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Abstract. We present a generic tree-interpolation algorithm in the
SMT context with quantifiers. The algorithm takes a proof of unsatisfi-
ability using resolution and quantifier instantiation and computes inter-
polants (which may contain quantifiers). Arbitrary SMT theories are
supported, as long as each theory itself supports tree interpolation for
its lemmas. In particular, we show this for the theory combination of
equality with uninterpreted functions and linear arithmetic. The inter-
polants can be tweaked by virtually assigning each literal in the proof
to interpolation partitions (colouring the literals) in arbitrary ways. The
algorithm is implemented in SMTInterpol.
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1 Introduction

Craig interpolants [7] were originally proposed to reason about proof complex-
ity. In the last two decades, research reignited when interpolants proved useful
for software verification, in particular for generating invariants [15]. Tree inter-
polants are useful for verifying programs with recursion [12], and for solving
non-linear Horn-clause constraints [23], which can be used for thread modu-
lar reasoning [10,16] and verifying array programs [20]. For many verification
problems, reasoning about first-order quantified formulas is needed. Quantified
formulas are, among others, needed to model unsupported theories or to express
global properties of arrays [19], for example, sortedness [3,24].

An interpolation problem is an unsatisfiable conjunction of several input for-
mulas, the partitions of the interpolation problem. An interpolant summarises
the contribution of a single or multiple partitions to the unsatisfiability. Inter-
polants can be computed from resolution proofs. However, most methods require
localised proofs where each literal is associated with some input partition [22].
Proofs generated by SMT solvers, especially with quantifier instantiations, usu-
ally contain mixed terms and literals created during the solving process that
cannot be associated with a single input formula.
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In this paper, we extend our work on proof tree preserving sequence interpo-
lation of quantified formulas [13]. The method presented therein allows for the
computation of inductive sequence interpolants from instantiation-based resolu-
tion proofs of quantified formulas in the theory of uninterpreted functions. The
key idea of this method is to perform a virtual modification of mixed terms intro-
duced through quantifier instantiations, thus allowing to compute an inductive
sequence of interpolants on a single, non-local proof tree.

We extend the interpolation algorithm to compute tree interpolants and to
support arbitrary SMT theories (with the single restriction that such a theory
itself must support tree interpolation for its lemmas). We simplify the treat-
ment of mixed terms by virtually flattening all literals independently of the
partitioning. We show that the literals can be coloured (assigned to a partition)
arbitrarily, and that for every colouring, correct interpolants are produced. The
interpolants contain quantifiers for the flattening variables that bridge different
partitions, and by choosing colours sensibly the number of quantifiers can be
reduced. In contrast to previous works [1,12] which produce tree interpolants by
repeated binary interpolation and require multiple proofs, our method computes
a tree interpolant from a single proof.

Related Work. Many practical algorithms to compute interpolants have been
presented. We focus here on proof-based methods that either work in the presence
of quantifiers, or that can compute tree interpolants, or both.

Our work builds on the method presented in [4] for computing interpolants
from instantiation-based proofs in SMT. It is based on purifying quantifier
instantiations by introducing variables for terms not fitting the partition, and
adding defining auxiliary equalities as a new input clause in the proof. Our
method introduces these variables and equalities only virtually for computing
the partial interpolants. Thus, tree interpolants can be computed from a single
proof of unsatisfiability, while in [4] a purified proof is required for each partition.

There exist several methods to compute interpolants for quantified formu-
las inductively from superposition-based proofs. In [2], each literal is given a
label (similar to our colouring) used to project the clause to the different parti-
tions. First, a provisional interpolant is computed that may contain local sym-
bols. These symbols are replaced by quantified variables to obtain an inter-
polant. In contrast to our method, the approach only works when the provi-
sional interpolants contain at most local constants, i.e., no local functions or
predicates, and the assignment of labels is not flexible as our colouring. The
method in [17] is based on a slightly modified proof, where substitution steps
are done separately. First, a relational interpolant is computed, which may con-
tain local function symbols, but only shared predicates. In logic without equality,
or when the only local symbols are constants, the relational interpolant can be
turned into an interpolant by quantifying over non-shared terms, respecting their
dependencies.

A very different method based on summarising subproofs is presented in [9].
The proof is split into subproofs belonging to a single partition. The relevant
subproofs are summarised in an intermediant stating that their premises imply
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their conclusion. If the subproofs contain only symbols of the respective partition,
the resulting formula is an interpolant. If the proof can be split in that way, the
method works for any theory and proof system, but for tree interpolation, a
different proof would be required for each partitioning.

Tree interpolants can be computed by repeated binary interpolation from
formulas where the children interpolants are included, as discussed in [12]. In
the propositional setting, [11] discusses under which conditions sets of inter-
polants with certain relations, such as tree interpolants, can be obtained by
binary interpolation on different partitionings of the same formula. The method
is implemented in OpenSMT, but the solver, and therefore the interpolation
engine, does not support quantifiers.

A general framework for computing tree interpolants for ground formulas
from a single proof has been presented in [5]. It works for combinations of
equality-interpolating theories and is based on projecting mixed literals using
auxiliary variables and predicates. Additionally, the rule for computing a resol-
vent’s interpolant from its antecedents’ interpolants is more involved. The
method cannot deal with quantifier instantiations, nor with terms mixing sub-
terms from different partitions. We discuss in Sect. 6 how it can be combined
with the interpolation method for quantified formulas presented in this paper.

The first implementation of a tree interpolation algorithm in the presence of
quantifiers and theories was in Vampire [1]. It is based on repeatedly computing
binary interpolants for modified interpolation problems, similar to [12]. For each
binary computation, the proof must be localised in order to be able to compute
interpolants. In contrast, our method computes tree interpolants in one go from
a single proof that has been obtained without knowledge of the partitioning of
the tree interpolation problem. To the best of our knowledge, Vampire is the only
other tool that is able to compute tree interpolants in the presence of quantifiers.

2 Notation

We assume that the reader is familiar with first-order logic. We define a theory
T by its signature, that contains constant, function and predicate symbols, and
its set of axioms, closed formulas that fix the meaning of those function and
predicate symbols that are interpreted by the theory.

A term is a variable or the application of an n-ary function symbol to n
terms. An atom is the application of an n-ary predicate to n terms, and a literal
is an atom or its negation. A clause is a disjunction of literals, and a formula
is in conjunctive normal form (CNF) if it is a conjunction of clauses. We use �
(resp. ⊥) for the formula that is always true (resp. false).

We will demonstrate our algorithm using the theory of equality, and the the-
ory of linear arithmetic (with rationals and/or integers). The theory of equal-
ity establishes reflexivity, symmetry, and transitivity of the equality predicate
=, and congruence for each uninterpreted function symbol. For simplicity of
the presentation, uninterpreted constants are considered as 0-ary functions, and
uninterpreted predicate symbols as uninterpreted functions with Boolean return
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value. The theory of linear arithmetic contains the predicates ≤, <, rational con-
stants c, the binary addition function +, and a family of unary multiplication
functions c·, one for each rational constant c. These symbols have their usual
semantics, and the main theory lemmas are trichotomy (x < y ∨ x = y ∨ x > y)
and a variant of Farkas lemma. For simplicity, we apply arithmetic conversions
implicitly and treat x ≤ y and y ≥ x and 1 · x + (−1) · y ≤ 0 as the same literal,
and x > y as its negated literal.

We denote constants by a, b, c, functions by f, g, h, variables by v, x, y, z, and
terms by s, t. We use � for literals, C for clauses, and φ, F, I for formulas.

For a term t, the outermost (or head) function symbol is denoted by hd(t).
The set of all uninterpreted function symbols occurring in a formula F is symb(F )
and the set of all free variables in F is FreeVars(F ). The result of substituting in a
formula F each occurrence of a variable x by a term t is denoted by F{x �→ t}. By
x̄ and t̄, we denote the list of variables x1, . . . , xn and terms t1, . . . tn, respectively.
We use the symbol ≡ to denote equivalence between formulas, and to assign a
formula to a formula variable.

3 Preliminaries

Craig Interpolation. A binary Craig interpolant [7] for an unsatisfiable conjunc-
tion A ∧ B is a formula I that is implied by A, contradicts B, and contains
only symbols that occur in both A and B. A generalisation are tree interpolants,
which introduce several partitions in a tree-like structure.

Definition 1 (Tree interpolation). A tree interpolation problem (V,E, F )
is a labelled binary tree where V is a set of nodes connected by directed edges
E ⊆ V × V pointing towards the root node. Every node except for the root node
has one outgoing edge to its parent, and each non-leaf node has exactly two
incoming edges. The partitions P ⊆ V of the tree interpolation problem are the
leaf nodes. The labelling function F assigns a formula to each partition p ∈ P of
the tree such that their conjunction is unsatisfiable. We use st(v) ⊆ P to denote
the set of leaves in the subtree of the node v, i.e., the set of leaves for which a
path to the node v exists.

A tree interpolant for the interpolation problem (V,E, F ) is a labelling func-
tion I for all nodes with the following properties:

1. The label I(vr) of the root node vr of the tree is ⊥.
2. For each leaf node p ∈ P , its interpolant I(p) is implied by the formula F (p).
3. For each inner node v ∈ V \P , its interpolant I(v) is implied by the conjunc-

tion I(v1) ∧ I(v2) of the interpolants labelled to the two child nodes v1, v2.
4. For each node v, the symbols in I(v) occur both inside and outside the subtree

st(v), i.e., symb(I(v)) ⊆ (
⋃

p∈st(v) symb(F (p))) ∩ (
⋃

p�∈st(v) symb(F (p))).
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Remarks. In contrast to the earlier definition of tree interpolation [1,5], only
the leaves of the tree are labelled by F here. A tree interpolation problem with
labelled inner nodes can be transformed to our formalism by adding a leaf child
to each such node. A non-binary tree can be extended to a binary tree by adding
more internal nodes. If the interpolants of the newly created nodes are ignored,
the remaining interpolants are tree interpolants according to the earlier definition
for tree interpolation.

A binary interpolant of A and B corresponds to the tree interpolant of the
tree containing just two leaves A and B, more precisely, it is the interpolant
labelled to the first leaf. Vice versa, each interpolant I(v) of a tree interpolant
is also a binary interpolant of the formulas in the partitions A := st(v) and
Ac := P \ st(v). Since the set A defines v uniquely, we can also use IA to denote
I(v). We call a symbol A-local if it only occurs in partitions in A, Ac-local if it
only occurs in partitions in Ac, and shared if it occurs in both. The interpolant
may only contain shared symbols.

Theory Combination. We assume that the solver uses Nelson–Oppen style the-
ory combination sharing equalities without explicitly introducing auxiliary vari-
ables, and that each lemma in the proof belongs to one theory. Subterms in these
lemmas containing symbols from a different theory are treated as if they were
auxiliary variables. We further assume that there is a theory-specific interpola-
tion procedure for the lemmas. In this paper, we do not have the assumption
that theories are equality-interpolating. We introduce quantifiers in the inter-
polants for such theories. However, our approach can also be combined with
equality-interpolating theories and corresponding procedures to avoid quanti-
fiers, see Sect. 6.

CNF Transformation and Quantifiers. We assume that complex input formulas
are transformed to CNF by Tseitin-encoding, which introduces Boolean proxy
atoms. Existentially quantified variables are replaced with Skolem constants or
functions (if nested under a universal quantifier) and conjunctions are lifted
over universal quantifiers. Complex subformulas under a universal quantifier
are replaced by uninterpreted predicates, taking as arguments the quantified
variables. Quantified Tseitin-style axioms give the meaning for these predicates.
Thus, we end up with quantified clauses of the form ∀x̄. �1(x̄) ∨ · · · ∨ �n(x̄),
which we treat as a proxy literal. Instances of quantified clauses are created
using instantiation lemmas of the form ¬(∀x̄. �1(x̄) ∨ · · · ∨ �n(x̄)), �1(t̄), . . . , �n(t̄)
where t̄ are ground terms. Note that the proxy atom for a quantified formula
occurs only positively in input clauses and negated in instantiation lemmas. We
note that all preprocessing steps are done locally for each input formula, and
that auxiliary predicates and Skolem functions are fresh predicate or function
symbols. An interpolant of the preprocessed formulas is also an interpolant of the
original formulas, because the auxiliary symbols are not shared between different
input formulas and will never appear in the interpolant.
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Proofs. A resolution proof for the unsatisfiability of a formula in CNF is a
derivation of the empty clause ⊥ using the resolution rule

C1 ∨ � C2 ∨ ¬�

C1 ∨ C2

where C1 and C2 are clauses, and � is a literal called the pivot (literal). A
resolution proof can be represented by a tree, or more generally, if the same
subproof is used more than once, by a directed acyclic graph (DAG). In our
setting, the DAG has three types of leaves: input clauses, theory lemmas, i.e.,
clauses that are valid in the theory T , and instantiation lemmas of the form
¬(∀x̄.φ(x̄)) ∨ φ(t̄). The inner nodes are clauses obtained by resolution, and the
unique root node is the empty clause ⊥.

Binary interpolants can be computed from a resolution proof by computing
so-called partial interpolants for each clause. Each proof step proves a clause C as
a consequence of the input A∧B, hence it proves that A∧B∧¬C is unsatisfiable.
If each literal in the proof is assigned to, or coloured with, either partition A
or B, a partial interpolant for each intermediate step is the interpolant of A ∧
¬C � A and B ∧ ¬C � B, where the projection ¬C � A extracts from the
conjunction ¬C all literals that are coloured with partition A. McMillan showed
for propositional logic that partial interpolants (cf. Definition 2 in [18]) can be
computed recursively for each resolution step as the disjunction of the partial
interpolants of the antecedents if the pivot is coloured as A, and their conjunction
if it is coloured as B.

4 Colouring of Terms and Literals

In this section, we fix an interpolation problem (V,E, F ), with partitions P ⊆ V .
We use the following example to illustrate our interpolation algorithm.

Example 1 (Running example). Take the tree interpolation problem with nodes
V = {123, 1, 23, 2, 3} and edges E = {(1, 123), (23, 123), (2, 23), (3, 23)} (see also
Fig. 1), where the partitions P = {1, 2, 3} are labelled with F (p) ≡ φp where

φ1 ≡ ∀x. g(h(x)) ≤ x, φ2 ≡ ∀y. g(y) ≥ b, φ3 ≡ ∀z. f(g(z)) �= f(b).

The conjunction of the three formulas is unsatisfiable. Instantiating φ1 with b
gives g(h(b)) ≤ b. Instantiating φ2 with h(b) gives g(h(b)) ≥ b. Together they
imply g(h(b)) = b. However, this contradicts φ3 instantiated with h(b). This proof
creates, among others, the new literal g(h(b)) ≤ b. The term g(h(b)) contains
function symbols that do not occur in a common partition.

We recall that by symb(F (p)), we denote the uninterpreted function symbols
occurring in the formula F (p). We also keep track of the partitions where a
symbol occurs:

Definition 2 (Partitions). The partitions of a function symbol f are the par-
titions where this symbol occurs:

partitions(f) = {p ∈ P | f ∈ symb(F (p))}.
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McMillan’s interpolation algorithm assumes that all symbols of a literal occur
in one partition, such that the literal can be coloured with that partition. This
is no longer the case in SMT, because new literals are created during the proof
search, especially in the presence of instantiation lemmas. Our solution to this
problem is to split each literal into many smaller literals and assign each of them
to a partition. To keep the presentation simple, we flatten all (non-proxy) literals
using a fresh variable for each application term. Thus, for every term t occurring
in the resolution proof, we create a fresh variable vt and associate with it a set of
flattening equalities. In each literal, the top-level terms are replaced with their
associated variable, and the defining equalities are conjoined.

Definition 3 (Flattening). For a term t, we introduce a fresh variable vt, and
similarly for all its subterms. The associated set of flattening equalities FlatEQ(t)
is defined as follows:

FlatEQ(t) = {vf(t1,...,tn) = f(vt1 , . . . , vtn) | f(t1, . . . , tn) is a subterm of t}.

The flattened version of a literal � is

flatten(�) ≡
{

vt1 = vt2 if � ≡ t1 = t2

c1 · vt1 + · · · + cn · vtn ≤ c if � ≡ c1 · t1 + · · · + cn · tn ≤ c

and the associated set of flattening equalities is as follows

FlatEQ(�) =

{
FlatEQ(t1) ∪ FlatEQ(t2) if � ≡ t1 = t2

FlatEQ(t1) ∪ · · · ∪ FlatEQ(tn) if � ≡ c1 · t1 + · · · + cn · tn ≤ c.

The flattened version of a negated literal is the negation of the flattened literal,
i.e., flatten(¬�) ≡ ¬flatten(�). The set of flattening equalities for a negated lit-
eral is the set of flattening equalities for the literal itself, i.e., FlatEQ(¬�) =
FlatEQ(�).

The conjunction of the equalities in FlatEQ(t) implies that vt = t. Similarly, the
conjunction flatten(�)∧

∧
FlatEQ(�) implies the literal � and is equisatisfiable to

�. Proxy literals like quantified formulas are not flattened, as they will never occur
in a partial interpolant. For such a proxy literal, flatten(∀x.φ(x)) ≡ ∀x.φ(x) and
FlatEQ(∀x.φ(x)) = ∅.

Example 2 (Flattening). Consider the literal g(h(b)) ≤ b. Its flattened version
is flatten(g(h(b)) ≤ b) ≡ vg(h(b)) ≤ vb, and the set of flattening equalities is

FlatEQ(g(h(b)) ≤ b) = FlatEQ(g(h(b))) ∪ FlatEQ(b)
= {vg(h(b)) = g(vh(b)), vh(b) = h(vb), vb = b}.

To define partial interpolants, we colour each atom � with some partition,
denoted by colour(�) ∈ P . The negated atom always has the same colour. For
proxy atoms created during the CNF conversion, it is important to colour them
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with the input partition from which they were created. The colour of other
literals can be chosen arbitrarily, but a good heuristic would choose a partition
where most of the outermost function symbols occur. Each flattening equality is
associated with all partitions where the corresponding function symbol occurs.
The projection of auxiliary equations on a partition p, denoted by FlatEQ(�) � p,
is defined as the conjunction of the equalities (vf(t1,...,tn) = f(vt1 , . . . , vtn)) ∈
FlatEQ(�) where p ∈ partitions(f).

Finally, we define the projection of a literal � to a partition p. The projection
kernel � �− p is flatten(�) if p = colour(�) or � otherwise. The projection of � to
p is defined as � � p ≡ � �− p ∧ FlatEQ(�) � p. We define the projection to a set
of partitions � � A with A ⊆ P (and similarly � �− A) as the conjunction of all
projections � � p with p ∈ A. For a conjunction of literals F ≡ �1 ∧ · · · ∧ �n, we
define F � p ≡ �1 � p ∧ · · · ∧ �n � p and similar for F � A, F �− p and F �− A.

Example 3 (Projection of literals). Consider again the literal g(h(b)) ≤ b from
our running example (Example 1), and assume that we arbitrarily assign it to
partition 2, i.e., colour(g(h(b)) ≤ b) = 2. We have partitions(g) = {1, 2, 3},
partitions(h) = {1} and partitions(b) = {2, 3}. The projections are hence:

g(h(b)) ≤ b � 1 ≡ vg(h(b)) = g(vh(b)) ∧ vh(b) = h(vb)
g(h(b)) ≤ b � 2 ≡ vg(h(b)) ≤ vb ∧ vg(h(b)) = g(vh(b)) ∧ vb = b

g(h(b)) ≤ b � 3 ≡ vg(h(b)) = g(vh(b)) ∧ vb = b

Similar to the last paragraph in Sect. 3, we define a partial interpolant of
a clause C as an interpolant of the input problem and ¬C. More precisely, it
is the tree interpolant of a slightly modified tree interpolation problem, where
the projection ¬C � p is added to each leaf node p ∈ P . Since this step adds
flattening variables potentially shared between several partitions, these variables
can occur in the interpolants. The following definition accounts for the variables
occurring in the projection of a clause.

Definition 4 (Supported variable). We call a variable vt supported by a
clause C if its corresponding term t is a subterm of a non-proxy literal � in C.

The partial tree interpolant of a clause C may then contain a variable vt as
long as it is supported by the clause C.

Definition 5 (Partial tree interpolant). A partial tree interpolant for a
clause C is a tree interpolant as defined in Definition 1 for the tree interpolation
problem (V,E, F ′) where the leaves are labelled with F ′(p) ≡ F (p) ∧ ¬C � p.
For the symbol condition, all variables supported by the clause may occur in all
partial interpolants.

5 Interpolation for Quantified Formulas

In the following, we describe how to compute tree interpolants for instantiation-
based resolution proofs. We assume that each literal has been assigned to exactly
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one partition of the tree interpolation problem, as described in the previous
section. Following McMillan’s algorithm, we compute partial tree interpolants
inductively over the proof tree. The leaves of the proof tree are theory lem-
mas, for which we use theory-specific interpolation procedures, or they are input
clauses or instantiation lemmas, for which we compute partial tree interpolants
as described below. The inner nodes are obtained by resolution steps, for which
we follow McMillan’s algorithm to combine interpolants, and additionally treat
variables that violate the symbol condition, as described later in this section.

5.1 Interpolation Algorithm

We start by explaining how the interpolants for leaf nodes are computed. Our
algorithm computes interpolants separately for each node v ∈ V in the tree
interpolation problem. As mentioned in the preliminaries, we set A = st(v) and
use IA to denote the interpolant I(v).

Input Clauses. We assume that each input clause occurs in exactly one partition.
The partial tree interpolant for an input clause C from partition p is given by
IA ≡ ¬(¬C �− Ac) if p ∈ A, and IA ≡ ¬C �− A if p �∈ A.

Note that the literals can be assigned to a different partition than the clause.
Although it makes sense to assign a literal to the same partition as the input
clause it occurs in, this is not possible when the literal occurs in several input
clauses. Therefore, the above formulas are not necessarily � or ⊥. Proxy literals
always have the same colour as the input clause and will therefore never appear
in the interpolant.

Instantiation Lemmas. The partial tree interpolant for an instantiation lemma C
obtained from a quantified input clause ∀x.φ(x) from partition colour(∀x.φ(x))
is computed in the same way as for input clauses.

Theory Lemmas. We only require that for each theory one can compute a partial
tree interpolant for its lemmas, or to be more precise, the flattened negated
lemmas. Thus, we can reuse any existing procedure. For self-containment, we
cover transitivity, congruence, trichotomy and Farkas lemmas, which are the kind
of lemmas our solver produces for the theory of equality and linear arithmetic.1

For a transitivity lemma with the corresponding conflict ¬C ≡ t1 = t2 ∧
· · · ∧ tn−1 = tn ∧ t1 �= tn we can ignore the auxiliary equations introduced by
flattening the terms, as the projection kernel is also a transitivity lemma. A
partial tree interpolant is computed by summarising for each A the chains of the
flattened equalities (and, if applicable, the single disequality) that are assigned
to a partition p ∈ A. More precisely, let i1 < · · · < im be the boundary indices
such that colour(tij−1 = tij ) ∈ A and colour(tij = tij+1) /∈ A or vice versa. Set
i1 = 1 if t1 �= tn and t1 = t2 are in different partitions and im = n if tn−1 = tn

1 Branches in linear integer arithmetic [8] are decisions on inequality literals and are
handled by our resolution rule.
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and t1 �= tn are in different partitions. If m = 0, then all colours of the equalities
are in A and the interpolant is ⊥, or they are all in Ac and the interpolant is
�. Otherwise, the interpolant summarises the equalities between the boundary
indices that have a colour in A: if colour(t1 = tn) /∈ A, then the interpolant
is IA ≡ vi1 = vi2 ∧ vi3 = vi4 ∧ · · · ∧ vim−1 = vim , otherwise the interpolant is
IA ≡ vi2 = vi3 ∧ · · · ∧ vim−2 = vim−1 ∧ vim �= vi1 . Here, vi denotes the auxiliary
variable introduced for ti.

The flattened version of the conflict corresponding to a congruence lemma
C ≡ f(t1, . . . , tn) = f(s1, . . . , sn) ∨ t1 �= s1 ∨ · · · ∨ tn �= sn is

vf(t1,...,tn) �= vf(s1,...,sn) ∧ vt1 = vs1 ∧ . . . ∧ vtn = vsn

∧ vf(t1,...,fn) = f(vt1 , . . . , vtn) ∧ vf(s1,...,sn) = f(vs1 , . . . , vsn
)

∧
∧

{� | � ∈ FlatEQ(t), t ∈ {t1, . . . , tn, s1, . . . , sn}}.

Note that the formula is still a congruence conflict if we drop the last line.
Consequently, the flattening equalities for the arguments of the f -applications,
and for their subterms, are not needed in the computation of a partial inter-
polant, they only establish the implication between the flattened and the orig-
inal lemma. To obtain a partial tree interpolant, we first choose an arbitrary
partition pf ∈ partitions(f). The partial tree interpolant is computed as follows.

IA ≡
{

¬(¬C �− Ac) if pf ∈ A

¬C �− A otherwise

For a trichotomy lemma C ≡ t1 = t2 ∨ t1 > t2 ∨ t1 < t2, both IA ≡ ¬C �− A
and I ′

A ≡ ¬(¬C �− Ac) are partial interpolants. We can always choose the
projection that contains at most one literal.

A Farkas lemma has the form C ≡ ¬(s1 ≤ b1) ∨ · · · ∨ ¬(sn ≤ bn) where si

is of the form ci1 · v1 + . . . + cim · vm and bi, cij are numeric (integer) constants.
It is a valid lemma if there are Farkas coefficients (numeric integer constants)
k1, . . . , kn > 0 with

∑n
i=1 ki · si = 0 and

∑n
i=1 ki · bi < 0. We assume that

the lemma is flattened and all vi are variables. The flattening equalities can be
omitted from the lemma without changing its validity. For a set of partitions A,
we denote by LA := {i | colour(si ≤ bi) ∈ A} the indices where si ≤ bi is A-
local. The partial tree interpolant for a Farkas lemma is computed by summing
up the A-local literals multiplied by their Farkas coefficients. We obtain IA ≡
(
∑

i∈LA
ki · si) ≤ (

∑
i∈LA

ki · bi). Variables whose coefficients sum to zero are
removed from the inequality. If A contains all inequalities, they sum up to the
conflict 0 ≤

∑n
i=1 ki · bi and we set IA ≡ ⊥.

Theorem 1. The interpolants as defined in this section are valid partial tree
interpolants for the respective leaf nodes.

The proof for this theorem is a straight-forward case distinction over the type
of leaf node. Details can be found in [14].



258 E. Henkel et al.

Resolution Steps. In a resolution step, we obtain the partial interpolant of the
resolvent using the partial interpolants of the premises.

C1 ∨ � : I1A C2 ∨ ¬� : I2A
C1 ∨ C2 : I3A

As the first step, we follow McMillan’s algorithm and combine the interpolants
of the premises either with ∨ or with ∧ depending on whether the pivot literal
is A or Ac-local. For tree interpolants, this is done separately for each node of
the tree interpolation problem, and a literal is seen as A-local if its colour is one
of the leaves in the subtree of the node.

I3A ≡
{

I1A ∨ I2A if colour(�) ∈ A

I1A ∧ I2A if colour(�) /∈ A

The formula I3A computed above may still contain variables supported by the
antecedents that are no longer supported by the resolvent C1∨C2. Each of those
unsupported variables must either be replaced by its definition or bound by a
quantifier in the partial tree interpolant. More precisely, let vt be an unsupported
variable such that t is not a subterm of t′ with vt′ ∈ FreeVars(I3A). This variable
must always exist, as there is always an outermost unsupported variable. Let
t = f(t1, . . . , tn). We replace I3A as follows:

I3A ≡

⎧
⎪⎨

⎪⎩

∃x. I3A{vt �→ x} if f is A-local, i.e., partitions(f) ⊆ A,

∀x. I3A{vt �→ x} if f is Ac-local, i.e., partitions(f) ∩ A = ∅,

I3A{vt �→ f(vt1 , . . . , vtn)} if f is shared (otherwise).

We do this repeatedly for all variables in FreeVars(I3A) that are unsupported.
The variables may be treated in any order that respects the partial order induced
by the subterm relation as described above. However, all interpolants of the tree
interpolant must use the same order.

Theorem 2. If I1A is a partial tree interpolant of C1 ∨ � and I2A is a partial
tree interpolant of C2 ∨ ¬�, then I3A as computed above, after the removal of
unsupported variables, is a partial tree interpolant of C1 ∨ C2.

The proof for this theorem is given in [14].

Example 4 (Resolution). Take the running example and suppose � ≡ g(h(b)) = b
is the pivot, I1{1} ≡ vg(h(b)) ≤ vb and I2{1} ≡ �. The interpolants are combined
as I1{1} ∧ I2{1} since colour(�) �∈ {1}. This results in the interpolant vg(h(b)) ≤ vb.
After the resolution step, we assume that vg(h(b)), vh(b), vb are no longer sup-
ported. The outermost variable is vg(h(b)), which must be replaced by its def-
inition: g(vh(b)) ≤ vb. Now vh(b) is bound by a quantifier, and since h only
occurs in partition 1, an existential quantifier is used: ∃y. g(y) ≤ vb. In the final
step, vb is bound by a universal quantifier since b does not occur in 1, yielding
∀x.∃y. g(y) ≤ x.
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Note that the order of eliminating variables is important. If vb had been cho-
sen in the first step despite occurring in FlatEQ(g(h(b))), the resulting formula
would have been ∃y.∀x.g(y) ≤ x. This formula is not logically equivalent and is
indeed not a valid interpolant, as it does not follow from ∀x.g(h(x)) ≤ x.

Fig. 1. Tree interpolation problem from Example 1 annotated by tree interpolants.

Fig. 2. Resolution proof for Example 1 with input clauses , instantiation lemmas ,

theory lemmas , and resolvents .

Theorem 3. The algorithm in this section computes valid tree interpolants from
a proof of unsatisfiability.

Proof. By induction, every node in the proof tree is labelled by a valid partial tree
interpolant: Theorem 1 is the base case and Theorem 2 the inductive step. The
proof of unsatisfiability ends with the empty clause and its partial interpolant
is a tree interpolant for the original problem.

5.2 Full Interpolation Example

We illustrate the algorithm on our running example (Example 1). Consider the
tree interpolation problem given in Fig. 1. The symbol b occurs in partitions 2
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and 3, f in 3, g in 1, 2, and 3, and h in 1. Our goal is to compute tree interpolants
I{1}, I{2}, and I{3} for the leaf nodes such that φ1 implies I{1}, φ2 implies I{2},
and φ3 implies I{3}, and tree interpolant I{2,3} such that I{2,3} is implied by
I{2} ∧ I{3}, and I{1} ∧ I{2,3} implies ⊥.

Figure 2 shows an instantiation-based resolution proof for the unsatisfiability
of φ1 ∧φ2 ∧φ3. First, we assign each literal occurring in the proof tree to exactly
one partition. We colour each proxy literal for a quantified formula by a partition
in which it occurs, e.g., colour(∀x.g(h(x)) ≤ x) = 1. For the other literals, we
can choose arbitrary colours. We assign the literals g(h(b)) = b, g(h(b)) ≤ b, and
g(h(b)) ≥ b to partition 2, and the literal f(g(h(b))) �= f(b) to partition 3. We
then compute for each literal � the projection onto each partition, i.e., � � pi. For
� ≡ g(h(b)) ≤ b assigned to partition 2, the projections are given in Example 3.
As g(h(b)) ≥ b and g(h(b)) = b are assigned to the same partition as � and only
differ in the comparison operator, their projections only differ in the comparison
operator of the flattened version of the original literal. For the remaining literal
f(g(h(b))) = f(b), we get the following projections:

f(g(h(b))) = f(b) � 1 ≡ vg(h(b)) = g(vh(b)) ∧ vh(b) = h(vb)
f(g(h(b))) = f(b) � 2 ≡ vg(h(b)) = g(vh(b)) ∧ vb = b
f(g(h(b))) = f(b) � 3 ≡ vf(g(h(b))) = vf(b) ∧ vf(g(h(b))) = f(vg(h(b))) ∧

vg(h(b)) = g(vh(b)) ∧ vf(b) = f(vb) ∧ vb = b

We now compute partial tree interpolants for each node in the proof tree.
The first input clause C ≡ φ1 on the top left of the proof tree is from partition 1.
The partial interpolants I{1} and I{1,2,3} are set to ¬(¬C �− Ac) ≡ ⊥, and I{2},
I{3}, and I{2,3} are set to ¬C �− A ≡ �. For the input clauses φ2 and φ3, the
interpolants are computed analogously. To summarise:

φ1 :
⊥

�
� �⊥

φ2 :
⊥

⊥
� ⊥ �

φ3 :
⊥

⊥
� � ⊥

We now compute the partial tree interpolants for the instantiation lemma on
the top right of the proof tree. Similar as for the input clauses, we set I{1} to
¬(¬C �− Ac), i.e., to ¬(¬C �− 2) ∧ ¬(¬C �− 3) ≡ vg(h(b)) ≤ vb. Analogously, we
compute all other partial tree interpolants for the three instantiation lemmas:

¬φ1 ∨ g(h(b)) ≤ b : ⊥
vg(h(b)) > vb

vg(h(b)) ≤ vb vg(h(b)) > vb �

¬φ2 ∨ g(h(b)) ≥ b :
⊥

⊥
� ⊥ �

¬φ3 ∨ f(g(h(b))) �= f(b) :
⊥

⊥
� ⊥�

For the trichotomy lemma, the partial tree interpolants can be set to ¬C �− A
or ¬(¬C �− Ac). Due to our colouring, all literals in the lemma are either in A
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or in Ac. To get the most simple partial interpolants, we set I{1} and I{3} to
¬C �− A ≡ �, and I{2} and I{2,3} to ¬(¬C �− Ac) ≡ ⊥:

g(h(b)) = b ∨ ¬(g(h(b)) ≤ b) ∨ ¬(g(h(b)) ≥ b) :
⊥

⊥
� ⊥ �

For the congruence lemma, we have pf = 3. The partial tree interpolants
I{1} and I{2} are set to ¬C �− A as pf �∈ A for these partitions. We get I{1} ≡ �
(neither of the flattened literals in ¬C is contained in the projection kernel) and
I{2} ≡ vg(h(b)) = vb, since we chose 2 as the colour of this literal. Similarly, I{3}
and I{2,3} are set to ¬(¬C �− Ac). We get I{3} ≡ vg(h(b)) �= vb and I{2,3} ≡ ⊥:

g(h(b)) �= b ∨ f(g(h(b))) = f(b) :
⊥

⊥
vg(h(b)) = vb vg(h(b)) �= vb�

Having computed the partial tree interpolants for all leaves in the proof
tree, we now compute the partial tree interpolants for each resolvent. If the
colour of the pivot literal � is in the A-part, i.e., colour(�) ∈ A, the partial tree
interpolant of the resolvent is the disjunction of the partial tree interpolants
of its antecedents. Otherwise, if colour(�) ∈ Ac, we build the conjunction of
the partial tree interpolants of its antecedents. In the resolution step for the
resolvent clause C3 ≡ g(h(b)) ≤ b, the pivot literal is assigned to partition 1,
i.e., colour(∀x.g(h(x)) ≤ x) = 1. To obtain I{1}, we hence build the disjunction
of the partial interpolants of the antecedents C1 ≡ ∀x.g(h(x)) ≤ x and C2 ≡
¬(∀x.g(h(x)) ≤ x) ∨ g(h(b)) ≤ b, so we get I{1} ≡ I1{1} ∨ I2{1} ≡ vg(h(b)) ≤ vb.
Similarly, we obtain I{2}, I{3} and I{2,3} by conjoining the respective partial
interpolants. Since the top-left interpolant is only � or ⊥ and the colouring
of the pivot literal ensures that we either build the conjunction with � or the
disjunction with ⊥, the resulting tree interpolant of the resolvent is the same as
for the top-right clause. The variables vg(h(b)) and vb are both supported by C3

and thus allowed to appear in the partial interpolant. The resolution steps of
the other inner nodes are very similar in that their partial interpolants always
equal the partial interpolant of one of their antecedents. To summarise:
g(h(b)) ≤ b :
g(h(b)) = b ∨ ¬(g(h(b)) ≥ b) :
g(h(b)) = b :

⊥
vg(h(b)) > vb

vg(h(b)) ≤ vb vg(h(b)) > vb �

g(h(b)) ≥ b :
⊥

⊥
� ⊥ �

f(g(h(b))) �= f(b) :
⊥

⊥
� ⊥�

g(h(b)) �= b :
⊥

⊥
vg(h(b)) = vb vg(h(b)) �= vb�
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The last resolution step is a bit more involved. We have already computed
the tree interpolant for partition 1 in Example 4 as I{1} ≡ ∀x.∃y.g(y) ≤ x.
For partition 2, the disjunction vg(h(b)) > vb ∨ vg(h(b)) = vb can be simplified to
vg(h(b)) ≥ vb. The outermost variable vg(h(b)) is then replaced by g(vh(b)), since
g occurs in 1 and 2. Then for vh(b) a universal quantifier is introduced, since h
only occurs in partition 1, resulting in ∀y.g(y) ≥ vb. Finally, vb is replaced by
b, since it occurs in both 2 and 3. This results in I{2} ≡ ∀y.g(y) ≥ b. We omit
the computation of the partial interpolant for partitions 3 and the node 23. The
partial tree interpolant computed in this step is the tree interpolant of the full
interpolation problem:

⊥ :
⊥

∃x.∀y.g(y) > x

∀x.∃y.g(y) ≤ x ∀y.g(y) ≥ b ∀y.g(y) �= b

6 Combination with Equality-Interpolating Theories

In Sects. 4 and 5, we assign each literal to exactly one partition, such that we can
apply McMillan’s algorithm to combine partial interpolants of the antecedents
to obtain a partial interpolant for the resolvent. In the presence of equality-
interpolating theories [25], we can also allow for mixed literals where only outer-
most terms must be assigned to one partition. More precisely, we can allow for
equalities t1 = t2 where the left-hand side t1 is in one partition and the right-
hand side t2 in another, or linear constraints of the form c1 · t1 + . . . + cn · tn � c0
with constants ci and � ∈ {=,≤, <,≥, >}, where each ti is assigned to one
partition. Such literals can be treated by applying proof tree preserving tree
interpolation [5].

A mixed literal � ≡ t1 = t2 is coloured with two colours p1 and p2, so
that each colour can be chosen to contain the outermost symbols of t1 and t2,
respectively. The projections are � �− p1 ≡ vt1 = v�, � �− p2 ≡ v� = vt2 and
for the negated literal ¬� �− p1 ≡ EQ1(v�, vt1) and ¬� �− p2 ≡ EQ2(v�, vt2),
where v� is a fresh variable and EQ1,EQ2 are shared uninterpreted predicates
with ∀x, y.¬(EQ1(x, y) ∧ EQ2(x, y)), that are only used for the interpolation
algorithm. The partial interpolants for a lemma containing mixed literals will
contain the auxiliary variable v�. If a negated mixed equality occurs in the con-
flict (the negated lemma), we further require that v� occurs only in literals of the
form EQ i(v�, s) for some shared term s. Valid interpolants will naturally have
this shape, as the interpolated conflict also contains v� only as first parameter of
an EQ i. We then introduce a new combination rule in the first part of interpo-
lating resolution steps: For a mixed literal �, the two interpolants I1[EQ i(v�, s)]
and I2(v�) are combined to I1[I2(s)], i.e., interpolant I2(s) replaces the EQ-
literals occurring in the interpolant I1 to form the resolvent interpolant. This
eliminates the variable v� without introducing a quantifier. The remaining part
is unchanged, i.e., we still introduce quantifiers for unsupported flattening vari-
ables. A proof that the first step produces a valid resolvent interpolant can be
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found in [5]. This method produces quantifier-free interpolants if the input for-
mulas were quantifier-free. An example for this method can be found in [13].

7 Implementation in SMTInterpol

We implemented the algorithm in SMTInterpol2 [6] with a few alterations. First,
we used the combination with equality-interpolating theories described in the
previous section. Second, we do not apply flattening explicitly. Instead of using
an auxiliary variable, the interpolation algorithms for the lemmas include the
corresponding term directly. This may result in an interpolant where the inter-
polant has symbols that are not allowed, because the auxiliary variable was
shared but its corresponding function symbol is local to one partition. Only
in that case, we introduce the fresh variables for these subterms and replace
the offending subterm in the interpolant with its variable. This creates the same
interpolants as our presented algorithm, because the latter replaces each variable
that stands for a shared function symbol by its definition in the end.

SMTInterpol also supports literals that are shared. If this is done näıvely,
the computed interpolants may violate the tree inductivity property (third prop-
erty in Definition 1). We solve this by treating each literal as occurring in one
designated partition when interpolating a lemma (minimizing the number of
alternating chains in transitivity lemmas). We then apply Pudlák’s resolution
rule [21] that has a case for shared literals. Our implementation colours input
literals with all partitions it occurs in. For new terms created in the proof, the
colour that matches the most outermost function symbols is chosen. If the term
uses only symbols from one partition, then it is coloured with that partition.
Equalities and inequalities between terms of different partitions are handled
with the equality-interpolating procedure to avoid introducing quantifiers when
it is not necessary.

8 Conclusion

We presented a tree interpolation algorithm for SMT formulas with quantifiers.
The key idea is to virtually flatten each conflict corresponding to a clause in the
resolution proof, such that the literals in the flattened version are non-mixed
and can be assigned to the different partitions. The colouring of the original
literals can even be chosen arbitrarily. Depending on the assigned colours, partial
interpolants may contain flattening variables that bridge different partitions,
which eventually must be bound by quantifiers.

Our algorithm computes tree interpolants from a single, non-local proof of
unsatisfiability obtained independently of the partitioning of the interpolation
problem. It supports quantifiers and arbitrary SMT theories, given that the

2 Official webpage: https://ultimate.informatik.uni-freiburg.de/smtinterpol/
Code available under LGPLv3 at https://github.com/ultimate-pa/smtinterpol.

https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/ultimate-pa/smtinterpol
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theory itself supports tree interpolation for its lemmas, and we provided the
algorithms for the theory of equality and the theory of linear rational arithmetic.

Correctness proofs for our algorithm are available in [14]. The algorithm is
implemented in the open-source SMT solver SMTInterpol.
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