
Optimization models and methods
for kidney transplantation programs

Dissertation submitted
in fulfilment of the requirements for the degree

of Ph.D. in Economics and Management

Marie Baratto

Jury :

Yves Crama (Supervisor)
HEC Liège, Management School of the University of Liège

Bernard Fortz
HEC Liège, Management School of the University of Liège

João Pedro Pedroso
University of Porto

Michaël Schyns (Supervisor)
HEC Liège, Management School of the University of Liège

Bart Smeulders
Eindhoven University of Technology

Frits C.R. Spieksma
Eindhoven University of Technology

2

Acknowledgments

The completion of my thesis would not have been possible without certain
people, and I would like to take the opportunity to thank them.

First, I would like to express my sincere gratitude to my thesis supervisor,
Professor Yves Crama. I will never forget that moment when we first dis-
cussed the possibility of a thesis together, and I have never regretted for a
single second in six years having accepted this opportunity a few days later.
Writing a thesis is a bloody difficult thing to do, but with your help and
support, I loved this first step in my professional career. Over the years, I
am very grateful for your availability. You have always accepted my meeting
requests and been there to answer my questions. You have encouraged me
to look at problems differently or more thoroughly, to question myself, and
to embrace new opportunities, which has allowed me to grow both profes-
sionally and personally. You have been the supervisor I needed. Thank you
from the bottom of my heart for your time, your kindness, and your precious
pieces of advice. You have shown me what it means to be a good researcher
but also what a great teacher is.

In addition to my supervisor, I would also like to thank the other mem-
bers of my thesis committee: Michaël Schyns, Bart Smeulders, and Frits
Spieksma. Every year, our meetings have been productive and have enabled
me to question myself about my work and to receive outside opinions on the
progress of this thesis. I would especially like to thank Bart Smeulders
and Frits Spieksma for involving me, as a first-year Ph.D. student, as part
of one of their projects so that I could work on a real-life problem that led to
a chapter of this thesis. In particular, Bart Smeulders for his day-to-day
guidance. A special thanks to Michaël Schyns as well for accepting to take
up the role of administrative supervisor for the last few months of my Ph.D.
journey so that I could defend my dissertation. Next, I would like to thank
the two additional jury members who agreed to sit on my jury and judge
my work: Bernard Fortz and João Pedro Pedroso. In particular, João
Pedro Pedroso who, with Ana Viana, agreed to host me for three months

3

in Porto for a research stay. This stay abroad wasn’t easy at the time, but in
retrospect, it was probably one of the best experiences of my Ph.D. journey
and gave rise to my favorite chapter of this thesis. To all of you, thank you
for your time and kindness over all the years.

I would also like to thank all the extraordinary colleagues I have had the
chance to meet over the years. This QuantOM team is really special. Thank
you for the few conferences we participated in together and those enjoyable
lunchtimes. In particular, I want to thank the few colleagues with whom I
was lucky enough to share office 334 for a little or a lot of time. Especially
the colleagues who have become true friends: Anne-Sophie, Stéphanie, Célia,
Elodie E, Elodie B, Justine. Thank you for the hours spent talking about
work and everything else. Thank you for the support when needed. Thank
you for those moments of friendship in and outside HEC.

On a personal note, I would also like to thank my close friends, my cousins,
my grandfather, my brother and my sister who always tried very hard to
understand what I was doing at work, only to say that I was doing a thesis
in mathematics... Thank you for even trying to understand my thesis topic,
for taking an interest in my work and for your support and kind words
during the important stages of my Ph.D. journey. In particular, I would like
to thank my life partner, my fiance, my future baby daddy, Romain, for his
support over the last few years. I know I have put you in uncomfortable
situations, and you have had to endure a lot of my stress. Thank you for
being by my side, for celebrating the important steps during this journey
with me, and for supporting me, especially during my stay in Porto.

Finally, I would like to thank my parents, who are my best friends and
greatest support. I cherish our relationship, and I would like to take this
opportunity to express all my love and gratitude. Whether in my education,
professional career, or personal life, you have always been a tremendous
support. You have been by my side in all my personal and professional
projects, helped me grow, helped me question myself when necessary, and
were the shoulders I could lean on when needed. You are my role models,
and I hope to be as good a parent as you are to me. Thank you from the
bottom of my heart.

4

Contents

1 Introduction 11
1.1 Kidney transplantation programs 11
1.2 Models and methods for KEP problems 14

1.2.1 The basic KEP problem 14
1.2.2 Variants of the KEP problem 16

1.3 Structure and contributions of the dissertation 19
1.4 A short refresher . 21

1.4.1 Formulations of the KEP problem 22
1.4.2 Polyhedral theory . 25
1.4.3 Benders decomposition 27

2 Cycle selections 31
2.1 Introduction . 32

2.1.1 Problem definition . 32
2.1.2 Motivation . 34
2.1.3 Literature review . 35

2.2 Complexity . 37
2.3 Formulations . 39

2.3.1 Arc formulation . 39
2.3.2 Compact extended formulations 41
2.3.3 Cycle formulation . 50
2.3.4 Relative strength of formulations 52

2.4 Polyhedral structure . 53
2.4.1 Dimension . 53
2.4.2 Facets . 53
2.4.3 Additional valid inequalities 68

2.5 Constrained cycle selections 68
2.6 Cycle selections with cycles of length at most 3 69

2.6.1 Formulation . 69
2.6.2 Polyhedral study . 71

2.7 Conclusions and perspectives 72

5

3 Cycle selections:
numerical experiments 75
3.1 Introduction . 76
3.2 Maximum weighted cycle selections 76

3.2.1 Formulations and instances 76
3.2.2 Implementation of the ARC formulation 78
3.2.3 Experimental results 80
3.2.4 Steiner triples . 83
3.2.5 MWCS with budget constraint 84
3.2.6 MWCS with maximum cycle length constraint 86

3.3 Cycle selections in stochastic kidney exchange models 88
3.3.1 Models . 90
3.3.2 Optimization methods 92
3.3.3 Implementation of Benders decomposition in Method 4 94
3.3.4 Initial experimental results 95
3.3.5 Enhancements of the implementation of Method 4 . . 96

3.4 Conclusion . 103

4 Local stability
in kidney exchange programs 105
4.1 Introduction . 106
4.2 Basic concepts and literature review 107

4.2.1 Stable matching under preferences 107
4.2.2 Optimal kidney exchanges 107
4.2.3 Stable kidney exchanges 108

4.3 Stability and local stability 109
4.3.1 Stability: definitions 109
4.3.2 Local stability: definitions 111
4.3.3 Stability and local stability: characterizations 113

4.4 Blocking digraph, kernels and local kernels 114
4.5 Integer programming formulations 121
4.6 Numerical tests for L-stable exchanges 123

4.6.1 Instances . 123
4.6.2 Comparison of formulations for maximum L-stable ex-

changes . 124
4.6.3 Comparison with stable exchanges 128

4.7 Local strong stability . 132
4.7.1 Definitions . 132
4.7.2 Characterizations and formulations 134
4.7.3 Numerical tests for LS-stable exchanges 136

4.8 Kernels and L-kernels of random digraphs 138
4.9 Conclusions and perspectives 140

6

5 Generation of delisting dates for the simulation of Euro-
transplant’s allocation mechanisms 141
5.1 Introduction . 142
5.2 Context . 143
5.3 Generation of delisting dates 147

5.3.1 Definitions and notations 147
5.3.2 Kaplan-Meier method 148

5.4 Validation of the method . 151
5.4.1 Independence . 151
5.4.2 Cumulative incidence function 154

5.5 Conclusion . 156

6 Conclusion 159

Bibliography 162

List of Figures 171

List of Tables 174

7

8

List of Abbreviations

CCMC Cardinality constrained multi-cycle problem
CIF Cumulative incidence function
EA Extended arc
ESRD End-stage renal disease
ET Eurotransplant
ETKAS Eurotransplant kidney allocation system
HI Hitting set problem
HLA Human leukocyte antigens
ILP Integer linear programming
KEP Kidney exchange program
MEA Modified extended arc
MWCS Maximum weighted cycle selection problem
NDD Non-directed donor
PI Position-indexed
RR-2-KEP Relaxed restricted two-stage KEP
SEA Simple extended arc

9

10

Chapter 1

Introduction

This introduction aims to present the core chapters of the dissertation and
their common topic: kidney transplantation. For a better understanding of
the thesis, the last section of the introduction includes a review of fundamen-
tal concepts used throughout the chapters. It serves to clarify some theoretical
concepts.

1.1 Kidney transplantation programs

Patients with an end-stage renal disease (ESRD) characterized by the loss
of both kidneys’ function, also known as kidney failure, require a treatment
method that replaces the lost function. The two main treatment options
available are dialysis and transplantation. Dialysis is a very time-consuming
treatment that requires several sessions per week, each lasting several hours.
Furthermore, patients undergoing dialysis experience a poor quality of life
(Wolfe et al., 1999), and the treatment is expensive (Held et al., 2016).
Kidney transplantation is a better treatment option regarding the patient’s
quality of life and cost for medical institutions. Kidney transplantation can
occur in two different settings: the organ to be transplanted can be re-
moved either from a deceased donor or from a living donor; the latter case
arises if the patient has a relative or close friend willing to donate a healthy
kidney (Rapaport, 1986). This thesis addresses both settings. The next
three chapters deal with mathematical models related to living-donor kid-
ney transplantation, whereas Chapter 5 is concerned with deceased donor
kidney transplantation.

For a donor and a patient to be medically compatible, several conditions
must be met (Ashlagi and Roth, 2021). A first one is that their blood
types must be compatible, meaning that a patient can only receive a kidney
from a donor who has the same blood antigens (A or B) or no antigen

11

at all (O). This is referred to as “ABO-compatibility”. Additionally, the
patient cannot have antibodies to the donor’s human leukocyte antigens
(HLA) since otherwise, the patient’s immune system will try to reject the
organ. This is called “tissue-type compatibility”. To ensure that the patient
and the donor are tissue-type compatible, it is necessary to perform a so-
called crossmatch test. This can be done virtually, based on available data
regarding the donor-patient pair, or physically by analyzing blood samples
from the pair. A negative crossmatch result means that the patient is unlikely
to reject the donor’s kidney. Physical crossmatch tests are costly and time-
consuming, so they are typically only used to verify medical compatibility in
cases where transplantation is being seriously considered between a specified
pair of individuals. It is important to note that a negative virtual crossmatch
test is insufficient to perform a transplant; a negative physical crossmatch
test is always required to carry out a transplant.

When a patient has the opportunity of receiving a transplant from a liv-
ing donor, it is the preferred treatment since it offers the highest chance of
success (Roth et al., 2004). In some cases, patients are unable to receive a
kidney from their associated healthy donor because they are not medically
compatible, but they can possibly receive a kidney from another compati-
ble donor. Considering sufficiently many incompatible patient-donor pairs
makes it potentially feasible to transplant kidneys along cycles of pairs. A
2-cycle, for example, is a cycle involving two patient-donor pairs such that
the donor of pair 1 is compatible with the patient of pair 2 and the donor
of pair 2 is compatible with the patient of pair 1. This situation can give
rise to two matches whereby both pairs exchange kidneys, and both patients
benefit from a transplant (Roth et al., 2004). Figure 1.1 illustrates a 2-cycle.

A collection of disjoint cycles of feasible transplants is called an exchange. In
an exchange, all transplants associated with a cycle are usually performed si-
multaneously to prevent situations where donors drop out prematurely with-
out donating a kidney after their preferred patients have received a trans-
plant. Due to logistical constraints and limited resources, the maximum
length of cycles is therefore typically limited to a small number of trans-
plants, say, two, three, or four. A set of disjoint cycles, each involving at
most K patient-donor pairs, is called a K-way exchange.

Kidney exchange programs (KEPs) have been set up in many countries (or
associations of countries) for the benefit of ESRD patients who have a willing
donor with whom they are medically incompatible. By enrolling sufficiently
many incompatible patient-donor pairs, KEPs aim to identify exchanges that
optimize a desired outcome, such as the number or the quality of the trans-
plants to be performed. We generically refer to this optimization problem as
the KEP problem. Biró et al. (2021) list 19 possible objectives for the KEP
problem. Biró et al. (2019) report the current practices in European KEPs,

12

Donor of pair 1

Patient of pair 1

Donor of pair 2

Patient of pair 2

99K Incompatibility
−→ Compatibility

Figure 1.1: Illustration of a 2-cycle

and Ashlagi and Roth (2021) discuss other national and international KEPs
worldwide, such as the MSTH program in the United States.

A non-directed donor (NDD) (sometimes called altruistic donor) is a person
who is willing to donate a kidney to a patient with kidney failure, but who
is not initially associated with a specific patient (Constantino et al., 2013).
NDDs may be enlisted in KEPs. When this is the case, chains of trans-
plants starting with an NDD are allowed to be part of an exchange. The
NDD can initiate a sequence of transplants by donating a kidney to a patient
in a patient-donor pair, the donor of that pair donates a kidney to another
patient, and so forth until the last donor of the chain donates a kidney to a
deceased donor program or becomes available as an NDD in the next run of
the KEP. This is illustrated in Figure 1.2. Here again, a limit on the maxi-
mum chain length is usually imposed usually due to legal regulations. Note
that some countries such as France, Belgium, Austria, Sweden, Switzerland,
Poland, and Greece, for example, do not accept NDDs in their programs
(Ashlagi and Roth, 2021).

Even though this dissertation mostly considers questions related to the op-
timization of kidney exchange programs, many actual transplants take place
in a setting where a kidney is removed from a recently deceased person to be
transplanted into an ESRD patient. Eurotransplant is an international non-
profit organization which coordinates the allocation, across several European
countries, of deceased donor kidneys to patients enrolled on a waiting list.

13

NDD Donor of pair 1

Patient of pair 1

Donor of pair 2

Patient of pair 2

Donor of pair 3

Patient of pair 3
deceased
donor
list or
NDD

Figure 1.2: Illustration of a chain of length 3

The allocation is made according to a specific mechanism, the so-called Euro-
transplant Kidney Allocation System, or ETKAS (Mayer and Persijn, 2006),
(Eurotransplant, 2023). Some aspects of this mechanism will be discussed
in Chapter 5 of the thesis.

1.2 Models and methods for KEP problems

1.2.1 The basic KEP problem

The KEP problem has been extensively studied in the operations research
literature where it is usually modeled as a combinatorial optimization prob-
lem involving the following ingredients. First, the kidney exchange program
is modeled as a loopless compatibility digraph G = (V,A) where the set of
vertices V represents the set of incompatible patient-donor pairs, and the
set of arcs A expresses medical compatibility between each donor and each
patient; that is, arc (i, j) ∈ A if the donor of pair i is compatible with the
patient of pair j. Since crossmatch tests are costly and time-consuming, the
compatibility digraph is typically based on ABO-compatibility and on a vir-
tual crossmatch based on the available data regarding the donor HLA and
the patient antibodies. Crossmatch tests can be performed subsequently to
verify tissue-type compatibility once promising matches have been identified.
In some cases, a weight wi,j is assigned to each arc (i, j) ∈ A to represent the
quality or the utility of a transplant from the donor of pair i to the patient
of pair j.

A (directed) cycle of a digraph G is a sequence c = (v1, a1, v2, a2, . . . , vk, ak, vk+1)

where k ≥ 2, v1, v2, . . . , vk are distinct vertices of G, v1 = vk+1, a1, a2, . . . , ak
are distinct arcs, vi is the tail of ai, and vi+1 is its head for i = 1, 2, . . . , k.
The length of c is k, and we say that c is a k-cycle. When no confusion can

14

arise, we often identify a cycle with its sequence of arcs (a1, a2, . . . , ak), or
its sequence of vertices (v1, v2, . . . , vk).

A K-way exchange is a set of pairwise vertex-disjoint cycles, each of length at
most K. When the arc (i, j) is contained in one of the cycles of an exchange,
the donor of pair i and the patient of pair j are often said to be matched.
The exchange itself is sometimes called a matching.

As mentioned earlier, the KEP problem aims to find a K-way exchange
that optimizes a given objective function. Much of the literature on the
KEP problem considers the natural objective of maximizing the number
of transplants, that is, the number of vertices (or arcs) contained in an
exchange. Unless otherwise stated, we simply refer to this basic variant as
“the KEP problem” in the remainder of this introductory chapter.

When K = 2 or K = n, the KEP problem reduces to a weighted matching
problem and can be solved in polynomial time (Roth et al., 2005). However,
the problem is NP-hard for any fixed value of K ≥ 3 (Abraham et al., 2007).
This NP-hardness result has prompted much research on integer program-
ming formulations and on solution methods during the last two decades.

Roth et al. (2007) and Abraham et al. (2007) have introduced the first two
integer programming formulations of the KEP problem, namely, the cycle
formulation and the edge formulation. Both formulations are exponential.
More precisely, the cycle formulation has an exponential number of vari-
ables, but this number is O(|V |K) which is polynomial for fixed cycle length
K (remember that in practice, K is usually set to 3 or 4). The edge formula-
tion has an exponential number of constraints, again O(|V |K). Constantino
et al. (2013) have later proposed a compact extended formulation of the
edge formulation, namely, the extended edge formulation. Then, another
compact extension was proposed by Dickerson et al. (2016), namely, the
position-indexed edge formulation. Compact formulations are polynomial in
size, meaning that they only involve a polynomial number of variables and
constraints. Hence, they can be solved without the need for column or row
generation. We refer to Mak-Hau (2017) for a comprehensive literature re-
view of formulations and solution methods up to that date. More recently,
Delorme et al. (2023b) described a new exponential formulation and an as-
sociated solution method, the half-cycle formulation.

Since some formulations proposed in this dissertation are inspired by earlier
formulations of the KEP problem, the first four ones cited above will be
briefly recalled in Section 1.4.1.

In terms of tightness, it can be shown (Abraham et al., 2007; Constantino
et al., 2013) that the cycle formulation has a tighter linear relaxation than
the edge and the extended edge formulations. Dickerson et al. (2016) proved

15

that the position-indexed edge formulation yields the same linear relaxation
bound as the cycle formulation. In practice, the efficiency of formulations
largely depends on the value of K and on the size of the instances. The cycle
formulation and position-indexed edge formulation are considered to be the
most efficient ones (Mak-Hau, 2017; Dickerson et al., 2016).

Given the sizes of the formulations, several authors have developed column-
generation approaches for the KEP problem. Abraham et al. (2007) proposed
the first branch-and-price algorithm. Lam and Mak-Hau (2020), based on
the work of Klimentova et al. (2014), proposed a branch-and-cut-and-price
algorithm. Recent work focused on a branch-and-price algorithm which con-
siders chains in addition to cycles, see, e.g., Pansart et al. (2022).

Different solution approaches are handled in this dissertation depending on
the problem under study. For compact formulations and for formulations
with an exponential number of variables, complete formulations are simply
provided to a standard commercial solver; this remains tractable for the
instance sizes under consideration. On the other hand, for formulations
with an exponential number of constraints, branch-and-cut procedures are
implemented. Details regarding the various approaches will be given in the
chapters where they are developed.

As a last note on the basic KEP problem, it should be mentioned that
chains of kidney exchanges are usually considered separately from cycles in
the mathematical formulations and in the optimization methods proposed
in the literature (Mak-Hau, 2017). However, chains can also be considered
in the compatibility digraph model by adding a vertex for each NDD and
by adding a dummy arc between each patient-donor pair and each NDD: in
this way, a chain of length ℓ corresponds to a cycle of length ℓ + 1 in the
augmented digraph. Clearly, a main limitation of this modeling option is
that it does not allow fixing a maximum chain length ℓ independently of
the maximum cycle length K. In spite of this limitation, chains will not
be explicitly handled in this dissertation and the focus will be exclusively
placed on exchanges consisting of cycles.

1.2.2 Variants of the KEP problem

Except for Chapter 5 which is dedicated to deceased donor transplantation
programs, the core of the thesis explores questions motivated by the consid-
eration of different aspects of the KEP problem which have been recently
investigated in the literature. As an introduction to these chapters, we next
briefly discuss two such variants of the basic KEP problem.

16

Recourse

As we mentioned earlier, the physical compatibility between a donor and
a patient is only crossmatch-tested after an intended transplant has been
identified. Therefore, some authors took an interest in the situation where a
donor and a patient are found to be incompatible after the computation of a
best possible exchange. In such a configuration, not only the transplantation
between these particular donor and patient fails, but also the whole cycle
in which the transplantation is involved. This is an important issue; for
example, Dickerson et al. (2018) report that in some KEPs, 93% of the
identified transplantations fail due partly to results of crossmatch tests (but
also for other reasons, e.g., because a patient has already received a kidney
from another program or is too ill to undergo surgery).

One way to tackle this issue in mathematical models is to assess, for each arc
(i, j) ∈ A, the probability pi,j that a crossmatch test would confirm donor
i and patient j to be compatible. This gives rise to stochastic versions of
the KEP optimization problem. Dickerson et al. (2018), Klimentova et al.
(2016), Pedroso (2014), Smeulders et al. (2022), among others, considered
such models. We refer to Smeulders et al. (2022) for an overview of different
approaches.

A specific model proposed in Smeulders et al. (2022) assumes that a subset of
arcs (i.e., potential transplants) can be selected in a first stage to be explic-
itly crossmatch-tested, before an optimal selection of cycles is computed in
a second stage on the subset of arcs that successfully passed the crossmatch
tests. From a mathematical perspective, this leads to a two-stage stochastic
programming problem that Smeulders et al. (2022) define as follows: given a
compatibility digraph G = (V,A) and a testing budget b, identify (in stage 1)
a subset of arcs B ⊆ A with |B| ≤ b such that the expected number of trans-
plants in the graph GB = (V,B) (in stage 2) is maximized. They propose
several integer programming formulations for this two-stage stochastic KEP
problem and different solution methods associated with each formulation.
Furthermore, as the formulations are not solved efficiently, they tighten one
formulation of the problem by imposing constraints on the set of arcs B to
be tested. These constraints ensure that arcs not contained in any cycle
should not be selected to be tested: indeed, such arcs cannot be used in an
exchange.

This research motivated our interest to investigate the following concept:
for a directed graph G = (V,A), a subset of arcs B ⊆ A is called a cycle
selection if each arc of B is contained in a directed cycle of GB = (V,B).
As an illustration, Figure 1.4 displays the collection of cycle selections of the
digraph represented in Figure 1.3.

A better understanding of cycle selections may potentially improve the so-

17

lution of the two-stage stochastic KEP problem. Chapter 2 studies some
properties of cycle selections, while Chapter 3 presents the results of compu-
tational experiments on related problems, including the application of our
findings to the two-stage stochastic KEP problem of Smeulders et al. (2022).

1

2

3

4

Figure 1.3: A directed graph.

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Figure 1.4: All cycle selections of the directed graph in Figure 1.3.

Preferences

A second variant of the KEP problem studied in this dissertation investigates
the situation where each patient has a preference ranking over their set of
compatible donors. Indeed, from the point of view of the patients or, rather,
their respective medical teams, not all donors’ kidneys are equal. Some
kidneys are preferred over others because they have a higher chance of leading
to successful transplants and longer survival. (For simplicity, we will say that
a patient prefers a donor rather than saying that the medical team prefers a
kidney from this donor.)

This setup leads to the following mathematical model: given the compati-
bility digraph G = (V,A), we assume that each pair i ∈ V has expressed
preferences over their set of compatible donors or equivalently, over their set
of in-neighbors N−

G (i) = {j ∈ V : (j, i) ∈ A}. For example, in Figure 1.5
hereunder, the patient of pair 2 prefers the donor of pair 4 to the donor of
pair 1.

18

1

2

3

4

5

2

1

1

1

1

1

Figure 1.5: A small digraph with preferences on the arcs

Matching problems involving preferences arise in different economic con-
texts, often remote from kidney exchange programs. As such, they have
been extensively studied in the operations research and economic literature,
especially after the pioneering work on the stable marriage problem by Gale
and Shapley (1962). A fundamental concept in this literature is that of a
stable exchange. In the context of KEPs, a stable exchange can be informally
defined as an exchange such that no subset of patients have the possibility
to defect in order to benefit from a more attractive exchange. A more pre-
cise definition of such a situation will be given in Chapter 4. (The 2012
Nobel Memorial Prize in Economic Science was jointly awarded to Lloyd
Shapley and to Alvin E. Roth for their contributions to “the theory of stable
allocations and the practice of market design", including work on kidney
exchange programs.) A central issue is then to compute a maximum stable
exchange or to prove that none exists. Integer programming formulations
describing stable K-way exchanges for the KEP problem have been recently
proposed in the literature (Klimentova et al., 2023). Chapter 4 investigates
an alternative, weaker concept of local stability for K-way exchanges.

1.3 Structure and contributions of the dissertation

The core of the dissertation consists of four chapters treating three different
topics related to the optimization of kidney transplantation programs. The
chapters are organized as follows: Chapter 2 and Chapter 3 investigate the
cycle selection problem and its application to the KEP problem. Chapter 4
focuses on locally stable exchanges, their properties and their computation.
Finally, Chapter 5 discusses some aspects of the simulation of mechanisms
allocating deceased donor kidneys to patients enrolled on a waiting list.

In Chapter 2, we introduce the cycle selections of a directed graph and we
define a related optimization problem: the maximum weighted cycle selection
problem (MWCS). We prove that MWCS is strongly NP-hard and we
provide six integer linear programming (ILP) formulations of the problem.
One is an arc-based formulation, called the arc formulation, featuring an
exponential number of constraints that can be separated in polynomial time.
The next four formulations are arc-based compact formulations, respectively

19

called the simple extended arc formulation, the extended arc formulation,
the modified extended arc formulation, and the position-indexed formulation.
The final formulation is an extended non-compact cycle-based formulation,
simply called the cycle formulation. We investigate the relative strength of
these formulations and prove that the linear relaxation of the arc formulation,
the projection of the linear relaxation of the extended arc formulation and the
projection of the linear relaxation of the modified extended arc formulation
are identical and are included in the projection of the linear relaxation of
the other three formulations. Next, we focus on the arc formulation and
on the description of the associated cycle selection polytope for complete
digraphs. We prove that this polytope is full-dimensional and that all the
inequalities used in the arc formulation are facet-defining. Furthermore, we
describe three new classes of facet-defining inequalities and a class of valid
inequalities. In the last section of the chapter, we investigate the cycle
selection problem with a maximum cycle length set to K = 3. We provide
an arc-based formulation with an exponential number of constraints that can
be separated in polynomial time. We also prove that the associated polytope
is full-dimensional for complete digraphs and that all inequalities describing
the formulation are facet-defining. Except for its last section, Chapter 2 has
been published as an article in Discrete Applied Mathematics (Baratto and
Crama, 2023).

In Chapter 3, we conduct numerical experiments to test the efficiency of
the integer linear programming formulations of the cycle selection problem.
Specifically, we carry out experiments to identify a maximum weighted cycle
selection in randomly generated digraphs, where each arc is assigned a ran-
dom weight. The results show that these instances are relatively easy, and
that the arc formulation and the simple extended arc formulation outperform
the other four ILP formulations in terms of total running time. We also in-
vestigate some variants of the problem by adding a budget constraint and/or
a maximum cycle length constraint to the models. These variants are more
challenging to solve, especially when the model has a budget constraint. In
the second part of the chapter, we apply our knowledge about cycle selection
formulations and the previous numerical results to the two-stage stochastic
KEP problem introduced in Smeulders et al. (2022). In particular, we pro-
pose alternative ways to solve this problem using different implementations
of the Benders decomposition procedure and we explore several possibili-
ties to enhance the optimization process. Although we could not improve
the running time of the original formulations proposed in Smeulders et al.
(2022), one of our new formulations has a similar performance.

Chapter 4 focuses on KEP problems where each patient has expressed a
preference ranking over their set of compatible donors, that is, over the set
of their in-neighbors in the compatibility digraph. We extend recent work

20

on stable exchanges (Klimentova et al., 2023) by introducing and underlin-
ing the relevance of a new concept of locally stable exchanges. We show
that the locally stable exchanges of a compatibility digraph are exactly the
so-called local kernels of an associated blocking digraph whereas the stable
exchanges are the kernels of the blocking digraph. We also prove that finding
a nonempty local kernel in an arbitrary digraph is NP-complete. We then
propose four integer programming formulations for computing a locally sta-
ble exchange of maximum size. We conduct numerical experiments to assess
the quality of our formulations and to compare the size of maximum locally
stable exchanges with the size of maximum stable exchanges. The numerical
experiments show that nonempty locally stable exchanges frequently exist in
digraphs that do not have any stable exchange. All the previous results and
observations hold true even when the concept of (locally) stable exchanges
extends to (locally) strongly stable exchanges. Chapter 4 has been submit-
ted to the European Journal of Operational Research and is currently under
review.

Finally, Chapter 5 deals with kidney transplantations from deceased donors.
It is based on work carried out in the framework of a research project initi-
ated by Eurotransplant, a European program that allocates deceased donor
organs to patients placed on a waiting list. The project was supervised by
Bart Smeulders and Frits Spieksma. It aimed to simulate and to numer-
ically compare the possible outcomes of a mechanism allocating deceased
donor kidneys under alternative allocation rules. Our contribution, as de-
scribed in this chapter, relates to one specific modeling aspect of this project.
Namely, when given the actual historical data recorded by Eurotransplant
during a period of time, some data required to conduct the simulation was
missing: for those patients who had been transplanted under the current
mechanism (called EKTAS), the total time during which they would have
remained in an appropriate medical condition to be transplanted (had they
not been transplanted already) was unknown. Indeed, in the absence of a
transplant, those patients would have eventually left the waiting list due to
their medical condition or death. Chapter 5 explains the approach used to
simulate these missing data using survival analysis and the Kaplan-Meier
method. While the principal advantage of the Kaplan-Meier method is its
simplicity and ease of computation, its main weakness stems from an as-
sumption concerning the independence of certain random events which can
hardly be verified in practice. We provide some insights into the validity of
the method.

1.4 A short refresher

In order to keep the different parts of the dissertation self-contained and
independent of each other, to the largest possible extent, some of the defi-

21

nitions and of the material presented in this Introduction will be repeated
in other chapters. This is especially true for those chapters which have been
either published or submitted for publication in journals.

On the other hand, and in contrast to the previous remark, some problem
formulations and methods are used without much prior explanation through-
out the dissertation. The purpose of the current section is to recall to the
readers a few facts about formulations of the KEP problem, about polyhe-
dral theory, and about the Benders decomposition procedure, with the hope
to facilitate the understanding of subsequent chapters.

1.4.1 Formulations of the KEP problem

Over the last two decades, several ILP formulations of the KEP problem
have been proposed in the literature. Since some formulations proposed
in this dissertation are inspired by this earlier work, four formulations of
the KEP problem are recalled below, namely: the cycle formulation (Roth
et al., 2007; Abraham et al., 2007); the edge formulation (Roth et al., 2007;
Abraham et al., 2007); the extended edge formulation (Constantino et al.,
2013); and the position indexed edge formulation (Dickerson et al., 2016).
The first two formulations are exponential in size, whereas the next two ones
are compact.

All formulations refer to the KEP problem associated with a compatibility
digraph G = (V,A), where the set of incompatible patient-donor pairs is
represented as V = {1, . . . , n}. For the sake of simplicity, we assume that
the objective of the KEP problem is to identify a K-way exchange, for K
fixed, which maximizes the total number of transplants.

Cycle formulation

To write the cycle formulation (Roth et al., 2007; Abraham et al., 2007), let

• CK(G) be the set of cycles of G with length less than or equal to K;
• V (c) be the set of vertices of cycle c, for all c ∈ CK(G);
⋄ zc be a binary variable such that zc = 1 if cycle c is selected in the

exchange, and zc = 0 otherwise, for all c ∈ CK(G).

Then, the cycle formulation of the KEP problem is as follows:

max
∑

c∈CK(G)

|V (c)| zc (1.1)

s.t.
∑

c:i∈V (c)

zc ≤ 1 ∀i ∈ V (1.2)

zc ∈ {0, 1} ∀c ∈ CK(G). (1.3)

22

Constraints (1.2) ensure that for each vertex i of the digraph, at most one
cycle of CK(G) containing i is selected in the exchange. In the context of
KEP, these constraints ensure that each patient-donor pair only participates
in one exchange, preventing a donor from donating more than one kidney.

Edge formulation

To state the edge formulation of Roth et al. (2007), Abraham et al. (2007),
we define a minimal cardinality violation path to be a directed path involving
K+1 distinct vertices of G, i.e., a sequence π = (v1, a1, v2, a2, . . . , vK , aK , vK+1)
where v1, v2, . . . , vK+1 are distinct vertices of G, a1, a2, . . . , aK are distinct
arcs, vi is the tail of ai, and vi+1 is its head for i = 1, 2, . . . ,K. By a slight
abuse of notations, we write (i, j) ∈ π if (i, j) is one of the arcs of π. Let

• ΠK be the set of all minimal cardinality violation paths of G;
⋄ xi,j be a binary variable such that xi,j = 1 if arc (i, j) is contained in

the exchange and xi,j = 0 otherwise, for all (i, j) ∈ A.

Then, the edge formulation of the KEP problem is defined as:

max
∑

(i,j)∈A

xi,j (1.4)

s.t.
∑

j:(i,j)∈A

xi,j =
∑

j:(j,i)∈A

xj,i ∀i ∈ V (1.5)

∑
j:(i,j)∈A

xi,j ≤ 1 ∀i ∈ V (1.6)

∑
(i,j)∈π

xi,j ≤ K − 1 ∀π ∈ ΠK (1.7)

xi,j ∈ {0, 1} ∀(i, j) ∈ A. (1.8)

Constraints (1.5) ensure flow balance at each vertex, meaning that if an arc
enters a vertex i, then another arc must leave i. In the context of KEP, if
the patient of pair i receives a kidney then the donor of pair i must donate
a kidney. Constraints (1.6) ensure that for each vertex i, at most one arc
leaving vertex i can be selected in the exchange; that is, the donor of pair
i gives at most one kidney. Lastly, constraints (1.7) express that for each
minimal infeasible path π ∈ ΠK , no more than K − 1 arcs of the path can
be included in an exchange; these constraints impose that each cycle in the
exchange has length at most K.

Extended edge formulation

The idea behind the extended edge formulation of Constantino et al. (2013)
is to consider multiple copies of the original compatibility digraph G. The

23

formulation ensures that at most K arcs can be selected in each copy. As
the number of cycles in the exchange cannot exceed the number of vertices
of G, |V | copies are considered.

Let

• Gl = (V l, Al) be a copy of G, with V l = V = {1, . . . , n} and Al = A
for all l ∈ V ;

⋄ xli,j be a binary variable such that xli,j = 1 if arc (i, j) is selected in Al

to be part of the exchange and xli,j = 0 otherwise, for all (i, j) ∈ A, for
all l ∈ V .

Then, the extended edge formulation is defined as:

max
∑
l∈V

∑
(i,j)∈A

xli,j (1.9)

s.t.
∑

j:(i,j)∈A

xli,j =
∑

j:(j,i)∈A

xlj,i ∀i ∈ V, ∀l ∈ V (1.10)

∑
l∈V

∑
j:(i,j)∈A

xli,j ≤ 1 ∀i ∈ V (1.11)

∑
(i,j)∈A

xli,j ≤ K ∀l ∈ V (1.12)

∑
j:(i,j)∈A

xli,j ≤
∑

j:(l,j)∈A

xll,j ∀l ∈ V ∀i > l (1.13)

∑
j:(i,j)∈A

xli,j = 0 ∀l ∈ V, ∀i < l (1.14)

xli,j ∈ {0, 1} ∀(i, j) ∈ A, ∀l ∈ V. (1.15)

Constraints (1.10) ensure the flow balance at each vertex in each copy of G.
Constraints (1.11) ensure that each vertex is used at most once. Con-
straints (1.12) imply that cycles of length more than K cannot be selected in
any copy Gl. Finally, constraints (1.13) and (1.14) are not really necessary,
but they eliminate symmetries induced in the ILP model by permutations
of cycle indices. They express that if any vertex i is the endpoint of an arc
selected in cycle Gl, then i ≥ l and l also is the endpoint of an arc selected
in Gl.

Position-indexed edge formulation

The position-indexed edge formulation (Dickerson et al., 2016) is a natural
extension of the extended edge formulation. It indexes the variables by using
copies of the compatibility digraph G as well as the positions of the arcs in
a cycle. Let

24

• Gl = (V l, Al) with V l = {l, · · · , n} and Al = {(i, j) ∈ A : i ∈ V l, j ∈
V l} for all l ∈ V ;

• κ(i, j, l) be the set of positions at which arc (i, j) is allowed in a
cycle in copy Gl. For i, j, l ∈ V such that (i, j) ∈ Al, κ(i, j, l) =

{1} if i = l,
{2, ...,K} if j = l,
{2, ...,K − 1} if i, j > l;

⋄ xli,j,k be a binary variable such that xli,j = 1 if arc (i, j) is selected at
position k in a cycle in copy Gl, for all i, j, l ∈ V such that (i, j) ∈ Al

and k ∈ κ(i, j, l).

The position-indexed edge formulation is defined as:

max
∑
l∈V

∑
(i,j)∈Al

∑
k∈κ(i,j,l)

xl
i,j,k (1.16)

s.t.
∑

j:(j,i)∈Al∧k∈κ(j,i,l)

xl
j,i,k =

∑
j:(i,j)∈Al∧k+1∈κ(i,j,l)

xl
i,j,k+1

∀l ∈ V,
∀i ∈ {l + 1, · · · , n}
∀k ∈ {1, · · · ,K − 1}

(1.17)∑
l∈V

∑
j:(j,i)∈Al

∑
k∈κ(j,i,l)

xl
j,i,k ≤ 1 ∀i ∈ V

(1.18)

xl
i,j,k ∈ {0, 1}

∀l ∈ V,
∀(i, j) ∈ Al,
∀k ∈ κ(i, j, l).

(1.19)

Constraints (1.17) ensure the flow balance at each vertex and constraints
(1.18) ensure that each vertex is selected at most once. The maximum cycle
length is induced by the allowed positions of each arc in each copy l.

1.4.2 Polyhedral theory

In Chapter 2, we perform a polyhedral study of the set of feasible solutions
of an optimization problem associated with cycle selections. The present
section aims to recall a few basic concepts to understand the purpose of the
work done in that chapter. The definitions and results presented in this
section are from the book Nemhauser and Wolsey (1999).

An integer linear programming problem (ILP) is an optimization problem of
the form

max{cTx : Ax ≤ b, x ∈ Zn} (1.20)

where c ∈ Rn, A ∈ Rm×n and b ∈ Rm. Given an ILP (1.20), its set of feasible
solutions (or feasible set) is:

S := {x ∈ Zn : Ax ≤ b}

25

and so (1.20) can be rewritten as

max{cTx : x ∈ S}.

Definition 1. The linear relaxation of the set S := {x ∈ Zn : Ax ≤ b} is
the set {x ∈ Rn : Ax ≤ b} .

Definition 2. Given a set Q ⊂ Rn, a point x ∈ Rn is a convex combi-
nation of points of Q if there exists a finite set {x1, x2, · · · , xt} ⊆ Q and
λ ∈ Rt

+ such that x =
∑t

i=1 λix
i and

∑t
i=1 λi = 1. The convex hull of Q,

denoted by conv(Q), is the set of all convex combinations of points in Q.

We are interested in studying and describing the convex hull of the feasible
set of an ILP because of the following result:

Theorem 1. max{cTx : x ∈ S} = max{cTx : x ∈ conv(S)}.

Note that if S = {x ∈ Zn : Ax ≤ b}, then its convex hull conv(S) is included
in its linear relaxation, and the inclusion is generally strict. Generally speak-
ing, it is difficult to find a complete description of the convex hull of the set S.
In fact, it is already NP-hard to decide whether a point x ∈ Rn is in conv(S)
or not. Still, from an algorithmic point of view, a partial description of the
convex hull can help with the solution of the ILP problem.

Let us next recall a few definitions used in polyhedral studies.

Definition 3. A polyhedron P is a subset of Rn that satisfies a finite
number of linear inequalities. More precisely, a polyhedron is a set of the
form

P := {x ∈ Rn : Ax ≤ b}

where A ∈ Rm×n and b ∈ Rm. A bounded polyhedron is called a polytope.

Definition 4. If the maximum number of affinely independent vectors in
a polyhedron P is k + 1, then we say that the dimension of P , denoted
dim(P), is k. If P ⊆ Rn and dim(P) = n, then P is said to be of maximal
dimension or full-dimensional.

Definition 5. Let P ⊆ Rn be a polyhedron, w ∈ Rn and t ∈ R. The
inequality wTx ≤ t is valid for P if P ⊆ {x ∈ Rn : wTx ≤ t}, that is, if the
points of P satisfy the inequality wTx ≤ t.

Definition 6. F ⊆ P is a face of P if there exists an inequality wTx ≤ t
which is valid for P and such that

F = {x ∈ P : wTx = t}.

Definition 7. A facet of P if a face of dimension dim(P)− 1. If wTx ≤ t

26

is a valid inequality for P such that F = {x ∈ P : wTx = t} is a facet of P ,
then we say that the inequality is facet-defining for P .

Informally speaking, it can be shown that all facet-defining inequalities are
necessary and sufficient to describe a full-dimensional polyhedron.

In Chapter 2, we aim to identify facet-defining inequalities for the convex
hull of the feasible solutions of the so-called arc formulation of the cycle
selection problem. The following theorem can be used to demonstrate that
an inequality is a facet of a given polyhedron.

Theorem 2. Let P = {x ∈ Rn : Ax ≤ b} be a full-dimensional polyhedron
and let F = {x ∈ P : wTx = t} be a face of P . Then the following statements
are equivalent:

• F is a facet of P ;

• if cTx = γ for all x ∈ F , then
(

c
γ

)
is a multiple of

(
w
t

)
.

The following definition will be needed in the next section (Wolsey, 2020):

Definition 8. For a nonempty polyhedron P = {x ∈ Rn : Ax ≤ b}, r ∈ Rn

is a ray of P if r ̸= 0 and if x ∈ P implies x + µr ∈ P for all µ ∈ R+.
Moreover, r is an extreme ray of P if r cannot be written in the form
r = µ1r

1 + µ2r
2 where µ1 > 0, µ2 > 0, and r1, r2 are two distinct rays of P .

1.4.3 Benders decomposition

In Chapter 3, the Benders decomposition procedure is used. This section
recalls the general principles of the procedure. It is based on Wolsey (2020).

Consider a mixed integer linear programming problem (MILP) :

max cx+ hy

subject to Ax+Gy ≤ b

x ∈ X ⊆ Zn
+

y ∈ Rp
+.

The main idea behind the Benders decomposition of (MILP) is to solve it
by iteratively solving two simpler problems, namely, a master problem (M):

max cx+ θ(x)

subject to x ∈ X ⊆ Zn
+

27

and a slave problem (B) where x is assumed to be fixed:

θ(x) = max hy

subject to Gy ≤ b−Ax

y ∈ Rp
+.

Concretely, the Benders optimization procedure goes as follows. Consider
the following problem (M’):

max cx+ η

subject to vt(b−Ax) ≥ 0 for all t ∈ T

us(b−Ax) ≥ η for all s ∈ S

x ∈ X ⊆ Zn
+

η ∈ R

In this formulation, us, s ∈ S, are solutions of the dual problem of (B),
and vt, t ∈ T , are extreme rays of the dual problem of (B). For any choice
of S and T , (M’) is a relaxation of the (MILP) problem. (M’) is exactly
equivalent to (MILP) when S and T contain all the dual solutions and all
the extreme rays, respectively.

For the initialization phase, set T = ∅, S = ∅, and place (M’) on the list of
open nodes. (We voluntarily simplify this step to avoid unnecessary theory
that won’t be used later in the dissertation.) During the course of the pro-
cedure, we call incumbent the best value of a feasible solution of (M’) found
so far. Initially, the incumbent is set to −∞. Then the following iterations
are performed:

1. Select and remove a node from the list of open nodes. Let (N) denote
the problem associated with that given node.

2. Solve the linear relaxation of (N). If it is infeasible, close the node and
go to step 1.

3. Otherwise, let (x∗, η∗), be the optimal solution of the linear relaxation
of (N). If cx∗ + η∗ is smaller than the incumbent, close the node and
go to step 1.

4. Let (DB) be the dual of (B) with x = x∗:

min u (b−Ax∗)

such that u G ≥ h

u ∈ Rm
+

Solve (DB).

28

i. If (DB) is unbounded, find vt an extreme ray such that vt(b −
Ax∗) < 0, and add the following inequality to (N) and to all the
problems on the list of open nodes:

vt(b−Ax) ≥ 0

Such an inequality is called a feasibility cut. Set T = T ∪ {t} and
go to step 2.

ii. If (DB) is feasible and us is an optimal solution of (DB) such that
us(b−Ax∗) < η∗, then add the following inequality to (N) and to
all the problems on the list of open nodes:

us(b−Ax) ≥ η.

Such an inequality is called an optimality cut. Set S = S ∪ {s}
and go to step 2.

iii. If (DB) is feasible and us is an optimal solution of (DB) such that
us(b−Ax∗) = η∗, then all constraints of (MILP) are satisfied.

– If x∗ is integer and y∗ is the optimal solution of (B) (given by
the dual variables of (DB)), then the incumbent is updated,
the associated solution (x∗, y∗) is stored, and the node can
be closed.

– If x∗ is not integer, branch on one of the variables taking a
fractional value, add the corresponding two new nodes (i.e.,
subproblems of (N)) so created to the list of open nodes, close
the current node, and go to step 1.

Once the list of open nodes is empty, an optimal solution of (MILP) is the
solution (x∗, y∗) associated with the last incumbent value.

29

30

Chapter 2

Cycle selections

The content of this chapter is based on joint work with Yves Crama, in par-
ticular on the article Baratto and Crama (2023) published in Discrete Applied
Mathematics. In addition to the article, Section 2.6 studies a variant of the
original cycle selection problem; it has not been submitted for publication.

Contents
2.1 Introduction . 32

2.1.1 Problem definition 32
2.1.2 Motivation . 34
2.1.3 Literature review 35

2.2 Complexity . 37
2.3 Formulations . 39

2.3.1 Arc formulation 39
2.3.2 Compact extended formulations 41
2.3.3 Cycle formulation 50
2.3.4 Relative strength of formulations 52

2.4 Polyhedral structure . 53
2.4.1 Dimension . 53
2.4.2 Facets . 53
2.4.3 Additional valid inequalities 68

2.5 Constrained cycle selections 68
2.6 Cycle selections with cycles of length at most 3 69

2.6.1 Formulation . 69
2.6.2 Polyhedral study 71

2.7 Conclusions and perspectives 72

31

2.1 Introduction

2.1.1 Problem definition

This chapter introduces and investigates a combinatorial optimization prob-
lem originally motivated by an application to kidney exchange programs.
The motivation will be further developed in Section 2.1.2 hereunder but for
now, we start with a mathematical definition of the problem.

Our graph-theoretic terminology is standard and follows Bang-Jensen and
Gutin (2009). All directed graphs (or digraphs) we consider in this chapter
are loopless and have no parallel arcs. For a digraph G = (V,A), we let
|V | = n and |A| = m. The digraph G = (V,A) is complete if A contains all
pairs of distinct vertices (i, j), for i, j ∈ V . A (directed) cycle of a digraph
G is a sequence of the form C = (v1, a1, v2, a2, . . . , vk, ak, vk+1) where k ≥ 2,
v1, v2, . . . , vk are distinct vertices of G, v1 = vk+1, a1, a2, . . . , ak are distinct
arcs, vi is the tail of ai and vi+1 is its head for i = 1, 2, . . . , k. The length
of C is k, and we say that C is a k-cycle. When no confusion can arise, we
often identify a cycle with its set of arcs, so that we can speak of a union of
cycles, for example.

Let us now introduce a new definition. Given a directed graph G = (V,A),
where V is the set of vertices and A is the set of arcs of G, we say that a
subset of arcs B ⊆ A is a cycle selection in G if the arcs of B form a union
(possibly empty) of directed cycles. Equivalently, B is a cycle selection if
and only if each arc of B is contained in a directed cycle of GB = (V,B).
And equivalently again, B is a cycle selection of G if and only if each arc of B
is contained in a strong (or strongly connected) component of GB = (V,B):
the equivalence follows from the observation that an arc of B, say (i, j), is in
a cycle of GB if and only if i and j are in a same strong component of GB.

As an illustration, Figure 2.2 displays the collection of selections of the di-
graph represented in Figure 2.1.

1

2

3

4

5

6

Figure 2.1: A directed graph.

In view of the above definitions, the time complexity to verify that a subset
B ⊆ A is a cycle selection is O(n+m), using for example Tarjan’s algorithm

32

1

2

3

4 5

6 1

2

3

4 5

6 1

2

3

4 5

6

1

2

3

4 5

6 1

2

3

4 5

6 1

2

3

4 5

6

1

2

3

4 5

6 1

2

3

4 5

6

Figure 2.2: All cycle selections of the directed graph in Figure 2.1.

to identify all strong components of GB (Tarjan (1972)).

The maximum weighted cycle selection problem (MWCS), or cycle selection
problem for short, is the following optimization problem: given a digraph
G = (V,A) and a weight wi,j ∈ R for each arc (i, j) ∈ A, find a cycle
selection B which maximizes w(B) =

∑
(i,j)∈B wi,j .

This chapter investigates several properties of the cycle selection problem.
Section 2.1.2 lays out the motivation for studying it. Section 2.1.3 provides a
literature review of previous related work in order to contextualize the cycle
selection problem and to position our contributions. Section 2.2 discusses the
complexity of the problem. Next, various integer linear programming formu-
lations of the cycle selection problem are proposed in Section 2.3, namely,
an arc-based formulation (Section 2.3.1), several extended compact formula-
tions (Section 2.3.2), and an extended non compact one (Section 2.3.3). We
establish the relative strength of the linear relaxations of these formulations.
Section 2.4 investigates the facial structure of the cycle selection polytope
associated with the arc formulation for a complete digraph. We prove that
the polytope is full-dimensional and that all the inequalities used in the ILP
formulation are facet-defining. Furthermore, we describe three additional
classes of facet-defining inequalities and one class of valid inequalities. Sec-

33

tion 2.5 considers the extension of the cycle selection problem which arises
when a constraint is placed on the cardinality of the selection and of the
cycles that it includes. Section 2.6 investigates the cycle selection problem
with a maximum cycle length set to K = 3. In particular, we provide an
arc-based formulation and prove that the associated polytope for complete
digraphs is full-dimensional and that all constraints describing the formula-
tion are facet-defining. Finally, Section 2.7 presents some conclusions and
perspectives for future research.

2.1.2 Motivation

Our motivation to study cycle selections originally stems from optimization
problems arising in the context of kidney exchange programs (KEPs). Let us
briefly explain how KEPs work. Nowadays, the preferred treatment option
offered to patients with an end-stage renal disease is kidney transplant from
a living donor. This option exists primarily when a patient has a relative
willing to donate one of their healthy kidneys. However, in many situations,
patients are unable to receive a kidney from their associated healthy donor
because of ABO blood type incompatibility or tissue type incompatibility.
Kidney exchange programs try to alleviate this difficulty by enlisting a large
number of incompatible patient-donor pairs, say, pairs (Pi, Di) made up of
patient Pi and donor Di, for i = 1, . . . , n. Considering such a pool makes it
potentially feasible to transplant kidneys in cyclic fashion with, for example,
D1 donating a kidney to P2, D2 donating one to P3, and D3 donating one
to P1 (Roth et al. (2004)).

Given a pool of patients, one can build a compatibility digraph G = (V,A)
whose vertices are the pairs vi = (Pi, Di), and A contains the arc (vi, vj)
if Di appears to be compatible with Pj , based on blood and tissue type.
Maximizing the number of feasible cyclic transplants amounts now to find-
ing in G a collection of vertex-disjoint cycles whose union contains as many
arcs as possible. (Beside cycles, some KEPs may also take non-closed di-
rected paths in consideration, but we disregard this option here.) There is a
large amount of literature documenting various formulations and matching
algorithms to solve this optimization problem; see, e.g., Constantino et al.
(2013), Dickerson et al. (2016), Biró et al. (2021) and the literature review
in Section 2.1.3.

One of the remaining issues with this approach, is that in reality, blood type
and tissue type are not the only determinants of the feasibility of a transplant.
The decision to perform a transplant is based on more complex, so-called
crossmatch tests of compatibility between donor and patient. In practice,
for cost- and time-efficiency reasons, crossmatch tests are only performed
after an intended transplant has been identified.

34

As a result, incompatibilities may be revealed after the identification of po-
tential exchange cycles, which, as as consequence, may completely fail to be
implemented.

A way to tackle this issue is to first select a restricted subset of arcs to
crossmatch them in order to test their compatibility, and only then to run
the matching algorithm in order to find an optimal set of exchange cycles.
Smeulders et al. (2022) have proposed a stochastic integer programming
formulation of this approach. Namely, they introduce a two-stage selection
problem which, given a testing budget B, identifies (in stage 1) a subset of
arcs B ⊆ A with |B| ≤ B such that the expected number of transplants
in the graph (V,B) (in stage 2) is maximized. Solving this optimization
problem is numerically challenging.

Smeulders et al. (2022) tightened the formulation of the two-stage selection
problem by adding constraints which enforce that the set B must be a cycle
selection: indeed, arcs that are not contained in any cycle cannot be used
in transplants and hence, should not be selected in the first stage. Their
work motivates our attempt to develop a better understanding of the cycle
selection problem and of its ILP formulations.

2.1.3 Literature review

Rather surprisingly in view of their natural definition, cycle selections have
apparently not been previously investigated in the literature, except for the
paper of Smeulders et al. (2022) mentioned above and to which we return in
Section 2.3.2. Our review, therefore, is limited to a number of related, but
different combinatorial problems.

The weighted girth problem asks for a simple cycle of minimum total weight
in a weighted undirected graph G. The cycle cone and cycle polytope are,
respectively the cone generated by the incidence vectors of cycles of G and
the convex hull of these vectors. Thus, the weighted girth problem is the
optimization problem over the cycle polytope. It is NP-hard in general, but
is polynomially solvable when certain restrictions are placed on the cost vec-
tors. On the other hand, the optimization problem over the cycle cone is
polynomially solvable. A linear system describing the cycle cone is given
in Seymour (1979). An alternative proof of this result, as well as addi-
tional properties of the cycle cone and the cycle polytope, are established in
Coullard and Pulleyblank (1989).

Bauer (1997) studies the facial structure of the cycle polytope associated with
a complete undirected graph on n vertices. She proves that this polytope
is full-dimensional for n ≥ 4, she provides an ILP formulation for it, and
she proves that all inequalities in the ILP formulation are facet-defining
when n ≥ 6. She also presents additional classes of facet-defining valid

35

inequalities, as well as a complete linear description of the cycle polytope
when n ≤ 6. Bauer et al. (2002) extend the previous results to the case
where the cycles are restricted to have length at most K, where 0 ≤ K ≤ n.
They also experiment with a branch-and-cut algorithm for the solution of
the corresponding optimization problem.

Balas and Oosten (2000) investigate the minimum girth problem and the
cycle polytope associated with complete directed graphs. The optimization
problem is again NP-hard, but it is polynomially solvable when all cycles
have a positive weight. Balas and Oosten (2000) propose an arc-based ILP
formulation of the problem. They prove that the cycle polytope on a com-
plete graph with n vertices is a face of the related polytope on a complete
graph with n + 1 vertices. This leads them to an efficient general lifting
procedure. They also give a partial description of the facets of the cycle
polytope. The article Balas and Rüdiger (2009) is a continuation of the pre-
vious one. It further studies the cycle polytope, the cycle cone, the upper
cycle polyhedron, the dominant of the cycle polytope and their relationships.

Hartmann and Özlük (2001) carry out a polyhedral analysis of the K-cycle
polytope, which is the convex hull of the incidence vectors of all simple
directed cycles with length exactly K. They determine the dimension of the
K-cycle polytope. They describe several sets of valid inequalities and discuss
the complexity of the associated separation problems. They also investigate
the relationship between the K-cycle polytopes of directed and undirected
graphs.

In a separate stream of research, the cardinality constrained multi-cycle prob-
lem(CCMC) has been recently studied by several researchers. Given a
weighted digraph G = (V,A) and an integer K, the problem is here to
find a set of arcs with maximum weight forming a union of vertex-disjoint
cycles of length at most K. CCMC is the underlying combinatorial opti-
mization problem to be solved by kidney exchange programs, as explained
in Section 2.1.2. It is NP-hard for each fixed K ≥ 3, and polynomially solv-
able when K = 2 or when K = n (see Abraham et al. (2007), Roth et al.
(2007)). Several IP formulations have been proposed for this problem and
are reviewed in Mak-Hau (2017) and Biró et al. (2021). In particular, Abra-
ham et al. (2007) and Roth et al. (2007) give two formulations of exponential
size, one where the variables are associated with the arcs of G, and another
one where the variables are associated with cycles. Later, Constantino et al.
(2013) and Dickerson et al. (2016), among others, proposed more complex
but compact (polynomial-size) formulations of CCMC, including an ex-
tended edge formulation and a position-indexed formulation. Dickerson et al.
(2016) also study the relative strength of the linear relaxation of different
formulations.

36

Mak-Hau (2018) focuses on the polyhedral structure of the arc-based formu-
lation proposed by Roth et al. (2007) when G is a complete digraph. The
author proves that three classes of constraints in the initial formulation of
the problem are facet-defining for the CCMC polytope. Furthermore, she
identifies four new classes of valid inequalities. Lam and Mak-Hau (2020) ex-
tend the theoretical results of Mak-Hau (2018) and build on them to develop
an efficient branch-and-bound-and-cut algorithm for the CCMC.

Obviously, cycles and unions of vertex-disjoint cycles of a digraph G are cycle
selections of G, so that the following inclusions hold:

cycle polytope ⊆ cycle selection polytope

and

CCMC polytope ⊆ cycle selection polytope.

The cycle selection problem and the associated polytope have apparently not
been investigated until now, but we will be able to draw some inspiration
from previous work on related problems in the remainder of the chapter.

2.2 Complexity

The maximum weighted cycle selection problem (MWCS) has been intro-
duced in Section 2.1. When all arc weights are nonnegative, a maximum
cycle selection of G = (V,A) consists of all the arcs contained in strong com-
ponents of G. Therefore, in this case, MWCS is solvable in linear, O(n+m)
time by a simple application of Tarjan’s strong component algorithm (Tarjan
(1972)).

For arbitrary weights, however, MWCS is NP-hard. To see this, consider
the corresponding decision problem: given a digraph G = (V,A), a weight
wi,j ∈ N for each arc (i, j) ∈ A, and a number w0 ∈ N, is there a cycle
selection B such that w(B) ≥ w0?

Theorem 3. The decision version of the maximum weighted cycle selection
problem is strongly NP-complete, even when G is a complete digraph.

Proof. MWCS is clearly in NP. We will prove that MWCS is strongly NP-
complete by reducing the hitting set problem HS to it. Recall the definition
of the hitting set problem: given a finite set X, a collection T = {T1, . . . , Tr}
of subsets of X, and t ∈ N, is there a subset H ⊆ X such that |H| ≤ t and
Tj ∩ H ̸= ∅ for all j ∈ {1, . . . , r}? Note that for any instance of HS, we
can assume without loss of generality that each element of X is in one of the
subsets T1, . . . , Tr, and that t < r. HS is known to be strongly NP-complete
(Karp (1972)).

37

With an instance (X,T, t) of HS, we associate an instance (G,w,w0) of
MWCS where G is the complete digraph on the set of vertices V = {0} ∪
X ∪ T , the weights on the arcs are:

• for all j = 1, . . . , r, w(Tj , 0) = r,

• for all i ∈ X, w(0, i) = −1,

• for all i ∈ X and for all j = 1, . . . , r, if i ∈ Tj , then w(i, Tj) = 0,

• all the other arcs have weight −r,

and w0 = r2 − t.

We claim that this instance of MWCS has a Yes answer if and only if the
original instance of HS has a Yes answer.

First, suppose that the original instance of HS has a Yes answer, i.e., sup-
pose there exists H ⊆ X where |H| ≤ t and H ∩Tj ̸= ∅ for all j ∈ {1, . . . , r}.
Then, let us define a cycle selection B in the following way:

B = {(Tj , 0) : j ∈ {1, . . . , r}} ∪ {(0, i) : i ∈ H}
∪ {(i, Tj) : j ∈ {1, . . . , r}, i ∈ H ∩ Tj} .

Since each element of H is in one of T1, . . . , Tr, and since H is a hitting set, B
is the union of the 3-cycles (Tj , 0, i), for j = 1, 2, . . . , r and i ∈ H ∩Tj . Thus,
B is indeed a cycle selection and its weight is w(B) = r2−|H| ≥ r2−t = w0,
so that the instance of MWCS has a Yes answer.

Next, suppose conversely that the instance of MWCS has a Yes answer, in
other words that there is a cycle selection B with weight at least w0 = r2− t.
First, note that each arc of B should be in one of the three sets below:

• {(Tj , 0) : j ∈ {1, . . . , r}} ,

• {(0, i) : i ∈ X} ,

• {(i, Tj) : j ∈ {1, . . . , r}, i ∈ Tj} .

Indeed, all arcs not in these three sets have a negative weight (−r) and their
inclusion in B would result in a total weight at most equal to r2−r < r2− t,
which contradicts our assumption. Moreover, B must contain all arcs (Tj , 0)
for all j ∈ {1, . . . , r}, because otherwise w(B) ≤ (r − 1)r < r2 − t, again a
contradiction.

Let now H = {i ∈ X : (0, i) ∈ B}. Then,

w(B) = r2 +
∑
i∈H

w(0, i) = r2 − |H|.

38

Since w(B) ≥ r2 − t, it follows that |H| ≤ t.

Finally, we claim that H is a hitting set of T . Indeed, for each j = 1, . . . , r,
the arc (Tj , 0) ∈ B must lie in a cycle of GB = (V,B). Hence, B must also
contain at least one arc of the form (i, Tj) for some i in Tj . Then, (0, i) also
is in B, so that i is in H. In conclusion, H is a hitting set with size |H| ≤ t,
meaning that HS has a Yes answer.

Since all cycles considered in the proof have length exactly 3, it follows that
MWCS is NP-complete even when the cycle selection is restricted to contain
cycles of length at most 3. On the other hand, MWCS is trivially solved
when restricted to cycles of length 2: indeed, in this case, the arc (i, j) ∈ A
is in an optimal cycle selection if and only if (j, i) ∈ A and wi,j + wj,i ≥ 0.

2.3 Formulations

2.3.1 Arc formulation

Let G = (V,A) be an arbitrary directed graph, with |V | = n and |A| = m.
In order to obtain a first IP formulation for cycle selections, we introduce
the “natural” arc variables βi,j ∈ {0, 1}, where βi,j = 1 if arc (i, j) is selected
and 0 otherwise, for all (i, j) ∈ A.

The set of vectors of {0, 1}m associated with cycle selections is denoted
by PG, or simply P (we usually omit the reference to G, which will be clear
from the context). The convex hull of P (or PG) is denoted by P ∗ (or P ∗

G)
and is called the cycle selection polytope associated with G. Since MWCS
is the linear optimization problem over P ∗ and is NP-hard, it is probably
hopeless to obtain a complete linear description of P ∗. One of our main goals
in this chapter will be to produce a (partial) description of P ∗ for complete
digraphs.

For now, consider the following set of constraints:

βi,j ∈ {0, 1} ∀(i, j) ∈ A (2.1)

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k ∀(i, j) ∈ A,∀S ⊆ V : i ∈ S, j ∈ V \ S. (2.2)

We call (2.2) the return inequalities for the set P . (The return inequalities are
formally similar to the inequalities defining the cycle cone of an undirected
graph; see Seymour (1979), Bauer (1997).) Figure 2.3 illustrates the idea
behind the return inequalities. For an arc (i, j) ∈ A and a subset S ⊆ V
such that i ∈ S, j ∈ V \ S fixed, if arc (i, j) is selected, then at least one arc
(l, k) ∈ A such that l ∈ V \ S, k ∈ S should be selected

39

S V \ S

i

j

k

l

Figure 2.3: Illustration of a return inequality.

Theorem 4. The constraints (2.1)-(2.2) provide a correct formulation of the
cycle selection problem, that is,

P =
{
β ∈ {0, 1}m : βi,j ≤

∑
(l,k)∈A:l∈V \S,k∈S βl,k ∀(i, j) ∈ A, ∀S ⊆ V : i ∈ S, j ∈ V \ S

}
.

Proof. To show that (2.2) is valid for P , suppose that β describes a cycle
selection B which contains the arc (i, j), so that βi,j = 1. Let S ⊂ V be a
subset of vertices containing i, but not j. Since B is a cycle selection, there
is a directed cycle C such that (i, j) ∈ C ⊆ B, i.e., βl,k = 1 for all (l, k) ∈ C.
At least one arc (l, k) of C must have l /∈ S and k ∈ S, and hence (2.2) is
satisfied.

Conversely, suppose that the point β ∈ {0, 1}m satisfies the return inequal-
ities (2.2). Let B = {(i, j) : βi,j = 1} and GB = (V,B). For any fixed arc
(i, j) such that βi,j = 1, we must show that (i, j) is contained in at least
one directed cycle of GB. Let S ⊆ V be the set of those vertices k such
that there is a directed path πk,i from k to i in GB. Note that i ∈ S. If
j ∈ S, then (i, j) is indeed in a directed cycle which is the union of the path
πj,i and the arc (i, j). Otherwise, j ∈ V \ S and i ∈ S. Because β satisfies
the inequality (2.2), there exists (l, k) ∈ A such that l ∈ V \ S, k ∈ S and
βl,k = 1. But then (l, k) and πk,i together form a path from l to i and thus
l should be in S, which brings a contradiction.

We refer to (2.1)-(2.2) as the arc formulation of the cycle selection problem,
and we define the associated relaxed polytope

PL =
{
β ∈ [0, 1]m : βi,j ≤

∑
(l,k)∈A:l∈V \S,k∈S βl,k ∀(i, j) ∈ A, ∀S ⊆ V : i ∈ S, j ∈ V \ S

}
.

(2.3)

There holds
P ⊆ P ∗ ⊆ PL.

40

Because of the exponential number of return inequalities (2.2), even optimiz-
ing a linear function over PL may not be easy. But our next result implies
that cutting plane methods can be used efficiently (and that linear optimiza-
tion over PL is polynomial, by virtue of the equivalence of optimization and
separation; see Grötschel et al. (1981),Conforti et al. (2014)).

Theorem 5. The separation problem for the relaxed polytope PL is solvable
in polynomial time.

Proof. The separation problem is the following: given a vector β ∈ [0, 1]m,
is there (i, j) ∈ A and S ⊂ V such that i ∈ S, j ∈ V \ S, and βi,j >∑

(l,k)∈A:l∈V \S,k∈S βl,k? There are m arcs (i, j) to check, so we can ask the
question for each such arc successively.

Since βi,j is fixed, we just need to solve minS⊂V
∑

(l,k)∈A:l∈V \S,k∈S βl,k which
is the min-cut problem with source j, sink i, and capacity βl,k on each
arc (l, k). This (j, i)-min-cut problem is solvable in polynomial time.

2.3.2 Compact extended formulations

The arc formulation presented in the previous section contains an exponential
number of return inequalities (2.2). The aim of this section is to present
several compact, polynomial-size formulations of the cycle selection problem
and to compare them with the arc formulation.

Extended arc formulations

We start with three formulations based on the relation between cycle se-
lections and circulations. Recall that a circulation in a directed graph
G = (V,A) is a flow-vector x ∈ R|A|

+ which is balanced at every vertex,
that is, such that ∑

h:(h,k)∈A

xh,k =
∑

h:(k,h)∈A

xk,h ∀k ∈ V.

The support of a circulation x is the set C(x) = {(i, j) ∈ A : xi,j > 0}. It
can be viewed as a cycle selection consisting of m cycles or less (see, e.g.,
Corollary 4.3.3 in Bang-Jensen and Gutin (2009)). Conversely, every cycle
selection B gives rise to a circulation xB whose support is exactly B, as
follows. For each arc (u, v) ∈ B, let C(u,v) be a cycle of GB containing (u, v),
and put a flow of one unit on C(u,v), that is define x

(u,v)
i,j = 1 if (i, j) ∈ C(u,v),

x
(u,v)
i,j = 0 otherwise. Finally, define a circulation xB as the sum of the cycle

flows x(u,v), that is, let xB =
∑

(u,v)∈B x(u,v). Note that this construction
does not univocally define xB, because the choice of the cycles C(u,v) is not
unique, but this will be irrelevant for our purpose.

41

In particular, when x is a binary circulation, then C(x) = {(i, j) : xi,j = 1}
is an arc-disjoint union of cycles, i.e., a special type of cycle selection. If
moreover ∑

h:(h,k)∈A

xh,k ≤ 1 ∀k ∈ V,

then the support of a binary circulation is a union of vertex-disjoint cycles.

These observations lead to different formulations for cycle selections. A first
simple extended arc formulation is as follows: vector β ∈ R|A| defines a
selection if and only there exists x ∈ R|A|

+ such that

xi,j ≤ mβi,j ∀(i, j) ∈ A (2.4)
βi,j ≤ xi,j ∀(i, j) ∈ A (2.5)∑
h:(h,k)∈A

xh,k =
∑

h:(k,h)∈A

xk,h ∀k ∈ V (2.6)

0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A (2.7)
βi,j integer ∀(i, j) ∈ A. (2.8)

Indeed, any feasible solution of (2.4)-(2.8) defines a subset of arcs B (asso-
ciated with β) and a circulation x such that B is exactly the support of x.
Therefore, B is a cycle selection. Conversely, every cycle selection B gives
rise to a feasible solution (β, xB) as explained above.

A second, more complex but as we will see, tighter formulation relies on
expressing that each arc (u, v) of a cycle selection must be contained in the
support C(u,v) of a representative binary circulation x(u,v) (note that C(u,v)

and x(u,v) may differ for each arc (u, v)). We define x(u,v)i,j = 1 if (i, j) ∈ C(u,v),

and we interpret x
(i,j)
i,j = 1 to mean that arc (i, j) is in the cycle selection,

that is, we identify x
(i,j)
i,j with βi,j .

The cycle selection problem can now be formulated as follows:

x
(u,v)
i,j ≤ x

(i,j)
i,j ∀(i, j) ∈ A,∀(u, v) ∈ A (2.9)∑

h:(h,k)∈A

x
(u,v)
h,k =

∑
h:(k,h)∈A

x
(u,v)
k,h ∀k ∈ V,∀(u, v) ∈ A (2.10)

0 ≤ x
(u,v)
i,j ≤ 1 ∀(i, j) ∈ A,∀(u, v) ∈ A (2.11)

x
(u,v)
i,j integer ∀(i, j) ∈ A,∀(u, v) ∈ A (2.12)

Constraints (2.10)-(2.12) enforce that each vector x(u,v) is indeed a binary
circulation, and constraints (2.9) enforce that arc (i, j) can be in the support
C(u,v) only if it is selected at all (if x(u,v)i,j = 1, then x

(i,j)
i,j ≡ βi,j must be 1 as

well).

42

The constraints (2.9)-(2.12) provide a correct extended formulation of the
cycle selection problem. We refer to it as the extended arc formulation of the
cycle selection problem, and we note that it is formally similar to the extended
edge formulation of Constantino et al. (2013) for the cardinality-constrained
multi-cycle problem (CCMC, see Section 2.1.3). It contains a polynomial
number of variables (O(n4)) and a polynomial number of constraints (O(n4)).

Finally, the extended arc formulation can be further adapted by insisting
that the support of each binary circulation x(u,v) should consist of vertex-
disjoint cycles. This can be achieved by adding the following constraints to
the extended arc formulation:∑

h:(k,h)∈A

x
(u,v)
k,h ≤ 1 ∀k ∈ V,∀(u, v) ∈ A. (2.13)

We refer to (2.9)-(2.13) as the modified extended arc formulation for cycle
selections.

Remark 1. One may want to further strengthen these extended formulations
so that C(u,v) is a single cycle for each (u, v). This would require to include
additional exponential families of inequalities describing the cycle polytope,
see Balas and Oosten (2000), Balas and Rüdiger (2009).

We now aim to establish the relation between the arc formulation of Sec-
tion 2.3 and the different extended arc formulations introduced above. Let
us first denote as PEA the polytope defined by the linear relaxation (2.9)-
(2.11) of the extended arc formulation, and recall that PL is the solution set
of the relaxation (2.3) of the arc formulation.

Theorem 6. The polytope PL is the projection of the polytope PEA on the
space R|A| of the variables βi,j ≡ x

(i,j)
i,j , (i, j) ∈ A.

Proof. To prove first that the projection of PEA is contained in PL, let us
consider a point x ∈ PEA and let us set βi,j = x

(i,j)
i,j for all (i, j) ∈ A. We

must show that β ∈ PL.

The bounding constraints 0 ≤ βi,j ≤ 1 are satisfied. So, we only need to
show that, for each fixed arc (i, j) ∈ A and each fixed subset S ⊆ V with
i ∈ S, j /∈ S, the return inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k (2.14)

can be deduced from the inequalities defining PEA. Let us add up the fol-

43

lowing inequalities:

x
(i,j)
l,k ≤ x

(l,k)
l,k ∀(l, k) ∈ (V \ S, S), (2.15)∑

h:(k,h)∈A

x
(i,j)
k,h −

∑
h:(h,k)∈A

x
(i,j)
h,k = 0 ∀k ∈ S. (2.16)

This yields a new inequality with right-hand side equal to:∑
(l,k)∈A:l∈V \S,k∈S

x
(l,k)
l,k =

∑
(l,k)∈A:l∈V \S,k∈S

βl,k.

In the left-hand side of the summation, each variable x
(i,j)
l,k , (l, k) ∈ (V \

S, S), appears once with coefficient +1 in (2.15) and once with coefficient
−1 in (2.16). Also, each variable x

(i,j)
k,h with k, h ∈ S appears once with

coefficient +1 and once with coefficient −1 in (2.16). As a result, the left-
hand side of the summation boils down to

∑
(k,h)∈A:k∈S,h∈V \S x

(i,j)
k,h . Since

x
(i,j)
k,h ≥ 0 for all (k, h) ∈ A, the left-hand side of the inequality is at least

x
(i,j)
i,j = βi,j , and hence we obtain the return inequality (2.14).

Next, to prove that PL is contained in the projection of PEA, we must show
that for each feasible solution β∗ ∈ PL of the relaxed arc formulation, there
exists a solution x ∈ PEA with x

(i,j)
i,j = β∗

i,j for all (i, j) ∈ A.

For every fixed arc (i, j) ∈ A, denote as G(i,j) = (V,A) the digraph (V,A)

equipped with the following lower bound ℓ
(i,j)
h,k and upper bound c

(i,j)
h,k on each

arc (h, k) in A:

• if h ̸= i and k ̸= j, then ℓ
(i,j)
h,k = 0 and c

(i,j)
h,k = β∗

h,k;

• if h = i and k ̸= j, then ℓ
(i,j)
i,k = c

(i,j)
i,k = 0;

• if h ̸= i and k = j, then ℓ
(i,j)
h,j = c

(i,j)
h,j = 0;

• if h = i and k = j, then ℓ
(i,j)
i,j = c

(i,j)
i,j = β∗

i,j .

We say that a circulation x is feasible in G(i,j) if ℓ(i,j)h,k ≤ xh,k ≤ c
(i,j)
h,k for each

arc (h, k) in A. In view of Hoffman’s circulation theorem (Hoffman (1960),
Bang-Jensen and Gutin (2009)), there exists a feasible circulation in G(i,j) if
and only if ∑

(h,k)∈A:h∈S,k/∈S

ℓ
(i,j)
h,k ≤

∑
(h,k)∈A:h/∈S,k∈S

c
(i,j)
h,k for all S ⊆ V. (2.17)

Let us verify that this is indeed the case. Fix the set S ⊆ V . With our
definition of the lower and upper bounds, the left-hand side of the inequal-
ity (2.17) is zero (and hence, the inequality is trivially satisfied) unless i ∈ S

44

and j /∈ S, in which case it is equal to ℓ
(i,j)
i,j = β∗

i,j . But then, the right-hand
side of (2.17) is equal to

∑
(h,k)∈A:h/∈S,k∈S β∗

h,k. So, (2.17) boils down to a
return inequality, and it is satisfied in view of the feasibility of β∗ for the
relaxed arc formulation.

So, we conclude from Hoffman’s theorem that for each (i, j) ∈ A, there
exists a feasible circulation x(i,j) in G(i,j). Note that due to the bounds
on the arcs of G(i,j), x

(i,j)
i,j = β∗

i,j . Moreover, the collection of circulations
x(i,j), for all (i, j) ∈ A, satisfies the constraints (2.9)–(2.11) of the extended
arc formulation. Indeed, the constraints (2.10) are satisfied by definition
of circulations, and the constraints (2.11) are satisfied because of the lower
and upper bounds on the arcs of G(i,j). As for constraints (2.9), consider
(u, v) ∈ A and (i, j) ∈ A.

• If (u, v) = (i, j), then (2.9) is trivial.

• If u = i and v ̸= j, or if u ̸= i and v = j, then x
(u,v)
i,j ≤ c

(u,v)
i,j = 0

(upper bound on x
(u,v)
i,j in the graph G(u,v)).

• If u ̸= i and v ̸= j, then x
(u,v)
i,j ≤ c

(u,v)
i,j = β∗

i,j .

Hence, constraints (2.9) are indeed satisfied. This concludes the proof.

In view of Theorem 6, the linear relaxation PEA of the extended arc formu-
lation is equivalent to the linear relaxation PL of the arc formulation when
it comes to solving the maximum weighted cycle selection problem. We
are now going to show that the same conclusion applies when we consider
the modified extended arc formulation. We denote by PMEA the polytope
defined by inequalities (2.9)-(2.11) and (2.13).

Theorem 7. The polytope PL is the projection of the polytope PMEA on the
space R|A| of the variables βi,j ≡ x

(i,j)
i,j , (i, j) ∈ A.

Proof. Since PMEA ⊆ PEA, Theorem 6 immediately implies that the projec-
tion of PMEA is contained in PL.

For the reverse inclusion, consider the collection of circulations x(i,j) obtained
in the proof of Theorem 6. Each circulation x(i,j) can be written as a positive
linear combination of the form

x(i,j) =
∑

C∈C(i,j)

λ
(i,j)
C ξC , (2.18)

where C(i,j) is a collection of directed cycles forming the support of x(i,j), ξC

is the incidence vector of cycle C, and λ
(i,j)
C > 0 for all C ∈ C(i,j) (see, e.g.,

45

Bang-Jensen and Gutin (2009)). If some cycle C ∈ C(i,j) does not contain
the arc (i, j), then we can remove this cycle from the collection C(i,j), and
the right-hand side of (2.18) still defines a feasible circulation as required
in the proof of Theorem 6. So, we can assume without loss of generality
that (i, j) ∈ C, or equivalently, ξCi,j = 1, for all C ∈ C(i,j). It then follows
from (2.18) that

x
(i,j)
i,j =

∑
C∈C(i,j)

λ
(i,j)
C . (2.19)

We want to show now that inequality (2.13) is satisfied, for an arbitrary
k ∈ V and for (u, v) = (i, j). The left-hand side of (2.13) is∑

h:(k,h)∈A

x
(i,j)
k,h =

∑
h:(k,h)∈A

∑
C∈C(i,j)

λ
(i,j)
C ξCk,h

=
∑

C∈C(i,j)

λ
(i,j)
C (

∑
h:(k,h)∈A

ξCk,h).

For each cycle C,
∑

h:(k,h)∈A ξCk,h is either 1 (if vertex k is on the cycle) or 0
(otherwise). So, we get: ∑

h:(k,h)∈A

x
(i,j)
k,h ≤

∑
C∈C(i,j)

λ
(i,j)
C ,

and from (2.19), ∑
h:(k,h)∈A

x
(i,j)
k,h ≤ x

(i,j)
i,j ≤ 1,

so that the constraint (2.13) is satisfied. This implies that the collection
of circulations x(i,j), for all (i, j) ∈ A, satisfies the constraints (2.9)–(2.11)
and (2.13) of the modified extended arc formulation, which concludes the
proof.

Finally, we return to the simple extended arc formulation. Let us denote as
PSEA the set of solutions of the relaxed formulation (2.4)-(2.7). The proof
of the following result suggests that this formulation is quite loose.

Theorem 8. The polytope PL is included in the projection of the polytope
PSEA on the space R|A| of the variables βi,j, (i, j) ∈ A, and the inclusion is
strict for complete digraphs on n ≥ 2 vertices.

Proof. Given β∗ ∈ PL, consider again the collection of circulations x(u,v),
(u, v) ∈ A obtained in the proof of Theorem 6. Let us define x∗ =

∑
(u,v)∈A x(u,v),

and let us show that (β∗, x∗) ∈ PSEA. First, it is clear that x∗ is a circula-
tion, i.e., it satisfies the equations (2.6). Since β∗

i,j = x
(i,j)
i,j , it follows that

β∗
i,j ≤

∑
(u,v)∈A x

(u,v)
i,j = x∗i,j , meaning that equation (2.5) is satisfied. Finally,

46

in view of equation (2.9), x∗i,j =
∑

(u,v)∈A x
(u,v)
i,j ≤

∑
(u,v)∈A x

(i,j)
i,j = mβ∗

i,j ,
hence equation (2.4) is satisfied and (β∗, x∗) ∈ PSEA, as required.

To prove that the inclusion is strict when n ≥ 2, consider the following
assignment (only the nonzero values are displayed):

• β1,2 = 1.0, β2,1 = 0.5,

• x1,2 = x2,1 = 1.

Then, (β, x) ∈ PSEA, but β /∈ PL since β does not satisfy the return inequal-
ity

β1,2 ≤
∑

k∈V \{2}

β2,k.

Position-indexed formulation

Another extended formulation has been proposed by Smeulders et al. (2022);
it is inspired by the position-indexed edge formulation of the CCMC (Dick-
erson et al. (2016)).

Assuming (without loss of generality) that the vertex-set of the digraph
G = (V,A) is V = {1, . . . , n}, let us denote by V l the subset of vertices
{l, . . . , n}, for each l in V . Given binary values for the arc variables βi,j ,
define Bl = {(i, j) ∈ A : i ∈ V l, j ∈ V l, βi,j = 1}. Let us then introduce a
new set of position-indexed binary variables:

ϕl
i,j,k for all (i, j) ∈ A, l ∈ V, k ∈ κ(i, j, l) where κ(i, j, l) =

 {1} if i = l
{2, ..., n} if j = l
{2, ..., n− 1} if i, j > l

with the interpretation that ϕl
i,j,k is equal to 1 if arc (i, j) is in position k in

a cycle of the digraph (V l, Bl) containing vertex l, and 0 otherwise.

Smeulders et al. (2022) propose the following formulation:

47

βi,j ≤
∑
l∈V

∑
k∈κ(i,j,l)

ϕl
i,j,k ∀(i, j) ∈ A

(2.20)

ϕl
i,j,k ≤ βi,j ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l)

(2.21)

ϕl
i,j,k ≤

∑
h:(h,i)∈Al∧k−1∈κ(h,i,l)

ϕl
h,i,k−1 ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l), k > 1

(2.22)

ϕl
i,j,k ≤

∑
h:(j,h)∈Al∧k+1∈κ(j,h,l)

ϕl
j,h,k+1 ∀l ∈ V, (i, j) ∈ Al, j ̸= l, k ∈ κ(i, j, l)

(2.23)

0 ≤ ϕl
i,j,k ≤ 1 ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l)

(2.24)

0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A
(2.25)

ϕl
i,j,k integer ∀l ∈ V, (i, j) ∈ Al, k ∈ κ(i, j, l)

(2.26)

βi,j integer ∀(i, j) ∈ A
(2.27)

Constraints (2.20) express that if an arc is selected, then it is part of at least
one cycle, and constraints (2.21) ensure that if an arc is in a cycle, then it
has to be selected. Constraints (2.22) enforce that if arc (i, j) is in position
k in some cycle of (V l, Bl), then there must be a preceding arc in position
k− 1, unless k = 1 (when k = 1, then there is no preceding arc, but because
of the definition of κ(i, j, l), i is necessarily equal to l for the variables ϕl

i,j,1).
Similarly, constraints (2.23) enforce that arc (i, j) must have a succeeding
arc unless j = l which means that a cycle is completed.

The inequalities (2.20)-(2.27) provide a compact position-indexed formula-
tion for cycle selections, with O(n4) variables and constraints. Their linear
relaxation (2.20)-(2.25) describes a polytope PPI . We next show that this
relaxation is weaker than the relaxation PL of the arc formulation.

Theorem 9. The polytope PL is included in the projection of the polytope
PPI on the space R|A| of the variables βi,j, (i, j) ∈ A, and the inclusion is
strict for complete digraphs on n ≥ 4 vertices.

Proof. We must prove that for any feasible solution β ∈ PL, there exists a
solution (β, ϕ) in PPI .

As in the proof of Theorem 7, consider a collection of circulations x(i,j),

48

(i, j) ∈ A, and write each x(i,j) as a positive linear combination of the form

x(i,j) =
∑

C∈C(i,j)

λ
(i,j)
C ξC , (2.28)

where C(i,j) is a collection of directed cycles containing the arc (i, j), ξC is
the incidence vector of cycle c, λ(i,j)

C > 0 for all C ∈ C(i,j), and

βi,j =
∑

C∈C(i,j)

λ
(i,j)
C . (2.29)

For any two arcs (i, j), (u, v) ∈ A, and for all k, l, define C(u,v)(i, j, k, l) as
the set of cycles C ∈ C(u,v) such that arc (i, j) is in position k in C, and the
lowest-indexed vertex of C is l.

For all (i, j) ∈ A, l ∈ V, k ∈ κ(i, j, l), set now

ϕl
i,j,k = max

(u,v)∈A

∑
C∈C(u,v)(i,j,k,l)

λ
(u,v)
C . (2.30)

We claim that (β, ϕ) satisfies inequalities (2.20)-(2.25). First, for each (i, j) ∈
A, in view of (2.29), of C(i,j) =

⋃
k,l C(i,j)(i, j, k, l), and of (2.30), we get

βi,j =
∑

C∈C(i,j)

λ
(i,j)
C =

∑
k,l

∑
C∈C(i,j)(i,j,k,l)

λ
(i,j)
C ≤

∑
k,l

ϕl
i,j,k,

which is exactly inequality (2.20).

Consider next the inequalities (2.21). For given i, j, k, l, the maximum in the
right-hand side of (2.30) is achieved for some arc (u, v). With this value of
(u, v),

ϕl
i,j,k =

∑
C∈C(u,v)(i,j,k,l)

λ
(u,v)
C ≤

∑
C∈C(u,v):(i,j)∈C

λ
(u,v)
C ≤ βi,j .

The last inequality holds by construction of the circulation x(u,v) in Theo-
rem 6: the sum of the weights λ

(u,v)
c of the cycles involved in C(u,v) cannot

exceed the upper bound βs,t on any arc (s, t). In particular, it cannot exceed
βi,j .

For the inequality (2.22) associated with i, j, k, l, where k > 1, assume again
that the maximum in equation (2.30) is achieved for arc (u, v). For each

49

cycle C ∈ C(u,v)(i, j, k, l), there is an arc (h(C), i) in position k − 1 in c. So,

ϕl
i,j,k =

∑
C∈C(u,v)(i,j,k,l)

λ
(u,v)
C

=
∑

C∈C(u,v)(h(C),i,k−1,l)

λ
(u,v)
C

≤
∑
h∈V l

∑
C∈C(u,v)(h,i,k−1,l)

λ
(u,v)
C

≤
∑
h∈V l

ϕl
h,i,k−1,

as required.

The case of inequalities (2.23) is similar. Finally, the bounds (2.24) are
implied by (2.30) and by (2.21). Thus, we conclude that (β, ϕ) satisfies all
inequalities (2.20)-(2.25), and that PL is indeed contained in the projection
of PPI .

To prove strict inclusion for complete digraphs with n ≥ 4 vertices, consider
the following assignment for the (β, ϕ) variables (we only list the variables
with nonzero value):

• β1,3 = β3,4 = β4,3 = 1, β3,1 = 0.5,

• ϕ1
1,3,1 = 1, ϕ1

3,1,2 = ϕ1
3,1,4 = ϕ1

3,4,2 = ϕ1
4,3,3 = 0.5,

• ϕ3
3,4,1 = ϕ3

4,3,2 = 0.5.

These values satisfy all constraints of the relaxed position-indexed formula-
tion. However, with S = {1}, i = 1 and j = 3, the return inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

is violated by the given assignment since β1,3 > β3,1.

2.3.3 Cycle formulation

Let us define ΓG (or simply, Γ) as the set of all directed cycles in the di-
graph G. Like Abraham et al. (2007) and Roth et al. (2007) for CCMC, we
next propose a formulation for cycle selections based on the cycle variables
zC , C ∈ Γ, where zC = 1 if cycle C is selected and 0 otherwise. Then,
together with the arc variables βi,j , the cycle selection problem can be for-

50

mulated as follows:

zC ≤ βi,j ∀C ∈ Γ, ∀(i, j) ∈ C (2.31)

βi,j ≤
∑

C∈Γ:(i,j)∈C

zC ∀(i, j) ∈ A (2.32)

0 ≤ zC ≤ 1 ∀C ∈ Γ (2.33)
0 ≤ βi,j ≤ 1 ∀(i, j) ∈ A (2.34)
zC integer ∀C ∈ Γ (2.35)
βi,j integer ∀(i, j) ∈ A (2.36)

Constraints (2.31) enforce that if cycle C is selected then all arcs (i, j) ∈ C
must be selected. Constraints (2.32) enforce that if arc (i, j) ∈ A, is selected
then at least one cycle containing (i, j) must be selected as well.

The constraints (2.31)-(2.36) provide a valid formulation of the cycle selec-
tion problem. We refer to it as the cycle formulation. Note that it is an ex-
ponential formulation due to the number of potential cycles (|Γ| = O(2|m|))
in graph G.

Denote by PC the linear relaxation (2.31)-(2.34) of the cycle formulation.
This relaxation is again weaker than the relaxation of the arc formulation:

Theorem 10. The polytope PL is included in the projection of the polytope
PC on the space R|A| of the variables βi,j, (i, j) ∈ A, and the inclusion is
strict for complete digraphs on n ≥ 4 vertices.

Proof. In view of Theorem 6, it suffices to prove that given a feasible solution
x ∈ PEA, there exists a solution (β, z) in PC with βi,j = x

(i,j)
i,j for all (i, j) ∈

A. With the same notations as in the proof of Theorem 7, consider the
positive linear combination

x(i,j) =
∑

C∈C(i,j)

λ
(i,j)
C ξC , (2.37)

and the associated expression of βi,j :

βi,j =
∑

C∈C(i,j)

λ
(i,j)
C . (2.38)

For all C ∈ Γ, define
zC = max

(u,v)∈A
λ
(u,v)
C . (2.39)

Consider constraint (2.31) for a given cycle C∗ ∈ Γ and an arc (i, j) ∈ C∗.
The maximum in the right-hand side of (2.39) is achieved for some arc (u, v),

51

say, zC∗ = λ
(u,v)
C∗ . So,

zC∗ = λ
(u,v)
C∗ ≤

∑
C∈C(u,v):(i,j)∈C

λ
(u,v)
C ≤ βi,j .

The last inequality holds by construction of the circulation x(u,v): the sum
of the weights of the cycles involved in C(u,v) cannot exceed the upper bound
βs,t on any arc (s, t). In particular, it cannot exceed βi,j on arc (i, j).

Next, consider constraint (2.32) for an arc (i, j) ∈ A. In view of equations
(2.38)-(2.39),

βi,j =
∑

C∈C(i,j)

λ
(i,j)
C ≤

∑
C∈C(i,j)

zC ≤
∑

C∈Γ:(i,j)∈C

zC .

This shows that PL is contained in the projection of PC , as required. To
prove that the containment is strict when n ≥ 4, consider the following
assignment (only the nonzero values are displayed):

• β1,2 = 1.0, β2,3 = β3,4 = β4,1 = β3,1 = 0.5,

• z(1,2),(2,3),(3,4),(4,1) = z(1,2),(2,3),(3,1) = 0.5.

The point (β, z) in in PC , but β /∈ PL since β does not satisfy the return
inequality

β1,2 ≤
∑

k∈V \{2}

β2,k

associated with i = 1, j = 2 and S = V \ {2}.

2.3.4 Relative strength of formulations

In conclusion, six different formulations of the selection problem have been
proposed in this section.

The relative strength of the linear relaxation of these formulations can be
described as follows:

• (Theorem 6, Theorem 7.) The arc formulation is equivalent to the
extended arc formulation and to the modified extended arc formulation,
in the sense that PL is equal to the projection of PEA and of PMEA

on the space of the β variables.

• (Theorem 8, Theorem 9, Theorem 10.) The arc formulation is strictly
tighter than the simple extended arc formulation, the position-indexed
formulation, and the cycle formulation, in the sense that PL is strictly
contained in the projection of PSEA, of PPI and of PC on the space of
the β variables.

52

In view of these results, we focus for the rest of the chapter on the arc
formulation of the selection problem.

2.4 Polyhedral structure

Note that any instance of MWCS on an incomplete digraph G = (V,A)
can be transformed into an instance on a complete digraph by setting a
large negative weight wi,j on all pairs (i, j) /∈ A. Therefore, from now on, we
restrict our attention to the case of a complete directed graph G = (V,A),
where |V | = n and A contains m = n(n − 1) arcs. Our objective is to
investigate the polyhedral structure of the cycle selection polytope P ∗, which
only depends on n in this case.

2.4.1 Dimension

When |V | = 2, say V = {1, 2}, the directed graph only has two arcs
(1, 2), (2, 1). The only two feasible cycle selections are the empty cycle se-
lection and the 2-cycle {(1, 2), (2, 1)}. In this case the dimension of P ∗ is 1.
For the rest of the document, we assume that |V | ≥ 3.

Theorem 11. When |V | ≥ 3, P ∗ = conv(P) is full-dimensional, that is,
dim(P ∗) = n(n− 1).

Proof. Suppose that P ∗ is contained in a hyperplane defined by the equation∑
(u,v)∈A

bu,vβu,v = b0. (2.40)

We are going to show that the equation (2.40) is of the form: 0 = 0, which
implies that P ∗ is full-dimensional.

1. Since 0 ∈ P ∗, we get b0 = 0.

2. Let i, j, k be three distinct vertices in V . Consider the point β1 with
β1
i,j = β1

j,k = β1
k,i = 1 and β1

u,v = 0 for all others arcs (u, v) ∈ A. Since
β1 ∈ P ∗, it follows that bi,j + bj,k + bk,i = 0.

3. For the same three vertices i, j, k as above, let β2 be such that β2
i,j =

β2
j,k = β2

k,i = β2
j,i = 1 and β2

u,v = 0 for all others arcs (u, v) ∈ A. Again,
β2 ∈ P ∗, and the previous conclusions imply that bj,i = 0.

It follows that bu,v = 0 for all arcs (u, v) ∈ A, as claimed.

2.4.2 Facets

In this section, we are going to show that the constraints of the arc for-
mulation (2.3) are facet-defining for the cycle selection polytope P ∗. As

53

mentioned before, we assume that |V | ≥ 3.

Lower bound inequalities

Theorem 12. For all (i, j) ∈ A, the inequality βi,j ≥ 0 defines a facet of
P ∗.

Proof. Fix (i, j) ∈ A, and let F be the face of P ∗ defined as

F = {β ∈ P ∗ : βi,j = 0} .

Suppose that F is included in a hyperplane defined by the equation∑
(u,v)∈A

bu,vβu,v = b0 (2.41)

and consider the following binary points β1, . . . , β6 which are all in F .

1. Let β1 ∈ F be defined by β1
u,v = 0 for all arcs (u, v) ∈ A, hence b0 = 0.

2. For each (l, k) /∈ {(i, j), (j, i)}, let β2 ∈ F be defined by β2
l,k = β2

k,l = 1

and β2
u,v = 0 for all others arcs (u, v) ∈ A. From equation (2.41), We

obtain: bl,k = −bk,l.

3. For l /∈ {i, j}, let β3 ∈ F be such that β3
j,i = β3

l,i = β3
i,l = β3

l,j = β3
j,l = 1

and β3
u,v = 0 for all others arcs (u, v) ∈ A. This yields bj,i = 0.

4. For l /∈ {i, j}, let β4 ∈ F be such that β4
j,i = β4

l,i = β4
i,l = β4

l,j = 1 and
β4
u,v = 0 for all others arcs (u, v) ∈ A. From (2.41), we get bl,j = 0,

and together with point 2 here above, bj,l = 0.

5. For l /∈ {i, j}, let β5 ∈ F be such that β5
j,i = β5

i,l = β5
l,j = 1 and

β5
u,v = 0 for all others arcs (u, v) ∈ A. We deduce bi,l = 0 and from

point 2, bl,i = 0.

6. If |V | ≥ 4, fix l, k /∈ {i, j}, and define β6 ∈ F by β6
j,l = β6

l,k = β6
k,j = 1

and β6
u,v = 0 for all others arcs (u, v) ∈ A. We then obtain bl,k = 0.

In conclusion, we find that the equation (2.41) is identical to bi,jβi,j = 0,
and hence F is a facet of the convex hull polytope P ∗.

Upper bound inequalities

Theorem 13. For all (i, j) ∈ A, the inequality βi,j ≤ 1 defines a facet of
P ∗.

Proof. Fix (i, j) ∈ A and define the face F = {β ∈ P ∗ : βi,j = 1}. Assume
that F is contained in a hyperplane of the form (2.41) and consider the

54

binary points β1, . . . , β6 below, which are all in P ∩ F . (From now on, for
the sake of brevity, we only explicitly list the nonzero components of each
such point.)

1. Let β1 be such that β1
i,j = β1

j,i = 1.

2. Fix (l, k) /∈ {(i, j), (j, i)} and let β2 be such that β2
i,j = β2

j,i = β2
l,k =

β2
k,l = 1.

3. Fix l /∈ {i, j} and let β3 be such that β3
i,j = β3

j,i = β3
l,i = β3

j,l = β3
l,j = 1.

4. Fix l /∈ {i, j} and let β4 such that β4
i,j = β4

j,i = β4
l,i = β4

i,l = β4
l,j = 1.

5. Fix l /∈ {i, j} and let β5 be such that β5
i,j = β5

j,l = β5
l,i = 1.

6. If |V | ≥ 4, fix l, k /∈ {i, j} and let β6 be such that β6
i,j = β6

j,l = β6
l,k =

β6
k,j = 1.

By successively substituting these points in (2.41), one concludes that the
equation of the hyperplane is of the form βi,j = 1, up to a multiplicative
constant.

Return inequalities

Theorem 14. For all (i, j) ∈ A and for all S ⊆ V such that i ∈ S, j ∈ V \S,
the return inequality

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

defines a facet of P ∗.

Proof. Fix (i, j) ∈ A and S such that i ∈ S, j ∈ V \ S. Let F be the face of
P ∗ defined as

F =

β ∈ P ∗ : βi,j =
∑

(l,k)∈A:l∈V \S,k∈S

βl,k

 ,

and consider the following points β1, . . . , β14:

1. β1 = 0.

2. Let β2 be such that β2
i,j = β2

j,i = 1.

3. If |S| ≥ 2, fix k ∈ S, k ̸= i, let β3 be such that β3
i,j = β3

j,k = β3
k,i = 1,

and let β3′ be such that β3′
i,j = β3′

j,k = β3′
k,i = β3′

i,k = 1.

4. If |S| ≥ 2, fix k ∈ S, k ̸= i, and let β4 be such that β4
i,k = β4

k,i = 1.

55

5. If |S| ≥ 3, fix h, k ∈ S, k ̸= i, h ̸= i, and let β5 be such that β5
i,k =

β5
k,h = β5

h,i = 1.

6. If |V \ S| ≥ 2, fix l ∈ V \ S, l ̸= j, let β6
i,j = β6

j,l = β6
l,i = 1, and let

β6′
i,j = β6′

j,l = β6′
l,j = β6′

l,i = 1.

7. If |V \ S| ≥ 2, fix l ∈ V \ S, l ̸= j, and let β7
j,l = β7

l,j = 1.

8. If |V \S| ≥ 3, fix l, k ∈ V \S, l ̸= j, k ̸= j, and let β8
j,l = β8

l,k = β8
k,j = 1.

9. If |S| ≥ 2, fix k ∈ S, k ̸= i, and let β9
i,j = β9

j,i = β9
i,k = β9

k,j = 1.

10. If |V \ S| ≥ 2, fix l ∈ V \ S, l ̸= j, and let β10
i,j = β10

j,i = β10
i,l = β10

l,j = 1.

11. If |S| ≥ 2 and |V \ S| ≥ 2, fix k ∈ S, k ̸= i, fix l ∈ V \ S, l ̸= j, and let
β11
i,j = β11

j,i = β11
i,k = β11

k,l = β11
l,j = 1.

12. If |S| ≥ 2, fix k ∈ S, k ̸= i, and let β12
i,j = β12

j,k = β12
k,i = 1.

13. If |V \ S| ≥ 2, fix l ∈ V \ S, l ̸= j, and let β13
i,j = β13

j,l = β13
l,i = 1.

14. If |S| ≥ 2 and |V \ S| ≥ 2, fix k ∈ S, k ̸= i, fix l ∈ V \ S, l ̸= j, and let
β14
i,j = β14

j,l = β14
l,k = β14

k,i = 1.

Note that all the points β1, . . . , β14 are in F . Suppose now that F is included
in a hyperplane defined by the equation∑

(u,v)∈A

bu,vβu,v = b0. (2.42)

By successively substituting the points β1, . . . , β14 in this equation, one can
easily conclude that, up to a multiplicative constant, (2.42) is equivalent to
the equation defining F . This proves that F is a facet of P ∗.

We have numerically verified that when |V | = 3, the bound inequalities and
the return inequalities completely describe the cycle selection polytope P ∗.
In the following sections, we introduce several additional classes of facet-
defining inequalities for the case where |V | ≥ 4.

Out-star inequalities

Let t ∈ N, let E = {(i1, j1), (i2, j2), . . . , (it, jt)} be a subset of arcs, and
let I = {i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and
1 ≤ |I| ≤ |J | = t (meaning that j1, j2, . . . , jt are pairwise distinct, but
i1, i2, . . . , it are not necessarily distinct), so that (V,E) is a collection of
disjoint out-stars: in (V,E), each vertex of I has indegree 0 and outdegree
at least 1, whereas each vertex of J has indegree 1 and outdegree 0. Let p

56

and q be two distinct vertices not in I ∪J . Then, we can define two out-star
inequalities:

t∑
l=1

βil,jl + βp,q ≤
∑

k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p, (2.43)

t∑
l=1

βil,jl + βp,q ≤
∑

k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βq,k. (2.44)

As an illustration, Figure 2.4 displays an example of the structure of the arcs
involved in the left-hand side of inequalities (2.43) and (2.44).

j1 j2 j3 jt−2 jt−1 jt q

· · ·

i1 = i2 i3 it−2 = it−1 = it
p

Figure 2.4: Structure of the arcs involved in the left-hand side of inequalities
(2.43)-(2.44).

Remark 2. When the out-star inequalities are formally written for t = 0,
they boil down to special cases of the return inequalities. On the other
hand, when t = 1, the following point

β12 = β13 = β23 = β41 = β42 = 0.5, β34 = 1

satisfies all return inequalities of the arc formulation, but not the out-star
inequality (2.43) with i1 = 1,j1 = 2, p = 3, q = 4.

Let us now focus on the out-star inequality (2.43). We are first going to
prove that it is valid for the cycle selection polytope P ∗, and next that it is
facet defining for P ∗. When stating these results, we implicitly assume that
|V | ≥ |I|+ |J |+ 2 ≥ 4 since (2.43) is not defined without this assumption.

Theorem 15. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I =
{i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤
|J | = t. Let p, q ∈ V \ (I ∪ J), p ̸= q. Then, the out-star inequality (2.43) is
valid for P ∗.

Proof. Consider any cycle selection B containing exactly s arcs of E, say,
the arcs (il, jl) ∈ H with H = E ∩ B, |H| = s. So, the left-hand side of
(2.43) is at most s+ 1.

57

If s ≥ 1, then the arcs in H cover a subset of vertices IH ⊆ I and a subset
of vertices JH ⊆ J , with |IH | ≥ 1 and |JH | = s. For each vertex j ∈ JH ,
the cycle selection B must contain an arc leaving j, that is, an arc of the
form (j, h). All these arc are distinct, hence there are exactly s of them.
Moreover, since I ∩ J = ∅, every arc of H leaves I. Hence, there must also
be (at least) one arc of B entering I, that is, an arc of the form (k, i) for
k ∈ V \ I and i ∈ I. So, in total, the right-hand side of (2.43) is at least
s+ 1, and the inequality holds.

If s = 0, then the left-hand side of (2.43) is exactly βp,q. Assume that
βp,q = 1 (otherwise, the inequality is trivially satisfied). There must be an
arc of B entering p, say (h, p). The vertex h is either in I, or in J , or in
V \(I∪J). In the first case, since (h, p) leaves I, there must be an arc entering
I, that is, an arc of the form (k, i), k ̸∈ I, i ∈ I. So, in all three cases, the
right-hand side of (2.43) is at least 1, and this completes the proof.

Theorem 16. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I =
{i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤
|J | = t. Let p, q ∈ V \ (I ∪ J). Then, the out-star inequality (2.43) defines a
facet of P ∗.

Proof. Consider the equation

t∑
l=1

βil,jl + βp,q =
∑

k∈V \I

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p. (2.45)

Let F be the face of P ∗ defined as F = {β ∈ P ∗ : β satisfies (2.45)} , and
suppose that F is included in a hyperplane defined by the equation∑

(u,v)∈A

bu,vβu,v = b0. (2.46)

We must show that, up to a multiplicative constant, the equation (2.46) is
identical to (2.45).

Hereunder, as usual, we consider a list of points β ∈ P defined by their
nonzero components. We denote as e(u,v) the unit vector with e

(u,v)
u,v = 1.

1. Since β1 = 0 ∈ F , we get b0 = 0.

2. Let β2 be such that β2
p,q = β2

q,p = 1. The point β2 is in F , and therefore
it satisfies equation (2.46). This implies that bp,q = −bq,p.

Fix l ∈ V, l /∈ I ∪ J ∪ {p, q}.

3. Let β3
q,l = β3

l,q = 1. Since β3 ∈ F , bq,l = −bl,q.

58

4. Let β4
p,q = β4

q,l = β4
l,p = 1. This point is in F because it defines a 3-cycle

and because it makes both sides of equation (2.45) equal to 1. Next,
let β4′ = β4 + e(l,q). Again, β4′ is in F . Since β4 and β4′ only differ
in their component (l, q), equation (2.46) implies that bl,q = 0. From
point 3 above, we also obtain bq,l = 0, and from (2.46), bl,p = −bp,q.

So, from points 3 and 4, we know that bq,l = bl,q = 0 and bl,p = bq,p = −bp,q
for all l /∈ I ∪ J ∪ {p, q}. Now, fix a pair (is, js), 1 ≤ s ≤ t, and fix l /∈
I ∪ J ∪ {p, q}.

5. Let β5
is,js

= β5
js,p

= β5
p,q = β5

q,l = β5
l,is

= 1. The point β5 is in F
because it defines a 5-cycle and it makes both sides of (2.45) equal
to 2. Hence it satisfies equation (2.46).

a) The point β5+e(is,l) is in F and by comparison with β5, it imme-
diately follows that bis,l = 0 for all is ∈ I, for all l /∈ I ∪J ∪{p, q}.

b) The point β5 + e(l,js) is in F (it defines a cycle selection which is
the union of a 5-cycle and a 4-cycle), and hence bl,js = 0 for all
l /∈ I ∪ J ∪ {p, q}, for all js ∈ J .

c) The point β5 + e(is,p) is in F , and hence bis,p = 0 for all is ∈ I.

d) The point β5 + e(is,q) is in F , and hence bis,q = 0 for all is ∈ I.

e) The point β5 + e(p,js) is in F , and hence bp,js = 0 for all js ∈ J .

f) The point β5 + e(q,js) is in F , and hence bq,js = 0 for all js ∈ J .

g) The point β5 + e(p,l) is in F , and hence bp,l = 0 for all l /∈ I ∪ J ∪
{p, q}.

Point 5 has established that all coefficients bis,l and bl,js are zero, except pos-
sibly when l ∈ I∪J . The coefficients of the variables βis,ir , βis,jr , βjr,js , βjr,is
for r ̸= s will be taken care of at the end of the proof.

6. Let β6
is,p

= β6
p,q = β6

q,l = β6
l,is

= 1. The point β6 is in F . Since we
already know that bis,p = bq,l = 0, we can conclude bl,is = −bp,q for all
l /∈ I ∪ J ∪ {p, q}, for all is ∈ I.

7. Let β7
is,p

= β7
p,q = β7

q,is
= 1. Again, the point β7 is in F and since

bis,p = 0, we obtain bq,is = −bp,q for all is ∈ I.

8. Let β8
js,p

= β8
p,q = β8

q,js
= 1. Since β8 is in F , we obtain bjs,p = −bp,q

for all js ∈ J .

9. Let β9
is,js

= β9
js,p

= β9
p,q = β9

q,is
= 1. The point β9 is in F because it

defines a 4-cycle and it makes both sides of equation (2.45) equal to 2.

Since we know that bjs,p = bq,is = −bp,q, it follows that bis,js = bp,q for

59

all pairs (is, js).

10. Let β10
is,p

= β10
is,js

= β10
js,l

= β10
l,is

= β10
p,q = β10

q,js
= 1. The point β10 is in

F . Since bl,is = −bp,q, bis,js = bp,q, and bis,p = bq,js = 0, we conclude
bjs,l = −bp,q for all l /∈ I ∪ J ∪ {p, q}, for all js ∈ J .

11. Let β11
is,js

= β11
js,q

= β11
q,is

= β11
is,p

= β11
p,q = β11

p,js
= 1. Again, the point

β11 is in F , and since bis,js = bp,q, bq,is = −bp,q, bis,p = bp,js = 0, we
obtain bjs,q = −bp,q for all js ∈ J .

12. Let β12
is,js

= β12
js,p

= β12
p,q = β12

q,js
= β12

p,is
= 1. The point β12 is in F and

bis,js = bp,q, bjs,p = −bp,q, bq,js = 0, so that bp,is = −bp,q for all is ∈ I.

13. Let β13
is,js

= β13
js,is

= β13
q,js

= β13
p,q = β13

is,p
= 1. The point β13 is in

F (note that β13
js,is

contributes for two units to the right-hand side of
equation (2.45)). Since bis,p = bq,js = 0 and bis,js = bp,q, we derive
bjs,is = −2bp,q for all pairs (is, js).

Fix now k, l ∈ V \ (I ∪ J ∪ {p, q}).

14. Let β14
l,k = β14

k,l = 1. The point β14 is in F and it follows that bl,k = −bk,l
for all k, l ∈ V \ (I ∪ J ∪ {p, q}).

15. Let β15
is,js

= β15
js,p

= β15
p,k = β15

k,l = β15
l,is

= β15
p,q = β15

q,js
= 1. The point

β15 is in F , and since bis,js = bp,q, bjs,p = bl,is = −bp,q, bp,k = bq,js = 0,
we obtain bk,l = 0 for all k, l ∈ V \ (I ∪ J ∪ {p, q}).

For the rest of the proof, let r, s ∈ {1, . . . , t} with r ̸= s.

16. Let ir, is be two distinct vertices in I, and let β16
ir,is

= β16
is,p

= β16
p,q =

β16
q,ir

= 1. The point β16 is in F and bis,p = 0, bq,ir = −bp,q. Therefore,
bir,is = 0 for all distinct ir, is ∈ I.

17. Let (is, js) be an arc in E, and let ir ∈ I, ir ̸= is. Let β17
ir,is

= β17
is,js

=

β17
ir,js

= β17
js,p

= β17
p,q = β17

q,ir
= 1. The point β17 defines the union of a

5-cycle and of a 4-cycle, and it is in F . From bir,is = 0, bis,js = bp,q,
bjs,p = bq,ir = −bp,q, we derive bir,js = 0 for all ir ∈ I, js ∈ J , ir ̸= is.

18. Let (is, js) be an arc in E, and let ir ∈ I, ir ̸= is. Let β18
is,js

= β18
js,ir

=

β18
ir,p

= β18
p,q = β18

q,js
= β18

ir,is
= 1. The point β18 is in F because β18

js,ir
contributes for two units to the right-hand side of equation (2.45).
From bis,js = bp,q and bir,p = bq,js = bir,is = 0, we deduce bjs,ir =
−2bp,q for all r ̸= s.

19. Finally, let jr, js be two distinct vertices in J , with (ir, jr) ∈ E,
(is, js) ∈ E. If ir ̸= is, let β19

is,js
= β19

js,jr
= β19

jr,p
= β19

p,q = β19
q,ir

=

β19
ir,is

= β19
ir,jr

= 1. The point β19 is in F : it defines the a union of a 6-
cycle and of a 4-cycle, and it makes both sides of equation (2.45) equal

60

to 3. Since bis,js = bir,jr = bp,q, bjr,p = bq,is = −bp,q, and bir,is = 0, we
obtain bjs,jr = −bp,q.
If ir = is, the same reasoning applies by simply disregarding the arc
(ir, is) in the definition of β19. So, in all cases, bjs,jr = −bp,q for all
distinct js, jr ∈ J .

The previous observations imply that the equation (2.46) is identical to
(2.45), up to a multiplicative constant bp,q, and hence F is a facet of the
convex hull polytope P ∗.

Theorem 15 and Theorem 16 can be extended to deal with the case of the
out-star inequalities (2.44).

Theorem 17. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I =
{i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |I| ≤
|J | = t. Let p, q ∈ V \ (I ∪ J). Then, the out-star inequality (2.44) is valid
and defines a facet of P ∗.

Proof. The proof is similar to the previous ones. In particular, points 1-2-7-
8-9-11-12-13-14-15-16-17-18-19 in the proof of Theorem 16 can be handled in
exactly the same way. The remaining cases involve predecessors of p other
than vertices in I ∪ J ∪ {q} and/or successors of q other than vertices in
I ∪ J ∪ {p}. To deal with these cases, denote as F the face of P ∗ defined by
equation (2.44). Fix l ∈ V, l /∈ I ∪ J ∪ {p, q}.

3’. With β3
p,l = β3

l,p = 1, we can conclude that bp,l = −bl,p.

4’. Let β4
p,q = β4

q,l = β4
l,p = 1, and let β4′

p,q = β4′
q,l = β4′

l,p = β4′
p,l = 1. Both

β4 and β4′ are in the face F . It easily follows that bp,l = bl,p = 0 and
bq,l = −bp,q for all l /∈ I ∪ J ∪ {p, q}.

Now, fix a pair (is, js), 1 ≤ s ≤ t, and fix l /∈ I ∪ J ∪ {p, q}.

5’. Let β5
is,js

= β5
js,l

= β5
l,p = β5

p,q = β5
q,is

= 1. The point β5 is in F .

a) Since β5 + e(is,l) ∈ F , it follows that bis,l = 0 for all is ∈ I, for all
l /∈ I ∪ J ∪ {p, q}.

b) β5 + e(is,p) ∈ F , hence bis,p = 0 for all is ∈ I.

c) β5 + e(is,q) ∈ F , hence bis,q = 0 for all is ∈ I

d) β5 + e(l,js) ∈ F , hence bl,js = 0 for all js ∈ J , for all l /∈ I ∪ J ∪
{p, q}.

e) β5 + e(p,js) ∈ F , hence bp,js = 0 for all js ∈ J .

f) β5 + e(q,js) ∈ F , hence bq,js = 0 for all js ∈ J .

61

g) β5 + e(l,q) ∈ F , hence bl,q = 0 for all l /∈ I ∪ J ∪ {p, q}.

6’. With β6
l,p = β6

p,q = β6
q,js

= β6
js,l

= 1, we can conclude that bjs,l = −bp,q
for all l /∈ I ∪ J ∪ {p, q}, for all js ∈ J .

10’. Finally, let β10
is,p

= β10
is,js

= β10
js,l

= β10
l,is

= β10
p,q = β10

q,js
= 1 (as in the

proof of Theorem 16). Since β10 ∈ F , we can conclude that bl,is = −bp,q
for all is ∈ I, for all l /∈ I ∪ J ∪ {p, q}.

In-star inequalities

Symmetrically with the case of out-star inequalities, we can introduce the
class of in-star inequalities. With the same notations as in Section 2.4.2,
assume that 1 ≤ |J | ≤ |I| = t (meaning that i1, i2, . . . , it are all distinct,
but j1, j2, . . . , jt are not necessarily distinct), so that (V,E) is a collection of
disjoint in-stars: in (V,E), each vertex of I has indegree 0 and outdegree 1,
each vertex of J has outdegree 0 and indegree at least 1. Then, the in-star
inequalities are defined as

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V \J

βj,k +
∑

k∈V \(I∪J)

βk,p, (2.47)

t∑
l=1

βil,jl + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V \J

βj,k +
∑

k∈V \(I∪J)

βq,k. (2.48)

Theorem 18. Let E = {(i1, j1), (i2, j2), . . . , (it, jt)} ⊆ A, and let I =
{i1, i2, . . . , it}, J = {j1, j2, . . . , jt}. Assume that I ∩ J = ∅ and 1 ≤ |J | ≤
|I| = t. Let p, q ∈ V \ (I ∪ J). Then, the in-star inequalities (2.47)-(2.48)
are valid and define facets of P ∗.

This theorem can be established by mimicking the proofs in Section 2.4.2.
But we prefer to propose here a more insightful argument.

Proof. Define the bijection rev which associates with each β ∈ R|A| another
point rev(β) = βr ∈ R|A| such that βr

i,j = βj,i for all (i, j) ∈ A. Intuitively,
when β ∈ {0, 1}|A|, then rev simply reverses the direction of each arc in
the support of β (remember that we consider here a complete digraph G =
(V,A)). In particular, if β defines a cycle selection, then so does rev(β).
As a consequence, rev maps P and P ∗ onto themselves: rev(P) = P and
rev(P ∗) = P ∗.

Consider now the in-star inequality (2.47) associated with E and (p, q), and
let F (E,p,q) be the face that it defines. Moreover, consider the out-star in-
equality (2.44) associated with Er = {(j1, i1), (j2, i2), . . . , (jt, it)} and with

62

the arc (q, p), that is:

t∑
l=1

βjl,il + βq,p ≤
∑

k∈V \J

∑
j∈J

βk,j +
∑
i∈I

∑
k∈V

βi,k +
∑

k∈V \(J∪I)

βp,k. (2.49)

Let F (Er,q,p) be the face of P ∗ defined by (2.49).

If β is in F (E,p,q), that is, if β satisfies (2.47) as an equality, then it is
immediately obvious that rev(β) satisfies (2.49) as an equality, and hence
rev(β) is in F (Er,q,p). The converse relation holds as well, meaning that
rev(F (E,p,q)) = F (Er,q,p).

Since we know from Theorem 17 that F (Er,q,p) is a facet of P ∗, it follows
that F (E,p,q) also is a facet of P ∗.

Path inequalities

Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets of pairwise
distinct vertices, I ∩ J = ∅ and |I| = |J | = t. Let p and q be two distinct
vertices not in I ∪ J . Then, we define the path inequality

t∑
l=1

βil,jl +

t−1∑
l=1

βil,jl+1
+ βp,q ≤

∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p.

(2.50)
Observe that except for (p, q), the arcs involved in the left-hand side of (2.50)
define a non directed path π = (j1, i1, j2, i2, . . . , jt, it). In this path, each arc
leaves a vertex of I and enters a vertex of J . As an illustration, Figure 2.5
displays an example of the structure of the arcs involved in the left-hand side
of inequality (2.50).

j1 j2 j3 jt q

· · ·

i1 i2 i3 it
p

Figure 2.5: Structure of the arcs involved in the left-hand side of inequality (2.50).

We will prove that inequality (2.50) is valid and that it is facet defining
for P ∗.

Theorem 19. Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets
of vertices with I ∩J = ∅ and 1 ≤ |I| = |J | = t. Let p, q ∈ V \ (I ∪J), p ̸= q.
Then, the path inequality (2.50) is valid for P ∗.

63

Proof. Assume that we have a cycle selection B containing exactly s arcs of
the path π, say, the arcs (k, l) ∈ H, |H| = s. So, the left-hand side of (2.50)
is at most s+ 1.

If s ≥ 1, then the arcs in H form a collection of disjoint subpaths. These
subpaths contain a subset of vertices IH ⊆ I and a subset of vertices JH ⊆ J ,
and there holds |IH | + |JH | ≥ s + 1. For each vertex i ∈ IH , the cycle
selection B must contain an arc entering i. And for each vertex j ∈ JH , B
must contain an arc leaving j. So, the right-hand side of (2.50) is at least
|IH |+ |JH | ≥ s+ 1, which implies that (2.50) is satisfied.

If s = 0, then the left-hand side of (2.50) is exactly βp,q. So, assume that
βp,q = 1. There must be an arc of B entering p, say (h, p). The vertex h is
either il ∈ I (in which case B must also contain an arc (k, il) entering il), or
jl ∈ J , or h is not in I ∪ J . In all three cases, the right-hand side of (2.50)
is at least 1, which completes the proof.

Theorem 20. Let I = {i1, i2, . . . , it} and J = {j1, j2, . . . , jt} be two subsets
of vertices with 1 ≤ I ∩J = ∅ and |I| = |J | = t. Let p, q ∈ V \ (I ∪J), p ̸= q.
Then, the path inequality (2.50) defines a facet of P ∗.

Proof. Let F be the face of P ∗ defined by

t∑
l=1

βil,jl +

t−1∑
l=1

βil,jl+1 + βp,q =
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βk,p,

(2.51)
and suppose that F is included in a hyperplane∑

(u,v)∈A

bu,vβu,v = b0. (2.52)

The first 15 conclusions in the proof of Theorem 16 can be drawn here in
exactly the same way. To see this, it is enough to notice that the cycle selec-
tions Bn defined by the points βn (n = 1, . . . , 15) in the proof of Theorem 16
do not contain any arc (is, jr) with s ̸= r. Hence the left-hand sides of (2.45)
and (2.51) are equal for all these points. Moreover, the cycle selections Bn

do not contain any arc of the form (is, ir) with s ̸= r, so that the right-hand
sides of (2.45) and (2.51) are also equal in all cases.

For the remainder of the proof, we have to determine the coefficients of the
variables representing the arcs with both vertices in I ∪ J (except for the
pairs (is, js) and (js, is), since we already know the coefficients bis,js and bjs,is
as functions of bp,q). Let us consider two distinct pairs (is, js) and (ir, jr)
with s < r (note that their order matters, because of the definition of the

64

path inequalities). We have to find the value of the coefficients bis,jr , bjr,is ,
bis,ir , bjs,jr , bjr,js , bjs,ir , bir,js , bir,is .

For the coefficients bis,jr and bjr,is , we further have to deal with two subcases:

(i) s and r are consecutive, i.e., r = s+1; in that case, we must show that
bis,js+1 = bp,q and bjs+1,is = −2bp,q;

(ii) s and r are not consecutive, i.e., r > s+1; in that case, we must show
that bis,jr = 0 and bjr,is = −2bp,q.

For all the other coefficients, a single analysis will cover both situations.

Case r = s+ 1.

16. Let β16 be such that β16
is,js+1

= β16
js+1,p

= β16
p,q = β16

q,is
= 1 and β16

u,v = 0
for all other arcs (u, v) ∈ A. This point is in F because it makes both
sides of (2.51) equal to 2. From (2.52), we get: bis,js+1 + bjs+1,p+ bp,q+
bq,is = b0. Since we already know that b0 = 0 and bjs+1,p = bq,is =
−bp,q, we can conclude that bis,js+1 = bp,q.

17. Next, let β17
is,js+1

= β17
js+1,is

= β17
q,js+1

= β17
p,q = β17

is,p
= 1. The point

β17 is in F (it makes again both sides of (2.51) equal to 2). Hence:
bis,js+1 + bjs+1,is + bq,js+1 + bp,q + bis,p = 0. Since bis,p = bq,js+1 = 0 and
bis,js+1 = bp,q, we can conclude bjs+1,is = −2bp,q.

Case r > s+ 1.

18. Let β18
p,q = β18

jr,is
= β18

ih,jh
= β18

is,js+1
= β18

ih,jh+1
= β18

q,ih
= β18

jh,p
= 1 for

all h with s < h < r.

The point β18 defines a cycle selection which is the union of the fol-
lowing 4-cycles: {(ih, jh), (jh, p), (p, q), (q, ih)} for s < h < r,
{(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for s < h < r − 1, and of the 6-
cycle {(is, js+1), (js+1, p), (p, q), (q, ir−1), (ir−1, jr), (jr, is)}. Moreover,
β18 is in F as well, as it makes both sides of (2.51) equal to 2(r − s).

From (2.52), we get:

bp,q + bjr,is +
r−1∑

h=s+1

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s+1

bq,ih +
r−1∑

h=s+1

bjh,p = 0.

Since we know that bih,jh = bih,jh+1
= −bq,ih = −bjh,p = bp,q for

s ≤ h < r, we can conclude that bjr,is = −2bp,q.

Moreover, the point β18 + e(is,jr) also is in F , and hence bis,jr = 0.

65

Remaining coefficients bis,ir , bjs,jr , bjr,js , bjs,ir , bir,js , bir,is .

19. Let β19
p,q = β19

is,ir
= 1, β19

ih,jh
= β19

jh,p
= 1 for s ≤ h ≤ r, β19

ih,jh+1
=

β19
q,ih

= 1 for s ≤ h < r.

The point β19 defines a cycle selection which is the union of the follow-
ing 4-cycles and 5-cycle: {(ih, jh), (jh, p), (p, q), (q, ih)} for s ≤ h < r,
{(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for s ≤ h < r,
and {(is, ir), (ir, jr), (jr, p), (p, q), (q, is)}. Moreover, β19 ∈ F .

From (2.52), we get:

bp,q + bis,ir +

r∑
h=s

bih,jh +

r∑
h=s

bjh,p +

r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih = 0.

Since bih,jh = bih,jh+1
= −bq,ih = −bjh,p = bp,q for s ≤ h ≤ r, we obtain

bis,ir = −bp,q.

20. Let β20
p,q = β20

js,jr
= 1, β20

ih,jh
= β20

ih,jh+1
= β20

q,ih
= 1 for s ≤ h < r,

β20
jh,p

= 1 for s < h ≤ r.

The point β20 defines a cycle selection which is the union of the fol-
lowing cycles: {(ih, jh), (jh, p), (p, q), (q, ih)} for s < h < r,
{(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for s ≤ h < r, and
{(is, js), (js, jr), (jr, p), (p, q), (q, is)}. Since β20 is in F , we obtain

bp,q + bjs,jr +
r−1∑
h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih +
r∑

h=s+1

bjh,p = 0.

We know that bih,jh = bih,jh+1
= −bq,ih = −bjh+1,p = bp,q for s ≤ h < r,

and hence bjs,jr = −bp,q.

21. Let β21
p,q = β21

jr,js
= β21

q,jr
= β21

ih,jh
= β21

ih,jh+1
= β21

p,ih
= β21

jh,p
= 1 for

s ≤ h < r.

Then, β21 defines a cycle selection, as the union of the following cycles:
{(ih, jh), (jh, p), (p, ih)} for s ≤ h < r, {(ih, jh+1), (jh+1, p), (p, ih)} for
s ≤ h < r, {(p, q), (q, jr), (jr, js), (js, p)}.

Since β21 ∈ F , we get:

bp,q + bjr,js + bq,jr +
r−1∑
h=s

bih,jh +
r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bp,ih +
r−1∑
h=s

bjh,p = 0.

From bih,jh = bih,jh+1
= −bp,ih = −bjh,p = bp,q for s ≤ h < r and

bq,jr = 0, we conclude that bjr,js = −bp,q.

66

22. Let β22
p,q = β22

js,ir
= 1, β22

ih,jh
= 1 for s ≤ h ≤ r, β22

ih,jh+1
= β22

q,ih
= 1

for s ≤ h < r, β22
jh,p

= 1 for s < h ≤ r. The point β22 defines a cycle
selection which is the union of the cycles: {(ih, jh), (jh, p), (p, q), (q, ih)}
for s < h < r, {(ih, jh+1), (jh+1, p), (p, q), (q, ih)} for s ≤ h < r, and
{(is, js), (js, ir), (ir, jr), (jr, p), (p, q), (q, is)}. Because β22 ∈ F , there
holds:

bp,q + bjs,ir +
r∑

h=s

bih,jh +

r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bq,ih +

r∑
h=s+1

bjh,p = 0.

Since bih,jh = −bq,ih = −bjh,p = bp,q for s ≤ h ≤ r, and bih,jh+1
= bp,q

for s ≤ h < r, we obtain bjs,ir = −2bp,q.

23. Considering the point β23 = β22+e(ir,js) ∈ F , we further derive bir,js =
0.

24. Let β24
p,q = β24

ir,is
= β24

jr,q
= 1, β24

ih,jh
= 1 for s ≤ h ≤ r, β24

ih,jh+1
=

β24
jh,ih+1

= β24
q,jh

= 1 for s ≤ h < r, β24
ih,p

= 1 for s < h ≤ r.

The point β24 defines a cycle selection as union of the cycles:
{(ih, jh), (jh, ih+1), (ih+1, p), (p, q), (q, jh−1), (jh−1, ih)} for s < h < r,
{(ih, jh+1), (jh+1, ih+2), (ih+2, p), (p, q), (q, jh−1), (jh−1, ih)} for s < h <
r − 1,
{(is, js), (js, is+1), (is+1, p), (p, q), (q, jr−1), (jr−1, ir), (ir, is)},
{(ir, jr), (jr, q), (q, jr−1), (jr−1, ir)},
and {(ir−1, jr), (jr, q), (q, jr−2), (jr−2, ir−1)}.

Since β24 ∈ F , there holds

bp,q+bir,is+bjr,q+

r∑
h=s

bih,jh+

r−1∑
h=s

bih,jh+1
+

r−1∑
h=s

bjh,ih+1
+

r−1∑
h=s

bq,jh+

r∑
h=s+1

bih,p = 0.

Using bih,jh = −bjr,q = bp,q for s ≤ h ≤ r, bih,jh+1
= bp,q for s ≤ h < r,

bih,p = bq,jh = 0 for s ≤ h ≤ r, bjh,ih+1
= −2bp,q for s ≤ h < r, we can

finally conclude that bir,is = −bp,q.

This completes the proof that F is a facet of P ∗.

Just as in the case of the out-star and in-star inequalities, the following
variant of the path inequality is also valid and facet-defining for the cycle
selection polytope:

t∑
l=1

βil,jl +
t−1∑
l=1

βil,jl+1 + βp,q ≤
∑
k∈V

∑
i∈I

βk,i +
∑
j∈J

∑
k∈V

βj,k +
∑

k∈V \(I∪J)

βq,k.

(2.53)
We omit the proof of this result.

67

2.4.3 Additional valid inequalities

In this section, we describe one last class of valid inequalities.

Theorem 21. Let i, j, p, q be four distinct vertices in V . Then, the following
inequality is valid for the cycle selection polytope P ∗:

βi,j+βi,q+βp,j ≤
∑
k∈V

βk,i+
∑
k∈V

βj,k+
∑

k/∈{i,j}

βq,k+
∑

k/∈{i,j}

βk,q+
∑

k/∈{i,j,q}

βk,p+βq,j+βi,p.

(2.54)

Proof. In order to establish this result, we rely on the Chvátal-Gomory pro-
cedure. Consider the following valid inequalities for P ∗ (all of them, except
the last one are special instances of the return inequalities (2.2)):

• βi,q ≤
∑

k∈V βq,k,

• βi,q ≤
∑

k∈V βk,i,

• βp,j ≤
∑

k∈V βj,k,

• βp,j ≤
∑

k∈V βk,p,

• βi,j ≤
∑

l /∈{i,q}
∑

k∈{i,q} βl,k (i.e., the return inequality with S = {i, q}),

• βi,j ≤ 1.

By adding all these inequalities, dividing the result by 2, and rounding each
coefficient according to the Chvátal-Gomory procedure, we obtain the in-
equality (2.54).

Remark 3. We have verified numerically that, when n = |V | = 4, the inequal-
ities (2.54) define facets of the cycle selection polytope P ∗ and that, together
with the star inequalities (or equivalently, with the path inequalities), they
completely describe P ∗.

2.5 Constrained cycle selections

In Smeulders et al. (2022), the authors consider cycle selections which contain
at most B arcs and which are unions of directed cycles of length at most
K, where B and K are two given constants. (See Section 2.1.2: the cycle
length restriction is customary in kidney exchange models; the bound on the
cardinality of the selections represents a budget constraint on the cost of
crossmatch tests.)

The cardinality constraint on the number of selected arcs is easily incorpo-

68

rated in the arc formulation: it simply requires that∑
(i,j)∈A

βi,j ≤ B. (2.55)

The cycle length constraint, however, is less natural in this formulation.
(Smeulders et al. (2022) rely on the PI formulation to express it.) Never-
theless, we can define P (B,K) to be the set of β ∈ {0, 1}|A| associated with
(B,K)-constrained cycle selections in complete digraphs, and P (B,K)∗ to
be its convex hull.

By simple inspection of the polyhedral results established in Section 2.4, we
can observe that these results remain valid for P (B,K)∗ when B and K are
large enough. For example, the proof of Theorem 11 does not involve any
selection containing more than 4 arcs, nor any cycle of length larger than 3.
It follows that P (B,K)∗ is full-dimensional when B ≥ 4 and K ≥ 3.

These observations are summarized in the table below. One should read that
each theorem remains valid for P (B,K)∗ as long as B ≥ B0 and K ≥ K0.

Valid result for P (B,K)∗ B0 K0

Theorem 11 (Dimension) 4 3
Theorems 12–13 (Bound inequalities) 5 3
Theorem 14 (Return inequalities) 5 4
Theorems 16–18 (Star inequalities) 7 6
Theorem 20 (Path inequalities) 5t− 1 7

2.6 Cycle selections with cycles of length at most 3

In the previous section, we have observed that the theorems identifying facets
of P (B,K)∗ remain valid as long as B ≥ B0 and K ≥ K0 for fixed values of
B0 and K0 depending on the statement under consideration. However, these
results do not provide information about a complete formulation of P (B,K).
As already mentioned, the budget constraint is easily incorporated in the
arc formulation, but it is not so for the cycle length constraint. This section
focuses on a formulation of the set of cycle selections with cycles of length
at most 3.

2.6.1 Formulation

By a small abuse of language, we say that (S, T) is a partition of a set W if
S ∪ T = W and S ∩ T = ∅, where either S or T may be empty. We denote
by Part(W) the set of all partitions of W .

The arc formulation for the cycle selections of a graph G = (V,A) when the

69

cycles are restricted to length at most 3 is the following:

βi,j ∈ {0, 1} ∀(i, j) ∈ A (2.56)

βi,j ≤
∑

k∈S:(j,k)∈A

βj,k +
∑

k∈T :(k,i)∈A

βk,i

∀(i, j) ∈ A : (j, i) /∈ A, ∀(S, T) ∈ Part(V \ {i, j}) (2.57)

βi,j ≤ βj,i +
∑

k∈S:(j,k)∈A

βj,k +
∑

k∈T :(k,i)∈A

βk,i

∀(i, j) ∈ A : (j, i) ∈ A, ∀(S, T) ∈ Part(V \ {i, j}) (2.58)

For short, we simply denote by P3 the set of β-vectors defined by (2.56)-
(2.58), without explicit reference to the graph G. When G is complete, P3

is exactly the set P (n, 3) introduced in the previous section. Note that:

• for (i, j) ∈ A, either (2.57) or (2.58) is present depending on whether
(j, i) ∈ A or not;

• when either S or T is empty, (2.57) or (2.58) boils down to the so-called
predecessor or successor return inequalities, respectively.

Theorem 22. The constraints (2.56)-(2.58) provide a correct formulation
of the cycle selection problem when the maximum cycle length is restricted
to 3.

Proof. Consider a cycle selection β with cycles of length at most 3. For each
arc (i, j) such that βi,j = 1, either (j, i) ∈ A and βj,i = 1 (2-cycle), or there
is a vertex k ̸= i, j such that βj,k = βk,i = 1 (3-cycle). For each partition
(S, T) of V \ {i, j}, k is either in S or in T . Hence, β is in P3.

Conversely, assume that β ∈ P3, let B be the corresponding set of arcs, and
consider an arc (i, j) ∈ B (βi,j = 1). We must show that (i, j) is in a 2-cycle
or in a 3-cycle of GB. Define S = {k ∈ V : (k, i) ∈ A and βk,i = 1}.

• If j ∈ S, then βj,i = 1 and (i, j) is in a 2-cycle.

• If j /∈ S, then S ⊆ V \ {i, j}. Let T = (V \ {i, j}) \ S. Consider
constraints (2.57) and (2.58) associated with (S, T). Note that they
are identical in this case, because j /∈ S means that either (j, i) /∈ A
or βj,i = 0. Furthermore, by definition of S, βk,i = 0 for all (k, i) ∈ A,
k ∈ T . So, by (2.57)-(2.58), there must exist k ∈ S such that (j, k) ∈ A
and βj,k = 1. Then, (i, j, k) forms a 3-cycle in B.

Theorem 23. The separation problem for the linear relaxation of P3 is solv-
able in polynomial time.

70

Proof. The separation problem is the following: given a vector β ∈ [0, 1]|A|,
is there (i, j) ∈ A and a partition (S, T) of V \ {i, j} such that βi,j >
βj,i +

∑
k∈S βj,k +

∑
k∈T βk,i if (j, i) ∈ A or βi,j >

∑
k∈S βj,k +

∑
k∈T βk,i if

(j, i) /∈ A?

We can ask the question for each arc (i, j) successively. When (i, j) is fixed,
we know whether (j, i) ∈ A or not. We just need to identify the partition
(S, T) which minimizes

∑
k∈S βj,k +

∑
k∈T βk,i and check whether the rele-

vant strict inequality mentioned above is satisfied. In order to identify this
partition, we compare βj,k and βk,i for each k ∈ V \ {i, j}. If βj,k > βk,i,
then we assign k to T , and otherwise we assign k to S.

This proves that the separation problem is solvable in polynomial time.

2.6.2 Polyhedral study

We now restrict our attention to the case of a complete digraph G where
|V | = n and A contains n(n− 1) arcs. Then P3 is defined as

P3 =

{
β ∈ {0, 1}|A| : βi,j ≤ βj,i +

∑
k∈S

βj,k +
∑
k∈T

βk,i ∀(i, j) ∈ A,∀(S, T) ∈ Part(V \ (i, j))

}
.

The next results provide information about the structure of the polytope
P ∗
3 = conv(P3).

Theorem 24. When |V | = 2, the dimension of P ∗
3 is 1. When |V | ≥ 3, P ∗

3

is full-dimensional, that is, dim(P ∗
3) = n(n− 1).

Theorem 25. For all (i, j) ∈ A, the inequality βi,j ≥ 0 defines a facet of
P ∗
3 .

Theorem 26. For all (i, j) ∈ A, the inequality βi,j ≤ 1 defines a facet of
P ∗
3 .

The validity of Theorems 24-26 has already been observed in Section 2.5.

Theorem 27. For |V | ≥ 3, for all (i, j) ∈ A, for all partitions (S, T) of
V \ {i, j}, the inequality

βi,j ≤ βj,i +
∑
k∈S

βj,k +
∑
k∈T

βk,i

defines a facet of P ∗
3

Proof. Fix (i, j) ∈ A and (S, T) a partition of V \ {i, j}. Let F be the face
of P ∗

3 defined as

F =

{
β ∈ P ∗

3 : βi,j = βj,i +
∑
k∈S

βj,k +
∑
k∈T

βk,i

}
.

71

Suppose that F is included in a hyperplane defined by the equation∑
(u,v)∈A

bu,vβu,v = b0 (2.59)

and consider the following points β1, . . . , β10 which are all in F (we only
specify the nonzero components):

1. β1 = 0.

2. β2
i,j = β2

j,i = 1.

3. If |S| ≥ 1, fix k ∈ S, let β3
i,j = β3

j,k = β3
k,i = 1, let β3′

i,j = β3′
j,k = β3′

k,i =

β3′
i,k = 1, and let β3′′

i,j = β3′′
j,k = β3′′

k,i = β3′′
k,j = 1.

4. If |S| ≥ 1, fix k ∈ S, and let β4
i,k = β4

k,i = 1.

5. If |T | ≥ 1, let β5, β5′ and β5′′ be defined like β3, β3′ and β3′′ , but with
k ∈ T .

6. If |T | ≥ 1, fix k ∈ T , and let β6
j,k = β6

k,j = 1.

7. If |S| ≥ 2, fix h, k ∈ S, and let β7
i,k = β7

k,h = β7
h,i = 1.

8. If |T | ≥ 2, fix h, k ∈ T , and let β8
i,k = β8

k,h = β8
h,i = 1.

9. If |S| ≥ 1 and |T | ≥ 1, fix k ∈ S, h ∈ T , and let β9
k,j = β9

j,h = β9
h,k.

10. If |S| ≥ 1 and |T | ≥ 1, fix k ∈ S, h ∈ T , and let β10
k,h = β10

h,k = 1.

By successively substituting the points β1, . . . , β10 in 2.59, one can easily
conclude that, up to a multiplicative constant, (2.59) is equivalent to the
equation defining F . This proves that F is a facet of P ∗

3 .

2.7 Conclusions and perspectives

In this chapter, we have introduced the definition of cycle selections and of
the associated maximum weigthed cycle selection (MWCS) problem. To
the best of our knowledge, these concepts had not been explicitly identified
earlier, in spite of their rather natural definition and of their relation with
fundamental graph theoretic concepts like directed cycles and circulations.
We have investigated several properties of cycle selections and of MWCS,
including their computational complexity, the relation between various in-
teger programming formulations, and the polyhedral structure of the cycle
selection polytope.

As explained in Section 2.1.2, Smeulders et al. (2022) have (implicitly) con-
sidered cycle selections in order to handle a probabilistic variant of the kidney

72

exchange problem formulated as a two-stage stochastic integer programming
problem. In their experiments, the latter problem turned out to be very
difficult to solve. We hope to be able to rely on our improved understanding
of cycle selections in order to facilitate the solution of MWCS and of the
stochastic kidney exchange problem. Some attempts in this direction are
provided in the next chapter.

73

74

Chapter 3

Cycle selections:
numerical experiments

The content of this chapter is based on joint work with Yves Crama.

Contents
3.1 Introduction . 76
3.2 Maximum weighted cycle selections 76

3.2.1 Formulations and instances 76
3.2.2 Implementation of the ARC formulation 78
3.2.3 Experimental results 80
3.2.4 Steiner triples . 83
3.2.5 MWCS with budget constraint 84
3.2.6 MWCS with maximum cycle length constraint . 86

3.3 Cycle selections in stochastic kidney exchange models . 88
3.3.1 Models . 90
3.3.2 Optimization methods 92
3.3.3 Implementation of Benders decomposition in Method 4 94
3.3.4 Initial experimental results 95
3.3.5 Enhancements of the implementation of Method 4 96

3.4 Conclusion . 103

75

3.1 Introduction

In Chapter 2, we have introduced the notion of a cycle selection and a related
optimization problem, namely, the maximum weighted cycle selection prob-
lem (MWCS). As a reminder, given a (loopless) directed graph G = (V,A),
where V is the set of vertices and A is the set of arcs of G, we say that a
subset of arcs B ⊆ A is a cycle selection in G if the arcs of B form a union
(possibly empty) of directed cycles. When a weight wi,j ∈ R is assigned
to each arc (i, j) ∈ A, MWCS aims to identify a cycle selection B which
maximizes w(B) =

∑
(i,j)∈B wi,j .

The goal of this chapter is to test our findings about the cycle selection
problem through numerical experiments, especially focusing on different for-
mulations and their respective efficiency. First, we compute in Section 3.2
a maximum weighted cycle selection on randomly generated weighted di-
graphs. Then, in Section 3.3, we apply our knowledge about cycle selection
formulations to the two-stage stochastic KEP problem introduced in Smeul-
ders et al. (2022). In particular, we propose alternative ways to solve the
problem using the Benders decomposition resolution procedure.

All numerical experiments presented in this chapter are implemented using
C++ 14 as programming language and CPLEX 12.10.0 as generic MILP
solver. The tests are performed on a Dell Latitude 7490 running Windows
10 64Bit with an Intel Core i5-7300U CPU and two cores at 2.60GHz and
16 GB of RAM.

3.2 Maximum weighted cycle selections

3.2.1 Formulations and instances

Six formulations are introduced in Chapter 2 to describe cycle selections in
a given digraph:

1. the arc (ARC) formulation;
2. the simple extended arc (SEA) formulation;
3. the extended arc (EA) formulation;
4. the modified extended arc (MEA) formulation;
5. the position-indexed (PI) formulation;
6. the cycle (CY) formulation.

They have been previously compared from a theoretical perspective regard-
ing the strength of their linear relaxations. The purpose of this section is now
to compare the formulations numerically in terms of resolution efficiency.

We first compare the IP formulations proposed to describe cycle selections
by solving MWCS on various random weighted digraphs. As observed in

76

Chapter 2, when all arc weights are non-negative, a maximum cycle selection
of a digraph simply consists of all arcs contained in strong components.
Therefore, in this case, MWCS is solvable in linear time by simply using
Tarjan’s strong component algorithm (Tarjan, 1972). Hence, we focus on
solving MWCS on digraphs with positive and negative arc weights. Namely,
given three parameters n ∈ N, p ∈ [0, 100], d ∈ [0, 100], we generate random
digraphs G = (V,A) with weights wi,j , (i, j) ∈ A, such that:

• n = |V |;
• for each ordered pair of distinct vertices (i, j), (i, j) ∈ A with proba-

bility p
100 independently of the other arcs;

• for each arc (i, j) ∈ A, wi,j is uniformly distributed in [0, 1] with prob-
ability d

100 , and wi,j is uniformly distributed in [−1, 0] with probability
1− d

100 , independently of the other arcs.

We have conducted computational experiments on randomly generated di-
graphs for various values of n ∈ {50, 100, 150, 200, 250, 300}, p ∈ {10, 20, 40, 90},
and d ∈ {10, 80, 90} as illustrated in several figures and tables throughout
Section 3.2. For each configuration of n, p and d, we have generated 30 ran-
dom instances. For a given (n, p, d) configuration, the same instances are
used across all the tests performed.

Furthermore, we have conducted additional computational experiments on
digraphs generated based on Steiner triple instances as explained in greater
detail in Section 3.2.4.

While the formulations SEA, EA, MEA, and PI are compact, the ARC for-
mulation has an exponential number of constraints and the CY formulation
has an exponential number of variables. To use the CY formulation, either
a branch-and-price process must be implemented to generate the variables
gradually, or all the cycles of the digraph under consideration must be ini-
tially generated. We implemented the formulation by generating all cycles of
the digraph. However, given that the maximum cycle length is not limited
in MWCS, generating the models took over an hour even for the smallest
instances. Since our focus in Chapter 2 is mostly on the ARC formulation,
we decided not to pursue the study of the CY formulation. Note however
that if the maximum length of cycles is limited, the formulation could be-
come more efficient as illustrated in Subsection 3.2.6. Indeed, despite its
potentially exponential number of variables, it remains numerically efficient
when the maximum cycle length is limited to 2 or 3, see, e.g., Smeulders
et al. (2022).

In order to implement the ARC formulation, a branch and cut procedure has
been implemented, as explained in the following section.

77

3.2.2 Implementation of the ARC formulation

Initial model

The ARC formulation of the maximum weighted cycle selection problem is
the following IP model:

max
∑

(i,j)∈A

wi,jβi,j (3.1)

subject to βi,j ∈ {0, 1} ∀(i, j) ∈ A
(3.2)

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k ∀(i, j) ∈ A,∀S ⊆ V : i ∈ S, j ∈ V \ S.

(3.3)

Because of the exponential number of return inequalities (3.3), it is not ad-
visable to include them all in the model given to the solver. The idea is
instead to include part of these inequalities in the initial model and to grad-
ually add return inequalities to the model through a separation procedure.
We chose to only include the predecessor inequalities (3.4) and the succes-
sor inequalities (3.5) in the initial formulation. These inequalities are the
special cases of the return inequalities (3.3) obtained by setting S = {i} or
S = V \ {j}, respectively, for each fixed arc (i, j):

βi,j ≤
∑

(k,i)∈A

βk,i ∀(i, j) ∈ A, (3.4)

βi,j ≤
∑

(j,k)∈A

βj,k ∀(i, j) ∈ A. (3.5)

We denote by P0 the resulting initial model, that is, the model:

max
∑

(i,j)∈A

wi,jβi,j

subject to βi,j ≤
∑

(k,i)∈A

βk,i ∀(i, j) ∈ A

βi,j ≤
∑

(j,k)∈A

βj,k ∀(i, j) ∈ A

βi,j ∈ {0, 1} ∀(i, j) ∈ A.

When the IP solver performing a branch and bound procedure finds a feasible
solution of P0, it is necessary to check whether this solution indeed defines

78

a cycle selection. For example, for n ≥ 4, the solution β1,2 = β2,1 = β3,4 =
β4,3 = β1,4 = 1 satisfies the constraints of P0 but is not a cycle selection as
illustrated in Figure 3.1. A separation procedure must be run in order to
identify some return inequalities violated by the current solution (if any) and
to add them to the model. As explained later in the section, the separation
procedure will be implemented only for integer solutions.

1

2

3

4

Figure 3.1: Representation of a solution of P0 which is not a cycle selection

Separation procedure

User-defined separation procedures are called callbacks in several popular
solvers. For MWCS, the callback procedure must identify and add valid
cuts, that is, all return inequalities violated by the solution associated with
the current node. If no violated return inequality is found, the solver contin-
ues the classical branch and bound process. On the other hand, if violated
return inequalities are identified, the model is solved again by incorporating
all previous and newly added inequalities.

Two types of callbacks can be distinguished: Usercuts callbacks which sep-
arate non-integer solutions, and Lazycuts callbacks which separate integer
solutions.

In our implementation, the separation procedure is implemented through
Lazycuts callbacks in the following way: each time an integer solution β′ is
found, Tarjan’s algorithm is called on the digraph GB′ = (V,B′), where B′ ={
(i, j) ∈ A : β′

i,j = 1
}

, in order to identify its strongly connected components
(Tarjan, 1972). We say that an arc (i, j) is a link of GB′ if i and j are in
different strongly connected components of GB′ . Clearly, if B′ is a selection,
then GB′ cannot have any link. So, for each link (i, j), we add the following
return inequality to the model:

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k, (3.6)

where V \ S is the set of vertices reachable from j, i.e., the set of vertices
l ∈ V such that there exists a path from j to l in GB′ = (V,B′). Note that
i ∈ S, j ∈ V \ S, and that the inequality (3.6) is violated by the solution β′

since (i, j) is a link of GB′ .

79

3.2.3 Experimental results

In terms of total running time, that is, the time needed to construct the
model and to solve it, the ARC formulation and the SEA formulation clearly
outperform the other formulations, as illustrated by the performance profiles
in Figure 3.2 for the parameter values n = 50, p = 20, and d = 80. Indeed,
all of the 30 instances generated with these parameters are solved in less than
two seconds when using the formulations ARC and SEA. On the other hand,
with the EA formulation, the fastest running time is around 10 seconds, and
some instances require up to 22 seconds. With the MEA formulation, the
minimum running time is 13 seconds, and some instances require up to 22
seconds. Note that the total time running is divided more or less equally
between the time to generate the model and the time to solve it. For example,
for the EA formulation, the average generation time is 7.69 seconds, and the
average solving time is 4.75 seconds, while for the MEA formulation, the
average generation time is 7.55 seconds, and the average solving time is 7.38
seconds. The results for the position-indexed formulation are not displayed,
as the running times are too large compared to the others. For example, the
fastest running time for the same instances is 156 seconds, and the longest
is 667 seconds.

Figure 3.2: Comparison of total running time of the MWCS formulations when
n = 50, p = 20 d = 80. The horizontal axis displays running times (in seconds),
and the vertical axis displays the number of instances solved within a given time,
for each formulation.

One of the explanations for these big differences between formulations might
be the number of variables and constraints each model has to handle. Ta-
ble 3.1 displays the potential numbers of variables and constraints for each
formulation as well as the average number of variables and constraints for
each formulation, given the parameter configuration n = 50, p = 20, and

80

d = 80. Note that for the ARC formulation, the potential number of con-
straints is the number of return inequalities, but the average number of
constraints reported is based on the initial model P0, as not all return in-
equalities are generated.

Table 3.1: Size models with n = 50, p = 20, and d = 80

Method Variables Constraints
Average

nb of variables
Average

nb of constraints
ARC O(m) O(m 2m) 490.97 981.93 *
SEA O(m) O(m) 981.93 1031.93
EA O(m2) O(m2) 241766.07 266314.40

MEA O(m2) O(m2) 241766.07 290862.73
PI O(mn2) O(mn2) 1227416.67 2382170.27

We also compared the ARC and the SEA formulations on bigger instances
and with different p and d parameter values, as shown in Figure 3.3. While
the two formulations solve the instances relatively fast, the SEA formulation
tends to be faster than the ARC formulation.

Figure 3.3: Comparison of total running time of the ARC and SEA formulations
when n = 300, p = 20 d = 80 (left) and n = 300, p = 40 d = 90 (right). The
horizontal axis displays running times (in seconds), and the vertical axis displays
the number of instances solved within a given time, for each formulation.

Beyond the differences in running times, we observed that for all formula-
tions and for all the instances tested, the solver always immediately finds
a maximum weighted selection. By “immediately”, we mean that the linear
relaxation of each model under consideration has a binary optimal solution
which defines a maximum cycle selection. In fact, this observation even holds
for the linear relaxation of the incomplete arc formulation P0, which does not
include all return inequalities. More precisely, for all the instances handled
with the arc formulation, the solution process goes as follows: At the root
node, the solver solves the linear relaxation of P0. It finds an integer solution
and calls the callback procedure to verify that this integer solution defines a
selection. This is always the case, so that no cut is ever added. Hence the
solution process stops, and no branching is needed.

81

For all these instances, we further observed that the average optimal value
is very close to the expected total weight of the positive arcs, that is,

0.5 n (n− 1)
p

100

d

100
;

see Table 3.2 for an illustration.

Table 3.2: Average optimal value (over 30 instances) and expected weight of the
positive arcs for various values of n, p = 20, and d = 80

n Average optimal value Expected total weight of the positive arcs
50 198.56 196
100 789.19 792
150 1789.71 1788
200 3184.24 3184
250 4988.85 4980
350 7171.53 7176

These seemingly intriguing observations can actually be explained by the-
oretical properties of random graphs. To this effect, consider a random
directed graph G = (V,A) where |V | = n and each ordered pair of dis-
tinct vertices (i, j) is in A with probability u(n) independently of the other
pairs. A result of Graham and Pike (2008), which extends a result of Erdős
and Rényi (1959) regarding undirected graphs, implies that when u(n) is

“asymptotically larger” than
lnn

n
, the probability that G is strongly con-

nected tends to 1 as n tends to infinity. (Here, “asymptotically larger” means

that lim
n→∞

lnn

n u(n)
= 0. We refer to Graham and Pike (2008) for details.)

For our random instances, we can apply this result to the random digraph
G′ = (V,A′), where A′ is the subset of arcs with positive weight; so here,

u(n) =
p

100

d

100
.

We obtain that for fixed p, d, and for n large enough, G′ is almost surely
strongly connected. This means, in particular, that the set A′ of positive arcs
is (almost surely) a cycle selection, in which case it is necessarily optimal for
MWCS.

These observations intuitively suggest that in order to generate non trivial
instances, we should take values of p and d small enough with respect to the

Erdős-Rényi threshold
lnn

n
. This leads to very sparse digraphs.

With this in mind, random digraphs with parameters p = 10 and d =

10 have been generated, so that u = 0.01 is smaller than
lnn

n
for n ∈

82

{50, 100, 150, 200, 250, 300}. MWCS has been solved on these digraphs us-
ing either the ARC or the SEA formulation. For these sparse instances, the
resolution process is not as straightforward as for the earlier ones. Some
violated return inequalities are added to the model for the ARC formula-
tion, and some branching occurs for the SEA formulation, especially for the
smaller instances with n ∈ {50, 100}. Still, the solution process is really fast:
all 180 instances are solved in less than 3 seconds with the SEA formulation;
as for the ARC formulation, 173 instances are solved in less than 3 seconds,
and the seven remaining ones in less than 22 seconds.

3.2.4 Steiner triples

In Chapter 2, the decision version of MWCS is proved to be strongly NP-
complete by a reduction from the hitting set problem. Based on this proof,
we have generated instances of MWCS by applying the same reduction to
well-known hard instances of the hitting set problem, namely, the so-called
Steiner triple instances (Fulkerson et al., 1974).

For the sake of completeness, let us describe the reduction. A Steiner triple
instance of the hitting set problem is defined by a finite set X and a collection
T = {T1, . . . , Tr} of subsets of X, with r = 1

6 |X|(|X| − 1) and |Tj | = 3 for
j = 1, . . . , r. The set T has a special (Steiner) structure which is not of direct
interest here. Given such an instance we construct an associated weighted
digraph G = (V,A) as follows: V = X ∪ T ∪ {0}, and

• for all j = 1, . . . , r, (Tj , 0) ∈ A with weight w(Tj , 0) = r,
• for all i ∈ X, (0, i) ∈ A with weight w(0, i) = −1,
• for all j = 1, . . . , r and for all i ∈ Tj , (i, Tj) ∈ A with weight w(i, Tj) =
0.

As follows from the complexity proof of MWCS in Section 2.2, the optimal
size of a hitting set of T is hopt if and only if the maximum weight of an
optimal selection of G is wopt = r2 − hopt. Note that the resulting instances
of MWCS are quite sparse: they contain n = |X| + r + 1 vertices and
|X|+ 4r ≤ 4n arcs.

We tried to solve these instances of MWCS using the formulations ARC and
SEA for sets X of cardinality ranging from 9 to 243. For values of |X| up to
55, CPLEX was able to terminate in less than three hours of computing time.
Table 3.3 provides information about the size of those Steiner instances and
the associated digraphs: size of X, number r of triples, number of vertices
|V | and number of arcs |A|. The middle section of the table displays the
size hopt of a minimum hitting set, as well as the optimal value wopt of the
maximum weighted cycle selection returned by CPLEX. On the right part of
Table 3.3, one can find the total running time in seconds t and the number
of nodes explored by the solver for the ARC and SEA formulations. The

83

instances with |X| equal to 9, 15, 27, 45 are from the online OR Library
of J.E. Beasley (http://people.brunel.ac.uk/ mastjjb/jeb/info.html). The
remaining instances, with |X| equal to 37, 39, 49, 55, have been additionally
generated (https://www.dmgordon.org/cover/).

Table 3.3: Steiner triple instances (part 1)

|X| r |V | |A| hopt wopt tARC NodesARC tSEA NodesSEA

9 12 22 57 5 139 1 0 0 0
15 35 51 155 9 1216 0 83 1 256
27 117 145 495 18 13671 3 4634 2 3287
37 222 260 925 23 49261 15 8693 111 26465
39 247 287 1027 25 60984 594 528829 133 42215
45 330 376 1365 30 108870 109 68490 627 278419
49 392 442 1617 32 153632 160 74043 1022 220053
51 425 477 1751 34 180591 401 147400 5351 533609
55 495 551 2035 37 244988 823 309300 9513 998079

The ARC formulation generally has a shorter total running time than the
SEA formulation, except for a few instances where the opposite is observed.
As expected, the instances derived from the Steiner triple instances are more
challenging than the random ones, and many nodes are explored in the
branch and bound tree. Note that no separation cuts were added during
the resolution process for the ARC formulation, for any of the instances.

Three larger instances with |X| in {81, 135, 243} have also been tested. The
time limit of three hours was reached with both formulations before the
solver could find an optimal solution. However, as shown in Table 3.4, the
solver was able to produce feasible solutions that are very close to optimality
using both formulations. Even more, the ARC formulation quickly found the
optimal solution for the instance with |X| = 81, although the solver could
not prove its optimality within the given time limit.

Table 3.4: Steiner triple instances (part 2)

|X| r |V | |A| hopt wopt wbest
ARC wbest

SEA

81 1080 1162 4401 61 1166339 1166339 1166338
135 3015 3151 12195 103 9090122 9090119 9090118
243 9801 10045 39447 198 96059403 96059392 96059392

3.2.5 MWCS with budget constraint

As we will see in Section 3.3, when solving stochastic kidney exchange prob-
lems, it makes sense to impose a budget constraint on the cardinality of a

84

cycle selection, that is, a constraint of the form:∑
(i,j)∈A

βi,j ≤ b

where b ∈ N. In order to test the difficulty of the resulting problem, we have
used the same random weighted digraphs as in Section 3.2.1 with various
values for the budget b.

From our previous observations in Section 3.2.3, we know that if b is too
large, then the set of b arcs with the largest positive weights is almost surely
strongly connected and hence defines a cycle selection (that is, the optimal
solution is obtained by setting βi,j = 1 for those b arcs with the highest
positive weight and βi,j = 0 otherwise). Such instances are excessively easy
to solve. Therefore, as a rule of thumb, we choose budget values such that

b

n(n− 1)
is small with respect to the Erdős-Rényi threshold

lnn

n
.

Table 3.5: MWCS with budget constraint: results of computational experiments

ARC time nodes cuts I
n=200 av min max av max av max
(20, 80, 100) 73.06 2 TL 559.00 7115 3398.90 44358 3
(40, 90, 100) 138.10 6 TL 285.53 2304 1524.77 15105 3
(20, 80, 50) 39.93 2 592 371.07 7322 417.23 6397 4
(40, 90, 50) 73.03 5 TL 739.53 18457 744.47 16392 8
SEA time nodes I
n=200 av min max av max
(20, 80, 100) 27.87 6 62 1327.53 4752 3
(40, 90, 100) 84.43 25 303 1620.37 6387 7
(20, 80, 50) 39.63 13 85 2342.83 11521 0
(40, 90, 50) 59.63 30 131 1321.63 4994 9

Table 3.5 synthesizes some data regarding our computational experiments
on MWCS with a budget constraint. The top part of the table refers to
the ARC formulation and the bottom part refers to SEA formulation. Each
line refers to a fixed configuration of parameter values (p, d, b), and to the
solution of 30 instances generated with these parameters. Each line displays:

• The average, minimum and maximum total running time (in seconds)
over 30 instances. A time limit of 10 minutes was given to the solver.
If the maximum total running time is indicated as TL, it means that
a least one instance reached the time limit.

• The average and maximum number of nodes explored during the solu-
tion process (the minimum is 0 for all configurations).

• For the ARC formulation only, the average and maximum number of
separation cuts added during the solution process (the minimum is 0
for all configurations).

85

• The number I of instances for which the optimal solution of the linear
relaxation is binary, and hence is optimal for MWCS.

One can observe that, whatever formulation is used, MWCS becomes harder
to solve when a budget constraint is imposed on the number of selected arcs.
With the ARC formulation, during the solution process cuts are added, and
branching occurs for most of the instances. With the SEA formulation,
branching also occurs for most instances. The average total running time
is higher for the ARC formulation. However, Figure 3.4 shows that the
ARC formulation is faster for at least two-thirds of the instances but takes
more time for the last third of the instances. Some of the instances are not
solved in 10 minutes. By way of comparison, for MWCS without a budget
constraint:

• the instances with parameter values n = 200, p = 20, d = 80 are all
solved in less than 3 seconds with the ARC formulation and in less
than 2 seconds with the SEA formulation;

• the instances with parameter values n = 200, p = 40, d = 90 are all
solved in less than 7 seconds with the ARC formulation and in less
than 4 seconds with the SEA formulation.

.

3.2.6 MWCS with maximum cycle length constraint

Kidney exchange programs usually impose a maximum length, say K, on the
cyclic exchanges that they allow. Accordingly, in this section, we consider
a constrained version of cycle selections, and we say that a subset B ⊆
A is a K-cycle selection if the arcs of B form a union of directed cycles,
each of length at most K. We won’t go very deep into investigating the
corresponding constrained version of MWCS, which may be a topic for
future work, but we report here a few observations about it.

Whereas it was easy to incorporate a budget constraint into all the MWCS
formulations, imposing a constraint on the maximum cycle length requires
more work. The PI and CY formulations of MWCS can be easily adapted
to account for such a constraint. Indeed, the original formulation proposed
in Smeulders et al. (2022), and from which the PI formulation is deduced,
imposes a maximum cycle length. For the CY formulation, it suffices to
generate variables for cycles of length at most K only.

On the other hand, arc-based formulations are more difficult to deal with
when K is arbitrary see Section 2.5. In Section 2.6, we proposed an arc
formulation, denoted ARC3, which describes cycle selections with maximum
cycle length at most 3. To test this formulation, we compared it numerically
with the PI and the CY formulations with maximum cycle length equal to

86

Figure 3.4: Comparison of total running time of the ARC and SEA formulations
when n = 200, p = 20, d = 80, b = 100 (top left), n = 200, p = 20, d = 80,
b = 50 (bottom left), n = 200, p = 40, d = 90, b = 100 (top right), and n = 200,
p = 40, d = 90, b = 50 (bottom right). The horizontal axis displays running times
(in seconds), and the vertical axis displays the number of instances solved within a
given time.

3 as well, denoted as PI3 and CY3, respectively.

Figure 3.5 displays the performance profile of the three formulations for the
instances with parameter values n = 100, p = 20, d = 80. It is clear that
ARC3 and CY3 are more computationally efficient than PI3: the CY3 for-
mulation solves all 30 instances in less than a second, whereas the ARC3
formulation takes 8 seconds for some instances, and the PI3 formulation
requires 95 to 130 seconds, depending on the instance. Regarding the op-
timization process, the optimal solution of the linear relaxation of the PI3
and CY3 formulations is binary for all instances, so that no branching is
performed. For the ARC3 formulation, no separation cuts are added, but an
average of 116.53 nodes are explored before obtaining an optimal solution.

A budget constraint can be incorporated into the formulations in addition
to the maximum cycle length constraint. For the same parameter values as
above, that is, n = 100, p = 20, d = 80, K = 3, and b = 50, Figure 3.6
displays the performance profiles of the three formulations with the bud-
get constraint and Figure 3.7 compares the formulations with and without
the budget constraint. Surprisingly, a budget constraint does not make the
problem significantly harder in terms of running time, especially when using

87

Figure 3.5: Comparison of total running time of the MWCS formulations when
n = 50, p = 20 d = 80, K = 3. The horizontal axis displays running times (in
seconds), and the vertical axis displays the number of instances solved within a
given time.

the ARC3 and CY3 formulations. The optimal binary solution is found by
solving the linear relaxation of the PI3 formulation for all the instances and
the linear relaxation of the CY3 formulation for 27 instances. For the three
remaining instances, a few nodes are explored to find the optimal binary
solution. For the ARC3 formulation, an average of 142.56 separation cuts
are added to the model, and an average of 335.8 nodes are explored before
obtaining an optimal solution. Similar observations are made when b = 25.

Finally, since the digraphs associated with the Steiner triple instances have
cycles of length 3 only, we also evaluated the ARC3 and CY3 formulations on
these digraphs. Table 3.6 presents a comparison of the total running times
of the ARC, SEA, ARC3, and CY3 formulations for the instances that were
solved within three hours. Although the ARC and ARC3 formulations have
similar total running times, the most efficient formulation in terms of total
running time is CY3.

3.3 Cycle selections in stochastic kidney exchange
models

We were initially motivated to study cycle selections due to optimization
challenges that emerge in connection with kidney exchange programs. In
particular, Smeulders et al. (2022) identify the problem of selecting a sub-
set of arcs of the compatibility digraph G = (V,A) that should undergo
further complex compatibility tests (so-called crossmatch tests), so as to
maximize the excepted number of transplants. They formulate this prob-

88

Figure 3.6: Comparison of total running time of the MWCS formulations when
n = 50, p = 20 d = 80, K = 3 and b = 50. The horizontal axis displays running
times (in seconds), and the vertical axis displays the number of instances solved
within a given time.

lem as a two-stage stochastic optimization problem which, given a testing
budget b, identifies (in stage 1) a subset of arcs B ⊆ A with |B| ≤ b such
that the expected number of transplants in the digraph (V,B) (in stage 2)
is maximized. (Note that in Smeulders et al. (2022), b is not viewed as ex-
pressing a financial limitation but rather a practical one linked to the amount
of medical resources required to carry out the crossmatch tests.) Smeulders
et al. (2022) propose several integer programming formulations for this prob-
lem. They show, among other solution approaches, how to apply Benders
decomposition to this two-stage KEP problem. Furthermore, they tighten
the formulation of the problem by imposing valid constraints which ensure
that the set B is a cycle selection. Indeed, arcs that are not contained in

Table 3.6: Comparison of total running time on the digraphs associated with the
Steiner triple instances, in seconds

|X| ARC SEA ARC3 CY3
9 1 0 0 0
15 0 1 0 1
27 3 2 8 7
37 15 111 24 6
39 594 133 28 12
45 109 627 256 156
49 160 1022 175 113
51 401 5351 322 185
55 823 9513 812 486

89

Figure 3.7: Comparison of total running time of the MWCS formulations when
n = 50, p = 20 d = 80, K = 3 without a budget constraint and with a budget con-
straint (+b) when b = 50. The horizontal axis displays running times (in seconds),
and the vertical axis displays the number of instances solved within a given time.

any cycle cannot be used in an exchange and hence, should not be selected
in the first stage. The formulation of these constraints is inspired by the
position-indexed edge formulation of the kidney exchange problem proposed
by Dickerson et al. (2016).

The work of Smeulders et al. (2022) sparked our interest to develop a better
understanding of the cycle selection problem and to explore its ILP formu-
lations. In this section, we experiment with solution approaches for the
two-stage stochastic kidney exchange problem based again on Benders de-
composition, but relying now on the ARC or SEA formulations of the cycle
selection problem to tighten the original model

Remark 4. Note that Smeulders et al. (2022) refer to their two-stage stochas-
tic optimization problem as the selection problem, which should not be con-
fused with the cycle selection problem studied in this thesis. To avoid pos-
sible confusion, we call two-stage KEP problem the problem introduced in
Smeulders et al. (2022).

3.3.1 Models

Let us now present some integer programming formulations of the two-stage
KEP problem.

Two-stage KEP problem

Given a directed graph G = (V,A), we denote by S = {A1, .., Am} the
collection of all subsets of arcs (where m = 2|A|). Each subset As ∈ S is

90

a possible scenario, and we denote by qs the probability of occurrence of
scenario As (we will later denote scenario As simply by the index s). To
model the two-stage KEP problem, Smeulders et al. (2022) introduce:

• first-stage binary variables βi,j for each arc (i, j) ∈ A with the inter-
pretation that βi,j = 1 if and only if arc (i, j) is selected to undergo a
crossmatch test;

• second-stage binary variables xs ∈ {0, 1}Ns for all s ∈ S, called sce-
nario variables (where Ns is a vector of variables of appropriate length).
The scenario variables will describe the kidney exchange solution to be
adopted under scenario s.

Let Gs,β = (V,As ∩ B(β)), where B(β) = {(i, j) ∈ A : βi,j = 1}. (We
sometimes write B instead of B(β), for simplicity.) That is, Gs,β is the
graph associated with the arcs that have been selected in stage 1 and that
pass the crossmatch tests in scenario s. The scenario variables define a
solution of the kidney exchange problem on the graph Gs,β . The generic IP
formulation of the two-stage KEP problem is the following:

max
∑
s∈S

qs

Ns∑
l=1

as,lxs,l (3.7)

subject to
∑

(i,j)∈A

βi,j ≤ b (3.8)

xs ∈ P (Gs,β) ∀s ∈ S (3.9)

xs ∈ {0, 1}Ns ∀s ∈ S (3.10)
βi,j ∈ {0, 1} ∀(i, j) ∈ A (3.11)

where P (Gs,β) is a polyhedron described by a finite list of inequalities which
defines the feasible solutions of the KEP problem on Gs,β . Any formulation
of the KEP problem can be used in this generic two-stage KEP problem.

The objective function expresses the expected value of a solution, where the
coefficients as,l are used to measure the quality of the exchange xs,l (e.g.,
the number of transplants associated with the exchange). Constraint (3.8)
ensures that the budget constraint is respected, while constraints (3.9) ensure
that a solution xs defines a feasible exchange in Gs,β . The exact formulation
of these constraints depends on the formulation used for the deterministic
KEP problem (for example, the position indexed edge formulation (Dickerson
et al., 2016), or the cycle formulation (Roth et al., 2004)).

Relaxed restricted two-stage KEP problem

Because of the large number of possible scenarios, Smeulders et al. (2022)
restrict their attention to a subset of scenarios S ⊂ S and define qs =

1
|S| for

91

each scenario s ∈ S. Furthermore, motivated by previous observations by
Dickerson et al. (2016), they also relax the scenario variables to continuous
values. They confirmed experimentally that this relaxation has a negligible
impact on the optimal value of the βi,j variables. Moreover, from a prac-
tical point of view, the value of the β variables is the only one that really
matters in stage 1 (the optimal set of exchanges can be recomputed after
crossmatching). Thus, the generic relaxed restricted two-stage KEP problem,
or RR-2-KEP problem, is the following :

max
∑
s∈S

1

|S|

Ns∑
l=1

as,lxs,l (3.12)

subject to
∑

(i,j)∈A

βi,j ≤ b (3.13)

xs ∈ P (Gs,β) ∀s ∈ S (3.14)

xs ∈ [0, 1]Ns ∀s ∈ S (3.15)
βi,j ∈ {0, 1} ∀(i, j) ∈ A. (3.16)

We will focus on this mixed-integer programming problem for the remainder
of the section.

3.3.2 Optimization methods

The RR-2-KEP problem can be solved by several classical optimization meth-
ods such as branch-and-cut for example. One of the approaches proposed
in Smeulders et al. (2022) is to use Benders decomposition, which is rather
natural since the scenario variables are relaxed. When applying Benders
decomposition to the RR-2-KEP problem, the following master and slave
problems are obtained.

Master problem:

max
1

|S|
∑
s∈S

zs(β) (3.17)

subject to
∑

(i,j)∈A

βi,j ≤ b (3.18)

βi,j ∈ {0, 1} ∀(i, j) ∈ A. (3.19)

Slave problem for each s ∈ S :

zs(β) = max

Ns∑
l=1

as,lxs,l (3.20)

subject to xs ∈ P (Gs,β) (3.21)
0 ≤ xs,l ≤ 1 for l = 1, . . . , Ns. (3.22)

92

Smeulders et al. (2022) observed that, in an optimal solution of the RR-2-
KEP problem, each selected arc can be assumed to be part of a directed
cycle: in other words, one can assume that B is a cycle selection. In the
formulation (3.17)-(3.19) of the master problem, however, this information
is lost. In order to strengthen the master problem, Smeulders et al. (2022)
add constraints that enforce that each selected arc is part of a cycle. These
constraints are inspired by the position-indexed edge formulation of the kid-
ney exchange problem proposed by Dickerson et al. (2016). We refer to
Smeulders et al. (2022) for details.

Another way to strengthen the master problem is to add to its formulation
any of the valid inequalities introduced in Chapter 2, such as the return in-
equalities of the ARC formulation or the constraints of the SEA formulation.

Accordingly, we compare in this section four different methods for the solu-
tion of the RR-2-KEP problem, where each method consists of a formulation
and an associated optimization algorithm. Namely, we consider:

• Method 1: original MILP formulation of the RR-2-KEP problem (3.12)-
(3.16) solved by branch-and-cut.

• Method 2: MILP formulation of the RR-2-KEP problem (3.12)-(3.16)
together with the additional constraints proposed in Smeulders et al.
(2022), solved by Benders decomposition.

• Method 3: MILP formulation of the RR-2-KEP problem (3.12)-(3.16)
together with the additional variables x ∈ R|A|

+ and constraints (3.23)-
(3.25) of the SEA formulation:

xi,j ≤ mβi,j ∀(i, j) ∈ A (3.23)
βi,j ≤ xi,j ∀(i, j) ∈ A (3.24)∑
h:(h,k)∈A

xh,k =
∑

h:(k,h)∈A

xk,h ∀k ∈ V, (3.25)

solved by Benders decomposition.
• Method 4: MILP formulation of the RR-2-KEP problem (3.12)-(3.16)

together with the return inequalities (3.26):

βi,j ≤
∑

(l,k)∈A:l∈V \S,k∈S

βl,k ∀(i, j) ∈ A, ∀S ⊆ V : i ∈ S, j ∈ V \ S,

(3.26)

solved by Benders decomposition.

In our implementations, we use the cycle formulation of Roth et al. (2004) to
describe P (Gs,β) in constraints (3.9) and (3.21). In the first three methods,
the complete MILP formulations are given to the CPLEX solver (they are
compact for fixed K), and the Benders procedure functionality of CPLEX is

93

activated for Method 2 and Method 3. It cannot be activated with Method 4
due to the exponential number of return inequalities. Instead, these valid
inequalities must be gradually added to the model through a separation pro-
cedure, as explained in Section 3.2.2. To implement this procedure, callbacks
are necessary. However, callbacks are incompatible with the Benders func-
tionality in CPLEX (or Gurobi). Therefore, in order to test Method 4, we
had to implement the Benders decomposition procedure “manually” while
utilizing callbacks which is possible thanks to the use of callbacks; The next
Section 3.3.3 clarifies the steps of the Benders optimization procedure of
Method 4.

3.3.3 Implementation of Benders decomposition in Method 4

In our implementation of Method 4, the initial model (P) given to CPLEX
is the master problem of the Benders decomposition, that is:

max
1

|S|
∑
s∈S

zs (3.27)

subject to
∑

(i,j)∈A

βi,j ≤ b (3.28)

βi,j ∈ {0, 1} ∀(i, j) ∈ A (3.29)
zs ∈ R+ ∀s ∈ S. (3.30)

Then, CPLEX starts a branch-and-cut procedure. At each node:

1. CPLEX solves the linear relaxation of the model associated with the
node. It outputs a solution (z′, β′). If the solution β′ is fractional, the
solver follows the classical branch-and-bound process. If β′ is integer,
it goes to the next step. (Note that the objective function is initially
unbounded and that the value of the β variables is very loosely con-
strained in (P). We return to these weaknesses in Section 3.3.5 here-
under.)

2. Cycle selection separation procedure. The solver checks if β′ de-
fines a cycle selection (that is, if all return inequalities are satisfied) as
described in Section 3.2.2. If the solution does not satisfy all return
inequalities, the violated inequalities (3.6) are added to the model as-
sociated with the current node, and CPLEX solves the modified model
(back to step 1). If all return inequalities are satisfied, the next step is
taken.

3. Benders procedure. Given the optimal solution (z′, β′) of the model
associated with the current node, CPLEX solves the following slave
problem for all s ∈ S, where Cs denotes the set of eligible cycles in the

94

digraph Gs = (V,As) and wc is the length of cycle c:

max
∑
c∈Cs

wcxc,s (3.31)

subject to
∑

c∈Cs:(i,j)∈A(c)

xc,s ≤ β′
i,j ∀(i, j) ∈ As (3.32)

∑
c∈Cs:v∈V (c)

xc,s ≤ 1 ∀v ∈ V (3.33)

xc,s ≥ 0 ∀c ∈ Cs. (3.34)

If x∗c,s (c ∈ Cs) is the optimal solution of the slave problem associated
with scenario s, and z′s ≥

∑
c∈Cs

wcx
∗
c,s, then the following Benders cut

is added to the master problem:

zs ≤
∑

(i,j)∈As

βi,jr
∗
i,j +

∑
v∈V

y∗v , (3.35)

where r∗i,j , (i, j) ∈ As, and y∗v , v ∈ V , is the optimal solution of the dual
of the s-th slave problem. Once all the slave problems have been solved,
if at least one Benders cut (3.35) has been added to the master problem,
the solver solves again the problem associated with the current node
(back to step 1). Note that all inequalities added during the course
of steps 2 and 3 remain part of the master problem formulation until
the end of the branch-and-cut process. If no inequality (3.35) has been
added, (z′, β′) is a feasible solution of the RR-2-KEP problem, and
the solver closes the node and continues with the classical branching
process.

In the solution method described above, the cycle selection separation pro-
cedure and the Benders procedure are only applied to integer solutions of
the problem (3.27)-(3.30). That is, we only use Lazycut callbacks. As ex-
plained later in Section 3.3.5, the Benders procedure could also be applied
to fractional solutions.

3.3.4 Initial experimental results

We have adapted the original code of Smeulders et al. (2022) to implement
the four methods discussed in the previous sections, and we have tested them
on the same instances as these authors. More precisely, the compatibility
graphs have been generated by the random generator described in Saidman
et al. (2006). Three different graph sizes are considered in Smeulders et al.
(2022), with respectively n = 25, 50 and 100 patient-donor pairs, but we
will almost exclusively focus here on the small instances (n=25) as very few
of the larger ones can be solved to optimality. For each value of n, there

95

are 40 graphs, divided into four groups of 10 graphs, with vertex success
rate p respectively equal to 0.8, 0.6, 0.4, and 0.2 in these four groups (p is
the probability that a patient-donor pair successfully passes the crossmatch
test). The maximum cycle length is either K = 3 or K = 4, depending on
the experiment.

In this section, we briefly discuss the results of our initial experiments before
we turn to some enhancements of Method 4 in the next section. These
initial experiments were conducted on the 40 instances with parameter values
n = 25, |S| = 100, b = 10, K = 3 and p ∈ {0.2, 0.4, 0.6, 0.8}. Over all of our
experiments, for parameter values n, |S|, b and K fixed, we tested all possible
values of vertex success p. Moreover, for each instance solved, the scenarios
are exactly the same for all four methods.

Figure 3.8 displays the performance profiles of the running time for the
four methods; here, the value on the vertical axis represents the number
of instances solved as a function of the running time (in seconds) indicated
on the horizontal axis. We observe that the 40 instances are solved in less
than 23 seconds with Method 1, less than 6 seconds with Method 2 and less
than 48 seconds with Method 3. Only 36 instances are solved under 273
seconds with Method 4, one in 633 seconds, and three instances were not
solved at optimality after 20 minutes, which was the time limit given to the
solver. These first results tend to show that Method 2 performs just a bit
faster than Method 1, which is in line with the observations in Smeulders
et al. (2022). Method 3 performs slower than the first two methods, but the
difference is quite small. On the other hand, Method 4 is much worse than
the first three methods. In view of these observations, several attempts were
conducted to enhance the efficiency of Method 4, as reported in the next
section.

3.3.5 Enhancements of the implementation of Method 4

Additional constraints for the master problem.

The valid constraints (3.36), (3.37) and (3.38) hereunder can be added to
the master model in order to tighten its initial formulation:

zs ≤
∑

(i,j)∈As

βi,j ∀s ∈ S, (3.36)

βi,j ≤
∑

(k,i)∈A

βk,i ∀(i, j) ∈ A, (3.37)

βi,j ≤
∑

(j,k)∈A

βj,k ∀(i, j) ∈ A. (3.38)

Constraints (3.36) enforce that for all s ∈ S, zs, which represents the objec-
tive value of the slave problem, cannot exceed the number of selected arcs

96

Figure 3.8: Comparison of four methods when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in seconds), and the vertical
axis displays the number of instances solved within a given time.

in the graph G = (V,As). Constraints (3.37) and (3.38) are the predecessor
and successor inequalities already singled out in Section 3.2.2.

These additional constraints made Method 4 perform faster than initially.
Nevertheless, as shown in Figure 3.9, the difference in solution time between
the methods is still considerable. The performance profile of the initial for-
mulation is in blue, and the profile of the formulation with the additional
constraints (3.36)-(3.38) in the master problem (Method 4 v2) is in green.
In all subsequent computational experiments, we kept the additional con-
straints (3.36)-(3.38) in the master problem (P) of the Benders Method 4;
henceforth, we will simply refer to this new method as Method 4, for short.

Initial heuristic solution.

The first results showed that when using Method 4, the solver sometimes
takes a significant amount of time to find a first feasible solution and hence,
a lower bound on the optimal value. To palliate this difficulty, we have
injected a first feasible solution (βinit, zinit) into the model before the start
of the Benders procedure. We have tried different heuristics to generate a
feasible solution, but most of them were too time-consuming and did not have
a significant impact on the total running time of the method. Ultimately, we
chose to stick with the heuristic procedure that requires the smallest amount
of time. It works as follows:

1. For each scenario s such that |As| ≥ 1.05 p |A|, that is, for each scenario
with a number of arcs slightly (5%) higher than the expected number

97

Figure 3.9: Comparison of five methods when n = 25, |S| = 100, b = 10, K =
3. The horizontal axis displays running times (in seconds), and the vertical axis
displays the number of instances solved within a given time.

of arcs in Gs = (V,As), we solve the following problem:

max
∑
c∈Cs

wcxc,s (3.39)

subject to
∑

c∈Cs:(i,j)∈A(c)

xc,s ≤ βs
i,j ∀(i, j) ∈ A (3.40)

∑
c∈Cs:v∈V (c)

xc,s ≤ 1 ∀v ∈ V (3.41)

∑
(i,j)∈A

βs
i,j ≤ b (3.42)

xc,s ≥ 0 ∀c ∈ Cs (3.43)
βs
i,j ∈ {0, 1} ∀(i, j) ∈ As (3.44)

βs
i,j = 0 ∀(i, j) ∈ A \As. (3.45)

In words, a solution of (3.39)-(3.45) identifies a subset of at most b arcs
of As which yields the largest possible number of transplants. Then,
we retain the scenario s with the highest optimal value of (3.39) and
we denote the associated optimal solution βs ∈ {0, 1}|A| as βinit ∈
{0, 1}|A|.

2. For each scenario s ∈ S, we denote as zinits the optimal value of the

98

following problem (similar to the slave problem (3.31)-(3.34)):

max
∑
c∈Cs

wcxc,s

such that :
∑

c∈Cs:(i,j)∈A(c)

xc,s ≤ βinit
i,j ∀(i, j) ∈ A

∑
c∈Cs:v∈V (c)

xc,s ≤ 1 ∀v ∈ V

xc,s ≥ 0 ∀c ∈ Cs.

The heuristic feasible solution of (P) given to CPLEX is then βinit
i,j for all

(i, j) ∈ A and zinits for all s ∈ S.

On the instances with parameter values n = 25, |S| = 100, b = 10, and
K = 3, the gap between the objective value of the heuristic solution and the
optimal value lies between 2% and 82% with a mean of 38%. The running
time of Method 4, with or without the initial heuristic solution, is more or less
the same as shown in Figure 3.10. (The performance profile of Method 4 is in
green without the initial solution, and in purple with the initial solution.).
Hence, the efficiency in terms of total running time of injecting an initial
solution into the solver is unclear and might need to be investigated on
larger instances. However, for the 40 instances with n = 50, S = 50, b = 10,
K = 3, the time limit of 20 minutes is reached in all cases with Method 4
and by more than half of the instances with the first three methods.

Figure 3.10: Comparison of five methods when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in seconds), and the vertical
axis displays the number of instances solved within a given time.

99

Sample of scenarios for the Benders procedure.

In the Benders procedure, instead of solving the slave problem for each sce-
nario in S, we can first solve it for a sample of scenarios S1 ⊂ S. If a violated
cut is generated for at least one scenario in the sample, then it is added to
the master problem and the model is solved again without considering the
scenarios outside of the sample. If no violated cut is identified for the sample
S1, then we proceed with another sample S2 of scenarios, until either a cut
is added to the master problem, or all slave problems have been solved. This
approach has been implemented, but it did not improve the running time of
Method 4.

Benders procedure at each node.

While so far, the separation procedure and the Benders procedure have been
applied solely to integer solutions of the master problem during the branch-
and-bound procedure (as explained in detail in Section 3.3.3), another pos-
sible approach is to apply the Benders procedure at each node. That is,
each time the solution of the linear relaxation of the master problem is
fractional (in Step 1 of Section 3.3.3), we can apply the Benders procedure
(Step 3 in Section 3.3.3) to this solution instead of following the classical
branch-and-bound process. We have implemented this procedure by using
callbacks on fractional solutions, that is, Usercuts callbacks, in addition to
the Lazycuts callbacks on integer solutions. In our experiments, however,
this modification does not improve the total running time, as demonstrated
by Figure 3.11 where Method 4* refers to Method 4 with activated User-
cuts callbacks.

Figure 3.11: Comparison of running time when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in seconds), and the vertical
axis displays the number of instances solved within a given time.

100

IN-OUT procedure.

As a final adaptation of Method 4, an IN-OUT procedure based on a proposal
of Ben-Ameur and Neto (2007) was implemented. It is applied to fractional
solutions only. In the Benders procedure, instead of using the optimal solu-
tion (z′, β′) of the master problem as parameters of the slave problems and of
the Benders cuts (Step 3 in Section 3.3.3), we use the parameters (zsep, βsep)
defined as

βsep
i,j = αβout

i,j + (1− α)βin
i,j ∀(i, j) ∈ A

zseps = αzouts + (1− α)zins ∀s ∈ S

where

• (zout, βout) = (z′, β′) is the optimal solution of the master problem of
the current node,

• (zin, βin) is a feasible solution of the RR-2-KEP problem, and

• α ∈ [0, 1].

Figure 3.12 illustrates the idea, with R (represented by a rectangle) the
relaxed feasible region of the master problem of the current node and D
(represented by an oval) the relaxed feasible region of the relaxed restricted
two-stage KEP problem.

D

R

(zout, βout)
(zin, βin)

(zsep, βsep)

Figure 3.12: Illustration of the IN-OUT procedure

If cuts are found through the slave problems with parameters (zsep, βsep)
(i.e., if (zsep, βsep) is in R \D) then they are added to the master problem;
otherwise (i.e., if (zsep, βsep) is in D), we replace (zsep, βsep) by (zout, βout)
and solve again the slave problems as in the classical method.

We tested different options to define (zin, βin) such as:

• best integer solution found by the solver so far,
• random feasible solution,
• linear combination of the best incumbent and a random feasible solu-

tion,

101

and we used different values for α as well. However, quite surprisingly, the
use of this method considerably increased the total running time of Method 4:
it multiplied this time by a factor 3 on average.

Synthesis of the enhancement attempts.

Overall, in spite of the attempts reported in the previous subsections, no
big improvement could be brought to Method 4. Table 3.7 summarizes the
information regarding the solution process for five methods on 40 instances
with n = 25, |S| = 100, b = 10 and K = 3. The table shows:

• The average, minimum and maximum total running time (in seconds).
A time limit of 20 minutes was given to the solver. If the maximum
total running time is indicated as TL, it means that a least one instance
reached the time limit.

• The average number of variables and the average number of constraints
for each method. Note that for Method 4 and for Method 4*, we display
the average number of constraints in the initial master problem, which
does not include all return inequalities (3.26).

• The average, minimum and maximum number of nodes explored during
the optimization process.

• For Method 4 and Method 4* only, the average, minimum and maxi-
mum number of separation cuts added during the optimization process.

Table 3.7: Comparison of different methods for the RR-2-KEP problem

time var. const. nodes
av min max av av av min max

M1 6.83 0 42 1533.75 18101.00 15.33 0 139
M2 3.88 1 11 1660.25 18560.83 184.45 0 1536
M3 12.40 1 85 1689.75 18438.00 13.33 0 159
M4 83.1 4 TL 256.00 413.00 3933.60 0 43423
M4* 97.53 5 576 256.00 413.00 17.70 0 111

cuts
av min max

M4 901.18 102 3050
M4* 738.05 113

As observed earlier, Methods 1, 2, and 3 are faster than Method 4, de-
spite their larger number of variables and constraints. This statement re-
mains valid if we account for the number of cuts generated in Method 4 or
Method 4*. It can be noticed that the use of usercut callbacks additionally
to lazycut callbacks in Method 4 leads to the exploration of fewer nodes
and the addition of fewer cuts compared to the use of callbacks solely for
integer solutions. However, even so, Method 4* is not faster than Method 4,

102

as evidenced by Figure 3.11. The difference in running times is actually
not very significant, as we noticed that different runs may lead to slightly
different results.

As observed in the first part of this chapter, when the task is to solve variants
of MWCS, the PI formulation is not efficient compared to the ARC or the
SEA formulations in terms of running time, and PI3 is less efficient than
the ARC3 and CY3 formulations. It was pretty surprising, therefore, that
Method 2 is more efficient than Methods 3 and 4 for the RR-2-KEP problem.

To confirm our observations, we also compared the four different methods
on the same instances but with the maximum cycle length set to K = 4. As
shown in Figure 3.13, here again, Methods 1, 2, and 3 have similar perfor-
mance profiles, and Method 4 is the least efficient one.

Figure 3.13: Comparison of running time when n = 25, |S| = 100, b = 10,
K = 4. The horizontal axis displays running times (in seconds), and the vertical
axis displays the number of instances solved within a given time.

3.4 Conclusion

In this chapter, we have examined the computational aspects of various for-
mulations that describe cycle selections in directed graphs, with a focus on
the maximum weighted cycle selection problem. In Chapter 2, six IP formu-
lations are presented, but the majority of the theoretical study is centered
on the ARC formulation. Our experiments have demonstrated that the ARC
formulation and the SEA formulation are most efficient among the six formu-
lations. While MWCS is computationally easy to solve on random graphs,
we have also investigated variants that arise by adding a budget constraint
and/or a maximum cycle length constraint to the model. These variants
proved more challenging, especially when there is a budget constraint.

103

Our study was strongly motivated by the work of Smeulders et al. (2022)
and their stochastic two-stage KEP problem. We have examined two of
their formulations and their respective optimization methods, and we have
proposed two new formulations. Although we were unable to improve the
running time of the original methods, one of our new methods based on
the SEA formulation has a similar running time to that of Smeulders et al.
(2022). The performance of the Benders decomposition procedure on the
ARC formulation, however, turned out to be quite disappointing in spite
of several enhancements which are known to improve the efficiency of the
optimization process in other settings.

104

Chapter 4

Local stability
in kidney exchange programs

The content of this chapter is based on the working paper Baratto et al.
(2023) with Yves Crama, João Pedro Pedroso and Ana Viana submitted
for publication in the European Journal of Operational Research.

Contents
4.1 Introduction . 106
4.2 Basic concepts and literature review 107

4.2.1 Stable matching under preferences 107
4.2.2 Optimal kidney exchanges 107
4.2.3 Stable kidney exchanges 108

4.3 Stability and local stability 109
4.3.1 Stability: definitions 109
4.3.2 Local stability: definitions 111
4.3.3 Stability and local stability: characterizations . . 113

4.4 Blocking digraph, kernels and local kernels 114
4.5 Integer programming formulations 121
4.6 Numerical tests for L-stable exchanges 123

4.6.1 Instances . 123
4.6.2 Comparison of formulations for maximum L-stable

exchanges . 124
4.6.3 Comparison with stable exchanges 128

4.7 Local strong stability 132
4.7.1 Definitions . 132
4.7.2 Characterizations and formulations 134
4.7.3 Numerical tests for LS-stable exchanges 136

4.8 Kernels and L-kernels of random digraphs 138
4.9 Conclusions and perspectives 140

105

4.1 Introduction

Nowadays, the preferred treatment option offered to patients with an end-
stage renal disease is to receive a kidney transplant from a living donor.
This option is primarily used when the patient has a relative who is willing
to donate a healthy kidney. However, in many situations, the transplantation
cannot take place due to immunological incompatibility (based, say, on blood
and tissue type) between the patient and the healthy donor.

Kidney exchange programs (KEPs) try to alleviate this limitation by en-
listing a (hopefully) large number of incompatible patient-donor pairs, say,
pairs (Pi, Di) made up of patient Pi and donor Di, for i = 1, . . . , n. Consid-
ering such a pool makes it potentially feasible to identify, for example, three
patients P1, P2, P3 and three donors D1, D2, D3 such that D1 is compatible
with P2, D2 is compatible with P3, and D3 is compatible with P1. Then,
three kidneys can be transplanted in cyclic fashion among these six individ-
uals. Kidney exchange programs typically try to maximize the number of
transplants at a given time by matching as many compatible individuals as
possible. But other objectives may be (sometimes, simultaneously) pursued
as well; see, e.g., Biró et al. (2021).

When identifying a potential exchange, it is important to realize that from
the point of view of the patients, not all donors’ kidneys are equal: indeed,
some kidneys may be preferred to others because they are more likely to allow
successful transplants or longer survival expectancy. Hence, if an exchange
M is proposed by the program, but another cycle c exists such that all
patients of c are better off in c than in M, then the exchange M may
be considered as unstable, in the sense that it may be difficult to convince
the patients involved in c, and more specifically their medical teams, that
M should be implemented. (A more rigorous definition will be given in
Section 4.3.)

The concept of stability has been widely studied in the literature on match-
ing under preferences (Gale and Shapley, 1962) and, to a lesser extent, on
kidney exchanges (Roth et al., 2004; Klimentova et al., 2023). This litera-
ture will be briefly reviewed in Section 4.2. In Section 4.3, we reexamine the
concept and we introduce a weaker definition of local stability which appears
to be more relevant in the context of kidney exchanges. Section 4.4 intro-
duces the blocking digraph G∗ associated with a KEP compatibility graph.
We observe that stable exchanges correspond to kernels of G∗, while locally
stable exchanges correspond to local kernels of G∗. The section also men-
tions some basic properties of kernels and local kernels. We prove that it
is NP-complete to determine whether a graph has a nonempty local kernel,
and hence, to find a local kernel of maximum size. In Section 4.5, we pro-
pose integer programming formulations for local stable exchanges. Section

106

4.6 reports on various numerical tests, including an assessment of the quality
of IP formulations for the maximum local stable exchange problem, and a
comparison with the results obtained by Klimentova et al. (2023) for the
(more restrictive) maximum stable exchange problem. Finally, in Section
4.7, the concept of local stable exchange is extended to the concept of lo-
cal strongly stable exchange. An IP formulation is proposed and numerical
tests are conducted for the computation of maximum local strongly stable
exchanges.

4.2 Basic concepts and literature review

4.2.1 Stable matching under preferences

The first matching problem involving preferences on possible outcomes has
been studied by Gale and Shapley (1962) under the name of stable marriage
problem. The stable marriage problem involves two disjoint sets of identical
size n consisting respectively, say, of men and women, such that each individ-
ual has a strict preference order over all the individuals of the opposite sex.
The aim is to identify a matching M of n pairwise disjoint couples (m,w)
(where m is a man and w is a woman) which is stable in the sense that there
is no blocking pair (m0, w0) /∈ M i.e. a pair (m0, w0) such that m0 prefers
w0 to his partner in M, and w0 prefers m0 to her partner in M. Gale and
Shapley showed, in particular, that a stable matching always exists and can
be found by a polynomial algorithm.

Various extensions of this classical problem have been investigated in the
operations research and economic literature, such as bipartite matching prob-
lems with two-sided preferences (e.g., the hospitals-residents assignment prob-
lem), bipartite matching problems with one-sided preferences (e.g., the house
allocation problem), or non-bipartite matching problems with preferences
(e.g., the stable roommates problem), as well as many variants that consider
complete or incomplete preference lists, with or without ties. Such exten-
sions have been extensively studied from an algorithmic perspective, and
polynomial algorithms or hardness results are available for many of them;
see, e.g., Gale and Shapley (1962), Irving (1985), Ng and Hirschberg (1991),
Manlove et al. (2002), Biró and McDermid (2010), Huang (2010), Manlove
(2013).

4.2.2 Optimal kidney exchanges

The optimization of kidney exchanges is a more recent topic but has gen-
erated an abundant literature over the past 20 years, in the footprints of a
seminal paper by Roth et al. (2004).

A classical model is described as follows. A compatibility digraph G = (V,A)

107

is associated with the pool of patient-donor pairs (Pi, Di), i = 1, . . . , n: the
vertex set of G is the set V = {1, . . . , n}, and the arc set A contains the
arc (i, j) if and only if donor Di is compatible with patient Pj . A (feasible)
exchange is a collection of vertex-disjoint directed cycles of G. Maximizing
the number of feasible transplants amounts therefore to finding in G an
exchange which contains as many vertices as possible.

In practice, kidney transplants associated with a cycle are usually carried out
simultaneously in order to prevent situations where a donor would drop out
once its intended recipient has received a transplant, without the donor itself
donating a kidney. In view of the medical and logistical complexity of the
resulting procedure, the cycles included in an exchange are usually restricted
in size, say, cycles of size at most two, three, or four. We accordingly speak
of K-way exchanges, with K ∈ N.

There is a large amount of literature documenting formulations and algo-
rithms for kidney exchange optimization problems; see, e.g., Abraham et al.
(2007), Roth et al. (2007), Constantino et al. (2013), Dickerson et al. (2016),
Biró et al. (2021), Delorme et al. (2023a), Delorme et al. (2023b). When
K = 2 or when K = n, maximizing the number of transplants reduces to
a weighted matching problem and hence, can be done in polynomial-time.
But the problem is NP-hard for any fixed K ≥ 3.

Besides cycles, some programs also involve non-directed donors (NDD), i.e.,
donors with no associated patient. When this is the case, directed paths
(called chains) starting with an NDD are also allowed to be part of an
exchange: the NDD can initiate a sequence of transplants by donating a
kidney to a patient in a (patient, donor) pair, the donor of that pair donates
a kidney to another patient, and so forth until the last donor of the chain
donates a kidney to the deceased donor waiting list or becomes available to
initiate another chain on the next run of the program. Here again, a limit
on the maximum chain length is usually imposed. Chains can be taken into
account in the compatibility digraph model by adding dummy arcs between
each pair and each non-directed donor: in this way, chains are transformed
into cycles in the augmented digraph. For the remainder of this chapter,
chains will not be explicitly mentioned and will be handled in the same way
as cycles.

4.2.3 Stable kidney exchanges

The concept of stable kidney exchange extends the concept of stable match-
ing. It will be defined more precisely in subsequent sections. For now, we
can already mention that it was introduced as a natural solution concept in
the early work by Roth et al. (2004). When the cycle length is not bounded
(K = n), these authors observed that stable exchanges are equivalent to

108

core solutions of a model of the housing market previously studied by Shap-
ley and Scarf (1974). It follows that a stable exchange always exists and can
be efficiently computed. At the other end of the spectrum, when K = 2,
stable exchanges correspond to stable solutions of the roommates problem
with incomplete preference lists. Manlove (2013) surveys some of the main
results on the stable roommate problem. Let us just mention here that
when no ties are allowed in the preference lists, then the existence of com-
plete stable solutions can be checked in polynomial time (Irving, 1985) and a
maximum stable solution can also be found in polynomial time (Tan, 1990).
On the other hand, the existence question becomes NP-complete when ties
are allowed (Ronn (1990), Manlove et al. (2002)).

When the maximum cycle length is greater than or equal to 3 (K ≥ 3),
it is NP-complete to decide if a stable kidney exchange exists. This follows
from a result of Biró and McDermid (2010) and Huang (2010) for three-sided
stable matchings with cyclic preferences, which is a special case of the stable
exchange problem; see also Mészáros-Karkus (2017) for extensions.

The papers cited above focus on the theoretical complexity of stable exchange
problems. More recently, Klimentova et al. (2023) turned to the challenge of
actually computing stable kidney exchanges for large size, realistic compati-
bility digraphs. They defined different optimization variants of the problem,
proposed several integer programming formulations, and carried out exten-
sive numerical experiments with these formulations.

As mentioned in the Introduction, the main contribution of the present chap-
ter is to propose an alternative, weaker concept of local stability for kidney
exchanges, to investigate some of its theoretical properties, and to compare
it experimentally with the classical concept handled in Klimentova et al.
(2023). The next section introduces this new concept.

4.3 Stability and local stability

4.3.1 Stability: definitions

Let G = (V,A) be an arbitrary digraph. For a vertex i ∈ V , we denote as
N−

G (i) the set of in-neighbors of i, that is, N−
G (i) = {j ∈ V : (j, i) ∈ A}.

When G is a compatibility digraph for kidney exchanges, we assume that
each patient has expressed preferences over its set of compatible donors.
More precisely, for each i ∈ V , the preferences of patient Pi are described
by a rank function ri : N−

G (i) → R, with the interpretation that, for all
j, k ∈ N−

G (i), Pi prefers donor Dj to donor Dk (or for short, i prefers j to
k) if and only if ri(j) < ri(k). We say that Pi is indifferent between Dj and
Dk (or that i is indifferent between j and k) if ri(j) = ri(k).

109

For example in Figure 4.1 hereunder, r2(4) = 1 < r2(1) = 2, meaning that
the patient of pair 2 prefers the donor of pair 4 to the donor of pair 1.

1

2

3

4

5

2

1

1

1

1

1

Figure 4.1: A small digraph with arcs labeled by values of the rank functions

Given an integer parameter K, let CK(G) be the set of K-cycles of G, that
is, the set of directed cycles of G with length at most K. In the sequel, when
we speak of a cycle, we always mean a directed cycle in CK(G), where K
is assumed to be fixed. We use letters like u, v, w, . . . to denote cycles of G
(this is admittedly unusual, but will become natural in Section 4.4). For any
cycle u, we let V (u) be the set of vertices of u, and we let A(u) be its set of
arcs.

Definition 9. An exchange of G is a collection M ⊆ CK(G) of pairwise
vertex-disjoint K-cycles. A vertex i is matched in M or simply, i is in M, if
i is contained in one of the cycles of M. We denote by V (M) =

⋃
u∈M V (u)

the set of vertices matched in M and by A(M) =
⋃

u∈MA(u) the set of arcs
included in M.

Definition 10. Let M be an exchange, let u ∈ CK(G) \M be a cycle not
contained in M, and let i ∈ V (u). We say that vertex i prefers the cycle u
to the exchange M if either

• i ̸∈ V (M), or

• i ∈ V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i prefers k to k′.

In the context of kidney exchanges, the first condition in this definition
expresses the assumption that any vertex i prefers being matched (in cycle u)
over being unmatched (in M). The second condition states that i prefers its
donor in the cycle u to its donor in the exchange M. When M consists of
a single cycle, say, M = {v}, we simply say that i prefers u to v.

Definition 11. A blocking cycle for an exchange M is a cycle u ∈ CK(G)\M
(not contained in M) such that each vertex in V (u) prefers u to M. When
M = {v}, we say that u is blocking for v.

So, each vertex i in a blocking cycle u would prefer being contained in the
transplantation cycle u rather than in the exchange M (either because i
is not matched in M, or because i prefers its donor in u to its donor in
M). This naturally leads to the definition of a stable exchange (see Gale

110

and Shapley (1962), Roth et al. (2004), Biró and McDermid (2010), Huang
(2010), Klimentova et al. (2023)).

Definition 12. An exchange M is stable if there is no blocking cycle for M
in CK(G).

Example 1. In Figure 4.1, the exchange M = {u}, where u := (1, 2, 3, 1),
is not stable. Indeed, v := (2, 5, 4, 2) is a blocking cycle for M, since the
patient of pair 2 prefers the donor of pair 4 to the donor of pair 1.

Note that when K = 2, Definition 12 mimicks the definition of stable match-
ings given in Section 4.2.

4.3.2 Local stability: definitions

Example 2. Consider the digraph G in Figure 4.2. For K = 2, there are
four cycles of interest, namely, u1 := (1, 2, 1) , u2 := (2, 3, 2) , u3 := (3, 1, 3)
and u4 := (4, 5, 4). There is no stable exchange in G. Indeed, at most one
of the cycles u1, u2, u3 can be selected in an exchange, but u1 is blocking for
u2, u2 is blocking for u3, and u3 is blocking for u1. Moreover, since u1, u2, u3
are disjoint from u4, they all block the exchange M = {u4}.

Note however that, from the point of view of the patients of a kidney ex-
change program, it does not make sense to reject M = {u4} since this cycle
could be implemented without affecting any of the options available to the
remaining patient-donor pairs and hence, without opposition from any of
them.

1

2

3

4

5

1

1
1

2

2

2

11

Figure 4.2: A digraph without stable exchange

The anomaly underlined in Example 2 arises because Definition 11 does not
impose that a blocking cycle u for M should intersect M (in the sense that
V (M)∩V (u) ̸= ∅). As a result, an exchange (like M = {u4}) can be blocked
by a cycle (say, u1) which is disjoint from it and which, intuitively, is therefore
unrelated. These observations motivate the consideration of a weaker and
seemingly new notion of stability, that we now proceed to introduce.

Definition 13. A locally blocking cycle, or L-blocking cycle, for an exchange
M is a blocking cycle for M that intersects M. In other words, it is a cycle

111

u that is not contained in M, that intersects M, and such that each vertex
in V (u) prefers u to M. When M = {v}, we say that u is blocking for v.

Definition 14. An exchange M is locally stable, or L-stable, if there is no
L-blocking cycle for M in CK(G).

Comparing Definition 11 and Definition 13 makes it clear that every L-
blocking cycle is also blocking, but the converse is not necessarily true. As
a consequence, every stable exchange is locally stable, but the reverse impli-
cation does not hold in general.

Example 3. In Figure 4.3, the cycle u := (2, 4, 2) is L-blocking for the cycle
v := (1, 2, 3, 1). Indeed, these cycles have vertex 2 in common, which prefers
u to v because it prefers the donor of pair 4 to the donor of pair 1, and
because vertex 4 is unmatched in v.

1

2

3

4

2

1

1
1

1

Figure 4.3: u := (2, 4, 2) is L-blocking for v := (1, 2, 3, 1)

Example 4. In Example 2 and Figure 4.2, the exchange M = {u4} is not
stable, but it is locally stable. Indeed, the cycles u1, u2, u3 block the cycle
u4, but they do not intersect it. Hence, they are not locally blocking for u4.

Our proposal in this chapter is that local stability is a pertinent property
to be considered by decision-makers in a kidney exchange program. In-
deed, just like classical stability, it expresses the property that no subset of
patient-donor pairs has a common incentive to block an exchange in order
to participate in a more attractive cyclic sequence of transplants. Contrary
to stability, however, local stability is not affected by the consideration of
irrelevant alternatives, in the sense that a cycle cannot block an exchange
on which it has no immediate bearing, as illustrated by Example 4. In sub-
sequent sections, we will demonstrate that this meaningful generalization of
the stability requirement sometimes allows the identification of large local
stable exchanges in situations where no stable exchanges exist.

Remark 1. A reviewer of the initial submission to EJOR pointed out the
concept of internal stability, which was introduced by Liu et al. (2014). Let
us say that a cycle u ∈ CK(G) is internally blocking for an exchange M if u
is blocking for M and V (u) ⊆ V (M). An exchange M is internally stable if
there is no internally blocking cycle for M. Since an internally blocking cycle
is locally blocking, the following implications hold for every exchange M:

M stable ⇒ M locally stable ⇒ M internally stable.

112

To see that the second implication cannot be reversed, it is enough to consider
the digraph induced by vertices 1, 2, 3 in Example 2. For K = 2, this
digraph has an internally stable exchange (e.g., the 2-cycle u1 = (1, 2, 1)),
but it has no nonempty L-stable exchange. The relation between L-stability
and internal stability deserves to be further examined in future work.

4.3.3 Stability and local stability: characterizations

In this section, we provide alternative characterizations of stable and L-stable
exchanges which will be used in Section 4.5 to derive integer programming
formulations.

Definition 15. For a cycle v ∈ CK(G), we denote by B(v) the set of all
L-blocking cycles for v.

Definition 16. Two cycles u, v are friends if they have a nonempty inter-
section, if u does not L-block v, and if v does not L-block u. We denote by
F(v) the set of cycles that are friends with v.

Clearly, u ∈ F(v) if and only if v ∈ F(u). Cycles u and v are friends when
some vertex i in V (u) ∩ V (v) has no preference between the two cycles (for
example if the cycles share an arc (j, i) as illustrated in Figure 4.4), or if the
two cycles share at least two vertices and one prefers u while the other one
prefers v.

1

2

3

4

2

1

1
1

1

Figure 4.4: v = (1, 2, 3, 1) and u = (2, 3, 4, 2) are friends when K = 3

We note the following property for future reference.

Lemma 1. Two cycles u, v intersect each other if and only if u ∈ B(v)∪F(v)
or v ∈ B(u) ∪ F(u).

Proof. This trivially follows from the definitions.

The following result will be crucial for the subsequent developments.

Lemma 2. Let M be an exchange and let v be a cycle not contained in M.
The following statements are equivalent:
(i) there exists w ∈ M such that w ∈ B(v) ∪ F(v);

113

(ii) v is not blocking for M;
(iii) v intersects M and v is not L-blocking for M.

Proof. (i) ⇒ (ii). Let w ∈ M. If w ∈ B(v), then by definition V (v) ∩ V (w)
is not empty, and any vertex in the intersection prefers w to v. It follows
that v is not blocking for M.

If w ∈ F(v), then again V (v) ∩ V (w) is not empty and v /∈ B(w). Hence,
there must be a vertex i ∈ V (v) ∩ V (w) such that i does not prefer v to w.
So, once again, v is not blocking for M.

(ii) ⇔ (iii). This equivalence is just a restatement of Definition 13.

(iii) ⇒ (i). If v intersects M, but v is not L-blocking for M, it means that
there exists a cycle w ∈ M and a vertex i ∈ V (v) ∩ V (w) such that either i
prefers w to v, or i is indifferent between v and w. In particular, v /∈ B(w).
But then, Lemma 1 implies that w ∈ B(v) ∪ F(v).

We are now ready for the characterization theorems.

Theorem 28. For an exchange M, the following conditions are equivalent:
(a) M is stable;
(b) for each cycle v /∈ M, there exists w ∈ M such that w ∈ B(v) ∪ F(v).

Proof. This immediately follows from Definition 12 and from the equivalence
of (i)-(ii) in Lemma 2.

Theorem 29. For an exchange M, the following conditions are equivalent:
(a) M is L-stable;
(b) for each cycle v /∈ M, if v intersects M, then there exists w ∈ M such
that w ∈ B(v) ∪ F(v).

Proof. (a) ⇒ (b). If M is L-stable and v /∈ M, then v cannot be L-blocking
for M. So, if v intersects M, then condition (iii) of Lemma 2 holds. This
implies that condition (i), and hence (b), also hold.

(b) ⇒ (a). Conversely, if (b) holds, then every cycle v /∈ M is either disjoint
from M (in which case it is not L-blocking) or satisfies condition (i) of
Lemma 2 (in which case it is also not L-blocking, in view of condition (iii)).
Hence, M is L-stable.

4.4 Blocking digraph, kernels and local kernels

The aim of this section is to provide alternative interpretations of stable and
L-stable exchanges in terms of a digraph G∗ = (V ∗, A∗), to be called the

114

blocking digraph of G, that we define as follows:

• V ∗ = CK(G): there is a vertex v in V ∗ for each cycle v in CK(G);
• A∗ = {(v, w) : w ∈ B(v) ∪ F(v)}.

Remark 2. In view of Lemma 1, when two cycles u, v intersect, then at least
one of the arcs (u, v) or (v, u) is in A∗ (both arcs are in A∗ exactly when u
and v are friends). And conversely, if (u, v) is an arc in A∗, then u and v
intersect. So, G∗ can be viewed as an orientation of the intersection graph of
K-cycles of G. When K = 2, G∗ is an orientation of a line graph (see Boros
and Gurvich (2006), Maffray (1992), Ratier (1996) for related constructions
when G is bipartite).

The following concept is classical in game theory and graph theory; see, e.g.,
von Neumann and Morgenstern (1953), and Boros and Gurvich (2006) for
related literature.

Definition 17. A kernel in a digraph D = (W,E) is a subset S ⊆ W which
is both independent and absorbing :

• independent : for all (u, v) ∈ E at most one of u, v is in S;
• absorbing : for every vertex v /∈ S, there exists a vertex w ∈ S such

that (v, w) ∈ E (see Figure 4.5).

S

w

v

Figure 4.5: An absorbing set S

From Theorem 28 and the definition of kernels, we immediately obtain:

Theorem 30. For a digraph G = (V,A) and its blocking digraph G∗ =
(V ∗, A∗), the stable exchanges of G are exactly the kernels of G∗.

The relation expressed in Theorem 30 does not come as a complete surprise,
as similar observations have been formulated in the literature, for example,
for the stable marriage problem (see, e.g., Manlove (2013), Ratier (1996)), or
in a different context, for certain types of hedonic games (see, e.g., Deineko
and Woeginger (2013), Igarashi (2017)). We are not aware of any reference
where the relation is explicitly stated for stable kidney exchanges, there-
fore we state Theorem 30 for the record and to prepare the statement of
Theorem 31 hereunder.

Let us now turn to our new notion of local stability. Galeana-Sánchez and

115

Neumann-Lara (1984) define local kernels as follows (the terminology is due
to Duchet and Meyniel (1993)).

Definition 18. A local kernel, or L-kernel, of a digraph D = (W,E) is a
subset S of vertices which is both independent and locally absorbing :

• locally absorbing : for all u ∈ S and v /∈ S such that (u, v) ∈ E, there
exists w ∈ S such that (v, w) ∈ E.

The second condition in this definition means that every out-neighbor of S
is “absorbed” by S. Figure 4.6 provides an illustration. Clearly, every kernel
is a local kernel.

S

w

v

u

Figure 4.6: A locally absorbing set S

The relation between L-stable exchanges and L-kernels is akin to the relation
between stable exchanges and kernels (Theorem 30), namely:

Theorem 31. For a digraph G = (V,A) and its blocking digraph G∗ =
(V ∗, A∗), the L-stable exchanges of G are exactly the L-kernels of G∗.

Proof. Assume that M is an L-stable exchange in G. Then, M is indepen-
dent in G∗. If u ∈ M, v /∈ M and (u, v) ∈ A∗, then u intersects v (by
Lemma 1). By statement (b) in Theorem 29 and by definition of the block-
ing digraph, there exists w ∈ M such that (v, w) ∈ A∗, and hence M is a
local kernel in G∗.

Conversely, if M is an L-kernel in G∗, then M is an exchange in G. To verify
statement (b) in Theorem 29, suppose that v /∈ M and that v intersects M,
i.e., there is a cycle u ∈ M such that v intersects u. In view of Remark 2,
then, (u, v) ∈ A∗ or (v, u) ∈ A∗ (or both). If (v, u) ∈ A∗, then u ∈ B(v)∪F(v)
by definition of A∗, and hence condition (b) of Theorem 29 holds. If (u, v) ∈
A∗, then by definition of L-kernels there exists w ∈ M such that (v, w) ∈ A∗,
and condition (b) is satisfied again.

There only seems to be a handful of publications about local kernels. We
collect here some simple observations of interest, in particular about the
relation between kernels and local kernels.

116

Fact 1. Not every digraph has a kernel, but every digraph has an L-kernel,
since the empty set always is an L-kernel.

Fact 2. A directed cycle of odd length, say (u1, u2, . . . , u2ℓ+1, u1), has no
L-kernel other than the empty set. Indeed, in any nonempty independent
set S of this odd cycle, there is a vertex uk ∈ S such that uk+1, uk+2 are not
in S. Then, uk and uk+1 violate the definition of local absorption.

For a digraph G, let us say that a kernel (respectively, an L-kernel) of G
is maximal if it is not properly included in another kernel (respectively, L-
kernel) of G.

Fact 3. It is easy to see that a kernel can never be included in another one.
In other words, every kernel is maximal. Every kernel also is a maximal
L-kernel. On the other hand, in view of Fact 1, an L-kernel is not necessarily
maximal, and a maximal L-kernel is not necessarily a kernel.

u1

u2

u3

u4

Figure 4.7: A blocking digraph without kernel but with a nonempty L-kernel

Example 5. Figure 4.7 illustrates the previous facts. It displays the block-
ing digraph G∗ of the digraph G in Figure 4.2. In line with the discus-
sion in Section 4.3.2, G∗ has no kernel (essentially, because of the 3-cycle
(u1, u2, u3, u1)), but S = {u4} is a maximal L-kernel of G∗.

Later in the chapter, we will be interested in computing maximum kernels
and L-kernels, that is, kernels and L-kernels of maximum size.

Fact 4. Even when a kernel exists, the maximum size of an L-kernel can be
strictly larger than the maximum size of a kernel.

Example 6. The digraph G∗ in Figure 4.8 illustrates this fact. Indeed, {u3}
is the unique kernel of G∗, while {u1, u2} is its largest L-kernel. The size of
the maximum L-kernel could actually be made arbitrarily large by creating
multiple copies of vertices u1 and u2.

It is interesting to observe that G∗ in Figure 4.8 is the blocking digraph
of the KEP compatibility graph in Figure 4.9 for K = 4, where u1 =
(1, 2, 3, 4, 1), u2 = (5, 6, 7, 8, 5), u3 = (3, 5, 14, 9, 3), u4 = (12, 13, 14, 15, 12),
u5 = (9, 10, 11, 12, 9), and u6 = (9, 16, 17, 13, 9). As a consequence, the
maximum stable exchange in G is Ms = {u3} and the maximum L-stable
exchange is Mls = {u1, u2}.

117

u1

u2

u3

u6

u5

u4

Figure 4.8: A digraph G∗ with an L-kernel larger than the unique kernel

1

7

2

4

8

6

3

5

9

13 12

16

17

10

11

14 15

1 1

11

1 1

11

1

1
1

2
2

1
1

1

3

1

2
1

2
1

1

1

Figure 4.9: A compatibility digraph G

Fact 4 and Example 6 confirm that a maximum locally stable exchange
might be larger than a maximum stable exchange. In the context of kidney
exchanges, it means that an L-stable exchange may increase the number of
transplants. This observation underlines the potential relevance of locally
stable exchange.

In Section 4.6, we will turn to the computation of maximum L-kernels and
L-stable exchanges. Chvátal (1973) proved that deciding whether a digraph
has a kernel is an NP-complete problem. The NP-hardness results cited
in Section 4.2 for stable exchanges strengthen this statement, and polyno-
mial algorithms exist for some classes of digraphs; see, e.g., Pass-Lanneau
et al. (2020). On the other hand, the complexity of computing L-kernels has
apparently not been investigated in the literature, but we can establish:

Theorem 32. Given a digraph G = (V,A), deciding whether G has a
nonempty local kernel is NP-complete.

Proof. The problem is clearly in NP. The completeness proof is inspired
from Chvátal (1973). We provide a reduction from the satisfiability prob-
lem, namely: given a Boolean conjunctive normal form F on n variables
x1, . . . , xn, say, F = C1 ∨ . . .∨Cm, we construct a digraph D = (W,E) such

118

a

b

ck1

ck2

ck3

v

¬v

Figure 4.10: Construction for a clause Ck containing a literal v

that D has a nonempty local kernel if and only if F is satisfiable.

• For each variable xi of F , we create two vertices xi and ¬xi in W and
join them by the arcs (xi,¬xi), (¬xi, xi) in E.

• For each clause Ck of F , we introduce three vertices ck1, ck2, ck3 in W ,
and join them in the cyclic triangle (ck1, ck2), (ck2, ck3), (ck3, ck1).

• For each pair (ckj , v) such that literal v appears in clause Ck, we add
the three arcs (ck1, v), (ck2, v), (ck3, v) in E.

• We add a new vertex a and all the arcs of the form (a, ckj), for all
clauses Ck and for all j ∈ {1, 2, 3}.

• We add a new vertex b, the arc (b, a), and all the arcs of the form
(xi, b), (¬xi, b) in E.

The construction is illustrated in Figure 4.10 for a clause Ck containing a
literal v (which may be a variable xi or its negation).

Suppose now that x∗ = (x∗1, . . . , x
∗
n) ∈ {0, 1}n is a satisfying assignment

for F . Then S∗ = {a} ∪ S, with S = {xi|x∗i = 1} ∪ {¬xi|x∗i = 0}, is a
nonempty local kernel (and even, a kernel) of D. Indeed, S∗ is an indepen-
dent set, and all vertices xi /∈ S, ¬xi /∈ S, b, ckj are absorbed by some vertex
of S∗ as follows from the following observations:

• if xi /∈ S, then ¬xi ∈ S and ¬xi absorbs xi;
• if ¬xi /∈ S, then xi ∈ S and xi absorbs ¬xi;

119

• b is absorbed by a;
• since x∗ satisfies F , at least one literal v in Ck is true, for each k;

hence, ck1, ck2 and ck3 are absorbed by v.

Conversely, assume that S∗ is a nonempty local kernel of D. Let us see what
vertices can be in S∗.

• Assume that ck1 ∈ S∗. Then, due to independence, ck2 /∈ S∗, ck3 /∈
S∗, and v /∈ S∗ for any literal v that appears in Ck. Hence, the
local absorption condition of Definition 4.9 is violated, since ck1 ∈ S∗,
(ck1, ck2) is an arc, but there is no vertex w ∈ S∗ such that (ck2, w) ∈ E.
This contradiction shows that ck1 /∈ S∗. The same conclusion holds by
symmetry for ck2 and ck3.

• Assume that b ∈ S∗. Since (b, a) is an arc, local absorption requires
that (a,w) must be an arc for some vertex w ∈ S∗. But this is not
possible, since the only arcs leaving a are of the form (a, ckj), and ckj
is not in S∗ by the previous bullet point: contradiction.

So, at this point, we know that the only vertices that can potentially be in
S∗ are a, xi, ¬xi for i ∈ {1, · · · , n}.

• If a /∈ S∗, then at least one vertex of the form xi, ¬xi must be in
S∗, for i ∈ {1, · · · , n} (since S∗ is not empty), say x1 ∈ S∗. Then,
(x1, b) being an arc, local absorption implies that there is an arc of the
form (b, w) with w ∈ S∗. But the only arc leaving b is (b, a), which
contradicts the assumption that a /∈ S∗.

• So, a ∈ S∗. Now, for all k, (a, ck1) is an arc of D. Hence, there must be
an arc (ck1, w) ∈ E for some vertex w ∈ S∗. This vertex w can only be
a literal xi or ¬xi that appears in clause Ck, for some i ∈ {1, . . . , n}.
This shows that, for each clause Ck, at least one literal of Ck must be
in S∗.

We conclude that S∗ is of the form {a} ∪ S where S contains at most one
of xi, ¬xi for each variable xi, and S contains at least one literal of Ck for
each k. Hence, the literals in S define a satisfying assignment for F . (If for
some i neither xi nor ¬xi appears in S, then the corresponding variable can
be assigned an arbitrary value; alternatively, either xi or ¬xi can be added
to S∗, which remains a local kernel.)

Note that, as a corollary of Theorem 32, computing a local kernel of maxi-
mum size is also NP-hard.

120

4.5 Integer programming formulations

We are now ready to provide integer programming formulations of stable
and L-stable exchanges. For this purpose, we introduce the natural binary
variables yv, for all v ∈ CK(G), with the interpretation that yv = 1 if cycle
v is in the exchange.

Consider the following constraints:

yu + yv ≤ 1 ∀u, v ∈ CK(G) : V (u) ∩ V (v) ̸= ∅ (4.1)

1 ≤ yv +
∑

w∈B(v)∪F(v)

yw ∀v ∈ CK(G) (4.2)

yv ∈ {0, 1} ∀v ∈ CK(G). (4.3)

Theorem 33. The solutions of (4.1), (4.2), (4.3) describe all stable ex-
changes of G.

Proof. Suppose that y satisfies (4.1), (4.2), (4.3), and let M be the asso-
ciated set of cycles. Constraints (4.1) express that M is an exchange, and
constraints (4.2) express condition (b) in Theorem 28.

Formulation (4.1)-(4.3) can also be viewed as the natural formulation for the
kernels of G∗, as found for example in Aharoni and Holzman (1998), Chen
et al. (2016). The packing constraints (4.1) can be replaced by the stronger
constraints ∑

v∈CK(G):i∈V (v)

yv ≤ 1 ∀i ∈ V (4.4)

since (4.4) expresses that at most one cycle containing a given vertex i can be
included in an exchange. Note that the linear relaxation of (4.4) is stronger
than the relaxation of (4.1). The resulting strengthened formulation (4.2)-
(4.4) is exactly the so-called “cycle formulation” of stable exchanges in Kli-
mentova et al. (2023). (The notations in Klimentova et al. (2023) are slightly
different, as these authors define additional subsets B(i, v), for v ∈ CK(G)
and i ∈ V (v), such that B(v) ∪ F(v) = ∪i∈V (v)B(i, v) for all v ∈ CK(G).
Except for this notational difference, the formulations are identical.)

The collection of cycles {v ∈ CK(G) : i ∈ V (v)} is a clique in G∗ and hence,
(4.4) is one of the well-known clique inequalities∑

v∈C
yv ≤ 1 if C is a clique in G∗.

However, (4.4) does not necessarily include all clique inequalities and not
even all maximal clique inequalities for G∗. As an example, in Figure 4.8,

121

C = {u3, u4, u5, u6} is a maximal clique of G∗, but none of the constraints
(4.4) is associated with C since no vertex in Figure 4.9 is included in all four
cycles u3, u4, u5, u6.

Let us turn next to a formulation of L-stability. Define the constraints:

yu + yv ≤ 1 ∀u, v ∈ CK(G) : V (u) ∩ V (v) ̸= ∅ (4.5)

yu ≤
∑

w∈B(v)∪F(v)

yw ∀u ∈ CK(G), ∀v ∈ B(u) ∪ F(u) (4.6)

yv ∈ {0, 1} ∀v ∈ CK(G). (4.7)

Theorem 34. The solutions of (4.5), (4.6), (4.7) describe all L-stable ex-
changes of G.

Proof. When y satisfies (4.5), (4.6), (4.7), let M be the associated set of
vertices in G∗. Then, M is independent in G∗. To verify that M is locally
absorbing in G∗, assume that u ∈ M, v /∈ M and (u, v) ∈ A∗ (that is,
v ∈ B(u) ∪ F(u)). Then, the inequalities (4.6) imply the existence of w ∈
B(v) ∪ F(v) such that yw = 1, i.e., (v, w) ∈ A∗ and w ∈ M as required
for local absorption. Hence, (4.5)-(4.7) exactly describes the local kernels
of G∗.

The formulation (4.5)-(4.7) can be rewritten as the following natural formu-
lation of local kernels in the digraph G∗ = (V ∗, A∗):

yu + yv ≤ 1 ∀(u, v) ∈ A∗ (4.8)

yu ≤
∑

w:(v,w)∈A∗

yw ∀(u, v) ∈ A∗ (4.9)

yv ∈ {0, 1} ∀v ∈ V ∗. (4.10)

Different formulations can be derived as follows. First, here again, the con-
straints (4.5) can be replaced by the tighter clique inequalities (4.4). Next,
note that when v ∈ F(u), the local absorption inequalities (4.6) are redun-
dant and can be removed: indeed, if v ∈ F(u) then u ∈ F(v), hence the
right-hand side of (4.6) contains yu and the inequality is satisfied since the
variables yw are nonnegative. Equivalently, constraints (4.9) are redundant
when (v, u) ∈ A∗. The remaining non-redundant constraints (4.9) can be
aggregated by fixing v and by summing for all u such that (u, v) ∈ A∗ and
(v, u) /∈ A∗ (that is, for all u such that v ∈ B(u)). This yields the inequalities∑

u:(u,v)∈A∗,(v,u)/∈A∗

yu ≤ δ−(v)
∑

w:(v,w)∈A∗

yw ∀v ∈ V ∗ (4.11)

122

where δ−(v) = |{u : (u, v) ∈ A∗, (v, u) /∈ A∗}|.

Interestingly, one easily verifies that the inequalities (4.11) correctly express
the local absorption condition in any digraph G∗ = (V ∗, A∗) (be it a blocking
digraph or not): in other words, inequalities (4.9) and (4.11) have the same
0–1 solutions. There are only |V ∗| aggregated constraints of type (4.11),
while there are |A∗| constraints of type (4.9). However, the linear relaxation
of (4.11) is weaker than that of (4.9). In Section 4.6, we will experimentally
compare different formulations based on the above observations.

4.6 Numerical tests for L-stable exchanges

The aim of this section is, first, to assess the practical difficulty of computing
maximum L-stable exchanges by solving the IP formulations presented in
Section 4.5 and second, to compare optimal stable exchanges against optimal
L-stable ones. All formulations were implemented using Python 3.10 as
programming language and were tested using Gurobi 9.5.0. The tests were
executed on a Dell Latitude 7490 running Windows 10 64Bit in an Intel Core
i5-7300U CPU with 2 Cores at 2.60GHz and 16 GB of RAM.

4.6.1 Instances

We have performed numerical tests on a set of instances created by Klimen-
tova et al. (2023) using the random generator developed by Santos et al.
(2017). The generator simulates the features of compatibility digraphs aris-
ing in real-world KEPs. The instances are described in detail in Klimentova
et al. (2023). Each instance is defined by a compatibility KEP digraph
G = (V,A), by preferences on the potential donors of each patient, and by a
value of K. The number n of incompatible pairs can take 22 distinct values,
namely,

n ∈ {20, 30, · · · , 170, 180, 200, 250, 300, 350, 400},
and K ∈ {2, 3, 4}. Each instance also contains ⌈0.05n⌉ non-directed donors.
The chains originating from an NDD are viewed as cycles in an augmented
digraph, as explained in Section 4.2.2. Fifty different digraphs with |V | =
n+ ⌈0.05n⌉ vertices are available for each value of n. So, in total, we have
3300 instances (22 × 3 × 50) in this dataset.

For each digraph, the preferences on the arcs are strict, that is, a patient is
never indifferent between two distinct donors. We have also experimented
with instances featuring weak preferences (as in Klimentova et al. (2023)),
and with a third data set from Smeulders et al. (2022). Since the results
were similar in all cases, we only report here on the first type of instances.

Remark 3. When chains originating from non-directed donors are trans-
formed into cycles by adding “dummy” arcs, the question arises of defining

123

the preferences of each NDD over its in-neighbors. These preferences could
all be set to a same value (say, “most preferred”) to translate the fact that
an NDD does not actually receive any transplant and hence, is indifferent
between its in-neighbors. Alternatively, for each dummy arc (i, k), where
k is an NDD, we can consider that the donor Di donates a kidney to the
deceased donor waiting list or acts as an NDD in a future run of the KEP,
as explained in Section 4.2.2. When this is the case, it makes sense to in-
troduce preferences on the dummy arcs so as to express the features of the
kidneys donated by the in-neighbors of the NDD k. The instances gener-
ated by Klimentova et al. (2023) accordingly include preferences among the
in-neighbors of each NDD.

By way of illustration, Table 4.1 displays some of the size parameters of the
graphs G and G∗ for the 50 instances with n = 40 and K = 3 (see also
Table 4.5 further down for instances of different size, with K = 2). In this
and subsequent tables, with a slight abuse of notations for |A|, |V ∗| and |A∗|:

• n is the number of patient/donor pairs in each digraph G;
• |V | = n+ ⌈0.05n⌉ is the number of vertices of G;
• |A| is the average number of arcs of G in 50 instances with the same

value of n;
• |V ∗| is the average number of cycles in 50 instances with the same

value of n, that is, the average number of vertices in the correspond-
ing blocking digraphs; the next two columns (min|V ∗| and max|V ∗|)
display the minimum and the maximum number of cycles in the 50
instances;

• |A∗| is the average number of arcs in the corresponding blocking di-
graphs; the next two columns (min|A∗| and max|A∗|) show the min-
imum and the maximum number of arcs in 50 blocking digraphs, for
the same value of n.

Table 4.1: Size parameters of instances with n = 40, K = 3

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗| min|A∗| max|A∗|
40 42 471 452 27 1052 58533 156 199874

4.6.2 Comparison of formulations for maximum L-stable ex-
changes

In this section, we first compare the IP formulations proposed to describe
locally stable exchanges by solving the maximum locally stable exchange prob-
lem with the objective function

max
∑

u∈CK(G)

|V (u)| yu (4.12)

124

where |V (u)| is the length of cycle u. Four different IP formulations have been
tested: beside the integrality constraints (4.7), they contain the following L-
stability constraints.

• Formulation 1: constraints (4.5) and (4.6); total: 2|A∗| constraints.

• Formulation 2: constraints (4.5) and (4.11); total: |A∗| + |V ∗| con-
straints.

• Formulation 3: constraints (4.4) and (4.6); total: |V |+|A∗| constraints.

• Formulation 4: constraints (4.4) and (4.11); total: |V | + |V ∗| con-
straints.

Recall from Section 4.5 that constraints (4.4) and (4.5) have the same 0–1
solutions, but the linear relaxation of (4.4) is stronger than the relaxation
of (4.5). Similarly, constraints (4.6) and (4.11) have the same 0–1 solutions,
but the relaxation of (4.6) is stronger than the relaxation of (4.11). So,
Formulation 2 is in principle the weakest and Formulation 3 is the tightest
among these four formulations, whereas Formulations 1 and 4 are incompa-
rable with each other, and are intermediate between 2 and 3. However, the
number of constraints also differs significantly and as a result, it becomes
hard to predict the total running time of different formulations, in particular
when A∗ grows large (see Table 4.1 and Table 4.5).

In order to assess numerically the quality of the linear relaxations, we com-
puted the integrality gap GapkLP = 100× zkLP−z∗

z∗ , where zkLP is the optimal
value of the linear relaxation of Formulation k and z∗ is the optimal value
of the problem. For all instances with n ∈ {20, 30, 40} and K = 2, 3, For-
mulations 1 and 2 appear to have the same integrality gap, and this gap is
extremely large. For example, for 50 instances with n = 40 and K = 3, the
integrality gap is in [112; 6094] with a mean value of 2802. The gaps for For-
mulations 3 and 4 are much smaller. This is illustrated in Figure 4.11 which
displays the performance profiles of Gap3LP and Gap4LP (it shows the number
of instances for which the gap is smaller than the abscissa on the horizontal
axis; the gap for Formulations 1 and 2 is too large to be meaningfully dis-
played in this figure). Both gaps are smaller than 35 for all 50 instances. As
expected, Formulation 3 is tighter than Formulation 4, but only slightly so.
These results confirm that the clique inequalities (4.4) considerably tighten
the formulations, whereas the aggregation of constraints (4.6) into (4.11)
does not deteriorate very much the upper bounds.

125

Figure 4.11: Comparison of GapLP for Formulations 3 and 4 when n = 40,
K = 3. The horizontal axis displays gaps and the vertical axis displays the number
of instances with a gap smaller than a given value.

Table 4.2: Mean running time (in seconds) for Formulations 1–4 when n = 40,
K = 3

Formulation 1 36.58
Formulation 2 3.78
Formulation 3 14.67
Formulation 4 0.56

Let us now consider the total running time of the IP solver on the different
formulations. Table 4.2 displays the mean running time (in seconds) for
each formulation, computed over 50 instances of size n = 40 and K = 3.
Figure 4.12 displays the performance profiles of the running time for the
four formulations on the same instances; here, the value on the vertical axis
represents the number of instances solved as a function of the running time
(in seconds) indicated on the horizontal axis.

With Formulation 4, 44 instances are solved in less than 1 second and all
50 instances are solved within 3 seconds. On the other hand, with Formula-
tion 1, only 11 instances are solved under 3 seconds, 47 instances under 120
seconds, and all the instances under 230 seconds. As the running time varies
significantly for the different formulations, even for small instances, a time
limit of 2 minutes was set in order to test additional instances. Table 4.3 dis-
plays the number of instances that were solved within the time limit among
50 instances with K = 3 and n ∈ {40, 60, 80, 100}.

126

Figure 4.12: Comparison of running time for Formulations 1–4 when n = 40,
K = 3. The horizontal axis displays running times (in seconds) and the vertical
axis displays the number of instances with a running time smaller than a given
value.

Table 4.3: Comparison of formulations: number of instances solved within 2
minutes

n 40 60 80 100
Formulation 1 47 8 0 0
Formulation 2 50 50 25 0
Formulation 3 50 18 0 0
Formulation 4 50 50 49 47

Surprisingly, in spite of its weaker relaxation and of its larger size, Formula-
tion 2 often turns out to be more efficient than Formulation 3. This seems
to be at least partially due to the way Gurobi handles different types of
constraints. Indeed, when the preprocessing steps and the cut generation
parameters of the solver are disabled, the running times of Formulations 2
and 3 turn out to be worse, but very close to each other.

All in all, however, the results clearly suggest that, under our experimen-
tal setting, Formulation 4 is the most efficient one, certainly because it is
compact and has a relatively good LP relaxation. In fact, interestingly, the
quality of the relaxation does not seem to deteriorate when the size of the
instances increases. This claim is supported by the values of the integrality
gap Gap4LP reported in Table 4.4, where each line refers to 50 instances of a
given size (all these instances are solved to optimality within 10 minutes).

127

Table 4.4: Integrality gap for Formulation 4 (K = 3)

n mean Gap4LP min Gap4LP max Gap4LP
40 11.18 0.00 33.15
60 12.43 2.16 27.49
80 12.25 3.84 23.79
100 10.35 0.00 21.39

In view of these observations, we restrict our attention to Formulation 4
in the sequel. When K = 2, we will see in the next section that large
instances of the L-exchange problem can be solved rather easily. When
K = 3, however, the problem may become much harder. For example, when
n = 120, Gurobi solves Formulation 4 in 463 seconds on average and can
solve 41 of 50 instances in less than 10 minutes. When n = 130, the average
running time doubles (990 seconds) and only 19 instances are solved in less
than 10 minutes. Clearly, more work may be needed in the future to solve
large instances efficiently. But for now, we prefer to turn to a comparison
between stable and L-stable exchanges.

4.6.3 Comparison with stable exchanges

As underlined in Section 4.4, the maximum size of an L-stable exchange (or
an L-kernel) may potentially be (much) larger than the maximum size of a
stable exchange (or a kernel). In particular, nonempty L-stable exchanges
may exist even in situations where there is no stable exchange.

Moreover, Klimentova et al. (2023) have observed that, in spite of the theo-
retical complexity of the problem (see Biró and McDermid (2010) and Huang
(2010)), computing maximum stable exchanges is relatively easy in practice.
Within a time limit of 1 hour, they solve all instances with K = 2, all in-
stances up to n = 100 when K = 3, and all instances up to n = 50 when
K = 4 (on a relatively fast computer). By contrast, we are not aware of any
numerical work regarding the computation of L-stable exchanges.

We have therefore performed an experimental comparison of the solution of
instances of the maximum stable exchange problem and of the maximum
L-stable exchange problem using formulation (4.2)-(4.4) and formulation
(4.4), (4.11), (4.7) (Formulation 4), respectively, with the same objective
function (4.12).

Let us first briefly comment on the running time of the IP solver for each
problem. Figure 4.13 and Figure 4.14 display the performance profiles for
both problems on two sets of 50 instances with K = 3, n = 80 and n = 100
respectively. We see that the running time never exceeds 480 seconds, and
is actually much shorter for most instances. Moreover, there is no clear

128

dominance pattern regarding the practical difficulty of solving these two
models.

Figure 4.13: Running time for stable exchanges and L-stable exchanges, n = 80,
K = 3. The horizontal axis displays running times (in seconds) and the vertical
axis displays the number of instances with a running time smaller than a given
value.

Figure 4.14: Running time for stable exchanges and L-stable exchanges, n = 100,
K = 3. The horizontal axis displays running times (in seconds) and the vertical
axis displays the number of instances with a running time smaller than a given
value.

Let us next examine the features of the optimal solutions.

For K = 3, all the instances up to n = 180 have a stable exchange. Likewise
for all the instances up to n = 80 when K = 4. Moreover, for these instances,
the maximum size of a stable exchange and of an L-stable exchange is always
the same (in spite of Fact 4 and Example 6, which show that equality does
not hold in general).

129

By contrast, when K = 2, many instances in our dataset do not have a
stable exchange. Table 4.5 provides information about a collection of 600
instances with various values of n ranging between 50 and 400, with the same
notations as in Table 4.1. One can readily observe that for a fixed value of n,
the number of cycles in the compatibility digraphs can vary significantly, and
this translates into even more variance in the number of arcs in the blocking
digraphs.

Table 4.5: Size parameters of instances with K = 2

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗| min|A∗| max|A∗|
50 53 782 116 52 193 1394 316 2783
70 74 1522 217 143 348 3636 1693 7851
90 95 2520 365 220 577 7938 3661 16058
110 116 3736 544 337 838 14530 5378 26005
130 137 5183 749 479 1099 23487 10379 37859
150 158 6938 997 640 1337 35967 17765 52686
170 179 8892 1273 863 1676 51791 28275 75557
200 210 12104 1704 1255 2250 80657 49880 128648
250 263 19191 2718 1814 3582 162990 83531 251676
300 315 27554 3924 2686 5152 282393 145333 439438
350 368 37697 5361 4176 6890 451272 296268 677069
400 420 49019 6948 5557 8784 667607 467942 962287

Table 4.6 synthesizes some results of our computational experiments for the
600 instances mentioned above. Note that 72 of these instances do not
have a stable exchange. The left part of Table 4.6 refers to the maximum
stable exchange problem and the right part refers to the maximum L-stable
exchange problem. In detail, for each value of n:

• a and aL are the average optimal values for each problem; the averages
are computed over those instances which have a stable exchange or a
nonempty L-stable exchange, respectively;

• prep and prepL are the average times (in seconds) required to construct
the models;

• solve and solveL are the average times (in seconds) required to solve
the models;

• T and TL are the average total times (in seconds) required to handle
each problem; e.g., T = prep + solve;

• ϕ is the number of instances that do not have a stable exchange among
50 instances with the same value of n;

• ϕL is the number of instances that do not have a nonempty L-stable
exchange among 50 instances with the same value of n.

130

Table 4.6: Results for instances with K = 2

n a prep solve T ϕ aL prepL solveL TL ϕL

50 23.3 0.0 0.0 0.0 2 22.9 0.0 0.0 0.0 0
70 32.9 0.0 0.0 0.0 3 32.1 0.0 0.0 0.0 0
90 43.8 0.1 0.0 0.1 6 42.7 0.1 0.0 0.1 0
110 56.2 0.1 0.0 0.1 3 54.7 0.1 0.0 0.2 0
130 67.1 0.2 0.0 0.2 2 65.8 0.2 0.0 0.3 0
150 78.6 0.2 0.0 0.2 2 77.4 0.4 0.1 0.5 0
170 90.3 0.3 0.0 0.3 8 82.7 0.6 0.1 0.7 0
200 105.8 0.5 0.1 0.6 5 99.6 0.8 0.2 1.0 0
250 137.8 1.0 0.2 1.2 8 122.5 1.4 0.5 1.9 0
300 167.6 1.9 0.5 2.4 4 154.9 2.6 0.9 3.5 0
350 198.9 3.0 0.9 3.9 11 164.6 4.0 1.4 5.4 0
400 230.4 4.6 1.4 6.0 18 167.6 5.9 2.2 8.2 1

A few observations can be made from Table 4.6. First, the average running
times are extremely low. They appear to be a bit higher for the L-stable ex-
change problem, but the performance profiles show that no clear conclusion
can be drawn in this respect. (When K = 2, the stable exchange problem
is equivalent to the stable roommate problem with incomplete preferences,
which is polynomially solvable; Irving (1985). However, we have not ex-
ploited this property in our experiments.)

More interestingly, just as in the cases K = 3 and K = 4, none of the
random instances we tested for K = 2 has an L-stable exchange larger than
the maximum stable exchange, provided that there is a stable exchange (this,
in spite of Fact 4). However, among the 72 instances in Table 4.6 which do
not have a stable exchange, 71 have a nonempty L-stable exchange.

The average optimal values of the two problems differ, but one should re-
member that the averages are computed over those instances which have
a stable exchange or a nonempty L-stable exchange, respectively. So, the
differences are due solely to the instances that do not have a stable solution
but have a nonempty L-stable solution. The magnitude of the differences
indicates that for such instances, the size of the maximum L-stable exchange
is both significantly larger than zero, and significantly smaller than for the
instances which have a stable exchange. For example, when n = 200, the
average size of a stable exchange (if there is one) is 105.8, whereas the av-
erage size of a maximum L-stable exchange is 44.4 for the five remaining
instances. More generally, Table 4.7 displays information pertaining only
to those instances that have no stable exchange, but do have a nonempty
L-stable exchange. One can observe that the running times are close to the
ones presented in Table 4.6, which shows that the instances without stable
exchange are not particularly hard to solve in terms of running time.

131

Table 4.7: Results for instances with K = 2 having a nonempty L-stable exchange
and no stable exchange

n ϕ− ϕL aL prepL solveL TL

50 2 13.0 0.0 0.0 0.0
70 3 19.3 0.0 0.0 0.0
90 6 34.7 0.1 0.0 0.1
110 3 31.3 0.2 0.0 0.2
130 2 34.0 0.2 0.0 0.2
150 2 53.0 0.4 0.1 0.5
170 8 42.8 0.5 0.1 0.7
200 5 44.4 0.8 0.3 1.0
250 8 42.0 1.4 0.5 1.8
300 4 8.5 2.8 0.8 3.6
350 11 42.9 4.1 1.5 5.6
400 17 59.4 6.0 2.2 8.2

4.7 Local strong stability

4.7.1 Definitions

In Klimentova et al. (2023), the authors define another type of stability,
namely strong stability, that we now proceed to introduce by adapting the
definitions of Section 4.3.1.

Definition 19. Let M be an exchange, let u ∈ CK(G) \M be a cycle not
contained in M, and let i ∈ V (u).

We say that vertex i is indifferent between the cycle u and the exchange M
if i ∈ V (M), (k, i) ∈ A(u), (k′, i) ∈ A(M), and i is indifferent between k
and k′.

We say that i weakly prefers u to M if either i prefers u to M or i is
indifferent between u and M.

Definition 20. A weakly blocking cycle for an exchange M is a cycle u ∈
CK(G) \M such that

• each vertex in V (u) weakly prefers u to M, and

• if u intersects M, then at least one vertex i ∈ V (u) ∩ V (M) prefers u
to M.

When M = {v}, we simply say that u is weakly blocking for v.

Definition 21. An exchange M is strongly stable if there is no weakly
blocking cycle for M in CK(G).

132

Similarly to what we did in Section 4.3, we now propose a seemingly new
concept of locally weakly blocking cycles and locally strongly stable exchanges.

Definition 22. A locally weakly blocking cycle, or LW-blocking cycle, for an
exchange M is a weakly blocking cycle for M that intersects M. When
v ∈ CK(G), we denote by BW (v) the set of all LW-blocking cycles of the
exchange {v} (or for short, of the cycle v).

Note that for an exchange M, an L-blocking cycle is an LW-blocking cycle,
while the converse is not necessarily true. In particular, for a cycle v, B(v) ⊆
BW (v) but in general, B(v) ̸= BW (v).

Example 7. Consider again the digraph of Figure 4.4 with K = 3 and
exactly two cycles in CK(G), namely, v = (1, 2, 3, 1) and u = (2, 3, 4, 2). One
can check that BW (v) = {u}. Indeed, vertex 2 prefers its predecessor in u to
its predecessor in v, vertex 3 has the same predecessor in both cycles, and
vertex 4 is not in V (v). On the other hand, B(v) is empty since vertex 3
does not prefer u to v and hence, u is not L-blocking for v.

Definition 23. An exchange M is called locally strongly stable, or LS-stable,
if there is no LW-blocking cycle for M in CK(G).

Let us clarify the relations between the concepts introduced so far.

Theorem 35. Let M be an exchange and let v be a cycle not contained in
M.
(a) If v is blocking for M, then v is weakly blocking for M.
(b) If v is locally weakly blocking for M, then v is weakly blocking for M.
(c) If v is locally blocking for M, then v is both blocking and locally weakly
blocking for M.
(d) If M is strongly stable, then M is both stable and locally strongly stable.
(e) If M is stable, then M is locally stable.
(f) If M is locally strongly stable, then M is locally stable.

Proof. All implications directly follow from the definitions. In particular,
implication (d) follows from (a) and (b), implications (e) and (f) follow
from (c).

None of the implications can be reversed in Theorem 35. Moreover, stable
exchanges and locally strongly stable exchanges are, in general, unrelated.
These points are illustrated by the next example.

Example 8. The exchange {u4} in Example 2 is LS-stable, but not stable.
On the other hand, the exchange {v} in Example 7 is stable, but not LS-
stable (and hence, not strongly stable). The latter observation also clarifies
the fact that strong stability differs from stability even when the preference

133

relation between each vertex and its in-neighbors is strict (no indifference).

Finally, we need one last definition before we turn to alternative characteri-
zations of (local) strong stability.

Definition 24. Two cycles u and v are strong friends if they have a nonempty
intersection, if u is not LW-blocking for v, and v is not LW-blocking for u,
that is, if u /∈ BW (v) and v /∈ BW (u). We denote by FS(v) the set of strong
friends of a cycle v.

Clearly, u ∈ FS(v) if and only if v ∈ FS(u). Two cycles are strong friends
either when they share at least two vertices, one of which prefers v while
the other one prefers u, or when all vertices in V (u) ∩ V (v) are indifferent
between their respective predecessors in u and in v.

Example 9. Figure 4.15 illustrates both situations. For K = 4, cycles
u1 = (1, 2, 3, 4, 1) and v1 = (1, 3, 5, 6, 1) are strong friends since they share
vertices 1 and 3, and since 1 prefers v1 whereas 3 prefers u1. Moreover,
cycles u2 = (7, 8, 9, 7) and v2 = (8, 9, 10, 8) are strong friends since they
share vertices 8 and 9 and both vertices are indifferent between the two
cycles.

1

2 3

4 5

6

1

1

1

2

2
1

11

7

8

9

10

1
1

1

1

1

Figure 4.15: Illustration of cycles being strong friends

4.7.2 Characterizations and formulations

With the above definitions, most of the characterizations and formulations
obtained in previous sections for stable and L-stable exchanges can be adapted
in a rather straightforward way for strongly stable and LS-stable exchanges.
In particular, the statements of Lemma 1, Lemma 2, Theorem 28 and Theo-
rem 29 can be modified with B(v) replaced by BW (v) and F(v) replaced by
FS(v) for all v ∈ CK(G), as follows.

Lemma 3. Two cycles u, v intersect each other if and only if u ∈ BW (v) ∪
FS(v) or v ∈ BW (u) ∪ FS(u).

134

Lemma 4. Let M be an exchange and let v be a cycle not contained in M.
The following statements are equivalent:
(i) there exists w ∈ M such that w ∈ BW (v) ∪ FS(v);
(ii) v is not weakly blocking for M;
(iii) v intersects M and v is not locally weakly blocking for M.

Proof. (i) ⇒ (ii). Let w ∈ M. If w ∈ BW (v), then V (v)∩V (w) is not empty,
and at least one vertex in the intersection prefers w to v. It follows that v
is not blocking for M.

If w ∈ FS(v), then by definition, V (v)∩V (w) is not empty and v /∈ BW (w).
Hence, either there is a vertex in V (v)∩V (w) which prefers w to v, or every
vertex in V (v) ∩ V (w) is indifferent between v and w. So, once again, v is
not weakly blocking for M.

(ii) ⇒ (iii). Indeed, v is weakly blocking for M if and only if either V (v) ∩
V (M) = ∅ or v is locally weakly blocking for M.

(iii) ⇒ (i). If v intersects M, but v is not LW-blocking for M, then there
exists a cycle w ∈ M such that either some vertex in V (v) ∩ V (w) prefers
w to v, or every vertex in V (v) ∩ V (w) is indifferent between v and w. In
particular, v /∈ BW (w). But then, by Lemma 3, w ∈ BW (v) ∪ FS(v).

The next two theorems are now immediate consequences of Lemma 4.

Theorem 36. For an exchange M, the following conditions are equivalent:
(a) M is strongly stable;
(b) for each cycle v /∈ M, there exists w ∈ M such that w ∈ BW (v)∪FS(v).

Theorem 37. For an exchange M, the following conditions are equivalent:
(a) M is locally strongly stable;
(b) for each cycle v /∈ M, if v intersects M, then there exists w ∈ M such
that w ∈ BW (v) ∪ FS(v).

By analogy with Section 4.4, we introduce the weak blocking digraph G∗∗ =
(V ∗, A∗∗) associated with G, where

• V ∗ = CK(G);
• A∗∗ = {(v, w) : w ∈ BW (v) ∪ FS(v)}.

Theorem 38. For a digraph G and its weak blocking digraph G∗∗, the
strongly stable exchanges of G are exactly the kernels of G∗∗, and the lo-
cally strongly stable exchanges of G are exactly the L-kernels of G∗∗.

Proof. The statement follows from Theorem 36 and Theorem 37 (compare
with Theorem 30 and Theorem 31).

135

4.7.3 Numerical tests for LS-stable exchanges

This section presents the results of numerical experiments based on the fol-
lowing formulation of maximum LS-stable exchanges:

max
∑
v∈V ∗

|V (v)| yv (4.13)∑
v∈V ∗:i∈V (v)

yv ≤ 1 ∀i ∈ V (4.14)

∑
u:(u,v)∈A∗∗,(v,u)/∈A∗∗

yu ≤ ∆−(v)
∑

w:(v,w)∈A∗∗

yw ∀v ∈ V ∗ (4.15)

yv ∈ {0, 1} ∀v ∈ V ∗. (4.16)

where ∆−(v) := |{u : (u, v) ∈ A∗∗, (v, u) /∈ A∗∗}| (compare with δ−(v) in
constraints (4.11)).

Interestingly, and unlike the case of (local) stability, several instances do not
have a strongly stable exchange when K = 3 and K = 4, but many of those
instances do have a locally strongly stable exchange! For example, when
K = 3 and n ≤ 100, 35 instances (out of 450) do not have a strongly stable
exchange. Table 4.8 provides information about the associated graphs. The
notations are the same as in Table 4.5, and additionally:

• |A∗∗| is the average number of arcs in the weak blocking digraphs; the
next two columns, min|A∗∗| and max|A∗∗| show the minimum and the
maximum number of arcs in 50 weak blocking digraphs for each value
of n.

Table 4.8: Size parameters of instances of with K = 3

n |V | |A| |V ∗| min|V ∗| max|V ∗| |A∗∗| min|A∗∗| max|A∗∗|
20 21 118 64 5 178 1924 6 9078
30 32 285 233 45 580 16600 371 66787
40 42 472 452 27 1052 53767 109 186104
50 53 782 1013 330 2064 206148 22292 619907
60 63 1081 1484 521 3035 399117 50755 1167418
70 74 1522 2521 1055 4764 961696 208876 2584228
80 84 1930 3495 1790 6404 1686656 469639 4609734
90 95 2520 5409 2554 11527 3477577 1020955 11826362
100 105 3020 6895 3783 13587 5296861 1637136 15697727

Comparing Table 4.8 and Table 4.5, a first observation is that the average
number of cycles increases considerably when K goes from 2 to 3. For
example, when n = 90, |V ∗| goes up (on average) from 365 to 5409. But the
growth of |A∗∗| with respect to |A∗| is even more spectacular: when n = 90

136

and K = 2, the average value of |A∗| is 7938, whereas the average value of
|A∗∗| is almost 3.5× 106 when K = 3.

Table 4.9 displays some results of the computational experiments. The left
part of the table refers to the maximum strongly stable exchange problem
and the right part refers to the maximum LS-stable exchange problem. For
each value of n,

• aS and aLS are the average optimal values for each problem; the aver-
ages are computed over those instances which have strongly stable or
nonempty LS-stable exchanges, respectively;

• prepS and prepLS are the average times (in seconds) required to con-
struct the models;

• solveS and solveLS are the average time (in seconds) required to solve
the models;

• ϕS is the number of instances that do not have a strongly stable ex-
change among 50 instances with the same value of n;

• ϕLS is the number of instances that do not have a nonempty LS-stable
exchange among 50 instances with the same value of n.

Table 4.9: Results for instances with K = 3

n aS prepS solveS ϕS aLS prepLS solveLS ϕLS

20 8.4 0.0 0.0 2 8.3 0.0 0.0 1
30 14.4 0.1 0.0 1 14.4 0.1 0.0 0
40 19.2 0.2 0.0 3 18.0 0.3 0.1 0
50 25.1 0.8 0.3 4 23.0 1.2 0.4 0
60 29.9 1.4 0.7 4 28.4 2.5 1.0 1
70 36.4 3.5 3.9 3 35.1 6.1 2.5 1
80 41.1 5.7 14.8 9 36.1 11.4 5.9 1
90 49.1 11.8 41.9 5 43.8 23.5 14.9 3
100 53.9 18.8 84.3 4 51.3 38.4 22.1 1

For the instances that we considered, the average running time turns out
to be slightly higher for strongly stable exchanges than for locally strongly
stable exchanges. But a more interesting observation is that a significant
number of instances (35) do not have a strongly stable exchange, whereas
only 8 instances do not have a nonempty LS-stable exchange. For example,
when n = 80, ϕS = 9 instances (out of 50 tested) do not have any strongly
stable exchange, but only one of them does not have a nonempty LS-stable
exchange (ϕLS = 1). Table 4.10 shows the results obtained for the instances
which do not have a strongly stable exchange, but do have a nonempty LS-
stable exchange. Note for example that, when a strongly stable exchange
exists for the instances with n = 80, its average cardinality is aS = 41.1.
In contrast, for those 8 instances which have no strongly stable exchange,

137

but which have a nonempty LS-stable one, the average size of an optimal
LS-stable exchange is 14.6. In spite of this relatively small value, the average
size of a nonempty maximum LS-stable exchange over all 50 instances with
n = 80 is aLS = 36.1 (Table 4.9), not much smaller than aS . This suggests
once again that locally strongly stable exchanges may provide a meaningful
and fruitful alternative when stable exchanges do not exist.

Table 4.10: Results for instances with K = 3

n ϕS − ϕLS aLS prepLS solveLS
20 1 2.0 0.0 0.0
30 1 7.0 0.3 0.1
40 3 6.6 0.6 0.3
50 4 4.5 1.4 0.5
60 3 7.3 1.6 0.7
70 2 25.0 5.6 2.1
80 8 14.6 10.7 7.4
90 2 6.5 16.7 8.1
100 3 28.3 31.2 11.9

4.8 Kernels and L-kernels of random digraphs

The numerical tests conducted in previous sections consisted in computing
maximum kernels or local kernels in (weak) blocking digraphs associated
with kidney exchange compatibility digraphs. Since it appears that no nu-
merical results concerning L-kernels have been published in the past, we have
completed our experiments by computing maximum kernels and L-kernels of
randomly generated digraphs D = (W,E) using the kernel IP formulation

max
∑
v∈W

yv

yu + yv ≤ 1 ∀(u, v) ∈ E

1 ≤ yv +
∑

w:(v,w)∈E

yw ∀v ∈ W

yv ∈ {0, 1} ∀v ∈ W

138

and the L-kernel IP formulation

max
∑
v∈W

yv

yu + yv ≤ 1 ∀(u, v) ∈ E

yu ≤
∑

w:(v,w)∈E

yw ∀(u, v) ∈ E

yv ∈ {0, 1} ∀v ∈ W.

The digraphs D = (W,E) are characterized by their size |W | = n and
their density d; each arc (i, j), i ̸= j, is present in E with probability d
independently of the other arcs. Each line of Table 4.11 gives the following
information for 50 random instances with parameter valurs (d, n):

• a is the average size of the maximum kernel among the instances which
have a kernel;

• aL denotes the average size of the maximum L-kernel among the in-
stances which have a nonempty L-kernel;

• ϕ is the number of instances that do not have a kernel;
• ϕL is the number of instances that do not have a nonempty L-kernel.

Table 4.11: Kernel vs. local kernel

d n a ϕ aL ϕL

0.01 50 35.2 1 35.0 0
100 57.4 5 57.1 0
150 73.2 11 71.6 0
200 86.1 17 81.5 0
250 97.2 27 88.3 0

0.02 50 28.0 3 27.8 0
100 43,1 10 41.3 0
150 53.5 20 45.2 0
200 59.9 23 41.3 2
250 66.8 23 44.6 1

0.05 50 19.4 14 17.1 1
100 27.7 16 23.0 5
150 31.7 14 30.2 13

0.10 50 14.0 13 12.2 6
100 17.7 12 17.7 12
150 20.2 5 20.2 5

A few observations can be made. First, out of 500 instances with small
density (d = 0.01 or 0.02), only three do not have a nonempty L-kernel,
whereas 141 do not have a kernel. As the density increases, more instances
fail to have an L-kernel of size greater than zero.

139

Second, for a fixed number of vertices n, the size of the kernels and L-kernels
tends to decrease as the density of the digraphs increases. This may be simply
due to the independence constraints. (With regard to this observations, note
that the blocking digraphs G∗ considered in Section 4.6.3 have a rather small
density, whereas the weak blocking digraphs G∗∗ in Section 4.7.3 have a
higher one.)

Finally, as in previous experiments, the difference between the average opti-
mal values a and aL is explained by the instances that do not have a kernel
but have a nonempty L-kernel. This difference is relatively small, meaning
that the L-kernels, when they are not empty, are of comparable size with the
kernels, when the latter exist. Actually, in spite of Fact 4 and Example 6,
none of the random instances considered in Table 4.11 features a maximum
kernel of size, say, κ and a maximum L-kernel of size strictly larger than κ.
But a couple of such instances occurred in our experiments when d = 0.01
and n = 300 or n = 350.

4.9 Conclusions and perspectives

In this chapter, we have introduced a new concept of local stability for kidney
exchanges. We believe this concept to be quite natural in the KEP setting
but surprisingly, it has apparently not been investigated earlier. The concept
extends in a similar way to strongly stable exchanges.

We have also made explicit the link between (local) stable exchanges and
(local) kernels in an associated digraph. This leads to integer programming
formulations which can be optimized by a generic solver for graphs of mod-
erate sizes, in spite of the NP-hardness of (local) kernels. The experimental
results show that nonempty L-stable exchanges frequently exist in digraphs
which do not have a stable exchange.

Our contributions open various directions for future research. First, it would
be interesting to investigate the relevance of local stability and local kernels
for different classes of matching problems, beyond kidney exchanges. Next,
the complexity of computing maximum L-stable exchanges is currently open
(our complexity result only applies to L-kernels in arbitrary digraphs). Fi-
nally, even though local kernels have been previously considered in graph
theory, their properties have barely been investigated so far. A deeper un-
derstanding of these properties may be useful in order to efficiently compute
maximum L-kernels in large-size digraphs.

140

Chapter 5

Generation of delisting dates
for the simulation of

Eurotransplant’s allocation
mechanisms

The content of this chapter is based on joint work with Yves Crama and
Bart Smeulders. It has not been submitted for publication.

Contents
5.1 Introduction . 142
5.2 Context . 143
5.3 Generation of delisting dates 147

5.3.1 Definitions and notations 147
5.3.2 Kaplan-Meier method 148

5.4 Validation of the method 151
5.4.1 Independence . 151
5.4.2 Cumulative incidence function 154

5.5 Conclusion . 156

141

5.1 Introduction

Nowadays, patients with end-stage renal disease (ESRD) have several treat-
ment options: dialysis, or kidney transplant from a deceased donor, or kidney
transplant from a living donor.

The most common treatment for ESRD is dialysis, it is also the least pre-
ferred option for the patients and for the medical teams; it is costly, and the
time consumption of dialysis or the dietary restrictions for example deeply
impact the quality of life of the patient.

If a patient has the opportunity of receiving a transplant from a living donor,
such a transplant is the preferred treatment regarding the chance of success
and the comfort of life of the patients (Roth et al., 2004). Some problems
linked to that possibility of treatment have been studied theoretically in
previous chapters of this thesis when the ESRD patients have a willing donor
but the pair is medically incompatible.

A deceased donor kidney transplant occurs when a kidney from a person who
recently died is removed and transplanted into a patient, also named recip-
ient, whose kidneys are no longer functional. A human body can function
normally with only one healthy kidney; hence, a single deceased donor can
potentially generate two kidney transplants. This chapter will focus on this
kind of treatment and more precisely, on a European program allocating de-
ceased donor kidneys to a waiting list of patients under a specific mechanism,
that is, the so-called ETKAS mechanism of Eurotransplant.

In 2019, Eurotranplant initiated a research project with Bart Smeulders and
Frits C.R. Spieksma to simulate and to compare numerically the possible
outcomes of the ETKAS mechanism under alternative allocation rules. In
collaboration with Bart Smeulders, we contributed to one specific modeling
aspect of this project. Namely, when given the actual waiting list of patients
recorded by Eurotransplant during a period of time, some data required
to conduct the simulation was missing: for those patients who had been
transplanted under the ETKAS mechanism, the total time during which they
would have remained in an appropriate medical condition to be transplanted
(had they not been transplanted already) was unknown. Indeed, in the
absence of a transplantation, these patients would not have remained forever
on the waiting list: at some point, the evolution of their medical condition
or their death would have made them leave the waiting list.

We contributed to the simulation of the missing data. The current chap-
ter provides an account of this work, as well as an attempt to validate the
choice of the model adopted in the simulation. Section 5.2 briefly introduces
Eurotransplant, the 2019 version of ETKAS, the second simulated mecha-
nism, and the outline of the simulation conducted. Section 5.3 describes

142

the simulation of the missing data using survival analysis and the Kaplan-
Meier method, and Section 5.4 provides some insights into the validity of the
method.

5.2 Context

Transplantation treatments are often managed by programs, especially de-
ceased donor’ transplantation. Each program has its own ethical and le-
gal regulations. In Europe, national and international programs such as
Scandiatransplant or Eurotransplant (ET) exist. Eurotransplant is an in-
ternational non-profit European organization founded in 1967 to coordinate
organ transplantations. Currently, 8 countries constitute the Eurotransplant
network: Austria, Belgium, Croatia, Germany, Hungary, Luxembourg, the
Netherlands, and Slovenia. ET manages transplants of hearts, lungs, kid-
neys, livers, pancreas, from deceased donors but also from living donors. For
example, in 2019, 6060 transplants from a deceased donor were coordinated
by Eurotransplant, and 1300 transplants from living donors. Most of the
transplants from deceased donors are kidney transplants as shown in Figure
5.1 below (source: https://statistics.eurotransplant.org/ on November, 2nd
2022) :

statistics.eurotransplant.org : 2237P_All ET : 25.05.2022

Transplants (deceased donor) in Eurotransplant, by year, by organ

Figure 5.1: Transplants (deceased donor) in Eurotransplant, by year, by organ

143

Currently, when a kidney donor is available in the ET program, various kid-
ney allocation mechanisms are employed depending on donor characteristics
and on the needs of prioritized patient groups:

• The Eurotransplant Senior Program (ESP) allocates kidneys from
donors over the age of 65 to patients in the same age group.

• The Acceptable Mismatch (AM) mechanism serves patients who are
incompatible with the vast majority of donors and thus receive priority
for the compatible kidneys.

• The Eurotransplant Kidney Allocation System (ETKAS) serves
all the others.

As explained in the introduction, our focus is on the ETKAS program.
ETKAS was introduced in 1996 and is a point-based allocation system. Two-
thirds of the kidneys handled by ET are allocated by ETKAS.

Since their introduction in 1996, the ETKAS allocation rules have been
modified due to new insights, changes in the availability of organs, and the
behavior of patients. In 2019, the ETKAS allocation system, to be called
Current ETKAS, was the same as today. It can be described as follows.

When a new donor becomes available, a tiered system prioritizing certain pa-
tients based on donor criteria is established. The tiers are as follows: patients
perfectly compatible with the donor first (Tier 1); then if the donor age is
less than 16, pediatric patients (Tier 2); and finally, the other patients (Tier
3). Within each tier, given the donor characteristics and the patient charac-
teristics, points are allocated to each patient under certain criteria (identical
for each tier). Then, the donor’s kidneys are allocated to the patients with
the largest number of points. The reader can find the detailed criteria in the
Eurotransplant Manual available online (Eurotransplant (2023)).

In 2019, an alternative kidney allocation mechanism, to be called New ETKAS,
was under consideration by the Eurotransplant kidney advisory committee.
This new allocation mechanism would not be point-based but instead would
rank recipients based on a number of criteria. The ranking criteria proposed
for New ETKAS can be found in de Ferrante et al. (2019).

In order to test the effectiveness of the allocation system New ETKAS and
to compare the results with those of the current ETKAS allocation system,
simulations were conducted as described in de Ferrante et al. (2019).

Each simulation consists of two stages.

1. In the first stage, a waiting list of patients is constructed, and for
each patient, a delisting date is randomly generated: it is the date at
which the patient will leave the waiting list if he is not transplanted

144

in the simulated system. Note indeed that for patients who received a
transplant in real life, the amount of time during which they would have
remained eligible for a transplant is unknown and must be simulated.
This is necessary to reflect the fact that at some point in time, their
health condition does not allow them any longer to receive a transplant
and they must leave the waiting list. If a delisting date is not generated
for these patients, the waiting list will grow much bigger than what is
observed in reality.

Patient data covers recipients on the waiting list at the start of the
simulation, as well as patients arriving during the simulated period. A
small number of recipients with incomplete data are removed. In total,
56,172 unique patients are used in the simulation.

Enlisting date Real-life transplantation date Delisting date ?

The reader will find more details about the simulation of the delisting
dates in Section 5.3.

2. In the second stage, the deceased donor kidney program is simulated
both under the Current ETKAS allocation scheme and under the New
ETKAS allocation scheme. The simulation period starts on November
1, 2004, and runs until June 2, 2016 (4,232 days). The inputs are:

• The allocation scheme under consideration
• A list L of all 56,172 recipients in the historical data during the

simulation period,
• A list P of all donors observed since May 27, 2013 (the day Hun-

gary joined Eurotransplant). It contains 9,609 donors.
• The real-life time points of a donor arrival during the simula-

tion period. In total, there are 23,454 donor arrival time points
between November 1, 2004, and June 2, 2016.

At each time point t corresponding to a real-life arrival of a donor, the
simulation performs the following steps (as illustrated in Figure 5.2):

(a) Let Lt be the waiting list of recipients at the given time point
t. For all patients in L, a patient is on Lt if their arrival date is
earlier or equal to t and if their delisting date (possibly simulated,
see Section 5.3) is after t.

(b) Draw a donor randomly from the donors list P .

(c) Allocate the donor’s kidney(s) to patient(s) on Lt according to
the allocation scheme under consideration.

145

(d) Simulate the outcome: a transplantation might fail and in this
case, the patient is not removed from L. Otherwise, the patient
is removed from L.

(e) Update the simulation data.

In total, for the 23,454 donor arrivals, nearly 39,000 kidneys are drawn
from the donors pool and are allocated in each simulation.

(a)
Construct Lt

(The waiting list at the given time t)

For each patient on L, if their arrival date is before t and delisting date after t,
add the patient to Lt

(b)
Draw a donor randomly from the donors list P

(without removing that donor from the list)

(c)
Allocate the donor’s kidney(s) to patient(s) on Lt

(according to the allocation scheme under consideration)

(d)
Simulate the outcome(s)

⋄ If the transplantation fails, the patient is not removed from L
⋄ If the transplantation succeeds, the patient is removed from L

(e)
Update the simulation data

If the simulation period is over, stop the simulation.
Otherwise, move to the next time point and go back to (a).

Figure 5.2: Visualization of the second stage of the simulation

Both for Current ETKAS and for New ETKAS, the simulation was run 10

146

times. Computation times were around 1 hour per run. Note that due to the
complexity of the real-life system, not all aspects of the allocation process
were simulated. The focus of this chapter is on the first stage. More details
about the second stage of the simulation and the results are contained in
de Ferrante et al. (2019).

5.3 Generation of delisting dates

5.3.1 Definitions and notations

The question of interest in this chapter concerns the first stage described
above, whereby we must construct a waiting list of recipients and generate
their delisting dates in case no transplantation takes place during the simu-
lation. For the sake of clarity and of brevity, when we speak of delisting in
the sequel, we always means delisting without transplantation.

In order to generate delisting dates, we relied on estimates of survival func-
tions. By definition, for a subject and a random event of interest (e.g., the
removal of the subject from a waiting list), the survival function S∗(t)
represents the probability that the time elapsed between the start of the ob-
servation of the subject until the realization of the event of interest exceeds
t units of time. Given a sample of observations collected over a period of
time, a main challenge is to compute a good estimate of S∗(t). We gener-
ically denote such an estimate by S(t) in the sequel, and with some abuse
of terminology, call it again survival function, or survival curve. The task of
computing S(t) is complicated by the fact that some of the subjects in the
sample might have been lost during the period of observation, or have not
experienced the event of interest by the end of the period. Such subjects are
called censored. Even though there is no information about the exact time
of the event of interest for censored subjects, they still bring some partial
information regarding the survival probabilities. Indeed, we know that the
event of interest did not occur during their individual observation period,
and this information can be integrated into the estimation of the survival
function. (Note that in the study of the ETKAS system, the number of trans-
planted patients is much larger than the number of patients delisted without
a transplant: 35,625 transplanted patients vs. 4,011 delisted patients, re-
spectively. This means that much of the information about delisting dates
is actually censored.)

In the context of our problem:

⋄ The observed sample consists of the patients who have entered the
ETKAS real-life waiting list between November 1, 2004 and June 2,
2016.

⋄ The unit of time is one day.

147

⋄ The start of the observation period of each subject is the day
of the first dialysis. Indeed, medical teams have different strategies
for deceased donor transplants. Because the wait for a kidney can be
very long (it can take years), some teams decide to put a patient on
the waiting list early, before the patient’s condition actually requires a
transplant, while other teams put the patient on the waiting list only
when the patient’s kidneys are no longer functioning and transplanta-
tion is required. Thus the date of the first dialysis is a better point of
comparison than the date of entry on the waiting list. Note however
that some recipients do not have a recorded first day of dialysis. For
this small subset of patients, the first date of observation was taken to
be the date of entry on the waiting list.

⋄ The event of interest is the delisting of a patient. That is, the
removal of the patient from the ETKAS waiting list without trans-
plantation.

⋄ Censored subjects are the patients who received a transplant in
real life or patients still on the ETKAS waiting list at the end of the
observation period.

In view of the above definitions, S∗(t) is the probability that a patient will not
be delisted within t days after their first date of observation or equivalently,
that the patient will still be on the waiting list and eligible for transplantation
t days after their first date of observation.

5.3.2 Kaplan-Meier method

There are several ways to estimate survival functions and more generally
to conduct a survival analysis, some methods being parametric, some non-
parametric and some semi-parametric. In our case, as the data regarding the
patients on the waiting list was not complete, we decided to use the Kaplan-
Meier estimate, a non-parametric method (Kaplan and Meier, 1958). The
data available for each patient are: identifier number on the waiting list,
birth date, date of entry on the waiting list, date of the first dialysis, status
under the current allocation mechanisms at the end of the observation pe-
riod, date of exit (for the transplanted and delisted patients), country, blood
type, and HLA. The Kaplan-Meier method is often cited as the simplest
way of computing survival probabilities over time in spite of the difficulties
associated with subjects or situations (Kaplan and Meier, 1958; Clark et al.,
2003). It is also the most used method for survival analysis. However, the
method has its drawbacks as explained in Section 5.4 and must be used
cautiously. Survival analysis is often used for statistical analysis of medical
studies (Jason T. Rich et al., 2010; Jager et al., 2008; Clark et al., 2003),
rarely for simulation of missing data. The following section explains how we
computed survival curves using the Kaplan-Meier estimate in the context of

148

our problem. Then Section 5.4 provides some insight into the validity of the
method.

In real life, at the end of the observation period under the current ETKAS
allocation mechanisms, some of the patients have been transplanted, others
have been delisted, and some are still on the waiting list. We denote these
three possible statuses as:

• T: transplanted;
• D: delisted;
• W: still on the waiting list at the end of the period.

In order to build survival functions using the Kaplan-Meier method, we com-
pute for all patients the duration (in days) between their first day of dialysis
and either the date they left the waiting list (regardless of the reason why
they left), or the end of the observation period for those patients who did
not exit the waiting list.

First dialysis day Transplantation date

First dialysis day Delisting date

First dialysis day End of the observation period
(June 2, 2016)

Next, for each day t, Dt and Nt are computed, where:

• Dt is the number of patients with status D who remained exactly t
days on the waiting list. That is, the number of patients who were on
the waiting list for exactly t days and then left the waiting list without
a transplant.

• Nt is the number of patients who were on the waiting list t days or
more regardless of their status.

Then, an estimator S(t) of the survival function is computed in the following
way (Kaplan and Meier, 1958): for each t, S(t) is equal to the estimated
fraction of patients who are not delisted after t − 1 days multiplied by the
fraction of patients on the waiting list at period t who are not delisted at
time t. This leads to the following expression:

S(t) = S(t− 1)×
(
1− Dt

Nt

)
.

An example of a survival curve looks as in Figure 5.3

149

Figure 5.3: Representation of a survival curve

Using the estimated probabilities S(t), delisting dates are then generated
based on a draw from the resulting survival curve, under the restriction that
all delisting dates must be later than the real-life transplant time.

The idea is the following: for a patient who has been transplanted after T
days in the real-life data set, draw a random number u uniformly between
0 and S(T), and determine t such that u = S(t). Then, we will use t as
the maximum time spent on the waiting list for the patient in the simulation
(starting at the first day of dialysis), i.e., the delisting date of the patient will
be the date of their first dialysis plus t days. If the patient does not receive
a deceased donor kidney in the simulation during the t days after their first
day of dialysis, he will be removed from the waiting list. Note that since the
simulated delisting date results from a random draw, the delisting date of a
given patient will be different in each simulation run.

Example. If a patient in the data set has been transplanted in real-life 2200
days after their first day of dialysis, a delisting date should be drawn for the
simulation. Based on the survival curve, let’s assume that the probability of
a duration T = 2200 is equal to 0.90, i.e., S(2200) = 0.9. Then, a number
u between 0 and 0.90 is drawn randomly: for example u = 0.40. Using the
survival curve again, the duration t corresponding to S(t) = u = 0.4 can be
found, here t = 6300 days. Then, the delisting date for that patient in the
simulation will be the date of first dialysis plus 6300 days. See Figure 5.4

We noticed some differences in the survival curves for different age groups.
Hence, we decided to group the patients into four age categories: 0-15 ,
16-54 , 55-64 and 65+, based on age at the date of first dialysis (see also
Section 5.4.1). Moreover, as explained earlier, some patients do not have a
first day of dialysis. So, 8 survival curves have been generated:

150

Figure 5.4: Example of simulation of a delisting date

• 4 curves for patients who have a first day of dialysis date, one for each
age group,

• 4 curves for patients who do not have a first day of dialysis, one for
each age group as well.

At the end of the first step of the simulation, when a delisting date must be
simulated for a patient who received a real-life transplant, their simulated
delisting date in the absence of any transplant during the simulation will be
generated based on the curve corresponding to their age category and on
whether he has been on dialysis or not.

5.4 Validation of the method

In de Ferrante et al. (2019), to assess whether the simulation as a whole
adequately reflects the observed outcomes, the authors compared the pro-
portion of transplantations per category of compatibility donor/patient in
the real data and in the Current ETKAS simulation outputs. These com-
parisons led to the validation of the simulation. However, the simulation of
the delisting dates for real-life transplanted patients has not been validated
by itself. The goal of this section is to gain some insights into the validity of
the Kaplan-Meier method in the context of the ETKAS study.

5.4.1 Independence

In Kaplan and Meier (1958), the authors state that in order to use their
estimate, the population studied must satisfy an independence assumption.
In our context, the independence assumption would require that the patients
who are transplanted must have the same survival probability distribution
as those who are delisted. This assumption seems counter-intuitive in the
case of allocation mechanisms. Indeed, it would mean that the allocation

151

mechanism can be compared to allocating the kidneys randomly. However,
the independence assumption is hard to verify in practice as pointed out, e.g.,
in Jager et al. (2008); Jackson et al. (2014). A lack of data prevents testing
accurately the dependence or independence between the sets of patients or
prevents from performing the same kind of analysis as Ruth et al. (2022).
(The latter develop a Kaplan-Meier type estimate which can incorporate
time-dependent characteristics of the patients and avoid the bias from having
dependent censoring and lifetimes.) As a consequence, in the literature, the
independence assumption is rarely tested (see, e.g., Jager et al. (2008)).

Still, some simple statistical tests can be performed to clarify the relationship
between the populations of delisted and transplanted patients.

χ2-tests

In order to have a first insight into the relation between delisted patients (D)
and transplanted patients (T), two χ2-tests of independence were performed.
As a reminder, given two discrete variables X, Y and a contingency table
of (X,Y) for a sample of the population, a χ2-test of independence can be
used to verify the hypothesis H0 that X and Y are independent. In our
context, for both tests, the first variable X is defined as the status of exit of
the patient (delisted or transplanted). The second variable Y is different in
each test.

1. Test 1: Y 1 := age category.
The age category of a patient is determined on the day of their first
dialysis. If the patient has never been on dialysis, their age category
is determined on their date of entry in the waiting list.
H0 : X and Y 1 are independent.
H1 : X and Y 1 are not independent.

Table 5.1: Contingency table of X := status of exit and Y 1 := age category

0-15 16-54 55-64 65+
T 1207 20763 9026 4629
D 17 2084 1441 469

The χ2-test clearly rejects the hypothesis H0 at a significance level of
5% as χ2

obs = 285.44 > χ2
((2−1)∗(4−1);0.95) = 7.82, and p < 2.2 10−16. In

addition to the contingency Table 5.1, we also display in Figure 5.5 the
proportion of delisted and transplanted patients for each age category.
The proportions of T- and D-patients in each category clearly vary a
lot from one category to the other. These results support the argument
for separating survival curves according to age category, as mentioned
at the end of Section 5.3.2.

152

Figure 5.5: Proportion of transplanted (T) and delisted patients (D) in each age
category.

2. Test 2: Y 2 := country of origin.
H0 : X and Y 2 are independent.
H1 : X and Y 2 are not independent.

Table 5.2: Contingency table of X := status of exit and Y 2 := country

Austria Belgium Croatia Germany Hungary Netherlands Slovenia
T 3547 4584 1562 20268 666 4455 543
D 345 245 73 2830 54 442 22

The χ2-test also rejects the hypothesis of independence at a significance
level of 5% as χ2

obs = 350.85 > χ2
((2−1)∗(7−1);0.95) = 12.59, and p <

2.2 10−16. Figure 5.6 below displays the proportion of T- and D-
patients in each country. Germany seems to play a big role in the
rejection of independence. These results could also allow to distinguish
survival curves according to countries (additionally to age categories).
However, this would have led to many curves and smaller populations
to estimate each of the curves. Hence, it has not been done.

Student t-tests

As the first χ2-test rejected the hypothesis that the exit status of a patient
and their age category are independent, additional tests were performed as
follows. Let m1 be the mean age at which the transplanted patients arrive on
the waiting list, and let m2 be the mean age at which the patients who are

153

Figure 5.6: Proportion of transplanted (T) and delisted patients (D) in each
country member of ET.

eventually delisted arrive on the waiting list. We used Student t-tests to test
in each age category the null hypothesis H0 : m1 = m2 vs. H1 : m1 ̸= m2.

Table 5.3: tobs values in each age category

tobs p

0-15 2.1168 0.034
16-54 -19.6013 < 10−5

55-64 9.4673 < 10−5

65+ 0.846 0.397

As shown in Table 5.3, the t-test rejects the hypothesis H0 at a significance
level of 5% as |tobs| > |t0.05| = 1.96 and p < 0.05 for the age categories 0-15,
16-54, and 55-64, whereas the hypothesis H0 cannot be rejected for the age
category 65+. These results suggest that even when we separate the patients
depending on their age category, the group of transplanted patients and the
group of delisted patients are structurally different.

As mentioned before, it is very complicated to test rigorously the indepen-
dence assumption of the Kaplan-Meier method. The simple tests that we
performed, however, tend to indicate that some basic assumptions of the
method are not satisfied in this study.

5.4.2 Cumulative incidence function

Another known difficulty regarding the Kaplan-Meier method, as raised in
Lacny et al. (2018); Ruth et al. (2022), is that it might over- or underestimate
the survival curves, especially in a medical context.

154

While S∗(t), the survival function, expresses the probability that a patient
will still be on the waiting list t days after their first day of dialysis, the
failure function F ∗(t) = 1− S∗(t) expresses the probability that a patient
will be delisted (without a transplant) less than t days after their first day
of dialysis.

In Lacny et al. (2018), the authors suggest that the Kaplan-Meier method
overestimates the failure function of an event when compared with the cumu-
lative incidence function (CIF), an alternative estimate which considers
so-called competing risks. A competing risk precludes and alters the prob-
ability of the event of interest. However, the Kaplan-Meier method treats
competing risks as censored observations and assumes that subjects who ex-
perience a competing risk have a similar chance of experiencing the event of
interest as those lost to follow-up and, therefore, theoretically overestimates
F ∗(t) (Lacny et al., 2018) (or equivalently, underestimate the survival curve
S∗(t)).

In our settings, receiving a kidney transplant clearly precludes experiencing
the event of interest, i.e., being delisted, and thus can be considered as a
competing risk. Hence, we decided to compare the Kaplan-Meier estimate
of the failure function, that is, FKM (t) = 1− S(t), with the estimate of the
cumulative incidence function, where the event of interest still is the delisting
of the patient as in the Kaplan-Meier method, but where we consider the
event of receiving a transplant as a competing risk.

We computed the following estimate of the cumulative incidence function
(CIF) FCIF (t) (Lacny et al., 2018) (Appendix A):

FCIF (t) =
∑
s≤t

(
Ds

Ns
. E(s− 1)

)
where:

• Ds is the number of subjects that experience the event of interest at
time s;

• Ns is the number of patients who were on the waiting list s days or
more regardless of their status.

• E(s) is the "event-free" survival probability, that is the probability of
experiencing neither the event of interest nor the competing risk before
time s. It is estimated as:

E(t) =
∏
s≤t

(
1− Ds +Rs

Ns

)
where Rs is the number of subjects that experience the competing risk

155

at time s, i.e., the number of patients who remain on the waiting list
for exactly s days and then leave it because they received a transplant.

Surprisingly, unlike the results in Lacny et al. (2018), given the same popu-
lation, the two curves are almost identical, as illustrated in Figure 5.7.

Figure 5.7: Comparison of the failure probabilities using the Kaplan-Meier and
cumulative incidence estimates. The horizontal axis displays the time unit (in days)
and the vertical axis displays probabilities.

This result means that even though we are clearly in a setting where at
least one competing risk is present, and despite the results in Lacny et al.
(2018), the Kaplan-Meier method and the CIF method seem to estimate
very similar values of the failure probabilities. (Note that the probabilities
are not exactly equal, they differ very slightly. However, the difference is too
small to be noticeable in the figures.) Since S(t) = 1−F (t), this also means
that both methods evaluate the survival probabilities almost identically; see
Figure 5.8.

Although this observation does not validate the Kaplan-Meier method, it
does provide reassurance that even with unverified assumptions for the Kaplan-
Meier method, a different method produces nearly identical estimates of sur-
vival probabilities.

5.5 Conclusion

As mentioned in the literature, the Kaplan-Meier estimate of survival curves
has advantages and drawbacks. Its principal advantage is its simplicity and
easiness of computation, and the fact that it can be applied even with poor
data. However, a main drawback is the assumption of independence be-
tween the time to delisting and the time to transplantation. We compared

156

Figure 5.8: Comparison of the survival curve using the Kaplan-Meier estimate
and the survival curve using the cumulative incidence estimate. The horizontal axis
displays the time unit (in days) and the vertical axis displays probabilities.

the Kaplan-Meier estimate of failure probabilities with the estimate provided
by the cumulative incidence function, and they output almost the exact same
curves. As this survival analysis was included in a more substantial project,
the exactness of the method used to generate delisting dates for transplanted
patients under the current ETKAS allocation mechanism during the observa-
tion period may not have impacted the conclusions as a whole. Nevertheless,
further research would be needed to better understand what method should
be used to estimate survival curves in view of the available data.

157

158

Chapter 6

Conclusion

This dissertation delves into the topic of kidney transplantation and inves-
tigates three subjects related to the efficient operations of transplantation
programs. Each of the core chapters includes a concluding section that is
directly related to its subject matter. This final chapter recalls some of
the earlier conclusions, but also provides a more general perspective on the
contents covered in the dissertation.

As explained in Chapter 1, kidney transplantation can take place in two very
different settings, depending on whether a kidney is transplanted from a liv-
ing donor or from a deceased donor. The dissertation covers topics related
to both situations, with a main emphasis on living-donor transplantation
through exchanges. The opportunities offered by such kidney exchanges
have been first underlined in the literature by Rapaport (1986). Roth et al.
(2004) were first to investigate the underlying combinatorial optimization
problems, and in particular the kidney exchange program (KEP) problem
that arises when several patients are associated with willing living donors
who are medically incompatible with them. During the following years,
many other interesting papers have been published regarding formulations
of the KEP problem, but also complexity results and proposals for opti-
mization methods. Moreover, in recent years, the focus of the literature has
shifted towards variants of the original problem. This trend is reflected in
the dissertation.

Chapter 2 and Chapter 3 study cycle selections and the maximum-weighted
cycle selection problem. This work was initially motivated by the connec-
tions between the cycle selection problem and the stochastic two-stage KEP
(RR-2-KEP) problem of Smeulders et al. (2022), and it turned out to be
fruitful in itself. Chapter 2 investigates several properties of the cycle se-
lection problem, such as its computational complexity, the relative strength

159

of several IP formulations, and a polyhedral study of the cycle polytope as-
sociated with one of the formulations. Chapter 3 provides an experimental
comparison of the IP formulations and applies the available knowledge about
these formulations to the stochastic two-stage KEP problem. The numeri-
cal results show that while some formulations of the cycle selection problem
can be used to solve it rather easily (at least, for the classes of instances
that we considered), the impact of the same formulations on the solution
of the RR-2-KEP problem is rather limited. The ARC formulation did not
lead to an efficient solution of the stochastic RR-2-KEP problem, in spite
of the theoretical study conducted in Chapter 2 and of several algorithmic
enhancements of the basic Benders procedure. On the other hand, the SEA
formulation emerged as an efficient one, with similar running times as those
obtained by the methods tested in Smeulders et al. (2022). Future work may
provide a better understanding of the polyhedral structure of the SEA for-
mulation and may further improve the solution of the cycle selection problem
and of the RR-2-KEP problem.

Chapter 4 focuses on the seemingly new concept of locally stable exchanges
in compatibility digraphs with preferences. It is motivated by the assump-
tion that the medical teams involved in a kidney exchange program may be
reluctant to reject a cycle which happens to be blocked by patient-donor
pairs not involved in the cycle (as may be the case when they insist that
only stable exchanges should be selected). The chapter establishes a one-
to-one correspondence between locally stable exchanges and local kernels of
an associated digraph. Whereas local kernels have been introduced earlier
by graph theorists, local stability has apparently not be studied despite the
large amount of literature investigating stability in matching problems with
preferences. We provide IP formulations describing locally stable exchanges
and numerical results assessing the efficiency of the formulations. We also
compare our numerical results regarding locally stable exchanges with those
of Klimentova et al. (2023) about stable exchanges. The experiments high-
light the observation that some KEP compatibility digraphs have a local
stable exchange of cardinality greater than zero even though they have no
stable exchange. More generally, they show that the maximum size of a
locally stable exchange can be strictly greater than the maximum size of a
stable exchange. These results underline the potential relevance of locally
stable exchanges for kidney exchange programs. From a more theoretical
perspective, the new concept of local stability raises several open questions
and topics not treated in the chapter, such as the complexity of computing
a maximum locally stable exchange or the structure of the digraphs having
a locally stable exchange of cardinality greater than zero but no stable ex-
change. We also note that the concept of local stability (Chapter 4) may
potentially find applications in areas unrelated to kidney exchange programs.

160

Chapter 5 discusses modeling questions related to the operations of the Eu-
rotransplant deceased donor transplantation program. When a deceased
donor’s kidney becomes available, the transplantation program must decide,
under some regulation and rules, which patient on the waiting list will be
selected to receive the kidney. The ETKAS mechanism is the specific set
of allocation rules followed by Eurotransplant. In Chapter 5, we question
the validity of certain statistical models used to simulate a modified ver-
sion of the current ETKAS mechanism. The observations formulated in this
chapter may be useful for improving future modeling exercises of the same
nature. Although the simulated mechanism was ultimately not adopted by
Eurotransplant, the simulation model allowed us to gain valuable insights
into the allocation process.

From a personal point of view, from day one, I truly loved the general topic
of this thesis, that is, kidney transplantation and the complex operational
questions faced by the managers of large transplantation programs. I also
appreciated the various ways in which the subject could be approached and
the different perspectives from which it could be studied. The problems
discussed in the first chapters are initially handled from a mathematical per-
spective, but as the chapters unfold, they get closer to models of real-life
situations: Chapter 2, on cycle selections, is purely mathematical, whereas
Chapter 3 deals with numerical experiments on stochastic kidney exchange
models. Chapter 4 attempts to capture some important features of real-life
KEP problems, where not all donors compatible with a given patient are
considered equal from the point of view of the medical team. It appears
that solving the KEP problem by incorporating preferences can be a very
relevant approach when running KEPs. Even though our approach is still
mathematical and theoretical, its application to real-world programs seems
potentially feasible and could deliver interesting insights. Finally, Chapter 5
dives even deeper into the reality of kidney transplantation programs, as it
deals with a commonly used allocation mechanism for deceased donor kid-
neys and it involves models built on real-world historical data. Working on
this project raised my awareness of how many details have to be taken into
account to simulate accurately a rather simple list of rules and how real-
life data should be managed to be used in a simulation process. While this
chapter was not the primary focus of the thesis, it helped deepen my under-
standing of the operations process of a real-world transplantation program,
as it relied on contacts with a medical team, and it made me appreciate how
real-life situations can differ from the stylized assumptions of the scientific
literature.

161

162

Bibliography

Abraham, D., Blum, A., and Sandholm, T. (2007). Clearing algorithms
for barter exchange markets: Enabling nationwide kidney exchanges. In
Proceedings of the 8th ACM Conference on Electronic Commerce, pages
295–304, New York. ACM.

Aharoni, R. and Holzman, R. (1998). Fractional kernels in digraphs. Journal
of Combinatorial Theory Series B, 73(1):1–6.

Ashlagi, I. and Roth, A. E. (2021). Kidney exchange: an operations per-
spective. Management Science, 67(9):5455–5478.

Balas, E. and Oosten, M. (2000). On the cycle polytope of a directed graph.
Networks, 36(1):34,46.

Balas, E. and Rüdiger, S. (2009). On the cycle polytope of a directed graph
and its relaxations. Networks, 54(1):47,55.

Bang-Jensen, J. and Gutin, G. Z. (2009). Digraphs: Theory, Algorithms and
Applications. Springer Monographs in Mathematics. Springer, London,
second edition.

Baratto, M. and Crama, Y. (2023). Cycle selections. Discrete Applied Math-
ematics, 335:4–24.

Baratto, M., Crama, Y., Pedroso, J. P., and Viana, A. (15 May 2023). Local
stability in kidney exchange programs. Working paper, University of Liège.

Bauer, P. (1997). The circuit polytope: Facets. Mathematics of Operations
Research, 22(1):110–145.

Bauer, P., Linderoth, J. T., and Savelsbergh, M. W. P. (2002). A branch and
cut approach to the cardinality constrained circuit problem. Mathematical
Programming, 91:307–348.

Ben-Ameur, W. and Neto, J. (2007). Acceleration of cutting-plane and col-
umn generation algorithms: Applications to network design. Networks,
49(1):3–17.

163

Biró, P., Haase-Kromwijk, B., Andersson, T., Ásgeirsson, E. I., Baltesová,
T., Boletis, I., Bolotinha, C., Bond, G., Böhmig, G., Burnapp, L., et al.
(2019). Building kidney exchange programmes in Europe: an overview of
exchange practice and activities. Transplantation, 103(7):1514.

Biró, P., Van de Klundert, J., Manlove, D., Pettersson, W., Andersson, T.,
Burnapp, L., Chromy, P., Delgado, P., Dworczak, P., Haase, B., et al.
(2021). Modelling and optimisation in European kidney exchange pro-
grammes. European Journal of Operational Research, 291(2):447–456.

Biró, P. and McDermid, E. (2010). Three-sided stable matchings with cyclic
preferences. Algorithmica, 58:5–18.

Boros, E. and Gurvich, V. (2006). Perfect graphs, kernels, and cores of
cooperative games. Discrete Mathematics, 306(19):2336–2354.

Chen, Q., Chen, X., and Zang, W. (2016). A polyhedral description of
kernels. Mathematics of Operations Research, 41(3):969–990.

Chvátal, V. (1973). On the computational complexity of finding a kernel.
Technical Report CRM-300, Centre de recherches mathématiques, Univer-
sité de Montréal.

Clark, T., Bradburn, M., Love, S., and Altman, D. (2003). Survival anal-
ysis part I: Basic concepts and first analyses. British Journal of Cancer,
89(2):232–238.

Conforti, M., Cornuéjols, G., and Zambelli, G. (2014). Integer Programming.
Springer.

Constantino, M., Klimentova, X., Viana, A., and Rais, A. (2013). New
insights on integer-programming models for the kidney exchange problem.
European Journal of Operational Research, 231(1):57–68.

Coullard, C. R. and Pulleyblank, W. R. (1989). On cycle cones and polyhe-
dra. Linear Algebra and Its Applications, 114(C):613,640.

de Ferrante, H., Smeulders, B., Spieksma, F., Baratto, M., and Tieken, I.
(2019). Simulating kidney allocation schemes for eurotransplant. Technical
report. Unpublished.

Deineko, V. G. and Woeginger, G. J. (2013). Two hardness results for core
stability in hedonic coalition formation games. Discrete Applied Mathe-
matics, 161:1837–1842.

Delorme, M., García, S., Gondzio, J., Kalcsics, J., Manlove, D., and Petters-
son, W. (2023a). New algorithms for hierarchical optimization in kidney
exchange programs. Operations Research.

164

Delorme, M., Manlove, D., and Smeets, T. (2023b). Half-cycle: A new
formulation for modelling kidney exchange problems. Operations Research
Letters, 51(3):234–241.

Dickerson, J., Manlove, D., Plaut, B., Sandholm, T., and Trimble, J. (2016).
Position-indexed formulations for kidney exchange. arXiv.org.

Dickerson, J. P., Procaccia, A. D., and Sandholm, T. (2018). Failure-aware
kidney exchange. Management Science, 65(4):1768–1791.

Duchet, P. and Meyniel, H. (1993). Kernels in directed graphs: a poison
game. Discrete Mathematics, 115(1):273–276.

Erdős, P. and Rényi, A. (1959). On random graphs I. Publicationes Mathe-
maticae Debrecen, 6:290–297.

Eurotransplant (2023). Eurotransplant Manual (version 2023.4): Chapter 4
Kidney (ETKAS and ESP).

Fulkerson, D. R., Nemhauser, G. L., and Trotter, L. E. (1974). Two computa-
tionally difficult set covering problems that arise in computing the 1-width
of incidence matrices of Steiner triple systems, pages 72–81. Mathemati-
cal Programming Studies: Approaches to Integer Programming. Springer,
Berlin, Heidelberg.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9–15.

Galeana-Sánchez, H. and Neumann-Lara, V. (1984). On kernels and semik-
ernels of digraphs. Discrete Mathematics, 48(1):67–76.

Graham, A. J. and Pike, D. A. (2008). A note on thresholds and connectivity
in random directed graphs. Atlantic Electronic Journal of Mathematics,
3(1):1–5.

Grötschel, M., Lovász, L., and Schrijver, A. (1981). The ellipsoid method and
its consequences in combinatorial optimization. Combinatorica, 6:169–197.

Hartmann, M. and Özlük, O. (2001). Facets of the p-cycle polytope. Discrete
Applied Mathematics, 112(1):147–178.

Held, P. J., McCormick, F., Ojo, A., and Roberts, J. P. (2016). A cost-
benefit analysis of government compensation of kidney donors. American
Journal of Transplantation, 16(3):877–885.

Hoffman, A. J. (1960). Some recent applications of the theory of linear in-
equalities to extremal combinatorial analysis. In Bellman, R. and Hall,
M., editors, Combinatorial Analysis: Proceedings of Symposia in Applied
Mathematics, volume 10, pages 113–127, Providence. American Mathe-

165

matical Society.

Huang, C.-C. (2010). Circular stable matching and 3-way kidney transplant.
Algorithmica, 58:137–150.

Igarashi, A. (2017). Coalition formation in structured environments. In
Proceedings of the 16th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2017), pages 1836–1837.

Irving, R. W. (1985). An efficient algorithm for the “stable roommates”
problem. Journal of Algorithms, 6(4):577–595.

Jackson, D., White, I. R., Seaman, S., Evans, H., Baisley, K., and Carpenter,
J. (2014). Relaxing the independent censoring assumption in the Cox pro-
portional hazards model using multiple imputation. Statistics in Medicine,
33(27):4681–4694.

Jager, K. J., van Dijk, P. C., Zoccali, C., and Dekker, F. W. (2008). The
analysis of survival data: the Kaplan–Meier method. Kidney International,
74(5):560–565.

Jason T. Rich, M., J. Gail Neely, M., Randal C. Paniello, M., Courtney C.
J. Voelker, M. D., Brian Nussenbaum, M., and Eric W. Wang, M. (2010).
A practical guide to understanding Kaplan-Meier curves. Otolaryngol-
ogy–Head and Neck Surgery, 143(3):331–336. PMID: 20723767.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from in-
complete observations. Journal of the American Statistical Association,
53(282):457–481.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Com-
plexity of Computer Computations, pages 85–103. Springer.

Klimentova, X., Alvelos, F., and Viana, A. (2014). A new branch-and-price
approach for the kidney exchange problem. In Murgante, B., Misra, S.,
Rocha, A. M. A. C., Torre, C., Rocha, J. G., Falcão, M. I., Taniar, D.,
Apduhan, B. O., and Gervasi, O., editors, Computational Science and Its
Applications – ICCSA 2014, pages 237–252, Cham. Springer International
Publishing.

Klimentova, X., Biró, P., Viana, A., Costa, V., and Pedroso, J. P. (2023).
Novel integer programming models for the stable kidney exchange prob-
lem. European Journal of Operational Research, 307:1391–1407.

Klimentova, X., Pedroso, J. P., and Viana, A. (2016). Maximising expecta-
tion of the number of transplants in kidney exchange programmes. Com-
puters & Operations Research, 73:1–11.

166

Lacny, S., Wilson, T., Clement, F., Roberts, D. J., Faris, P., Ghali, W. A.,
and Marshall, D. A. (2018). Kaplan–Meier survival analysis overestimates
cumulative incidence of health-related events in competing risk settings:
a meta-analysis. Journal of Clinical Epidemiology, 93:25–35.

Lam, E. and Mak-Hau, V. (2020). Branch-and-cut-and-price for the
cardinality-constrained multi-cycle problem in kidney exchange. Com-
puters & Operations Research, 115:104852.

Liu, Y., Tang, P., and Fang, W. (2014). Internally stable matchings and
exchanges. In Proceedings of the Twenty-Eighth AAAI Conference on Ar-
tificial Intelligence, pages 1433–1439.

Maffray, F. (1992). Kernels in perfect line-graphs. Journal of Combinatorial
Theory, Series B, 55(1):1–8.

Mak-Hau, V. (2017). On the kidney exchange problem: cardinality con-
strained cycle and chain problems on directed graphs: a survey of in-
teger programming approaches. Journal of Combinatorial Optimization,
33(1):35–59.

Mak-Hau, V. (2018). A polyhedral study of the cardinality constrained
multi-cycle and multi-chain problem on directed graphs. Computers and
Operations Research, 99:13,26.

Manlove, D. F. (2013). Algorithmics of Matching under Preferences. World
Scientific Publishing, Singapore.

Manlove, D. F., Irving, R. W., Iwama, K., Miyazaki, S., and Morita, Y.
(2002). Hard variants of stable marriage. Theoretical Computer Science,
276(1-2):261–279.

Mayer, G. and Persijn, G. G. (2006). Eurotransplant kidney allocation sys-
tem (etkas): rationale and implementation. Nephrology Dialysis Trans-
plantation, 21(1):2–3.

Mészáros-Karkus, Z. (2017). Hardness results for stable exchange problems.
Theoretical Computer Science, 670:68–78.

Nemhauser, G. L. and Wolsey, L. A. (1999). Integer and Combinatorial
Optimization. John Wiley & Sons.

Ng, C. and Hirschberg, D. S. (1991). Three-dimensional stable matching
problems. SIAM Journal on Discrete Mathematics, 4(2):245–252.

Pansart, L., Cambazard, H., and Catusse, N. (2022). Dealing with
elementary paths in the kidney exchange problem. arXiv preprint
arXiv:2201.08446.

167

Pass-Lanneau, A., Igarashi, A., and Meunier, F. (2020). Perfect graphs with
polynomially computable kernels. Discrete Applied Mathematics, 272:69–
74.

Pedroso, J. P. (2014). Maximizing expectation on vertex-disjoint cycle pack-
ing. In Computational Science and Its Applications–ICCSA 2014: 14th
International Conference, Guimarães, Portugal, June 30–July 3, 2014,
Proceedings, Part II 14, pages 32–46. Springer.

Rapaport, F. T. (1986). The case for a living emotionally related inter-
national kidney donor exchange registry. In Transplantation Proceedings,
volume 18, pages 5–9.

Ratier, G. (1996). On the stable marriage polytope. Discrete Mathematics,
148:141–159.

Ronn, E. (1990). NP-complete stable matching problems. Journal of Algo-
rithms, 11(2):285–304.

Roth, A., Ünver, M. U., and Sönmez, T. (2004). Kidney exchange. The
Quarterly Journal of Economics, 119(2).

Roth, A. E., Sönmez, T., and Ünver, M. U. (2005). Pairwise kidney exchange.
Journal of Economic Theory, 125(2):151–188.

Roth, A. E., Sönmez, T., and Ünver, M. U. (2007). Efficient kidney ex-
change: Coincidence of wants in markets with compatibility-based prefer-
ences. American Economic Review, 97(3):828–851.

Ruth, D. M., Wood, N. L., and VanDerwerken, D. N. (2022). Fully nonpara-
metric survival analysis in the presence of time-dependent covariates and
dependent censoring. Journal of Applied Statistics, 0(0):1–15.

Saidman, S. L., Roth, A. E., Sönmez, T., Ünver, M. U., and Delmonico, F. L.
(2006). Increasing the opportunity of live kidney donation by matching
for two-and three-way exchanges. Transplantation, 81(5):773–782.

Santos, N., Tubertini, P., A., V., and Pedroso, J. (2017). Kidney exchange
simulation and optimization. Journal of the Operational Research Society,
68(12):1521–1532.

Seymour, P. D. (1979). Sums of circuits. In Bondy, J. A. and Murty, U.
S. R., editors, Graph Theory and Related Topics, pages 341–355, New
York. Academic Press.

Shapley, L. and Scarf, H. (1974). On cores and indivisibility. Journal of
Mathematical Economics, 1(1):23–37.

Smeulders, B., Bartier, V., Crama, Y., and Spieksma, F. C. R. (2022). Re-

168

course in kidney exchange programs. INFORMS Journal on Computing,
34:1191–1206.

Tan, J. J. M. (1990). A maximum stable matching for the roommates prob-
lem. BIT Numerical Mathematics, 30:631–640.

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1:146–160.

von Neumann, J. and Morgenstern, O. (1953). Theory of Games and Eco-
nomic Behavior. Princeton University Press, Princeton, NJ.

Wolfe, R. A., Ashby, V. B., Milford, E. L., Ojo, A. O., Ettenger, R. E.,
Agodoa, L. Y., Held, P. J., and Port, F. K. (1999). Comparison of mortality
in all patients on dialysis, patients on dialysis awaiting transplantation,
and recipients of a first cadaveric transplant. New England Journal of
Medicine, 341(23):1725–1730.

Wolsey, L. A. (2020). Integer Programming. John Wiley & Sons.

169

170

List of Figures

1.1 Illustration of a 2-cycle . 13
1.2 Illustration of a chain of length 3 14
1.3 A directed graph. 18
1.4 All cycle selections of the directed graph in Figure 1.3. 18
1.5 A small digraph with preferences on the arcs 19

2.1 A directed graph. 32
2.2 All cycle selections of the directed graph in Figure 2.1. 33
2.3 Illustration of a return inequality. 40
2.4 Structure of the arcs involved in the left-hand side of inequal-

ities (2.43)-(2.44). 57
2.5 Structure of the arcs involved in the left-hand side of inequal-

ity (2.50). 63

3.1 Representation of a solution of P0 which is not a cycle selection 79
3.2 Comparison of total running time of the MWCS formulations

when n = 50, p = 20 d = 80. The horizontal axis displays
running times (in seconds), and the vertical axis displays the
number of instances solved within a given time, for each for-
mulation. 80

3.3 Comparison of total running time of the ARC and SEA for-
mulations when n = 300, p = 20 d = 80 (left) and n = 300,
p = 40 d = 90 (right). The horizontal axis displays running
times (in seconds), and the vertical axis displays the number
of instances solved within a given time, for each formulation. 81

3.4 Comparison of total running time of the ARC and SEA for-
mulations when n = 200, p = 20, d = 80, b = 100 (top left),
n = 200, p = 20, d = 80, b = 50 (bottom left), n = 200,
p = 40, d = 90, b = 100 (top right), and n = 200, p = 40,
d = 90, b = 50 (bottom right). The horizontal axis displays
running times (in seconds), and the vertical axis displays the
number of instances solved within a given time. 87

171

3.5 Comparison of total running time of the MWCS formula-
tions when n = 50, p = 20 d = 80, K = 3. The horizontal
axis displays running times (in seconds), and the vertical axis
displays the number of instances solved within a given time. . 88

3.6 Comparison of total running time of the MWCS formulations
when n = 50, p = 20 d = 80, K = 3 and b = 50. The
horizontal axis displays running times (in seconds), and the
vertical axis displays the number of instances solved within a
given time. 89

3.7 Comparison of total running time of the MWCS formulations
when n = 50, p = 20 d = 80, K = 3 without a budget
constraint and with a budget constraint (+b) when b = 50.
The horizontal axis displays running times (in seconds), and
the vertical axis displays the number of instances solved within
a given time. 90

3.8 Comparison of four methods when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in sec-
onds), and the vertical axis displays the number of instances
solved within a given time. 97

3.9 Comparison of five methods when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in sec-
onds), and the vertical axis displays the number of instances
solved within a given time. 98

3.10 Comparison of five methods when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in sec-
onds), and the vertical axis displays the number of instances
solved within a given time. 99

3.11 Comparison of running time when n = 25, |S| = 100, b = 10,
K = 3. The horizontal axis displays running times (in sec-
onds), and the vertical axis displays the number of instances
solved within a given time. 100

3.12 Illustration of the IN-OUT procedure 101
3.13 Comparison of running time when n = 25, |S| = 100, b = 10,

K = 4. The horizontal axis displays running times (in sec-
onds), and the vertical axis displays the number of instances
solved within a given time. 103

4.1 A small digraph with arcs labeled by values of the rank functions110
4.2 A digraph without stable exchange 111
4.3 u := (2, 4, 2) is L-blocking for v := (1, 2, 3, 1) 112
4.4 v = (1, 2, 3, 1) and u = (2, 3, 4, 2) are friends when K = 3 . . . 113
4.5 An absorbing set S . 115
4.6 A locally absorbing set S . 116
4.7 A blocking digraph without kernel but with a nonempty L-kernel117

172

4.8 A digraph G∗ with an L-kernel larger than the unique kernel 118
4.9 A compatibility digraph G . 118
4.10 Construction for a clause Ck containing a literal v 119
4.11 Comparison of GapLP for Formulations 3 and 4 when n = 40,

K = 3. The horizontal axis displays gaps and the vertical
axis displays the number of instances with a gap smaller than
a given value. 126

4.12 Comparison of running time for Formulations 1–4 when n =
40, K = 3. The horizontal axis displays running times (in
seconds) and the vertical axis displays the number of instances
with a running time smaller than a given value. 127

4.13 Running time for stable exchanges and L-stable exchanges,
n = 80, K = 3. The horizontal axis displays running times (in
seconds) and the vertical axis displays the number of instances
with a running time smaller than a given value. 129

4.14 Running time for stable exchanges and L-stable exchanges,
n = 100, K = 3. The horizontal axis displays running times
(in seconds) and the vertical axis displays the number of in-
stances with a running time smaller than a given value. . . . 129

4.15 Illustration of cycles being strong friends 134

5.1 Transplants (deceased donor) in Eurotransplant, by year, by
organ . 143

5.2 Visualization of the second stage of the simulation 146
5.3 Representation of a survival curve 150
5.4 Example of simulation of a delisting date 151
5.5 Proportion of transplanted (T) and delisted patients (D) in

each age category. 153
5.6 Proportion of transplanted (T) and delisted patients (D) in

each country member of ET. 154
5.7 Comparison of the failure probabilities using the Kaplan-Meier

and cumulative incidence estimates. The horizontal axis dis-
plays the time unit (in days) and the vertical axis displays
probabilities. 156

5.8 Comparison of the survival curve using the Kaplan-Meier es-
timate and the survival curve using the cumulative incidence
estimate. The horizontal axis displays the time unit (in days)
and the vertical axis displays probabilities. 157

173

174

List of Tables

3.1 Size models with n = 50, p = 20, and d = 80 81
3.2 Average optimal value (over 30 instances) and expected weight

of the positive arcs for various values of n, p = 20, and d = 80 82
3.3 Steiner triple instances (part 1) 84
3.4 Steiner triple instances (part 2) 84
3.5 MWCS with budget constraint: results of computational ex-

periments . 85
3.6 Comparison of total running time on the digraphs associated

with the Steiner triple instances, in seconds 89
3.7 Comparison of different methods for the RR-2-KEP problem . 102

4.1 Size parameters of instances with n = 40, K = 3 124
4.2 Mean running time (in seconds) for Formulations 1–4 when

n = 40, K = 3 . 126
4.3 Comparison of formulations: number of instances solved within

2 minutes . 127
4.4 Integrality gap for Formulation 4 (K = 3) 128
4.5 Size parameters of instances with K = 2 130
4.6 Results for instances with K = 2 131
4.7 Results for instances with K = 2 having a nonempty L-stable

exchange and no stable exchange 132
4.8 Size parameters of instances of with K = 3 136
4.9 Results for instances with K = 3 137
4.10 Results for instances with K = 3 138
4.11 Kernel vs. local kernel . 139

5.1 Contingency table of X := status of exit and Y 1 := age category152
5.2 Contingency table of X := status of exit and Y 2 := country . 153
5.3 tobs values in each age category 154

175

	Introduction
	Kidney transplantation programs
	Models and methods for KEP problems
	The basic KEP problem
	Variants of the KEP problem

	Structure and contributions of the dissertation
	A short refresher
	Formulations of the KEP problem
	Polyhedral theory
	Benders decomposition

	Cycle selections
	Introduction
	Problem definition
	Motivation
	Literature review

	Complexity
	Formulations
	Arc formulation
	Compact extended formulations
	Cycle formulation
	Relative strength of formulations

	Polyhedral structure
	Dimension
	Facets
	Additional valid inequalities

	Constrained cycle selections
	Cycle selections with cycles of length at most 3
	Formulation
	Polyhedral study

	Conclusions and perspectives

	Cycle selections: numerical experiments
	Introduction
	Maximum weighted cycle selections
	Formulations and instances
	Implementation of the ARC formulation
	Experimental results
	Steiner triples
	MWCS with budget constraint
	MWCS with maximum cycle length constraint

	Cycle selections in stochastic kidney exchange models
	Models
	Optimization methods
	Implementation of Benders decomposition in Method 4
	Initial experimental results
	Enhancements of the implementation of Method 4

	Conclusion

	Local stability in kidney exchange programs
	Introduction
	Basic concepts and literature review
	Stable matching under preferences
	Optimal kidney exchanges
	Stable kidney exchanges

	Stability and local stability
	Stability: definitions
	Local stability: definitions
	Stability and local stability: characterizations

	Blocking digraph, kernels and local kernels
	Integer programming formulations
	Numerical tests for L-stable exchanges
	Instances
	Comparison of formulations for maximum L-stable exchanges
	Comparison with stable exchanges

	Local strong stability
	Definitions
	Characterizations and formulations
	Numerical tests for LS-stable exchanges

	Kernels and L-kernels of random digraphs
	Conclusions and perspectives

	Generation of delisting dates for the simulation of Eurotransplant's allocation mechanisms
	Introduction
	Context
	Generation of delisting dates
	Definitions and notations
	Kaplan-Meier method

	Validation of the method
	Independence
	Cumulative incidence function

	Conclusion

	Conclusion
	Bibliography
	List of Figures
	List of Tables

