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Abstract

We define an asymptotically normal wavelet-based strongly consistent estimator
for the Hurst parameter of any Hermite processes. This estimator is obtained by
considering a modified wavelet variation in which coefficients are wisely chosen to be,
up to negligeable remainders, independent. We use Stein-Malliavin calculus to prove
that this wavelet variation satisfies a multidimensional Central Limit Theorem, with
an explicit bound for the Wasserstein distance.
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1 Introduction

A stochastic process tXtutě0 is said to be H-self-similar if, for all a ą 0, the processes
tXatutě0 and taHXtutě0 have the same finite dimensional distributions. This property is
predominant in real life applications, for instance, in astronomy [34, 47], biology [1, 24],
climatology [14, 30], hydrology [39, 52], image processing [31], internet traffic modelling
[58, 59], mathematical finance [28, 37, 46, 50] and physics [40, 48]. We also refer to
the three monographs [11, 23, 25] for an insight on numerous results, applications and
methodologies concerning self-similar processes.

Without any doubt, fractional Brownian motion is the most popular self-similar
stochastic process. It was first introduced by Kolmogorov, in the paper [33] from 1940,
to define “Gaussian spirals” in Hilbert spaces. The name “fractional Brownian motion” is
used since the article [38] from Mandelbrot and Van Ness, where the first systematic study
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of this process was carried out. Indeed, it is itself a generalization of the Brownian motion,
defined by the botanist Robert Brown to describe the movements of pollen grains of the
plant Clarkia Pulchella suspended in the water [13]. For any H P p0, 1q, the fractional
Brownian motion of Hurst parameter H on a probability space pΩ,F ,Pq is the unique
centred Gaussian process tBH

t utě0 with covariance function

ErBH
t B

H
S s “

1

2
p|t|2H ` |s|2H ´ |t´ s|2Hq, for every s, t ě 0.

The case H “ 1{2 corresponds to the usual Brownian motion. In other words, the frac-
tional Brownian motion tBH

t utě0 is the only Gaussian process with stationary increments
which is H-self-similar. This property justifies the fact that the fractional Brownian is
greatly used to model natural phenomena [24, 30, 34, 40, 47].

In some applications, it happens that the self-similarity and the stationnarity
of increments are desirable properties for a stochastic process, while Gaussianity is not
a reasonable assumption [28, 50, 52, 58, 60]. In these contexts, good candidates for
simulation are given by Hermite processes. In the sequel, for all integer number q ě 1, Iq
denotes the multiple stochastic integral of order q with respect to the two-sided Brownian
motion tByuyPR, see the Appendix for a precise definition. Let H P

`

1
2 , 1

˘

, the Hermite
process of order q and Hurst parameter H is the stochastic process tZpq,Hqt utě0 defined,
for every t ě 0, by

Z
pq,Hq
t “ IqpL

pq,Hq
t q, (1)

where the kernel function Lpq,Hqt is given, for all y1, ..., yq P R, by

L
pq,Hq
t py1, ..., yqq “ cq,H

ż

R
pu´ y1q

´

´

1
2
` 1´H

q

¯

` . . . pu´ yqq
´

´

1
2
` 1´H

q

¯

` du, (2)

with cq,H a strictly positive constant which is chosen such that, for all t ě 0, ErpZpq,Hqt q2s “

q!}L
pq,Hq
t }2L2pRqq

“ t2H . It is a H-self-similar stochastic process with stationary incre-
ments. Its exhibits long-range dependence and its sample paths are Hölder continuous
of order δ for every δ P p0, Hq. Hermite processes first appeared as limit of partial sums
of correlated random variables, in the so-called Non-Central Limit Theorem [22, 51, 53].
The class of Hermite processes contains the fractional Brownian motion which is ob-
tained for q “ 1 and it is the only Gaussian process in this class. It also contained the
Rosenblatt process (obtained for q “ 2). We refer to the recent monograph [56] for a
concise presentation of these processes and their stochastic analysis. The results present
on this paper do not depend on the exact value of q and H. For this reason, to ease the
notation, we omit the indices and we write tZtutě0 for a Hermite process as well as Lt
for its associated kernel.

Generally speaking, while working with self-similar processes, a question of great
interest is to estimate the parameter H here over. It is essential because this parameter,
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governs the main properties of the analysed process, such as the long-range dependence
and the Hölder regularity. Therefore, in the Hermite case, many authors have proposed
statistical estimators from various perspectives, such as variations [15, 18, 55], wavelet
analysis [10, 7, 17, 29] or least-squares methods [44].

Unfortunately, all the estimators presented in the publications listed here over
failed to be asymptotically normal as soon as q ě 2. Also, in the case q “ 1, the
asymptotic normality only holds when H P p0, 3

4 s. Note that, in this last Gaussian
case, the authors in [32] propose an estimator based on higher order increments of the
fractional Brownian motion and obtain the asymptotic normality of this estimator. But,
as remarked in [16], this strategy is not applicable for q ě 2. Of course, this non-Gaussian
behavior is a serious drawback for statistical estimation of the Hurst parameter H, as
the limit distribution is a Rosenblatt one, much less desirable for practical purposes.

But, very recently, in [6], Ayache and Tudor define a new estimator for H, based
on a modified quadratic variation, which is asymptotically normal, even in the case
q ě 2. The construction of this estimator is based on an idea from [2] where increments of
Hermite processes are split in two parts: one which satisfies some independence properties
while the second part is clearly dominated, in L2pΩq-norm, by the first one. These
observations help to select “good” increments to compute quadratic variations which are
then collected in a simple modification of the estimators previously introduced in [15, 55].

Nevertheless, in practice, estimators for the Hurst parameter based on wavelet
analysis provide numerous advantages, compared to the ones obtained with other strate-
gies. Indeed, wavelet-based estimators are defined using a log-regression of wavelet coeffi-
cients at various scales, see Section 2 for the definition, and a great literature is available
concerning goodness-of-fit tests for such models [8, 9, 7]. Moreover, such estimators are
numerically efficient thanks to the Mallat’s algorithm for computing wavelet coefficients
[35, 36]. Also, if the wavelet have enough vanishing moment, see equation (3) below,
wavelet-based estimators are not sensible to polynomials trends and are thus very ro-
bust.

In the paper [21], inspired by [2], Daw and Loosveldt adapted the “splitting
method” in the context of wavelet coefficients for the Rosenblatt process (aka the Hermite
process of order 2). In this context, they manage to express any wavelet coefficient as
the sum of two random variables, one which satisfies some independence property and
one which is negligible.

The aim of this paper is to bring together the ideas from [6] and [21] and to
propose a new strongly consistent estimator for the Hurst parameter of any Hermite
processes. It belongs to the “family” of the estimators introduced in [10, 7, 17, 29], in
the sense that it relies on a wavelet variation. But the wavelet coefficients used in this
“modified” variation are precisely chosen such that this new estimator is asymptotically
normal. In short, this estimator is particularly well-suited for applications as it is an
asymptotically normal wavelet-based strongly consistent estimator. Let us note that, up
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to our knowledge, it is anyway the first time that a wavelet-based estimator is defined
for Hermite processes of any orders. Indeed, the papers [10, 7, 17, 29] only deal with the
fractional Brownian motion and the Rosenblatt process, thus the Hermite processes of
order one and two.

In Section 2, we recall some basic facts about wavelet analysis on which relies the
rest of our paper. Then we extend to any Hermite process the results from [21] concerning
the decomposition of wavelet coefficients.

In Section 3, we introduce the modified wavelet variation which is the key object to
define later our estimator. First, we present the special wavelet coefficients that are used
in the variation. Then, we show that a part of this variation is clearly negligible compared
to the other part. It is a consequence of the decomposition of wavelet coefficients provided
in Section 2. Finally, we prove a multidimensional Central Limit Theorem (CLT) for the
modified wavelet variation. Note that the use of a multidimensional CLT is a major
difference with [6], where only a “classic” CLT is used. It is a consequence of the fact
that our estimator relies on wavelet coefficients and not directly on increments of the
process. Indeed, as the reader can see all along this paper, the use of a wavelet Ψ make
appeared a constant CΨpHq in all our computations, see equation (7) below. As this
constant depends, in a non-trivial way, on the value of the Hurst parameter H, it must
be eliminated in the definition of the estimator. Then, the standard strategy from [10, 7]
consists in performing a log-regression of the wavelet variation onto several scales. Thus,
we need to insure the asymptotic normality for a vector of wavelet variation instead of
an unique variation based on increments.

In order to obtain an estimator which can be numerically computed, in Section
4 we study a Riemann approximation of the wavelet variation defined in Section 3. The
main result there states that this approximation converges, in L1pΩq, to the wavelet
variation and thus also satisfies a multidimensional CLT.

Finally, in Section 5, we use a log-regression to define an estimator for the Hurst
parameter H. We show that this estimator is strongly consistent and asymptotically
normal.

Main facts of stochastic analysis, in particular Malliavin-Stein method, are re-
called, for the reader convenience, in the Appendix.

2 The wavelet coefficients and their decomposition

Generally speaking, a wavelet is a smooth function Ψ such that the set

t2
j
2 Ψp2j ¨ ´kq : pj, kq P Z2u

is an orthonormal basis of L2pRq, see [20, 36, 41] for a very complete view on this subject.
Morally speaking, it is not surprising that such bases, constructed by scaling modifica-
tions of an unique mother wavelet Ψ are particularly well-adapted to study self-similar
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stochastic processes, as this definition somehow means that the process is invariant by
scaling changes. In particular, in the context of Hermite processes and their generaliza-
tions, wavelets are used, for instance, for expansion and approximation [3, 4, 5, 42, 49],
estimation [10, 7] and precise study of the pointwise regularity [21, 26, 27].

All along this paper, we work with a continuously differentiable mother wavelet
Ψ : RÑ R with support included in the unit interval r0, 1s such as the one constructed in
[19, 20]. We say that such a wavelet Ψ has Q ě 1 vanishing moments if, for all 0 ď p ă Q,

ż

R
xpΨpxqdx “ 0. (3)

In fact, in this paper, we only need that Ψ has one vanishing moment. But, in practice,
authors generally work with higher Q, for numerical purposes. Let us fix a ą 0. We
define, for any integer number k ě 0, the wavelet coefficient associated to the Hermite
process tZtutě0 by

cpa, kq “
?
a

ż

R
ΨpxqZapx`kqdx. (4)

Due to the scaling property, the stationarity of the increments of the Hermite process
and the vanishing moment of Ψ, we notice

cpa, kq “
?
q

ż

R
ΨpxqpZapx`kq ´ Zakqdx “

pdq ?a

ż

R
ΨpxqZaxdx “

pdq aH`
1
2 cp1, 0q, (5)

where we denoted by ““pdq” the equality in distribution. In particular, we have

Ercpa, kq2s “ a2H`1Ercp1, 0q2s “ a2H`1CΨpHq, (6)

with
CΨpHq “ ´

1

2

ż

R

ż

R
dxdyΨpxqΨpyq|x´ y|2H . (7)

By using (1) and the assumption (3), we can express the wavelet coefficient as a
multiple stochastic integral. Indeed, we write, via a Fubini argument,

cpa, kq “
?
a

ż

R
ΨpxqpZapx`kq ´ Zakqdx “

?
a

ż

R
ΨpxqIq

`

Lapx`kq ´ Lak
˘

dx

“ Iq

ˆ

?
a

ż

R
Ψpxq

`

Lapx`kq ´ Lak
˘

dx

˙

“ Iq

˜

?
a

ż

R
dzΨpxq

ż apx`kq

ak
fudu

¸

,

where L is the kernel of the Hermite process given by (2) and

fupy1, ..., yqq “ cq,Hpu´ y1q
´

´

1
2
` 1´H

q

¯

` . . . pu´ yqq
´

´

1
2
` 1´H

q

¯

` ,
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for every y1, ..., yq P R, with cq,H the constant in (2). Since
şapx`kq
ak fupy1, ..., yqqdu vanishes

if there exists i “ 1, .., q such that yi ě apk` 1q (recall that the support of Ψ is included
in r0, 1s), we can also write

cpa, kq “ Iq

˜

?
a

ż

R
dxΨpxq1bq

p´8,apk`1qq

ż apx`kq

ak
fudu

¸

. (8)

Let M ą 0. We decompose the coefficient cpa, kq as follows

cpa, kq “ Čcpa, k,Mq ` cpa, k,Mq

where
Čcpa, k,Mq “ Iq

˜

?
a

ż

R
dxΨpxq1bq

papk´Mq,apk`1qq

ż apx`kq

ak
fudu

¸

(9)

and

cpa, k,Mq “ Iq

˜

?
a

ż

R
dxΨpxq

`

1p´8,apk`1qqqzpapk´Mq,apk`1qqq
˘

ż apx`kq

ak
fudu

¸

. (10)

This decomposition will play a crucial role for the development of our arguments. The
key fact is that, for suitable choices of the parameters a,M ą 0, the random variables
Čcpa, k,Mq and Čcpa, j,Mq will become independent when k “ j (this happens once the

intervals papk ´Mq, apk ` 1qq and papj ´Mq, apj ` 1qq become disjoints). On the other
hand, the terms cpa, k,Mq will be negligible, for the L2pΩq-norm, with respect to their
tilde counterparts.

Let us first evaluate the squared mean of cpa, k,Mq. We denoted by Cpq,Hq a
strictly positive constant depending only on q,H. A similar notation will be used for
constants depending on other parameters.

Lemma 1. Let a,M ą 0 and let k be a positive integer. We have

E
”

cpa, k,Mq
2ı

ď Cpq,Hqa2H`1pM ` 1q
2H´2
q .

Proof: We first notice that, for every a, k,M , we have, by the same arguments as in the
proofs of Lemma 2 below,

cpa, k,Mq “pdq aH`
1
2 Iq

ˆ

1p´8,1qqzp´M,1qq

ż

R
dxΨpxq

ż x

0
fudu

˙

.
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Thus, by the isometry property (72) of the multiple stochastic integral Iq, we get

E
”

cpa, k,Mq
2ı

“ a2H`1q!c2
q,H

ż

1p´8,1qqzp´M,1qq

dy1...dyq

ż

R

ż

R
dxdyΨpxqΨpyq

ż x

0
dy

ż y

0
dvfupy1, ..., yqqfvpy1, ..., yqq

ď Cpq,Hqa2H`1

ż 1

0

ż 1

0
dxdy|Ψpxq| ¨ |Ψpyq|

ż x

0
du

ż y

0
dv

ˆ

˜

ż

R
dypu´ yq

´

´

1
2
` 1´H

q

¯

` pv ´ yq
´

´

1
2
` 1´H

q

¯

`

¸q´1

˜

ż 1

´M
dypu´ yq

´

´

1
2
` 1´H

q

¯

` pv ´ yq
´

´

1
2
` 1´H

q

¯

`

¸

“ Cpq,Hqa2H`1

ż 1

0

ż 1

0
dxdy|Ψpxq| ¨ |Ψpyq|

ż x

0
du

ż y

0
dv|u´ v|

p2H´2q q´1
q

˜

ż 1

´M
dypu´ yq

´

´

1
2
` 1´H

q

¯

` pv ´ yq
´

´

1
2
` 1´H

q

¯

`

¸

. (11)

We have the following formula, obtained via the change of variables z “ u^v´y
u_v´y ,

ż 1

´M
dypu´ yq

´

´

1
2
` 1´H

q

¯

` pv ´ yq
´

´

1
2
` 1´H

q

¯

` “

ż u^v

´M
pu´ yq

´

´

1
2
` 1´H

q

¯

pv ´ yq
´

´

1
2
` 1´H

q

¯

dy

“ |u´ v|
2H´2
q

ż u^v`M
u_v`M

0
z
H´1
q
´ 1

2 p1´ zq
2´2H
q
´1
dz “ β

ˆ

u^ v `M

u_ v `M
,
H ´ 1

q
`

1

2
,
2´ 2H

q

˙

,

where βpx, a, bq is the incomplete beta function given, for a, b ą 0 and x P p0, 1s, by
βpx, a, bq “

şx
0 z

a´1p1 ´ zqb´1dz. In particular, βp1, a, bq “ βpa, bq is the usual beta
function. Let us also introduce the notation

β̄px, a, bq “ βpa, bq ´ βpx, a, bq “

ż 1

x
za´1p1´ zqb´1dz

for a, b ą 0 and x P p0, 1q. We have the following estimate

β̄

ˆ

u^ v `M

u_ v `M
,
H ´ 1

q
`

1

2
,
2´ 2H

q

˙

“

ż 1

u^v`M
u_v`M

z
H´1
q
´ 1

2 p1´ zq
2´2H
q
´1
dz

ď

ż 1

M
M`1

z
H´1
q
´ 1

2 p1´ zq
2´2H
q
´1
dz ď

ż 1

M
M`1

p1´ zq
2´2H
q
´1
dz

“
2´ 2H

q
pM ` 1q

2H´2
q . (12)
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Therefore, by plugging (12) into (11), we get

E
”

cpa, k,Mq
2ı

ď Cpq,Hqa2H`1pM ` 1q
2H´2
q

ż 1

0

ż 1

0
dxdy|Ψpxq| ¨ |Ψpyq|

ż x

0
du

ż y

0
dv|u´ v|

p2H´2q q´1
q

ď Cpq,Hqa2H`1pM ` 1q
2H´2
q

ż 1

0

ż 1

0
dxdy|Ψpxq| ¨ |Ψpyq|

ż x

0
du

ż y

0
dv|u´ v|2H´2

“ Cpq,Hqa2H`1pM ` 1q
2H´2
q

ż 1

0

ż 1

0
dxdy|Ψpxq| ¨ |Ψpyq|px2H ` y2H ´ |x´ y|2Hq

ď Cpq,Hqa2H`1pM ` 1q
2H´2
q .

3 The modified wavelet variation

We will define and analyse the wavelet variation of the Hermite process based on some
particular wavelet coefficients. We first introduce these special coefficients and we also
study their main properties.

3.1 The special wavelet coefficients

We start with some notations. Consider two real numbers

0 ă γ ă β ă 1

and for every N ě 1, let us set

LN “ NX
„

1,
2N

2rNβs



“

”

1, 2N´rN
βs
ı

and
LN,γ “ LN X

”

1, 2rN
γ s
ı

.

We have, for every N ě 1,

LN,γ Ă LN and |LN,γ | ď 2rN
γ s (13)

and for N large enough,
|LN,γ | ě 2rN

γ s ´ 1. (14)

For ` P LN,γ and N ě 1, we set

e`,N,β “
`2rN

βs

2N
. (15)
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Now, we describe the wavelet coefficients on which we will focus in the rest of
this work. Let d ě 1. For ` P LN,γ and M “ 1, ..., d, we define

AM p`,Nq “ c

ˆ

1

M2N
, `M2rN

βs

˙

. (16)

From (8), we express

AM p`,Nq “

c

1

M2N
Iq

¨

˝1bq

p´8, `M2rN
β s`M

M2N
q

ż

R
dxΨpxq

ż `M2rN
β s`x

M2N

`M2rN
β s

M2N

fudu

˛

‚

“

c

1

M2N
Iq

¨

˝1bq
p´8,e`,N,β`2´N q

ż

R
dxΨpxq

ż e`,N,β`xM
2´N

e`,N,β

fudu

˛

‚,

where we used the notation (15). We have, by (5),

E
“

AM p`,Nq
2
‰

“ 2´Np2H`1qM´p2H`1qCΨpHq, (17)

with CΨpHq from (7). We will decompose this coefficient as

AM p`,Nq “ ČAM p`,Nq ` AM p`,Nq, (18)

where, with the notations (9) and (10),

ČAM p`,Nq “
Č

c

ˆ

1

M2N
,M`2rNβs,Mp2rNβs ´ 1q

˙

“

c

1

M2N
Iq

¨

˝1bq
pe`´1,N,β`2´N ,e`,N,β`2´N q

ż

R
dxΨpxq

ż e`,N,β`xM
2´N

e`,N,β

fudu

˛

‚

“ IqprgM p`,Nqq, (19)

with

rgM p`,Nqpy1, ..., yqq “

c

1

M2N
1
bq
pe`´1,N,β`2´N ,e`,N,β`2´N q

py1, ..., yqq (20)

ż

R
dxΨpxq

ż e`,N,β`xM
2´N

e`,N,β

fupy1, ..., yqqdu

and
AM p`,Nq

“


c

ˆ

1

M2N
,M`2rNβs,Mp2rNβs ´ 1q

˙

“

c

1

M2N
Iq

¨

˝1p´8,e`,N,β`2´N qqzpe`´1,N,β`2´N ,e`,N,β`2´N qq

ż

R
dxΨpxq

ż e`,N,β`xM
2´N

e`,N,β

fudu

˛

‚
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Before going further, let us emphasize the roles for statistical inference of the var-
ious parameters introduced in this section. The estimator pHN for the Hurst parameter
defined in equation (65) below relies on the wavelet variations (25) in which the corre-
sponding wavelet coefficients are precisely chosen. First, we need to consider d scales,
that is the parameter a in (4), to perform a log-regression. To define pHN , we take the
scales pM2N q´1 for M “ 1, . . . , d. Then, at such a scale pM2N q´1 we only work with
wavelet coefficients at position, that is the parameter k in (4), which are multiple of
M2rN

βs. Thus, we exactly get the definition of the coefficients AM p`,Nq in (16). This
choice of wavelet coefficients has the double advantage to offer, as already stated, some
independence properties for the “tilde part”, see also Lemma 2 below, while the “check
counterpart” are negligible, for the L2pΩq-norm. Nevertheless, if all coefficients AM p`,Nq,
with ` P LN , were chosen in (25), then the proofs of the Central Limit Theorems (The-
orem 1 and 2 below) would unfortunately not hold. To overcome this situation, we just
have to select a proportion of the coefficients AM p`,Nq, that is the one for which ` P LN,γ .
The simple fact that γ ă β allows to deduce precious convergence to 0 in L1pΩq, see for
instance Proposition 1 below. Note that increasing β allows to also increase γ and thus
improve the rate of convergence to the normal distribution, see the bound for the Wasser-
stein distance in Theorems 1 and 2, but, on the other side, reduce the number of data
used in the statistical inference, as a consequence of the definition of LN and LN,γ . For
this reason, it is a difficult question to know what should be the more “practicable” value
for the parameter β.

Let us come back to the main properties of the special wavelet coefficients intro-
duced here over. First, the following facts will play an important role for the proofs of
our main results.

Lemma 2.

1. For every N ě 1, the random vectors
´

p ČA1p`,Nq, . . . , ČAdp`,Nqq, ` P LN,γ
¯

are mu-
tually independent.

2. For every N ě 1 and M “ 1, ..., d, the random variables p ČAM p`,Nq, ` P LN,γq are
identically distributed.

3. For every N ě 1 and M “ 1, ..., d, the random variables p AM p`,Nq, ` P LN,γq are
identically distributed.

Proof: To prove the first point, we notice that for every `, j P LN,γ with ` “ j and for
every M1,M2 “ 1, ..., d, we clearly have

ČgM1p`,Nq b1
ČgM2pj,Nq “ 0

almost everywhere on R2q´2 (the notation b1 stands for the contraction of order one,
see (74) in the Appendix). This is because the intervals that appear in the expression
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of the kernels ČgM1p`,Nq and ČgM2pj,Nq are disjoint. The independence follows from the
Ustúnel-Zakai criterion (see e.g. [57, Proposition 1]).

Concerning the second point, for any integer h such that ` ` h P LN,γ , we can
write

ČAM p`` h,Nq “ dpHq

c

1

M2N

ż

Rq
dBpy1q...dBpyqq

1
bq
pe``h´1,N,β`2´N ,e``h,N,β`2´N q

py1, ..., yqq

ż

R
dxΨpxq

ż e``h,N,β`xM2´N

e``h,N,β

pu´ y1q
´

´

1
2
` 1´H

q

¯

` . . . pu´ yqq
´

´

1
2
` 1´H

q

¯

` du

and with the successive changes of variables ũ “ u ´ eh,N,β and ỹj “ yj ´ eh,N,β for
j “ 1, ..., q, we arrive at

ČAM p`` h,Nq

“ dpHq

c

1

M2N

ż

Rq
dBpy1q...dBpyqq

1
bq
pe``h´1,N,β`2´N ,e``h,N,β`2´N q

py1, ..., yqq

ż

R
dxΨpxq

ż e`,N,β`xM2´N

e`,N,β

pu´ y1 ` eh,N,βq
´

´

1
2
` 1´H

q

¯

` . . . pu´ yq ` eh,N,βq
´

´

1
2
` 1´H

q

¯

` du

“ dpHq

c

1

M2N

ż

Rq
dBpy1 ` eh,N,βq...dBpyq ` eh,N,βq

1
bq
pe`´1,N,β`2´N ,e`,N,β`2´N q

py1, ..., yqq

ż

R
dxΨpxq

ż e`,N,β`xM2´N

e`,N,β

pu´ y1q
´

´

1
2
` 1´H

q

¯

` . . . pu´ yqq
´

´

1
2
` 1´H

q

¯

` du.

Since the Brownian motion has stationary increments, we have

ČAM p`` h,Nq “pdq dpHq

c

1

M2N

ż

Rq
dBpy1q...dBpyqq

1
bq
pe`´1,N,β`2´N ,e`,N,β`2´N q

py1, ..., yqq

ż

R
dxΨpxq

ż e`,N,β`xM2´N

e`,N,β

pu´ y1q
´

´

1
2
` 1´H

q

¯

` . . . pu´ yqq
´

´

1
2
` 1´H

q

¯

` du

“ ČAM p`,Nq.

The third point follows immediately, using the same arguments as above.
The next result is then a direct consequence of Lemma 1.
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Lemma 3. For every N ě 1,M “ 1, ..., d and for every ` P LN,γ, we have

E
”

AM p`,Nq
2ı

ď Cpq,H,Mq2´Np2H`1q2
rNβs 2H´2

q .

We will need some auxiliary results concerning the behavior of the second and
fourth moments of the random variable (19).

Lemma 4. For N sufficiently large and for all ` P LN,γ ,M “ 1, ..., d, we have
ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM p`,Nq
2ı

´M´p2H`1qCΨpHq

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q . (21)

In particular,
2Np2H`1qE

”

ČAM p`,Nq
2ı

ÝÑ
NÑ8

M´p2H`1qCΨpHq.

Also, for N sufficiently large and for ` P LN,γ ,M “ 1, ..., d, we have
ˇ

ˇ

ˇ

ˇ

22Np2H`1qE
”

ČAM p`,Nq
4ı

´M´p4H`2qE
“

cp1, 0q4
‰

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q , (22)

which implies

22Np2H`1qE
”

ČAM p`,Nq
4ı

N Ñ8M´p4H`2qE
“

cp1, 0q4
‰

.

Proof: Since ČAM p`,Nq and AM p`,Nq are independent random variables, we have from
(18),

E
”

AM p`,Nq
2
ı

“ E
”

ČAM p`,Nq
2ı

`E
”

AM p`,Nq
2ı

. (23)

Let us note that, the above inequality combined with equality (17) and Lemme 3 entail

2Np2H`1qE
”

ČAM p`,Nq
2ı

ď C. (24)

The relation (23) gives

2Np2H`1qE
”

ČAM p`,Nq
2ı

“ 2Np2H`1qE
”

AM p`,Nq
2
ı

´ 2Np2H`1qE
”

AM p`,Nq
2ı

“ M´p2H`1qCΨpHq ´ 2Np2H`1qE
”

AM p`,Nq
2ı

,

and the inequality (21) is then a direct consequence of Lemma 3.

12



To prove (22), we write

E
”

AM p`,Nq
4
ı

“ E
”

ČAM p`,Nq
4ı

`E
”

AM p`,Nq
4ı

` 6E
”

ČAM p`,Nq
2

AM p`,Nq
2ı

`4E
”

ČAM p`,Nq
3

AM p`,Nq
ı

` 4E
”

ČAM p`,Nq AM p`,Nq
3ı

“ E
”

ČAM p`,Nq
4ı

`E
”

AM p`,Nq
4ı

` 6E
”

ČAM p`,Nq
2

AM p`,Nq
2ı

` 4E
”

ČAM p`,Nq AM p`,Nq
3ı

,

because, by [6, Lemma 2], we have E
”

ČAM p`,Nq
3

AM p`,Nq
ı

“ 0. Thus, we get, using the
equality (5),

22Np2H`1qE
”

ČAM p`,Nq
4ı

“ 22Np2H`1qE
”

AM p`,Nq
4
ı

´ 22Np2H`1qE
”

AM p`,Nq
4ı

´6ˆ 22Np2H`1qE
”

ČAM p`,Nq
2

AM p`,Nq
2ı

´ 4ˆ 22Np2H`1qE
”

ČAM p`,Nq AM p`,Nq
3ı

“ M´p4H`2qE
”

cp1, 0q4
ı

´ 22Np2H`1qE
”

AM p`,Nq
4ı

´6ˆ 22Np2H`1qE
”

ČAM p`,Nq
2

AM p`,Nq
2ı

´ 4ˆ 22Np2H`1qE
”

ČAM p`,Nq AM p`,Nq
3ı

.

The hypercontractivity property (75), the inequality (24) and Lemma 3 imply

22Np2H`1qE
”

AM p`,Nq
4ı

ď C22Np2H`1q

ˆ

E
”

AM p`,Nq
2ı
˙2

ď C2
rNβs 4H´4

q

while, by, the Cauchy-Schwarz’s inequality, (75), Lemma 3 and (24), we have

E
”

ČAM p`,Nq
2

AM p`,Nq
2ı

ď

ˆ

E
”

ČAM p`,Nq
4ı
˙

1
2
ˆ

E
”

AM p`,Nq
4ı
˙

1
2

ď CE
”

ČAM p`,Nq
2ı

E
”

AM p`,Nq
2ı

ď C2´2Np2H`1q2
rNβs 2H´2

q

and

E
”

ČAM p`,Nq AM p`,Nq
3ı

ď C

ˆ

E
”

ČAM p`,Nq
2ı
˙

1
2
ˆ

E
”

AM p`,Nq
6ı
˙

1
2

ď C

ˆ

E
”

ČAM p`,Nq
2ı
˙

1
2
ˆ

E
”

AM p`,Nq
2ı
˙

3
2

ď C2´2Np2H`1q2
rNβs 3H´3

q .

13



The above three bounds lead to inequality (22).

Lemma 5. Let M1,M2 “ 1, ..., d. Then for N sufficiently large, we have
ˇ

ˇ

ˇ

ˇ

22Np2H`1qE
”

ČAM1p`,Nq
2

ČAM2p`,Nq
2ı

´E
”

cpM´1
1 , 0q2cpM´1

2 , 0q2
ı

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q .

Proof: By the scaling property and the stationarity of the increments of the Hermite
process we can show that for every M1,M2 “ 1, ..., d,

pAM1p`,Nq, AM2p`,Nqq “
pdq 2´NpH`

1
2
qpcpM´1

1 , 0q, cpM´1
2 , 0qq.

This implies

22Np2H`1qE
”

AM1p`,Nq
2AM2p`,Nq

2
ı

“ E
”

cpM´1
1 , 0q2cpM´1

2 , 0q2
ı

.

By using the decomposition (21) for AM1p`,Nq and AM2p`,Nq and by applying the
estimate in Lemma 3 for the negligible parts AM1p`,Nq and AM2p`,Nq, we can conclude.

3.2 The modified wavelet variation and its negligible part

Let us now introduce the main object of this work, namely the modified wavelet variation
of the Hermite process. This wavelet variation is defined by using, not all the wavelet
coefficients of the Hermite process, but only the special coefficient given by (16). More
exactly, for N ě 1,M “ 1, ..., d, we set

VN,M “
1

a

|LN,γ |

ÿ

`PLN,γ

«

AM p`,Nq
2

E
“

AM p`,Nq2
‰ ´ 1

ff

. (25)

From (17), we can also write

VN,M “
1

a

|LN,γ |
2Np2H`1qM2H`1

CΨpHq

ÿ

`PLN,γ

`

AM p`,Nq
2 ´E

“

AM p`,Nq
2
‰˘

. (26)

The purpose is to find the limit behavior in distribution, as N Ñ 8, of the sequence
pVN,M , N ě 1q. To this end, we decompose VN,M as follows

VN,M “ VN,M,1 ` VN,M,2 ` VN,M,3, (27)

where, for all N ě 1 and M “ 1, ..., d, we set

VN,M,1 “
1

a

|LN,γ |
2Np2H`1qM2H`1

CΨpHq

ÿ

`PLN,γ

ˆ

ČAM p`,Nq
2
´E

”

ČAM p`,Nq
2ı
˙

, (28)

14



VN,M,2 “
1

a

|LN,γ |
2Np2H`1qM2H`1

CΨpHq

ÿ

`PLN,γ

ˆ

AM p`,Nq
2
´E

”

AM p`,Nq
2ı
˙

, (29)

and

VN,M,3 “ 2
1

a

|LN,γ |
2Np2H`1qM2H`1

CΨpHq

ÿ

`PLN,γ

ČAM p`,Nq AM p`,Nq. (30)

In a first step, we will show that the summands denoted by VN,M,2 and VN,M,3 above are
negligible, and consequently the behavior of the wavelet variation (25) is given by the
sequence pVN,M,1, N ě 1q.

Proposition 1. Let VN,M,2, VN,M,3 be given by (29), (30), respectively. We have

E
“

|VN,M,2|
‰

ď Cpq,H,Mq2
Nγ

2 2
rNβs 2H´2

q

and
E
“

|VN,M,3|
‰

ď Cpq,H,Mq2
Nγ

2 2
rNβsH´1

q .

In particular, the sequences pVN,M,2, N ě 1q and pVN,M,3, N ě 1q converge to zero in
L1pΩq, as N Ñ8.

Proof: For VN,M,2 we have the following estimates, by (29) and Lemma 3,

E
“

|VN,M,2|
‰

ď Cpq,H,Mq
2Np2H`1q

a

|LN,γ |

ÿ

`PLN,γ

E
”

AM p`,Nq
2ı

ď Cpq,H,Mq
b

|LN,γ |2´Np2H`1q2
rNβs 2H´2

q

ď Cpq,H,Mq2
Nγ

2 2
rNβs 2H´2

q .

Since γ ă β and H ă 1, we get the converge to zero in L1pΩq, as N Ñ8, of VN,M,2.
Concerning the summand denoted by VN,M,3, we have by (30) and Cauchy-

Schwarz’s inequality,

E
“

|VN,M,3|
‰

ď Cpq,H,Mq
2Np2H`1q

a

|LN,γ |

ÿ

`PLN,γ

ˆ

E
”

ČAM p`,Nq
2ı
˙

1
2
ˆ

E
”

AM p`,Nq
2ı
˙

1
2

ď Cpq,H,Mq
2Np2H`1q

a

|LN,γ |

ÿ

`PLN,γ

a

2Np2H`1q

b

2Np2H`1q2
rNβs 2H´2

q

ď Cpq,H,Mq2
Nγ

2 2
rNβsH´1

q .

Again, the assumptions γ ă β and H ă 1 imply that VN,M,3 converges to zero in L1pΩq
as N Ñ8.
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3.3 The Central Limit Theorem for the modified wavelet variation

In this section, we prove that the d-dimensional random vector pVN,M ,M “ 1, ..., dq
satisfies a (multidimensional) Central Limit Theorem. On this purpose, we first focus on
the sequence pVN,M,1, N ě 1q defined by (28).

Let us start by evaluating the behavior of E
“

VN,M1,1VN,M2,1

‰

, with M1,M2 “

1, ..., d, as N Ñ8.

Proposition 2. Let VN,M,1 be given by (28). Then for N large enough, and for every
M “ 1, ..., d , we have

ˇ

ˇ

ˇ

ˇ

ˇ

E
“

V 2
N,M,1

‰

´

˜

E
“

cp1, 0q4
‰

CΨpHq2
´ 1

¸ˇ

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q . (31)

If M1,M2 “ 1, ..., d are such that M1 “M2, then for N large
ˇ

ˇ

ˇ

ˇ

ˇ

E
“

VN,M1,1VN,M2,1

‰

´

˜

pM1M2q
2H`1E

“

cpM´1
1 , 0q2cpM´1

2 , 0q2
‰

CΨpHq2
´ 1

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q .

(32)

Proof: By (28), we have, for M “ 1, ..., d and N ě 1,

V 2
N,M,1 “

1

|LN,γ |
22Np2H`1qM4H`2

CΨpHq2

ÿ

`,jPLN,γ

E

„ˆ

ČAM p`,Nq
2
´E

“

ČAM p`,Nq
2‰
˙ˆ

ČAM pj,Nq
2
´E

“

ČAM pj,Nq
2‰
˙

“
1

|LN,γ |
22Np2H`1qM4H`2

CΨpHq2

ÿ

`PLN,γ

E

«

ˆ

ČAM p`,Nq
2
´E

“

ČAM p`,Nq
2‰
˙2

ff

,

since ČAM p`,Nq and ČAM pj,Nq are independent when ` “ j (see the first point of Lemma
2). Next, since, by the second point of Lemma 2, p ČAM p`,Nq, ` P LN,γq are identically
distributed, we can write

E
“

V 2
N,M,1

‰

“
22Np2H`1qM4H`2

CΨpHq2
E

«

ˆ

ČAM p`0, Nq
2
´E

”

ČAM p`0, Nq
2ı
˙2

ff

“
22Np2H`1qM4H`2

CΨpHq2

˜

E
”

ČAM p`0, Nq
4ı

´

ˆ

E
”

ČAM p`0, Nq
2ı
˙2

¸

.
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for some `0 P LN,γ . Therefore, we obtain

ErV 2
N,M,1s ´

˜

E
“

cp1, 0q4
‰

CΨpHq2
´ 1

¸

“
1

CΨpHq2
M4H`2

„ˆ

22Np2H`1qE
”

ČAM p`0, Nq
4ı

´M´p4H`2qErcp1, 0q4s

˙

´

˜

22Np2H`1q

ˆ

E
”

ČAM p`0, Nq
2ı
˙2

´M´p4H`2qCΨpHq
2

¸ff

. (33)

On one hand, by (22), we have
ˇ

ˇ

ˇ

ˇ

22Np2H`1qE
”

ČAM p`0, Nq
4ı

´M´p4H`2qE
“

cp1, 0q4
‰

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q (34)

while, on the other hand, by Lemma 4, we get
ˇ

ˇ

ˇ

ˇ

ˇ

22Np2H`1q

ˆ

E
”

ČAM p`0, Nq
2ı
˙2

´M´p4H`2qCΨpHq
2

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM p`0, Nq
2ı

´M´p2H`1qCΨpHq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM p`0, Nq
2ı

`M´p2H`1qCΨpHq

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q . (35)

By plugging (34) and (35) into (33), we obtain the inequality (31).
If M1 “M2, by (26) and the independence property in the first point of Lemma

2, we express

E
“

VN,M1,1VN,M2,1

‰

“
1

|LN,γ |
22Np2H`1qM2H`1

1 M2H`1
2

CΨpHq2

ÿ

`PLN,γ

E

„ˆ

ČAM1p`,Nq
2
´E

”

ČAM1p`,Nq
2ı
˙ˆ

ČAM2p`,Nq
2
´E

”

ČAM2p`,Nq
2ı
˙

“
1

|LN,γ |
22Np2H`1qM2H`1

1 M2H`1
2

CΨpHq2

ÿ

`PLN,γ
ˆ

E
”

ČAM1p`,Nq
2

ČAM2p`,Nq
2ı

´E
”

ČAM1p`,Nq
2ı

E
”

ČAM2p`,Nq
2ı
˙

“
22Np2H`1qM2H`1

1 M2H`1
2

CΨpHq2

ˆ

E
”

ČAM1p`0, Nq
2

ČAM2p`0, Nq
2ı

´E
”

ČAM1p`0, Nq
2ı

E
”

ČAM2p`0, Nq
2ı
˙

17



for some `0 P LN,γ . This time, we write

E
“

VN,M1,1VN,M2,1

‰

´

˜

pM1M2q
2H`1E

“

cpM´1
1 , 0q2cpM´1

2 , 0q2
‰

CΨpHq2
´ 1

¸

“
M2H`1

1 M2H`1
2

CΨpHq2

„

22Np2H`1qE
”

ČAM1p`0, Nq
2

ČAM2p`0, Nq
2ı

´E
“

cpM´1
1 , 0q2cpM´1

2 , 0q2
‰

´

ˆ

22Np2H`1qE
”

ČAM1p`0, Nq
2ı

E
”

ČAM2p`0, Nq
2ı

´M
´p2H`1q
1 M

´p2H`1q
2 CΨpHq

2

˙

.

(36)

First, we get, from Lemma 5,
ˇ

ˇ

ˇ

ˇ

22Np2H`1qE
”

ČAM1p`0, Nq
2

ČAM2p`0, Nq
2ı

´E
“

cpM´1
1 , 0q2cpM´1

2 , 0q2
‰

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q

(37)

while we have, using Lemma 4,
ˇ

ˇ

ˇ

ˇ

22Np2H`1qE
”

ČAM1p`0, Nq
2ı

E
”

ČAM2p`0, Nq
2ı

´M
´p2H`1q
1 M

´p2H`1q
2 CΨpHq

2

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM1p`0, Nq
2ı

´M
´p2H`1q
1 CΨpHq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM2p`0, Nq
2ı
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ
M
´p2H`1q
1 CΨpHq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2Np2H`1qE
”

ČAM2p`0, Nq
2ı

´M
´p2H`1q
2 CΨpHq

ˇ

ˇ

ˇ

ˇ

ď C2
rNβs 2H´2

q (38)

We conclude the proof by plugging (37) and (38) into (36) to obtain the inequality (32).

For the proof of our main results, we will use the notion of strong independence.
introduced in [54].

Definition 1. Two square integrable random variables F and G admiting the chaos
expansion F “

ř

ně0 Inpfnq, G “
ř

ně0 Inpgnq where fn, gn P L
2pRnq are symmetric for

every n ě 0, are strongly independent if for every m,n ě 0, the random variables Inpfnq
and Impgmq are independent.

We need two technical lemmas concerning the strong independent random vari-
ables in Wiener chaos. The first lemma concerns the strong independence of squares of
independent chaotic random variables.
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Lemma 6. [12, Lemma 2] Consider two integers p, q ě 1. Let F “ Ippfq and G “ Iqpgq
with f P L2pRpq, g P L2pRqq. Assume that F and G are independent random variables.
Then F 2 and G2 are strongly independent.

The second lemma deals with scalar product of Malliavin derivative of strongly
independent random variables. Basic notions of Malliavin calculus, together with the
notation used in the following lemma are recalled in the Appendix.

Lemma 7. [54, Lemma 1] and [12, Lemma 4] Assume that F and G are two strongly
independent random variables in D1,2. Then

1.
xDF,Dp´Lq´1Gy “ xDp´Lq´1F,DGy “ 0.

2. xDF,Dp´Lq´1F y and xDG,Dp´Lq´1Gy are independent random variables.

Let us now prove the CLT for the sequence (28) whenM “ 1, ..., d is fixed. In the
sequel, dW stands for the Wasserstein distance. If F and G are two random variables, it
is defined as

dW pF,Gq “ sup
hPA

|ErhpF qs ´ErhpGqs|,

where A is the set of Lipschitz function h : RÑ R such that

sup
x,yPR,x‰y

|hpxq ´ hpyq|

|x´ y|
ď 1.

We refer to [43, Appendix C1] for a comprehensive view on distances between probability
distributions.

Proposition 3. Fix M “ 1, ..., d and consider the sequence pVN,M,1, N ě 1q defined by
(28). Let us set

KΨ,H “
E
“

cp1, 0q4
‰

CΨpHq2
´ 1 “

E
“

cp1, 0q4
‰

pE
“

cp1, 0q2
‰

q2
´ 1. (39)

We have
VN,M,1 ÝÑ

pdq

NÑ8
Np0,KΨ,Hq,

where Ñpdq stands for the convergence in distribution. Moreover, for N large enough,

dW pVN,M,1;Np0,KΨ,Hqq ď C2´
rNγ s

2 .
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Proof: From Theorem 4 and equation (79) in the Appendix, we know that

dW pVN,M,1;Np0,KΨ,Hqq ď C

ˆ

ˇ

ˇE
“

V 2
N,M,1

‰

´KΨ,H

ˇ

ˇ`

b

Var rxDVN,M,1, Dp´Lq´1VN,M,1ys

˙

ď C

ˆ

2
rNβs 2H´2

q `

b

Var pxDVN,M,1, Dp´Lq´1VN,M,1yq

˙

, (40)

where we used the estimate in Proposition 2. We start by computing the quantity
xDVN,M,1, Dp´Lq

´1VN,M,1y. We have by (28),

DVN,M,1 “
2Np2H`1q

CΨpHq
a

|LN,γ |

ÿ

`PLN,γ

D

ˆ

ČAM p`,Nq
2
´E

”

ČAM p`,Nq
2ı
˙

and

Dp´Lq´1VN,M,1 “
2Np2H`1q

CΨpHq
a

|LN,γ |

ÿ

`PLN,γ

Dp´Lq´1

ˆ

ČAM p`,Nq
2
´E

”

ČAM p`,Nq
2ı
˙

.

Thus, we express

xDVN,M,1, Dp´Lq
´1VN,M,1y “

22Np2H`1q

CΨpHq2|LN,γ |
ÿ

`,jPLN,γ

xD ČAM p`,Nq
2
, Dp´Lq´1

ˆ

ČAM pj,Nq
2
´E

”

ČAM pj,Nq
2ı
˙

y.

If ` “ j, then ČAM p`,Nq and {AM pj,Nq are independent, by Lemma 2, point 1. By

Lemma 6, the random variables ČAM p`,Nq
2
and {AM pj,Nq

2
are strongly independent and

the Lemma 7 implies that

xD {AM p`,Nq
2
, Dp´Lq´1

ˆ

{AM pj,Nq
2
´E

”

{AM pj,Nq
2ı
˙

y “ 0.

Therefore, we get

xDVN,M,1, Dp´Lq
´1VN,M,1y

“
22Np2H`1q

CΨpHq2|LN,γ |
ÿ

`,PLN,γ

B

D {AM p`,Nq
2
, Dp´Lq´1

ˆ

{AM p`,Nq
2
´E

”

{AM p`,Nq
2ı
˙F

“
22Np2H`1q

CΨpHq2|LN,γ |
ÿ

`,PLN,γ

H`,N ,
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where we used the notation

H`,N “

B

D ČAM p`,Nq
2
, Dp´Lq´1

ˆ

{AM p`,Nq
2
´E

”

{AM p`,Nq
2ı
˙F

.

Next, we estimate the variance of xDVN,M,1, Dp´Lq
´1VN,M,1y. For any N ě 1, we can

write

Var
`

xDVN,M,1, Dp´Lq
´1VN,M,1y

˘

“ E

„

´

xDVN,M,1, Dp´Lq
´1VN,M,1y ´E

”

xDVN,M,1, Dp´Lq
´1VN,M,1y

ı¯2


“
24Np2H`1q

CΨpHq4|LN,γ |2
E

»

–

ÿ

`,jPLN,γ

`

H`,N ´E
“

H`,N

‰˘ `

Hj,N ´E
“

Hj,N

‰˘

fi

fl .

By the second part of Lemma 7, for every ` “ j we have that H`,N and Hj,N are
independent and so

E
“`

H`,N ´E
“

H`,N

‰˘ `

Hj,N ´E
“

Hj,N

‰˘‰

“ 0.

Consequently,

Var
“

xDVN,M,1, Dp´Lq
´1VN,M,1y

‰

“
24Np2H`1q

CΨpHq4|LN,γ |2
ÿ

`PLN,γ

E
”

`

H`,N ´E
“

H`,N

‰˘2
ı

.

(41)
We claim that for every N ě 1 and ` P LN,γ we have

E
”

`

H`,N ´E
“

H`,N

‰˘2
ı

ď Cpq,Hq2´4Np2H`1q ă 8, (42)

with Cpq,Hq ą 0 not depending on N, `. To prove the inequality (42), we will use the
chaos expansion of H`,N . Recall that ČAM p`,Nq “ IqppgM p`,Nq with pgM p`,Nq from (20).
This implies, via the product formula (73),

ČAM p`,Nq
2
´E

”

ČAM p`,Nq
2ı

“

q´1
ÿ

r“0

r!

ˆ

q

r

˙2

I2q´2r ppgM p`,Nq br pgM p`,Nqq ,

and

D˚ ČAM p`,Nq
2
“

q´1
ÿ

r“0

r!

ˆ

q

r

˙2

p2q ´ 2rqI2q´2r´1 pppgM p`,Nq br pgM p`,Nqp¨, ˚qq ,

D˚p´Lq
´1

ˆ

ČAM p`,Nq
2
´E

”

ČAM p`,Nq
2ı
˙

“

q´1
ÿ

r“0

r!

ˆ

q

r

˙2

I2q´2r´1 pppgM p`,Nq br pgM p`,Nqp¨, ˚qq .
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As a consequence of the above two relations, we write

H`,N “

q´1
ÿ

r1,r2“0

r1!r2!

ˆ

q

r1

˙2ˆ q

r2

˙2

p2q ´ 2r1q

ż

R
dxI2q´2r´1 pppgM p`,Nq br1 pgM p`,Nqp¨, xqq I2q´2r´1 pppgM p`,Nq br2 pgM p`,Nqp¨, xqq dx

“

q´1
ÿ

r1,r2“0

r1!r2!

ˆ

q

r1

˙2ˆ q

r2

˙2

p2q ´ 2r1q

p2q´2r1´1q^p2q´2r2´1q
ÿ

a“0

a!

ˆ

2q ´ 2r1 ´ 1

a

˙ˆ

2q ´ 2r2 ´ 1

a

˙

I4q´2r1´2r2´2´2a

`

ppgM p`,Nqrbr1pgM p`,Nq ba`1 ppgM p`,Nqrbr2pgM p`,Nq
˘

. (43)

We remark, thanks to (24), that

q!}pgM p`,Nq}
2
L2pRqq “ E

”

ČAM p`,Nq
2‰
ď C2´Np2H`1q,

and, as a consequence, for every r1, r2 “ 0, ..., q ´ 1 and for every a “ 0, ..., p2q ´ 2r1 ´

1q ^ p2q ´ 2r2 ´ 1q, we have

E
”

I4q´2r1´2r2´2´2a

`

ppgM p`,Nqrbr1pgM p`,Nqq ba`1 ppgM p`,Nqrbr2pgM p`,Nqq
˘2
ı

“ Cpq, r1, r2, aq}ppgM p`,Nqrbr1pgM p`,Nq ba`1 ppgM p`,Nqrbr2pgM p`,Nqq}
2
M2pR4q´2r1´2r2´2a´2q

ď Cpq, r1, r2, aq}pgM p`,Nqrbr1pgM p`,Nq}
2
L2pR2q´2r1 q

}pgM p`,Nqrbr2pgM p`,Nq}
2
L2pR2q´2r2 q

ď Cpq, r1, r2, aq}pgM p`,Nq}
8
L2pRqq

ď Cpq, r1, r2, aq2
´4Np2H`1q. (44)

By combining the above estimates (44) and (43), we obtain the claim (42). Com-
ing back to (41), we get, using (13),

Var
“

xDVN,M,1, Dp´Lq
´1VN,M,1y

‰

ď Cpq,H,Ψq
24Np2H`1q

|LN,γ |2
ÿ

`PLN,γ

2´4Np2H`1q

ď Cpq,H,Ψq2rN
γ s. (45)

The conclusion is obtained via (40) and (45).
We immediately deduce the asymptotic normality of the modified wavelet varia-

tion and its rate of convergence under the Wasserstein distance.
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Theorem 1. Consider the sequence VN,M defined by (25). Then

VN,M ÝÑpdq

NÑ8
Np0,KΨ,Hq,

and for N large enough,

dW pVN,M ;Np0,KΨ,Hqq ď C2´
rNγ s

2 .

Proof: The proof is a consequence of the results proven in Propositions 1, and 3.
Indeed, by the triangle’s inequality,

dW pVN,M ;Np0,KΨ,Hqq ď dW pVN,M,1;Np0,KΨ,Hqq ` dW pVN,M,1, VN,M q

ď dW pVN,M,1;Np0,KΨ,Hqq `E
“

|VN,M,1 ´ VN,M |
‰

ď dW pVN,M,1;Np0,KΨ,Hqq `E
“

|VN,M,2|
‰

`E
“

|VN,M,3|
‰

.

It suffices to use Proposition 3 to bound the first summand in the right-hand side above
and Proposition 1 to bound the second and third summands.

Let us now state and prove a multidimensional CLT for the modified wavelet
variation.

Theorem 2. Let VN,M be given by (25). Then the d-dimensional random vector pVN,M ,M “

1, , , , , dq converges in distribution, as N Ñ 8, to the d-dimensional Gaussian vector
Np0,Kq, where K “ pKM1,M2qM1,M2“1,...,d is such that

KM,M “ KΨ,H for every M “ 1, ..., d (46)

and

KM1,M2 “
pM1M2q

2H`1E
“

cpM´1
1 , 0q2cpM´1

2 , 0q2
‰

CΨpHq2
´ 1 for M1,M2 “ 1, ..., d,M1 “M2.

(47)

Proof: The triangle’s inequality gives

dW ppVN,M ,M “ 1, ..., dq, Np0,Kqq ď dW ppVN,M,1,M “ 1, ..., dq, Np0,Kqq

`

d
ÿ

M“1

`

E
“

|VN,M,2|
‰

`E
“

|VN,M,3|
‰˘

. (48)

By Theorem 4 and equation (79) in the Appendix, we have

dW ppVN,M,1,M “ 1, ..., dq, Np0,Kqq ď C

¨

˝

g

f

f

e

d
ÿ

M1,M2“1

`

E
“

VN,M1,1VN,M2,1

‰

´KM1,M2

˘2

`

g

f

f

e

d
ÿ

M1,M2“1

Var rxDVN,M1,1, Dp´Lq
´1VN,M2,1ys

˛

‚

(49)
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We need to compute the variance of the quantity xDVN,M1,1, Dp´Lq
´1VN,M2,1y.

The situation whenM1 “M2 has been treated in the proof of Proposition 3 and the case
M1 “M2 follows in a similar way. Actually, we express

xDVN,M1,1, Dp´Lq
´1VN,M2,1y “

22Np2H`1q

CΨpHq2|LN,γ |

“
22Np2H`1q

CΨpHq2|LN,γ |
ÿ

`,PLN,γ

H`,N pM1,M2q

where we used the notation

H`,N pM1,M2q “

B

D {AM1p`,Nq
2
, Dp´Lq´1

ˆ

{AM2p`,Nq
2
´E

”

{AM2p`,Nq
2ı
˙F

.

This gives, as in (41),

Var
“

xDVN,M1,1, Dp´Lq
´1VN,M2,1y

‰

(50)

“
24Np2H`1q

CΨpHq4|LN,γ |2
ÿ

`PLN,γ

E
”

`

H`,N pM1,M2q ´E
“

H`,N pM1,M2q
‰˘2

ı

and we can show that

E
”

`

H`,N pM1,M2q ´E
“

H`,N pM1,M2q
‰˘2

ı

ď Cpq,Hq2´4Np2H`1q.

We obtain, from (13),

Var
“

xDVN,M1,1, Dp´Lq
´1VN,M2,1y

‰

ď C2´rN
γ s. (51)

By combining (32), (51) and (49), we conclude

dW ppVN,M,1,M “ 1, ..., dq, Np0,Kqq ď C2´
rNγ s

2 .

We finish the proof by plugging this estimate, together with the estimates in Proposition
1, into (48).

4 Discretization of the wavelet variation

We will define an estimator for the Hurst index of the Hermite process based on the
modified wavelet variation VN,M given by (25). In order to obtain an expression of
the estimator which can be numerically computed, we need to discretize the wavelet
coefficient AM p`,Nq.
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We will consider the following Riemann approximation: for M “ 1, ..., d, N ě 1
and for ` P LN,γ , we set

EM p`,Nq “

c

1

M2N
1

2N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙

Z
k2´N`M`2rN

β s

M2N

, (52)

and

pVN.M “
1

a

|LN,γ |

ÿ

`PLN,γ

«

EM p`,Nq
2

E
“

AM p`,Nq2
‰ ´ 1

ff

. (53)

We will prove that VN,M´ pVN,M converges to zero in L1pΩq as N Ñ8 and we will deduce
that the discretized wavelet variation pVN,M also satisfies a CLT. We start by evaluating
the difference between AM p`,Nq and its discretized counterpart EM p`,Nq.

Proposition 4. Let us denote

tN,M “
AM p`,Nq

b

E
“

AM p`,Nq2
‰

´
EM p`,Nq

b

E
“

AM p`,Nq2
‰

, N ě 1,M “ 1, ..., d. (54)

Then, for N large enough, we have

E
“

t2N,M
‰

ď C2´N2rN
βs2H .

Proof: By (17), we get

tN,M “

d

M2H`1

CΨpHq
2Np2H`1qpAM p`,Nq ´ EM p`,Nqq,

and then

E
“

t2N,M
‰

“
M2H`1

CΨpHq
2Np2H`1qpE

“

AM p`,Nq
2
‰

´2E
“

AM p`,NqEM p`,Nq
‰

`E
“

EM p`,Nq
2
‰

q.

By (16) and (52), we write

E
“

AM p`,NqEM p`,Nq
‰

“
1

M22N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxqE

«

Z
x`M`2rN

β s

M2N

Z
k2´N`M`2rN

β s

M2N

ff

“
1

M22N

1

2pM2N q2H

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxq

”

px`M`2rN
βsq2H ´ |x´ k2´N |2H

ı

,
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where we used the assumption (3). Also, we have

E
“

EM p`,Nq
2
‰

“
1

M23N

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

E

«

Z
k2´N`M`2rN

β s

M2N

Z
j2´N`M`2rN

β s

M2N

ff

“
1

M23N

1

2pM2N q2H

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

”

pk2´N `M`2rN
βsq2H ` pj2´N `M`2rN

βsq2H ´ |k2´N ´ j2´N |2H
ı

.

Consequently, we express

E
“

t2N,M
‰

“
M2H`1

CΨpHq

”

M´p2H`1qCΨpHq´

M´2H´1 1

2N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxq

”

px`M`2rN
βsq2H ´ |x´ k2´N |2H

ı

`
1

2
M´2H´1 1

22N

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

”

pk2´N `M`2rN
βsq2H ` pj2´N `M`2rN

βsq2H ´ |k2´N ´ j2´N |2H
ıı

“ 1`
1

CΨpHq

1

2N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxq|x´ k2´N |2H

´
1

2

1

CΨpHq

1

22N

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

|k2´N ´ j2´N |2H

´CΨpHq
´1

»

–

1

2N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxqpx`M`2rN

βsq2H

´
1

22N

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

pk2´N `M`2rN
βsq2H

fi

fl

“: 1` CΨpHq
´1pT1,N ´

1

2
T2,N q ´ CΨpHq

´1QN ,

with

T1,N “
1

2N

2N
ÿ

k“1

Ψ

ˆ

k

2N

˙
ż

R
dxΨpxq|x´ k2´N |2H ,
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T2,N “
1

22N

2N
ÿ

k,j“1

Ψ

ˆ

k

2N

˙

Ψ

ˆ

j

2N

˙

|k2´N ´ j2´N |2H ,

and

QN “ 2´N
2N
ÿ

k“1

Ψ

ˆ

k

2N

˙„
ż

R
dxΨpxqpx` `M2rn

βsq2H´

2´N
2N
ÿ

j“1

Ψ

ˆ

j

2N

˙

pk2´N ` `M2rn
βsq2H

fi

fl

We show that

T1,N ÝÑ
NÑ8

ż 1

0

ż 1

0
ΨpxqΨpyq|x´ y|2H´2dxdy “ ´2CΨpHq

and
|T1,N ´ p´2CΨpHqq| ď C2´N . (55)

We can decompose T1,N as follows.

T1,N “

ż 1

0

ż 1

0
ΨpxqΨpyq|x´ y|2H´2dxdy

`

2N
ÿ

k“1

ż k

2N

k´1

2N

dy

ˆ

Ψ

ˆ

k

2N

˙

´Ψpyq

˙
ż

R
dxΨpxq|x´ k2´N |2H

`

2N
ÿ

k“1

ż k

2N

k´1

2N

dyΨpyq

ż

R
Ψpxqdx

`

|x` k2´N |2H ´ |x´ y|2H
˘

“: ´2CΨpHq `R1,N `R2,N .

Let us bound the two rest terms, denoted by R1,N and R2,N . We have, since Ψ is of class
C1 with support contained in r0, 1s,

|R1,N | ď C
2N
ÿ

k“1

ż k

2N

k´1

2N

dy|y ´ k2´N |

ż

R
dx|Ψpxq||x´ k2´N |2H

ď C2´N
2N
ÿ

k“1

ż k

2N

k´1

2N

dy

ż

R
dx|Ψpxq| ď C2´N . (56)

Concerning the summand R2,N , let us remark that the function

f : r0, 1s Ñ R : a ÞÑ |x´ a|2H
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satisfies |f 1paq| ď C as soon as H ą 1
2 . Thus, we get

|R2,N | ď C
2N
ÿ

k“1

ż k

2N

k´1

2N

dy|Ψpyq||y ´ k2´N |

ż

R
|Ψpxq|dx

ď C2´N
2N
ÿ

k“1

ż k

2N

k´1

2N

dy|Ψpyq|

ż

R
|Ψpxq|dx ď C2´N . (57)

The estimates (56) and (57) imply (55).
In the same way, we can prove that T2,N ÝÑ

NÑ8
´2CΨpHq and

|T2,N ´ p´2CΨpHqq| ď C2´N .

We now show that QN converges to zero as N tends to infinity. One has

QN “ 2´N
2N
ÿ

k“1

Ψ

ˆ

k

2N

˙

»

–

ż

R
dxΨpxqpx` `M2rn

βsq2H ´ 2´N
2N
ÿ

j“1

Ψ

ˆ

j

2N

˙

pj2´N ` `M2rn
βsq2H

fi

fl

“ 2´N
2N
ÿ

k“1

Ψ

ˆ

k

2N

˙ 2N
ÿ

j“1

ż
j

2N

j´1

2N

dx

„

Ψpxqpx` `M2rn
βsq2H ´Ψ

ˆ

j

2N

˙

pj2´N ` `M2rn
βsq2H



.

Hence

|QN | ď 2´N
2N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

Ψ

ˆ

k

2N

˙ˇ

ˇ

ˇ

ˇ

2N
ÿ

j“1

ż
j

2N

j´1

2N

dx|Ψpxq|
ˇ

ˇ

ˇ
px` `M2rn

βsq2H ´ pj2´N ` `M2rn
βsq2H

ˇ

ˇ

ˇ

`2´N
2N
ÿ

k“1

ˇ

ˇ

ˇ

ˇ

Ψ

ˆ

k

2N

˙ˇ

ˇ

ˇ

ˇ

2N
ÿ

j“1

ż
j

2N

j´1

2N

dxpj2´N ` `M2rn
βsq2H

ˇ

ˇ

ˇ

ˇ

Ψpxq ´Ψ

ˆ

j

2N

˙ˇ

ˇ

ˇ

ˇ

.

We use the bounds, for x P p j´1
2N
, j

2N
q,

|px` `M2rn
βsq2H ´ pj2´N ` `M2rn

βsq2H | ď C2´N2p2H´1qrNβs

and
ˇ

ˇ

ˇ

ˇ

Ψpxq ´Ψ

ˆ

j

2N

˙ˇ

ˇ

ˇ

ˇ

ď C2´N .

Thus, we reach
|QN | ď C2´N2rN

βs2H . (58)

From (55) and (58), we obtained the conclusion.
Next, let us compare the wavelet variation (25) and its discretized version (53).
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Proposition 5. For N sufficiently large, we have

E
“

|VN,M ´ pVN,M |
‰

ď C2´N2rN
βs2H2´

rNγ s
2 .

Proof: By (25) and (53), we can write

VN,M ´ pVN.M “
1

a

|LN,γ |

ÿ

`PLN,γ
¨

˝

AM p`,Nq
b

E
“

AM p`,Nq2
‰

´
EM p`,Nq

b

E
“

AM p`,Nq2
‰

˛

‚

¨

˝

AM p`,Nq
b

E
“

AM p`,Nq2
‰

`
EM p`,Nq

b

E
“

AM p`,Nq2
‰

˛

‚

and thus, by the Cauchy-Schwarz’s inequality,

E
”ˇ

ˇ

ˇ
VN,M ´ pVN.M

ˇ

ˇ

ˇ

ı

ď
1

a

|LN,γ |

ÿ

`PLN,γ

E

«ˇ

ˇ

ˇ

ˇ

ˇ

AM p`,Nq
a

EAM p`,Nq2
´

EM p`,Nq
a

EAM p`,Nq2

ˇ

ˇ

ˇ

ˇ

ˇ

¨

ˇ

ˇ

ˇ

ˇ

ˇ

AM p`,Nq
a

EAM p`,Nq2
`

EM p`,Nq
a

EAM p`,Nq2

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď
1

a

|LN,γ |

ÿ

`PLN,γ
¨

˝E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

AM p`,Nq
a

EAM p`,Nq2
´

EM p`,Nq
a

EAM p`,Nq2

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

˛

‚

1
2
¨

˝E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

AM p`,Nq
a

EAM p`,Nq2
`

EM p`,Nq
a

EAM p`,Nq2

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

˛

‚

1
2

.

Since, clearly,

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

AM p`,Nq
a

EAM p`,Nq2
`

EM p`,Nq
a

EAM p`,Nq2

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď C,

we get from Proposition 4,

E
”ˇ

ˇ

ˇ
VN,M ´ pVN.M

ˇ

ˇ

ˇ

ı

ď
1

a

|LN,γ |

ÿ

`PLN,γ

2rN
βsH2´

N
2

ď C2´
N
2 2rN

βsH2
rNγ s

2 ÝÑ
NÑ8

0.

The above result implies that the discretized wavelet variation has the same limit
behavior in distribution as VN,M .
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Corollary 1. Let pVN,M be given by (53) Then the d-dimensional random vector ppVN,M ,M “

1, , , , , dq converges in distribution, as N Ñ 8, to the d-dimensional Gaussian vector
Np0,Kq, where the matrix K is given by (46) and (47).

Proof: The result follows from Theorem 1 and Proposition 5.
We finish this section with a short result concerning the almost-sure convergence

to 0 of the sequence ppVN,M{
a

|LN,γ |, N ě 1q. This fact will be particularly useful in the
next section.

Proposition 6. We have, for all M P t1, . . . , du,

pVN,M
a

|LN,γ |
ÝÑ
NÑ8

0 (59)

almost surely, at the fast rate 2´N
a, where a P p0, γq is arbitrary and fixed

Proof: Let us remark that Proposition 5 and Theorem 1 entail that, for M “ 1, . . . , d,
the sequence pE

“

|pVN,M |
‰

qN is bounded. Therefore, as a consequence of (14), we get, for
such M ,

E
“

|pVN,M |
‰

ď C2´
rNγ s

2 (60)

The proofs is then obtained by a simple Borel-Cantelli argument. Let a P p0, γq be
arbitrary and fixed. We deduce from (60) and Markov inequality that, for M “ 1, . . . , d,

ÿ

Ně1

P

˜ˇ

ˇ

ˇ

ˇ

ˇ

pVN,M
a

|LN,γ |

ˇ

ˇ

ˇ

ˇ

ˇ

ě 2N
a

¸

ď
ÿ

Ně1

2N
a
2´

rNγ s
2 E

“

|pVN,M |
‰

ď C
ÿ

Ně1

2N
a
2´

rNγ s
2 ă 8.

5 Estimation of the Hurst parameter

Let us introduce the sequences

SN,M “
1

|LN,γ |
ÿ

`PLN,γ

AM p`,Nq
2 (61)

and
pSN,M “

1

|LN,γ |
ÿ

`PLN,γ

EM p`,Nq
2 (62)

where AM p`,Nq, EM p`,Nq are the wavelet coefficients given by (16) and (52), respec-
tively. We clearly have, via Proposition 4,

E
“

|AM p`,Nq ´ EM p`,Nq|
2
‰

ď C2rN
βs2H2´NE

“

AM p`,Nq
2
‰

ď C2rN
βs2H2´N2´Np2H`1q
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so, by Cauchy-Schwarz’s inequality, we get

E
“

|SN,M ´ pSN,M |
‰

ď
1

|LN,γ |
ÿ

`PLN,γ

E
“

|AM p`,Nq
2 ´ EM p`,Nq

2|
‰

ď
1

|LN,γ |
ÿ

`PLN,γ

`

E
“

|AM p`,Nq ´ EM p`,Nq|
2
‰˘

1
2
`

E
“

|AM p`,Nq ` EM p`,Nq|
2
‰˘

1
2

ď C
a

2rNβs2H2´N2´Np2H`1q
a

2´Np2H`1q,

which entails
SN,M ´ pSN,M ÝÑ

NÑ8
0 in L1pΩq. (63)

We also have, due to (17),

E
“

SN,M
‰

“ pM2N q´p2H`1qCΨpHq,

so
logE

“

SN,M
‰

“ ´p2H ` 1q logpM2N q ` logCΨpHq. (64)

To construct an estimator for the Hurst index of the Hermite process, we use the following
standard procedure: in (64) we approximate ErSN,M s by SN,M and thus, due to (63), by
pSN,M . We then have

log pSN,M „ ´p2H ` 1q logpM2N q ` logCΨpHq.

Next, we make a log-regression of
´

log pSN,M ,M “ 1, ..., d
¯

on
`

logpM2N q,M “ 1, ..., d
˘

which leads to the estimator pHN given by

pHN “ ´
1

2

´

řd
M“1 log pSN,M logM

¯

´

´

řd
M“1 log pSN,M

¯´

řd
M“1 logM

¯

´

řd
M“1plogMq2

¯

´

´

řd
M“1 logM

¯2 ´
1

2
(65)

We state and prove the limit behavior of the above estimator.

Theorem 3. Let pHN be given by (65). Then the estimator pHN is strongly consistent,
i.e.

pHN ÝÑ
NÑ8

H almost surely. (66)

Moreover,
b

|LN,γ |pH ´ pHN q ÝÑ
pdq

NÑ8
Np0, σ2q, (67)

with σ2 “ 1
4pL

T
d Ldq

´1LdKL
T
d pL

T
d Ldq

´1, where K is the matrix defined in Theorem 2 and
Ld is the matrix with pLdqM,1 “ logM and pLdqM,2 “ 1, for M “ 1, . . . , d.

31



Proof: To obtain the asymptotic properties of the estimator (65), we use the limit
theorems obtained for the discretized wavelet variation pVN,M . We notice the following
link between pSN,M and pVN,M :

pVN,M
a

|LN,γ |
` 1 “

pM2N qp2H`1q

CΨpHq
pSN,M ,

and thus

log pSN,M “ log

˜

pVN,M
a

|LN,γ |
` 1

¸

´ p2H ` 1qplogM `N logp2qq ´ logCΨpHq.

From this last equality, we deduce

pHN ´H “ ´
1

2

ˆ

řd
M“1 log

ˆ

pVN,M?
|LN,γ |

` 1

˙

logM

˙

´

ˆ

řd
M“1 log

ˆ

pVN,M?
|LN,γ |

` 1

˙˙

´

řd
M“1 logM

¯

´

řd
M“1plogMq2

¯

´

´

řd
M“1 logM

¯2

(68)

The strong consistence (66) is then a straightforward consequence of Proposition 6.
To prove (67), let us recall that the inequality

| logp1` xq ´ x| ď x2 (69)

holds for all x P r´1{2, 1{2s. Therefore, writing in (68), for any M “ 1, . . . , d,

log

˜

pVN,M
a

|LN,γ |
` 1

¸

“ log

˜

pVN,M
a

|LN,γ |
` 1

¸

´
pVN,M

a

|LN,γ |
`

pVN,M
a

|LN,γ |

and combining (69) with Proposition (6), we deduce

b

|LN,γ |pH ´ pHN q „ ´
1

2

´

řd
M“1

pVN,M logM
¯

´

´

řd
M“1

pVN,M

¯´

řd
M“1 logM

¯

´

řd
M“1plogMq2

¯

´

´

řd
M“1 logM

¯2

as N Ñ `8. The limit theorem (67) easily follows, thanks to Corollary 1.

6 Appendix

The basic tools from the analysis on Wiener space are presented in this section. We will
focus on some elementary facts about multiple stochastic integrals. We refer to [45] or
[43] for a complete review on the topic.
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Consider H a real separable infinite-dimensional Hilbert space with its associated
inner product x¨, ¨yH, and pBpϕq, ϕ P Hq an isonormal Gaussian process on a probabil-
ity space pΩ,F ,Pq, which is a centered Gaussian family of random variables such that
E pBpϕqBpψqq “ xϕ,ψyH for every ϕ,ψ P H. Denote by Iqpq ě 1q the qth multiple
stochastic integral with respect to B, which is an isometry between the Hilbert space
Hdq (symmetric tensor product) equipped with the scaled norm

?
q! } ¨ }Hbq and the

Wiener chaos of order q, which is defined as the closed linear span of the random vari-
ables HqpBpϕqq where ϕ P H, }ϕ}H “ 1 and Hq is the Hermite polynomial of degree
q ě 1 defined by :

Hqpxq “
p´1qq

q!
exp

ˆ

x2

2

˙

dq

dxq

ˆ

exp

ˆ

´
x2

2

˙˙

, x P R. (70)

For q “ 0,
H0 “ R and I0pxq “ x for every x P R. (71)

The isometry property of multiple integrals can be written as follows : for p, q ě 0, f P
Hbp and g P Hbq

E
”

IppfqIqpgq
ı

“

#

q!xf̃ , g̃yHbq if p “ q,

0 otherwise,
(72)

where f̃ stands for the symmetrization of f . When H “ L2pT q, with T being an interval
of R, we have the following product formula: for p, q ě 0, f P Hdp and g P Hdq,

IppfqIqpgq “

p^q
ÿ

r“0

r!

ˆ

q

r

˙ˆ

p

r

˙

Ip`q´2r pf br gq , (73)

where, for r “ 0, ..., p^ q, the contraction f br g is the function in L2pT p`q´2rq given by

pfbrgqpt1, ..., tp`q´2rq “

ż

T r
fpu1, ..., ur, t1, ..., tp´rqgpu1, ..., ur, tp´r`1, ..., tp`q´2rqdu1...dur.

(74)
An useful property of finite sums of multiple stochastic integrals is the hypercon-

tractivity. Namely, for every fixed real number p ě 2, there exists a universal determinis-
tic finite constant Cp, such that, for any random variable F of the form F “

řn
k“0 Ikpfkq

with fk P Hbk, the following inequality holds:

E
“

|F |p
‰

ď Cp
`

E
“

F 2
‰˘

p
2 . (75)
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We denote by D the Malliavin derivative operator that acts on cylindrical random
variables of the form F “ gpBpϕ1q, . . . , Bpϕnqq, where n ě 1, g : Rn Ñ R is a smooth
function with compact support and ϕi P H, in the following way:

DF “
n
ÿ

i“1

Bg

Bxi
pBpϕ1q, . . . , Bpϕnqqϕi.

The operator D is closable and it can be extended to D1,2 which denotes the closure of
the set of cylindrical random variables with respect to the norm } ¨ }1,2 defined as

}F }21,2 :“ E
“

|F |2
‰

`E
“

}DF }2H
‰

.

If F “ Ippfq, where f P Hdp with H “ L2pT q and p ě 1, then

D˚F “ pIp´1 pfp¨, ˚qq ,

where ” ¨ ” stands for p´ 1 variables.
The pseudo inverse p´Lq´1 of the Ornstein-Uhlenbeck operator L is defined, for

F “ Ippfq with f P Hdp and p ě 1, by

p´Lq´1F “
1

p
Ippfq.

At last notice that in our work, we haveH “ L2pRq while the role of the isonormal
process pBpϕq, ϕ P Hq is played by the usual Wiener integral on L2pRq associated with
the Brownian motion pBpyq, y P Rq. In this case, we can provide an explicit formula for
the multiple integral Iq, (q ě 1). Indeed, if f is a symmetric function of the form

f “
n
ÿ

j1,...,jq“1

aj1,...,jq1rsj1 ,tj1 q b ¨ ¨ ¨ b 1rsjq ,tjq q
, (76)

where, b stands for the tensor product, aj1,...,jd are such that, for all permutation σ,
aσpj1q,...,σpjqq “ aj1,...,jq and aj1,...,jq “ 0 as soon as two indices j1, . . . , jq are equal and,
for all 1 ď ` ‰ `1 ď q, rsj` , tj`q X rsj`1 , tj`1 q “ H, then

Iqpfq :“
n
ÿ

j1,...,jq“1

aj1,...,jqpBptj1q ´Bpsj1qq ˆ . . . pBptjqq ´Bpsjqqq. (77)

It is straightforward that this last random variable belongs to L2pΩq. For a general
symmetric f P L2pRqq, Iqpfq is then defined using the density of functions of the form
(76) within the set of symmetric square integrable function and by checking that the
corresponding random variables (77) converge in L2pΩq.

Our main tool to prove the asymptotic normality for random vectors is the fol-
lowing theorem (Theorem 6.1.1 in [43]).
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Theorem 4. Let m ě 1 be an integer number and consider a m-dimensional random
vector F “ pF1, ..., Fmq. Assume Fi P D1,4 for every i “ 1, ...m. Let C P MmpRq be a
symmetric and positive definite matrix and let Z „ Np0, Cq. Then

dW pF,Zq ď C

g

f

f

e

m
ÿ

i,j“1

E
”

pCi,j ´ xDFi, Dp´Lq´1Fjyq2
ı

. (78)

Let us finally mention the fact that, if Fi P D1,2 for every i “ 1, ...m, as a
consequence of [43, Theorem 2.9.1],

ErxDFi, Dp´Lq
´1Fjys “ ErFiFjs. (79)
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