup
ξ∈Rd

∣∣∣∣β̂(ξ)−
∑
|k|≤N

βke
−i2−J 〈k,ξ〉

∣∣∣∣ = 0. (3.11)

2We denote the function V(d)
h,J (t, •) by V for the sake of simplicity.

24



Proof of Lemma 3.9. The normal convergence in L2
u(Rd) of the series in (3.7)

easily follows from (3.10), (3.9) and the straightforward equality, for all k ∈ Zd,∥∥∥∥∥βk2J
d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`)

∥∥∥∥∥
L2(Rd)

= |βk|
d∏
`=1

‖Φ(1/2−h`)‖L2(Rd).

Let us now show that (3.8) holds. For all N ∈ N, we denote by VN the finite
sum, defined, for each u ∈ Rd, as:

VN (u) :=
∑
|k|≤N

βk2J
d
2

d∏
`=1

Φ(1/2−h`)(2Ju` − k`). (3.12)

We already know that VN → V in L2(Rd) as N → +∞. Therefore, the isometry
property of Fourier transform entails that V̂N → V̂ in L2(Rd) as N → +∞. One
can derive from the latter fact that there exists a subsequence (Nr)r∈N such that
one has

lim
r→+∞

V̂Nr (ξ) = V̂(ξ), for almost every ξ ∈ Rd. (3.13)

Moreover, it follows from (3.12) and basic properties of Fourier transform that,
for all N ∈ N and ξ ∈ Rd,

V̂N (ξ) =

 ∑
|k|≤N

βke
−i2−J 〈k,ξ〉

 2−J
d
2

d∏
`=1

Φ̂(1/2−h`)(2−Jξ`). (3.14)

Finally, putting together (3.11), (3.13) and (3.14), one obtains (3.8).

Before ending this subsection, let us point out that:

Remark 3.11. Using Proposition 3.2, Lemma 3.9 and the isometry property
of multiple Wiener integral, it follows that the random series in the right-hand
side of (2.16) is, for each fixed t ∈ R+ and J ∈ N, convergent in L2(Ω) and
satisfies almost surely

∑
k∈Zd

(∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

)
σ

(h)
J,k =

∫ ′
Rd
V(d)
h,J(t,u) dB(u1) · · · dB(ud).

(3.15)
Thus, in view of (2.3) and (3.15), in order to show that, for each fixed t ∈ R+

and J ∈ N, the equality (2.16) holds almost surely, it is enough to prove that
the two functions K(d)

h,J(t, •) : u 7→ K
(d)
h,J(t,u) and 2−J(h1+···+hd−d)V(d)

h,J(t, •) :

u 7→ 2−J(h1+···+hd−d)V(d)
h,J(t,u) are equal for almost all u ∈ Rd, which amounts

to proving that their Fourier transforms are equal almost everywhere in Rd.

3.3 Third step of the proof of Theorem 2.8
The goal of this subsection is to show that the following lemma holds.

Lemma 3.12. For any fixed h = (h1, . . . , hd) satisfying (1.11), and for each
fixed t ∈ R+ and J ∈ N, the Fourier transforms of the two functions, of L2(Rd),
K

(d)
h,J(t, •) and 2−J(h1+···+hd−d)V(d)

h,J(t, •) are equal almost everywhere in Rd.
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For proving Lemma 3.12 we need some preliminary results.

Lemma 3.13. For any fixed h = (h1, . . . , hd) satisfying (1.11), and for each
fixed t ∈ R+ and J ∈ N, the Fourier transform of the function K(d)

h,J(t, •) can be
expressed, for almost all ξ ∈ Rd, as

2−J(h1+···+hd−d) α̂(2−Jξ) 2−J
d
2

d∏
`=1

φ̂(2−Jξ`),

where α̂ denotes the Fourier transform of the sequence α = (αk)k∈Zd of `2(Zd)
defined, for all k ∈ Zd, as

αk :=

∫ t

0

d∏
`=1

φh`(2
Js− k`) ds. (3.16)

Recall that φhl is the fractional primitive of order hl − 1/2 of the Meyer uni-
variate scaling function φ. Notice that the sequence α depends on t, J and
h = (h1, . . . , hd).

Proof. Since K(d)
h,J(t, •) is the orthogonal projection K(d)

h (t, •) on the space V dJ
(see the beginning of Section 2), and

(
2J

d
2 Φ(2J · −k)

)
k∈Zd is an orthonormal

basis of this space, one has that

K
(d)
h,J(t,u) =

∑
k∈Zd

K
(d,h)
J,k (t) 2J

d
2

d∏
`=1

φ(2Ju` − k`),

where K
(d,h)
J,k (t) is as in (2.7) and the convergence of the series holds in L2

u(Rd).
Then combining the last equality with (2.12) and basic properties of Fourier
transform, one obtains the lemma.

Remark 3.14. It follows from Lemmas 3.9 and 3.13 that for proving Lemma
3.12 it is enough to show that

α̂(η) = β̂(η)Υ̂(η), for almost all η ∈ Rd. (3.17)

In fact, since the sequence β belongs to `1(Zd) (see Remark 3.10), the function
η 7→ β̂(η)Υ̂(η), which belongs to L2([0, 2π]d), is nothing else than the Fourier
transform of the convolution product β ∗ Υ. The latter sequence β ∗ Υ =(
(β ∗Υ)k

)
k∈Zd of `2(Zd) is defined, for all k ∈ Zd, as

(β ∗Υ)k :=
∑
q∈Zd

Υq βk−q. (3.18)

Thus, in view of (3.18), it turns out that for proving (3.17), it is enough to show
that, for all k ∈ Zd, one has

αk =
∑
q∈Zd

Υq βk−q. (3.19)

Lemma 3.15. The equality (3.19) holds for all k ∈ Zd.
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Proof. First notice that one can derive from Remark 1.1, Definition 1.3 and
(2.13) that the two functions η 7→

∏d
`=1 Φ̂

(h`−1/2)
∆ (η`) and η 7→

∏d
`=1 φ̂h`(η`)

belong to L1(Rd) ∩ L2(Rd). Therefore, using inverse Fourier transform, one
gets, for all (v1, . . . , vd) ∈ Rd, that

d∏
`=1

Φ
(h`−1/2)
∆ (v`) = (2π)−

d
2

∫
Rd

exp
(
i

d∑
`=1

v`η`

) d∏
`=1

Φ̂
(h`−1/2)
∆ (η`)dη (3.20)

and
d∏
`=1

φh`(v`) = (2π)−
d
2

∫
Rd

exp
(
i

d∑
`=1

v`η`

) d∏
`=1

φ̂h`(η`)dη (3.21)

= (2π)−
d
2

∫
Rd

exp
(
i

d∑
`=1

v`η`

)
Υ̂(−η)

d∏
`=1

Φ̂
(h`−1/2)
∆ (η`)dη,

where the last equality follows (3.6), (2.13) and Definition 1.3. Next, let N be
an arbitrary positive integer. One can derive from (3.16), (3.9), (3.20), (3.21),
standard calculations, (1.3) and Cauchy-Schwarz inequality that, for all k ∈ Zd,
one has∣∣∣αk −

∑
|q|≤N

Υq βk−q

∣∣∣
≤
∫ t

0

∣∣∣∣∣
∫
Rd

exp
(
i

d∑
`=1

(
2js− k`

)
η`

)(
Υ̂(−η)−

∑
|q|≤N

Υq e
i〈q,η〉

)
× . . .

. . .×
d∏
`=1

Φ̂
(h`−1/2)
∆ (η`)dη

∣∣∣∣∣ds
≤ t
∫

[− 4π
3 ,

4π
3 ]d

∣∣∣∣Υ̂(−η)−
∑
|q|≤N

Υq e
i〈q,η〉

∣∣∣∣ d∏
`=1

∣∣Φ̂(h`−1/2)
∆ (η`)

∣∣dη
≤ t

d∏
`=1

∥∥Φ̂
(h`−1/2)
∆

∥∥
L2(Rd)

(∫
[− 4π

3 ,
4π
3 ]d

∣∣∣∣Υ̂(η)−
∑
|q|≤N

Υq e
−i〈q,η〉

∣∣∣∣2dη
) 1

2

≤ 2
d
2 t

d∏
`=1

∥∥Φ̂
(h`−1/2)
∆

∥∥
L2(Rd)

(∫
[0,2π]d

∣∣∣∣Υ̂(η)−
∑
|q|≤N

Υq e
−i〈q,η〉

∣∣∣∣2dη
) 1

2

,

where the last inequality results from the fact that the function η 7→ Υ̂(η) −∑
|q|≤N Υq e

−i〈q,η〉 is 2π-periodic in each one of its d variables. Moreover, since
the function Υ̂ is the Fourier transform of the sequence Υ = (Υq)q∈Zd , one has
that

lim
N→+∞

∫
[0,2π]d

∣∣∣∣Υ̂(η)−
∑
|q|≤N

Υq e
−i〈q,η〉

∣∣∣∣2dη = 0.

Therefore, using the previous bound for
∣∣∣αk −

∑
|q|≤N Υq βk−q

∣∣∣, one gets that∣∣∣αk −
∑
q∈Zd

Υq βk−q

∣∣∣ = lim
N→+∞

∣∣∣αk −
∑
|q|≤N

Υq βk−q

∣∣∣ = 0,
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which shows that the equality (3.19) holds for all k ∈ Zd.

Proof of Lemma 3.12. This lemma is a straightforward of Remark 3.14 and
Lemma 3.15.

3.4 Fourth step of the proof of Theorem 2.8
So far, we have shown that, for each fixed t ∈ R+ and J ∈ N, the equality
(2.16) holds almost surely, and that the random series in its right-hand side
is convergent in L2(Ω). The goal of the present subsection is to complete the
proof of Theorem 2.8 by showing that the latter random series is almost surely
convergent uniformly in t on any compact interval of R+. To this end, we need
to bound, for all J ∈ N, the generalized FARIMA sequence (σ

(h)
J,k)k∈Zd in a

convenient way.

Remark 3.16. Thanks to the representation (3.1), using Theorem 6.7 in [13],
the isometry property of multiple Wiener integral and arguments similar to
those in the proofs of Lemmas 1 and 2 in [3], it can be shown that there exist
C̃ a positive finite random variable and Ω̃ an event of probability 1, such that,
one has on Ω̃, for all J ∈ N and k ∈ Zd,

∣∣σ(h)
J,k
∣∣ ≤ C̃ (log

(
3 + J + |k|

))d/2
. (3.22)

End of the Proof of Theorem 2.8. For showing that the random series in the
right-hand side of the equality (2.16) is almost surely convergent uniformly in
t on any compact interval of R+, it is enough to prove that on the event Ω̃ of
probability 1, introduced in Remark 3.16, one has, for each fixed J ∈ N and
positive real number T ,

∑
k∈Zd

(
sup
t∈[0,T ]

∣∣∣∣ ∫ t

0

d∏
`=1

Φ
(h`−1/2)
∆ (2Js− k`) ds

∣∣∣∣
) ∣∣σ(h)

J,k
∣∣ < +∞. (3.23)

In fact, using (3.22) and easy calculations, it turns out that (3.23) can be ob-
tained by showing that

∑
k∈Zd

(
sup

x∈[0,2JT ]

d∏
`=1

∣∣Φ(h`−1/2)
∆ (x− k`)

∣∣)(log
(

3 + J + |k|
))d/2

< +∞. (3.24)

Finally, since the functions Φ
(h`−1/2)
∆ , ` ∈ [[1, d]], belong to Schwartz class S(R),

it is clear that (3.24) holds.

4 Proof of Theorem 2.12
In this section, we aim at proving Theorem 2.12. We will need a number of
intermediary results which mainly consist in bounding in convenient ways well-
chosen parts of the random series in (2.8). We mention in passing that the event
Ω∗ of probability 1 (see Lemmata 2.15 and 2.16) will appear in the statements
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of many of them. Also, we mention that we will frequently use the fact that
(see (2.11)) the deterministic coefficients K(d,h)

j,k (t) in (2.8) can be expressed as

K(d,h)
j,k (t) = 2j1(1−h1)+···+jd(1−hd)Aj,k(t), (4.1)

where, for all (j,k) ∈ (Zd)2 and t ∈ R+,

Aj,k(t) :=

∫ t

0

d∏
`=1

ψh`(2
j`s− k`) ds. (4.2)

Recall that each function ψh` is the fractional primitive of order h`− 1/2 of the
univariate Meyer mother wavelet ψ (see Remark 1.1 and Definition 1.2). Also,
recall that ψh` satisfies the very nice localization property (1.4) which implies
that, for any fixed arbitrarily large positive real number L, one has, for some
finite constant c (only depending on L) and for all (j,k) ∈ (Zd)2 and t ∈ R+,

∣∣Aj,k(t)
∣∣ ≤ c∫ t

0

d∏
`=1

(
3 + |2j`s− k`|

)−L
ds. (4.3)

Our study of the random series in (2.8) is to certain extent inspired by the
methodology which was introduced in [2] in the framework of the generalized
Rosenblatt process. In this respect, the first thing to do is to express the max-
imum max`∈[[1,d]] j` (see (2.8)) in a way which is convenient to handle. To this
end, for each n ∈ [[1, d]] and J ∈ N, we introduce the infinite subset ℵn,J ⊂ Zd.
defined as

ℵn,J :=

{
j ∈ Zd : jn ≥ J and max

`∈[[1,d]]
j` = jn

}
. (4.4)

Observe that the indexation set in the sum in (2.8), can then be expressed as
the union

⋃d
n=1 ℵn,J × Zd. Thus, it results from (2.8), the triangle inequality

and (4.1) that, for any fixed positive real number T ,

‖X(d,⊥)
h,J ‖[0,T ],∞ ≤

d∑
n=1

∆n,J ,

where, for all n ∈ [[1, d]],

∆n,J :=
∑

j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈Zd

εj,kAj,k(t)
∣∣∣. (4.5)

From now on, we focus on the positive random series ∆n,J , for any arbitrary
and fixed n ∈ [[1, d]]. We will show that it is formed by a main part ∆1

n,J , and
three other parts ∆0

n,J , ∆2
n,J and ∆3

n,J which are negligible for our purposes;
namely, on the event Ω∗ of probability 1, when J goes to +∞, they converge
to zero more quickly than the rate J

d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem

2.12. The definitions of ∆0
n,J , . . . ,∆

3
n,J are closely connected with the nth axis

of Zd. We are now going to give them and to motivate them.
The negligible part ∆0

n,J is defined by replacing in (4.5) the sum
∑

k∈Zd by
the sum

∑
k∈ijnn,T

where

ijnn,T :=
{
k ∈ Zd : kn ∈ Z; ∃ ` ∈ [[1, d]] \ {n}, |k`| > 2jn+1T

}
. (4.6)
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Thus, one can derive from the triangle inequality that

∆0
n,J ≤ H0

n,J , (4.7)

where

H0
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd)
∑

k∈ijnn,T

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| . (4.8)

For understanding the motivation behind the definition of ijnn,T , one has to relate
it to the inequality (4.3). Indeed, when |k`| > 2jn+1T , then using the inequality
jl ≤ jn (since jn = max`∈[[1,d]] j`), it can easily be shown that the quantity(
3 + |2j`s− k`|

)−L in the right-hand side of (4.3) satisfies
(
3 + |2j`s− k`|

)−L ≤
2L
(
3 + |k`|

)−L. The latter inequality, combined with (4.8) and (2.31), allows to
show that, on the event Ω∗, when J goes to +∞, H0

n,J (and consequently ∆0
n,J ,

see (4.7)) converges to zero at a very fast rate, see Lemma 4.2 in Subsection 4.1
below.

For defining the main part ∆1
n,J as well as the two other negligible parts ∆2

n,J

and ∆3
n,J of the random series in (4.5), we need to introduce some additional

sets of indices.

Definition 4.1. Let a be a fixed real number satisfying 1/2 < a < 1. For all
(j, k) ∈ Z+ × Z, we denote by Bj,k the compact interval of the real line R

Bj,k := [k2−j − 2−ja, k2−j + 2−ja]. (4.9)

Then, for all j ∈ N and t ∈ R+, the three disjoint subsets D1
j (t), D2

j (t), and
D3
j (t) of Z, which depend on j, t and a, are defined as

D1
j (t) := {k ∈ Z : Bj,k ⊆ [0, t]}, (4.10)

D2
j (t) := {k ∈ Z \D1

j (t) : Bj,k ∩ [0, t] 6= ∅}, (4.11)

D3
j (t) := {k ∈ Z : Bj,k ∩ [0, t] = ∅}. (4.12)

They clearly form a partition of Z, that is Z =
⋃3
`=1D

`
j(t).

We denote by ĩjnn,T := Zd \ ijnn,T the complement in Zd of the set ijnn,T
introduced in (4.6). For each t ∈ R+ and ` ∈ {1, 2, 3}, the subset ĩjn,`n,T (t) ⊂ ĩjnn,T
is defined as ĩjn,`n,T (t) :=

{
k ∈ ĩjnn,T : kn ∈ D`

jn
(t)
}
, that is

ĩjn,`n,T (t) :=
{
k ∈ Zd : kn ∈ D`

jn(t); ∀ ` ∈ [[1, d]] \ {n}, |k`| ≤ 2jn+1T
}
.

(4.13)
Then, for every ` ∈ {1, 2, 3}, we set

∆`
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈ĩjn,`n,T (t)

εj,kAj,k(t)
∣∣∣. (4.14)

Observe that, one can derive from (4.14), (4.13) and the triangle inequality that

∆2
n,J ≤ H2

n,J and ∆3
n,J ≤ H3

n,J , (4.15)
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where

H2
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) × . . .

. . .× sup
t∈[0,T ]


∑

kn∈D2
jn

(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)|

 (4.16)

and

H3
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) × . . .

. . .× sup
t∈[0,T ]


∑

kn∈D3
jn

(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)|

 . (4.17)

On one hand using (4.11), (4.10) and (4.9), it can be shown D2
jn

(t) is a rather
small finite set with cardinality bounded from above by c′ 2jn(1−a), for some
finite constant c′ not depending on t ∈ [0, T ] and jn. The latter fact, combined
with (4.3) and (2.31), is the main ingredient for proving, on the event Ω∗, that,
when J goes to +∞, H2

n,J (and consequently ∆2
n,J , see (4.15)) converges to zero

more quickly than the rate J
d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem 2.12,

see Lemma 4.5 in Subsection 4.1 below.
On another hand, Lemma B.3 in Appendix B, combined with (4.3) and

(2.31), is the main ingredient for proving, on the event Ω∗, that, when J goes to
+∞, H3

n,J (and consequently ∆3
n,J , see (4.15)) converges to zero more quickly

than the rate J
d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem 2.12, see Lemma 4.4

in Subsection 4.1 below.
So far, we have reached the conclusion that the main part of the random

series in (4.5) is ∆1
n,J defined through (4.14) with ` = 1. For the sake of

simplicity in notation, we set

kjnn (t) := ĩjn,1n,T (t) := {k ∈ Zd : kn ∈ D1
jn(t); ∀` ∈ [[1, d]] \ {n}, |k`| ≤ 2jn+1T}.

(4.18)
We are now going to introduce a simplified version of ∆1

n,J , denoted byMn,J ,
in which the coefficients Aj,k(t) (see (4.2)) are replaced by the coefficients Fj,k,
not depending on t, defined, for all (j,k) ∈ (Zd)2, as

Fj,k :=

∫
R

d∏
`=1

ψh`(2
j`s− k`) ds. (4.19)

Thus, in view of (4.18) and (4.14) (with ` = 1),Mn,J can be expressed as

Mn,J :=
∑

j∈ℵn,J

2j1(1−h1)+···jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈kjnn (t)

Fj,kεj,k

∣∣∣. (4.20)

The advantage in working withMn,J instead of ∆1
n,J is that the random func-

tion M̃n,j defined, for all t ∈ [0, T ], as

M̃n,j(t) :=
∑

k∈kjnn (t)

Fj,kεj,k, (4.21)
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is in fact a step function whose jumps occur at the deterministic finite set of
points

{
m2−jn + 2−jna : m ∈ N ∩ (2j(1−a) − 1, 2jT − 2j(1−a)]

}
. Thus, the

supremum in (4.20) reduces to the supremum on this finite set, which makes
the study of its asymptotic behavior, when jn goes +∞, much more accessible
and doable thanks to Borel-Cantelli Lemma, see the Subsection 4.3 below.

Yet, for showing that it is possible to approximate ∆1
n,J by Mn,J without

altering the rate of convergence J
d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem

2.12, one has to prove that, on the event Ω∗, the error of approximation
∣∣∆1

n,J−
Mn,J

∣∣ converges to zero at a faster rate, when J goes +∞. Notice that, it can
be derived from (4.14) with ` = 1, (4.18), (4.20) and the triangle inequality that∣∣∆1

n,J −Mn,J

∣∣ ≤ H1
n,J , (4.22)

where

H1
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) × . . .

. . .× sup
t∈[0,T ]


∑

kn∈D1
jn

(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)− Fj,k|

 . (4.23)

Also notice that one knows from (4.10) and (4.9) that, for some finite constant
c′′ not depending on t ∈ [0, T ] and jn, the cardinality of the finite set D1

jn
(t)

is bounded from above by c′′ 2jn , and that any kn ∈ D1
jn

(t) satisfies 2jn(1−a) ≤
kn ≤ 2jnt− 2jn(1−a). These two facts, combined with (4.3), (2.31), Lemma B.3
and (B.1) in Appendix B, are the main ingredients for proving that, when J
goes to +∞, H1

n,J (and consequently
∣∣∆1

n,J −Mn,J

∣∣, see (4.22)) converges to
zero more quickly than the rate J

d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem

2.12, see Lemma 4.6 in Subsection 4.2 below.
We complete the proof of Theorem 2.12 in Subsection 4.4 below.

4.1 Rates of convergence to zero of H0
n,J , H2

n,J and H3
n,J

The goal of this subsection is to show that, on the event Ω∗ of probabil-
ity 1 (see Lemmata 2.15 and 2.16), when J goes to +∞, the three random
variables H0

n,J , H2
n,J and H3

n,J converge to zero more quickly than the rate
J
d
2 2−J(h1+···+hd−d+1/2) targeted in Theorem 2.12.

Lemma 4.2. Let T > 2 and L ≥ 3/2 be two fixed real numbers. There exits
a positive almost surely finite random variables C such that, for all n ∈ [[1, d]]
and J ∈ N, on Ω∗, the random variable H0

n,J , defined in (4.8), is bounded from

above by CJ
d
2 (log(3 + J))

d−1
2 2−J(h1+···+hd+L−d−1).

Proof. The set Bn of d-dimensional boolean vectors is defined as

Bn :=
{
v = (vl)`∈[[1,d]] ∈ {0, 1}d : vn = 1 and ∃ `′ 6= n : v`′ = 0

}
.

Moreover, for all v ∈ Bn and j ∈ ℵn,J (recall that jn denotes the nth coordinate
of j), the set ijn,vn,T is defined as

ijn,vn,T :=
{
k ∈ Zd : k` ∈ Z if v` = 1 and |k`| > 2jn+1T otherwise

}
.

32



Then, it can easily be derived from (4.6) that∑
k∈ijnn,T

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| ≤
∑
v∈Bn

∑
k∈ijn,vn,T

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| . (4.24)

Using, the inequality (B.1), the triangular inequality, the fact that the func-
tion y 7→ (2 + y)−L

√
log(2 + y) is decreasing on R+ and the inequality (B.2),

we have, for all v ∈ Bn, j ∈ ℵn,J and s ∈ [0, T ],

∑
k∈ijn,vn,T

d∏
`=1

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L

=

( ∏
`:v`=1

∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L

)
× . . .

. . .×

 ∏
`′:v`′=0

∑
|k`′ |>2jn+1T

√
log(3 + |j`′ |+ |k`′ |)

(3 + |2j`′ s− k`′ |)L


≤ c02L

( ∏
`:v`=1

√
log(3 + |j`|+ 2j`T )

)
× . . .

. . .×

 ∏
`′:v`′=0

∑
|k`′ |>2jn+1T

√
log(3 + |j`′ |)

√
log(3 + |k`′ |)

(3 + |k`′ |)L


≤ c1

( ∏
`:v`=1

√
log(3 + |j`|+ 2jnT )

)
× . . .

. . .×

 ∏
`′:v`′=0

√
log(3 + |j`′ |)

∫ +∞

2jn+1T

√
log(2 + y)

(2 + y)L
dy


≤ c2

√√√√ d∏
`=1, 6̀=n

log(3 + |j`|)× j
d
2
n × 2−jn(L−1)(#{`′ : v`′=0})

≤ c2

√√√√ d∏
`=1, 6̀=n

log(3 + |j`|)× j
d
2
n × 2−jn(L−1), (4.25)

with c0, c1 and c2 positive deterministic constants not depending on n, j, v
nor J . Then, the expression (4.2), the bound (2.31), the inequality (4.3) and
inequality (4.25) give

∑
k∈ijn,vn,T

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| ≤ C1

√√√√ d∏
`=1, 6̀=n

log(3 + |j`|)× j
d
2
n × 2−jn(L−1),

(4.26)

with C1 a positive almost surely finite random variable not depending on n, j,
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v nor J . Then, using (4.8), (4.24), (4.26) and the triangular inequality, we get

H0
n,J ≤ C2

∑
jn≥J

∑
j`≤jn

`∈[[1,d]]\{n}

√√√√√ d∏
`=1
` 6=n

log(3 + |j`|)× j
d
2
n × 2−jn(L−1)

d∏
`=1

2j`(1−h`)

= C2

∑
jn≥J

∑
j`≤jn

`∈[[1,d]]\{n}

 d∏
`=1
` 6=n

√
log(3 + |j`|)2j`(1−h`)

× j d2n × 2−jn(hn+L−2)

= C2

∑
jn≥J

j
d
2
n 2−jn(hn+L−2)

d∏
`=1
6̀=n

jn∑
j`=−∞

√
log(3 + |j`|)2j`(1−h`)

and since, by inequality (B.1), we have

d∏
`=1
` 6=n

jn∑
j`=−∞

√
log(3 + |j`|)2j`(1−h`)

=

d∏
`=1
` 6=n

+∞∑
p=0

√
log(3 + |jn − p|)2(jn−p)(1−h`)

=

d∏
`=1
` 6=n

√
log(3 + |jn|)2jn(1−h`)

(
+∞∑
p=0

√
log(3 + |p|)2−p(1−hn)

)

≤ c (log(3 + |jn|))
d−1
2

d∏
`=1
` 6=n

2jn(1−h`),

for a deterministic constant c > 0, we conclude that

H0
n,J ≤ C2

∑
jn≥J

j
d
2
n (log(3 + |jn|))

d−1
2 2−jn(hn+L−2)

d∏
`=1
` 6=n

2jn(1−h`)

= C2

∑
jn≥J

j
d
2
n (log(3 + |jn|))

d−1
2 2−jn(h1+···+hd+L−d−1)

≤ C3J
d
2 (log(3 + J))

d−1
2 2−J(h1+···+hd+L−d−1),

where C2 and C3 are positive almost surely finite random variables.

Remark 4.3. One knows from Definition 4.1, that D3
j (t) is always an infi-

nite countable set while D2
j (t) and D1

j (t) are two finite sets, possibly empty.
Moreover, for all strictly positive real number T and all j ∈ Z+, we have

sup
t∈[0,T ]

{
Card(D2

j (t))
}
≤ c′2j(1−a), (4.27)

sup
t∈[0,T ]

{
Card(D1

j (t))
}
≤ c′′2j , (4.28)

where c′ ≥ 1 and c′′ ≥ 1 are two finite positive constants not depending j. One
mentions in passing that c′ does not even depend on T .
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Lemma 4.4. Let T > 2 and L ≥ 2−1(1 − a)−1 + 1 be two fixed real num-
bers, where a ∈ (1/2, 1) is as in Definition 4.1. There exists a positive al-
most surely finite random variable C such that, for all n ∈ [[1, d]] and J ∈ N,
on Ω∗, the random variable H3

n,J , defined in (4.17), is bounded from above by

CJ
d+1
2 (log(3 + J))

d−1
2 2−J(h1+···+hd+(L−1)(1−a)−d).

Proof. Let t ∈ [0, T ] and j ∈ ℵn,J . Using together the expression (4.2), the
inequality (4.3), the bound (2.31) as well as Lemmata B.2 and B.3, we get∑
kn∈D3

jn
(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)|

≤ C0

∑
kn∈D3

jn
(t)

∑
k`∈Z

`∈[[1,d]]\{n}

∫ T

0

d∏
`=1

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L
ds

= C0

∫ T

0

 ∑
kn∈D3

jn
(t)

√
log(3 + |jn|+ |kn|)

(3 + |2jns− kn|)L

 d∏
`=1
6̀=n

∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L
ds

≤ C1

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

∫ T

0

∑
kn∈D3

jn
(t)

√
log(3 + |jn|+ |kn|)

(3 + |2jns− kn|)L
ds

≤ C2

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )(1 + jn)2−jn(L−1)(1−a). (4.29)

Next, notice that using the triangular inequality and (B.1), we obtain that

∑
j`≤jn

`∈[[1,d]]\{n}

d∏
`=1
` 6=n

(√
log(3 + |j`|+ 2j`T )2j`(1−h`)

)

=

d∏
`=1
` 6=n

 jn∑
j`=−∞

√
log(3 + |j`|+ 2j`T )2j`(1−h`)


=

d∏
`=1
` 6=n

(
+∞∑
p=0

√
log(3 + |jn − p|+ 2jn−pT )2(jn−p)(1−h`)

)

≤
(√

log(3 + 2jnT ) log(3 + |jn|)
)d−1

× . . .

. . .×
d∏
`=1
` 6=n

2jn(1−h`)

(
+∞∑
p=0

√
log(3 + p)2−p(1−h`)

)

≤ c
(√

log(3 + 2jnT ) log(3 + |jn|)
)d−1 d∏

`=1
` 6=n

2jn(1−h`) (4.30)

where c > 0 is a deterministic constant. Next, putting together (4.17), (4.4),
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(4.29) and (4.30), it follows that

H3
n,J ≤ C3

∑
jn≥J

(1 + jn)2−jn(h1+···+hd+(L−1)(1−a)−d) × . . .

. . .×
(√

log(3 + 2jnT ) log(3 + |jn|)
)d−1

≤ C4

∑
jn≥J

j
d+1
2

n (log(3 + |jn|))
d−1
2 2−jn(h1+···+hd+(L−1)(1−a)−d)

≤ C5J
d+1
2 (log(3 + |J |))

d−1
2 2−J(h1+···+hd+(L−1)(1−a)−d)

where C3, C4 and C5 are positive almost surely finite random variables.

Lemma 4.5. Let a ∈ (1/2, 1) be as in Definition 4.1 and let T > 2 be a fixed
real number. There exists a positive almost surely finite random variable C such
that, for all n ∈ [[1, d]] and J ∈ N, on Ω∗, the random variable H2

n,J , defined in

(4.16), is bounded from above by CJ
d
2 (log(3 + J))

d−1
2 2−J(h1+···+hd+a−d).

Proof. let L > 1 be a fixed real number, t ∈ [0, T ] and j ∈ ℵn,J . Using the
definition (4.2), the inequalities (4.3) and (2.31), Lemma B.2, the inequality
|kn| ≤ 2jn(1−a) +2jnT , for all kn ∈ D2

jn
(t), the change of variable z = 2jns−kn,

the bound (4.27) and the inequality (B.2), we have
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∑
kn∈D2

jn
(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)|

≤ C0

∫ T

0

∑
kn∈D2

jn
(t)

∑
k`∈Z

`∈[[1,d]]\{n}

d∏
`=1

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L
ds

= C0

∫ T

0

∑
kn∈D2

jn
(t)

√
log(3 + |jn|+ |kn|)

(3 + |2jns− kn|)L
d∏
`=1
` 6=n

∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L
ds

≤ C1

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

∫ T

0

∑
kn∈D2

jn
(t)

√
log(3 + |jn|+ |kn|)

(3 + |2jns− kn|)L
ds

≤ C1

√
log(3 + |jn|+ 2jn(1−a) + 2jnT )

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )× . . .

. . .×
∑

kn∈D2
jn

(t)

∫ T

0

ds

(3 + |2jns− kn|)L

= C2

(∫
R

dz

(3 + |z|)L

)√
log(3 + |jn|+ 2jn(1−a) + 2jnT )× . . .

. . .×
d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T ) Card(D2

jn(t))2−jn

≤ C32−jna
√

log(3 + |jn|+ 2jn(1−a) + 2jnT )

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

≤ C42−jna
√

1 + jn

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T ),

where C0, C1, C2, C3 and C4 are positive almost surely finite random variables
not depending on n, t, j and J . Then, combining the (4.16) and (4.4) with the
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inequalities (4.30), a > 1/2 and
∑d
`=1 h` > d− 1/2, we get

H2
n,J ≤ C4

∑
j∈ℵn,J

(
d∏
`=1

2j`(1−h`)

)
2−jna

√
1 + jn

d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

≤ C5

∑
jn≥J

2−jn(hn+a−1)
√

1 + jn(
√

log(3 + 2jnT ) log(3 + |jn|))d−1 × . . .

. . .×
d∏
`=1
` 6=n

2jn(1−h`)

≤ C6

∑
jn≥J

2−jn(h1+···+hn+a−d)j
d
2
n (log(3 + |jn|))

d−1
2

≤ C72−J(h1+···+hn+a−d)J
d
2 (log(3 + J))

d−1
2 ,

where C5, C6 and C7 are positive almost surely finite random variables.

4.2 Rate of convergence to zero of H1
n,J

The goal of this subsection is to show that, on the event Ω∗ of probability 1
(see Lemmata 2.15 and 2.16), when J goes to +∞, the random variable H1

n,J

converges to zero more quickly than the rate J
d
2 2−J(h1+···+hd−d+1/2) targeted

in Theorem 2.12.

Lemma 4.6. Let T > 2 and L > d+ 2 be two fixed real numbers. There exits a
positive almost surely finite random variable C such that, for all n ∈ [[1, d]] and
J ∈ N, on Ω∗, the random variable H1

n,J , defined in (4.23), is bounded from
above by CJd−1 2−J((L−2)(1−a)+h1+···+hd−d+1).

Proof. Let us fix t ∈ [0, T ] and j ∈ ℵn,J . Using the definitions (4.2), (4.19),
(4.9) and (4.10), the inequality (4.3), the bound (2.31), the inequality |kn| ≤
2jnT , for all kn ∈ D1

jn
(t), the inequality 2jnT ≥ jn, Lemma B.2, the fact that
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jn = max
`∈[[1,d]]

j`, the triangular inequality and finally inequality (B.1), it comes

∑
kn∈D1

jn
(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)− Fj,k|

≤ C0

√
log(3 + 2jn+1T )

∫
R\[0,t]

 ∑
kn∈D1

jn
(t)

1

(3 + |2jns− kn|)L

× . . .
. . .×

d∏
`=1; ` 6=n

(∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L

)
ds

≤ C1

√
log(3 + 2jn+1T )

∫
R\[0,t]

∑
kn∈D1

jn
(t)

∏d
`=1; ` 6=n

√
log(3 + |j`|+ |2j`s|)

(3 + |2jns− kn|)L
ds

≤ C1

√
log(3 + 2jn+1T )

∫
R\[0,t]

∑
kn∈D1

jn
(t)

∏d
`=1; ` 6=n

√
log(3 + |j`|+ |2jns|)

(3 + |2jns− kn|)L
ds

≤ C1

∫
R\[0,t]

∑
kn∈D1

jn
(t)

∏d
`=1; ` 6=n

√
log(3 + |j`|+ |2jns− kn|)

(3 + |2jns− kn|)L
ds× . . .

. . .× (log(3 + 2jn+1T ))
d
2 , (4.31)

where C0 and C1 are positive almost surely finite random variables not depend-
ing on n, t, j and J . Let us estimate the last integral in (4.31). First we bound
it by the sum of the two integrals I1

j,k(t) and I2
j,k where

I1
j,k(t) :=

∫ +∞

t

∑
kn≤2jn t−2jn(1−a)

∏d
`=1; ` 6=n

√
log(3 + |j`|+ 2jns− kn)

(3 + 2jns− kn)L
ds

and

I2
j,k :=

∫ 0

−∞

∑
kn≥2jn(1−a)

∏d
`=1; ` 6=n

√
log(3 + |j`|+ kn − 2jns)

(3 + kn − 2jns)L
ds.

Next, for bounding I1
j,k(t), we use the change of variable y = 2jn(s− t) and the

fact that, for all j ∈ Z, the function y 7→ (2 + y)−L/(d−1)
√

log(2 + |j|+ y) is
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decreasing on R+. By this way we get that

I1
j,k(t) = 2−jn

∫ +∞

0

∑
kn≤2jn t−2jn(1−a)

d∏
`=1
` 6=n

√
log(3 + |j`|+ y + 2jnt− kn)

(3 + y + 2jnt− kn)L/(d−1)
dy

≤ 2−jn
∫ +∞

0

+∞∑
p=0

d∏
`=1
` 6=n

√
log(3 + |j`|+ y + 2jn(1−a) + p)

(3 + y + 2jn(1−a) + p)L/(d−1)
dy

≤ 2−jn
∫ +∞

0

∫ +∞

0

d∏
`=1
` 6=n

√
log(2 + |j`|+ y + 2jn(1−a) + z)

(2 + y + 2jn(1−a) + z)L/(d−1)
dz

 dy

≤ 2−jn
∫ +∞

0

(∫ +∞

0

∏d
`=1; ` 6=n

√
log(2 + |j`|+ y + 2jn(1−a) + z)

(2 + y + 2jn(1−a) + z)L
dz

)
dy.

(4.32)

Now, we are going to estimate the integral over z in (4.32). To this end, we will
make an integration by parts. Notice that there is no restriction to assume that
J is large enough so that the inequality d− 1 ≤ log(2 + 2J(1−a)) holds. Then, it
follows from the inequality jn ≥ J that, for all (y, z) ∈ R2

+ and for every j` ∈ Z
(with l 6= n), one has

d− 1√
log(2 + |j`|+ y + 2jn(1−a) + z))

≤
√

log(2 + |j`|+ y + 2jn(1−a) + z).

Thus, denoting by Dz the partial derivative operator with respect of the variable
z, one can derive from the latter inequality that

Dz

d∏
`=1; 6̀=n

√
log(2 + |j`|+ y + 2jn(1−a) + z)

=

d∑
`=1; ` 6=n

∏d
i=1; i 6=n,`

√
log(2 + |ji|+ y + 2ji(1−a) + z)

2
√

log(2 + |j`|+ y + 2jn(1−a) + z)(2 + |j`|+ y + 2jn(1−a) + z)

≤
∏d
`=1; 6̀=n

√
log(2 + |j`|+ y + 2jn(1−a) + z)

2(2 + y + 2jn(1−a) + z)

and consequently that∫ +∞

0

∏d
`=1; ` 6=n

√
log(2 + |j`|+ y + 2jn(1−a) + z)

(2 + y + 2jn(1−a) + z)L
dz

≤ 2×
∏d
`=1; 6̀=n

√
log(2 + |j`|+ y + 2jn(1−a))

(2 + y + 2jn(1−a))L−1
.

This leads to

I1
j,k(t) ≤ 21−jn

∫ +∞

0

∏d
`=1; ` 6=n

√
log(2 + |j`|+ y + 2jn(1−a))

(2 + y + 2jn(1−a))L−1
dy

≤ 22−jn ×
∏d
`=1; ` 6=n

√
log(2 + |j`|+ 2jn(1−a))

(2 + 2jn(1−a))L−2
, (4.33)
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where the last inequality is obtained through an integration by parts and the
same arguments as before. Observe that, by using the definition of I2

j,k one can
show, as we already did it for deriving (4.33), that

I2
j,k ≤ 22−jn ×

∏d
`=1; ` 6=n

√
log(2 + |j`|+ 2jn(1−a))

(2 + 2jn(1−a))L−2
. (4.34)

Next, it follows from the definition (4.4), the inequalities (4.31), (4.33) and
(4.34), the triangle inequality, the inequalities (B.1) and (B.2) and the assump-
tions (1.11) that

H1
n,J :=

∑
j∈ℵn,J

2j1(1−h1)+···+jd(1−hd) × . . .

. . .× sup
t∈[0,T ]


∑

kn∈D1
jn

(t)

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| |Aj,k(t)− Fj,k|


≤ C2

+∞∑
jn=J

(jn + 1)
d
2 2−jn((L−2)(1−a)+hn) × . . .

. . .×
d∏

`=1; ` 6=n

 jn∑
j`=−∞

2j`(1−h`)
√

log(2 + |j`|+ 2jn(1−a))


≤ C2

+∞∑
jn=J

(jn + 1)
d
2 2−jn((L−2)(1−a)+h1+···+hd−d+1) × . . .

. . .×
d∏

`=1; ` 6=n

(
+∞∑
p=0

2−p(1−h`)
√

log(2 + jn + 2jn(1−a) + p)

)

≤ C3

+∞∑
jn=J

jd−1
n 2−jn((L−2)(1−a)+h1+···+hd−d+1)

≤ C4J
d−1 2−J((L−2)(1−a)+h1+···+hd−d+1)

where C2, C3 and C4 are positive almost surely finite random variables not
depending on n, t and J large enough.

4.3 Rate of convergence to zero of Mn,J

The goal of this subsection is to show, by making use of Borel-Cantelli Lemma,
that, on some event Ω∗∗ of probability 1, when J goes to +∞, the random vari-
ableMn,J , defined in (4.20), converges to zero at the rate J

d
2 2−J(h1+···+hd−d+1/2)

targeted in Theorem 2.12.
We start by giving a useful upper bound for (Fj,k)2, the square of determin-

istic integral Fj,k defined in (4.19).

Lemma 4.7. There exists a deterministic constant cψ > 0 such that for all

41



(j,k) ∈ (Zd)2, with jn = max
`∈[[1,d]]

j`, the following inequality holds:

(Fj,k)2 ≤ cψ 2−jn
∫
R

∣∣ψhn(2jns− kn)
∣∣ d∏
`=1
` 6=n

∣∣ψh`(2j`s− k`)∣∣2 ds.
Proof. Let Pjn,kn be the absolutely continuous probability measure on the Borel
σ-algebra of R whose density is the function s 7→ 2jn‖ψhn‖−1

L1(R)|ψhn(2jns−kn)|.
We clearly have that

(Fj,k)2 ≤

(∫
R

d∏
`=1

∣∣ψh`(2j`s− k`)∣∣ ds
)2

= 2−2jn‖ψhn‖2L1(R)

∫
R

d∏
`=1
` 6=n

∣∣ψh`(2j`s− k`)∣∣ dPjn,kn(s)


2

.

Then, it results from Jensen’s inequality that

(Fj,k)2 ≤ 2−2jn‖ψhn‖2L1(R)

∫
R

d∏
`=1
` 6=n

∣∣ψh`(2j`s− k`)∣∣2 dPjn,kn(s)

= 2−jn‖ψhn‖L1(R)

∫
R

∣∣ψhn(2jns− kn)
∣∣ d∏
`=1
` 6=n

∣∣ψh`(2j`s− k`)∣∣2 ds.
Then, setting cψ := max

`∈[[1,d]]
‖ψh`‖L1(R) one obtains the lemma.

In order to bound in a convenient way the random variables M̃n,j(t), defined
in (4.21), we will combine some Borel-Cantelli arguments with the following
fundamental result [13, Theorem 6.7].

Lemma 4.8. For any fixed integer d ≥ 1, there exists a (strictly) positive
finite universal deterministic constant cd such that, for every random variable
X belonging to the Wiener chaos of order d and for each real number y ≥ 2,
one has

P(X ≥ y‖X‖L2(Ω)) ≤ exp
(
− cd y2/d

)
.

We will apply Lemma 4.8 to the random variable M̃n,j(t). This is why it is
useful to control its L2(Ω) norm uniformly in t ∈ [0, T ].

Lemma 4.9. There exists a finite constant c > 0, depending on T , such that,
for all n ∈ [[1, d]] and j ∈ ℵn,1, we have

sup
t∈[0,T ]

‖M̃n,j(t)‖L2(Ω) ≤ c 2−jn/2. (4.35)

Proof. Throughout the proof t ∈ [0, T ] and j ∈ ℵn,J (recall that jn denotes the
nth coordinate of j) are arbitrary and fixed. The equivalence relation ∼ on the
set kjnn (t) is defined as:

∀ (k,k′) ∈ kjnn (t)× kjnn (t), k ∼ k′ ⇐⇒ εj,k = εj,k′ .
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Let us emphasize that, we know from Remark 2.18 and Proposition 2.19 that

∀ (k,k′) ∈ kjnn (t)× kjnn (t), k ∼ k′ ⇐⇒ E[εj,kεj,k′ ] 6= 0. (4.36)

Since kjnn (t) is a finite set, the equivalence classes for the equivalence rela-
tion ∼ are in finite number denoted by M . Let us then denote them by
kjnn,1(t), . . . ,kjnn,M (t). Then using a well-known result on equivalence relations,
the set kjnn (t) can be expressed as:

kjnn (t) =

M⋃
i=1

kjnn,i(t) (disjoint union). (4.37)

Also we mention that, we know from Remark 2.18 that, for each i ∈ [[1,M ]], we
have

Card(kjnn,i(t)) ≤ d ! (4.38)

Next, observe that it follows from (4.36) that

Cov

( ∑
k∈kjn

n,i′ (t)

Fj,kεj,k ,
∑

k∈kjn
n,i′′ (t)

Fj,kεj,k

)
= 0, when i′ 6= i′′. (4.39)

Then, one can derive from (4.21), (4.37), (4.39), Proposition 2.19 and the tri-
angular inequality, that

‖M̃n,j(t)‖2L2(Ω) =

∥∥∥∥∥∥∥
M∑
i=1

∑
k∈kjnn,i(t)

Fj,kεj,k

∥∥∥∥∥∥∥
2

L2(Ω)

=

M∑
i=1

∥∥∥∥∥∥∥
∑

k∈kjnn,i(t)

Fj,kεj,k

∥∥∥∥∥∥∥
2

L2(Ω)

=

M∑
i=1

∑
k∈kjnn,i(t)

∑
k′∈kjnn,i(t)

Fj,kFj,k′E [εj,kεj,k′ ]

≤ d !

M∑
i=1

∑
k∈kjnn,i(t)

∑
k′∈kjnn,i(t)

∣∣Fj,k
∣∣∣∣Fj,k′

∣∣

= d !

M∑
i=1

 ∑
k∈kjnn,i(t)

∣∣Fj,k
∣∣


2

.

Then using the convexity of the function x 7→ x2, the inequality (4.38) and the
equality (4.37), we get that

‖M̃n,j(t)‖2L2(Ω) ≤ (d !)2
M∑
i=1

∑
k∈kjnn,i(t)

F 2
j,k = (d !)2

∑
k∈kjnn (t)

F 2
j,k . (4.40)

Moreover, putting together Lemma 4.7, (4.18), the fast decay property (1.4)
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with L > 1, and the inequality sup
x∈R

∑
k∈Z

(
3 + |x− k|

)−L
<∞ we get that

∑
k∈kjnn (t)

F 2
j,k ≤ cψ 2−jn

∑
kn∈D1

jn
(t)

∫
R

∣∣ψhn(2jns− kn)
∣∣ d∏
`=1
6̀=n

(∑
k`∈Z

∣∣ψh`(2j`s− k`)∣∣2
)
ds

≤ c12−jn
∑

kn∈D1
jn

(t)

∫
R

∣∣ψhn(2jns− kn)
∣∣ d∏
`=1
` 6=n

(∑
k`∈Z

(
3 + |2j`s− k`|

)−L)
ds

≤ c22−jn
∑

kn∈D1
jn

(t)

∫
R

∣∣ψhn(2jns− kn)
∣∣ ds

= c2‖ψhn‖L1(R) 2−2jn Card(D1
jn(t)) , (4.41)

where c1 and c2 are finite positive constants not depending on n, t and j. Then,
(4.40), (4.41), and (4.28) entail that (4.35) is satisfied.

The following remark shows that the supremum in (4.20) is in fact a supre-
mum on a well-chosen finite set.

Remark 4.10. For each fixed j ∈ N and t ∈ R+, we denote by mj,t the integer
part of the real number 2jt − 2j(1−a), that is mj,t := b2jt − 2j(1−a)c. Thus, in
view of the definition (4.10) of the set D1

j (t), it turns out that

D1
j (t) =

{
∅ if t ∈ [0, 21−ja)

D1
j (mj,t2

−j + 2−ja) if t ∈ [21−ja,∞).
(4.42)

Then, we can derive from (4.42) that, for all n ∈ [[1, d]] and j ∈ ℵn,1,

sup
t∈[0,T ]

|M̃n,j(t)| = sup
m∈Ijn

|M̃n,j(m2−jn + 2−jna)|, (4.43)

where the arbitrary real number T > 2 is fixed and Ij stands for the finite set

Ij := N ∩ (2j(1−a) − 1, 2jT − 2j(1−a)]. (4.44)

Lemma 4.11. Let T > 2 be a fixed real number. There exist Ω∗∗ an event of
probability 1 and a positive almost surely finite random variable C∗∗ such that,
for all n ∈ [[1, d]] and j ∈ ℵn,1, on Ω∗∗, we have

sup
t∈[0,T ]

|M̃n,j(t)| ≤ C∗∗2−jn/2 log(3 + |j|+ 2jnT )
d
2 . (4.45)

Proof. Let us first show that if (Xj)j∈N is an arbitrary sequence of random
variables in the Wiener chaos of order d, there exist Ω1, an event of probability
1, and a positive almost surely finite random variable C1 such that, for all j ∈ N,
on Ω1, we have

|Xj | ≤ C1 log(3 + j)
d
2 ‖Xj‖L2(Ω). (4.46)

Let κ ≥ 2 be a constant which will be precisely defined later. Applying, for any
j ∈ N, Lemma 4.8 to the random variable Xj , we get that

P
(
|Xj | ≥ κ log(3 + j)

d
2 ‖Xj‖L2(Ω)

)
≤ exp

(
− cdκ

2
d log(3 + j)

)
,
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where cd is the same universal positive constant as in Lemma 4.8. Thus, assum-
ing that the constant κ satisfies κ > c

− d2
d , it turns out that the series∑

j∈N
P
(
|Xj | ≥ κ log(3 + j)

d
2 ‖Xj‖L2(Ω)

)
is convergent; then, the existence of Ω1 and C1 follows from Borel-Cantelli
Lemma. Next, notice that, thanks to an indexation argument, the result ob-
tained in (4.46) can be applied to the sequence of random variables{

M̃n,j(m2−jn + 2−jna) : n ∈ [[1, d]], j ∈ ℵn,1,m ∈ Ijn
}
.

By this way, we can show that there are Ω∗∗ an event of probability 1 and a
positive almost surely finite random variable C2 (depending on T ) such that,
on Ω∗∗, we have, for all n ∈ [[1, d]], j ∈ ℵn,1 and m ∈ Ijn , that

|M̃n,j(m2−jn + 2−jna)| ≤ C2 log(3 + |j|+m)
d
2 ‖M̃n,j(m2−jn + 2−jna)‖L2(Ω).

(4.47)

Then, putting together (4.47), (4.35), (4.44) and (4.43), we obtain (4.45).

Lemma 4.12. Let T > 2 be a fixed real number. There exists a positive almost
surely finite random variable C such that, for all n ∈ [[1, d]] and J ∈ N, on
Ω∗∗ (see Lemma 4.11), the random variableMn,J (see (4.20)) is bounded from
above by CJ

d
2 2−J(h1+···+hd−d+ 1

2 ).

Proof. Let us fix J ∈ N, using (4.20), (4.4), (4.45), (B.1), the triangular inequal-
ity, (B.2) and (1.11), we obtain that

Mn,J ≤ C0

+∞∑
jn=J

2jn( 1
2−hn) log(3 + d jn + 2jnT )

d
2 × . . .

. . .×
d∏
`=1
6̀=n

 jn∑
j`=−∞

2j`(1−h`) log(3 + |jn − j`|)
d
2


≤ C1

+∞∑
jn=J

2−jn(h1+···+hd−d+ 1
2 ) log(3 + d jn + 2jnT )

d
2 × . . .

. . .×
d∏
`=1
6̀=n

(
+∞∑
p=0

2−p(1−h`) log(3 + p+ 2jnT )
d
2

)

≤ C2

+∞∑
jn=J

2−jn(h1+···+hd−d+ 1
2 )j

d
2
n

≤ C32−J(h1+···+hd−d+ 1
2 )J

d
2 ,

where C0, C1, C2 and C3 are positive almost surely finite random variables not
depending on n and J .
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4.4 End of the proof of Theorem 2.12
We are now in position to complete the proof of Theorem 2.12.

End of the Proof of Theorem 2.12. Without loss of generality, one can assume
that the compact interval I in the statement of the theorem is of the form
I = [0, T ] for a fixed real number T > 2. Let Ω̃ be the event of probability 1

defined as: Ω̃ := Ω∗ ∩Ω∗∗, where Ω∗ and Ω∗∗ are as in Lemmata 2.16 and 4.11.
First, we will show that, for each fixed ω ∈ Ω̃ and j ∈ Zd, the series of

continuous function
∑

k∈Zd Aj,kεj,k(ω) is normally convergent with respect to
the uniform norm ‖ · ‖I,∞. Using the inequality (4.3), the bound (2.31) and
the triangular inequality, one gets, for some positive finite random variable C1,
depending on T and j ∈ Zd, that∑

k∈Zd
‖Aj,k‖I,∞|εj,k(ω)|

≤ C1(ω)
∑
k∈Zd

∫ T

0

d∏
`=1

√
log(3 + |j`|+ |k`|)

(1 + 2j`T + |2j`s− k`|)2
ds

≤ C1(ω)
∑
k∈Zd

∫ T

0

d∏
`=1

√
log(3 + |j`|+ |k`|)

(1 + 2j`T + |k`| − |2j`s|)2
ds

≤ C1(ω)T
∑
k∈Zd

√
log(3 + |j`|+ |k`|)

(1 + |k`|)2
<∞,

which shows that the normal convergence holds.
Next, for each j ∈ Zd, we denote by {Xj(t)}t∈I the stochastic process with

continuous paths vanishing outside of Ω̃ and defined on I × Ω̃ as

Xj(t, ω) =
∑
k∈Zd

Aj,k(t)εj,k(ω). (4.48)

Observe that in order to complete the proof of the theorem, it is enough to show
that there exists a positive finite random variable C̃ such that, for every J ∈ N,
the following inequality holds on Ω̃:∑

(j,k)∈(Zd)2

max`∈[[1,d]] j`≥J

2j1(1−h1)+···+jd(1−hd)‖Xj‖I,∞ ≤ C̃J
d
2 2−J(h1+···+hd−d+ 1

2 ). (4.49)

Indeed, assuming that (4.49) is true, then it clearly entails that, for all fixed
J ∈ N and every ω ∈ Ω̃, one has∑

j∈Zd
max`∈[[1,d]] j`≥J

2j1(1−h1)+···+jd(1−hd)‖Xj(·, ω)‖I,∞ <,∞,

which means that the series of continuous function

XJ(·, ω) :=
∑
j∈Zd

max`∈[[1,d]] j`≥J

2j1(1−h1)+···+jd(1−hd)Xj(·, ω) (4.50)
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is normally convergent with respect to the uniform norm ‖ · ‖I,∞ and thus
XJ(·, ω) is a continuous function on I. Then, we denote by {XJ(t)}t∈I the
stochastic process with continuous paths vanishing outside of Ω̃ and defined on
I × Ω̃ by (4.50). Thus, (4.49) and the triangular inequality imply that, for all
J ∈ N, the following inequality holds on Ω̃:

‖XJ‖I,∞ ≤ C̃J
d
2 2−J(h1+···+hd−d+ 1

2 ). (4.51)

On another hand, we know from the equality (2.8) that, for all fixed J ∈ N and
t ∈ I, the random series ∑

j∈Zd
max`∈[[1,d]] j`≥J

2j1(1−h1)+···+jd(1−hd)Xj(t)

converges to X(d,⊥)
h,J (t) := X

(d)
h (t)−X(d)

h,J(t) in L2(Ω). Combining this fact with
(4.50) one concludes that, for all t ∈ I, almost surely,

XJ(t) = X
(d)
h (t)−X(d)

h,J(t).

This latter equality and the fact that the two stochastic processes {XJ(t)}t∈I
and {X(d)

h (t) − X
(d)
h,J(t)}t∈I have continuous paths imply that these two pro-

cesses are indistinguishable. Thus, the inequality (4.51) is nothing else than the
inequality (2.25).

It remains us to show that (4.49) holds. In fact, it results from Lemmata
4.2, 4.4, 4.5, 4.6, 4.12 and the inequality:

∑
(j,k)∈(Zd)2

max`∈[[1,d]] j`≥J

2j1(1−h1)+···+jd(1−hd)‖Xj‖I,∞ ≤
d∑

n=1

(
Mn,J +

3∑
m=0

Hmn,J

)
,

which is obtained by using (4.48), the triangular inequality, standard com-
putations, and the definitions of the random variables Mn,J , and Hmn,J with
m ∈ [[0, 3]].

5 Proof of Theorem 2.14
The real number T > 2 is arbitrary and fixed. Let Ω̃ be the same event of
probability 1 as in the proof of Theorem 2.12; recall that it is defined as Ω̃ :=
Ω∗ ∩Ω∗∗, where the two events Ω∗ and Ω∗∗ of probability 1 are as in Lemmata
2.16 and 4.11. Next, observe that for proving Theorem 2.14 it is enough to show
that there exists a positive finite random variable C such that, on Ω̃, we have,
for all N,P ∈ N,∥∥X̃(d)

h,N+P − X̃
(d)
h,N

∥∥
[0,T ],∞ ≤ CN

d
2 2−N(h1+···+hd−d+1/2), (5.1)

where, for all fixed ω ∈ Ω, the continuous function X̃(d)
h,N (·, ω) is defined through

(2.27). Indeed, assuming that (5.1) is true, then it turns out that, for each
fixed ω ∈ Ω̃, the sequence of functions

(
X̃

(d)
h,N (·, ω)

)
N∈N is a Cauchy sequence in
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the Banach space of the real-valued continuous functions over [0, T ], equipped
with the uniform norm ‖ · ‖[0,T ],∞. Therefore, it converges, for this norm, to a
continuous function over [0, T ] denoted by X̃(d)

h (·, ω). On another hand, when
ω ∈ Ω \ Ω̃ we set X̃(d)

h (t, ω) = 0, for all t ∈ [0, T ]. Next, observe that, in view of
the previous definition of the stochastic process {X̃(d)

h (t)}t∈[0,T ] we have, for all
t ∈ [0, T ], almost surely,

X
(d)
h (t) = X̃

(d)
h (t), (5.2)

since we know from (2.27) and (2.26), that, for each fixed t ∈ R+ (and in par-
ticular for t ∈ [0, T ]), the sequence of random variables (X̃

(d)
h,N (t))N∈N converges

to X
(d)
h (t) in L2(Ω). Next, using the fact that the two stochastic processes

{X(d)
h (t)}t∈[0,T ] and {X̃

(d)
h (t)}t∈[0,T ] have continuous paths, we can derive from

the almost sure equality (5.2) that these two processes are indistinguishable.
Thus, letting P in (5.1) tends to +∞ , we obtain (2.28).

From now on, we focus on the proof of the inequality (5.1). Let us explain its
main lines. Observe that we know from Definition 2.13 that the two sequences
of subsets of Zd (S+

N )N∈N and (S−N )N∈N, which are related to
(
X̃

(d)
h,N (·, ω)

)
N∈N

(see (2.27)), are increasing in the sense of the inclusion, and one has, for all
N ′, N ′′ ∈ N, that S+

N ′ ∩ S
−
N ′′ = ∅. Thus, one can derive from (2.27) that, for

every N ∈ N, P ∈ N and t ∈ [0, T ],

X̃
(d)
h,N+P (t)− X̃(d)

h,N (t) =
∑

(j,k)∈S+
N+P \S

+
N

εj,kK(d,h)
j,k (t) +

∑
(j,k)∈S−N+P \S

−
N

εj,kK(d,h)
j,k (t).

(5.3)
The first step of the proof of (5.1) consists in showing that, on Ω̃, one has,

for some positive finite random variable denoted by C+ and for all N,P ∈ N,∥∥∥ ∑
(j,k)∈S+

N+P \S
+
N

εj,kK(d,h)
j,k

∥∥∥
[0,T ],∞

≤ C+N
d
2 2−N(h1+···+hd−d+1/2). (5.4)

Observe that, in view of Definition 2.13, the the set S+
N+P \S

+
N can be expressed

as

S+
N+P \ S

+
N = (ℵ0

N,P × i(i)
N,P,T ) ∪ (ℵ1

N,P × i(ii)
N,P,T ) ∪ (ℵ2

N,P × i(i)
N,P,T ), (5.5)

where

ℵ0
N,P :=

{
j ∈ Zd : −2(N+P )b ≤ min

`∈[[1,d]
j` and N ≤ max

`∈[[1,d]
j` < N + P

}
, (5.6)

ℵ1
N,P :=

{
j ∈ Zd : −2Nb ≤ min

`∈[[1,d]
j` and 0 ≤ max

`∈[[1,d]
j` < N

}
, (5.7)

ℵ2
N,P :=

{
j ∈ Zd : −2(N+P )b ≤ min

`∈[[1,d]
j` < −2Nb and 0 ≤ max

`∈[[1,d]
j` < N

}
(5.8)

and
i(i)
N,P,T :=

{
k ∈ Zd : max

`∈[[1,d]
|k`| ≤ 2N+P+1T

}
, (5.9)

i(ii)
N,P,T :=

{
k ∈ Zd : 2N+1T < max

`∈[[1,d]
|k`| ≤ 2N+P+1T

}
. (5.10)
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Then, it results from (5.5), the triangular inequality and (4.1) that

∥∥∥ ∑
(j,k)∈S+

N+P \S
+
N

εj,kK(d,h)
j,k

∥∥∥
[0,T ],∞

≤
2∑
`=0

∇`N,P , (5.11)

where

∇0
N,P :=

∑
j∈ℵ0N,P

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈i(i)

N,P,T

εj,kAj,k(t)
∣∣∣,

∇1
N,P :=

∑
j∈ℵ1N,P

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈i(ii)

N,P,T

εj,kAj,k(t)
∣∣∣,

and

∇2
N,P :=

∑
j∈ℵ2N,P

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈i(i)

N,P,T

εj,kAj,k(t)
∣∣∣.

Observe that, we know from (4.10) that the inclusion D1
j (t) ⊂ {k ∈ Z : |k| ≤

2N+P+1T} holds for all t ∈ [0, T ] and 1 ≤ j ≤ N+P+1. Thus, putting together
(5.6), (5.9), (4.4), (4.23), (4.16), (4.17), (4.8) and (4.20), we obtain that

∇0
N,P ≤

d∑
n=1

(
Mn,N +

3∑
m=0

Hmn,N

)
.

Then, it results from Lemmata 4.2, 4.4, 4.5, 4.6, and 4.12 that, on the event
Ω̃ = Ω∗ ∩Ω∗∗ of probability 1, one has, for some positive finite random variable
C+

0 and for all N,P ∈ N,

∇0
N,P ≤ C+

0 N
d
2 2−N(h1+···+hd−d+1/2). (5.12)

On another hand, we can derive from (5.7) and (5.10) and the triangle inequality
that

∇1
N,P ≤

d∑
n=1

L1
n,N , (5.13)

where, for all n ∈ [[1, d]],

L1
n,N :=

∑
j`<N
`∈[[1,d]]

2j1(1−h1)+···+jd(1−hd) × . . .

. . .×
∑

|kn|>2N+1T

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| sup
t∈[0,T ]

{|Aj,k(t)|} . (5.14)

Moreover, we can derive from (5.8) and (5.9) and the triangle inequality that

∇2
N,P ≤

d∑
n=1

L2
n,N , (5.15)
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where, for all n ∈ [[1, d]],

L2
n,N :=

∑
jn≤−2Nb

∑
j`<N

`∈[[1,d]]\{n}

2j1(1−h1)+···+jd(1−hd)
∑
k∈Zd

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| .

(5.16)

In Subsection 5.1, it is shown that, on the event Ω∗ of probability 1, for some
positive finite random variables C1 and C2, one has, for all n ∈ [[1, d]] and N ∈ N,
that

L1
n,N ≤ C12−N(h1+···+hd+L−d−1)N

d
2 log(3+N)

d
2 = o

(
N

d
2 2−N(h1+···+hd−d+1/2)

)
,

(5.17)
the real number L > 3/2 being arbitrary and fixed, and that

L2
n,N ≤ C2N

d
2 2N(

∑
` 6=n(1−h`))−2Nb(1−hn) = o

(
N

d
2 2−N(h1+···+hd−d+1/2)

)
,

(5.18)
where b > 0 is as in Definition 2.13. Then, putting together (5.11), (5.12),
(5.13), (5.15), (5.17) and (5.18), we obtain (5.4). We mention in passing that
the inequalities (4.3) and (2.31), as well as the inequalities (B.1) (B.2) and (B.3)
in Appendix B, are the main ingredients for proving (5.17) and (5.18).

The second step of the proof of (5.1) consists in showing that, on Ω∗, one has,
for some positive finite random variable denoted by C− and for all N,P ∈ N,∥∥∥ ∑

(j,k)∈S−N+P \S
−
N

εj,kK(d,h)
j,k

∥∥∥
[0,T ],∞

(5.19)

≤ C−
(

2−N(L−1)g
√
N +N

d
2 2−2Nb

′
(1−hn)

)
= o
(
N

d
2 2−N(h1+···+hd−d+1/2)

)
,

where g > 0 and b′ > 0 are as in Definition 2.13 and the real number L > 1+2g−1

is arbitrary and fixed. Observe that, in view of Definition 2.13, the the set
S−N+P \ S

−
N can be expressed as

S−N+P \ S
−
N = (ℵ3

N,P × i(iii)
N,P,T ) ∪ (ℵ4

N,P × i(iv)
N,P,T ) (5.20)

where
ℵ3
N,P := {j ∈ −Nd : −2Nb

′
≤ min
`∈[[1,d]

j`}, (5.21)

ℵ4
N,P := {j ∈ Zd : j ∈ −Nd : −2(N+P )b′ ≤ min

`∈[[1,d]
j` < −2Nb

′
}, (5.22)

and
i(iii)
N,P,T := {k ∈ Zd : 2Ng < max

`∈[[1,d]
|k`| ≤ 2(N+P )g}, (5.23)

i(iv)
N,P,T := {k ∈ Zd : max

`∈[[1,d]
|k`| ≤ 2(N+P )g}. (5.24)

It results from (5.20), the triangular inequality and (4.1) that∥∥∥ ∑
(j,k)∈S−N+P \S

−
N

εj,kK(d,h)
j,k

∥∥∥
[0,T ],∞

≤ ∇3
N,P +∇4

N,P , (5.25)
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where

∇3
N,P :=

∑
j∈ℵ3N,P

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈i(iii)

N,P,T

εj,kAj,k(t)
∣∣∣

and

∇4
N,P :=

∑
j∈ℵ4N,P

2j1(1−h1)+···+jd(1−hd) sup
t∈[0,T ]

∣∣∣ ∑
k∈i(iv)

N,P,T

εj,kAj,k(t)
∣∣∣.

Then, notice that (5.21), (5.23) and the triangle inequality imply that

∇3
N,P ≤

d∑
n=1

L3
n,N , (5.26)

where, for all n ∈ [[1, d]],

L3
n,N :=

∑
j∈−Nd

2j1(1−h1)+···+jd(1−hd)
∑

|kn|>2Ng

∑
k`∈Z

`∈[[1,d]], 6̀=n

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| .

(5.27)

Also, notice that (5.22), (5.24) and the triangle inequality entail that

∇4
N,P ≤

d∑
n=1

L4
n,N , (5.28)

where, for all n ∈ [[1, d]],

L4
n,N :=

∑
jn≤−2Nb′

∑
j`<0

`∈[[1,d]]\{n}

2j1(1−h1)+···+jd(1−hd)
∑
k∈Zd

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| .

(5.29)

In Subsection 5.2, it is shown that, on the event Ω∗ of probability 1, for some
positive finite random variables C3 and C4, one has, for all n ∈ [[1, d]] and N ∈ N,
that

L3
n,N ≤ C32−N(L−1)g

√
N, (5.30)

and that
L4
n,N ≤ C4N

d
2 2−2Nb

′
(1−hn). (5.31)

Then, putting together (5.25), (5.26), (5.28), (5.30) and (5.31), we obtain (5.19).
We mention in passing that the inequalities (4.3), (2.31) and (B.1) in Appendix
B, are the main ingredients for proving (5.30) and (5.31).

Finally, combining (5.3) with (5.4) and (5.19), it follows that (5.1) is satisfied.

5.1 Rates of convergence to zero of L1
n,N and L2

n,N

Lemma 5.1. Let T > 2 and L > 3/2 be two fixed real numbers. There exits a
positive almost surely finite random variables C such that, for all n ∈ [[1, d]] and
N ∈ N, on Ω∗, the random variable L1

n,N , defined by (5.14), is bounded from
above by C2−N(h1+···+hd+L−d−1)N

d
2 log(3 +N)

d
2 .
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Proof. Let us fix n ∈ [[1, d]], N ∈ N and j ∈ (−∞, N)d. Using the definition (4.2),
the inequality (4.3), the bound (2.31), the triangular inequality, inequalities
(B.1) and (B.3) and the fact that the function y 7→ (2 + y)−L

√
log(2 + y) is

decreasing on R+, we get∑
|kn|>2N+1T

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| sup
t∈[0,T ]

|Aj,k(t)|

≤ C0

∫ T

0

∑
|kn|>2N+1T

√
log(3 + |jn|+ |kn|)

(3 + |2jns− kn|)L
× . . .

. . .×
d∏
`=1
` 6=n

(∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + |2j`s− k`|)L

)
ds

≤ C1

∫ T

0

∑
|kn|>2N+1T

√
log(3 + |jn|+ |kn|)

(3 + |kn| − 2jns)L

d∏
`=1
` 6=n

(√
log(3 + |j`|+ 2j`s)

)
ds

≤ C1T2L
√

log(3 + |jn|)

 d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

× . . .
. . .×

 ∑
|kn|>2N+1T

√
log(3 + |kn|)
(3 + |kn|)L


≤ C1T2L+1

√
log(3 + |jn|)

 d∏
`=1
` 6=n

√
log(3 + |j`|+ 2j`T )

× . . .
. . .×

(∫ +∞

2N+1T

√
log(2 + y)

(2 + y)L

)

≤ C2

√√√√ d∏
`=1

log(3 + |j`|)N
d
2 2−N(L−1), (5.32)

where C0, C1 and C2 are positive almost surely finite random variables not
depending on j and N . It follows from (5.32) that

L1
n,N ≤ C2N

d
2 2−N(L−1)

N−1∑
j1=−∞

· · ·
N−1∑
jd=−∞

2j1(1−h1)+···+jd(1−hd)

√√√√ d∏
`=1

log(3 + |j`|)

≤ C3N
d
2 log(3 +N)

d
2 2−N(h1+···+hd+L−d−1),

where C3 is a positive almost surely finite random variable not depending on
N .

Lemma 5.2. Let T > 2 and b > 0 be two fixed real numbers. There exits a
positive almost surely finite random variable C such that, for all n ∈ [[1, d]] and
N ∈ N, on Ω∗, the random variable L2

n,N , defined in (5.16), is bounded from

above by CN
d
2 2N(

∑
` 6=n(1−h`))−2Nb(1−hn).
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Proof. Let us fix n ∈ [[1, d]] and N ∈ N and j ∈ Zd such that jn ≤ −2Nb and,
for ` ∈ [[1, d]] \ {n}, j` < N . Using the definition (4.2), the inequality (4.3), the
bound (2.31), the inequality (B.1), the triangular inequality and the inequalities
(B.3) and (B.2), we get∑

k∈Zd
|εj,k| sup

t∈[0,T ]

|Aj,k(t)|

≤ C0

∫ T

0

(∑
kn∈Z

√
log(3 + |jn|+ |kn|)

(3 + T + |2jns− kn|)2

)
× . . .

. . .×
d∏

`=1, 6̀=n

∑
`∈Zd

√
log(3 + |j`|+ |k`|)
(3 + |2j`s− k`|)2

 ds

≤ C0

√
log(3 + |jn|)

∫ T

0

(∑
kn∈Z

√
log(3 + |kn|)
(3 + |kn|)2

)
× . . .

. . .×
d∏

`=1, 6̀=n

√
log(3 + |j`|+ 2j`s) ds

≤ C1

√
log(3 + |jn|)

d∏
`=1, 6̀=n

√
log(3 + |j`|+ 2j`T ), (5.33)

where C0 and C1 are positive almost surely finite random variables not depend-
ing on j and N . It follows from (5.33) that

L2
n,N ≤ C1

b−2Nbc∑
jn=−∞

2jn(1−hn)
√

log(3 + |jn|)

× · · ·
· · · ×

d∏
`=1, 6̀=n

 N∑
j`=−∞

2j`(1−h`)
√

log(3 + |j`|+ 2j`T )


. . .×

d∏
`=1, 6̀=n

≤ C2N
d
2 2N(

∑
` 6=n(1−h`))−2Nb(1−hn),

where C2 is a positive almost surely finite random variable not depending on
N .

5.2 Rates of convergence to zero of L3
n,N and L4

n,N

Lemma 5.3. Let T > 2, g > 0 and L > 1 + 2g−1 be three fixed real numbers.
There exits a positive almost surely finite random variable C such that, for all
n ∈ [[1, d]] and N ∈ N, on Ω∗, the random variable L2

n,N , defined by (5.27), is
bounded from above by C2−N(L−1)g

√
N.

Proof. Let us fix n ∈ [[1, d]] and N ∈ N and j ∈ −Nd. Using the definition
(4.2), the inequality (4.3), the bound (2.31), the inequality (B.1), the triangular
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inequality and the fact that the function y 7→ (2+y)−L
√

log(2 + y) is decreasing
on R+, we get∑

|kn|>2Ng

∑
k`∈Z

`∈[[1,d]]\{n}

|εj,k| sup
t∈[0,T ]

|Aj,k(t)|

≤ C0

∫ T

0

∑
|kn|>2Ng

√
log(3 + |jn|+ |kn|)

(3 + T + |2jns− kn|)L
× . . .

. . .×
d∏
`=1
` 6=n

(∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + T + |2j`s− k`|)L

)
ds

≤ C0

√√√√ d∏
`=1

log(3 + |j`|)
∫ T

0

∑
|kn|>2Ng

√
log(3 + |kn|)
(3 + |kn|)L

× . . .

. . .×
d∏
`=1
` 6=n

(∑
k`∈Z

√
log(3 + |k`|)
(3 + |k`|)L

)
ds

≤ C1

√√√√ d∏
`=1

log(3 + |j`|)
∑

|kn|>2Ng

√
log(3 + |kn|)
(3 + |kn|)L

≤ 2C1

√√√√ d∏
`=1

log(3 + |j`|)
∫ +∞

2Ng

√
log(2 + y)

(2 + y)L

≤ C2

√√√√ d∏
`=1

log(3 + |j`|)2−N(L−1)g
√
N, (5.34)

where C0, C1 and C2 are positive almost surely finite random variables not
depending on j and N . It follows from (5.34) that

L3
n,N ≤ C22−N(L−1)g

√
N
∑

j∈−Nd
2j1(1−h1)+···+jd(1−hd)

√√√√ d∏
`=1

log(3 + |j`|)

≤ C32−N(L−1)g
√
N,

where C3 is a positive almost surely finite random variables not depending on
N .

Lemma 5.4. Let T > 2 and b′ > 0 be two fixed real numbers. There exits a
positive almost surely finite random variable C such that, for all n ∈ [[1, d]] and
N ∈ N, on Ω∗, the random variable L4

n,N , defined in (5.29), is bounded from

above by CN
d
2 2−2Nb

′
(1−hn).

Proof. Let us fix n ∈ [[1, d]] and N ∈ N and j ∈ −Nd such that jn ≤ −2Nb
′
.

Using the definition (4.2), the inequality (4.3), the bound (2.31), the inequality
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(B.1) and the triangular inequality, we get

∑
k∈Zd

|εj,k| sup
t∈[0,T ]

|Aj,k(t)| ≤ C0

∫ T

0

d∏
`=1

(∑
k`∈Z

√
log(3 + |j`|+ |k`|)

(3 + T + |2j`s− k`|)2

)
ds

≤ C0

∫ T

0

d∏
`=1

(∑
k`∈Z

√
log(3 + |j`|)

√
log(3 + |k`|)

(3 + |k`|)2

)
ds

≤ C1

d∏
`=1

√
log(3 + |j`|), (5.35)

where C0 and C1 are positive almost surely finite random variables not depend-
ing on j and N . It follows from (5.35) that

L4
v,N ≤ C1

b−2Nb
′
c∑

jn=−∞
2jn(1−hn)

√
log(3 + |jn|)

× . . .
. . .×

d∏
`=1, 6̀=n

 −1∑
j`=−∞

2j`(1−h`)
√

log(3 + |j`′ |)


≤ C2N

d
2 2−2Nb

′
(1−hn),

where C2 is a positive almost surely finite random variable not depending on
N .
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A Some facts concerning multiple Wiener inte-
grals

In this section, we mainly give the proof of the crucial equality (2.20). This
proof relies on some fundamental facts concerning multiple Wiener integrals.
We refer to the two books [22, 23] for detailed presentations of such stochastic
integrals and many other related topics (Wiener chaoses, Malliavin calculus, and
so on). We recall that a function f ∈ L2(Rn) is said to be symmetric if, for all
σ ∈ Sn (the set of permutations of [[1, n]] = {1, . . . , n}) and for Lebesgue almost
every (x1, . . . , xn) ∈ Rn, one has f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn). In other
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words, f ∈ L2(Rn) is symmetric if and only if it is almost everywhere equal to
its canonical symmetrization f̃ defined, for all (x1, . . . , xn) ∈ Rn, as:

f̃(x1, . . . , xn) :=
1

n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)). (A.1)

We point out that a very fundamental property of multiple integrals is that

In(f) = In(f̃), for all f ∈ L2(Rn). (A.2)

For proving the equality (2.20), we will make use of the so-called product
formula for multiple Wiener integrals [23, Proposition 1.1.3]. In order to give
this important formula, first we need the following definition: let m and n be
two arbitrary positive integers, if f ∈ L2(Rm) and g ∈ L2(Rn) are symmetric
functions and r ∈ [[0,m∧n]], the contraction f⊗r g is the L2(Rm+n−2r) function
defined, for all (x1, . . . , xm+n−2r) ∈ Rm+n−2r, through the Lebesgue integral

(f ⊗r g)(x1, . . . , xm+n−2r)

:=

∫
Rr
f(x1, . . . , xm−r, s1, . . . , sr)g(xm−r+1, . . . , xm+n−2r, s1, . . . , sr) ds1 . . . dsr ,

with the convention that f ⊗0 g := f ⊗ g, which means that f ⊗0 g is the usual
tensor product of f and g; also notice that when m = n, then f⊗n g is identified
with the Lebesgue integral

∫
Rn fg. Using, the previous definition, one can write

the product formula for multiple Wiener integrals in the following way: for each
positive integers m and n, and for every symmetric functions f ∈ L2(Rm) and
g ∈ L2(Rn), one has

Im(f)In(g) =

m∧n∑
r=0

r!

(
m

r

)(
n

r

)
Im+n−2r(f ⊗r g), (A.3)

where, for p = m or p = n, the quantity
(
p
r

)
is the usual binomial coefficient(

p

r

)
:=

p!

r!(p− r)!
.

For proving the equality (2.20), we will also make use of the following fun-
damental result, which, for instance corresponds to [22, Theorem 2.7.7].

Theorem A.1. Let f ∈ L2(R) be such that ‖f‖L2(R) = 1. For all positive
integer n, let Hn the Hermite polynomial of degree n. Then, one has

Hn (I1(f)) = In(f⊗n).

We are now in position to prove the equality (2.20)

Proof of the equality (2.20). It follows from Theorem A.1 that

p∏
`=1

Hn`

(
I1(ϕ`)

)
=

p∏
`=1

In`

(
ϕ
⊗n`
`

)
,
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and thus, it remains to show

p∏
`=1

In`

(
ϕ
⊗n`
`

)
= In1+···+np

(
p⊗
`=1

ϕ
⊗n`
`

)
. (A.4)

We proceed by induction on the positive integer p. It is clear that (A.4) is
satisfied when p = 1. So from now on, we assume that p ≥ 2 and that

p−1∏
`=1

In`

(
ϕ
⊗n`
`

)
= In1+···+np−1

(
p−1⊗
`=1

ϕ
⊗n`
`

)
.

Then, setting n = n1 + · · ·+np−1 and d = n1 + · · ·+np = n+np, we can derive
from the product formula (A.3) that

p∏
`=1

In`

(
ϕ
⊗n`
`

)
= In

(
p−1⊗
`=1

ϕ
⊗n`
`

)
Inp (ϕp)

=

n∧np∑
r=0

r!

(
n

r

)(
np
r

)
In+np−2r

 ˜p−1⊗
`=1

ϕ
⊗n`
` ⊗r ϕ

⊗np
p



= Id

 ˜p−1⊗
`=1

ϕ
⊗n`
` ⊗ ϕ⊗npp

 = Id


︷ ︸
˜p−1⊗

`=1

ϕ
⊗n`
` ⊗ ϕ⊗npp

 . (A.5)

Notice that the third equality in (A.5) results from the equality

˜p−1⊗
`=1

ϕ
⊗n`
` ⊗r ϕ

⊗np
p = 0, for all r ∈ [[1, n]],

which is a consequence of the orthonormality of the system (ϕ`)
p
`=1. Also notice

that the last equality in (A.5) results from (A.2). Next observe that, in view of
(A.5) and (A.2), in order to show that (A.4) holds, it remains us to prove that︷ ︸

˜p−1⊗
`=1

ϕ
⊗n`
` ⊗ ϕ⊗npp =

︷ ︸
d⊗
`=1

ϕ
⊗n`
` .

Notice that any arbitrary permutation σ ∈ Sn can be extended in a natural way
into a permutation σ̌ ∈ Sd defined, for all i ∈ {1, . . . , n}, as σ̌(i) = σ(i), and
for, each i ∈ {n + 1, . . . , d}, as σ̌(i) = i. Thus, using (A.1), the latter notation
and the fact that the composition map ν 7→ ν ◦ σ̌ is a bijection from Sd to itself,
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one gets, for all (x1, . . . , xd) ∈ Rd, that
︷ ︸
˜p−1⊗

`=1

ϕ
⊗n`
` ⊗ ϕ⊗npp

 (x1, . . . , xd)

=
1

d!

1

n!

∑
σ∈Sn

∑
ν∈Sd

p−1⊗
`=1

ϕ
⊗n`
` (xν(σ(1)), . . . , xν(σ(n)))⊗ ϕ

⊗np
p (xν(n+1), . . . , xν(d))

=
1

d!

1

n!

∑
σ∈Sn

∑
ν∈Sd

p⊗
`=1

ϕ
⊗n`
` (xνo σ̌(1), . . . , xνo σ̌(d))

=
1

d!

1

n!

∑
σ∈Sn

∑
ν′∈Sd

p⊗
`=1

ϕ
⊗n`
` (xν′(1), . . . , xν′(d))

=
1

d!

∑
ν′∈Sd

p⊗
`=1

ϕ
⊗n`
` (xν′(1), . . . , xν′(d))

=


︷ ︸
p⊗
`=1

ϕ
⊗n`
`

 (x1, . . . , xd).

B Some useful lemmata
The proofs of the following lemmata, which are extensively used in our articles,
can be found in [2].

Lemma B.1. For all (x, y) ∈ R2
+, we have

log(3 + x+ y) ≤ log(3 + x) log(3 + y). (B.1)

Moreover, for each fixed positive real number T , there exists a constant c > 0
such that, for every x ∈ R+, we have

log(3 + x+ 2xT ) ≤ c(1 + x). (B.2)

Lemma B.2. For each fixed real number L > 1, there exists a constant c > 0
such that, for all j ∈ Z and for all s ∈ R, we have∑

k∈Z

√
log(3 + |j|+ |k|)(
3 + |2js− k|

)L ≤ c
√

log
(
3 + |j|+ 2j |s|

)
. (B.3)

Lemma B.3. For each fixed real number L > 1, there exists a constant c > 0
such that, for all t ∈ R+, for all s ∈ [0, t] and for all j ∈ N, we have∑

k∈D3
j (t)

√
log(3 + |j|+ |k|)

(3 + |2js− k|)L
≤ c(1 + j)2−j(L−1)(1−a)

√
log(3 + t),

where D3
j (t) is the infinite subset of Z defined through (4.12).
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