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Abstract Agroforestry is an integrative farm man-
agement approach in which trees are deliberately inte-
grated with other crops. Agroforestry systems can be 
effective if appropriate trees are chosen based on par-
ticular environmental and economic factors. However, 
it is crucial to identify suitable trees for agroforestry 
implementation (AI). The objective of the current 
study was to recognize the most suitable trees for AI 
in the agricultural lands of Nazar Kahrizi (NK) rural 
district of Hashtroud city, located in the northwest of 
Iran using a multi-dimensional approach. The study 
area was environmentally evaluated using ArcGIS, 
which led to the creation of 16 classes with different 
features. Then, based on the preference of 126 local 
farmers (from 26 villages of NK), 19 native trees 
were selected for AI assessment. These trees were 
evaluated and compared considering seven criteria 

(i.e., frostbite resistance, salinity resistance, sensitiv-
ity to drainage, storm resistance, drought resistance, 
preventing soil erosion, and economic benefits). 
Finally, a flexible multi-criteria decision analysis 
(MCDA) tool (PROMETHEE II) was applied to pro-
vide a complete ranking of preferred trees from the 
best to the worst for each class. The findings showed 
that the agricultural lands should be allocated for 
planting elaeagnus (about 79.6%, 27,446 ha), almond 
(13.5%, 4619  ha), quince (4.6%, 1573  ha), apple 
(1.8%, 635 ha), and walnuts (0.5%, 176 ha). Measure-
ments showed that AI with the recommended trees in 
the study area will lead to  CO2 sequestration of about 
12.96 Mg  yr−1. The approach used in this study pro-
vides a valuable resource for decision-making in AI 
evaluations and, therefore, contributes to preserving 
the lands from degradation and ensures sustainable 
AI.

Keywords Native trees · PROMETHEE II · Fuzzy-
AHP · CO2 sequestration · Agroforestry · Climate 
change

Introduction

Nowadays, the negative impacts of climate change 
(CC) on the agricultural sector have intensified the 
concerns about the future of the world’s food secu-
rity. Extreme weather and climatic disasters have 
exposed millions of people to severe diseases caused 
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by food. Moreover, unsustainable agricultural devel-
opment, driven by CC, leads to competition for natu-
ral resources and enhances the vulnerability of food 
production systems around the globe. According to 
the findings of Iizumi et  al. (2018), the global grain 
yield of corn, wheat, and soybean decreased by an 
average of 4.1%, 1.8%, and, 4.5% during 1981–2010, 
compared with the pre-industrial period. In addition, 
agricultural production is expected to decrease by 
20–30% due to CC by the end of 2100 (IPCC 2023). 
Although the agricultural sector is overwhelmingly 
dominated by the adverse consequences of CC, it 
plays a considerable role in the exacerbation of global 
warming (Udeigwe et al. 2015). In this regard, about 
one-fourth of the global greenhouse gases (GHG) 
emissions are attributed to unsustainable agricultural 
activities (Zhang et al. 2018). Currently, conventional 
agricultural practices (i.e., the use of agrochemi-
cals, pesticides and fossil fuels, and monoculture) 
have been welcomed by farmers due to the benefits 
of higher production and lower costs. However, their 
adverse effects on the environment have often not 
been considered (Alvarez et  al. 2017). In addition, 
intense and frequent tillage operations, common in 
conventional agriculture, cause soil degradation and 
transfer of the sequestrated carbon (C) in the soil to 
the atmosphere (Dubey et  al. 2020). The introduc-
tion of concepts such as “sustainable intensification” 
and “climate-smart agriculture” has resulted from the 
increasing challenges associated with CC, land-use 
change, and deforestation (Jayne et  al. 2019). These 
two concepts aimed to increase land productivity; 
mitigate the loss of natural resources, biodiversity, 
and habitat; and improve ecosystem services via safe 
and sustainable methods (Sarkar et al. 2020).

Agroforestry is regarded as one of the appropri-
ate techniques for “climate-smart agriculture” and 
“sustainable intensification” to improve ecosystem 
services and preserve natural resources (Amadu et al. 
2020; Kheiri et  al. 2023). Agroforestry is the most 
important integrative farm management strategy in 
which trees and shrubs are intentionally mixed with 
other crops. This approach is the most efficient agri-
cultural land-use policy which simultaneously ben-
efits all four groups of ecosystem services including 
supporting, regulation, provisioning, and cultural 
(Rosenstock et al. 2019). In fact, agroforestry reduces 
environmental, social, and economic problems in 
the agricultural sector and fills up the existing gap 

between agriculture and forestry. As Brown et  al. 
(2018) argued, agroforestry systems enhance the 
resilience of agricultural lands and mitigate the nega-
tive impacts of CC. Agroforestry provides a wide 
range of benefits including timber, coal, fiber, food 
(fruits, honey, oil, etc.), and medicine; improves soil 
structure and biodiversity; increases soil organic mat-
ter; and accelerates nutrients’ cycle (Benjamin and 
Sauer 2018). In addition, agroforestry is a nature-
based solution for the world’s livelihood asset devel-
opment concerns, such as CC, degradation of land, 
and high poverty levels (Muthee et al. 2022).

Recently, many studies (e.g., Hübner et  al. 2021; 
Dangai et  al. 2021; Martinelli et  al. 2019) have 
focused on providing ecosystem services by agro-
forestry systems, paying particular attention to C 
sequestration potential. In these studies, the amount 
of C sequestration of existing agroforestry sys-
tems has been measured. For instance, Hübner et al. 
(2021) assessed the soil C sequestration using agro-
forestry systems in China and reported that shelter-
belt, agrisilvicultural, and silvopastoral systems could 
sequestrate C at about 0.92, 0.72, and 0.52 Mg  ha−1 
 yr−1 in top soils (0–20 cm), respectively. Dangai 
et  al. (2021) evaluated the role of Daniellia oliveri 
agroforestry parklands in CC reduction by predict-
ing C stock in Cameroon’s Sudanian-Sahelian zone. 
Their findings revealed that C sequestration poten-
tial of Daniellia oliveri agroforestry parklands varies 
from 312.71 ± 40.77  CO2eq  ha−1 for young parklands 
(1–10 years) to 865.77 ± 18.20  CO2eq  ha−1 for older 
ones (higher than 30  years). Martinelli et  al. (2019) 
investigated the environmental performance of agro-
forestry systems in mitigating global warming and 
providing ecosystem services in the Cerrado biome of 
Brazil and found the significant capacity of agrofor-
estry systems in C sequestration to be 263 to 496 t 
 CO2  ha−1  yr−1. Some other studies (e.g., Kheiri et al. 
2023; Nath et al. 2021; Chuma et al. 2021; Kay et al. 
2019; Ahmad et al. 2019; de Mendonça et al. 2022) 
have investigated the land suitability of an area for 
agroforestry implementation (AI). For instance, Nath 
et  al. (2021) used multi-criteria assessment mod-
eling to assess the land suitability of arable lands in 
the Eastern Indian Himalayan area for agroforestry. 
To create an agroforestry suitability map, they con-
sidered many factors related to climate, soil, topog-
raphy, and ecological and socioeconomic dimensions. 
Their findings revealed that ~ 77% (60,523  km2) of 
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arable land offers very good to good agroforestry 
suitability. Chuma et al. (2021) investigated the land 
suitability for AI in Congo applying the AHP method 
in GIS. They reported four zones including very high 
(~ 29.2%), high (~ 22.3%), moderate (~ 34%), and low 
(~ 14.5%) suitable zones for AI. Kay et  al. (2019) 
assessed nine environmental pressures associated 
with agroforestry benefits to identify the suitability of 
agricultural land for AI in Europe. According to their 
investigation, 136,758  km2, or around 8.9% of all the 
agricultural land in Europe, has the greatest potential 
for AI. Ahmad et al. (2019) assessed the land poten-
tiality for agroforestry in India using FAO land suit-
ability standards and a variety of land, soil, climatic, 
and topographic issues. According to their findings, 
32.8% of the region is perfect for AI. Although the 
land suitability evaluation is the first and the most 
crucial step in AI (de Mendonça et al. 2022), the most 
important question is as follows: “Which woody ele-
ments should be planted in the suitable areas?” How-
ever, few studies have been conducted to identify suit-
able trees for AI.

According to Atangana et  al. (2014), in order to 
achieve successful agroforestry, the trees must be 
evaluated in terms of various factors including envi-
ronmental, socio-cultural, and economic conditions 
of a particular area. In addition, the effective imple-
mentation of a sustainable strategy such as agrofor-
estry should be aimed at solving the main problems 
of farmers (Sathyan et  al. 2018). Despite the many 
benefits proposed for agroforestry, its implementa-
tion fails and is not welcomed due to neglecting the 
interests of farmers and/or the natural capacities of an 
area. Therefore, relying on the method applied in this 
research, users will be able to identify the most suit-
able woody elements for AI from the socio-economic 
and environmental points of view. This study is novel 
because it uses a simple and understandable method 
that offers a valuable resource for decision-making in 
AI evaluations. As a result, it preserves the land from 
degradation and ensures sustainable AI. In addition, 
this study, for the first time, has evaluated the tree 
selection for AI and consequently  CO2 sequestration 
resulting from AI in Iran. This study aimed to iden-
tify the most suitable trees for AI according to the 
environmental and socio-economic conditions of the 
agricultural lands of Nazar Kahrizi (NK) rural district 
located in the northwest of Iran. The importance of 
this study is due to three main reasons: (1) It classifies 

the study area based on different environmental limi-
tations to assess land suitability for AI; (2) It identi-
fies the best tree(s) for each class considering farm-
ers’ preferences, the trees’ adaptability or sensitivity 
to environmental conditions, and their economic ben-
efits; (3) It measures the  CO2 sequestration of the 
identified tree(s) via actual information. Accordingly, 
this study seeks to answer the following questions:

1. Which tree(s) is/are the best suited option(s) to be 
planted in the study area?

2. What is the amount of  CO2 sequestration result-
ing from the AI?

Materials and methods

Study area

Hashtroud city, located in the northwest of Iran, has 
an area of about 1990  km2 with an altitude of 1159 to 
3182 m above sea level and is located between 37.10° 
and 37.40° N latitude and 46.20° and 47.20° E longi-
tude. This city is one of the largest cities in East Azer-
baijan province, and according to the topographic and 
geographical characteristics, it is classified as an area 
with a cold and mountainous climate. The amount of 
rainfall in this city varies from 250 to 300 mm. With 
about 12.2% of the East Azerbaijan province’s agri-
cultural lands, Hashtroud is one of the most impor-
tant cereal production poles of the province. The 
income of ~ 75% of rural households is, directly and 
indirectly, dependent on the agricultural products in 
this area. Furthermore, wheat, barley, chickpea, and 
alfalfa are the major crops cultivated in Hashtroud. 
The city consists of seven rural districts, of which 
Nazar Kahrizi (NK) is the widest rural district. This 
rural district consists of 79 villages, with 4092 farm-
ers, and contains 34.2% of the total farmers of Hash-
troud. As mentioned earlier, this study was conducted 
in the agricultural lands of NK. The selection of NK 
for the purposes of this study has certain advantages: 
(1) The climate of this region is semi-arid (Kheiri 
et  al. 2021), similar to most regions of Iran (Tabari 
et  al. 2014), and, therefore, it can represent the cli-
mate of Iran; (2) The majority of its population con-
sists of farmers who are mostly smallholders; (3) It is 
the most strategic hub for the production of agricul-
tural products in Hashtroud city; (4) This region has 
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both irrigated and rainfed irrigation types and has a 
large variety of trees, which allows the evaluation of 
the research objectives for various scenarios and con-
ditions. The land cover map of NK is illustrated in 
Fig. 1. To generate the map of the land cover of NK, 
the latest and highest quality data of the Sentinel-2B 
satellite were downloaded from the United States 
Geological Survey (USGS) website. Then, the pro-
cessing of these images was carried out using eCog-
nition Developer 9.01 software to determine the type 
of land cover. The validity of the current map was 
double-checked by comparing it with Google Earth 
Pro, and its quality and accuracy were confirmed by 
the experts and agronomists of the Agricultural Jahad 
Office of Hashtroud as well.

Identification of the trees for AI based on farmer 
preference

According to Kay et  al. (2019), the most effec-
tive way to use AI is to use trees that farmers are 
interested in and are most likely to use. A tree that 
a farmer dislikes for whatever reason is always a 
non-starter in extension, therefore farmers’ interest 
in AI has to align with the advantages associated 
with a tree (Tengnäs 1994). In addition, Jose (2009) 
claimed that because native trees are well-known 
and well-adapted to the environmental condition of 
a particular area, it is worth choosing them as per-
manent elements (trees) of agroforestry systems. 
The native trees retain agrobiodiversity and enhance 
agricultural systems’ sustainability (Shelef et  al. 
2017). Therefore, it is necessary to first identify a 
set of native trees that local farmers prefer for AI. 
Since it was not possible to reach all the farmers in 
the study area, the sampling method was used. The 

Fig. 1  Land cover map of the study area
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study area has 4092 farmers, of which 126 (from 
26 villages namely Asayesh, Alaqayeh, Borj-Sofla, 
Ganj-Abad-Sofla, Tilimkhan, Tarkhnlar, Tikma-
Dash, Jiqil-Sofla, Jiqil-Olya, Chitiqlou, Sariqayeh, 
Shakar-Boolaqi, Umran-Kandi, Qoort-Qayasi, 
Qaraja-Qaya, Qooshelar, Goshayesh, Katala-Kamar, 
Bash-Khalaj, Khorshid, Mallajiq, Shordaraq, 
Nazar-Kahrizi, Yaniq, Yela-Qarshou, and Yaha-
rchi) were selected as the sample group by clus-
ter random sampling method. Then, a face-to-face 
interview was conducted with the sample group. 
At first, the concept of agroforestry and its ben-
efits were explained to the farmers, and then they 
were asked to answer the following question: “What 
kind of native trees do you prefer to plant in your 
agricultural lands?” After collecting the preferred 
trees by farmers (PTF) for AI, they were reviewed 
and checked. The final list of PTFs is presented in 
Table 1. As illustrated, all trees are fruit-bearing, of 
which seven are rainfed and 12 are irrigated. Table 1 
also shows other information including the range of 
planting altitude (m) of the PTF. This information 
was obtained from the Cold Trees Working Group 
(CTWG) of the horticulture department of the Min-
istry of Agriculture-Jahad (MAJ).

Environmental characteristics of the study area

Assessment of characteristics such as climatic con-
ditions, land-use type, landscape, and other vari-
ables is critical to predicting ecosystem processes, 
understanding ecosystem function, and evaluating 
the effects of land-use change (Denton et  al. 2017). 
According to Singh et  al. (2022), AI will be effec-
tive if the climatic, soil, and topographic factors that 
define the study area are taken into account. There-
fore, in this study, the environmental conditions of 
NK were assessed considering nine environmental 
variables including annual mean temperature (°C), 
precipitation (mm), ice days, wind speed, soil ero-
sion, drainage, soil pH, soil salinity, and altitude (m). 
In this study, the term "ice days" refers to the num-
ber of days of each year when the lowest temperature 
is below 0  °C (Jamshidi et  al. 2019). The selected 
variables are the most important factors affecting the 
growth and development of plants and were widely 
suggested in land suitability analysis for AI (Ahmad 
et al. 2019; Kay et al. 2019; Everest et al. 2021; Singh 
et al. 2022). Figure 2 shows the geographical distribu-
tion of the variables selected.

According to Fig. 2, the annual mean temperature 
in NK varies between 12.4 and 13 °C. Furthermore, 

Table 1  The final list 
of PTF for AI in the 
agricultural lands of NK 
rural district

Tree name Scientific name Irrigation Planting altitude (m)

Apple Malus domestica Irrigated 1300–2200
Quince Cydonia oblonga Miller Irrigated 1300–2200
Pear Pyrus communis Irrigated 1300–2200
Peach Prunus persica Irrigated 1300–2200
Nectarine Prunus persica nucipersica Irrigated 1300–2200
Apricot Prunus armeniaca Irrigated 100–3000
Plum Prunus domestica Irrigated 100–3000
Greengage Reine Claude Verte Irrigated 100–3000
Cherry Prunus avium Irrigated 100–3000
Sour cherry Prunus cerasus Irrigated 200–2500
Walnuts Juglans regia Irrigated 1100–2200
Filbert Corylusavellana Irrigated 100–2200
Pomegranate Punica granatum Rainfed 100–1500
Grapes Vitis amresis Rainfed 1500–2200
White Mulberry Morus alba Rainfed 100–3000
Barberries Berberis Rainfed 100–1900
Hawthorns Crataegus Rainfed 100–3000
Almond Prunus amygdalus Rainfed 100–3000
Elaeagnus Elaeagnus angustifolia Rainfed 100–3000
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the amount of precipitation in the study area varies 
from 268 mm in the south to 276 mm in the north. 
In addition, the ice days in the study area vary in 
the range of 15–17 days. Wind speed has decreased 
with increasing latitude, in a way that wind speed is 
very high in the south of the area and very low in the 
northern part. The spatial distribution of soil erosion 
indicates a heterogeneous distribution of the soil ero-
sion level in the study area. In terms of drainage, a 
large part of the study area is located in the “weak” 
class. In addition, the soil salinity is at a “very low to 
medium” level. Finally, the study area is in the range 
of 7 to 7.4 in terms of soil pH and is located at alti-
tudes of 1543 to 2223 (m).

Classification of the study area based on 
environmental characteristics

As shown in Fig.  2, the study area has slight fluc-
tuations in terms of annual mean temperature, pre-
cipitation, and ice days. In terms of soil salinity, the 
study area has no limits and is in the “very low to 
medium” class. The pH of 7 to 7.4 for the study area 
does not physiologically limit the plantation of PTF, 
because the growth of a wide range of plants in the 
pH range of 6 to 7.5 is usually good (Wingeyer et al. 
2015). Moreover, according to Table 1, the PTF can 
grow in the altitude range of the study area without 
restrictions. However, there are some limitations to 
tree plantation in the study area including “drainage,” 
“wind speed,” and “soil erosion”. In this regard, the 
maps of these variables were reclassified using Arc-
GIS10.8 software to separate the areas that potentially 
create restrictions for planting trees. Accordingly, the 
study area is divided into two classes including “mod-
erate to good” and “very weak to weak” in terms of 
drainage. Moreover, in terms of wind speed, it is clas-
sified into two classes: “high to very high” and “very 
low to medium”. In terms of soil erosion, the study 
area is divided into “high to very high” and “very low 
to medium” classes. Apart from these three variables, 
“irrigation type” which expresses the limitation of 
access to water, was also chosen as the fourth variable 
in this study. Therefore, the study area is separated 
into two classes including “rainfed” and “irrigated” in 
terms of irrigation type. After reclassification of the 

maps of the selected variables, these maps were com-
bined using the intersection technique of ArcGIS10.8. 
The combination of these maps led to the creation of 
16 classes, as indicated in Table 2.

Data collection

Information on PTF

In this study, the required information for comparing 
and separating PTFs based on their capabilities and 
limitations was gathered through the survey method. 
To do this, a closed questionnaire was designed 
based on a nine-point scale, and the respondents were 
asked to evaluate the PTF in terms of seven crite-
ria including “frostbite resistance”, “salinity resist-
ance”, “drainage sensitivity”, “storm resistance”, 
“drought resistance”, “preventing soil erosion”, 
and “economic benefits”. The sample group for this 
questionnaire included 31 members from university 
faculty members, experts of CTWG, and experts of 
Hashtroud Agricultural Jahad Office. The selection 
of the sample group was done through the snowball 
sampling technique. The validity of the questionnaire 
was checked with the experts’ judgment of the Agro-
ecology Department of Environmental Sciences and 
Research Institute (ESRI). Furthermore, the reliabil-
ity of the questionnaire was proved using Cronbach’s 
alpha coefficient of 0.84. This survey was conducted 
from April 2021 to June 2021, and data processing 
was carried out using SPSS software version 26 and 
Microsoft Excel.

Information on the environmental variables

The study area does not have a meteorological sta-
tion. Thus, to calculate the maps of annual mean 
temperature, precipitation, and ice days, the climatic 
information of six meteorological stations distributed 
around Hashtroud city was gained from the Iranian 
Meteorological Organization (IMO) for the period 
1990–2019 (See the supplementary material for 
detailed information on the average of annual weather 
variables as well as latitude, longitude, and altitude 
for the selected meteorological stations (Appendix 
1)). The maps of these three variables were generated 
using ArcGIS10.8 and through the Inverse Distance 
Weighting (IDW) interpolation method. The Iranian 

Fig. 2  Spatial distribution of the environmental variables 
selected in the study area

◂



860 Agroforest Syst (2024) 98:853–871

1 3
Vol:. (1234567890)

Soil and Water Research Institute (SWRI) provided 
maps of soil erosion, drainage, wind speed, and salin-
ity of soil at a scale of 1:100,000. The SoilGrids open 
worldwide database, which distributes soil attributes 
data at a 250 m resolution, was also used to get the 
soil pH map. Finally, data from the Shuttle Radar 
Topography Mission (SRTM) with a resolution of 30 
m was retrieved from the NASA website to generate 
an altitude map.

Assigning appropriate trees to the classes

The PROMETHEE II method was used for assign-
ing the most appropriate tree among the PTFs to 
each class. The PROMETHEE II is a flexible multi-
criteria decision analysis (MCDA) tool for examin-
ing the suitability of agricultural systems and pro-
viding valuable insights. The PROMETHEE II is 
used to produce a full rating of a finite collection of 
possible choices, from best to worst. The method’s 
fundamental idea is based on a pairwise evaluation 
of alternatives along each criterion (Behzadian et al. 
2010). This model was created to tackle multi-criteria 
issues, and its main advantage is that the information 
it requires is simple for analysts and decision-makers 
to grasp (Burak et  al. 2022). Furthermore, running 
the PROMETHEE II needs the use of two extra types 
of data: the weighting technique and the preference 
function.

Weighting method

The PROMETHEE does not provide specific guide-
lines for determining the weight of criteria; however, 
it is assumed that the decision-maker is able to weigh 
the criteria appropriately (Macharis et  al. 2004). In 
this research, the Fuzzy Analytic Hierarchy Process 
(Fuzzy-AHP) method, which relies specifically on 
expert judgment, was applied to determine the weight 
of the criteria. Detailed information on how the 
Fuzzy-AHP model works is provided in supplemen-
tary material (Appendix 2). Here, the criteria include 
“frostbite resistance”, “salinity resistance”, “drainage 
sensitivity”, “storm resistance”, “drought resistance”, 
“preventing soil erosion”, and “economic benefits”. 
Therefore, 31 respondents, introduced earlier, were 
asked to judge the importance of these criteria for 
obtaining the final weight of each criterion.

Preference function

For certain criteria, a preference function transforms 
the difference between two options (i.e., PTF) into a 
preferred degree between 0 and 1. Brans et al. (1986) 
offered six fundamental categories of criteria to 
make it easier to choose a specific preference func-
tion: (1) usual criterion, (2) U-shape criterion, (3) 
V-shape criterion, (4) level criterion, (5) linear cri-
terion, and (6) Gaussian criterion. There should only 

Table 2  The classes in 
the study area based on 
wind speed, drainage, soil 
erosion, and irrigation type

Class Wind speed Drainage Soil erosion Irrigation Extent (ha)

1 Very low to medium Moderate to good High to very high Rainfed 207
2 Very low to medium Moderate to good Very low to medium Rainfed 4412
3 Very low to medium Moderate to good High to very high Irrigated 151
4 Very low to medium Moderate to good Very low to medium Irrigated 271
5 Very low to medium Very weak to weak High to very high Rainfed 1786
6 Very low to medium Very weak to weak Very low to medium Rainfed 11,275
7 Very low to medium Very weak to weak High to very high Irrigated 258
8 Very low to medium Very weak to weak Very low to medium Irrigated 819
9 High to very high Moderate to good High to very high Rainfed 891
10 High to very high Moderate to good Very low to medium Rainfed 7159
11 High to very high Moderate to good High to very high Irrigated 25
12 High to very high Moderate to good Very low to medium Irrigated 635
13 High to very high Very weak to weak High to very high Rainfed 2878
14 High to very high Very weak to weak Very low to medium Rainfed 3457
15 High to very high Very weak to weak High to very high Irrigated 54
16 High to very high Very weak to weak Very low to medium Irrigated 171
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be one preference function used for each criterion. 
The selected criteria in this study are qualitative and 
based on a nine-point scale. Therefore, the level func-
tion was selected for these criteria in accordance with 
Brans et  al.’s (1986) suggestion. However, in each 
preference function, the following three parameters 
should be set (Nasiri et al. 2013):

 (i) Indifference threshold (q): It is referred to as 
the maximum deviation that may be overlooked 
by the decision-maker.

 (ii) Preference threshold (p): It is referred to as the 
small deviation regarded to be adequate to pro-
duce a complete preference.

 (iii) Gaussian threshold (s): It is referred to as the 
point at which the Gaussian preference function 
inverts.

PROMETHEE II is implemented in five steps: (1) 
Measuring deviations using pairwise comparisons, 
(2) Using a suitable preferred function for each crite-
rion, (3) Determining the global preference index, (4) 
Determining positive and negative superiority flows 
for each option and partial ranking, and (5) Determin-
ing net outranking flow for each option and overall 
ranking. Detailed instructions for the PROMETHEE 
II can be found in the PROMETHEE 1.4 manual.

Scenarios

As indicated in Table  2, the study area was divided 
into 16 classes based on wind speed, drainage, soil 
erosion, and irrigation type. Therefore, according to 
the characteristics of each class, 16 different scenar-
ios were defined. In the weighting step, the weights 
of the criteria associated with the limitations of each 
scenario were doubled to select the trees with more 
sensitivity and higher accuracy. For example, in Class 
9 the wind speed and soil erosion have “high to very 
high” levels. Therefore, the weights of “storm resist-
ance” and “preventing soil erosion” criteria were dou-
bled in the corresponding scenario. It should be noted 
that, in each scenario, the alternatives (i.e., PTFs) 
were selected based on the irrigation type of the cor-
responding class. In other words, for the classes with 
the “rainfed” irrigation type (i.e., 1, 2, 5, 6, 9, 10, 13, 
and 14 classes), only the rainfed trees were incorpo-
rated in the corresponding scenarios.

Estimation of  CO2 sequestration of the recommended 
trees

After determining an appropriate tree for each class, 
the  CO2 sequestration of that tree (called the recom-
mended tree) was calculated. According to Ali et al. 
(2022), the required variables to calculate the  CO2 
sequestration of a tree include height, age, and trunk 
diameter at the breast height of that tree. To collect 
the required information, a field sampling was con-
ducted. In order to have the most similarity to the 
environmental condition of the agricultural lands of 
NK, the samples are collected from the nearest pas-
tures and orchards around the study area. As illus-
trated in Fig. 3, there are five main steps to calculate 
the  CO2 sequestration of a tree (Toochi 2018):

Equation  1 was applied to determine the above-
ground weight of each tree:

where W is a tree’s weight above ground in pounds 
(lbs), D is the trunk’s diameter in inches, H is the 
tree’s height in feet, and  is α coefficient. A tree’s 
underground structure weighs around 20% of what it 
does above-ground. Therefore, the total green weight 
of a tree is calculated by multiplying the increase in 
above-ground weight by 120% (Eq. 2).

A tree’s entire weight is about equal parts dry 
matter (72.5%) and moisture (27.5%). Thus, the dry 
weight of a tree is determined by multiplying its over-
all green weight by 72.5% (Eq. 3).

In general, the average C content of a tree is 50% 
of the overall tree weight. As a result, the C weight of 
a tree is calculated through the multiplication of the 
dry weight by 50% (Eq. 4).

To determine the  CO2 sequestered in a tree, the 
C weight must be multiplied by 3.67, which is the 
weight of  CO2 (43.999915) divided by the atomic 
weight of C (12.001115) (Eq. 5).

(1)

Wabove−ground = � × D2 × H

{

for trees with D > 11, � = 0.15

for trees with D < 11, � = 0.25

}

(2)Wtotal (green) = Wabove−ground × 120%

(3)Wdry = Wtotal (green) × 72.5%

(4)Wcarbon = Wdry × 50%
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Finally, the age of the tree is divided annually to 
calculate the weight of  CO2 sequestered in that tree. It 
should be noted that according to Zomer et al. (2009), 
the tree cover of greater than 10% of the agricultural 
land is defined as agroforestry. In this study, a similar 
definition for AI has been retained, and it is assumed 
that 10% of the extent of each class is allocated for 
tree plantations.

Results and discussion

Land classification for AI

In this study, nine environmental variables were 
selected for the evaluation of agricultural land in the 
NK district, among which five variables were not lim-
ited to tree planting in the agroforestry system. Never-
theless, the study area was affected by the three vari-
ables of “soil erosion”, “drainage”, and “wind speed”. 
The combination of these three variables along with 
“irrigation type” led to the creation of 16 classes 
with unique characteristics (Table  2). Determining 
the variables for the evaluation of a natural system 
is always arbitrary because the importance of a par-
ticular variable varies in different systems, and it is 
a location-based concept (Heikkinen 2021). However, 
the importance of the selected variables in this study 
has been widely discussed. For instance, according 

(5)WCO2
= Wcarbon × 3.67 to Panagos et  al. (2015), soil erosion has a negative 

impact on agricultural ecosystems and food produc-
tion, making it a severe environmental problem. 
Moreover, according to Zhu et al. (2019) and Muthee 
et al. (2022), the use of agroforestry can significantly 
improve soil quality and fertility, prevent soil erosion, 
and reduce greenhouse gas emissions (via carbon 
sequestration). Abd-Elmabod et  al. (2017) explained 
that soil drainage is one of the most important vari-
ables that determine which type of trees grow appro-
priately in an area. Gardiner et  al. (2016) described 
that wind has long been considered an important eco-
logical factor because it carries water vapor and heat 
energy and affects evapotranspiration. Severe winds 
can erode the soil and cause severe damage to trees 
by uprooting, breaking branches, and damaging the 
canopy.

Figure  4 shows the spatial distribution of the 
16 classes. In general, the agricultural lands of the 
study area included 34,449 ha, of which 93.1% was 
rainfed and 6.9% was irrigated (Table 2). The results 
showed that 19,179 ha of the study area had a “very 
low to medium” and 15,270 ha had a “high to very 
high” wind speed. In addition, 13,751 ha of the study 
area had a “moderate to good” while 20,698 ha had a 
“very weak to weak” drainage. Furthermore, 6250 ha 
of the study area had “high to very high” and 28,199 
ha had “very low to moderate” soil erosion (Table 2). 
According to the results, most of the study area 
(11,275 ha) located in Class 6, which was “rainfed” 
and had “very low to medium” wind speed, “very 

Fig. 3  The process of calculation of  CO2 sequestration of a tree (Toochy 2018)
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weak to weak” drainage, and “very low to moderate” 
soil erosion (Table 2). The smallest extent belonged 
to Class 11, with an area of only 25 ha (Fig.  4 and 
Table  2). The findings of this study also revealed 
that only 271 ha of the study area had no limitations 
(Class 4), while 2878 ha had limitations in terms of 
soil erosion, drainage, wind speed, and land use type 
(Class 13) (Table 2). In addition, 99.23% of the area 
had at least one limitation. In this study, “no limita-
tions” refers to areas that have very low to medium 
erosion, moderate to good drainage, very low to 
medium wind speed, and irrigated irrigation type.

The importance of the selected criteria

The weights of criteria applied to assign an appropri-
ate tree to each class are shown in Fig. 5. The consist-
ency ratio (CR), which was calculated to demonstrate 
reliable consistency, was lower than 0.10 for compari-
sons. According to the 31-member team of experts, 
the “drought resistance” with a weight of 0.28 was 
recognized as the most important criterion. In addi-
tion, the criteria of “economic benefits” and “frost-
bite resistance” were in the second and third places 
with weights of 0.18 and 0.17, respectively (Fig. 5). 
The lowest values with weights of 0.04 and 0.07 were 
attributed to “salinity resistance” and “drainage sensi-
tivity” criteria, respectively. These findings are in line 

with other similar studies. For instance, according to 
Reisman-Berman et al. (2019), drought is a key abi-
otic stressor that inhibits tree development, and tree 
selection for afforestation, especially in rainfed condi-
tions, is mostly based on drought resistance. Bhusal 
et al. (2021) revealed that the frequency and intensity 
of drought are expected to increase due to CC; there-
fore, the trees for plantation should be selected by 
considering drought resistance for maximum survival 
and conservation of natural habitats. Similar findings 
were also reported by Klein (2020) and Poschenrieder 
et al. (2022). In terms of economic benefits, most of 
the smallholder farmers, similar to the local farmers 
in the study area, seek to increase their income and 
improve their livelihood. Therefore, the economic 
benefits of trees are very important, and farmers are 
more interested in trees that have higher economic 
benefits (Turner‐Skoff and Cavender 2019). The 
welfare of humankind is affected by the direct and 
indirect benefits of trees that are beyond estimation. 
According to Szalay et  al. (2019), the damage pro-
duced by frost has an impact on how well fruit trees 
are planted and cared for, and consistently, the frost 
is a persistent abiotic enemy that must be overcome. 
Therefore, selecting trees that have high resistance 
and tolerance to frostbite reduces the risk of damage 
caused by this abiotic stressor.

Fig. 4  Spatial distribution 
of defined classes in the 
study area
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Prioritization of the trees for land classes

The PTF was allocated for each of the classes based 
on the experts’ judgments and through the PRO-
METHEE II method (Fig. 6). Accordingly, the elae-
agnus tree was the best alternative for planting in 
Class 5, Class 6, Class 9, Class 10, Class 13, and 
Class 14 (all of which are rainfed). The results also 
showed that in Class 1 and Class 2, which are both 
rainfed with the extents of 207 and 4412 ha, respec-
tively, the almond tree was the best alternative for AI 
(Fig. 6). Quince tree was considered the most suitable 
tree for Class 4, Class 7, Class 8, Class 15, and Class 
16 (Fig. 6). Furthermore, the experts determined that 
the walnut tree should be considered for Class 3 and 
Class 11. Finally, apple was the best alternative to 
be planted in Class 12 (Fig.  6). Generally, the find-
ings revealed that the study area should be allocated 
for planting elaeagnus (about 79.6%, 27,446 ha), 
almond (13.5%, 4619 ha), quince (4.6%, 1573 ha), 
apple (1.8%, 635 ha), and walnuts (0.5%, 176 ha). 
Based on these findings, the majority of the agri-
cultural lands (93.1%), which were all rainfed, were 
suggested to be allocated to planting elaeagnus and 
almond. Elaeagnus and almond are fruits with low 
water requirements and high capability for planting 
in rainfed areas, and the plantation of these two trees 
has been widely suggested for marginal and degraded 
croplands (Dubovyk et  al. 2016; Paudel et  al. 2020; 

Prgomet et al. 2020). Consistent with the findings of 
this study, Dong et al. (2021) assessed the establish-
ment of an ecological forest system in a heavily saline 
and dry wasteland and suggested the elaeagnus tree as 
a tolerant tree for these areas. In another study, Tava-
koli et al. (2021) evaluated the feasibility of growing 
almond trees with rainwater in arid environments of 
the East Azerbaijan province of Iran (where the NK 
rural district is located) and reported that this area 
is highly suitable for almond plantation. The spatial 
distribution of the recommended trees for AI is illus-
trated in Fig. 7. The characteristics of the classes in 
Fig. 7 are indicated in Table 2.

CO2 sequestration of the recommended trees

The required variables to measure  CO2 sequestration 
of the recommended trees are illustrated in Table 3. 
Considering that the measurement of these variables 
was done from sample trees with different ages, the 
results include a wide range of values of these vari-
ables. The annual  CO2 sequestration of each recom-
mended tree was measured and indicated in Fig.  8. 
On average, as the agroforestry systems in the study 
area, the recommended trees can sequestrate  CO2 
between 3.13 and 51.18 t  ha−1 yr −1. Accordingly, 
the highest amount of  CO2 sequestration with 51.18 
t  ha−1 yr −1 was observed in walnuts. Furthermore, 
the lowest amount of  CO2 sequestration with 3.13 t 

Fig. 5  The final weights of 
the selected criteria based 
on experts’ judgments
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 ha−1  yr−1 was observed in elaeagnus. In this regard, 
walnut, apple, almond, quince, and elaeagnus trees, 
as the recommended trees for AI in the study area, 
ranked first to fifth in terms of the amount of  CO2 

sequestration. Kay et  al. (2019) investigated the 
annual C storage potential of the woody elements in 
each geographical region of Europe and indicated that 
the agroforestry systems in European farmlands and 

Fig. 6  Ranking the PTF for each class based on experts’ judgments and through the PROMETHEE II method
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pastures sequestrate C between 0.09 and 7.29 t  ha−1 
 yr−1. In a study conducted by Cardinael et al. (2017), 
C stock under agroforestry systems was investigated, 
and the results showed that walnut tree could seques-
trate 4.68 t C  ha−1  yr−1, which is equivalent to 17.18 t 
 CO2  ha−1  yr−1. In another study, Lopez-Bellido et al. 
(2016) assessed the C sequestration and C footprint 
of different trees in southern Spain and revealed that 
an almond tree could sequestrate 1.36 t C  ha−1  yr−1, 
which is equivalent to 4.99 t  CO2  ha−1  yr−1. Johnson 
and Gerhold (2001) evaluated the C storage by util-
ity-compatible trees in European hills and stated that 
an apple tree in the silvoarable system sequestrated 
about 0.93–1.43 t C  ha−1  yr−1, which is equivalent 
to 3.41–5.25 t  CO2  ha−1  yr−1. There are some differ-
ences in the values reported in these studies and the 
findings of the current research. It should be noted 
that the values reported in this study are based on the 

standard planting intervals (see Table  3), while the 
values reported in the presented studies are related to 
agroforestry systems in which the planting intervals 
are different and subsequently the planting density 
is less than the standard condition. In addition, the 
environmental conditions for the growth of trees were 
different and not the same. According to Jandl et al. 
(2007), the kind, age, and density of trees; the quali-
ties of the soil; the latitude; and associated climatic 
variables all affect the rate of carbon sequestration. 
Toochi (2018), who highlighted that the C sequestra-
tion rate relies on the development traits of various 
tree species and the growth circumstances, also sup-
ports this assertion.

Based on the results, the plantation of the recom-
mended trees in the study area as the agroforestry 
systems could lead to  CO2 sequestration of about 
12.96 Mg yr −1 (Fig. 8f). In this regard, about 84.86% 

Fig. 7  Spatial distribution 
of the recommended trees 
for AI in the study area

Table 3  The measured 
variables of the 
recommended trees for AI 
in the study area

D, Trunk diameter at the 
breast height; H, Height 
of a tree; W, Total (green) 
weight of a tree; GR, 
Growth rate of a tree (lbs 
 yr−1); N, Sample size

Tree D (inches) H (feet) Wtotal (lbs) Age GR Planting 
intervals

N

Min Max Min Max Min Max Min Max Min Max

Almond 8.3 10.1 19.1 21.3 404.3 581.6 10 12 33.7 48.5 7 × 7 31
Quince 2.1 2.7 9.9 13.1 13.6 45.8 1 2 13.6 22.9 5 × 5 38
Elaeagnus 6.3 8.2 19.7 23 234.1 431.6 9 13 18 33.2 7 × 7 63
Apple 8.8 13.7 19.8 29.4 453.8 967.1 25 30 16.2 34.5 5 × 5 53
Walnuts 23.8 29.8 59.2 78.3 6975.7 11,825.2 29 34 225 407.8 6 × 6 32
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of the total  CO2 sequestration was attributed to elae-
agnus and almond trees plantation in the rainfed 
lands. In addition, the remaining 15.14% was attrib-
uted to quince, apple, and walnut trees plantation in 
the irrigated lands. As the results showed, by allocat-
ing the recommended trees, AI can greatly mitigate 

the negative effects of CC and increase the adap-
tive capacity of the study area to CC. According to 
Torres et  al. (2017), agroforestry systems decrease 
GHG emissions by trapping  CO2 from the atmos-
phere. In line with the findings of this study, Kay 
et  al. (2019) reported that AI in the most suitable 

Fig. 8  The amount of  CO2 sequestration (t  yr−1) of the recommended trees per hectare (a–e) along with their total amount of  CO2 
sequestration (Mg  yr−1) in the study area (f)
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areas in European farmlands could mitigate between 
7.7 and 234.8 million tons of  CO2 per year. They 
also revealed that converting the conventionally used 
farmland to agroforestry could capture between 1.4 
and 43.4% of the European agricultural GHG emis-
sions. The co-benefits and trade-offs of agroforestry 
for CC mitigation were examined by Tschora and 
Cherubini (2020) in West Africa. They showed that 
a large-scale deployment of agroforestry can seques-
ter up to 135 Mg  CO2 yr1 over two decades, which 
is equivalent to 166% of the C emissions from fossil 
fuels and deforestation in their study area.

Conclusion

This study was carried out to assess the use of agro-
forestry using native trees in the Nazar Kahrizi dis-
trict of Hashtroud city, situated in the northwest of 
Iran, with the purpose of reducing the vulnerability 
of local farmers. The implementation of agroforestry, 
despite its numerous proposed advantages, often 
encounters resistance and failure due to neglecting 
the interests of farmers and the natural capacities 
of a given region. Users will be able to identify the 
appropriate arboreal components for agroforestry 
implementation using the techniques presented in this 
study, taking into account socioeconomic and envi-
ronmental factors.

According to the variables of “soil erosion,” “wind 
speed”, “drainage,” and “irrigation type,” the agri-
cultural lands of the study area were divided into 16 
classes. Based on the preferences of the local farm-
ers, 19 native trees were identified. Furthermore, the 
PROMETHEE II method was used to compare and 
rank these trees in terms of seven criteria of “frost-
bite resistance”, “salinity resistance”, “drainage sen-
sitivity”, “storm resistance”, “drought resistance”, 
“preventing soil erosion”, and “economic benefits”. 
The findings of this study showed that only 0.77% 
of the study area did not tolerate any environmental 
restrictions. In addition, elaeagnus and almond were 
the most appropriate trees for agroforestry implemen-
tation in the rainfed lands while apple, quince, and 
walnut were the most suitable trees for agroforestry 
implementation in the irrigated lands. Measurements 
showed that agroforestry implementation with the 
recommended trees will lead to  CO2 sequestration of 
about 12.96 Mg  yr−1.

The most challenging part of this research was to 
determine the number and type of variables for land 
evaluation, as well as selecting criteria for tree com-
parison. Moreover, the lack of access to information 
such as GHG emissions of the agricultural sector of 
the study area was another challenge of this study. 
However, this study cannot address all of the factors 
affecting the agroforestry establishment. For example, 
the current study did not take into account the reten-
tion of nutrients, water availability, ecophysiological 
features of allelopathy, biodiversity issues, natural 
dangers, or the vulnerability of the trees to pests and 
diseases; all of these elements might be addressed in 
further research.

There are a few limitations in this study that should 
be noted. Firstly, considering that the approach of this 
study regarding the selection of tree type for agro-
forestry implementation was based on the prefer-
ence of local farmers, it was not possible to examine 
all native trees/shrubs. Secondly, in some cases, the 
farmers were not willing to change their land man-
agement practices and, therefore, were not willing 
to cooperate with the researcher in expressing their 
opinions. Thirdly, the lack of access to information 
such as soil organic carbon, flood risk map, reference 
evapotranspiration, topsoil and subsoil features, etc. 
was another limitation of this research. Overall, the 
method utilized in this study might be applied to other 
nations, particularly those sensitive to climate change. 
Based on the approach used in this study, researchers 
could confidently identify appropriate trees for agro-
forestry implementation. Policymakers and decision-
makers in other locations with situations comparable 
to Iran can apply the research’s conclusions. The tar-
get audience for this study may be researchers in arid 
and semi-arid countries with unstable agriculture and 
frequently smallholder farmers.
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